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We present three novel algorithms for performing multi-dimensional joins and
an in-depth survey and analysis of a low-dimensional spatial join. The first algo-
rithm, the Iterative Spatial Join, performs a spatial join on low-dimensional data and
is based on a plane-sweep technique. As we show analytically and experimentally,
the Iterative Spatial Join performs well when internal memory is limited, compared
to competing methods. This suggests that the Iterative Spatial Join would be useful
for very large data sets or in situations where internal memory is a shared resource
and is therefore limited, such as with today’s database engines which share internal
memory amongst several queries. Furthermore, the performance of the Iterative
Spatial Join is predictable and has no parameters which need to be tuned, un-
like other algorithms. The second algorithm, the Quickjoin algorithm, performs a

higher-dimensional similarity join in which pairs of objects that lie within a certain



distance € of each other are reported. The Quickjoin algorithm overcomes drawbacks
of competing methods, such as requiring embedding methods on the data first or us-
ing multi-dimensional indices, which limit the ability to discriminate between objects
in each dimension, thereby degrading performance. A formal analysis is provided
of the Quickjoin method, and experiments show that the Quickjoin method signif-
icantly outperforms competing methods. The third algorithm adapts incremental
join techniques to improve the speed of calculating the Hausdorff distance, which is
used in applications such as image matching, image analysis, and surface approxi-
mations. The nearest neighbor incremental join technique for indices that are based
on hierarchical containment use a priority queue of index node pairs and bounds
on the distance values between pairs, both of which need to modified in order to
calculate the Hausdorff distance. Results of experiments are described that confirm
the performance improvement. Finally, a survey is provided which instead of just
summarizing the literature and presenting each technique in its entirety, describes
distinct components of the different techniques, and each technique is decomposed

into an overall framework for performing a spatial join.



MULTI-DIMENSIONAL JOINS

by

Edwin H. Jacox

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2007

Advisory Committee:
Professor Hanan Samet, Chair/Advisor
Professor Amol Deshpande
Professor Shunlin Liang
Professor David M. Mount
Professor V.S. Subrahmanian



(© Copyright by
Edwin H. Jacox
2007



Acknowledgments

I would like to thank my colleagues at the University of Maryland for provid-
ing a rich intellectual environment, especially, Jagan Sankaranarayanan, Houman
Alborzi , and Gisli Hjaltason. I appreciate the insight and discussions that David
Mount provided regarding the theoretical work. Before coming to the University of
Maryland, my advisors from the University of Michigan, Al Ward and Bill Birming-
ham provided me with a solid foundation on which to build upon.

The continuing support of my friends and family has been and always will
be a source of strength for me. I am especially thankful to my parents, Edwin
and Rose Ann, and Rob, Kristina, and Julie, as well as many aunts, uncles, and
cousins. Moreover, without Ada’s encouragement, I would never have started this
long journey. I am thankful to John Page for continuing to be a friend and mentor,
and I am much obliged to my friends for their continuing support, in this last year,
especially to Beth, Jon, Angela, Hui Ling, Eric, Joy, Jim, and Nicole.

Thank you Alexandra and Julie.

Most of all, thank you Hanan for giving me the opportunity to work with and

learn from a brilliant professor. I very much appreciate all that you have done.

11



This page intentionally left blank.



Table of Contents

List of Tables

List of Figures

1

Introduction

1.1 Spatial Joins On Unindexed Datasets . . . . . . . . . ... ... ...
1.2 Similarity Joins . . . . .. ..o
1.3 The Hausdorff Distance . . . . . . . . . . . ... . ... ... .....

Survey of Spatial Joins
2.1 Spatial Join Basics . . . .. ..o
2.1.1  Design Considerations and Parameters . . . . . . .. ... ..
2.1.2  Minimum Bounding Rectangles and Approximations . . . . .
2.1.3 Linear Orderings . . . . . . . . . .. .. ... .. .. .....
2.2 The Filtering Stage — Internal Memory . . . . . .. .. ... .. ...
2.2.1 Nested-Loop Joins . . . . . . ... ...
2.2.2  Indexed Nested-Loop Join . . . . . ... ... ... .. ....
223 PlaneSweep . . . . . ...
224 7Z-Order Methods . . . . .. ... ... ... ... .. .....
2.3 The Filtering Stage — External Memory . . . . . . . .. ... ... ..
2.3.1 Both Datasets Indexed . . . . . . .. ... ... ... ...
2.3.1.1 Hierarchical Traversal . . . . .. ... ... ... ..
2.3.1.2 Non-Hierarchical Methods . . . . . ... .. .. ...
2.3.1.3 Transform to Multi-Dimensional Points . . . . . . . .
2.3.1.4 Node to Node Comparison . . . . . .. ... ... ..
2.3.2  One Dataset Not Indexed . . . . .. ... ... ... .. ...
2.3.2.1 Constructing a Second Index . . . . ... ... ...
2.3.2.2 An Index as Partitioned Data . . . . . . .. ... ..
2.3.2.3 An Index as Sorted Data. . . . . ... ... .. ...
2.3.3 Neither Dataset Indexed . . . . . . . ... ... ... .. ...
2.3.3.1 Basic Partitioning Algorithm . . . . .. .. ... ..
2.3.3.2  Determining the Number of Partitions . . . . . . . .
2.3.3.3 Repartitioning . . . . .. ...
2.3.3.4 Avoiding Duplicate Results . . . . . . ... ... ..
2.3.4 Partitioning Using Grids . . . . . . . .. .. .. ... ... ..
2.3.5 Partitioning with Strips . . . . . .. ...
2.3.6  Partitioning by Size . . . . . . ...
2.3.7 Data-Centric Partitioning . . . . . . .. ... ... ... ...
2.4 Filtering Extensions . . . . . .. . ...
2.4.1 False Hit Filtering . . . .. .. ... .. ... .. .......
2.4.2 True Hit Filtering . . . . . . ... .. ... ... ... .....
2.4.3 Non-Blocking Filtering . . . . .. .. ... ... ... .....
2.5 The Refinement Stage . . . . . .. . ... ... ... ..

v

Vil

viil



2.5.1 Ordering Pairs . . . . . .. ...

2.5.2  Polygon Intersection Test . . . . .. ... ... ... .. ...

2.5.3 An Alternate Intersection Test . . . . . . . . .. ... .. ...

2.6 Specialized Spatial Joins . . . . . . ... ... 0oL

2.6.1 Multiway Joins . . . . . ..o
2.6.1.1 Multiway Indexed Nested-Loop Spatial Joins

2.6.1.2  Multiway Hierarchical Traversal . . . . . . . . .. ..

2.6.2 Parallel . .. ... ...

2.6.3 Distributed . . . . .. ... oo

2.6.4 Other Techniques . . . . . . . .. .. ... ... ... .....

2.7 Selectivity Estimation . . . . .. . ... ... L

Iterative Spatial Join
3.1 Internal Memory Plane Sweep . . . . . . . . . ... .. ... ...
3.1.1 Description . . . . ... ..o
3.1.2 Analysis . . . . ...
3.2 Tterative Spatial Join . . . . . .. . ...
3.2.1 Description . . . . .. ...
3.22 Analysis . . . ..
3.3 Experimental Results . . . . . ... . ... ... ... .. ...,
3.3.1 Experimental Setup and Implementation . . . . . .. ... ..
3.32 TheData . . .. .. ...
3.33 TheResults . . . . ... ... oo
3331 RealData . .. ... ... ... ... .........
3.3.3.2  Experiments Varying Available Internal Memory
3.3.3.3 Experiments Varying the Input Size . . .. ... ..
3.3.3.4 Algorithm Overhead . . . . . .. ... ... .....

Quickjoin

4.1 Related Work . . . . . . ..o
4.1.1 Epsilon Grid Order (EGO) . . . .. ... ... ... ... ...
4.1.2 GESS . . ..

4.2 The Quickjoin Algorithm . . . . . . . . ... ... ...
4.2.1 Quickjoin Using Ball Partitioning . . . . . . . . . ... .. ..
4.2.2  Quickjoin Using Generalized Hyperplane Partitioning . . . . .
4.2.3 Dimensional Version — Vector Data . . . . . .. ... ... ..

114
115
116
120
122
123
130
131
132
136
137
137

. 140

143
145

166

4.2.4  External Memory Algorithm Using Multiple Pivots (Partitions) 167

4.2.5 Split Windows . . . . . . . ..o
4.3 Analysis . . . ..
4.3.1 CPU Performance Analysis . . . . ... ... .. ... ....
4.3.2 I/O Analysis . . . ... ...
4.3.3 Depth of Recursion . . . . .. ... ... ... ... ......
4.3.4  Upper Bound On Ziﬂ:og(n)] (T+w) oo
4.4 Experiments . . . . . . ..
4.4.1 Internal Memory Similarity Joins . . . . .. .. ... ... ..

173



4.4.2 External Memory Similarity Joins

5 An Incremental Hausdorff Distance Calculation Algorithm
5.1 Related Work . . . . . . . . ..
5.2 Hausdorff Distance Computations for Bounding Boxes . . . . . . . ..
5.3 Algorithm Description . . . . . . . . ... ...
5.4 Experiments . . . . . . ...

6 Conclusions and Future Work

Bibliography

vi

196
197
198
202
206

210

216



List of Tables

2.1 Components of spatial join algorithms.

2.2 Spatial join issues. . . . .. ... ...

2.3 Specialized spatial joins. . . . . .. ..

vii



1.1

1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

List of Figures

As a matching example, the pairs of lake images with the lowest
Hausdorff distance from a collection of lakes are shown. . . . . . . ..

(a) The directed Hausdorff distance, h(A, B), is the maximum min-
imum distance between two sets, and (b) is not symmetric, though

the Hausdorff distance, H(A, B) is symmetric since it is defined as
the maximum of h(A, B) and h(B,A). . . .. ... ... ... ....

A spatial join to find the intersecting objects of datasets R, consisting
of objects r1, r2, and r3, and S, consisting of objects s1, s2, and s3,
will report the intersection of objects r1/s2, r2/s2, r2/s3 and r3/s2.

(a) A minimum bounding rectangle (MBR) is the smallest rectangle
that fully encloses an object and whose sides are parallel to the axes.
(b) The area of an MBR might be significantly larger than the area
of the enclosed object. The extra area is referred to as dead space. (c)
Two MBRs might intersect even though the objects that they enclose
do not intersect. . . . . . . ..o

(a) In order to reduce dead space, an object can be approximated by
two disjoint rectangles. (b) However, both rectangles might intersect
a second object, thereby producing duplicate results. . . . . . . . ..

(a) A linear order, where object a’s neighbors, b and ¢ are nearby.
(b) A linear order in which one of object a’s neighbors, ¢, is nearby,
but the other neighbor, b, isnot. . . . . . . . . ... .. .. ... ...

(a) Z-Order (Peano order) and (b) Peano-Hilbert order. . . . . . . ..

(a) A four cell grid traversed in a Z-order. (b) A sixteen cell grid
traversed in a Z-order. (c) A sixteen cell grid traversal that includes
enclosing blocks (lettered blocks). (d) A sixteen cell grid traversal as
atree traversal. . . . . .. ..o

(a) In a linear ordering, objects can be assigned to the smallest en-
closing block or grid cell. Object r is assigned to the root space since
it is not within any block. Object s is assigned to the lower right
block, B, and object t is assigned to cell 14. (b) An object overlap-
ping the center point, no matter how small, will be assigned to the
top level, which is the entire space. . . . . ... ... ... ... ...

The basic nested-loop join with running time O(n, - ny), for datasets
of size n, and ny, using an arbitrary join condition (joinCondition).

Viil

15



2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

An indexed nested-loop join improves the performance of the spatial
join to O((ng +np) - log(n,) + f), assuming search times of the index
are O(log(n,) + f), where f is the number of results found, n, is the

size of the indexed dataset, and n; is the size of the unindexed dataset. 33

A two set plane-sweep algorithm to find the intersections between
two sets of rectangles. . . . . . ...

Objects are shown from dataset A and dataset B in the order in which
they appear in the Z-order, where large objects are encountered first
(that is, in the following order: al, a2, a3, a4, bl). Since the stack
for the B dataset will be empty until b1 is inserted, a2 and a4 do
not need to be inserted into A’s stack. In other words, when b1 is
inserted into B’s stack, al and a3 are the only elements in A’s stack,
and a2 and a4 will never be in A’s stack when an element of B is in
B’s stack. Therefore, a2 and a4 do not need to be inserted into A’s

An object can be decomposed into multiple cells. . . . . . ... ...

A generic hierarchical traversal spatial join algorithm for data indexed
by hierarchical indices. . . . . . . ... ... L

When joining datasets A and B, internal memory, represented as data
pages in the grid, can be (a) half filled by each of datasets A and B or
(b) filled almost entirely with dataset A, leaving only one data page
for dataset B. . . . . . ...

As an example of the transformation to multi-dimensional points in
a higher-dimensional space, (a) two one-dimensional intervals, a and
b, that overlap (b) will be near each other when mapped to two-
dimensional points. Any interval that overlaps interval a will be con-
tained within the dotted lines when represented as a point. Further-
more, since the left end point of the interval is represented by the
x-axis, all points will be above the dashed, diagonal line since the left
end point is always less than or equal to the right end point. . . . . .

When joining two data pages, only the objects within the intersecting
region of the pages (marked with an z) need to be considered.

(a) The data (dark rectangles) and regions (lettered squares) covered
by the nodes of an R-tree. (b) As shown in a hierarchical represen-
tation of the index node structure, the second level of the R-tree is
used as a seed level. (c) Since object p, from the second, unindexed
dataset, does not overlap any seed level region (regions B and C'), p
can be discarded. . . . . . .. ..o

1X



2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

(a) A set of index data pages (b) are grouped to form slots, shown

by thick-lined rectangles. . . . . . . . .. ..o

The leaves of an R-tree are grouped into strips, which can flushed
to external memory if internal memory overflows. Here, four strips

(dashed lines) are formed, each containing two objects. . . . . . . . .

If both datasets, A and B, are partitioned using the same grid, then
each grid cell is joined with exactly one other, corresponding cell.

A simple partitioning technique for performing a spatial join on unin-

dexed data. . . . . . ..

(a) An intersection between objects a and b is reported from both
partitions into which they are inserted, creating a duplicate result.
(b) The reference point method for online duplicate avoidance only
reports an intersecting pair if a point in the intersecting region, x, is
within the current partition. The point must be chosen consistently,

such as always the lower left corner. . . . . . . .. ... ... .. ...

(a) Noncontiguous grid cells are grouped to form three partitions.
(b) Forming partitions from noncontiguous grid cells helps to prevent
data skew problems by creating partitions of equal size. Even though
the data is clustered in the lower left corner, the partitioning scheme
results in each partition containing either four or five objects. Each
object is labeled with the partitions in which it will be placed.

In strip partitioning, the data is partitioned into strips and sorted
parallel to the strip to take advantage of the plane-sweep modification
described in Section 2.2.3. In this example, the sweep is repeated four
times, once for each strip. The actual height of the sweep line is the

height of the strip. . . . . . . . . . . ... L

To partition by size, objects are associated with the level where they
first intersect a grid. (a) Object a is associated with the root space,
the highest level, since it intersects the first (coarsest) grid level with
four grid cells. (b) Object b is associated with the next level since it
intersects the next finer grid level with sixteen cells. (c¢) Object ¢ is

associated with an even lower level. . . . . . . . . . . . .. ... ...

A modified Z-order algorithm that partitions the data by size.

Alternate approximations to MBRs include: (a) the rotated mini-
mum bounding rectangle, (b) the minimum bounding circle, (c) the
minimum bounding ellipse, (d) the convex hull, and (e) the minimum

bounding n-corner polygon (for example, 5-corner). . . . .. ... ..

70



2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

An object (a) is approximated using a four color scheme (b) by impos-
ing a grid over the object and coloring the cells depending on whether
they are covered, mostly covered, partially covered, or not covered. . .

An MBR approximation can be improved by adding two more sides,
parallel to each other. . . . . . . . . ... ... ... ... ... ...

An object approximated by: (a) a maximum enclosed circle, (b)
a maximum enclosed rectangle, and (¢) a maximum enclosed axis-
aligned rectangle. . . . . . .. ..o

If the MBRs of two objects cross, then the two objects must intersect.

A non-blocking indexed nested-loop join allows results to be reported
immediately and continuously. . . . . . ... ..o

A plane-sweep algorithm for detecting the intersection of simple poly-
gons whose MBRs intersect. . . . . . ... ... ... ... ... ...

Only the edges contained within the intersecting region of the MBRs
could intersect each other. Edge e of object a, which is outside of the
intersecting region, could not possibly intersect object b. . . . . . ..

(a) Two intersecting edges will intersect the sweep line at adjacent
points as the sweep line approaches their intersect point. (b) When
an edge is inserted, it could intersect the edge just above it or below

it. (¢) When an edge is deleted, the edges adjacent to it might intersect.

Object a will be reported as contained within object b since the hori-
zontal line through a point, p, in a intersects object b once to the left
of point p. Object a will not be reported as contained within object
c since it intersects the horizontal line twice to the left of point p.

A polygon can be approximated by trapezoids, which can be used to
perform a faster polygon intersection test. . . . . . .. .. ... ...

Three objects with (a) mutual intersection, (b) pair-wise intersection,
(c) two of the objects not intersecting. . . . . . . .. .. ... ...,

A graph representing the relations between datasets in a complex
query between multiple datasets. Each edge is a join condition be-
tween the objects, which might be more than a binary relation, such
as the ternary relation joining A, B,and C. . . . . . .. ... .. ..

A multiway indexed nested-loop join that finds objects from three

83

84

94

datasets that satisfy any type of multiway intersection (see Figure 2.38).100

x1



2.41 A multiway indexed nested-loop join that finds objects from three
datasets that satisfy any type of multiway intersection using con-
straint satisfaction problem (CSP) techniques to prune temporary
datasets. . . . . . .

2.42 Objects in multiple partitions might be read from memory multiple
tlmes. . . . ..

3.1 The two-set plane-sweep algorithm for spatial joins. . . . . . . . . ..

3.2 A skewed dataset containing 25 rectangles with a maximum density
of 0.4. The maximum density occurs at the dashed line, where ten
rectangles intersect the line. . . . . . . . ... ... ... ...

3.3 The Iterative Spatial Join algorithm. . . . . . . .. .. .. ... ...

3.4 A simple example with 71 and 73 in one set and r2 and r4 in another.
A correct algorithm finds the three intersections: r1-r2, r2-r3, r3-r4.

3.5 The active set, sweep line, insert list and doOverFile in the first
iteration of the algorithm for the data of Figure 3.4 immediately after
encountering the left boundary of rectangles (a) r1, (b) 72, (c) r3, and
(d) r4 while processing RectanglesC. . . . . . . . . . . . ... ....

3.6 The active set, sweep line, insert list and doOverFile in the second
iteration of the algorithm for the data of Figure 3.4 immediately after
encountering the left boundary of rectangles (a) r1, (b) 72, (c¢) 73, and
(d) r4 while processing RectanglesC. . . . . . . . . . . . ... ....

3.7 (a) Without replication, the small rectangle will be put into the zero
level file meant for larger objects since it intersects the partition of
level file 1. (b) Using object replication, the same rectangle is divided
and put into the level file appropriate for its size, level 3. . . . . . .

3.8 A tiling, as used by PBSM, of space into a 4x4 grid. The tiles are as-
signed to the partitions in a round-robin order. In (a) three partitions
are created and in (b), four partitions are created. . . . . . . . . . ..

3.9 An example of the randomly generated dataset. This set has 100
rectangles and a density of 0.12. . . . . . . . .. ..o

3.10 The performance of the Iterative Spatial Join (ISJ), SSSJ, PBSM,
and S3J algorithms on Tiger File data (in seconds) for a) total time
and b) total time without sort time (excludes PBSM data). . . . . . .

xii



3.11

3.12

3.13

3.14

3.15

4.1

4.2

The performance of the Iterative Spatial Join (ISJ), SSSJ, PBSM,
and S3J algorithms on Sequoia data (in seconds) for a) total time
and b) total time without sort time (excludes PBSM data). . . . . . .

The performance (in seconds) of the Iterative Spatial Join (ISJ),
SSSJ, PBSM, and S3J algorithms for varying limits of internal mem-
ory. The number of rectangles was held fixed for all experiments at
300,000. Each graph represents a set of experiments performed with
different densities : (a) 0.12 (b) 0.10 (c) 0.06 (d) 0.02 (e) 0.005.

Expansion of the scale of Figure 3.12 to include all algorithms. The
performance (in seconds) of the Iterative Spatial Join (ISJ), SSSJ,
PBSM, and S3J algorithms for varying limits of internal memory. The
number of rectangles was held fixed for all experiments at 300,000.
Each graph represents a set of experiments performed with different
densities: (a) 0.12 (b) 0.10. . . . . . . . . . ...

The performance (in seconds) of the Iterative Spatial Join (ISJ),
SSSJ, PBSM, and S3J algorithms for varying input sizes (number
of rectangles in each dataset). The maximum and average density
was held fixed for all experiments at 0.12. Each graph represents a
set of experiments performed with different limits to internal memory:
(a) 20,000 KBytes (b) 6000 KBytes. . . . . ... ... ... ......

The overhead cost (in seconds) of the Iterative Spatial Join (ISJ),
SSSJ, PBSM, and S3J algorithms for varying input sizes (number of
rectangles in each dataset). The maximum and average density was
held fixed for all experiments at 0.12. Each graph represents a set of
experiments performed with different limits to internal memory: (a)
20,000 KBytes (b) 6000 KBytes. . . . . . . ... ... ... ...

(a) With ball partitioning, objects are partitioned by their distance
from a randomly chosen object p;, based on a distance r. In this
example, r is determined using half the distance to the farthest object
po. The problem with this partitioning is that it can separate result
pairs that are within e of each other, such as objects o; and 0y. (b)
In order to correctly capture all result pairs, two windows of objects
within € of the partitioning distance, r, are created — one with objects
whose distances from p; are greater than r and one with objects whose
distances from p; are less than or equal tor. . . . . . . .. ... ..

The EGO sorted order traverses grid cells. Points within a grid cell
are unsorted. . . ... Lo

X111

. 141



4.3

4.4

4.5

4.6

4.7

4.8

4.9

In the MSJ and GESS methods, objects are created out of multi-
dimensional points by creating hyper-squares centered around each
point with e length sides. Each object is assigned to the finest regular
grid in which it does not cross a grid boundary. In this example, only
the square with the solid border in each figure is assigned to that
level, with level 2 being the lowest level. (a) Object a is assigned to
the root space, level 0, since it intersects the first (coarsest) grid level
with four grid cells, that is, level 1. (b) Object b is assigned to the
next level since it intersects the next finer grid level with sixteen cells,
that is, level 2. (c) Object ¢ is assigned to the lowest level. . . . . . .

The Quickjoin algorithm recursively partitions the data into subsets
that are small enough to be efficiently processed by a nested-loop
join. The “windows” around the partition boundary, winL and winG,
are handled by a separate recursive function, QuickjoinWin, shown
in Figure 4.8. . . . . . ..o

The NestedLoop procedure performs a self join on the set of objects,
objs, finding all similar pairs of objects. . . . . .. .. ... .. ...

The Partition function partitions the data into two sets, those whose
distances from object pl are greater than the partitioning distance,
r, and those whose distances from p1 are less than or equal to r. The
value r is the distance from the randomly chosen object p1 to another
randomly chosen object, p2. Also, objects are inserted into two other
“window” sets if the objects are within €, eps, of r. . . . . . . .. ..

Objects are partitioned into two partitions — partG contains objects
whose distances from p1 are greater than r and partL contains objects
whose distances from p1 are less than or equal to r. The objects are
also replicated into two windows. The window, winG is a subset of
partG containing objects within € of r and winL is a subset of partL
also containing objects withineof r. . . . . . . ... .. ... ... .

The QuickjoinWin procedure, which is similar to the Quickjoin pro-
cedure given in Figure 4.4, joins two sets of objects by partitioning
the two sets and then recursively joining the partitions. Only result
pairs with one object from each set are reported. . . . . .. ... ..

The NestedLoop2 procedure performs a join on the two given sets
objects, finding all pairs of similar objects between the two sets of
objects, that is, pairs with an object from each set. . . . . . . . . ..

X1v



4.10

4.11

4.12

4.13

4.14

4.15

4.16

(1) The pivot distance is zero for hyperplane partitioning and replaces
the code on line 4 of Figure 4.6. (2) The distance function used for
generalized hyperplane partitioning. This code replaces the distance
function on lines 7, 8, 12, 16, 25, and 26 in Figure 4.6. . . . . . . ..

Using hyperplane partitioning, objects are partitioned into two sets
— partG containing objects whose distances from the partitioning hy-
perplane are greater than zero, and partL containing objects whose
distances to the partitioning hyperplane are less than or equal to zero.
The objects are also inserted into two windows. The window, winG
is a subset of partG containing objects within € of the partitioning
hyperplane, and winL is a subset of partL also containing objects
within € of the partitioning hyperplane. . . . . . . . ... ... .. ..

Objects are partitioned into four sets in the procedure QuickjoinWin,
given in Figure 4.8. The procedure partitions sets objs1 and objs2,
which were divided by a previous hyperplane, as shown. Partitions
partG1l and partG2 contain objects from object sets objs1 and objs2,
respectively, that are greater than the partitioning distance, r, and
object sets partLl and partL2 similarly contain objects less than or
equal to the partitioning distance r, again from object sets objs1
and objs2, respectively. As in the Quickjoin procedure, the objects
are also replicated into windows containing objects within € of the
partitioning hyperplane. . . . . . . . . . ... ... L.

Modifications to the Partition function from Figure 4.6 to imple-
ment the dimensional variant of the Quickjoin method. (1) Between
lines 3 and 4, a single dimension, d is chosen, which can be done in
many ways, such as cycling through the dimensions. (2) The pivot,
r, on line 4 becomes one dimension of the randomly chosen object p1.
(3) The value used for dimensional partitioning. This code replaces
the distance function on lines 7, 8, 12, 16, 25, and 26. As an example,
line 7 of the Partition function is rewritten to use the d* dimension
of object objs[startIdx]. The object p2 is not needed. . . . . . ..

Multiple partitions are created using multiple pivots, pl through p5,
along with corresponding window partitions (dashed lines). . . . . . .

The external memory version of the Quickjoin algorithm. . . . . . . .

The external partitioning function determines, for each object a,
which pivot, p, is the closest, and places the object in the correspond-
ing part partition. Also, for every other pivot, pX, if the distance
from p to the generalized hyperplane between p and pX is less than or
equal to eps, then the object a is also inserted into the corresponding
window partition. . . . . . . ..o

XV



4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

The QuickjoinWin function from Figure 4.8 is also modified to create
multiple partitions at a time. . . . . . . . ... ...

For internal partitioning, the windows can be split further in order to
improve performance. As shown with generalized hyperplane parti-
tioning, each window is split so that the inner windows, (winInnerL
and winInnerG), contain objects within § of the hyperplane, while
the outer windows (winOuterL and winOuterG) contain the remain-
ing objects that lie within € of the hyperplane. Since winOuterL and

winOuterG are more than e apart, they do not need to be joined. . .

A variant of the Quickjoin function given in Figure 4.4 modified to
subdivide each window into two parts to improve performance, as
illustrated in Figure 4.18 . . . . . . . . ...

Sort time for the Color Moments data. . . . . . . . . . . .. .. ...

Experiments with color moment data for (a) smaller e values using
an Lo-norm, and (b) larger € values using an Ly-norm. . . . . . . ..

For the color moment data using an Ls-norm, (a) the number of
distance (similarity) calculations (note that the QuickJoinBall and
QuickJoinDim algorithms performed identically, making it hard to
see the plot of the QuickJoinBall performance), and (b) the average
fractional window size created by the Partition function. . . . . ..

Experiments with color moment data for larger ¢ values using an

Experiments with 32-dimensional color histogram data, using the Lo-
NOTTIL. .+ & o v v v e e e e e

Experiments with color moment data for larger € values using an Lo-
norm and with memory restricted to 1MB. (a) Execution time, and

(D) T/O. oo

Experiments with clustered color moments data and internal memory
restricted to 10MB for (a) up to one million points and (b) ten million
points. An € of 0.1 was used with an Lyo-norm. . . . . . .. ... ..

The 1/O performance difference is negligible for larger datasets.

(a) Experiments with clustered 32-dimensional color histogram data,
using the Lo-norm. (b) Experiments clustered with 9-dimensional
color moments data, using the Ly-norm. . . . . .. .. .. ... ...

XVvi

173



5.1

5.2

9.3

5.4

9.5

0.6

5.7

0.8

5.9

The lower bound (LB) and the upper bound (UB) on the directed
Hausdorff distance between disjoint and overlapping minimum bound-

ing boxes, A,y and By, - - o o oo oo

The lower and upper bound on the Hausdorff distance between an

object (in this case, a point) @ and an MBB, Bpp. - . . . . . . . ..

The lower and upper bound on the Hausdorff distance between an

MBB, A,.», and an object b. . . . . . ... ...

Each entry in the main priority queue corresponds to an element
in the A index (a node or an object), and contains a reference to
the element, a, a secondary priority queue of B index elements,
secondaryPQ, and the minimum upper bound on the directed Haus-

dorff distance of the secondary priority queue, gMinUB. . . . . . . ..

Function HausdorffIncJoin maintains the main priority queue. It

halts when an entry containing two data objects is popped. . . . . .

Given an entry from the main priority queue, procedure createSe—
condary calculates the bounds to each element in the given secondary
priority query, secondaryPQ, and inserts them into the child entry’s
secondary priority queue if the lower bound is within the child entry’s

minimum upper bound, gMinUB. . . . . . . . . ...

The expandSecondary procedure expands node b, the top of the sec-
ondary priority queue, entry.secondaryPQ. Each child of b is in-
serted into entry.secondaryPQ if its lower bound is less than or

equal to the entry’s minimum upper bound, gMinUB. . . . . . . . . ..

The time to calculate the Hausdorff distance against every other im-
age for a target image using (a) the Ontario lakes data, (b) the trans-

lated lakes data, and (c) the normalized lakes data. . . . .. ... ..

The time to calculate the Hausdorff distance against every other im-
age for a target image using (a) the larger polygons from the Sequoia
dataset, (b) the translated data, and (c¢) the normalized data.

Xvil

. 209



Chapter 1

Introduction

Given two datasets, a relational join finds all pairs of tuples, one from each
set, that satisfy a given join condition. This fundamental database operation also
applies to datasets in more than one dimension, and requires techniques beyond
the traditional relational join algorithms, such as the sort-merge join and the hash
join [56]. In two and three dimensions, the datasets most notably involve spatial
data representing geographic objects, and the join operation is termed a spatial
join. For example, a spatial join answers a query such as find all of the rural areas
that are below sea level, given an elevation map and a land use map. In higher
dimensions, the similarity join finds pairs satisfying the join condition (typically a
distance function) on datasets such as feature vectors extracted from, for example,
similar images or similar sub-sequences. The similarity join is a typical data-mining
operation that has applications in many domains, such as medical imaging [115],
multimedia [60], and GIS [169]. The operation is used to find association rules [114],
to analyze time series, such as stock histories [5, 6], and can also be used to identify
data clusters [30].

Additionally, a form of a multi-dimensional join is needed to calculate the
Hausdorft distance, which is used as a measure for matching images in applications

such as pattern recognition, computer vision, image analysis, and surface approxi-



mation. Specifically, in pattern recognition and computer vision applications, the
Hausdorft distance is used to check if a match is found for a target image within a
desired image [167, 168] or to determine the similarity of two shapes [94]. As noted
by Rucklidge [167], “the Hausdorff distance is reliable even when the image contains
multiple objects, noise, spurious features, and occlusions.” The Hausdorff distance
is also used in image processing for contour or line detection [209, 210], image regis-
tration [137] (for example, stitching multiple images into a panoramic view), stereo
matching (recovering 3-d information from two 2-d images of the same scene) [108],
and indexing images [208]. These techniques have been applied in several diverse
domains, such as segmentation in medical imaging [42, 159] as well as in a method
to find matching astronomical images [157]. The Hausdorff distance has also been
used as an error measure in creating a triangular mesh for approximating a surface
[10].

We first focus on the spatial join. As it is a fundamental database operation,
applying to not only geographic information systems, but also any domain repre-
senting two or three-dimensional data, a large body of diverse literature exists on
the topic. Chapter 2 presents an in-depth survey and analysis of spatial joins that
not only presents a survey of the literature on spatial joins, but also extracts algo-
rithms and techniques from the literature, and presents a coherent description of
the state of the art in the design of spatial join algorithms. The remainder of this
chapter introduces the concepts behind three novel algorithms, one for performing
a spatial join on unindexed data, one for performing a similarity join, and another

for calculating the Hausdorft distance using incremental distance join techniques.



These three algorithms are presented in detail in Chapters 3, 4, and 5, respectively.

Conclusions are drawn in Chapter 6.

1.1 Spatial Joins On Unindexed Datasets

With respect to spatial joins, it is generally an axiom that indexing is crucial for
efficiently processing queries on multidimensional data, and methods for processing
a spatial join using indices are discussed in Sections 2.3.1 and 2.3.2. However, there
are many situations where indexing does not necessarily pay off since the time needed
to actually build the index prior to the performance of the operation is an issue. For
example, consider the spatial spreadsheet [97]. In this case, the output of a spatial
operation serves as input to another spatial operation. If the output is not reused
several times, then it might not be worthwhile to expend the work to build an index
as the subsequent operation’s execution time might not be dramatically reduced by
the presence of an index. This is especially true for spatial joins that make use of
indices that take a long time to build (e.g., an R*-tree [25]).

Chapter 3 presents a novel algorithm, the [terative Spatial Join, for performing
spatial joins without the use of an index on the data. Other approaches to perform-
ing spatial joins that claim not to use an index apply a partitioning scheme to the
underlying space (e.g., [19, 116, 124, 155], discussed in Chapter 2.3.3). The effect
of the partitioning is the creation of the analog of either an inverted file (e.g., [19])
or a fixed-grid (e.g., [116, 124, 155]). However, the inverted list (e.g., [113]) and the

fixed-grid (e.g., [29, 113]) are actually the building blocks of all indexing methods



in that, in essence, their use results in sorting the objects along one or all of their
attributes, respectively, into bins. Thus, these methods actually do use a form of
an index.

As shown in Chapter 3, the Iterative Spatial Join method does not use any
index. Furthermore, the difference between the Iterative Spatial Join and the par-
titioning methods is similar to the difference between the sort-merge join and the
hash-based joins for the traditional one-dimensional join [71]. The hash-based meth-
ods partition the data and then join the partitions in a divide-and-conquer approach,
which is analogous to the way the partitioning methods perform the spatial join.
The sort-merge join, on the other hand, sorts the data first, and then merges the two
datasets by sweeping a point across the data. If the data does not contain duplicate
values and the join condition is equality, then each item can be read one at a time
(or a block a time), compared to the current value in the other dataset, and then
immediately purged from internal memory. However, if the data does contain dupli-
cate values, then each duplicate must be kept in internal memory until new values
appear in both datasets so that they are correctly matched with the corresponding
values in the other dataset. In other words, for the equality join, any value that
intersects the current value (point value for integers), needs to be kept in internal
memory. Since the data is sorted, the point is swept across the data. This is similar
to the two-dimensional plane-sweep method [160]. In particular, for the plane-sweep
method, the data is sorted along one of the dimensions. A sweep line, rather than a
point, is then swept over the data. Any object intersecting the line is termed active
and needs to be kept in internal memory to be compared to later objects. However,
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since we are working in two dimensions, there is much more data intersecting the
sweep line, and thus the intersecting (i.e., active) data is not likely to fit in internal
memory for larger datasets. This concept forms the basis for the Iterative Spatial
Join, which addresses the problem of overflowing internal memory. In particular,
when internal memory overflows, excess data (or a reference to the data) is written

to a file and the Iterative Spatial Join makes additional passes on the data.

1.2 Similarity Joins

For the similarity join, similarity for a pair of objects means that they are
within a certain distance, €, of each other. The data can be of any type, as long
as a distance function exists that returns a distance between any pair of objects.
For many domains, the data is often represented as points in a multi-dimensional
space or as feature vectors. Other related operations are k-nearest neighbor joins
[206], which find the & most similar objects for each object, approximate spatial
joins [149], which find the most similar pairs within a given amount of time, and
all-nearest-neighbor queries [212], which find the nearest object for each object in
the set.

Currently, existing similarity join techniques are only applicable to multi-
dimensional point (vector) data. If the data is not in a vector format, then em-
bedding methods [62, 89, 121, 202] are usually used to transform the data into a
vector format. Furthermore, most existing similarity join algorithms, discussed in

Section 4.1, use some form of a multi-dimensional index, which often rely on picking



particular dimensions as either the primary sort dimensions or the dimensions to
index. For example, the e-kdb tree [177] splits the data along one dimension first,
then another, and so forth. This presents several problems. First, a good dimension
must be found. In particular, if an inappropriate dimension is chosen, then per-
formance could be poor. For instance, a bad dimension is one in which the range
of values in the dimension is nearly e. In this case, every object is similar in that
dimension, thereby making it useless to the index and leading to wasted processing
and storage.

Other methods try to index all of the dimensions at once as in a grid approach
[51, 103, 117]. However, with higher dimensions a problem arises in that it becomes
very likely that most data points will have features that are near the grid boundaries.
For instance, consider a multi-dimensional uniform grid where the data values range
from 0 to 1 in each dimension, and each dimension is split in two with the grid
boundary at 0.5. For an e value of 0.1, the probability that a random point lies
within € of the grid boundary in a single dimension is 0.2. Therefore, on average,
for 100 dimensions, the point would be near 20 boundaries. In a simple grid index,
similar to the one described in [103], the join is performed by comparing overlapping
cells between the two grid-indexed datasets. In this approach, points within € of a
grid boundary need to be replicated into the cells on both sides of the grid boundary.
If a point is near two boundaries, then it needs to be replicated into four cells, and
so forth. If a point is near 20 boundaries, then the point would need to be replicated
into 220 grid cells, making this approach unsuitable for higher dimensions. Two of the

grid methods [51, 117], described in Section 4.1.2, use an approach that requires little



or no replication, but performance still degrades significantly for higher dimensions,
as shown experimentally in Section 4.4. Additionally, as we quote in Section 4.1.2,
the creators of one of the methods [51] concede that this approach is unsuitable for
higher-dimension similarity joins.

Another deficiency of multi-dimensional indices is that they are built efficiently
for only one distance function or one embedding of the data. In the past, this has
not been an issue since the most commonly used distance function is one of the
Minkowski metrics, such as the Euclidean distance (Ly-norm). As pointed out by
Aggarwal [4], the Ly-norm is not necessarily relevant to many emerging applications
involving high-dimensional data. Furthermore, the distance function might change
for a particular application based on user preferences. In these cases, a dimension
that is primary for one distance function, might not be so for another distance
function. For instance, with wine data [82, 62], a user could decide that a particular
feature of the wine data is irrelevant, and set the weight of that dimension to zero.
In the worst case, every dimension that is used by the index could be assigned a
weight of zero, in which case the index is useless.

From a theoretical perspective, the ability to discriminate between objects in
any particular dimension becomes more limited as the number of dimensions that
make up the space increases. To see this, consider a data space in d dimensions where
the data is uniformly distributed across all dimensions with a range of values of 0 to
1 in each dimension. Using an unweighted Ly-norm, the maximum distance between
any pair of objects is v/d, where the distance between the objects in each dimension is
one. Therefore, the maximum e value is v/d. However, for multi-dimensional indices
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used in similarity joins, the indices are built by creating branches that split the
objects on one dimension at a time, rendering the multi-dimensional index useless
for any € value over one, or even near one, since any search will return all of the
objects. For example, in 100 dimensions, two objects could be a distance of 10 apart,
yet any € value over 1 will cause every search of the index to return all objects. Since
all objects are returned for each search of the index, which is performed for each
object, the result is extremely poor performance. Therefore, in lower dimensions,
the multi-dimensional index approaches will work fine, but for higher dimensions,
especially very high dimensions, the performance of the multi-dimensional index
methods will degrade.

Chapter 4 introduces a novel distance-based algorithm that overcomes these
problems. The algorithm, termed Quickjoin, uses concepts similar to those used in
distance-based indexing methods [43, 85] in that only the distance function is used,
rather than relying on a particular dimension. In other words, the data does not need
to be in vector format (multi-dimensional points). Additionally, the method does
not build an index, so it is able to adapt to changing distance functions. The only

requirement is that the triangle equality hold, which is true in many applications.

1.3 The Hausdorff Distance

The Hausdorfl distance is a measure of the maximum of the minimum distance
between two sets of points, the surfaces of two objects, or any two sets of objects.

For instance, as shown in Figure 1.1, a low Hausdorff distance value corresponds to
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Figure 1.1: As a matching example, the pairs of lake images with the lowest Haus-

dorfl distance from a collection of lakes are shown.

similar images. In this example, the images are polygons corresponding to lakes from
the dataset of the Ontario Ministry of Northern Development and Mines (MNDM)
[142] represented as collections of vertices, which are pairs in two dimensions. In
this case, to match images, each image was normalized so that its coordinate values
range from 0 to 1 in each axis, which adjusts the images for translation, but not for
rotation. For this reason, the similar images have similar rotation.

The Hausdorff distance is defined as the maximum of the minimum distance
between an element in a set A, to the nearest element in a set B, as shown in Fig-
ure 1.2a. Formally the Hausdorff distance is given in Equation 1.1, where d(a,b) is
some distance measure (metric) between elements a and b of sets A and B, respec-

tively.

h(A, B) = maz,e amingegd(a,b) (1.1)

This definition of the Hausdorff distance, referred to as a directed Hausdorff
distance, h(A, B), is not symmetric, as illustrated in Figure 1.2b. The symmetric
version of the Hausdorff distance, H (A, B) takes the maximum of the two directed

distances, as shown in Equation 1.2.
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Figure 1.2: (a) The directed Hausdorff distance, h(A, B), is the maximum minimum
distance between two sets, and (b) is not symmetric, though the Hausdorff distance,

H(A, B) is symmetric since it is defined as the maximum of h(A, B) and h(B, A).

H(A, B) = maz [h(A, B), h(B, A)] (1.2)

The traditional approach [8] to calculate the Hausdorff distance uses a Voronoi
diagram, where the sites are the vertices of the polygons. In Chapter 5, we show
that incremental distance join concepts [83, 179, 180, 206] can be used to improve
the performance of this calculation process for datasets that can be indexed by

hierarchical containment spatial indices, such as the R-tree [76].
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Chapter 2

Survey of Spatial Joins

This chapter presents an in-depth survey and analysis of spatial joins. A large
body of diverse literature exists on the topic of spatial joins. The goal of this chapter
is not only to survey the literature on spatial joins, but also to extract algorithms
and techniques from the literature and to present a coherent description of the state
of the art in the design of spatial join algorithms. Frequently, an article presents
a complete framework for performing a spatial join. Instead of summarizing each
complete framework individually, we decompose them into components in two ways.
First, if several methods are similar, then a common algorithm is extracted from
the frameworks to show specifically how each framework differs from the others.
For instance, there exist several methods for performing a spatial join on R-trees
[76], each using a hierarchical traversal method. From these different algorithms, we
create a generic hierarchical traversal algorithm and show how each method slightly
varies the generic algorithm (see Section 2.3.1.1). Thus, each method is presented
in a simpler manner that allows it to be more thoroughly compared and contrasted
with similar algorithms. By doing so, the strengths and weaknesses of each com-
peting algorithm become more apparent. The various components are tabulated
in Table 2.1 along with the sections in which they are discussed. The second ap-

proach to decomposing the various methods is to extract common issues from each
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Table 2.1: Components of spatial join algorithms.

Internal Memory
Methods

2.2.1 Nested-Loop Join [136]

2.2.2 Indexed Nested-Loop Join [56]
2.2.3 Plane Sweep [19, 160]

2.2.4 Z-Order [14, 143]

Section 2.3.1 External
Memory Methods
(Both Datasets Indexed)

2.3.1.1 Hierarchical Traversal [38, 72, 91, 109]
2.3.1.2 Non-Hierarchical Methods [78, 110]
2.3.1.3 Multi-Dimensional Point Methods [181]

Section 2.3.2 External
Memory Methods
(One Dataset Not
Indexed)

2.3.2.1 Construct a Second Index [122]
2.3.2.2 The Index as Partitioned Data [192, 132]
2.3.2.3 The Index as Sorted Data [18, 74]

Section 2.3.3 External
Memory Methods
(Neither Dataset

2.3.3.1 Generic Partitioning Algorithm
2.3.4 Grid Partitioning [155, 213]
2.3.5 Strip Partitioning [19]

Indexed) 2.3.6 Size Partitioning [116, 19]
2.3.7 Data Partitioning [123, 124]
Section 2.5 2.5.1 Ordering Candidate Pairs [1]
Refinement 2.5.2 Polygon Intersection Test [160, 37]
t

2.5.3 Alternate Intersection Test [37]

Table 2.2: Spatial join issues.

Section 2.1 Spatial Join
Basics

2.1.1 Design Parameters
2.1.2 Minimum Bounding Rectangles
2.1.3 Linear Orderings

Processing Issues

2.3.1.4 Joining Data Nodes

Partitioning Issues

2.3.3.2 Determining the Number of Partitions
2.3.3.3 Repartitioning
2.3.3.4 Avoiding Duplicate Results

Section 2.7
Selectivity Estimation

Uniform Dataset Estimates [13]
Non-Uniform Dataset Estimates [27, 48, 63, 131]

Section 2.4 Alternate
Filtering Techniques

2.4.1 False Hit Filtering [36, 116, 198, 218]
2.4.2 True Hit Filtering [34]
2.4.3 Non-Blocking Filtering [126]
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Table 2.3: Specialized spatial joins.
Section 2.6.1 Multiway 2.6.1.1 Multiway Indexed Nested-Loop [133, 130, 150]

Spatial Joins 2.6.1.2 Multiway Hierarchical Traversal [133, 130, 150]
Section 2.6.2 Parallel Parallel Hierarchical Traversal [39]
Spatial Joins Parallel Grid Partitioning Methods [126, 156, 213]

Hypercube Spatial Joins [87]

Section 2.6.3 Distributed | Distributed Filter and Refine [2, 128§]
Spatial Joins

and address these issues in separate sections. For example, many of the spatial
join methods for handling unindexed data must deal with the issue of removing
duplicate results from the different stages of spatial join processing. Rather than
separately show how each framework handles duplicate results, different techniques
for handling duplicate results are described in a separate section (Section 2.3.3.4).
The sections dealing with issues that arise in algorithms are tabulated in Table 2.2.
Furthermore, spatial joins for specialized environments are discussed in separate
sections, as tabulated in Table 2.3.

The rest of the chapter is organized as follows. Section 2.1 defines the spatial
join operation and discusses design parameters that influence the performance of
a spatial join as well as describing the following two concepts that are important
to many spatial join algorithms: the minimum bounding rectangle (also known as
a minimum bounding box) and linear orderings. Typically, a spatial join is per-
formed in two stages: the filter stage in which complicated polygonal objects are
approximated by rectangles and the refinement stage which removes any results
produced during the filtering stage that do not satisfy the join condition [145]. Sec-

tion 2.2 describes internal memory filtering techniques, while Section 2.3 describes
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external memory filtering techniques. Section 2.4 presents extended or alternate
filtering techniques, while Section 2.5 discusses the refinement phase. Section 2.6
explains how spatial joins are handled in specialized situations, such as in parallel

architectures, while Section 2.7 discusses selectivity estimation.

2.1 Spatial Join Basics

Given two datasets of multi-dimensional objects in Euclidean space, a spatial
join finds all pairs of objects satisfying a given relation between the objects that
involves the values of their spatial components, such as intersection. For example, a
spatial join answers such queries as find all of the rural areas that are below sea level,
given an elevation map and a land use map [198]. To illustrate the concept further,
a simplified version of a spatial join is as follows: given two sets of rectangles, R
and S, find all of the pairs of intersecting rectangles between the two sets, that is,
for each rectangle r in dataset R, find each intersecting rectangle, s, from dataset
S, as illustrated in Figure 2.1. The general spatial join problem, also known as a

spatial overlay join, extends the simplified version in several ways:

1. The datasets can be objects other than rectangles such as points, segments,

or polygons .

LAn extensive amount of research has also examined the related operation, the segment join
[21, 40, 44, 127, 193], and the more general overlay operation which also addresses the effects of
the result of the spatial join on the way in which the combined attributes of the join are handled

(195, 196, 197
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Figure 2.1: A spatial join to find the intersecting objects of datasets R,
consisting of objects r1, r2, and 73, and S, consisting of objects s1, s2,
and s3, will report the intersection of objects r1/s2, r2/s2, r2/s3 and
r3/s2.

2. The datasets might have more than two dimensions 2.

3. The relationship between pairs of objects can be any relation between the
objects that involves the values of the spatial components, such as intersection,
nearness, enclosure, or a directional relation (for example, find all pairs of

objects such that r is northwest of s [216]).

4. There might be more than two datasets in the relation (a multiway spatial

join) or only one dataset (a self spatial join).

The problem of spatial join has been the subject of much attention in fields
other than spatial databases. In particular, its solutions make use of the same
principles as interference detection in robotics applications (for example, [70]), game
programming (for example, [189]), and design rule checking in VLSI applications
(for example, [164]). These topics are beyond the scope of this review, but for more

details, the interested reader should consult texts such as [172].

2A one dimensional version of the spatial join would be an interval join [57].
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Spatial joins are distinguished from a standard relational join [136] in that the
join condition involves the multi-dimensional spatial attribute of the joined relation.
This property prevents the use of the more sophisticated relational join algorithms.
For instance, because the data objects are multi-dimensional, there is no ordering
of the data that preserves proximity. Relational join techniques that rely on sorting
the data, such as the sort-merge join [136], work because neighboring objects (those
with the next higher and lower value) are adjacent to each other in the ordering.
However, in more than one dimension, the data can not be sorted so that this
property holds for all directions and dimensions. For example, in two dimensions,
the left and right neighbors can be adjacent to an object in an ordering, but then the
top and bottom neighbors will need to go elsewhere in the order (see Section 2.1.3
for a further discussion of multi-dimensional orderings).

Other relational join techniques are also inapplicable because the data objects
might have extent. For example, equijoin techniques [136] (for example, hash joins),
will not work with spatial data because they rely on grouping objects with the same
value, which is not possible when the objects have extent. This is the same reason
that equijoin techniques will not work with intervals (extent in one dimension) or
inequalities. As an example, for a one-dimensional hash join on datasets R and
S, a group of equal-valued objects, say G, is formed from dataset R and placed
in a bucket. If any object g in bucket G satisfies the relation with an object from
dataset S, then so does every object from dataset G. This property does not hold for
objects with extent, such as a rectangle, because the objects can overlap each other

and a disjoint grouping might not exist. In fact, an object from dataset R could

16



potentially intersect every object from dataset S. Because of these two factors (that
is, failure to satisfy proximity preservation and extent) relational join algorithms
cannot be used directly to perform a spatial join.

The computational geometry approach to solving the simplified spatial join
(a two-set rectangle intersection) is to use a plane-sweep technique [160] (see Sec-
tion 2.2.3). In order to use the plane-sweep method for a general spatial join, two
problems must be overcome: the objects are not necessarily rectangles and there
might not be sufficient internal memory for the plane-sweep algorithm. Further-
more, calculating whether two complex objects satisfy the join condition, such as
intersection, can be an expensive operation, and performing as few of these oper-
ations as possible improves overall performance. To overcome these problems, a
spatial join is typically performed using a two stage filter-and-refine approach [145].

In the filter-and-refine approach, the spatial join is first solved using approx-
imations of the objects in the filtering stage and any incorrect results due to the
approximations are removed in the refinement stage using the full objects . In the
filtering stage, objects are typically approximated using minimum bounding rectan-
gles (see Section 2.1.2), hereafter referred to as MBRs, which require less storage
space than the full object, resulting in faster processing and less expensive I/O oper-

ations 4. For example, GIS objects might be polygons, each consisting of thousands,

3While the filter and refine stages can be considered two phases of one technique, Park et
al. [154] propose separating the filter and refinement steps for query optimization so that each

stage can be combined with non-spatial queries.

40ther approximations also can be used (see Section 2.4).
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or even millions, of points. Reading these objects in and out of memory could easily
be the dominant cost of performing a spatial join, depending upon the available
amount of internal memory and the ratio of I/O to CPU performance, whereas a
filter-and-refine approach alleviates this problem. Furthermore, a spatial join on
rectangles presents a more tractable problem. For smaller datasets, the filtering
stage of the spatial join can be solved using internal memory techniques, which are
described in Section 2.2. For larger datasets, external (secondary) memory tech-
niques are required for the filtering stage, which are described in Section 2.3.

The output of the filtering stage is a list of all pairs of objects whose approxi-
mations satisfy the join condition, which is referred to as the candidate set, and is
typically represented by pairs of object ids. The candidate set includes all of the
desired pairs, those whose full objects satisfy the join condition, but also includes
pairs whose approximations satisfy the join condition, but whose full objects do not.
The extra pairs appear because of the inaccuracy of the object approximations (see
Section 2.1.2). The purpose of the refinement stage is to remove the undesired pairs
using the full objects, producing the final list of object pairs that satisfy the given
join condition. Refinement techniques are described in Section 2.5.

As mentioned above, the dominant cost of a spatial join with very large objects
can be the I/O cost of reading the large objects, depending upon the amount of
internal memory and the ratio of I/O to CPU performance. Early filtering techniques
were dominated by I/O costs [38]. Later techniques have improved I/O performance
so that it is no longer an axiom that I/O costs dominate the CPU costs [155]. Even

though filtering reduces the I/O costs, reading large objects can still be the major
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cost of the refinement stage, which is generally more expensive than the filtering
stage [155]. Furthermore, while the performance improvement from using a filter-
and-refine approach might be obvious for very large objects, it remains an open
question as to whether it is the best approach for smaller, simpler objects. As an
example of an alternative approach, Zhu et al. [214, 215] have proposed methods for
extending the plane-sweep algorithm (Section 2.2.3) to trapezoids and recti-linear
polygons, thereby avoiding the need for the filter-and-refine approach for objects
having such shapes.

Throughout the review of the spatial join techniques, we do not discuss ex-
perimental results. Most of the methods described in this survey were shown to
outperform some other method. Unfortunately, we found it difficult to compare
methods using only the literature since the techniques are compared with one or no
other technique, and the implementations of the techniques can vary dramatically,
which has a large impact on the experimental results. Furthermore, the variety of
computer hardware, software and networks used make it difficult to compare results
between methods. For these reasons, we do not discuss most experimental results.

Also, to simplify the discussion of the techniques, it is assumed that the data is
two dimensional and that we are interested in determining pairs of intersecting ob-
jects. Both of these assumptions are common in the literature. The two-dimensional
assumption is made because the applications of these techniques to higher dimen-
sional data has not been extensively addressed in the literature and many of the
techniques presented might not work or might not perform well in higher dimen-

sions. The intersection assumption is made only to simplify the discussion. We

19



believe that this assumption does not effect the generality of the algorithms. For
example, a nearness relation can easily be calculated by extending the size of the
MBRs so that nearness is calculated by an intersection test [117]. However, for
some predicates, such as a directional predicate, the algorithms need to be modified
appropriately. For instance Zhu et al. [216] use a modified plane-sweep algorithm
(see Section 2.2.3) to search for all objects in the desired direction for a directional
predicate. When appropriate, a generic join condition is used, rather than intersec-
tion.

Furthermore, although many spatial join techniques depend on spatial indices,
the discussion of spatial indices is left to other work [68, 170]. Knowledge of these
structures can be crucial to a deeper understanding of many of the techniques for
processing spatial data. Where appropriate, these index structures are described,
but in general, the algorithms are presented in such a way that little or no knowledge
of the underlying spatial indices is required.

The remainder of this section discusses issues that are fundamental to the
design of spatial join algorithms. Section 2.1.1 discusses various design consider-
ations and parameters that influence the performance of spatial join algorithms.
Sections 2.1.2 and 2.1.3 review MBRs and linear orderings, respectively, which are

concepts that are fundamental to many spatial join techniques.
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2.1.1 Design Considerations and Parameters

Many factors contribute to the performance of a spatial join and influence the
design of algorithms. The foremost factor, of course, is the processor speed and
[/O performance, and in particular, the ratio of these two factors. Early spatial
joins algorithms were constrained by 1/0, which dominated CPU time, and the
focus of improvements was on minimizing the amount of data that needed to be
read from and written to external memory. As spatial join algorithms improved,
experiments showed that CPU time accounted for an equal share of performance and
that the algorithms were no longer I/O dominated [38]. In addition, ever increasing
amounts of internal memory allow larger portions of the data to reside in memory,
which also improves the performance of the spatial join. Today, algorithms need to
account for both CPU performance and 1/O performance. These two factors can
be balanced somewhat by tuning page sizes and buffer sizes (the amount of internal
memory available to the algorithm), two factors which also play an important role in
performance. However, as processor, I/O speeds, and internal memory sizes continue
to improve, algorithms need to account for these factors and thus tuning will always
be necessary for the best performance.

The characteristics of the datasets and whether the datasets are indexed are
also major influences on performance. The dataset sizes obviously effect overall
performance, but a more important issue is whether the dataset fits into the avail-
able internal memory. If the entire dataset does fit in internal memory, then the

spatial join can be done entirely in memory (Section 2.2) 5 which can be signifi-

SIf the plane-sweep technique is used (Section 2.2.3), then the dataset can be processed in
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cantly faster than using external memory methods (Section 2.3). One of the most
confounding factors for spatial join design is the distribution of data. Algorithms
for uniformly distributed datasets are easy to develop, but the development of al-
gorithms for handling skewed datasets is significantly more complicated. A poorly
designed algorithm can thrash with skewed datasets by repeatedly reading the same
data in and out of external memory, which severely degrades performance. These
factors are mitigated if the data is indexed appropriately. If a dataset is indexed,
then in general, algorithms that use the index will be faster than those that do
not. Section 2.3 classifies spatial join algorithms by whether they assume that both
datasets are indexed (Section 2.3.1), only one dataset is indexed (Section 2.3.2), or
neither of the datasets are indexed (Section 2.3.3).

How the data is stored is another factor that contributes to the design of spa-
tial joins. Vectors (a list of vertices) are commonly used to store polygons, but
raster approaches are also used [143]. The choice of storage method for the full
object mostly effects the complexity of the object intersection test during the re-
finement stage, since an approximation of the full object is used during the filtering
stage. This work only discusses refinement techniques for the more common vector
representation. During the filtering stage, an object is represented by an approxi-
mation and an object id or a pointer is used to access the full object. An MBR is
generally chosen as the approximation, but other approximations can also be used

(see Section 2.4).

internal memory even if its total size exceeds the size of the internal memory provided that the

data is already sorted and that the active set fits into internal memory.
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The environment in which the algorithm is executed also plays a role in the
design of spatial join algorithms. In a demand-driven pipelined system [71], which
is typical for a DBMS, each stage of the spatial join algorithm needs to output
results continuously in order for the pipeline to run efficiently. In this case, each
stage is said to be non-blocking because the next stage does not need to wait for
results. Unfortunately, filtering methods that sort or partition the data are blocking,
although there is a method to produce some results earlier (see Section 2.4.3). Also,
specialized algorithms can be used to improve the performance of multiway spatial
joins, and modified algorithms are required to perform spatial joins that run in

parallel environments and distributed environments (see Section 2.6).

2.1.2  Minimum Bounding Rectangles and Approximations

For the filtering stage, most algorithms use a minimum bounding rectangle
(MBR) to approximate the full object, though other approximations might be used
instead or as a secondary filter (Section 2.4). An MBR of an object is the smallest
enclosing rectangle whose sides are parallel to the axes of the space (axis-aligned),
as shown in Figure 2.2a. MBRs are preferred over the full object because they re-
quire less memory and intersections between MBRs are easier to calculate. Objects,
especially in GIS applications, can be very large, requiring many points or lines to
represent a polygon, and for large datasets, which are also typical in GIS applica-
tions, reading thousands, millions, or more of these objects from external memory

and performing intersection tests on them can be extremely expensive in terms of
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(a) (b) ()
Figure 2.2: (a) A minimum bounding rectangle (MBR) is the smallest
rectangle that fully encloses an object and whose sides are parallel to
the axes. (b) The area of an MBR might be significantly larger than
the area of the enclosed object. The extra area is referred to as dead

space. (¢) Two MBRs might intersect even though the objects that they
enclose do not intersect.

I/O performance. Instead, if MBRs are used in the filtering stage, the MBRs can
be read from external memory faster than the full object and the intersection tests
can be performed faster. Unfortunately, using MBRs, or any approximation, will
produce some wrong answers. As shown in Figure 2.2b, an object might only occupy
a fraction of its MBR, leaving a portion of dead space. Two MBRs might intersect,
but the objects they represent might not intersect, as shown in Figure 2.2c. This
result is referred to as a false hit, whereas the result is termed a true hit if the MBRs
intersect and the objects they represent also intersect.

Before performing a spatial join, the MBRs for the full objects must be calcu-
lated. If the data is indexed using a spatial indexing method [68, 170], then typically
the MBRs exist already. If they do not, then a scan of the full dataset is required
to create the MBRs. Forming the MBR of an object simply involves checking each
corner point of the object, which is an O(n) operation for a polygonal object with

n vertices.
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(a) (b)
Figure 2.3: (a) In order to reduce dead space, an object can be approx-

imated by two disjoint rectangles. (b) However, both rectangles might
intersect a second object, thereby producing duplicate results.

Use of the filter and refine approach for spatial joins was first introduced
by Orenstein [145]. Orenstein was concerned that a poor approximation would
degrade performance [144] and experimented with using a set of disjoint rectangles
to approximate each object. For example, to use this representation, the object
in Figure 2.2b is decomposed into the two MBRs shown in Figure 2.3a, improving
the approximation by reducing the dead space, but also increasing the size of the
dataset. While this approach improves the accuracy of the filter stage, it also creates
the need for an extra step after the filtering stage to remove duplicates from the
candidate set. As shown in Figure 2.3, both pieces of the decomposed object in
Figure 2.3a might intersect the same object, as shown in Figure 2.3b. Both of these
intersections create a candidate pair. The duplicate results generally need to be
removed for most applications and this typically should be done before the more
costly refinement stage in order to avoid extra processing (see Section 2.3.3.4 for a
discussion of duplicate removal techniques).

Nevertheless, most algorithms use one MBR, rather than approximating an
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object by a set of rectangles, and rely on the refinement stage to efficiently remove
false hits. However, many algorithms intentionally duplicate objects. For instance,
if an algorithm creates a disjoint partition of the objects in a divide-and-conquer
approach, as is done with a grid partitioning approach (see Section 2.3.4), then each
object will appear in each partition it overlaps. Similarly, some spatial indices that
can be used to perform a spatial join use disjoint nodes and the objects again are
copied into each node they overlap (for example, the R*-tree [175]). In both cases,

duplicate removal (or avoidance) techniques are required (see Section 2.3.3.4).

2.1.3 Linear Orderings

A linear order [99, 170] creates a total order on multi-dimensional objects. In
other words, a linear order is a traversal of all of the objects, as shown in Figure 2.4.
Linear orderings play an important role in many spatial join techniques, in a similar
way that sorted orders (a one-dimensional linear ordering) play an important role
in creating efficient algorithms for relational joins (for example, the sort-merge join
[136]). The benefit of a sorted order in one dimension is that neighboring objects
(close in value) are next to each other in the sorted order, leading to algorithms
such as the sort-merge join [136]. In more than one dimension, no natural linear
order exists and spatially neighboring objects will not necessarily be close in the
linear order. For example, in Figure 2.4a, neighboring objects a and b are next to
each other in the order indicated by the arrows, but in Figure 2.4b, they are widely

separated. Nevertheless, because linear orders keep some of the neighboring objects
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Figure 2.4: (a) A linear order, where object a’s neighbors, b and ¢ are

nearby. (b) A linear order in which one of object a’s neighbors, ¢, is
nearby, but the other neighbor, b, is not.

near each other in the order, they can be useful in spatial join techniques.

Linear orders that keep neighboring objects closer in the order, on average,
such as the Z-order or the Peano-Hilbert order, tend to be more useful for spatial
join algorithms. The Z-order (also known as a Peano or Morton order), shown in
Figure 2.5a, and the Peano-Hilbert order, shown in Figure 2.5b, traverse the grid in
a pattern that helps to preserve locality. They are also known as space-filling curves
(see [172] for other such curves). Both of these linear orders first order objects in
a block before moving to the next block. For example, the Z-order is a traversal
through a regular grid using a ‘Z’ pattern, as shown in Figure 2.6a. If there are
more than four cells in the grid, then each top-level block is fully traversed before
moving to the next block. In Figure 2.6b, block A from Figure 2.6a is traversed in a
‘7’ pattern before moving to block B. This pattern is repeated at finer levels, where
a block at any level is fully traversed before moving to the next block. In this way,
a linear order is imposed on the cells. The Peano-Hilbert order is similar, as shown

in Figure 2.5b, though each block is traversed in a rotation that might be clockwise
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(a) (b)

Figure 2.5: (a) Z-Order (Peano order) and (b) Peano-Hilbert order.

or counter-clockwise, avoiding the large jumps between the constituent grid cells of
a Z-order.

Additionally, an order might visit both the grid cells and the enclosing blocks,
for instance, ordering both the blocks in Figure 2.6a and the constituent grid cells
in Figure 2.6b. To accomplish this order, one convention is to visit enclosing regions
(the blocks in Figure 2.6a) before visiting smaller regions (the cells in Figure 2.6b),
as shown in Figure 2.6¢, which also includes the top level cell (the enclosing space)
in the ordering. In essence, this a hierarchical traversal of the nodes, as shown in
Figure 2.6d, which is a preorder tree traversal.

To traverse points in a linear order, the grid cells can be made small enough
such that each point is in its own grid cell. To traverse objects in a linear order,
either a point in the objects, such as the centroid, is used to represent each object
or the objects are assigned to the smallest enclosing block or grid cell, which is
similar to creating an MBR for the object, but with more dead space, as shown in
Figure 2.7a. Note that an object, no matter how small, that intersects the center

point will always be in the top level cell (root space), as shown in Figure 2.7b. Some
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Figure 2.6: (a) A four cell grid traversed in a Z-order. (b) A sixteen cell
grid traversed in a Z-order. (c) A sixteen cell grid traversal that includes

enclosing blocks (lettered blocks). (d) A sixteen cell grid traversal as a
tree traversal.

algorithms can take advantage of the regular structure of the enclosing cells, but
at the price of more false hits due to the increased dead space (see Sections 2.2.4

and 2.3.6).

2.2 The Filtering Stage — Internal Memory

During the filtering stage, a spatial join is performed on approximations of
the objects. This section describes techniques for performing a spatial join without
using external memory, that is, no data is written to external memory (only read
once if necessary). In particular, we note that if there is insufficient internal memory

to process a spatial join entirely in memory, then external memory must be used to
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Figure 2.7: (a) In a linear ordering, objects can be assigned to the small-
est enclosing block or grid cell. Object r is assigned to the root space
since it is not within any block. Object s is assigned to the lower right
block, B, and object t is assigned to cell 14. (b) An object overlapping

the center point, no matter how small, will be assigned to the top level,
which is the entire space.

store all or portions of the datasets during processing (see Section 2.3). Even so,
at some point, most external memory spatial join algorithms reduce the size of the
problem and process subsets of the data using internal memory techniques.
Section 2.2.1 first describes the brute force nested-loop join. Next, Section 2.2.2
describes the related index nested-loop join, which is presented as an internal mem-
ory method even though it can be used as an external memory algorithm if the
indices are stored in external memory. Two more sophisticated approaches are
described here: the plane-sweep algorithm, rooted in computational geometry, in
Section 2.2.3, and a variant of the plane-sweep that uses a linear ordering of the

data, in Section 2.2.4.
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1 procedure NESTED_LOOP_JOIN(setA, setB, joinCondition)
2 begin

3 foreach a € setA do

4 foreach b € SetB do

5 if SATISFIED(a, b, joinCondition) then
6 REPORT (a, b);

7 endif;

8 enddo;

9 enddo;

10

end
Figure 2.8: The basic nested-loop join with running time O(n, - ny),

for datasets of size n, and np, using an arbitrary join condition
(joinCondition).

2.2.1 Nested-Loop Joins

The most basic spatial join method is the nested-loop join, which compares
every object in one dataset to every object in the other dataset [136]. The algo-
rithm, shown in Figure 2.8, takes every possible pair of objects and passes it to
the SATISFY function to check if the pair of objects meets the given join condition,
termed joinCondition in the algorithm. If a pair satisfies the join condition, then
it is reported using the REPORT function. Given two datasets, A and B, with n, and
ny, objects in each, respectively, the nested-loop join takes O(n, - np) time. Despite
this larger cost, the nested-loop join can be useful when there are too few objects
to justify the overhead of more complex methods. Note that this algorithm works

with any object type and with any arbitrary join condition.
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2.2.2 Indexed Nested-Loop Join

A variant of the nested-loop join algorithm, called the indexed nested-loop
join [56], improves performance for larger datasets by first creating a spatial index
on one dataset, say A. In this algorithm, given in Figure 2.9, the spatial index is
first created and every element of dataset A is inserted into the index using the
INSERT function. Next, the other dataset, say B, is scanned, and each element
is used to search the index on dataset A for intersections. The index is searched
using the SEARCH function, which in this context becomes a window query [68] on
the index, where the window is the object from dataset B. Generally, the search
window is a rectangle, which limits the types of join conditions to intersection tests
or related relations that can be solved with a window query, such as proximity.
Typically, for each object in dataset B, the time to search the index is, on average,
O(log(na)+ f), where n, is the size of dataset A and f is the number of intersections
found. For example, the search and insert time, on average, for an R-tree [76] is
O(log(ng) + f). In theory, an object could intersect every object in the index,
creating an O(n) search time. In practice though, the number of intersections is
small and the running time of the entire algorithm is O((n, + ny) - log(n.) + f),
which includes the time to construct the index, which is typically O(n, - log(n,)).
Since all of dataset A is inserted first, more efficient static indices and bulk-loading
techniques [17, 84, 104, 191] can be used to improve the construction time and the
performance of the index.

The indexed nested-loop algorithm can be executed entirely in memory, using
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1 procedure INDEX_NESTED_LOOP_JOIN(setA, setB)
2 begin

3  spatialIndex«CREATE_SPATIAL_INDEX(setA);
4  foreach a € setA do

) spatialIndex.INSERT(a)

6 enddo;

7 foreach b € setB do

8 searchResults«—spatialIndex.SEARCH(b)

9 REPORT (searchResults)

10 enddo;

11 end

Figure 2.9: An indexed nested-loop join improves the performance of
the spatial join to O((n, + n) - log(n,) + f), assuming search times of
the index are O(log(n,) + f), where f is the number of results found,
n, is the size of the indexed dataset, and n, is the size of the unindexed
dataset.

in memory indices, and is useful as a component in other spatial join algorithms
(see Section 2.3). The algorithm can also be used as a stand alone external memory
spatial join algorithm by using external memory indices, which allows the algorithm
to process larger datasets. For instance, Becker et al. [24] used grid files [140] as the
index and Henrich and Méller [80] used an LSD tree [81] as the index. However,
more sophisticated methods exist for using an external spatial index to perform a

spatial join (see Section 2.3).

2.2.3 Plane Sweep

A two-dimensional plane-sweep [160] of a set of axis-aligned rectangles finds all
of the rectangles that intersect. The algorithm has two passes. The first pass sorts
the rectangles in ascending order on the basis of their left sides (i.e.,  coordinate

values) and forms a list. The second pass sweeps a vertical scan line through the
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sorted list from left to right, halting at each one of these points, say p. At any
instant, all rectangles that intersect the scan line are considered active and are the
only ones whose intersection needs to be checked with the rectangle associated with
p. This means that each time the sweep line halts, a rectangle becomes active,
causing it to be inserted into the set of active rectangles, and any rectangles entirely
to the left of the scan line are removed from the set of active rectangles . Thus, the
key to the algorithm is its ability to keep track of the active rectangles (actually,
just their vertical sides), as well as performing the actual intersection test.

To keep track of the active rectangles, the plane-sweep algorithm uses a struc-
ture (referred to as a sweep structure or sweepStructure in Figure 2.10) that sup-
ports three operations needed to track the active rectangles. The first, INSERT, in-
serts a rectangle by adding it to the active set. The second, referred to as REMOVE_-
INACTIVE, removes from the active set all rectangles that do not overlap a given
rectangle (or line). These rectangles become inactive when the sweep line halts.
The third operation, SEARCH, searches for all active rectangles that intersect a given
rectangle and outputs them. Examples of structures that support these operations
are discussed later in this section.

The classical rectangle intersection problem, given a set of rectangles, S, de-
termines the pairs of intersecting rectangles in .S. A spatial join, given two sets of
rectangles, A and B, determines all pairs of intersecting rectangles in A and B —

that is, for each rectangle r in A, find all of the rectangles in B intersected by r.

6A variant of the plane-sweep algorithm also stops at the right sides of each rectangle, which

also must be included in the original sorted list, and removes that rectangle from the active set.
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1 procedure PLANE_SWEEP(setA, setB)
2 begin

3 listA«SORT_BY_LEFT_SIDE(setA);

4 listB«SORT_BY_LEFT_SIDE(setB);

b) sweepStructureA«CREATE_SWEEP_STRUCTURE() ;

6 sweepStructureB«—CREATE_SWEEP_STRUCTURE() ;

7 while NOT 1listA.END() OR NOT 1istB.END() do

8 /* get leftmost rectangle from the two lists */

9 if 1istA.FIRST() < listB.FIRST() then

10 sweepStructureA.INSERT (1istA.FIRST());

11 sweepStructureB.REMOVE_INACTIVE(1listA.FIRST());
12 sweepStructureB.SEARCH(1istA.FIRST(Q));

13 1istA.NEXTQ);

14 else

15 sweepStructureB. INSERT (1istB.FIRST());

16 sweepStructureA.REMOVE_INACTIVE(1istB.FIRST());
17 sweepStructureA.SEARCH(1istB.FIRST());

18 1istB.NEXTQ);

19 endif;

20 enddo;

21 end

Figure 2.10: A two set plane-sweep algorithm to find the intersections
between two sets of rectangles.

To apply the plane-sweep algorithm, a sweep structure is needed for both A and B.
Rectangles from A are inserted into A’s sweep structure and rectangles from B are
inserted into B’s sweep structure. Also, a rectangle r from A will perform a search
on B’s sweep structure, thereby finding all the intersections with the rectangles in
B, and vice versa. Such an algorithm in given in Figure 2.10.

The data structure used to implement the sweep structures in Figure 2.10
can have a significant impact on performance, as Arge et al. [19] show in their
performance studies. The choice of a simple list structure or a block list structure
(multiple objects in each list entry) [19] is appropriate for smaller datasets, where
the overhead of more sophisticated structures is not needed [50]. For larger datasets

or highly skewed datasets, more sophisticated structures are appropriate. Some
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examples of data structures that will work as sweep structures are:

1. A simple linked list [46].

2. Interval tries [113], as used by Dittrich and Seeger [50].

3. A dynamic segment tree [46].

4. An interval tree [55] with a skip list [161], as described by Hanson [77] and

used by Arge et al. [19].

5. A dynamic priority search tree [134].

Except for the linked list implementation, the search operation on the sweep struc-
ture is O(log(n)), where n is the size of the combined datasets (n, + n;), giving
a running time for the plane-sweep algorithm of O(n - log(n)), which includes the
initial sort of the data.

Arge et al. [19] modify the plane-sweep algorithm slightly to dramatically
increase the size of datasets that can be processed without resorting to external
memory. The traditional version of the plane-sweep algorithm assumes that all of
the data is in internal memory. If the data is in external memory, then the entire
dataset is first read into internal memory before performing the plane sweep. Arge
et al. [19], revisiting work by Giiting and Schilling [75], observed that only the
data in the sweep structures needs to be kept in internal memory. If the data is
in external memory and sorted, then each object can be read one at time from
external memory, inserted into the sweep structure, and then purged from internal
memory when it is deleted from the sweep structure. In this way, only the data
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intersecting the sweep line needs to be kept in internal memory, reducing the internal
memory requirements of the algorithm and increasing the size of datasets that can be
processed without resorting to more sophisticated spatial join techniques. A rough
calculation estimates that a typical dataset will have O(y/n) objects intersecting the
sweep line [147], meaning that datasets of size O(m?), can be processed, where m is
the number of objects that can fit in internal memory. The plane-sweep technique
can also be extended to process datasets of any size by using external memory (see

Chapter 3).

2.2.4 7Z-Order Methods

The plane-sweep method described in Section 2.2.3 only uses input sorted
in one dimension, but can be adapted to use more than one dimension using a
more general linear ordering that sorts the points using multiple dimensions (see
Section 2.1.3). Thus, instead of a sweep line, a point or grid cell is swept over the data
space, creating an active border [14, 49]. Since fewer objects will intersect a point
than will intersect a line, the sweep structure will be kept smaller, decreasing search
times and the amount of internal memory needed. However, since the enclosing cells
used for a linear ordering are bigger than MBRs, the number of objects in the sweep
structure will increase, thereby offsetting some of the benefit. Orenstein [143] first
used a variation of the Z-order method in his work on spatial joins. This section
shows how to adapt the plane-sweep method to use a Z-order (a Peano-Hilbert order

would work as well) and relates the algorithm to Orenstein’s work.
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The Z-order algorithm is nearly identical to the plane-sweep algorithm, shown
in Figure 2.10, and this section only describes the two minor modifications needed for
the Z-order algorithm, rather than presenting the entire algorithm. First, the objects
from both datasets are assigned to Z-order grid cells (see Section 2.1.3). Next, the
objects are sorted in Z-order rather than one-dimensionally. The remainder of the
Z-order algorithm, which consists of creating the sweep structures and the while
loop, is identical to the plane-sweep algorithm, shown in Figure 2.10. In this case,
the active set, instead of being the objects that intersect the sweep line, are the
enclosing cells of the objects that intersect the current Z-order grid cell. Since a
sufficiently fine grid cell will intersect fewer objects, the active set will be smaller
and the sweep structure can be simpler, such as a linked list [46]. Also, the sweep
structure can be modified to take advantage of the regular decomposition of the
Z-order cells. All of the objects in the active set (sweep structure), which are the
enclosing Z-order grid cells, will have either a containment relation to each other
or be identical. In early work on spatial joins, Orenstein [146] used a stack which
he called a nest to implement the sweep structure. Because the input is sorted in
Z-order, large objects can be inserted into the sweep structure before the smaller
objects that are enclosed by the object. These small objects will be removed before
their enclosing objects are removed. This LIFO property makes a stack the natural
choice for the sweep structure. The INSERT and REMOVE_INACTIVE methods will be
simple because they either push elements on to the stack or pop elements from the
stack, respectively. The SEARCH method is also simple since all objects in the stack

will intersect the input object. If the enclosing cells intersect, the MBRs can also be
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checked for intersection to further filter false hits from the candidate set, assuming
the MBRs are available.

Aref and Samet [15] further improved the use of the sweep structure by avoid-
ing some insertions, using a technique similar to a zig-zag join [69]. They point
out that if one stack is empty, for example, sweepStructureB, then it might not
be necessary to insert elements into the other stack, sweepStructureA. The objects
to skip can be determined by examining the next object to be inserted into the
empty stack. For example, in Figure 2.11, if dataset A contains the objects al,
a2, a3 and a4, then objects a2 and a4 will not intersect any objects in dataset B,
which contains only b1. The objects a2 and a4 do not need to be inserted into A’s
stack. If one stack, sweepStructureB, is empty, then the algorithm can look ahead
to the next element, say 07T op, that will be inserted into the empty stack, and avoid
inserting any elements into the other stack, sweepStructureA, that do not intersect
bTop. In Figure 2.11, sweepStructureB will be empty until b1 is encountered, which
becomes bT'op. Therefore, a2 and a4 do not need to be inserted into the stack for
dataset A, sweepStructureA. In a further extension, Aref and Samet [16] modify
the Z-order sweep to report larger pairs first, at each stopping point (iteration of
the while loop), by reporting from the bottom of the stack up, rather than from
the top. Thus, the output is already in Z-order, which can be useful for performing
a cascaded join.

One drawback of the Z-order sweep method is that the stacks can be filled
with objects that have large enclosing cells, even when the objects are small. For

instance, as was shown in Figure 2.7b, any object that overlaps the center point of
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Figure 2.11: Objects are shown from dataset A and dataset B in the
order in which they appear in the Z-order, where large objects are en-
countered first (that is, in the following order: al, a2, a3, a4, bl). Since
the stack for the B dataset will be empty until b1 is inserted, a2 and
a4 do not need to be inserted into A’s stack. In other words, when b1
is inserted into B’s stack, al and a3 are the only elements in A’s stack,
and a2 and a4 will never be in A’s stack when an element of B is in B’s
stack. Therefore, a2 and a4 do not need to be inserted into A’s stack.

the space will be contained in the highest level enclosing cell, which encloses the
entire space. Such an object will be one of the first objects to enter a stack and will
remain in the stack until the algorithm is through processing. This increased stack
size will impair performance. To alleviate this problem, Orenstein [144] suggested
decomposing objects into multiple cells, as shown in Figure 2.12. This decomposition
not only reduces the size of the stack, but creates a more accurate approximation
of the object, which reduces the number of false hits. However, these benefits are
offset by the increased number of objects introduced by the redundancy and the
need to remove duplicate results (see Section 2.1.2). Even so, Orenstein [144] found
that performance rapidly improves with a modest amount of decomposition. In a
further study, Gaede [67] developed a formula for determining the optimal amount

of redundancy.
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Figure 2.12: An object can be decomposed into multiple cells.

2.3 The Filtering Stage — External Memory

The internal memory techniques described in Section 2.2 require sufficient
levels of internal memory in order to operate efficiently. For instance, to perform
the nested-loop join (Section 2.2.1), both datasets need to be in internal memory in
order to avoid repeatedly reading the same objects in and out of external memory.
To efficiently process datasets of any size, an algorithm must use external memory
to store subsets of the data (or references to the data) during processing or the data
must be indexed. This section describes filtering methods that use external memory
to efficiently process datasets of any size.

If the data is already indexed, then it is generally advantageous to use the index
for the filtering stage of a spatial join. Section 2.3.1 describes techniques for filtering
when both datasets are indexed. Even if there is sufficient internal memory to use
the internal memory techniques from Section 2.2, if both datasets are indexed, then

it can be faster to use the two-index filtering techniques . Section 2.3.2 addresses the

"When an external memory filtering technique should be used instead of an internal memory

algorithm is an open question.
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case where only one of the datasets is indexed. Of course, the unindexed dataset can
be indexed and the two-index techniques from Section 2.3.1 can be used. Another
approach, if only one dataset is indexed, is to consider the index as a source of
sorted or partitioned data and use the techniques for performing a spatial join
when neither dataset is indexed, which are addressed separately, in Section 2.3.3.
If neither dataset is indexed, then it might not be efficient to build indices in order
to do a spatial join, especially if the indices will not be used again and immediately
discarded, as is the case if the spatial join is an intermediate step in solving a
complex query.

Even though the internal memory techniques in Section 2.2 cannot be used
directly, at some point during processing, two subsets of the data that do fit in
internal memory are joined. These subsets can be two pages from indices, as in
Section 2.3.1.1, or subsets created by partitioning the data, as in Section 2.3.3. In
these cases, when the internal memory techniques from Section 2.2 become applica-
ble, the reader is referred to that section, rather than elaborating on the in-memory

join aspects of the particular algorithm.

2.3.1 Both Datasets Indexed

If both datasets are indexed, but with incompatible types of indices, such as
an R-tree [76] and a point quadtree [64], Corral et al. [47] suggest ignoring one index
and performing an indexed nested-loop join, as described in Section 2.2.2. If both

datasets are indexed using the same type of index, then the technique for performing
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the filtering stage of the spatial join depends on the structure of the index. Since
many spatial indices are hierarchical, a spatial join algorithm for these indices also
has a hierarchical nature. These methods are described in Section 2.3.1.1. Early
work on spatial joins used a more general non-hierarchical approach, which are de-
scribed in Section 2.3.1.2. Section 2.3.1.3 discusses a method that works with indices
that transform objects into points in higher-dimensional space. Since most methods
in this section join data pages or index nodes, this issue is discussed separately, in

Section 2.3.1.4.

2.3.1.1 Hierarchical Traversal

A common type of spatial index is one that can be described as a hierarchical
containment index or a generalization tree [72, 79], such as an R-tree [76] or a multi-
level grid file [203]. This type of index is a tree structure in which every node of
the tree corresponds to a region of the data space. An internal node’s region covers
the regions of its sub-nodes and each node might or might not overlap other nodes,
depending on the index type. Each node is typically stored on one page of external
memory, which is determined by the underlying DBMS and typically has a size
ranging between 1KB and 8KB. This section assumes that the data objects are only
stored in the leaves of the tree, though the techniques can be adapted to handle data
in the internal nodes. If both datasets are indexed using generalization trees, then a
spatial join can be performed efficiently with a synchronized traversal of the indices.

This section describes a generic synchronized traversal algorithm, and then presents
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variations that differ in how the indices are traversed, attributable to Giinther [72],
Brinkhoff et al. [38], Kim et al. [109], and Huang et al. [91] ®.

The generic synchronized traversal algorithm is shown in Figure 2.13. To
simplify the explanation, both indices are required to have the same height. For
indices of different heights, the join of a leaf of one index with a sub-tree of the
other can be accomplished using a window query [38], or handling leaf-to-node
comparison as special cases [109]. Starting with the two root nodes of the indices,
rootA and rootB, the algorithm finds intersections between the sub nodes of rootA
and rootB using the FIND_INTERSECTING_PAIRS function. The intersecting sub-
node pairs are added to the priority queue [46], priorityQueue, and these pairs are
checked for intersecting sub-nodes in later iterations. If the two nodes are leaves,
then the REPORT_INTERSECTIONS function is used to compare the leaves and report
any intersecting objects. Section 2.3.1.4 discusses the methods used to find object or
sub-node intersections within two nodes, as used by the FIND_INTERSECTING_PAIRS
and REPORT_INTERSECTIONS functions.

The three variations of the synchronized traversal algorithm differ in the im-
plementation of the ADD_PAIR function, or, in other words, the priority (i.e., the
sort order) that is used by the priority queue. Each variation attempts to minimize
disk accesses. However, the algorithms must use heuristic methods, as a similar
disk scheduling problem for relational joins has been shown to be NP-hard [66, 135].
Giinther [72] and Huang et al. [91] both perform a breadth-first traversal, where

priority is given to higher-level node pairs. In this way, all of the nodes at one level

8See Huang et al. [90] and Theodoridis et al. [187] for cost models for these approaches.
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1 procedure INDEX_TRAVERSAL_SPATIAL_JOIN(rootA, rootB)
2 begin

3  priorityQueue«—CREATE_PRIORITY_QUEUE();

4 priorityQueue.ADD_PAIR(rootA, rootB);

5  while NOT priorityQueue.EMPTY() do

6 nodePair«priorityQueue.POP();

7 rectanglePairs«FIND_INTERSECTING_PAIRS(nodePair);
8 foreach p € rectanglePairs do

9 if p is a pair of leaves then
10 REPORT_INTERSECTIONS(p);
11 else

12 priorityQueue.ADD_PAIR(p);
13 endif;

14 enddo;

15 enddo;

16 end

Figure 2.13: A generic hierarchical traversal spatial join algorithm for
data indexed by hierarchical indices.

of the indices are examined before any nodes in the next level. Since all of the inter-
secting node pairs for a given level are known before any pair is processed, Huang
et al. [91] further sort the pairs for a level, that is, the pairs in the priority queue,
to reduce the number of page faults and buffer misses. In this approach, priority
is still given to higher level nodes, but a secondary sort is used within each level.

They investigated using the following heuristics as a secondary sort:

1. A secondary sort on one dataset’s nodes, say A, to achieve clustering for that
dataset. For example, for each element of A, say a, all node pairs containing

a will be adjacent in the order.

2. A secondary sort on the sum of the centers of the pair in one dimension. In
effect, objects pairs whose centers are closer in the x — dimension are given

priority.
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3. A secondary sort on the center of the MBR enclosing the pair, in one dimen-

sion.

4. A secondary sort on the center of the MBR enclosing the pair using a Peano-

Hilbert order.

In their experiments, Huang et al. [91] found that ordering by the sum of the centers
of the pair in one direction outperformed the other orders in terms of I/O for realistic
buffers sizes. One of the drawbacks of the breadth-first approach is that, as the
algorithm progresses, the priority queue can grow extremely large and portions of
it might need to be kept in external memory.

Brinkhoff et al. [38] and Kim et al. [109] use a depth-first approach in which all
of the sub-node pairs for a given node pair, p, are processed before proceeding to the
next node pair at the same level. In this case, priority is given to lower-level node
pairs. As with the breadth-first approach, heuristics can be used to reduce 1/O by
secondarily ordering p’s intersecting sub-node pairs. Brinkhoff et al. experimented
with several ordering heuristics that secondarily sort the intersecting region of the

node pairs %

1. In one-dimension.

2. By frequency (maximal degree), determining which node, say a, is contained

9A sorted list of intersecting regions of node pairs can easily be determined by using a plane-
sweep technique (see Section 2.2.3), which outputs the interesting regions of the node pairs in sorted
order. Brinkhoff et al. [38] use a variation of the algorithm described in Section 2.2.3 that does

not require a sweep structure, but instead searches the sorted lists of rectangles for intersections.
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in the most node-pairs, and processing a’s node pairs first.

3. In Z-order.

Brinkhoff et al. found that the Z-order approach worked best for smaller buffer sizes
and that the frequency method worked best for larger buffer sizes. To improve
performance, Brinkhoff et al. [38] use two path buffers, which keep in memory all of
the ancestor nodes of the current node pair. They also advocate the use of an LRU
buffer to improve performance. Additionally, Brinkhoff and Kriegel [35] suggest that
the performance of the spatial join could be improved by organizing the nodes of
the index into clusters which are physically close on disk. During join processing, a

cluster would be read into memory as a whole.

2.3.1.2 Non-Hierarchical Methods

A more general approach to performing a spatial join on indexed data is to
treat the indices as simply a partitioned dataset, where the data pages of the indices
are the partitions. In this approach, the data pages are read in an order that is meant
to minimize 1/O, which is a generalization of the I/O minimization heuristic orders
described in Section 2.3.1.1. Each pair of intersecting data pages is then read into
memory and joined (see Section 2.3.1.4 for a discussion of joining data pages). This
method is applicable to any index type with data pages. Kitsuregawa et al. [110]
applied it with k-d trees [28], while Harada et al. [78] applied it with grid files [140].

In this technique [78, 110}, the overlapping partitions (data pages) need to be

determined first, which is just a spatial join on the areas covered by the data pages,
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Figure 2.14: When joining datasets A and B, internal memory, repre-
sented as data pages in the grid, can be (a) half filled by each of datasets
A and B or (b) filled almost entirely with dataset A, leaving only one
data page for dataset B.

and internal memory techniques (Section 2.2) can be used to find the overlapping

10 Once the overlapping partition pairs are determined, partitions are

partitions
read from one dataset, A, in sorted order !'. Either enough data pages from dataset
A are read to fill half of the available internal memory or enough are read to fill all but
one data page of internal memory, as shown in Figure 2.14. Then, the intersecting
data pages from the other dataset, B, are read into the remaining internal memory
and joined. Since all of the intersecting data pages from dataset B might not fit
in memory, the data pages from dataset B are purged from memory once they
are joined and more pages from dataset B are read into memory, until all of the
intersecting data pages from dataset B have been read. To enhance performance, Lu

et al. [125] propose precomputing overlapping index nodes if the index will receive

few updates, much like a spatial join index [165].

10This approach assumes that the boundary information for the partitions (i.e. the extent of the

data pages) is in internal memory.

"Note that any linear ordering would suffice (Section 2.1.3).
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Corral et al. [47] apply a similar strategy for performing a spatial join between
an R-tree [76] (hierarchical and non-disjoint) and a quadtree [64] (hierarchical and
disjoint) index. They propose filling internal memory efficiently by reading data
pages in groups as shown in Figure 2.14. Additionally, they propose ordering the
first dataset of data pages using a linear ordering (see Section 2.1.3). Even though
the two indices are of different types, the method works because the data pages of
the indices are treated as partitions.

The methods described in this section use heuristics to determine the order
of reading partitions. In a relevant analysis, Neyer and Widmayer [139] showed
that determining the optimal read schedule to minimize the number of disk reads is
NP-hard if no restrictions are placed on the partitions. However, if the partitions
do not share boundaries (that is, they do not have any sides in common), they show
that the problem is easy to solve. If GG is a graph where the vertices represent the
MBRs of the index nodes and an edge is placed between all of the intersecting nodes
between the two datasets, then the optimal read schedule is the Hamiltonian path

through G, which can be found using an algorithm by Chiba and Nishizeki [45].

2.3.1.3 Transform to Multi-Dimensional Points

Unlike points, rectangles have extent, which complicates spatial join algo-
rithms. For instance, since an object will not fit neatly into a partition, either the
object must be replicated into multiple partitions or the partitions must overlap,

as in an R-tree [76]. Transformation methods avoid this problem by transforming
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objects into multi-dimensional points in a higher dimensional space, such as used
by the grid file index [140]. For example, a two-dimensional rectangle can be trans-
formed into a point in four-dimensional space by using the coordinate values of the
center point, half of the width, and half of the height as the four values representing
the rectangle. Alternatively, the rectangle can be transformed using the coordinate
values of the opposing corner points of the rectangle as the four values, which is a
technique known as the corner transformation.

Song et al. [181] propose a spatial join for data that is indexed using the corner
transformation method. The indices create a partitioning of the multi-dimensional
points, and the method for joining the partitions is similar to the non-hierarchical
spatial join methods (Section 2.3.1.2), which order the processing of overlapping par-
tition pairs between the two datasets. However, in the transformed space, the search
space substantially increases. For instance, when joining two indexed datasets, R
and S, a region (data page) containing points from a dataset R needs to be com-
pared against a larger region containing points from dataset S. To see why this is
so, consider the one-dimensional intervals, a and b, shown in Figure 2.15a. In two-
dimensional space, any interval that overlaps a, such as b, will be contained within
the region shown in Figure 2.15b, lying between the dashed and dotted lines. Note
that all data points in transformed space are above the diagonal since the termi-
nating point of the interval is always greater than the starting point. Similarly, for
two-dimensional objects, such as a rectangle r (for example, the MBR of an index
node), all rectangles overlapping r will occupy a space in four dimensions similar
to the region shown in Figure 2.15b (see Song et al. [181] for the exact calculation
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Figure 2.15: As an example of the transformation to multi-dimensional
points in a higher-dimensional space, (a) two one-dimensional intervals,
a and b, that overlap (b) will be near each other when mapped to two-
dimensional points. Any interval that overlaps interval a will be con-
tained within the dotted lines when represented as a point. Furthermore,
since the left end point of the interval is represented by the x-axis, all

points will be above the dashed, diagonal line since the left end point is
always less than or equal to the right end point.

of this region in four dimensions). Once the overlapping partition pairs have been
determined, the methods in Section 2.3.1.2 can be used to order the reading of the

data pages from memory.

2.3.1.4 Node to Node Comparison

When joining two regions A and B, which could represent two index nodes, two
data pages, or two partitions, if both regions cover the same space and fit in internal
memory, then every object in region A needs to be joined with every other object
in region B. This, of course, is an internal memory spatial join and an appropriate
internal memory technique from Section 2.2 should be used. For smaller page sizes,
a nested-loop join (Section 2.2.1) might be best because of the low overhead. For

larger page sizes, the plane-sweep method (Section 2.2.3), as suggested by Brinkhoff
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Figure 2.16: When joining two data pages, only the objects within the
intersecting region of the pages (marked with an ) need to be considered.

et al. [38], or a Z-order sweep (Section 2.2.4) would be more appropriate.

If the regions do not cover the same space, as is likely when joining index nodes,
then the search space can be reduced [38]. Only objects within the intersecting
region of the two nodes need to be compared, as shown in Figure 2.16. For example,
if the plane sweep method is used to join the nodes, then only these objects will be

processed by the plane sweep.

2.3.2 One Dataset Not Indexed

If only one dataset is indexed, then the spatial join can be performed using an
indexed nested-loop join (Section 2.2.2), which uses the index to do window queries.
For example, given two datasets to be joined, A and B, if dataset A is indexed
with an R-tree, then for every element b in B, a window query is performed on the
R-tree index of A using each b, which finds all of the objects in A that intersect
b. Another approach is to construct an index on the unindexed data and then use

the spatial join techniques for when both datasets are indexed, which are described
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in Section 2.3.1. In support of this approach, techniques for efficiently constructing
the second index are surveyed in Section 2.3.2.1. Still another approach is to take
advantage of the structure of the indexed data, without using the index directly, as
described in Section 2.3.2.2, which reviews techniques that partition the leaves of
the index, and Section 2.3.2.3, which reviews methods that adapt the plane-sweep

algorithm (Section 2.2.3) to use the index as a source of sorted data.

2.3.2.1 Constructing a Second Index

If only one dataset is indexed, then the other dataset can be indexed efficiently
using bulk-loading techniques [84, 191], which exist for many types of indices, and
then the techniques described in Section 2.3.1 can be used to perform the spatial
join. This approach is especially useful when the index will be saved and used
later. Conversely, if the index is not going to be reused, then Lo and Ravishankar
[122] suggest building a special purpose index that improves the performance of the
spatial join. However, the index might not be reusable because some of the data
will be excluded from the specially built index. This constructed index, which is an
R-tree [76], is built so that it mirrors the structure of the existing index, thereby
minimizing node overlap between the two indices and reducing the number of node-
to-node comparisons, which speeds the spatial join.

Lo and Ravishankar [122] call their constructed index a seeded tree since it
is built using the upper levels of the existing index to seed the construction of the

second index. An upper level of the existing index, termed a seed level, is used to
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partition the second dataset. For efficiency, the level should be chosen such that
each node is assigned a write buffer. The number of write buffers is limited by
the amount of internal memory, which, therefore, determines the lowest level of the
index that can be used. Lo and Ravishankar discuss techniques for choosing a level
in [123]. In a slightly different approach, Mamoulis and Papadias [129] point out
that trying to create too many partitions will cause buffer thrashing and propose a
bottom-up approach instead (see Section 2.3.2.3). One level of the existing index
forms a collection of non-disjoint regions that do not necessarily cover the data
space. This is illustrated in Figure 2.17a and b by regions B and C'. Each region’s
centroid, for example, the center points of the MBRs of the data pages, serves
as the basis for partitioning the second dataset. Initially, each partition of the
new index has no area. As objects from the unindexed dataset are inserted into
a selected partition, the partition is enlarged to enclose all of its objects. Lo and
Ravishankar experimented with different techniques for choosing the partition in
which to insert objects for the unindexed dataset. The technique that performed
the best in their experiments is to insert an object into the partition with the nearest
centroid. Another technique, which performed slightly worse, is to insert the object
into the partition whose size is enlarged the least.

Once the data is partitioned, each partition is transformed into an R-tree
using bulk-loading techniques [191]. The resulting forest of R-trees is attached to
the upper seed levels, which are duplicated from the original index, and the new seed
levels are adjusted to cover the newly created forest of R-trees, resulting in a regular

R-tree. Once this is done, the techniques given in Section 2.3.1.1 can be used to
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Figure 2.17: (a) The data (dark rectangles) and regions (lettered squares)
covered by the nodes of an R-tree. (b) As shown in a hierarchical rep-
resentation of the index node structure, the second level of the R-tree
is used as a seed level. (c) Since object p, from the second, unindexed

dataset, does not overlap any seed level region (regions B and C), p can
be discarded.

perform the spatial join. Since the trees are similar, performance improves because
the number of overlapping nodes is reduced. To improve performance even further,
Papadopoulos et al. [152] note that during construction of the R-tree, the leaves of
the R-tree (or partitions in general) do not need to be written to external memory to
form the full external memory index if the R-tree is not going to be reused. Instead,
the leaves or partitions can be joined to the other dataset immediately and then
thrown out, saving I/O cost and speeding the spatial join.

Lo and Ravishankar [122] also propose extensions to filter the second dataset,
reducing the size of the second dataset and, thus, further speeding the join. Given
two datasets A and B, where A is indexed and B is not, they note that any object
in B, say b, that does not intersect with the regions covered by the upper level nodes
of the existing index on dataset A, could not intersect any object in A. Therefore,
b does not need to be inserted into the constructed index for dataset B. This

makes the join faster, but renders the second index unusable for processing other
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operations in the future since it does not contain the entire dataset. For example,
if the constructed R-tree is not going to be reused, then objects from the second
dataset that do not intersect the regions covered by the seed levels do not need to be
inserted into the partitions because they will not intersect any object in the indexed

dataset, as shown in Figure 2.17c for object p.

2.3.2.2 An Index as Partitioned Data

Even if just one dataset is indexed, the best approach to performing a spatial
join might not be to construct a second index, but rather to use the synchronized
traversal methods from Section 2.3.1.1. In this case, the pre-existing index can be
viewed as a partition of the dataset and methods similar to the non-hierarchical
methods (Section 2.3.1.2) can be used to perform the spatial join. To create parti-
tions from an index, the data pages are grouped to form the partitions. The data
pages can be grouped either in a top-down manner for hierarchical indices by using
sub-trees as the partitions [192] or in a bottom-up fashion by grouping data pages,
which can be used for any index type [132].

In a top-down method to partitioning, proposed by van den Bercken et al. [192],
the unindexed dataset is partitioned based on one of the levels of the existing hier-
archical index, for example, the sub-nodes of the root of the indexed dataset, which
is similar to the seeded tree technique in Section 2.3.2.1 and shown in Figure 2.17b.
The partition boundaries are the MBRs of the internal index nodes for the cho-

sen level, for example, regions B and C' in Figure 2.17. The unindexed data is
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partitioned based on these regions, placing each object into each partition that it
overlaps, which replicates the data, requiring that duplicate removal techniques be
used on the result pairs (see Section 2.3.3.4).

Once the partitioning is done, each partition is joined with the objects in the
sub-tree of the corresponding index node using any appropriate internal memory
method (Section 2.2). If the data pages and partitions for a sub-node do not fit
in memory, then the method can be recursively applied by descending to the next
level of the index. This approach works best if the depth of the tree is small or,
conversely, if the index has a large fan out. For this reason, van den Bercken et
al. [192] propose this approach as a technique for joining two unindexed datasets,
in which case an index is created with the largest possible fan out on one dataset
before the method is applied.

In a bottom-up approach to partitioning the data pages, Mamoulis and Pa-
padias [129, 132] propose a technique that creates a target number of partitions,
which they call slots, by grouping the data pages of the existing index, as shown
in Figure 2.18. The unindexed dataset is partitioned based on the slots. To create
the slots, the amount of data in each slot is first determined, which is roughly half
of the available internal memory. The data pages of the existing index are grouped
by traversing them in a linear order (Section 2.1.3) and adding them to a slot until
the slot’s capacity is reached. Then, the next slot is filled and so forth. The region
covered by the data pages in the slot form a partition for the unindexed data. As
with the top-down approach, once the unindexed dataset is partitioned, a group of

data pages from the original index (a slot) and its corresponding partition of the
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Figure 2.18: (a) A set of index data pages (b) are grouped to form slots,
shown by thick-lined rectangles.

unindexed dataset are read into memory and joined. Due to skew, however, a slot
and its partition might not fit in internal memory. In this case, the partitioning

method is applied recursively until each slot and its partition fit in memory.

2.3.2.3 An Index as Sorted Data

An index can also be viewed as a sorted dataset, since extracting the data
from an index in sorted order is inexpensive using an in-order traversal of the index.
In this case, the plane-sweep method (Section 2.2.3) can used to perform the spatial
join. Generally, the plane-sweep method is performed after sorting both datasets.
Since extracting data from an index in sorted order (sorted in one-dimension) is
fast in this situation, the plane-sweep technique is less expensive than sorting both
datasets since only one dataset needs to be sorted [18].

Another approach, one that modifies the plane-sweep method, proposed by
Gurret and Rigaux [74], is to read the data pages from an index (they use an R-
tree) in a one-dimensional sorted order and insert entire data pages into the sweep

structure. In this case, one sweep structure will contain objects, as is normal, while
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the other sweep structure will contain data pages. This technique only requires
a modification of the plane-sweep SEARCH routine (see Figure 2.10) to search for
intersections between an object and a data page. Since the REMOVE_INACTIVE and
INSERT routines work with MBRs and the enclosing rectangle of a data page is an
MBR, these two methods do not need to be modified. Additionally, the initial sort
step of the plane-sweep algorithm needs to extract the data pages of the index as
well as to sort the unindexed dataset.

If memory overflows (that is, the active set is too large to fit in internal mem-
ory), then Gurret and Rigaux [74] propose using a method in which some of the data
pages of the index are removed (or flushed) from the sweep structure and written to
disk for later processing. To do this, before the plane-sweep phase of the algorithm
starts, each data page is assigned to a strip, as shown in Figure 2.19. The strips
are created using a method that is similar to forming slots in Section 2.3.2.2, except
that a one-dimensional sort is used. Only entire strips of data pages are flushed
at a time. After a strip is flushed, the plane-sweep algorithm continues. Any rect-
angle from the unindexed dataset that overlaps the flushed strip is also written to
external memory. After the plane-sweep algorithm finishes, it is run again on the
flushed data pages and the rectangles written to external memory, starting from the
point where the flush occurred. If a plane sweep on the flushed data also overflows
memory, then the flushed data can be partitioned further into strips and the entire

algorithm applied recursively.
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Figure 2.19: The leaves of an R-tree are grouped into strips, which can
flushed to external memory if internal memory overflows. Here, four
strips (dashed lines) are formed, each containing two objects.

2.3.3 Neither Dataset Indexed

The inputs to a spatial join operation are usually assumed to be indexed.
However, the situation is often different when the input to the spatial join are
themselves the result of a spatial join. In particular, there is no requirement that
the output of a spatial join be indexed (but see Hoel and Samet [88], which evaluates
different spatial indices by taking into account the time necessary to construct an
index for the result of a spatial join). If neither dataset is indexed, then an index
can be built on one or both datasets, and then the techniques from Sections 2.3.1
and 2.3.2, respectively, can be used. If the index is to be saved and reused, this can
make sense. If not, then other techniques that do not necessarily create an index

might be faster !2.

These techniques are useful when an index would not be used
later, such as for a one-time operation on the data, where the extra cost of building

the index would be more expensive. For example, in a complex query, intermediate

results can be processed faster with these techniques. The key to most of these

12Some techniques for unindexed data create a usable index as a byproduct of the spatial join,

for example, the filter tree [116].
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techniques lies in partitioning the datasets so that the partitions are small enough
to fit in internal memory. In other words, a divide-and-conquer approach is used to
decompose the datasets into manageable pieces.

Once the data is partitioned, each pair of overlapping partitions, one from
each dataset, is read into internal memory and internal memory techniques are used
(see Section 2.2). This assumes that the partition pairs fit into internal memory. If
they do not, then they can be repartitioned until the pairs fit (see Section 2.3.3.3).

As a foundation for describing the partitioning methods in this section, Sec-
tion 2.3.3.1 describes a generic algorithm for performing a spatial join using a par-
titioning technique. The algorithm also serves to introduce several common issues
associated with the partitioning approach: determining the number of partitions is
discussed in Section 2.3.3.2, repartitioning, if any of the partition pairs do not fit
in internal memory, is discussed in Section 2.3.3.3, and handling duplicate results
is discussed in Section 2.3.3.4. Next, the various algorithms from the literature are
described, grouped by how they partition the data: using grids in Section 2.3.4,

using strips in Section 2.3.5, by size in Section 2.3.6, and clustering in Section 2.3.7.

2.3.3.1 Basic Partitioning Algorithm

This section uses a simplified algorithm to illustrate a spatial join technique
based on partitioning. While the algorithm has limited practical applications, it is
used as the basis for describing more sophisticated algorithms and to discuss the

common issues associated with partitioning techniques. The basic concept is to
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Figure 2.20: If both datasets, A and B, are partitioned using the same
grid, then each grid cell is joined with exactly one other, corresponding
cell.

define a grid and use it to partition the data from each dataset, datasets A and B,
into external memory. Each data object is placed into each grid cell (partition) that
it overlaps. Once the data is partitioned, the partitions for each grid cell of dataset
A are joined with the corresponding partition of dataset B using one of the internal
memory methods from Section 2.2. For example, in Figure 2.20, both datasets A
and B are partitioned using the same grid, and then, each corresponding cell is
joined with the other. Grid cell 1 from dataset A, for instance, is joined with cell 1
from dataset B, and so forth.

In the algorithm, shown in Figure 2.21, the first step is to determine how many
partitions are needed. The goal is to create partitions that are small enough, when
paired with a corresponding partition, to fit in internal memory. To do this, the
algorithm first calculates the minimum number of partitions needed, minNumber0f-
Partitions, as the total storage costs of the objects in both datasets divided by the
available internal memory. The algorithm uses the DETERMINE_PARTITIONS function
to create the smallest grid that has at least minNumberOfPartitions. However, the

calculation of minNumberOfPartitions is inaccurate for two reasons. First, if a
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dataset is skewed, then some grid cells might contain more objects than can fit in
internal memory. The more sophisticated techniques described later in this section
correspond to different ways of dealing with skewed data. The simplified algorithm
assumes that the data is uniform. Second, since a data object is placed into each cell
it overlaps, the number of data objects will increase since the object is replicated
into each cell. To address this issue, the calculation of the minimum number of
partitions can be adjusted using methods described in Section 2.3.3.2. Alternatively,
the algorithm can continue and when a partition pair to be joined is encountered
that is too large for internal memory, then one or both of the partitions can be
repartitioned, creating smaller partitions that can be processed. Section 2.3.3.3
addresses repartitioning. Note that since objects are replicated into multiple cells
for both datasets, duplicate results will arise. Section 2.3.3.4 addresses the issue of
removing duplicates from the result dataset.

Once the partitions are created, the algorithm scans the datasets, placing
each object into each partition that it overlaps using the PARTITION_DATA function,
which writes the objects to external memory. In the final step of the algorithm, each
partition pair is read into internal memory using the READ_PARTITION function and
joined using the plane-sweep technique from Section 2.2.3 (note that any internal
memory spatial join would be appropriate), which will report all of the intersecting

pairs between the partitions.
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1 procedure GRID_JOIN(setA, setB)

2 begin

/* determine the number of partitions */

m«—AVAILABLE_INTERNAL_MEMORY;

mbrSize«-BYTES_TO_STORE_MBR;

minNumberOfPartitions« (SIZE(setA)+SIZE(setB))*mbrSize/m;

partitionList«-DETERMINE_PARTITIONS (minNumberOfPartitions,
AREA_OF_DATA_SPACE) ;

9 /% partition data to external memory */

10 partitionPointersA«PARTITION_DATA(partitionList, setA);

11 partitionPointersB«PARTITION_DATA(partitionList, setB);

12 /* join partitiomns */

13 foreach partition € partitionList do

0O Uk W

14 partitionA«—READ_PARTITION(partitionPointersA, partition);
15 partitionB«—READ_PARTITION(partitionPointersB, partition);
16 PLANE_SWEEP (partitionA, partitionB);

17  enddo;

18 end

Figure 2.21: A simple partitioning technique for performing a spatial
join on unindexed data.

2.3.3.2 Determining the Number of Partitions

Many partitioning techniques must first determine a target number of parti-
tions. The goal is to create pairs of partition to be joined that will fit in memory.
However, because of data skew, no simple partitioning scheme can guarantee that
all of the partition pairs will fit in memory. Therefore, a heuristic calculation must

be used. This calculation is constrained by the following factors:

1. The amount of internal memory, which determines the number of objects that

can be joined at a time using internal memory techniques.

2. The replication rate, which is the actual number of objects inserted into the

partitions, which includes duplicates.

3. The amount of internal memory also limits the number of write buffers that
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can be used to partition the data to external memory.

Within these constraints, different techniques either try to maximize or minimize the
number of partitions. A minimum number of partitions might be calculated in order
to reduce replication, which reduces the number of pairs that need to be joined. A
maximum number of partitions minimizes the chances of a costly repartitioning.
The simplest calculation, ignoring data skew and replication, derives the tar-
get number of partitions by dividing the total storage costs of the objects by the
available internal memory. The total storage costs of the objects is the number of
objects multiplied by the size of an object in bytes, referred to as objectSize. In
an implementation, objectSize might be the sum of the size of a rectangle (MBR)
in bytes and the size of an object pointer or object key. To account for replication,
a scale factor, r, can be added to the calculation. The replication rate depends
on the dataset and the partitioning scheme. In one set of experiments [155], the
replication rate was found to be 3-10%. Incorporating the replication scale factor,

r, the calculation for the minimum number of initial partitions is:

- (|setAl + |setB]) - objectSize
m

: (2.1)

where m is the available internal memory. However, this equation does not take
into account data skew and is only an estimate. In the worst case, with severely
skewed data, most of the data could be in one partition. In this case, repartitioning
is required (see Section 2.3.3.3).

Equation 2.1 applies to internal memory methods that require all of the data to
be read into internal memory before processing begins. Arge et al. [19] showed that
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the plane-sweep method can process more data than can fit into internal memory, see
Section 2.2.3. However, the exact amount of data that can be processed is dependent
on the dataset, specifically the mazimum density of the dataset [61, 98, 187], which
is just the maximum number of objects in the active set. However, this value is
difficult to calculate for a given dataset.

The maximum number of partitions is limited by internal memory in that
internal memory limits the number of external memory write buffers. Typically, for
better performance, when writing to external memory, a page of internal memory
is filled before it is flushed to external memory. This places a hard limit on the
maximum number of partitions.

The principal motivation for getting the number of partitions right is to avoid
repartitioning (see Section 2.3.3.3). However, the more partitions there are, the
greater the replication. Some evidence suggests that this replication does not have
a significant impact on the total processing time [213]|. In this case, creating the
maximum number of partitions might optimize performance. Conversely, internal
memory algorithms might perform better with smaller partitions, thereby improving
overall performance. From the literature, it is unclear what the best choice is for

the number of partitions and thus, we leave this choice as an open question.

2.3.3.3 Repartitioning

The goal of partitioning is to create partitions that are small enough to be

processed by internal memory techniques (Section 2.2). However, the initial parti-
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tioning phase (Section 2.3.3.2) might create partitions that are too large because of
data replication or skewed data. If this occurs, then the partition pairs that are too
large can be further sub-divided using the original partitioning scheme, creating a
finer grid. If this repartitioning fails, then the process can be repeated recursively
until all of the partition pairs can be processed by internal memory methods.

Repartitioning can occur immediately after the initial partitioning, or it might
be necessary to do it later, after some partition pairs have been joined because it
might not be known if a repartitioning will be necessary. With the basic inter-
nal memory techniques, such as the nested-loop join (Section 2.2), the size of the
datasets that can be processed is known, in which case, any over-full partition pairs
can be repartitioned immediately, before joining any of the partitions. However,
with other internal memory techniques, such as the plane-sweep extension [19], it
might not be known whether or not a partition pair is small enough. In this case,
repartitioning is done only when an internal memory technique fails because its
sweep structure has grown too large for the available internal memory. Any result
pairs generated for the current partition pair need to be discarded since the results
will be regenerated after repartitioning.

If a partition pair to be joined, say A and B, is too large for the available
internal memory, Dittrich and Seeger [50] propose repartitioning only one of the
datasets, say A, first, and then joining each sub-partition with B. If this fails to
create small enough partitions, then the other dataset, B can be repartitioned. This

process can also occur recursively until small enough partitions are achieved.
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Figure 2.22: (a) An intersection between objects a and b is reported
from both partitions into which they are inserted, creating a duplicate
result. (b) The reference point method for online duplicate avoidance
only reports an intersecting pair if a point in the intersecting region, =z,
is within the current partition. The point must be chosen consistently,
such as always the lower left corner.

2.3.3.4 Avoiding Duplicate Results

If partitioning the data results in object replication, then duplicate results
will be reported. For instance, if a pair of overlapping objects is split by a partition
boundary, then the intersecting pair will be reported when each partition is pro-
cessed, as shown in Figure 2.22a. Some experiments have shown that replication
does not add considerably to processing [213], though other experiments have shown
the opposite [126]. In either case, duplicate results need to be removed from the
candidate set to avoid extra processing during the refinement stage (Section 2.5).
The duplicates can be removed with an extra step between the filtering stage and
the refinement stage or combined with refinement. With some algorithms, duplicate
results can be detected during filtering and removed online.

One way to remove duplicate results from the candidate set after the filtering
stage is to sort the candidate set and then scan the sorted list, removing duplicates.

Some refinement techniques sort the candidate set first, and thus, this duplicate
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removal technique can be used without a loss of performance (see Section 2.5).
However, to sort the candidate set, the entire candidate set must be produced first.
In most database systems, that is, demand-driven pipelined systems [71], results
need to be produced continuously. In this case, online duplicate removal techniques,
which remove duplicates as they appear in the filtering stage, are preferred.

To implement online duplicate removal, the internal memory spatial join tech-
niques (Section 2.2) can be modified with a simple test which is applied when the
rectangles are checked for intersection. The technique, termed the reference point
method [14, 50, 174], calculates a point within the intersecting region of the two
objects. The pair is reported only if this point is within the current partition. The
test point can lie anywhere within the intersecting region of the two objects, such as
the centroid of the region or a corner point, but must be chosen consistently 3. For
instance, as shown in Figure 2.22b, reference point z is the lower left corner point
of the intersecting region of the two rectangles. Since point x only lies within the B
partition, the intersecting rectangles will only be reported when the B partition is
processed, but not when the A partition is processed, even though the A partition

also includes the rectangle pair.

13To use the reference point method, the approximations of the objects cannot be clipped, that
is, the full MBR must be stored and not just the portion of the object within a partition (most

partitioning methods don’t use clipping).
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Figure 2.23: (a) Noncontiguous grid cells are grouped to form three
partitions. (b) Forming partitions from noncontiguous grid cells helps
to prevent data skew problems by creating partitions of equal size. Even
though the data is clustered in the lower left corner, the partitioning

scheme results in each partition containing either four or five objects.
Each object is labeled with the partitions in which it will be placed.

2.3.4 Partitioning Using Grids

No technique uses a simple grid as did the generic algorithm in Figure 2.21,
since it is only useful for uniform distributions. However, Patel and Dewitt [155] use
a uniform grid as a starting point. First, the data space is divided into a uniform
grid, where the number of grid cells, which they call tiles, is greater (typically much
greater) than the number of desired partitions. The grid cells are then grouped
into partitions using a mapping function in such a way as to minimize skew by,
hopefully, creating partitions that contain a similar numbers of objects. For example,
in Figure 2.23a, the grid cells are grouped to form three partitions. Even if the data
is skewed, each partition will cover part of the dataset, as shown in Figure 2.23d.
Note that the data is not physically partitioned into the grid cells, but only into the
final partitions. In other words, grid cells are assigned to partitions first, and then
the data is partitioned.

Patel and Dewitt [155] do not proscribe a particular mapping, but only suggest
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using some form of a hashing function to assign the cells to partitions. The hash
function should be chosen to distribute the data evenly amongst the partitions and is
dependent on the dataset. As an example, Patel and Dewitt use a round-robin order,
that scans the grid in row-major order and alternates assigning the cells among the
partitions, as is shown in Figure 2.23a. In the figure, because the grid cells are not
contiguous, the partitions have a larger total perimeter, leading to increased data
replication since a larger perimeter provides more opportunities for an object to
intersect the perimeter. Using more initial grid cells increases the uniformity of the
distribution because areas of skewed, dense data are distributed amongst several
partitions, but using more grid cells also increases the replication of objects across
partitions. Experiments [155] showed that increasing the number of grid cells can
create near uniform distributions from skewed datasets, but the replication rate can
also increase rapidly. In their experiments, Patel and Dewitt [155] found that Tiger
data [190] had a replication rate of about 2.5% with 100 grid cells per partition
while Sequoia data [182] had a replication rate of 10%.

Zhou et al. [213] use a variation of this technique in which the data is phys-
ically partitioned into the grid cells, first. Since the grid cell sizes are known, the
partitions can be formed by grouping contiguous cells until a desired partition size,
as determined using methods from Section 2.3.3.2, is reached. This approach re-
duces the amount of replication because the partition boundary is smaller. The cells
can be grouped using any linear order, such as a Z-order (Section 2.1.3). If any grid
cells remain after the maximum number of partitions have been formed, then they
can be assigned to the partitions with the least objects.
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2.3.5 Partitioning with Strips

Arge et al. [19] partition the data into strips so that they can take advantage
of their modification to the plane-sweep algorithm (Section 2.2.3). They show a
lower bound for their method of O(nlog,,(n) 4+ t) I/O transfers, which is optimal,
where n is the number of objects in both sets divided by the block size, B (that is,
n = N/B, where N is the total number of objects in the datasets), m is the amount
of internal memory divided by block size, and ¢ is the number of result pairs divided
by block size. For the plane-sweep method, after the data is sorted, it is partitioned
into strips that are parallel to the sort direction, as shown in Figure 2.24 4. With
the modified plane-sweep method, the amount of data that can be processed with
a given amount of internal memory is limited by the maximum size of the active
set. When the data is partitioned into strips, the maximum size of the active set is
the maximum number of objects that intersect the sweep line, which is a function
of the height of the strip. By appropriately limiting the height of the strip, which
can be a difficult calculation (see Section 2.3.3.2), the width of the strip can be of
any length, even infinite, in theory. Also, because strips are used, fewer partitions
are needed than in the grid method of Section 2.3.4. Thus, if the grid method needs
k partitions to process the data without repartitioning, then the strip method can
process the same data with only vk partitions. For instance, if the grid method
creates a regular grid with sixteen cells, then the strip method can process the same

data with four strips. In other words, the strip method would just ignore the vertical

1 Giiting and Schilling [75] also used a form of strip partitioning to solve the rectangle intersection

problem using external memory.
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Figure 2.24: In strip partitioning, the data is partitioned into strips
and sorted parallel to the strip to take advantage of the plane-sweep
modification described in Section 2.2.3. In this example, the sweep is
repeated four times, once for each strip. The actual height of the sweep
line is the height of the strip.

lines of the grid method. Additionally, since fewer partitions are used, less data is

replicated.

2.3.6 Partitioning by Size

Koudas and Sevcik [116] roughly partition the data by size, using a series of
finer and finer grids, as shown in Figure 2.25. Each successive grid is derived by
subdividing each cell into four equal sized cells. To partition the data, each object
is placed into the partition associated with the finest grid in which the object does

15

not intersect the grid lines For example, as shown in Figure 2.25a, object a

15Tn addition to using this structure for the spatial join, Koudas and Sevcik [116] build an index
from the level partitions by saving them to data pages and adding an access structure to the data
pages. They call the index a filter tree, which in essence is an MX-CIF quadtree [106] where an
object is associated with its maximum enclosing quadtree block. Arge et al. [19] use a concept
similar to the filter tree in conjunction with the strip partitioning method (Section 2.3.5) to avoid

inserting large objects into the partitions, improving the performance of the join on each partition
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Figure 2.25: To partition by size, objects are associated with the level
where they first intersect a grid. (a) Object a is associated with the root
space, the highest level, since it intersects the first (coarsest) grid level
with four grid cells. (b) Object b is associated with the next level since

it intersects the next finer grid level with sixteen cells. (c) Object c is
associated with an even lower level.

crosses the coarsest partitioning, and therefore, goes into the first partition. The
next partition is similarly composed of objects that do not fit in the first partition
and which cross partition boundaries for sixteen equal sized partitions, as shown
Figure 2.25b. FEach lower level partition, such as the one containing object ¢ in
Figure 2.25¢, is similarly formed. In essence, each partition is a filter and objects
fall through to the lowest level partition where a partition boundary is crossed.
The algorithm for joining two datasets partitioned by size is shown in Fig-
ure 2.26. It is a variant of the Z-order method described in Section 2.2.4. The main
difference is that the data is partitioned into multiple levels using the DETERMINE_-
LEVEL function and several sweep structures are used for each dataset, one for each
level. Note that the data need not be physically partitioned into the levels, but
only partitioned into distinct sweep structures, which is a modification suggested

by Dittrich and Seeger [50]. The first step in the algorithm is to determine how

and limiting the amount of replication.
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many levels are needed, which is done with a simple calculation. The smallest grid
cells should be about the same size as the smallest object, which is found using
the FIND_SMALLEST_0BJECT function. The number of levels then is roughly the base
four logarithm of the total number of grid cells at the finest level, which is esti-
mated as the enclosing area of the data space, TotalArea, divided by the size of
the smallest object, minSize. The algorithm then proceeds nearly identically to the
Z-order method from Section 2.2.4, accounting for multiple sweep structures. Each
object is read (in Z-order) and inserted into its dataset’s sweep structure for its level
using the INSERT function. Next, after the inactive objects are removed using the
REMOVE_INACTIVE function, the sweep structures for the other dataset are searched
for intersections using the SEARCH function. Only sweep structures at the same level
or shallower (coarser) need to be searched since the Z-order can ensure that larger
objects will be seen first. For instance, the two root space sweep structures will be
searched after every insertion of the opposing dataset.

The finest level partition needed depends on the size of the smallest objects.
The algorithm in Figure 2.26 assumes that all of the coarser levels contain objects,
but this might not be the case. The algorithm can be modified to ignore empty
levels. Note that because the objects are partitioned by size, they are not replicated
between partitions. Also, there is no way to repartition the data. Since the sizes
of partitions are determined by grid divisions and not by the number of objects
in each partition, there could be too many objects in a particular partition and
the sweep structures could overflow the available internal memory. However, in

their experiments, Koudas and Sevcik [116] found that sweep structures, which they
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1 procedure PARTITION_BY_SIZE(setA, setB)

2 begin

/* determine number of levels */
minSize«FIND_SMALLEST_OBJECT(setA, setB);
levels«CEILING(logy(TotalArea/minSize));
1istA«<—SORT_IN_Z-ORDER(setA);

1istB« SORT_IN_Z-ORDER(setB);
sweepStructuresA[]«CREATE_SWEEP_STRUCTURES (levels) ;
9 sweepStructuresB[]«CREATE_SWEEP_STRUCTURES (levels);
10  while NOT 1istA.END() OR NOT 1listB.END() do

0 O Uk W

11 /* get next rectangle from the two lists */
12 if 1istA.FIRST() < listB.FIRST() then

13 object«1istA.POPQ);

14 level«DETERMINE_LEVEL (object)

15 sweepStructuresA[level] . INSERT (object) ;
16 for( i=level; i<=0; i-- ) do

17 sweepStructuresB[i] .REMOVE_INACTIVE(object) ;
18 sweepStructuresB[i] .SEARCH(object) ;

19 enddo;

20 1listA.NEXTQ;

21 else

22 object«1istB.POP()

23 level«DETERMINE_LEVEL (object)

24 sweepStructuresB[level] . INSERT (object) ;
25 for( i=level; i<=0; i-- ) do

26 sweepStructuresA[i] .REMOVE_INACTIVE(object);
27 sweepStructuresA[i] . SEARCH(object) ;

28 enddo;

29 1istB.NEXTQ);

30 endif;

31 enddo;

32 end

Figure 2.26: A modified Z-order algorithm that partitions the data by size.

implemented as stacks, tend to contain few objects, and internal memory is unlikely
to overflow.

Small objects might be in level partitions meant for larger objects if they cross
partition boundaries for that level, as was shown in Figure 2.7b in Section 2.1.3.
This hinders performance. Dittrich and Seeger [50] suggest replicating small objects
to allow them to be placed into more appropriate partitions. If an object is smaller

than the grid cells of the boundary that it overlaps, then the object is divided using
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the boundary. Each divided piece is then used to find a finer level partition in which
to insert the full object. For example, the object in Figure 2.7b would be divided
into four pieces and inserted into the four middle partitions. Duplicate removal

methods will then be needed (see Section 2.3.3.4).

2.3.7 Data-Centric Partitioning

Lo and Ravishankar [123, 124] cluster the data into partitions. One of the
datasets, say dataset A, is first sampled and a nearest-center heuristic is used to
identify clusters of the sampled objects. The centroids of the clusters form the basis
of the partitions. Initially, each partition is just the identified point, with no area.
As objects from dataset A are inserted into the partitions, the partition boundaries
are expanded to enclose the inserted objects. Thus, a partition boundary is the
enclosing MBR of the objects in the partition. Data is inserted into the partitions
using a choice of heuristics, such as inserting into the partition whose size grows the
least by area or into the partition whose centroid is closest. Note that this process
results in non-disjoint partitions. Once dataset A is inserted into the partition,
the resulting partition boundaries are used to partition the second dataset, say B.
Objects from dataset B are inserted into each partition that they overlap. Each
partition for dataset A then needs to be joined with only one partition from dataset
B using any appropriate internal memory method (Section 2.2). Duplicate results
do not occur since each object from dataset A is only in one partition. One benefit

of building non-disjoint partitions is that the partitions might not cover the entire
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data space. If this is the case with dataset A, then objects from dataset B that do
not overlap any partition can be discarded since they could not be joined with any

object in dataset A.

2.4 Filtering Extensions

This section discusses approximations other than MBRs that can be used for
filtering, and a method for making the filtering phase non-blocking. Section 2.4.1
surveys techniques for producing better candidate sets with fewer false hits by using
better approximations. Section 2.4.2 discusses tests and approximations that can
be used to identify true hits, that is, pairs of objects that definitely intersect. These
pairs can be immediately reported and then removed from the candidate set, mean-
ing that they are not passed to the more expensive refinement stage. Section 2.4.3

describes a technique for making the filtering phase non-blocking.

2.4.1 False Hit Filtering

The MBR is not the only approximation that can be used during the filtering
stage. Other approximations can be used if the filtering method is adapted to use
the alternate approximation. Additionally, other approximations can be used as
a secondary filter after the initial filtering stage to prune some false hits from the
candidate set. To do this, the candidate set is scanned and an intersection test is
performed on each pair of objects using a different approximation than was used to

do the initial filtering. This second approximation should be stored since calculating
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the approximation on the fly requires the full object to be read into memory.
Brinkhoff et al. [36] investigated false hit filtering methods that use approxi-
mations other than the MBR, which are shown in Figure 2.27. The approximations

are:

1. The rotated minimum bounding rectangle.

2. The minimum bounding circle.

3. The minimum bounding ellipse.

4. The convex hull.

5. The minimum bounding n-corner polygon (for example, 5-corner).

They found that using a better approximation generally reduces the number of
false hits. The convex hull and 5-corner approximation performed especially well.
However, the higher storage costs, the increased complexity of calculating the ap-
proximation, and the increased complexity of the intersection test can mitigate the
benefit. Even so, Brinkhoff and Kriegel [34] found that additional filtering with
these approximations can improve total performance significantly.

Zimbrao and de Souza [218] propose using a 4-color raster approximation for
secondary filtering. As shown in Figure 2.28, a grid is imposed over each object
and grid cells are colored depending on whether they are covered, mostly covered,
partially covered, or not covered. To check for intersections, the two raster approx-

imations of the objects are compared, taking into account the different offsets and
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(d) (e)

Figure 2.27: Alternate approximations to MBRs include: (a) the rotated
minimum bounding rectangle, (b) the minimum bounding circle, (c) the
minimum bounding ellipse, (d) the convex hull, and (e) the minimum
bounding n-corner polygon (for example, 5-corner).

scales of the grids. The number of grid cells can be adjusted to obtain more accurate
results for filtering, but at the expense of higher storage costs.

Veenhoff et al. [198] propose an approximation that is constructed by rotating
two parallel lines around the object 9. In other words, two more sides, parallel to
each other, are added by chopping two corners of the MBR, as shown in Figure 2.29,
creating a better approximation than the MBR, but still relatively inexpensive to
calculate, (i.e., O(n)). The tighter approximation reduces the number of false hits.

A number of techniques have been proposed in the spatial indexing, robotics,

and computer graphics literature for improving the quality of the approximation

16This approximation is also used by Duncan et al. [53] in the BAR tree index.
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Figure 2.28: An object (a) is approximated using a four color scheme
(b) by imposing a grid over the object and coloring the cells depending
on whether they are covered, mostly covered, partially covered, or not
covered.

Figure 2.29: An MBR approximation can be improved by adding two
more sides, parallel to each other.

yielded by the MBR whose sides are parallel to the axes. For example, an index
termed an oriented bounding box tree (OBBTree) (for example, [70, 162]) uses a
rotated minimum bounding box; a P-tree [100] uses an n-corner polygon; a k-DOP
data structure [112], where the number k of possible orientations of the approxima-
tion is bounded; and a general spatial filtering mechanism [41], which attempts to
find the optimal orientations, uses a minimum bounding polybox. The most general
solution is the convex hull, which is often approximated by a minimum bounding

polygon of a fixed number of sides having either an arbitrary orientation (for exam-
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ple, the minimum bounding n-corner [52, 173]) or a fixed orientation, usually parallel
to the coordinate axes (for example, [59]). The minimum bounding box might also
be replaced by a circle, sphere (for example, the sphere tree [93, 141, 194, 204]),
ellipse, or intersection of the minimum bounding box with the minimum bounding
sphere (for example, the SR-tree [105]). In more than two-dimensions, Kriegel et
al. [119] present approximations for high-resolution three-dimensional objects.

In addition to alternate approximations, Koudas and Sevcik [116] propose
an additional filtering mechanism that might be useful for sparser datasets. They
propose building a bitmap for one of the datasets, say A, where each bit represents
a cell in a fine grid over the data space. If any object from dataset A intersects a
grid cell, then the bit is turned on for that cell. Then, as objects from the second
data are processed, each object is checked against the bit map. If the object does

not intersect a cell with the bit turned on, then the object can be discarded.

2.4.2 True Hit Filtering

The traditional filtering phase identifies a candidate set, which is a super set
of intersecting objects that also includes pairs of objects that do not intersect, but
whose approximations intersect. In true hit filtering, additional approximations are
used to find object pairs that definitely intersect, termed true hits, and thus can
be reported immediately or later combined with the results of the refinement stage.
While reducing the size of the candidate set is beneficial, Brinkhoff and Kriegel [34]

point out that multiple filters might not combine well, that is, adding more than
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(a) (b) ()

Figure 2.30: An object approximated by: (a) a maximum enclosed circle,
(b) a maximum enclosed rectangle, and (c¢) a maximum enclosed axis-
aligned rectangle.

one filter might not significantly improve performance.

To identify true hits, Brinkhoff and Kriegel [34] propose using what they call a
progressive approximation, where the approximation is entirely enclosed by the full
object. In contrast to enclosing approximations, such as the MBR, the progressive
approximation does not include extra dead space, but rather excludes portions of
the full object. If the progressive approximations of two objects intersect, then the
full objects must intersect. Brinkhoff and Kriegel [34] investigated three different

progressive approximations, shown in Figure 2.30:

1. A maximum enclosed circle.

2. A maximum enclosed rectangle.

3. A maximum enclosed axis-aligned rectangle.

These approximations were shown to be effective at identifying true hits, but they

are more expensive to calculate than MBRs and require extra storage space.
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Figure 2.31: If the MBRs of two objects cross, then the two objects must
intersect.

Brinkhoff and Kriegel [34] also describe a cross test that looks for enclosing
approximations, such as MBRs, that cross, as shown in Figure 2.31 7. For example,
assuming the objects are contiguous, if the MBRs of two objects cross, then the
objects must intersect. This is because the objects must also cross at some point
and thereby intersect. This is most clearly seen by trying to imagine a counter
example where the MBRs cross, as in Figure 2.31, without the objects intersecting.
In their experiments, Brinkhoff and Kriegel found that very few intersecting MBRs
will cross. However, they argue that since the cross test is so simple, it is worth

applying, even if it identifies only a few true hits.

2.4.3 Non-Blocking Filtering

During the filtering phase, any algorithm will block while building an index,
sorting the data, or partitioning the data. No output will be produced while this
occurs, which delays overall processing in a pipelined system [71]. This section first

describes a variant of the indexed nested-loop join (Section 2.2.2) which is non-

1"The cross test is similar to the intersection test of Ballard [22] and Peucker [158].
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blocking and then presents a method to make any filtering technique non-blocking.

The indexed nested-loop join in Section 2.2.2 blocks while it is building an
index, that is, it doesn’t produce any result pairs, which can slow processing in
pipelined systems [71]. To overcome this limitation, Luo et al. [126] use a non-
blocking variation of the indexed nested-loop join so that some results are returned
immediately. In the algorithm, shown in Figure 2.32, each dataset is indexed using
a dynamic index, such as an R-tree [76]. A dynamic index must be used, which can
be less efficient than static indices, but static indices block while being built. The
input to the algorithm is the combined datasets. If the datasets are separate, as
shown in previous algorithms, then either one data element or blocks of elements
should be read from each dataset, alternating between the two datasets. Otherwise,
no results will be reported until items from the second dataset are encountered.
As each element is encountered, it is inserted into the index belonging to it’s own
dataset and the other index is searched for intersections. In this way, results can
appear after only a few objects have been seen, though at the expense of building a
second index.

A similar technique can be used to make any filtering technique non-blocking.
Luo et al. [126] propose a simple extension, that is conceptually similar to a pipelin-
ing hash join [205], and is applicable to most filtering methods. They propose
devoting a portion of internal memory to maintaining an in-memory R-tree (or any
other spatial index) for each dataset, say datasets A and B, and then using the
non-blocking nested-loop join as a front-end to the filtering method. Only a subset

of datasets A and B is inserted into the R-trees, which is processed like the non-
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1 procedure NON-BLOCKING_NESTED_LOOP_JOIN(combinedDataSets)
2 begin

3 spatialIndexA«INTIALIZE_DYNAMIC_SPATIAL_INDEX();

4 spatialIndexB«—INTIALIZE_DYNAMIC_SPATIAL_INDEX();

5  foreach dataElement € combinedDataSets do

6 if dataElement € setA then

7 spatialIndexA.INSERT (dataElement)

8 intersections«<spatialIndexB.SEARCH(dataElement)
9 else

10 spatialIndexB.INSERT (dataElement)

11 intersections«—spatialIndexA.SEARCH(dataElement)
12 endif;

13 REPORT (intersections)

14  enddo;

15 end

Figure 2.32: A non-blocking indexed nested-loop join allows results to
be reported immediately and continuously.

blocking nested-loop join shown in Figure 2.32. Once the R-trees are full, that is,
the allotted internal memory is used up, the remaining data is processed using a
more efficient external memory method (Section 2.3). However, the R-trees are still
searched using the remaining objects in order to find all of the intersections with
the objects in the indices. Once all of the data has been encountered, the objects in
the indices can be discarded since all intersections with them have been reported,
thereby freeing more internal memory for use by the external memory method used

for the remaining objects.

2.5 The Refinement Stage

The filtering stage (Section 2.3) produces a set of candidate object pairs that
are typically represented as pairs of object ids. The candidate set contains pairs

whose approximations intersect, but do not necessarily intersect themselves. The
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refinement stage checks the full objects to remove any of these false hits from the
candidate set. Unless all of the full objects in the candidate set can fit into internal
memory, the key to the refinement stage is ordering the reading of the full objects
to minimize I/O. This issue is discussed in Section 2.5.1. Since objects are often
polygons, Section 2.5.2 describes a common algorithm for checking if a pair of polyg-
onal objects intersect. This test can be performed faster if the polygons are indexed
using a spatial access method [68, 170], which is discussed in Section 2.5.3.

The candidate set might contain duplicate results, which should be removed
first to avoid any extra intersection tests on the full objects. If online techniques for
duplicate removal are used (Section 2.3.3.4), then the candidate set will not contain
any duplicate results. However, some methods cannot use the online techniques
and will introduce duplicates into the candidate set. A straight-forward approach
to duplicate removal is to sort the id pair list, then scan the list and remove the
duplicates. This extra step might not impact performance because it can be com-
bined with techniques for efficiently reading the full objects from external memory

in order to do the full object intersection tests, as discussed in Section 2.5.1.

2.5.1 Ordering Pairs

Before performing an intersection test on a pair of objects, each object must
be read into memory. Since the full objects might be large, it is unlikely that every
object in the candidate set will fit into internal memory. In the best case, each

object will be read once, and in the worst case, both objects will need to be read for
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each candidate pair. The pairs can be processed in the order in which the filtering
stage produces them, which is necessary in a pipelined system [71]. Otherwise, if
the extra cost of sorting is acceptable, then the candidate pairs can be sorted by ids
or by the MBRs using a one-dimensional sort or a linear order (see Section 2.1.3).
Sorting improves performance and avoids the worst case of reading two objects for
each candidate pair by minimizing the number of repeated reads of an object.

When the candidate pairs are not sorted, Abel et al. [1] showed that the
filtering method used impacts the performance of the refinement stage. In their
experiments, they showed that the output of Z-order methods (see, for example,
Section 2.1.2 and Section 2.3.6) were processed faster in the refinement stage than
the output of the hierarchical traversal methods (Section 2.3.1.1). To explain this
phenomenon, they suggest that the Z-order methods produce candidates that have
more locality, making it more likely that the candidate pairs for an object are near
each other in the output order, and thus, the object is more likely to remain in
internal memory until it is needed again.

Alternatively, sorting the candidate pairs can reduce the number of times an
object is read into memory, although the cost of sorting the pairs might offset some
of the performance benefit. The pairs can be sorted using objects from only one
dataset or a combination of both objects, using, for example, the centroid of the two
objects or the MBR enclosing the two objects. Also, different amounts of internal
memory can be devoted to each dataset, which is similar to the techniques used to
read partitions in a non-hierarchical spatial join (Section 2.3.1.2). In one approach,
the candidate pairs can be sorted for one dataset, say R. The objects in dataset R
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will be read into memory only once, while the objects from the other dataset, say S,
will be read a multiple number of times. The objects from dataset S might be read
as often as once for each candidate set pair, which is still better than the worst case
of reading two objects into memory for each candidate pair. In another approach,
Patel and Dewitt [155] modify this process slightly by reading as much of the sorted
dataset R into memory as possible, leaving room for one object from the dataset S.
Then, the objects from dataset S are read one at a time, testing for intersections
with each object with which it is paired in the candidate set that is present within
the portion of dataset R that is in memory. While objects from dataset R are still
read one at a time, objects from dataset S will likely be read less often, since on
each read, they can be compared to a multiple number of objects from R.

In a more sophisticated approach for polygonal datasets, Xiao et al. [207] pro-
pose clustering the candidate pairs using matrix calculations. In their approach,
they pose the read scheduling as an optimization problem that minimizes the num-
ber of fetches, weighted by object size. In the matrix, rows represent one dataset and
columns represent the other dataset. The matrix values are the sums of the number
of vertices in two intersecting polygons or zero for non-candidate pairs. This ap-
proach, unlike other methods, takes into account object sizes. Matrix calculations,
termed the Bond Energy Algorithm, are used to cluster objects into datasets that
fit in memory, where an object might be in multiple clusters. This algorithm runs

in O(n?) time, where n is the number of objects.
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2.5.2  Polygon Intersection Test

If the objects are polygons, a common approach to test if the objects intersect
is a plane-sweep technique [160], which is conceptually similar to the plane-sweep
technique described in Section 2.2.3. The algorithm, shown in Figure 2.33, deter-
mines if two polygons have any intersecting edges. As with the plane-sweep tech-
nique in Section 2.2.3, this algorithm works by sweeping an axis-aligned line across
the plane. The end points of the edges from both polygons are the stopping points
of the sweep line and the edges intersecting the sweep line form the active set. If the
polygons do not have intersecting edges, one polygon could be contained within the
other and a separate test for containment needs to be performed, which is described
later.

The typical plane-sweep polygon intersection algorithm has been modified to
improve its performance for the refinement stage using a technique of Brinkhoff
et al. [37]. Since only edges within the intersecting region of the MBRs of the
two polygons could possibly intersect, only those edges are used in the plane-sweep
method. Any other edges are removed from consideration using the EDGES_IN_-
REGION function in the algorithm. For example, in Figure 2.34, edge e of polygon
a is not contained in the intersecting region of the MBRs and could not possibly
intersect polygon b.

The algorithm has also been simplified by assuming that the polygons are
simple, that is, they do not intersect themselves. In the algorithm, as soon as an

intersecting edge is found, the algorithm can report that the polygons intersect
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1 function EDGE_INTERSECTION_TEST(edgesA, edgesB, MBRoverlap)
2 : boolean

3 begin

4  allEdges<—edgesA U edgesB;

) allEdgesInRegion«—EDGES_IN_REGION(allEdges, MBRoverlap);
6 allEndPoints«+-DOUBLE_EDGES(allEdgesInRegion) ;

7  edgeList=SORT_BY_END_POINT (allEndPoints) ;

8  activeEdges«CREATE_SWEEP_STRUCTURE() ;

9  while edgelList # ) do

10 edge«—edgeList.POP();

11 edgeAbove«—activeEdges.EDGE_ABOVE (edge) ;
12 edgeBelow«activeEdges.EDGE_BELOW (edge) ;
13 if edge is the beginning of the edge then
14 activeEdges.INSERT (edge) ;

15 if INTERSECT (edge, edgeAbove)

16 OR INTERSECT (edge, edgeBelow) then
17 return true;

18 endif;

19 else

20 if INTERSECT (edgeAbove, edgeBelow) then
21 return true;

22 endif;

23 activeEdges.REMOVE (edge) ;

24 endif;

25 enddo;

26 return false; /* No intersection detected. */
27 end

Figure 2.33: A plane-sweep algorithm for detecting the intersection of
simple polygons whose MBRs intersect.

without checking if the intersecting edges belong to the same polygon because the
polygons are simple 8.

The first step of the algorithm in Figure 2.33 combines the edges from both
polygons into one dataset and removes any edges that do not overlap the intersect-
ing region of the MBRs, MBRoverlap, using the EDGES_IN _REGION function. Next,

the DOUBLE_EDGES function creates two entries for each edge, one for each end point,

18Becker et al. [23] review and propose algorithms for non-simple polygons and efficient algo-

rithms for finding all of the intersecting edges.
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Figure 2.34: Only the edges contained within the intersecting region of
the MBRs could intersect each other. Edge e of object a, which is outside
of the intersecting region, could not possibly intersect object b.

which are the stopping points of the sweep line. Then, the end points are sorted
in one dimension using the SORT_BY_END_POINT function. As with the plane-sweep
algorithm in Section 2.2.3, a sweep structure is needed to store the edges that inter-
sect the sweep line. In this case, the sweep structure, referred to as activeEdges,
must perform two additional operations, EDGE_ABOVE and EDGE_BELOW, which iden-
tify edges that intersect the sweep line just above the given edge or just below,
respectively. After initializing the activeEdges structure with the CREATE_SWEEP_-
STRUCTURE function, the list of edges is scanned. When an edge is first encountered,
it is inserted into the activeEdges structure, using the INSERT function. When the
end of an edge is encountered, it is removed from the activeEdges structure using
the REMOVE function.

In the algorithm, an edge intersection test is performed when an edge is in-
serted or removed from the sweep structure. As the sweep line moves, the relative
positions of the intersection points of the sweep line with the edges change. For

example, as shown in Figure 2.35a, the edges intersect the sweep line at position A,
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in the order 3, 1, 2, and 4, from top to bottom. At position B, the sweep line does
not intersect edges 1 or 2 and edge 3 has moved down the sweep line while edge
4 has moved up. The edges continuously change their intersection point with the
sweep line as the sweep progresses, but the relative order of the edges only change
when an edge is inserted or removed (or when two edges intersect). Furthermore,
only the two edges adjacent to the inserted or removed edge will move in the relative
order. For instance, when edge 5 is inserted in Figure 2.35b, only edges 2 and 4
have changed order and are no longer adjacent. Therefore, when an edge is inserted,
an intersection test is performed with it and the edge above and the edge below us-
ing the EDGE_ABOVE and EDGE_BELOW functions, respectively, to find the edges to be
tested. Similarly, when an edge is deleted, only the relative order of the edges above
and below it are effected. For instance, when edge 6 is deleted in Figure 2.35¢, edges
3 and 4 become adjacent. Therefore, when an edge is deleted, an intersection test
is performed between the edge that was above it and the edge that was below it,
using the EDGE_ABOVE and EDGE_BELOW functions, respectively.

Because the polygons are assumed to be simple, if any edges intersect, then
the polygons must intersect and true is returned. Otherwise, the sweep completes

without finding any intersections and false is returned '°. Since a polygon could be

19n the full polygon intersection test, where all of the intersecting edges need to be found or
the polygons are not simple, intersections with adjacent edges also need to be checked when an
intersection point occurs since the two edges switch positions in the list, creating new adjacencies
for the edges. The algorithm shown in Figure 2.33 just reports success as soon as any intersection

is found since the polygons are simple and will not self-intersect.
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Figure 2.35: (a) Two intersecting edges will intersect the sweep line at
adjacent points as the sweep line approaches their intersect point. (b)
When an edge is inserted, it could intersect the edge just above it or
below it. (c¢) When an edge is deleted, the edges adjacent to it might
intersect.

contained within the other, a containment test is necessary if false is returned to
confirm that the polygons do not overlap. A containment test [160], which typically
has an O(n) running time, needs to be run twice to conclude that neither object
is contained within the other. One such algorithm, briefly described here, takes a
point from one polygon, say a, and the edges from the other, say b, and checks if
the point is contained within the polygon. If so, then a must be contained within
b. Any point on or in polygon a will suffice. Using a horizontal line through the
point from polygon a, the algorithm counts the number of edges of b that intersect
the horizontal line to the left of the given point. As shown in Figure 2.36, the point
is contained within the polygon only if the horizontal line intersects the edges an
odd number of times to the left of the point. The algorithm concludes by returning

true if an odd number of intersections to the left of the point were detected and
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point p
Figure 2.36: Object a will be reported as contained within object b since
the horizontal line through a point, p, in a intersects object b once to

the left of point p. Object a will not be reported as contained within
object ¢ since it intersects the horizontal line twice to the left of point p.

false otherwise. Care must be taken in counting intersections with horizontal edges,
which can be counted as either no intersection or as two intersections. Care must
also be taken with intersections involving the end points of edges, which can be
counted as half of an intersection. For more details on this issue, see the discussion

of the point-in-polygon test in any computer graphics book, such as [65].

2.5.3 An Alternate Intersection Test

To improve the speed of the polygon intersection test, at the expense of higher
storage costs, a spatial access method can be used to store each full polygon [68, 170].
When the polygons are represented by a containment hierarchy (for example, an
RT-tree [176] or a region quadtree [111]), a synchronized traversal similar to that
described in Section 2.3.1.1 can be used to check for intersections between the full
polygons. For example, Brinkhoff et al. [37] propose that each full polygon be
decomposed into trapezoids, as shown in Figure 2.37, and storing the pieces in an
R*-tree like structure called a TR*-tree. The entire TR*-tree for each polygon is

stored with the polygon. When two polygons are checked for intersection, both
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Figure 2.37: A polygon can be approximated by trapezoids, which can
be used to perform a faster polygon intersection test.

TR*-trees are read into memory and then a synchronized traversal is performed to
check for intersections. This process can be further improved by using heuristics

that detect intersections between partial polygons [20, 92].

2.6 Specialized Spatial Joins

A basic spatial join is executed between two sets of objects on the same ma-
chine with a single processor. Modifications of the spatial join can be made to
improve performance when more than two sets of objects are joined in a multiway
join, as described in Section 2.6.1. Also, the spatial join requires special considera-
tions when it is performed using a parallel architecture, described in Section 2.6.2,
or on distributed computers, described in Section 2.6.3. Section 2.6.4 presents still

further variations and approaches to solving spatial joins.

2.6.1 Multiway Joins

A complex query could contain multiple spatial joins. As an example, consider

the query — find all regions between 500 meters and 700 meters above sea level that
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receive 10 to 15 centimeters of rainfall and are in a forested area. This query requires
a spatial join to find the intersecting regions of rainfall and elevation and also the
intersection with land type (forest). This query can be answered by performing
a spatial join between any two of the datasets and joining the results with the
third dataset. The intermediate results are the intersecting regions of the result
candidate set, which is then joined with the third dataset. In the example, rainfall
and elevation can be joined, creating a new dataset that represents regions with 10
to 15 centimeters of rainfall and which are between 500 and 700 meters above sea
level. This intermediate dataset is then joined with the land type data to create the
final result.

The previous example illustrates a query with mutual intersection between the
datasets. A spatial query might not require that the datasets mutually intersect.
For example, the query — find all roads that cross a river and a railroad track —
does not require that the river and the railroad track in a result triplet intersect.
In Figure 2.38a, the three objects have a mutually intersecting region, but in Fig-
ure 2.38b, each object pair-wise intersects. Furthermore, it is not necessarily the
case that a relationship exists between all of the datasets in the query. For instance,
as shown in Figure 2.38c, the query could only require that objects from dataset B
intersect an object from both A and C', but no restriction is placed on intersections
between A and C', such as with the road, river, and railroad example. In general,
a multiway spatial query can be represented by a graph, as shown in Figure 2.39,
in which n-ary relations are used to represent mutually intersecting regions. For in-
stance, in Figure 2.39, objects from A, B, and C are required to mutually intersect,
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Figure 2.38: Three objects with (a) mutual intersection, (b) pair-wise
intersection, (c) two of the objects not intersecting.

)B— /"
7/ \
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Figure 2.39: A graph representing the relations between datasets in a
complex query between multiple datasets. Each edge is a join condition
between the objects, which might be more than a binary relation, such
as the ternary relation joining A, B, and C.

as in Figure 2.38a, as opposed to objects D, F', and G, which are only required to

pair-wise intersect, as in Figure 2.38b.

As mentioned, a multiway spatial join can be solved by joining two datasets at

a time and creating intermediate datasets. Furthermore, traditional database opti-
mization approaches [71] that order the pair-wise joins to efficiently solve the query
can be used [129]. To do this, selectivity estimates (Section 2.7) are required in order
to efficiently determine which pair of datasets to process first, typically processing
the pair that produces the smallest intermediate result set first. Moreover, query

optimizers also need selectivity information in order to efficiently perform queries

that involve a mix of spatial and aspatial data.
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To be more efficient, several techniques have been proposed for extending
the filtering algorithms (Sections 2.2 and 2.3) to process multiple datasets at once.
For example, the nested-loop join (Section 2.2.1) can be extended to process three
datasets simultaneously by nesting another loop and using a join condition that takes
three arguments, which tests for a three-way intersection. Section 2.6.1.1 describes
a similar extension to the indexed nested-loop join (Section 2.2.2), which serves as
a basis for describing a more sophisticated technique that is derived from constraint
satisfaction problem (CSP) techniques [120]. Next, Section 2.6.1.2 describes extend-
ing the synchronized traversal spatial join (Section 2.3.1.1) to perform a multiway

spatial join.

2.6.1.1 Multiway Indexed Nested-Loop Spatial Joins

A multiway version of the indexed nested-loop algorithm (Section 2.2.2) can
be created by nesting each additional dataset. This algorithm, shown in Figure 2.40,
is a simplification of algorithms by Mamoulis and Papadias [133] and Papadias et
al. [150], and only joins three datasets. More datasets could be joined with further
nesting, but the temporary candidate sets can grow significantly larger with more
datasets. A generic join condition, termed joinCondition, that specifies the desired
relation between the datasets, is used since a relation other than intersection might
be required. However, each dataset is assumed to be involved in some form of an
intersection relation with another dataset. Otherwise, the multiway spatial join

might not be appropriate.
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1 procedure MULTI_INDEX_NLJ(joinCondition, sethA, setB, setC)
2 begin

3  spatialIndexB«—CREATE_SPATIAL_INDEX (setB);
4 spatialIndexC«—CREATE_SPATIAL_INDEX(setC);
5 foreach a € setA do

6 tempSetB = spatialIndexB.SEARCH(a);

7 foreach b € tempSetB do

8 tempSetC = spatiallndexC.SEARCH(D);

9 foreach ¢ € tempSetC do

10 if SATISFIED(a, b, ¢, joinCondition) then
11 REPORT(a, b, c);

12 endif;

13 enddo;

14 enddo;

15 enddo;

16 end

Figure 2.40: A multiway indexed nested-loop join that finds objects
from three datasets that satisfy any type of multiway intersection (see
Figure 2.38).

The first step in the algorithm, shown in Figure 2.40, indexes setB and setC.
Then, for each element of setA, a window query is performed on the index of setB
using the SEARCH method. This assumes that the relation specifies that setA and
setB intersect. Each of the search results from setB is used to perform a window
query on setC, which produces another intermediate result set. Note that not all
elements of setC need to intersect elements of setA as intersection is not a transitive
relation (for example, objects a and ¢ in Figure 2.38¢ do not intersect each other,
even though they both intersect object b). Finally, each result from setC, along
with the current value for setA and setB are checked to ensure that they satisfy the
given relation using the SATISFIED function, and if so, the values are reported. The
SATISFIED function ensures that the specified join condition is met. For example,

if mutual intersection is required, as in Figure 2.38a, then the intersections of the
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type shown in Figures 2.38b and ¢ will not be reported. Note that the algorithm
explicitly instantiates the temporary result sets, for example, tempSetB. This is
done in order to give the reader an idea of the internal memory requirements of the
algorithm. A database iterator could be used instead, thereby letting the database
engine optimize storage and retrieval of the temporary result set.

To enhance the performance of the algorithm, if the query seeks mutually
intersecting rectangles, each search can use the intersections of the current values of
the previous datasets to further improve performance. For instance, when the index
on setC is searched, the intersection of a and b would be the search window, rather
than just b. Papadias et al. [150] refer to this approach as a window reduction. In a
hybrid approach, Papadias et al. [150] propose performing a normal spatial join on
two of the datasets first, which should be faster than a nested-loop join, and then
using window reduction for the remaining values.

To enhance the performance of the algorithm further, each temporary result
set could be checked against all previous relations to further prune the result set.
For example, the algorithm only considers the relations between setA/setB and
setB/setC. A relation could exist between setA and setC, as in Figure 2.38a. If
more datasets were being joined with further nesting, then reducing the size of
tempSetC would be advantageous. In this case, after the temporary result set for
setC is generated (tempSetC), it could be checked against the current value from
setA, a, to further reduce the size of tempSetC.

The previous enhancement can be carried even further by having each current

set immediately prune each following dataset. For instance, in the algorithm in
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Figure 2.40, each value from setA could be used to produce temporary sets for
every other dataset, setB and setC, before scanning any other dataset. Papadias
et al. [150] and Mamoulis and Papadias [133, 130] use this approach to solve the
multiway spatial join, which is a constraint satisfaction problem (CSP) technique
[120] called multi-level forward checking. In the CSP approach, temporary result
sets are generated as soon as possible. In this algorithm, shown in Figure 2.41, if
a relation exists between setA and setC, then a temporary result set, tempSetC, is
generated in the outer loop using the current value from setA. If a relation exists
between each dataset, then all temporary results are generated in the outer loop
with each object from setA. These sets are pruned as each object is instantiated
for each dataset in the nested loops. As a further possible enhancement, another
CSP technique is to dynamically vary the order in which the datasets are processed,

choosing the one with the smallest temporary result set first.

2.6.1.2 Multiway Hierarchical Traversal

Papadias et al. [150] and Mamoulis and Papadias [133, 130] extend the hi-
erarchical traversal method (Section 2.3.1.1) to do a multiway spatial join. This
technique applies if each dataset is indexed using a hierarchical index, such as an
R-tree [76]. For two datasets, the original method compares overlapping nodes of
the two indices. If the nodes are leaves, the intersecting objects within the node
are reported, else the intersecting child node pairs are placed on a priority queue

to be processed later. To do a multiway join, the queue is modified to hold multi-
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1 procedure MULTI_INDEX_CSP(joinCondition, setA, setB, setC)

2 begin

3 tempSetA«(

4  tempSetB«()

5 foreach a € setA do

6 foreach b € setB do

7 if SATISFIED(a, b, joinCondtion) then
8 tempSetB«tempSetB U b

9 endif;

10 enddo;

11 if relation between setA and setC then
12 foreach ¢ € setC do

13 if SATISFIED(a, c, joinCondtion) then
14 tempSetC«—tempSetC U c

15 endif;

16 enddo;

17 else

18 tempSetC = setC;

19 endif;

20 /* inner loop */

21 foreach b € tempSetB do

22 foreach ¢ € tempSetC do

23 if SATISFIED(a, b, ¢, joinCondtion) then
24 REPORT(a, b, c);

25 endif;

26 enddo;

27 enddo;

28 enddo;

29 end

Figure 2.41: A multiway indexed nested-loop join that finds objects
from three datasets that satisfy any type of multiway intersection using
constraint satisfaction problem (CSP) techniques to prune temporary
datasets.

ple nodes, one from each dataset, instead of pairs. To start, the root nodes of the
indices are checked and combinations of the root node’s children that satisfy the
join condition are placed on the queue. Next, the first set of nodes on the queue is
checked and combinations of children are put on the queue. This process repeats
until the queue is empty. Papadias et al. [150] and Mamoulis and Papadias [133]

suggest using multi-level forward checking (Section 2.6.1.1) to check the nodes, but
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any appropriate multiway version of an internal memory spatial join could be used.
For instance, Park et al. [153] propose using a pair-wise plane-sweep method for
comparing multiple nodes at once, that is, a plane-sweep method is used on the first
two datasets and the results are joined with the third dataset with the plane-sweep
method, and so forth. As an alternate hybrid approach, Papadias et al. [151] pro-
pose using the hierarchical traversal approach to instantiate the first few variables,
then finishing with window reduction (Section 2.6.1.1) to instantiate the remaining

variables.

2.6.2 Parallel

In a parallel architecture, work is distributed amongst several processors. For
a spatial join, the work can be distributed in both the filtering and refinement stages,
and also for partitioning unindexed data. For the filtering stage, parallel techniques
that extend the synchronized hierarchical traversal approach (Section 2.3.1.1) have
been used for indexed data [39], and techniques that extend the grid partitioning
methods (Section 2.3.4) have been used for unindexed data [126, 156, 213]. These
techniques assume a shared nothing architecture (each processor has it’s own mem-
ory), although some algorithms have extensions that use shared memory architec-
tures to improve performance [39, 213|. Most of these methods have shown a near
linear speed increase with more processors. However, the key to achieving linear
speed increases during filtering depends on load balancing. An algorithm that uses

a specialized hypercube architecture to join two indexed datasets is also discussed
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[87].

Brinkhoff et al. [39] investigated extending the synchronized hierarchical traver-
sal approach (Section 2.3.1.1) to parallel architectures by assigning sub-trees of the
index to each processor. In the simplest approach to distributing the work amongst
n processors, a single processor first performs a hierarchical traversal, one level at a
time, until the number of node pairs on the priority queue exceeds n. At that time,
the node pairs are distributed to the processors, which perform a sequential spatial
join. However, as shown in Figure 2.42, one processor might be assigned nodes al
and b1 and another processor the node pair al and b2. In this case, node al will
be read from memory twice. To overcome this inefficiency, Brinkhoff et al. propose
using global buffers (in a shared memory architecture) so that one processor can
access a node that another processor has read into internal memory. However, this
approach does incur extra communication costs to synchronize usage of the buffers.
Additionally, the workloads might not be balanced since the processing time for
each sub-tree could be different. Rather than assigning all of the node pairs from
the queue at once, Brinkhoff et al. suggest assigning only one node pair at a time to
each processor. Once a processor finishes with one node pair, another is requested
while the queue is not empty. When the queue is empty, they further suggest that
one processor can share the work of another processor by taking node pairs from
another processor’s local queue, i.e., sub-trees of the original sub-trees.

For unindexed data, Zhou et al. [213] adapt the variation of the grid partition-
ing method (Section 2.3.4) that physically creates the grid cells. In their approach,

the random data is evenly divided amongst the n processors, which then partition
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Index Node al

Index Node b1l Index Node b2

Figure 2.42: Objects in multiple partitions might be read from memory
multiple times.

the data using the same tiling scheme. Then, with the sizes of the grid cells known,
a single processor determines the merging of grid cells into n partitions using a Z-
order merge, creating, on average, an even load distribution amongst the processors.
Next, each processor is assigned a partition and the data is redistributed appropri-
ately. Finally, each processor filters the data using a sequential spatial join filtering
technique. Both Patel and Dewitt [156] and Luo et al. [126] investigated a similar
approach. Rather than physically tiling the data, though, they both use the virtual
tiling method (Section 2.3.4), relying on a good hash function to distribute the data
evenly.

For parallel refinement, each processor could refine the candidate pairs it pro-
duces. However, Zhou et al. [213] point out that it is difficult without much selec-
tivity information to balance the number of candidates produced by each processor
during the filtering stage. If the candidate pairs are redistributed, then the workload
for refinement can be close to optimal since the number of vertices in each polygon
are good estimates of performance. Like sequential refinement, performance can be
improved by ordering the candidate set to minimize the number of times each full

object is read. Zhou et al. argue that an efficient approach is to use one processor
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to sort the candidates into a linear order, and then assign the candidates to each
processor in a round-robin fashion. Each processor will be processing candidate
pairs that are near each other (exhibiting locality), increasing the likelihood that an
object only needs to be read into internal memory once (assuming a shared memory
architecture), rather than continually reading some of the same objects throughout
refinement. Zhou et al. took the approach of assigning full objects to processors,
which are responsible for reading the object into memory and distributing the object
to other processors. They found that the redistribution costs are negligible.

Hoel and Samet [87] describe parallel algorithms for PMR bucket quadtrees
[138] and R-trees [76] using a specialized hypercube architecture. The algorithms
require that the data fit in memory, but result in extremely fast algorithms. In
their quadtree approach, regions of one of the quadtrees are associated with half of
the nodes (processors), termed the source nodes, and corresponding regions of the
other quadtree are associated with the other nodes, termed the target nodes. Each
quadtree is assumed to cover the same area, and thus, because of the regular de-
composition, there is a one-to-one correspondence between source nodes and target
nodes. The source nodes send their objects to the target nodes, which check for
intersections. Hoel and Samet also describe a similar algorithm for R-trees in which
the index nodes of the R-tree are associated with the processor nodes. However,
because of the irregular decomposition, each source node will be associated with
multiple target nodes, dramatically increasing the communication costs and slowing

the join.
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2.6.3 Distributed

In a distributed spatial join, the datasets reside at different locations. Abel et
al. [2] show how to combine the semi-join [136] concept for distributed join processing
and the filter-and-refine approach for spatial join processing. Given two sets of
objects, R and S, that are at different locations (physically distributed), they send
the MBRs of dataset R to the S location and filter the objects there. Then, they
send the full objects from S that are in the candidate set to R’s location to perform
the refinement step. Tan et al. [185] point out that unlike a relational semi-join
[148], where the transmission cost is dominant, the processing cost can be just as
large of a factor for spatial joins.

Mamoulis et al. [128] explore the distributed spatial join problem in which the
data resides on different servers between which there is no communication and the
servers will not perform a spatial join. This would be the case if the servers are
commercially owned and contain proprietary data. Additionally, it is assumed that
the servers will not provide statistics on the data. In this case, the spatial join must
be performed at a third, possibly small, site, such as a mobile device. They point
out that any processing at the data server sites is relatively inexpensive compared
to a mobile device. Therefore, as much work as possible should be done on the data
servers, such as running queries to build useful statistics on the data. To do the
spatial join, they propose a grid-based partitioning spatial join (Section 2.3.4) and
use the detailed statistics to determine the best grid such that data fits within the

available internal memory. The statistics are also used to identify empty regions
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in a dataset for which no spatial join needs to be performed, thus saving valuable

transmission costs.

2.6.4 Other Techniques

There has been some interest recently in improving performance of spatial joins
through the use of specialized hardware such as graphics processing units (GPUs).
Such an approach has been proposed by Sun et al. [183] who suggest assigning a
different color to each dataset and then letting the graphics hardware render the
datasets for the screen. In this case, the frame buffer can be searched for regions
containing a combination of the colors, which indicates intersecting objects. From an
analytical standpoint, the algorithm will be worse because of the scan of the frame
buffer, but the overall performance will be improved due to the advanced hardware.
However, the drawback of this approach is that the graphics hardware typically only
works on convex polygons and only a limited resolution can be achieved, thereby
leading to false hits that still need to be refined. In addition, Sun et al. propose
using a similar approach to determine whether two polygons intersect. In this case,
the edges of one polygon are assigned one color while the other polygon’s edges are
colored differently.

When the dataset is not updated often and speed is critical, Giinther [72]
suggest the use of a spatial join index [165]. In this case, all of the intersecting
objects are determined in advance and the resulting pairs of ids are stored in an

index. A spatial join algorithm must be used, though, to create the original set of
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results pairs.

Zhu et al. [217] address the issue that at times we are not interested in all of
the intersecting pairs. In particular, given two spatial datasets A and B, they are
interested in obtaining the & objects from A or B that intersect the highest number
of objects from the other set, termed a top-k spatial join. They achieve this by
making use of the synchronized traversal methods from Section 2.3.1.1.

Finally, we point out that Papadias and Arkoumanis [149] take a different ap-
proach to the issue of not reporting all of the intersecting pairs. They are motivated
by the desire to perform a multiway spatial join in a given amount of time due
to the prohibitive expense, timewise, of performing the full multiway spatial join.
Their approach searches for approximate solutions, which are defined as solutions
that might violate some constraints. For instance, for a 3-way intersection, a solu-
tion with only two of the required intersections would be an approximate answer.
The method they use is a combination of search heuristics, randomized algorithms,
and R-tree spatial indexes [76]. In essence, a candidate pair is guessed and then
improved upon using a search through the R-trees. This operation is repeated until

time runs out.

2.7 Selectivity Estimation

Techniques for estimating the selectivity of a spatial join are important as
an aid for analyzing spatial join algorithms, for use in query optimizers, and as

a data mining tool. Giinther et al. [73] have shown that along with the size of
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the dataset, selectivity is crucial in determining the performance of an algorithm.
Query optimizers assist a database engine in determining the order of operations
in a complex query. Also, selectivity estimates could play a roll in determining
which spatial join algorithm to use. For instance, a very dense dataset in which
nearly every pair is reported, could be computed faster using the simple nested loop
join (Section 2.2.1), rather than a more complex algorithm with a large overhead.
For data mining applications, selectivity estimates can give approximate answers to
queries, which can be used to rule out hypotheses [27].

For uniform datasets in two dimensions, a rudimentary estimate of the selec-
tivity for the filtering stage of a spatial join can be derived from the probability that
two average sized rectangles overlap [13]. Given that both datasets are enclosed in a
universe of finite area, which is represented as Total Area, the probability that two

rectangles with widths w, and w;, and heights h, and h; intersect is:

(wg +wy) « (ha +hy)  area, + areay + (wq - hy) + (wy « hy)
= , (2.2)
Total Area Total Area

where area, and area; are the areas of two rectangles 2°

. To derive a selectivity
estimate for a spatial join between two uniform datasets, the average sizes of the

rectangles in the two datasets A and B are substituted into Equation 2.2. In this

case, the selectivity is approximately:

areay + area, + (Wa - hg) + (Wp - ha)
Total Area )

20Equation 2.2 assumes that the space wraps around and does not account for the need for

(2.3)

rectangles to be within the boundaries of the space. However, the difference is negligible if the
rectangle is a small fraction of the space. Also, a minus one value is also dropped from the sums,

for simplicity.
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However, the situation is more complicated for non-uniform datasets. Ma-
moulis and Papadias [131], An et al. [9], and Belussi et al. [26] propose using a
two-dimensional histogram on each dataset, which can be a grid with occupancy
counts. Within each grid cell, the selectivity estimate for uniform datasets, Equa-
tion 2.3, can be applied. The results for each cell are then combined to get an overall
estimate of selectivity. The finer the histogram, the more accurate the results will
be. An et al. also studied sampling techniques and proposed a novel technique
for estimating intersections within a grid cell by counting the number of sides and
corners of rectangles within each grid cell.

Das et al. [48] present a method that provides a selectivity estimate of a spatial
join for skewed datasets. The method requires one scan of the dataset, and has a
provable, adjustable error bound. Each object in the dataset is represented by a
fixed set of objects from a dyadic cover, with a total size O(log(n)), where n is the
size of the dataset. As each object, r, is encountered, summary statistics for each
dyadic object composing r are updated. By combining these statistics in a manner
that does not count particular intersections more than once, the method estimates
the selectivity of the spatial join.

In another approach, working with point datasets, Belussi and Faloutsos [27]
expressed the selectivity of a self-spatial join in terms of a fractal dimension. Since
the data is points, the spatial join finds all pairs of points within a distance €, which
is expressed as nb(¢), and is analogous to the average number of intersecting pairs,

21

that is, the selectivity of the spatial join The average number of nearby, or

21Though, nb(e) as defined by Belussi and Faloutsos [27] is the number of points within a circle,
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neighboring, points captures information about the distribution of the data. If the
data is clustered, then the average number of neighbors increases. The problem,
then, is to find a good estimate of the number of neighbors. To do so, Belussi and
Faloutsos use the fractal correlation dimension Do, which is a characteristic of the

dataset, and calculate the average number of neighbors as:

nb(e) = (n—1) - (2-€)P2, (2.4)

where n is the number of points. Using this equation, the selectivity of a self-spatial

D2 The correlation dimension, D, can be calculated in

join is estimated as (2 - €)
O(n-log(n)) time [27] or even in constant time according to Faloutsos et al. [63], who
describe algorithms for efficiently calculating the correlation dimension for a given

dataset and show the effectiveness of the calculation for predicting the selectivity of

a self-spatial join 22.

here, their generalization to other shapes is used. In this case, a rectangle.

22Faloutsos et al. [63] use the formula K - 77 for selectivity, instead of Equation 2.3, where r

replaces 2 - € and P replaces Do, and they also use the multiplier K.
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Chapter 3

Iterative Spatial Join

This chapter presents the Iterative Spatial Join algorithm for performing a
spatial join on unindexed low-dimensional data. Implementing the Iterative Spatial
Join requires little more than providing a structure for holding the data that inter-
sects the sweep line, which can be found in algorithm text books [46]. Furthermore,
the Iterative Spatial Join has very predictable performance characteristics, as op-
posed to other methods that might suffer dramatically reduced performance or fail
entirely at certain amounts of available internal memory for a given dataset. Some,
but not all, of these shortcomings can be reduced by tuning the parameters of the
algorithms, but this requires detailed knowledge of the dataset, which might not be
available or expensive to get. The Iterative Spatial Join has no such parameters and
dynamically adjusts to the amount of internal memory.

Our experiments show that the Iterative Spatial Join performs as well as com-
peting methods when there is an abundance of internal memory. When internal
memory is insufficient (or conversely, when the dataset is very large), then the Iter-
ative Spatial Join either outperforms or overcomes limitations of competing meth-
ods. In addition, our experiments show that as internal memory is reduced, the
performance of the Iterative Spatial Join worsens only gradually. This is in contrast

to some of the competing methods which show a dramatic drop in performance at
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certain memory thresholds.

In addition to introducing the Iterative Spatial Join, we also introduce the
concept of density — that is, the fraction of rectangles in a cross-section of the
plane — into the analysis of such algorithms. We show that this property of the
dataset has a significant impact on the performance of spatial join algorithms, and
present the results of some experiments that support this conclusion.

The rest of this chapter is organized as follows. The classic plane-sweep method
is described in Section 3.1 as well as a modification to increase the number of rectan-
gles it can process with a given amount of internal memory, attributable to Arge et
al. [19]. In Section 3.2, we present and analyze the Iterative Spatial Join. Section 3.3

contains the results of experimental comparisons.

3.1 Internal Memory Plane Sweep

As we saw in Section 2.3.3, a common approach to performing spatial joins
with unindexed data is to partition the data until it is of a size that can be pro-
cessed using an internal memory plane sweep [160]. Our algorithm, the Iterative
Spatial Join, does not partition the data, but instead, repeatedly reads the data,
processing as much data as possible with each pass using a plane-sweep technique.
We use a modified version of the plane-sweep algorithm [19], which can process far
more data than the classical plane-sweep algorithm with a given amount of inter-
nal memory. In this section, we describe the classic plane-sweep algorithm and the

modified algorithm as a background to the Iterative Spatial Join, which is presented
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in Section 3.2. We also provide an analysis and proof of correctness of the modified
version, which will serve as the basis of the analysis and proof of correctness of the
[terative Spatial Join. In addition, we define the concept of maximum density, and

show its importance in the analysis of the plane-sweep algorithm.

3.1.1 Description

A two-dimensional plane-sweep of a set of iso-oriented rectangles finds all of
the rectangles that overlap. The algorithm has two passes. The first pass sorts
the rectangles in ascending order on the basis of their left and right sides (i.e., =
coordinate values) and forms a list. The second pass sweeps a vertical scan line
through the sorted list from left to right, halting at each one of these points, say
p. At any instant, all rectangles that intersect the scan line are considered active
and are the only ones whose intersection needs to be checked with the rectangle
associated with p. This means that each time the sweep line halts, a rectangle
either becomes active (causing it to be inserted in the set of active rectangles) or
ceases to be active (causing it to be removed from the set of active rectangles). Thus
the key to the algorithm is its ability to keep track of the active rectangles (actually
just their vertical sides) as well as to perform the actual intersection test.

To keep track of the active rectangles, the plane-sweep algorithm uses a struc-
ture (referred to as a sweep structure) that supports three operations needed to track
the active rectangles. The first inserts a rectangle by adding it to the active set. The

second (referred to as purgeInactiveRectangles) removes from the active set all

116



rectangles that do not overlap a given rectangle (or line). These rectangles become
inactive when the sweep line halts. The third operation searches for all active rect-
angles that intersect a given rectangle. Examples of structures that support these
operations are a dynamic interval tree [19] !, which is a Cartesian tree [201].

In the classical rectangle intersection problem, we are given a set of rectangles,
S and we need to determine the pairs of intersecting rectangles in S. In a spatial
join, we are given two sets, A and B, of rectangles, and we need to determine all
pairs of intersecting rectangles in A and B — that is, for each rectangle r in A, find
all of the rectangles in B intersected by r, and vice versa. To apply the plane-sweep
algorithm, a sweep structure is needed for both A and B. Rectangles from A are
inserted in A’s sweep structure and rectangles from B are inserted in B’s sweep
structure. Also, a rectangle r from A will perform a search on B’s sweep structure,
thereby finding all the intersections with the rectangles in B, and vice versa. Note
that an intersection is reported only when the second rectangle in the sorted order
is inserted, thereby avoiding reporting duplicate intersections.

There are several approaches to implementing the purgeInactiveRectangles
method. If the purgeInactiveRectangles operation is not performed at all, then
the plane-sweep algorithm will still produce the correct set of pairs of intersecting

rectangles, but it will be slow because of the constantly increasing size of the sweep

!The dynamic interval tree differs significantly from the interval tree [54], which also stores the
endpoints of all of the intervals that are parallel to the sweep line. The search time in an interval
tree is faster, but the interval tree requires that all intervals are inserted before any searching is

done.
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procedure TWO_SET_PLANE-SWEEP (RectanglesA,RectanglesB)
rectanglesC«setMerge (RectanglesA,RectanglesB);
rectanglesC«sortByLowerLeftCorner (rectanglesC) ;
sweepStructureA«createSweepStructure();
sweepStructureB«—createSweepStructure();
foreach r € rectanglesC do
if r € RectanglesA then
purgelInactiveRectangles(sweepStructureB,r);

0O Uk WwWwN

9 searchForIntersectingRectangles (sweepStructureB,r);
10 insertRectangle (sweepStructurel,r);

11 else

12 purgeInactiveRectangles(sweepStructurel,r);

13 searchForIntersectingRectangles (sweepStructurel,r);
14 insertRectangle (sweepStructureB,r) ;

15 endif;

16 enddo;

17 end

Figure 3.1: The two-set plane-sweep algorithm for spatial joins.

structures. Therefore, purgeInactiveRectangles is executed in order to improve
performance. One approach is to perform a purgeInactiveRectangles on a sweep
structure before searching it. In this way, any rectangles that do not intersect
the current sweep line and could not possibly intersect the current rectangle are
removed from the sweep structure, thereby reducing its size and increasing the speed
of the search. Other policies would be to perform the purgeInactiveRectangles
operation on both sweep structures for each rectangle processed, whether from A
or B, or only perform it on a rectangle’s own sweep structure. In practice though,
too many calls to purgeInactiveRectangles are costly and a better method is not
to perform the operation for each rectangle, but, instead, wait and perform it for
every n'" rectangle that is processed. For instance, we could apply purgeInactive-
Rectangles on A’s sweep structure only after each time that ten searches have been

performed on A’s sweep structure and similarly with B’s sweep structure.
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In addition, in order to adapt the plane-sweep algorithm to solve a spatial
join, the rectangles from both sets must be processed in sorted order. The sets A
and B must be merged in order to perform the sort, thereby producing a sorted list
in which each rectangle is identified as being from A or B. The algorithm for this
two-set plane-sweep algorithm is shown in Figure 3.1.

Below, we provide a proof of the correctness of the plane-sweep algorithm, and
later use this proof as the basis for proving the correctness of the Iterative Spatial

Join in Section 3.2.

Theorem 3.1.1. Given two sets of iso-oriented rectangles, A and B, the two-set
plane-sweep algorithm reports all intersections between A and B, and only reports

intersections between A and B.

Proof. Consider a rectangle r from set A as it is being processed in the for loop
of the algorithm. At the time r is processed, the rectangles in B that occur before
r in the sorted list of rectangles must have already been inserted into B’s sweep
structure. If any purgeInactiveRectangles operations were performed on B’s
sweep structure, then they removed rectangles appearing earlier than r in the sort
order and therefore these rectangles could not possibly intersect r. Therefore, B’s
sweep structure must contain all of the rectangles that intersect r and which appear
earlier in the sorted list of rectangles. When a search is performed on B’s sweep
structure with r as a parameter, these intersections will be reported. After r is
inserted into A’s sweep structure, all of the rectangles in B that occur after r will

search A’s sweep structure and report any intersections with r as long as r remains
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in A’s sweep structure. Since r will only be removed from A’s sweep structure
once it cannot intersect any remaining rectangles in B, all of r’s intersections with
rectangles appearing in B and later in the sorted order will be reported. Therefore,
all of the intersections between r and B will be reported. Since this applies to any
rectangle from A and B (with A and B interchanged in the proof for rectangles
from B), all of the intersections will be correctly reported. Furthermore, since by
definition the search operation reports only intersections with the given rectangle,

only intersections between A and B will be reported. O

3.1.2  Analysis

The analysis of the plane-sweep algorithm depends not only on the size of the
inputs, but also on another property that we call mazimum density, referred to as D.
The maximum density of a set of rectangles is the maximum number of rectangles
intersecting a line parallel to an axis divided by the total number of rectangles in
the set so that 0 < D < 1. Assuming that there are n rectangles in the set, the
maximum number of rectangles in the sweep structure is D - n. We use the term
mazimum overlap [19] to refer to this quantity (it is also known as the cross-section
number [75]). In addition, we make use of a related property which we call the
average density, referred to as d, to denote the average number of rectangles in the
sweep structure divided by n. For example, in some of our experiments, we used
the U.S. Bureau of the Census [190] Tiger file data with d = 0.001, meaning that

on average, 0.1% of all the rectangles intersect the sweep line at any given time.
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Figure 3.2: A skewed dataset containing 25 rectangles with a maximum
density of 0.4. The maximum density occurs at the dashed line, where
ten rectangles intersect the line.

In practice, the maximum density depends on the nature of the problem being
solved and the field size (i.e., the maximum enclosing rectangle of all rectangles),
as well as the number of rectangles. A common practice [75] is to use y/n as the
maximum overlap (i.e., D - n), based on observations using VLSI design data [147,
184]. While this might be true for VLSI design data, there is no reason why this
would hold true in general or for data used in Geographic Information Systems
(GIS). In particular, for skewed GIS data, for example, it could be that most objects
lie in a small cluster, thereby creating a much higher maximum density value, D. In
order to visualize how easily a dataset could violate the y/n rule, Figure 3.2 shows
a simple skewed dataset with a maximum density of 0.4. There are 25 rectangles in
the set, and thus, D - n = 10, which is much greater than /25 = 5.

Since D is the maximum number of rectangles encountered by a line parallel
to an axis, which is a sweep line, a sweep structure will contain at most D - n

rectangles. For the two-set plane-sweep algorithm, we need to use the D value
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from the set obtained by combining both sets of rectangles. The amount of internal
memory required by the two-set plane-sweep will then be the amount of memory
required by the rectangles in the sweep structures plus any overhead incurred by
the algorithm. If rectSize is the number of bytes of internal memory required by a
rectangle and overhead is the algorithm overhead in bytes, then the total amount

of internal memory required by the algorithm is, in bytes:

rectSize - D - n + overhead.

For example, if the input is a set of rectangles with D = 0.003, and if each rectangle
requires 40 bytes of memory, then with 10 megabytes of internal memory and an

overhead of 100 KBytes, we can process 82.5 million rectangles.

3.2 Iterative Spatial Join

In this section we address the problem that occurs when there is insufficient
internal memory to use the plane-sweep algorithm of Section 3.1. One solution is to
revert to the methods mentioned in Section 2.3.3, which partition the original data
(e.g. into a grid as in PBSM [155] or vertical strips as in SSSJ [19]) and then apply
the plane-sweep algorithm to corresponding partitions, handling rectangles that
overlap more than one partition separately. Instead, we propose a new method which
we call the Iterative Spatial Join. The Iterative Spatial Join modifies the plane-sweep
algorithm to save to external memory any rectangles it cannot immediately process.
The algorithm is run repeatedly, but only those rectangles saved in external memory
are inserted into the sweep structures on subsequent iterations, meaning that each
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rectangle is inserted into a sweep structure only once. Our method depends on an
extension to the plane-sweep algorithm proposed by Arge et al. [19], in which not
all of the rectangles in the datasets need to fit in internal memory. Only the sweep
structures containing the active rectangles need to fit in internal memory. In the
rest of this section we discuss the Iterative Spatial Join algorithm in detail. We
then extend the proof of correctness and analysis given in Section 3.1 to apply to
the Iterative Spatial Join. Results of an empirical comparison with partitioning

methods are described in Section 3.3.

3.2.1 Description

The Iterative Spatial Join algorithm, shown in Figure 3.3, builds on the plane-
sweep algorithm given in Section 3.1. When a rectangle is to be inserted into
the sweep structure, we check if there is sufficient memory to insert the rectan-
gle. If there is not enough memory, then a reference to the rectangle (e.g. an
integer specifying the location of the rectangle in the sorted order) is written to
a file. The algorithm continues, checking the rectangles still in the sorted list of
rectangles (insertList in Figure 3.3) for intersections with the rectangles that
have been inserted. As rectangles are removed from the sweep structure with the
purgeInactiveRectangles operation, memory is freed and more rectangles from
insertList can be inserted into the sweep structures again. When the sweep pro-
cess (represented by the for loop) is finished, the file doOverFile contains references

to all of the rectangles that were not inserted. Next, the sweep process is run again,

123



1 procedure ITERATIVE_SPATIAL_JOIN(RectanglesA,RectanglesB)
2 begin

3 rectanglesC«setMerge (rectanglesA,rectanglesB);

4  rectanglesC«sortByLowerLeftCorner (rectanglesC) ;

5  sweepStructureA«createSweepStructure();

6  sweepStructureB«—createSweepStructure();

7 insertList«-rectanglesC;

8 do

9 initialize(sweepStructurel);

10 initialize(sweepStructureB);

11 doOverFile«mnew File();

12 foreach r € rectanglesC do

13 if r € rectanglesA then

14 purgelnactiveRectangles(sweepStructureB,r);

15 searchForIntersectingRectangles(sweepStructureB,r);
16 if r = first(insertList) then

17 insertList«rest(insertList);

18 errorStatus<—insertRectangle (sweepStructurel,r) ;
19 if errorStatus = InsufficientMemoryError then
20 writeRectangleToFile(doOverFile,r);

21 endif;

22 endif;

23 else;

24 // Similarly, purge and search sweepStructurel
25 // and insert into sweepStructureB.

26 endif;

27 enddo;

28 insertList«readEntireRectangleFile(doOverFile) ;

29  while insertList # (;

30 end

Figure 3.3: The Iterative Spatial Join algorithm.

this time inserting only rectangles from doOverFile, which are those that were not
inserted in the previous iteration. This process is repeated until all of the rectangles
have been inserted into the sweep structures. Note that the rectangles that were
inserted on earlier iterations are still needed in later iterations in order to search the
sweep structures, but they are not inserted into the sweep structures again.

Figure 3.4 provides an example that we use to illustrate the algorithm. Assume

that internal memory can hold two rectangles (in addition to overhead). Rectangles
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Figure 3.4: A simple example with 1 and 3 in one set and r2 and r4 in
another. A correct algorithm finds the three intersections: r1-r2, r2-r3,
r3-r4.

r1 and r3 make up set A, and rectangles r2 and r4 make up set B. After merging
A and B and sorting, insertList contains all of the rectangles in order (r1-r2-r3-
r4). In this example, two iterations are required. The first iteration is illustrated in
Figure 3.5 and shows which rectangles are active, the position of the sweep line, the
insertList, and the doOverFile. The second iteration is illustrated in Figure 3.6.

The processing of each element of the for loop is as follows:

1. Processing starts with the first item in the dataset, r1. Since r1 is from set A,
a purgelnactiveRectangles and searchForIntersectingRectangles are
performed on sweepStructureB with no effect as sweepStructureB is empty.
Next, r1 is inserted into sweepStructureA, thus becoming active. Figure 3.5a

shows the state of the algorithm at this point.

2. Using 72, a purgeInactiveRectangles is done on sweepStructureA with no
effect since r1 is still active, but the search of sweepStructureA reports the

intersection between r1 and 2. r2 is inserted into sweepStructureB. Now,
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Figure 3.5: The active set, sweep line, insert list and doOverFile in the
first iteration of the algorithm for the data of Figure 3.4 immediately
after encountering the left boundary of rectangles (a) r1, (b) r2, (c) 73,
and (d) r4 while processing RectanglesC.

the internal memory (active set) is full with r1 and 2. Figure 3.5b shows the

state of the algorithm at this point.

. Using 73, the algorithm performs the purgeInactiveRectangles method on
sweepStructureB, producing no deletions. Next, the algorithms reports the
intersection between r2 and 73 when the searchForIntersectingRectangles
method is performed on sweepStructureB using 73 . When the algorithm tries

to insert 73 into sweepStructureA, an insufficient memory error is generated
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and a reference to r3 (the integer 3) is written to doOverFile. Figure 3.5¢

shows the state of the algorithm at this point.

4. Using r4, the purgeInactiveRectangles call on sweepStructureA causes rl
to be removed because it is no longer active. Since sweepStructureA is empty;,
the search on sweepStructureA reports no intersection. Now there is enough
memory to insert again and 74 is inserted into sweepStructureB. Figure 3.5d

shows the state of the algorithm at this point.

The first do loop ends with 73 yet to be inserted. At this point, the sweep struc-
tures are reinitialized and the contents of doOverfile are read into insertList,
which consists of only 3. In the second iteration, all of the items are again read

from the dataset, but they are processed differently.

1. Using r1, the purgeInactiveRectangles method produces no deletions and
the searchForIntersectingRectangles method reports no intersections. No-
tice that r1 is not inserted into a sweep structure since it is not in insertList.

Figure 3.6a shows the state of the algorithm at this point.

2. Similarly, r2 produces the same result as for r1 with sweepStructureA and
thus r2 is not inserted. Figure 3.6b shows the state of the algorithm at this

point.

3. Both the searchForIntersectingRectangles and the purgeInactiveRect-
angles methods are performed on sweepStructureB using 73 with no effect.

Then, 73 is inserted into sweepStructureA. Figure 3.6¢c shows the state of the
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Figure 3.6: The active set, sweep line, insert list and doOverFile in the
second iteration of the algorithm for the data of Figure 3.4 immediately
after encountering the left boundary of rectangles (a) r1, (b) r2, (c¢) 73,
and (d) r4 while processing RectanglesC.

algorithm at this point.

4. When r4 is encountered, sweepStructureA is searched and the intersection
between r3 and r4 is reported. No rectangles are purged with the method
purgeInactiveRectangles, and 74 is not inserted. Figure 3.6d shows the

state of the algorithm at this point.

Since now insertList is empty, the for loop and do loop end, having reported
all three intersections in two passes.
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Now let us prove the correctness of the Iterative Spatial Join algorithm.

Theorem 3.2.1. Given two sets of iso-oriented rectangles, A and B, the Iterative
Spatial Join algorithm reports all intersections between A and B, and only reports

intersections between A and B.

Proof. The proof of correctness is similar to the proof for the two-set plane-sweep
algorithm given for Theorem 3.1.1. To extend that proof, we must account for the
multiple iterations. Again consider a rectangle r from set A as it is being processed
in the for loop of the algorithm. In some iteration of the for loop, at the time
r is processed, all of the rectangles in B that occur before r in the sorted list of
rectangles must have been inserted into B’s sweep structure. If any purgeInactive-
Rectangles operations were performed on B’s sweep structure, then they removed
rectangles appearing earlier than r in the sort order and therefore these rectangles
could not possibly intersect r. Therefore, B’s sweep structure contains all of the
rectangles that intersect r and which appear earlier in the sorted list of rectangles
in some iteration. When the searches are performed on B’s sweep structure in each
iteration with r as a parameter, these intersections are reported. After r is inserted
into A’s sweep structure, all of the rectangles in B that occur after r will search A’s
sweep structure in the same iteration and report any intersections with r as long as r
remains in A’s sweep structure. Since r will only be removed from A’s sweep struc-
ture once it cannot intersect any remaining rectangles, all of 7’s intersections with
rectangles appearing in B and later in the sorted order are reported. Therefore, all

of the intersections between r and B will be reported. Since this applies to any rect-
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angle from A and B (with A and B interchanged in the proof with rectangles from
B), regardless of the iteration, all of the intersections will be correctly reported.
Furthermore, since by definition the searchForIntersectingRectangles opera-
tion reports only intersections with the given rectangle, only intersections between

rectangles in A and B will be reported. !

3.2.2  Analysis

The Iterative Spatial Join performs the same number of insertions and dele-
tions into the sweep structures as would the two-set plane-sweep algorithm if it had
sufficient internal memory. Each rectangle is inserted into the sweep structure once
and removed once. The only difference in performance is the number of searches.
For each rectangle, one search is performed on each iteration. This decreases the
performance compared to an internal memory plane-sweep, which performs just one
iteration, and thus, the sweep structure is searched just once for each rectangle.
However, this decrease is mitigated by the smaller size of the sweep structure, since
it is limited by the amount of internal memory.

As will be shown, the Iterative Spatial Join algorithm requires [%1 iterations,
where p is the number of rectangles that fit in the sweep structures (excluding
overhead) and D is the maximum density (defined in Section 3.1.2). If there is
sufficient internal memory for the internal plane-sweep algorithm to run, then the
sweep structure will hold D - n rectangles at some point. If D - n is greater than p,

then we need to run procedure Iterative Spatial Join again, and the sweep structure
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will contain p rectangles at this point on the first pass. The algorithm will try to
fit the remaining rectangles in the sweep structure on the next pass, or later passes
if necessary. In each additional pass, the sweep structure will contain a maximum
of p rectangles until the final pass. This results in the number of iterations being
gl

The algorithm reads the entire input stream for each iteration. It also writes
an integer (or some other reference to a rectangle) for every rectangle not entered
in the sweep structure on each iteration, and reads it in the subsequent iteration.
In the worst case, each iteration could result in nearly the same number of integer
reads and writes as the number of rectangles (e.g., if internal memory can only hold

one rectangle), but, in practice, this number is just a fraction of the input size.

3.3 Experimental Results

We tested the algorithms using spatial datasets (Sequoia [182] and U.S. Bureau
of the Census [190] Tiger data). These datasets have a low maximum density and
modest amounts of internal memory are sufficient to process the data using the
internal memory plane-sweep algorithm. The low density datasets make testing the
external-memory algorithm more difficult. In order to adequately test the external-
memory algorithm, we generated higher density datasets and limited the amount
of internal memory available to the algorithm. As noted in Section 3.1, the density
of a dataset also has an impact on the amount of internal memory required, and

we varied this quantity as well. In the experiments, we compared the Iterative
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Spatial Join, PBSM [155], SSSJ [19], and S3J [116] methods. The rest of this
section is organized as follows. Section 3.3.1 describes the experimental setup and
implementation issues, while Section 3.3.2 describes the data we used. Section 3.3.3

presents the results of the experiments.

3.3.1 Experimental Setup and Implementation

We implemented all four algorithms in the Sand environment [58], coding in
C++. The experiments were performed on a Sun Ultra-5 SparcStation running
SunOS 5.7. Within the Sand environment, we track the amount of internal memory
used and can limit it. Thus, the amount of internal memory is configurable and is
used as a parameter in the experiments.

We used the algorithms for PBSM, SSSJ, and S3J described in Section 2.3.3
with only minor modifications. We improved the performance of SSSJ by decreasing
the overhead of the partitions (the size in bytes of the C++ partition class); we used
replication for S3J; and we removed the need for duplicate elimination from PBSM.

We originally used an implementation of the SSSJ in TPIE (Transparent Par-
allel I/O Programming Environment) [199]. In moving to the Sand environment,
we reduced the memory requirements for the strips (partitions) and auxiliary par-
titions (used during the partitioning phase) by making the code less general, and
thus, dramatically improved the performance because many more strips could be
produced during the SSSJ partitioning phase.

We used object replication in S3J as recommended by Dittrich and Seeger
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Level 1 Level 3

(a) (b)

Figure 3.7: (a) Without replication, the small rectangle will be put into
the zero level file meant for larger objects since it intersects the partition
of level file 1. (b) Using object replication, the same rectangle is divided
and put into the level file appropriate for its size, level 3.

[50], who show that small objects that intersect partition boundaries will be put
into partitions meant for larger objects, as shown in Figure 3.7a. Since partitions in
the upper level files will be repeatedly joined with corresponding partitions in lower
level files, adding extra objects will impair performance because of the larger sizes
of the upper level files. By replicating objects, as in Figure 3.7b, the upper level files
become smaller, which improves performance more than object duplication hinders
performance.

Also, as mentioned by Dittrich and Seeger [50], because the S3J algorithm
creates such a large number of partitions, many partitions will contain only a few
objects, especially for the lower level files. In this case, a nested loop join (i.e.
comparing each rectangle in set A to each rectangle in set B) is the most efficient
processing method for joining two of the partitions. For larger partitions, we used
the plane-sweep method. We experimentally determined what constitutes a large

partition in this case and determined that if the combined sizes of the two partitions
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is less than 6,000 objects, then it is best to use a nested loop join.

Our implementation of the filter tree that is used by S3J partitions the data
into external memory files, one for each level of the tree, each of which is sorted
using a space-filling curve order such as a Morton order. The sort is in terms of
creating an additional MBR bf for each MBR 0 of the original data where s is the
minimum enclosing quadtree block. Each by is represented by its Morton code which
is then subjected to a two-level sort where the primary key is the level of the block
(i.e., depth in the tree), and the secondary key is the actual Morton code of the
block (i.e., the bit interleaved coordinate values of one of its corners). This results
in a partition of the MBRs by level which increases the likelihood that the partition
is small enough to fit in memory so that we can perform a faster in-memory sort
rather than an external memory sort. During the join, a block from each partition is
kept in memory. In this way, each partition file is read sequentially once. The need
to construct the Morton code for each block as well as sorting the blocks constitutes
the overhead of the S3J algorithm.

We eliminated duplicate detection from PBSM using a known method [12, 14,
50]. In particular, the overlap of two intersecting rectangles forms a rectangular
region. An intersection is only reported if the lower left corner of the overlapping
rectangular region is within the current partition. Special attention needs to be given
to cases where this point lies on the border of a partition. In this case, partitions
are considered open on two adjacent sides.

The PBSM algorithm requires tuning of its tiling parameters. When the al-

gorithm initially partitions, it creates a tiling of the data space and then merges
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these tiles into partitions. Any object that overlaps a tile is inserted into the tile’s
partition, leading to replication of objects. Ideally, the algorithm creates partitions
that fit into internal memory. However, because the algorithm duplicates objects,
the size of a partition cannot be predicted. If a partition has more objects than fit in
internal memory, the PBSM algorithm must divide the partitions that are too large.
This repartitioning degrades performance. The tiling can be tuned to accommodate
the data, though. We found that using 16x16 tiling achieved the best performance
in our experiments by trial and error. We are not aware of any mechanism for au-
tomatically tuning the tiling, but such a mechanism might involve a costly analysis
of the dataset. Even if such a mechanism were to exist, in the worst case scenario,
if only n objects fit in internal memory and more than n objects overlap a point,
then no partitioning exists because PBSM replicates the data. In this instance, the
algorithm will fail, regardless of tuning.

We ignored one case where tuning is necessary. In particular, in the original
description of PBSM [155], the tiles, which form a grid, are assigned to the partitions
by using a hash function or in a round robin fashion, as shown in Figure 3.8a. Ex-
periments [155] showed that the round-robin method performed as well as or better
than the hash function method. However, when using the round-robin method, if
the number of partitions (determined by the amount of available internal memory)
is a multiple of the number of tiles in a grid row, then the partition becomes a
strip, as shown in Figure 3.8b. However, unlike SSSJ, the strip is parallel to the
sweep line and the sweep algorithm will perform poorly, or, if there is insufficient
memory, repartitioning will be required. Regardless of this shortcoming, we used
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Figure 3.8: A tiling, as used by PBSM, of space into a 4x4 grid. The
tiles are assigned to the partitions in a round-robin order. In (a) three
partitions are created and in (b), four partitions are created.

the round-robin method since it was shown to be generally superior. We did not
devise a scheme to overcome this shortcoming. However, we do point out where this

occurs in the results.

3.3.2 The Data

In the first experiments, we used the U.S. Bureau of the Census [190] Tiger File
data and Sequoia Benchmark data [182]. From the Tiger File data we used road and
water dataset with 200,000 and 37,000 objects respectively. We used the Sequoia
point data and polygon data (excluding interior holes in the polygons) with 62,556
and 58,586 objects, respectively. Both these datasets have low maximum density
and can be processed using a plane sweep without having the Iterative Spatial Join
and SSSJ algorithms resort to external memory.

To test the external memory algorithms, we generated random datasets and

reduced the amount of available internal memory in order to provide sufficient condi-

136



tions for the external-memory algorithm to be invoked. We used a random rectangle
generator to create datasets with a desired average density and maximum density.
Figure 3.9 shows an example dataset that we generated with 100 rectangles and a
density of 0.12. We can vary the density because it is related to the size of the
rectangles as a proportion of the space from which the rectangles are drawn. To see
this, let r be the width of a rectangle in the sweep direction expressed as a fraction
of the space. The probability that this rectangle intersects a sweep line is r. If
we have n independently generated rectangles and assuming that the space wraps
around (i.e. it is continuous), then the number of rectangles intersecting a sweep
line is n-r. Since we have also defined the number of rectangles intersecting a sweep
line to be d - n, then d = r means that r has the same value as the density. Note
that the space from which the rectangles are drawn does not normally wrap around
in a 2-dimensional map, thereby causing the density at the beginning and the end
of the plane-sweep to lessen, which slightly changes the actual average density, but

not significantly.

3.3.3 The Results

3.3.3.1 Real Data

We compared the Iterative Spatial Join, SSSJ, PBSM, and S3J algorithms
using U.S. Bureau of the Census [190] Tiger File data and the Sequoia benchmark
data [182]. The results are shown in Figures 3.10 and 3.11, respectively. The PBSM

algorithm performed best and the most consistently. It was not effected by the
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Figure 3.9: An example of the randomly generated dataset. This set has
100 rectangles and a density of 0.12.

amount of internal memory. The other three algorithms performed worse due to
the need to sort. Figures 3.10a and 3.11a show the total time and Figures 3.10b
and 3.11b show the actual join time without the initial sort or filter tree creation,
revealing that the actual join time is generally constant for all of the algorithms.
Figures 3.10b and 3.11b do not include the PBSM because it immediately partitions
the data and begins processing, thereby having little initial overhead.

The differences between the performance of the algorithms can be explained by
the differences in sort times and the creation of the filter trees. The Iterative Spatial
Join and SSSJ algorithms do not need to use their external memory algorithms and
only perform a plane sweep after sorting the data. Thus, the only difference between
these two algorithms and the PBSM algorithm is that the PBSM algorithm parti-
tions the data first, then sorts each partition separately before performing a plane
sweep. Because the partition for the Iterative Spatial Join and SSSJ algorithms is

bigger than the PBSM partitions, the sort routine we use must use external memory,
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Figure 3.10: The performance of the Iterative Spatial Join (ISJ), SSSJ,
PBSM, and S3J algorithms on Tiger File data (in seconds) for a) total
time and b) total time without sort time (excludes PBSM data).

and therefore, impairs performance. The point at which the sort routine requires
the use of external memory can be seen in Figure 3.11a to be when the memory
is less than 6000 KBytes, and the Iterative Spatial Join and SSSJ algorithms no
longer perform as well as the PBSM algorithm. A similar problem occurs for the
S3J algorithm. With less memory, the creation of the filter trees for the S3J algo-
rithm took more time, even though the actual join time was less than the sort time.
As shown in Figures 3.10b and 3.11b, though, the S3J algorithm performs slightly
worse than the Iterative Spatial Join and the SSSJ algorithms even when sort times

and overhead are ignored.
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Figure 3.11: The performance of the Iterative Spatial Join (ISJ), SSSJ,
PBSM, and S3J algorithms on Sequoia data (in seconds) for a) total
time and b) total time without sort time (excludes PBSM data).

3.3.3.2 Experiments Varying Available Internal Memory

As mentioned in Section 3.3.2, with smaller datasets, it is difficult to experi-
ment with external-memory algorithms. Most computers today have enough mem-
ory to process smaller datasets in internal memory. We wished to investigate the
performance of the algorithms on larger datasets. One approach would have been
to use all of the available internal memory and use very large datasets. As shown
in Section 3.1, the internal plane-sweep algorithm is capable of handling millions of
rectangles on a typical computer. Such large datasets are beyond the limits of our
computers and would take excessive amounts of time for each experiment. Instead,
we limit the amount of internal memory available to the algorithm and use smaller
datasets.

Our experiments show that when external memory is necessary, the Iterative

140



Time (seconds)

1200

1200 m ] T T T 1200
d Density = 0.12 T Density = 0.10 1IS) —%—

1000 y= 0 1000 i % SSSJ & A 1000 |- . 1
} - Y | ] PBSM - Density = 0.06 slgj +
| ppEEmE. g AR o) by i S3) &

800 1 WEEREE - Ty 2 800} 2 80010 PBSM -~ ]

SSSJ @3- 3 3 oo o S3J 0

600 | 8 $ 600 06%000000

- @ [}
400 | *RRFEY £ E
[ =
200 -
0 . . . 0 . . . 0 . . .
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Internal Memory (KBytes) Internal Memory (KBytes) Internal Memory (KBytes)
(a) (b) ()

1200 1200

1000 - Density = 0.02  I1SJ —%— 1000 - Density = 0.005  I1SJ —%—
9 0 SSSJ -
S 800 | S 800 | PBSM B
3 3 S3J @
@ 600 @ 600
[} [} Q
£ 400 £ 400 (¥
= = 0.4 °

200 i 200 - '@’O'O'O'O OO0 2

. . L o - R e S .-
0 2000 4000 6000 8000 0 2000 4000 6000 8000

Internal Memory (KBytes)

(d)

Internal Memory (KBytes)

(e)

Figure 3.12: The performance (in seconds) of the Iterative Spatial Join
(ISJ), SSSJ, PBSM, and S3J algorithms for varying limits of internal
memory. The number of rectangles was held fixed for all experiments
at 300,000. Each graph represents a set of experiments performed with
different densities : (a) 0.12 (b) 0.10 (c) 0.06 (d) 0.02 (e) 0.005.

Spatial Join and SSSJ algorithms perform better than the PBSM and S3J algo-

rithms, as shown in Figure 3.12. For higher densities, the performance of the S3J

algorithm degrades so significantly that it is not shown in Figures 3.12a and Fig-

ures 3.12b. These two figures are duplicated with a larger scale in Figures 3.13a and

Figures 3.13b to include the S3J algorithm.

For all densities, the Iterative Spatial Join and SSSJ algorithms perform sim-

ilarly, except at the point where there is insufficient internal memory and external
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memory is required. At this point, the SSSJ algorithm has a spiked increase in
execution time. This occurs at around 4500 KBytes in Figure 3.12a, 3500 KBytes
in Figure 3.12b, 2500 KBytes in Figure 3.12c, and 800 KBytes in Figure 3.12d. This
spike does not occur in Figure 3.12e since the algorithms do not need to use external
memory. This spike occurs because, as SSSJ resorted to its external memory algo-
rithm, it discarded previous results, repartitioned, and started over. This is also the
point where the Iterative Spatial Join uses its external memory algorithm. For less
memory, the SSSJ algorithm fails earlier, and loses less ground. This is illustrated
in Figure 3.12 where the performance improves after the spike.

As mentioned in Section 3.3.1, we did not tune PBSM for the case when the
number of partitions is a multiple of the number of tiles. The effect is decreased
performance, which can be seen in Figures 3.12b and 3.12c¢ at 4000 KBytes. This
data point is not represented in Figure 3.12a because the basic PBSM algorithm
failed and repartitioning was required. We did not implement repartitioning as this
was beyond the scope of the work, although a repartitioning mechanism does exist
[50]. The 500 KByte point for PBSM is also missing from Figure 3.12a because
repartitioning is required.

We also wished to explore the effects of varying the average density on the
performance of the algorithms. As shown in Figure 3.12, the density had two ef-
fects. The first effect is longer running times. Higher density data means that
the plane-sweep algorithm will have more objects in its sweep structures, reducing
its performance and the overall running time. The second effect is to change the
point where the Iterative Spatial Join and SSSJ algorithms require the use of their
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external memory algorithms. As predicted in Section 3.1, for higher densities, the
internal-memory plane-sweep algorithm used by both SSSJ and Iterative Spatial
Join requires more internal memory, and the algorithms will need to use their exter-
nal memory algorithms for larger amounts of given internal memory. For example,
in Figure 3.12b, the spike indicates that the Iterative Spatial Join and SSSJ algo-
rithms are using external memory when internal memory is less than 3500 KBytes.
However, when the density is greater, as in Figure 3.12a, the algorithms will need
to use external memory if internal memory is less than 4500 KBytes.

For the higher densities, the S3J algorithm performed poorly. The higher den-
sity data contains a greater proportion of larger objects, which will fill the upper
S3J level files. The partitions in these level files are compared to the many corre-
sponding partitions in the lower partition files. Joining these partition files will be
quick, but the shear number of these pairings significantly degrades performance.
The data points in Figure 3.13 for S3J are missing around 2000 KBytes because
the partitions created were too large and needed to be repartitioned. The S3J al-
gorithm, however, has no mechanism for repartitioning its data. Interestingly, with
less internal memory (250 and 500 KBytes), the S3J algorithm partitioned the data

differently and thus was able to process the data completely.

3.3.3.3 Experiments Varying the Input Size

Figure 3.14 illustrates a typical set of results for a higher density dataset with

a large number of rectangles. In both experiments, we fixed the average and max-
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Figure 3.13: Expansion of the scale of Figure 3.12 to include all al-
gorithms. The performance (in seconds) of the Iterative Spatial Join
(ISJ), SSSJ, PBSM, and S3J algorithms for varying limits of internal
memory. The number of rectangles was held fixed for all experiments
at 300,000. Each graph represents a set of experiments performed with
different densities: (a) 0.12 (b) 0.10.

imum density at 0.12 and fixed the available amount of internal memory. We then
varied the number of rectangles in the input dataset. In both cases, the Iterative
Spatial Join and SSSJ algorithms behaved similarly and exhibited better perfor-
mance than the PBSM algorithm. The S3J algorithm performed poorly for the
reasons mentioned in Section 3.3.3.2

The decreased performance spike of the SSSJ algorithm described in Sec-
tion 3.3.3.2 is not shown on these graphs because of the fewer number of data points

represented on these graphs. The spikes occur between the data points shown.
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Figure 3.14: The performance (in seconds) of the Iterative Spatial Join
(ISJ), SSSJ, PBSM, and S3J algorithms for varying input sizes (number
of rectangles in each dataset). The maximum and average density was
held fixed for all experiments at 0.12. Each graph represents a set of
experiments performed with different limits to internal memory: (a)
20,000 KBytes (b) 6000 KBytes.

3.3.3.4 Algorithm Overhead

Before performing the spatial join, each of the algorithms partitions the data,
sorts the data, or even does both. Figure 3.15 separates this overhead cost from
the total execution time given in Figure 3.14. In particular, the overhead cost
encompasses all the preprocessing that takes place before starting the execution of
the actual spatial join algorithm. For example, the PBSM algorithm partitions the
data first. For small datasets, it is possible that only a single partition is necessary as
can be seen in Figure 3.15, in which case the overhead cost is negligible. The Iterative
Spatial Join and SSSJ algorithms sort the data first, while the S3J algorithm creates
a filter tree by partitioning the data into level files and then sorting each level file

using a space-filling curve (we use a Morton order). The Iterative Spatial Join and
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SSSJ algorithms incur the same overhead cost since they both execute the same
sorting algorithm. The S3J algorithm performs worse in some cases and better in
other cases in comparison to the Iterative Spatial Join and SSSJ algorithms because
the sizes of the level files change for different input sizes and have a large effect on
the performance (e.g., skewed files will effect performance). Comparing Figure 3.15
with Figure 3.14, we see that the overhead cost is a small percentage of the overall
cost for this data set with a higher density. For lower density data, the overhead cost
can dominate the cost of the join. As can be seen in Figure 3.10, the total cost of
the spatial join (Figure 3.10b) is the lesser part of the total join cost (Figure 3.10a).
Also, note that the overhead cost is effected by the amount of available internal
memory. In particular, as the amount of available internal memory increases, as in

Figure 3.15a, the overhead cost decreases as in Figure 3.15b.
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Figure 3.15: The overhead cost (in seconds) of the Iterative Spatial Join
(ISJ), SSSJ, PBSM, and S3J algorithms for varying input sizes (number
of rectangles in each dataset). The maximum and average density was
held fixed for all experiments at 0.12. Each graph represents a set of
experiments performed with different limits to internal memory: (a)
20,000 KBytes (b) 6000 KBytes.
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Chapter 4
Quickjoin

This chapter describes the Quickjoin algorithm for performing a similarity
join. Tt is based on the Quicksort algorithm [86] in that it recursively partitions
the data until each partition contains a few objects, at which point a nested-loop
join is used. The data can be partitioned using a variety of techniques, such as ball
partitioning, which partitions the data based on their distance to a single random
object (termed a pivot) [186, 211], as shown in Figure 4.1, or generalized hyperplane
partitioning, which partitions the data on the basis of which of two randomly selected
objects is closest [188]. Both techniques, as well as other variations, are described
in Section 4.2.

By just partitioning the data, a significant portion of the desired results will
be missed since objects in one partition might need to be joined with objects in
another partition. For example, using ball-partitioning, in Figure 4.1a, objects o0y
and oo, which lie within € of each other, would not be reported as similar since they
are in different partitions. To overcome this problem, when the data is partitioned
into two partitions, the data is replicated into two sets: set .S; with distance values
from p; less than or equal to the partitioning distance, r, but within € of r, and set
Sy with distance values from p; greater than r, but also within € of r, as shown in

Figure 4.1b. These two “windows” are joined, and only pairs, (a,b), with an object
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(a)
Figure 4.1: (a) With ball partitioning, objects are partitioned by their
distance from a randomly chosen object p;, based on a distance r. In this
example, r is determined using half the distance to the farthest object
p2. The problem with this partitioning is that it can separate result pairs
that are within e of each other, such as objects 0; and 0. (b) In order to
correctly capture all result pairs, two windows of objects within € of the
partitioning distance, r, are created — one with objects whose distances

from p; are greater than r and one with objects whose distances from p;
are less than or equal to 7.

from each window are reported, where a € S; and b € S, or b € S and a € S,.
Again, a Quicksort-like partitioning is applied recursively, but this time to each of
the windows.

The rest of the chapter is organized as follows. After reviewing related work
in Section 4.1, the details of the algorithm are presented in Section 4.2, including
additional variations of the algorithm. In Section 4.3, the performance characteris-
tics of the algorithm are analyzed in terms of CPU, internal memory, and I/O costs.
Section 4.4 describes the result of several experiments showing that the method is
competitive compared to the EGO method [31], described in Section 4.1.1 and the

GESS method [51], described in Section 4.1.2.
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4.1 Related Work

A similarity join is similar to a spatial join [145] or an interval join [57], which
find pairs of intersecting objects, such as intervals, polygons, or rectangles, in low
dimensions. Algorithms have been devised for spatial joins using both indexed and
unindexed methods, as described in Chapter 2. For indexed methods, the join
algorithm is frequently a synchronized traversal of the tree-like index structures
[38]. If the data is not indexed, then an index can be built, or if the index will
not be reused, then the expense of building an index can be avoided by using a
partitioning method [155] or a plane-sweep method [19, 98]. As with the spatial join
techniques, the first attempts at solving the similarity join used indices [117, 178].
Unfortunately, traditional spatial indices, such as the R-tree [76], have a number
of drawbacks in higher dimensions [32, 177, 178]. For example, the number of
neighboring leaf nodes typically increases in higher dimensions, thereby degrading
performance. To overcome such drawbacks, several indices have been proposed for

indexing high-dimensional data in order to perform a similarity join:

1. An MX-CIF quadtree [107] that uses a multi-dimensional linear order [51, 117].

One variant, the GESS method [51] is described in more detail in Section 4.1.2.

2. A variant of the kdb-tree [163] that splits the data in each dimension into e

sized segments [177, 178].

3. A sophisticated R-tree variant with large pages and a secondary search struc-

ture [32].
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4. A simple grid-like index structure [103], similar to a grid file [140].

Once the data is indexed, the similarity join can be performed using either a syn-
chronized tree traversal [38] or other heuristic methods that globally order the access
of the data pages [78, 102, 110].

However, as mentioned in the chapter introduction, similarity join techniques
based on these indices might not perform well since they rely on indexing a subset
of the dimensions and it might be difficult or impossible to choose a good subset
of dimensions. Furthermore, these techniques assume a fixed, Minkowski distance
function, which limits their applicability. For example, Shim et al. [177, 178] pro-
pose an index structure, termed an e-kdB tree, in which each level of the tree splits
on a different dimension into approximately e sized pieces. After the indices are
built, a synchronized tree traversal is used to perform the join. This method relies
on choosing a good split dimension, which might not exist for larger ¢ values. Simi-
larly, two good dimensions must be chosen for the Grid-join method of Kalashnikov
and Prabhakar [103], which uses a 2-dimensional grid to index multi-dimensional
data. Even in their work, they noted that this approach is unsuitable for higher
dimensions. In their experimental section they point out that ”the Grid-join is not
competitive for high-dimensional data, and its results are often omitted for clear
presentation of the EGO-join and EGO*-join results.”

Instead of creating a new index, Bohm et al. [31] propose an unindexed method,
termed the Epsilon Grid Order or EGO, which is described in detail in Section 4.1.1.

While the EGO method was shown to outperform traditional indices, some evi-
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Figure 4.2: The EGO sorted order traverses grid cells. Points within a
grid cell are unsorted.

dence [102] suggests that the EGO method does not outperform the indices that
are tailored to higher dimensions when the indices are already built. In our own
experiments, given in Section 4.4, we have found that the Quickjoin method and the
EGO method both significantly outperform one of the indexed methods, the GESS

method [51].

4.1.1 Epsilon Grid Order (EGO)

The EGO algorithm of Béhm et al. [31] is based on the EGO sorted order,
which is described as a sort based on imposing an e-sized multi-dimensional grid over
the space, and ordering the cells, as shown in Figure 4.2. In effect, this is a loose
version of a total multi-dimensional sort, where the points are primarily sorted in
one dimension, secondarily on another dimension, and so forth for each dimension.

In the EGO method, the EGO-sorted data is read in blocks, and the key to
the algorithm is to efficiently schedule reads of blocks of data so as to minimize 1/O.
Each block b of data needs to be joined with all other data blocks containing data
within a distance of € of b. In the best case, each data block can be read one at
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a time, and all corresponding data blocks (those that need to be joined) will fit in
memory. In this way, each data block will be read only once. For larger ¢ values,
this will not likely be the case, and the problem becomes similar to the classic join
scheduling problem, which is known to be NP-Hard [135, 139]. To overcome this
problem, Bohm et al. use heuristics to order the block reads and to determine which
blocks in memory to evict. The goal of the heuristic, which they term crab stepping,
is to try to minimize repeated reads of blocks.

To join two blocks of data, the data blocks are recursively divided until a
minimum size has been reached, in which case a nested-loop join can be used. The
recursion also stops when the data block subsets are at a distance greater than e
from each other. With the EGO* algorithm, Kalashnikov and Prabhakar [103] use
a better test for checking for this condition, which stops the recursion sooner and

improves performance.

4.1.2 GESS

Dittrich and Seeger created the Generic External Space Sweep (GESS) method
[51], which is a variant of the Multidimensional Spatial Join (MSJ) of Koudas and
Sevcik [117, 118], which in turn is based on a technique for performing a spatial
join on rectangles [116]. The technique is adapted to multi-dimensional points by
creating hyper-squares centered around each point with € length sides, and then
using the original technique to join the hyper-squares. If two hyper-squares intersect,

then the points must be within € of each other along at least one of the dimensions
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of the underlying space. The GESS and MSJ methods assign the data to grid cells,
sort the data based on the assigned grid cells using a multi-dimensional linear order
[99, 170], and then scan the data in sorted order to perform the join using a technique
that is a modified form of the plane-sweep method [160].

In the MSJ method, objects are assigned to levels of regular grids. Each level of
grid cells is derived by dividing each dimension of the previous level in two, as shown
in Figure 4.3. The first level, level zero, encloses the entire data space. An object
is assigned to the finest (highest) level in which it does not cross a grid boundary,
thereby creating an MX-CIF quadtree index [107]. Each part of Figure 4.3 shows
an object assigned to a different level. Since each dimension is split, the fan-out
will be large for higher dimensions, thereby limiting the depth of grid levels since
an enormous number of lower-level cells would create an unwieldy index.

By assigning objects to cells in this manner, some small objects will be assigned
to shallower (coarser) levels, as shown in Figure 4.3a. To overcome this inefficiency,
Dittrich and Seeger introduce redundancy, thereby allowing an object to be repli-
cated into multiple objects that can be assigned to a more appropriate level. For
example, object a in Figure 4.3a would be replicated into four objects, each assigned
to one of the four middle grid cells of level 2. This is an expanded MX-CIF quadtree
index [3]. Unfortunately, in higher dimensions, an object could cross boundaries
in many dimensions and would need to be replicated into 2* cells for k£ boundary
crossings. For this reason, objects are not replicated if k exceeds a predefined limit.
Dittrich and Seeger [51] experimentally found that a small k factor, such as two or

three, is best. By introducing redundancy in the dataset, duplicate results might
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Figure 4.3: In the MSJ and GESS methods, objects are created out of
multi-dimensional points by creating hyper-squares centered around each
point with € length sides. Each object is assigned to the finest regular
grid in which it does not cross a grid boundary. In this example, only
the square with the solid border in each figure is assigned to that level,
with level 2 being the lowest level. (a) Object a is assigned to the root
space, level 0, since it intersects the first (coarsest) grid level with four
grid cells, that is, level 1. (b) Object b is assigned to the next level since
it intersects the next finer grid level with sixteen cells, that is, level 2.
(c) Object ¢ is assigned to the lowest level.

appear, which can be removed in-line using a technique described later.

Once the data is assigned to grid cells, it is sorted based on the assigned grid
cell using a linear order such as a Hilbert or Peano-Hilbert order [99, 170]. The data
is secondarily sorted by level so that objects assigned to larger grid cells are seen
first, immediately followed by objects within the larger grid cells that have been
assigned to the next lower level of grid cells, and so forth.

After the data has been sorted, it is scanned in sorted order and joined using
a technique attributable to Orenstein [143] and similar to a plane-sweep technique
[160]. As each object is encountered, it is pushed onto a stack and joined with all

other data on the stack. Once all of the data within a grid cell has been encountered,
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that data can be purged from the stack since it could not possibly be similar to any
data yet to be seen because of the sorted order.

Because of the replication, duplicate results could be reported. Dittrich and
Seeger use a reference point method [14, 50] to prevent duplicate results from being
reported. In this method, a consistently chosen corner of the hyper-dimensional
rectangle formed by the intersection of two € expanded points is used, such as the
lower left corner of a two-dimensional intersection. If this corner point is within the
grid cell to which the objects are assigned, then the result (similarity) is reported.
Since this point can only lie within one grid cell, duplicate results are avoided.

Nevertheless, MSJ and GESS methods are essentially grid-based indexing tech-
niques because the points are assigned to a uniform grid in order to apply a linear
order, and the methods have the drawbacks that we have discussed, thereby making
them unsuitable for high-dimensional similarity joins. In fact, Dittrich and Seeger
acknowledge this [51] when they state that ”deficiencies of this method for high-
dimensional intersection joins are that a high fraction of the input relation will be
in level 0. The hypercubes in level zero [32], however, need to be tested against the
entire input relation in a nested-loop manner.” Analytically, using equation 3 from
their paper [51], it can be easily confirmed that a large percentage of objects will re-
side at level zero. This poor performance is confirmed by the results of experiments

as reported in Section 4.4.
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4.2  The Quickjoin Algorithm

This section describes the details of the Quickjoin algorithm, as well as vari-
ations of the algorithms. Also, slightly different algorithms are used depending on
whether the entire dataset fits into internal memory. The internal memory method
using ball partitioning is presented in Section 4.2.1, and the generalized hyperplane
variant of the Quickjoin algorithm is described in Section 4.2.2. A variant of the
algorithm that assumes vector data is described in Section 4.2.3. Next, the external
memory algorithm is described in Section 4.2.4, which uses the internal memory
algorithm to join partitions of the data that are small enough to fit into internal
memory. Finally, Section 4.2.5 describes a technique for improving the performance

of the internal memory algorithm.

4.2.1 Quickjoin Using Ball Partitioning

The internal memory version of the Quickjoin algorithm, shown in Figure 4.4,
takes three arguments: the desired e, eps; a distance function, distFunc; and
the set of objects to be joined, objs, which is implemented as an array for the
best performance for the internal memory algorithm. The procedure recursively
partitions the data in objs into smaller subsets until the subsets are small enough
(defined by the constant constSmallNumber) to be efficiently handled by a nested-
loop join, which is invoked on line 4 of the algorithm. Shown in Figure 4.5, the
NestedLoop procedure simply performs a nested-loop join on the objects and reports

the pairs of objects within eps of each other.
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1 procedure Quickjoin(eps, distFunc, objs)
2 begin

3 if objs.size < constSmallNumber then
4 NestedLoop(eps, distFunc, objs);
5 return;

6 endif;

7

8

pl«randomObject (objs);

9  p2«randomObject (objs-pl);

10 (partL, partG, winL, winG)«

11 Partition(eps, distFunc, objs, pl, p2);
12

13 QuickjoinWin(eps, distFunc, winL, winG);

14 Quickjoin(eps, distFunc, partl);

15 Quickjoin(eps, distFunc, partG);

16 end

Figure 4.4: The Quickjoin algorithm recursively partitions the data into
subsets that are small enough to be efficiently processed by a nested-loop
join. The “windows” around the partition boundary, winL and winG,
are handled by a separate recursive function, QuickjoinWin, shown in
Figure 4.8.

1 procedure NestedLoop(eps, distFunc, objs)
2 begin
foreach a € objs do
foreach b € objs do
if a # b AND distFunc(a,b)<eps then
Report(a,b);
endif;
enddo;
enddo;

end

O © 00 O Utk Ww

1

Figure 4.5: The NestedLoop procedure performs a self join on the set of
objects, objs, finding all similar pairs of objects.
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If there are more than a few objects, the set of objects is partitioned in two
using the Partition function on lines 10 and 11. The Partition function, shown
in Figure 4.6, requires two random objects, pl and p2, which are chosen on lines
8 and 9, of the Quickjoin algorithm. The Partition function divides the objects
into two sets, partL and partG, and also creates two “window” subsets, winL and
winG, that contain objects that are within eps of the opposing partition, that is,
winL contains objects in partL that might be within eps of the objects in partG,
and winG contains objects in partG that might be within eps of objects in partL.
The window partitions are created, since, as was shown in Figure 4.1a, a simple
partitioning in two will miss reporting some pairs of objects that are similar because
they lie in different partitions. For the internal memory algorithm, the window
partitions can use references to the objects rather than duplicate the objects to save
internal memory and replication costs.

Lines 14 and 15 recursively reinvoke the Quickjoin procedure to find similar
objects within the partL and partG partitions. To find similar objects between the
two partitions, that is, similar pairs of objects containing one object from partL
and one object from partG, the two window sets, winL and winG are joined. This is
done using a modified version of the Quickjoin procedure, termed QuickjoinWin,
shown in Figure 4.8, which is invoked on line 13.

The key to the Quickjoin algorithm is the Partition function, given in Fig-
ure 4.6, which partitions the data using the distance of every object to a random
object (the pivot), p1, as shown in Figure 4.7. The variable r is the pivot distance,
calculated on line 4, which, in this instance, is the distance from p1l to a second
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random object, p2, that is used to partition the objects. Objects with a distance
from p1 less than or equal to r form the partition partL, and objects with a distance
from p1 greater than r form the partition partG.

The Partition function uses in-place partitioning, which assumes that the
objects are stored in an internal memory array. The array is partitioned in place,
which results in placing objects whose distance from p1 is greater than r to the
right of all objects whose distance from p1 is less than or equal to r. The outer
loop, starting at line 9, scans the objects from both ends of the array using two
inner loops: one from the end (right side) on line 10, and one from the start (left
side) on line 14. When out of place objects are found on each side, the two objects
are exchanged on line 24. Additionally, as the objects are scanned, they are placed
into window partitions if they are within eps of r. This is done on lines 11, 15,
21, 22, 34, and 37. Finally, the object dividing the two sets is checked starting on
line 31, and serves as the dividing point for returning the two ends of the array as
partitions, on line 43, along with the window partitions.

Different partitioning methods can also be used in the Partition function.
The data can be partitioned using one random object and aggregate properties of
the distances. For instance, the data can be partitioned based on half the distance
to the farthest object. The data could also be partitioned based on the average
distance or the median distance in order to ensure a more equal-sized partitioned.
Methods other than ball partitioning are described in Section 4.2.2 and Section 4.2.3.

The QuickjoinWin procedure, shown in Figure 4.8, is only slightly different

than the Quickjoin procedure. A nested-loop join is also used on line 5, which is
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function Partition(eps, distFunc, objs[], pl, p2)
(partL, partG, winL, winG)
begin
r«distFunc(pl,p2);
startIdx«O0;
endIdx«<-objs.length-1;
startDist«—distFunc(objs[startIdx], pl);
endDist«—distFunc(objs[endIdx], pl);
while startIdx < endIdx do
while endDist > r AND startIdx < endIdx do
if endDist <= r+eps then winG.insert (objs[endIdx]);
endDist«—distFunc(objs[--endIdx], pl);
enddo;
while startDist <= r AND startIdx < endIdx do
if startDist >= r-eps) winL.insert(objs[startIdx] then
startDist«—distFunc(objs[++startIdx], pl);
enddo;

if startIdx < endIdx then // exchange objects
// check if either goes in a window
if endDist >= r-eps then winL.insert (objs[endIdx]);
if startDist <= r+eps then winG.insert(objs[startIdx]);
// exchange items
objs[startIdx]«objs[endIdx];
startDist«—distFunc(objs[++startIdx], pl);
endDist«— distFunc(objs[--endIdx], pl);

endif;

enddo;

// clean up last object
if startIdx == endIdx then
// check if this needs to be added to a window
if endDist > r AND endDist <= r+eps then
winG.insert (objs[endIdx]) ;
endif;
if startDist <= r AND startDist >= r-eps then
winL.insert (objs[startIdx]);
endif;
// check last object
if endDist > r then endIdx--;
endif;

return(objs[0:endIdx], objs[endIdx+1l:objs.length-1], winL, winG);
end

Figure 4.6: The Partition function partitions the data into two sets,
those whose distances from object pl are greater than the partitioning
distance, r, and those whose distances from p1 are less than or equal to
r. The value r is the distance from the randomly chosen object pl to
another randomly chosen object, p2. Also, objects are inserted into two
other “window” sets if the objects are within €, eps, of r.
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Figure 4.7: Objects are partitioned into two partitions — partG contains
objects whose distances from pl are greater than r and partL contains
objects whose distances from p1 are less than or equal to r. The objects
are also replicated into two windows. The window, winG is a subset of
partG containing objects within € of r and winL is a subset of partL
also containing objects within € of r.

termed NestedLoop2, shown in Figure 4.9, in which only similar pairs with an object
from each set are reported. Additionally, the Partition function is called separately
on each set of objects on lines 12 through 15, partitioning both sets using the same
random objects, pl and p2. In our notation, the Partition function partitions
objs1 into objects whose distances from p1 are less than or equal to r, partL1, and
objects whose distances from p1l are greater than r, partG1l. Similarly, objs2 is
partitioned into partL2 and partG2. The two sets whose distances from p1 are less
than or equal to r, partLl and partL2, are recursively joined using QuickjoinWin
on line 17, since the purpose of the QuickjoinWin procedure is to find pairs between
the two object sets. Similarly, partGl and partG2 are recursively joined on line 18.
In addition, the partitioning creates windows of objects that are within € of r. The
set winL1 is a subset of partL1 that is within € of r and winG1 is a subset of partG1

within € of r. The sets winL2 and winG2 are defined similarly. To determine which
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1 procedure QuickjoinWin(eps, distFunc, objsl, objs2)
2 begin

3  totallLen«<objsl.size+tobjs2.size

4 if totallLen < constSmallNumber2 then

5 NestedLoop2(eps, distFunc, objsl, objs2);

6 return;

7  endif;

8

9 allObjects<objsl U objs2;

10  pl<randomObject(allObjects);

11 p2«<randomObject(allObjects-pl);
12 (partLl, partGl, winLl, winGl)«—

13 Partition(eps, distFunc, objsl, pl, p2);
14 (partl2, partG2, winlL2, winG2)«—

15 Partition(eps, distFunc, objs2, pl, p2);
16

17 QuickjoinWin(eps, distFunc, partLl, partL2);
18 QuickjoinWin(eps, distFunc, partGl, partG2);
19 QuickjoinWin(eps, distFunc, winLl, winG2);
20 QuickjoinWin(eps, distFunc, winGl, winL2);
21 end

Figure 4.8: The QuickjoinWin procedure, which is similar to the
Quickjoin procedure given in Figure 4.4, joins two sets of objects by par-
titioning the two sets and then recursively joining the partitions. Only
result pairs with one object from each set are reported.

windows to recursively join, the only ones to consider are those between subsets of
objsl and objs2. The join between winL1 and winL2 is covered by the join between
partLl and partL2. Similarly, the join between winG1 and winG2 is covered by the
join between partGl and partG2. The remaining combinations are performed —
between winL1l and winG2 on line 19, and between winG1 and winL2 on line 20. See
Section 4.2.2 for a graphical depiction of the QuickjoinWin partitioning in which

hyperplane partitioning is used instead of ball partitioning.
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1 procedure NestedLoop2(eps, distFunc, objsA, objsB)
2 begin

3 foreach a € objsA do

4 foreach b € objsB do

5 if distFunc(a,b) < eps then
6 Report(a,b);

7 endif;

8 enddo;

9 enddo;

10 end

Figure 4.9: The NestedLoop2 procedure performs a join on the two given
sets objects, finding all pairs of similar objects between the two sets of
objects, that is, pairs with an object from each set.

4.2.2  Quickjoin Using Generalized Hyperplane Partitioning

Instead of using ball partitioning, we could also use generalized hyperplane
partitioning. In this case, the partitioning hyperplane is used to separate the ob-
jects on the basis of which of the two pivot objects is closer. Unfortunately, in a
general metric space, the partitioning hyperplane does not exist explicitly. Instead,
it is implicit and known as a generalized hyperplane. Therefore, we cannot, in gen-
eral, compute the exact distance from an object a to the partitioning hyperplane.
However, we do have a lower bound for it (see Lemma 4.4 in [85, p. 539]) which
is given in Equation 4.1, where dist(a, pl) is the distance from object a to random

object p1 and dist(a,p2) is the distance from a to the second random object, p2.

dist = (dist(a, pl) — dist(a,p2))/2 (4.1)

To implement this variation, the Partition function in Figure 4.6 is modified
slightly. In particular, the only change is in how the distance to each object is
calculated and the value of r, which becomes zero since objects closer to object p1
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(1) r<0;
(2) dist«(distFunc(a,pl)-distFunc(a,p2))/2;

Figure 4.10: (1) The pivot distance is zero for hyperplane partitioning
and replaces the code on line 4 of Figure 4.6. (2) The distance function

used for generalized hyperplane partitioning. This code replaces the
distance function on lines 7, 8, 12, 16, 25, and 26 in Figure 4.6.

will have a positive distance and objects closer to p2 will have a negative distance.
These changes are show in Figure 4.10.

Equation 4.1 works for any distance metric. If exact distances from the par-
titioning hyperplane are known, then the number of items in the windows can be
reduced by using these exact distances instead of lower bounds on the distances,
which improves the performance of the algorithm. For example, when the distance
metric is the Lo-norm, the exact form of Equation 4.1 is given by Equation 4.2,

where dist(pl, p2) is the distance between the two random objects pI and p2.

dist = (dist(a,pl)* — dist(a,p2)?)/(2 * dist(pl, p2)) (4.2)

To use this version of the hyperplane, Equation 4.2 is used to calculate dis-
tance, replacing the distance function in Figure 4.6, as was done with the general-
ized hyperplane function in Figure 4.10. Figure 4.11 shows the use of the hyper-
plane for partitioning, while Figure 4.12 shows its use for partitioning within the

QuickjoinWin procedure.
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Figure 4.11: Using hyperplane partitioning, objects are partitioned into
two sets — partG containing objects whose distances from the parti-
tioning hyperplane are greater than zero, and partL containing objects
whose distances to the partitioning hyperplane are less than or equal
to zero. The objects are also inserted into two windows. The window,
winG is a subset of partG containing objects within € of the partitioning
hyperplane, and winL is a subset of partL also containing objects within
e of the partitioning hyperplane.

4.2.3 Dimensional Version — Vector Data

If the data is represented as vectors, then another partitioning approach is to
partition the data using one of the dimensions of the vector data. This partition-
ing function requires only slight modifications to the Partition function given in
Figure 4.6, which are shown in Figure 4.13. In this case, each invocation of the
Partition function must choose a dimension with which to partition the data. For
instance, the first invocation could use the first dimension to partition the data, and
subsequent calls could use the second dimension, then the third dimension, and so
forth, cycling through the dimensions.

With this partitioning method, the distance to each object does not need to
be calculated, but a randomly chosen object still needs to be chosen to partition

the data. Alternatively, as with ball partitioning, a median or average value could
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Figure 4.12: Objects are partitioned into four sets in the procedure
QuickjoinWin, given in Figure 4.8. The procedure partitions sets objs1
and objs2, which were divided by a previous hyperplane, as shown. Par-
titions partGl and partG2 contain objects from object sets objsl and
objs2, respectively, that are greater than the partitioning distance, r,
and object sets partLl and partL2 similarly contain objects less than
or equal to the partitioning distance r, again from object sets objs1 and
objs2, respectively. As in the Quickjoin procedure, the objects are also
replicated into windows containing objects within € of the partitioning
hyperplane.

be used. Note that even if the dataset is not represented by vectors, as long as we
have a distance function, we can use an embedding method [62, 89, 121, 202] to

transform it into a multi-dimensional vector space.

4.2.4 External Memory Algorithm Using Multiple Pivots (Partitions)

In order to improve I/O performance, we present an external memory algo-
rithm which differs from the internal memory algorithm in that it uses multiple
pivots during partitioning. Instead of creating two sets at a time, n partitions are
created for each call to the Partition function, based on n randomly chosen objects
(pivots). In this way, I1/O is reduced since multiple partitionings occur at once and

smaller partitions are created, thereby allowing for the objects to be read entirely

167



(1) d«pickPartitioningDimension();
(2) rpilldl;
(3) dist<objld]

(e.g., startDist«objs[startIdx][d];)

Figure 4.13: Modifications to the Partition function from Figure 4.6 to
implement the dimensional variant of the Quickjoin method. (1) Between
lines 3 and 4, a single dimension, d is chosen, which can be done in many
ways, such as cycling through the dimensions. (2) The pivot, r, on line
4 becomes one dimension of the randomly chosen object p1. (3) The
value used for dimensional partitioning. This code replaces the distance
function on lines 7, 8, 12, 16, 25, and 26. As an example, line 7 of
the Partition function is rewritten to use the d* dimension of object
objs[startIdx]. The object p2 is not needed.

€& -sized window

Figure 4.14: Multiple partitions are created using multiple pivots, pl
through p5, along with corresponding window partitions (dashed lines).

into internal memory sooner. A 2-dimensional example is shown in Figure 4.14 us-
ing five pivots, which results in partitions that form a Voronoi diagram [200]. This
technique is similar to the multiple-pivot similarity search technique used by GNAT
(Geometric Near-neighbor Access Tree) [33] for generalized hyperplane partitioning
and an extension of the vp-tree [211] for ball partitioning.

The partitions formed by the external memory algorithm are stored externally

on disk and can be read and written sequentially using block I/O for efficiency.
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Once the partitions are small enough to fit in internal memory, the internal memory
algorithm can be called for faster processing.

The external memory algorithm using multiple pivots is given in Figure 4.15.
First, if there is sufficient internal memory, the externally stored objects, objFile,
are read into memory and the internal memory algorithm is used on line 5. Oth-
erwise, NUM_PIVOTS random objects are chosen on line 9, and the objects are par-
titioned on line 10 using the PartitionExt function, given in Figure 4.16. Note
that since the objects are in external memory, the random objects (pivots) can
be retrieved using non-sequential access, or, more efficiently, they can be selected
and saved when the objects are written to external memory during the previous
partitioning phase. The external partitioning function, PartitionExt, places each
object into one part[] partition, corresponding to the closest pivot. The win set
of partitions contains duplicates of the objects (stored externally) which correspond
to objects that might be within eps of a partition. For instance, the win[i] [j]
partition correspond to sets of objects that are within the part[i], but might be
within eps of objects in part[j]. The QuickjoinExt function is recursively called
on line 13 to join the part partitions while the QuickjoinWinExt procedure, shown
in Figure 4.17, is called on line 17 to join the win partitions.

The PartitionExt function, shown in Figure 4.16, partitions the objects
around a set pivots. The concept is similar to generalized hyperplane partition-
ing in Section 4.2.2, where a generalized hyperplane exists between each pair of
objects. For each object, the nearest pivot is found using the loop on line 9, and
the object is inserted into the corresponding part partition on line 16. Then, in
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1 procedure QuickjoinExt(eps, distFunc, objFile)
2 begin

3  if sufficientInternalMemory(objFile.size) then
4 objs =readIntoInternalMemory( objFile );
5 Quickjoin( eps, distFunc, objs );

6 return;

7  endif;

8

9 pivots«—selectRandomPivots( NUM_PIVOTS );

10 (part[], win[] [])«PartitionExt(eps, distFunc, objFile, pivots);
11

12 for i=0:NUM_PIVOTS-1 do

13 QuickjoinExt (eps, distFunc, part[i]);

14  enddo;

15 for i=0:NUM_PIVOTS-2 do

16 for j=i+1:NUM_PIVOTS-1 do

17 QuickjoinWinExt (eps, distFunc, win[i][j], win[j][i] );
18 enddo

19 enddo

20 end

Figure 4.15: The external memory version of the Quickjoin algorithm.

the loop starting on line 18, the distance to every other pivot is checked and if the
distance to the generalized hyperplane, calculated on line 21, is less than or equal
to eps, the object is also added to the corresponding window, win, partition. As in
Section 4.2.2, exact distances, if applicable, can be used to calculate the hyperplane
on line 21 to improve performance. Note that since the data resides in external
memory, the objects should be read sequentially in blocks for efficiency.

The QuickjoinWinExt, shown in Figure 4.17, joins two sets objects, objFilel
and objFile2, using multiple pivots. Both sets of objects are partitioned using
the same set of pivots on lines 12 and 13. Next, corresponding partl and part2
partitions are joined on line 18 as well as corresponding window partitions on lines

22 and 23.
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1 function PartitionExt(eps, distFunc, objFile, pivots)
2 (part[], win[1[1)

3 begin

4 Initialize part and win files.

5

6

7

8

while !'EOF(objFile) do
a<objFile.ReadObject () ;
minDist«MAX_DOUBLE;

9 foreach i=0:NUM_PIVOTS-1 do
10 dist«distFunc(a,pivots[i]);
11 if dist < minDist then
12 minDist«dist;

13 minPivot«i;

14 endif;

15 enddo;

16 part[minPivot] .insert(a);

17 p<pivots[minPivot];

18 foreach i=0:NUM_PIVOTS-1 do
19 if i !'= minPivot then

20 pX—pivots[i];

21 dist«—distFunc(a,p)-distFunc(a,pX))/2;
22 if -dist<eps then

23 win[i] [j].insert(a);
24 endif;

25 endif;

26 enddo;

27 return (part, win);

28 end

Figure 4.16: The external partitioning function determines, for each ob-
ject a, which pivot, p, is the closest, and places the object in the corre-
sponding part partition. Also, for every other pivot, pX, if the distance
from p to the generalized hyperplane between p and pX is less than or
equal to eps, then the object a is also inserted into the corresponding
window partition.
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1 procedure QuickjoinWinExt(eps, distFunc, objFilel, objFile2)
2 begin

3  totalSize«—objFilel.size + objFile2.size;

4  if sufficientInternalMemory(totalSize) then

5 objsl«readIntoInternalMemory(objFilel);

6 objs2«readIntoInternalMemory(objFile2);

7 QuickjoinWin(eps, distFunc, objsl, objs2);
8 return;

9 endif;

10

11 pivots«<—selectRandomPivots (NUM_PIVOTS) ;

12 (part1[], wini[][1)«

13 PartitionExt(eps, distFunc, objFilel, pivots);
14 (part2[], win2[]1[])«

15 PartitionExt(eps, distFunc, objFile2, pivots);
16

17 for i=0:NUM_PIVOTS-1 do
18 QuickjoinWinExt (eps, distFunc, parti[i], part2[i]);

19 enddo;

20 for i=0:NUM_PIVOTS-2 do

21 for j=i+1:NUM_PIVOTS-1 do

22 QuickjoinWinExt (eps, distFunc, winl[i] [j], win2[j][i]);
23 QuickjoinWinExt (eps, distFunc, win1[j][i], win2[j]1[i]);
24 enddo;

25 enddo;

26 end

Figure 4.17: The QuickjoinWin function from Figure 4.8 is also modified
to create multiple partitions at a time.
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Figure 4.18: For internal partitioning, the windows can be split further

in order to improve performance. As shown with generalized hyperplane

partitioning, each window is split so that the inner windows, (winInnerL

and winInnerG), contain objects within § of the hyperplane, while the

outer windows (winOuterL and winOuterG) contain the remaining ob-
jects that lie within e of the hyperplane. Since winOuterL and winOuterG
are more than e apart, they do not need to be joined.

4.2.5 Split Windows

As a performance improvement, when the data is partitioned in two for in-
ternal partitioning (see Figure 4.6), instead of two windows, four windows can be
returned. This is illustrated in Figure 4.18 with generalized hyperplane partitioning
(Section 4.2.2), although any form of partitioning could be used as well. In the figure,
the window partition winL from Figure 4.11 is split into partitions winInnerL and
winOuterL, and the window partition winG is split into winInnerG and winQOuterG
partitions. The inner windows (winInnerL and winInnerG) contain the window ob-
jects within 5 of the pivot or hyperplane, and winOuterL and winOuterG contain the
remaining objects. In this way, the join between the two outer windows, winOuterL
and winOuterG, can be avoided since they are further than e apart. The remaining

combinations of split windows are joined, as shown in Figure 4.19.
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1 procedure Quickjoin(eps, objs, distFunc)
2 begin

3 if objs.size<constSmallNumber then
4 NestedLoop(eps, distFunc, objs);
5 return;

6 endif;

7

8 plerandomObject(objs);

9  p2«randomObject(objs-r);

0

1 (partLl, partG, winInnerL, winOuterL, winInnerG,
winOuterG)«

11 PartitionSplitWindows(eps, distFunc, objs, p2, p2);

12

13 QuickjoinWin(eps, distFunc, winInnerL, winInnerG);
14 QuickjoinWin(eps, distFunc, winInnerL, winOuterG);
15 QuickjoinWin(eps, distFunc, winOuterL, winInnerG);
16 Quickjoin(eps, distFunc, partL);
17 Quickjoin(eps, distFunc, partG);

18 end

Figure 4.19: A variant of the Quickjoin function given in Figure 4.4 mod-
ified to subdivide each window into two parts to improve performance,
as illustrated in Figure 4.18

4.3 Analysis

The performance of the Quickjoin algorithm in terms of both CPU and I/O
depends on how well the data is partitioned at each step. As with the Quicksort
algorithm [86], because of the random nature of the algorithm, the Quickjoin al-
gorithm will likely partition the data reasonably well on average, and each data
object will be partitioned O(log(n)) times. However, at each level of recursion, the
size of the dataset grows due to the window partitions, leading, as will be shown in
Section 4.3.1, to O(n(1 + w)M°8(1) performance on average, where w is the average
fractional size of the window partitions. As shown experimentally in Section 4.4.1, w
is dependent upon ¢, and as expected, the algorithm will perform well for smaller ¢,

and performance will degrade for larger € values, as do all algorithms. Portions of the
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in-depth, supporting analysis are described separately, in Sections 4.3.3 and 4.3.4.
Section 4.3.2 discusses the I/O performance of the external memory algorithm,
and for internal memory, the requirements of the algorithm are quite low. In the
algorithm, a block of data, or even a single datum, can be read, and then immediately
written to a partition. More internal memory will improve the performance by
allowing larger partitions to be read into memory and to be fully processed, rather

than having to incur the I/O cost of writing the data back out to external memory.

4.3.1 CPU Performance Analysis

The basic performance analysis for the Quickjoin procedure from Figure 4.4
is given in Equation 4.3, where ()J denotes a call to the Quickjoin procedure, P
denotes a call to the Partition function from Figure 4.6, and QJW denotes a call
to the QuickjoinWin procedure from Figure 4.8. Variable x represents the size of
the object set. The Partition function divides the x objects into two partitions,
represented by azx and (1 — a)z, where a is the fractional size of the first partition
and (1 — a) is the fractional size of the second partition. These two partitions are
passed to the Quickjoin procedure, as represented by Q.J(az) and QJ((1 — a)z).
The Partition function also creates two window partitions, which are passed to
the QuickjoinWin procedure, as represented by QJW (wax,w(l — a)zx), where w
represents the fraction of objects from each partition that lie within € of the partition
boundary (the generalized hyperplane, for example) and are inserted into the window

partitions.
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QJ(z) = P(x) + QJ(ax) + QJ((1 — a)z) + QJW (waz,w(l — a)x) (4.3)

The performance of the QuickjoinWin procedure is similar to the Quickjoin
procedure, and is given in Equation 4.4, where x; and x5 are the sizes of the two

input partitions.

QJIW (x1,29) = P(x1) + P(as) + QJW (axy, azxs) + QIW((1 — a)xq, (1 — a)xs)

+ QJW(wazy,w(l — a)axs) + QJW (w(l — a)zy, waxs) (4.4)

The partitioning function, P, scans its data, and applies the distance function
once or twice to each object, depending on whether ball partitioning or hyperplane
partitioning is used, respectively. Letting d be the cost of the distance function, the
cost of partitioning the data is P(z) = cdx, where ¢ is 1 or 2, plus any constant
overhead. Using this equation to replace P(x) and expanding Equation 4.3 using

both Equations 4.3 and 4.4 yields Equation 4.5.

QJ(x) = cda+ acdz + QJ(a%x) + QJ(a(1 — a)z) + QIW (wa*z, w(a(l — a)z)
+ (1= a)edz + QJ((1 — a)ax) + QJ((1 — a)*x)
+ QJW(w(l —a)az,w(l — a)’z) + wacdr + w(1l — a)cdx
+ QJIW(wdx,wa(l — a)z) + QJW (wa(l — a)z,w(l — a)’z)

+ QIW (w?d’z, w*(1 — a)’z) + QIW (wa(l — a)z,w?a(l — a)x) (4.5)
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Collecting just the cdx terms and ignoring the @QJ and QJW terms yields
cdzr + cdx(1 + w), since the a terms drop out. Intuitively, in the algorithm, at each
level of the recursion, all of the objects are partitioned once. Additionally, objects
in each window are also partitioned, yielding the (1 4+ w) term. Continuing the
expansion further yields the sequence in Equation 4.6, where each level is shown in

brackets.

QJ(x) = cdz+[cdr(1+w)]+[cdr(1+2w+w?)]+ [edz(1+ 3w+ 3w +w?)|+... (4.6)

Equation 4.6 is the expansion of the recurrence shown in Equation 4.7. Intu-
itively, at each level, the number of objects partitioned is (1 + w) times the previous

level.

o0

QJ(x) = cdx Z(l +w)’ (4.7)

1=0

This equation is unbounded and growing. However, the depth of recursion is
limited. The Quickjoin algorithm partitions the data in the same manner as the
Quicksort algorithm, which is known to have an average case depth of O(log(n))
[101] (see Section 4.3.3 for an analysis). Using this fact yields Equation 4.8.

[log(n)]
QJ(x) = cdx Z (1+w) (4.8)

=0

Using induction, it can be show that the summation in Equation 4.8 has an
upper bound of O((1 + w)"#™1) (see Section 4.3.4 for proof), which yields a final
bound on the Quickjoin algorithm of O(n(1 + w)"&™1). This bound shows that
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the Quickjoin algorithm will perform well (O(n)) for smaller average windows since
the (14 w)"#™! term will be small. This term will be maximum when w is one,
meaning that all objects are put into the windows. In this case, 2'°8(") < n for b > 2,
where b is the constant base of the logarithm. In other words, the performance for
the largest window size is O(n?). The theoretical worst case, as with the Quicksort
algorithm, occurs if the depth of recursion approaches n. In this case, the Quickjoin
algorithm would have performance O(n2"). However, this is unlikely to occur, and
the algorithm can be written to avoid such worst cases by, for example, using median
values instead of random objects.

Furthermore, the w factor is dependent on ¢, and as shown experimentally in
Section 4.4.1, this dependence is nearly linear. For smaller € values, w is also small
and will not have a significant impact on performance. In particular, only for larger

€ values will w have a significant impact on performance.

4.3.2 1I/O Analysis

For the external memory algorithm (Section 4.2.4), given a fixed amount of
internal memory, the external data must be partitioned until each external partition
will fit within internal memory, at which time the internal memory algorithm can be
used (Section 4.2.1). The analysis to determine the amount of I/O is nearly identical
to that of the performance analysis given in Section 4.3.1 since each object is read
from memory once each time it is partitioned, but the I/O analysis differs in two

aspects. First, since multiple pivots are used, the partition function calculates the

178



distance function for each pivot. However, the previous analysis used P(x) = cdx
for the performance of the partitioning function and the additional pivots can be
incorporated into the ¢ factor. Furthermore, the multiple pivots create a larger fan-
out which shortens the depth of the recursion. This would be incorporated into the
base of the logarithm of Equation 4.8, leaving the analysis unchanged.

The second difference is that the external algorithm stops, switching to the
internal algorithm, when there is sufficient internal memory to hold the partition.
Letting M be the number of objects that will fit in internal memory, the depth
of the recursion is log(n/M). Additionally, since the data is read in blocks, the n
variable should be represented by N, where N = = and m is the number of objects
per block. Applying these two modifications to the final average case performance

yields an 1/O average performance of O(N (1 + w)!°sN/2DT),

4.3.3 Depth of Recursion

The Quickjoin algorithm partitions the data in the same manner as the Quick-
sort algorithm, which is known to have an average case depth of O(log(n)) [101].
Here, we apply the average case analysis to the Quickjoin algorithm using Equa-
tion 4.3 from Section 4.3.1. Since we are interested in the depth of the recursion of
the Quickjoin procedure from Figure 4.4, we can drop the call to the QuickjoinWin
procedure, QJW (), yielding Equation 4.9, with P(z) replaced by cz, as was done
with Equation 4.5, but dropping the unnecessary d constant and letting n denote

the total number of objects.

179



QJ(n) =cn+QJ(an) + QJ((1 —a)n) (4.9)

In the average case, Equation 4.9 becomes Equation 4.10, which takes the

average of all possible partitionings.

QJ(n) = (l (Z(QJ(Z) +QJ(n— z))) +cn (4.10)

n X
=0

With a base case shown in Equation 4.11.

QJ(1) = 6(1) (4.11)

Combining QJ (i) and QJ(n — i) and multiplying Equation 4.10 by n starts

the following series of algebraic manipulations.

nQ@QJ(n) = 2 (i QJ(Z’)) + en?
nQJ(n) —(n—1)QJ(n—1) = 2QJ(n—1)+cn* —c(n®* —2n+1)

nQJ(n) = (n+1)QJ(n—1)+2cn —c

J Jn—1 2
n+1 n n+1 nn+1)
Expanding Equation 4.12 and dropping the ﬁ term since it is immaterial

to an upper bound calculation, leads to the following sequence of equations.
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QJ(n) QJ(n—1) n 2c

n+1 n n+1
QJ(n—1) QJ(n—2) 2c
= 7 = 2~ 4
n n—1 n

QJn—-2)  QJn-—3) 2¢

n—1 N n—2 +n—1

QI?) _ QI 2

3 2 3
(4.13)
Summing these equations gives
QJ(n) < 2c 3
= — =2c|1 1 — = 4.14
2 S =2 (log (n+ 1)+ - (414)

1=3

The final equation results from the fact that S0/ 1 =log,(n+ 1)+, where
the constant is v = 0.577 (Euler’s Constant). In other words, Equation 4.14 shows
that the Quickjoin procedure will perform, on average, O(nlog(n)) calculations
partitioning the data. Since, at each level of recursion, the Quickjoin function
partitions all of the n data items, meaning that the Quickjoin function will termi-
nate at O(log(n)) depth, on average. Also, since the QuickjoinWin uses the same

partitioning method, it will also terminate at O(log(n)) depth.

4.3.4 Upper Bound On Zz[fg(nﬂ (1+w)

QJ(x) = Z (14 w)’ (4.15)



We assert that Equation 4.15 has an upper bound of O <(1 + w)“og(”ﬂ). This

is assertion is true if Equation 4.16 holds and ¢ > 1, which we prove by induction.

[og(n)] |
> (L4 w) < el 4 w)oe (4.16)
=0

First, the base case of n = 1 is as follows, where any ¢ > 1 satisfies the relation:

[og(1)] 0
D 4w =) (1+w)=(1+w)’=1<cl+w)e0 = (4.17)
=0 1=0

Assuming Equation 4.16 is true for n, we prove the induction in two cases.

First, if [log(n)] = [log(n + 1)], then the equation for n + 1 becomes

[log(n+1)] | [log(n)] |
Yo (4w = > (1+w)
1=0 1=0

< (14 w)est)]

= ¢(1 + w)loen D] (4.18)

Equation 4.18 holds for any ¢ > 1. Next, if [log(n)] = [log(n + 1)| — 1, then

the equation for n + 1 becomes
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Mlog(n-+1)] | flog(n)] |
(1 + ’LU)Z _ (1 + w)ﬂog(nJrl)] + Z (1 + ’LU)Z
=0 =0

< (1 + w)lesm+DT 4 c(1+ w)[log(nﬂ

C(l + w) |—10g(n)-|+1

_ (1+w)]'log(n+1)] +

l+w
= ﬂ+meMm+ﬁﬂ+memm
l+w
= (1 log(n+1)1 . [ 1 c
(1+w) n -
1 1
= c(l logtnt1] (1, 1~
(14 w) - n .
< (1 A4 w)eeln D] o

The final equation, Equation 4.19, is true provided that

1 1
-4+ —<1 4.20
c+1+w_ ( )

Rewriting Equation 4.20 gives
c> — (4.21)

Since w is a positive constant, HTw can be bounded by ¢, proving the bound

of O ((1 + w)“og("ﬂ>.
4.4 Experiments

This section presents the results of similarity join experiments on real datasets.
The algorithms were implemented in C++ and the experiments were performed on

a computer with a Pentium 3 processor and 512MB of RAM, running Windows XP.
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The similarity join algorithms were tested using color data from the UC Irvine
repository [82]. The data consists of multi-dimensional features extracted from a
Corel image data collection with 68,040 objects. The experiments presented here
used the 9-dimensional color moment data, with data values ranging from -4.8 to
4.4, and 32-dimensional color histograms, with data values ranging from 0 to 1. For
experiments with larger datasets, we randomly perturb the color data, creating data
clustered around the original point set.

In the experiments, the variations of the Quickjoin algorithms are compared to
the EGO algorithm, described in Section 4.1.1, and the GESS algorithm, described
in Section 4.1.2. The EGO algorithm was implemented with the suggested EGO*
improvements [103], and the block size of the EGO algorithm was tuned to maximize
its performance. The GESS algorithm was implemented using both a Hilbert order
and a Morton (Peano-Hilbert) order. Since both orders performed similarly, only
results with the Hilbert order are shown. The GESS algorithm was also tuned to
maximize performance by adjusting the & factor. The sort codes (the assigned grid
cells) were limited to 32 bits, thereby limiting the maximum depth to one or two
levels, which did not impact performance since in many of the experiments, most of
the data was assigned to the first two levels (level 0 and 1), regardless.

As this section shows, the Quickjoin method generally performs much better
than the EGO algorithm and in some cases performs significantly better, especially
for the Li-norm metric. However, the GESS method always performs significantly
worse than the both the Quickjoin and the EGO methods. With the color data,

the GESS method performs poorly because the data is skewed towards lower values,
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and most of the data is assigned to the same grid cell, resulting in a nested-loop
join. Even with synthetic data in higher dimensions, most points have several fea-
tures that are near the median values, which exceeds the GESS £ factor, and most
values are placed into level 0, resulting, again, in a nested-loop join. As quoted in
Section 4.1.2, the creators of the GESS method anticipated these problems. The
experiments in this section verify that the GESS method is not well-suited for high-
dimensional similarity joins.

Experiments on datasets that only require internal memory (no disk I/O) are
presented in Section 4.4.1, and experiments that require external memory (disk 1/0)
are presented in Section 4.4.2. While external memory is required to handle datasets
of any size, the internal memory experiments not only demonstrate the various
internal memory Quickjoin algorithms, but are also of practical significance since
large datasets can be processed entirely in memory with today’s internal memory

limits.

4.4.1 Internal Memory Similarity Joins

This section presents the results of experiments using only internal memory
and datasets that fit entirely into internal memory. The four internal memory

variations of the Quickjoin algorithm were used in the experiments in this section:

1. The ball-partitioning method described in Section 4.2.1, referred to as Quick-

JoinBall in the plots.

2. The generalized hyperplane version described in Section 4.2.2, referred to as
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QuickJoinGHP.

3. The Lo-norm hyperplane described in Section 4.2.2, referred to as Quick-

JoinHP2.

4. The dimensional version for vector data described in Section 4.2.3, referred to

as QuickJoinDim.

Each method was also implemented with the split windows enhancement described
in Section 4.2.5.

The plots in this section show the time to perform the similarity join, assuming
an unprocessed dataset. The Quickjoin algorithms immediately execute the join,
while the EGO and GESS methods preprocess the data by sorting the data, and in
the case of the GESS method, assigning the data linear order codes. Except for the
smallest of experiments, this preprocessing tends to be only a small fraction of the
total processing time.

The preprocessing times for the EGO and GESS methods are shown in Fig-
ure 4.20. For both methods, the sort time increases with increasing e. The EGO
method uses € to calculate the EGO grid cell, as described in Section 4.1.1. Since the
grid cells are of size €, as € increases, there are fewer cells in which to place objects,
thereby making it more likely that two objects will be equal in a single dimension.
Therefore, on average, more dimensions will be needed to determine which object is
greater. For the GESS method, as € increases, the size of each hyper-square around
each point increases. This increases processing time by requiring more replication
since the larger hyper-squares are more likely to intersect grid boundaries.

186



Color Moments Data - L2
10

8+ EGO —o—
GESS --e-- P

Sort Time

01 02 03 04 05 06 07
Epsilon

Figure 4.20: Sort time for the Color Moments data.

The results of similarity join experiments with the 9-dimensional color moment
data, with data values ranging from -4.8 to 4.4, are shown in Figures 4.21a and 4.21b,
both using an Ly-norm. Figure 4.21a shows experiments with smaller € values (less
than 1%), which represent queries where a few hundred results are reported, while
Figure 4.21b shows experiments with larger ¢ values, which represent queries where
more results are reported ranging from a few hundred up to several thousands. For
smaller € values, shown in Figure 4.21a, the Quickjoin algorithms outperform the
EGO algorithm and significantly outperform the GESS algorithm. The Quickjoin
algorithms, except for the generalized hyperplane version (QuickJoinGHP), exhibit
an almost constant performance with increasing e values. In these cases, the € sized
window partitions represent only a small fraction of the processing. For larger e
values, shown in Figure 4.21b, the Quickjoin algorithms begin to perform slightly
worse. The ball partitioning, hyperplane partitioning and dimensional versions of
the Quickjoin algorithm exhibit nearly identical performance on this dataset as well

as most other datasets. The generalized hyperplane version (QuickJoinGHP) which
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Figure 4.21: Experiments with color moment data for (a) smaller € values
using an Ly-norm, and (b) larger e values using an Lo-norm.

makes use of a lower bound on the distance (hence resulting in a larger window)
performs worse than these variations. Nevertheless, the Quickjoin algorithms still
outperform both the EGO and the GESS algorithms.

Figure 4.22a shows the number of distance calculations for the experiments
shown in Figure 4.21b, which demonstrates that the Quickjoin algorithms improved
performance is due to the fewer distance (similarity) tests that it performs. Further
insight into the performance of the Quickjoin algorithms can be gained by exam-
ining the fractional size of the windows created by the Partition function from
Figure 4.6, which is called by the Quickjoin and QuickjoinWin procedures given
in Figures 4.4 and 4.8. As shown in Figure 4.22b, the average window size increases
nearly linearly with €. Note that w is a function of €. In this case, with the color

moment data, the data can range in value from -4.4 to 4.8. In 9 dimensions, the

maximum € would be /9 - (4.8 — (—4.4))2 = 27.6. However, w would be close to

its maximum value of 1 at a smaller value, as can be seen with the plot of Quick-
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Figure 4.22: For the color moment data using an Ly-norm, (a) the num-
ber of distance (similarity) calculations (note that the QuickJoinBall and
QuickJoinDim algorithms performed identically, making it hard to see

the plot of the QuickJoinBall performance), and (b) the average frac-
tional window size created by the Partition function.

JoinGHP, where w approaches 1. Intuitively, the size of the result set increases
dramatically for the e values shown in the plot, and for even larger values, nearly
all pairs of objects will be returned, resulting in O(n?) performance of the evaluated
algorithms. Figure 4.22b also illustrates the fact that the generalized hyperplane
version (QuickJoinGHP) uses window sizes that are twice as large as the Lo-norm
hyperplane version (QuickJoinHP2).

Figure 4.23 shows the results of repeating the experiments in Figure 4.21b
using an Li-norm. In this case, the EGO and GESS algorithms are shown to perform
nearly the same as before, while the performance of the Quickjoin method improves.
Note that the QuickjoinHP2 method is not shown as it assumes the use of the Lo-
norm. Because the distances between objects are larger when using the L;-norm
as compared to when using the Lo-norm, the windows created by the Quickjoin

method are relatively smaller, thereby leading to improved performance. Since
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Figure 4.23: Experiments with color moment data for larger e values
using an L;-norm.

the dimensional version of the Quickjoin algorithm (QuickjoinDim) does not use
distance, it is unaffected by the change in the distance metric. Also, since the
distances between objects is increased, the number of objects in the join result
tends to be in the hundreds, rather than in the thousands, as with the join result
from Figure 4.21b.

The results of experiments with the 32-dimensional color histogram data are
shown in Figure 4.24. The data ranges in value from 0 to 1, and the e values
produce thousands of results. In this case, the Quickjoin algorithms significantly
outperforms the EGO method. The GESS method is not shown since we limited
the length of the linear order codes to 32 bits (the size of long integers with C++
on a Windows platform), and 32 dimensions plus the extra size bits exceeds this
limit. The poor performance of the GESS method on previous experiments and

some testing in higher dimensions did not warrant more extensive testing with the

GESS method.
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Figure 4.24: Experiments with 32-dimensional color histogram data, us-
ing the Ly-norm.

4.4.2 External Memory Similarity Joins

This section presents the results of experiments that require that the algo-
rithms use external memory to perform the similarity join, which demonstrates the
[/O performance of the algorithms. The overall performance of the Quickjoin algo-
rithms is still better than that of the EGO and GESS methods, even though the
Quickjoin methods perform slightly more I/O. Since the CPU costs are a significant
factor in the performance of similarity joins due to the expensive distance (similar-
ity) calculations, the Quickjoin methods perform better overall since their internal
memory performance is so much better, as was shown in Section 4.4.1.

The algorithms were again tested using both sets of color data. This time
restricting the amount of internal memory available to the algorithms, thereby forc-
ing them to use external memory. The size of the color dataset was increased by
duplicating points randomly and perturbing each feature of the point data by no

more than 10%, resulting in data clustered around the original multi-dimensional
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point set.

The external memory version of the Quickjoin algorithm was implemented as
described in Section 4.2.4. The window partitions are calculated using both the
generalized hyperplane applicable to any distance metric (again termed Quickjo-
inGHP in the plots) and the Ly-norm hyperplane (again termed QuickjoinHP2 in
the plots). As appropriate, the internal memory Quickjoin algorithm used is the
corresponding generalized hyperplane or hyperplane version of the internal memory
Quickjoin algorithm.

Figure 4.25a shows the results of experiments with external memory, which
duplicate the experiment in Figure 4.21b, but with internal memory limits. The hy-
perplane version of the Quickjoin still performs better than the EGO method, while
the performance of the generalized hyperplane version is similar to the EGO method.
Figure 4.25b shows the I/O performance for the experiments in Figure 4.25a. Here
we find that the hyperplane Quickjoin method performs slightly more input and out-
put than the EGO method, but the generalized hyperplane version performs more
I/O, which explains the performance difference shown in Figure 4.25a.

No results are given for the GESS method for an € of 0.7 because the method
was not able to process the data with the given amount of internal memory (1MB).
Most of the data was inserted into the first level, which tends to stay in memory
longer. In this instance, the GESS stack filled beyond the set limit. Since the cre-
ators of the MSJ and GESS method provide no contingency for such an occurrence,
the method simply fails in this case.

Figure 4.26 shows the results of experiments with clustered color moments
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Figure 4.25: Experiments with color moment data for larger € values

using an Lo-norm and with memory restricted to 1MB. (a) Execution
time, and (b) I/O.

data for very large datasets, which were created from the color moments data by
duplicating the points and randomly perturbing each point, thereby creating clusters
around each original point. In the experiments for up to a million objects, shown
in Figure 4.26a, the Quickjoin algorithms are three to four times faster than the
EGO method. An € of 0.1 was used, with results sets ranging from four to five times
larger than the datasets size. In other words, for a dataset of one million objects,
there are approximately five million result pairs.

In experiments with up to ten million objects, shown in Figure 4.26b, the
Quickjoin algorithms continue to perform two to three times better than the EGO
method, although with less consistent results. The hyperplane algorithm (Quick-
JoinHP2) especially exhibits varying performance for larger data counts due to the
random nature of the algorithm. Since the GESS method performed much worse
for up to one million objects, it was not included in experiments for more than a

million objects. As shown in Figure 4.27, for larger datasets, the difference in 1/0
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Figure 4.26: Experiments with clustered color moments data and inter-

nal memory restricted to 10MB for (a) up to one million points and (b)
ten million points. An € of 0.1 was used with an Lo-norm.

performance is negligible.

Figure 4.28 shows experiments from Section 4.4.1 repeated with the larger
clustered datasets. The results of experiments with clustered 32-dimensional color
histogram data, are shown in Figure 4.28a, using an € of 0.05 and the Ls-norm. In
this case, the Quickjoin method that uses the hyperplane tailored to the Lo-norm
(QuickJoinHP2) performs much better than the generalized hyperplane Quickjoin
method (QuickJoinGHP). The results of experiments with clustered 9-dimensional
color moments data using an L;-norm and an € of 0.05 are shown in Figure 4.28b.

The QuickJoinHP2 variation is not shown since it is tailored to the Lo-norm.
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Figure 4.28: (a) Experiments with clustered 32-dimensional color his-
togram data, using the Ls-norm. (b) Experiments clustered with 9-
dimensional color moments data, using the L;-norm.
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Chapter 5

An Incremental Hausdorff Distance Calculation Algorithm

In this chapter, we show that incremental distance join concepts [83, 179, 180,
206] can be used to improve the performance of the calculation of the Hausdorff
distance for datasets that can be indexed by hierarchical containment spatial in-
dices, such as the R-tree [76]. The incremental calculation of the Hausdorff distance
requires that the incremental distance join algorithm be modified in two ways. The
first modification is that rather than calculating the minimum distance between pairs
of nodes and objects, an estimate of the Hausdorff distance between the pairs needs
to be calculated. For the incremental distance join, the distance calculations that
involve nodes actually provides a lower bound estimate of the minimum distance
between objects contained within the nodes. This lower bound guarantees that if
the head of the priority queue contains two objects, then they must be the closest
pair since the lower bound on any other pair is greater. Because the Hausdorff dis-
tance is formulated as a maximum, the distance associated with pairs of elements in
the priority queue is an upper bound. In addition, because the Hausdorff distance
is the maximum of the minimum distance from set A to set B, the lower bound on
the minimum distance between every object in set A to set B is also implicit in the
calculation. This leads to the second modification to the incremental distance join

which is that a second level of priority queues is maintained in order to estimate
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and find this minimum value. In particular, every element of the priority queue
contains a node or object for the index on set A and a secondary priority queue of
objects from set B, maintained in increasing order of the lower bound estimate on
the minimum distance. Further details of the algorithm are presented in Section 5.3.

The rest of this chapter is organized as follows. After reviewing related work
in Section 5.1, Section 5.2 describes the equations that are required to adapt the
incremental distance join techniques to calculate the Hausdorff distance for bounding
boxes. The modified algorithm is presented in Section 5.3, while Section 5.4 contains

the results of experiments that show the improved performance.

5.1 Related Work

As we pointed out earlier, the Hausdorff distance can be computed by using
a Voronoi diagram. If n is the size of set A and m is the size of set B, then, in
two dimensions, the Hausdorff distance can be calculated in O((n + m) log(n +m))
[8]. For image matching, a more robust use of the Hausdorff distance involves
the calculation of the minimum Hausdorff distance under rotation and translation.
Huttenlocher et al. [94] presented an algorithm to compute the Hausdorff distance
under rigid motion transformation (rotation and translation) in two dimensions in
time O((m + n)%log(nm)). Due to the relatively high computational complexity of
this algorithm, approximation methods have also been studied [7, 96]. In addition,
partial matching techniques [95] calculate the k' ranked Hausdorff distance, which

can be used to mitigate the effects of noise by ignoring outliers.
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The incremental distance join algorithm [83, 179, 180, 206] outputs the results
of an all-pairs nearest-neighbor join in closest pair order. The algorithm assumes
that the datasets are indexed with hierarchical containment indices, such as the R-
tree [76]. The algorithm proceeds as follows. Initially, the pair of root nodes is placed
on a priority queue, which maintains pairs of nodes or objects (or a combination
of a node and an object) according to the distance between the pairs of nodes
(objects), with the closest pair residing at the head of the priority queue. At each
step, the head of the priority queue is examined and one or both nodes in the pair
are expanded, as needed, and reinserted into the queue. Results are reported when

the head of the priority queue contains two objects.

5.2 Hausdorff Distance Computations for Bounding Boxes

In order to apply the incremental join technique, the bounds on the Hausdorff
distance between the objects in the hierarchical index must be calculated. To il-
lustrate these concepts, we assume an R-tree like index structure [76], although a
similar analysis could be applied to any hierarchical containment index for spatial
data [11]. The two object types in the R-tree are the minimum bounding boxes
(MBBs) of the index nodes and the data objects, such as points. The lower bound
and upper bound on the distances between two data objects is the distance between
the two data objects, where the distance between two objects, dist(a,b), is defined
by the user. In this section, the general case for the bounds between two MBBs is

explained, which is illustrated in Figure 5.1, and the remaining combinations follow
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Figure 5.1: The lower bound (LB) and the upper bound (UB) on the directed
Hausdorff distance between disjoint and overlapping minimum bounding boxes, A,.u

and meb .

as degenerate cases.

The lower bound between two MBBs, shown in Equation 5.1, follows directly
from the definition of the directed Hausdorff distance from Equation 1.1, and the
fact that every face of the MBB must touch some object (else the MBB would be

smaller).

0 if a within b,
LB [h(Apps, Biw)] =

ML f,  faces(A,p) TV, € faces(Byy,) TVINAESE( fq, fp)  otherwise.

(5.1)

Essentially, the bounds are derived by assuming that there is a single point
somewhere within each face (edge in two dimensions), and then calculating the
minimum and maximum values the Hausdorff distance could achieve. In this case,
using mindist, the minimum distance between every face, f, € faces(Anw) and f, €
faces(Buw), is calculated. Then, applying the definition of the directed Hausdorff
distance, for each f,, the minimum mindist to each f;, is chosen, and the maximum of
these values is the lower bound. As an exception, if object A, is within object B,
then the lower bound is zero. Equation 5.2 shows the upper bound equation, which
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is derived in the same manner as the lower bound, using the maximum distance,

maxdist, between each face instead of mindist.

UB [h(Ambb> meb)] = maxfaGfaces(Ambb)minfbefaces(meb)maxdiSt(faa fb) (52)

For the directed Hausdorff distance between an object, a, and an MBB, B,.1,
the lower bound is the minimum distance from a to B,,;, as shown in Figure 5.2.
If a is within B,,;, or on its border, also shown in Figure 5.2, then the lower bound
on the directed Hausdorff distance is zero. The lower bound, LB, in equation form,

is shown in Equation 5.3.

0 if a within b,
LB [h(a, Bpy)] = (5.3)

AN, € faces(B,y,)MiNdist(a, fp) otherwise.

The upper bound, shown in Equation 5.4 and illustrated in Figure 5.2, is a
degenerate case of Equation 5.2 and takes the minimum of the maximum distance
from a to each face of B, *.

UB [h(a, Binp)| = mMing, e faces(B, ) maxdist(a, fp) (5.4)

mbb

For the directed Hausdorff distance between an MBB, A,.,,, and an object,

b, the lower bound is the maximum of the minimum distance of each face of A,y

'Equation 5.2 is also referred to as the MinMaxDist distance [166] or the MaxNearestDist [171],

and is used in nearest neighbor finding.
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Figure 5.2: The lower and upper bound on the Hausdorff distance between an object

(in this case, a point) a and an MBB, B,u.
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Figure 5.3: The lower and upper bound on the Hausdorff distance between an MBB,

Ay, and an object b.

to b, as shown in Figure 5.3. The lower bound, LB, in equation form, is shown in

Equation 5.5.

LB [h(Ampp, )] = max s, faces(a,,,,ymindist( fq, b) (5.5)

Similarly, the upper bound on the directed Hausdorff distance between an
MBB, A, and an object, b, is the maximum of the maximum distance between
each face of A,,;, and b, as shown in Figure 5.3. The upper bound, U B, in equation

form, is shown in Equation 5.6.

UB [h(Apmpp, )] = max s, e faces(a, ) maxdist( fq, b) (5.6)
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5.3 Algorithm Description

The Hausdorff incremental distance join algorithm calculates the directed
Hausdorff distance from one set, A, to another set B, h(A, B), as outlined in Sec-
tion 1.3. Both sets are assumed to be indexed by a hierarchical containment index,
such as an R-tree [76]. The key to the algorithm is the maintenance of two levels
of priority queues, as shown in Figure 5.4. The main priority queue contains en-
tries (index nodes and data objects) that correspond to the A index. Each entry,
shown in Figure 5.4, consists of an element, a, from the A index, a secondary pri-
ority queue, secondaryPQ, that corresponds to elements in the B index, and the
minimum upper bound on the directed Hausdorff distance, gMinUB, between a and
elements, b, of secondaryPQ. The gMinUB value is found by calculating the upper
bound as entries are inserted into secondaryPQ, which is maintained primarily to
facilitate the calculation of gMinUB and to estimate the lower bound on the distance
between element a and the B dataset. As noted later, the secondary queues also
facilitate the calculation of partial Hausdorff distances. The main priority queue is
sorted in decreasing order by gMinUB, which corresponds to an upper bound on the
best guess of the directed Hausdorff distance for the a element. The secondary pri-
ority maintains its elements in increasing order by the lower bound on the distance
between element a and element b, where the head of secondaryPQ corresponds to
the best guess on the minimum distance between the element from the A index, a,
and all of the elements in the B index.

The Hausdorff incremental join algorithm, shown in Figure 5.5, consists of a
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Entry
sort descending by gMinUB

~> >
Entry
Element a; _: vy * #

PriorityQueue secondaryPQ;
float gMinUB;

B Index Element
Sort ascending by lower bound

Figure 5.4: Fach entry in the main priority queue corresponds to an element in the A
index (a node or an object), and contains a reference to the element, a, a secondary
priority queue of B index elements, secondaryPQ, and the minimum upper bound

on the directed Hausdorff distance of the secondary priority queue, gMinUB.

while loop that continually pops entries from the main priority queue, mainPQ, and
processes each entry by inserting child elements either into mainPQ or the entry’s
secondary queue. The algorithm is initialized on line 2 with one Entry that consists
of the root of index A, treeA, and a secondary queue which consists of only the
root of index B, treeB. The algorithm halts when the entry popped consists of
a data object for entry.a and the top of the secondary priority queue, b, is also
a data object, which is determined on line 6. Since the distance associated with
the head of the secondary priority queue is the minimum distance between a and
the set B, the head of the secondary priority queue will be the closest element in
B to the data object a, that is, with the minimum distance between a and the B
dataset. Furthermore, since the head of the main priority queue has the greatest
gMinUB value (least upper bound), all other elements in the A dataset will have a

lesser minimum distance to the B dataset, and therefore, the algorithm returns the
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1 HausdorffIncJoin(Index treeA, Index treeB) : float

2 PriorityQueue mainPQ«initialize(treeA.root, treeB.root)
3 while(mainPQ not empty) do

4 Entry entry«mainPQ.popQ);

) Element b«—entry.secondaryPQ.top();

6 if(entry.a is a leaf AND b is a leaf) then

7 return dist(entry.a, b)

8

endif;
9
10 // expand node at the shallower level
11 // (leaves are at level 0)
12 if(entry.a.level >= b.level) then
13 // expand A
14 foreach child of entry.a do
15 Entry childEntry<new Entry(child);
16 createSecondary(childEntry, entry.secondaryPQ) ;
17 mainPQ.insert (childEntry) ;
18 enddo;
19 else
20 // expand B
21 expandSecondary (entry) ;
22 mainPQ.insert (entry)
23 endif
24  enddo;
25 end;

Figure 5.5: Function HausdorffIncJoin maintains the main priority queue. It halts

when an entry containing two data objects is popped.

correct directed Hausdorff distance value.

On line 12 in Figure 5.5, the node to expand is chosen, which is either the
node from the current entry of the main priority queue, entry.a, or the top of the
secondary priority queue, b. In this case, since the goal is to reach two data objects,
the node at the shallower level is chosen. If node entry.a from the A index is
expanded, then, on line 15, an Entry is created for each child element of entry.a.
On line 16, the createSecondary procedure (shown in Figure 5.6) is used to create
the secondary priority queue for each new entry by calculating the bounds for the
child on lines 3 and 4 of Figure 5.6. Elements are pruned by not adding them to the

new secondary queue if the lower bound on the distance between childEntry.a and
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createSecondary(childEntry, secondaryPQ)
foreach b of secondaryPQ do
float lowerBound«childEntry.a.minHausDist (b);
float upperBound«—childEntry.a.maxHausDist(b);
if(lowerBound <= childEntry.qMinUB) then
if( upperBound < childEntry.qgMinUB ) then
childEntry.gMinUB = upperBound;

0O Utk W

endif;
9 childEntry.secondaryPQ.insert (b) ;
10 endif;
11 enddo;
12 end;

Figure 5.6: Given an entry from the main priority queue, procedure createSecond-
ary calculates the bounds to each element in the given secondary priority query,
secondaryPQ, and inserts them into the child entry’s secondary priority queue if the

lower bound is within the child entry’s minimum upper bound, gMinUB.

b is greater than childEntry.gMinUB, which indicates that b could not possibly be
or contain the data object from the B index with the minimal distance to any data
object in childEntry.a.

If a node from the B index node is chosen for expansion, then the expand-
Secondary procedure is called on line 21 of Figure 5.5 to expand the head of the
secondary queue of entry, which is then reinserted into mainPQ on line 22. The
expandSecondary procedure, shown in Figure 5.7, pops the first element of the
secondary queue, b, and expands it by adding each of its children, c, to the secondary
queue. Again, elements are pruned by not adding them to the queue if the lower
bound distance between entry.a and c is greater than gMinUB, as was done with
the createSecondary procedure.

To calculate the partial Hausdorff distance, the HausdorffIncJoin function is

modified to output the distance between the object from set A with the £** minimal
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1 expandSecondary(Entry entry)

2  Element b«entry.secondaryPQ.remove();

3 foreach child, ¢ of b do

4 float lowerBound«—entry.a.minHausDist(c);
) if(lowerBound<=entry.gMinUB) then

6 entry.secondaryPQ.insert(c);

7 endif;

8 enddo;

9 end;

Figure 5.7: The expandSecondary procedure expands node b, the top of the
secondary priority queue, entry.secondaryPQ. Each child of b is inserted into
entry.secondaryPQ if its lower bound is less than or equal to the entry’s mini-

mum upper bound, gMinUB.

Hausdorff distance. Instead of returning the distance between the first pair of objects
on line 7 of Figure 5.5, the distance between the k" pair is returned. The secondary
queue facilitates this semi-join operation by removing the Entry at the head of the
main queue, which removes all references to object a.

The algorithm also needs to be modified if the sets are so large that the queues
overfill internal memory. See [83] for a discussion of managing priority queues under

such conditions.

5.4 Experiments

To test the effectiveness of the incremental distance join approach, two different
geographic datasets were used: lake shape files from the Ontario MNDM [142] and
polygon data from the Sequoia benchmark dataset [182]. The code was developed
in Java and the experiments were run on a Compaq computer with an AMD Athlon

64 Processor and 896 megabytes of RAM.
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Figure 5.8: The time to calculate the Hausdorff distance against every other image
for a target image using (a) the Ontario lakes data, (b) the translated lakes data,

and (c) the normalized lakes data.

For the traditional approach, instead of using a Voronoi diagram to index the
data, an R-tree that indexes the vertices of the polygons was used, which was then
probed, that is, the B dataset was indexed, and then for every object in the A
dataset, its nearest neighbor in the B set was found. The maximum of these values
over the A dataset is the directed Hausdorff distance.

The experiments were run as image matching exercises. One object from the
dataset was chosen as the target image, and then the Hausdorff distance to every
other object in the dataset was calculated by finding the directed Hausdorff distance
between the target and the test image, and then finding the directed Hausdorff
distance between the test and the target, with the Hausdorff distance being the
maximum of the two values. Each object was indexed using a basic R-tree [76] in
internal memory with a low fan-out for performance. This build time is not included
in the performance plots since both approaches build an R-tree on each object.

The results of the experiments with the Ontario MNDM lakes dataset con-
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taining 145 objects are shown in Figure 5.8. Target images of varying sizes (number
of vertices) were chosen. The first plot, Figure 5.8a, shows the time to calculate
the Hausdorff distance to every other object, while the second and third plots,
Figures 5.8b and c, show the time needed when the data was translated and nor-
malized, respectively. With the translated data, each data object is centered at the
point with (0,0) coordinate values, without resizing the objects. With the normal-
ized data, each object is translated and resized to have a width and height of one.
The translation and normalization of the data was performed off line. As shown
in Figure 5.8a, with the raw data, the incremental distance join quickly calculates
the Hausdorff distance for any size image with near constant time, while the tradi-
tional approach degrades with larger target sizes. In this case, since the objects are
disjoint, there will only be a few vertices on the far sides of the objects that could
potentially have the maximum minimum distance, and the incremental distance join
only needs to distinguish these few vertices, while the traditional approach must still
find the minimum for every vertex. With the translated data, every vertex could
potentially have the maximum minimum distance, and, as shown in Figure 5.8b, it
takes slightly longer for both approaches to calculate the Hausdorff distance. Fi-
nally, with the normalized data in Figure 5.8c, both approaches degrade and the
incremental distance no longer performs with constant time, though still better than
the traditional approach.

Figure 5.9 shows the results of experiments performed using a portion of the
Sequoia dataset [182]. The observed performance was similar. Note that in these

experiments, only the larger polygons were used. In particular, only polygons with
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Figure 5.9: The time to calculate the Hausdorff distance against every other image

for a target image using (a) the larger polygons from the Sequoia dataset, (b) the

translated data, and (c) the normalized data.

over 100 vertices, thereby resulting in 5,294 objects in the dataset. Again, the incre-
mental distance join performed in nearly constant time for the raw and translated
data. Only with the normalized data, Figure 5.9¢, did the performance degrade

with size, but only slightly.
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Chapter 6

Conclusions and Future Work

In Chapter 2, we provided an in-depth survey and analysis of the various tech-
niques used to perform a spatial join using a filter-and-refine approach in which
complex objects are approximated, typically by a minimum bounding rectangle.
The approximations are joined, producing a candidate set which is refined to pro-
duce the final results using the full objects. We examined various techniques for
performing a spatial join using the available internal memory, using either nested-
loop joins, indexed nested-loop joins, or variants of the plane-sweep technique. If
there is insufficient internal memory, then external memory can be used to process
larger datasets. We examined cases where the data is indexed or not indexed. If the
datasets are indexed, then overlapping data pages can be read in a predetermined
order or the two indices can be traversed synchronously if the indices are hierarchi-
cal. Pairs of overlapping data pages are joined using internal memory techniques.
Alternatively, if the data is not indexed, then the data can be partitioned using a
variety of techniques, and then overlapping partition pairs can be joined using inter-
nal memory techniques. We also examined the techniques and issues involved with
refining the candidate set produced during the filtering stage. Finally, we looked at
spatial joins in a variety of situations, such as multiway spatial joins, parallel spatial

joins, and distributed spatial joins.
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At this point, we mention that our main goal with the survey was to provide
a guide as to what techniques work best in particular situations. However, we were
not able to conclusively determine which techniques are superior for each scenario as
we observed that the experiments comparing techniques were inconclusive and could
easily be skewed by the choice of experimental data or details of implementation.
Nevertheless, we feel that this survey illuminates some of these issues and hope that
it motivates further analyses and experimentation.

In addition, the analysis in the survey recasts the design of the spatial join
algorithms in a new light, which gives rise to many interesting questions to be

answered in future work, such as:

1. What is the best duplicate removal method?

2. What is the best repartitioning method?

3. When are methods for unindexed data better than those that first build an

index?

In Chapter 3, we introduced a novel algorithm called the Iterative Spatial
Join for performing a spatial join that operates similarly to the SSSJ algorithm
[19], but without its drawbacks, and for some datasets, significantly better than
the PBSM [155] and S3J [116] algorithms. SSSJ, PBSM, and S3J are three of the
best known algorithms for the task of performing spatial joins on large unindexed
datasets requiring the use of external memory. Furthermore, the Iterative Spatial
Join provides a natural extension to the traditional plane-sweep algorithm, which is
the preferred method for performing spatial joins for smaller datasets. In particular,
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the algorithm makes additional passes on the data when there is not enough internal
memory to store the data structures of the plane-sweep algorithm. This is in contrast
to the SSSJ algorithm which must invoke a partitioning method in such a case,
thereby ignoring all the work done before. Thus the Iterative Spatial Join algorithm
can be said to be a true “external memory” spatial join method in that it accounts
for both the case that internal memory is not large enough to store the data, and the
case that internal memory is not large enough to store the internal data structures
to make the method work. The fact that we do not need to guess when the internal
memory is large enough for the sweep structures makes the performance of the
[terative Spatial Join method more predictable than the SSSJ method.

We have also shown the effect of density on spatial join algorithms. The
density is the number of objects intersecting a sweep line divided by the number of
objects. The average density is the average over all stops of the sweep line and the
maximum density is the maximum over all of the stops. We have demonstrated that
the performance of an algorithm is inversely related to the density of a dataset. In
particular, datasets with many more objects effect the performance of the Iterative
Spatial Join algorithm in a predictable pattern, while this is not necessarily the case
for the other algorithms.

In our experiments, we implemented the best known versions of the SSSJ, S3J,
and PBSM algorithms and we subjected them to a rigorous set of tests. However, we
by no means feel that we have definitively determined the superior algorithm. While
we have compared the best known algorithms, there may yet be better algorithms
developed or more promising variations. While building indices on the fly has been
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shown to be an inferior approach [155], there are many types of spatial indices and
one might prove fast enough to build. Even with the algorithms that we have com-
pared, there are still many factors to explore to definitively answer which algorithm
is the best. While we have used what we feel to be the best plane-sweep imple-
mentation, there are other variations [19, 50|, but there are very few experiments
comparing the performance of the algorithms using different plane-sweep methods.
Furthermore, while we have tried to give each algorithm every advantage, the effects
of tuning parameters and machine parameters (I/O speed, CPU speed, etc.) im-
pact performance and further study of how these parameters effect the algorithms
is required.

One approach that could be used to improve spatial join processing would
be to combine the PBSM and Iterative Spatial Join algorithms. If a PBSM style
partitioning were to be performed prior to using the Iterative Spatial Join algorithm,
then the best performance would be seen for low density datasets. If there was
insufficient memory, then the Iterative Spatial Join algorithm would naturally use
its external memory algorithm to finish processing the data.

As for the testing methods, we feel that the standard test datasets (Sequoia
[182] and the U.S. Bureau of the Census [190] Tiger data), while adequate for demon-
strating the usefulness of an algorithm, fail to examine the full operating character-
istics of an algorithm. We therefore used generated datasets as a means to better
explore the algorithms so that they might be applied in a variety of situations,
especially those that we have not anticipated.

In Chapter 4, we described the Quickjoin algorithm, a novel method for per-
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forming a similarity join, and shown it to be highly competitive. The algorithm
works by partitioning the data using only the metric-space distance information,
rather than using any vector-format information. In effect, the algorithm creates
partitions using the data rather than partitioning based on space, as done in many
of the multi-dimensional indices used in existing similarity join algorithms.

The method overcomes deficiencies that occur with many existing methods
that rely on multi-dimensional indices. For larger values of €, multi-dimensional
indices are often not useful for higher dimensional similarity joins since a large value
of € will cause the index to return all or nearly all of the values in the index, thereby
resulting in poor performance. In addition, if an index is not used, then there is more
flexibility in specifying distance functions, thereby allowing the distance (similarity)
function to be changed dynamically.

In Chapter 5, we presented a method that improves the speed of calculating
the Hausdorff distance over traditional approaches. The technique uses a modified
version of an incremental distance join [83, 179, 180, 206] that requires more com-
plicated calculations to find the lower and upper bounds on the Hausdorff distance
between index nodes. Experiments verified the improved performance.

Future work involves investigating the performance of the algorithm when the
objects are rotated to find better matches, finding the & partial match in order to
exclude outliers, as well as other application areas.

Other future work involves exploring particular applications in more detail,
specifically, computational genomics. Both the Quickjoin and the Hausdorff incre-
mental distance join have applications in data mining, and exploring the applications
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of these algorithms, as well as related algorithms, to a specific domain should provide

topics for interesting further research.
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