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Driven by environmental awareness and new regulations for fuel efficiency,

electric vehicles (EVs) have significantly evolved in the last decade, yet their market

share is still much lower than expected. In addition to understanding the reasons

for this slow market penetration, it is crucial to have appropriate tools to correctly

predict the diffusion of this innovative product. Recent works in forecasting the

EV market combine substitution and diffusion models, where discrete choice spec-

ifications are used to address the former, and Bass-type to account for the latter.



However, these methodologies are not dynamic and do not consider the fact that

innovation occurs through social channels among members of a social system.

This research presents two advanced methodologies that make use of real data

to evaluate the adoption of the EVs in the State of Maryland. The first consists of

a disaggregated substitution model that considers social influence and social confor-

mity, which is then embedded in a diffusion model to predict electric vehicle sales.

The second, in contrast, relies on non-parametric machine learning techniques for the

classification of potential EV purchasers. Both make use of data collected through

a stated choice experiment specifically designed to capture the inclination of users

towards EVs.
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1. Introduction

The number of cities that have implemented traffic restrictions due to pollution

is high. Moreover, in many cases, these policies are accompanied by other pro-EV

measures. It is a common practice in many cities of the U.S. and Europe to allow

EVs to park in regulated areas without paying for their cost, to drive on High

Occupancy Lanes, or to access cities when other more polluting vehicles are not

allowed to. These incentives for the use of EVs are accompanied by an interest that

emanates from the demand. Users, increasingly concerned about the environment,

are more inclined to adopt this technology. The prospect of savings in the medium

term presents also an economic incentive, given the current costs of energy. This

attention has sparked, in turn, the interest of the industry, which is consistently

working on the development of new generations of more efficient high-performance

vehicles. In the last decade EVs have evolved significantly, progressively closing

the usability gap. They currently are a realistic option for many users, and have

opened new service-based business opportunities. Finally, the public administration

is making its own contribution to the state of the matter, too, offering stimulating

tax deductions when purchasing a vehicle of these characteristics.

These factors, altogether, place the market in a situation that, although unique
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and interesting, is fraught with uncertainty. Consequently, the need for reliable

information about the future of the EV is greater than ever. A solid prediction might

be the basis for industry strategic decisions, as well as for public administration to

regulate in favor of EVs. However, all attempts in this regard have been unsuccessful.

The forecasts published so far, in academia or other spheres, have substantially

differed from the actual evolution that has taken place thereafter; falling short in

some cases and being too optimistic in others. There are different reasons for this,

and the following subsections shed some light on these aspects. Namely, regulation,

Demand and Supply conditioning factors, and state-of-the-art of EV market share

forecasts. The aim is to provide a more comprehensive view of the key elements in

the development of the EV.

1.1 Rules and regulation

In 2018, 38 states in the U.S. made 102 modifications to the rules and regula-

tions governing EVs. They are shown in Figure 1.1. Most of them were related to

fees, public utilities, and electric bicycles.
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Figure 1.1: States that regulated EVs in 2018. Source: [17].

Fuel taxes are considered as the major and most important source of infras-

tructure funding in the U.S. As such, the wide use of EVs may result in a reduction

of fuel tax revenue, and increase the infrastructure funding shortages. Many states,

as well as the federal Highway Trust Fund, have already experienced funding issues

due to the improvements in fuel efficiency and to the fact that most states do not

adjust their fuel taxes based on inflation. Therefore, policymakers are considering

additional fees to be placed on EVs, to make up parts of these shortages, or at least

reduce their impact. In this respect, some states have proposed a flat annual fee,

while others advocate lower fees for hybrid vehicles ([17]). Table 1.1 summarizes the

registration fees in some states for EVs.
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Table 1.1: State actions on EV regulation, 2018. Source: [17].

There are other important questions related to EVs that are a source of regula-

tion. One is to address whether EV charging stations are considered public utilities

and whether they can resell the electricity. Equally important are; the ability of

homeowner associations to restrict charging infrastructure; penalties for non-EVs

parking in dedicated charging spaces; or regulations concerning electric bicycles. In

this sense, California is a particularly interesting case, as it is one of the states more

concerned about Green House Gas (GHG) emissions. The state has passed several

bills and implemented programs to reduce GHG emissions, such as the Alternative
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and Renewable Fuel and Vehicle Technology Program, the Cap-and-Trade Program,

and the California Global Warming Solution Act. This has turned California into

one of the most predominant advocates of EVs in the U.S. In 2010, the state re-

quired all car manufactures to sell an increasing share of Zero Emission Vehicles

(ZEVs). In 2013, the state allowed EVs to access carpool lanes, a measure that

came with a federal income tax deduction of between $2,500 and $7,500, depending

on the vehicle’s weight. The EV Everywhere Grand Challenge of 2012 focused on

cutting the battery cost, drive system cost and vehicle weight, and provided funding

to increase the charging infrastructure [5].

Table 1.2 summarizes the actions taken in different cities in the U.S. at state

and city level, as well as utility actions. San Francisco is the leading city in promot-

ing the EV, with 23 actions, followed by Los Angeles and San Diego. Most of the

cities seem to be taking actions on utility outreach activities and workplace charging

activities. Fleet purchasing, and website development are among the most important

actions taken at the city level. State level actions are mostly focused towards Bat-

tery Electrict Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV) purchase

subsidies.
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Table 1.2: Summary of EV promotion actions across major cities. Source: [92].

From an international perspective, France has taken notable steps towards the

use of EVs. It has placed incentives to increase the number of charging stations

up to seven million in 2030, as well as establishing the requirement that half of the

government vehicles be low emission [5]. Another notable policy implemented, in a

similar line to the U.S., is a rebate scheme on vehicle registration. The registration

cost ranges from €150 to €8,000, and the rebate ranges from €150 to €6,300. The
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reduction is higher for BEVs and lower for PHEVs. The annual vehicle ownership tax

is based on CO2 emissions, which exempts EVs from the annual vehicle registration

taxes. Finally, if the owners of an EV scrap diesel cars registered before 2001 they

can get up to €10,000 benefit per car [5].

Germany has also promoted the use of EVs through the National Electromo-

bility Development Plan passed in 2009 [5]. EV owners are exempted from annual

vehicle registration taxes for 5 to 10 years (depending on the license date) in addi-

tion to receiving a 50% purchase tax deduction, as well as other incentives (€2,000

for full EVs and €1,500 for hybrid). Moreover, the electricity that is used for public

transport is subsidized, and the operators of charging points are treated as final

consumers and are not subject to energy suppliers tax obligations. Finally, munic-

ipalities across Germany are authorized to provide parking and bus lane privileges

to EVs.

Figure 1.2 plots, for several European countries and regions, fiscal incentive as

a percentage of the cost of a comparable gasoline car and the number of charging

points per 1,000 registered cars. Norway and its two cities (purple circles) have

the highest fiscal incentive, and accumulate a 53.7% of the market share of all new

vehicles in 2014. In addition, Oslo and Bergen provide also the highest density of

charging points, followed by Amsterdam.
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Figure 1.2: Fiscal incentives, market share, and charging point density for European
countries and regions. Source: [?]

Similarly, Table 1.3 shows non-fiscal incentives, such as charging infrastructure

funding, research support, car sharing link, or local EV strategy definition. Ams-

terdam has taken the highest number of these actions among the regions surveyed,

followed by Utrecht; both cities of the Netherlands. Outreach and educational pro-

grams and Vehicle charging infrastructure funding were among the most widely used

strategies to promote EVs.
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Table 1.3: Comparison of non-fiscal incentives for European countries and regions.
Source: [135].

In summary, as far as public regulation is concerned, it seems that focusing on

vehicle emissions is not enough to encourage users to purchase EVs. Policy in this

spirit should be coupled with other financial and operational incentives, of which

the most important ones appear to be:

• Fiscal incentives to reduce initial vehicle purchase, registration cost, and own-

ership costs.

• Engagement with electricity utilities.

• Deployment of public and workplace charging networks.

• Information and awareness actions.
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• Operational incentives such as toll and parking cost exemption, and use of bus

and carpool lanes.

• Implementation of tighter CO2 emission standards.

1.2 Demand and Supply

China has the largest EV market, followed by Europe and the U.S. Nearly

one million EVs were sold in China in 2018, which was slightly less than the total

sales in the U.S. and Europe combined. Figure 1.3 shows the evolution of sales

in different countries. In terms of inventory, China again tops the list, with two

million. Interestingly, half of this inventory was sold in 2018, which was actually

doubled with respect to 2017. However, putting these figures in relation to popula-

tion change this picture. In that case, Norway leads the ranking with 55.9 EVs per

one thousand population, followed by the Netherlands, Sweden, and with 8.7, 7.8,

and 3.4, respectively. In contrast, China has 1.6 EVs per one thousand population.

In global terms, there were 5,127,297 EVs with a vehicle-to-thousand population

ratio of 0.7 in 2018.
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Figure 1.3: Global trend in EV sales by country, 2010-2018. Source [60].

In the U.S., the east coast states had the highest share of EVs in 2018 due

to the incentives that they offered, as previously mentioned. Nationwide, nearly

360,800 PHEVs were sold in 2018, meaning an 81% growth in the EV market.

BEVs had the highest share, with 66% of the total, in contrast to the 53% of 2017.

Total electric light vehicle sales reached 2.1% over the entire year, topping at 3% in

November and December. Figure 1.4 shows these market trends.

The European EV market has also experienced growth. With more than one

million PHEVs reached in 2018, the Year over Year (YoY) growth is nearly 42% [32].

In the first half of 2017 and 2018, Norway had the highest number of EV sales in

Europe, closely followed by Germany and the UK [6]. The sales in some European

countries nearly doubled in the first half of 2018 – i.e. Denmark, Finland, Portugal,

Netherlands, and Spain. This growth continued in the first month of 2019, in which
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EV sales jumped 67% YoY.

Figure 1.4: EV sales trend in the U.S. Source [61].

Backed by this growing attention on the part of users and public institutions,

the interest of the automobile industry in promoting the EV technology has in-

creased likewise, especially recently. The environmental concerns of both public

administrations and users discussed above are probably the main driver for man-

ufacturers, which are doing important investments in improving the models that

they already have in their catalogs, as well as extending the number of them, with

the aim of reaching a wider range of consumer profiles. Nevertheless, although the

industry is willing to introduce EVs in the market, this objective depends on the

combination of many factors to become effective. For instance, the sales strategy

and the availability of the models have not always been favorable. Especially in the

early stages of the introduction of EVs, car dealers lacked the experience needed to
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provide adequate and convincing information about the electric models. In addition,

there were frequently no test vehicles of this class at the dealership. That caused

important misinformation about costs and benefits, as well as about other relevant

factors to consider when making the purchasing decision. Advertising has not al-

ways been used optimally as well. It has been observed ([35]) that the publicity of

EVs was significantly lower than to conventional vehicles. Therefore, there has been

a space to fill with respect to the strategies deployed to convince potential users,

beyond the mere improvement of the EV characteristics.

In regard to these attributes, the superior price of EVs in comparison to

gasoline vehicles still is, undoubtedly, an important factor that is limiting its

diffusion, even though this gap is closing. Figure 1.5 shows the high prices of

representative EV models with respect to those of internal combustion. One of the

reasons behind elevated prices is the significant cost of battery production, as well

as the R&D associated with it. The current generation of batteries has low energy

density and provides limited driving range; meaning long charging times (even

in fast charging mode) to achieve relatively short driving autonomy. Although

numerous studies refute the feared range anxiety, equating the ranges of electric

and gasoline vehicles is a capital objective for manufacturers.
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Figure 1.5: Vehicle prices for representative models in the U.S., electric vs. conven-
tional. Year 2016. Source [97].

Despite these aspects, there has been a steady increase in the number of

models available for sale in the U.S during the last years, as Figure 1.6 shows,

giving users the possibility to choose according to their tastes and preferences.
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Figure 1.6: Number of EV models in the U.S. Source [130].

Regarding the evolution of the automotive industry, although producers have

been experimenting with prototypes over some time, scale production began at the

end of 90s. The Nissan Leaf was the first model to be available in the U.S, in 2010,

followed by models by Ford, Toyota, and Honda in 2011 and 2012. Nissan sold 8,720

units of the Leaf in its first 11 months ([91]). In comparison, the Tesla Model S, a

luxury BEV introduced in 2012 (but rescheduled to 2013), reached around 20,000

units sold in its first year. Chevy Volt is another emblematic EV of the American

market. Until August 2012, 13,479 Volts were sold ([142]), and it is currently still a

popular model. It passed the Consumer Reports Owner Satisfaction Survey for 2011

and 2012, with 92% of owners saying they would make the same purchase again.

Figure 1.7 presents the market shares of the above models, and others. Among

the models that dominate the European market are the Renault Zoe, Mitsubishi

Outlander and Nissan Lift; only the Lift has a significant market in the U.S.
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Figure 1.7: Market shares for different makes and models in the U.S. Source [61]

PHEVs do not have the same mileage range limitations as fully battery-

powered vehicles although, in some cases, they tend to be more expensive than

battery and gasoline cars since they incorporate both kind of engines. Non-

pluggable hybrids have been mass-produced in the USA since 2000, with the Honda

Insight being the first hybrid available in the United States. Since then most

producers have hybrid models in their catalogues. The best-selling hybrid currently

on the road is the well-known Toyota Prius, which sold almost one million units

between 2000 and 2010 ([141]). Figure 1.8 shows the percentage of hybrid retail

registrations by state. California, Vermont, the District of Columbia, Oregon,

Arizona, and Washington have the highest penetration in the hybrid market and

are also leading markets for the initial deployment of PHEVs ([20]).

16



Figure 1.8: Percentage of hybrid retail registrations by state. Source [20].

The performance of the hybrid market can give an idea of how the BEV one

will mature. ([103]) foresee that by 2017, PHEVs will account for 1.2% of car sales

in the U.S. However, although the PHEV business is more developed and may share

elements with the BEV, it is difficult to accurately predict how quickly the latter

will expand. In any case, the variety of models described has been accompanied

by a clear trend of substantial growing sales, as Figure 1.9 shows, encouraging the

hope of the definitive arrival of BEVs, and arising the old question of whether

Demand conditions Supply or vice versa.
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Figure 1.9: Annual sales of EVs in the U.S. 2010 - 2018. Source: [40].

1.3 State of the art of EV market share forecasts

1.3.1 Substitution and diffusion models

The factors described above, altogether, place the market in a situation that,

although unique and interesting, is fraught with uncertainty. The need for reliable

information about the future of the EV is greater than ever. A solid prediction might

be the basis for industry strategic decisions as well as for public administrations to

regulate in favor of EVs. However, all attempts in this regard have been unsuccess-

ful. The forecasts published so far —in academia or other spheres— have differed

substantially from the actual evolution that has taken place thereafter; falling short

in some cases and being too optimistic in others. There are different reasons for this,

some of them methodological and others due to the approach to the subject adopted.

18



For instance, Discrete Choice Models (DCMs) are a popular tool for predicting de-

mand. However, DCMs rely on the responses provided in hypothetical scenarios,

i.e. Stated Preferences (SP) data. Thus, when used for prediction, the alternative

specific constants of these models need to be calibrated to reflect the unobserved

factors present in real market situations. These disaggregated demand models also

present a limitation of special importance in the case of innovative products; they

are suitable for predicting the demand for stable markets but are inadequate for

disruptive goods whose sales behave peculiarly.

Not considering the evolution of demand over time is another drawback of

the predictions performed so far. Innovations spread at a slow pace and need long

periods to reach significant market shares. Sales growth curves barely increase

in the introduction period, to exponentially grow once critical mass is reached.

This behavior cannot be represented by demand models based on DCMs, and new

approaches are required. One of them is the use of classic diffusion models, such

as Bass ([6]), Gompertz ([49]), or extensions of these two, in order to incorporate

different aspects such as competitive products or different generations of the good

at hand.

Another reason that may explain why attempts to predict the spread of EVs

have failed is the absence of social elements in the models. Although diffusion is a

process that occurs through social channels [112], the methodologies that explicitly

account for them are reduced.

Hence, for a prediction to be accurate and reliable, it should include three

elements:
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• Substitution: Which may happen by replacing an Internal Combustion Vehicle

(ICV) – gasoline or any other engine – by an EV, by purchasing an additional

EV for the household, by upgrading to a new generation of EV, or even by

selling an EV back. In any case, there is clearly a substitution component in

the diffusion of EVs since it is a good that individuals consume in order to

substitute another mean of transportation, especially a car with another type

of engine.

• Diffusion: The approach in the classic Bass models and its extensions is that a

new technology is first adopted by a subgroup of innovators, who are followed

by imitators. This process simply happens through a progressive increase in

sales; i.e. in a classic Bass model, the accumulated sales increase, which, in

turn, contribute to increasing the future sales. However, it is known that

this process is eminently social, as Rogers points out ([112]). Therefore, it is

absolutely necessary to include social elements in any prediction of diffusion

of technology.

• Dynamics: Diffusion not only depends on the context at a particular moment

but also on what occurred in the previous periods. Models that aim to predict

sales should include variables referring to previous periods of time.

The second of these elements is of special interest for this research . Roger’s asser-

tion that diffusion occurs through social channels ([112]) can be understood from

a double perspective. On the one hand, people around us influence our behavior.

Whether they are family, friends, or even unrelated people, their conduct and their
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own decision-making condition ours. Somehow, all of us, give in to peer pressure

to some extent, and act in accordance with the position of the majority. This phe-

nomenon is known as Social Conformity (SoC) and has been extensively studied, as

will be detailed in the next chapter. SoC is a type of social influence, which involves

changes in one’s attitudes, beliefs and behavior in order to fit into a group ([30]).

There are also several categories of social influence; one is descriptive normative

beliefs, which refer to what an individual thinks others do in a particular situa-

tion; another is injunctive normative beliefs, which reflect beliefs about what others

approve or disapprove of. On the other hand, attitudes and perceptions also play

a role in diffusion since they affect individual behavior, too. Research conducted

in psychology suggests that preferences are formed by experience. Therefore, ei-

ther having direct experience with EVs or receiving feedback from significant ones

on their experience with EVs may influence preferences and, consequently, impact

market penetration. Another interesting reflection is the influence, not of the social

elements themselves, but of the size of the social network from which they proceed.

Relevant questions are whether the size of an individual’s network is important, or

whether the nature of their connections matters more. This research aims to address

these questions. In order to do so, the approach developed parts from the intuitive

idea that the persons who form the social network of an individual pertain to two

groups:

• Inner circle: People trusted and/or with which identification is felt. It may

be formed by family and friends.
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• Outer circle: People with whom one has direct contact, but who are not

especially relevant in terms of affection or trust, such as non-close friends or

acquaintances.

The number of members of the inner circle may change little since some of

them are ‘replaced’ by others as time goes by. Family members die while others

grow up and ‘occupy’ their place in the network in terms of confidence and influence.

Likewise, close friends sometimes stop being so or move far away, while one makes

one or two of them with the same probability.

Considering this analysis, it can be concluded that there is a range of improve-

ment in the development of substitution/diffusion models to predict the growth of

EV sales, which will allow for a better understanding of the full impact in the econ-

omy and in the transportation sector, in particular. An interesting research question

is the impact of EVs in macroeconomic key indicators. Some studies ([7]) foresee

improvements in the trade balance, positive net creation of jobs if a domestic manu-

facturing industry is developed, significant healthcare cost savings, and substantial

reduction of GHG emissions. Although this research is developed at a microeco-

nomic level, it may eventually support studies of macroeconomic magnitude.

1.3.2 Machine Learning methods

The number of studies that have explored EV adoption is large, either taking

the agent’s perspective, or trying to predict penetration through more macroeco-

nomic approaches. However, although these studies point together in the same
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direction, they offer very different EV market evolution in terms of time and mag-

nitude. This causes a lack of reliability from which it is difficult to make strategic

decisions, either by the industry or the public sector. Therefore, new methodological

perspectives are required, Machine Learning (ML) being one of them.

ML techniques are currently applied to an enormous variety of topics such

as fraud detection, robotics, spam filtering, translation services, preventive health

care, and computer vision, as well as transportation. This has been possible thanks

to the exponential growth of information brought about by electronic devices; an

amount that will continue to expand due to the Internet of Things. In the case of

transportation, the smart use of the data generated by on-road vehicles presents

an extraordinary opportunity to improve transportation systems. However, this

task overcomes the capabilities of traditional data analysis and clearly points to

ML as a solution. Congestion reduction, safety improvement, environmental impact

mitigation and energy consumption optimization are examples of the most common

lines of research in which ML techniques have been applied. However, there are other

less explored fields of application, such as the classification of potential consumers

into adopters/non-adopters. This is a topic that presents interesting challenges.

Adoption is demand-driven, and Demand roots into purchasers’ behavior, beliefs

and attitudes; elements that are intrinsically difficult to define and gather. Even

if reliable information on these aspects is available, it is unlikely to be in large

quantities, so certain methodologies cannot be used as they only perform well in

large data sets.

ML algorithms can be categorized into three types; supervised learning, used
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both in classification and regression tasks; unsupervised learning, used for clustering

and dimensionality reduction; and reinforcement learning, based on reward maxi-

mization. In supervised learning observations are labelled, i.e. each one has a class

assigned, an associated response. The algorithm processes the data on a training

subset to generate label predictions that are validated in a different testing sub-

set. The error resulting from this comparison is used to fit the model as much as

possible to the data. An advantage of most ML methods is that, unlike ordinary

regression models, they are not parametric. They do not rely on assumptions about

the relationships between variables present in the model in order to minimize the

error (cost function). In contrast, when the cost function becomes more complex,

with more parameters and high dimensionality, minimizing it becomes a difficult

task. Another difficulty is the enormous diversity of algorithms that can be applied

to the same problem. Although there may be some guidelines on which one should

be applied to each case, the truth is that different approaches may lead to signifi-

cant deviations of the level of performance. In addition, each technique has specific

hyperparameters with no reliable predefined values. This complexity implies that,

when facing a project —either classification or regression, it is first necessary to

assess which method may be appropriate for it and then to carry out an iterative

process of tuning. This process must also include a resampling procedure to avoid

any possible bias when splitting the data into training/testing subsamples. In this

case K-Fold Cross Validation is employed, which randomly divides the sample into

k groups, or folds. The model is estimated on the first fold and validated in the

remaining k − 1. The process is repeated k times; each time a different subset is
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treated as the validation one. The final accuracy measure is computed as the aver-

age of those obtained in all folds. These procedures are highly compute-intensive,

especially as the number of data points and dimensionality grows. Therefore, it is

common to conduct a feature selection process, which consists on a pre-filtering of

the most important variables in order to reduce the dimensionality.

1.4 Problem statement

The problem statement is summarized by the need for reliable information

about the future of the EV, which is greater than ever. However, all attempts

in this regard have been unsuccessful. The sales forecasts published so far in the

academia or other spheres have differed substantially from the actual evolution that

has taken place outer; falling short in some cases and being too optimistic in others.

The reasons for this are different; i) lack of suitable DCMs for predicting the demand

of a disruptive technology; ii) disregard of the dynamism of the demand; and iii)

absence of social elements in the quantification of the diffusion process. Although

existing works try to deal with these aspects separately, there is no single model

that covers all of them. Whether using parametric or non-parametric specifications,

joining all these aspects providing reliable information is the first challenge of this

research since a solid prediction might be the basis for industry strategic decisions

as well as for public administration to regulate in favor of EVs.
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1.5 Research objective

The research that sustains this dissertation primarily deals with finding both

parametric and non-parametric models that properly gathers the social components

of the diffusion of EV and yields accurate, reliable, sales forecast. These method-

ologies must be scalable, to be adapted to different scenarios; namely, geographic

regions with different population levels or user profiles. They must be also flexible,

to provide the possibility to adapt it to more vehicle alternatives or to a natural

combination of EVs and services, such as “electric vehicle plus electric plan”, or

“electric vehicle in a Mobility as a Service context”. This may be of the interest

of private companies and public administrations in need to implement a solution in

which the prediction of the demand is the ultimate output, or an intermediate input

in their procedures.

A clarification on the terminology should be made at this point. In the field of

transportation engineering, the act of projecting explanatory variables in the future

and introducing them into a model to obtain its output is called a forecast. However,

in economics this term is generally linked only to the analysis of time series and

an exercise of the kind developed in this research is denominated a counterfactual

analysis. Since this dissertation lays in the middle of both areas of knowledge, it

has been decided to use the engineering acceptation.
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1.6 Contributions

The contributions of this research can be divided in those purely oriented to

research and academia, and those oriented to the private and the public sector. For

the former, this is the only work (to the best of this researcher’s understanding) that

combines substitution and diffusion altogether dynamically and accounting for social

effects. In addition, one of the main ideas developed, the existence of an Inner and

an Outer social circle is novel, as well as how its particularities have been designed

and modelled. This also applies to the non-parametric techniques utilized in this

research. There are clear applications of this methodology in the interest of private

companies and the public sector. Besides vehicles manufacturers, power companies,

for instance, are interested in knowing where the adoption of EVs will take place, in

order to launch commercial campaigns to those potential purchasers. On the other

hand, municipalities and states are also attentive to the market penetration of EVs

in order to plan charging infrastructure.

1.7 Dissertation organization

After the introduction, Section 2 presents a literature review for each of the

main elements that composes this research: Social influence, Diffusion-Substitution

models, Machine Learning, and Data and Survey Design. Section 3 presents two

case studies for the use of Substitution-Diffusion models for market share prediction.

The first is an initial approach to social influence in the context of the Danish market
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for EVs. The second presents a more developed methodology and was carried out

in the American market. Section 4 exhibits a comparison of ML techniques for

the classification of potential Ev purchasers. Lastly, Section 6 presents the most

relevant findings of this research as well as a discussion on the principal topics of

this dissertation.
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2. Literature review

2.1 Diffusion and social influence

As expressed by Rogers [112], the diffusion process is defined as that by which

an innovation is communicated through certain channels over time among members

of a social system. The behavioral assumption is that an innovation is first adopted

by a small segment of innovators, and then later adopted by an increasing number

of customers, the imitators, who are influenced by the number of adoptions that

have already occurred. This conception corresponds to what in the psychological

literature is defined as Social Conformity (SoC). Friends, family and acquaintances

influence our behavior. Even people who we do not know personally may indirectly

influence our decisions. [36] pointed out that we tend to give in to group pressures

and act according to the majority, and [123] and [1] proved that individuals may

be influenced to make a wrong choice when they are insecure and look to others.

SoC can occur because one wants to be accepted by the members of a certain group

(Normative conformity) or because they want to act like is supposedly right. In the

last case, people consult members of their group to obtain information (Informa-

tional conformity). Therefore, conformity is a type of social influence involving a

change in attitudes, beliefs, and behaviors in order to fit in a group, matching the
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group’s norms and beliefs ([30]).

SoC has been extensively studied in psychology ([31], [72], [27], [28], [29],

[30], [112], [48], [118]). However, there are also some applications in other fields,

as economics. [4] advocates for considering the incidence of social influence in the

decision-making process, and not exclusively the rational approach, since economics

is actually closely linked to social and psychological aspects. In this regard, as a

social science, economics is naturally influenced by human behavior, in both a small

and a large scale. Nowadays, the way to influence other is more direct, considering

that people interact and express themselves more and more frequently through social

media. Companies wishing to attract consumers devise marketing strategies taking

advantage of that use ([131]). For their part, [58] reached a similar conclusion,

considering that nowadays any marketing campaign should find the relevance of

social networks in social behavior, and thus be able to conceive useful strategies that

generate the expected behavior among consumers. [23] were interested in studying

what people consider when making small investments in prosocial projects since

better understanding of this process would lead to more effective crowdfunding.

Another aspect concerning social influence that also applies to economic mat-

ters is the herd behavior of masses. This is a phenomenon by which individuals act

as part of a group, making decisions that they would not make as an individual.

This conduct has been reviewed by [12] who have made a study of the behavior of

people in the stock market, where quick decisions are made, sometimes led by what

the majority does.

Regarding the field of transportation, [102] conducted an investigation with
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data obtained through an online survey made to students of the University of Cal-

ifornia, to test the hypothesis that certain factors condition social influence in the

adoption of bicycles. They concluded that, although the social influence of ac-

quaintances exists, its degree of leverage depends on certain factors, such as the

characteristics of the daily trip or the journey distance. Other authors have also

studied which factors affect the adoption of a bicycle as a means of transportation,

such as [125], who sought to determine how social influence affected the decision

to ride or not a bike in England. They observed that, among other factors, social

influence played a vital role in promoting cycling.

On the other hand, other studies focused on an environmental approach; like

the one presented by [33], which investigated how the importance that people give to

the environmental impact of using private vehicles can make them switch to public

transportation. A similar investigation was carried out by [150] who developed a

survey in Shanghai to determine how the awareness about of the problems caused

by the excessive use of private transport influences the decision to opt for public

transportation. Related to that line of research, the work of [37] conducted a study

to analyze the kind of influence exerted by the social network and the strength of

the bonds of the person who is deciding to opt for public transportation. Finally,

[127] sought to determine the factors that influence people adopting EVs. The

author conducted a survey of 173 people of the Netherlands, with emphasis on

pro-environmental aspects that are related to this technology.

Focusing on works that relate the social network and the electric vehicle, [47]

studied the differences between the choices of an individual and the choice of others,
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in the context of vehicle access. [80] evaluated the impact of the opinion of others

in a person’s choice of private vehicle use. [2] used the personal network and the

experiences of individuals with a hybrid vehicle to study the effect of interpersonal

influence in the adoption of this technology. [140] provided a description of EV

buyers and their relationships with EV communities, finding that early drivers used

forums to find more information about the EV characteristics. [146] studied how

social networks affect the decision to opt for EVs, and considered that governments

can adjust their policies to reach more effectively the public that is inclined to adopt

EVs. Two works directly measure the effect of social influence as an attribute in the

stated preference experiment. The first is [82], who included the market share of EV.

The second, [106], extended this methodology, dividing the market share of EV in

four reference groups. They also added an attribute measuring a positive/negative

overview of the EV.

With respect to how social influence, in general, and SoC, in particular, affect

Diffusion, there are remarkable contributions. [104] focused on the role of the social

network in the diffusion process; in particular, in the imitation component. They

proposed an extension of the Bass model to make the social network a function

of the number of customers who adopted the product. However, their model only

accounted for the rate of adoption and did not account for the substitution effect.

[128] looked at the role of social identity and how the diffusion of a product in the

society is affected by identity signaling. They extended a Bass model assuming

that the probability of adoption is influenced by three factors: a background ratio

of spontaneous adoption, social influence from one’s group members, and social
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influence from members of the outgroup. However, the model assumptions made

it unsatisfying, especially with regard to the well-mixed population implicit in the

Bass model; i.e. members of different social groups interact with one another, but

individuals often preferentially interact with the members of their own social groups.

[99] found that information about a large number of previous adopters positively

influenced adoption only if those previous adopters were described as similar to the

potential ones.

There are other alternative approaches, as [79], who modelled the diffusion of

technologies based on decision making with the underlying assumption that users

make rational choices aiming to maximize their utility. This decision-based propo-

sition reflects the heterogeneity of potential adopters; i.e. adopters differ in their

characteristics, which results in different utilities. [42] proposed a social simulation

that aims to validate a psychological theory that include goals, deliberative deci-

sions, status quo bias, social environment, communication over personal networks,

and sensitivity towards external events such as price changes or messages from the

media. Finally, the work of [25] has been closely followed in this research. The

author considers both Informational and Normative conformity; the latter being

subdivided into Descriptive norms, Injunctive norms and Social signaling.

Regarding one of the contributions of this research, the consideration of an

inner circle and an outer circle of social connections, some authors have pointed in a

similar direction. However, this idea has not been developed in the explicit manner

that is developed in this research. Most of the works in the field, in general terms,

either study the nature of the ties between the ego and the alter, or the evolution of
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the network ([94], [19], [24] or [119], [120], [121]). In [94], authors understood that

different processes occur in different social structures, considering implicitly a level

of closeness. From other fields, is worth to mention the work of [22], who provided

an overview of the approaches used to measure social capital. There is no unified def-

inition of social capital, but it certainly comprises individuals’ network connection.

One of the differentiations of social capital is that of structural versus cognitive.

The structural component describes properties of the networks, relationships and

institutions that bring people and groups together; while the cognitive dimension is

derived from mental processes and reflects people’s perceptions of the level of trust,

confidence, shared values, norms, and reciprocity. Although this paper is written

from a Public Health perspective, they mentioned, at an individual level, mecha-

nisms through which social capital may influence health, which in this case, would

correspond to diffusion. These mechanisms are: social support, social influence

through shared norms or social control, social engagement and social participation,

physical person-to-person contacts. These elements are especially relevant in health

–infectious diseases– but not that much in the diffusion of a technology.

Another necessity related to the idea of social circles is to quantify their size.

In this regard, there are comprehensive tools like Name, Position, and Resource

Generators. Name Generators aim to identify the network structure and content.

Respondents are asked to write down names of people they know. Then, information

about the relation with those individuals is collected. Position Generators look for

social resources that an individual has access to through connections to somebody

that, due to his or her occupation, can provide wealth, power and prestige. A
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Position Generator usually provides a list of occupations and asks if the interviewee

knows someone dedicated to each occupation. Then it is asked whether these people

are family, friends, or acquaintances. Finally, Resource Generators measure access

to specific resources, previously defined by the researcher, that are relevant to the

outcome.

Some valuable findings have been discovered using these methodologies. [98]

calculated (in specific Dutch networks) that the average number of people one would

ask for help with small jobs in and around the house and/or with whom one would

discuss important personal matters (Name and Position Generators) increased from

3.58 in 2000 to 4.15 in 2007. The average number of confidants for discussion of

important personal matters was, on the contrary, remarkably stable; 2.31 in 2000 and

2.41 in 2007. [145], for their part, conducted a study on network change with data

from 1968/1978. The data showed that 845 Torontonians reported 3,930 socially

close ‘intimate’ ties, which is around 4.5 per respondent; interestingly close to [98]

results despite the time difference between the two studies.

2.2 Discrete choice and Diffusion models

Great effort has been made by some authors in predicting the growth path

of EVs in the last decade, but this is a challenging task. The most recent and ad-

vanced works in predicting the market share of the EV combine substitution and

diffusion models. Typically, DCM are used for the first, providing a quantification

of the willingness to purchase an EV instead of an ICV; whereas the diffusion effect
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is based on Bass ([6]) models, or its multiple extensions. For instance, [41] used

an agent-based choice model where the purchasing decision of customers is affected

by media coverage and social interactions. However, it was only used to explore

potential nonlinear interactions between several elements of influence. [53] devel-

oped a diffusion specification that incorporated multicriteria analysis and choice

models, they focused on the geographical uptake of EVs and the effect of policy in-

centives. [122] and [132] proposed a simulation system that integrated disaggregate

demand and system dynamic models, including the diffusion effect. However, the

parameters were exogenously defined rather than estimated. [77] set up a simulation

system where a richer disaggregate demand model (estimated separately in previous

research) was integrated into a dynamic simulation system. This approach allowed

modeling the important feedbacks in demand as a result of the dynamic evolution

of EVs and their charging characteristics. However, they did not account for the

diffusion effect. More recently, [67] suggested a method that combines diffusion,

as typically estimated in the marketing literature, with advanced DCM. All the

parameters of the joint substitution/diffusion model are estimated jointly and the

disaggregate model estimated with SP data is adjusted to the real market endoge-

nously in the diffusion process. However, this extension only included innovation

through one only term, which effect on the probability of choosing EV varies over

time linearly. Moreover, imitation was left aside since it was dependent on the

number of individuals that had adopted the product already.

[3] proposed in their work to evaluate the interaction between accumulated

sales of EVs and the battery price using the Generalized Bass diffusion. Among
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its main results, the author shows that the Moroccan market reaches the maximum

sales of EVs after 14 years, and that the cost of the battery has a significant effect

on the market, accelerating the diffusion of the EV.

[100] made a forecast on sales of EVs in Spain until the year 2040. Taking into

account the different scenarios, the authors used a developed version of the Bass

model, known as BB-04X that allows contemplating the different generations of the

product, as well as the ‘jump’ phenomenon (switch to a different generation). The

data used in this research was obtained from a survey developed by a company in

different countries of the European Union in 2012.

[95] studied the potential of Bass models to evaluate the policies to promote the

diffusion of the EV market in Germany. The authors suggest that researchers may

have problems to choose appropriate values for the parameters of the model due to

the high variation in the number of them. Therefore, the varying values found in the

literature appear debatable. Similarly, [7] adopted a Bass model to forecast, using as

inputs; market size of the new technology; a parameter that captured the percentage

of buyers whose purchase decision was not influenced by the purchasing behavior of

others; and a metric that captured the likelihood that additional consumers adopted

the technology in response to the buying experience of others.

With a similar interest in knowing what drives the EV market, [45] conducted

a thorough analysis of 40 research articles that developed diffusion models as well

as other approaches to the adoption of electric cars. The authors aim to study the

similarities among the models to offer recommendations for their implementation.

On the other hand, according to [78], the Bass model is not easily parame-
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terized when there is no available market data. Hence, radically new products that

imply changes in consumer behavior, such as the case of EVs, restrict its use. [114],

in his research, presented a Bass model and a DCM with a dynamic perspective to

assess how consumer preferences and social forces influence the introduction of EVs

on the market. The model offered certain advantages; on the one hand, both time

and market share could be estimated jointly; second, the model was flexible concern-

ing the number of products and attributes; and, finally, it was easily parameterized

through joint analysis without the need of market data.

Finally, [69] proposed a Generalized Bass Model, which offers better overall

performance than other specifications, both in terms of fit and forecast performance.

The analysis also shows that it is also suitable to explain the multigenerational

diffusion process, and that the effect of marketing mix variables can be incorporated

to model the pace of the diffusion.

2.3 Machine Learning

Alternative fuel vehicles have been subject of several ML applications, espe-

cially in topics such as battery estimation, energy consumption, or range estimation.

ANN [151] and SVM [124] have been used to estimate the state of health or the state

of charge of batteries; as well as other less-known approaches such as fuzzy c-means

clustering with backpropagation [55]. More recently, [43] proposed the use of energy

consumption predictive models to forecast the energy consumption of new EVs in

absence of training data. To estimate vehicle’s range, [148] utilized an ANN with

38



one hidden layer of 60 neurons in conjunction with a Decision Tree (DT) to estimate

the road type when it is not known. Stop delivery times prediction [59], traffic flow

estimation [86], driving behavior recognition [149], or parking occupancy prediction

[147] are other specific transportation topics to which ML techniques have been

applied.

There exist several works that have carried out comparison of algorithms. [63]

used data from cellphones’ accelerometers and gyroscopes to predict transportation

mode, comparing the prediction accuracy of SVM, DT methods and K-Nearest

Neighbors (KNN). Results showed that RF and SVM had best performance,

although they have difficulties in differentiating between car mode and bus mode.

[56] discriminated driving conditions using speed and acceleration data, comparing

the prediction throughputs of SVM, ANN, linear and quadratic classifiers, and

K-means clustering. A similar work is that of [143], who applied similar techniques

to driving-style classification. One especially comprehensive work is that of [133]

who compared the results of Multinomial Logistic Regression (MLR), Classification

and Regression Trees (CART), and Gradient Boosting Decision Trees (GBDT)

for the prediction of electrical vehicle range. Results showed that GBDT could

optimize predictions and reduce error better than the other two techniques.

Another exhaustive comparative study is the one carried out by [46] who estimated

utility factor (i.e. ratio of miles travelled with electric energy over the total number

of miles travelled) in hybrid vehicles. Four different approaches were compared:

Regression Tree (RT), RF, SVM and ANN, concluding that SVM and ANN gave

the best estimation accuracy. More in line with the spirit of the present work
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are the studies of [38] and [68]. The first uses K-means clustering to create six

consumer segments around EV adoption. The second compares five ML techniques

in the context of alternative fuel vehicles. [85] also presents an interesting exercise

that combines a Bass model with ML algorithms to explain the diffusion process

of pre-launched products. Finally, there exist two general reviews of classification

techniques. [81] provided a score on relevant aspects to several methods. RF excels

at speed of classification, handling all kinds of attributes (discrete/continuous) and

explanation ability, although accuracy is not one of its strengths. On the contrary,

SVM are very accurate and fast, with high tolerance to irrelevant attributes,

although its results are difficult to explain and its speed of learning decreases

significantly as the number of attributes grows. Finally, the performance of the

ANN seems to be somewhere in between, with a dangerous tendency to overfitting.

More recently, [126] carried out a similar exercise in terms of pros and cons that is

shown in Table 2.1. Both works seem to coincide in their conclusions.

Table 2.1: Pros and cons of supervised machine learning classification algorithms.
Edited from [126].
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Thus, only the study of Jia ([68]) is similar in nature to our work, although

with notable differences: it was not specific to EVs, it only considered the newest

vehicle of the household, the observations with missing information were removed

from the dataset, and it did not take into account the social component involved

in the adoption of a new technology. This work, on the contrary, was specifically

designed to gather individuals’ willingness to purchase an EV; performs an advanced

process for imputing unknown information; includes social elements involved in the

decision-making process; and makes use of neural networks to predict adoption.

2.4 Survey design and data availability

SC experiments, as proposed by [89] and [88], have been widely applied in many

different disciplines. However, it is fair to say that for a long time the research in

decision experiments has probably been led mainly by the field of marketing, while

transportation focused more on advances in discrete choice modelling. [8], [51], [90],

[137] are good examples of this; however, none of these works address the issue of SC

experiment design in depth, and it is difficult for transportation practitioners to find

background material that can provide a complete understanding of this discipline.

At a conceptual level, a design consists of a series of values to be mapped

onto each choice situation –also referred as choice task. This design is of substantial

mathematical complexity and the use of specific software is needed. In this research

Ngene ([26]), has been used. The specifics of the design will be fully covered in

sections 3.2.1 and 3.2.1. For now, it is sufficient to indicate that the output yielded
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by Ngene consists of a matrix of values in which each column represents a variable,

while each row represents a choice situation. This is how some authors present their

designs ([15], [110]). Others, on the contrary, use rows for alternatives and columns

for their attributes ([21], [57], [75], [76], [113], [115]). In this case, multiple rows are

grouped to form a choice situation.

One of the approaches in experimental design to populate the choice tasks has

been the orthogonal design ([90]). More recently, however, some researchers have

begun to question it, such as [116]. They argue that the property of orthogonality –

all between-attribute correlations are zero– is in conflict to other desirable properties

of the models used to analyze Stated Choice (SC) data. It is true that orthogonality

is an important criterion to determine independent effects in linear models, but

DCM are not linear. In theses types of models, the correlation structure between

the attributes is not of importance, but the correlations among the differences in

the attributes. [57] showed that designs that relax orthogonality and attempt to

reduce the asymptotic standard errors of the parameter estimates generally improve

the reliability of the parameters. Ultimately, the attempts to reduce the asymptotic

standard errors of the parameter estimates resulted in a class of designs known as

efficient or optimal. These designs require measures of their degree of efficiency,

which are derived from the Asymptotic Variance-Covariance (AVC) matrix. Several

efficiency criteria have been proposed ([13], [15], [73], [74], [76], [117]), the A-error,

D-error and C-error being the most common. The D-error is the approach selected

for this research, as it will be explained in its corresponding section.

The purpose of designing a survey is, of course, the collection of data. However,
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there are studies that use data collected for other works. This is the case of [77],

who did not design a specific survey for the development of their model, but they

adapted a proposal made by [144]. This approach modeled explicitly the interdepen-

dencies between consumer choice, consumer characteristics, evolution of propulsion

technologies, and availability of service stations, at the macro level. [7] also did

not conduct an survey exclusive for their study, as well as [3], due to the scarcity

of data in Morocco concerning the adoption of EV. The latter adopted a method

called analogy prediction to Liquefied Petroleum Gas vehicles. Other examples are

[45] and [114].

On the other hand, [100] did use data obtained from a survey conducted

in 2012 in different countries of the European Union (Spain, France, the United

Kingdom, Italy, Germany and Poland). ([134]), for their part, performed a study

founded by the Institute for Energy and Transport –one of the seven Institutes of

the Joint Research Centre, a Directorate General of the European Commission– for

which they collected data. A selection of participants had to fill in a trip diary.

Then the respondent was presented with information associated to a conventional

ICV in comparison to an EV (time to charge, purchase price range, cost of use, and

emissions), to finally be asked to evaluate on a scale of 0 to 100 the possibility of

buying the EV. Similarly, [95] used existing German car market data to investigate

how practitioners could choose adequate values for the parameters of a Bass model

in order to forecast the diffusion of EV.
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3. Substitution-Diffusion models for the prediction of EV market

share

3.1 Electric vehicle adoption: the case of the Danish market

As pointed out previously, forecasting the demand for EVs is a difficult task,

and the predictions published so far either haven fallen short or have been too opti-

mistic. Although EV penetration has been slow so far, substantial increases in sales

are beginning to be seen, encouraging the hope of its arrival. This is particularly

true in the U.S., where cumulative sales reached 1.44 million units sold in January

2019 ([87]). Therefore, reliable predictions are needed, which could be the basis of

both strategic decisions of private companies, and public policies in favor of EVs.

This chapter presents an extension of a work already done, and which constitutes

the basis of the more developed and ambitious methodology described in Section 3.2.

In brief, it consists of improving the formulation found in [67] by including in the

model specific variables to account for both intrinsic innovation and imitation. In

doing so a dynamic model is built, making the demand of EVs in time t dependent

on the number of EVs sold in time t− 1. Hence, the methodology adopted is based

on three pillars:
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• Substitution: Which may happen by replacing an Internal Combustion Vehicle

(ICV) – gasoline or any other engine – by an EV, by purchasing an additional

EV for the household, by upgrading to a new generation of EV, or even by

selling an EV back. In any case, there is clearly a substitution component in

the diffusion of EVs since it is a good that individuals consume in order to

substitute another means of transportation, especially a car with a different

type of engine.

• Diffusion: The approach in the classic Bass models and its extensions is that a

new technology is first adopted by a subgroup of innovators, who are followed

by imitators. This process simply happens through a progressive increase in

sales; i.e. in a classic Bass model, the accumulated sales increase, which in

turn contributes to increasing the future sales. However, it is known that

this process is eminently social, as Rogers points out ([112]). Therefore, it is

absolutely necessary to include social elements in any prediction of diffusion

of technology.

• Dynamics: Diffusion not only depends on the context at a particular moment

but also on what occurred in the previous periods. Models that aim to predict

sales should include variables referring to previous periods of time.

Considering these three capital elements in predicting the diffusion of a new

technology, the methodology followed makes use of real data from the Danish vehicle

market to estimate a disaggregated substitution model that accounts for social influ-

ence and social conformity. Its output feeds an extended Bass diffusion model, which
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finally yields total sales in each period using projected variables. This procedure

can be summarized as follows:

1. Treatment of the Danish EV market data. The structure of these data is

similar to [67], but in this case they have been updated by the Danish Energy

Agency until the year 2018.

2. Estimation of a disaggregated substitution model with an extended formula-

tion that includes social influence and social conformity as described below.

Its output model is used in the estimation of a diffusion model.

3. Projection of the variables into the future and use the estimated diffusion-

substitution model to forecast EV sales in Denmark.

3.1.1 Data

The data used in this research comes from different sources. The SoC co-

efficients are part of the work of [25], while the ones related to vehicle attributes

proceed from [67]. The vehicle characteristics, as well as the Danish EV monthly

sales, have been computed by the Danish Energy Agency until the year 2018. The

projection of the attributes is based on the following sources: European Centre for

Mobility Documentation, Danish EV Alliance, Norwegian Information Council for

Road Traffic, Clever A/S.

As for the social conformity parameters, they are derived from a survey per-

formed in Denmark in the period between December 2014 and January 2015. The

survey was built specifically to study the effect of parking policies on the choice of
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EVs versus ICVs, as well as the role played by social conformity on this choice. It

consisted of five sections:

1. Detailed information about the last parking activity and information on house-

hold vehicle ownership and use, definitions on the most likely future vehicle

purchase and information on whether a new EV car would replace an existing

one or if it would be an additional one in the household. Users were also asked

to indicate the degree of influence that they had in the decision about the type

of car.

2. A Stated Choice (SC) experiment, pivoted around the values collected in the

first section. The SC included attributes related to the car characteristics

and to the parking options, plus attributes that allow measuring the effect of

conformity.

3. The third section was dedicated to gathering socioeconomic and residential

information.

4. Individuals’ attitude and perception towards several aspects related to EVs,

injunctive social norms, affections, and values in life. Injunctive norms define

when the individual’s behavior is affected by what other people think of them

doing something. In this case, the norm is measured asking respondents about

the level of agreement to the following statements:

a. People who are important to me (friends, family) would approve of me using

an electric vehicle instead of my conventional car.

47



b. People who are important to me (friends, family) think that using an EV

instead of my conventional car is appropriate.

c. People who are important to me (friends, family) think that more people

should use an EV instead of their conventional car.

5. Finally, information about personal and family income was asked.

For further information about the SC experiment, see [25]. The sample was

gathered from a list of individuals who had signed up to participate in a real-life

experiment in 2010 in which they could use an EV for three months. 39% of the

participants had already heard and been informed about EVs. Thus, including

people who have tried an EV in real life, allowed the authors for some consideration

about the impact of experience in the diffusion process. Table 3.1 reports a

summary of the information about the recruitment process.

Table 3.1: Recruitment process. Source: [25].

The majority of the individuals are male (73%) and employed (78%), while
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only half of them (42%) have a job with a fixed number of hours. On average,

respondents are 47 years old and live in households with 3.12 members and 1.52 cars.

Table B.1 in Appnedix B illustrates other characteristics of the 2,363 respondents

of the sample.

Finally, for the forecasting part, only one scenario has been designed, in which

the EVs experience gradual improvements in their characteristics thanks to tech-

nological progress. This information is based on the following sources: European

Centre for Mobility Documentation, Danish EV Alliance, Norwegian Information

Council for Road Traffic, Clever A/S).

3.1.2 Model structure

The model of reference is that of [67], which in turn, is based on the one of [71],

which is an extension of a basic diffusion model that accounts for substitution effects.

[71] included the diffusion effect into the utility of purchasing a new technology k

at time t.

V
(i,k)
t = q(i,k)(t− τ k + 1) + β(i,k)x(i,k) (3.1)

where x(i,k) is a vector of the technology attributes, β(i,k) its corresponding coeffi-

cients, q(i,k) the time-dependent diffusion effect, and τ k is the period of the introduc-

tion of this technology in the market. The superindex (i, k) refers to the case of an

individual owning a technology i who switches to k. The probability of purchasing
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a product of generation k is

P i,k
t =

exp(V i,k
t )

exp(c) +
∑

j exp(V
i,j
t )

, k ≥ i, j ≥ k (3.2)

Considering Mt the potential market at time t, and Yt−1 the total number of units

of product at time t− 1, the number of sales in each period is

Skt = (Mt − Yt−1) · P k
t (3.3)

= (Mt − Yt−1) ·
exp(V i,k

t )

exp(c) +
∑

j exp(V i,j
t )

(3.4)

From here, [67] defined their model as

SEVt = (MEV − Y EV
t−1 ) · Pr(EVt)

= (MEV − Y EV
t−1 ) (3.5)

· exp(ASCEV + qEV (t− τEV + 1) + λ(β̂EV xEVt ))

exp(λ(β̂ICV xICVt )) + exp(ASCEV + qEV (t− τEV + 1) + λ(β̂EV xEVt ))

where β̂EV and β̂ICV were estimated using SP data and fixed in the diffusion process.

The three parameters estimated are ASCEV , q and λ, which represent the alternative

specific constant, the diffusion parameter, and a scale coefficient, respectively.

That being said, the research presented here brings a several improvements to

this methodology. In order to consider the effect of social influence on the individual

choices, two elements are included; the number of EV sold in the previous period t−

1, which makes the model dynamic; and the information that the potential customer

receive about specific characteristics of EV. Regarding the latter, [25] showed that
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only negative feedback is significant, due to the negativity bias effect. This refers to

the understanding that “negative information tends to influence evaluation stronger

than comparably extreme positive information” ([62]). The specific information

that other users report on are parking spaces reserved to EV, range, and the need

to change activities. They all are compiled in an unique dummy variable named

Info, which is 1 (negative information received by the potential purchase), for all

time periods until the charging variables reach 33% of presence and the EV range

also reaches 33% of the ICV range. At that point, it is assumed that the negative

feedback about parking spaces, range and need to change activities becomes positive

and, therefore, Info takes the value 0 onwards.

On the other hand, the preliminary data analysis showed a peak in sales in

December 2015. This was provoked by the Danish government announcement that

the registration tax for EV would be increased. Instead of considering this informa-

tion as an outlier, a dummy variable was defined to model the anticipation of this

policy.

Considering all these aspects, the utility function that is base of our formula-

tion was:

V EV
t = ASC+q(t−τ+1)+λ(β̂ ln(NEV sold

t−1 )+β ·Infot−1+β̂XEV
t )+β1 ·Antic (3.6)

The elements common to [67] maintain their meaning, Info stands for the

concept discussed above, and Antic for the aforementioned anticipation to the reg-

istration tax policy. λ is the substitution parameter, which reflects the effect of
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the attributes and information received about the EV. It is worth mentioning that

the number of EV sold in the previous period is considered in logarithms since the

relation of this variable with its lags is clearly not linear. Equation 3.6 leads to a

number of sales in each period equal to:

SEVt = (MEV − Y EV
t−1 ) · Pr(EV t)

= (MEV − Y EV
t−1 ) · exp(V EV

t )

exp(V ICV
t ) + exp(V EV

t ))
(3.7)

The next section provides the results of this formulation and their discussion,

as well as a comparison with those of [67]. Special emphasis is placed on sales

forecasting, and on the impact that the new elements considered have on it.

3.1.3 Results

To forecast the diffusion of a new technology it is necessary to make some

assumptions about the development of its attributes. In this case, one only scenario

has been designed, in which the EV experiences gradual improvements in its charac-

teristics thanks to technological progress. Table 3.2 provides the values assumed in

the forecast, which are realistic, but also allow for some substantial advances. This

information is based on the following sources: European Centre for Mobility Doc-

umentation, Danish EV Alliance, Norwegian Information Council for Road Traffic,

Clever A/S).
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Table 3.2: Forecasting scenario 2018 - 2050.

MONTH YEAR CTY SL SHO SL CTY FA SHO FA PP EV PP GAS FU EV FU GAS RA EV RA GAS CO2 EV CO2 GAS
3 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
4 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
5 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
6 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
7 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
8 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
9 2018 0.2 0.2 0.2 0.2 262,032.1 212,573.2 0.3 0.7 220.5 852.8 41.9 140.9
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
5 2050 1 1 1 1 1417,96.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
6 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
7 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
8 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
9 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
10 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
11 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8
12 2050 1 1 1 1 141,796.5 194,178.3 0.3 0.6 373.7 852.8 0 108.8

For the model defined in Equations (3.6) and (3.7), the potential market,

M is defined as 877,000. This is half of the car-owning families in Denmark. More

complex assumptions might be made, but they would have been difficult to validate,

while this one seemed simple yet good enough.

Table 3.3 shows the results for three different specifications. Model 1 is the

original specification from Jensen et al. ([67]), estimated with the new data. Model

2 is the model proposed in (3.6) and (3.7), but in which the variable Info (feedback

provided by others) has not been included. Finally, Model 3 is the full model

proposed in (3.6) and (3.7). In other words, Model 1 does not include any social

element, while Model 2 includes SoC (EV sales) and Model 3 includes SoC and

social influence (Info). This distinction is made in order to quantify separately the

impact of these elements in the prediction.
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Table 3.3: Estimation results.

Model 1 Model 2 Model 3
Value p-value Value p-value Value p-value

ASC EV −13.26 0.0001 −12.78 0.0001 −11.38 0.0001

q 0.94 0.03 0.83 0.06 0.58 0.05

λ 0.05 0.81 0.14 0.52 0.12 0.59

Antic 2.64 0.0001 2.61 0.0001 2.59 0.0001

R2 0.707 0.707 0.711

Pr > F 0.0001 0.0001 0.0001

For the full model, the values of both ASC and q are in line with the findings of

[67], although in the lowest value of the confidence interval. The diffusion parameter

is significant at 95% level, which shows that considering the effect of diffusion allows

a more realistic forecast of the EV spread. On the other hand, λ is not significant,

reflecting that substitution plays a minor role in choice. The variable that gathers

the effect of December 2015 is highly significant.

The most interesting result of Model 2 is that the value of the substitution

parameter increases and gains significance if the information offered by a close friend

is not included. On the other hand, Model 1, being simpler than the others, offers

a higher value for the parameter q, but significant in turn. A possible reason for

that may be that the elimination of both the social conformity and social influence

variables causes the entire explanatory power to fall on the remaining variables

associated with q.

Figure 3.1 shows, for the three models, the forecast obtained for the period

2018 — 2050. Namely, EV monthly sales and the cumulative number of EVs sold

expressed as a percentage of the total.
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Figure 3.1: Actual, fitted and forecast sales. Cumulative number and percentage of
EVs sold.

The results illustrate the classic S-shape, with low market penetration in the

early stages, and later progressive increase once the product is more present in

the market. For Model 2 and Model 3 the share of EVs evolves from just 2% at

the beginning of 2018 to around 40% by 2050. However, this evolution is more

progressive in the model that includes no social elements, Model 1, reaching a more

conservative final market share. That might be the most important contribution of

this research; the substantial differences in the forecast made when including the

social elements.
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3.2 Electric vehicle adoption under the effect of Social Conformity:

the case of the American market

As previously stated, to achieve an accurate prediction of the diffusion of the

EV, the methodology carried out in the Danish case has been significantly improved.

It was also applied to new data, of better quality and specific for the state of Mary-

land. Both aspects are described in detail in the following subsections. Nevertheless,

this approach is based on the three pillars indicated above: substitution, diffusion,

and dynamism. For the first two, an initial demand model will be estimated using

advanced discrete choice techniques. It will explicitly include variables related to

SoC and to the social network of the respondent. This model will gather the subja-

cent inclinations of individuals to substitute ICVs vehicle by EVs. Then, it will be

integrated into a Bass diffusion model which will finally yield future market shares,

i.e. the spread of this technology over time among society. The dynamic aspect

is provided by time-dependent variables, present in both the utility functions and

the Bass model, because diffusion not only depends on the context at a particular

moment but also on what occurred in previous periods.

As detailed above, SoC is a relevant aspect in diffusion because people around

us, such as family members, friends, colleagues, or even people that we do not know,

influence our behavior and decisions, directly or indirectly. According to [36] we all

have some tendency to either yield to group pressures or to agree to the majority,

which can happen because of the desire of being accepted, or because of the desire
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to do the right thing. Either way, individuals tend to turn to members of their

own group in order to gather information, which may involve a change in attitudes,

beliefs or behavior. The way in which this concept is brought into this research is

by providing to the individuals feedback from one person they know. This person

belongs to what I have defined as the Inner or Outer circles, which existence is

probably the main conceptual body of this research. As reported in Section 2,

although this notion resides in some way in several papers that stand out in the

field of Transportation ([94], [19], [24], [119], [120], [121]), this idea has not been

developed in the explicit manner that is carried out in this research. The purpose

here is to explore explicitly the size, nature, and impact of these relationships.

This required the development of several elements, the main one being a new SC

experiment that gathers data about both the individuals’ preferences for EVs and

the aspects derived from the Inner/Outer circle idea.

3.2.1 Stated Choice experiments

The purpose of stated choice experiments is to determine the influence of the

characteristics of a set of alternatives on the probability of choosing them. A study

of this type normally consists of an individual making a choice in a hypothetical

scenario in which different levels of attributes related to the set of alternatives are

presented. Given the difficulty (economic or technical) of counting with a high

number of individuals, it is common practice to make the respondent face a number

of these choice situations and pool the responses.
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Since attributes levels are the main decision element, a careful predefinition of

them is important. Frequently, they come from; i) some other previous experiment;

ii) real information obtained from the market; iii) existing literature. Nevertheless,

the reality is that, in most cases, this information comes from all these sources and

is slightly modified to overcome potential problems such as lexicographic biases.

Conceptually, a design consists of a series of values to be displayed in each

scenario. Each column represents a variable, while each row represents a choice

situation. This is how some authors represent their designs. Others, in contrast,

use rows to represent alternatives and columns to represent their attributes. In

these cases, multiple rows are grouped together to form a choice situation. They are

simply different ways of representing the same information. In this study the first

approach is taken, since it is the one used by the software Ngene ([26]), utilized for

the design.

Therefore, the fundamental question is how to distribute the levels of the

attributes throughout all the situations of choice that will appear in the question-

naire. This is not a trivial matter, and requires a great deal of preliminary work,

as the number of attributes, their levels, and the number of alternatives exponen-

tially increase the combinations needed for a correct design. In addition, other

complexities such as the type of design and the underlying discrete choice model

also come into play. Regarding the former, there are three main approaches: Full

factorial, Orthogonal, and Efficient designs. Full factorial designs are unfeasible,

except in the case of a small number of alternatives, attributes, and attribute levels,

as this type of designs considers all possible attribute combinations. In the case,
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for example, of three attributes with 2, 2, and 3 levels, there would exist 12 choice

situations, as shown in Table 3.4.

Table 3.4: Example of full factorial design.

s A B C
1 -1 -1 -1
2 -1 -1 0
3 -1 -1 1
4 -1 1 -1
5 -1 1 0
6 -1 1 1
7 1 -1 -1
8 1 -1 0
9 1 -1 1
10 1 1 -1
11 1 1 0
12 1 1 1

In general, if there are J alternatives, each with Kj attributes, where attribute

k ∈ Kj has ljk levels, the total number of choice situations in a full factorial design

is

Sff =
J∏
j=1

Kj∏
k=1

ljk (3.8)

For two alternatives with 3 attributes with 4 levels each, the combinations are

(4 × 4 × 4) × (4 × 4 × 4) = 4096. It is easy to understand why the practical

application of the full factorial is almost non-existent.

Orthogonal designs, widely used for many years, are another option to populate

choice situations. However, there are arguments against its use since orthogonality

does not meet some desired properties of the econometric models estimated after-
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wards. Orthogonality means, in statistical terms, that the attribute levels of the

designed structure are not correlated. While this is a very desirable property in

linear models, DCM are non-linear and therefore it is less relevant. In fact, what

is important is the correlation of the differences in attributes. Therefore, Efficient

designs are positioned in contrast to the orthogonal ones. This methodology tries

to minimize the standard error of the estimated parameters using prior information

about them (estimations available in the literature, or in previous studies, for in-

stance). These standard errors can be predicted by determining the AVC matrix

based on the underlying experiment and information about the parameter estimates

obtained beforehand, technically called priors.

Various measures have been proposed in the literature in order to assess the

efficiency of a design. They are usually expressed as an error; thus, the objective is

to minimize it. The most used is the D-error, which is derived from the determinant

of the AVC matrix. Practically, it is very difficult to find a design with the lowest

D-error, and the researcher is usually satisfied if it is small enough. Different D-

errors have been defined in the literature, depending on the available information

on the prior of the parameters. Three different cases are distinguished:

a. There is no information about the parameters, not even their sign. Then the

prior is set to β̃ = 0 . The D-error is then called Dz − error.

b. There is accurate information about β. The priors are fixed based on these values

that are known, and the D-error is called Dp − error.

c. There is some information about β, but it is uncertain. Then, instead of assuming
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fixed priors, they are defined as random, following a probability distribution

which expresses the uncertainty about the true value of the parameter. This

is the Bayesian approach, and the error is called Db − error.

There are other measures besides the D-error, such as the A-error. However,

in this work the Bayesian approach is adopted, as will be detailed below in the sec-

tion that fully describes the questionnaire design. It is worth noting that following

this approach to construct SC experiments requires that the efficiency of a design

be evaluated over numerous draws taken from the prior parameter distributions.

The efficiency is then calculated as the expected value of the measure of efficiency

over all the draws taken. The Bayesian approach, therefore, necessitates the use of

simulation methods (Pseudo-random draws/quasi-random Monte Carlo draws) to

approximate the expectations for differing designs. The potential to provide better

coverage of the distribution space for each prior parameter distribution should the-

oretically result in a lower approximation error in calculating the simulated choice

probabilities for a given design. This, in turn, results in greater precision in gener-

ating the AVC matrix.

Summarizing, the problem of generating an efficient design may be stated as:

Given feasible attribute levels Λjk for all J alternatives, K attributes, and

choice situations S, and given the prior parameter values β̃ (or probability distribu-

tions of β̃), determine a level balanced design X with xjks ∈ Λjk that minimizes the

efficiency error.
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For this purpose, there are row-based algorithms and column-based algo-

rithms, which follow different procedures to find an efficient design. The Modified

Federov algorithm ([34]), illustrated in Figure 3.2 is adopted in this research.

Figure 3.2: Modified Federov algorithm. Source: [26].

The algorithm starts by selecting a candidate design that can be the full fac-

torial or a fractional factorial. Then, a new design is created by selecting choice

situations from the candidate set and the efficiency measure is computed. If it is

lower than the efficiency measure of the candidate, the new design is kept as the

most efficient so far, and continues with the next iteration, repeating the process.

The algorithm terminates if all possible combinations of choice situations have been

evaluated (which in general is an enormous number of situations) or after a pre-

defined number of iterations.

One last consideration refers to the number of choice situations. It does not

seem to have an important impact on the efficiency of the design if the number of

choice situations is not smaller than K/(J − 1). Obviously, the more scenarios are
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presented to the respondent, the more data available. However, too many choice

situations may lead to other problems such as inaccurate or incoherent answers due

to user fatigue. Therefore, it is important to find a balance between data amount,

efficiency, and fidelity in responses. In general, the number of choice tasks depends

on the intuition of the researcher about how many of them the user can handle.

3.2.2 Experiment design for the State of Maryland

This section describes the particularities of the SC experiment specifically

designed to collect data in the State of Maryland with the aim of estimating EV

adoption. It particularizes the elements indicated in the previous section for this

specific case. For the sake of clarity, the process is described in three major steps:

Model specification, Experimental design, and Questionnaire, illustrated in Figure

3.3. The Ngnene syntax provided in Appendix A can be of help in understanding

Steps 1 and 2.

Figure 3.3: Process of designing a stated choice experiment. Source: [26].
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3.2.2.1 Model specification

For the specification of a discrete choice model, it is necessary to define

the alternatives, the attributes, and the model type (Multinomial Logit, Mixed

Multinomial Logit, Nested Logit...). This information is summarized in Table 3.5.

Table 3.5: Model specification.

Gasoline
ElectricAlternatives
None
Price
Propulsion cost
Range
Fast Charging time* / Refueling
Tax deduction*

Attributes

Number EV sold*
Model type Multinomial Logit, 3 categories

* EV specific attributes

The alternatives considered are Gasoline, EV, and the opt-out Other. By EV

it is meant Battery Electric Vehicle (BEV). Thus, the EV attributes, as well as

the number of EVs sold and income tax deduction, refer to BEVs. Although the

number of EV sold and the tax deduction are not strictly alternative attributes,

in this context attribute means any element to be shown in the scenario that has

different levels. Therefore, they must be included in the programming of the design.

As for the initial model on which the design is calculated, a Multinomial Logit

has been chosen due to its simplicity. Nevertheless, this does not imply that other

models cannot be estimated afterwards with the data obtained from the experi-

mental design. Additionally, three different segments of vehicles Compact, Mid-size

64



and Large are considered. Therefore, nine utility functions are used to compute the

parameters. It is worth noting that the absence of utility function for the Other

alternative in the script presented in Appendix A is not an error. The opt-out alter-

native does not need to be specified in the Ngene syntax. Finally, different weights

to the three vehicle categories were assigned; 0.31, 0.62, and 0.07, respectively, in

order to form the Fisher information matrix ([137]) needed for the design. I relied

for these weights on the work of [67].

3.2.2.2 Experimental design

As described above, an experimental design is basically a table of numbers

in which each row represents a choice situation. The numbers correspond to the

attribute levels, which are placed in the questionnaire. Therefore, the first step

(after deciding the model specification) is to define the attribute levels. This is

a delicate task. On the one hand, the number of levels considered must be the

minimum that provides a reasonable variability of the attribute. On the other

hand, although the values have to be realistic, it is not desirable that they are too

much. They are the input for the user to make a choice; but it is also important to

avoid lexicographic bias as well as allow the researcher to present specific situations

of interest, such as a hypothetical scenario in which gasoline and electricity have

the same cost. In this research, values obtained from vehicles of reference were used

for starters. However, there were significant differences in several of the attributes

that could persistently lead the user towards one of the alternatives. That was
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the case of Price, Range, and, especially, Propulsion Cost. Thus, the levels of

those attributes were modified so they did not diverge in excess, but respecting the

evident differences of both technologies with regard to those characteristics. Table

3.6 lists the levels of the EV and Gas attributes, for each of the three categories of

vehicles.

Table 3.6: Level of attributes of the experimental design.

Alternative Attribute Compact Mid-size Large

Gas
Price ($10,000) 1.7 / 1.9 / 2.1 2.6 / 2.8 / 3 4.4 / 4.6 / 5

Propulsion cost ($) 0.06 / 0.08 / 0.1 0.08 / 0.1 / 0.12 0.12 / 0.14 / 0.16
Range (miles) 325 / 350 / 375 425 / 450 / 475 400 / 425 / 450

Refueling time (minutes) 5

EV

Price ($10,000) 2 / 2.2 / 2.4 2.9 / 3.1 / 3.3 4.8 / 5.2 / 5.4
Propulsion cost ($/mile) 0.015 / 0.03 / 0.05 0.03 / 0.05 / 0.07 0.05 / 0.07 / 0.09

Range (miles) 175 / 225 / 295 275 / 325 / 395 250 / 300 / 375
Fast charging time (minutes) 15 / 22 / 30 25 / 35 / 45 40 / 50 / 60

Tax deduction amount ($) 0 / 1,500 / 2,500 / 4,000 0 / 2,000 / 3,000 / 5,000 0 / 2,000 / 4,0000 / 6,000
Number of EV sold 500 / 1,500 / 3,000

Since an efficient design is followed in this study due to the advantages

discussed above, the preliminary information about the values of the coefficients

to be estimated was obtained from [67] and [25]. However, these priors were

not assumed fixed, but were defined as random, to consider the uncertainty of

their true value. Namely,the Uniform distributions shown in Table 3.7 were assumed.

Table 3.7: Distribution of priors.

Attribute Distribution of priors
Price (EV) U(−0.447,−0.26)
Propulsion cost (EV) U(−1.14,−0.95)
Range (EV) U(0.16, 0.23)
Number of EV sold U(0.01, 0.067)
Fast charging time U(−0.04,−0.02)

Regarding the choice situations, 24 of them were defined, divided into 4
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blocks, terminating the algorithm when reaching 3,500 iterations. That allowed to

have attribute level balance, which ensures that the parameters can be correctly

estimated on the whole range of levels. Figure 3.4 shows a few choice situations of

the final design of the Compact segment. Efficiency measures can be observed in

at the top of the image, along with the weights of each category in the Fisher matrix.

Figure 3.4: Choice situations for the Compact class.

3.2.2.3 Questionnaire

The questionnaire was built using the experimental design discussed above,

and consisted of nine sections, each of them containing a number of questions

that serves a specific purpose. The main part is Stated Preference Experiment

since it contains the choice tasks. The questions have been coded using Qualtrics

Research Core ([105]). Qualtrics is a survey platform that includes features suitable

for generating a study of this complexity. It is a powerful tool with advanced
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capabilities such as logic, randomization, scoring or multitude of question types,

as well as suitable management of responses and data. The different parts of the

questionnaire and the survey flow are detailed below. Unfortunately, it is not

possible to attach a copy of the survey as an appendix to this document. Its

complexity required an intricate logical system, producing a large number of survey

branches that occupy dozens of pages when printed. Nevertheless, it is important

to note that the users would not face this problem, as they would only answer a

small number of questions (the estimated completion time is 15-20 minutes). In

other words, the survey contains all the paths that can be taken, but the user only

goes through one of them. The population of interest is made up of individuals

from the State of Maryland older than 18, with a driver’s license. Finally, this

study is not limited to first purchases, so individuals that already have an EV are

not discarded.

Purpose and consent

This section consists of an introduction to the experiment, in which it is

explained that the objective is to study the effect of social aspects in the willingness

to purchase an EV. It also serves as a waiver of consent, complying with the ethical

requirements of a study of this type.

Preliminary questions

There are two main elements in this section: next most likely purchase,

and social information. For the former, the respondent indicates the category
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of vehicle (Compact, Mid-size, Large) they are most likely to purchase at their

next acquisition. The scenarios that they will face later in the survey will be

specific for that category of car. That is, they will contain specific attributes of a

Compact, Mid-size or Large vehicle, as described above in the design section. In

terms of the survey flow, a different branch has been programmed for each of those

three categories, and the user will be conducted to the one selected. This feature

differentiates this work from other studies; the elections are more realistic since the

user evaluates characteristics in levels that are expected.

Figure 3.5: Vehicle category choice.
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On the other hand, the social information provided prior to the experiment

is one of the principal elements of this work. It is necessary in order to define the

size and structure of the social network of the respondent. This information asked

corresponds to four different groups:

• Close relatives: Parents, spouse, sibling, and children. It also includes co-

habitants in the household.

• Non-close relatives: People of the family like grandparents, uncles and

aunts, cousins, nephews, etc.

• Friends: Someone one would tell a personal problem or to whom one would

turn for help with an important issue.

• Acquaintances: Someone one does not know much about, and could not call

a friend. One would not tell them about a personal problem or ask for help.

Figure 3.6: Social network information.

These questions aim to identify the size of the inner and outer circles, as well

as their nature. Close and Non-close relatives, as well as Friends are considered to

pertain to the Inner circle, while Acquaintances define the Outer circle. In order
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to reinforce the nature of these relationships, other questions are asked from which

concepts such as trust and identification are inferred:

• How many of them would you leave a spare key to your house to?

• How many of them would you discuss important personal matters with?

• How many of them do you share hobbies with?

• How many of them have EV experience?

• How many of them would you talk to about EV technology?

• How many of them do you think that five years from now you will still have

relationship with?

After providing this quantitative information, the user is asked to pro-

vide the name of one person pertaining to each group. This is an innovative

feature of this survey. One of these names will be randomly chosen to either

provide feedback later in the choice tasks, or to manifest hypothetical approval of

the purchase of an EV. The details are described below, in the Choice Tasks section.

Figure 3.7: Name one person from each social group.

Car ownership
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This set of questions aim to identify the vehicles owned in the household,

and if the next purchase will be an additional one or will be replacing one of them.

The purpose is to understand whether the potential EV choices made later in the

scenarios would serve to rotate the vehicle structure existing in the household.

Information about the new vehicle is also asked since the propulsion cost shown in

the choice tasks are calculated using the mileage introduced here. Table 3.8 shows

the information extracted from the questions, as well as their levels. Although it is

a comprehensive list, the information is gathered in an easy-to-fill matrix, as Figure

3.8 shows.

Table 3.8: Car ownership variables and their levels.
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Figure 3.8: Car ownership matrix.

Info about EV

This is the section immediately before the choice tasks. It provides general

information about different aspects of EVs, in order to give to the respondent a gen-

eral overview on which to make an informed decision. It comes from official sources

(the U.S. Department of Energy, and the Office of Energy Efficiency & Renewable

Energy) and includes energy efficiency, environmental friendliness, performance ben-

efits, energy dependence, driving range, recharging time, infrastructure availability,

and tax credit. They all are directly or indirectly related to the information that will

be provided in the choice tasks. Special care has been taken in the figures provided
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here since they cannot conflict with the data in the scenarios. It has been tried as

much as possible to provide useful information without giving concrete figures, to

prevent these numbers from remaining in the users’ mind when they move on to the

next section and give their answers.

Two elements to know if the interviewee made informed choices have also

been included. It is first asked if they think that the information provided was

enough to have a general idea of what an EV is and how the technology works. It is

also registered if the user clicked the links provided to expand the reading material.

The combination of these two elements will provide interesting insights.

Choice tasks

The choice tasks, together with the section referring to the social network, are

the most important element of this study. Basically, a decision-making task consists,

as Figure 3.9 shows, of providing a series of characteristics for several alternatives

that the users evaluate, and which lead them to choose one of these alternatives.

In this case, after the block with information about the EV, a user is redirected to

the survey branch corresponding to the vehicle category selected previously. Then,

a scenario in which the specific level of attributes generated in the mathematical

design is shown. The respondent evaluates the information and makes a choice.

This process is repeated six times, facing a different choice task each time. The

alternatives between which to decide are Gasoline, EV and the opt-out Other. By

EV it is meant Battery Electric Vehicles (BEV). Although hybrids are not considered

explicitly as an alternative, if the respondent selects Other, two additional questions
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are asked to know whether she or he would purchase a vehicle with a different engine

(hybrid, natural gas. . . ).

In terms of design, four different blocks containing six different scenarios each

have been created. When the users move on from the Info EV section to the choice

tasks, they are randomly assigned to one of these blocks. Therefore, 4 categories ×

6 tasks × 3 categories yield 72 different scenarios designed, similiar the one shown

in Figure 3.9.

Figure 3.9: Choice task for the Compact category.
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Now, we must not forget, that the main objective of this study is to evalu-

ate the influence of the social aspects involved in the decision to purchase an EV.

Specifically, the effect of Informational and Injunctive conformity that proceeds from

people of the inner and outer circles. Therefore, it is necessary to incorporate some-

how these elements explicitly in the scenarios. Much effort has been devoted to

this task, deeply analyzing the limited literature in the field and trying, in turn, to

improve it. After several approaches, the following methodology was defined.

After the six choice tasks, the respondent answers again three of them (not

knowing that they are repeated scenarios), chosen randomly. However, a new piece

of information is provided along with the level of the attributes; a phrase that

expresses one of the following:

• Feedback about charging aspects: Positive or negative information from some-

one of your inner or outer circle regarding the necessity of charging the EV.

Peter thinks that having to watch out for charging your EV causes almost no

concern.

• Feedback about changing activities: Positive or negative information from

someone of your inner or outer circle regarding the necessity of modifying

your schedule due to driving an EV.

Peter thinks that having to change your activities because of driving an EV is

annoying.

• Approval: Approval or disapproval of your choice of an EV from someone of

the inner or outer circle.
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Peter does not approve of you using an EV.

The name appearing in the sentence –Peter in this case, for illustration

purposes– is taken from the preliminary question in which the name of a person

belonging to each social group was asked. Remember that Close, Non-close and

Friends form the Inner circle while the Acquaintances form the outer circle. In

survey flow terms, a combination of inner/outer, positive/negative, and type of

feedback is randomly assigned, with equal probability, to the user.

The purpose of this procedure is to check whether the user changes their choice

by receiving feedback. The second three scenarios have already been answered, and

the information that they show is the same as in the previous round. The only

difference is the feedback. Type of feedback, if it is positive or negative, and if it

comes from a person of the inner or outer circle will be categorical variables to be

included in the model.

Finally, in order to have more information about the bond to the person pro-

viding the feedback, or to what extent this person is trusted, the respondent is asked

to respond, in a Likert scale:

• I trust this person, in general terms.

• I trust this person in matters related to vehicles.

• I am close to this person.
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Figure 3.10: Choice task including approval of a person of one of the social circles.

Trips

This block of questions collects information about the trips made by the

respondent, to have additional information about the possible use of the EV.

Car sharing

Three questions to know the patterns of use of car sharing and rideshare apps.
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Sociodemographics and attitudes

This section has two parts. The first gathers the general sociodemographic

information shown in Table 3.9.

Table 3.9: Sociodemographic variables and their levels.

The second part presents a question in which it is necessary to select a level

of agreement to attitudinal statements. These statements pertain to three different

categories (unknown to the respondent): Environmental concern, Technology

innovator, and Pro-EV. The aim is to use this information to better understand

the choices made by individuals. This question is shown in Figure 3.11.
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Figure 3.11: Attitudinal questions.

Contact info

Finally, there is the possibility to provide contact information for a possible

follow-up.
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3.2.3 Data Analysis

The data collection for this study has been made in three phases: Pre-pilot,

Pilot, and Release. The purpose of the Pre-pilot (5% of the sample size) was to

identify issues in the questionnaire. This was certainly a useful exercise, especially

to test the functioning of the Social Network question. This question contained a

significant number of cross-validations and, although tests were performed before

publishing the survey, user behavior when filling it helped to identify cases that still

had to be coded. On the other hand, the aim of the Pilot (50% of the final sample

size) was to perform preliminary estimations of the models described in section

3.2.4. The Release data (100% of the sample size) has been used to estimate the

final version of the model, on which the forecast will be carried out.

A descriptive analysis of the data has been developed and is presented in this

section. First, information about the vehicle ownership of each household is shown.

Then, several graphs help in understanding the structure of the social network of the

interviewees. Finally, the data concerning their attitudes towards several aspects is

plotted. It is worth mentioning that the analysis below is not comprehensive since

approximately 200 variables were gathered in the survey. Plotting such amount of

information would make the reader to lose focus on the information presented and

would not convey a direct message. Therefore, only the findings that have been

considered most relevant are shown. Additionally, the following conventions will

be followed for the sake of brevity; households with 1, 2, 3, 4, and 5+ vehicles

will be referred to as HH1, HH2, HH3, HH4, and HH5, and this dimension will be
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generically named household size.

3.2.3.1 Vehicle ownership

This section presents an analysis of the household vehicle composition, al-

though HH5 statistics are not presented in Figures 3.14 - 3.17 since the number of

vehicles in some of this households is actually very high. That would have made

representation difficult, and they actually represent just 2% of the sample.

Most of the family units, 88%, own 1 or 2 vehicles (Figure 3.12) that were

bought recently, as shown by the increasing slope of the lines in Figure 3.13. In the

case of HH1, 81.4% of them were purchased in the last 5 years. Moreover, this is a

general trend except for HH4 and HH5, where more variability can be observed.

Figure 3.12: Number of vehicles.
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Figure 3.13: Year of purchase.

Regarding the vehicle category, Mid-Size seems to be the predominant class,

followed by Large, no matter if the vehicle is the main, second, or third one (Figure

3.14). This pattern is not maintained in the households with four cars where the

third is commonly Large and the fourth, Compact. On the other hand, almost

all the vehicles reported were Gasoline, with reduced percentages for Hybrid and

residuals for Electric.
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Figure 3.14: Vehicle category by household size.

Curiously, the person that mainly drives the first vehicle in the house is who

takes the survey. The second vehicle is predominantly used by the spouse, and the

third by the spouse, both, or other person (Figure 3.15). Figure 3.16 shows that

the purpose of this driving is predominantly both work and leisure in all cases,

except in HH4, which is eminently work.
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Figure 3.15: Who uses the vehicle by household size.

Figure 3.16: Vehicle main use by household size.

Figure 3.17 shows the average annual mileage of all vehicles in a household,

by household size. The median is similar across households and vehicles, although

the interquartile range is wider for HH1. The average annual mileage is between

17,000 and 36,000.
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Figure 3.17: Annual vehicle mileage (average).

This section of the questionnaire also asks for information about the next

most likely purchase of a vehicle. As can be seen in Figure 3.18, almost 60% of

respondents declared that they would buy a Mid-Size car. In addition, Gasoline is

the most common engine, to be driven mainly by the survey respondent, and the

main purpose would be both Work and Leisure. This new vehicle would replace an

existing one in the household in 80% of the cases.
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Figure 3.18: Next vehicle characteristics.

The last question of this section of the questionnaire was who makes the

purchasing decision. In about 50% of the cases the respondent is this person, while

in 30% of the cases are both the respondent and their partner. These shares are

followed by about 15% of interviewees who responded I do, although I take into

account the opinion of my relatives. Surprisingly, the percentage of users that

stated Other do is superior than I do, although I take into account any opinion that

comes to my ears.
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Figure 3.19: who makes the purchasing decision.

3.2.3.2 Social network

The question referring to the social network has several particularities. Since

its purpose is to identify the size and the structure of the people connected to

the respondent, it was necessary to define many specific aspects that led to certain

complexity in the design. It is worth remembering that the four different groups are:

Close relatives (CR), Non-Close relatives(NCR), Friends (FR), and Acquaintances

(AQ); the first three forming the Inner circle, and the fourth, the Outer circle.

The user always had the option of responding NA since they may not know

the number of persons pertaining to a group. These values were imputed following
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the procedure described in section 4.2.1. Figure 3.20 shows the differences in the

spread of the values, which are clearly skewed right.

Figure 3.20: Number of Close relatives, Non-Close relatives, and Friends.

The average number of each group is; close relatives, 2; non-close relatives, 3;

friends, 12; and acquaintances 4. It is surprising the reduced number of acquain-

tances declared, a consistent fact among the pilots and the final survey. It was

presumed that the number of them would be large since the number of co-workers,

fellow hobbyists, gym mates, neighbors or any other person of such category should

be higher than that of friends and relatives.

In addition to the group size, it was of special interest to identify the nature of
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the groups. To do so, the respondent was asked to introduce the number of persons

(from those declared before) in questions regarding several aspects that denote

trust or identification (see 3.2.2.3 for the details). In general, the distribution is

skewed right, with a few large values (see Figure 3.21). This means responses

for which the size of the subgroup is equal to the number of the whole group.

In other words, users that declare that they would leave a spare key to all their

friends, for instance. For the “key” and the “matters discussion” questions, the

mean of the group of close relatives is higher than the one of the non-close, which

is higher than the mean of both the friends and acquaintances groups; an obvious

behavior. Values are high for the “5 years” question, evidencing certain optimism of

individuals regarding the future of their social relations. For the questions related to

EVs, the average number of people with experience driving them is low, as expected.

90



Figure 3.21: Number of people for each specific Social Network question.

With respect to the average frequency of contact with the members of each

group (left plot of Figure 3.22), in the case of CR Once a week is surprisingly more

common than Every day. The figure also shows that there is more contact with

friends than with Non-Close relatives. The frequency for the group of acquaintances

is more disperse, which is natural since it is gathering people with whom one has

very different kinds of relationships. One can see one’s co-workers every day, a gym
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partner a couple of times a week, and the mechanic of the car workshop a couple of

times a year.

More important, however, is the frequency of contact with the person indicated

in the question (again, see section 3.2.2.3 for more detail), shown in the right plot

of the figure. Interestingly, the behavior seems to be opposite than for the general

subgroups. Users declare little frequency of contact with the person indicated as

close relative, and more frequency with friends and non-close relatives. This is

probably because interviewees introduced the name of parents and siblings, which

sometimes one see less than friends that live in the same neighborhood or co-workers.

Figure 3.22: Frequency of contact by social group.
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3.2.3.3 Sociodemographics and Attitudes

Tables B.2 and B.3 in Appendix B shows some sociodemographic characteris-

tics of the sample. It can be seen that while the sample is well distributed in terms

of age, women are slightly over-represented. Private full-time is the most common

employment status as well as Bachelor’s and Some college are the most common

educational degree. In terms of income, it seems that this sample is distributed

as expected, with an average individual income of around $54,000 and a household

income of around $86,000. One interesting aspect that is asked in the survey is

the percentage of the household income allocated to housing, healthcare, insurance,

food and education expenses. This figure provides a proxy of the disposable income

to spend in transportation. The mean of this share is 60.7%. Interestingly, the

share of individuals that do not know if they are able to charge an EV at home (or

able to install a system to do so) is high, almost a third of the sample. This may

indicate a lack of knowledge about this technology, even though information about

it had been provided earlier in the survey , and no respondent answered No to the

question Do you think the information provided in the reading material is sufficient

for you to get a general idea of what an EV is and how the technology works?.

Besides the socioeconomic information, an important part of this subsection

was the identification of the attitudes and perceptions of the respondents. Although

the details can be consulted in 3.2.2.3, it is worth to remember that the user selected

a level of agreement to sentences related to their environmental concerns, technology

adoption, and inclination towards EV. A value from -2 to 2 was assigned to each
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response (since they were expressed in a Likert scale) and then added up for each

category in order to compute a representative score. Their distributions are plotted

in Figure 3.23, where the dashed lines indicate the average value.

The Technology Inclined attitude scores the highest on average, above 4 out

of a maximum of 10 (and a minimum of -10), meaning that respondents might be

early adopters, or at least, that they have interest in new technologies. Pro-EV

and Environmental Concern have a lower average score. In addition, the three

distributions are reasonably symmetric, with the Pro-EV one having long tails,

representing more dispersion of the sample in this matter. Therefore, it is possible

to conclude that this are individuals inclined to technology, with no special interest

in the environment, and equally in favor and against EVs.
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Figure 3.23: Attitudes score distribution.

3.2.4 Model structure

The methodology for the application of the substitution-diffusion model com-

prises of two steps. First, the estimation of a disaggregated DCM that includes the

attributes of the alternatives and the social components. Second, the use of the

resulting estimated parameters to construct a new utility that will feed the Bass

model, which will yield the diffusion and scale coefficients. This section explains

this process.

With respect to the first of these steps, the estimation of the DCM is similar to

that implemented in the Danish case. However, it is necessary to make modifications
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to include the conceptual improvements related above, as well as to incorporate the

particularities that affect the case of the state of Maryland, eliminating those of

Denmark. The utility functions that underly the DCM can be expressed in compact

form as:

V = ASC + (βX + αSCEV ) (3.9)

where X is the vector of attributes shown in the choice tasks, and β its correspond-

ing coefficients. On the other hand, SC is a function that aggregates the Social

Conformity indicators shown in the second round of scenarios that the respondent

faces. Since the goal is to measure the effect of the SC elements in the choice of the

EV, these indicators are only present in its utility.

Therefore, the part of the function related to the EV attributes takes the form:

βXEV = β1Price+ β2PropulsionCost+ β3Range+ β4FastCharT ime+

+ β5TaxDeduction (3.10)

while in the Gasoline case:

βXGas = β1Price+ β2PropulsionCost+ β3Range (3.11)
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On the other hand, the part related to the SC takes the form:

αSC = α1NumberEV + α2InnSize+ α3OutSize+

+ ((α4DChar + α5DAct + α6DApp)(DInn + DOut))DRep (3.12)

where NumberEV corresponds to the attribute described in section

3.2.2.2, InnSize and OutSize are the sizes of the inner (close relatives,

Non-close relatives, and Friends) and outer (Acquaintances) groups, and

DChar, DAct, DApp, DAppandDOut are dummy variables that represent, respectively:

whether the information provided was about charging the EV, the need to change

activities, if it conveyed a sentence of approval, and whether the information was

provided by a member of the Inner or Outer circle. Whatever the feedback, it is only

important in the three repeated scenarios as only in those it was provided. This is

represented by the dummy variable DRep.

Therefore, the complete utilities can be expressed as:

V EV = ASC + β1Price+ β2PropulsionCost+ β3Range+

+ β4FastCharT ime+ β5TaxDeduction+

+ α1NumberEV + α2InnSize+ α3OutSize+

+ ((α4DChar + α5DAct + α6DApp)(DInn +DOut))DRep (3.13)

V Gas = β1Price+ β2PropulsionCost+ β3Range (3.14)
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where the parameters to be estimated are ASC, βi, and αi following a Mixed Multi-

nomial Logit (MML) specification. MMLs are flexible models that circumvent the

limitations of the MNL, allowing random variation of preferences, substitution pat-

terns, and correlation between unobserved factors. In the case of the MMNL, the

probabilities are different from those indicated in Equation (3.5), and are given by:

Pni =

∫
Lni(β)f(β)dβ (3.15)

where Lni(β) is the probability evaluated in β:

Lni(β) =
eVni(β)∑J
j=1 e

Vnj(β)
(3.16)

f(β) is a density function and Vnj(β) the observable part of the utility. Therefore,

the MMNL probability is a weighted average of the logit formula, evaluated for

different values of β, where the weights are given by the density f(β). This density

may be, for instance, a Normal distribution of mean b and covariance W . Then, the

choice probability becomes:

Pni =

∫ (
eβ

′xni∑J
j=1 e

β′xni

)
φ(β ∨ b,W )dβ (3.17)

Other distributions as Log-normal, Uniform, Triangular, or Gamma may be used in

the same way. Log-normal is useful when it is known that the coefficient has the

same sign for all decision makers, as is the case of the coefficient of cost, which is
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negative for all individuals. In most of the existent cases of use of this model ([111];

[96], [9]), f(β) has been specified as Normal or Log-normal. Nevertheless, [107],

[50], and [136] have experimented with triangular and uniform distributions.

Another possibility is to use the MMNL in an interpretation of error compo-

nents that creates correlations between the utilities of different alternatives. In this

case, the utility is specified as:

Unj = α′xnj + µ
′

nznj + εnj (3.18)

where xnj and znj are vectors containing the observed variables of alternative j, α

is a vector of fixed coefficients, µ is a vector of random coefficients with zero mean,

and εnj is extreme iid. The znj terms are error components that, along with εnj,

define the stochastic part of the utility.

Another advantage of the MML models is the possibility of using panel data.

This specification also allows to consider repeated choices of the same individual.

The simplest way to do this is through coefficients that enter the utility as parame-

ters that vary between individuals but are constant between choice situations. The

utility of alternative j in a choice situation t by person n is Unjt = βnxnjt + εnjt,

with εnjt extreme iid over time, people and alternatives. Considering a sequence of

alternatives over time, the probability that an individual will make that sequence

of choices, conditioned to β, is:

Lni(β) =
T∏
t=1

[
eβ

′
nxnit∑J

j=1 e
′
nxnit

]
(3.19)
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The second part of the modeling phase is the integration of the choice model

into the diffusion model. The procedure is similar to the one described in section

3.1.2. According to Equation 3.4, the probability obtained from the choice model

is used to compute the sales of each time period, considering the potential market

share at time t, Mt, and the cumulative sales at time t − 1, Yt−1. Therefore, the

number of sales in each period, St, is, on the basis of the general MML panel data

specification:

St = (Mt − Yt−1) · Pt

= (Mt − Yt−1) ·
eβ

′
nxnit∑J

j=1 e
β′

nxnit

(3.20)

Finally, for a complete description of the model, joining Equations (3.10), (3.13),

and (3.20), and following the same approximation as in the Danish case (Equation

(3.5)), the diffusion over time will be given, expressed in reduced form, by:

St = (Mt − Yt−1) ·
exp(q(t− τ + 1) + λV EV )

λV Gas + exp(q(t− τ + 1) + λV EV ) + exp( ̂ASCNone)
(3.21)

Note that the elements contained in V j, (β̂X + α̂SC) are directly calculated

form the data and the coefficients estimated in the choice model. Thus, the param-

eters to be estimated are λ and q, the substitution and diffusion parameters.

In order to test the validity of the model, a resampling technique known as

bootstrapping has been applied. A number of subsamples containing a large propor-

tion of the data are randomly generated, estimating a model for each of them. Then,
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the mean and standard deviation of the coefficients estimated across all subsamples

are compared with the ones obtained from the full sample using a t-test.

3.2.5 Variable projection

Once the diffusion model is estimated, the prediction exercise requires a pro-

jection of the variables. According to a particular scenario, the attributes of the

vehicles as well as the variables related to the SoC are modified, under certain as-

sumptions, to show an evolution in the following periods. The new set of data and

the estimated diffusion model are used to predict. The time horizon of the study

described in Section 3.1 was the year 2050. In this case, it has been decided to

shorten this period, and take the forecast to a closer moment in time since, para-

phrasing John M. Keynes, in the long run we are all dead1. This brilliant statement

means, in a way, that predictions too far in time are meaningless because uncer-

tainty grows until they become completely unreliable. On the other hand, due to

this same uncertainty, the future scenario proposed is ‘neutral’, in the sense that it is

not especially favorable or detrimental to the EV. Macroeconomic factors have been

kept unchanged, such as legal regulation or economic and transport policy related

to EV (parking management, toll, infrastructure, etc). Specifically, the evolution of

the variables has been defined as:

• Price: The price of the gasoline vehicle is barely decreased over the period

considered, since this is a very mature market with optimized production pro-

cesses and no significant improvements that would bring down the price (in

1Keynes wrote this in one of his earlier works, The Tract on Monetary Reform, in 1923.
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nominal terms) are expected. On the contrary, the EV production processes

have to be greatly improved, and important technological enhancements that

will lower the price of the vehicle itself (and especially the batteries) are ex-

pected. Thus, the price of the EV is progressively reduced.

• Range: Mainly because of mainly technological reasons, the evolution of the

autonomy of gasoline and EVs has been defined as similar to that of price.

• Propulsion costs: Although this is probably the aspect subject to most

uncertainty due to the strategic and volatile nature of its production (and

highly influenced by external shocks), it has been decided to very slightly and

gradually decrease the price per mile of gasoline and electricity.

• Tax deduction amount: Based on the belief that subsidies for the purchase

of electric vehicles will be withdrawn as they are more widely adopted, the

income tax deduction is progressively reduced over the period 2026 - 2033,

and completely removed in years 2034 and 2035.

• Fast charging time: Again, due to technological advances, it is significantly

reduced over the time horizon.

• Inner and Outer circle size: The number of members of a social group does

not vary much over time (especially in the inner circle case), as mentioned in

Section 2.1. Therefore, groups sizes are randomly assigned according to a Nor-

mal distribution characterized by the sample mean and the sample standard

deviation.
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• Feedback: A probability of obtaining negative informational and injunctive

feedback is defined, depending on the moment in time. The chances of obtain-

ing a negative opinion about charging times, need of changing activities, or

receiving the disapproval of a member of one’s community on buying an EV is

50% between 2020 and 2024, 30% between 2025 and 2029, and 10% from the

year 2030 on. The reason is that, as the characteristics of the EV are improved

and it is more extended and more used, the prevailing opinion in the public

will be more favorable. Moreover, it has been decided to follow the distribu-

tion of cases in the sample where the feedback is given by someone from the

inner (and outer) circle, as well as the distribution of the vehicle categories.

This, allows for the projection of the variables referring to the feedback that

are present in the model below.

Table 3.10 shows a glimpse of the projection of the values of these variables.

Table 3.10: Forecasting scenario 2020 - 2035.

103



3.2.6 Results

3.2.6.1 Substitution model

The estimation of the substitution model required of an iterative process to

find the best specification for the data at hand. The procedure usually starts by

estimating an MNL model that serves as a baseline. Normally, its results are not sat-

isfactory due to the limitations of MNL. However, as pointed out above, MML over-

comes these limitations providing three key methodological improvements: panel

data (several observations for each individual), random parameters (distribution of

the values of the coefficients) and error component (substitutability among alterna-

tives). For a discussion on these technical aspects, see [137].

In this case, this first approach yielded inconsistent coefficients, clearly failing

in capturing the underlying behavior of the users’ decision-making process. However,

the adoption of an MML specification allowed to find parameters of the correct sign

and reasonable magnitude. It also improved dramatically the performance of the

estimation. Although the long process of finding the best fit involves a plethora of

specifications, only the final results are presented here. Table 3.11 shows them as well

as some statistics to measure goodness-of-fit. It is worth noting that bootstrapping

has been used for the estimation. Bootstrapping consists of generating a number of

training/testing subsets of data (10, in this case) by re-sampling with replacement

the observations of the original dataset. Then parameters are estimated for each of

these new samples in the training subset, validated in the testing one, and averaged.
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Table 3.11: Estimation results, substitution model.

All the vehicle attribute coefficients present the correct sign. Naturally, the

higher the price, the cost of the energy, and the charging time, the less probable

is that the vehicle is chosen. In contrast, a better range or a larger tax deduction

increases the probabilities. These attributes are significant except for Propulsion

Cost in the gasoline alternative, and Fast charging time in the EV one. Regarding

the per-mile costs, this was a factor to which the interviewees did not seem to
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give importance, except for those who had stated that they would purchase a non-

gasoline vehicle (EV, hybrid, or other). For them, the per-mile cost of the electricity

was very significant, as the results show. With respect to the fast charging time,

it is worth mentioning that the pilot survey, which showed both regular charging

time and fast charging time, yielded inconclusive information on how users perceived

them . Therefore, at that point, with the aim of reducing the informational burden

in the scenarios, it was decided to keep only the fast charging time since it would be

more comparable to refueling times of a gasoline vehicle. Interestingly, in light of

these results, it turns out that the differences in the fast charge with respect to the

refueling time of an ICV are not significant. This is true for individuals who are able

to charge the car at home, as well as those who are not. Finally, the two aspects

related to the direct cost of the vehicle, i.e. Price and Tax deduction seem to be of

special importance. It is also worth mentioning that the significance of Propulsion

cost for the electric alternative and Number EVs sold is conditional to individuals

that wish to buy a non-gasoline car, and that have the posibility of charging the EV

at home, respectively.

On the other hand, the results corresponding to the variables related to the

SoC (which are only present in the EV alternative) are very illuminating and confirm

some of the hypothesis of this dissertation. Firstly, the effect of the number of EVs

sold in the previous month, a measure of the tendency to conform to others, is

not only positive and significant, but also close in magnitude to that of the tax

deduction. Secondly, the size of the inner circle plays a role in the choice of the

EV; the larger the group, the more probable is to choose it. This would confirm the
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idea that more connections lead to more information received on EVs, and that it

has a significant effect, positive in this case. In contrast, the sign of the size of the

outer circle is negative, something consistent in all models estimated, although it

was never significant. In all fairness, this might be due to the inaccurate information

collected at this respect. As depicted in Figure 3.20, the number of members of the

group Acquaintances seems abnormally small.

The feedback received in the repeated choice tasks does not have a homoge-

nous effect among the different car categories and among all the types of feedback.

For the users that declared that they would buy a Compact vehicle, only negative

feedback on the need to change activities matters, whether it comes from a person

in the inner or outer circle. However, for the users that declared that they would

buy a Midsize one, it is more important the opinion received on charging it. As

pointed out in the survey description, a Midsize vehicle refers to a family car. Thus,

it is reasonable to think that people who wish to purchase a vehicle of this category

are probably parents, who are probably concerned about being able to complete

a tour of the home-school-work-shopping kind. Therefore, the need for sufficient

autonomy is relevant. Approval from others is also important for these individuals,

although only that of members of the outer circle, such as neighbors or coworkers.

Finally, all aspects – charging, activities, and approval – are significant for potential

purchasers of Large vehicles, but only if it is expressed in positive terms. In sum-

mary, the results evidence that not all kinds of feedback are relevant, and that its

negativity/positivity, as well as its source matters.

Other specifications that included random parameters were tested, specifically

107



different combinations of Price, Range, and Tax Deduction. However, none of these

models performed better than the one showed in Table 3.11. They either yielded a

lower fit (Adjusted rho-squared, AIC, and BIC ) or failed in finding the coefficients.

This is not uncommon in complex models in which accurately identifying the dis-

tribution functions of the random parameters is difficult. In this case Normal and

Lognormal were tested, common distributions used for this purpose, with no clear

benefits, as mentioned.

3.2.6.2 Diffusion model

Once the coefficients of the DCM are obtained, they are to be introduced

in Equation (3.21), multiplying the remaining potential market in each period,

Mt − Yt−1, to forecast sales. M is assumed to be equal to 2, 192, 518, the num-

ber of households in the State of Maryland according to the U.S. Census ([18]). The

formulation is a nonlinear regression model in which q and λ are estimated. The

first corresponds to the time-dependent diffusion effect, while the second is a scale

parameter of the coefficients of the dissaggregated model, that can also be inter-

preted as the effect of the substitution among alternatives that occurs in the spread

of the technology.

For comparative purposes, the estimates of two models, as well as some

goodness-of-fit measures, are presented in Table 3.12. Model 1 does not in-

clude any of the SoC elements, i.e. it only considers that the diffusion of the EV

is based on the vehicle attributes. On the contrary, Model 2 includes all SoC factors.
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Table 3.12: Estimation results, diffusion model.

In both cases q and λ are significant. Although the substitution parameter is

of similar magnitude in both models, the diffusion parameter is about 60% larger in

the model that includes SoC (Model 2). However, this does not necessarily mean a

consistently higher rate of sales since the spread of the technology depends on the

evolution of the vehicle attributes over time, and in some periods some aspects may

dominate over others. To illustrate that, Figure 3.24 (a) presents the progression of

sales over the period 2020 - 2035. The plot shows the actual sales observed between

December 2010 and December 2019 (month 109), as well as the forecast number of

EV sold until 2035; Model 1 in green, Model 2 in blue. It is possible to appreciate

how the sales are superior in the model that does not contemplate SoC during the

first 4 years of forecast, approximately. In that moment, Model 2 predicts higher

monthly sales.
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Figure 3.24: Actual and forecast sales (a). Forecast cumulative sales (b)

On the other hand Figure 3.24 (b) illustrates the cumulative sales, which

depicts the classic S-shape of disruptive goods. That is, in a first period of intro-

duction, sales grow slowly until they reach a critical point in which they explode.

In a second phase, the growth is faster, to slow down again in a third stage in which

the remaining of the potential market is captured. In this case, the first period was

probably achieved around 2018 – 2019, close to the end of the red line, where the

inflexion point is clear. Then, according to these forecasts, sales start to accelerate.

Model 1 predicts that the top of the market (2.2 million households) is reached by

year 2035 (month 300). However, Model 2, which considers SoC, presents a more

progressive evolution and the potential market does not empty by the end of the

period of analysis. That is to say, if only the attributes of the vehicles (price, range,

etc.) are accounted for the spread of the technology occurs more rapidly than if the

attributes plus the social aspects inherent in the diffusion process are considered.

In other words, the characteristics of the electric vehicle matter, but the feedback

that people obtain about them, which can be negative, matters as well. In fact,
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the combination of these two aspects slows down the diffusion and delays its full

implementation by five years. Therefore, the results of both substitution and diffu-

sion models justify the idea that the information we receive from our social network

impacts our choices and, consequently, the diffusion process itself, counteracting the

effect of technological improvements or cost-benefit analysis.

3.2.7 Conclusions

The methodology developed in this part of the research is an extension of that

of the Danish case presented in Section 3.1. Moreover, it was applied to new data

of better quality and specific for the State of Maryland. The approach is based on

three pillars: substitution, diffusion, and dynamism. For the first two, an initial dis-

aggregated demand model was estimated using advanced discrete choice techniques.

It included variables related to SoC and to the social network of the respondent to

capture the tendency of individuals to turn to members of their own group when

they make choices. This concept is brought into this study by providing to the

individuals feedback from one person they know. This person belongs to either the

Inner or Outer circles, which existence is probably the main conceptual body of

this research. This substitution sub-model gathered the subjacent inclination to

substitute ICVs by EVs. Then, its results were integrated into an extended Bass

diffusion model which finally yielded future sales, i.e. the spread of this technol-

ogy over time among society. The dynamic aspect is provided by time-dependent

variables, present in both the utility functions and the Bass model.
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The results of the substitution sub-model (Table 3.11) show that, most vehicle

attributes are significant, with the exception of the Fast charging time and the

Propulsion costs of the gasoline alternative. Concretely, the aspects related to

the direct cost of the vehicle, i.e. Price and Tax deduction, seem to be of special

importance. With respect to the SoC variables, the effect Number of EVs sold – a

measure of the tendency to conform to others – is not only positive and significant,

but also close in magnitude to that of Tax deduction. Although only for those

individuals who declared that they are currently able to charge an EV at home.

Secondly, the size of the inner circle plays a role in the choice of the EV; the larger

the group, the more probable is to choose it. This would confirm the idea that more

connections lead to more information received on EVs, and that it has a significant

effect, positive in this case. In contrast, the sign of the size of the outer circle is

negative. Nevertheless, this result may not be completely reliable in light of the

information collected on this aspect.

The effect of the feedback received in some of the scenarios varies depending

on its type and on the category of car the user is willing to purchase. For those that

declared that they would buy a Compact vehicle, only negative feedback on the need

to change activities matters, whether it comes from a person of the inner or the outer

circle. However, for the interviewees that declared that they would buy a Midsize

one, it is more important the opinion received on charging it. As pointed out in the

survey description, a Midsize vehicle refers to a family car. Thus, it is reasonable to

think that people who wish to purchase a vehicle of this category are parents, who

are probably concerned about being able to complete a tour of the home-school-work-
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shopping kind. Therefore, the need for sufficient autonomy is relevant. Approval

from others is also important for these individuals, although only that of members

of the outer circle, such as neighbours or coworkers. Finally, all aspects, charging,

activities, and approval, are significant for potential purchasers of Large vehicles,

but only if it is expressed in positive terms. In summary, the results evidence that

not all kinds of feedback are relevant, and that its negativity/positivity, as well as

its source, are relevant.

On the other hand, the results of the diffusion model that takes into account

SoC present a more moderate sales evolution than the model that does not. The

pace of the spread of this technology is slower and, therefore, the market is emptied

later. Taking as a reference the number of households in the State of Maryland,

this would occur around the year 2035, five years later than the model predictions

that only consider vehicle attributes. This leads to the conclusion that although

the characteristics of the vehicle are relevant, so is the number of social connections

of the individual, as well as the information obtained from them. The combination

of this two spheres modifies the decision-making process at a disaggregated level,

consequently impacting the diffusion of the electric vehicle in aggregate terms.
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4. Machine Learning methods for the classification of potential EV

purchasers

The number of studies that have explored EV adoption is large, either taking

the agent’s perspective, or trying to predict penetration through more macroeco-

nomic approaches, as is done in the research presented in the previous section.

However, although these studies point together in the same direction, they offer

very different EV market evolution in terms of time and magnitude. This causes

a lack of reliability on which it is difficult to make strategic decisions, either by

the industry or the public sector. Therefore, new methodological perspectives are

required, Machine Learning (ML) being one of them.

ML techniques are currently applied to an enormous variety of topics such

as fraud detection, robotics, spam filtering, translation services, preventive health

care, computer vision, as well as transportation. This has been possible thanks

to the exponential growth of information brought about by electronic devices; an

amount that will continue to expand due to the Internet of Things. In the case of

transportation, the smart use of the data generated by on-road vehicles presents an

extraordinary opportunity to improve transportation systems. However, this task

overcomes the capabilities of traditional data analysis and clearly points to ML as
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a solution. Congestion reduction, safety improvement, environmental impact mit-

igation and energy consumption optimization are examples of the most common

lines of research in which ML has been applied. However, there are other less ex-

plored fields of application, such as the classification of potential consumers into

adopters/non-adopters. This is a topic that presents interesting challenges. Adop-

tion is demand-driven, and Demand roots into purchasers’ behavior, beliefs and

attitudes – elements that are intrinsically difficult to define and gather. Even if reli-

able information on these aspects is available, it is unlikely to be in large quantities,

so certain methodologies cannot be used as they only perform well in large data

sets. The aim of this research is, precisely, to compare the throughput of several

supervised ML techniques when applied to the classification of individuals into EV

adopters. Namely, three methods of different nature are applied, Random Forests

(RF), Support Vector Machines (SVM), and Artificial Neural Networks (ANN), to

the survey data previously described in Section 3.2.3.

4.1 Supervised Machine Learning techniques for classification

ML algorithms can be categorized into three types; supervised learning, used

both in classification and regression tasks; unsupervised learning, used for clustering

and dimensionality reduction; and reinforcement learning, based on reward maxi-

mization. In supervised learning observations are labelled, i.e. each one has a class

assigned, an associated response. The algorithm processes the data on a training

subset to generate label predictions that are validated in a different testing sub-
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set. The error resulting from this comparison is used to fit the model as much as

possible to the data. An advantage of most ML methods is that, unlike ordinary

regression models, they are not parametric. They do not rely on assumptions about

the relationships between variables present in the model in order to minimize the

error (cost function). In contrast, when the cost function becomes more complex,

with more parameters and high dimensionality, minimizing it becomes a difficult

task. Another difficulty is the enormous diversity of algorithms that can be ap-

plied to the same problem. Although there may be some guidelines on which one

should be applied to each case, the truth is that different approaches may lead to

significant deviations of the level of performance. In addition, each technique has

specific hyperparameters with no reliable predefined values. This complexity implies

that, when facing a project (either classification or regression), it is first necessary to

assess what method may be appropriate for it and then to carry out an iterative pro-

cess of tuning. This process must also include a resampling procedure to avoid any

possible bias when splitting the data into training/testing subsamples. In this case

k-Fold Cross Validation is used, which randomly divides the sample into k groups,

or folds. The model is validated on the first fold and fit in the remaining k-1. The

process is repeated k times; each time a different subset is treated as the validation

one. The final accuracy measure is computed as the average of those obtained in all

folds. These procedures are highly compute-intensive, especially as the number of

data points and dimensionality grows. Therefore, it is common to conduct a feature

selection process, which consists on a pre-filtering of the most important variables

in order to reduce the dimensionality. For this work, various ML algorithms were
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considered, and finally it was decided to compare the performance of Support Vec-

tor Machines (radial and polynomial kernel), Random Forest, and Neural Networks.

The reason is two-fold. First, as stated in Section 1, they maintain a good balance

between flexibility and overfitting. This is, they can fit the data well, while main-

taining the ability to reasonably predict new observations for which their classes

are unknown. Secondly, these are models that are not restricted by assumptions of

linearity, normality, or variable independence. The following subsections detail the

methodology conducted.

4.1.1 Support Vector Machines

SVM is an extension of the Support Vector Classifier (SVC). SVCs rely on

the concept of an optimal separating hyperplane, which consists in finding a p − 1

dimensional space, where p is the number of features, that perfectly separates the

training observations according to two classes. If such hyperplane exists, then a

straightforward classifier may be constructed; a test observation x∗ is categorized

based on the sign of:

f(x∗) = β0 + β1x
∗
1 + β2x

∗
2 + ...+ βpx

∗
p (4.1)

where the right hand of the equation is the general expression of a hyperplane.

However, it could be case that a classifier based on a separating hyperplane

is not desired. This happens when it assigns classes to the training observations

extremely well, which may be a sign of overfitting. In this situation, a procedure
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that does not perfectly separate the classes for the training observations may produce

a better fit on the testing ones. Following this rationale, the SVC finds a hyperplane

that correctly separates most of the training observations, but misclassify a few of

them, as the solution of the following optimization problem:

maximize M

subject to

p∑
j=1

β2
j = 1

yi (β0 + β1xi1 + β2xi2 + . . .+ βpxip) > M (1− εi) ,

εi ≥ 0,
n∑
i=1

εi ≤ C

(4.2)

where M represents a margin of the hyperplane that is sought to make as large as

possible, and εi, ..., εn are variables that allow the observations –which are, again,

classified by determining on which side of the hyperplane lies– to be on the wrong

side of the margin or the hyperplane (when εi > 1). C is a non-negative tuning

parameter that bounds the sum of the εi – i.e. it controls for the number of margin

violations. As C increases, the margin widens and the classifier becomes more

tolerant. The observations lying in the margin or that violate the margin are called

support vectors.

However, the SVC performs poorly if the actual boundary between classes is

not linear, which most of the times is the case. One way to overcome this problem is

by enlarging the feature space using quadratic, cubic or other polynomial functions

of the predictors, so a non-linear boundary between classes may be accommodated.
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In order to do so, 4.1 may be transformed into:

f(x∗) = β0 +
∑
i∈S

αiK(x, xi) (4.3)

a new classifier that uses some function K, referred as kernel, in order to produce

non-linear boundaries that may better gather the training observations into the

classes that they pertain to. When a kernel function is involved, the algorithm is

called a Support Vector Machine (SVM). However, finding the appropriate boundary

contours is an exploratory task. In this study, polynomial and radial kernels are used

to train the model and then classify the testing observations. Polynomial kernel of

degree d has the form:

f (x∗) = β0 +
∑
i∈S

αi

(
1 +

P∑
j=1

xixi′j

)d

(4.4)

which produces non-linear boundaries which shape depends on d. The radial kernel,

from its part, is specified as:

f (x∗) = β0 +
∑
i∈S

αiexp(−γ
p∑
j=1

(xi − xi′i)2) (4.5)

where γ is a positive constant. The use of a radial kernel makes the classifier to

work more ‘locally’ because the training observations far from x∗ play little role in

its classification. Finally, it is worth to mention that SVM are naturally suited for

two classes, due to the concept of separating hyperplanes it is based on. However,

it is possible to apply it K -classes using different methods. The one followed in
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this work is the one-versus-one method, which constructs
(
K
2

)
SVM, each of which

compares a pair of classes. The algorithm counts the number of times that the test

observation is assigned to each of the K classes. The final classification is that in

which the test observation is most frequently assigned.

4.1.2 Random Forest

The so-called Decision Trees (DT) recursively stratify the predictor space into

distinct non-overlapping regions, making a prediction for each observation falling

into a region. This structure is calculated with the objective of minimizing a measure

of prediction error. In the case of classification problems with a large feature space

the Gini index is one of those. It represents the total variance across classes:

G =
K∑
k=1

p̂mk(1−p̂mk) (4.6)

where p̂mk stands for the proportion of training observations that do not belong

to the most common class observed in the region. A small value evidences that a

region contains predominantly observations from a single class, which is not desir-

able. However, one of the main drawbacks of this simple approach is that trees are

very sensitive to changes in the data; a different training set may lead to important

differences in the final tree estimated. RFs solve this issue in several ways. First it

uses bootstrap aggregation to reduce the variance resulting from splitting the fea-

ture sample space, providing robustness and improving performance. Concretely,

Bootstraping is a cross-validation technique that randomly takes different samples
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from the training set, estimating a prediction model for each of them, and averaging

their predictions. Interestingly, although each tree has a high variance, their combi-

nation has a low one, yet maintaining the accuracy. Another improvement brought

by RFs is that each time a split is considered, a reduced random sample of predic-

tors is chosen as split candidates, and the split can use only one of those predictors.

Although counter-intuitive, this is a valuable procedure in avoiding the dominance

of features. In this way, not all the trees explored will contain the dominant variable

and, therefore, will not be similar to each other, avoiding correlations. Therefore,

RF can be considered an ensemble learning method that overcome the limitations

of simple decision trees.

4.1.3 Artificial Neural Networks

An ANN consists of a group of interconnected nodes that process input infor-

mation to make predictions. Data enter the network by the input layer, is processed

by hidden layers, and finally an output (a prediction) is provided. Every node in a

layer is connected to every node in its following layer by a weight; and each node

has an activation bias, a constant that sums up when activity reaches the node. The

ANN learns by updating these weights and biases to reduce the error in predictions,

according to the following equation:

yi =
h∑
q=1

w(2)
q g

(
d∑
p=1

w(1)
qp xip

)
for i = 1, 2, ..., n (4.7)
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where whq ,wdqp and g() are the weights connecting input and output nodes, and the

activation function. One approach to implement this training process is the back-

propagation algorithm with an underlying gradient descent formula. This optimiza-

tion process updates connection weights and biases by the product of a learning

rate value and the partial derivative of the error over the connection weight or bias

(Equation 4.8), stopping when a pre-defined threshold is reached.

∆wij = −α ∂ε

∂ωij
(4.8)

Among the different versions of backpropagation available, I chose a resilient

backpropagation algorithm with weight backtracking [109] due to its efficiency in

terms of prediction accuracy and time consumption.

Although ANN are very effective, the number of hyperparameters to be tuned

is high, which makes them very intensive in computing power and time. Addi-

tionally, neural networks are kind of black-boxes in the sense that is not possible

to provide explicit meaning to intermediate output besides its computational role.

When estimating an ANN, the researcher basically feeds the network in order to

train it and obtains an output. But there are not equations, coefficients or p-values

that define a relationship.

4.2 Data

As described in Section 3.2.5, the Release data was used to estimate the

substitution-diffusion model. The reason for this is that after analyzing the in-
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formation collected in the pilot phase, it was found that the levels defined in the

statistical design did not provide clear trade-offs to make the estimation of the DCM

efficient. However, ML methods are less constrained by these circumstances. In ad-

dition, the accuracy of these techniques increases substantially as the number of

observations grows. Therefore, to carry out this part of the study it was decided

to join the Pilot and Release data sets. Tables B.4 and B.5 in Appendix B shows

its descriptives statistics, which do not differ much from those corresponding to the

Release only (B.2 and B.3 in Appendix B).

4.2.1 NA imputation and feature selection

The social question included in the first section of this survey is a distinguishing

feature of this data collection. It will help to identify whether the social network

structure of the individuals is significant in adopting EVs. However, its design

involved a particularly inconvenient casuistry; i.e. the interviewee may not know

the number of individuals in a group. That is, one may genuinely not know how

many acquaintances has or how many friends can talk to about EV technology,

for instance. Therefore, it was necessary to offer an I don’t know option, which

meant a missing value when selected. Since the ML techniques to be applied cannot

handle missing values, it was necessary to impute them. For this task I relied

on the Multiple Imputation by Chained Equations (MICE) method. The MICE

algorithm regresses a variable with missing values, xi, on other selected features.

The NA are then replaced by simulated draws form the predictive distribution of xi.
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To provide coherent imputations, the process is repeated several times producing

a single imputed dataset. Moreover, the entire procedure is performed M times

producing M imputed datasets, which are ultimately combined. In our case, the

number of members of the main social groups, where missing, were imputed using

all the other information in the data. Then, the social subgroups were imputed in

a second round using the same information plus the recently imputed one.

On the other hand, counting with a large set of predictors may actually be a

drawback in the analysis. As their number grows, they are more likely to be corre-

lated. Figure 4.1 shows a map of the correlations of our dataset. Some ‘correlation

clusters’ can be identified, but they mostly respond to the social network variables,

which columns are located next to each other for each subgroup. For instance, all the

columns storing the information regarding the Friends group, are placed together

and, obviously, the number of friends one shares hobbies with, talks about personal

matters, etc., is correlated to the total number of friends that one has.
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Figure 4.1: Feature correlation map.

Non-parametric classifiers, like the ones applied in this study, are not very

sensitive to correlation. However, the inclusion of unnecessary variables leads to

the curse of dimensionality ; the larger the feature space, the sparser the data

becomes. In other words, the amount of training data that is required to ensure

that there are several samples for each combination of feature values becomes

insufficient. On the other hand, a large number of features also increases the

complexity of the models, which become prone to overfitting; they will fit the

training data so well that they will not be able to correctly predict the classes of

new observations. Fortunately, these issues may be overcome through dimension

reduction techniques that reduce the number of variables, yet preserving, to a

reasonable extent, the information that they keep. The approach followed in

this study is the application of a preliminary Random Forest (RF) in order to

125



identify the importance of each variable in the data set. Then, the top variables in

terms of importance will be incorporated into the models. I chose this procedure

over others, such as the widely used Principal Component Analysis since it keeps

variables in its original form, instead of building new constructs that are difficult

to interpret. Figure 4.2.a shows the 30 most important variables (over a total of

84) when choosing the type of vehicle after running a RF composed of 500 trees on

the original dataset, number of trees for which the error rate stabilizes (Figure 4.2.b).

Figure 4.2: Variable importance (a) and Classification error by number of trees (b)

The most important features in this case are the county in which the user

resides and the engine of the next purchase (/Electric, Gasoline, Hybrid or other).

For the former, some of the counties in the State of Maryland are among the richest

in the U.S. Thus, this variable may actually be reflecting a geographical high-income

distribution. They are followed by: the amount of the income tax deduction associ-

ated to the EV purchase, its price and range; the range of the gasoline vehicle; and

ATT_PROEV1, which reflects the respondents’ level of agreement to the sentence

Electric vehicles should play an important role in our mobility systems. The rest of

126



the top ten inputs are the price of the gasoline vehicle, the time of fast charging of

the electric one, and the age of the respondent. EV_NUSER, which measures the

effect of social conformity, is also ranked high, even above household income. Also,

some of the variables that provide information on the individuals’ attitudes towards

environment (ATT_EC2), EVs (ATT_PROEV, ATT_PROEV2), and technological

progress (ATT_TI3, ATT_TI4). It is encouraging to confirm that the number of

members of some social groups is also important (FR_FREQ). On the opposite

side, not shown in the figure, are; other sociodemographic variables such as gender

or marital status; the size of the next vehicle to be purchased, who will drive it or

for what purpose; and the structure of the outermost social group (Acquaintances).

Finally, as implied above, the use of a greater number of variables does not nec-

essarily yield better results. Although the performance of a technique first increases

as the number of dimensions grows, it decreases if the feature space continues to

enlarge, resulting in the known peaking paradox. Therefore, it is necessary to com-

bine the tuning and validation process previously mentioned with the search for the

optimal number of variables to include. In order to do so, the estimation of each

method is iterated over the 5, 10, 15, 20 and 25 top variables. In other words,

for each of this number top of variables, the best combination of hyperparameters

is repeatedly found and cross-validated, leading to the estimation of thousands of

models, namely: 2,500 SVM radial kernel, 2,400 SVM polynomial kernel, 725 RF,

and 2500 ANN. Among those, the best SVM, RF, and ANN that can be fitted to

this data were finally selected.
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4.3 Results

The results of the analysis described above are reported in Table 4.1. It

shows the confusion matrices, as well as the optimal number of top variables

and the optimal values of the hyperparameters resulting from the tuning process.

Although the averaged accuracy over all k-folds is the main performance statistic

used to assess model performance, Sensitivity and Specificity are as well of special

importance. They provide the proportion of true positives (an adopter classified as

such) and true negatives (a non-adopter classified as such). Cohen’s Kappa statistic

and p-value(NIR) are as well useful to evaluate model performance. Cohen’s Kappa

measures the agreement between raters who classify N items into C mutually

exclusive categories. Following [83], a zero value means an agreement equivalent

to chance, 0-0.2 slight agreement, 0.2-0.4 fair agreement, 0.4-0.6 is a moderate

agreement, 0.6-0.8 substantial, and 10.8-1 almost perfect. The p-value (NIR)

indicates if the predictions are accurate over no information rate, i.e. random level.
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Table 4.1: Models performance.

The accuracy of all methods is very similar; not lower than 0.81, with poly-

nomial SVM standing out slightly. The p-value (NIR) under 0.05 indicates that

the predictions are accurate over random level. Therefore, we can safely affirm

that more than 81% of the choices made by individuals were predicted correctly,

no matter the technique used. In this regard, the confusion matrices at the top of

the table present the actual choices (row) and the predictions (column). The values

in the diagonals correspond to correct predictions, which are homogeneous among

the methods. Sensitivity and Specificity are calculated from these figures, and are

satisfyingly high. On the other hand, since the kappa statistic is not lower than 0.6

in all four cases, we can conclude that there is substantial agreement.

Sensitivity and Specificity lead to the popular ROC curves. These are historic

graphs that display type I and II errors for all possible threshold values for the

posterior probability that is used to perform the class assignment. The overall
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performance of a classifier, summarized over all possible thresholds, is given by the

area under the curve (AUC), which is maximum when it reaches the top left corner.

Figure 4.3 shows the ROC curves and their respective averaged AUC for all four

techniques.

Figure 4.3: ROC curves and corresponding AUC.

Therefore, attending to the statistics described and the AUC, it can be con-

cluded that SVM with polynomial kernel seems to have the highest capabilities in

predicting the adoption of EVs when compared to the other algorithms considered.

For illustrative purposes, Figure 4.4 evidences the similarity of the pattern of the

actual classes and the classes predicted by this method, plotted by two of the most
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relevant variables found in the preliminary analysis.

Figure 4.4: Actual and predicted classes by Tax deduction amount and EV price.

Now, the top variables depicted in 4.2 are of different nature, and they can be

grouped into three well-differentiated areas; socioeconomic; attitudinal and social;

and (vehicle) attributes-related. Table 3 shows this classification. It is worth re-

membering that the attitudinal variables correspond to several indicators unveiling

the inclination of individuals towards the environment, technology, and EV.

Considering this very differentiated groups, an interesting question is which

of them represents the bulk of the predictive power. To answer this question, we

estimate again the best model found (Support Vector Machine with polynomial

kernel), for each group of variables. Their results are shown in 4.5.
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Figure 4.5: SVM with polynomial kernel performance by group of top variables.

As expected, the accuracy with respect to the general model decreases in all

cases. However, in sub-models 2 and 3 the fall is dramatic; 17 and 24 percentage

points are lost, respectively. Moreover, the decrease in the Sensitivity in these sub-

models is especially notorious; it drops from 0.7467 in the general model to just

0.408 and 0.392. That is, if only attitudinal or only attributes-related variables are

used, most of the adopters will be misclassified as non-adopters. In fact, sub-model

3 is not statistically significantly different from assigning randomly the classes, as

the p-value (NIR) above 0.05 evidence. Finally, the Cohen’s Kapp statistics are

significantly reduced, too, clearly limiting the validity of these specifications.

4.3.1 Misclassified observations

The best model (SVM with polynomial kernel) does not correctly classify

about 16% of the observations. An interesting question is whether these individuals

share characteristics that make the algorithm fail when classifying them. In order

to reveal these traits, we first carried out a cluster analysis of the misclassified ob-

servations to identify, if they existed, groups of individuals. Then, we performed an
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exploratory data analysis on all the variables incorporated to the model estimation.

Cluster analysis is a term that covers several procedures for finding subgroups of

observations that are similar to each other in a data set. These subgroups may

exist or not, therefore, the first step is to assess if the data is clusterable. In order

to do so, the Hopkins’ statistic ([84]) is calculated. It measures the probability

that a given set of data is generated by a uniform distribution. In other words,

it tests the randomness of the information. Specifically, if the observations are

uniformly distributed the statistic would be 0.5. However, if clusters are present,

the value is higher. A result above 0.75 indicates a clustering tendency at the 90%

confidence level. In the case of our misclassified observations, the Hopkins’ statistic

is 0.799, therefore, this group of individuals is clusterable. Visual assessment is

also possible relying in the algorithm of ([11]), which computes the dissimilarities

between the observations of the data set and displays them in an image. Figure

4.6 illustrates this visualization for our case. White or red points represent low

dissimilarity between two observations. Therefore, the whiter or redder the image,

the more clusterable the data set is. Attending to both Hopkins’ statistic and the

visual assessment, we can conclude that our misclassified individuals are subject to

clustering.

133



Figure 4.6: Clustering tendency of the misclassified observations.

The second step is to find out how many clusters the data should be divided

into, since this is not known in advance. One approach to identify the groups is

Hierarchical clustering, which provides a tree-based representation of the observa-

tions called dendogram. This technique starts by treating each of the n observations

as its own cluster, then the two that are most similar to each other are merged,

leaving n − 1 clusters. Next, the two most similar clusters are merged, leaving

n− 2 clusters, and so on (for a complete description of this algorithm, we refer the

reader to [64]. The dendogram is a representation of this process. Observations

that merge at the bottom are very similar, while observations that fuse close to the

top are different. The number of branches in which the dendogram splits at the

top of the tree indicate the optimal number of clusters the data may be split into.

Figure 4.7 shows the dendogram of the misclassified observations, which evidence

two clusters.
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Figure 4.7: Hierarchical clustering of the misclassified observations.

After identifying that the data is clusterable into two subgroups, the classi-

fication is performed. To do so, we opted for the K-means algorithm [93], which

partitions the data set into K distinct, non-overlapping clusters seeking the smallest

within-cluster variation. Formally, the problem to solve is:

minimizeC1, ..., Ck

{
K∑
k=1

W (Ck)

}
(4.9)

where W (Ck) represents a measure of the amount by which the observations

belonging to a cluster differ from each other. The most common measure is the

squared Euclidean distance:

W (Ck) =
1

|Ck|
∑
i,i′∈Ck

P∑
j=1

(xij − xi′j)2 (4.10)
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were |Ck| denotes the number of observations in the kth cluster. Thus, the

within-cluster variation of a cluster is the sum of all the pairwise squared Euclidean

distances between the observations in the cluster, divided by the total number of

observations in the cluster. Consequently, Equation 4.9 becomes:

minimizeC1, ..., Ck

{
K∑
k=1

1

|Ck|
∑
i,i′∈Ck

P∑
j=1

(xij − xi′j)2
}

(4.11)

It is possible to visualize the partitioning results for the chosen number of

clusters (two, attending to the preliminary analysis) drawing a scatter plot of data

points colored by cluster. Since the data set contains more than two variables, a

Principal Component Analysis has been performed to reduce the dimensionality

(for a comprehensive description of this method see [70]).

Figure 4.8: Clustering results, two main Principal Components.
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Now, in order to find the characteristics common to the members of each

cluster, and the differences in-between clusters, an exploratory data analysis has

been carried out. This required of the examination of the main statistics of each

variable as well as of their distribution. The results are summarized in Table 4.9.

Figure 4.9: Clusters characteristics.

A high share of the individuals belonging to Cluster 1 are retired and live in

the Prince George’s county in Maryland (a low-income one, in comparison to the

other counties), while those belonging to Cluster 2, are younger and live, predomi-

nantly in the Montgomery county (a high-income one). Cluster 2 seems to present

an interesting infrequent use of ridesharing apps as well, either riding alone or with

strangers. However, the most enlightening characteristic of the first group of poten-

tial adopters may be the fact that they are little environmental concerned although

they scored high in the pro-EV attitude evaluation. Moreover, the opposite occurs

in the second group, where individuals scored high in environmental concern, but

low in Pro-EV attitude. This is to some extent contradictory since EVs contribute

positively to reduce climate change, so a person that is environmental concerned

usually has also a pro-EV attitude and frequently chooses EV. We think that this

contradiction is precisely what may be behind the misclassification; the algorithm
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might find trouble in labelling a person that states that cares about the environment

but does not have an inclination for EVs, and vice versa.

4.4 Conclusions

The aim of this research is two-fold; first, to explore the most influencing fac-

tors in the adoption of the electric vehicle; second, to carry out a comparison of ma-

chine learning methods in order to find out which one leads to better predictions. To

do so, we use data collected through a stated choice experiment specifically designed

to gather the inclination of individuals towards EVs and the role that their social

structure plays in their choices. SVMs, RFs, and ANNs were estimated to classify

individuals in adopters and non-adopters, examining their respective throughputs.

With respect to the first objective, the most relevant features when classifying

the individuals of this dataset were the county in which they live, the type of engine

of the next vehicle to be acquired, some vehicle characteristics, and several attitudi-

nal variables. Since there are not special differences among the counties of the State

of Maryland in terms of power grid or charging infrastructure, the county variable

may actually hide an income effect. Some of these counties are among the richest

in the U.S. and they evidence a clear geographical income distribution. Among the

vehicle characteristics, the most relevant seems to be the income tax deduction that

the U.S. government provides when buying an EV. Considering that the fourth most

important variable is the price of the type of vehicle, we can conclude that all the

elements that gravitate around the purchase cost are fundamental in the individ-
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ual’s inclination to adopt this technology. However, other vehicle attributes are also

capital, such as the range and the time of fast charging, as well as the existence of

charging infrastructure in the household. This is valuable information for the auto-

motive and power industry since these are precisely some of the barriers highlighted

by users and researchers for a wide-scale implementation of this technology ([10],

[139], [16], [39]). Some of these findings are also important for the public admin-

istration, beyond the economic incentives. The attitude of individuals towards the

environment and towards technology is relevant, too. Although these aspects are

obviously inherent in each person, fostering social awareness of environmental care

would also boost the EV market.

On the other and since the top variables were clearly different in nature (so-

cioeconomic, attitudinal and social, and attributes-related) three sub-models were

re-estimated using one of these groups at a time with the objective of identifying

their importance. The results confirm that counting only with limited information

dramatically decreases the general accuracy as well as the rate of true positives,

especially if only the attitudinal variables or those related to vehicle attributes were

included. Therefore, it becomes clear that the synergy of all the variables is what

produces a better classification, and that it is not convenient to rely only on aspects

specific to the individual under analysis.

Regarding the second objective of this study, the four ML methods analyzed

show a similar performance, with SVM with polynomial kernel slightly standing out

from the others. It provides better accuracy, highest Sensitivity, Specificity, and

Cohen’s Kappa statistic, as well as the highest average area under the ROC curves.
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However, it is fair to mention that the biggest advantage of these predictive models

can also be the biggest drawback. These techniques are flexible enough to cap-

ture complexity in datasets avoiding introducing model assumptions since they are

completely data driven, but this precisely makes them very dependent on the input

information. Sampling bias was avoided, or at least mitigate by implementing k-fold

cross validation. RF predictions are very robust in this regard, thanks to the aggre-

gation and decorrelation of trees that is performed in its estimation. Moreover, the

computing time of RF is usually inferior to the other techniques, which is something

to take into account when using large datasets. Therefore, it is not unreasonable,

at least for this case, to consider this algorithm as the most convenient, although

its performance is below that of SVM. In the same vein, ANN were much more

complex to code and estimate, taking significantly longer computing time, which

did not translate in the end into better results.

Finally, we tried to identify characteristics common to the misclassified indi-

viduals. To do so, we carry out a cluster analysis followed by an exploratory data

analysis. The results show that the observations incorrectly predicted belong to two

well-differentiated groups. The first is characterized by retired persons that live in

a low-income county and that do not care much about the environment but have a

pro-EV attitude. The second cluster, in contrast, is composed by young potential

customers that live in a high-income county, and that care about the environment

although do not show special interest for the EV. This apparent contradiction might

be the reason because the algorithm fails in classifying them. In any case, this topic

requires of further research, counting on more data and inspecting other approaches
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that can better fit the case at hand, since ML practice has a great exploratory com-

ponent. Nevertheless, this work may enlighten the application of these promising

methodologies to the adoption of new transportation technologies. Since its poten-

tial lies in knowing if a person is prone to adopt, it may become an assistance for

multiple agents, especially private companies that are looking for a reliable proce-

dure to classify potential clients for whom they have only limited information.
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5. Future Work

Future work planned for completion involves taking the methodologies applied

in this research further by focusing on the areas of improvement detected. This task

begins by carrying out a third survey design leading to a third wave of data collec-

tion. For example, it has been detected that the results corresponding to the role

of propulsion costs and, especially, of the outer circle are not completely coherent.

For the former, work is already underway on a design with improved attribute levels

that can more clearly highlight the differences between the electric/gasoline vehicle

capabilities. For the second, the way to improve the question that collects informa-

tion about the individual’s social network is also under study –it may be sufficient to

offer clearer instructions for its completion. Finally, since attitudinal aspects have

proved to be of great importance, more attention will be paid to this section of the

questionnaire, which will be expanded.

With these new data, there are two straightforward lines of research. Firstly,

to replicate the substitution-diffusion structure, trying to find a diffusion function

that better adjust the data and, therefore, lead to better predictions. This is a path

that offers many possibilities given the variety of possible approaches, which is why

it is interesting. Secondly, an improvement of the non-parametric approach is also
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direct. Given the spectacular advance of the machine learning field, new tools have

emerged since that part of the research was carried out, allowing the exploration of

literally dozens of models in a much more simplified and inexpensive way.

The third line is more ambitious and will probably lead to future research

for the author in the next few years. If both above-mentioned investigations are

successful, then it would make sense to modify the substitution-diffusion paradigm,

replacing discrete choice models with machine learning methodologies. This is a

completely unexplored idea that responds to a great challenge: to bring together

disaggregated and aggregated perspectives efficiently that leads to the best possible

results.

Finally, perceptions and attitudes have been shown to be drivers of adoption,

and deserve more attention. Hybrid choice models are best suited to bring out and

explain these aspects, so further exploration seems a reasonable idea. However,

perhaps the best use is to use advanced classification methodologies that connect in

some way these underlying individual principles with purchasing desires; not from

a marketing perspective, but rather a study of consumer behavior in the purest

microeconomic sense.
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6. Conclusions

This research presents two advanced methodologies that make use of real data

to evaluate the adoption of the EVs in the State of Maryland. The first consists of

a disaggregated substitution model that considers social influence and social con-

formity, which is then embedded in a diffusion model to predict EVs sales. The

second, in contrast, relies on non-parametric ML techniques for the classification of

potential EV purchasers. Both make use of data collected through a SC experiment

specifically designed to capture the inclination of users towards EVs.

The first of these two approaches is based on the three pillars: substitution,

diffusion, and dynamism. In order to consider substitution, an initial demand model

including variables related to SoC and to the social network of the respondent has

been estimated. It gathered the subjacent inclinations of individuals to substitute

ICVs vehicle by EVs. Then, it has been integrated into a Bass diffusion model

which finally yielded future market shares, i.e the spread of this technology over

time among society. The dynamic aspect is provided by time-dependent variables,

present in both the utility functions and the Bass model.

SoC is a relevant aspect in diffusion because people around us, such as family

members, friends, colleagues, or even people that we do not know, influence our
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behavior and decisions, directly or indirectly. This concept is brought into this

research by providing to the individuals feedback from one person they know. This

person belongs to either an Inner or an Outercircle. The purpose is to explore

explicitly the impact of the size and the nature of these relationships. This required

the development of several elements, the main one being a new SC experiment to

collect real data.

Regarding the second approach of this research, it makes use of the same data

structure to predict the adoption of the EV, yet abandoning the agent’s perspective

and making use of non-parametric ML techniques. It aims to classify potential EV

purchasers into Adopters/Non adopters. Namely, the performance of three methods

of different nature is compared: Random Forests, Support Vector Machines, and

Artificial Neural Networks. Secondary objectives are to identify the key factors

in the adoption of the EV, as well as to determine the common characteristics

of the individuals missclasified. For the former, a preliminary Random Forest is

performed. For the latter, a hierarchical cluster analysis is applied, followed by a

K-means classification and, finally, exploratory data analysis of the resulting groups.

This part of the research makes use of the same data structure than the previous

one, although incorporating the Pilot data.

6.1 Summary of conclusions

The results of the substitution sub-model (Table 3.11) show that most ve-

hicle attributes are significant, with the exception of the Fast charging time and
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the Propulsion costs of the gasoline alternative. Also that the aspects related to

the direct cost of the vehicle, i.e. Price and Tax deduction seem to be of special

importance. With respect to the SoC variables, the effect Number of EVs sold, a

measure of the tendency to conform to others, is not only positive and significant,

but also close in magnitude to that of the tax deduction. Although only for those

individuals who declared that they are currently able to charge an EV at home.

Secondly, the size of the inner circle plays a role in the choice of the EV; the larger

the group, the more probable is to choose it. This would confirm the idea that more

connections lead to more information received on EVs, and that it has a significant

effect, positive in this case. In contrast, the sign of the size of the outer circle is

negative. Nevertheless, this result may not be completely reliable in light of the

information collected on this aspect.

The effect of the feedback received in some of the scenarios is heterogeneous

and varies depending on its type and on the category of car the user is willing to

purchase. For those that declared that they would buy a Compact vehicle, only

negative feedback on the need to change activities matters, whether it comes from a

person of the inner or the outer circle. However, for the interviewees that declared

that they would buy a Midsize one, it is more important the opinion received on

charging it. As pointed out in the survey description, a Midsize vehicle refers to

a family car. Thus, it is reasonable to think that people who wish to purchase a

vehicle of this category are probably parents, who are probably concerned about

being able to complete a tour of the home-school-work-shopping kind. Therefore,

the need for sufficient autonomy is relevant. Approval from others is also important
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for these individuals, although only that of members of the outer circle, such as

neighbours or coworkers. Finally, all aspects, charging, activities, and approval, are

significant for potential purchasers of Large vehicles, but only if it is expressed in

positive terms. In summary, the results evidence that not all kinds of feedback are

of importance, and that its negativity/positivity, as well as its source, are relevant.

On the other hand, the results of the diffusion model that takes into account

SoC present a more moderate sales evolution than the model that does not. The

pace of the spread of this technology is slower and, therefore, the market is emptied

later. Taking as a reference the number of households in the State of Maryland,

this occurs around the year 2035, five years later than the model predictions that

only consider vehicle attributes. This leads to the conclusion that although the

characteristics of the vehicle are relevant, so is the number of social connections of

the individual, as well as the information obtained from them. The combination

of this two spheres modifies the decision-making process at a disaggregated level,

consequently impacting the diffusion of the electric vehicle in aggregate terms.

As for the results obtained in the research carried out under a non-parametric

approach, they show that the most relevant features are the county in which the

users live, the type of engine (electric or not) of the next vehicle to be acquired,

some vehicle characteristics, and several attitudinal variables. Since there are not

special differences among the counties of the State of Maryland in terms of power

grid or charging infrastructure, the effect of the county may hide an income effect.

Some of these counties are among the richest in the U.S. and they evidence a clear
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geographical income distribution. Among the vehicle characteristics, the most rele-

vant seems to be the income tax deduction that the U.S. government provides when

buying an EV. Considering that the fourth most important variable is the price of

the vehicle, it can be concluded that all the elements that gravitate around the pur-

chase cost are fundamental in the inclination of individuals to adopt this technology.

However, other vehicle attributes are also capital, such as the range and the time of

fast charging, as well as the existence of charging infrastructure in the household.

This is valuable information for the automotive and power industry since these are

precisely some of the barriers highlighted by users and researchers for a wide-scale

implementation of this technology. Some of these findings are also important for

the public administration, beyond economic incentives. The attitude of individ-

uals towards the environment and towards technology is relevant, too. Although

these aspects are obviously inherent in each person, fostering social awareness of

environmental care would boost the EV market.

Interestingly, these top variables were clearly different in nature, i.e. socioe-

conomic, attitudinal and social, and attributes-related. Thus, three sub-models

were retrained using one of these groups at a time, with the objective of identifying

the importance of each cluster. The results confirm that counting only with lim-

ited information dramatically decreases the general accuracy, as well as the rate of

true positives, especially if only the attitudinal variables or those related to vehicle

attributes are included. Therefore, it becomes clear that the synergy of all the vari-

ables is what produces a better classification, and that it is not convenient to rely

only on aspects specific to the individual.
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On the other hand, there are no marked differences in the performance of the

models estimated, although SVM with polynomial kernel slightly stands out from

the others. It provides better accuracy, highest Sensitivity, Specificity, and Cohen’s

Kappa statistic, as well as the highest average area under the ROC curves. However,

RF was the most robust method thanks to the aggregation and decorrelation of

trees that is performed in its estimation. In addition, the computing time of RF

was significantly inferior to the other techniques. In the same vein, ANN were much

more complex to code and estimate, and took significantly longer computing time,

which did not translate in the end into better results.

6.2 Main findings and hypotheses

In summary, the main findings related to the first of the approaches, the

substitution-diffusion model, are:

• The size of the Inner circle is significant, as well as the feedback about as-

pects related to the EV or the approval of others. Moreover, the effect of

the information received is heterogeneous, and depends on the type of vehicle,

whether it is positive or negative, and whether it comes from the inner or

outer social circle. The existence of these groups and their influence on the

decision-making process was the main hypothesis of this research.

• The forecast rate of adoption is reduced when social aspects come into play.

The top of the market is reached five years later than predicted by the model

that does not consider SoC. Therefore, the spread of the EV technology is
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influenced by the presence of social factors, which was the second hypothesis.

On the other hand, the main findings regarding the use of ML techniques to

classify potential EV purchasers are:

• Cost-related and attribute-related variables are fundamental in the individ-

uals’ inclination to adopt the EV, but attitudes play an important role as

well.

• Counting only with limited information dramatically decreases the prediction

power. It is the synergy of all the elements what produces a better classifica-

tion.

However, if there was only one aspect of this research that stands out with

respect to the prediction of the EV diffusion (and probably of any technology), this

would be that it is erroneous to rely solely on an economic rationale. The results of

this research show that pure cost-benefit analysis does not serve to explain the actual

adoption of the EV. Attitudes and social relations are so relevant in the decision-

making process that they overcome the traditional Homo Economicus approach.

Diffusion is heavily characterized by elements that are intrinsic to us: our beliefs

and our attitudes towards society, technology, and environment. And this set of

elements is, in turn, clearly influenced by the experiences, beliefs and opinions of

those with whom we are connected.
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Appendix A: Ngene syntax
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Appendix B: Sample sociodemographics

Table B.1: Denmark study. Source [25]
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Table B.2: U.S. study, Release data. Part I

153



Table B.3: U.S. study, Release data. Part II
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Table B.4: U.S. study, Pilot and Release data.
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Table B.5: U.S. study, Pilot and Release data.
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[121] Sharmeen, F., Chávez, O., Carrasco, J. A., Arentze, T., & Tudela, A. (2016).
A Modelling Population-Wide Personal Network Dynamics Using a Two-Wave
Data Collection Method and An Origin-Destination Survey.

[122] Shepherd S, Bonsall P, & Harrison G (2012). Factors affecting future demand
for electric vehicles: A model based study. Transport Policy 20, 62–74.

[123] Sherif, M. (1935). A study of some social factors in perception. Archives of
Psychology (Columbia University).

[124] Sheng, H., & Xiao, J. (2015). Electric vehicle state of charge estimation: Non-
linear correlation and fuzzy support vector machine. Journal of Power Sources,
281, 131–137. https://doi.org/10.1016/j.jpowsour.2015.01.145

167



[125] Sherwin, H., Chatterjee, K., & Jain, J. (2014). An exploration of the impor-
tance of social influence in the decision to start bicycling in England. Trans-
portation Research Part A: Policy and Practice, 68, 32-45.

[126] Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised
machine learning algorithms. In 2016 3rd International Conference on Comput-
ing for Sustainable Global Development (INDIACom) (pp. 1310-1315). IEEE.

[127] Slot, R., (2017) Factors Influencing the Adoption of Electric Vehicles in the
Netherlands. Master: Business Information Management. Rotterdam School of
Management, Erasmus University. Master Thesis

[128] Smaldino, P., Janssen, M., Hillis, V., & Bednar, J. (2017). Adoption as a Social
Marker: The Diffusion of Products in a Multigroup Environment. Journal of
Mathematical Sociology, 41(1), 26-45.

[129] Smith, J. R., Louis, W. R., & Schultz, P. W. (2011) Introduction: Social
influence in action . Group Processes & Intergroup Relations, 2011; pp. 599–603

[130] Richter, F. (2019) Electric Vehicle Buyers Have the Agony of Choice. Re-
trieved from: https://www.statista.com/chart/13465/electric-vehicle-models-
available-in-north-america/

[131] Stibe, A. (2014). Socially influencing systems: persuading people to engage
with publicly displayed Twitter-based systems. Acta Universitatis Ouluensis.

[132] Struben J, & Sterman J (2008). Transition challenges for alternative fuel ve-
hicle and transportation systems. Environment Planning B: Planning Design
35(6), 1070-1097.

[133] Sun, S., Zhang, J., Bi, J., Wang, Y., & Moghaddam, M. H.
Y. (2019). A Machine Learning Method for Predicting Driving Range
of Battery Electric Vehicles. Journal of Advanced Transportation, 2019.
https://doi.org/10.1155/2019/4109148

[134] Thiel, C., Alemanno, A., Scarcella, G., Zubaryeva, A., & Pasaoglu, G. (2012).
Attitude of European car drivers towards electric vehicles: a survey. JRC report.

[135] Tietge, U., Mock, P., Lutsey, N., & Campestrini, A. (2016). Comparison of
leading electric vehicle policy and deployment in Europe. Int. Council Clean
Transp, 49, 847129-102.

[136] Train, K. (2001). A comparison of hierarchical Bayes and maximum simulated
likelihood for mixed logit. University of California, Berkeley, 1-13.

168



[137] Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge Uni-
versity Press, UK.

[138] Train, K. E. (2008). EM algorithms for nonparametric estimation of mixing
distributions. Journal of Choice Modelling, 1(1), 40-69.

[139] , M., Banister, D., Bishop, J. D., & McCulloch, M. D. (2012). Realizing the
electric-vehicle revolution. Nature climate change, 2(5), 328-333.

[140] TyreeHageman, J., Kurani, K. S., & Caperello, N. (2014). What does com-
munity and social media use look like among early PEV drivers? Exploring
how drivers build an online resource through community relations and social
media tools. Transportation Research Part D: Transport and Environment, 33,
125-134.

[141] U.S. Department of Energy. (2012, February 7). Data, Analysis &
Trends. Alternative Fuels & Advanced Vehicles Data Center. Retrieved from
http://www.afdc.energy.gov/afdc/data/vehicles.html

[142] Voelcker, John. (2012, September 4). August Plug-In Elec-
tric Car Sales: Volt Surges, Leaf Static. Retrieved from:
https://www.greencarreports.com/news/1078919 august-plug-in-electric-
car-sales-volt-surges-leaf-static

[143] Wang, W., Xi, J., Chong, A., & Li, L. (2017). Driving Style
Classification Using a Semisupervised Support Vector Machine.
IEEE Transactions on Human-Machine Systems, 47(5), 650–660.
https://doi.org/10.1109/THMS.2017.2736948
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