
  

 
 
 
 
 

ABSTRACT 
 
 

 
Title of Document: SYSTEM DYNAMICS MODELING AND 

SIMULATION OF ENTERPRISE COMPUTER 
SECURITY   

  
 Shalom Nachum Rosenfeld, Master of Science, 

2006 
  
Directed By: Professor Michel Cukier, Reliability Engineering 

Dr. Ioana Rus, Fraunhofer Center USA 
 
 

To support decision-making, training, and understanding complex trends in enterprise 

computer security, we have built an executable model representing the major 

components of an organization's computer security, including its machines, users, 

administrators, countermeasures, and attacks. We use "if-then" rules to express 

behaviors, incorporating the notions of “archetypes”, i.e. frequently-observed patterns 

of system behavior, and “system dynamics”, a discipline which views system 

behavior in terms of stocks and feedback loops. This thesis describes the model, and 

then discusses several archetypal behaviors and their results, namely: Symptomatic 

Fixes (or “Shifting the Burden”), Escalation, and Escalation combined with Limits to 

Growth. Simulation is used to display these behaviors quantitatively, and to show the 

effects of possible solutions. We conclude by discussing how such results can be 

useful for practical computer security, and how this model can both feed off other 

security research and fuel it.  



  

 

 
 
 
 
 
 
 
 
 
 
 

SYSTEM DYNAMICS MODELING AND SIMULATION OF ENTERPRISE 
COMPUTER SECURITY   

 
 
 

By 
 
 

Shalom Nachum Rosenfeld 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2006 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Michel Cukier, Chair 
Dr. Ioana Rus  
Professor Min Wu 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Shalom Nachum Rosenfeld 

2006 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Acknowledgements 

 The author gives his highest thanks to his advisors, Dr. Michel Cukier and Dr. 

Ioana Rus, for their tireless dedication, for believing in him, and for working so hard 

to give him the opportunity to make this thesis happen. The entire E.C.E. and 

Reliability departments, as well as the Fraunhofer Center, are also to be thanked for 

all of their assistance.   

 The author also thanks Dr. Min Wu for her assistance on the examining committee 

and incisive commentary and questions. 

 Interestingly, the author’s first introduction to archetypes occurred when Dr. Virgil 

Gligor tangentially described the Tragedy of the Commons during a lecture on 

distributed systems. 

 In addition to the above, a series of mentors (from a wide variety of fields) should 

be acknowledged; what follows is an incomplete list: Rabbi Shlomo Crandall; Rabbis 

Emanuel, Israel, and Rafael Moshe Gettinger; Rabbi Rafael Pollack; Rabbi Simcha 

Fishbane; Rabbi Michoel Elias; Rabbi Yehudah Shmulevitz; Rabbi Yitzchak 

Breitowitz; Dr. Elliot Bartky; Mr. Mitch Aeder; Professor Kenneth Kramer. Their 

individual contributions are too great to be enumerated here. 

 The author thanks his colleagues from the Reliability Lab and from other E.C.E 

classes, whose assistance proved invaluable. 

 None of this could have happened without the role models of the author’s parents, 

grandparents, and entire extended family. 

 The author thanks his wife for her care, patience, and support. 

 Finally, the author thanks G-d for all of the above – and everything. 



 

 iii 
 

Table of Contents 
 
 
Acknowledgements ...................................................................................................ii 
Table of Contents .................................................................................................... iii 
List of Tables.............................................................................................................v 
List of Figures ..........................................................................................................vi 
 
Chapter 1: Introduction..............................................................................................1 

1.1 Motivation .................................................................................................1 
1.2 Approach ...................................................................................................2 
1.3 Archetypes .................................................................................................3 
1.4 The Model..................................................................................................5 
1.5 Thesis Structure .........................................................................................8 

 
Chapter 2: Symptomatic Fixes Archetype.................................................................10 

2.1 Symptomatic Fixes Description ................................................................10 
2.2 Simulation Setup ......................................................................................12 
2.3 Results and Discussion.............................................................................16 
2.4 Other Instances of Symptomatic Fixes in Security....................................21 

 
Chapter 3: Escalation Archetype .............................................................................23 

3.1 Escalation Description .............................................................................23 
3.2 Simulation Setup ......................................................................................26 
3.3 Results and Discussion.............................................................................29 
3.4 Other Instances of Escalation in Security..................................................36 

 
Chapter 4: Limits to Growth and Escalation Archetypes, Combined ........................38 

4.1 Limits to Growth Description ...................................................................38 
4.2 Combined Archetypes ..............................................................................40 
4.3 Simulation Setup ......................................................................................43 
4.4 Results and Discussion.............................................................................45 

 
Chapter 5:  Related Work ........................................................................................50 

5.1 System Dynamics and Archetypes............................................................51 
5.2 Sources of Data ........................................................................................51 
5.3 Economics and Security ...........................................................................53 
5.4 Other Modeling Approaches in Security...................................................53 

 
Chapter 6:  Conclusions and Future Work................................................................56 

6.1 Conclusions..............................................................................................56 
6.2 Future Work.............................................................................................56 

 
Appendix I: Archetypes ...........................................................................................58 
Appendix II: Model Screenshots..............................................................................61 
Appendix III: Model Documentation .......................................................................64 



 

 iv 
 

Bibliography............................................................................................................94 
Publications and Submissions ..................................................................................98 
 
 
 
 
 
 
 
 
 
 



 

 v 
 

List of Tables 
 
 

 

Table I: Cumulative Successful Attacks and Efforts for All Four Scenarios ……….20 
Table II: Slider Inputs for the Model Graphical User Interface ….………………….64  
Table III: Countermeasures Included in the Model .………………………………...66 



 

 vi 
 

List of Figures 

 

Fig. 1. Influence Diagram for a “Symptomatic Fixes” Situation ……………………12 
Fig. 2. Successful Attacks per Day for the Four Symptomatic Fixes Scenarios …….16 
Fig. 3. Efforts per Day for s2, the IDS-Decreases-Patches Scenario ………………..18 
Fig. 4. Efforts per Day for s3, the IDS-only Scenario ………………………………19 
Fig. 5. Efforts per Day for s4, the IDS-Supplements-Patches Scenario …………….19 
Fig. 6. Influence Diagram for Escalation ………………………………...…………24 
Fig. 7. Successful Attacks per Day, First Escalation Scenario ……………………...29 
Fig. 8. Staff-Hours per Day, First Escalation Scenario …...………………………...30 
Fig. 9. Attempted Simple Attacks per Day, First Escalation Scenario ……………...30 
Fig. 10. Attempted Sophisticated Attacks per Day, First Escalation Scenario ...…...31 
Fig. 11. Successful Attacks per Day: Results of 10% Increase in Efforts …………..32 
Fig. 12. Successful Attacks per Day: Results of 10% Decrease in Efforts ………….33  
Fig. 13. Successful Attacks per Day: Results of More Frequent Efforts ……………34 
Fig. 14. Influence Diagram for Limits to Growth …………………………………...39 
Fig. 15. Influence Diagram for Combined Limits to Growth and Escalation …….....41 
Fig. 16. Successful Attacks per Day, Escalation with Limits to Growth ...…………45 
Fig. 17. Attempted Attacks per Day, Escalation with Limits to Growth …...………46 
Fig. 18. Results of Reduced Escalation (Successful Attacks per Day) ……………...48 
Fig. 19. Full Escalation, with Hiring at Day 155 ……………………………………49 
Fig. 20. Cumulative Staff-Hours for Each Scenario ………………………………...50 
Fig. 21. Sample Screenshot of Holding Tank, Equation, and Constant Blocks …….61 
Fig. 22. Sample Hierarchical Block, Antivirus ……………………………………...62 
Fig. 23. Sample Hierarchical Block, Simple Attack Success ………………….……62 
Fig. 24. Sample from Spreadsheet with Parameter Values ………………………….63 
Fig. 25. Graphical User Interface Screenshot ……………………………………….63 
 
 



 

 1 
 

Chapter 1: Introduction 

 

1.1 Motivation 

An enterprise computer system is highly complex, consisting of multiple hosts 

with different platforms and different applications, all networked and most likely 

connected to the Internet. These components have flaws that make the system 

vulnerable and allow attackers to exploit these vulnerabilities. 

Humans and machines form an even larger and more complex system with many 

different components and interactions. Control actions and reactions on one side of 

this system might have not only a local effect, but could also affect the rest of the 

system, often resulting in feedback loops. These effects manifest themselves over 

time with different delays. The properties of the system (security being one of them) 

will emerge from its structure and all these interactions between its components. 

Some of the events in such systems are non-deterministic. This, and the fact that 

we do not have complete and fully accurate knowledge about these systems, leads to 

a level of information uncertainty that must be acknowledged and handled 

appropriately. Due to all of the above intricacies of such a system, it is extremely 

difficult to understand and analyze its emerging properties and the properties of the 

services it provides.  

It is a hard task to characterize and assess the security of such a system, let alone to 

predict malicious acts and to design a strategy for eliminating or at least reducing 

their effects. Nonetheless, such a strategy is imperative, especially for systems such 



 

 2 
 

as national infrastructures, military or other government systems, emergency systems, 

or banks. 

Protection against attacks can be achieved by preventing, detecting, and tolerating 

them. Tolerating attacks might require the system to function in a degraded mode 

once under attack. If attacks defeat all lines of defense and eventually succeed, then 

the system must be able to recover quickly to an operational and secure state. Of 

course, all actions needed for proper prevention, detection, and tolerance have costs 

associated with them, including the price of buying and maintaining tools, the effort 

and time to install and run them, and personnel training. A strategy for security 

achievement and risk reduction can comprise a combination of the aforementioned 

actions. Given resource constraints, as well as trade-offs that might be needed 

between security on one hand and other operational properties (for example usability 

or performance) on the other hand, designing such a strategy is a very challenging 

task and requires extensive knowledge and experience. 

 

1.2 Approach 

To support this decision-making process of designing an appropriate security 

strategy, we developed a quantitative executable model of an organization’s 

operational computer security. Like all models, this is an abstraction of the real 

system, focused on representing the security-significant aspects of the system and 

associated processes. The model targets and represents the perspective of the person 

who must make decisions regarding actions that must be taken for security assurance 

and security-related risk management. The user of the model can set different values 



 

 3 
 

for the model parameters, corresponding to different usage, vulnerabilities, attacks, 

and defense profiles. The simulator can be run and different “what-if” scenarios can 

be executed. Simulation will help a security manager, security engineer, or system 

administrator answer questions such as: if my environment is characterized by these 

values, then what methods and tools to select and apply for managing security risks 

and satisfy the users needs of my system? How will the selected actions work 

together? What is their effectiveness and cost efficiency? To what changes is my 

environment most sensitive? If I make specific changes in my security strategy, what 

will be their impact? What changes if my system gets attacked more/less or if the 

time to exploit changes? Should I hire more system administrators? Should I spend 

more on training them? 

The model aims first at understanding security risk reduction in computer systems, 

then at diagnosing such systems and identifying their weaknesses, as well as 

prospectively examining the effectiveness of different solutions. The description of 

the behaviors this model can exhibit is founded upon the notion of system archetypes.  

 

1.3 Archetypes 

Archetypes are a concept related to systems thinking, developed in the mid 1980s, 

in an attempt to describe complex behavior and to convey ideas in an easier and more 

efficient manner. Archetypes are frequently-observed patterns of systems behavior 

and are a “natural vehicle for clarifying and testing mental models” about systems or 

situations [For61]. The systems literature describes ten distinct archetypes, as listed 

by [Bra02] and outlined in Appendix I. [Wol03] argues that in fact, all of these can be 



 

 4 
 

categorized into one of four “core generic” archetype classes: “Underachivement” 

includes Limits to Growth, Attractiveness Principle, Tragedy of the Commons, and 

Growth and Underinvestment; and “Relative Archievement” includes Success to the 

Successful. “Out-of-Control” includes Fixes that Fail, Shifting the Burden, and 

Accidental Adversaries; and lastly, “Relative Control” includes Escalation and 

Accidental Adversaries. [Wol03] acknowledges that the more common description of 

archetypes (i.e. that of [Bra02]) is more intuitive and easier to grasp and apply to 

simulation, so it is used here. Archetypes have been mainly applied in business or 

industrial processes. There has recently been some work performed at MIT in 

applying systems thinking and archetypes to systems safety [Mar03], but in security 

this is a new idea. 

Beyond the common archetypes of [Bra02], we keep in mind that other archetypes 

may be observed in security. This would not be surprising, as [Mar03]’s application 

of archetypes to safety engineering uncovered several security-specific archetypes. 

This thesis, however, restricts itself to the application of common archetypes to 

security. While Appendix I describes how each of the ten archetypes might be applied 

to security, this thesis gives a detailed understanding of the following archetypes: 

Symptomatic Fixes (also known as Shifting the Burden), Escalation, Limits to 

Growth, and a combination of the latter two. 

We use archetypes for understanding and modeling security aspects (needs, 

problems, actions) in the context of an enterprise that uses computers/information 

technology systems for running its business and needs to ensure the security of its 

information, services, and/or systems. We are representing and simulating security-



 

 5 
 

related organizational behavior and trends and using archetypes for documenting and 

understanding the domain, the problems, and their potential solutions. Mental models 

might be able to handle archetypes in isolation, but for the entire system (which 

contains combinations of such archetypes) mental models are not adequate due to the 

complexity, non-determinism, and uncertainty of the system. Computer simulation is 

in fact already recommended in [Sen94] for extending one’s grasp of archetypes. 

 

1.4 The Model 

For our model, we employ the continuous modeling feature of the Extend 

simulation environment [Ima05]. This is a graphical simulation tool that focuses on 

the levels of holding tanks and their inputs and outputs, governed by constants, 

equations, delays, and random values. (A screenshot of a holding tank and its inputs 

and outputs can be found in Appendix II.) The level of each holding tank changes at 

each simulation step, and a typical simulation run can consist of hundreds or even 

thousands of such steps. The result is an easy-to-use way to set up and numerically 

solve systems represented by a series of differential equations. The feedback loops 

stressed by system dynamics and archetypes can easily be represented by a holding 

tank whose output is connected to its input. Thus, continuous modeling with Extend 

is a good fit for the system dynamics modeling approach described above. 

Out model consists of approximately 350 Extend basic “blocks”, such as constants 

or holding tanks. We outline it here, with complete details left for Appendices II and 

III.  



 

 6 
 

In the model, staff-hours (of the system administrators) can be allocated to various 

tasks related to the security of a typical system. We model the following seven 

countermeasures: 

• “Firewall Efforts.”   Overseeing and maintaining the system’s firewall.  

• “Antivirus Efforts.”   Maintaining the system’s antivirus software, keeping it 

updated, resolving user issues related to the antivirus. 

• “Intrusion Detection System (IDS) Efforts.”  Maintaining the IDS, 

installing new signatures, resolving alarms. 

• “Encryption Efforts.”   Maintaining the system’s encryption software. 

•  “Enforcement Actions.”   This includes tasks such as: scanning for and 

fixing configuration vulnerabilities, which are effectively “doors” to the 

system that were inadvertently left open; monitoring the users to prevent 

unsafe practices, such as downloading viruses or using “weak” passwords 

which are easily guessed; applying proper access control to prevent 

unauthorized use; and more generally, devising and enforcing a company 

security policy. See [Dan04] for more on these tasks. All of these require no 

additional hardware or software per se, only a great deal of attention from the 

support staff (or system administrators). 

These appear as the five most prevalent “security technologies” used in Gordon’s 

survey ([Gor05a]) of 700 corporate, governmental, and academic institutions, where 

we have subsumed Gordon’s “Access Control Lists” under our term “Enforcement 

Actions.”  To these five we add a task familiar to any computer user: 



 

 7 
 

• “Software Patches.” Downloading and installing patches to correct 

vulnerabilities in the operating system(s) and applications; resolving problems 

caused by patches. 

Lastly, we consider a somewhat different approach that has only recently been 

discussed by the security community: 

• “Tolerance Measures.”  This includes designs to tolerate an attack (rather 

than prevent or detect it), even if it succeeds. Multiple layers, graceful 

degradation of performance, and (in some instances) backups are all tolerance 

measures.  

In our current model, the effectiveness of each countermeasure is a factor only of 

the countermeasure’s presence or absence (implemented as a series of Y/N switches 

in the model) and the number of staff-hours per machine allocated to the 

corresponding task. Although the IDS and firewall seem independent of the system 

size, additional machines will mean additional alarms, which will require more 

attention. Additionally, the system has an overall vulnerability measure, which is 

reduced by the number of staff-hours per machine allocated to enforcement actions 

and software patches.  

The attacks on the system are divided into two categories: “Simple” (or “kiddy-

script”) attacks tend to rely on known vulnerabilities and require little action from 

the attacker other than downloading and running the attack. “Sophisticated attacks” 

may involve finding new vulnerabilities, can often defeat many countermeasures, and 

usually come from a single knowledgeable attacker, such as one who might actually 

write the “kiddy-scripts” of the former category. While viruses, which are the 



 

 8 
 

costliest type of attack according to the respondents of [Gor05a], are written by some 

very sophisticated attackers, an existing virus propagates in well-understood ways 

and can be easily defeated by the proper countermeasures; we thus include viruses in 

the “simple attack” category.  

For both categories (simple and sophisticated), a specified number of attacks are 

considered to be attempted against the system each day. (Alternatively, the simulation 

can also be set to add some random variation to the specified number of attempts.)  

Given the effectiveness of each of the various countermeasures, and the system’s 

vulnerability (or lack thereof), a fraction of those attacks will succeed. The primary 

outputs of our current model, then, are the numbers of “successful simple attacks” 

and “successful sophisticated attacks.”  Note that a result of “n successful simple 

attacks” may not appear as n separate incidents. Several of these may exploit the 

same vulnerability, turn out to be variants of the same virus, and so on. For now, the 

number of successful attacks should be taken only as our metric of the quality of 

countermeasures versus attempted attacks. 

  

1.5 Thesis Structure 

The remainder of this thesis is structured as follows: Chapter 2 introduces the 

Symptomatic Fixes (or “Shifting the Burden”) archetype; describes one instance of it 

in computer security as we have modeled it; discusses the results of several different 

simulations based on it; and considers how this archetype might apply elsewhere in 

security. Chapter 3 goes through a similar approach with the Escalation archetype. 

Chapter 4 introduces the Limits to Growth archetype, whereupon an instance is 



 

 9 
 

described that describes a combination of Limits to Growth and Escalation. Chapter 5 

outlines related work, and Chapter 6 gives conclusions and some future work. This is 

followed by Appendices I, II, and III, a bibliography, and finally a list of this author’s 

publications and submissions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 10 
 

Chapter 2: Symptomatic Fixes Archetype 

 

2.1 Symptomatic Fixes Description 

In this archetype, the symptoms of a problem are observed. Rather than analyze the 

root cause of the problem, the manager (or “decision-maker”, or “actor”) attempts to 

fix the symptom. This “shifting of the burden” from the problem’s actual cause to its 

symptom often distracts the manager from the former; it can also mask the symptoms 

of the original problem, making it more difficult to diagnose.  

Armed with an understanding of this archetype, a manager will consider the 

possibility that the most readily apparent solution may not ultimately be the best one. 

Instead, time must be taken to analyze, and only then properly treat, the root cause. 

For a simple illustration in computer security, we paint a scenario in which a 

company’s computer system (or just “system”) is continually falling prey to 

successful attacks known as “kiddy-scripts.” These attacks are launched by novice 

attackers, and generally only succeed if the system contains vulnerabilities such as 

software that is not up-to-date. The successes of these attacks should be seen as a 

symptom of a deeper problem. Reducing the system’s vulnerability to thwart these 

attacks could be considered a fundamental solutions; such a fundamental solution 

would include the frequent installation of software patches. It is possible (in fact, 

likely) that implementing such a solution properly will take time and thus not yield 

dramatic gains very quickly; in the long run, however, positive effects of this solution 

will be observed. We choose software patches as one action that can be taken to 



 

 11 
 

reduce overall system vulnerability vis-à-vis kiddy-scripts, though it is certainly not 

the only action. 

Alternatively, it is all-too-possible for a company to instead view the successful 

attacks as the only issue here and therefore install an Intrusion Detection System 

(IDS) to detect the occurrence of these attacks – a symptomatic fix. The company’s 

support staff (or “system administration staff”) is then too distracted from installing 

patches. In time, many new vulnerabilities will be discovered in the software run by 

the system; once published, these will be exploited by new “kiddy-script” attacks. 

Invariably, a certain percentage of attacks do evade an IDS, and thus, as the known 

vulnerabilities in the system increase, the number of successful attacks will also 

increase, despite the company’s continued efforts to install, maintain, and improve 

their IDS. These effects are displayed in Figure 1, an “influence diagram” showing 

the effects of given variable on one another over time.  

In this diagram, we begin in the center with the problem symptom of successful 

simple attacks. In the loop beneath the symptom, we see the fundamental solution: 

increased successful simple (or “kiddy-script”) attacks cause an increased need for 

the fundamental solution of applying software patches, and, in fact, applying this 

solution will reduce the problem symptom. Such a loop can be described as “more of 

A leads to less of B leads to less of A, and so on until equilibrium is reached”, and is 

known as a “balancing loop.” Alternatively, the symptomatic solution is found in the 

loop above the problem symptom. If we focus on this loop itself, it appears to offer 

the same advantages as the fundamental fix, sometimes more easily or more rapidly 

in the short term (though this is not indicated in the influence diagram). 



 

 12 
 

Unfortunately, though, we also see that an increased use of the IDS can increase a 

side effect: the distraction of the support staff from other tasks, including patch 

application. This, of course, reduces the chance of a fundamental fix being applied. 

Starting at the top of the diagram and proceeding around its periphery clockwise, we 

see: increased IDS efforts leads to an increase in support staff distraction, therefore 

less patches are applied; the problem symptom will re-emerge, and more of the 

symptomatic fix will be attempted. This loop can be described as “more of A causes 

more of B causes more of A, and so on”, and is known as a “reinforcing loop.” 

[Wol03] includes this archetype under his more generic term “Out-of-Control”, as a 

balancing loop is desired to control the problem symptom, but it is not obtained. 

 

Fig. 1. Influence Diagram for a “Symptomatic Fixes” Situation. 

 

2.2 Simulation Setup 

 
To see quantitative results, an Extend model was used simulating a system 

containing on the order of 200 machines, sustaining 100 simple attacks per day. A 

certain percentage of these attacks will be defeated by an IDS (and depending on how 



 

 13 
 

well the IDS has been maintained), and a certain percent will be defeated if the 

system’s software is well-patched. Note that even if we say “n% of the attempted 

attacks succeeded”, the system’s users may not observe for 100 attempted attacks, n 

separate failures, as many of these attempts might target a small set of specific 

vulnerabilities and exploit them in the same way. Similarly, no single countermeasure 

should be expected to reduce the attack success rate to 0 by itself, as there are enough 

different types of attack that any single countermeasure can be defeated. We use the 

percentage of successful attacks only as a measure of the system’s defenses and 

vulnerabilities. It is assumed that the software of this system is initially patched 

partially; therefore there is room for improvement if further patching is undertaken, 

while a loss will be felt if patching is ignored (as the discovery of new vulnerabilities 

will bring the software’s status from “partially patched” to “mostly unpatched.”) The 

model was executed for the equivalent of 6 months (real time) with different 

scenarios. (Each execution of this type runs in under 30 seconds on a conventional 

Pentium III computer running Windows 2000 Professional.)  

For examining the effect of different effort allocation to the fundamental and 

symptomatic solution, we executed the simulation for four scenarios s1, s2, s3, and 

s4. In all four scenarios, the system is under pressure for the first d1 days while the 

rate of successful attacks rises. This is due to the discovery of additional 

vulnerabilities. On day d1+1, however, the company embarks on some course of 

action. Here we chose d1 = 9, to demonstrate the effects over several days of taking 

no action at all. 



 

 14 
 

In our first scenario, “s1”, from day d1+1 onwards, the company has its support 

staff dedicate a certain number of staff-hours per day to installing software patches to 

all the system’s computers. This effort is held constant throughout the six-month 

period. The “if-then” rule that describes the organization’s efforts in this scenario is 

given by:  

IF: (Day> d1) 

THEN: Staff-Hours for Patches := x1.  

For the hypothetical situation that we are modeling, we considered 3 staff-hours a 

reasonable value for x1 given the description of our system. This is considered the 

“fundamental fix” scenario, or the “solution” to the Symptomatic Fixes archetype. 

In our second scenario, “s2”, the company deploys an IDS on day d1+1. For the 

next 170 days, efforts are gradually increased to maintain and improve the IDS: as 

new attacks are discovered, new plug-ins are added; as a consequence, more alerts 

that are signaled by the IDS must be analyzed, requiring more effort (although some 

of them might be just false alarms). In an attempt to keep the IDS functioning well, 

the company increases its IDS efforts with the following rule:  

Begin with y0 staff-hours for the IDS.  

FOR: every day 

IF: (Successful Attacks today > Successful Attacks two days ago) 

THEN: increase staff-hours for IDS by y.  

We have assigned the values y0 = 1.5, y = 0.03. (This will lead to a gradual 

increase from moderate IDS effort at day ten to a strong IDS effort of approximately 

seven staff-hours by the end of the simulation.) Meanwhile, as IDS efforts increase, 



 

 15 
 

less efforts are available for patches: Staff-hours for Patches := 4 – Staff-Hours for 

IDS, to a minimum of zero. We consider this our case of “increasing efforts to the 

symptomatic fix while decreasing efforts for the fundamental solution”, or a strong 

instance of the “problem” archetype. 

Our third scenario, s3, takes this a step further: as of day d1+1, the same IDS 

efforts are made as in s2, but no patch efforts are made at all. Here we interpret the 

increasing side-effect loop in Figure 1 as the strengthening over time of the “mental 

barrier” (as [Wol03] calls it) that prevents consideration of the fundamental solution. 

Additionally, the side-effect loop is common for this archetype but not required, see 

[Sen90]. In any case, s3 is an even more extreme case of the problem archetype for 

Symptomatic Fixes. 

Lastly, our fourth scenario s4 considers an alternative solution, one which the 

archetype literature concedes as sometimes viable. If the company understands its 

priorities, then it may be possible to use both the fundamental solution and a small 

dose of the quick fix. This would be codified by the following rules:  

Staff-hours for Patches := 4 – Staff-Hours for IDS, as before.  

The difference is the rule for IDS efforts:  

Begin with y0 staff-hours for the IDS.  

FOR: every day 

IF: {  

 (Successful Attacks Today > Successful Attacks two days ago) 

AND (staff-hours for IDS <= z)  },  

THEN: increase staff-hours for IDS by y.  



 

 16 
 

The value of y is the same 0.03, but y0 is now reduced to 0.2. As in s1, we assume 

that a proper effort for patches can not be made with less than three staff-hours, so we 

set z to 1. s4 can thus be described as “symptomatic fix supplementing the 

fundamental fix.”  (Note that no “burden” is being shifted per se if the company 

understands what is fundamental and what is not.)   

 

2.3 Results and Discussion 

 
 The primary outputs of these four scenarios, i.e. number of attacks successful per 

day, are plotted for comparison in Figure 2. We can also integrate under the curves of 

Figure 2, giving us the number of cumulative successful attacks for each of the four 

scenarios; these will be displayed in Table I below. 

 

Fig. 2. Successful Attacks per Day for the Four Symptomatic Fixes Scenarios 

 

Several important features can be observed in Figure 2. Firstly, when comparing 

the fundamental solution (s1) to the symptomatic fixes (s2 and s3), we see that the 

symptomatic fixes appear to do a much better job initially (e.g. looking at Day 30, s2 

and s3 are approximately 10 successful attacks lower than s1), but by the end of the 

simulation period, the fundamental solution is far more successful: at Day 180, s1 is 



 

 17 
 

22 successful attacks lower than s2, and 32 lower than s3. This demonstrates a 

common pattern in the performance of symptomatic fixes – while the symptomatic fix 

can cause temporary drops in the problem rate, the overall trend over time is for the 

problem rate to increase. (Diagrams similar to Figure 2 are seen in describing this 

archetype in [Sen94] and [Bra02].) While the security staff is distracted by the rises 

and falls in the performance of the IDS, the system’s current software vulnerabilities, 

as well as those newly discovered, are neglected, leading to a rise in the percentage of 

attacks that are successful. The overall trend is a linear increase; this is not surprising, 

as we have modeled the vulnerabilities in unpatched software as increasing linearly in 

time. Comparing s1 against s2 and s3 also stresses the importance of behavioral 

monitoring over time. Were we to stop the simulation after one month or so, our 

conclusions would be very different as to what measures are most effective!  

Focusing on s3, we see that it presents an even more extreme case of s2’s failures, 

as the patch efforts have been eliminated entirely. Lastly, we turn our attention to s4. 

Recall that s4 begins with less IDS efforts than s2 and s3; it therefore appears initially 

to allow more attacks to succeed, e.g. at Day 16, s4 is 2 successful attacks higher than 

s3, and 3 higher than s2. However, by the end of the simulation period, s4 is clearly 

the winner in reducing successful attacks. Notice as well the height for the “waves” of 

symptomatic fixes: they are greatest in s3, smaller in s2, and smaller still in s4; this 

height represents the degree of the “crisis/fix” pattern, which is lowest when the 

proper application of fundamental fixes prevents crisis action (s4), and greatest when 

no fundamental fix is present (s3). Lastly, while s4 clearly prevents more attacks than 



 

 18 
 

s1, notice how they approach each other asymptotically – in the long run, adding the 

symptomatic fix will cease to provide any good beyond the fundamental solution. 

We now turn our attention to the effort required in each of these scenarios. s1 

consisted simply of a constant 3 staff-hours per day for patches, and nothing else. 

Figure 3 shows the efforts of the support staff, in staff-hours per day, invested in s2, 

in which IDS efforts decreased patch efforts. 

 

Fig. 3. Efforts per Day for s2, the IDS-Decreases-Patches Scenario 

 

Notice how patch efforts decrease steadily until approximately Day 120, at which 

point they stay at zero for the remainder of the simulation. Until Day 120, any efforts 

for IDS came out of efforts for patches, so total efforts were constant; after Day 120, 

the total efforts are all IDS efforts. Figure 3 further highlights the attractiveness of the 

symptomatic fix, as the initial IDS effort requires less staff-hours per day (less than 2) 

than what would be required of a fundamental fix (a steady 3 for s1). In the long run, 

however, staff-hours are continuously added to the IDS effort in an attempt to raise its 

results; by the time six months have passed, the company realizes that it is investing  

6 staff-hours per day into the IDS. We can also integrate the curves in Figure 3 to 

measure cumulative effort of the simulation period, to be shown in Table I. 

In s3, the only efforts present are those for IDS. These are shown in Figure 4. 



 

 19 
 

 

Fig. 4. Efforts per Day for s3, the IDS-only Scenario 

Observe that by Day 180, approximately 6.25 staff-hours are being used for IDS 

efforts. In s2 (see Figure 3), that number was only approximately 5.8. The same rule 

produced both figures: “increase IDS efforts every day that successful attacks are 

higher than they were two days ago.” Compared to s3, s2 allowed for some patches as 

well, so there were less days when this trigger occurred, therefore less IDS efforts 

were demanded over the course of the simulation. 

Lastly, Figure 5 displays the efforts of s4, which combined IDS and patch efforts 

with an emphasis on the latter. 

 

Fig. 5. Efforts per Day for s4, the IDS-Supplements-Patches Scenario 

 

Notice how few increases are made to IDS efforts. Again, this happens because the 

trigger condition of successful attacks being too high is very rarely met, due to the 

appropriate patching strategy. 

We now compare all four scenarios in terms of their cumulative effort and 

cumulative successful attacks, as displayed in Table I. 



 

 20 
 

Considering cumulative values, we see indeed that cumulative successful attacks 

are lower for s1, the fundamental solution, than for symptomatic fix scenarios s2 and 

s3. 

Table I: Cumulative Successful Attacks and Efforts for All Four Scenarios 

 Cumulative Successful 
Attacks 

Cumulative Efforts 
(Staff-Hrs.) 

s1 3833 513 
s2 4007 740 
s3 5232 689 
s4 2345 684 

 

Noticing that s1 requires over 100 less staff-hours’ worth of effort than s2 or s3, 

we see that in the long run, the fundamental solution is not only more effective than 

the symptomatic fix; it is less costly as well. The only question remaining is in 

comparing s1, “fundamental solution alone”, with s4, “fundamental solution 

combined with symptomatic fix.” A company will have to decide for itself whether 

the additional 151 staff-hours of efforts are worth the reduction in 1500 successful 

attacks. How such calculations are made is touched upon in related work, below. In 

any case, simulation allows the company to consider the effects of its actions, and 

choose its optimal course with these effects in mind. 

By analogy with these results, when other variables of interest in the system have a 

similar evolutionary trend, the Symptomatic Fixes archetype might be manifesting 

itself. In that case, the situation must be diagnosed and the real cause and the 

corresponding solution must be examined; this solution has to be applied, thus fixing 

the real problem. Of course, the results of this shifting must be monitored over time, 



 

 21 
 

to make sure that the diagnosis was correct and that the solution was correctly 

implemented. 

Lastly, the above simulations show the applicability of the model as a decision 

tool, by allowing one to see the effects of different proposed solutions before 

implementing them. In the example presented here, the decision was regarding the 

allocation of effort to different security efforts (IDS and patches). The model might 

also be useful in exploring and making security policies, as well as for training 

security staff.  

 

2.4 Other Instances of Symptomatic Fixes in Security 

 
We have presented only one possible instance of Symptomatic Fixes here, and thus 

we have opened the door to many related opportunities. Our simulation model 

includes many security-related tasks not described here (such as user training, 

enforcement of the security policy, and maintaining tolerance measures such as 

backups, to name a few), and in place of the Patch Efforts described here, this 

simulation could be run with other tasks or some combination thereof, as well as 

considering more-sophisticated attacks. Just as different parties may see different 

tasks as “the” fundamental solution ([Sen94]), attacks of different sophistication may 

have different “fundamental solutions.”  

Additionally, [Sen90] finds that the best way to describe the history of a particular 

company’s strategies is by combining the Symptomatic Fixes archetype with another 

archetype, namely Limits to Growth. Thus, the applicability of this combination and 

other archetype combinations should be considered in computer security as well.  



 

 22 
 

A variant on Symptomatic Fixes described in [Sen90] and [Sen94] is known as 

Shifting the Burden to the Intervener, in which the fundamental fix involves the 

internal actors repairing problems, and the symptomatic fix involves outsiders. This 

brings to mind some sentiments in the security community about security being 

incorporated into system design at each step of the process, rather than ignoring 

security and relying on an expert to add security features shortly before release or 

deployment.  

Lastly, there has been much discussion in the security community (see [Hun06]) 

regarding whether better security behavior should be taught to the users of a system, 

or placed entirely on the shoulders of the system administrator. Similarly, in a system 

where the roles of system administrator and security officer are divided, the 

interactions between them may follow archetypal patterns. We had begun to 

document anecdotal accounts of such interactions, and our model leaves room to add 

detail to its human-factors portion of the model, including the interactions between 

users, system administrators, and security officers. Shifting the Burden to the 

Intervener could thus shed light on these human interactions.  

For additional information of Symptomatic Fixes as it pertains to security, please 

see [Ros06b], from which this chapter was excerpted. 

 

 

 



 

 23 
 

Chapter 3: Escalation Archetype 

 

3.1 Escalation Description 

 
In the Escalation archetype, each of two parties makes efforts and achieves results 

towards reaching its own well-defined goals. However, each party desires greater 

results than its counterpart. Thus, each party continues to increase its efforts, with 

neither party achieving dominance for an extended period. This can theoretically 

continue ad infinitum.  

As an instance of this archetype in security, we investigate the action-reaction 

effects of attacks on an organization’s computer system and the organization’s 

attempts to better defend its assets, all the while advertising its strengths in an attempt 

to attract more business. We begin with a company that spends little on security 

measures, but sustains few attempted attacks because it’s not a very well-known or 

worthwhile target. While some simple “kiddy-script” attacks blindly go after any 

available computer system and can be seen as the ever-present “attack noise”, other 

simple attacks (such as a “Zombie DDoS”, see [Gib02]) are consciously directed at an 

organization by an attacker. These are more likely if the organization is better-known. 

Furthermore, an organization will be targeted by sophisticated attacks if its assets are 

valuable (e.g. credit card numbers stored on its servers), or if its defenses are 

considered formidable, in which case breaching them poses a worthwhile challenge. 

We suppose that the organization decides to attract new customers by increasing 

its security spending and advertising its new security strength. As the prominence 



 

 24 
 

and/or asset desirability of the organization rise, the motivation to attack its system is 

increased, raising both the quantity and sophistication of attempted attacks. To 

counteract these, the company increases security spending again. Alas, this furthers 

the motivation to attack, leading to another increase in attempts. This process can 

continue for several more rounds. 

These effects are displayed in Figure 6, an influence diagram showing the effects 

of given variable on one another over time. (Similar influence diagrams are drawn for 

archetypes in [Bra02].) 

 

 

Fig. 6. Influence Diagram for Escalation 

 

The upper loop in Figure 6 reads as follows: “Increasing the organization’s 

security efforts will decrease the number of successful attacks against it. An increase 

in successful attacks leads to a greater threat to the organization. The greater the 

threat, the more security efforts will be added to counter it.”  Thus, if the attackers’ 

efforts are constant, we would observe the following behavior: increased security 



 

 25 
 

efforts will decrease the number of successful attacks, decreasing the threat to the 

organization, decreasing the need for additional security efforts. This forms a 

“balancing” or “negative” loop, as after several rounds of such behavior, no further 

efforts will be required.  

A similar pattern is found in the lower loop: “Increased successful attacks cause 

the organization to advertise less. (We assume the resources that would have been 

funneled into advertising are now needed to recover from all of the attacks.)  

Advertising efforts increase the motivation to attack the organization, leading to more 

efforts on the part of the attackers, and therefore more successful attacks.”  Thus, the 

attacker behavior in and of itself should also form a balancing loop, as enough 

successful attacks will prevent any advertising, at which point the organization is no 

longer a very visible or worthwhile target, so attack efforts are not increased again.  

However, in our scenario, both the organization and the attackers respond to one 

another, violating the assumptions we had made for balancing loops. Traversing the 

outermost loop of Figure 6 describes the overall behavior: an increase in the 

organization’s security efforts increase its advertising efforts (or otherwise raise its 

prominence and asset desirability), increasing the motivation and therefore the efforts 

to attack the organization, leading to a rise in successful attacks. The organization 

feels threatened and therefore increases its security efforts, and the spiral continues 

from there. As both the organization’s and the attackers’ efforts continue to increase 

in time, this forms a positive loop. The number of successful attacks, however, 

reflects the ratio of attackers’ efforts to the organization’s security efforts, and thus 

should exhibit stable oscillations. [Wol03] describes this archetype as “Relative 



 

 26 
 

Control”, as each party’s balancing loop is used in an attempt to gain control over the 

relative quantity “success of one party / success of the other party.” 

 

3.2 Simulation Setup 

Clearly in our case, the number of successful attacks becomes the barometer of 

“success of attackers compared to success of defenders.”  Increased efforts by 

attackers over time can be modeled by an increasing number of attempted attacks, 

both simple and sophisticated. The organization’s efforts can be fulfilled by: 

introducing countermeasures that were not previously present; changing the 

allocation of support staff-hours to various tasks; training the support-staff (which, to 

a point, increases their effectiveness); and increasing the staff-hours available for 

security tasks. The latter may require hiring in the long run, but in the short term may 

often be achieved simply by encouraging overtime, reassigning personnel within the 

company, etc.  

In the simulation scenarios presented here, we have simplified by limiting the 

organization to one action, namely increasing staff-hours, and did not include other 

actions. We assume that all countermeasures are present, but they all begin with 

inadequate support staff. In time, increasing the staff-hours to each task will result in 

a greater number of attacks not successful. We have further simplified by scripting 

the actions of both the organization and the attackers as an automated series of “If-

Then” rules, so the simulation runs without external intervention. The rules we use 

are based on our assumptions of how a company in such a situation would behave, 



 

 27 
 

and they quantitatively capture the qualitative behavior described in Figure 6. These 

rules are as follows: 

The organization decides to increase efforts:  

FOR: every x1 days 

IF: (Successful Simple Attacks > x2) 

THEN: increase staff-hours allocated to Antivirus, Firewall, IDS, Enforcement   

  Actions, and Software Patches by w
v

= {w1, w2, w3, w4, w5}, respectively. 

These tasks begin with 0w
v

 staff-hours allocated at the start of the simulation.  

These countermeasures and vulnerability-reduction tasks are very effective at 

preventing or detecting simple attacks. Faced with sophisticated attacks, however, 

their effects are diminished: the antivirus does not address these attacks, which aren’t 

viruses; the IDS and firewall can sometimes be deceived; and enforcement actions 

and software patches can only reduce known vulnerabilities, whereas the 

sophisticated attacker may discover and exploit new vulnerabilities. Thus, the 

company responds to sophisticated attacks in a different way than to simple attacks:  

FOR: every x1 days  

IF: (Successful Sophisticated Attacks > x3)  

THEN: increase staff-hours allocated to Encryption by v1 and Tolerance by v2. 

Tolerance and Encryption are allocated 0v
v

 staff-hours at the beginning of the 

simulation.  

We assume that these countermeasures are no less effective against sophisticated 

attacks than against simple attacks. Today’s commercial encryption is believed to be 



 

 28 
 

unbreakable by any private individual with a handful of computers, no matter how 

clever, and tolerance works despite the success of the attack.  

As some tasks may require more staff-hours than others to be done well, different 

numbers can be specified for each task. In any case, decisions to increase staff-hours 

are implemented as follows: Any increase in staff-hours requires a d1 day delay to 

reassign personnel. d2 days after the increase occurs, the company advertises its 

added security efforts.  

This leads the attackers to launch additional attacks, according to the following 

assumed behavior: Begin with y1 simple attacks. Any day that advertising is present, 

increase the simple attacks by y2%.  

 Simple attacks can be increased rapidly, as this merely requires directing 

automated “kiddy-scripts” against the system. The number of sophisticated attacks, 

however, grows at a different (generally slower) rate: Begin with y3 sophisticated 

attacks. Any day that advertising is present, wait d3 days as sophisticated attacks are 

prepared; then increase the sophisticated attacks by y4%.  

In our execution, the number of simple attacks attempted is given by the above 

rules. To allow for some randomness, we chose to let the number of attempted 

sophisticated attacks vary by a (Gaussian) standard deviation of 5%. Additionally, if 

the number of successful sophisticated attacks is found to be between 0 and 1, then a 

random number is drawn to determine if the attack succeeds.  

We simulate a system of approximately 200 machines, choosing a simulation 

period of six months (180 days). Keeping these numbers in mind, we have run the 

simulation with the following values: x1 = 7, x2 = 4, x3 = 1, 0w
v

 = {1.8, 2.2, 6.0, 2.4, 



 

 29 
 

2.4}, w
v

= {1.1, 1.3, 3.7, 1.5, 1.5}, 0v
v

 = {0.72, 0.87}, v1 = 1.8, v2 = 2.2, y1 = 20, y2 = 

29.8, y3 = 0.6, y4 = 9, d1 = 14, d2 = 5, and d3 = 2. In our opinion, these values, used 

with the above rules over a 180-day period, describe a linear progression from 

minimal attention to complete dedication vis-à-vis staff-hours for security tasks.  

 

3.3 Results and Discussion 

 
Successful attacks per day are used as our measure of “organization’s efforts vs. 

attackers’ efforts”; the results are shown in Figure 7.  

 

 

 

 

 

 

Fig. 7. Successful Attacks per Day, First Escalation Scenario 

 

Certainly from Day 90 onwards, the system reaches a sort of equilibrium, as 

successful attacks hover around 13. This is a result of the matched opposing efforts of 

the organization and the attackers. Yet while the overall metric (i.e. successful 

attacks) does not change much, both efforts are ongoing. Figure 8 shows the efforts of 

the organization, in staff-hours per day dedicated to security tasks. 

 



 

 30 
 

 

Fig. 8. Staff-Hours per Day, First Escalation Scenario 

 

According to the rules and the specific values of the variables described above, the 

first decision to increase staff-hours occurs at Day 7, and is implemented fourteen 

days later; thus, the first increase is seen at Day 21. After that, increases can occur as 

often as every seven days: decisions to increase are made every seven days, and 

previous weeks’ decisions will be implemented while waiting the fourteen days for 

this week’s implementation. Overall, the organization’s efforts grow, fairly linearly, 

up to approximately 220 staff-hours per day. Assuming eight-hour days, this 

translates into twenty-seven people, which is high but not unreasonable for a system 

of 200 machines. Of course, this growth is matched by the increase in both simple 

and sophisticated attacks. Figure 9 shows the attempted simple attacks. 

 

Fig. 9. Attempted Simple Attacks per Day, First Escalation Scenario 

 



 

 31 
 

The number of attempted simple attacks can rise rather drastically, as this only 

requires that novice users unleash their automated processes against the system. This 

reaches almost 9,000 attempted attacks on the entire system per day, or 45 attempts, 

including viruses, per machine. While we stress the behavioral trends here much 

more than the specific numerical results, these numbers can be “reality-checked” 

against some empirical findings involving honeypots. [Dac04] observed attacks from 

6,285 IP addresses over four months, averaging over two new attack sources per hour. 

Similarly, [Pou04a] observed 28,722 new attack sources over sixteen months. 

[Pou05] found 924 attack sources per day in Germany, and [Pou04b] mines a year of 

collected data and concludes with a very conservative estimate of 753 attack tools 

available to simple attackers. In light of these results, and considering that in our case, 

the organization has “begged for attacks” by advertising, our numbers seem fairly 

realistic (or in agreement with the existing empirical data.)   

Figure 10 shows the daily average of attempted sophisticated attacks.  

 

Fig. 10. Attempted Sophisticated Attacks per Day, First Escalation Scenario 

 

The growth of attempted sophisticated attacks is much slower, as it requires higher 

human effort and expertise. 

We also observe that the linear increase in the Organization’s Efforts (i.e. staff-

hours) can balance out the exponential increase in Attackers’ Efforts (i.e. attempted 



 

 32 
 

attacks). This is the case because in our model, a linear growth in countermeasure 

effectiveness leads to a lower percentage of successful attacks – an exponential 

decline.  

Our simulation resulted in an overall relatively constant average number of 

successful attacks, an equilibrium of sorts between the results of the two striving 

parties (organization and attacker). Given these results, an organization may attempt 

to “beat” this escalation by increasing its efforts beyond the values given here; or it 

may consider cutting costs by reducing its efforts, if the results will be the same. We 

therefore ask how this equilibrium is affected if we modify the values representing 

the amount and frequency of increases in security efforts. 

Firstly, we ask how much can be gained by the organization if it increases its 

efforts a bit more. In this scenario, when staff-hours increase, they increase not by w
v

, 

but by 1.1w
v

 instead. Figure 11 shows the results. 

 

Fig. 11. Successful Attacks per Day: Results of 10% Increase in Efforts 

 

Compared to Figure 7, Figure 11 has a similar overall shape, but the average 

number of successful attacks hovers around 10, versus the 13 of Figure 7. Thus, by 

increasing efforts by 10%, the organization can reduce its equilibrium by 3 successful 

attacks.  



 

 33 
 

Secondly, we ask how much is lost if the organization does not increase its efforts 

as much. Now the increase in staff-hours is notw
v

, but 0.9w
v

 instead. Figure 12 shows 

the results. 

 

Fig. 12. Successful Attacks per Day: Results of 10% Decrease in Efforts 

 

Suddenly, the equilibrium has risen to approximately 25 successful attacks. (It is 

not even clear whether an equilibrium exists by the end of the period, given the 

graph’s steep climb from Day 140 onwards.)  Thus, for a company considering 

changing its efforts, simulation here has shown that a small increase in efforts will not 

do much good, but a small decrease in efforts will cause much harm. This echoes 

[Sen90]’s discussion of “leverage”, the large effects of small changes. A benefit of 

simulation is thus demonstrated. 

Lastly, we test the sensitivity of this equilibrium by modifying a different value. 

Instead of the amount of the efforts’ increase (i.e. w
v

), we change the frequency of 

increased efforts. x1, the delay between increases (if increases are required), had been 

7. We now change it to 6, and run the simulation. Intuitively, since the organization’s 

reaction is more frequent, we expect the number of successful attacks to decrease. 

The results are shown in Figure 13.  



 

 34 
 

 

Fig. 13. Successful Attacks per Day: Results of More Frequent Efforts 

 

Clearly, by Day 160, the equilibrium has been upset. The increase in attempted 

attacks is outpacing the increased efforts of the organization, and successful attacks 

begin to climb. This is due to the fact that the organization’s more frequent efforts 

consisted of security spending followed by advertising, which attracted more frequent 

efforts of the attackers that it could not match. This example illustrates not only the 

utility of simulation for predicting the effects of small changes, but also the benefits 

of simulation in revealing unexpected behavior. This example also demonstrates a 

systems concept: sometimes the best way to survive an Escalation scenario is to not 

react as often, even if a reaction appears necessary. [Sen90] gives a case study of two 

manufacturers of a new design of stroller, both of which are making a respectable 

profit margin on their sales. Then the manufacturers entered Escalation, lowering 

their prices in an attempt to raise market share. Little time passed before both 

manufacturers no longer had a profit margin. The risk of reaction (reduced profit 

margin) had not been weighed against the risk of no reaction (reduced market share), 

and perhaps a slower reaction may have offered the greatest overall gain. Similarly, 

we have demonstrated the possibility that an organization can be out-escalated by its 



 

 35 
 

opponent. Simulation thus grants the would-be entrant into Escalation the opportunity 

to pause and consider such outcomes.  

Returning to our security scenario, we had described the increase in attacks as due 

to the organization’s advertising. While some companies (e.g. search engines) cannot 

exist without high visibility, our results behoove an organization to consider the 

effects of its advertising and whether they outweigh the risk of additional attacks. 

Additionally, the automated “if-then” rule for advertising used here was to advertise 

anytime an increase in efforts is made. While the influence diagram of Figure 6 

indicates that enough successful attacks will prevent further advertising, our if-then 

rules had assumed that point was not yet reached in the system, e.g. it only occurs 

when successful attacks reach 60 or higher. 

Alternatively, a rule can be constructed which states, “Advertise only if successful 

attacks are below a certain threshold.” Such a rule is included as part of the 

Escalation behavior in Chapter 4.  

All of the above scenarios involved automated rules to govern the choices of both 

organization and attackers. As an alternative, the model also allows for a rule of 

“pause the simulation whenever a certain condition occurs.”  In our case, then, pauses 

may be configured, for example, whenever the successful attacks (simple, 

sophisticated, or sum of the two) exceed a threshold value. The simulation then 

pauses, and the end-user of the simulation may consider making changes such as 

introducing a new countermeasure or increasing staff-hours before resuming the 

simulation. The behavior over time of the aggregated attackers can also be paused and 

adjusted by hand; this feature may be useful to security researchers, but for a 



 

 36 
 

company considering the impact of various choices that it could make, the attacker 

behavior is out of its hands and would thus presumably be represented by automated 

rules.  

Lastly, here we assume that the organization is free to increase its efforts without 

any additional constraints. Practically, such increases may carry risks other than those 

of increased attacks; such risks are described by another archetype, Limits to Growth, 

and are described in the next chapter. 

 

3.4 Other Instances of Escalation in Security 

 

On the Escalation archetype, [Sen90] lists the international arms race as the most 

obvious example of Escalation, and  [Hof05] specifies an “information technology 

security arms race.”  This arms race consists of advances in attack technology, which 

necessitate improvements in security technology. For example, [Hof05] argues that 

“with the advent of binary differs . . . patching is no longer a viable defense strategy”, 

and instead advocates recent advances in Intrusion Prevention Systems. But this 

“race” develops over the course of a decade or longer: see [Dwa05] for a timeline 

from the 1980s to today. Given the vast unpredictability of long-term innovation, this 

is hardly something a single organization can simulate to aid its decision-making; we 

have thus chosen not to model it here.  

[Sen90] also suggests a generic solution to this archetype’s woes: often there can 

be an agreement to reverse the cycle, as each party agrees to simultaneously “ease 

off.”  While this may succeed in international politics (as it arguably did in détente), 



 

 37 
 

the notion of “we’ll use less security technology if you agree to attack our computers 

less” is obviously not applicable in this case, particularly when the anonymous 

attacks, attackers, and motivations are myriad. This option is therefore not considered 

in our scenario. 

For additional information on Escalation in computer security, please see 

[Ros06a], from which this chapter was excerpted. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

 38 
 

Chapter 4: Limits to Growth and Escalation Archetypes, 

Combined 

 

4.1 Limits to Growth Description 

In the Limits to Growth archetype, a growing action is applied, which leads to 

increased gains or results. These gains encourage further growth, forming a 

reinforcing loop. However, the gains soon reach some natural limit, at which point the 

limiting process places downward pressure on further gains. Despite continued 

growth action, the gains will plateau and, in some cases, decline.  

As an instance of this archetype in security, we consider the effects of security 

demands on an organization’s computer staff of a fixed size. Suppose that an 

organization has a certain number of employees dedicated to various computer-

related tasks such as technical support, hardware maintenance and upgrades, and 

security-related tasks such as monitoring a firewall or an IDS, or maintaining 

antivirus software. Initially, the organization pays modest attention to security, but 

then decides to make some investment in it. Whether the investment includes 

purchasing equipment (IDS, encryption or antivirus software, and the like), security 

training, overtime, or higher salaries for employees who focus on security, it always 

involves reassigning personnel to security. Encouraged by the noticeable gains in 

security, further investments lead to more reassignments of personnel to security. 

This continues to be a good strategy until insufficient personnel are available for non-

security tasks. At this point, numerous non-security-related technical problems arise 



 

 39 
 

in the computer system, forcing the security personnel to pause their efforts as these 

problems are addressed. Reassigning more employees to security (or demanding more 

of the current security employees) will bring no further gains; in fact, the additional 

technical problems as well as the support staff’s decreased efficiency from facing 

demands it can not meet may result in a decline in gains. An influence diagram for 

this situation is shown in Figure 14.  

 

 

 

 

 

 

Fig. 14. Influence Diagram for Limits to Growth 

 

Traversing the left side clockwise reads: “security investments increase the staff’s 

security efforts, decreasing the number of successful attacks. More successful attacks 

would decrease the management’s perceived benefit of security investments. More 

perceived benefits of investments leads to further investments.” Reversing the double 

negative yields: “investments leading to efforts leading to gains in security (i.e. less 

successful attacks), increasing the perceived benefit of investments and therefore 

leading to further investments” – this is a reinforcing loop. The right-hand loop, 

however, describes how increasing the staff’s security efforts can conflict with non-

security-related tasks, due to a personnel shortage. As indicated by the upward arrow, 

this effect is decreased if the staff size is sufficiently large. Lastly, an increase of such 



 

 40 
 

conflicts will cause problems that diminish the staff’s security efforts. A balancing 

loop is thus formed, as security efforts will (unconsciously) decrease as long as the 

conflict of resources with non-security tasks is present. Given a constant number of 

attempted attacks, implementing this archetype should result in a continuous 

reduction of successful attacks (i.e. increase of gains for security investments) until 

insufficient personnel are available for other tasks; at that point, the number of 

successful attacks will cease to fall further, and may in fact begin to rise. [Wol03] 

includes this archetype in the category “Underachievement”, as a reinforcing loop is 

desired for growth, but it is not successful. 

The simulation model can incorporate this Limit to Growth with the following 

property: Some value p is the highest percentage of staff efforts that can optimally be 

reallocated to security with no ill effect. If total demand for security efforts exceed 

(p/100)*SysAdminCapacity, then the “effective” hours for security are given by the 

SysAdminCapacity, minus some constant k times the excess demand. In the 

simulation described below, we have used p = 23 and k = 1.2, believing these values 

to be a reasonable description of a typical system. 

 

4.2 Combined Archetypes 

While the use of an archetype can present a complex system in readily-grasped 

terms, a given scenario or story may not neatly fit into a given archetype. The general 

archetypes of [Sen90], [Sen94], and [Bra02] are unique only in that they have been 

frequently observed in diverse settings, and that they provide useful “building blocks” 

for other influence diagrams. For each given case study, [Sen94] recommends 



 

 41 
 

beginning with the influence diagram of one easily-observed archetype (or simply a 

balancing or reinforcing loop), then “widening and deepening” the diagram by adding 

additional “loops” to describe the observed behavior. Thus, a combination of 

archetypes is often the simplest way to grasp a system’s behavior when two or more 

different behavior patterns are exhibited simultaneously. (Such a combination, that of 

Limits to Growth with Shifting the Burden, can be found in [Sen90].) 

Observe that both Escalation and Limits to Growth hinge on the organization’s 

security investments and successful attacks; we thus connect their influence diagrams 

through these values. The resulting combined diagram is shown in Figure 15.  

Fig. 15. Influence Diagram for Combined Limits to Growth and Escalation 

 

Observe that the two influence diagrams largely address different issues, except for 

the upper-left-hand corner of Figure 15, which links successful attacks to security 

investments. While Escalation had assumed a “positive” effect (i.e. more successful 



 

 42 
 

attacks increase the threat, increasing investments), Limits to Growth assumes a 

“negative” effect (successful attacks decrease perceived benefit, reducing 

investments). 

In combining the two archetypes it becomes clear that both patterns may be true 

for different organizations with different cultures, or for different levels of 

management. Additionally, recall that an the influence diagram shows only 

“increases” and “decreases”, but quantitatively some links may be stronger than 

others. Thus, both patterns may be present within a single organization; a visible shift 

from increases to decreases in investment, or vice versa, will occur at times when the 

weight of one pattern exceeds that of the other. For example, when the organization’s 

management first invests in security, its perceived benefit is low, so further 

investments hinge on a reduction in attacks; later, security investments are believed 

an appropriate cure if successful attacks rise; finally, successful attacks may reach 

some upper limit at which point the management begins to lose its faith in 

investments and reduce them.  

The overall trend of this combined archetype, when viewed in terms of successful 

attacks, will look as follows: a stable oscillation (due to Escalation) until security 

efforts exceed their optimal value (for the given staff size), followed by a rise in 

successful attacks (from Limits to Growth). At this point, several possibilities exist: 

the organization may continue (for a short duration) to advertise, leading to further 

attempted attacks; it may follow the “threat” pattern and push for more security 

investments; and/or it may follow the “perceived benefit” pattern and reduce security 

investments. Depending on these three options, the stable oscillation and rise in 



 

 43 
 

successful attacks will be followed by either a leveling off or a rise in successful 

attacks; the former would occur if the organization halts both advertising and 

investments, keeping attempted attacks constant. The highest risk, leading to a 

significant increase in successful attacks, occurs if the organization continues 

advertising, raising the attempted attacks, as its continued investments cause more 

woes for its computer staff, further diminishing their effective efforts.  

 

4.3 Simulation Setup 

The behavior of the organization’s management (which invests in security and 

demands staff-hours for it) and the aggregated attackers (who attempt the attacks) are 

then given by a series of rules (similar to those of Section 3.2), following the 

escalatory behavior described above. Here we demonstrate one possible outcome by 

assuming that the perceived benefit or “faith” in investments is held constant, and 

thus the decision regarding further investments is determined only by the threat to the 

organization. This decision is modeled by the following rule: The simulation begins 

with an initial demand of 0w  staff-hours for security. Every x1 days, { IF (Successful 

Simple Attacks > θ1), THEN increase staff-hours demanded for “simple” security 

tasks by w . Additionally, IF (Successful Sophisticated Attacks > θ2), THEN increase 

staff-hours demanded for “sophisticated” security tasks by v.} A delay of 1d  days is 

incurred for personnel reallocation.  

(The description of tasks as “simple” or “sophisticated”, as well as the task-by-task 

composition of w and v, are unchanged from Section 3.2.)  



 

 44 
 

The organization’s advertising efforts are modeled by the following rule: Every x2 

days, IF (Successful Simple Attacks < θ3), THEN decide to advertise. A delay of d2 

days is incurred before the advertising occurs.  

Lastly, the aggregated attackers’ response is modeled as follows: The initial value 

of Simple Attacks Attempted / Day is a0. Each day, IF (Advertising occurs), THEN a 

delay of d3 days occurs as the word spreads and new attack tools are accumulated, 

where upon Simple Attacks Attempted / Day is increased by a%. The initial value of 

Sophisticated Attacks Attempted / Day is b0. Each day, IF (Advertising occurs), 

THEN a delay of d4 of days occurs as the word spreads and new attacks are 

engineered, whereupon Sophisticated Attacks Attempted / Day is increased by b%.  

We simulate a system of approximately 200 machines. We have chosen a period of 

six months (180 days) for our simulation. Successful attacks per day are used as our 

measure of “attackers’ gains vs. organization’s gains.”  

With these values in mind, we first simulated a “baseline scenario” characterized 

by the following values: x1 = 7, x2 = 7; w0 = 29.8, w= 9.1, v = 1.6; θ1 = 6, θ2 = 2, θ3 = 

18; d1 = 14, d2 = 1, d3 = 2, d4 = 7; a0 = 15, a = 26; b0 = 0.6, b = 7. These values 

describe, in our opinion, an organization’s 180-day progression from minimal 

security efforts to full security efforts; a realistically aggressive advertising campaign; 

common delays for each action described; and a progression in terms of attack 

attempts from the minimal attack “noise” received by an inconspicuous organization 

to the high number that a prominent organization receives.  

 



 

 45 
 

4.4 Results and Discussion 

 
The results of this simulation are shown in Figure 16. 

Fig. 16. Successful Attacks per Day, Escalation with Limits to Growth 

 

The number of successful attacks seems to oscillate fairly stably until 

approximately Day 145, at which point it rises dramatically. Until Day 145, the 

number of successful attacks hovers at about 11, which is this system’s equilibrium of 

escalation: security efforts, followed by advertising, followed by new attack attempts, 

followed by further security efforts. Around Day 145, however, the Limits to Growth 

archetype emerges: the demand for staff-hours exceeds the optimal load the staff can 

bear, the staff’s performance deteriorates, and successful attacks rise. Note that 

successful attacks exceed θ3=18, the organization’s threshold for cessation of 

advertising, at approximately Day 155.  

Correspondingly, the number of attempted attacks (simple plus sophisticated) is 

shown in Figure 17 

0 30 60 90 120 150 180
0

20

40

60

80

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks



 

 46 
 

. 

Fig. 17. Attempted Attacks per Day, Escalation with Limits to Growth 

 

The number of attempted attacks escalates as often as every seven days (the 

organization’s wait time between advertisements) until approximately Day 155. At 

that point, the company halts its advertising, and a constant 1925 attacks per day are 

attempted for the remainder of the period. Yet, returning to Figure 16, successful 

attacks are found to rise several times between Days 155 and 180. As the organization 

continues to reallocate staff to security and increase its demands on them, the 

personnel shortage for other tasks leads to more technical problems, sidetracking the 

increasingly overwhelmed security staff; attempted attacks thus become successful as 

the state of the countermeasures deteriorates and system vulnerability rises. Limits to 

Growth leads here to a decline in gains, not to a plateau. 

By examining the behavior of the system, one can realize the problem of the 

increase in “successful attacks” around day 145. In response to this problem, the 

organization should take some action. Below we show how the use of simulation can 

support decisions regarding what action best fits the goals and context of a given 

organization. 

Firstly, as our system was described, the increase in attempted attacks came not 

directly as a result of increased security efforts, but as a result of the organization’s 



 

 47 
 

advertising. While this may not be the case for all organizations, certainly any 

organization considering advertising must weigh potential benefits (such as increased 

clientele) against the possibility of (and its preparedness for) Escalation.  

Secondly, even when Escalation is called for, it may be wise to escalate less 

strongly. The organization’s rule for increasing security efforts was given as: “Every 

x1 days, if successful (simple, sophisticated) attacks are greater than (θ1, θ2), increase 

efforts by (w, v).” Increasing the period x1 (i.e. reducing the frequency of possible 

escalation), raising the thresholds θ1 and θ2 (reducing the frequency of when 

escalation is called for), and/or reducing w and v (the quantities of escalation when it 

is employed) are all possible solutions. When a threat is perceived, the effect of 

reaction must be weighed against the risk of no action, and sometimes the greatest 

overall gain is achieved by a slower or weaker reaction. Similarly, when we turn to 

Limits to Growth, it is noted that if the limits will not be (or cannot be, as in [Mar03]) 

removed, then reducing the growth action will delay the onset of the limiting factors, 

as well as slowing the deterioration of growth once the limits manifest themselves. A 

reduction solution thus heeds both archetypes. To see which of these three reductions 

is most effective here, all three were simulated: reducing the frequency of increased 

efforts, raising the threshold for increased efforts, and reducing the quantity of efforts. 

Experimenting with each solution individually as well as combined with others, we 

found that our system responded most favorably to simply reducing the quantity of 

escalationw by 30%: each time the organization decides to increase its security 

efforts, it does so by 6.4 staff-hours, as opposed to the 9.1 of the baseline case. The 

results are shown in Figure 18. 



 

 48 
 

0 30 60 90 120 150 180
0

7.5

15

22.5

30

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks

 

Fig. 18. Results of Reduced Escalation (Successful Attacks per Day) 

Note that the equilibrium number of successful attacks has risen to about 15 (as 

opposed to the 11 in Figure 16), but there is no dramatic climb in successful attacks 

by Day 180. The weaker reaction has not pushed demands on the staff beyond their 

point of optimality in these six months. This approach can thus be thought of as 

“partly losing Escalation, but winning Limits to Growth.” Note as well that the 

number of successful attacks reaches θ3=18, the advertising threshold, several times, 

leading to less advertising and thus less attempted attacks. Integrating Figures 16 and 

18, we find that the number of cumulative successful attacks is less for reduced 

escalation (~2650) than for full escalation (~2800). Given a particular organization’s 

structure, goals, and priorities, the above tradeoffs (equilibrium number of attacks, 

rise in attacks, advertising opportunities, cumulative attacks) should be considered to 

find whether reduced escalation is more in its interest than full escalation.  

Thirdly, a solution commonly found for Limits to Growth is to cease the growth 

action, and instead concentrate on removing the limiting condition. In our case, this 

would translate into hiring additional support staff. [Sen90] stresses the concept of 

“leverage”, i.e. an organization’s efforts will yield maximal gains if it carefully 

chooses where and when to apply those efforts. While hiring too early is prohibitively 

expensive, if hiring is delayed too much, the limit will set in and deterioration of 



 

 49 
 

gains will begin. Additionally, the stronger the limit has become, the harder it is to 

remove it; in our case, once the support staff is overwhelmed with demands, it will 

not have time to introduce new hires to the intricacies of the computer system. Thus, 

the point of highest leverage for hiring is when it will take effect just before the 

demands on personnel exceed their optimal load. This requires great prediction skills 

on the part of the manager, including a sense of “feedback” regarding the support 

staff’s load. Otherwise, the best strategy is to hire as soon as possible once a decline 

in gains is visible. This also requires the manager to realize that indeed, gains have 

diminished since the optimal personnel load was reached. As opposed to the previous 

strategies, which are executed before-the-fact, this strategy describes how an 

organization might now respond to problems. Following full escalation, Figure 16 

showed a rise in attacks around Day 145. Figure 19 shows the results if the 

organization responds rapidly and additional personnel are available as of Day 155. 

0 30 60 90 120 150 180
0

7.5

15

22.5

30

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks

 

Fig. 19. Full Escalation, with Hiring at Day 155 

 

The oscillations and steep rise occur as in Figure 16, followed by a steep drop in 

attacks due to the hiring. Integrating, we find a total of approximately 1,880 

successful attacks, far less than in full or reduced escalation. (Of course, this benefit 



 

 50 
 

comes with the cost of hiring.) The sooner the hiring, the less of the peak around Day 

150; the longer the wait to hire, the greater the peak.  

Figures 16, 18, and 19 have shown the results of the three above scenarios in terms 

of the number of successful attacks. An organization must also consider factors such 

as labor costs, and thus Figure 20 displays the cumulative staff-hours employed for 

each scenario: “baseline” (full escalation, without hiring), “reduced escalation”, and 

“escalation with hiring.” Note that the efforts of “baseline” and “hiring” will coincide 

until Day 155, at which point the curve for “hiring” will grow more steeply. 

Fig. 20. Cumulative Staff-Hours for Each Scenario 

 

Thus, given the number of successful attacks and number of staff-hours employed, 

both per-day and cumulatively, an organization can consider its best options as it 

encounters this combination of archetypes.  

For additional information on the combination of Escalation and Limits to Growth 

as it occurs in security, please see [Ros06c], from which this chapter was excerpted. 

Chapter 5:  Related Work 

 

0 30 60 90 120 150 180
0

3750

7500

11250

15000

18750

22500

26250

30000

Day

Staf f -Hours
Cumulative Efforts (Staff-Hours)

Baseline Reduced Hiring



 

 51 
 

5.1 System Dynamics and Archetypes  

System dynamics thinking is introduced in [For61]. An introduction to archetypes 

can be found in [Sen90], with added details and recommendations in [Sen94], while 

[Bra02] extends this work to list ten different archetypes. [Wol03] argues that all 

existing archetypes can be included in one of four “core generic” archetype categories 

such as “Underachievement” or “Out-of-Control”; however, [Wol03] acknowledges 

that the more-specific, more-familiar ten archetypes (such as “Escalation” or “Limits 

to Growth”) are more rapidly applied to real systems, and we have thus used them 

here. [Mar03] applies systems thinking and archetypes to safety engineering. Some 

archetypes found in safety are clearly those seen elsewhere (such as “Eroding 

Goals”), but others seem unique to safety. (This is the case partly because safety 

measures can be a victim of their own success – when no accidents occur, there can 

be pressure to reduce safety measures.) For now we have focused on the more-

common archetypes of [Bra02] regarding security, but future work may find that new 

archetypes apply to safety as well.  

5.2 Sources of Data  

Empirical data regarding computer security are still fairly rare as of now. 

Anecdotes detailing attacks and their responses, such as [Gib02], are very illustrative 

of the attacker/defender interaction, but few such anecdotes have been published. 

Some information regarding what is general practice in the security world today 

can be found in [Gor05a], a survey of several hundred organizations. For example, 

our model includes IDSs but not biometrics because the former is found to be 

significantly more prevalent in real life today.  



 

 52 
 

Most data on attacks are gathered from analyzing “honeypots” or “honeynets”, 

systems designed to be attacked. Such studies include our own laboratory’s [Pan05], 

as well as [Dac04], [Pou04a], [Pou04b], and [Pou05].  

Hypothesized attacker behavior is described in [Jon97], based on empirical 

findings from controlled attack experiments. This focuses on the behavior of the 

individual attacker, while more data are needed on the aggregated effects of multiple 

attackers. 

To help meet the dearth of empirical data regarding security, nine teams are 

collaborating on the projects DETER and EMIST [Baj04]. DETER involves building 

a massive (currently approximately 200 machines, intended to reach 1000 machines) 

“researcher- and vendor-neutral” network testbed for emulating various types of 

attacks, countermeasures, and network topologies. Meanwhile, the EMIST project 

seeks to formalize methodologies for measuring these effects. Combined, these 

projects should provide a wealth of useful, unbiased, and well-accepted emulated 

attack data. Both studies will enrich our model with quantifiable values, e.g. honeynet 

findings might show that 20 buffer-overflow attacks of a certain type are attempted 

each day, and the DETER/EMIST findings would tell us that the attack will succeed 

80% of the time if the network has Topology A but only 60% of the time with 

Topology B. 

Regarding user factors, [Lar03a] uses surveys to understand Internet usage, and 

[Lar03b] conducts studies with test websites to investigate users’ privacy behaviors 

online. The authors of these papers have indicated that their future work will analyze 



 

 53 
 

user behavior regarding network security, which should be applicable to our user 

model.  

 
 

5.3 Economics and Security 

 
[Cam03] considers the effects of public disclosure regarding security breaches on a 

company’s stock prices. [Gor02], [Gor05b], and [Bod05] all use economic analysis in 

determining how much security investment is worthwhile for a company, given its 

priorities; however, details are not provided as to what should be done specifically 

with the investments. This provides the connection point to our model. 

Economic requirements are also used to lead to assumptions or specifications for 

related computer security, e.g. determining the subjective cost and total welfare 

regarding network routing [Fei05] or requirements on trusted platforms placed by 

digital rights management [Ber04], [Ber05]. 

  
 
 

5.4 Other Modeling Approaches in Security 

 
One approach in security has been to probabilistically quantify an attacker’s 

behavior and its impact on a system’s ability to provide certain security-related 

properties. Attempts have been made to build models that take into account both the 

attacker and the system being validated. A general model of an intrusion-tolerant 

system is proposed in [Gon01] to describe security exploits by considering attack 

impacts; the system state is represented in terms of failure-causing events. [Jha01] 

proposes a combination of state-level modeling, formal logic, and Bayesian analysis 

Comment [SNR1]: This better? 



 

 54 
 

quantify system survivability. Finally, Ortalo et al. [Ort99] propose modeling known 

vulnerabilities in a system using a “privilege graph”. By combining a privilege graph 

with simple assumptions concerning an attacker’s behavior, the authors then obtain an 

“attack state graph.” Parameter values for such a graph have been obtained 

experimentally; once obtained, an attack state graph can be analyzed using standard 

Markov techniques to obtain several probabilistic measures of security. [Ste04] uses a 

probabilistic model for validating an intrusion-tolerant system that combined 

intrusion tolerance and security, allowing the designers to make choices that 

maximize the intrusion tolerance before they implement the system. Compared to 

these models, the model presented here is more generic in its inclusion of other 

human elements such as users and system administrators. Additonally, other than 

[Ort99] which uses data collected empirically to assess some of the parameters values 

in the model, the other ones are not developed to easily be linked to empirical data. 

Cyberciege ([Nav06], [Irv05]), developed by the Naval Postgraduate School, is a 

computer game with a very engaging user interface and virtual world, intended for 

training students to understand security engineering. Cyberciege focuses on detailed 

access control, user-by-user, for a small number of users. Each piece of hardware is 

hand-selected from a list of fictional brands (e.g. “BitFlipper router”), and physical 

security measures are implemented on a user-by-user basis. The determination of 

whether an attack succeeds is by comparing asset desirability and how well standard 

procedures have been followed. Cyberciege’s level of detail models the role of an 

individual security officer who might oversee a dozen computers at most, while our 



 

 55 
 

model abstracts one level higher, to the manager who oversees several hundred 

machines. 

In a similar vein, Fred Cohen & Associates offer a security simulator [Coh06] on 

their website (http://all.net/games/index.html). Fully described in [Coh99], this 

simulator gives examples of how a single attack of varying sophistication might 

succeed against different computers with different countermeasures. The defender 

strength, i.e. to what degree the defender does the right thing, is specified as a 

percentage by the user before running the simulator. If an attack succeeds, the dollar 

loss due to the attack is estimated based on the attacker profile, e.g. how much will a 

successful attack by a private investigator cost? Our approach attempts to add in more 

empirical data, as described in Section 5.2. Additionally, our work extends the 

“defender strength” idea by allowing for strengths of each countermeasure: a system 

may have a 90% effective firewall but only a 70% effective IDS. Furthermore, rather 

than specify a value for defender strength, the user of our model inputs managerial 

decisions such as how much effort is allocated to which security tasks and how 

skilled the staff is – the model then uses these inputs to determine the resulting 

defense strength for each countermeasure. 

 

 

 

 



 

 56 
 

Chapter 6:  Conclusions and Future Work 

 

6.1 Conclusions 

 
The archetype and results of simulation execution presented here show the value of 

systems dynamics modeling for enterprise security. The evolution over time of two 

slightly different “what-if” scenarios may result in very different pictures, reinforcing 

the value of simulation. Systems thinking, combined with simulation, can assist an 

organization in placing its efforts in the places that will give the most “leverage” to 

their goals, and in diagnosing and solving problems. This approach thus leads to a 

more enlightened weighing of costs vs. benefits for the proposed decisions that an 

organization might make.  

System dynamics simulation is also an intuitive and powerful tool for 

understanding computer security, as well as for training professionals. In time, our 

model will mesh with much other research currently being done by others, leading to 

gains in a wide variety of directions. 

 

6.2 Future Work 

 
A great deal of future work remains as well, including:  

• “Deepening” the simulation model with more detail, e.g. where linear rates 

had been assumed, perhaps logarithmic or exponential would be more 

accurate. The documentation of the simulation model already reveals several 

ways it can be deepened. 



 

 57 
 

• “Broadening” the model to include such factors as: 

o User details describing their interaction with the security policy. 

o Asset properties. Currently we only show successful attacks; future 

work can link this to system availability, confidentiality, and integrity. 

o Internal attacks. Currently it is assumed that the firewall is X% 

effective against all simple attacks, for example, which assumes that 

all simple attacks come from outside the firewall.  

• Obtaining additional empirical data for use as parameters in the simulation 

model. Sources for such data, including work from our own research group, 

are described in Section 5.2. 

• Modeling other instances of the above archetypes, modeling other archetypes, 

other combinations of archetypes, and looking for new archetypes. Appendix I 

gives a few ideas for modeling other archetypes. 

• Documenting real-world case studies in security, using archetypes to explain 

the situations, and using simulation to suggest improvements. (For example, 

[Sen94] first describes the story of an airline’s failure, applies archetypes to 

describe it, and then builds a simulator through which it is shown, for 

example, that had the airline not cut its ticket prices quite so steeply, it would 

not have gone bankrupt.) We have already begun interviewing one system 

administrator and documenting his case study, but obtaining the necessary 

details, applying archetypes, and simulating the case study are all left for 

future work. 

 



 

 58 
 

Appendix I: Archetypes 
 
 

Here we briefly describe each of the ten archetypes of [Bra02], giving one possible 

example from security.  

 
Shifting the Burden, or Symptomatic Fixes. We witness a problem symptom, 

and rather than think about the root cause, we try to fix the symptom. Doing so 

distracts us from the actual cause of the problem, or masks the symptoms so it’s 

harder to diagnose the problem. Suppose a system is continually falling victim to 

successful “script-kiddy” attacks (symptom). The company may install an I.D.S. to 

catch the attacks (symptomatic fix), when in reality the attacks wouldn’t make it into 

the system if the company had a good firewall, and wouldn’t succeed if they kept 

their vulnerabilities down. (Fundamental fixes.)  

Fixes that Fail. Here, the attempted fix actually worsens the underlying problem 

in time. The newly-installed I.D.S may have a high false-alarm rate and require a 

great deal of the sysadmin’s attention. The sysadmin is now too busy to attend to 

other duties (such as addressing vulnerabilities), so the number of successful attacks 

actually increases.  

Success to the Successful. There is a tendency to believe that if putting some 

money into Approach A yields good results, then putting more money into Approach 

A (and ignoring Approach B) will further improve results. For example: for an 

investment of $100, a Host-Vulnerability-Scanner will yield more improvements than 

an IDS. But continued investment into the Host-Vuln-Scanner (diverting funds from 

the IDS) will not help much if at all.  



 

 59 
 

Limits to Growth . Increased efforts and investments produce increased results, 

until the system reaches its natural limit. At that point, results will either plateau or 

decline. For example, given an inexperienced sysadmin staff of a fixed size, training 

them will result in significant gains to the network’s security. But eventually, their 

size (rather than skill) becomes the limiting factor, so further training will accomplish 

nothing.  

Attractiveness Principle. Increased efforts are no longer producing results, with 

two different limits fighting growth. The manager must decide which limit to address 

first/more. Suppose we have a simultaneous investment in both more/better sysadmin 

staff, and some technology (maybe a firewall). At some point, the Return on 

Investment will drop; at that point, we must decide which factor is more of a limiting 

one.  

Growth and Underinvestment. A successful approach may initially seem to fail 

if it wasn’t given proper investment/support/capacity. For example, a company may 

double its system size; if the SysAdmin size (which is the capacity in our case) is kept 

constant, overall performance will drop. If, instead, the SysAdmin size is properly 

increased, the company will see a gain.  

Eroding Goals. If a goal is not immediately met, it can be tempting to reduce the 

initial goal. A manager may try for an Availability (or confidentiality, etc.) Level of 

3, find that the expenses next month are too high, so s/he drops the goal to Level 2. 

The next month, the company is hit with a massive attack, causing more loss than had 

it held the course at Level 3. (Another example would be, “We want an IDS that 



 

 60 
 

catches 100% of all attacks. What, that gives too many false alarms?  Okay, maybe 

90%. Still too many alarms?  Okay, maybe set it to 80%.”)    

Escalation. Party A puts in more efforts, yielding more results; this threatens Party 

B, who does likewise, and so on. (The U.S./ U.S.S.R. arms race during the Cold War 

is a good example.)  If a company increases its security efforts and publicizes how 

secure it is, or otherwise makes itself more of an attractive target, it will receive more 

sophisticated attacks, which will require more security investments, and so on.  

Accidental Adversaries. Two parties initially agree towards cooperation, but then 

Party A perceives an offense (often unintentional) from Party B; it then retaliates, and 

the situation escalates from there. An example here would be the SysAdmin and User, 

who agree they want the company to succeed, but then the user accidentally breaches 

the security policy, leading the SysAdmin to impose a harsher security policy and 

other enforcement measures. The user (or another user) may become annoyed and 

retaliate.  

Tragedy of the Commons. If two efforts independently consume a common 

resource without respecting one another, both will see reduced gains as the resource 

runs out. In our case, if a company decides to invest more in IDS as well as Host-

Checking-Tool, but maintains the size of its SysAdmin (which is the “common” 

resource consumed), both will not yield full results. 

 
 
 



 

 61 
 

Appendix II: Model Screenshots 

 

The basic building blocks for continuous modeling in the Extend simulation 

environment include holding tanks, constants, and equations, to name a few. 

As one example, we show a simplified version of how the antivirus software 

effectiveness is modeled. Suppose that this system needs its virus definitions updated 

on a daily basis; if so, an antivirus that has been totally neglected for too long of a 

period will become close to useless, as it fails to catch the majority of viruses 

circulating the Internet today. Thus, antivirus effectiveness is reduced each day by 

some average “daily loss rate” which describes the occurrence of new viruses, and 

increased each day by the number of staff-hours updating its definitions (or otherwise 

maintaining it) that day. The effectiveness is then measured on a 0-to-1 scale and 

output. This is modeled in Figure 21.  

get
C

RS want

AntivirusLevel

0.02

AntivirLossRate

AntivirusHoursIn

Eqn AntivirusLevelOut
min
max

 

Fig. 21. Sample Screenshot of Holding Tank, Equation, and Constant Blocks 
 

Notice the number of staff-hours in, subject to some function, the holding tank for 

the daily antivirus effectiveness, and the daily loss rate. Each day, the contents of the 



 

 62 
 

tank are given, limited to the range between 0 and 1, and output as today’s “antivirus 

level.” 

To allow for greater abstraction, all of the above blocks can be inserted into a 

custom-built “hierarchical blocks”, such as the one shown in Figure 22. 

Antivirus 
Factor

AntiVirus

Staff-Hrs per Machine 
per Day for Antivirus

 
Fig. 22. Sample Hierarchical Block, Antivirus 

 
Here we see only the input and the output; the remaining holding tank, equation 

block, etc. are all hidden inside the hierarchical block. 

 In our model, a certain number of attacks of a given sophistication level are 

attempted each day. Depending on the effectiveness of the various countermeasures 

and the system’s vulnerabilities, a certain number succeed. Another hierarchical 

block, which performs this evaluation, is shown in Figure 23. 

Fig. 23. Sample Hierarchical Block, Simple Attack Success 

The block on the far-right of Figure 23 is an output plotter, used to generate many of 

the figures presented in this thesis. 

The model has a great deal of constant parameters; for example, the antivirus daily 

loss rate of Figure 21. These are listed in a spreadsheet such as the one displayed in 

Figure 24. 



 

 63 
 

ConfigVulnLevel, loss if ignored .05, linear 
", staff-hrs needed to maintain 1.5 / machine 
NetVulns, loss if ignored .04, linear 
", staff-hrs needed to maintain 0.6 / machine 
AppVulns, loss if ignored .004, linear 
", staff-hrs needed to maintain 0.13 / machine 
AppVuln, loss from new S/W 0.8
ToleranceLevel, loss if ignored .1, linear 
", staff-hrs needed to maintain 0.67 / machine 
EncryptionLevel, loss if ignored .001, linear 
", staff-hrs needed to maintain 0.067 / machine 

Antiviruslevel, loss if ignored .02, linear 
", staff-hrs needed to maintain 0.4 / machine 
FirewallLevel, loss if ignored .033, linear 
", staff-hrs needed to maintain 0.66 / machine 
IDSLevel, loss if ignored .05, linear 
", staff-hrs needed to maintain 2 / machine 

Fig. 24. Sample from Spreadsheet with Parameter Values 

Lastly, while certain parameter values (such as antivirus loss rate) reflect the 

reality of the system, others (such as machine size, staff size and the presence of 

countermeasures) reflect decisions that a manager might make. To allow for easy 

“what-if” simulation, these parameters were extracted to a user-friendly Graphical 

User Interface, such as the one seen in Figure 25. 

 

 

 

 

 

 

 

Fig. 25. Graphical User Interface Screenshot 

 



 

 64 
 

Appendix III: Model Documentation 
 
 

OVERVIEW:   The end-user of the model sets several sliders and switches to 

describe the system, countermeasures, allocation of sysadmin to various tasks, and 

attacks. The end-user can then see the costs of this configuration. A certain number of 

attacks are then attempted on the system each day; given the details of the system and 

its countermeasures, the end-user can see how many of those attacks succeed, or how 

many were blocked by a given countermeasure. The end-user can also track the 

effectiveness of a given countermeasure over time.  

 

SYSTEM INPUTS: These sliders describe the system and staff, and are listed in 

Table II. 

 

 

 
Table II: Slider Inputs for the Model Graphical User Interface 

Name in Model Type Meaning 
SystemSize Slider, 0-80 (# of machines) 
SysAdminSize 
(Personnel-Hours per 
Day) 

Slider, 0-80 Personnel-hours (or “man-hours”) of System 
Administration and Security Officer staff 
employed per day. A SysAdminSize of 40 
describes 5 people working 8 hrs/day each 
day, or 10 people working 4 hrs/day, etc. 

SysAdminSkill Slider, 1-5 Average overall skill of the System 
Administration and Security Officers Staff. 
The 1-5 scale is ours.  

SysAdmin Motivation Slider, 1-5 How motivated the SysAdmin staff is to 
protect the system; we impose a 1-5 scale. 

New Software is 
Installed Every X 
Days 

Slider, 1-
1000 

Interval (in days) between installation of new 
software (which contains new vulnerabilities). 
Patches are not included here. 



 

 65 
 

 

Further descriptions of the system, e.g. Windows vs. Linux, would be a critical 

step in adding detail to the model; it will hopefully be considered in a future 

implementation. 

 

COUNTERMEASURE INPUTS:   We include several common 

countermeasures. In the 2004 CSI/FBI Computer Crime and Security Survey of 494 

U.S. corporations, universities, government bodies, etc., the most common security 

technologies used (Fig. 16), by percentage of respondents, were: Antivirus software 

(99%); Firewalls (98%); Server-based access control lists (71%); Intrusion detection 

(68%); Encryption for data in transit (64%). We view the access control lists as part 

of the “SysAdmin’s Enforcement Actions” and not a separate technology per se, as it 

is built into most operating systems today. For simplicity’s sake, we chose to include 

both data-in-transit encryption and file-encryption as “encryption software.”   

A significant countermeasure not described directly in the CSI/FBI survey is the 

emerging field of attack tolerance (as opposed to prevention or detection). This could 

include designs for graceful degradation under attack; redundancy and diversity (in 

some cases); and other technologies allowing the system to succeed despite the 

attack. We thus include a countermeasure entitled “tolerance mechanisms.”   

Additionally, as 70% of the survey respondents (Fig. 17 in the FBI survey) 

identified some type of network security training for their users as important, we have 

included “user training for better security practices.”   



 

 66 
 

Lastly, we have included vulnerability-scanning tools which can assist the system 

administrator in finding vulnerabilities to fix. These include host-configuration 

vulnerability scanning tools, such as FERRET; and network-vulnerability scanning 

tools, such as NESSUS.  

For all of the above countermeasures, we presently assume that they are either 

present in full strength, or not at all. (They’re controlled by binary switches.)  Future 

implementations of the model may modify this. The countermeasures are given in 

Table III. 

COST/EXPENSE EQUATIONS & OUTPUTS: Given the above descriptions, 

we can now compute the system’s expenses. (For now, we simply tally the number of 

successful attacks, rather than describing the monetary loss they cause the company; 

this too will hopefully be improved in a future model.)   

Table III: Countermeasures Included in the Model 

Name in Model Type Meaning 
A Firewall? Y/N Switch “1” if the system has a firewall; “0” if it 

doesn’t.  
Antivirus? Y/N Switch “1” if every system has antivirus software 

installed.  
An Intrusion 
Detection System? 

Y/N Switch “1” if an Intrusion Detection System is 
present. 

Encryption Software? Y/N Switch “1” if encryption software is installed. 
Tolerance 
Mechanisms? 

Y/N Switch “1” if tolerance mechanisms are present. 

A Host-Vulnerability 
Scanning Tool? 

Y/N Switch “1” if the sysadmin uses a tool such as 
FERRET to check host-configuration 
vulnerabilities. 

A Network-
Vulnerability 
Scanning Tool? 

Y/N Switch “1” if the sysadmin uses a tool such as 
NESSUS to check for network vulnerabilities. 

User Training for 
Better Security 
Practices? 

Y/N Switch “1” if the users are trained regarding network 
security. 

 



 

 67 
 

 

Expenses reflect all the money spent on the system over the duration of the 

simulation (usually ~100 days). StaffCost is the cost per day of employing the 

sysadmin staff. PurchaseCost is the cost to purchase the various countermeasures, 

which we assume is a one-time payment. We then have: 

Expenses = (StaffCost * Time) +  PurchaseCost.  

    ($)        =  ($/day) * (days)   +   ($) 

In Extend terms, Expenses is an accumulating tank; StaffCost is the input, and 

PurchaseCost is the initial level. 

 

StaffCost = STAFFCOSTPERHOUR * SysAdminSize.  

     ($)  =  ($/hr) * (personnel-hours)  

The cost of employing the sysadmin staff per day. We assume an average cost of 

$35 per personnel-hour.  

For PurchaseCost, we assume that Tolerance Measures, Encryption Software, and 

an Antivirus must be purchased for every machine in the system to be effective. (The 

effects of installing an antivirus on only half, 1/3, etc. of the machines would be 

another interesting question for future work.)   

Per-system purchase costs = SystemSize *  

{ (Tolerance Measures?)*TOLCOST + (Encryption  Software?)*ENCRYPTCOST  

+ (Antivirus?)* ANTIVIRUSCOST }. 

 ($) = (# machines) * Σ {(1/0)*($/machine)}  



 

 68 
 

We simply assume for now that tolerance measures cost $300/system. For 

encryption software, PGP is very commonly used (try Google searches for 

“encryption software” and the like); the most basic version of PGP Desktop 

Professional 9 costs $200; we have used the value $220 to allow for a few more 

features. For the antivirus, Norton Antivirus, one of the most popular products on the 

market, costs $40 /machine in the 5-user pack. (Sources: manufacturer’s websites.)   

We do not include the host-configuration or network-vulnerability scanning tools 

in costs or expenses, as the most popular products used (i.e. FERRET and NESSUS) 

are available for free. The remaining two PurchaseCost items are the firewall and 

IDS, whose cost is independent of the size of the system behind them.  

PurchaseCost = per-system purchase costs + (A Firewall?)* FIREWALLCOST + (An 

IDS?)* (IDSCost). 

     ($)  = ($)           +(1/0)*$   + (1/0)* $. 

We assume that a high-quality firewall costs $10,000, given Dr. Cukier’s 

experience with proprietary firewalls. For the IDS cost, we take the price of the Cisco 

4250, which is $30,000. 

  

SYSADMIN ALLOCATION: We describe the SysAdmin staff’s “capacity” to 

maintain and protect the system as a function of its size, skill, and motivation: 

TotalSysAdminCapacity = SysAdminSize * SysAdminMotivation * ln( 

SysAdminSkill + 1). 

(Note that TotalSysAdminCapacity is measured in pseudo-personnel hours, as it 

can be increased by motivation and skill.)  (The logarithm is used to reflect the 



 

 69 
 

phenomenon that beyond a certain point, additional training accomplishes very little. 

We use (skill+1) so that a skill level of 1, the lowest, doesn’t result in an ln(1) = 0 

term.) 

The end-user then decides what percentage of the TotalSysAdminCapacity should 

be dedicated to what task, using the sliders in the green box. The sysadmin needs to 

spend time and attention to deal with any given countermeasure (or its side effects!). 

We refer to these as “countermeasure efforts.”  Obviously, more efforts are needed 

during deployment than afterwards, but for now, we simply describe “efforts-per-

day.”  (One approach would be to consider an average effort over the product’s 

lifetime, including its deployment, but this again is for future work.)    The order of 

the various efforts is consistent with that of the model, but it has no particular 

significance.  

“Antivirus Efforts” consist primarily of keeping all of the antivirus definitions up-

to-date. The percentage of TotalSyadminCapacity dedicated to Antivirus Efforts is 

called Antivir%.  

“Firewall Efforts” consist of tasks needed to maintain the firewall, primarily 

through applying new patches as firewall vulnerabilities are discovered. (Firewall%). 

“IDS Efforts” consist of maintaining the intrusion detection system, mostly by 

downloading new signatures. (IDS%). 

“Encryption Efforts” consist of updating and maintaining the encryption software 

(quite possibly including helping users who run into difficulty using it). (Encrypt%).  

“Enforcement Actions” include setting proper access control; monitoring the 

system for noticeable oddities; and developing and enforcing a security policy for the 



 

 70 
 

users. For example, if a user tried using a “weak” (i.e. easily guessed) password such 

as “joe”, a vigilant sysadmin would prevent him from doing so. (Enforce%). 

 “Software Patches” reflects the time spent per day on finding and installing 

patches for newly-discovered vulnerabilities in any of the system’s netware, operating 

systems, or applications. (Patch%). 

“Tolerance Efforts” depend on the particular tolerance measure; some measures 

are relatively low-maintenance (e.g. if graceful degradation has been built-in, then no 

further action is needed), but some are high-maintenance (e.g. if the system has a 

backup web server that runs a different operating system, the backup server has to be 

maintained as well). (Tol%). 

“Addressing Alarms” refers to the alarms raised by the firewall and IDS; 

sometimes these were in fact attacks, but often they were legitimate actions. A good 

sysadmin should sort through these. (Alarm%). In the new versions, we’ve gotten rid 

of “addressing alarms” as its own task; it’s now included in either “IDS Efforts” or 

“Firewall Efforts.” 

The various desired percentages, as well as the TotalSysAdminCapacity and 

SystemSize, are input into the HoursForTasks block. The outputs of this block 

describe how many SysAdmin pseudo-personnel-hours (or more precisely, skill-

motivation-personnel-hours each day) are actually allocated to each task.  

If the various desired percentages (inputs) add up to 100 or less, then all of the 

desired demands can be met, and the process is simple:  

Hours allocated to Firewall = (Firewall% / 100) * TotalSysAdminCapacity. 

Hours allocated to IDS = (IDS% / 100) * TotalSysAdminCapacity. 

Comment [i2]: Page: 1 
I suggest dropping the word “false” when 
we talk about alarms 



 

 71 
 

The firewall and IDS are independent of the size of system behind them. (Or are 

they?  Once we include analyzing alarms in Firewall Hours & IDS Hours, well, the 

bigger the system, the more alarms likely. In the new paper, I assumed staff-hours per 

machine for these as well.)  For the other efforts, however, we must factor in the 

system size; after all, to spend a total of two hours per day on updating antivirus 

definitions for a single computer is certainly sufficient; for a thousand computers, it 

probably won’t be. We thus talk of “hours allocated per system [per day].”  Note that 

for now, we assume that doubling the system size will simply halve the personnel-

hours available for a given task; in reality, larger system sizes tend to come with 

mechanisms for better management, so we might in the future consider a factor such 

as log(systemsize). For the moment, though, we’ve kept the divisor linear. The 

following hours are per-machine: 

Hours allocated to Antivirus = (Antivir% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Encryption = (Encrypt% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Enforcement Actions = (Enforce% / 100) * 

TotalSysAdminCapacity / SystemSize. 

Hours allocated to Software Patches  = (Patch% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Tolerance = (Tol% / 100) * TotalSysAdminCapacity / 

SystemSize. 



 

 72 
 

Hours allocated to (False) Alarms = (Alarm% / 100) * TotalSysAdminCapacity / 

SystemSize. 

(A larger system will generate more alarms, and thus needs more attention.) 

IF, however, the end-user specifies a series of percentages with the sliders that sum 

to >100%, not all of the desired hours will actually be allocated that way. A prompt 

can inform the end-user that the values have exceed 100%, and that s/he may wish to 

modify values before running the simulation. (This prompt was built into several 

earlier models; it was omitted from the Aug. 17 version for simpler presentation, but 

can be reincorporated if desired.)  If the end-user chooses to continue, priority will be 

assigned from left-to-right, i.e. first Antivir% of the  TotalSysAdminCapacity, if 

available, will be allocated to antivirus; then up to Firewall%, if available, to firewall, 

and so on. 

(Extend description: looking inside the HoursForTasks block, we see a series of 

equations, converting the percentages into HoursDemanded. Below that, we see a 

series of holding tanks. All of the tanks are reset to their starting values at the end of 

each day by a periodic pulse. The first tank has starting value 

TotalSysAdminCapacity; the other tanks have starting value zero. At the beginning of 

each day, TotalSysAdminCapacity flows into the first tank; AntivirusHours 

Demanded is “wanted” from that tank; the quantity “gotten” is the hours actually 

allocated to antivirus. The remaining contents of the first tank flow into the second 

tank, where again a demanded quantity is “wanted”; up to that quantity is “gotten”, 

and the remainder flows into the third tank; and so on. Hours “gotten” are either used 

directly (firewall & IDS) or divided by the systemsize.)   



 

 73 
 

For the version in the archetypes paper: a new allocation block was built, in which 

all demands are met if they sum to less than 100%; if they exceed 100%, then they are 

doled out in proportion to their demand, i.e. if the demands are: {30, antivirus; 40, 

tolerance; 50, IDS}; but the SysAdmin capacity is only 60; then it will allocate 

15/20/25, respectively. 

Additionally, the archetypes version adds in the factor of sysadmin inefficiency if 

pushed beyond optimal capacity. Hours allocated to a given task are decreased by a 

linear multiple of the total demand’s exceeding the optimal capacity. (Note that we 

haven’t yet included a factor to describe the inefficiency of X net demanded hours for 

ten different tasks, which has greater inefficiency than X net demanded hours for one 

task.) 

 

I actually didn’t use the allocation system in the new (Escalation) paper, I just 

“fed” each task directly as many hours as were desired. 

 

The newest paper (DSN) once again made use of the allocation system – pushing 

the Sysadmin too far resulted in the “limit to growth.” In this paper, the limit set in 

much more quickly, as we rephrased things: “sysadmin hours” were for all tasks; as 

soon as security demands take too many of those hours, other things go wrong 

because of ignored tasks. The rule used was thus the following (the numbers used 

here: 23%, 1.25, etc., were a combination of guesses on my part, and what made the 

graphs come out okay, i.e. GIVEN our guesses for how to describe a 200-machine 

system going from nominal attention to full attention to security over 180 days, we 



 

 74 
 

wanted the limit to kick in towards the end of this period, and that the limiting effect 

be fairly strong.) 

 

Maximum optimal security load = OPTPERCENT * TotalSysadminCapacity. 

IF (total hours demanded for security > maximum optimal load), EfficiencyStretch 

= STRETCHCONSTANT * (total hours demanded for security – maximum optimal load).  

 

AvailableCapacity = TotalSysadminCapacity – EfficiencyStretch. 

 

VULNERABILITIES: Many attempted attacks will only succeed if the system has 

(known) vulnerabilities. These are grouped into four categories: 

“Mistakes” includes all user mistakes, such as not logging off, downloading a 

virus, and using weak passwords. (Mistakes block outputs MistakeFactor.) 

“Host-Configuration Vulnerabilities” include settings that the sysadmin didn’t set 

properly, such as leaving ports open, allowing everyone access to sensitive files, etc. 

(ConfigVulns block outputs HostConfigVulnsFactor.) 

“Network Vulnerabilities” include those flaws that have been discovered in the 

network software, which could be exploited by an attack; these can be corrected with 

patches. (NetVulns block outputs NetVulnsFactor.) 

“ Application Vulnerabilities” include those flaws discovered in application 

software, which could be exploited by an attack (e.g. a flaw in Apache could be 

exploited for a denial-of-service attack; a flaw in Outlook Express might be exploited 



 

 75 
 

to cause remote execution of code). These are also corrected with patches. (AppVulns 

block outputs AppVulnsFactor.) 

 

We measure each of these subclasses as a “factor” between 0 and 1, where 0 is best 

(no known vulnerabilities of this type exist on this system) and 1 is worst (i.e. the 

system is permeated with vulnerabilities of this type). An overall “vulnerability 

factor” (VulnFactor), also between 0 and 1, is computed from these: 

VulnFactor = Min{1, [  (MISTAKECOEFF * MistakeFactor)  

                                     +  (HOSTCONFIGCOEFF * HostConfigVulnsFactor)   

                   + (NETVULNSCOEFF * NetVulnsFactor) + 

                   + (APPVULNCOEFF * AppVulnFactor)] } 

The “Min” function keeps the overall VulnFactor to a maximum of 1. Note that it 

is possible to reduce one or two vulnerability subfactors, and yet still have an overall 

factor of 1 if the other subfactors have been ignored. We believe that this reflects the 

reality of system vulnerabilities. We have weighted host-configuration vulnerabilities 

most heavily, followed by mistakes and application vulnerabilities, and then finally 

network vulnerabilities. This was Rosenfeld’s impression of the most-frequently 

exploited vulnerabilities. (The host-configuration vulnerability is particularly 

pernicious, as an attacker often need not “breach” any part of the system to perform 

an attack; therefore, such an attack is often not detected by an I.D.S.) [How did you 

obtain such a ranking? Is it more based on the number of vulnerabilities of each type 

present or on the impact that each of these vulnerability types has?]  I was thinking 

impact, e.g. a single config error could be more dangerous than a single app 



 

 76 
 

vulnerability. Thus my comment about “more pernicious as it doesn’t require a 

breach.”  Again, this is all my judgment here.  

 

Archetypes Version: To show the difference between those vulnerabilities fixed by 

enforcement (i.e. host config and mistakes), and those fixed by patches (i.e. netvulns 

and appvulns), two more derived values were created:  (A “strength” of 1 is best.) 

 ConfigStrength = 1 – (CONFIGHOSTCOEFF* ConfigVuln) – 

(CONFIGMISTAKECOEFF* MistakeFactor);  

 SWStrength = 1 – (SWAPPCOEFF* AppVulnFactor ) -  (SWNETCOEFF * 

NetVulnFactor); 

 

SWStrength is a straight average of how well the apps and the netware/OS has 

been patched. (Again, with the “1 minus thing” to switch a 1->0 scale (vuln of 0 is 

best) to a 0-> 1 scale (strength of 1 is best).)  For ConfigStrength, I weighted the 

average 60/40 between ConfigVulns and Mistakes; again, just my judgment as to how 

dangerous ConfigVulns are. 

 

Newest version (Escalation paper): I left the “SWStrength/ ConfigStrength” same 

as the previous paper, as it worked perfectly well for my purposes here.  

We now describe the workings of the individual vulnerability subfactors.  

Mistakes. User mistakes are given as a factor of three conditions: The users’ 

Awareness of security issues, as a value 0-to-1, where 0 is no awareness, 1 is very 

high awareness; the users’ Concern for security issues, 0-to-1, (we assume at this 

Comment [i3]: Page: 1 
I don’t understand this 



 

 77 
 

point that the lowest level of concern is 0, i.e. no concern; the issue of deliberate 

sabotage, where the user is “negatively concerned” with actively damaging the 

system, has not yet been incorporated into this model); and the sysadmin’s Hours 

Allocated to Enforcement Actions, in pseudo-personnel-hours per machine per day. 

With proper sysadmin enforcement actions in place, the users’ ability to make 

dangerous mistakes can be sharply minimized or eliminated altogether. We then 

compute an overall Mistake Factor, as a value between 0 (no dangerous user 

mistakes) and 1 (dangerous user mistakes happen all the time).  

MistakeFactor = 1 – [ {(AWARENESS + CONCERN) / USERMISTAKEDIVISOR}  

              +{ Hours Allocated to Enforcement Actions / 

ENFORCEMENTMISTAKEDIVISOR} ] 

Archetype version: the 0.7 was changed to 1.5. [Where are these numbers coming 

from?] 

The MistakeFactor is then limited by a max of 1 and a min of 0. The numbers 

were designed as follows: even given perfect awareness and concern, i.e. Awareness 

+ Concern = 2, if there are no enforcement actions, the mistake factor will still be 

.091 (not 0) to account for human error; (for example, this author recalls once 

downloading a virus simply because he accidentally clicked the wrong button.)  

Conversely, given sufficient enforcement actions (we assume .7 pseudo-hours per 

system per day would suffice), the mistake factor will go to zero, regardless of user 

awareness or concern. Note that the mistake factor is “memoryless” and employs no 

holding tanks; we assume that if awareness, concern, or enforcement were to 

suddenly decrease today, the effects would be felt immediately.  
Comment [i4]: Page: 1 
is this realistic? 



 

 78 
 

While we would like to make Awareness and Concern variables that the end-user 

could adjust, for now we simply set both Awareness and Concern to 0.2. The User 

Training for Better Security Practices? switch adds TRAININGEFFECT to Awareness, 

raising it to 1. [Where are these numbers coming from?] (Future implementations 

may describe the effects of training over time, i.e. a gradual rise in awareness.)   

These numbers are all just guesses on my part about the “average” user’s awareness 

and concern, and how much training can help. (I wanted to demonstrate the 

effectiveness of full training, so I let it raise Awareness all the way to 1.) 

ConfigVulns has two inputs: Hours Allocated to Enforcement Actions (in pseudo-

hours per system per day), and A Host-Vulnerability Scanning Tool? (0 if not present, 

1 if present). A HostConfigVulnsFactor of 0 is best. The scanning tool assists the 

sysadmin by finding the vulnerabilities present; however, the sysadmin must still 

spend time fixing these vulnerabilities!  We thus model the scanning tools as an 

increase in the “effective hours” (or “virtual enforcement hours”) available for fixing 

vulnerabilities. If the scanning tool is not present, “virtual enforcement  hours” = 

hours allocated to enforcement actions. If the scanning tool is present, “virtual 

enforcement hours” =  CONFIGTOOLMULTIPLIER * hours allocated to enforcement 

actions.   

Yes, it was my assumption for the present that the tool can double the sysadmin’s 

effective hours here; just picked a number to try. 

 

The vulnerability level is then described using (1 – the level of a holding tank), i.e. 

the holding tank is “full” when all vulnerabilities have been patched, and “empty” 

Comment [i5]: Page: 1 
For future versions we might want to 
elaborate on this, make it more similar to 
the attcks model, i.e., deal with number of 
vulnerabilities rather than with 
vulnerability level 



 

 79 
 

when no vulnerabilities have been patched. (All of the holding tanks in this model 

have the default setting of “want” connector not being able to reduce the tank value 

below zero.)  The holding tank has a “loss rate”; this describes the fact that over time, 

new vulnerabilities are discovered; additionally, new user accounts are created, etc., 

all requiring attention from the sysadmin to prevent additional vulnerabilities. We set 

the loss rate here to .05, i.e. if the sysadmin configured the system perfectly, but then 

ignored it for twenty days, it would now look very vulnerable. (For now we assume a 

linear loss rate. Further detail may modify this in the future.)  (Yes, all assumptions of 

mine which could use validation.)  The next question we ask is, how many pseudo-

personnel hours are required to maintain the tank at its “full” level of 1?  For 

configuration vulnerabilities, we assume it to be 1.5 pseudo-hours per system per day. 

(Or with the scanning tool, .75 pseudo-hours per day.)  We then have a “divisor” of 

(1.5 / .05) = 30, i.e.: input to the tank = Virtual Enforcement Hours / 30. 

The tank is designed that if the current level of the tank is already 1 (full), additional 

input (i.e. additional hours) will not raise the tank level further. Lastly, the initial level 

of the tank is also decided by the number of virtual enforcement hours. If 1.5 or more 

pseudo-hours are available, the initial level will be 1. Otherwise, the initial level will 

be (pseudo-hours allocated / 1.5). Expressed in terms of the “divisor” and “loss rate” 

constants, this is: 

StartLevel = Min{1, [ Hours / (Divisor * LossRate)] }.[I don’t understand this 

discussion on the tank. What is the main message?] 



 

 80 
 

 What happens, as given, is that if the model starts out with enough staff-hours to 

keep the configvulns “happy”, it will start at “full” and stay that way. Otherwise, it 

will inevitably decline to zero.  

 This raises the question: if you go through a year of only spending half the time 

you should on patches (or tolerance, etc.), by the end of the year, how vulnerable is 

your software?  Totally?  50%  Not sure. 

 In the old models, anything that required sysadmin hours was designed that if it 

didn’t get enough of them, it would ultimately decline to zero no matter what in the 

long term. In the Escalation paper, this was changed for IDS, Firewall, NetVulns and 

ConfigVulns: for all of them, the effectiveness TODAY of a given countermeasure is 

given by a maximum of two values: the tank level (which reflects what it had been 

given in the past), AND the number of hours given TODAY divided by the number of 

hours required to be fully happy. Thus, if I patch well for a long time, then ignore 

patches for a few days, the patch level will be 0.9 or so. On the other hand, I could 

have totally ignored patches for years, but if I spend some time on them today, 

patches will be somewhat effective today. Please let me know what you think of this. 

For the archetype version, to get better-looking results we often changed the start 

level to something specified, e.g. 0 or 1 or some constant in between that worked 

nicely. This describes a scenario of “new sysadmin walks in on a system that had 

been totally ignored for a long time”, or “incompetent sysadmin ruins a system that 

had been fine.”   

The above scheme of holding tanks, loss rates, divisors, and starting levels, will be 

found repeated throughout other parts of this model.  



 

 81 
 

NetVulns are designed very much like configuration vulnerabilities, except here the 

inputs are Hours Allocated to Software Patches and the presence of A Network 

Vulnerability Scanning Tool?  Once again, the scanning tool increasesthe virtual 

hours available for patching network vulnerabilities as follows: 

Effective Netvuln-fixing  Staff-Hrs. = NETTOOLMULTIPLIER *Hours Allocated to 

Software Patches. The NetVulnsFactor is similarly given as (1 – tank level). (The 

output from the tank is limited to the range 0 to 1. However, the feature “if tank level 

= 1, don’t allow further input” was not added to the NetVulns block (or any other 

block in this model yet) due to time constraints; thus, as is, the theoretical tank level 

can exceed 1, but the most it will read out is 1.)  LossRate = 0.04 (i.e. totally 

vulnerable if ignored for 25 days), divisor = 15 (i.e. fully patched if given .6 pseudo-

hours per system per day), initial level = virtual hours / 0.6, limited between 0 and 1. 

Archetype Version: Divisor was changed to 32. [Where is all that coming from?] 

AppVulns has inputs Hours allocated to Software Patches and New Software is 

Installed Every X Days. As before, a tank 0-1 describes the “strength” of the software; 

it is replenished by “hours allocated to patches”, with a divisor of 33.33. The loss rate 

is .02. ADDITIONALLY, anytime new software is added, this causes an additional 

loss of 0.8. The addition of new software is modeled as an event that occurs every Y 

days, where Y is Gaussian, mean New Software Installed Every X Days, std. deviation 

30%. Archetype Version: LossRate is 0.004. [Explain why you selected these values.] 

 

COUNTERMEASURES: Countermeasures behave much like vulnerabilities, only a 

factor of 1 is best (countermeasure is fully effective), 0 is worst. Each countermeasure 

Comment [i6]: Page: 1 
what does this mean in terms of the real 
world? 



 

 82 
 

outputs its factor, 0-to 1; and has inputs for the hours allocated to it, as well as a 

binary value indicating whether it is present. (If the switch, e.g. Antivirus Software?, 

is off, the factor output will always be 0.)  All of the countermeasures are represented 

by holding tanks. A “limit” block applied to the tank’s contents level ensures that the 

output will be between 0 and 1. However, the feature “tank itself can not exceed 1”, 

i.e. “if tank capacity = 1, today’s input = 0”, was not yet built into the 

countermeasures as it was into the vulnerabilities. (This can be easily changed.)  

Thus, for now, if the sysadmin were to put “super” efforts into a countermeasure for a 

while, the tank level would exceed 1; the factor output will still be 1; however, the 

sysadmin could ignore the countermeasure for a short time and it will still have a 

factor of “1”, as the loss rate drains the tank from a value greater than 1 to 1. 

(Eventually, though, the tank will drain below 1.) 

Starting level of the tank, if not manually adjusted, will follow the same equation 

as the vulnerability tanks: (hours allocated) / (total hours needed for the 

countermeasure to be “happy”, = divisor * lossrate). (This is then limited between 0 

and 1.) 

Tolerance Mechanisms. These can be high-maintenance, as this includes diversity. 

Loss rate 0.1, divisor 6.67. [Why?]  It was just assumed that tolerance measures are 

high-maintenance, especially if we include diversity; so I picked values these values: 

if tolerance measures are ignored for ten days, they become useless (loss rate 0.1); 

and that 2/3 pseudo-staff-hours per machine are required to keep these tolerance 

measures fully maintained. 

Comment [i7]: Page: 1 
I don’t understand 

Comment [i8]: Page: 1 
I believe THIS IS realistic 



 

 83 
 

Encryption Software. Once in place, this is fairly low-maintenance. Loss rate 

0.001, divisor 66.6667. [Why?]  Again, I just picked numbers that would imply low-

maintenance, i.e. an encryption system, once ignored, takes > 2 years (i.e. 1000 days) 

to become useless (there still may be bug fixes, updates, and the like); and it doesn’t 

take much work to keep the encryption up (or deal with users having problems with 

it), so I just figured an average of .067 pseudo-staff-hours per machine per day. 

Antivirus Software. We assume that new definitions must be installed by the 

sysadmin. Loss rate 0.02 (i.e. useless after fifty days, given that ~2.5 new viruses 

come out each day, looking at a list from McAfee or the like.)  Divisor 20. How much 

time per day per machine is needed to keep the antivirus up-to-date?  I assumed 0.4 

pseudo-staff-hours / machine / day.  

Firewall and IDS [Indeed, they should be separate.]. We described “firewall 

efforts” and “IDS efforts” each as separate from “hours for analyzing (false) alarms”, 

which includes the alarms generated by both. Thus, the FirewallIDS forms one unit, 

with inputs: Hours Allocated to Firewall, Hours Allocated to (False) Alarms, Hours 

Allocated to IDS, and the binary switches A Firewall?  and An Intrusion Detection 

System?. Outputs are FirewallFactor and IDSFactor, both within [0,1]; and 

FalseAlarms, measuring how many staff-hours-per-machine’s worth of alarms are 

generated on a given day. 

Firewall effectiveness and IDS effectiveness each start off as independent holding 

tanks similar to those of the other countermeasures. Thus, FirewallFactor and 

IDSFactor are simply the contents value of their respective tanks. Firewall has 

Comment [i9]: Page: 1 
why are these not separate? 

Comment [i10]: Page: 1 
why? Shouldn’t they be separate? 



 

 84 
 

LossRate 0.0333 and Divisor 20; IDS has LossRate 0.033 and divisor 8. [Why these 

numbers?]  

However, both the IDS and firewall generate more alarms as they become more 

effective.  

AlarmRate = (0.3 * FirewallFactor)+ (0.6 * IDSFactor).[No, they should not be 

mixed.] 

 If these alarms are not addressed, they become Ignored Alarms.  

IgnoredAlarms = AlarmRate – AlarmHours, with a minimum of 0. All of these are 

measured in staff-hours per machine per day. 

IgnoredAlarms leads to a steep decline in the effectiveness of the IDS and firewall, 

with several days’ delay. 

The “want” (i.e. drain) on firewall effectiveness is the “natural” loss rate due to the 

need for routine maintenance, patches and the like, which was given as 0.0333; plus 

0.25 * IgnoredAlarms, with a five-day delay on the latter. 

Similarly, drain on IDS effectiveness is 0.0333 (natural loss rate), plus 0.33 * 

IgnoredAlarms, with a three-day delay on the latter. 

Based on this, running the model with a high number of hours dedicated to the IDS 

or firewall, but few hours to analyzing alarms, will result in IDS and firewall 

effectivenesses that show decaying nonnegative oscillations, i.e. high, then low, then 

medium, then low, and so on, until they reach a level of zero. 

Archetype Version: Here, we wanted to show gains per effort for a single variable, so 

we included alarm analysis into the IDS efforts (and hours). (The firewall model was 

unchanged, as our archetypes did not include a firewall.)  We now have a holding 



 

 85 
 

tank with a starting level of zero, and an input divisor of 40. Loss rate is now entirely 

a factor of the IDS effectiveness: LossRate = 0.35* IDSlevel [i.e. the contents of the 

holding tank], with a 15-day delay. This causes the oscillations seen in the attack 

success rate of the Shifting the Burden IDS scenario.  

We then argue that even an ignored IDS will still catch some attacks; this 

assumption also keeps the oscillations in the archetypes paper from being too 

extreme. This is accomplished by simply letting IDSFactor = (contents of holding 

tank) + 0.6, with a maximum of 1. This means that a totally ignored IDS will still 

have 60% the effectiveness of a well-maintained one. (The author claims no sources 

in the literature to support this, other than “it made the graph look nice.”) 

 

Newest version: we’ve kept everything separate: addressing IDS alarms goes into 

IDS Efforts; addressing Firewall alarms goes into Firewall Efforts. Firewall has loss 

rate .033 (i.e. useless if ignored for 30 days, just my assumption) and divisor 20 (i.e. 

for full effectiveness, firewall should have 0.66 staff-hours / day; in this paper, I 

assumed .66 staff-hours per day per machine. (That’s too high, isn’t it?  Again, that’s 

skill-motivation-staff-hours, which is easily double the number of actual staff-hours.)  

For the IDS, loss rate 0.05 (i.e. useless if ignored after 20 days, again my 

assumption), and a divisor of 40, i.e. best to provide the IDS 2 staff-hours per day 

(per system).  

 

ATTACKS: We divide the attacks into three categories by their sophistication. 

(This three-way division is found in some DARPA presentations that have not yet 

been published.)  Simple Attacks, (or “kiddy-scripts”), almost always rely on known 



 

 86 
 

vulnerabilities and require little action from the attacker other than downloading and 

running the attack. A “sitting-duck” server may be subject to 50 or more simple 

attacks per day. Dr. Cukier’s empirical findings support roughly this number. 

(Though his ~50 did not include viruses.) 

“Sophisticated Attacks” may involve finding new vulnerabilities, can often defeat 

many countermeasures, and usually come from a single knowledgeable attacker (such 

as one who might actually write the “kiddy scripts” used in the first category). The 

average company will sustain only a handful, at most, of sophisticated attacks per 

day. (Yup, just an assumption; Dr. Cukier is trying to get sophisticated attackers to hit 

his systems, but not much luck yet. Wasn’t there a quote from Dr. Cukier about 95% 

simple / 5% sophisticated or something like that?)  Certainly we must include 

computer viruses, the most costly computer-security breach as 

reported in the CSI/FBI survey, in our discussion. While a computer virus does 

require a sophisticated author if it will spread, it spreads in fairly simple, predictable 

ways, and is easily defeated by simple countermeasures (antivirus) and patching 

vulnerabilities; we therefore include viruses in the simple, “script-kiddy” category. 

Lastly, we have Nationwide-level Attacks, which may be part of a war effort, 

global terrorism, possibly a multinational corporation attacking a competitor, and so 

on. Most companies will only see one of these every few months or so, if at all. (That 

seemed like common sense.)  Attacks of this sophistication do not rely on 

vulnerabilities as they can “brute force” through most software; they can also defeat 

most countermeasures.  



 

 87 
 

For the time being, we do not differentiate attacks other than their categories of 

Simple, Sophisticated, and Nationwide. The model’s end-user inputs AverageSimple, 

AverageSophisticated, and AverageNationwide via sliders. The outputs of the 

respective “attack generator blocks” are Simple/Sophisticated/Nationwide Attacks 

Attempted. To add realism to our model, some randomness occurs between the input 

Averages and the output Attempteds: 

All of the above behave the same way. If Average >= 1, then a number Y is output, 

where Y represents the number of attacks of that type attempted per day. Y is given 

by a Gaussian distribution, with mean Average and a standard deviation of 0.2 * 

Average. (i.e. “a standard deviation of 20%.”)   

If Average < 1, then exactly one attack is attempted every Z days, where Z follows 

a Gaussian distribution with a mean of (1/Average) and a std. dev. of 30%.  

Archetype Version: for simplicity, and to prevent oscillations in the graph due to 

randomness, we simply let AverageSimple = SimpleAttacksAttempted = 100. (We 

circumvent the “attack generator block.”)  All other attacks are set to 0.  

In the new (Escalation) paper, I had no randomness in Simple Attacks, but a 5% 

standard deviation in Sophisticated Attacks. Just numbers I picked to demonstrate 

some randomness; I don’t know how much the numbers vary day-to-day in real-life. 

 

ATTEMPTED VS. SUCCESSFUL ATTACKS, or ATTACK DEFENSES. Even if 

perfectly effective, a given countermeasure is only so successful at thwarting 

attempted attacks. For example, if we say 100 attacks are attempted per day, we 

include a certain number (call it X) of viruses. The best antivirus in the world will 



 

 88 
 

thwart all X of those viruses, i.e. X% of the total attacks, but it can not defeat more 

than X% of the attacks because (100-X) attacks are not viruses. As for what 

percentage of attacks are not successful due to a given countermeasure, the only 

numbers available are those of experts’ opinion and the CSI/FBI survey. The CSI/FBI 

survey is of limited use, however, as it records what percentage of correspondents 

reported observing a given type of attack on their system. Thus, we know that 78% of 

the businesses surveyed detected a virus last year, and 37% detected a DoS; that does 

not mean that 78% of the attacks out there are viruses or that 37% of them are DoSs!  

(Otherwise, the numbers exceed 100% quite rapidly.)  Nonetheless, the numbers can 

be used as a very rough approximation for the prevalence of a given attack. 

Otherwise, the numbers given here represent the author’s numerical interpretations of 

M. Cukier’s descriptions of “fully effective”, “partially effective”, or “not effective” 

for each countermeasure against each category of attack.  

Similarly, certain countermeasures may be very effective against simple attacks, 

but not against sophisticated ones. We therefore have three different blocks labeled 

SimpleSuccess, SophistSuccess, and NatnwideSuccess, respectively. (Extend’s limits 

on the number of characters in a hierarchical block’s name necessitated some creative 

spellings here.)  Each of these takes as inputs Attempted XYZ Attacks, where XYZ is 

simple/sophisticated/nationwide. They also have inputs for the factors of all relevant 

countermeasures and vulnerabilities. The primary output is the number of successful 

attacks of a given category. The other outputs appear on the bottom of the 

AttackSuccess block, directly beneath the inputs for the various countermeasures and 

vulnerabilities. These outputs show the number of attacks per day not successful due 



 

 89 
 

to the corresponding countermeasure or lack of vulnerability. Additionally, it appears 

that a “thinner” block has been attached to the bottom of each Attack Success block. 

This functions as an accumulator, showing how many attacks have been attempted, 

successful, or not-successful-due-to-a-given-factor, over the entire simulation period.  

Each AttackSuccess block is designed in the same way, as a linked series of 

holding tanks: at the beginning of each day, all tanks are reset to zero. Then, a certain 

number of attacks (attempts) are input to the first holding tank; some are removed by 

the first countermeasure (in proportion to how effectively it is functioning, e.g. is the 

AntivirusFactor 1, i.e. it has been well-maintained, or something lower?); the 

remaining tank contents (i.e. remaining attacks) are transferred to the second tank, 

where some are removed by the second countermeasure, and so on; those that remain 

after all the tanks are done are deemed Successful Attacks.  

For simple attacks, we have the following procession: As an attempted attack 

enters the system, it first encounters the firewall, then an IDS; if it passes those, it will 

be scanned by an antivirus. If it still passes through, it may be designed to exploit a 

given vulnerability in the system; if that vulnerability is not present, it will be 

thwarted here. If it still succeeds, encryption may sometimes help as follows: even if 

the system is breached and data is illegally accessed, an attacker will find the 

encrypted data meaningless; confidentiality is thus maintained. Finally, if all else 

fails, tolerance measures will mitigate the damage in many cases. Thus, starting with 

attempted simple attacks, we have the following: [Not completely right. In particular, 

the antivirus focuses mainly on email attachments. Otherwise, the antivirus can detect 

Comment [i11]: Page: 1 
Michel, what do you think? 



 

 90 
 

the corruption of the computer. We can work this out during our next meeting, OK?]  

We’re still working on this, but the models haven’t changed it yet. 

Remove (FirewallFactor * 90%) of the attempted attacks. I.e. if the Firewall is 

fully effective, it will catch 90% of the attempted simple attacks; if it’s only 50% 

effective (supposing it hasn’t been well-maintained), then it will catch only 45% of 

attempted attacks. Of those remaining, remove (IDSFactor * 60%); of those 

remaining, remove (AntivirusFactor *  78%); of those remaining, remove ((1 – 

VulnFactor) * 90%); this represents those attacks that were designed to exploit a 

given vulnerability; if that vulnerability is not found, the attack will not succeed.  

Archetypes Version: in order to differentiate between the results of enforcement 

actions (which influence config vulns and mistakes) and patches (which influence 

NetVulns and AppVulns), we have each defeat attacks separately, rather than taking 

90% * (1 – VulnFactor). Instead, remove (SWStrength * 60%), then (ConfigStrength 

* 80%). In displaying those attacks defeated by ConfigStrength, we adjust the 

equations to show total attacks defeated by ConfigStrength, not those attacks defeated 

by ConfigStrength that were not previously defeated by SWStrength. 

Then remove (EncryptFactor * 40%). (Encryption is only useful in preventing 

theft of data; it does very little, for example, against a DDoS attack.)  Lastly, remove 

(ToleranceFactor * 75%). Take this result and apply the “floor” function, i.e. largest 

integer that is less than or equal to it. (Thus, if after all the countermeasures, we have 

2.2 attacks succeeding, count that as 2. If we have 0.9 attacks succeeding, count that 

as 0.)  Archetype version: to make the lines smoother, we leave out the floor, and 

instead interpret the results simply as “percentage of attacks succeeding.”  We now 



 

 91 
 

have the number of SuccessfulSimpleAttacks. (The various summed-over-time outputs 

are found simply by inserting accumulation tanks at the appropriate point in the 

chain.)   

 

All of these percentages were either my assumptions, some comment from Dr. 

Cukier about “very effective/somewhat effective/not effective”, and occasionally, the 

survey (see above about 78% saw viruses.)    

For Sophisticated and Nationwide attacks, many less countermeasures are 

effective. Furthermore, even a single attack stands a good chance of succeeding. This 

is represented as follows: after reducing the appropriate percentages due to 

countermeasures and vulnerabilities, we are left with what should be X successful 

attacks. If X >=1, round X to the nearest integer; that is how many attacks of this type 

are successful today. If  0 < X < 1, one attack will succeed an average of X% of the 

time. This is accomplished by selecting a random value r uniformly distributed on 

[0,1]; if r < X, the attack succeeds; otherwise, it does not.  

For sophisticated attacks, the antivirus is ineffective because all viruses are treated 

as simple attacks. An IDS can be defeated by a clever attacker, so it is not included. 

Encryption (which we assume can not be defeated without a supercomputer of some 

type (Dr. Cukier agreed with this; I’ve heard in the news that every now and then a 

team of experts with 100 computers has cracked a given file encrypted with RSA, 

after working on it for a few months.)  which is beyond the reach of a single 

sophisticated attacker) is still as effective as with simple attacks; the same goes for 

tolerance. A firewall is effective, but less so because it can sometimes be defeated. 



 

 92 
 

Lastly, some sophisticated attacks are designed to exploit known vulnerabilities, but 

often a sophisticated attacker can find his/her own new vulnerabilities in the software. 

We thus are left with the following: 

Remove (FirewallFactor * 30%) of attempts; of the remaining, remove ( (1 – 

VulnFactor) * 50%); of the remaining, remove (EncryptFactor * 40%); lastly, of the 

remaining, remove (ToleranceFactor * 75%). The remaining value is rounded to the 

nearest integer if it is >= 1, or used as a probability if it is < 1, as described above. 

The result is the number of SuccessfulSophisticatedAttacks. Only source other than 

Dr. Cukier’s comments or my guesses I can add here is this: Encryption is helpful for 

whatever percentage of attacks sought to steal sensitive data. What is that percentage?  

Survey talks dollar costs of various attacks (e.g. theft of data vs. DoS), but not the 

percentage breakdown of the number of attacks themselves. 

In the case of Nationwide attacks, we assume that network and application 

vulnerabilities are irrelevant as the code is subject to “strong smart force”, the 

nationwide-scale attackers may have access to the code being used; similarly, the 

nationwide attacker possesses a supercomputer, quantum computer, or some other 

method of defeating commercially available cryptography. The only countermeasures 

that are effective (and partially at that) are the firewall (if it is a hardware firewall of 

proprietary design, as M. Cukier described in an experience of his)  and tolerance 

measures.  

Remove (Firewall Factor * 20%), then of the remaining, remove 

(ToleranceFactor * 50%). Apply the rounding or probability as described above; the 

result is the number of SuccessfulNationwideAttacks. Dr. Cukier had said something 



 

 93 
 

about Tolerance being fully effective against simple & sophisticated attacks; halfway 

effective against nationwide attacks. 

Lastly, the three categories of successful attacks can be summed; each 

AttackSuccess block is connected to an addition block. The result is All Successful 

Attacks (Per Day). Similarly, if one wishes to see all successful attacks over the entire 

simulation period, the various Successful ABC Attacks (Sum Total), for ABC = 

{Simple, Sophisticated, Nationwide}, sum to All Successful Attacks (Sum Total).  

 
 
 
 
 
 
 

 

 

 

 

 

 



 

 94 
 

Bibliography 
 
 
[Baj04] R. Bajcsy et al, “Cyber defense technology networking and evaluation,” 
Communications of the ACM, vol. 47, no. 3, March 2004, pp. 58—61. 
 
[Ber04] D. Bergemann, J. Feigenbaum, S. Shenker, and J. Smith, “Towards an 
economic analysis of trusted systems,” presented at Third Annual Workshop on 
Economics and Information Security (WEIS ‘04). Minneapolis, May 13—14, 2004.  
 
[Ber05] D. Bergemann et al, “Flexibility as an instrument in DRM systems,” 
presented at Fourth Annual Workshop on Economics and Information Security 
(WEIS ‘05). Cambridge, MA, June 2—3, 2005. 
 
[Bod05] L. Bodin, L. Gordon, and M. P. Loeb, “Evaluating information security 
investments using the analytic hierarchy process,” Communications of the ACM, vol. 
28, no. 2, Feb. 2005, pp. 79—83.  
 
[Bra02] W. Braun, “The System Archetypes,” (2002), Available at 
http://www.uni-klu.ac.at/gossimit/pap/sd/wb_sysarch.pdf 
 
[Cam03]  K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou, “The economic cost 
of publicly announced information security breaches: empirical evidence from the 
stock market,” Journal of Computer Security, no. 11, 2003, pp. 431—439. 
 
[Coh99] F. Cohen, “Simulating CyberAttacks, Defenses, and Consequences,” (March 
1999), Available at: http://all.net/journal/ntb/simulate/simulate.html 
 
[Coh06] Fred Cohen & Associates, “Strategic Games”, (2006), 
http://all.net/games/index.html 
 
[Dac04] M. Dacier, F. Pouget, and H. Debar, “Honeypots: practical means to validate 
malicious fault assumptions,” In Proc. 10th IEEE Pacific Rim Int’l Symposium on 
Dependable Computing (PRDC ’04), 2004, pp. 383—388. 
 
[Dan04] D. Danchev, “Reducing ‘Human Factor’ Mistakes.” WindowSecurity.com, 
(2003), www.windowsecurity.com/articles/Reducing_Human_Factor_Mistakes.html 
 
[Dwa05] Z. Dwaikat, “Attacks and countermeasures,” CrossTalk: The Journal of 
Defense Software Engineering, Oct. 2005, Available at: 
www.stsc.hill.af.mil/crosstalk/2005/10/0510Dwaikat.html 
 
[Fei05] J. Feigenbaum et al, “Subjective-cost policy routing,” in Proceedings of the 
Workshop on Internet and Network Economics, Lecture Notes in Computer Science, 
vol. 3828, Berlin: Springer, 2005, pp. 174--183.  
 



 

 95 
 

[For61] J. W. Forrester, Industrial Dynamics, Cambridge: The Wright-Allen Press, 
1961. 
 
[Gib02] S. Gibson, “The Strange Tale of the Denial of Service Attacks Against 
GRC.com.” Gibson Research Corporation, (March 2002), Available at: 
www.grc.com/files/grcdos.pdf 
 
[Gon01] F. Gong, K. Goseva-Popstojanova, et al, “Characterizing intrusion tolerant 
systems using a state transition model,” In Proc. DARPA Information Survivability 
Conference and Exposition II (DISCEX '01), 2001. 
 
[Gor02] L. A. Gordon and M. P. Loeb, “The economics of information security 
investment,” ACM Trans. Information and System Security, vol. 5, no. 4, November 
2002, pp. 438—457. 
 
[Gor05a] L. A. Gordon, M. P. Loeb, et al, “Tenth Annual CSI/FBI Computer Crime 
and Security Survey,” Computer Security Institute, (2005), Available at: 
www.gocsi.com/forms/fbi/csi_fbi_survey.jhtml 
 
[Gor05b] L. A. Gordon and M. P. Loeb, Managing Cybersecurity Resources: A 
Financial Perspective, New York: McGraw-Hill, 2005. 
 
[Hof05] S. Hofmeyr, “The Information Technology security arms race,” CrossTalk: 
The Journal of Defense Software Engineering, Oct. 2005, 
http://www.stsc.hill.af.mil/crosstalk/2005/10/0510Hofmeyr.html 
 
[Hun06] C. L. Huntley, “A Developmental View of System Security,” Computer, vol. 
39, no. 1, pp. 113—114, January 2006. 
 
[Ima05] Imagine That, Inc., Extend. (Version 6.07). [CD-ROM]. [Windows 
98/ME/NT4/2K/XP]. San Jose, CA, 2005. 
 
[Irv05] C. E. Irvine, M. F. Thompson, and K. Allen, “CyberCIEGE: gaming for 
information assurance,” IEEE Security & Privacy Magazine, vol. 3., no. 3, May-June 
2005, pp. 61—64. 
 
[Jha01] S. Jha and J. M. Wing, “Survivability analysis of networked systems,” in 
Proc. of the 23rd International Conference on Software Engineering (ICSE ’01), 
2001, pp. 307—317.  
 
[Jon97] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion 
process based on attacker behavior,” IEEE Transactions on Software Engineering, 
vol. 23, no. 4, April 1997. 
 
[Lar03a] R. LaRose and M. S. Eastin, “A social cognitive explanation of Internet uses 
and gratifications: toward a new theory of media attendance,” presented at 
International Communication Association, Communication and Technology Division. 
San Diego, May 2003. 



 

 96 
 

 
[Lar03b] R. LaRose and N. Rifon, “Your privacy is assured --- of being invaded: 
Web sites with and without privacy seals,” presented at IADIS International 
Conference. Lisbon, Portugal, June 3—6, 2003. 
 
[Mar03] K. Marais and N. Leveson, “Archetypes for organizational safety,” presented 
at IRIA ‘03. Williamsburg, VA, 2003, Available at: 
http://sunnyday.mit.edu/papers/iria-marais.pdf 
 
[Nav06] Naval Postgraduate School and Rivermind, Inc., Cyberciege, version 1.5b, 
Feb. 2006, [Win2000/XP] http://cisr.nps.navy.mil/cyberciege/index.htm 
 
[Ort99] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting with quantitative 
evaluation tools for monitoring operational security,” IEEE Transactions on Software 
Engineering, vol. 25, no. 5, Sept.-Oct. 1999, pp. 633—650. 
 
[Pan05] S. Panjwani et al, “An experimental evaluation to determine if port scans are 
precursors to an attack,” in Proc. International Conference on Dependable Systems 
and Networks (DSN05), Yokohama, Japan, June 28—July 1, 2005. 
 
[Pou04a] F. Pouget and M. Dacier, “Honeypot-based forensics,” presented at 
AusCERT Information Technology Security Conference 2004 (AusCERT ‘04). 
Ashmore, Australia, May 23—27. 
 
[Pou04b] F. Pouget, M. Dacier, and V. H. Pham, “Understanding threats: a 
prerequisite to enhance survivability of computing systems.” Presented at 
International Infrastructure Survivability Workshop 2004 (IISW04), in conjunction 
with 25th International Real-Time Systems Symposium (RTSS04). Lisbon, December 
5—8, 2004, Available at: http://www.honeynet.org/papers/individual/IISW04.pdf 
 
[Pou05] F. Pouget, M. Dacier, and V. H. Pham, “Leurre.com: On the advantages of 
deploying a large scale distributed honeypot platform,” In Proceedings E-Crime and 
Computer Conference 2005 (ECCE ’05), March 2005.  
 
[Ros06a] S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling and simulation of the 
escalation archetype in computer security,” presented at 2006 Symposium on 
Simulation and Software Security (SSSS ‘06). Huntsville, AL, April 2006. 
 
[Ros06b] S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling the symptomatic fixes 
archetype in enterprise computer security,” submitted to 30th Annual International 
Computer Software and Applications Conference (COMPSAC06). Chicago, Sept. 
2006. 
 
[Ros06c] S. N. Rosenfeld, I. Rus, and M. Cukier, “Archetypal behavior in computer 
security,” submitted to Sixth European Dependable Computing Conference (EDCC-
6). Coimbra, Portugal, Oct. 2006. 



 

 97 
 

 
[Sen90] P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning 
Organization, New York: Doubleday Currency, 1990. 
 
[Sen94] P. Senge, A. Kleiner, et al, The Fifth Discipline Fieldbook, New York: 
Doubleday, 1994. 
 
[Ste04] F. Stevens, T. Courtney, et al, “Model-based validation of an intrusion-
tolerant information system,” In Proc. of the 23rd Symposium on Reliable Distributed 
Systems (SRDS ’04), 2004, pp. 184—194. 
 
[Wol03] E. F. Wolstenholme, “Toward the definition and use of a core set of 
archetypal structures in system dynamics,” System Dynamics Review, vol. 19, no. 1, 
Spring 2003, pp. 7—26. 
 
 
 
 



 

 98 
 

Publications and Submissions 

 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling and simulation of the 

escalation archetype in computer security,” 2006 Symposium on Simulation 

and Software Security (SSSS ‘06). Huntsville, AL, April 2006. (50% 

acceptance rate.) 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling the symptomatic fixes 

archetype in enterprise computer security,” submitted to 30th Annual 

International Computer Software and Applications Conference 

(COMPSAC06). Chicago, Sept. 2006. 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Archetypal behavior in computer 

security,” submitted to Sixth European Dependable Computing Conference 

(EDCC-6). Coimbra, Portugal, Oct. 2006. 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modelling the tragedy of the 

commons archetype in enterprise computer security,” soon to be submitted to 

IEE Proceedings Information Security. 

 



  

 
 
 
 
 

ABSTRACT 
 
 

 
Title of Document: SYSTEM DYNAMICS MODELING AND 

SIMULATION OF ENTERPRISE COMPUTER 
SECURITY   

  
 Shalom Nachum Rosenfeld, Master of Science, 

2006 
  
Directed By: Professor Michel Cukier, Reliability Engineering 

Dr. Ioana Rus, Fraunhofer Center USA 
 
 

To support decision-making, training, and understanding complex trends in enterprise 

computer security, we have built an executable model representing the major 

components of an organization's computer security, including its machines, users, 

administrators, countermeasures, and attacks. We use "if-then" rules to express 

behaviors, incorporating the notions of “archetypes”, i.e. frequently-observed patterns 

of system behavior, and “system dynamics”, a discipline which views system 

behavior in terms of stocks and feedback loops. This thesis describes the model, and 

then discusses several archetypal behaviors and their results, namely: Symptomatic 

Fixes (or “Shifting the Burden”), Escalation, and Escalation combined with Limits to 

Growth. Simulation is used to display these behaviors quantitatively, and to show the 

effects of possible solutions. We conclude by discussing how such results can be 

useful for practical computer security, and how this model can both feed off other 

security research and fuel it.  



  

 

 
 
 
 
 
 
 
 
 
 
 

SYSTEM DYNAMICS MODELING AND SIMULATION OF ENTERPRISE 
COMPUTER SECURITY   

 
 
 

By 
 
 

Shalom Nachum Rosenfeld 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2006 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Michel Cukier, Chair 
Dr. Ioana Rus  
Professor Min Wu 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Shalom Nachum Rosenfeld 

2006 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Acknowledgements 

 The author gives his highest thanks to his advisors, Dr. Michel Cukier and Dr. 

Ioana Rus, for their tireless dedication, for believing in him, and for working so hard 

to give him the opportunity to make this thesis happen. The entire E.C.E. and 

Reliability departments, as well as the Fraunhofer Center, are also to be thanked for 

all of their assistance.   

 The author also thanks Dr. Min Wu for her assistance on the examining committee 

and her incisive commentary and questions. 

 Interestingly, the author’s first introduction to archetypes occurred when Dr. Virgil 

Gligor tangentially described the Tragedy of the Commons during a lecture on 

distributed systems. 

 In addition to the above, a series of mentors (from a wide variety of fields) should 

be acknowledged. What follows is an incomplete list: Rabbi Shlomo Crandall; Rabbis 

Emanuel, Israel, and Rafael Moshe Gettinger; Rabbi Rafael Pollack; Rabbi Simcha 

Fishbane; Rabbi Michoel Elias; Rabbi Yehudah Shmulevitz; Rabbi Yitzchak 

Breitowitz; Dr. Elliot Bartky; Mr. Mitch Aeder; Professor Kenneth Kramer. Their 

individual contributions are too great to be enumerated here. 

 The author thanks his colleagues from the Reliability Lab and from other E.C.E 

classes, whose assistance proved invaluable. 

 None of this could have happened without the role models of the author’s parents, 

grandparents, and entire extended family. 

 The author thanks his wife for her care, patience, and support. 

 Finally, the author thanks G-d for all of the above – and everything. 



 

 iii 
 

Table of Contents 
 
 
Acknowledgements ...................................................................................................ii 
Table of Contents .................................................................................................... iii 
List of Tables.............................................................................................................v 
List of Figures ..........................................................................................................vi 
 
Chapter 1: Introduction..............................................................................................1 

1.1 Motivation .................................................................................................1 
1.2 Approach ...................................................................................................2 
1.3 Archetypes .................................................................................................3 
1.4 The Model..................................................................................................5 
1.5 Thesis Structure .........................................................................................8 

 
Chapter 2: Symptomatic Fixes Archetype.................................................................10 

2.1 Symptomatic Fixes Description ................................................................10 
2.2 Simulation Setup ......................................................................................12 
2.3 Results and Discussion.............................................................................16 
2.4 Other Instances of Symptomatic Fixes in Security....................................21 

 
Chapter 3: Escalation Archetype .............................................................................23 

3.1 Escalation Description .............................................................................23 
3.2 Simulation Setup ......................................................................................26 
3.3 Results and Discussion.............................................................................29 
3.4 Other Instances of Escalation in Security..................................................36 

 
Chapter 4: Limits to Growth and Escalation Archetypes, Combined ........................38 

4.1 Limits to Growth Description ...................................................................38 
4.2 Combined Archetypes ..............................................................................40 
4.3 Simulation Setup ......................................................................................43 
4.4 Results and Discussion.............................................................................45 

 
Chapter 5:  Related Work ........................................................................................50 

5.1 System Dynamics and Archetypes............................................................51 
5.2 Sources of Data ........................................................................................51 
5.3 Economics and Security ...........................................................................53 
5.4 Other Modeling Approaches in Security...................................................53 

 
Chapter 6:  Conclusions and Future Work................................................................56 

6.1 Conclusions..............................................................................................56 
6.2 Future Work.............................................................................................56 

 
Appendix I: Archetypes ...........................................................................................58 
Appendix II: Model Screenshots..............................................................................61 
Appendix III: Model Documentation .......................................................................64 



 

 iv 
 

Bibliography............................................................................................................94 
Publications and Submissions ..................................................................................98 
 
 
 
 
 
 
 
 
 
 



 

 v 
 

List of Tables 
 
 

 

Table I: Cumulative Successful Attacks and Efforts for All Four Scenarios ……….20 
Table II: Slider Inputs for the Model Graphical User Interface ….………………….64  
Table III: Countermeasures Included in the Model .………………………………...66 



 

 vi 
 

List of Figures 

 

Fig. 1. Influence Diagram for a “Symptomatic Fixes” Situation ……………………12 
Fig. 2. Successful Attacks per Day for the Four Symptomatic Fixes Scenarios …….16 
Fig. 3. Efforts per Day for s2, the IDS-Decreases-Patches Scenario ………………..18 
Fig. 4. Efforts per Day for s3, the IDS-only Scenario ………………………………19 
Fig. 5. Efforts per Day for s4, the IDS-Supplements-Patches Scenario …………….19 
Fig. 6. Influence Diagram for Escalation ………………………………...…………24 
Fig. 7. Successful Attacks per Day, First Escalation Scenario ……………………...29 
Fig. 8. Staff-Hours per Day, First Escalation Scenario …...………………………...30 
Fig. 9. Attempted Simple Attacks per Day, First Escalation Scenario ……………...30 
Fig. 10. Attempted Sophisticated Attacks per Day, First Escalation Scenario ...…...31 
Fig. 11. Successful Attacks per Day: Results of 10% Increase in Efforts …………..32 
Fig. 12. Successful Attacks per Day: Results of 10% Decrease in Efforts ………….33  
Fig. 13. Successful Attacks per Day: Results of More Frequent Efforts ……………34 
Fig. 14. Influence Diagram for Limits to Growth …………………………………...39 
Fig. 15. Influence Diagram for Combined Limits to Growth and Escalation …….....41 
Fig. 16. Successful Attacks per Day, Escalation with Limits to Growth ...…………45 
Fig. 17. Attempted Attacks per Day, Escalation with Limits to Growth …...………46 
Fig. 18. Results of Reduced Escalation (Successful Attacks per Day) ……………...48 
Fig. 19. Full Escalation, with Hiring at Day 155 ……………………………………49 
Fig. 20. Cumulative Staff-Hours for Each Scenario ………………………………...50 
Fig. 21. Sample Screenshot of Holding Tank, Equation, and Constant Blocks …….61 
Fig. 22. Sample Hierarchical Block, Antivirus ……………………………………...62 
Fig. 23. Sample Hierarchical Block, Simple Attack Success ………………….……62 
Fig. 24. Sample from Spreadsheet with Parameter Values ………………………….63 
Fig. 25. Graphical User Interface Screenshot ……………………………………….63 
 
 



 

 1 
 

Chapter 1: Introduction 

 

1.1 Motivation 

An enterprise computer system is highly complex, consisting of multiple hosts 

with different platforms and different applications, all networked and most likely 

connected to the Internet. These components have flaws that make the system 

vulnerable and allow attackers to exploit these vulnerabilities. 

Humans and machines form an even larger and more complex system with many 

different components and interactions. Control actions and reactions on one side of 

this system might have not only a local effect, but could also affect the rest of the 

system, often resulting in feedback loops. These effects manifest themselves over 

time with different delays. The properties of the system (security being one of them) 

will emerge from its structure and all these interactions between its components. 

Some of the events in such systems are non-deterministic. This, and the fact that 

we do not have complete and fully accurate knowledge about these systems, leads to 

a level of information uncertainty that must be acknowledged and handled 

appropriately. Due to all of the above intricacies of such a system, it is extremely 

difficult to understand and analyze its emerging properties and the properties of the 

services it provides.  

It is a hard task to characterize and assess the security of such a system, let alone to 

predict malicious acts and to design a strategy for eliminating or at least reducing 

their effects. Nonetheless, such a strategy is imperative, especially for systems such 



 

 2 
 

as national infrastructures, military or other government systems, emergency systems, 

or banks. 

Protection against attacks can be achieved by preventing, detecting, and tolerating 

them. Tolerating attacks might require the system to function in a degraded mode 

once under attack. If attacks defeat all lines of defense and eventually succeed, then 

the system must be able to recover quickly to an operational and secure state. Of 

course, all actions needed for proper prevention, detection, and tolerance have costs 

associated with them, including the price of buying and maintaining tools, the effort 

and time to install and run them, and personnel training. A strategy for security 

achievement and risk reduction can comprise a combination of the aforementioned 

actions. Given resource constraints, as well as trade-offs that might be needed 

between security on one hand and other operational properties (for example usability 

or performance) on the other hand, designing such a strategy is a very challenging 

task and requires extensive knowledge and experience. 

 

1.2 Approach 

To support this decision-making process of designing an appropriate security 

strategy, we developed a quantitative executable model of an organization’s 

operational computer security. Like all models, this is an abstraction of the real 

system, focused on representing the security-significant aspects of the system and 

associated processes. The model targets and represents the perspective of the person 

who must make decisions regarding actions that must be taken for security assurance 

and security-related risk management. The user of the model can set different values 



 

 3 
 

for the model parameters, corresponding to different usage, vulnerabilities, attacks, 

and defense profiles. The simulator can be run and different “what-if” scenarios can 

be executed. Simulation will help a security manager, security engineer, or system 

administrator answer questions such as: if my environment is characterized by these 

values, then what methods and tools to select and apply for managing security risks 

and satisfy the users needs of my system? How will the selected actions work 

together? What is their effectiveness and cost efficiency? To what changes is my 

environment most sensitive? If I make specific changes in my security strategy, what 

will be their impact? What changes if my system gets attacked more/less or if the 

time to exploit changes? Should I hire more system administrators? Should I spend 

more on training them? 

The model aims first at understanding security risk reduction in computer systems, 

then at diagnosing such systems and identifying their weaknesses, as well as 

prospectively examining the effectiveness of different solutions. The description of 

the behaviors this model can exhibit is founded upon the notion of system archetypes.  

 

1.3 Archetypes 

Archetypes are a concept related to systems thinking, developed in the mid 1980s, 

in an attempt to describe complex behavior and to convey ideas in an easier and more 

efficient manner. Archetypes are frequently-observed patterns of systems behavior 

and are a “natural vehicle for clarifying and testing mental models” about systems or 

situations [For61]. The systems literature describes ten distinct archetypes, as listed 

by [Bra02] and outlined in Appendix I. [Wol03] argues that in fact, all of these can be 



 

 4 
 

categorized into one of four “core generic” archetype classes: “Underachivement” 

includes Limits to Growth, Attractiveness Principle, Tragedy of the Commons, and 

Growth and Underinvestment; and “Relative Archievement” includes Success to the 

Successful. “Out-of-Control” includes Fixes that Fail, Shifting the Burden, and 

Accidental Adversaries; and lastly, “Relative Control” includes Escalation and 

Accidental Adversaries. [Wol03] acknowledges that the more common description of 

archetypes (i.e. that of [Bra02]) is more intuitive and easier to grasp and apply to 

simulation, so it is used here. Archetypes have been mainly applied in business or 

industrial processes. There has recently been some work performed at MIT in 

applying systems thinking and archetypes to systems safety [Mar03], but in security 

this is a new idea. 

Beyond the common archetypes of [Bra02], we keep in mind that other archetypes 

may be observed in security. This would not be surprising, as [Mar03]’s application 

of archetypes to safety engineering uncovered several security-specific archetypes. 

This thesis, however, restricts itself to the application of common archetypes to 

security. While Appendix I describes how each of the ten archetypes might be applied 

to security, this thesis gives a detailed understanding of the following archetypes: 

Symptomatic Fixes (also known as Shifting the Burden), Escalation, Limits to 

Growth, and a combination of the latter two. 

We use archetypes for understanding and modeling security aspects (needs, 

problems, actions) in the context of an enterprise that uses computers/information 

technology systems for running its business and needs to ensure the security of its 

information, services, and/or systems. We are representing and simulating security-



 

 5 
 

related organizational behavior and trends and using archetypes for documenting and 

understanding the domain, the problems, and their potential solutions. Mental models 

might be able to handle archetypes in isolation, but for the entire system (which 

contains combinations of such archetypes) mental models are not adequate due to the 

complexity, non-determinism, and uncertainty of the system. Computer simulation is 

in fact already recommended in [Sen94] for extending one’s grasp of archetypes. 

 

1.4 The Model 

For our model, we employ the continuous modeling feature of the Extend 

simulation environment [Ima05]. This is a graphical simulation tool that focuses on 

the levels of holding tanks and their inputs and outputs, governed by constants, 

equations, delays, and random values. (A screenshot of a holding tank and its inputs 

and outputs can be found in Appendix II.) The level of each holding tank changes at 

each simulation step, and a typical simulation run can consist of hundreds or even 

thousands of such steps. The result is an easy-to-use way to set up and numerically 

solve systems represented by a series of differential equations. The feedback loops 

stressed by system dynamics and archetypes can easily be represented by a holding 

tank whose output is connected to its input. Thus, continuous modeling with Extend 

is a good fit for the system dynamics modeling approach described above. 

Out model consists of approximately 350 Extend basic “blocks”, such as constants 

or holding tanks. We outline it here, with complete details left for Appendices II and 

III.  



 

 6 
 

In the model, staff-hours (of the system administrators) can be allocated to various 

tasks related to the security of a typical system. We model the following seven 

countermeasures: 

• “Firewall Efforts.”   Overseeing and maintaining the system’s firewall.  

• “Antivirus Efforts.”   Maintaining the system’s antivirus software, keeping it 

updated, resolving user issues related to the antivirus. 

• “Intrusion Detection System (IDS) Efforts.”  Maintaining the IDS, 

installing new signatures, resolving alarms. 

• “Encryption Efforts.”   Maintaining the system’s encryption software. 

•  “Enforcement Actions.”   This includes tasks such as: scanning for and 

fixing configuration vulnerabilities, which are effectively “doors” to the 

system that were inadvertently left open; monitoring the users to prevent 

unsafe practices, such as downloading viruses or using “weak” passwords 

which are easily guessed; applying proper access control to prevent 

unauthorized use; and more generally, devising and enforcing a company 

security policy. See [Dan04] for more on these tasks. All of these require no 

additional hardware or software per se, only a great deal of attention from the 

support staff (or system administrators). 

These appear as the five most prevalent “security technologies” used in Gordon’s 

survey ([Gor05a]) of 700 corporate, governmental, and academic institutions, where 

we have subsumed Gordon’s “Access Control Lists” under our term “Enforcement 

Actions.”  To these five we add a task familiar to any computer user: 



 

 7 
 

• “Software Patches.” Downloading and installing patches to correct 

vulnerabilities in the operating system(s) and applications; resolving problems 

caused by patches. 

Lastly, we consider a somewhat different approach that has only recently been 

discussed by the security community: 

• “Tolerance Measures.”  This includes designs to tolerate an attack (rather 

than prevent or detect it), even if it succeeds. Multiple layers, graceful 

degradation of performance, and (in some instances) backups are all tolerance 

measures.  

In our current model, the effectiveness of each countermeasure is a factor only of 

the countermeasure’s presence or absence (implemented as a series of Y/N switches 

in the model) and the number of staff-hours per machine allocated to the 

corresponding task. Although the IDS and firewall seem independent of the system 

size, additional machines will mean additional alarms, which will require more 

attention. Additionally, the system has an overall vulnerability measure, which is 

reduced by the number of staff-hours per machine allocated to enforcement actions 

and software patches.  

The attacks on the system are divided into two categories: “Simple” (or “kiddy-

script”) attacks tend to rely on known vulnerabilities and require little action from 

the attacker other than downloading and running the attack. “Sophisticated attacks” 

may involve finding new vulnerabilities, can often defeat many countermeasures, and 

usually come from a single knowledgeable attacker, such as one who might actually 

write the “kiddy-scripts” of the former category. While viruses, which are the 



 

 8 
 

costliest type of attack according to the respondents of [Gor05a], are written by some 

very sophisticated attackers, an existing virus propagates in well-understood ways 

and can be easily defeated by the proper countermeasures; we thus include viruses in 

the “simple attack” category.  

For both categories (simple and sophisticated), a specified number of attacks are 

considered to be attempted against the system each day. (Alternatively, the simulation 

can also be set to add some random variation to the specified number of attempts.)  

Given the effectiveness of each of the various countermeasures, and the system’s 

vulnerability (or lack thereof), a fraction of those attacks will succeed. The primary 

outputs of our current model, then, are the numbers of “successful simple attacks” 

and “successful sophisticated attacks.”  Note that a result of “n successful simple 

attacks” may not appear as n separate incidents. Several of these may exploit the 

same vulnerability, turn out to be variants of the same virus, and so on. For now, the 

number of successful attacks should be taken only as our metric of the quality of 

countermeasures versus attempted attacks. 

  

1.5 Thesis Structure 

The remainder of this thesis is structured as follows: Chapter 2 introduces the 

Symptomatic Fixes (or “Shifting the Burden”) archetype; describes one instance of it 

in computer security as we have modeled it; discusses the results of several different 

simulations based on it; and considers how this archetype might apply elsewhere in 

security. Chapter 3 goes through a similar approach with the Escalation archetype. 

Chapter 4 introduces the Limits to Growth archetype, whereupon an instance is 



 

 9 
 

described that describes a combination of Limits to Growth and Escalation. Chapter 5 

outlines related work, and Chapter 6 gives conclusions and some future work. This is 

followed by Appendices I, II, and III, a bibliography, and finally a list of this author’s 

publications and submissions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 10 
 

Chapter 2: Symptomatic Fixes Archetype 

 

2.1 Symptomatic Fixes Description 

In this archetype, the symptoms of a problem are observed. Rather than analyze the 

root cause of the problem, the manager (or “decision-maker”, or “actor”) attempts to 

fix the symptom. This “shifting of the burden” from the problem’s actual cause to its 

symptom often distracts the manager from the former; it can also mask the symptoms 

of the original problem, making it more difficult to diagnose.  

Armed with an understanding of this archetype, a manager will consider the 

possibility that the most readily apparent solution may not ultimately be the best one. 

Instead, time must be taken to analyze, and only then properly treat, the root cause. 

For a simple illustration in computer security, we paint a scenario in which a 

company’s computer system (or just “system”) is continually falling prey to 

successful attacks known as “kiddy-scripts.” These attacks are launched by novice 

attackers, and generally only succeed if the system contains vulnerabilities such as 

software that is not up-to-date. The successes of these attacks should be seen as a 

symptom of a deeper problem. Reducing the system’s vulnerability to thwart these 

attacks could be considered a fundamental solutions; such a fundamental solution 

would include the frequent installation of software patches. It is possible (in fact, 

likely) that implementing such a solution properly will take time and thus not yield 

dramatic gains very quickly; in the long run, however, positive effects of this solution 

will be observed. We choose software patches as one action that can be taken to 



 

 11 
 

reduce overall system vulnerability vis-à-vis kiddy-scripts, though it is certainly not 

the only action. 

Alternatively, it is all-too-possible for a company to instead view the successful 

attacks as the only issue here and therefore install an Intrusion Detection System 

(IDS) to detect the occurrence of these attacks – a symptomatic fix. The company’s 

support staff (or “system administration staff”) is then too distracted from installing 

patches. In time, many new vulnerabilities will be discovered in the software run by 

the system; once published, these will be exploited by new “kiddy-script” attacks. 

Invariably, a certain percentage of attacks do evade an IDS, and thus, as the known 

vulnerabilities in the system increase, the number of successful attacks will also 

increase, despite the company’s continued efforts to install, maintain, and improve 

their IDS. These effects are displayed in Figure 1, an “influence diagram” showing 

the effects of given variable on one another over time.  

In this diagram, we begin in the center with the problem symptom of successful 

simple attacks. In the loop beneath the symptom, we see the fundamental solution: 

increased successful simple (or “kiddy-script”) attacks cause an increased need for 

the fundamental solution of applying software patches, and, in fact, applying this 

solution will reduce the problem symptom. Such a loop can be described as “more of 

A leads to less of B leads to less of A, and so on until equilibrium is reached”, and is 

known as a “balancing loop.” Alternatively, the symptomatic solution is found in the 

loop above the problem symptom. If we focus on this loop itself, it appears to offer 

the same advantages as the fundamental fix, sometimes more easily or more rapidly 

in the short term (though this is not indicated in the influence diagram). 



 

 12 
 

Unfortunately, though, we also see that an increased use of the IDS can increase a 

side effect: the distraction of the support staff from other tasks, including patch 

application. This, of course, reduces the chance of a fundamental fix being applied. 

Starting at the top of the diagram and proceeding around its periphery clockwise, we 

see: increased IDS efforts leads to an increase in support staff distraction, therefore 

less patches are applied; the problem symptom will re-emerge, and more of the 

symptomatic fix will be attempted. This loop can be described as “more of A causes 

more of B causes more of A, and so on”, and is known as a “reinforcing loop.” 

[Wol03] includes this archetype under his more generic term “Out-of-Control”, as a 

balancing loop is desired to control the problem symptom, but it is not obtained. 

 

Fig. 1. Influence Diagram for a “Symptomatic Fixes” Situation. 

 

2.2 Simulation Setup 

 
To see quantitative results, an Extend model was used simulating a system 

containing on the order of 200 machines, sustaining 100 simple attacks per day. A 

certain percentage of these attacks will be defeated by an IDS (and depending on how 



 

 13 
 

well the IDS has been maintained), and a certain percent will be defeated if the 

system’s software is well-patched. Note that even if we say “n% of the attempted 

attacks succeeded”, the system’s users may not observe for 100 attempted attacks, n 

separate failures, as many of these attempts might target a small set of specific 

vulnerabilities and exploit them in the same way. Similarly, no single countermeasure 

should be expected to reduce the attack success rate to 0 by itself, as there are enough 

different types of attack that any single countermeasure can be defeated. We use the 

percentage of successful attacks only as a measure of the system’s defenses and 

vulnerabilities. It is assumed that the software of this system is initially patched 

partially; therefore there is room for improvement if further patching is undertaken, 

while a loss will be felt if patching is ignored (as the discovery of new vulnerabilities 

will bring the software’s status from “partially patched” to “mostly unpatched.”) The 

model was executed for the equivalent of 6 months (real time) with different 

scenarios. (Each execution of this type runs in under 30 seconds on a conventional 

Pentium III computer running Windows 2000 Professional.)  

For examining the effect of different effort allocation to the fundamental and 

symptomatic solution, we executed the simulation for four scenarios s1, s2, s3, and 

s4. In all four scenarios, the system is under pressure for the first d1 days while the 

rate of successful attacks rises. This is due to the discovery of additional 

vulnerabilities. On day d1+1, however, the company embarks on some course of 

action. Here we chose d1 = 9, to demonstrate the effects over several days of taking 

no action at all. 



 

 14 
 

In our first scenario, “s1”, from day d1+1 onwards, the company has its support 

staff dedicate a certain number of staff-hours per day to installing software patches to 

all the system’s computers. This effort is held constant throughout the six-month 

period. The “if-then” rule that describes the organization’s efforts in this scenario is 

given by:  

IF: (Day> d1) 

THEN: Staff-Hours for Patches := x1.  

For the hypothetical situation that we are modeling, we considered 3 staff-hours a 

reasonable value for x1 given the description of our system. This is considered the 

“fundamental fix” scenario, or the “solution” to the Symptomatic Fixes archetype. 

In our second scenario, “s2”, the company deploys an IDS on day d1+1. For the 

next 170 days, efforts are gradually increased to maintain and improve the IDS: as 

new attacks are discovered, new plug-ins are added; as a consequence, more alerts 

that are signaled by the IDS must be analyzed, requiring more effort (although some 

of them might be just false alarms). In an attempt to keep the IDS functioning well, 

the company increases its IDS efforts with the following rule:  

Begin with y0 staff-hours for the IDS.  

FOR: every day 

IF: (Successful Attacks today > Successful Attacks two days ago) 

THEN: increase staff-hours for IDS by y.  

We have assigned the values y0 = 1.5, y = 0.03. (This will lead to a gradual 

increase from moderate IDS effort at day ten to a strong IDS effort of approximately 

seven staff-hours by the end of the simulation.) Meanwhile, as IDS efforts increase, 



 

 15 
 

less efforts are available for patches: Staff-hours for Patches := 4 – Staff-Hours for 

IDS, to a minimum of zero. We consider this our case of “increasing efforts to the 

symptomatic fix while decreasing efforts for the fundamental solution”, or a strong 

instance of the “problem” archetype. 

Our third scenario, s3, takes this a step further: as of day d1+1, the same IDS 

efforts are made as in s2, but no patch efforts are made at all. Here we interpret the 

increasing side-effect loop in Figure 1 as the strengthening over time of the “mental 

barrier” (as [Wol03] calls it) that prevents consideration of the fundamental solution. 

Additionally, the side-effect loop is common for this archetype but not required, see 

[Sen90]. In any case, s3 is an even more extreme case of the problem archetype for 

Symptomatic Fixes. 

Lastly, our fourth scenario s4 considers an alternative solution, one which the 

archetype literature concedes as sometimes viable. If the company understands its 

priorities, then it may be possible to use both the fundamental solution and a small 

dose of the quick fix. This would be codified by the following rules:  

Staff-hours for Patches := 4 – Staff-Hours for IDS, as before.  

The difference is the rule for IDS efforts:  

Begin with y0 staff-hours for the IDS.  

FOR: every day 

IF: {  

 (Successful Attacks Today > Successful Attacks two days ago) 

AND (staff-hours for IDS <= z)  },  

THEN: increase staff-hours for IDS by y.  



 

 16 
 

The value of y is the same 0.03, but y0 is now reduced to 0.2. As in s1, we assume 

that a proper effort for patches can not be made with less than three staff-hours, so we 

set z to 1. s4 can thus be described as “symptomatic fix supplementing the 

fundamental fix.”  (Note that no “burden” is being shifted per se if the company 

understands what is fundamental and what is not.)   

 

2.3 Results and Discussion 

 
 The primary outputs of these four scenarios, i.e. number of attacks successful per 

day, are plotted for comparison in Figure 2. We can also integrate under the curves of 

Figure 2, giving us the number of cumulative successful attacks for each of the four 

scenarios; these will be displayed in Table I below. 

 

Fig. 2. Successful Attacks per Day for the Four Symptomatic Fixes Scenarios 

 

Several important features can be observed in Figure 2. Firstly, when comparing 

the fundamental solution (s1) to the symptomatic fixes (s2 and s3), we see that the 

symptomatic fixes appear to do a much better job initially (e.g. looking at Day 30, s2 

and s3 are approximately 10 successful attacks lower than s1), but by the end of the 

simulation period, the fundamental solution is far more successful: at Day 180, s1 is 



 

 17 
 

22 successful attacks lower than s2, and 32 lower than s3. This demonstrates a 

common pattern in the performance of symptomatic fixes – while the symptomatic fix 

can cause temporary drops in the problem rate, the overall trend over time is for the 

problem rate to increase. (Diagrams similar to Figure 2 are seen in describing this 

archetype in [Sen94] and [Bra02].) While the security staff is distracted by the rises 

and falls in the performance of the IDS, the system’s current software vulnerabilities, 

as well as those newly discovered, are neglected, leading to a rise in the percentage of 

attacks that are successful. The overall trend is a linear increase; this is not surprising, 

as we have modeled the vulnerabilities in unpatched software as increasing linearly in 

time. Comparing s1 against s2 and s3 also stresses the importance of behavioral 

monitoring over time. Were we to stop the simulation after one month or so, our 

conclusions would be very different as to what measures are most effective!  

Focusing on s3, we see that it presents an even more extreme case of s2’s failures, 

as the patch efforts have been eliminated entirely. Lastly, we turn our attention to s4. 

Recall that s4 begins with less IDS efforts than s2 and s3; it therefore appears initially 

to allow more attacks to succeed, e.g. at Day 16, s4 is 2 successful attacks higher than 

s3, and 3 higher than s2. However, by the end of the simulation period, s4 is clearly 

the winner in reducing successful attacks. Notice as well the height for the “waves” of 

symptomatic fixes: they are greatest in s3, smaller in s2, and smaller still in s4; this 

height represents the degree of the “crisis/fix” pattern, which is lowest when the 

proper application of fundamental fixes prevents crisis action (s4), and greatest when 

no fundamental fix is present (s3). Lastly, while s4 clearly prevents more attacks than 



 

 18 
 

s1, notice how they approach each other asymptotically – in the long run, adding the 

symptomatic fix will cease to provide any good beyond the fundamental solution. 

We now turn our attention to the effort required in each of these scenarios. s1 

consisted simply of a constant 3 staff-hours per day for patches, and nothing else. 

Figure 3 shows the efforts of the support staff, in staff-hours per day, invested in s2, 

in which IDS efforts decreased patch efforts. 

 

Fig. 3. Efforts per Day for s2, the IDS-Decreases-Patches Scenario 

 

Notice how patch efforts decrease steadily until approximately Day 120, at which 

point they stay at zero for the remainder of the simulation. Until Day 120, any efforts 

for IDS came out of efforts for patches, so total efforts were constant; after Day 120, 

the total efforts are all IDS efforts. Figure 3 further highlights the attractiveness of the 

symptomatic fix, as the initial IDS effort requires less staff-hours per day (less than 2) 

than what would be required of a fundamental fix (a steady 3 for s1). In the long run, 

however, staff-hours are continuously added to the IDS effort in an attempt to raise its 

results; by the time six months have passed, the company realizes that it is investing  

6 staff-hours per day into the IDS. We can also integrate the curves in Figure 3 to 

measure cumulative effort of the simulation period, to be shown in Table I. 

In s3, the only efforts present are those for IDS. These are shown in Figure 4. 



 

 19 
 

 

Fig. 4. Efforts per Day for s3, the IDS-only Scenario 

Observe that by Day 180, approximately 6.25 staff-hours are being used for IDS 

efforts. In s2 (see Figure 3), that number was only approximately 5.8. The same rule 

produced both figures: “increase IDS efforts every day that successful attacks are 

higher than they were two days ago.” Compared to s3, s2 allowed for some patches as 

well, so there were less days when this trigger occurred, therefore less IDS efforts 

were demanded over the course of the simulation. 

Lastly, Figure 5 displays the efforts of s4, which combined IDS and patch efforts 

with an emphasis on the latter. 

 

Fig. 5. Efforts per Day for s4, the IDS-Supplements-Patches Scenario 

 

Notice how few increases are made to IDS efforts. Again, this happens because the 

trigger condition of successful attacks being too high is very rarely met, due to the 

appropriate patching strategy. 

We now compare all four scenarios in terms of their cumulative effort and 

cumulative successful attacks, as displayed in Table I. 



 

 20 
 

Considering cumulative values, we see indeed that cumulative successful attacks 

are lower for s1, the fundamental solution, than for symptomatic fix scenarios s2 and 

s3. 

Table I: Cumulative Successful Attacks and Efforts for All Four Scenarios 

 Cumulative Successful 
Attacks 

Cumulative Efforts 
(Staff-Hrs.) 

s1 3833 513 
s2 4007 740 
s3 5232 689 
s4 2345 684 

 

Noticing that s1 requires over 100 less staff-hours’ worth of effort than s2 or s3, 

we see that in the long run, the fundamental solution is not only more effective than 

the symptomatic fix; it is less costly as well. The only question remaining is in 

comparing s1, “fundamental solution alone”, with s4, “fundamental solution 

combined with symptomatic fix.” A company will have to decide for itself whether 

the additional 151 staff-hours of efforts are worth the reduction in 1500 successful 

attacks. How such calculations are made is touched upon in related work, below. In 

any case, simulation allows the company to consider the effects of its actions, and 

choose its optimal course with these effects in mind. 

By analogy with these results, when other variables of interest in the system have a 

similar evolutionary trend, the Symptomatic Fixes archetype might be manifesting 

itself. In that case, the situation must be diagnosed and the real cause and the 

corresponding solution must be examined; this solution has to be applied, thus fixing 

the real problem. Of course, the results of this shifting must be monitored over time, 



 

 21 
 

to make sure that the diagnosis was correct and that the solution was correctly 

implemented. 

Lastly, the above simulations show the applicability of the model as a decision 

tool, by allowing one to see the effects of different proposed solutions before 

implementing them. In the example presented here, the decision was regarding the 

allocation of effort to different security efforts (IDS and patches). The model might 

also be useful in exploring and making security policies, as well as for training 

security staff.  

 

2.4 Other Instances of Symptomatic Fixes in Security 

 
We have presented only one possible instance of Symptomatic Fixes here, and thus 

we have opened the door to many related opportunities. Our simulation model 

includes many security-related tasks not described here (such as user training, 

enforcement of the security policy, and maintaining tolerance measures such as 

backups, to name a few), and in place of the Patch Efforts described here, this 

simulation could be run with other tasks or some combination thereof, as well as 

considering more-sophisticated attacks. Just as different parties may see different 

tasks as “the” fundamental solution ([Sen94]), attacks of different sophistication may 

have different “fundamental solutions.”  

Additionally, [Sen90] finds that the best way to describe the history of a particular 

company’s strategies is by combining the Symptomatic Fixes archetype with another 

archetype, namely Limits to Growth. Thus, the applicability of this combination and 

other archetype combinations should be considered in computer security as well.  



 

 22 
 

A variant on Symptomatic Fixes described in [Sen90] and [Sen94] is known as 

Shifting the Burden to the Intervener, in which the fundamental fix involves the 

internal actors repairing problems, and the symptomatic fix involves outsiders. This 

brings to mind some sentiments in the security community about security being 

incorporated into system design at each step of the process, rather than ignoring 

security and relying on an expert to add security features shortly before release or 

deployment.  

Lastly, there has been much discussion in the security community (see [Hun06]) 

regarding whether better security behavior should be taught to the users of a system, 

or placed entirely on the shoulders of the system administrator. Similarly, in a system 

where the roles of system administrator and security officer are divided, the 

interactions between them may follow archetypal patterns. We had begun to 

document anecdotal accounts of such interactions, and our model leaves room to add 

detail to its human-factors portion of the model, including the interactions between 

users, system administrators, and security officers. Shifting the Burden to the 

Intervener could thus shed light on these human interactions.  

For additional information of Symptomatic Fixes as it pertains to security, please 

see [Ros06b], from which this chapter was excerpted. 

 

 

 



 

 23 
 

Chapter 3: Escalation Archetype 

 

3.1 Escalation Description 

 
In the Escalation archetype, each of two parties makes efforts and achieves results 

towards reaching its own well-defined goals. However, each party desires greater 

results than its counterpart. Thus, each party continues to increase its efforts, with 

neither party achieving dominance for an extended period. This can theoretically 

continue ad infinitum.  

As an instance of this archetype in security, we investigate the action-reaction 

effects of attacks on an organization’s computer system and the organization’s 

attempts to better defend its assets, all the while advertising its strengths in an attempt 

to attract more business. We begin with a company that spends little on security 

measures, but sustains few attempted attacks because it’s not a very well-known or 

worthwhile target. While some simple “kiddy-script” attacks blindly go after any 

available computer system and can be seen as the ever-present “attack noise”, other 

simple attacks (such as a “Zombie DDoS”, see [Gib02]) are consciously directed at an 

organization by an attacker. These are more likely if the organization is better-known. 

Furthermore, an organization will be targeted by sophisticated attacks if its assets are 

valuable (e.g. credit card numbers stored on its servers), or if its defenses are 

considered formidable, in which case breaching them poses a worthwhile challenge. 

We suppose that the organization decides to attract new customers by increasing 

its security spending and advertising its new security strength. As the prominence 



 

 24 
 

and/or asset desirability of the organization rise, the motivation to attack its system is 

increased, raising both the quantity and sophistication of attempted attacks. To 

counteract these, the company increases security spending again. Alas, this furthers 

the motivation to attack, leading to another increase in attempts. This process can 

continue for several more rounds. 

These effects are displayed in Figure 6, an influence diagram showing the effects 

of given variable on one another over time. (Similar influence diagrams are drawn for 

archetypes in [Bra02].) 

 

 

Fig. 6. Influence Diagram for Escalation 

 

The upper loop in Figure 6 reads as follows: “Increasing the organization’s 

security efforts will decrease the number of successful attacks against it. An increase 

in successful attacks leads to a greater threat to the organization. The greater the 

threat, the more security efforts will be added to counter it.”  Thus, if the attackers’ 

efforts are constant, we would observe the following behavior: increased security 



 

 25 
 

efforts will decrease the number of successful attacks, decreasing the threat to the 

organization, decreasing the need for additional security efforts. This forms a 

“balancing” or “negative” loop, as after several rounds of such behavior, no further 

efforts will be required.  

A similar pattern is found in the lower loop: “Increased successful attacks cause 

the organization to advertise less. (We assume the resources that would have been 

funneled into advertising are now needed to recover from all of the attacks.)  

Advertising efforts increase the motivation to attack the organization, leading to more 

efforts on the part of the attackers, and therefore more successful attacks.”  Thus, the 

attacker behavior in and of itself should also form a balancing loop, as enough 

successful attacks will prevent any advertising, at which point the organization is no 

longer a very visible or worthwhile target, so attack efforts are not increased again.  

However, in our scenario, both the organization and the attackers respond to one 

another, violating the assumptions we had made for balancing loops. Traversing the 

outermost loop of Figure 6 describes the overall behavior: an increase in the 

organization’s security efforts increase its advertising efforts (or otherwise raise its 

prominence and asset desirability), increasing the motivation and therefore the efforts 

to attack the organization, leading to a rise in successful attacks. The organization 

feels threatened and therefore increases its security efforts, and the spiral continues 

from there. As both the organization’s and the attackers’ efforts continue to increase 

in time, this forms a positive loop. The number of successful attacks, however, 

reflects the ratio of attackers’ efforts to the organization’s security efforts, and thus 

should exhibit stable oscillations. [Wol03] describes this archetype as “Relative 



 

 26 
 

Control”, as each party’s balancing loop is used in an attempt to gain control over the 

relative quantity “success of one party / success of the other party.” 

 

3.2 Simulation Setup 

Clearly in our case, the number of successful attacks becomes the barometer of 

“success of attackers compared to success of defenders.”  Increased efforts by 

attackers over time can be modeled by an increasing number of attempted attacks, 

both simple and sophisticated. The organization’s efforts can be fulfilled by: 

introducing countermeasures that were not previously present; changing the 

allocation of support staff-hours to various tasks; training the support-staff (which, to 

a point, increases their effectiveness); and increasing the staff-hours available for 

security tasks. The latter may require hiring in the long run, but in the short term may 

often be achieved simply by encouraging overtime, reassigning personnel within the 

company, etc.  

In the simulation scenarios presented here, we have simplified by limiting the 

organization to one action, namely increasing staff-hours, and did not include other 

actions. We assume that all countermeasures are present, but they all begin with 

inadequate support staff. In time, increasing the staff-hours to each task will result in 

a greater number of attacks not successful. We have further simplified by scripting 

the actions of both the organization and the attackers as an automated series of “If-

Then” rules, so the simulation runs without external intervention. The rules we use 

are based on our assumptions of how a company in such a situation would behave, 



 

 27 
 

and they quantitatively capture the qualitative behavior described in Figure 6. These 

rules are as follows: 

The organization decides to increase efforts:  

FOR: every x1 days 

IF: (Successful Simple Attacks > x2) 

THEN: increase staff-hours allocated to Antivirus, Firewall, IDS, Enforcement   

  Actions, and Software Patches by w
v

= {w1, w2, w3, w4, w5}, respectively. 

These tasks begin with 0w
v

 staff-hours allocated at the start of the simulation.  

These countermeasures and vulnerability-reduction tasks are very effective at 

preventing or detecting simple attacks. Faced with sophisticated attacks, however, 

their effects are diminished: the antivirus does not address these attacks, which aren’t 

viruses; the IDS and firewall can sometimes be deceived; and enforcement actions 

and software patches can only reduce known vulnerabilities, whereas the 

sophisticated attacker may discover and exploit new vulnerabilities. Thus, the 

company responds to sophisticated attacks in a different way than to simple attacks:  

FOR: every x1 days  

IF: (Successful Sophisticated Attacks > x3)  

THEN: increase staff-hours allocated to Encryption by v1 and Tolerance by v2. 

Tolerance and Encryption are allocated 0v
v

 staff-hours at the beginning of the 

simulation.  

We assume that these countermeasures are no less effective against sophisticated 

attacks than against simple attacks. Today’s commercial encryption is believed to be 



 

 28 
 

unbreakable by any private individual with a handful of computers, no matter how 

clever, and tolerance works despite the success of the attack.  

As some tasks may require more staff-hours than others to be done well, different 

numbers can be specified for each task. In any case, decisions to increase staff-hours 

are implemented as follows: Any increase in staff-hours requires a d1 day delay to 

reassign personnel. d2 days after the increase occurs, the company advertises its 

added security efforts.  

This leads the attackers to launch additional attacks, according to the following 

assumed behavior: Begin with y1 simple attacks. Any day that advertising is present, 

increase the simple attacks by y2%.  

 Simple attacks can be increased rapidly, as this merely requires directing 

automated “kiddy-scripts” against the system. The number of sophisticated attacks, 

however, grows at a different (generally slower) rate: Begin with y3 sophisticated 

attacks. Any day that advertising is present, wait d3 days as sophisticated attacks are 

prepared; then increase the sophisticated attacks by y4%.  

In our execution, the number of simple attacks attempted is given by the above 

rules. To allow for some randomness, we chose to let the number of attempted 

sophisticated attacks vary by a (Gaussian) standard deviation of 5%. Additionally, if 

the number of successful sophisticated attacks is found to be between 0 and 1, then a 

random number is drawn to determine if the attack succeeds.  

We simulate a system of approximately 200 machines, choosing a simulation 

period of six months (180 days). Keeping these numbers in mind, we have run the 

simulation with the following values: x1 = 7, x2 = 4, x3 = 1, 0w
v

 = {1.8, 2.2, 6.0, 2.4, 



 

 29 
 

2.4}, w
v

= {1.1, 1.3, 3.7, 1.5, 1.5}, 0v
v

 = {0.72, 0.87}, v1 = 1.8, v2 = 2.2, y1 = 20, y2 = 

29.8, y3 = 0.6, y4 = 9, d1 = 14, d2 = 5, and d3 = 2. In our opinion, these values, used 

with the above rules over a 180-day period, describe a linear progression from 

minimal attention to complete dedication vis-à-vis staff-hours for security tasks.  

 

3.3 Results and Discussion 

 
Successful attacks per day are used as our measure of “organization’s efforts vs. 

attackers’ efforts”; the results are shown in Figure 7.  

 

 

 

 

 

 

Fig. 7. Successful Attacks per Day, First Escalation Scenario 

 

Certainly from Day 90 onwards, the system reaches a sort of equilibrium, as 

successful attacks hover around 13. This is a result of the matched opposing efforts of 

the organization and the attackers. Yet while the overall metric (i.e. successful 

attacks) does not change much, both efforts are ongoing. Figure 8 shows the efforts of 

the organization, in staff-hours per day dedicated to security tasks. 

 



 

 30 
 

 

Fig. 8. Staff-Hours per Day, First Escalation Scenario 

 

According to the rules and the specific values of the variables described above, the 

first decision to increase staff-hours occurs at Day 7, and is implemented fourteen 

days later; thus, the first increase is seen at Day 21. After that, increases can occur as 

often as every seven days: decisions to increase are made every seven days, and 

previous weeks’ decisions will be implemented while waiting the fourteen days for 

this week’s implementation. Overall, the organization’s efforts grow, fairly linearly, 

up to approximately 220 staff-hours per day. Assuming eight-hour days, this 

translates into twenty-seven people, which is high but not unreasonable for a system 

of 200 machines. Of course, this growth is matched by the increase in both simple 

and sophisticated attacks. Figure 9 shows the attempted simple attacks. 

 

Fig. 9. Attempted Simple Attacks per Day, First Escalation Scenario 

 



 

 31 
 

The number of attempted simple attacks can rise rather drastically, as this only 

requires that novice users unleash their automated processes against the system. This 

reaches almost 9,000 attempted attacks on the entire system per day, or 45 attempts, 

including viruses, per machine. While we stress the behavioral trends here much 

more than the specific numerical results, these numbers can be “reality-checked” 

against some empirical findings involving honeypots. [Dac04] observed attacks from 

6,285 IP addresses over four months, averaging over two new attack sources per hour. 

Similarly, [Pou04a] observed 28,722 new attack sources over sixteen months. 

[Pou05] found 924 attack sources per day in Germany, and [Pou04b] mines a year of 

collected data and concludes with a very conservative estimate of 753 attack tools 

available to simple attackers. In light of these results, and considering that in our case, 

the organization has “begged for attacks” by advertising, our numbers seem fairly 

realistic (or in agreement with the existing empirical data.)   

Figure 10 shows the daily average of attempted sophisticated attacks.  

 

Fig. 10. Attempted Sophisticated Attacks per Day, First Escalation Scenario 

 

The growth of attempted sophisticated attacks is much slower, as it requires higher 

human effort and expertise. 

We also observe that the linear increase in the Organization’s Efforts (i.e. staff-

hours) can balance out the exponential increase in Attackers’ Efforts (i.e. attempted 



 

 32 
 

attacks). This is the case because in our model, a linear growth in countermeasure 

effectiveness leads to a lower percentage of successful attacks – an exponential 

decline.  

Our simulation resulted in an overall relatively constant average number of 

successful attacks, an equilibrium of sorts between the results of the two striving 

parties (organization and attacker). Given these results, an organization may attempt 

to “beat” this escalation by increasing its efforts beyond the values given here; or it 

may consider cutting costs by reducing its efforts, if the results will be the same. We 

therefore ask how this equilibrium is affected if we modify the values representing 

the amount and frequency of increases in security efforts. 

Firstly, we ask how much can be gained by the organization if it increases its 

efforts a bit more. In this scenario, when staff-hours increase, they increase not by w
v

, 

but by 1.1w
v

 instead. Figure 11 shows the results. 

 

Fig. 11. Successful Attacks per Day: Results of 10% Increase in Efforts 

 

Compared to Figure 7, Figure 11 has a similar overall shape, but the average 

number of successful attacks hovers around 10, versus the 13 of Figure 7. Thus, by 

increasing efforts by 10%, the organization can reduce its equilibrium by 3 successful 

attacks.  



 

 33 
 

Secondly, we ask how much is lost if the organization does not increase its efforts 

as much. Now the increase in staff-hours is notw
v

, but 0.9w
v

 instead. Figure 12 shows 

the results. 

 

Fig. 12. Successful Attacks per Day: Results of 10% Decrease in Efforts 

 

Suddenly, the equilibrium has risen to approximately 25 successful attacks. (It is 

not even clear whether an equilibrium exists by the end of the period, given the 

graph’s steep climb from Day 140 onwards.)  Thus, for a company considering 

changing its efforts, simulation here has shown that a small increase in efforts will not 

do much good, but a small decrease in efforts will cause much harm. This echoes 

[Sen90]’s discussion of “leverage”, the large effects of small changes. A benefit of 

simulation is thus demonstrated. 

Lastly, we test the sensitivity of this equilibrium by modifying a different value. 

Instead of the amount of the efforts’ increase (i.e. w
v

), we change the frequency of 

increased efforts. x1, the delay between increases (if increases are required), had been 

7. We now change it to 6, and run the simulation. Intuitively, since the organization’s 

reaction is more frequent, we expect the number of successful attacks to decrease. 

The results are shown in Figure 13.  



 

 34 
 

 

Fig. 13. Successful Attacks per Day: Results of More Frequent Efforts 

 

Clearly, by Day 160, the equilibrium has been upset. The increase in attempted 

attacks is outpacing the increased efforts of the organization, and successful attacks 

begin to climb. This is due to the fact that the organization’s more frequent efforts 

consisted of security spending followed by advertising, which attracted more frequent 

efforts of the attackers that it could not match. This example illustrates not only the 

utility of simulation for predicting the effects of small changes, but also the benefits 

of simulation in revealing unexpected behavior. This example also demonstrates a 

systems concept: sometimes the best way to survive an Escalation scenario is to not 

react as often, even if a reaction appears necessary. [Sen90] gives a case study of two 

manufacturers of a new design of stroller, both of which are making a respectable 

profit margin on their sales. Then the manufacturers entered Escalation, lowering 

their prices in an attempt to raise market share. Little time passed before both 

manufacturers no longer had a profit margin. The risk of reaction (reduced profit 

margin) had not been weighed against the risk of no reaction (reduced market share), 

and perhaps a slower reaction may have offered the greatest overall gain. Similarly, 

we have demonstrated the possibility that an organization can be out-escalated by its 



 

 35 
 

opponent. Simulation thus grants the would-be entrant into Escalation the opportunity 

to pause and consider such outcomes.  

Returning to our security scenario, we had described the increase in attacks as due 

to the organization’s advertising. While some companies (e.g. search engines) cannot 

exist without high visibility, our results behoove an organization to consider the 

effects of its advertising and whether they outweigh the risk of additional attacks. 

Additionally, the automated “if-then” rule for advertising used here was to advertise 

anytime an increase in efforts is made. While the influence diagram of Figure 6 

indicates that enough successful attacks will prevent further advertising, our if-then 

rules had assumed that point was not yet reached in the system, e.g. it only occurs 

when successful attacks reach 60 or higher. 

Alternatively, a rule can be constructed which states, “Advertise only if successful 

attacks are below a certain threshold.” Such a rule is included as part of the 

Escalation behavior in Chapter 4.  

All of the above scenarios involved automated rules to govern the choices of both 

organization and attackers. As an alternative, the model also allows for a rule of 

“pause the simulation whenever a certain condition occurs.”  In our case, then, pauses 

may be configured, for example, whenever the successful attacks (simple, 

sophisticated, or sum of the two) exceed a threshold value. The simulation then 

pauses, and the end-user of the simulation may consider making changes such as 

introducing a new countermeasure or increasing staff-hours before resuming the 

simulation. The behavior over time of the aggregated attackers can also be paused and 

adjusted by hand; this feature may be useful to security researchers, but for a 



 

 36 
 

company considering the impact of various choices that it could make, the attacker 

behavior is out of its hands and would thus presumably be represented by automated 

rules.  

Lastly, here we assume that the organization is free to increase its efforts without 

any additional constraints. Practically, such increases may carry risks other than those 

of increased attacks; such risks are described by another archetype, Limits to Growth, 

and are described in the next chapter. 

 

3.4 Other Instances of Escalation in Security 

 

On the Escalation archetype, [Sen90] lists the international arms race as the most 

obvious example of Escalation, and  [Hof05] specifies an “information technology 

security arms race.”  This arms race consists of advances in attack technology, which 

necessitate improvements in security technology. For example, [Hof05] argues that 

“with the advent of binary differs . . . patching is no longer a viable defense strategy”, 

and instead advocates recent advances in Intrusion Prevention Systems. But this 

“race” develops over the course of a decade or longer: see [Dwa05] for a timeline 

from the 1980s to today. Given the vast unpredictability of long-term innovation, this 

is hardly something a single organization can simulate to aid its decision-making; we 

have thus chosen not to model it here.  

[Sen90] also suggests a generic solution to this archetype’s woes: often there can 

be an agreement to reverse the cycle, as each party agrees to simultaneously “ease 

off.”  While this may succeed in international politics (as it arguably did in détente), 



 

 37 
 

the notion of “we’ll use less security technology if you agree to attack our computers 

less” is obviously not applicable in this case, particularly when the anonymous 

attacks, attackers, and motivations are myriad. This option is therefore not considered 

in our scenario. 

For additional information on Escalation in computer security, please see 

[Ros06a], from which this chapter was excerpted. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

 38 
 

Chapter 4: Limits to Growth and Escalation Archetypes, 

Combined 

 

4.1 Limits to Growth Description 

In the Limits to Growth archetype, a growing action is applied, which leads to 

increased gains or results. These gains encourage further growth, forming a 

reinforcing loop. However, the gains soon reach some natural limit, at which point the 

limiting process places downward pressure on further gains. Despite continued 

growth action, the gains will plateau and, in some cases, decline.  

As an instance of this archetype in security, we consider the effects of security 

demands on an organization’s computer staff of a fixed size. Suppose that an 

organization has a certain number of employees dedicated to various computer-

related tasks such as technical support, hardware maintenance and upgrades, and 

security-related tasks such as monitoring a firewall or an IDS, or maintaining 

antivirus software. Initially, the organization pays modest attention to security, but 

then decides to make some investment in it. Whether the investment includes 

purchasing equipment (IDS, encryption or antivirus software, and the like), security 

training, overtime, or higher salaries for employees who focus on security, it always 

involves reassigning personnel to security. Encouraged by the noticeable gains in 

security, further investments lead to more reassignments of personnel to security. 

This continues to be a good strategy until insufficient personnel are available for non-

security tasks. At this point, numerous non-security-related technical problems arise 



 

 39 
 

in the computer system, forcing the security personnel to pause their efforts as these 

problems are addressed. Reassigning more employees to security (or demanding more 

of the current security employees) will bring no further gains; in fact, the additional 

technical problems as well as the support staff’s decreased efficiency from facing 

demands it can not meet may result in a decline in gains. An influence diagram for 

this situation is shown in Figure 14.  

 

 

 

 

 

 

Fig. 14. Influence Diagram for Limits to Growth 

 

Traversing the left side clockwise reads: “security investments increase the staff’s 

security efforts, decreasing the number of successful attacks. More successful attacks 

would decrease the management’s perceived benefit of security investments. More 

perceived benefits of investments leads to further investments.” Reversing the double 

negative yields: “investments leading to efforts leading to gains in security (i.e. less 

successful attacks), increasing the perceived benefit of investments and therefore 

leading to further investments” – this is a reinforcing loop. The right-hand loop, 

however, describes how increasing the staff’s security efforts can conflict with non-

security-related tasks, due to a personnel shortage. As indicated by the upward arrow, 

this effect is decreased if the staff size is sufficiently large. Lastly, an increase of such 



 

 40 
 

conflicts will cause problems that diminish the staff’s security efforts. A balancing 

loop is thus formed, as security efforts will (unconsciously) decrease as long as the 

conflict of resources with non-security tasks is present. Given a constant number of 

attempted attacks, implementing this archetype should result in a continuous 

reduction of successful attacks (i.e. increase of gains for security investments) until 

insufficient personnel are available for other tasks; at that point, the number of 

successful attacks will cease to fall further, and may in fact begin to rise. [Wol03] 

includes this archetype in the category “Underachievement”, as a reinforcing loop is 

desired for growth, but it is not successful. 

The simulation model can incorporate this Limit to Growth with the following 

property: Some value p is the highest percentage of staff efforts that can optimally be 

reallocated to security with no ill effect. If total demand for security efforts exceed 

(p/100)*SysAdminCapacity, then the “effective” hours for security are given by the 

SysAdminCapacity, minus some constant k times the excess demand. In the 

simulation described below, we have used p = 23 and k = 1.2, believing these values 

to be a reasonable description of a typical system. 

 

4.2 Combined Archetypes 

While the use of an archetype can present a complex system in readily-grasped 

terms, a given scenario or story may not neatly fit into a given archetype. The general 

archetypes of [Sen90], [Sen94], and [Bra02] are unique only in that they have been 

frequently observed in diverse settings, and that they provide useful “building blocks” 

for other influence diagrams. For each given case study, [Sen94] recommends 



 

 41 
 

beginning with the influence diagram of one easily-observed archetype (or simply a 

balancing or reinforcing loop), then “widening and deepening” the diagram by adding 

additional “loops” to describe the observed behavior. Thus, a combination of 

archetypes is often the simplest way to grasp a system’s behavior when two or more 

different behavior patterns are exhibited simultaneously. (Such a combination, that of 

Limits to Growth with Shifting the Burden, can be found in [Sen90].) 

Observe that both Escalation and Limits to Growth hinge on the organization’s 

security investments and successful attacks; we thus connect their influence diagrams 

through these values. The resulting combined diagram is shown in Figure 15.  

Fig. 15. Influence Diagram for Combined Limits to Growth and Escalation 

 

Observe that the two influence diagrams largely address different issues, except for 

the upper-left-hand corner of Figure 15, which links successful attacks to security 

investments. While Escalation had assumed a “positive” effect (i.e. more successful 



 

 42 
 

attacks increase the threat, increasing investments), Limits to Growth assumes a 

“negative” effect (successful attacks decrease perceived benefit, reducing 

investments). 

In combining the two archetypes it becomes clear that both patterns may be true 

for different organizations with different cultures, or for different levels of 

management. Additionally, recall that an the influence diagram shows only 

“increases” and “decreases”, but quantitatively some links may be stronger than 

others. Thus, both patterns may be present within a single organization; a visible shift 

from increases to decreases in investment, or vice versa, will occur at times when the 

weight of one pattern exceeds that of the other. For example, when the organization’s 

management first invests in security, its perceived benefit is low, so further 

investments hinge on a reduction in attacks; later, security investments are believed 

an appropriate cure if successful attacks rise; finally, successful attacks may reach 

some upper limit at which point the management begins to lose its faith in 

investments and reduce them.  

The overall trend of this combined archetype, when viewed in terms of successful 

attacks, will look as follows: a stable oscillation (due to Escalation) until security 

efforts exceed their optimal value (for the given staff size), followed by a rise in 

successful attacks (from Limits to Growth). At this point, several possibilities exist: 

the organization may continue (for a short duration) to advertise, leading to further 

attempted attacks; it may follow the “threat” pattern and push for more security 

investments; and/or it may follow the “perceived benefit” pattern and reduce security 

investments. Depending on these three options, the stable oscillation and rise in 



 

 43 
 

successful attacks will be followed by either a leveling off or a rise in successful 

attacks; the former would occur if the organization halts both advertising and 

investments, keeping attempted attacks constant. The highest risk, leading to a 

significant increase in successful attacks, occurs if the organization continues 

advertising, raising the attempted attacks, as its continued investments cause more 

woes for its computer staff, further diminishing their effective efforts.  

 

4.3 Simulation Setup 

The behavior of the organization’s management (which invests in security and 

demands staff-hours for it) and the aggregated attackers (who attempt the attacks) are 

then given by a series of rules (similar to those of Section 3.2), following the 

escalatory behavior described above. Here we demonstrate one possible outcome by 

assuming that the perceived benefit or “faith” in investments is held constant, and 

thus the decision regarding further investments is determined only by the threat to the 

organization. This decision is modeled by the following rule: The simulation begins 

with an initial demand of 0w  staff-hours for security. Every x1 days, { IF (Successful 

Simple Attacks > θ1), THEN increase staff-hours demanded for “simple” security 

tasks by w . Additionally, IF (Successful Sophisticated Attacks > θ2), THEN increase 

staff-hours demanded for “sophisticated” security tasks by v.} A delay of 1d  days is 

incurred for personnel reallocation.  

(The description of tasks as “simple” or “sophisticated”, as well as the task-by-task 

composition of w and v, are unchanged from Section 3.2.)  



 

 44 
 

The organization’s advertising efforts are modeled by the following rule: Every x2 

days, IF (Successful Simple Attacks < θ3), THEN decide to advertise. A delay of d2 

days is incurred before the advertising occurs.  

Lastly, the aggregated attackers’ response is modeled as follows: The initial value 

of Simple Attacks Attempted / Day is a0. Each day, IF (Advertising occurs), THEN a 

delay of d3 days occurs as the word spreads and new attack tools are accumulated, 

where upon Simple Attacks Attempted / Day is increased by a%. The initial value of 

Sophisticated Attacks Attempted / Day is b0. Each day, IF (Advertising occurs), 

THEN a delay of d4 of days occurs as the word spreads and new attacks are 

engineered, whereupon Sophisticated Attacks Attempted / Day is increased by b%.  

We simulate a system of approximately 200 machines. We have chosen a period of 

six months (180 days) for our simulation. Successful attacks per day are used as our 

measure of “attackers’ gains vs. organization’s gains.”  

With these values in mind, we first simulated a “baseline scenario” characterized 

by the following values: x1 = 7, x2 = 7; w0 = 29.8, w= 9.1, v = 1.6; θ1 = 6, θ2 = 2, θ3 = 

18; d1 = 14, d2 = 1, d3 = 2, d4 = 7; a0 = 15, a = 26; b0 = 0.6, b = 7. These values 

describe, in our opinion, an organization’s 180-day progression from minimal 

security efforts to full security efforts; a realistically aggressive advertising campaign; 

common delays for each action described; and a progression in terms of attack 

attempts from the minimal attack “noise” received by an inconspicuous organization 

to the high number that a prominent organization receives.  

 



 

 45 
 

4.4 Results and Discussion 

 
The results of this simulation are shown in Figure 16. 

Fig. 16. Successful Attacks per Day, Escalation with Limits to Growth 

 

The number of successful attacks seems to oscillate fairly stably until 

approximately Day 145, at which point it rises dramatically. Until Day 145, the 

number of successful attacks hovers at about 11, which is this system’s equilibrium of 

escalation: security efforts, followed by advertising, followed by new attack attempts, 

followed by further security efforts. Around Day 145, however, the Limits to Growth 

archetype emerges: the demand for staff-hours exceeds the optimal load the staff can 

bear, the staff’s performance deteriorates, and successful attacks rise. Note that 

successful attacks exceed θ3=18, the organization’s threshold for cessation of 

advertising, at approximately Day 155.  

Correspondingly, the number of attempted attacks (simple plus sophisticated) is 

shown in Figure 17 

0 30 60 90 120 150 180
0

20

40

60

80

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks



 

 46 
 

. 

Fig. 17. Attempted Attacks per Day, Escalation with Limits to Growth 

 

The number of attempted attacks escalates as often as every seven days (the 

organization’s wait time between advertisements) until approximately Day 155. At 

that point, the company halts its advertising, and a constant 1925 attacks per day are 

attempted for the remainder of the period. Yet, returning to Figure 16, successful 

attacks are found to rise several times between Days 155 and 180. As the organization 

continues to reallocate staff to security and increase its demands on them, the 

personnel shortage for other tasks leads to more technical problems, sidetracking the 

increasingly overwhelmed security staff; attempted attacks thus become successful as 

the state of the countermeasures deteriorates and system vulnerability rises. Limits to 

Growth leads here to a decline in gains, not to a plateau. 

By examining the behavior of the system, one can realize the problem of the 

increase in “successful attacks” around day 145. In response to this problem, the 

organization should take some action. Below we show how the use of simulation can 

support decisions regarding what action best fits the goals and context of a given 

organization. 

Firstly, as our system was described, the increase in attempted attacks came not 

directly as a result of increased security efforts, but as a result of the organization’s 



 

 47 
 

advertising. While this may not be the case for all organizations, certainly any 

organization considering advertising must weigh potential benefits (such as increased 

clientele) against the possibility of (and its preparedness for) Escalation.  

Secondly, even when Escalation is called for, it may be wise to escalate less 

strongly. The organization’s rule for increasing security efforts was given as: “Every 

x1 days, if successful (simple, sophisticated) attacks are greater than (θ1, θ2), increase 

efforts by (w, v).” Increasing the period x1 (i.e. reducing the frequency of possible 

escalation), raising the thresholds θ1 and θ2 (reducing the frequency of when 

escalation is called for), and/or reducing w and v (the quantities of escalation when it 

is employed) are all possible solutions. When a threat is perceived, the effect of 

reaction must be weighed against the risk of no action, and sometimes the greatest 

overall gain is achieved by a slower or weaker reaction. Similarly, when we turn to 

Limits to Growth, it is noted that if the limits will not be (or cannot be, as in [Mar03]) 

removed, then reducing the growth action will delay the onset of the limiting factors, 

as well as slowing the deterioration of growth once the limits manifest themselves. A 

reduction solution thus heeds both archetypes. To see which of these three reductions 

is most effective here, all three were simulated: reducing the frequency of increased 

efforts, raising the threshold for increased efforts, and reducing the quantity of efforts. 

Experimenting with each solution individually as well as combined with others, we 

found that our system responded most favorably to simply reducing the quantity of 

escalationw by 30%: each time the organization decides to increase its security 

efforts, it does so by 6.4 staff-hours, as opposed to the 9.1 of the baseline case. The 

results are shown in Figure 18. 



 

 48 
 

0 30 60 90 120 150 180
0

7.5

15

22.5

30

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks

 

Fig. 18. Results of Reduced Escalation (Successful Attacks per Day) 

Note that the equilibrium number of successful attacks has risen to about 15 (as 

opposed to the 11 in Figure 16), but there is no dramatic climb in successful attacks 

by Day 180. The weaker reaction has not pushed demands on the staff beyond their 

point of optimality in these six months. This approach can thus be thought of as 

“partly losing Escalation, but winning Limits to Growth.” Note as well that the 

number of successful attacks reaches θ3=18, the advertising threshold, several times, 

leading to less advertising and thus less attempted attacks. Integrating Figures 16 and 

18, we find that the number of cumulative successful attacks is less for reduced 

escalation (~2650) than for full escalation (~2800). Given a particular organization’s 

structure, goals, and priorities, the above tradeoffs (equilibrium number of attacks, 

rise in attacks, advertising opportunities, cumulative attacks) should be considered to 

find whether reduced escalation is more in its interest than full escalation.  

Thirdly, a solution commonly found for Limits to Growth is to cease the growth 

action, and instead concentrate on removing the limiting condition. In our case, this 

would translate into hiring additional support staff. [Sen90] stresses the concept of 

“leverage”, i.e. an organization’s efforts will yield maximal gains if it carefully 

chooses where and when to apply those efforts. While hiring too early is prohibitively 

expensive, if hiring is delayed too much, the limit will set in and deterioration of 



 

 49 
 

gains will begin. Additionally, the stronger the limit has become, the harder it is to 

remove it; in our case, once the support staff is overwhelmed with demands, it will 

not have time to introduce new hires to the intricacies of the computer system. Thus, 

the point of highest leverage for hiring is when it will take effect just before the 

demands on personnel exceed their optimal load. This requires great prediction skills 

on the part of the manager, including a sense of “feedback” regarding the support 

staff’s load. Otherwise, the best strategy is to hire as soon as possible once a decline 

in gains is visible. This also requires the manager to realize that indeed, gains have 

diminished since the optimal personnel load was reached. As opposed to the previous 

strategies, which are executed before-the-fact, this strategy describes how an 

organization might now respond to problems. Following full escalation, Figure 16 

showed a rise in attacks around Day 145. Figure 19 shows the results if the 

organization responds rapidly and additional personnel are available as of Day 155. 

0 30 60 90 120 150 180
0

7.5

15

22.5

30

Day

Successful Attacks
Successful Attacks / Day

Simple Attacks Total Attacks

 

Fig. 19. Full Escalation, with Hiring at Day 155 

 

The oscillations and steep rise occur as in Figure 16, followed by a steep drop in 

attacks due to the hiring. Integrating, we find a total of approximately 1,880 

successful attacks, far less than in full or reduced escalation. (Of course, this benefit 



 

 50 
 

comes with the cost of hiring.) The sooner the hiring, the less of the peak around Day 

150; the longer the wait to hire, the greater the peak.  

Figures 16, 18, and 19 have shown the results of the three above scenarios in terms 

of the number of successful attacks. An organization must also consider factors such 

as labor costs, and thus Figure 20 displays the cumulative staff-hours employed for 

each scenario: “baseline” (full escalation, without hiring), “reduced escalation”, and 

“escalation with hiring.” Note that the efforts of “baseline” and “hiring” will coincide 

until Day 155, at which point the curve for “hiring” will grow more steeply. 

Fig. 20. Cumulative Staff-Hours for Each Scenario 

 

Thus, given the number of successful attacks and number of staff-hours employed, 

both per-day and cumulatively, an organization can consider its best options as it 

encounters this combination of archetypes.  

For additional information on the combination of Escalation and Limits to Growth 

as it occurs in security, please see [Ros06c], from which this chapter was excerpted. 

Chapter 5:  Related Work 

 

0 30 60 90 120 150 180
0

3750

7500

11250

15000

18750

22500

26250

30000

Day

Staf f -Hours
Cumulative Efforts (Staff-Hours)

Baseline Reduced Hiring



 

 51 
 

5.1 System Dynamics and Archetypes  

System dynamics thinking is introduced in [For61]. An introduction to archetypes 

can be found in [Sen90], with added details and recommendations in [Sen94], while 

[Bra02] extends this work to list ten different archetypes. [Wol03] argues that all 

existing archetypes can be included in one of four “core generic” archetype categories 

such as “Underachievement” or “Out-of-Control”; however, [Wol03] acknowledges 

that the more-specific, more-familiar ten archetypes (such as “Escalation” or “Limits 

to Growth”) are more rapidly applied to real systems, and we have thus used them 

here. [Mar03] applies systems thinking and archetypes to safety engineering. Some 

archetypes found in safety are clearly those seen elsewhere (such as “Eroding 

Goals”), but others seem unique to safety. (This is the case partly because safety 

measures can be a victim of their own success – when no accidents occur, there can 

be pressure to reduce safety measures.) For now we have focused on the more-

common archetypes of [Bra02] regarding security, but future work may find that new 

archetypes apply to safety as well.  

5.2 Sources of Data  

Empirical data regarding computer security are still fairly rare as of now. 

Anecdotes detailing attacks and their responses, such as [Gib02], are very illustrative 

of the attacker/defender interaction, but few such anecdotes have been published. 

Some information regarding what is general practice in the security world today 

can be found in [Gor05a], a survey of several hundred organizations. For example, 

our model includes IDSs but not biometrics because the former is found to be 

significantly more prevalent in real life today.  



 

 52 
 

Most data on attacks are gathered from analyzing “honeypots” or “honeynets”, 

systems designed to be attacked. Such studies include our own laboratory’s [Pan05], 

as well as [Dac04], [Pou04a], [Pou04b], and [Pou05].  

Hypothesized attacker behavior is described in [Jon97], based on empirical 

findings from controlled attack experiments. This focuses on the behavior of the 

individual attacker, while more data are needed on the aggregated effects of multiple 

attackers. 

To help meet the dearth of empirical data regarding security, nine teams are 

collaborating on the projects DETER and EMIST [Baj04]. DETER involves building 

a massive (currently approximately 200 machines, intended to reach 1000 machines) 

“researcher- and vendor-neutral” network testbed for emulating various types of 

attacks, countermeasures, and network topologies. Meanwhile, the EMIST project 

seeks to formalize methodologies for measuring these effects. Combined, these 

projects should provide a wealth of useful, unbiased, and well-accepted emulated 

attack data. Both studies will enrich our model with quantifiable values, e.g. honeynet 

findings might show that 20 buffer-overflow attacks of a certain type are attempted 

each day, and the DETER/EMIST findings would tell us that the attack will succeed 

80% of the time if the network has Topology A but only 60% of the time with 

Topology B. 

Regarding user factors, [Lar03a] uses surveys to understand Internet usage, and 

[Lar03b] conducts studies with test websites to investigate users’ privacy behaviors 

online. The authors of these papers have indicated that their future work will analyze 



 

 53 
 

user behavior regarding network security, which should be applicable to our user 

model.  

 
 

5.3 Economics and Security 

 
[Cam03] considers the effects of public disclosure regarding security breaches on a 

company’s stock prices. [Gor02], [Gor05b], and [Bod05] all use economic analysis in 

determining how much security investment is worthwhile for a company, given its 

priorities; however, details are not provided as to what should be done specifically 

with the investments. This provides the connection point to our model. 

Economic requirements are also used to lead to assumptions or specifications for 

related computer security, e.g. determining the subjective cost and total welfare 

regarding network routing [Fei05] or requirements on trusted platforms placed by 

digital rights management [Ber04], [Ber05]. 

  
 
 

5.4 Other Modeling Approaches in Security 

 
One approach in security has been to probabilistically quantify an attacker’s 

behavior and its impact on a system’s ability to provide certain security-related 

properties. Attempts have been made to build models that take into account both the 

attacker and the system being validated. A general model of an intrusion-tolerant 

system is proposed in [Gon01] to describe security exploits by considering attack 

impacts; the system state is represented in terms of failure-causing events. [Jha01] 

proposes a combination of state-level modeling, formal logic, and Bayesian analysis 

Comment [SNR1]: This better? 



 

 54 
 

quantify system survivability. Finally, Ortalo et al. [Ort99] propose modeling known 

vulnerabilities in a system using a “privilege graph”. By combining a privilege graph 

with simple assumptions concerning an attacker’s behavior, the authors then obtain an 

“attack state graph.” Parameter values for such a graph have been obtained 

experimentally; once obtained, an attack state graph can be analyzed using standard 

Markov techniques to obtain several probabilistic measures of security. [Ste04] uses a 

probabilistic model for validating an intrusion-tolerant system that combined 

intrusion tolerance and security, allowing the designers to make choices that 

maximize the intrusion tolerance before they implement the system. Compared to 

these models, the model presented here is more generic in its inclusion of other 

human elements such as users and system administrators. Additonally, other than 

[Ort99] which uses data collected empirically to assess some of the parameters values 

in the model, the other ones are not developed to easily be linked to empirical data. 

Cyberciege ([Nav06], [Irv05]), developed by the Naval Postgraduate School, is a 

computer game with a very engaging user interface and virtual world, intended for 

training students to understand security engineering. Cyberciege focuses on detailed 

access control, user-by-user, for a small number of users. Each piece of hardware is 

hand-selected from a list of fictional brands (e.g. “BitFlipper router”), and physical 

security measures are implemented on a user-by-user basis. The determination of 

whether an attack succeeds is by comparing asset desirability and how well standard 

procedures have been followed. Cyberciege’s level of detail models the role of an 

individual security officer who might oversee a dozen computers at most, while our 



 

 55 
 

model abstracts one level higher, to the manager who oversees several hundred 

machines. 

In a similar vein, Fred Cohen & Associates offer a security simulator [Coh06] on 

their website (http://all.net/games/index.html). Fully described in [Coh99], this 

simulator gives examples of how a single attack of varying sophistication might 

succeed against different computers with different countermeasures. The defender 

strength, i.e. to what degree the defender does the right thing, is specified as a 

percentage by the user before running the simulator. If an attack succeeds, the dollar 

loss due to the attack is estimated based on the attacker profile, e.g. how much will a 

successful attack by a private investigator cost? Our approach attempts to add in more 

empirical data, as described in Section 5.2. Additionally, our work extends the 

“defender strength” idea by allowing for strengths of each countermeasure: a system 

may have a 90% effective firewall but only a 70% effective IDS. Furthermore, rather 

than specify a value for defender strength, the user of our model inputs managerial 

decisions such as how much effort is allocated to which security tasks and how 

skilled the staff is – the model then uses these inputs to determine the resulting 

defense strength for each countermeasure. 

 

 

 

 



 

 56 
 

Chapter 6:  Conclusions and Future Work 

 

6.1 Conclusions 

 
The archetype and results of simulation execution presented here show the value of 

systems dynamics modeling for enterprise security. The evolution over time of two 

slightly different “what-if” scenarios may result in very different pictures, reinforcing 

the value of simulation. Systems thinking, combined with simulation, can assist an 

organization in placing its efforts in the places that will give the most “leverage” to 

their goals, and in diagnosing and solving problems. This approach thus leads to a 

more enlightened weighing of costs vs. benefits for the proposed decisions that an 

organization might make.  

System dynamics simulation is also an intuitive and powerful tool for 

understanding computer security, as well as for training professionals. In time, our 

model will mesh with much other research currently being done by others, leading to 

gains in a wide variety of directions. 

 

6.2 Future Work 

 
A great deal of future work remains as well, including:  

• “Deepening” the simulation model with more detail, e.g. where linear rates 

had been assumed, perhaps logarithmic or exponential would be more 

accurate. The documentation of the simulation model already reveals several 

ways it can be deepened. 



 

 57 
 

• “Broadening” the model to include such factors as: 

o User details describing their interaction with the security policy. 

o Asset properties. Currently we only show successful attacks; future 

work can link this to system availability, confidentiality, and integrity. 

o Internal attacks. Currently it is assumed that the firewall is X% 

effective against all simple attacks, for example, which assumes that 

all simple attacks come from outside the firewall.  

• Obtaining additional empirical data for use as parameters in the simulation 

model. Sources for such data, including work from our own research group, 

are described in Section 5.2. 

• Modeling other instances of the above archetypes, modeling other archetypes, 

other combinations of archetypes, and looking for new archetypes. Appendix I 

gives a few ideas for modeling other archetypes. 

• Documenting real-world case studies in security, using archetypes to explain 

the situations, and using simulation to suggest improvements. (For example, 

[Sen94] first describes the story of an airline’s failure, applies archetypes to 

describe it, and then builds a simulator through which it is shown, for 

example, that had the airline not cut its ticket prices quite so steeply, it would 

not have gone bankrupt.) We have already begun interviewing one system 

administrator and documenting his case study, but obtaining the necessary 

details, applying archetypes, and simulating the case study are all left for 

future work. 

 



 

 58 
 

Appendix I: Archetypes 
 
 

Here we briefly describe each of the ten archetypes of [Bra02], giving one possible 

example from security.  

 
Shifting the Burden, or Symptomatic Fixes. We witness a problem symptom, 

and rather than think about the root cause, we try to fix the symptom. Doing so 

distracts us from the actual cause of the problem, or masks the symptoms so it’s 

harder to diagnose the problem. Suppose a system is continually falling victim to 

successful “script-kiddy” attacks (symptom). The company may install an I.D.S. to 

catch the attacks (symptomatic fix), when in reality the attacks wouldn’t make it into 

the system if the company had a good firewall, and wouldn’t succeed if they kept 

their vulnerabilities down. (Fundamental fixes.)  

Fixes that Fail. Here, the attempted fix actually worsens the underlying problem 

in time. The newly-installed I.D.S may have a high false-alarm rate and require a 

great deal of the sysadmin’s attention. The sysadmin is now too busy to attend to 

other duties (such as addressing vulnerabilities), so the number of successful attacks 

actually increases.  

Success to the Successful. There is a tendency to believe that if putting some 

money into Approach A yields good results, then putting more money into Approach 

A (and ignoring Approach B) will further improve results. For example: for an 

investment of $100, a Host-Vulnerability-Scanner will yield more improvements than 

an IDS. But continued investment into the Host-Vuln-Scanner (diverting funds from 

the IDS) will not help much if at all.  



 

 59 
 

Limits to Growth . Increased efforts and investments produce increased results, 

until the system reaches its natural limit. At that point, results will either plateau or 

decline. For example, given an inexperienced sysadmin staff of a fixed size, training 

them will result in significant gains to the network’s security. But eventually, their 

size (rather than skill) becomes the limiting factor, so further training will accomplish 

nothing.  

Attractiveness Principle. Increased efforts are no longer producing results, with 

two different limits fighting growth. The manager must decide which limit to address 

first/more. Suppose we have a simultaneous investment in both more/better sysadmin 

staff, and some technology (maybe a firewall). At some point, the Return on 

Investment will drop; at that point, we must decide which factor is more of a limiting 

one.  

Growth and Underinvestment. A successful approach may initially seem to fail 

if it wasn’t given proper investment/support/capacity. For example, a company may 

double its system size; if the SysAdmin size (which is the capacity in our case) is kept 

constant, overall performance will drop. If, instead, the SysAdmin size is properly 

increased, the company will see a gain.  

Eroding Goals. If a goal is not immediately met, it can be tempting to reduce the 

initial goal. A manager may try for an Availability (or confidentiality, etc.) Level of 

3, find that the expenses next month are too high, so s/he drops the goal to Level 2. 

The next month, the company is hit with a massive attack, causing more loss than had 

it held the course at Level 3. (Another example would be, “We want an IDS that 



 

 60 
 

catches 100% of all attacks. What, that gives too many false alarms?  Okay, maybe 

90%. Still too many alarms?  Okay, maybe set it to 80%.”)    

Escalation. Party A puts in more efforts, yielding more results; this threatens Party 

B, who does likewise, and so on. (The U.S./ U.S.S.R. arms race during the Cold War 

is a good example.)  If a company increases its security efforts and publicizes how 

secure it is, or otherwise makes itself more of an attractive target, it will receive more 

sophisticated attacks, which will require more security investments, and so on.  

Accidental Adversaries. Two parties initially agree towards cooperation, but then 

Party A perceives an offense (often unintentional) from Party B; it then retaliates, and 

the situation escalates from there. An example here would be the SysAdmin and User, 

who agree they want the company to succeed, but then the user accidentally breaches 

the security policy, leading the SysAdmin to impose a harsher security policy and 

other enforcement measures. The user (or another user) may become annoyed and 

retaliate.  

Tragedy of the Commons. If two efforts independently consume a common 

resource without respecting one another, both will see reduced gains as the resource 

runs out. In our case, if a company decides to invest more in IDS as well as Host-

Checking-Tool, but maintains the size of its SysAdmin (which is the “common” 

resource consumed), both will not yield full results. 

 
 
 



 

 61 
 

Appendix II: Model Screenshots 

 

The basic building blocks for continuous modeling in the Extend simulation 

environment include holding tanks, constants, and equations, to name a few. 

As one example, we show a simplified version of how the antivirus software 

effectiveness is modeled. Suppose that this system needs its virus definitions updated 

on a daily basis; if so, an antivirus that has been totally neglected for too long of a 

period will become close to useless, as it fails to catch the majority of viruses 

circulating the Internet today. Thus, antivirus effectiveness is reduced each day by 

some average “daily loss rate” which describes the occurrence of new viruses, and 

increased each day by the number of staff-hours updating its definitions (or otherwise 

maintaining it) that day. The effectiveness is then measured on a 0-to-1 scale and 

output. This is modeled in Figure 21.  

get
C

RS want

AntivirusLevel

0.02

AntivirLossRate

AntivirusHoursIn

Eqn AntivirusLevelOut
min
max

 

Fig. 21. Sample Screenshot of Holding Tank, Equation, and Constant Blocks 
 

Notice the number of staff-hours in, subject to some function, the holding tank for 

the daily antivirus effectiveness, and the daily loss rate. Each day, the contents of the 



 

 62 
 

tank are given, limited to the range between 0 and 1, and output as today’s “antivirus 

level.” 

To allow for greater abstraction, all of the above blocks can be inserted into a 

custom-built “hierarchical blocks”, such as the one shown in Figure 22. 

Antivirus 
Factor

AntiVirus

Staff-Hrs per Machine 
per Day for Antivirus

 
Fig. 22. Sample Hierarchical Block, Antivirus 

 
Here we see only the input and the output; the remaining holding tank, equation 

block, etc. are all hidden inside the hierarchical block. 

 In our model, a certain number of attacks of a given sophistication level are 

attempted each day. Depending on the effectiveness of the various countermeasures 

and the system’s vulnerabilities, a certain number succeed. Another hierarchical 

block, which performs this evaluation, is shown in Figure 23. 

Fig. 23. Sample Hierarchical Block, Simple Attack Success 

The block on the far-right of Figure 23 is an output plotter, used to generate many of 

the figures presented in this thesis. 

The model has a great deal of constant parameters; for example, the antivirus daily 

loss rate of Figure 21. These are listed in a spreadsheet such as the one displayed in 

Figure 24. 



 

 63 
 

ConfigVulnLevel, loss if ignored .05, linear 
", staff-hrs needed to maintain 1.5 / machine 
NetVulns, loss if ignored .04, linear 
", staff-hrs needed to maintain 0.6 / machine 
AppVulns, loss if ignored .004, linear 
", staff-hrs needed to maintain 0.13 / machine 
AppVuln, loss from new S/W 0.8
ToleranceLevel, loss if ignored .1, linear 
", staff-hrs needed to maintain 0.67 / machine 
EncryptionLevel, loss if ignored .001, linear 
", staff-hrs needed to maintain 0.067 / machine 

Antiviruslevel, loss if ignored .02, linear 
", staff-hrs needed to maintain 0.4 / machine 
FirewallLevel, loss if ignored .033, linear 
", staff-hrs needed to maintain 0.66 / machine 
IDSLevel, loss if ignored .05, linear 
", staff-hrs needed to maintain 2 / machine 

Fig. 24. Sample from Spreadsheet with Parameter Values 

Lastly, while certain parameter values (such as antivirus loss rate) reflect the 

reality of the system, others (such as machine size, staff size and the presence of 

countermeasures) reflect decisions that a manager might make. To allow for easy 

“what-if” simulation, these parameters were extracted to a user-friendly Graphical 

User Interface, such as the one seen in Figure 25. 

 

 

 

 

 

 

 

Fig. 25. Graphical User Interface Screenshot 

 



 

 64 
 

Appendix III: Model Documentation 
 
 

OVERVIEW:   The end-user of the model sets several sliders and switches to 

describe the system, countermeasures, allocation of sysadmin to various tasks, and 

attacks. The end-user can then see the costs of this configuration. A certain number of 

attacks are then attempted on the system each day; given the details of the system and 

its countermeasures, the end-user can see how many of those attacks succeed, or how 

many were blocked by a given countermeasure. The end-user can also track the 

effectiveness of a given countermeasure over time.  

 

SYSTEM INPUTS: These sliders describe the system and staff, and are listed in 

Table II. 

 

 

 
Table II: Slider Inputs for the Model Graphical User Interface 

Name in Model Type Meaning 
SystemSize Slider, 0-80 (# of machines) 
SysAdminSize 
(Personnel-Hours per 
Day) 

Slider, 0-80 Personnel-hours (or “man-hours”) of System 
Administration and Security Officer staff 
employed per day. A SysAdminSize of 40 
describes 5 people working 8 hrs/day each 
day, or 10 people working 4 hrs/day, etc. 

SysAdminSkill Slider, 1-5 Average overall skill of the System 
Administration and Security Officers Staff. 
The 1-5 scale is ours.  

SysAdmin Motivation Slider, 1-5 How motivated the SysAdmin staff is to 
protect the system; we impose a 1-5 scale. 

New Software is 
Installed Every X 
Days 

Slider, 1-
1000 

Interval (in days) between installation of new 
software (which contains new vulnerabilities). 
Patches are not included here. 



 

 65 
 

 

Further descriptions of the system, e.g. Windows vs. Linux, would be a critical 

step in adding detail to the model; it will hopefully be considered in a future 

implementation. 

 

COUNTERMEASURE INPUTS:   We include several common 

countermeasures. In the 2004 CSI/FBI Computer Crime and Security Survey of 494 

U.S. corporations, universities, government bodies, etc., the most common security 

technologies used (Fig. 16), by percentage of respondents, were: Antivirus software 

(99%); Firewalls (98%); Server-based access control lists (71%); Intrusion detection 

(68%); Encryption for data in transit (64%). We view the access control lists as part 

of the “SysAdmin’s Enforcement Actions” and not a separate technology per se, as it 

is built into most operating systems today. For simplicity’s sake, we chose to include 

both data-in-transit encryption and file-encryption as “encryption software.”   

A significant countermeasure not described directly in the CSI/FBI survey is the 

emerging field of attack tolerance (as opposed to prevention or detection). This could 

include designs for graceful degradation under attack; redundancy and diversity (in 

some cases); and other technologies allowing the system to succeed despite the 

attack. We thus include a countermeasure entitled “tolerance mechanisms.”   

Additionally, as 70% of the survey respondents (Fig. 17 in the FBI survey) 

identified some type of network security training for their users as important, we have 

included “user training for better security practices.”   



 

 66 
 

Lastly, we have included vulnerability-scanning tools which can assist the system 

administrator in finding vulnerabilities to fix. These include host-configuration 

vulnerability scanning tools, such as FERRET; and network-vulnerability scanning 

tools, such as NESSUS.  

For all of the above countermeasures, we presently assume that they are either 

present in full strength, or not at all. (They’re controlled by binary switches.)  Future 

implementations of the model may modify this. The countermeasures are given in 

Table III. 

COST/EXPENSE EQUATIONS & OUTPUTS: Given the above descriptions, 

we can now compute the system’s expenses. (For now, we simply tally the number of 

successful attacks, rather than describing the monetary loss they cause the company; 

this too will hopefully be improved in a future model.)   

Table III: Countermeasures Included in the Model 

Name in Model Type Meaning 
A Firewall? Y/N Switch “1” if the system has a firewall; “0” if it 

doesn’t.  
Antivirus? Y/N Switch “1” if every system has antivirus software 

installed.  
An Intrusion 
Detection System? 

Y/N Switch “1” if an Intrusion Detection System is 
present. 

Encryption Software? Y/N Switch “1” if encryption software is installed. 
Tolerance 
Mechanisms? 

Y/N Switch “1” if tolerance mechanisms are present. 

A Host-Vulnerability 
Scanning Tool? 

Y/N Switch “1” if the sysadmin uses a tool such as 
FERRET to check host-configuration 
vulnerabilities. 

A Network-
Vulnerability 
Scanning Tool? 

Y/N Switch “1” if the sysadmin uses a tool such as 
NESSUS to check for network vulnerabilities. 

User Training for 
Better Security 
Practices? 

Y/N Switch “1” if the users are trained regarding network 
security. 

 



 

 67 
 

 

Expenses reflect all the money spent on the system over the duration of the 

simulation (usually ~100 days). StaffCost is the cost per day of employing the 

sysadmin staff. PurchaseCost is the cost to purchase the various countermeasures, 

which we assume is a one-time payment. We then have: 

Expenses = (StaffCost * Time) +  PurchaseCost.  

    ($)        =  ($/day) * (days)   +   ($) 

In Extend terms, Expenses is an accumulating tank; StaffCost is the input, and 

PurchaseCost is the initial level. 

 

StaffCost = STAFFCOSTPERHOUR * SysAdminSize.  

     ($)  =  ($/hr) * (personnel-hours)  

The cost of employing the sysadmin staff per day. We assume an average cost of 

$35 per personnel-hour.  

For PurchaseCost, we assume that Tolerance Measures, Encryption Software, and 

an Antivirus must be purchased for every machine in the system to be effective. (The 

effects of installing an antivirus on only half, 1/3, etc. of the machines would be 

another interesting question for future work.)   

Per-system purchase costs = SystemSize *  

{ (Tolerance Measures?)*TOLCOST + (Encryption  Software?)*ENCRYPTCOST  

+ (Antivirus?)* ANTIVIRUSCOST }. 

 ($) = (# machines) * Σ {(1/0)*($/machine)}  



 

 68 
 

We simply assume for now that tolerance measures cost $300/system. For 

encryption software, PGP is very commonly used (try Google searches for 

“encryption software” and the like); the most basic version of PGP Desktop 

Professional 9 costs $200; we have used the value $220 to allow for a few more 

features. For the antivirus, Norton Antivirus, one of the most popular products on the 

market, costs $40 /machine in the 5-user pack. (Sources: manufacturer’s websites.)   

We do not include the host-configuration or network-vulnerability scanning tools 

in costs or expenses, as the most popular products used (i.e. FERRET and NESSUS) 

are available for free. The remaining two PurchaseCost items are the firewall and 

IDS, whose cost is independent of the size of the system behind them.  

PurchaseCost = per-system purchase costs + (A Firewall?)* FIREWALLCOST + (An 

IDS?)* (IDSCost). 

     ($)  = ($)           +(1/0)*$   + (1/0)* $. 

We assume that a high-quality firewall costs $10,000, given Dr. Cukier’s 

experience with proprietary firewalls. For the IDS cost, we take the price of the Cisco 

4250, which is $30,000. 

  

SYSADMIN ALLOCATION: We describe the SysAdmin staff’s “capacity” to 

maintain and protect the system as a function of its size, skill, and motivation: 

TotalSysAdminCapacity = SysAdminSize * SysAdminMotivation * ln( 

SysAdminSkill + 1). 

(Note that TotalSysAdminCapacity is measured in pseudo-personnel hours, as it 

can be increased by motivation and skill.)  (The logarithm is used to reflect the 



 

 69 
 

phenomenon that beyond a certain point, additional training accomplishes very little. 

We use (skill+1) so that a skill level of 1, the lowest, doesn’t result in an ln(1) = 0 

term.) 

The end-user then decides what percentage of the TotalSysAdminCapacity should 

be dedicated to what task, using the sliders in the green box. The sysadmin needs to 

spend time and attention to deal with any given countermeasure (or its side effects!). 

We refer to these as “countermeasure efforts.”  Obviously, more efforts are needed 

during deployment than afterwards, but for now, we simply describe “efforts-per-

day.”  (One approach would be to consider an average effort over the product’s 

lifetime, including its deployment, but this again is for future work.)    The order of 

the various efforts is consistent with that of the model, but it has no particular 

significance.  

“Antivirus Efforts” consist primarily of keeping all of the antivirus definitions up-

to-date. The percentage of TotalSyadminCapacity dedicated to Antivirus Efforts is 

called Antivir%.  

“Firewall Efforts” consist of tasks needed to maintain the firewall, primarily 

through applying new patches as firewall vulnerabilities are discovered. (Firewall%). 

“IDS Efforts” consist of maintaining the intrusion detection system, mostly by 

downloading new signatures. (IDS%). 

“Encryption Efforts” consist of updating and maintaining the encryption software 

(quite possibly including helping users who run into difficulty using it). (Encrypt%).  

“Enforcement Actions” include setting proper access control; monitoring the 

system for noticeable oddities; and developing and enforcing a security policy for the 



 

 70 
 

users. For example, if a user tried using a “weak” (i.e. easily guessed) password such 

as “joe”, a vigilant sysadmin would prevent him from doing so. (Enforce%). 

 “Software Patches” reflects the time spent per day on finding and installing 

patches for newly-discovered vulnerabilities in any of the system’s netware, operating 

systems, or applications. (Patch%). 

“Tolerance Efforts” depend on the particular tolerance measure; some measures 

are relatively low-maintenance (e.g. if graceful degradation has been built-in, then no 

further action is needed), but some are high-maintenance (e.g. if the system has a 

backup web server that runs a different operating system, the backup server has to be 

maintained as well). (Tol%). 

“Addressing Alarms” refers to the alarms raised by the firewall and IDS; 

sometimes these were in fact attacks, but often they were legitimate actions. A good 

sysadmin should sort through these. (Alarm%). In the new versions, we’ve gotten rid 

of “addressing alarms” as its own task; it’s now included in either “IDS Efforts” or 

“Firewall Efforts.” 

The various desired percentages, as well as the TotalSysAdminCapacity and 

SystemSize, are input into the HoursForTasks block. The outputs of this block 

describe how many SysAdmin pseudo-personnel-hours (or more precisely, skill-

motivation-personnel-hours each day) are actually allocated to each task.  

If the various desired percentages (inputs) add up to 100 or less, then all of the 

desired demands can be met, and the process is simple:  

Hours allocated to Firewall = (Firewall% / 100) * TotalSysAdminCapacity. 

Hours allocated to IDS = (IDS% / 100) * TotalSysAdminCapacity. 

Comment [i2]: Page: 1 
I suggest dropping the word “false” when 
we talk about alarms 



 

 71 
 

The firewall and IDS are independent of the size of system behind them. (Or are 

they?  Once we include analyzing alarms in Firewall Hours & IDS Hours, well, the 

bigger the system, the more alarms likely. In the new paper, I assumed staff-hours per 

machine for these as well.)  For the other efforts, however, we must factor in the 

system size; after all, to spend a total of two hours per day on updating antivirus 

definitions for a single computer is certainly sufficient; for a thousand computers, it 

probably won’t be. We thus talk of “hours allocated per system [per day].”  Note that 

for now, we assume that doubling the system size will simply halve the personnel-

hours available for a given task; in reality, larger system sizes tend to come with 

mechanisms for better management, so we might in the future consider a factor such 

as log(systemsize). For the moment, though, we’ve kept the divisor linear. The 

following hours are per-machine: 

Hours allocated to Antivirus = (Antivir% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Encryption = (Encrypt% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Enforcement Actions = (Enforce% / 100) * 

TotalSysAdminCapacity / SystemSize. 

Hours allocated to Software Patches  = (Patch% / 100) * TotalSysAdminCapacity / 

SystemSize. 

Hours allocated to Tolerance = (Tol% / 100) * TotalSysAdminCapacity / 

SystemSize. 



 

 72 
 

Hours allocated to (False) Alarms = (Alarm% / 100) * TotalSysAdminCapacity / 

SystemSize. 

(A larger system will generate more alarms, and thus needs more attention.) 

IF, however, the end-user specifies a series of percentages with the sliders that sum 

to >100%, not all of the desired hours will actually be allocated that way. A prompt 

can inform the end-user that the values have exceed 100%, and that s/he may wish to 

modify values before running the simulation. (This prompt was built into several 

earlier models; it was omitted from the Aug. 17 version for simpler presentation, but 

can be reincorporated if desired.)  If the end-user chooses to continue, priority will be 

assigned from left-to-right, i.e. first Antivir% of the  TotalSysAdminCapacity, if 

available, will be allocated to antivirus; then up to Firewall%, if available, to firewall, 

and so on. 

(Extend description: looking inside the HoursForTasks block, we see a series of 

equations, converting the percentages into HoursDemanded. Below that, we see a 

series of holding tanks. All of the tanks are reset to their starting values at the end of 

each day by a periodic pulse. The first tank has starting value 

TotalSysAdminCapacity; the other tanks have starting value zero. At the beginning of 

each day, TotalSysAdminCapacity flows into the first tank; AntivirusHours 

Demanded is “wanted” from that tank; the quantity “gotten” is the hours actually 

allocated to antivirus. The remaining contents of the first tank flow into the second 

tank, where again a demanded quantity is “wanted”; up to that quantity is “gotten”, 

and the remainder flows into the third tank; and so on. Hours “gotten” are either used 

directly (firewall & IDS) or divided by the systemsize.)   



 

 73 
 

For the version in the archetypes paper: a new allocation block was built, in which 

all demands are met if they sum to less than 100%; if they exceed 100%, then they are 

doled out in proportion to their demand, i.e. if the demands are: {30, antivirus; 40, 

tolerance; 50, IDS}; but the SysAdmin capacity is only 60; then it will allocate 

15/20/25, respectively. 

Additionally, the archetypes version adds in the factor of sysadmin inefficiency if 

pushed beyond optimal capacity. Hours allocated to a given task are decreased by a 

linear multiple of the total demand’s exceeding the optimal capacity. (Note that we 

haven’t yet included a factor to describe the inefficiency of X net demanded hours for 

ten different tasks, which has greater inefficiency than X net demanded hours for one 

task.) 

 

I actually didn’t use the allocation system in the new (Escalation) paper, I just 

“fed” each task directly as many hours as were desired. 

 

The newest paper (DSN) once again made use of the allocation system – pushing 

the Sysadmin too far resulted in the “limit to growth.” In this paper, the limit set in 

much more quickly, as we rephrased things: “sysadmin hours” were for all tasks; as 

soon as security demands take too many of those hours, other things go wrong 

because of ignored tasks. The rule used was thus the following (the numbers used 

here: 23%, 1.25, etc., were a combination of guesses on my part, and what made the 

graphs come out okay, i.e. GIVEN our guesses for how to describe a 200-machine 

system going from nominal attention to full attention to security over 180 days, we 



 

 74 
 

wanted the limit to kick in towards the end of this period, and that the limiting effect 

be fairly strong.) 

 

Maximum optimal security load = OPTPERCENT * TotalSysadminCapacity. 

IF (total hours demanded for security > maximum optimal load), EfficiencyStretch 

= STRETCHCONSTANT * (total hours demanded for security – maximum optimal load).  

 

AvailableCapacity = TotalSysadminCapacity – EfficiencyStretch. 

 

VULNERABILITIES: Many attempted attacks will only succeed if the system has 

(known) vulnerabilities. These are grouped into four categories: 

“Mistakes” includes all user mistakes, such as not logging off, downloading a 

virus, and using weak passwords. (Mistakes block outputs MistakeFactor.) 

“Host-Configuration Vulnerabilities” include settings that the sysadmin didn’t set 

properly, such as leaving ports open, allowing everyone access to sensitive files, etc. 

(ConfigVulns block outputs HostConfigVulnsFactor.) 

“Network Vulnerabilities” include those flaws that have been discovered in the 

network software, which could be exploited by an attack; these can be corrected with 

patches. (NetVulns block outputs NetVulnsFactor.) 

“ Application Vulnerabilities” include those flaws discovered in application 

software, which could be exploited by an attack (e.g. a flaw in Apache could be 

exploited for a denial-of-service attack; a flaw in Outlook Express might be exploited 



 

 75 
 

to cause remote execution of code). These are also corrected with patches. (AppVulns 

block outputs AppVulnsFactor.) 

 

We measure each of these subclasses as a “factor” between 0 and 1, where 0 is best 

(no known vulnerabilities of this type exist on this system) and 1 is worst (i.e. the 

system is permeated with vulnerabilities of this type). An overall “vulnerability 

factor” (VulnFactor), also between 0 and 1, is computed from these: 

VulnFactor = Min{1, [  (MISTAKECOEFF * MistakeFactor)  

                                     +  (HOSTCONFIGCOEFF * HostConfigVulnsFactor)   

                   + (NETVULNSCOEFF * NetVulnsFactor) + 

                   + (APPVULNCOEFF * AppVulnFactor)] } 

The “Min” function keeps the overall VulnFactor to a maximum of 1. Note that it 

is possible to reduce one or two vulnerability subfactors, and yet still have an overall 

factor of 1 if the other subfactors have been ignored. We believe that this reflects the 

reality of system vulnerabilities. We have weighted host-configuration vulnerabilities 

most heavily, followed by mistakes and application vulnerabilities, and then finally 

network vulnerabilities. This was Rosenfeld’s impression of the most-frequently 

exploited vulnerabilities. (The host-configuration vulnerability is particularly 

pernicious, as an attacker often need not “breach” any part of the system to perform 

an attack; therefore, such an attack is often not detected by an I.D.S.) [How did you 

obtain such a ranking? Is it more based on the number of vulnerabilities of each type 

present or on the impact that each of these vulnerability types has?]  I was thinking 

impact, e.g. a single config error could be more dangerous than a single app 



 

 76 
 

vulnerability. Thus my comment about “more pernicious as it doesn’t require a 

breach.”  Again, this is all my judgment here.  

 

Archetypes Version: To show the difference between those vulnerabilities fixed by 

enforcement (i.e. host config and mistakes), and those fixed by patches (i.e. netvulns 

and appvulns), two more derived values were created:  (A “strength” of 1 is best.) 

 ConfigStrength = 1 – (CONFIGHOSTCOEFF* ConfigVuln) – 

(CONFIGMISTAKECOEFF* MistakeFactor);  

 SWStrength = 1 – (SWAPPCOEFF* AppVulnFactor ) -  (SWNETCOEFF * 

NetVulnFactor); 

 

SWStrength is a straight average of how well the apps and the netware/OS has 

been patched. (Again, with the “1 minus thing” to switch a 1->0 scale (vuln of 0 is 

best) to a 0-> 1 scale (strength of 1 is best).)  For ConfigStrength, I weighted the 

average 60/40 between ConfigVulns and Mistakes; again, just my judgment as to how 

dangerous ConfigVulns are. 

 

Newest version (Escalation paper): I left the “SWStrength/ ConfigStrength” same 

as the previous paper, as it worked perfectly well for my purposes here.  

We now describe the workings of the individual vulnerability subfactors.  

Mistakes. User mistakes are given as a factor of three conditions: The users’ 

Awareness of security issues, as a value 0-to-1, where 0 is no awareness, 1 is very 

high awareness; the users’ Concern for security issues, 0-to-1, (we assume at this 

Comment [i3]: Page: 1 
I don’t understand this 



 

 77 
 

point that the lowest level of concern is 0, i.e. no concern; the issue of deliberate 

sabotage, where the user is “negatively concerned” with actively damaging the 

system, has not yet been incorporated into this model); and the sysadmin’s Hours 

Allocated to Enforcement Actions, in pseudo-personnel-hours per machine per day. 

With proper sysadmin enforcement actions in place, the users’ ability to make 

dangerous mistakes can be sharply minimized or eliminated altogether. We then 

compute an overall Mistake Factor, as a value between 0 (no dangerous user 

mistakes) and 1 (dangerous user mistakes happen all the time).  

MistakeFactor = 1 – [ {(AWARENESS + CONCERN) / USERMISTAKEDIVISOR}  

              +{ Hours Allocated to Enforcement Actions / 

ENFORCEMENTMISTAKEDIVISOR} ] 

Archetype version: the 0.7 was changed to 1.5. [Where are these numbers coming 

from?] 

The MistakeFactor is then limited by a max of 1 and a min of 0. The numbers 

were designed as follows: even given perfect awareness and concern, i.e. Awareness 

+ Concern = 2, if there are no enforcement actions, the mistake factor will still be 

.091 (not 0) to account for human error; (for example, this author recalls once 

downloading a virus simply because he accidentally clicked the wrong button.)  

Conversely, given sufficient enforcement actions (we assume .7 pseudo-hours per 

system per day would suffice), the mistake factor will go to zero, regardless of user 

awareness or concern. Note that the mistake factor is “memoryless” and employs no 

holding tanks; we assume that if awareness, concern, or enforcement were to 

suddenly decrease today, the effects would be felt immediately.  
Comment [i4]: Page: 1 
is this realistic? 



 

 78 
 

While we would like to make Awareness and Concern variables that the end-user 

could adjust, for now we simply set both Awareness and Concern to 0.2. The User 

Training for Better Security Practices? switch adds TRAININGEFFECT to Awareness, 

raising it to 1. [Where are these numbers coming from?] (Future implementations 

may describe the effects of training over time, i.e. a gradual rise in awareness.)   

These numbers are all just guesses on my part about the “average” user’s awareness 

and concern, and how much training can help. (I wanted to demonstrate the 

effectiveness of full training, so I let it raise Awareness all the way to 1.) 

ConfigVulns has two inputs: Hours Allocated to Enforcement Actions (in pseudo-

hours per system per day), and A Host-Vulnerability Scanning Tool? (0 if not present, 

1 if present). A HostConfigVulnsFactor of 0 is best. The scanning tool assists the 

sysadmin by finding the vulnerabilities present; however, the sysadmin must still 

spend time fixing these vulnerabilities!  We thus model the scanning tools as an 

increase in the “effective hours” (or “virtual enforcement hours”) available for fixing 

vulnerabilities. If the scanning tool is not present, “virtual enforcement  hours” = 

hours allocated to enforcement actions. If the scanning tool is present, “virtual 

enforcement hours” =  CONFIGTOOLMULTIPLIER * hours allocated to enforcement 

actions.   

Yes, it was my assumption for the present that the tool can double the sysadmin’s 

effective hours here; just picked a number to try. 

 

The vulnerability level is then described using (1 – the level of a holding tank), i.e. 

the holding tank is “full” when all vulnerabilities have been patched, and “empty” 

Comment [i5]: Page: 1 
For future versions we might want to 
elaborate on this, make it more similar to 
the attcks model, i.e., deal with number of 
vulnerabilities rather than with 
vulnerability level 



 

 79 
 

when no vulnerabilities have been patched. (All of the holding tanks in this model 

have the default setting of “want” connector not being able to reduce the tank value 

below zero.)  The holding tank has a “loss rate”; this describes the fact that over time, 

new vulnerabilities are discovered; additionally, new user accounts are created, etc., 

all requiring attention from the sysadmin to prevent additional vulnerabilities. We set 

the loss rate here to .05, i.e. if the sysadmin configured the system perfectly, but then 

ignored it for twenty days, it would now look very vulnerable. (For now we assume a 

linear loss rate. Further detail may modify this in the future.)  (Yes, all assumptions of 

mine which could use validation.)  The next question we ask is, how many pseudo-

personnel hours are required to maintain the tank at its “full” level of 1?  For 

configuration vulnerabilities, we assume it to be 1.5 pseudo-hours per system per day. 

(Or with the scanning tool, .75 pseudo-hours per day.)  We then have a “divisor” of 

(1.5 / .05) = 30, i.e.: input to the tank = Virtual Enforcement Hours / 30. 

The tank is designed that if the current level of the tank is already 1 (full), additional 

input (i.e. additional hours) will not raise the tank level further. Lastly, the initial level 

of the tank is also decided by the number of virtual enforcement hours. If 1.5 or more 

pseudo-hours are available, the initial level will be 1. Otherwise, the initial level will 

be (pseudo-hours allocated / 1.5). Expressed in terms of the “divisor” and “loss rate” 

constants, this is: 

StartLevel = Min{1, [ Hours / (Divisor * LossRate)] }.[I don’t understand this 

discussion on the tank. What is the main message?] 



 

 80 
 

 What happens, as given, is that if the model starts out with enough staff-hours to 

keep the configvulns “happy”, it will start at “full” and stay that way. Otherwise, it 

will inevitably decline to zero.  

 This raises the question: if you go through a year of only spending half the time 

you should on patches (or tolerance, etc.), by the end of the year, how vulnerable is 

your software?  Totally?  50%  Not sure. 

 In the old models, anything that required sysadmin hours was designed that if it 

didn’t get enough of them, it would ultimately decline to zero no matter what in the 

long term. In the Escalation paper, this was changed for IDS, Firewall, NetVulns and 

ConfigVulns: for all of them, the effectiveness TODAY of a given countermeasure is 

given by a maximum of two values: the tank level (which reflects what it had been 

given in the past), AND the number of hours given TODAY divided by the number of 

hours required to be fully happy. Thus, if I patch well for a long time, then ignore 

patches for a few days, the patch level will be 0.9 or so. On the other hand, I could 

have totally ignored patches for years, but if I spend some time on them today, 

patches will be somewhat effective today. Please let me know what you think of this. 

For the archetype version, to get better-looking results we often changed the start 

level to something specified, e.g. 0 or 1 or some constant in between that worked 

nicely. This describes a scenario of “new sysadmin walks in on a system that had 

been totally ignored for a long time”, or “incompetent sysadmin ruins a system that 

had been fine.”   

The above scheme of holding tanks, loss rates, divisors, and starting levels, will be 

found repeated throughout other parts of this model.  



 

 81 
 

NetVulns are designed very much like configuration vulnerabilities, except here the 

inputs are Hours Allocated to Software Patches and the presence of A Network 

Vulnerability Scanning Tool?  Once again, the scanning tool increasesthe virtual 

hours available for patching network vulnerabilities as follows: 

Effective Netvuln-fixing  Staff-Hrs. = NETTOOLMULTIPLIER *Hours Allocated to 

Software Patches. The NetVulnsFactor is similarly given as (1 – tank level). (The 

output from the tank is limited to the range 0 to 1. However, the feature “if tank level 

= 1, don’t allow further input” was not added to the NetVulns block (or any other 

block in this model yet) due to time constraints; thus, as is, the theoretical tank level 

can exceed 1, but the most it will read out is 1.)  LossRate = 0.04 (i.e. totally 

vulnerable if ignored for 25 days), divisor = 15 (i.e. fully patched if given .6 pseudo-

hours per system per day), initial level = virtual hours / 0.6, limited between 0 and 1. 

Archetype Version: Divisor was changed to 32. [Where is all that coming from?] 

AppVulns has inputs Hours allocated to Software Patches and New Software is 

Installed Every X Days. As before, a tank 0-1 describes the “strength” of the software; 

it is replenished by “hours allocated to patches”, with a divisor of 33.33. The loss rate 

is .02. ADDITIONALLY, anytime new software is added, this causes an additional 

loss of 0.8. The addition of new software is modeled as an event that occurs every Y 

days, where Y is Gaussian, mean New Software Installed Every X Days, std. deviation 

30%. Archetype Version: LossRate is 0.004. [Explain why you selected these values.] 

 

COUNTERMEASURES: Countermeasures behave much like vulnerabilities, only a 

factor of 1 is best (countermeasure is fully effective), 0 is worst. Each countermeasure 

Comment [i6]: Page: 1 
what does this mean in terms of the real 
world? 



 

 82 
 

outputs its factor, 0-to 1; and has inputs for the hours allocated to it, as well as a 

binary value indicating whether it is present. (If the switch, e.g. Antivirus Software?, 

is off, the factor output will always be 0.)  All of the countermeasures are represented 

by holding tanks. A “limit” block applied to the tank’s contents level ensures that the 

output will be between 0 and 1. However, the feature “tank itself can not exceed 1”, 

i.e. “if tank capacity = 1, today’s input = 0”, was not yet built into the 

countermeasures as it was into the vulnerabilities. (This can be easily changed.)  

Thus, for now, if the sysadmin were to put “super” efforts into a countermeasure for a 

while, the tank level would exceed 1; the factor output will still be 1; however, the 

sysadmin could ignore the countermeasure for a short time and it will still have a 

factor of “1”, as the loss rate drains the tank from a value greater than 1 to 1. 

(Eventually, though, the tank will drain below 1.) 

Starting level of the tank, if not manually adjusted, will follow the same equation 

as the vulnerability tanks: (hours allocated) / (total hours needed for the 

countermeasure to be “happy”, = divisor * lossrate). (This is then limited between 0 

and 1.) 

Tolerance Mechanisms. These can be high-maintenance, as this includes diversity. 

Loss rate 0.1, divisor 6.67. [Why?]  It was just assumed that tolerance measures are 

high-maintenance, especially if we include diversity; so I picked values these values: 

if tolerance measures are ignored for ten days, they become useless (loss rate 0.1); 

and that 2/3 pseudo-staff-hours per machine are required to keep these tolerance 

measures fully maintained. 

Comment [i7]: Page: 1 
I don’t understand 

Comment [i8]: Page: 1 
I believe THIS IS realistic 



 

 83 
 

Encryption Software. Once in place, this is fairly low-maintenance. Loss rate 

0.001, divisor 66.6667. [Why?]  Again, I just picked numbers that would imply low-

maintenance, i.e. an encryption system, once ignored, takes > 2 years (i.e. 1000 days) 

to become useless (there still may be bug fixes, updates, and the like); and it doesn’t 

take much work to keep the encryption up (or deal with users having problems with 

it), so I just figured an average of .067 pseudo-staff-hours per machine per day. 

Antivirus Software. We assume that new definitions must be installed by the 

sysadmin. Loss rate 0.02 (i.e. useless after fifty days, given that ~2.5 new viruses 

come out each day, looking at a list from McAfee or the like.)  Divisor 20. How much 

time per day per machine is needed to keep the antivirus up-to-date?  I assumed 0.4 

pseudo-staff-hours / machine / day.  

Firewall and IDS [Indeed, they should be separate.]. We described “firewall 

efforts” and “IDS efforts” each as separate from “hours for analyzing (false) alarms”, 

which includes the alarms generated by both. Thus, the FirewallIDS forms one unit, 

with inputs: Hours Allocated to Firewall, Hours Allocated to (False) Alarms, Hours 

Allocated to IDS, and the binary switches A Firewall?  and An Intrusion Detection 

System?. Outputs are FirewallFactor and IDSFactor, both within [0,1]; and 

FalseAlarms, measuring how many staff-hours-per-machine’s worth of alarms are 

generated on a given day. 

Firewall effectiveness and IDS effectiveness each start off as independent holding 

tanks similar to those of the other countermeasures. Thus, FirewallFactor and 

IDSFactor are simply the contents value of their respective tanks. Firewall has 

Comment [i9]: Page: 1 
why are these not separate? 

Comment [i10]: Page: 1 
why? Shouldn’t they be separate? 



 

 84 
 

LossRate 0.0333 and Divisor 20; IDS has LossRate 0.033 and divisor 8. [Why these 

numbers?]  

However, both the IDS and firewall generate more alarms as they become more 

effective.  

AlarmRate = (0.3 * FirewallFactor)+ (0.6 * IDSFactor).[No, they should not be 

mixed.] 

 If these alarms are not addressed, they become Ignored Alarms.  

IgnoredAlarms = AlarmRate – AlarmHours, with a minimum of 0. All of these are 

measured in staff-hours per machine per day. 

IgnoredAlarms leads to a steep decline in the effectiveness of the IDS and firewall, 

with several days’ delay. 

The “want” (i.e. drain) on firewall effectiveness is the “natural” loss rate due to the 

need for routine maintenance, patches and the like, which was given as 0.0333; plus 

0.25 * IgnoredAlarms, with a five-day delay on the latter. 

Similarly, drain on IDS effectiveness is 0.0333 (natural loss rate), plus 0.33 * 

IgnoredAlarms, with a three-day delay on the latter. 

Based on this, running the model with a high number of hours dedicated to the IDS 

or firewall, but few hours to analyzing alarms, will result in IDS and firewall 

effectivenesses that show decaying nonnegative oscillations, i.e. high, then low, then 

medium, then low, and so on, until they reach a level of zero. 

Archetype Version: Here, we wanted to show gains per effort for a single variable, so 

we included alarm analysis into the IDS efforts (and hours). (The firewall model was 

unchanged, as our archetypes did not include a firewall.)  We now have a holding 



 

 85 
 

tank with a starting level of zero, and an input divisor of 40. Loss rate is now entirely 

a factor of the IDS effectiveness: LossRate = 0.35* IDSlevel [i.e. the contents of the 

holding tank], with a 15-day delay. This causes the oscillations seen in the attack 

success rate of the Shifting the Burden IDS scenario.  

We then argue that even an ignored IDS will still catch some attacks; this 

assumption also keeps the oscillations in the archetypes paper from being too 

extreme. This is accomplished by simply letting IDSFactor = (contents of holding 

tank) + 0.6, with a maximum of 1. This means that a totally ignored IDS will still 

have 60% the effectiveness of a well-maintained one. (The author claims no sources 

in the literature to support this, other than “it made the graph look nice.”) 

 

Newest version: we’ve kept everything separate: addressing IDS alarms goes into 

IDS Efforts; addressing Firewall alarms goes into Firewall Efforts. Firewall has loss 

rate .033 (i.e. useless if ignored for 30 days, just my assumption) and divisor 20 (i.e. 

for full effectiveness, firewall should have 0.66 staff-hours / day; in this paper, I 

assumed .66 staff-hours per day per machine. (That’s too high, isn’t it?  Again, that’s 

skill-motivation-staff-hours, which is easily double the number of actual staff-hours.)  

For the IDS, loss rate 0.05 (i.e. useless if ignored after 20 days, again my 

assumption), and a divisor of 40, i.e. best to provide the IDS 2 staff-hours per day 

(per system).  

 

ATTACKS: We divide the attacks into three categories by their sophistication. 

(This three-way division is found in some DARPA presentations that have not yet 

been published.)  Simple Attacks, (or “kiddy-scripts”), almost always rely on known 



 

 86 
 

vulnerabilities and require little action from the attacker other than downloading and 

running the attack. A “sitting-duck” server may be subject to 50 or more simple 

attacks per day. Dr. Cukier’s empirical findings support roughly this number. 

(Though his ~50 did not include viruses.) 

“Sophisticated Attacks” may involve finding new vulnerabilities, can often defeat 

many countermeasures, and usually come from a single knowledgeable attacker (such 

as one who might actually write the “kiddy scripts” used in the first category). The 

average company will sustain only a handful, at most, of sophisticated attacks per 

day. (Yup, just an assumption; Dr. Cukier is trying to get sophisticated attackers to hit 

his systems, but not much luck yet. Wasn’t there a quote from Dr. Cukier about 95% 

simple / 5% sophisticated or something like that?)  Certainly we must include 

computer viruses, the most costly computer-security breach as 

reported in the CSI/FBI survey, in our discussion. While a computer virus does 

require a sophisticated author if it will spread, it spreads in fairly simple, predictable 

ways, and is easily defeated by simple countermeasures (antivirus) and patching 

vulnerabilities; we therefore include viruses in the simple, “script-kiddy” category. 

Lastly, we have Nationwide-level Attacks, which may be part of a war effort, 

global terrorism, possibly a multinational corporation attacking a competitor, and so 

on. Most companies will only see one of these every few months or so, if at all. (That 

seemed like common sense.)  Attacks of this sophistication do not rely on 

vulnerabilities as they can “brute force” through most software; they can also defeat 

most countermeasures.  



 

 87 
 

For the time being, we do not differentiate attacks other than their categories of 

Simple, Sophisticated, and Nationwide. The model’s end-user inputs AverageSimple, 

AverageSophisticated, and AverageNationwide via sliders. The outputs of the 

respective “attack generator blocks” are Simple/Sophisticated/Nationwide Attacks 

Attempted. To add realism to our model, some randomness occurs between the input 

Averages and the output Attempteds: 

All of the above behave the same way. If Average >= 1, then a number Y is output, 

where Y represents the number of attacks of that type attempted per day. Y is given 

by a Gaussian distribution, with mean Average and a standard deviation of 0.2 * 

Average. (i.e. “a standard deviation of 20%.”)   

If Average < 1, then exactly one attack is attempted every Z days, where Z follows 

a Gaussian distribution with a mean of (1/Average) and a std. dev. of 30%.  

Archetype Version: for simplicity, and to prevent oscillations in the graph due to 

randomness, we simply let AverageSimple = SimpleAttacksAttempted = 100. (We 

circumvent the “attack generator block.”)  All other attacks are set to 0.  

In the new (Escalation) paper, I had no randomness in Simple Attacks, but a 5% 

standard deviation in Sophisticated Attacks. Just numbers I picked to demonstrate 

some randomness; I don’t know how much the numbers vary day-to-day in real-life. 

 

ATTEMPTED VS. SUCCESSFUL ATTACKS, or ATTACK DEFENSES. Even if 

perfectly effective, a given countermeasure is only so successful at thwarting 

attempted attacks. For example, if we say 100 attacks are attempted per day, we 

include a certain number (call it X) of viruses. The best antivirus in the world will 



 

 88 
 

thwart all X of those viruses, i.e. X% of the total attacks, but it can not defeat more 

than X% of the attacks because (100-X) attacks are not viruses. As for what 

percentage of attacks are not successful due to a given countermeasure, the only 

numbers available are those of experts’ opinion and the CSI/FBI survey. The CSI/FBI 

survey is of limited use, however, as it records what percentage of correspondents 

reported observing a given type of attack on their system. Thus, we know that 78% of 

the businesses surveyed detected a virus last year, and 37% detected a DoS; that does 

not mean that 78% of the attacks out there are viruses or that 37% of them are DoSs!  

(Otherwise, the numbers exceed 100% quite rapidly.)  Nonetheless, the numbers can 

be used as a very rough approximation for the prevalence of a given attack. 

Otherwise, the numbers given here represent the author’s numerical interpretations of 

M. Cukier’s descriptions of “fully effective”, “partially effective”, or “not effective” 

for each countermeasure against each category of attack.  

Similarly, certain countermeasures may be very effective against simple attacks, 

but not against sophisticated ones. We therefore have three different blocks labeled 

SimpleSuccess, SophistSuccess, and NatnwideSuccess, respectively. (Extend’s limits 

on the number of characters in a hierarchical block’s name necessitated some creative 

spellings here.)  Each of these takes as inputs Attempted XYZ Attacks, where XYZ is 

simple/sophisticated/nationwide. They also have inputs for the factors of all relevant 

countermeasures and vulnerabilities. The primary output is the number of successful 

attacks of a given category. The other outputs appear on the bottom of the 

AttackSuccess block, directly beneath the inputs for the various countermeasures and 

vulnerabilities. These outputs show the number of attacks per day not successful due 



 

 89 
 

to the corresponding countermeasure or lack of vulnerability. Additionally, it appears 

that a “thinner” block has been attached to the bottom of each Attack Success block. 

This functions as an accumulator, showing how many attacks have been attempted, 

successful, or not-successful-due-to-a-given-factor, over the entire simulation period.  

Each AttackSuccess block is designed in the same way, as a linked series of 

holding tanks: at the beginning of each day, all tanks are reset to zero. Then, a certain 

number of attacks (attempts) are input to the first holding tank; some are removed by 

the first countermeasure (in proportion to how effectively it is functioning, e.g. is the 

AntivirusFactor 1, i.e. it has been well-maintained, or something lower?); the 

remaining tank contents (i.e. remaining attacks) are transferred to the second tank, 

where some are removed by the second countermeasure, and so on; those that remain 

after all the tanks are done are deemed Successful Attacks.  

For simple attacks, we have the following procession: As an attempted attack 

enters the system, it first encounters the firewall, then an IDS; if it passes those, it will 

be scanned by an antivirus. If it still passes through, it may be designed to exploit a 

given vulnerability in the system; if that vulnerability is not present, it will be 

thwarted here. If it still succeeds, encryption may sometimes help as follows: even if 

the system is breached and data is illegally accessed, an attacker will find the 

encrypted data meaningless; confidentiality is thus maintained. Finally, if all else 

fails, tolerance measures will mitigate the damage in many cases. Thus, starting with 

attempted simple attacks, we have the following: [Not completely right. In particular, 

the antivirus focuses mainly on email attachments. Otherwise, the antivirus can detect 

Comment [i11]: Page: 1 
Michel, what do you think? 



 

 90 
 

the corruption of the computer. We can work this out during our next meeting, OK?]  

We’re still working on this, but the models haven’t changed it yet. 

Remove (FirewallFactor * 90%) of the attempted attacks. I.e. if the Firewall is 

fully effective, it will catch 90% of the attempted simple attacks; if it’s only 50% 

effective (supposing it hasn’t been well-maintained), then it will catch only 45% of 

attempted attacks. Of those remaining, remove (IDSFactor * 60%); of those 

remaining, remove (AntivirusFactor *  78%); of those remaining, remove ((1 – 

VulnFactor) * 90%); this represents those attacks that were designed to exploit a 

given vulnerability; if that vulnerability is not found, the attack will not succeed.  

Archetypes Version: in order to differentiate between the results of enforcement 

actions (which influence config vulns and mistakes) and patches (which influence 

NetVulns and AppVulns), we have each defeat attacks separately, rather than taking 

90% * (1 – VulnFactor). Instead, remove (SWStrength * 60%), then (ConfigStrength 

* 80%). In displaying those attacks defeated by ConfigStrength, we adjust the 

equations to show total attacks defeated by ConfigStrength, not those attacks defeated 

by ConfigStrength that were not previously defeated by SWStrength. 

Then remove (EncryptFactor * 40%). (Encryption is only useful in preventing 

theft of data; it does very little, for example, against a DDoS attack.)  Lastly, remove 

(ToleranceFactor * 75%). Take this result and apply the “floor” function, i.e. largest 

integer that is less than or equal to it. (Thus, if after all the countermeasures, we have 

2.2 attacks succeeding, count that as 2. If we have 0.9 attacks succeeding, count that 

as 0.)  Archetype version: to make the lines smoother, we leave out the floor, and 

instead interpret the results simply as “percentage of attacks succeeding.”  We now 



 

 91 
 

have the number of SuccessfulSimpleAttacks. (The various summed-over-time outputs 

are found simply by inserting accumulation tanks at the appropriate point in the 

chain.)   

 

All of these percentages were either my assumptions, some comment from Dr. 

Cukier about “very effective/somewhat effective/not effective”, and occasionally, the 

survey (see above about 78% saw viruses.)    

For Sophisticated and Nationwide attacks, many less countermeasures are 

effective. Furthermore, even a single attack stands a good chance of succeeding. This 

is represented as follows: after reducing the appropriate percentages due to 

countermeasures and vulnerabilities, we are left with what should be X successful 

attacks. If X >=1, round X to the nearest integer; that is how many attacks of this type 

are successful today. If  0 < X < 1, one attack will succeed an average of X% of the 

time. This is accomplished by selecting a random value r uniformly distributed on 

[0,1]; if r < X, the attack succeeds; otherwise, it does not.  

For sophisticated attacks, the antivirus is ineffective because all viruses are treated 

as simple attacks. An IDS can be defeated by a clever attacker, so it is not included. 

Encryption (which we assume can not be defeated without a supercomputer of some 

type (Dr. Cukier agreed with this; I’ve heard in the news that every now and then a 

team of experts with 100 computers has cracked a given file encrypted with RSA, 

after working on it for a few months.)  which is beyond the reach of a single 

sophisticated attacker) is still as effective as with simple attacks; the same goes for 

tolerance. A firewall is effective, but less so because it can sometimes be defeated. 



 

 92 
 

Lastly, some sophisticated attacks are designed to exploit known vulnerabilities, but 

often a sophisticated attacker can find his/her own new vulnerabilities in the software. 

We thus are left with the following: 

Remove (FirewallFactor * 30%) of attempts; of the remaining, remove ( (1 – 

VulnFactor) * 50%); of the remaining, remove (EncryptFactor * 40%); lastly, of the 

remaining, remove (ToleranceFactor * 75%). The remaining value is rounded to the 

nearest integer if it is >= 1, or used as a probability if it is < 1, as described above. 

The result is the number of SuccessfulSophisticatedAttacks. Only source other than 

Dr. Cukier’s comments or my guesses I can add here is this: Encryption is helpful for 

whatever percentage of attacks sought to steal sensitive data. What is that percentage?  

Survey talks dollar costs of various attacks (e.g. theft of data vs. DoS), but not the 

percentage breakdown of the number of attacks themselves. 

In the case of Nationwide attacks, we assume that network and application 

vulnerabilities are irrelevant as the code is subject to “strong smart force”, the 

nationwide-scale attackers may have access to the code being used; similarly, the 

nationwide attacker possesses a supercomputer, quantum computer, or some other 

method of defeating commercially available cryptography. The only countermeasures 

that are effective (and partially at that) are the firewall (if it is a hardware firewall of 

proprietary design, as M. Cukier described in an experience of his)  and tolerance 

measures.  

Remove (Firewall Factor * 20%), then of the remaining, remove 

(ToleranceFactor * 50%). Apply the rounding or probability as described above; the 

result is the number of SuccessfulNationwideAttacks. Dr. Cukier had said something 



 

 93 
 

about Tolerance being fully effective against simple & sophisticated attacks; halfway 

effective against nationwide attacks. 

Lastly, the three categories of successful attacks can be summed; each 

AttackSuccess block is connected to an addition block. The result is All Successful 

Attacks (Per Day). Similarly, if one wishes to see all successful attacks over the entire 

simulation period, the various Successful ABC Attacks (Sum Total), for ABC = 

{Simple, Sophisticated, Nationwide}, sum to All Successful Attacks (Sum Total).  

 
 
 
 
 
 
 

 

 

 

 

 

 



 

 94 
 

Bibliography 
 
 
[Baj04] R. Bajcsy et al, “Cyber defense technology networking and evaluation,” 
Communications of the ACM, vol. 47, no. 3, March 2004, pp. 58—61. 
 
[Ber04] D. Bergemann, J. Feigenbaum, S. Shenker, and J. Smith, “Towards an 
economic analysis of trusted systems,” presented at Third Annual Workshop on 
Economics and Information Security (WEIS ‘04). Minneapolis, May 13—14, 2004.  
 
[Ber05] D. Bergemann et al, “Flexibility as an instrument in DRM systems,” 
presented at Fourth Annual Workshop on Economics and Information Security 
(WEIS ‘05). Cambridge, MA, June 2—3, 2005. 
 
[Bod05] L. Bodin, L. Gordon, and M. P. Loeb, “Evaluating information security 
investments using the analytic hierarchy process,” Communications of the ACM, vol. 
28, no. 2, Feb. 2005, pp. 79—83.  
 
[Bra02] W. Braun, “The System Archetypes,” (2002), Available at 
http://www.uni-klu.ac.at/gossimit/pap/sd/wb_sysarch.pdf 
 
[Cam03]  K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou, “The economic cost 
of publicly announced information security breaches: empirical evidence from the 
stock market,” Journal of Computer Security, no. 11, 2003, pp. 431—439. 
 
[Coh99] F. Cohen, “Simulating CyberAttacks, Defenses, and Consequences,” (March 
1999), Available at: http://all.net/journal/ntb/simulate/simulate.html 
 
[Coh06] Fred Cohen & Associates, “Strategic Games”, (2006), 
http://all.net/games/index.html 
 
[Dac04] M. Dacier, F. Pouget, and H. Debar, “Honeypots: practical means to validate 
malicious fault assumptions,” In Proc. 10th IEEE Pacific Rim Int’l Symposium on 
Dependable Computing (PRDC ’04), 2004, pp. 383—388. 
 
[Dan04] D. Danchev, “Reducing ‘Human Factor’ Mistakes.” WindowSecurity.com, 
(2003), www.windowsecurity.com/articles/Reducing_Human_Factor_Mistakes.html 
 
[Dwa05] Z. Dwaikat, “Attacks and countermeasures,” CrossTalk: The Journal of 
Defense Software Engineering, Oct. 2005, Available at: 
www.stsc.hill.af.mil/crosstalk/2005/10/0510Dwaikat.html 
 
[Fei05] J. Feigenbaum et al, “Subjective-cost policy routing,” in Proceedings of the 
Workshop on Internet and Network Economics, Lecture Notes in Computer Science, 
vol. 3828, Berlin: Springer, 2005, pp. 174--183.  
 



 

 95 
 

[For61] J. W. Forrester, Industrial Dynamics, Cambridge: The Wright-Allen Press, 
1961. 
 
[Gib02] S. Gibson, “The Strange Tale of the Denial of Service Attacks Against 
GRC.com.” Gibson Research Corporation, (March 2002), Available at: 
www.grc.com/files/grcdos.pdf 
 
[Gon01] F. Gong, K. Goseva-Popstojanova, et al, “Characterizing intrusion tolerant 
systems using a state transition model,” In Proc. DARPA Information Survivability 
Conference and Exposition II (DISCEX '01), 2001. 
 
[Gor02] L. A. Gordon and M. P. Loeb, “The economics of information security 
investment,” ACM Trans. Information and System Security, vol. 5, no. 4, November 
2002, pp. 438—457. 
 
[Gor05a] L. A. Gordon, M. P. Loeb, et al, “Tenth Annual CSI/FBI Computer Crime 
and Security Survey,” Computer Security Institute, (2005), Available at: 
www.gocsi.com/forms/fbi/csi_fbi_survey.jhtml 
 
[Gor05b] L. A. Gordon and M. P. Loeb, Managing Cybersecurity Resources: A 
Financial Perspective, New York: McGraw-Hill, 2005. 
 
[Hof05] S. Hofmeyr, “The Information Technology security arms race,” CrossTalk: 
The Journal of Defense Software Engineering, Oct. 2005, 
http://www.stsc.hill.af.mil/crosstalk/2005/10/0510Hofmeyr.html 
 
[Hun06] C. L. Huntley, “A Developmental View of System Security,” Computer, vol. 
39, no. 1, pp. 113—114, January 2006. 
 
[Ima05] Imagine That, Inc., Extend. (Version 6.07). [CD-ROM]. [Windows 
98/ME/NT4/2K/XP]. San Jose, CA, 2005. 
 
[Irv05] C. E. Irvine, M. F. Thompson, and K. Allen, “CyberCIEGE: gaming for 
information assurance,” IEEE Security & Privacy Magazine, vol. 3., no. 3, May-June 
2005, pp. 61—64. 
 
[Jha01] S. Jha and J. M. Wing, “Survivability analysis of networked systems,” in 
Proc. of the 23rd International Conference on Software Engineering (ICSE ’01), 
2001, pp. 307—317.  
 
[Jon97] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion 
process based on attacker behavior,” IEEE Transactions on Software Engineering, 
vol. 23, no. 4, April 1997. 
 
[Lar03a] R. LaRose and M. S. Eastin, “A social cognitive explanation of Internet uses 
and gratifications: toward a new theory of media attendance,” presented at 
International Communication Association, Communication and Technology Division. 
San Diego, May 2003. 



 

 96 
 

 
[Lar03b] R. LaRose and N. Rifon, “Your privacy is assured --- of being invaded: 
Web sites with and without privacy seals,” presented at IADIS International 
Conference. Lisbon, Portugal, June 3—6, 2003. 
 
[Mar03] K. Marais and N. Leveson, “Archetypes for organizational safety,” presented 
at IRIA ‘03. Williamsburg, VA, 2003, Available at: 
http://sunnyday.mit.edu/papers/iria-marais.pdf 
 
[Nav06] Naval Postgraduate School and Rivermind, Inc., Cyberciege, version 1.5b, 
Feb. 2006, [Win2000/XP] http://cisr.nps.navy.mil/cyberciege/index.htm 
 
[Ort99] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting with quantitative 
evaluation tools for monitoring operational security,” IEEE Transactions on Software 
Engineering, vol. 25, no. 5, Sept.-Oct. 1999, pp. 633—650. 
 
[Pan05] S. Panjwani et al, “An experimental evaluation to determine if port scans are 
precursors to an attack,” in Proc. International Conference on Dependable Systems 
and Networks (DSN05), Yokohama, Japan, June 28—July 1, 2005. 
 
[Pou04a] F. Pouget and M. Dacier, “Honeypot-based forensics,” presented at 
AusCERT Information Technology Security Conference 2004 (AusCERT ‘04). 
Ashmore, Australia, May 23—27. 
 
[Pou04b] F. Pouget, M. Dacier, and V. H. Pham, “Understanding threats: a 
prerequisite to enhance survivability of computing systems.” Presented at 
International Infrastructure Survivability Workshop 2004 (IISW04), in conjunction 
with 25th International Real-Time Systems Symposium (RTSS04). Lisbon, December 
5—8, 2004, Available at: http://www.honeynet.org/papers/individual/IISW04.pdf 
 
[Pou05] F. Pouget, M. Dacier, and V. H. Pham, “Leurre.com: On the advantages of 
deploying a large scale distributed honeypot platform,” In Proceedings E-Crime and 
Computer Conference 2005 (ECCE ’05), March 2005.  
 
[Ros06a] S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling and simulation of the 
escalation archetype in computer security,” presented at 2006 Symposium on 
Simulation and Software Security (SSSS ‘06). Huntsville, AL, April 2006. 
 
[Ros06b] S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling the symptomatic fixes 
archetype in enterprise computer security,” submitted to 30th Annual International 
Computer Software and Applications Conference (COMPSAC06). Chicago, Sept. 
2006. 
 
[Ros06c] S. N. Rosenfeld, I. Rus, and M. Cukier, “Archetypal behavior in computer 
security,” submitted to Sixth European Dependable Computing Conference (EDCC-
6). Coimbra, Portugal, Oct. 2006. 



 

 97 
 

 
[Sen90] P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning 
Organization, New York: Doubleday Currency, 1990. 
 
[Sen94] P. Senge, A. Kleiner, et al, The Fifth Discipline Fieldbook, New York: 
Doubleday, 1994. 
 
[Ste04] F. Stevens, T. Courtney, et al, “Model-based validation of an intrusion-
tolerant information system,” In Proc. of the 23rd Symposium on Reliable Distributed 
Systems (SRDS ’04), 2004, pp. 184—194. 
 
[Wol03] E. F. Wolstenholme, “Toward the definition and use of a core set of 
archetypal structures in system dynamics,” System Dynamics Review, vol. 19, no. 1, 
Spring 2003, pp. 7—26. 
 
 
 
 



 

 98 
 

Publications and Submissions 

 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling and simulation of the 

escalation archetype in computer security,” 2006 Symposium on Simulation 

and Software Security (SSSS ‘06). Huntsville, AL, April 2006. (50% 

acceptance rate.) 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modeling the symptomatic fixes 

archetype in enterprise computer security,” submitted to 30th Annual 

International Computer Software and Applications Conference 

(COMPSAC06). Chicago, Sept. 2006. 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Archetypal behavior in computer 

security,” submitted to Sixth European Dependable Computing Conference 

(EDCC-6). Coimbra, Portugal, Oct. 2006. 

• S. N. Rosenfeld, I. Rus, and M. Cukier, “Modelling the tragedy of the 

commons archetype in enterprise computer security,” soon to be submitted to 

IEE Proceedings Information Security. 

 


