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Analyzing time series from complex dynamical systems in nature is a common

yet challenging task in scientific computation since these time series are usually high-

dimensional. To apply our physics intuitions to these dynamical systems often requires

projecting these time series to certain low-dimensional degrees of freedom, which of-

ten introduces complicated memory effect. A simplest and classic example can be a

2-dimensional coupled differential equation. When one only looks at one of the Cartesian

coordinates, one loses the predictability to predict what will happen next given the current

1-dimensional coordinate. The well-known solution is to describe the solution using the

eigenvector, and the coupled equation is decoupled into a constant and a 1-dimensional

memoryless equation. However, it can be imagined in a more complicated system we

may have to look back to more time steps in the past, and it can be impossible to obtain a

simple 1-dimensional eigenvector. In this work, we examine such memory effect within



time series generated from Langevin dynamics, Molecular Dynamics (MD) simulations,

and some experimental time series. We also develop computational methods to minimize

and model such memory effects using statistical mechanics and machine learning.

In recent years, MD simulation has become a powerful tool to model complex

molecular dynamics in physics, chemistry, material science, biology, and many other

fields. However, rare events such as droplet formation, nucleation, and protein confor-

mational changes are hard to sample using MD simulations since they happen on the

timescales far away from what all-atom MD simulation can reach. This makes MD sim-

ulation less useful for studying the mechanism of rare event kinetics. Therefore, it is a

common practice to perform enhanced sampling techniques to help sample rare events,

which requires performing dimensionality reduction from atomic coordinates to a low-

dimensional representation that has a minimal memory effect.

In the first part of this study, we focus on reducing the memory effect by captur-

ing slow degrees of freedom using a set of low-dimensional reaction coordinates (RCs).

The RCs are a low-dimensional surrogate of the eigenvector in the example of coupled

equations. When describing the system using RCs, other dimensions become constant

except fast randomly fluctuating noise. These RCs can then be used to help reproducing

correct kinetic connectivity between metastable states using enhanced sampling methods

such as metadynamics. We demonstrate the utility of our method by applying them to the

droplet formation from the gaseous phase of Lennard-Jones particles and the conforma-

tional changes of a small peptide Ace-Ala3-Nme.

The second part of the study aims at modeling another type of memory coming

from intrinsic long-term dependency induced by ignored fast degrees of freedom wherein



we utilize one of the fundamental machine learning techniques called the recurrent neural

network to model non-Markovianity within time-series generated from MD simulations.

This method has been shown to work not only on the molecular model of alanine dipeptide

but also on experimental time series taken from single-molecule force spectroscopy. At

the end of this second part, we also improve this method to extrapolate physics that the

neural network had never seen in the training dataset by incorporating static or dynamical

constraints on the path ensemble it generates.
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Chapter 1: Introduction

1.1 Motivation

Analyzing time series from complex dynamical systems in nature is a common

yet challenging task in scientific computation since these time series are usually high-

dimensional. In order to apply our physics intuitions to these dynamical systems, it is

a common practice to project these time series to certain low-dimensional degrees of

freedom, which often introduces complicated memory effects. In this dissertation, we

will focus on modeling these memory effects within time series generated from Langevin

dynamics, Molecular Dynamics (MD) simulations, and some experimental time series.

Over the past several decades, the fast development of computer science and im-

proved computational power of modern computers have rendered molecular dynamics

(MD) simulation a powerful tool to study complex molecular dynamics in physics, chem-

istry, biology, such as droplet formation, freezing, protein folding and unfolding [1–13].

These problems are of great importance to not only our understanding to soft condensed

matters but also to industry such as discovery of new drugs or engineering novel materi-

als [1, 14–19]. Contrary to the importance, they are intrinsically complex in nature and

difficult to study due to their many-body characteristic and associated long-range interac-

tions. MD simulations, built upon our understanding of these complex systems at atom-
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istic level, integrate Newton’s equations of motion, providing us a model to complement

experimental observations and gain deeper understanding of underlying mechanisms. For

example, MD simulations allow us to simulate crystal growth processes without any im-

purities, which is a hard-to-prepare environment in experiments. In MD simulations, we

can also detect any stochastic events in atomistic precision and on femtosecond timescale,

such as a droplet with a few atoms or molecules formed in a supersaturated vapour, which

is difficult to detect with today’s experimental techniques and technologies.

1.1.1 Timescale limitation of molecular dynamics (MD) simulations

Although MD simulation is a powerful tool to model complex dynamics, it suffers

from notorious timescale limitation problem [1, 20]. For the MD simulation considering

all atoms, the maximal integration timestep is usually required to be less than 2-5 fs in

order to capture the movements of fast fluctuating Hydrogen atoms. The maximal number

of iterations needed to reach a millisecond for MD simulation would then be around

108, which is still an incredible number for modern computers to execute in realistic

time. However, most, if not all interesting and important physics in the complex systems

consisting of a large number of atoms happen at the timescale of microseconds, seconds,

or even hours. For example, protein can unfold from its folded structure at a frequency of

approximately 1000 Hz in water at 25◦C, which is equivalent to a millisecond [21]. Such

phenomena can rarely be seen in the all-atom MD simulation since MD is too slow to

reach their occurring timescale, so we call them “rare events”. The previously mentioned

important phenomena such as droplet formation, freezing, and crystal nucleation of atoms

2



or molecules are all examples of rare events.

1.1.2 Dimensionality reduction and memory effect

Visualizing or analyzing MD trajectories using the whole set of phase space vari-

ables is also not efficient if our focus is on the dynamics of the rare events, since the phase

space is usually very high-dimension and most of the variables do not provide useful in-

formation. For example, just simulating a small protein consisting of 10 atoms results

in a 60-dimensional phase space, while the positions of most Hydrogen atoms simply

fluctuate randomly during simulations.

In fact, it has also been proposed that important physics of some of the rare events

that happen in these complex systems can be captured by certain low-dimensional vari-

ables [22–24]. Unfortunately, we still don’t have a reliable and systematic way to obtain

such important low-dimensional representation, and we don’t even know how many di-

mensions we need to consider in arbitrarily complex system.

Even though we completely capture the important low-dimensional variables, arbi-

trary memory effect can always come into effect from other variables. In other words, our

models of any future events can depend on arbitrarily long history even after we include

all the low-dimensional important physics from the past.

1.1.3 Projecting to slow Degree of Freedom (DOF) prevents memory

Overcoming the timescale limitation, finding low-dimensional important physics,

and preventing memory effects are not completely separate problems. In this section, we

3



Figure 1.1: Illustration of the projection from phase space dynamics to reaction co-
ordinate (RC). This figure shows the projection from phase space dynamics to reaction
coordinate.

will see that they are closely related to each other. If we allow ourselves to describe a

complex system with all phase space variables including positions and momenta of each

atom, we can precisely predict any future event given the current status of the system.

In other words, we have a history-independent Markov process, and there is no memory.

An all-atom MD simulation is a Markov process guaranteed by the definition because

MD simulation can be viewed as the integration of Newton’s equations of motions for all

phase space variables.

As we described in the previous section, the variables that really matter to the rare

event dynamics are often low-dimensional. Therefore, we commonly project the system

dynamics to a low-dimensional representation called “reaction coordinates (RC)” [25,26].

Ideally, the RC is a 1-dimensional coordinate which we expect to capture all important

physics, including (i) thermodynamic truthfulness: demarcating between the various rele-
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vant metastable states present in the actual high-dimensional system, (ii) kinetic truthful-

ness: preserving pathways for moving between these different states, and (iii) timescale

separation: displaying a clean-cut separation of timescales between the relaxation times

in the various metastable states, and the time spent in the actual event of crossing from

one state to another, as illustrated in Fig. 1.1. An important assumption here is our RC

is a slowly varying variable such that everything projected out from RC, which are called

latent variables or hidden degrees of freedom, relaxes much faster than RC and can be

treated as randomly fluctuating noise [27–29]. This assumption of randomly fluctuating

latent variables is then crucial for us to describe the dynamics of RC as a Markov process

again.

Therefore, a good RC should be the slowest degree of freedom. The rare events can

then be seen as the transitions across the highest barrier on RC, where the barrier height

is so high compared to thermal fluctuations.

1.2 Finding optimal reaction coordinate (RC)

As we have mentioned, the memory effect and sampling problem of rare events

can be unified by finding an optimal RC. In this section, we will introduce two different

approaches based on the properties of RC we discussed in the previous section.

1.2.1 Past-future information bottleneck as the reaction coordinate

The first method for finding an optimal RC is first introduced by Ribeiro, Wang,

and Tiwary and called “Reweighted autoencoded variational Bayes for enhanced sam-
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pling (RAVE)” [30]. This is a neural network-based method that aims at finding a low-

dimensional representation of the current status with maximal predictability of the next

time step because the dynamics of RC should be as Markovian as possible. As a result,

in RAVE we construct the RC using the full phase space variables from MD simulation

at every time step, make a prediction of the next step RC using a type of neural network

called variational autoencoder, and then minimize the mean square error between the neu-

ral network output and actual RC of the next time step. This approach finds RC by making

use of the neural network as an approximate Markov model for RC.

1.2.2 Spectral gap optimization of order parameters (SGOOP)

Another approach for finding such a RC is called “Spectral gap optimization of

order parameters (SGOOP)” [26, 31]. In this approach, we first construct a transition

probability matrix along any candidate RC based on statistical mechanics and then cal-

culates its eigenspectrum. The eigenvalues of such transition matrix carry information

about the timescales of various dynamical processes. The best RC will then produce a

transition matrix with a maximal timescale separation between visible slow and hidden

fast processes. This timescale separation, also known as the spectral gap, therefore quan-

tifies how well we can approximate the hidden degree of freedom projected out by RC as

a random noise.

Although SGOOP and RAVE use different properties we have introduced in Sec. 1.1.3

to find optimal RCs, they should eventually find the same RC in the ideal situations.

However, in practice, they can only find approximations of RCs to their aspects. There
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are many other methods for finding RCs such as time-lagged Independent Component

Analysis (tICA) [32–34] or deep learning-based approach VAMPNets which project MD

conformations onto a few collective variables for subsequent clustering [35–37]. Since

timescale separation and slow mode finding are more related to the mechansim and per-

formance of metadynamics, we use SGOOP as one of the key methods in my research,

and we will revisit it with more details in Chapter. 2 and Chapter. 3.

1.3 Metadynamics: Overcoming timescale limitations

Once we have a good RC that has minimal memory and limits the timescale of rare

events, we can perform an enhanced sampling technique called metadynamics [38, 39] to

overcome the timescale limitations of MD simulations. In this section, we will briefly in-

troduce metadynamics and show how we obtain useful information from metadynamics.

In particular, we will focus on its most mature variant called “Well-tempered metadynam-

ics (WTmetaD)” [38].

1.3.1 Well-tempered metadynamics

When performing metadynamics [38–40], we add the history-dependent Gaussian

bias V (s, t) as a function of biasing variables s to encourage the system to visit new

metastable states. Here specifically we use the well-tempered variant of metadynamics

in which the height of the Gaussian is rescaled through a bias factor each time a point is

revisited. This allows the bias to converge smoothly. The Gaussian bias V (s, t) can be
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expressed as follows:

V (s, t) =
∑
kτ<t

he−
V (s,kτ)

∆T exp

(
−

d∑
i

[si(t)− si(kτ)]
2

2σ2
i

)
(1.1)

where s is a d-dimensional biasing variable and can be written as a function of phase

space variables. The h is called initial height, σi is the width of Gaussian bias, τ is the

time interval between each bias deposition, ∆T is a parameter more commonly written

as the bias factor γ = (T +∆T )/T . Higher bias factor then represents a more aggressive

manner of adding bias.

Since metadynamics accelerates the rare events and helps the simulations escape

from free energy minima by filling up the minima with the Gaussian bias, it is crucial

to choose the biasing variables s carefully if we would like metadynamics to be efficient

in sampling the rare events. Especially in practice metadynamics becomes slower than

unbiased simulations when we use more than two biasing variables. Therefore, we can

use the optimal RC found by SGOOP as our biasing variables because the free energy

barrier along its optimal RC minimizes the timescale of rare events not captured by the

RC. It is then not hard to imagine adding bias can directly help climbing this barrier.

1.3.2 Reconstructing free energy surface

At the end of metadynamics, the bias potential fills up all free energy minima and

converges. Therefore, the simulation becomes freely diffusive in the space of biasing

variables. In theory, a relation connecting the free energy with the deposited bias can be

derived irrespective of the precise choice of biasing variable s, which will be asymptot-
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ically valid at the limit of long simulation time. In practice, however, it helps if s is as

close to the true RC as possible.

It can be shown that in the long time limit, the bias potential will smoothly converge

to the rescaled free energy [38, 41]:

V (s, t→ ∞) = − ∆T

T +∆T
F (s) + Constant (1.2)

where it can be seen that by choosing an appropriate ∆T , the bias potential converges

to the free energy at temperature T + ∆T . This free energy can also be obtained by

calculating the probability mass function via direct counting, where it can be shown that

the unbiased probability distribution P (R) of atomic coordinates R can be obtained by

reweighting through the following relation

PM(R, t) = P (R)eβ[V (s(R),t)−c(t)] (1.3)

where β = 1/(kBT ), kB is the Boltzmann constant, PM(R, t) are probability distribution

at time t in biased simulation, and the c(t) is given by the following equation:

c(t) =
1

β
log

∫
ds exp[ γ

γ−1
βV (s, t)]∫

ds exp[ 1
γ−1

βV (s, t)]
(1.4)

1.3.3 Infrequent metadynamics

More recently, a simple extension to well-tempered metadynamics was introduced

which allows recovering not just static free energies but also unbiased kinetic information
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from metadynamics. This protocol has been dubbed “infrequent metadynamics”. [41,

42] This method is based on hyperdynamics developed by Voter and Grubmüller [43,

44]. The key idea here is that as long as the bias deposition rate is infrequent enough

compared to barrier-crossing timescales, in principle we should be able to reweight the

biased timescales from well-tempered metadynamics directly to obtain unbiased kinetics

through a simple acceleration factor:

α(t) =
τ

τM
= ⟨eβV (s(t)))⟩b (1.5)

where τ is the unbiased transition time we seek to learn, β is the inverse temperature, and

τM is the biased transition time we actually observe in metadynamics. V (s(t)) is the net

bias deposited until time t deposited on order parameter (OP) or reaction coordinate (RC)

s. The subscript b means that the average is performed over the biased ensemble. The

central assumption in infrequent metadynamics is that the biasing variable does a good

job of timescale separation between time spent in the free energy basin and the time spent

during barrier crossing. Thus, the need to have a more accurate RC for biasing, that satis-

fies the criteria of Sec. 1.1.3 becomes even more significant for infrequent metadynamics

than in traditional metadynamics. For instance, as we will show in Chapter 2 section, in-

frequent metadynamics becomes more accurate if the biased variable includes all relevant

slow modes with long autocorrelation time, and any hidden modes not considered in the

biasing variable are as Markovian (or quickly decorrelating) as possible.
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1.4 Limitations of 1-d RC

A systematic approach to overcome timescale limitation and memory effect of rare

events is then to find optimal RCs, construct bias on this good RC, and perform metady-

namics. Biasing metadynamics is computationally expensive. Therefore, it is a common

practice to add bias on grid points when adding 2-dimensional bias although the grid

also produces its own problems. Adding bias of three or more dimensions is therefore

computationally too expensive to sample rare events. Due to the efficiency problems of

metadynamics, we often seek a 1-dimensional RC as the biasing variable. It can also be

imagined that infrequent metadynamics only works well for simple 1-dimensional RC.

However, 1-dimensional RC can be very misleading for capturing correct kinetic connec-

tivity. For example, in Fig. 1.2, the possibly best 1-dimensional RC we have shown not

only projects the system to a free energy profile with incorrect free energy barriers but also

displays incorrect connectivity between each state. If we look at such RC projection, we

could incorrectly conclude that there is no direct transition from state 1 to 3 or from state

2 to 4. In Chapter. 3, we will show that in some systems the kinetic distance calculation

gives incorrect kinetic connectivity if we calculate it on a 1-dimensional RC projection.

We will also show how we reproduce the connectivity by calculating the kinetic distance

with more RCs. Moreover, biasing along this RC will encourage or discourage unex-

pected pathways. As we have mentioned, it then becomes challenging to reweight kinetic

rates from infrequent metadynamics.

In actual complex molecular systems, such multiple pathways, multiple processes,

and complicated mechanisms can commonly exist. For example, Salvalaglio et al. have
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Figure 1.2: Misleading projection onto reaction coordinate (RC). Projecting 6-state
to a 1-dimensional RC can be misleading. For example, the direct transitions between
state 1 and 3 do not exist when projecting along the reaction coordinate. It is also hard to
preserve the heights of potential barriers between states.

shown a simulation result that when urea nucleates from aqueous solution, a two-step

nucleation mechanism is favorable [45]. In addition to simulations, Lee et al. have also

reported experimental observations of multiple pathways of KH2PO4 (KDP) nucleation

in aqueous solution [46]. For protein folding, Roca et al. have found both experimentally

and computationally that the RNA pseudoknot, consisting of two hairpins with differing

stabilities, can also fold by parallel pathways [47]. In such systems, it is then very hard

to construct a 1-dimensional RC which could distinguish mechanisms along different

pathways. For metadynamics, biasing just 1-dimensional RC can also produce physical

mechanisms that are unexpected, incorrect, or misleading. In addition, there are situations

where obtaining a good RC is simply impossible or not practical. For instance, in a

single-molecule force spectroscopy experiment, the coupling to the external probe could

induce memory when monitoring the protein motion with a reduced coordinate such as
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the extension [48]. Finally, even though we project the systems to a good RC, there could

still be memory effects coming from the ignored dimensions. This memory effect can

appear as the long-term dependency within time series, where the existing dimensionality

reduction techniques would simply fail, and we will really need to model the memory

with a more powerful theory. We will discuss how we model this memory in more detail

in Chapter. 4.

1.5 Outline of thesis

The rest of this dissertation is organized as follows:

• In Chapter 2, we revisit the classic problem of homogeneous nucleation of a

liquid droplet in a supersaturated vapor phase. We consider this at different extents of

the driving force, or equivalently the supersaturation, and calculate a reaction coordinate

(RC) for nucleation as the driving force is varied. The RC is constructed as a linear

combination of three order parameters, where one accounts for the number of liquid-like

atoms, and the other two for local density fluctuations. The RC is calculated from biased

and unbiased molecular dynamics (MD) simulations using SGOOP. Our key finding is

that as the supersaturation decreases, the RC ceases to simply be the number of liquid-like

atoms, and instead it becomes important to explicitly consider local density fluctuations

that correlate with shape and density variations in the nucleus. All three order parameters

are found to have similar barriers in their respective potentials of mean force, however,

as the supersaturation decreases the density fluctuations decorrelate slower and thus carry

longer memory. Thus at lower supersaturations density fluctuations are non-Markovian
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and cannot be simply ignored from the RC by virtue of being noise. Finally, we use this

optimized RC to calculate nucleation rates in the infrequent metadynamics framework,

and show it leads to more accurate estimate of the nucleation rate with four orders of

magnitude acceleration relative to unbiased MD.

• In Chapter 3, we propose a method that could be used to reconstruct intercon-

version time between two states in the systems with multiple pathways. As we have

discussed in Sec. 1.4, when the systems have multiple pathways, multiple processes, and

complicated polymorphism, projecting the dynamics onto a 1-dimensional RC can lead

to incorrect kinetic connectivity. To deal with this issue, in this work we develop a for-

malism that learns a multi-dimensional yet minimally complex reaction coordinate (RC)

for generic high-dimensional systems. When projected along this RC, all possible kineti-

cally relevant pathways can be demarcated and the true high-dimensional connectivity is

maintained. One of the defining attributes of our method lies in that it can work on long

unbiased simulations as well as biased simulations often needed for rare event systems.

We demonstrate the utility of the method by studying a range of model systems including

conformational transitions in a small peptide Ace-Ala3-Nme, where we show how two-

dimensional and three-dimensional reaction coordinate found by SGOOP can capture the

kinetics for 23 and all 28 out of the 28 dominant state-to-state transitions respectively.

• In Chapter 4, we will introduce one of the fundamental machine learning or ar-

tificial intelligence techniques called recurrent neural network (RNN). As we have also

discussed in Sec. 1.4, even though we project the system to a good RC, arbitrary memory

effect can still come into effect. Due to its recurrent structure, RNN then serves as a best

tool for modeling such arbitrary memory in the complex systems. Here we show that
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recurrent networks, specifically long short-term memory networks can also capture the

temporal evolution of chemical/biophysical trajectories. Our LSTM model learns a proba-

bilistic model of 1-dimensional stochastic trajectories generated from higher-dimensional

dynamics. The model not only captures Boltzmann statistics but also reproduces kinetics

across a spectrum of timescales. We demonstrate how training the long short-term mem-

ory network is equivalent to learning a path entropy, and that its embedding layer, instead

of representing contextual meaning of characters, here exhibits a nontrivial connectivity

between different metastable states in the underlying physical system. We demonstrate

our model’s reliability through different benchmark systems and a force spectroscopy

trajectory for multi-state riboswitch.

• In Chapter 5, we propose a method to incorporate known physics into RNN. Often

one wishes to supplement the experimentally observed dynamics with prior knowledge or

intuition about the system. While the recurrent nature of these networks allows them to

model arbitrarily long memories in the time series used in training, it makes it harder to

impose prior knowledge or intuition through generic constraints. In this work, we present

a path sampling approach based on principle of Maximum Caliber that allows us to in-

clude generic thermodynamic or kinetic constraints into recurrent neural networks. We

show the method here for LSTM network in the context of supplementing time series

collected from all-atom molecular dynamics. We demonstrate the power of the formal-

ism for different applications. Our method can be easily generalized to other generative

artificial intelligence models and to generic time series in different areas of physical and

social sciences, where one wishes to supplement limited data with intuition or theory

based corrections.
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Chapter 2: Liquid droplet nucleation of Lennard-Jones particles

2.1 Introduction

The nucleation of one phase from another is considered as the first step of several

phase transitions in chemical physics, with relevance to diverse and important problems

in science and technology [3–11]. Through experiments, simulations and theory, this

problem has been extensively studied over the decades [49]. In spite of so much attention

being lavished upon this problem, it continues to be a difficult challenge. For instance, at

experimentally accessible supersaturations, i.e., the ratio of the actual vapour pressure and

the equilibrium vapour pressure [50,51], the characteristic critical nucleus size is so small

that it becomes difficult to observe experimentally. The tens to hundreds of atoms size of

the nucleus thus makes it in principle ideal for probing through molecular dynamics (MD)

simulations. However, this is easier said than done due to the inherent rare event nature

of the problem, where one nucleation event can take seconds, hours or longer, making it

far beyond the microsecond timescale available through the fastest supercomputers. This

has led to the development of a plethora of sampling schemes that attempt to enhance the

process of nucleation in a controllable manner [38, 40, 52–57]. These various sampling

methods need the pre-determination of slow degree or degrees of freedom relevant to the

nucleation process being studied. This slow degree of freedom which is most informative
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of the underlying physics is referred to as the reaction coordinate (RC) [25, 26, 58]. In

sampling methods such as metadynamics [38, 39], where one gradually deposits a time-

dependent bias to escape free energy minimum, the need to know a reasonably good RC

beforehand is well-documented. In a different class of methods such as forward flux

sampling (FFS) [56, 57], recent work has started to highlight how FFS can benefit from

pre-knowledge of adequate slow order parameters or the RC [59]. Finally in methods such

as transition path sampling (TPS) [60, 61] and variants thereof [54, 55], this dependence

on pre-knowledge of RC is somewhat mitigated, but instead one becomes reliant on the

accuracy of the initial path used in the sampling. In any case, one can say with confidence

that any sampling scheme for the study of nucleation can only benefit from a prior sense

of an approximate RC for nucleation, with the degree of benefit varying from scheme to

scheme.

In this work, we consider what is arguably the simplest of nucleation problems,

namely that of the homogeneous nucleation of a liquid droplet in a supersaturated vapor

phase at different supersaturation levels [50]. The system is modeled using Lennard-

Jones interactions [50, 62]. Even in this simplest of problems, we find that the RC for

homogeneous nucleation deviates significantly from standard assumptions made so far

in theoretical and simulation approaches [62–64]. Our calculations of the RC are per-

formed using a spectral gap based optimization method “SGOOP”, originally proposed

by Tiwary and Berne [26, 31, 65, 66], for the automatic construction of RC from differ-

ent trial order parameters. We find that there exists a supersaturation dependent interplay

between size, density and shape of the nucleus. This interplay leads to a non-trivial RC

that goes far beyond a spherical, uniformly dense nucleus assumed in classical nucleation
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theory (CNT) [67–72]. While we define RC more rigorously in the main text, here we

summarize it as a low-dimensional variable permitting a Markovian description of the

underlying high-dimensional dynamics [25, 63, 73]. Our key finding is that as the super-

saturation decreases, the RC becomes composed of not just the number of atoms in the

largest liquid-like cluster, but it also becomes helpful to consider the spatial fluctuations

of the aforementioned quantity. These fluctuations display similar barriers as the num-

ber of liquid-like atoms, but have a longer autocorrelation time (or equivalently, slower

diffusion). This diffusion anisotropy becomes stronger as the supersaturation decreases.

In the spirit of works by Szabo, Peters, Hynes and others [25, 74–77], we find that the

RC itself starts to align with the direction of slowest diffusion or longest memory, given

that the free energy barriers in the directions of various individual order parameters are

similar. Finally, we use the optimized RC as a biasing variable in infrequent metadynam-

ics calculations [42], which allow recovering unbiased kinetic rate constants from biased

simulations. We find that considering this diffusion anisotropy adjusted RC in infrequent

metadynamics leads to more accurate estimates of the nucleation rate across different

supersaturations with orders of magnitude speed-up relative to unbiased MD.

This work demonstrates the potential of using methods such as SGOOP in unravel-

ing the subtle aspects of the RC in complex nucleation problems. Such a RC first of all

directly gives useful physical insight into the processes at play, but secondly, as we show

here it also serves as useful descriptor for performing enhanced sampling simulations

including metadynamics and beyond.
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2.2 Classical nucleation theory and its limitations

In order to motivate this work and the various order parameters we consider here,

we start with a brief description of CNT which has been a basic building block in the

study of nucleation. In CNT, the first liquid droplet formed in the vapor is treated as

spherical shaped and uniformly dense [67–72]. The nucleation process is then modeled

by balancing the surface tension penalty with chemical potential benefit [78]. This simple

theory, though it captures qualitatively how nucleation happens, however fails to quan-

tify the true nucleation rate in any practical sense. It is believed that CNT makes several

oversimplified assumptions especially incorrectly assuming that the cluster is spherical

and uniform [79, 80]. By using numerical and experimental tools, the lack of sphericity

and uniform density has indeed been documented in crystal nucleation and in nucleation

in more complex systems [81–85]. However such simulations and experiments are ex-

pensive, and it has been hard to quantitatively probe such effects even in the simple gas

system such as the one used in this work.

2.3 Theory and method

2.3.1 Order parameters

A popular order parameter that goes beyond the spherical nucleus approximation

of CNT was introduced by Frenkel and ten Wolde [86]. This order parameter n equals

the number of liquid-like atoms in the system in a way that it is still a continuous and

differentiable function [86] of atomic coordinates, a necessity for the biased simulations
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we perform later. In this definition, an atom is classified as liquid if it has more than

5 neighboring atoms. The number of the neighborhood atoms of the atom with label i,

or equivalently the coordination number ci, is calculated through the use of a switching

function as follows:

ci =
∑
j ̸=i

1− (rij/rc)
6

1− (rij/rc)12
(2.1)

where the summation is carried over all atoms j ̸= i. The distance rij between atoms

i and j needs to be less than a cut-off rc to be considered as neighbors. The number of

liquid phase atoms n is then calculated using a similar form with threshold value cl which

we take to be 5 here in spirit of Ref. [86]:

n =
N∑
i=1

1− (cl/ci)
6

1− (cl/ci)12
(2.2)

The above defined n thus captures the total number of liquid-like atoms in the sys-

tem [86]. It is however oblivious to details such as the density of the clusters in which

these atoms are present, if there are more than 1 clusters, the shape of these clusters

and other nuances. In order to consider these, we propose including the second and

third moments of the distribution of coordination numbers, defined as µ2
2 and µ3

3 respec-

tively [83, 87, 88]. These are explicitly calculated as:

µ2
2 =

1

N

N∑
i=1

(ci − c)2, µ3
3 =

1

N

N∑
i=1

(ci − c)3 (2.3)

where c is the average of the coordination number. In Fig. 2.1 we show a representative
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unbiased MD trajectory in (n, µ2
2) space where it can be seen that at roughly the critical

size of n = 30 different µ2
2 can represent clusters with strikingly different profiles in terms

of shape, density and compactness.

The distribution of the coordination numbers captures the variations in density of

the liquid phase and thus can be used to study the local properties of the liquid droplets.

Another nice feature of these moments is that they can easily be generalized for multi-

component systems to take into account the variation in density related to specific species

[81,84,89]. Our RC is then expressed as a linear combination of these three order param-

eters n, µ2
2 and µ3

3.

2.3.2 Nucleation rate

The process of nucleation is inherently stochastic in nature and satisfies the law

of rare events. In other words, different independent observations of nucleation should

give a distribution of nucleation times adhering to a Poisson process [90]. If we let P (t)

denote the survival probability of not observing any liquid droplets at and until time t, it

will satisfy the following relation valid for all Poisson processes:

P (t) = e−t/τ (2.4)

where τ is the characteristic time for the first nucleation event, the inverse of which

can be interpreted as the nucleation rate. In this work, we find the characteristic time by

performing multiple independent simulations starting from the system in gaseous state

with randomized velocities (other simulation details in Sec. 2.3.6), and collect the statis-
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Figure 2.1: Local density fluctuations of argon nuclei. Here we show an unbiased MD
trajectory in (n, µ2

2) space at supersaturation 11.43, for a 2 ns interval between 33 ns to 35
ns. The panels are the snapshots at similar n but different µ2

2, showing clearly how there
can be clusters with same n but otherwise very different properties including density an
compactness. For instance here, at higher µ2

2, the cluster is visibly more compact than the
one at lower µ2

2.

tics of transition times until the first nucleation event. The nucleation time is then obtained

by performing a Poisson fit to these independent observations following the protocol out-

lined in Ref. [62, 91].

2.3.3 Reaction coordinate

In order to quantify how these various order parameters n, µ2
2, and µ3

3 matter for the

process of nucleation, we intend to learn a RC χ as their linear combination. In addition

to quantifying exactly how much these order parameters matter for driving nucleation,
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this RC will also serve as a crucial input for biased simulations to be performed later in

this work. We first carefully define what exactly we mean by RC.

The RC for a given molecular system is traditionally defined as an abstract low-

dimensional coordinate that best captures progress along relevant reaction pathway. While

this intuitive notion can be formalized and quantified in several different ways, here we

use the definition of RC as follows. For a given multidimensional complex system un-

dergoing a certain dynamics, it is an optimal low-dimensional variable such that the

multidimensional dynamics of the full system in terms of movement between different

metastable states can be mapped into Markovian dynamics between various states viewed

as a function of the RC [25,92]. Thus an optimal RC is a low-dimensional mapping which

best satisfies (i) thermodynamic truthfulness: demarcating between the various relevant

metastable states present in the actual high-dimensional system, (ii) kinetic truthfulness:

preserving pathways for moving between these different states, and (iii) timescale sepa-

ration: displaying a clean-cut separation of timescales between the relaxation times in the

various metastable states, and the time spent in the actual event of crossing from one state

to another.

2.3.4 SGOOP

To find such a RC, here we use the method “Spectral gap optimization of order

parameters (SGOOP)” which we have briefly introduced in Sec. 1.2.2. This method uses

the principle of maximum caliber (“MaxCal”), which is similar to path entropy [93–96],

to construct a transition probability matrix along any candidate RC, and then calculates
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its eigenvalues λ0 = 1 > λ1 ≥ λ2 ≥ ... ≥ 0. Here λ0 = 1 corresponds to stationary state,

while the other eigenvalues carry information about the timescales of various dynamical

processes and all have to be real due to detailed balance. The best RC will then produce a

transition matrixK with a maximal timescale separation between visible slow and hidden

fast processes. This timescale separation, also known as spectral gap, is quantified as the

difference λn−λn+1, where n is the number of discernible energy wells along the putative

RC. SGOOP needs two key inputs: (i) an estimate of the stationary probability density

π along any putative RC, and (ii) some dynamical observables or constraints. With these

inputs, the SGOOP transition matrix K can be formulated as follows:

Kmn = Λ

√
πn
πm

(2.5)

where πm is the stationary probability along any putative, spatially-discretized RC χ with

m denoting the grid index, and Λ is a dynamical observable we will revisit shortly. Kmn

gives the rate for moving from grid m to grid n in a small time interval. The input (i),

namely the stationary density π can come from unbiased MD at high enough supersatu-

rations, or if the supersaturation is too low to permit unbiased MD, it can come through

the use of preliminary metadynamics along a trial RC, followed by reweighting [41]. For

input (ii), namely calculation of the dynamic observable needed to constrain the maxi-

mum caliber estimate of rate matrix, we run short unbiased MD runs which calculate the

mean number of nearest neighbor transitions ⟨N⟩ along any putative RC. It is then easy
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to show [97] that the dynamical observable Λ in Eq. 2.5 is given by

Λ =
⟨N⟩

√
πmπn

(2.6)

where

⟨N⟩ =
∑
(m,n)

∀|m−n|=1

πmKmn

Equivalently [97], if one was to completely by-pass the MaxCal framework, a very sim-

ilar equation as Eq. 2.5 can be derived by comparing a master equation along χ with a

discretized Smoluchowski equation along the same. [98] Then the prefactor Λ becomes:

Λ =
Dχ

2d2
(2.7)

where Dχ is the position-dependent diffusivity along the coordinate χ and d is the grid

spacing along χ.

Eqs. 2.5–2.7 collectively show that the rate matrix K, hence the spectral gap, and

consequently the optimized RC, depend not just on the free energy barriers that would

be encapsulated in the stationary density π, or equivalently in the associated free energy,

but that the dynamics of the system as captured in the diffusivity of the various order

parameters can also play a significant role in the RC. As we will show later in Sec. 2.4,

we find this to be a very important point in the context of liquid droplet nucleation.
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WTmetaD parameters

Label S L (nm) h (kJ/mol) ωn ωχ ∆t (ps) γ

S1 13.65 9.9 0.01 0.5 0.08 25 5

S2 12.80 10.1 0.05 0.5 0.08 25 8

S3 11.43 10.5 0.2 0.5 0.08 25 8

S4 9.87 11.0 0.2 0.5 0.08 25 8

S5 9.04 11.3 0.2 0.5 0.08 25 8

Table 2.1: Metadynamics parameters used at different supersaturation levels. The
metadynamics parameters used at different supersaturation levels: S represents the su-
persaturation level, L is the size of simulation cubic box which we used to control the
supersaturation. Gaussian bias kernels of starting height h and width ω were added every
∆t, which was kept same for metadynamics irrespective of free energy or kinetics calcu-
lation. γ is the bias factor for well-tempered metadynamics [39].

2.3.5 Metadynamics

For high enough supersaturation such as S1, S2, S3 in Table. 2.1, we can perform

unbiased simulations directly in reasonable computer time, both for the calculation of

nucleation kinetics and for feeding stationary density into SGOOP for constructing the

RC. However, for lower supersaturations we need to apply enhanced sampling methods

since nucleation becomes a rare event. In this work, we use well-tempered metadynamics

[38,39] along a trial RC to obtain preliminary stationary density estimates, and infrequent

metadynamics [41, 42] to calculate the kinetics of nucleation.

The different parameters of the Gaussian bias are listed in Table. 2.1 in which h is

the starting height, ω is the width, ∆t is the deposition interval, and γ is the bias factor.

The final output of a traditional metadynamics run is the free energy along the variable s

or along any other degree of freedom which can be expressed as function of the atomic

coordinates of the system.
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As we mentioned in Chapter. 1, we will calculate nucleation rate using “infrequent

metadynamics” [41, 42]. It assumes that the bias deposition rate is infrequent enough

compared to barrier-crossing timescales, allowing us to be able to reweight the biased

timescales from well-tempered metadynamics to obtain unbiased timescales through the

acceleration factor:

α(t) =
τ

τM
= ⟨eβV (s(t))⟩b (2.8)

where τ is the unbiased transition time we seek to learn, β is the inverse temperature, and

τM is the biased transition time we actually observe in metadynamics. V (t) is the net bias

deposited until time t, where the bias is constructed as a Gaussian function of RC s. The

central assumption in infrequent metadynamics is that the biasing variable does a good

job of timescale separation between time spent in the free energy basin and the time spent

during barrier crossing. Thus the need to have a more accurate RC for biasing, that satis-

fies the criteria of Sec. 2.3.3 becomes even more significant for infrequent metadynamics

than in traditional metadynamics. For instance, as we will show in the Results section,

infrequent metadynamics becomes more accurate if the biased variable includes all rel-

evant slow modes with long autocorrelation time, and any hidden modes not considered

in the biasing variable are as markovian (or quickly decorrelating) as possible. Here we

learn such a 1-dimensional RC χ as a linear combination of our order parameters. Our

bias potential then becomes V (χ, t) = V (w1n + w2µ
2
2 + w3µ

3
3, t). The weights of the

different order parameters (w1, w2, w3), are determined with SGOOP [99].
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2.3.6 Model set-up and simulation details

The simulations were performed under the constant number, volume, temperature

(NVT) ensemble with N=512 argon atoms and average temperature fixed at 80.7 K. Al-

though the isochoric condition allows us to compare our results with previous simulation

works [51], it should be mentioned that this is different from most actual experiments

which are performed under isobaric conditions. The volume of the simulation box was

set in order to correspond to desired supersaturation levels S detailed in Table. 2.1. The

supersaturation is computed as the ratio of the actual vapour pressure p and the equilib-

rium vapour pressure pe. The actual vapour pressure was calculated through the ther-

modynamic relation p = 2E/3V , where E is the kinetic energy of the system, while the

equilibrium vapour pressure of argon at our range of supersaturation levels is equal to 0.43

bar [50, 62]. In order to compare our results with unbiased nucleation rates in Ref. [50],

our cubic box size ranged from 9.5 nm to 11.5 nm. The interaction between atoms were

modeled through a Lennard-Jones potential with ϵ = 0.99797 kJ/mol and σ = 0.3405

nm [50]. The potential was truncated with cutoff at 6.75 σ. The velocity rescale thermo-

stat with time constant of 0.1 ps was used to do temperature coupling. [100] All simu-

lations were performed using GROMACS version 2016.5 [101] patched with PLUMED

version 2.4.2 [102].
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2.4 Results

2.4.1 RC predicted from SGOOP

We first describe the RC, as introduced and defined in Sec. 2.3.3, that we identify

for the condensation of a liquid droplet across different supersaturation values. To learn

this RC we have used SGOOP [26,65], with the stationary probability density π estimated

through unbiased MD at high supersaturations S1, S2 and preliminary metadynamics [39]

at low supersaturations S4, S4, S5. The preliminary metadynamics runs were performed

biasing n. All runs were complemented with short unbiased MD runs (50 ns) for obtaining

dynamical constraints for MaxCal. For every supersaturation, SGOOP is initiated from a

given choice of trials weights (w1, w2, w3) for the RC χ expressed as χ = w1n+ w2µ
2
2 +

w3µ
3
3.

A key question that immediately arises is whether at any given supersaturation

S there is a unique RC, or if there are multiple possible combinations of the weights

(w1, w2, w3) which meet equally well the criteria for an optimal RC described in Sec. 2.3.3.

Yet another question which we ask and answer is how transferable is the RC learnt at one

supersaturation S across different values of S. To answer the first question, we perform

several exhaustive SGOOP trials to estimate the optimized RC, first in the 2-d (n, µ2
2)

space where we do an explicit grid based search over the full space, and then in the 3-d

(n, µ2
2, µ

3
3) space where we start SGOOP from different initial weights. In the latter case,

the optimization over weights in SGOOP is performed using a basin hopping algorithm

which is a global search algorithm with several stochastic jumps aiding the system from
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not getting trapped in local minima.

Figure 2.2: The spectral gaps of the optimized reaction coordinates used in argon
simulations. (a) The spectral gap (sgap) (blue asterisks, left axis) and dynamical pref-
actor Λ (red circles, right axis) of SGOOP transition rate (Eq. 2.5) along different RC
χ ≡ cos(θ)n + sin(θ)µ2

2. Both the maximal spectral gap and minimum Λ take place at
θ = 0.5π. (b) Mean spectral gap ratio at five different supersaturation levels S1–S5: For
each supersaturation, we averaged the spectral gap ratios calculated from 20 independent
biased runs, and the error bars represent the standard error from the averaged results.

In the 2-d χ = w1n+w2µ
2
2 optimization, we do an explicit search among all possible

RCs by rotating the putative RC χ ≡ cos(θ)n + sin(θ)µ2
2 in the (n, µ2

2) space. Here as

shown in Fig. 2.2(a) for S = 11.43, we find that the spectral gap profile has a sharp peak

when the RC is almost exclusively comprised of µ2
2, i.e. θ ≈ π/2 and µ2

2 has around 8
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times higher weight in the RC than n. Such a µ2
2–heavy RC is obtained irrespective of

any S value, showing unequivocally that the second moment µ2
2 plays a more important

role in the RC than n itself. Fig. 2.2(a) also shows the variation of the kinetic pre-factor

Λ of Eq. 2.5 with RC choice, and we will revisit this profile in Sec. 2.4.2. Next, we

perform optimization in the full 3-d (n, µ2
2, µ

3
3) space. Here we find that there are many

combinations (w1, w2, w3) with similarly enhanced spectral gaps relative to the traditional

choice of χ = n, but with a common theme that the second moment and the third moment

consistently show up in the optimized RC.

Thus to summarize so far: (a) RC optimization in (n, µ2
2) leads to RC predominantly

comprised of µ2
2, (b) RC optimization in (n, µ2

2, µ
3
3) leads to a RC invariably with weights

for all 3 variables, but with multiple local maxima in the spectral gap profile. In other

words, the RC is quite degenerate, but considering µ2
2 and µ3

3 in the RC is important for

a more accurate description of the nucleation process. In Fig. 2.3 we also show results

from a full grid search over spectral gaps in the (w1, w2, w3) space at at S = 11.43 further

illustrating the findings from SGOOP. Here among the first few largest local maxima from

3 different trajectories, we picked (w1, w2, w3) = (0.15, 0.65,−0.15) for use in further

calculations across all supersaturations S. In Fig. 2.2 (b), we plot the ratio between the

spectral gap along RC = 0.15n + 0.65µ2
2 − 0.15µ3

3 and that along RC = n at different S.

As can be seen there, at all S values the optimized RC gives higher spectral gaps than just

n, and the improvement increases sharply with decreased supersaturation. That is, as the

supersaturation decreases the importance of consider shape and density fluctuations in the

nuclei become more and more important, which is one of the central findings of this paper.

Furthermore, the optimized RC learnt at one supersaturation gives improved spectral gaps
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Figure 2.3: The contour plot of brute force search of spectral gap values. Spectral
gap values evaluated given RC χ = w1n + w2µ

2
2 + w3µ

3
3 in the space of weights w1, w2,

and w3: (a) The contour plot of spectral gaps as a function of (w1, w2) with w3 = 0. (b)
The contour plot of spectral gaps as a function of (w2, w3) with n = 0.05. The spectral
gaps were computed using biased trajectory at supersaturation S = 11.43. The colorbar
in each figure represents the spectral gap values.

at other supersaturations, and hence the RC is transferable across supersaturations. Thus

in Sec. 2.4.3 we use the RC χ = 0.15n + 0.65µ2
2 − 0.15µ3

3 at all supersaturations for

enhanced sampling based calculations of the nucleation rate.
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2.4.2 Understanding the RC

SGOOP optimizes the RC by finding a low-dimensional projection with highest

gap between slow and fast processes. In most cases this amounts to selecting a projection

with the highest barrier separating the metastable states. To understand if the RC learnt in

Sec. 2.4.1 can be attributed to simply barriers in the free energy profile, or if dynamical

concerns such as the prefactor Λ in Eqs. 2.5–2.7 play a role, we construct free energies

along various 1-d and 2-d components (totaling 6 combinations) of (n, µ2
2, µ

3
3). These

free energies were obtained by running metadynamics with same parameters defined in

Table. 2.1 and bias potentials added along n. We then averaged over 10 independent

metadynamics runs with each trajectory reweighted using the free estimator described in

Ref. [41].

From the various 1-d and 2-d free energy profiles shown in Fig. 2.4 (a)-(f) for S =

11.43, it is hard to distinguish between the importance of the various order parameters n,

µ2
2,and µ3

3. The 2-d profiles show that starting from the gas phase (red stars in Fig. 2.4

(a)-(c)), all three order parameters change in a very correlated manner until the barrier

is reached and nucleation is essentially complete (n >100). The 1-d free energies along

the three order parameters (Fig. 2.4 (d)-(f)) show that the free energy barrier that needs

to be overcome is also very similar for each of the 3 order parameters, though there are

some systematic differences which we revisit shortly in Fig. 2.4 (g)-(i). Comparing the

1-d free energy along µ3
3 (Fig. 2.4 (f)) with the corresponding 2-d free energies (Fig. 2.4

(b)-(c)), we can see that unlike n and µ2
2, the 1-d projection along µ3

3 does a very poor

job of describing the pathway in higher dimension space, further justifying our choice
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Figure 2.4: The free energy plots obtained from well-tempered metadynamics. The
free energy plots obtained from well-tempered metadynamics biasing along n: The top
three panels are the 2-d free energy surfaces of (a) (n, µ2

2), (b) (µ2, µ3
3), and (c) (n,µ3) at

supersaturation S3. The starting gaseous state corresponding to each plot is shown with a
red star. The middle three panels show the 1-d free energy curves along (d) n, (e) µ2

2, and
(f) µ3

3 respectively. The profiles and the errorbars are calculated from the averages over 10
independent metadynamics runs at supersaturation S = 11.43. The bottom three panels
display the 1-d free energy curves from (g) S=11.43, (h) S=9.87, and (i) S=9.04. In each
panel, we show the profile averaged over 10 independent metadynamics runs along n,
χ, and µ2

2. The regions between errorbars are filled. The corresponding energy barriers
∆E(RC) along three different putative RCs are also shown. It can be seen that as S
decreases the barrier difference decreases. All energies are in units of kJ/mol.

of RC χ in the previous section with higher weight for µ2
2 than for µ3

3. In Fig. 2.4 (g)-

(i), we show the free energies along three different RC choices, namely n, µ2
2 and the

optimized χ = 0.15n+ 0.65µ2
2 − 0.15µ3

3, for three different S values. As S is decreased,
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invariably there is a small but consistent improvement in the barrier height when viewed

as function of χ or µ2
2, relative to when viewed as function of n. However, firstly this

difference is very small (0.25 kJ or 0.1 kBT ), and secondly, it appears to get even smaller

with decreasing S (Fig. 2.4 (g)-(i), left to right). Thus, the free energy barrier can not be

used to explain the behavior of spectral gap versus supersaturation shown in Fig. 2.2 (b).

Here we showed that at all supersaturation levels we considered, the spectral gaps of the

optimized RC are better than of n. It was also pointed out that as supersaturation decreases

the spectral gap improvement increases. This tells us that the optimized RC works better

at lower supersaturation, which is inconsistent with the change in free energy barriers

along different order parameters with supersaturation.

Our next step is therefore explaining why SGOOP finds that µ2
2 has a role to play

in χ, and why the advantage in considering µ2
2 increases with decreasing supersaturation

S. In Fig. 2.2(a), we provided a profile of how the prefactor Λ varied with the RC choice

and correspondingly with the spectral gap. It can be seen there that the prefactor Λ has

a strong inverse correlation with the spectral gap of χ – the maximum spectral gap coin-

cides with minimum Λ. Thus the minuscule increase in barrier height with varying RC

is compensated by the slowness of the dynamics along the RC, as captured by Λ or the

average number of first neighbor transitions in a unit time.

To gain further insight into this, we calculated time-autocorrelation functions along

our three different order parameters (see Fig. 2.5) as higher autocorrelation time repre-

sents slower diffusivity. Our calculations show that µ2
2 and µ3

3 have longer autocorrelation

times than n, and therefore lose memory slower than n [63,64]. Furthermore, the increase

in autocorrelation times of the two order parameters µ2
2 and µ3

3 relative to n becomes more
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Figure 2.5: The mean autocorrelation times of different order parameters. The mean
autocorrelation times of the order parameters n (blue circles), µ2

2 (orange triangles), and
µ3
3 (green squares) calculated from unbiased MD simulations at five different supersatu-

ration levels S1–S5. At each supersaturation level, the calculations from 10 independent
runs are averaged. The error bars show the standard error of the averaged results.

and more pronounced as the supersaturation S decreases (Fig. 2.5). This is in striking

contrast to Fig. 2.4, where we found an opposite trend looking at the free energy barriers

along these order parameters.

We therefore conclude this section with the observation that anisotropic diffusion

in the space of order parameters becomes an important factor in determining the RC

especially at lower supersaturation levels. The longer autocorrelation times are linked

to less Markovian behavior, which means µ2
2 and µ3

3 carry longer memory than n [63,

64]. Coupled with the finding that all three order parameters have similar barriers in

their respective potential of mean force, this means that change in nuclei characteristics

such as shape and density become slower as supersaturation S decreases, and it becomes

important to explicitly consider this in the construction of a Markovian RC.
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Here we would also like to highlight past work by Peters [77] which applied a

theoretical model to the study of the interplay between concentration fluctuations and

nucleation processes in multicomponent systems. While that work did not compute rates,

as we do in the next section here, and also made stringent assumptions such as a radially

symmetric concentration profile, our key findings here are similar to theirs. Namely,

that in this work, shape variations can drive or inhibit a nucleus from going into the

second phase, while in their case [77], certain types of concentration profiles can drive a

classically pre-critical nucleus over the nucleation barrier.

2.4.3 Nucleation kinetics

Now that we have identified an optimized RC χ = 0.15n + 0.65µ2
2 − 0.15µ3

3 with

improved spectral gap relative to the Frenkel-ten Wolde parameter n, we perform two sets

of enhanced sampling simulations (specifically, infrequent metadynamics) using n and χ

as biasing variable respectively. We use Eq. 2.8 to reconstruct the unbiased timescale

estimates from these biased runs. At high enough supersaturations we are able to run

unbiased MD as well and together with the results of Reguera et al [50] these constitute

a valuable set of results to benchmark our findings against. At each supersaturation level,

we launched 40 independent metadynamics runs with 20 of them biasing n and the other

20 biasing the optimized RC χ. For each independent run, in order to be able to compare

our results with previously published work [50, 62] we defined the nucleation event as

when the number of liquid-like atoms n reaches 30 for the first time. Every independent

observation of such an event in terms of its metadynamics time was scaled by the accel-
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S RC τN(s) [p− value] J(1/cm3/s) α

S1

n 4.16± 0.45× 10−9 [0.17] 2.48± 0.27× 1026 1.1

χ 4.56± 0.31× 10−9 [0.67] 2.26± 0.15× 1026 1.1

S2

n 8.66± 0.85× 10−9 [0.47] 1.12± 0.11× 1026 2.0

χ 7.88± 0.51× 10−9 [0.37] 1.23± 0.08× 1026 1.6

S3

n 1.00± 0.15× 10−7 [0.87] 8.64± 1.30× 1024 4.0× 101

χ 0.47± 0.07× 10−7 [0.35] 1.84± 0.27× 1025 6.4× 101

S4

n 1.26± 0.27× 10−6 [0.64] 5.96± 1.28× 1023 3.7× 102

χ 0.69± 0.12× 10−6 [0.80] 1.09± 0.19× 1024 1.1× 103

S5

n 1.58± 0.19× 10−5 [0.59] 4.32± 0.52× 1022 5.7× 103

χ 0.62± 0.15× 10−5 [0.13] 1.10± 0.27× 1023 7.8× 103

Table 2.2: Characteristic nucleation times, nucleation rates, and the corresponding
mean acceleration factors of different RCs at different supersaturation levels. The
table shows the characteristic nucleation times τN by fitting Eq. 2.4 and the corresponding
nucleation rates J . Results are shown as obtained from the simulations biasing along n as
well as biasing along the optimized RC χ. The labels corresponds to the supersaturation
levels denoted in Table. 2.1. α is the mean acceleration factor for every set of simulations.
For the fitted characteristic nucleation times τN we have also provided in square brackets
the corresponding p-value of the fit when used in Kolmogorov-Smirnov test of Ref. [91].

eration factor (Eq. 2.8) to obtain an unbiased observation of the nucleation time. With

these 20 independent estimates of the nucleation time, we can compute the characteristic

time (Eq. 2.4) of observing the first nucleation event τN by fitting a Poisson distribution

to the statistics, where τN is the expected value of the fitted Poisson distribution. The

corresponding nucleation rates are then calculated through the formula J = 1/(τNV ) and

J = 1/(tNV ) where V is the volume of system. The results are shown in Table. 2.2 and

in Fig. 2.6.

We find that the use of n as a biasing variable in infrequent metadynamics does a

remarkably decent job of obtaining nucleation rates (in agreement with the findings of

Ref. [62]) even with very significant acceleration factors or computational boost relative

to unbiased MD. There is nonetheless further improvement of up to three times that can
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Figure 2.6: The nucleation rates obtained from infrequent metadynamics at differ-
ent supersaturation levels. The nucleation rates calculated from the Poisson fits of
reweighted nucleation times obtained from infrequent metadynamics biasing along n and
χ (green squares and red circles respectively). The values and their associated error bars
are listed in Table. 2.2. We also compare our results with previous works from Ref. [50]
and Ref. [62] (blue triangles and red diamonds respectively).

be obtained in the quality of the nucleation rate if the optimized RC is used instead of

n, especially as the supersaturation is decreased. In a field where errors can be as high

as twenty six orders of magnitude [80], improvement of three times seems minuscule,

reflecting that n is after all not that bad of a biasing variable for infrequent metadynam-

ics. Yet, even though the improvement is relatively small compared to the usual standards

in nucleation kinetics, it is systematic, robust and indicative of possible usefulness when

employed in more complex systems with different competing variables, including but not

limited to composition fluctuations [77]. As can be seen from Table. 2.2, the acceleration

factor in metadynamics relative to unbiased MD increases steadily as S decreases, reach-

ing almost four orders of magnitude at the lowest S. All reweighted nucleation times,

irrespective of whether they came from biasing n or biasing χ give p-values above the
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recommended cut-off in the Kolmogorov-Smirnov test from Ref. [91]. At S = 11.43, the

use of χ as biasing variable instead of n leads to much better agreement with the unbiased

estimate of Reguera et al [50], as can be seen in Fig. 2.6. In general, the characteristic

times for nucleation from runs biasing the RC χ are significantly lower than that those

from biasing n, and roughly speaking this difference increases as S decreases. In addi-

tion to the explicit agreement with unbiased estimate of Reguera et al [50] at S = 11.43,

the lower characteristic time (with similar p-values) can be seen as further evidence of the

benefit of biasing χ instead of n. This is because in metadynamics the presence of miss-

ing slow degrees of freedom from explicit consideration in the biasing variable typically

leads to hysteresis during free energy calculations, or overestimate of the accelerated time

through Eq. 2.8, as pointed out in Ref. [91] and Ref. [103].

2.5 Conclusion

In this work, we used new tools [26, 42] to revisit a classic problem in nucleation,

namely that of the formation of liquid droplet from gaseous precursor as a function of

varying driving force for nucleation, namely supersaturation. Our interest was in (a) con-

structing a Markovian reaction coordinate (RC) for this process, and (b) testing if there

is any gain to be had through the use of a more Markovian RC in enhanced sampling

calculations of nucleation kinetics. To answer these questions especially at low supersat-

urations where access to unbiased trajectories of nucleation is difficult (needed by many

other RC optimization methods such as Ref. [104] and Ref. [105]), we use the spectral gap

optimization method from Ref. [26] to construct optimized RC from input biased simula-
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tions. Our calculations demonstrate unequivocally that it is not sufficient to consider only

the typical order parameter used to describe nucleation, namely the number of liquid like

atoms in the system. By considering further variables that account for heterogeneity in

the system, such as higher moments µ2
2 and third moment µ3

3 of the distribution of coordi-

nation numbers, we could obtain a much more Markovian RC. Interestingly these various

order parameters have nearly identical free energy barriers, and they differ primarily only

in associated diffusivities. The importance of these variables further increases with de-

creasing supersaturation as their associated autocorrelation time increases sharply. In

other words, shape and density fluctuations in the nucleating clusters cease to stay rapidly

equilibrating variables which can be entirely ignored from a Markovian low-dimensional

description of nucleation. We conclude that diffusion anisotropy plays a more important

role at lower S, which is supported by our analysis of autocorrelation functions and auto-

correlation times. While previous work has demonstrated how infrequent metadynamics

can predict nucleation time with only n as the RC, we show in this work that the predic-

tion of nucleation time can be further improved by biasing along an optimized RC. It will

be interesting to see if the use of such a more Markovian RC makes improvement in the

reliability and efficiency of other enhanced sampling methods such as forward flux sam-

pling. One additional important comment we would like to make here is that while the

RC was found to be increasingly more complex as the supersaturation was brought down,

there is no guarantee that this trend will continue monotonically as the supersaturation is

further decreased. Indeed, in a general setting the rate k for an activated process depends

on the diffusivity D only in the pre-exponential but on the free energy barrier ∆G in the

exponentiated term, i.e. k = De−β∆G. As the supersaturation decreases, we expect at
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some point the increase in nucleation barrier will be so significant that any manifestations

of diffusion anisotropy will be washed out, and classical nucleation theory will again start

to take hold as has been pointed out for instance by Binder. [106] Our supersaturation

values in this work however did not reach this regime.

Finally, it should be mentioned that in this calculation we didn’t consider effects

due to the finite size of the system, which can be done using the method proposed in

Ref. [62], but was not the main objective here. We realize that our findings here might

simply be a finite size effect, resulting from the coupling between fluctuations in the den-

sity of the parent phase and fluctuations in the size of the growing nucleus of the product

phase, which are inherently coupled due to the overall material balance in the simulation

box. To check whether our findings might indeed be valid in the thermodynamic limit,

in future work we will explore these simulations at different box sizes and with different

supersaturation levels. Similarly our findings might change with constant number, pres-

sure and temperature (NPT) simulations. The present work can be redone taking these

important nuances into account. Finally, strictly speaking ours was a model system with

model parameters. This work is a proof of principle that ideas such as SGOOP for RC

optimization are potentially useful for study of nucleation through enhanced sampling or

otherwise. In future we will be extending this work to systems such as crystal nucleation,

multiple polymorphs, systems with multiple pathways or multiple species, where there

will be even more order parameters to be considered. All of these continue to be very

difficult yet important problems for understanding nucleation pathways and rates, and we

are hopeful our tools will allow us and others to systematically study these.

In the next chapter, we will further discuss the systems where 1-dimensional RC
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is simply not sufficient to reproduce correct kinetic connectivity. In such systems, using

infrequent metadynamics to reproduce all pathways is not possible. We will first discuss

existing methods that have been developed to solve this problem and their limitations in

studying rare events. We will then introduce our recently developed methods which could

be used to improve the existing methods and applied to reconstruct rare event kinetics.
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Chapter 3: SGOOP-based kinetic distance

3.1 Introduction

It has been a problem of longstanding theoretical and practical interest to model

reaction pathways and transition mechanisms in generic chemical and biological systems

[2, 14, 46, 47, 107–110]. Due to recent progress in high-performance computing, brute-

force Molecular Dynamics (MD) simulations with all-atom resolution have enabled a

possible way to do such analysis in femtosecond temporal and all-atom spatial precision,

making it a useful tool for studying diverse phenomena. However, this leads to a deluge

of data resulting from explicit enumeration of all atomic coordinates over a very large

number of MD timesteps. To make sense of such high-dimensional trajectories resulting

from MD, it is a common practice to project them along low-dimensional coordinates

identified with one of many dimensionality reduction schemes [111–114]. However, more

often than not in such schemes, one ends up losing the kinetic connectivity of the high-

dimensional landscape. This can thus lead to incorrect interpretation of MD trajectories,

for example making molecular conformations appear closer to each other than they are

and obfuscating interconversion pathways between them [115].

In this work, we develop a formalism that learns a multi-dimensional yet minimally

complex reaction coordinate (RC), such that when projected along this RC, all possible ki-

44



netically relevant pathways can be demarcated and the true high-dimensional connectivity

is maintained. The central idea is to calculate the interconversion times between differ-

ent pairs of metastable states, which can be defined a priori or learned on-the-fly [116],

and monitor how these distances change by adding additional dimensions to the RC. The

procedure is stopped when the interconversion times do not vary with additional RC com-

ponents. The interconversion times are calculated using the commute distance framework

proposed by Noé, Clementi, and co-workers [117,118]. While such a kinetic or commute

distance-based procedure is indeed already recommended best practice in the construction

of Markov State Models (MSMs) [34], it is not directly amenable to rare event systems

that might be undersampled, or accessible only through biased simulations.

To deal with this issue, in this work we combine the commute distance [117, 118]

with the Maximum Caliber based “Spectral Gap Optimization of Order Parameters (SGOOP)”

approach [99]. This amounts to inducing a distance metric, which we call “SGOOP-d”

that preserves kinetic truthfulness, and can be calculated from long unbiased simulations

as well as biased simulations. Such biased simulations are often unavoidable in the study

of rare events in chemical and biological physics. Here we use metadynamics [119] as an

example of the biasing method to illustrate the usefulness of SGOOP-d while anticipating

that the method directly applies to other biasing protocols as well [120]. We demonstrate

the utility of the method by studying a range of model systems including conformational

transitions in a small peptide Ace-Ala3-Nme. In this system, for instance, one has a to-

tal of at least 28 inter-state transitions. As we show here, with only two component-RC

learned from SGOOP-d we do accurately capture most of the 28 pairs of distances, with

minimal improvement achieved by adding a 3rd component to the RC. Similar results are
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Select a set of order parameters
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Figure 3.1: Illustration of the calculation of the m-th RC component found by
SGOOP-d. This flowchart describes the calculation of the m-th RC component
χ(m),m ≥ 1 through multi-dimensional spectral gap optimization. For each m we calcu-
late d(m) in Eq. 3.17, which represents the contribution to commute distance on the basis
of this m-th component. The optimal RC χ(m) will be fed to the next SGOOP calculation
for finding d(m+1). This iteration will stop when we obtain convergence in state-to-state
d2comm values with addition of RC components. The commute distance d2comm will be the
sum of all the d(m) obtained in the iteration.

obtained on the basis of input trajectories coming from metadynamics simulations biased

along pre-selected biasing variables. Open-source software detailing the method has also

been released.
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3.2 Theory

3.2.1 Commute Distance and Commute Map

Our work builds upon the powerful advances first introduced by Noé, Clementi, and

co-workers that allow quantifying a kinetically truthful distance metric between generic

molecular configurations [117,118]. One such notion of “kinetic distance” was introduced

in Ref. [117], which was then generalized in Ref. [118] as the “commute distance”. Both

of these distances amount to transformations of the input coordinate space into a new

space wherein Euclidean distances directly correspond to interconversion times. Here we

summarize the basic ideas which originated from diffusion maps [121,122] but were later

generalized to Markovian dynamics [117, 118].

We consider a generic dynamical system undergoing Markovian dynamics in a

finite-dimensional state space Ω. The local density ρt(x), ∀x ∈ Ω can be propagated

in time t through

ρt+τ (y) =

∫
x∈Ω

ρt(x)pτ (y|x)dx ≡ P ◦ ρt(x) (3.1)

where pτ (y|x) is the transition density of finding the system at state y at time t+ τ given

that we have started it at state x at time t. Equivalently, Eq. 3.1 defines a Markov operator

P and describes how an initial distribution ρt(x) at time t propagates to the distribution

ρt+τ (y) at a later time t+ τ . One usual assumption made here is that there exists a unique
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equilibrium distribution π(x) which satisfies

π(x) = P ◦ π(x) (3.2)

At the same time, we can write an equivalent equation for the weighted density νt(x) =

ρt(x)/π(x)

π(y)νt+τ (y) =

∫
pτ (y|x)π(x)νt(x)dx = T ◦ νt(x) (3.3)

where T is the corresponding backward operator, also called the transfer operator. With

this formalism, following the literature on diffusion maps [122] one defines a distance

measure D2
τ (x1,x2) between two points x1,x2 in the state space of a random walk as

D2
τ (x1,x2) =

∫
y∈Ω

|pτ (y|x1)− pτ (y|x2)|2

π(y)
dy (3.4)

This definition can be seen [122] as equivalent to (a) preparing two ensembles initially

located at x1 and x2, (b) letting them evolve by a lag time τ , and then (c) computing

the difference between the subsequently resulting probability distributions. In order to

make use of Eq. 3.4, one needs the transition density pτ (y|x). To facilitate its computa-

tion [117], we assume that the transfer operator T has N discrete eigenpairs and assume

reversible dynamics/detailed balance π(x)pτ (y|x) = π(y)pτ (x|y):

pτ (y|x) =
N−1∑
j=0

λj(τ)ψj(x)π(y)ψj(y) (3.5)
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where λj and ψj are the corresponding eigenvalues and eigenvectors of the transfer oper-

ator T . With the orthonormality condition
∫
π(y)ψj(y)ψk(y)dy = δjk, applying Eq. 3.5

to Eq. 3.4 directly leads to:

D2
τ (x1,x2) =

N−1∑
j=1

(λjψj(x1)− λjψj(x2))
2 (3.6)

In Eq. 3.6 the summation starts at j = 1 since the j = 0 eigenvector for the transfer

operator T is a constant in x−space. By further integrating out the lag time τ in Eq. 3.6,

we can make Eq. 3.6 insensitive to the choice of the lag time, and in this way we arrive at

the definition of the commute distance d2comm:

d2comm(x1,x2) =

∫ ∞

0

D2
τ (x1,x2)dτ

=
N−1∑
j=1

(√
tj
2
ψj(x1)−

√
tj
2
ψj(x2)

)2

(3.7)

where tj = − τ
lnλj

is the relaxation timescale associated with jth eigenvector. Often one

uses the rate kj = tj
−1 instead of the timescale [123]. Eq. 3.7 now has a Euclidean

distance form and a direct physical meaning: it is approximately the average time the

system spends to commute between two states [118]. The distance dcomm is thus called

the “commute distance”, and the associated mapping

x 7→ (

√
t1
2
ψ1, ...,

√
tN−1

2
ψN−1) (3.8)

is called the “commute map”.
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Assuming that the dynamics in the x−space is Markovian and fully sampled giving

access to eigenvalues and eigenvectors of T , we can then use Eq. 3.7 to calculate a Eu-

clidean distance which approximates the commute time in the x−space. It is also worth

pointing out that in Eq. 3.7 the timescales follow t1 ≥ t2 ≥ ...0, which implies that the

commute distance increases monotonically with consideration of further eigenvectors of

T , and that there is an increasingly vanishing contribution from every additional eigen-

vector that we consider. If such a distance can be obtained through Eq. 3.7, it is very

useful for analyzing high-dimensional trajectories arising from well-sampled simulations

as shown for instance in Ref. [117, 118]. However many if not most real-world appli-

cations are characterized by rare events, wherein the system stays trapped in the part of

the configuration space it was initiated from and rarely visits other regions. Adequate

and reliable sampling of the underlying configuration space thus remains a longstanding

challenge in computational chemistry and physics. This implies that the eigenvectors and

eigenvalues needed to evaluate the various terms in Eq. 3.7 are simply not available or

far from reliable. In fact, the dominant first few components of the commute map could

even serve as biasing coordinates along which the sampling could be enhanced through

methods such as umbrella sampling, metadynamics, or others. This brings out the inverse

nature of the problem wherein constructing an accurate commute distance depends on

sufficient sampling of the eigenvalues and eigenvectors of the transfer operator, but the

sampling itself could benefit greatly from the knowledge of the commute map.
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3.2.2 Calculating commute distances for rare events

In this section, we develop a formalism for obtaining commute distances in poorly

sampled rare-event systems where access to T and its eigenvectors/eigenvalues is not

straightforward. The central idea is to perform biased sampling to accelerate the explo-

ration of the configuration space. Here we use metadynamics as the biased sampling

method, but the developed formalism should be more generically applicable. While this

basic idea is simple, there are, however, at least two major, immediate difficulties when

applying Eq. 3.7 with metadynamics or other similar enhanced sampling methods. First,

the use of any sort of biasing corrupts the kinetics of the system, critical to calculating ac-

curate eigenvalues and eigenvectors of the transfer operator T . Second, the biasing itself

needs access to the slow modes of the system, which are the dominant components of the

commute map in Eq. 3.8. In SGOOP, described in Sec. 3.2.2.1 and Sec. 3.2.2.2, we find

these slow modes from the transfer operator of such a transition matrix but only look at its

dynamics along a 1-d coordinate. We refer to these slow modes as the reaction coordinate

(RC) for the system [28, 124]. As mentioned in Sec. 3.2.1 the different components ψi of

the commute map have a vanishing relevance to the calculation of the commute distance

as i ≫ 1, and thus one can stop after the first few dominant components and bias these

components in any biasing method of choice. However, without knowing the commute

map, it is hard to calculate the dimensionality and components of the RC which would

then be biased.
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3.2.2.1 SGOOP for 1-dimensional RC

In this sub-section we summarize the “Spectral Gap Optimization of Order Param-

eters (SGOOP)” method for optimizing a multi-dimensional RC [97, 99, 116]. In later

sections, we use SGOOP to develop an approach that circumvents both of the above-

described challenges. Summarily, SGOOP in its original form is a method for obtaining

a one-dimensional RC given static and dynamic information about a multi-dimensional

system by combining this information in a Maximum Caliber or path entropy frame-

work [125, 126]. SGOOP constructs the RC as a combination of pre-selected candidate

order parameters (s1, ..., sd), which can be thought of as a set of basis functions using

which we are trying to describe our problem. The dimensionality d is kept high enough

so that dynamics in the high-dimensional s−space is likely Markovian, needed for the

formalism described in Sec. 3.2.1. The central ideas behind SGOOP [99] in its original

form can be summarized as the following three points:

(i) It uses a reweighting protocol [127] to estimate the equilibrium distribution P0(s1, ..., sd)

from an initial metadynamics simulation performed by biasing some trial RC.

(ii) In addition, it uses short unbiased MD simulations to obtain dynamical observables

pertaining to the system. These observables could be the position-dependent diffusivity or

more typically, the number of nearest-neighbor transitions along some binned trial RCs.

(iii) By combining (i) and (ii) SGOOP constructs the transition rate matricesK which can
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then be formulated as follows:

Kmn =


−Λ
√

πn

πm
, if n ̸= m

−
∑

k ̸=mKmk, if n = m

(3.9)

where π ≡ P0 is the stationary probability along any putative, spatially discretized RC χ

with n denoting the grid index and Λ is a dynamical observable. As mentioned in point

(i), the stationary distribution can be obtained from a long unbiased simulation or from

a biased simulation followed by an appropriate reweighting. The dynamical variable Λ,

as discussed in point (ii), can be calculated by the number of nearest-neighbor transitions

⟨N⟩ defined as

⟨N⟩ =
∑
(m,n)

∀|m−n|=1

πmKmnNmn (3.10)

where Nmn = 1∀|m− n| = 1 and 0 otherwise. Plugging Eq. 3.9 into Eq. 3.10 we obtain

an estimate of Λ as:

Λ =
⟨N⟩∑√
πmπn

(3.11)

The eigenvalues {kj} of the rate matrix K are nonnegative and satisfy k0 = 0 < k1 ≤

k2 ≤ .... The quantity e−kn−1 − e−kn , which is the “spectral gap” of the transfer operator

T , can be interpreted as the timescale separation between the n slow mode and all the

other hidden faster modes as projected on the corresponding RC. It can be shown that

the optimal RC has the maximal spectral gap [97]. Different candidate one-dimensional
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RCs are then first ranked in terms of the number of slow modes or metastable states they

demarcate, and then in terms of the timescale separation (or the spectral gap) between the

slow and fast modes as projected on any RC. The optimal RC maximizes both of these.

3.2.2.2 SGOOP for multi-dimensional RCs and rate matrices

In this section, we will introduce a multi-dimensional version of SGOOP [116]

which makes it possible to extend the dimensionality of the RC in SGOOP. Each ad-

ditional RC component χ(i), i ≥ 2 is constructed in a way that it captures features in-

discernible in the previous components through a conditional probability factorization

described in Sec. 3.2.2.2. This de-emphasizes the features already captured by the com-

ponents so identified. With multiple iterations of the SGOOP protocol one can identify a

multi-dimensional RC χ = {χ(1), χ(2), ...}. Mathematically this can be written as follows.

Once the first RC component χ(1) has been learned by SGOOP, we focus our attention on

the probability distribution P1 conditional on the knowledge of χ defined as:

P1(s1, ..., sd) ≡ P0(s1, ..., sd|χ(1))

=
P0(s1, ..., sd)

P0(χ(1))
(3.12)

where we have used that the equilibrium probability P0(s1, ..., sd, χ
(1)) = P0(s1, ..., sd) as

χ(1) is a deterministic function of (s1, ..., sd). The next round of SGOOP is then performed

on data sampled from P1 instead of P0, which yields the second RC component χ(2)

that captures features missed by χ(1). The procedure can be repeated for further RC

components and can be performed using any enhanced sampling method [116]. Here we
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illustrate it using metadynamics. By performing well-tempered metadynamics simulation

along χ(1) where one builds a bias Vb(χ(1)), it can be shown that

P0(χ
(1)) ∝ e−βF (χ(1)) ∝ e+β[ γ

γ−1
Vb(χ

(1))]

P1 ≡
P0(s1, ..., sd)

P0(χ(1))
∝ e−β[F (s1,...,sd)+Vb(χ

(1))] (3.13)

where β = 1/kBT , γ is the bias factor for well-tempered metadynamics [119], and F is

the free energy of the system. Therefore, P1 is simply the unreweighted/biased probability

density obtained by sampling in the presence of bias potential Vb(χ(1)).

We now discuss details of the construction of the rate matrix through SGOOP. Fol-

lowing Eq. 3.9 and Eq. 3.10, the rate matrix along any putative RC χ can be built as

follows:

K(1)
mn =


− ⟨N⟩∑√

πnπm

√
πn

πm
, if n ̸= m

−
∑

k ̸=mK
(1)
mk, if n = m

(3.14)

where ⟨N⟩ is the total number of nearest-neighbor transitions per unit time, counted along

a suitably discretized RC χ = {χn} with n indicating grid index, π ≡ P0 is the corre-

sponding stationary density and 1 in superscript indicates this is the rate matrix along the

first component χ(1) of the RC. For the first round of SGOOP to learn χ(1), ⟨N⟩ is cal-

culated from short unbiased MD simulations. The K(1) matrices are then constructed for

different putative RCs and its eigenvalues used to screen for the best RC χ(1) with highest

spectral gap.
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For learning the second component χ(2) and other higher-order components, we

generalize Eq. 3.14 as follows [116]:

K(2)
mn =


− ⟨N⟩(1)∑√

π
(1)
n π

(1)
m

√
π
(1)
n

π
(1)
m

, if n ̸= m

−
∑

k ̸=mK
(2)
mk, if n = m

(3.15)

In Eq. 3.15, π(1) ≡ P1 is defined in Eq. 3.13. ⟨N⟩(1) denotes the average number of

first-nearest neighbor transitions along a putative RC observed per unit time, but now

measured in the biased simulation performed by sampling from this conditional probabil-

ity density P1. The procedure can then be easily generalized for constructing rate matrices

K(3), K(4), ... for learning further RC components.

3.2.2.3 Commute distance calculation for rare events with SGOOP

Here we use SGOOP to induce a commute distance metric for complex high-

dimensional systems that can be calculated from a combination of biased simulations

and short unbiased trajectories. Assuming that a satisfactorily large number of compo-

nents have been included in χ, any two points {x,x′} ∈ Ω can then be mapped without

substantial loss of information to its values in the χ space as {χ, χ′}. Whether the dimen-

sionality of the RC χ is indeed sufficient or not is a non-trivial question to answer, which

we will address later in this section and in Sec. 3.4. With the RC optimized by SGOOP,
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we can then reformulate Eq. 3.7 as

d2comm(x,x
′) = d2comm(χ, χ

′)

=
N−1∑
j=1

1

2kj
[ψj(χ)− ψj(χ

′)]
2

=
N−1∑
j=1

1

2k
(1)
j

[
ψ

(1)
j (χ)− ψ

(1)
j (χ′)

]2
(3.16)

In the above equation, we have made use of the mapping x → χ learned from SGOOP, but

otherwise, it still needs the eigenvalues and eigenvectors of the transfer operator T . In the

final line, we have introduced a superscript (1) to indicate the case where the first RC χ(1)

learned from SGOOP is indeed sufficient for the system at hand. In such a case, SGOOP

yields a Maximum Caliber based rate matrix K(1) for transitions between grid points

along suitably discretized χ(1). Details of the construction of this rate matrix are described

in Sec. 3.2.2.2 while illustrative examples are provided in Sec. 3.4. By diagonalizing the

rate matrix K(1) we obtain the eigenvalues k(1)1 , k
(1)
2 , ... and corresponding eigenvectors

ψ
(1)
1 , ψ

(1)
2 , ... to use in Eq. 3.16.

The above commute distance so obtained can be understood as an estimate of

true commute distance using the 1-dimensional projected RC χ(1). However, as shown

in Sec. 3.4 and also emphasized in the literature on numerous occasions [115], a 1-

dimensional projection is often not kinetically truthful and does not reflect the connec-

tivity of underlying high-dimensional space. We thus consider additional RC components

χ(m) from the multi-dimensional SGOOP protocol, with eigenvalues k(m)
1 , k

(m)
2 , ... and

corresponding eigenvectors ψ(m)
1 , ψ

(m)
2 , ..., where m ≥ 1 denotes which RC component
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we are looking at. Each such component induces its own contribution to the commute

distance which we add to the contribution of the 1st component χ(1) in Eq. 3.16 yielding

the central equation of this work for a M−component RC:

d2comm(x,x
′)

=
M∑

m=1

N−1∑
j=1

1

2k
(m)
j

[
ψ

(m)
j (χ)− ψ

(m)
j (χ′)

]2
≡

M∑
m=1

d(m) (3.17)

Here d(m) is the contribution to the commute distance arising from the mth RC compo-

nent, while k(m)
j and ψ(m)

j are the jth eigenvalue and eigenvector of the Maximum Caliber-

based transition matrix K(m) calculated along along RC-component χ(m) (Sec. 3.2.2.2).

We want to mention two important points here. Firstly, for any RC component χ(m)

form ≥ 1, the construction of the rate matrixK(m) as detailed in Sec. 3.2.2.2 ensures that

the rates are ordered as per 0 < k
(m)
1 ≤ k

(m)
2 ≤ .... This leads to a useful property that

the commute distance is a strictly monotonically increasing function of adding further

RC components as well as further eigenvectors along any RC component. By monitoring

how d2comm = d(1)+d(2)+ ... converges with addition of RC components, we can quantify

the dimensionality of the RC needed for a given system at hand. Secondly, the intuitive

idea behind going from Eq. 3.16 to Eq. 3.17 is that different eigenvectors are orthogonal to

each other allowing for a Euclidean distance measure. This is strictly true for the SGOOP-

derived eigenvectors along a given RC component, i.e. the dot product of ψ(m)
j and ψ(m)

k

is 0 ∀j, k,m ≥ 0 as mentioned in Sec. 3.2.2.2. However when comparing ψ(m)
j (χ(m))

and ψ(n)
k (χ′(n)) for m ̸= n i.e. for different RC components through multiple rounds of

SGOOP [116] this is not strictly true, and thus we expect Eq. 3.17 to be an upper bound for
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the commute distance. Note that the error could come from any eigenpair of each SGOOP

rate matrix arising from redundant contributions due to different RC components having

some aspects of the same dynamical processes. However as we will show later in Sec. 3.4,

as long as each optimal RC captures the most important features or slowest processes, in

the next round of SGOOP, such optimal RC will efficiently reduce the error from the

non-orthogonality, making Eq. 3.17 a good approximation to those important features.

3.3 Model set-up and simulation details

In this section, we will introduce the model potentials and simulations that we will

use later in the discussion of Sec. 3.4.

3.3.1 Analytical potentials set-up

The potential U(x, y) governing the model with three metastable states is given by

U(x, y) = W (x6 + y6)−G(x, x1)G(y, y1)

−G(x, x2)G(y, y2)−G(x, x3)G(y, y3) (3.18)

where W = 0.0001 and G(x, x0) = e−
(x−x0)

2

2σ2 denotes a Gaussian function centered at x0

with width σ = 0.8. We also build 4-state model systems, each denoted by 4A, 4B, with
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governing interaction potentials UA, UB, UC:

Ui(x, y) = W (x4 + y4) +Gi(x, 0.0)G
′(y, 0.0)

−Gi(x, 2.0)G
′(y,−1.0)−Gi(x, 0.5)G

′(y, 2.0)

−Gi(x,−0.5)G′(y,−2.0)−Gi(x,−2.0)G′(y, 1.0) (3.19)

where Gi(x, x0) = e
− (x−x0)

2

2σ2
i have widths σi = 0.8, 1.0 for i = A,B respectively, while

G′(y, y0) = e−
(y−y0)

2

2σ′2 have a fixed width σ′ = 1.2. The configurations corresponding to

the model potentials in Eq. 3.18 and Eq. 3.19 are illustrated in Fig. 3.5(a)-(d).

3.3.2 Simulation set-up

The integration timestep for the Langevin dynamics simulation was 0.01 units,

and the simulation was performed at β = 2.5 for 3-state and 4-state potentials, where

β = 1/(kBT ). The MD results for alanine dipeptide and Ace-Ala3-Nme were obtained

using the software GROMACS 5.0.4 [128, 129], patched with PLUMED 2.4 [102] with

2fs timestep. The temperature was kept constant at 300K for alanine dipeptide and 400K

for Ace-Ala3-Nme using the velocity rescaling thermostat [100]. The metadynamics pa-

rameters for each system are listed in Table. 3.1.

In Fig. 3.2 and 3.3, we have shown the free energy profile along ϕ3 and free en-

ergy surface as function of (ϕ1, ϕ2). In Fig. 3.4, we have also shown the 3-dimensional

free energy surface of Ace-Ala3-Nme and its corresponding metastable molecular config-

urations. The corresponding dihedral angles for the 8 metastable states are tabulated in

Table. 3.2.
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Systems h ω ∆t/MD step γ
3-state 0.3 (kBT ) 0.2 200 3.5

4A (Fig. 3.5(b)) 0.4 (kBT ) 0.3 200 126
4B (Fig. 3.5(c)) 0.4 (kBT ) 0.3 200 6

Alanine dipeptide 1.2 (kJ/mol) 0.2 500 5
Ala3 1-d 1.5 (kJ/mol) 0.25 400 10
Ala3 2-d 1.5 (kJ/mol) 0.2 500 5

Table 3.1: Metadynamics parameters used for simulation of Langevin dynamics with
3-state, 4-state model potentials, alanine dipeptide, and Ace-Ala3-Nme (Ala3) for
SGOOP-d. The metadynamics parameters used for simulations of Langevin dynam-
ics with 3-state, 4-state model potentials, alanine dipeptide, and Ace-Ala3-Nme (Ala3),
where Ala3 1-d corresponds to biasing 1-d SGOOP-RC and Ala3 2-d corresponds to bi-
asing 2-d SGOOP-RC. Gaussian bias kernels of starting height h and width ω are added
every ∆t MD step. γ is the bias factor for well-tempered metadynamics.

Metastable state ϕ1 ϕ2 ϕ3

S1 -1.19 0.94 1.08
S2 0.94 0.95 1.03
S3 0.97 -1.54 1.06
S4 -1.45 -1.57 1.04
S5 -1.46 1.03 -1.72
S6 0.98 1.01 -1.71
S7 0.95 -1.46 -1.82
S8 -1.25 -1.45 -1.73

Table 3.2: Reference dihedral angles for the metastable states of Ace-Ala3-Nme. The
reference dihedral angles in radians for the 8 metastable states we used in SGOOP-d to
estimate 28 pairs of commute distances. The first and last 4 metastable states are separated
by the third dihedral angle ϕ3, where the first 4 have ϕ3 near 1 and the last 4 have ϕ3 near
-1.7. The relative positions can be seen in the free energy plots at two different ranges of
ϕ3.

3.4 Results

In this section, we demonstrate the usefulness and reliability of the SGOOP [99,

116] based commute distance [117, 118] protocol developed in Sec. 3.2, which we label

“SGOOP-d” for convenience, by applying it to a range of analytical potentials, as well

as to small molecules with rare conformational transitions between different metastable
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Figure 3.2: The free energy profile of Ace-Ala3-Nme along ϕ3. The free energy of Ace-
Ala3-Nme along ϕ3 obtained by histogramming an unbiased MD trajectory at 400K. The
red and blue regions correspond to ϕ3 ∈ (−3.14,−1.00] and ϕ3 ∈ (0.5, 1.5]. These two
ranges of ϕ3 are integrated out to obtain free energy profiles at each metastable state.
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Figure 3.3: The free energy surface of Ace-Ala3-Nme as function of (ϕ1, ϕ2). Free en-
ergy as function of (ϕ1, ϕ2) obtained by making histogram of an unbiased MD trajectory
where (a) ϕ3 ∈ (−3.14,−1.00] or (b) ϕ3 ∈ (0.5, 1.5] are selected and integrated over.
The free energy profiles show four metastable states at each basin in Supplementary Fig-
ure 3.2.

states. Low-dimensional projections of these high-dimensional potentials can in gen-

eral lead to a spurious number of barriers and inter-basin connectivity [115, 130]. Here

we show how to use SGOOP-d to ascertain the minimal dimensionality of the RC that

preserves the kinetic aspects of the underlying high-dimensional landscape. To do so
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we calculate the state-to-state commute distances and monitoring how these change and

eventually converge with an increase in RC dimensionality. This is done using either bi-

ased or long unbiased simulations. We can also use the RC so learned to perform further

efficient and reliable biased simulations. We consider different types of unbiased and

biased trajectories to demonstrate the general applicability of our proposed framework.

3
A

B
1

-

0

2

-

0
S5

S6

S7

S8

S1
S2

S3

S4

0

4

8

12

16

20

Figure 3.4: The 3-dimensional free energy of Ace-Ala3-Nme. This figure shows the 3-d
free energy with the state minimum discussed in Fig. 3.7 pointing by their corresponding
conformations is shown. The integration of two ranges of ϕ3 in Supplementary Figure 3.2
and 3.3 are plotted at A and B. Unlike the 2-d free energy plots shown in Supplementary
Figure 3.3, the unbiased trajectory used here is not long enough to see S2. This also shows
that S2 is rare and not always seen in every unbiased trajectory we have generated.
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Numerical and computational details of these systems have been provided in Sec. 3.3.
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Figure 3.5: The SGOOP-d analysis of the analytical potentials. (a)-(c) show the 3-state
and 4-state potentials 4A, 4B as sampled during molecular dynamics respectively. In (a)-
(c) we have also provided the two RC components χ(1) (solid red lines) and χ(2) (dashed
blue lines) evaluated using Eq. 3.22. Contours in all plots are separated by 0.89kBT . In
(d)-(f) we show the estimated commute distances dK between different pairs of metastable
states (in arbitrary units) at K = 0 and K = K∗. As explained in Sec. 3.4.1, using
K = K∗ gives the right kinetic connectivity between different metastable states for each
of the model potentials. The results with statistical averages and error bars are shown in
SI. Here we only show the result with one pair of RC for each model system in order
to show how the second RC component captures the missing features of the first RC
component.

3.4.1 Analytical potentials

The analytical potentials used here are originally inspired from Ref. [115]. These

are built with two degrees of freedom x and y, but with a varying number of metastable

states and barriers separating them. Thus a 1-d projection is not always guaranteed to be

kinetically truthful. Specifically we consider a 3-state potential and two 4-state potentials
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Figure 3.6: The SGOOP-d analysis of alanine dipeptide. (a) Free energy surface as a
function of ϕ and ψ obtained by reweighting metadynamics simulation biasing along 1-d
RC χ(1) specified in Table. 3.4 . The positions of three metastable states are specified.
(b) shows the SGOOP-d k(1)dK at K = 0 using one RC and at K = K∗ using two
RCs for each pair of metastable states (in arbitrary units) obtained from a long unbiased
simulation (blue triangles and blue circles respectively, left axis) and the biased simulation
(blue squares, blue diamonds, left axis). In (b), we also provide the estimated commute
time tcomm(red triangles, right axis) calculated from the long unbiased simulation.

labeled 4A and 4B (Figs. 3.5 (a)-(c)). For each of these, we build inter-state commute

distances using one-dimensional and two-dimensional RCs, with different components

expressed as linear combinations of x and y. Since the underlying dimensionality is two,

here we will demonstrate the results with up to two-dimensional RC. In such a case we

can simplify Eq. 3.17 by introducing

d̂(m) = k
(m)
1 d(m) (3.20)

and then writing

dcomm(x1,x2) = d(1) + d(2)

=
1

k
(1)
1

d̂(1) +
1

k
(2)
1

d̂(2) (3.21)
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Figure 3.7: The SGOOP-d analysis of Ace-Ala3-Nme. In this figure, (a) provides the
molecular structure of Ace-Ala3-Nme with the corresponding dihedral angles. The cor-
responding metastable states and their conformations are detailed in SI. (b) shows the
calculation of SGOOP-d which provides the estimated commute distances using one-
dimensional, two-dimensional and three-dimensional RC respectively (blue triangles,
blue circles and blue squares, left axis). The coefficients of these RCs are shown in
Table 3.4. Corresponding to their calculation, these are labelled respectively k(1)1 dK=0,
k
(1)
1 dK∗ and k(1)1 dK∗,L∗ (in arbitrary units) as shown in the legend. (b) also provides the

estimated commute time tcomm (red triangles, right axis) calculated from long unbiased
simulation of Ace-Ala3-Nme. The slowest transitions which are not sampled in the long
unbiased simulation are denoted by star markers in the plot. Their commute times are not
quantitatively reliable and serve only as guide to the eye.

To see how good a job the RC components do at reconstructing the state-to-state

connectivity, we further parameterize Eq. 3.21 by introducing a K ≡ k
(1)
1

k
(2)
1

for the ratio of

eigenvalues, yielding

k
(1)
1 dcomm(x1,x2) ≡ k

(1)
1 dK ≡ d̂(1) +Kd̂(2) (3.22)

We highlight here that in our framework K is not a free parameter that needs to be tuned.

Instead, it can be approximated on the basis of Maximum Caliber based rate matrices

66



3 2 1 0 1 2 3
x

3
2
1
0
1
2
3

y

(a)
A

B

C
(1)

(2)

3 2 1 0 1 2 3
x

3
2
1
0
1
2
3

y

(b)
A

B

C

D

(1)

(2)

3 2 1 0 1 2 3
x

3
2
1
0
1
2
3

y

(c)
A

B

C

D

(1)

(2)

0 2 4
K

0

5

10

15

20

k(1
)

1
d K

(d)

K

AB
AC
BC

0 2 4
K

0

5

10

15

20 (e)

K

AB
AC
AD

BC
BD
CD

0 2 4
K

0

5

10

15

20 (f)

K

AB
AC
AD

BC
BD
CD

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 3.8: SGOOP-d analysis isn’t sensitive to K∗. (a)-(c) show the analytical 3-state
and 4-state potentials 4A, 4B respectively. In (a)-(c) we have also provided the two RC
components χ(1) (solid red lines) and χ(2) (dashed blue lines) evaluated using Eq. 3.22.
Contours in all plots are separated by 0.89kBT . In (d)-(f) the estimated commute dis-
tances dK between different pairs of states (in arbitrary units) are plotted as a function
of K, where the benchmark parameter K∗ in each case is specified as the vertical black
dashed line.

(Sec. 3.2.2.2) as:

K∗ ≡ k
(1)
1

k
(2)
1

(3.23)

where K∗ indicates a Maximum Caliber based estimation of K. However, as the Maxi-

mum Caliber-based rate estimates are approximate and might depend on the choice of the

dynamical constraints and quality of sampling [126], in Fig. 3.8, we also show that the

precise value of K∗ doesn’t have a large effect on the connectivity.

Fig. 3.5 and Table. 3.3 detail the two RC-components χ(1) and χ(2) so obtained for

the different model potentials. Here using K = 0 is equivalent to using only the first
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Systems θ(1)/π θ(2)/π
3-state 0.00 0.21

4-state
4A (Fig. 3.5(b)) 0.15 0.84
4B (Fig. 3.5(c)) 0.15 0.84

Table 3.3: First and second components of the reaction coordinate found for the 3-
state and 4-state model potentials. In this table, we have shown the first and second
components of the reaction coordinate χ(1) and χ(2) found for each model analytical po-
tential. The angles θ(1) and θ(2) in the table define χ(i) = cos(θ(i))x+ sin(θ(i))y.

component χ(1) to determine the commute distance, while increasing non-zero values of

K captures increasing contributions from the second component χ(2) through Eq. 3.22.

As can be seen for the 3-state system (Fig. 3.5 (d)), considering only the first component

χ(1) would lead to an erroneous conclusion that the pairs of states AB, AC, and BC are

all kinetically equidistant. This is not consistent with the high-dimensional data sampled

shown in Fig. 3.5 (a), where the barrier experienced between the states BC is much lower

than for AB and AC. By adding the second component χ(2) to the kinetic distance in

Eq. 3.22 using K = K∗, we recover this correct picture. Similar conclusions regarding

kinetically truthful picture consistent with the data can be drawn for the remaining two 4-

state potentials shown in Fig. 3.5. In both Fig. 3.5 (e) and (f), using only the 1-d RC χ(1),

AB, BC, and CD are equally short, while AD is the slowest transition. This erroneous

connectivity has been corrected after adding a second component of RC χ(2), where AB

and CD are equally shortest at K = K∗. Note that in both Fig. 3.5 (e) and (f) AD is

slightly lower which shows the noisy nature in the Maximum Caliber-based estimation of

transition rates.
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Systems RCs Coefficients

Alanine dipeptide
χ(1) (0.643, 0.778,−0.133,−0.088,−0.221,−0.165)
χ(2) (0.827, 1.166,−0.120, 0.578, 0.013, 0.240)

Ace-Ala3-Nme
χ(1) (0.187,−1.127,−0.228,−2.362, 0.230, 1.176)
χ(2) (1.174, 0.738, 0.132, 0.716, 0.356, 2.827)
χ(3) (−0.037,−0.839, 0.557, 1.454, 1.693, 1.624)

Table 3.4: Reaction coordinates found for alanine dipeptide and Ace-Ala3-Nme. This
table shows the reaction coordinates found for alanine dipeptide and Ace-Ala3-Nme. For
alanine dipeptide, two RC components both expressed as χ = a cosϕ+b sinϕ+c cosψ+
d sinψ+e cos θ+f sin θ with their 6 respective coefficients are listed. For Ace-Ala3-Nme,
three RC components all expressed as χ = a cosϕ1 + b sinϕ1 + c cosϕ2 + d sinϕ2 +
e cosϕ3 + f sinϕ3 with their 6 respective coefficients are listed.

3.4.2 Alanine dipeptide

The next system we use to illustrate our method is the well-studied alanine dipep-

tide. Here we consider the molecule as characterized by three dihedral angles ϕ,ψ, and

θ. This molecule has three metastable configurations (Fig. 3.6(a)) which can be charac-

terized by using only ϕ and ψ, while θ plays a role in characterizing the transition be-

tween the metastable states [131]. Here we express the different RC components as linear

combinations of 6 order parameters, namely cosines and sines of the 3 aforementioned

dihedrals, with the final optimized coefficients listed in Table. 3.4. The spectral gap in

SGOOP is optimized using a basin-hopping algorithm. [132–134] These RC components

and associated information are then plugged into Eq. 3.22 to estimate the commute dis-

tance dK . In Figs. 3.6(b)-(c) we show the commute distance so calculated using an input

biased trajectory and a benchmark long unbiased trajectory respectively. The biased tra-

jectory was generated by doing well-tempered metadynamics along 1-d RC χ(1) defined

in Table. 3.4. See Sec. 3.3 for further details of both the biased and unbiased simulations.

For this simple system, the commute distances dK show similar connectivities for

69



K = 0 and K = K∗, which shows that one RC is indeed sufficient to describe the

system in terms of recovering state-to-state connectivity between all 3 metastable states.

Both types of input trajectories show a near degenerate structure with two pairs of states

kinetically separated from each other, while one pair is very close.

3.4.3 Ace-Ala3-Nme

In this final section, we demonstrate our method on a more complicated molecu-

lar system, namely the peptide Ace-Ala3-Nme with a much larger number of metastable

states, and an even larger number of state-to-state transitions [135]. Simulation details are

provided in Sec. 3.3.2. As discussed in Ref. [135] the three dihedral angles ϕ1, ϕ2, ϕ3 are

sufficient to characterize the 23 = 8 dominant metastable states corresponding to positive

and negative parts of the Ramachandran diagram for the 3 central Alanine residues. The

RC components used in computing SGOOP-d distances are calculated as a linear com-

bination of cosines and sines of these 3 dihedral angles, thereby amounting to a total of

6 order parameters. We consider the 8 most dominant metastable states labelled S1,...,

S8 and the associated
(
8
2

)
= 28 inter-state transitions. The corresponding dihedral angles

for these 8 states are tabulated in Sec. 3.3. Here we consider up to three RC components

and demonstrate that after considering 3 components the commute distances converge

especially for the slower state-to-state transitions. They are also in agreement with the

benchmark calculations on this system through counting transitions in the higher dimen-

sional underlying space from a long unbiased trajectory. The final optimized solutions

for all three RC components are shown in Table. 3.4. Here in order to add a third RC
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component, we generalize Eq. 3.22 by introducing an additional parameter L:

k
(1)
1 dK,L ≡ d̂(1) +Kd̂(2) + Ld̂(3) (3.24)

Similar to what was done for K∗ in Eq. 3.23 we can approximate L∗ as

L∗ ≡ k
(1)
1

k
(3)
1

(3.25)

With a long enough unbiased MD trajectory, we can also calculate the commute time

tcomm between two metastable states through a simple counting protocol (see also Ref. [130]).

In Fig. 3.7, we show SGOOP-d distances calculated using Eq. 3.24 with 1, 2, and 3 RC

components, and compare them with the corresponding 28 tcomm values between the 8

metastable states in the same plot. It can be seen from the plot that with only the use

of two RC components SGOOP-d already provides converged estimates of relative inter-

state connectivity and commute distances between 23 of the 28 pairs of states based on

the visualization of 3-d free energy provided in Fig. 3.4. Here we must point out that there

are eight transitions that are not sampled by even the reference long unbiased simulation,

although SGOOP-d of those transitions clearly converged. Therefore, the comparison of

SGOOP-d with respect to the unobserved transitions may need a more cautious evalua-

tion instead of merely looking at the free energy. However, in order to get the correct

connectivity for the remaining 5 pairs of states as well, we have to include the third RC

component. We emphasize that in Fig. 3.7 the slowest 8 transitions have been given the

same reference commute time for the sake of clarity, as we were unable to observe any
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such transition events even in the 1 µs long unbiased simulation. Thus the reference com-

mute times for these states serve as approximate lower bounds to the true values and are

denoted by star markers in the plot.

3.5 Conclusion and outlook

In summary, in this work we have developed a computationally efficient formal-

ism labeled “SGOOP-d” and summarized in the flowchart in Fig. 3.1, that can help to-

wards solving a longstanding important problem in chemical physics and physical chem-

istry. Namely, how many dimensions should a projection from high-dimensions into low-

dimensional reaction coordinates (RC) have, so that (1) the projection is kinetically and

thermodynamically truthful to the underlying landscape, and (2) these minimal number

of components can then be used to perform biasing simulations without fear of missing

slow degrees of freedom. The formalism here makes the best of two different approaches,

namely commute map [118] and SGOOP. [99] This way it induces a distance metric which

we call SGOOP-d that is applicable to biased rare event systems as well as unbiased tra-

jectories with arbitrary quality of sampling. The kinetically truthful RC learned here can

then also be used to improve the sampling quality of the biased simulation itself [136] or

as a progress coordinate in path-based sampling methods [59, 137–140]. We thus believe

that going forward our work represents a useful tool in the study of kinetics in rare event

systems with multiple states and interconnecting pathways. In future we will be extend-

ing this work to systems such as crystal nucleation, multiple polymorphs, systems with

multiple pathways or multiple species, where there will be even more order parameters
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to be considered. All of these continue to be very difficult yet important problems for

understanding nucleation pathways and rates, and we are hopeful our tools will allow us

and others to systematically study these.
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Chapter 4: Building Kinetic Model using Simple Language Model

4.1 Introduction

4.1.1 Memory in terms of long-term dependency

In Chapter. 2, we have studied how the RC optimized through SGOOP, a method

using traditional statistical mechanics, can capture memory. In Chapter. 3, we have pro-

posed a SGOOP-based kinetic distances to learn multiple RCs and further reduce memory

effect coming from missing slow processes. These methods provide a way to systemati-

cally find a good representation of complex systems with minimal memory effect which

could have been enhanced due to a bad representation. Unfortunately, even though we

have found all important RCs that captures the dynamical processes, there could always

be memory effect that appears as the system’s long-term dependency within the time se-

ries. Modeling such long-term dependencies in temporal data has been a longstanding

challenge of machine learning. In recent years, many machine learning techniques have

been developed to model this long-term dependency in dynamical systems such as chaos,

stock market, and speech recognition. In this chapter, we will introduce a special type of

neural network which allows us to model such memory.

74



4.1.2 An overview of recurrent neural network (RNN)

f f f

F F F

y(t−1) y(t) y(t+1)

x(t−1) x(t) x(t+1)

h(t−1) h(t) h(t+1) h(...)h(...)

Figure 4.1: Basic computational graph of RNN.

Recurrent neural networks (RNNs) are one of the standard and popular machine

learning/artificial intelligence (AI) technique developed for modeling temporal sequences,

with demonstrated successes including but not limited to modeling human languages

[141–147]. Mathematically, RNNs learn the recursive functions which could model the

dynamical systems with its long-term dependency captured by the hidden units h(t), as

can be seen in Fig. 4.1. Without loss of generality, RNN can be equivalently mapped to a

dynamical equation:

h(t) = f(h(t−1),x(t); θ) (4.1)

y(t) = F (h(t)) (4.2)
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where θ denotes the parameters in the recursive function. x(t) and y(t) are the input and

output state vectors at time step t. In most of the cases, we train the network which

parameterizes Eq. 4.2 such that it could predict the next data in a sequence, so y(t) =

x(t+1). However, learning the long-term dependency requires θ changes effectively during

training, which is hard using the traditional backward propagation method. The notorious

vanishing gradient problem also makes the training of RNNs even hard. Therefore, at least

two modifications of RNNs have been proposed to solve these problem: The reservoir

computing which has been used extensively in learning chaotic systems and Long Short-

Term Memory (LSTM) which has been used in the rest of this dissertation.

4.1.3 Reservoir computing

As we have mentioned in the previous section, it is difficult for RNNs to learn the

mapping from h(t−1) to h(t). As a result, an effective simplification of RNNs called reser-

voir computing [148] which assumes that a randomly connected internal weights have

sufficient ability to learn some dynamical systems. Therefore, in reservoir computing, the

hidden states are randomly assigned fixed weights and we only need to let the network

learn the representation of state which is the output weights, namely the function F in

Eq. 4.2. The reservoir computing has been shown to learn chaotic systems [149] very

well. Such a capability is already useful for instance in weather forecasting, where one

needs extremely accurate predictions valid for a short period of time. However, reservoir

computing fails to learn complex molecular dynamics under a certain thermodynamic en-

semble since most of the time the system simply fluctuates due to thermal and pressure
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bath. To capture the thermal fluctuations which last long yet are important for the systems

to overcome the barrier along RCs, we therefore need another method to directly learn the

mapping from far past to future.

4.1.4 Long short-term memory (LSTM)

A specific and extremely popular instance of RNNs are long short-term memory

(LSTM) [150] neural networks, which possess more flexibility and can be used for chal-

lenging tasks such as language modeling, machine translation, and weather forecast-

ing [146, 151, 152]. LSTMs were developed to alleviate the limitation of previously

existing RNN architectures wherein they could not learn information originating from

far past in time. This is known as the vanishing gradient problem, a term that captures

how the gradient or force experienced by the RNN parameters vanishes as a function

of how long ago did the change happen in the underlying data [153, 154]. LSTMs deal

with this problem by controlling flows of gradients through a so-called gating mechanism

where the gates can open or close determined by their values learned for each input. The

gradients can now be preserved for longer sequences by deliberately gating out some of

the effects. This way it has been shown that LSTMs can accumulate information for a

long period of time by allowing the network to dynamically learn to forget aspects of

information. Very recently LSTMs have also been shown to have the potential to mimic

trajectories produced by experiments or simulations [155], making accurate predictions

about a short time into the future, given access to a large amount of data in the past. In

this work, we consider an alternate and arguably novel use of RNNs, specifically LSTMs,
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in making predictions that in contrast to previous work [149,155], are valid for very long

periods of time but only in a statistical sense. Unlike domains such as weather forecasting

or speech recognition where LSTMs have allowed very accurate predictions albeit valid

only for short duration of time, here we are interested in problems from chemical and bio-

logical physics, where the emphasis is more on making statistically valid predictions valid

for extremely long duration of time. This is typified for example through the use of the

ubiquitous notion of rate constant for activated barrier crossing, where short-time move-

ments are typically treated as noise, and are not of interest for being captured through a

dynamical model.

Here we suggest an alternative way to use LSTM-based language model to learn

a probabilistic model from the time sequence along some low-dimensional order param-

eters produced by computer simulations or experiments of a high-dimensional system.

We also show by our computer simulations of different model systems that the language

model can produce the correct Boltzmann statistics (as can other AI methods such as

Ref. [156, 157]) but also the kinetics over a large spectrum of modes characterizing the

dynamics in the underlying data. We highlight here a unique aspect of this calculation that

the order parameter our framework needs could be arbitrarily far from the true underlying

slow mode, often called reaction coordinate. This in turn dictates how long of a memory

kernel must be captured which is in general a very hard problem to solve [136, 158]. Our

framework is agnostic to proximity from the true reaction coordinate and reconstructs

statistically accurate dynamics in a wide range of order parameters. We also show how

the minimization of loss function leads to learning the path entropy of a physical system,

and establish a connection between the embedding layer and transition probability. Fol-
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lowed by this connection, we also show how we can define a transition probability through

embedding vectors. We provide tests for Boltzmann statistics and kinetics for Langevin

dynamics of model potentials, MD simulation of alanine dipeptide, and trajectory from

single molecule force spectroscopy experiment on a multi-state riboswitch [159] respec-

tively. We also compare our protocol with alternate approaches including Hidden Markov

Models. This work thus represents a new usage of a popular AI framework to perform

dynamical reconstruction in a domain of potentially high fundamental and practical rele-

vance, including materials and drug design.

4.2 Theory and Method

4.2.1 Mapping MD trajectories to abstract languages

Our central rationale in this work is that molecular dynamics (MD) trajectories,

adequately discretized in space and time, can be mapped into a sequence of characters in

some languages. By using a character-level language model that is effective in predicting

future characters given the characters so far in a sequence, we can learn the evolution of

the MD trajectory that was mapped into the characters. The model we use is stochastic

since it learns each character through the probability they appear in a corpus used for

training. This language model consists of three sequential parts shown schematically in

Fig. 4.2. First, there is an embedding layer mapping one-hot vectors to dense vectors,

followed by an LSTM layer which connects input states and hidden states at different

time steps through a trainable recursive function, and finally a dense layer to transform

the output of LSTM to the categorical probability vector.
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Embedding layer

LSTM layer

Dense layer

Actual value

Loss function

x(t)

h(t−1)

f(t)

i(t)

c̃(t)

o(t) o(t) ∘ tanh c(t) = h(t)

f(t) ∘ c(t−1) + i(t) ∘ c̃(t)

= c(t)

x(t) = Λs(t)

y(t) = softmax(Ddh(t) + bd)

y(t) = s(t+ 1)
J = − y(t) ⋅ ln ŷ(t)

Figure 4.2: Neural network schematic. The schematic plot of the simple character-
level language model used in this work. The model consists of three main parts: The
embedding layer, the LSTM layer, and a dense output layer. The embedding layer is a
linear layer which multiplies the one-hot input s(t) by a matrix and produces an embedding
vector x(t). The x(t) is then used as the input of LSTM network, in which the forget gate
f (t), the input gate i(t), the output gate o(t), and the candidate value c̃(t) are all controlled
by (x(t),h(t−1)). The forget gate and input gate are then used to produce the update
equation of cell state ct). The output gate decides how much information propagates to
the next time step. The output layer predicts the probabilities ŷ(t) by parametrizing the
transformation from h(t) to ŷ with learned weights Dd and learned biases bd. Finally, we
can compute the cross entropy between the predicted probability distribution ŷ(t) and the
true probability distribution y(t) = s(t+1).

Specifically, here we consider as input a one-dimensional time series produced by

a physical system, for instance through Langevin dynamics being undergone by a com-
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plex molecular system. The time series consist of data points {ξ(t)}, where t labels the

time step and ξ ∈ R is some one-dimensional collective variable or order parameter for

the high-dimensional molecular system. In line with standard practice for probabilistic

models, we convert the data points to one-hot encoded representations that implement

spatial discretization. Thus each data point {ξ(t)} is represented by a N -dimensional bi-

nary vector s(t), where N is the number of discrete grid-points. An entry of one stands

for the representative value and all the other entries are set to zeros. The representative

values are in general finite if the order parameter is bounded, and are equally spaced in

R with in total N representative values. Note that the time series {ξ(t)} does not have

to be one-dimensional. For a higher-dimensional series, we can always choose a set of

representative values corresponding to locations in the higher-dimensional space visited

trajectory. This would typically lead to a larger N in the one-hot encoded representations,

but the training set size itself will naturally stay the same. We find that the computational

effort only depends on the size of training set and very weakly on N , and thus the time

spent for learning a higher dimensional time series does not increase much relative to a

one-dimensional series.

In the sense of modeling languages, the one-hot representation on its own cannot

capture the relation between different characters. Take for instance that there is no word

in the English language where the character c is followed by x, unless of course one

allows for the possibility of a space or some other letter in between. To deal with this,

computational linguists make use of an embedding layer. The embedding layer works as

a look-up table which converts each one-hot vector s(t) to a dense vector x(t) ∈ RM by

the multiplication of a matrix Λ which is called the embedding matrix, where M is called
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the embedding dimension

x(t) = Λs(t) (4.3)

The sequence of dense representation x(t) accounts for the relation between different

characters as seen in the training time series. The x(t) is then used as the input of the

LSTM layer. Each x(t) generates an output h(t) ∈ RL from LSTM layer, where L is

a tunable hyperparameter. Larger L generally gives better learning capability but needs

more computational resources. The LSTM itself consists of the following elements: the

input gate i(t), the forget gate f (t), the output gate o(t) the cell state c(t), the candidate

value c̃(t), and h(t) which is the hidden state vector and the final output from the LSTM.

Each gate processes information in different aspects [150]. Briefly, the input gate decides

which information to be written, the forget gate decides which information to be erased,

and the output gate decides which information to be read from the cell state to the hidden

state. The update equation of these elements can be written as follows:
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f (t) = σ(Wfx
(t) +Ufh

(t−1) + bf ) (4.4)

i(t) = σ(Wix
(t) +Uih

(t−1) + bi) (4.5)

o(t) = σ(Wox
(t) +Uoh

(t−1) + bo) (4.6)

c̃(t) = tanh(Wcx
(t) +Uch

(t−1) + bc) (4.7)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (4.8)

h(t) = o(t) ◦ tanh(c(t)) (4.9)

where σ here denotes sigmoid function, W and b are the corresponding weight matrices

and bias vectors. The tanh(v) operates piecewise on each element of the vector v. The

operation ◦ is the Hadamard product [160].

The final layer in Fig. 4.2 is a simple dense layer with fully connected neurons

which converts the output h(t) of the LSTM to a vector y(t) in which each entry denotes

the categorical probability of the representative value for the next time step t + 1. The

loss function J for minimization during training at every timestep t is then defined as the

cross entropy between the output of the model ŷ(t) and the actual probability for the next

timestep ŷ(t) which is just the one-hot vector st+1

ŷ(t) = softmax(Ddh
(t) + bd) (4.10)

J = −
T−1∑
t=0

y(t) · ln ŷ(t) = −
T−1∑
t=0

s(t+1) · ln ŷ(t) (4.11)

where T is the total length of trajectory, and the final loss function is the sum over the
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whole time series. The softmax(x)i = exp(xi)/
∑

j exp(xj) is a softmax function map-

ping x to a probability vector ŷ.

4.2.2 Training the network is equivalent to learning path probability

The central finding of this work, which we will demonstrate through numerical

results for different systems, is that a LSTM framework used to model languages can also

be used to capture kinetic and thermodynamic aspects of dynamical trajectories prevalent

in chemical and biological physics. In this section we demonstrate theoretically as to why

LSTMs possess such a capability. Before we get into the mathematical reasoning, we first

state our key idea. Minimizing the loss function J in LSTM (Eq. 4.11), which trains the

model at time t to generate output ŷ(t) resembling the target output st+1, is equivalent to

minimizing the difference between the actual and LSTM-learned path probabilities. This

difference between path probabilities can be calculated as a cross-entropy J ′ defined as:

J ′ = −
∑

x(T )...x(0)

P (x(T )...x(0)) lnQ(x(T )...x(0)) (4.12)

where P (x(t+1), ...,x(0)) andQ(x(t+1), ...,x(0)) are the corresponding true and neural net-

work learned path probabilities of the system. Eq. 4.12 can be rewritten [161] as the sum

of path entropy H(P ) for the true distribution P and Kullback-Liebler distance DKL be-

tween P and Q: J ′ = H(P ) + DKL(P ||Q). Since DKL is strictly non-negative [161]

attaining the value of 0 iff Q = P , the global minimum of J ′ happens when Q = P and

J ′ equals the path entropy H(P ) of the system [125]. Thus we claim that minimizing

the loss function in LSTM is equivalent to learning the path entropy of the underlying
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physical model, which is what makes it capable of capturing kinetic information of the

dynamical trajectory.

To prove this claim we start with rewriting J in Eq. 4.11. For a long enough obser-

vation period T or for a very large number of trajectories, J can be expressed as the cross

entropy between conditional probabilities:

J = −
T−1∑
t=0

∑
x(t+1)

P (x(t+1)|x(t)...x(0))

× lnQ(x(t+1)|x(t)...x(0)) (4.13)

where P (x(t+1)|x(t)...x(0)) is the true conditional probability for the physical system, and

Q(x(t+1)|x(t)...x(0)) is the conditional probability learned by the neural network. The

minimization of Eq. 4.13 leads to minimization of the cross entropy J ′.

In the following derivation, we will show how we obtain J ′ as an estimate of mini-

mizing cross entropy J in Eq. 4.11. To begin with, we start with the cross entropy J :

J = −
T−1∑
t=0

y(t) · ln ŷ(t)

= −
T−1∑
t=0

∑
s(t+1)

P (s(t+1)|s(t), ...s(0)) ln ŷ(t) (4.14)

where P (s(t+1)|s(t), ...s(0)) is the conditional probability of the physical system computed

from the one-hot vectors of the data. Even if the trajectory has dependency on its long-
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term history, as long as trajectory length T ≫ 0, we can approximate Eq. 4.14 as:

J ≈ −
T−1∑
t=0

∑
s(t+1)

Pr(s(t+1)|s(t), ...s(t−T )) ln ŷ(t) (4.15)

by letting s(m) = 0 for all negative m. As is typical in character-level language models

[162], we assume the embedding dimension M is much greater than the input dimension

N and rewrite the above equation as:

J = T

[
− 1

T

T−1∑
t=0

∑
x(t+1)

P (x(t+1)|x(t), ...x(t−T+1)) lnQ(x(t+1)|x(t), ...x(t−T ))

]
(4.16)

= T

[
1

T

T−1∑
t=0

J̄ (t)(x(t), ...x(t−T+1))

]
(4.17)

where J̃ (t)(x(t), ...x(t−T+1)) ≡ −
∑
x(t+1)

P (x(t+1)|x(t), ...x(t−T+1)) lnQ(x(t+1)|x(t), ...x(t−T+1))

is the cross entropy between conditional probabilities. With large enough T , we can also

assume ergodicity and convert the time average to ensemble average,

J ≈ T
∑

x(T−1)...x(0)

P (x(T−1), ...,x(0))J̄(x(T−1), ...x(0)) (4.18)

= −T
∑
x(T )

∑
x(T−1),x(T−2)...x(0)

P (x(T−1), ...,x(0))P (x(T )|x(T−1)...,x(0)) lnQ(x(T )|x(T−1)...,x(0))

(4.19)

= −T
∑

x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T )|x(T−1)...,x(0)) (4.20)
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The cross entropy J achieves its global minima when Q approaches P :

Q(x(t+1)|x(t), ...x(t−T+1)) → P (x(t+1)|x(t), ...x(t−T+1)) ∀ t (4.21)

We also know that

Q(x(T )|x(T−1), ...,x(0)) =
Q(x(T ), ...,x(0))

Q(x(T−1), ...,x(0))
(4.22)

Plugging Eq. 4.22 in Eq. 4.20,

J = −T
∑

x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T )|xT−1, ...,x(0))

= −T
∑

x(T )...x(0)

[
P (x(T ), ...,x(0)) lnQ(x(T ), ...,x(0))− P (x(T ), ...,x(0)) lnQ(x(T−1), ...,x(0))

]
= −T

∑
x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T ), ...,x(0)) + T
∑

x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T−1), ...,x(0))

= J ′ − J ′′

where Q(x(T ), ...,x(0)) → P (x(T ), ...,x(0)) during the minimization. Here we have de-

fined J ′ and J ′′ as follows:

J ′ ≡ −T
∑

x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T ), ...,x(0)) (4.23)

J ′′ ≡ −T
∑

x(T )...x(0)

P (x(T ), ...,x(0)) lnQ(x(T−1), ...,x(0)) (4.24)

= −T
∑

x(T−1)...x(0)

P (x(T−1), ...,x(0)) lnQ(x(T−1), ...,x(0)) (4.25)
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Since the summations run over the state space such that the normalization condition of

P and Q holds, according to Gibbs’ inequality J ′ and J ′′ both are well-defined cross

entropies, and their global minima happen when Q = P . Therefore, minimizing J leads

to minimization of both J ′ and J ′′, at which point both J ′ and J ′′ are path entropies.

We can also conversely show how Eq. 4.12 reduces to Eq. 4.11 by assuming a

stationary first-order Markov process as in Ref. [125]:

P (x(T )...x(0)) = P (x(T )|x(T−1))...P (x(1)|x(0))P (x(0))

Q(x(T )...x(0)) = Q(x(T )|x(T−1))...Q(x(1)|x(0))Q(x(0)) (4.26)

where P (x(t+1)
j |x(t)

i ) ≡ Pij is the transition probability from state xi to state xj and

P (x
(0)
k ) ≡ Pk is the occupation probability for the single state xk. Plugging Eq. 4.26 into

Eq. 4.12, and following the derivation in Ref. [125] with the constraints

∑
j

Pij = 1
∑
i

PiPij = Pj (4.27)

we arrive at an expression for the cross-entropy J , which is very similar to the path en-

tropy type expressions derived for instance in the framework of Maximum Caliber [125]:

J ′ = −
∑
i

Pi lnQi − T
∑
lm

PlPlm ln(Qlm) (4.28)

→ −T
∑
lm

P (xl)P (xm|xl) lnQ(xm|xl) (4.29)

In Eq. 4.28 as the trajectory length T increases, the second term dominates in the estimate
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of J leading to Eq. 4.29. This second term is the ensemble average of a time-dependent

quantity J̃(x
(t)
l ) ≡ −

∑
m P (x

(t+1)
m |x(t)

l ) lnQ(x
(t+1)
m |x(t)

l ). For a large enough T , the

ensemble average can be replaced by the time average. By assuming ergodicity [163]:

J ′ = −
T∑
t=1

∑
m

P (x(t+1)
m |x(t)

l ) lnQ(x(t+1)
m |x(t)

l ) (4.30)

from which we directly obtain Eq. 4.11. Therefore, under first-order Markovianity and

ergodicity, minimizing the loss function J of Eq. 4.11 is equivalent to minimizing J ′ and

thereby learning the path entropy.

4.2.3 Embedding layer captures kinetic distances

In word embedding theory, the embedding layer provides a measure of similarity

between words. However, from the path probability representation, it is unclear how the

embedding layer works since the derivation can be done without embedding vectors x.

To have an understanding to Qlm in the first-order Markov process, we first write the

conditional probability Qlm = Q(x
(t+1)
m |x(t)

l ) explicitly with softmax defined in Eq. 4.10

and embedding vectors x defined in Eq. 4.3:

Qlm =
exp(s

(t+1)
m · (Ddh

(t) + bd))∑
k exp(sk · (Ddh(t) + bd))

=
exp(s

(t+1)
m · (Ddfθ(x

(t)) + bd))∑
k exp(sk · (Ddfθ(x(t)) + bd))

(4.31)

where f is the recursive function h(t) = fθ(x
(t),h(t−1)) ≈ fθ(x

(t)) which is defined with

the update equation in Eq. 4.4-4.9. In Eq. 4.31, θ denotes various parameters including all
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weight matrices and biases, and the summation index k runs over all possible states. Now

we can use multivariable Taylor’s theorem to approximate fθ as the linear term around a

point a as long as a is not at any local minimum of fθ:

fθ(x
(t)) ≈ fθ(a) +Aθ(x

(t) − a) (4.32)

where Aθ is the L byM matrix defined to be (Aθ)ij =
∂(fθ)i
∂xj

|x=a. Then Eq. 4.31 becomes

Qlm =
exp(C

(t+1)
m ) exp(s

(t+1)
m ·DdAθx

(t)
l )∑

k exp(Ck) exp(sk ·DdAθx
(t)
l )

(4.33)

where C(t+1)
i = s

(t+1)
i · [Dd(fθ(al) + Aθal) + bd]. We can see in Eq. 4.33 how the

embedding vectors come into the transition probability. Specifically, there is a symmetric

form between output one-hot vectors s
(t+1)
m and the input one-hot vectors s(t), in which

x(t) = Λs(t) and Λ is the input embedding matrix, DdAθ can be seen as the output

embedding matrix, and C(t+1)
i is the correction of time lag effect. While we don’t have

an explicit way to calculate the output embedding matrix so defined, Eq. 4.33 motivates

us to define the following ansatz for the transition probability:

Qlm = Q(xm|xl) =
exp(xm · xl)∑
k exp(xk · xl)

(4.34)

where xm and xl are both calculated by the input embedding matrix Λ. The expression

in Eq. 4.34 is thus a tractable approximation to the more exact transition probability in

Eq. 4.33. Furthermore, we show through numerical examples of test systems that our

ansatz for Qlm does correspond to the kinetic connectivity between states. That is, the
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LSTM embedding layer with the transition probability through Eq. 4.34 can capture the

average commute time between two states in the original physical system, irrespective of

the quality of low-dimensional projection fed to the LSTM [117, 118, 164].

4.3 Model set-up and simulation details

In this section, we will introduce the model potentials and simulations that we will

use later in the discussion of Sec. 4.4.

4.3.1 Model potential details

All model potentials have two degrees of freedom x and y. Our first two models

(shown in Fig. 4.8a and Fig. 4.8b) have three metastable states with governing potential

U(x, y) given by

U(x, y) = W (x6 + y6)−G(x, x1)G(y, y1)

−G(x, x2)G(y, y2)−G(x, x3)G(y, y3) (4.35)

where W = 0.0001 and G(x, x0) = e−
(x−x0)2

2σ2 denotes a Gaussian function centered at

x0 with width σ = 0.8. We also build a 4-state model system with governing interaction
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potential:

U(x, y) = W (x4 + y4) +G(x, 0.0)G(y, 0.0)

−G(x, 2.0)G(y,−1.0)−G(x, 0.5)G(y, 2.0)

−G(x,−0.5)G(y,−2.0)−G(x,−2.0)G(y, 1.0) (4.36)

The different local minima corresponding to the model potentials in Eq. 4.35 and Eq. 4.36

are illustrated in Fig. 4.8. We call these as linear 3-state, triangular 3-state, and 4-state

models respectively. The free energy surfaces generated from the simulation of Langevin

dynamics [165] with these model potentials are shown in Figs. 4.8a-c.

4.3.2 Molecular dynamics details

The integration timestep for the Langevin dynamics simulation was 0.01 units, and

the simulation was performed at β = 9.5 for linear 3-state and 4-state potentials and

β = 9.0 for triangular 3-state potential, where β = 1/(kBT ). The MD trajectory for

alanine dipeptide was obtained using the software GROMACS 5.0.4 [128, 129], patched

with PLUMED 2.4 [102]. The temperature was kept constant at 450K using the velocity

rescaling thermostat [100].

4.3.3 Representative trajectories and data pre-processing

In this section we provide representative trajectories obtained for the different sys-

tems described in the main text, where Fig. 4.3 is for linear 3-state model potential,

Fig. 4.4 is for triangular 3-state model potential, Fig. 4.5 is for 4-state model potential,
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Fig. 4.6 is for alanine dipeptide, and Fig. 4.7 is for force spectroscopy trajectory. We also

show how we removed ephemeral/spurious transitions by smoothening the binned trajec-

tory before feeding into the LSTM model, in order to make the learning process more

stable. The emphemoral/spurious transitions happened due to the use of only 3 labels for

3-state model systems and 4 labels for 4-state model system when projecting on the x-

axis. It is not related to the learning quality of LSTM. With more labels or finer binning,

we can avoid producing those spurious states and train the LSTM without smoothening

binned trajectory before feeding into the model. This can be seen from the example of

alanine dipeptide (Fig. 4.6), where we did not smoothen the trajectory.

4.4 Results

To demonstrate our ideas, here we consider a range of different dynamical trajecto-

ries. These include three model potentials, the popular model molecule alanine dipeptide,

and trajectory from single molecule force spectroscopy experiments on a multi-state ri-

boswitch [159]. The sample trajectories of these test systems and the data preprocessing

strategies are shown in Sec. 4.3. When applying our neural network to the model systems,

the embedding dimension M is set to 8 and LSTM unit L set to 64. When learning tra-

jectories for alanine dipeptide and riboswitch, we took M = 128 and L = 1024. All time

series were batched into sequences with a sequence length of 100 and the batch size of 64.

For each model potential, the neural network was trained using the method of stochastic

gradient descent for 20 epochs until the training loss becomes smaller than the validation

loss, which means an appropriate training has been reached. For alanine dipeptide, 40
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Figure 4.3: Trajectories for linear 3-state model potential. a The actual trajectory
with location of metastable states shown by horizontal solid and dashed lines. b The
trajectory after spatial discretization, where the trajectory now consists of a sequence
of labels representing metastable states. To make the learning process more stable, we
removed ephemeral/spurious transitions by smoothening before feeding into the LSTM
model. c The trajectory generated by our LSTM model.
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Figure 4.4: Trajectories for triangular 3-state model potential. a The actual trajectory
with location of metastable states shown by horizontal solid and dashed lines. b The
trajectory after spatial discretization, where the trajectory now consists of a sequence
of labels representing metastable states. To make the learning process more stable, we
removed ephemeral/spurious transitions by smoothening before feeding into the LSTM
model. c The trajectory generated by our LSTM model.
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Figure 4.5: Trajectories for 4-state model potential. a The actual trajectory with lo-
cation of metastable states shown by horizontal solid and dashed lines. b The trajec-
tory after spatial discretization, where the trajectory now consists of a sequence of labels
representing metastable states. To make the learning process more stable, we removed
ephemeral/spurious transitions by smoothening before feeding into the LSTM model. c
The trajectory generated by our LSTM model.

training epochs were used. Our neural network was built using TensorFlow version 1.10.
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Figure 4.6: Trajectories along sinϕ for alanine dipeptide. a The actual MD trajectory
with location of metastable states shown by horizontal dashed lines. b The trajectory after
spatial discretization into 20 indexed positions. c The predicted trajectory generated by
our LSTM model.

97



0 200 400 600 800 1000

700

710

720
Ex

te
ns

io
n 

(n
m

) a

Raw data
Smoothened data

0 200 400 600 800 1000

700

710

720

Ex
te

ns
io

n 
(n

m
) b

Discretized data

0 200 400 600 800 1000
Time (ms)

700

710

720

Ex
te

ns
io

n 
(n

m
) c

LSTM

Figure 4.7: Trajectories for single molecule force spectroscopy experiment on ri-
boswitch. a The original trajectory and the corresponding smoothened trajectory. b The
trajectory after spatial discretization into 34 indexed positions. c The predicted trajectory
generated by the LSTM model.

4.4.1 Boltzmann statistics and kinetics for model potentials

The first test we perform for our LSTM set-up is its ability to capture the Boltzmann

weighted statistics for the different states in each model potential. This is the probability

distribution P or equivalently the related free energy F = − 1
β
logP , and can be calculated

by direct counting from the trajectory. As can be seen in Fig. 4.8, the LSTM does an

excellent job of recovering the Boltzmann probability within error bars.
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Figure 4.8: Boltzmann statistics for model systems. The analytical free energy gener-
ated from a linear 3-state, b triangular 3-state, c symmetric 4-state model potentials and
d, e, f are the corresponding 1-dimensional projections along x-direction. In the bottom,
we compare the Boltzmann probabilities of g linear 3-state, h triangular 3-state, and i
symmetric 4-state models for every labeled state generated from actual MD simulation
and from our long short-term memory (LSTM) network. The errorbars are calculated as
standard errors.

Next we describe our LSTM deals with a well-known problem in analyzing high-

dimensional data sets through low-dimensional projections. One can project the high-

dimensional data along many different possible low-dimensional order parameters, for

instance x, y or a combination thereof in Fig. 4.8. However most such projections will

end up not being kinetically truthful and give a wrong impression of how distant the

metastable states actually are from each other in the underlying high-dimensional space.

It is in general hard to come up with a projection that preserves the kinetic properties

of the high-dimensional space. Consequently, it is hard to design analysis or sampling
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methods that even when giving a time-series along a sub-optimal projection, still capture

the true kinetic distance in the underlying high-dimensional space.

Here we show how our LSTM model is agnostic to the quality of the low-dimensional

projection in capturing accurate kinetics. Given that for each of the 3 potentials the LSTM

was provided only the x−trajectory, we can expect that the chosen model potentials con-

stitute different levels of difficulties in generating correct kinetics. Specifically, a one-

dimensional projection along x is kinetically truthful for the linear 3-state potential in

Fig. 4.8a but not for the triangular 3-state and the 4-state potentials in Figs. 4.8b and c

respectively. For instance, Fig. 4.8e gives the impression that state C is kinetically very

distant from state A, while in reality for this potential all 3 pairs of states are equally close

to each other. Similar concerns apply to the 4-state potential.

In Figs. 4.9 and 4.10a-c and d-f we compare the actual versus LSTM-predicted

kinetics for moving between different metastable states for different model potentials, for

all pairs of transitions in both directions (i.e. for instance A to B and B to A). Specifically,

Fig. 4.9a-c and Fig. 4.9d-f shows results for moving between the 3 pairs of states in the

linear and triangular 3-state potentials respectively. Fig. 4.10 shows results for the 6 pairs

of states in the 4-state potential. Furthermore, for every pair of state, we analyze the

transition time between those states as a function of different minimum commitment or

commit time, i.e. the minimum time that must be spent by the trajectory in a given state

to be classified as having committed to it. A limiting value, and more specifically the

rate at which the population decays to attain to such a limiting value, corresponds to the

inverse of the rate constant for moving between those states [166, 167]. Thus here we

show how our LSTM captures not just the rate constant, but time-dependent fluctuations
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in the population in a given metastable state as equilibrium is attained. The results are

averaged over 20 independent segments taken from the trajectories of different trials of

training for the 3-state potentials and 10 independent segments for the 4-state potential.

As can be seen in Figs. 4.9 and 4.10, the LSTM model does an excellent job of

reproducing well within errorbars the transition times between different metastable states

for different model potentials irrespective of the quality of the low-dimensional projec-

tion. Firstly, our model does tell the differences between linear and triangular 3-state

models (Fig. 4.9) even though the projected free energies along the x variable input into

LSTM are same (Fig. 4.8). The number of transitions between states A and C is less

than the others; while for triangular configuration, the numbers of transitions between all

pairs of states are similar. The rates at which the transition count decays as a function of

commitment time is also preserved between the input data and the LSTM prediction.

The next part of our second test is the 4-state model potential. In Fig. 4.10 we show

comparisons for all 6 pairs of transitions in both forward and reverse directions. A few

features are immediately striking here. Firstly, even though states B and C are perceived

to be kinetically proximal from the free energy (Fig. 4.8), the LSTM captures that they are

distal from each other and correctly assigns similar kinetic distance to the pairs B,C as it

does to A,D. Secondly, there is asymmetry between the forward and backward directions

(for e.g. A to D and D to A, indicating that the input trajectory itself has not yet sufficiently

sampled the slow transitions in this potential. As can be seen from Fig. 4.8c the input

trajectory has barely 1 or 2 direct transitions for the very high barrier A to D or B to C.

This is a likely explanation for why our LSTM model does a bit worse than in the other

two model potentials in capturing the slowest transition rates, as well as the higher error
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bars we see here. In other words, so far we can conclude that while our LSTM model

can capture equilibrium probabilities and transition rates for different model potentials

irrespective of the input projection direction or order parameter, it is still not a panacea

for insufficient sampling itself, as one would expect.
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Figure 4.9: Kinetics for 3-state model systems. Number of transitions between different
pairs of metastable states as a function of commitment time defined in Results. The
calculations for linear and triangular configurations are shown in a-c and d-f respectively.
Error bars are illustrated and were calculated as standard errors.
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Figure 4.10: Kinetics for 4-state model system. Number of transitions between different
pairs of metastable states as a function of commitment time defined in Results for 4-state
model system. Error bars are illustrated and were calculated as standard errors.

4.4.2 Boltzmann statistics and kinetics for alanine dipeptide

Finally, we apply our LSTM model to the study of conformational transitions in

alanine dipeptide, a model biomolecular system comprising 22 atoms, experiencing ther-

mal fluctuations when coupled to a heat bath. The structure of alanine dipeptide is shown
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Alanine dipeptide

CVs Label C7eq to C7ax (ps) C7ax to C7eq (ps)

sinϕ
actual 5689.22 ± 962.366 107.93 ± 11.267

LSTM 5752.16 ± 710.399 103.81 ± 14.268

sinψ
actual 5001.42 ± 643.943 105.70± 13.521

LSTM 4325.01 ± 526.293 81.68 ± 10.288

Table 4.1: Kinetics for alanine dipeptide. Inverse of transition rates for conformational
transitions in alanine dipetide calculated from actual MD trajectories of LSTM model.
Here we show the calculation along two different CVs: sinϕ and sinψ.

in Fig. 4.11a. While the full system comprises around 63 degrees of freedom, typically

the torsional angles ϕ and ψ are used to identify the conformations of this peptide. Over

the years a large number of methods have been tested on this system in order to perform

enhanced sampling of these torsions, as well as to construct optimal reaction coordi-

nates [28, 119, 168, 169]. Here we show that our LSTM model can very accurately cap-

ture the correct Boltzmann statistics as well as transition rates for moving between the two

dominant metastable states known asC7eq andC7ax. Importantly, the reconstruction of the

equilibrium probability and transition kinetics, as shown in Fig. 4.11 and Table 4.1 is ex-

tremely accurate irrespective of the choice of one-dimensional projection time series fed

into the LSTM. Specifically, we do this along sinϕ and sinψ, both of which are known to

quite distant from an optimized kinetically truthful reaction coordinate [116, 158], where

again we have excellent agreement between input and LSTM-predicted results.
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Figure 4.11: Boltzmann statistics for alanine dipeptide. a The molecular structure of
alanine dipeptide used in the actual MD simulation. The torsional angles ϕ and ψ as the
collective variables (CVs) are shown. b and c The 1-dimensional free energy curves along
sinϕ and sinψ are calculated using actual MD data and the data generated from LSTM.

4.4.3 Learning from single molecule force spectroscopy trajectory

In this section, we use our LSTM model to learn from single molecule force spec-

troscopy experiments of a multi-state riboswitch performed with a constant force of 10.9

pN . The data points are measured at 10 kHz (i.e., every 100 µs). Other details of the ex-

periments can be found in Ref. [159]. The trajectory for a wide range of extensions start-

ing 685 nm up to 735 nm was first spatially discretized into 34 labels, and then converted

to a time series of one hot vectors, before being fed into the LSTM model. The results

are shown in Fig. 4.12. In Fig. 4.12a, we have shown an agreement between a profile of
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Figure 4.12: Boltzmann statistics and kinetics for riboswitch. Using LSTM model to
learn thermodynamics and kinetics from a folding and unfolding trajectory taken from
a single molecule force spectroscopy measurement [159]: a Comparison between the
probability density learned by the LSTM model and calculated from the experimental
data. The regions between errorbars defined as standard errors are filled with blue color.
b-d Commit time plots calculated by counting the transitions in the trajectory generated
by LSTM and the experimental trajectory. The commit time is the minimum time that
must be spent by the trajectory in a given state to be classified as having committed to it.
Error bars are illustrated and were calculated as standard errors.

probability density averaged over 5 independent training sets with the probability density

calculated from the experimental data. Starting from the highest extension, the states are

fully unfolded (U), longer intermediate (P3) and shorter intermediate (P2P3) [159]. From

Fig. 4.12b-c, we see that the LSTM model captures the kinetics for moving between all 3

pairs of states for a very wide range of commitment times.
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4.4.4 Embedding layer based kinetic distance

In Eq. 4.33, we derived a non-tractable relation for conditional transition probabil-

ity in the embedding layer, and then through Eq. 4.34 we introduced a tractable ansatz

in the spirit of Eq. 4.33. Here we revisit and numerically validate Eq. 4.34. Specifically,

given any two embedding vectors xl and xm calculated from any two states l and m, we

estimate the conditional probability Qlm using Eq. 4.34. We use Qi to denotes the Boltz-

mann probability predicted by the LSTM model. We then write down the interconversion

probability klm between states l and m as:

klm = QlQlm +QmQml ≡ 1/tlm (4.37)

From inverting this rate we then calculate an LSTM-kinetic time as tlm ≡ 1/klm =

1/(QlQlm + QmQml). In Fig. 4.13, we compare tlm with the actual transition time τlm

obtained from the input data, defined as

τlm = T/⟨Nlm⟩ (4.38)

Here Nlm is the mean number of transitions between state l and m. As this number varies

with the precise value of commitment time, we average Nlm over all commit times to

get ⟨Nlm⟩. These two timescales tlm and τlm thus represent the average commute time

or kinetic distance [117, 118] between two states l and m. To facilitate the comparison

between these two very differently derived timescales or kinetic distances, we rescale and
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shift them to lie between 0 and 1. The results in Fig. 4.13 show that the embedding vec-

tors display the connectivity corresponding to the original high-dimensional configuration

space rather than those corresponding to the one-dimensional projection. The model cap-

tures the correct connectivity by learning kinetics, which is clear evidence that it is able

to bypass the projection error along any degree of freedom. The result also explains how

is it that no matter what degree of freedom we use, our LSTM model still gives correct

transition times. As long as the degree of freedom we choose to train the model can be

used to discern all metastable states, we can even use Eq. 4.34 to see the underlying con-

nectivity. Therefore, the embedding vectors in LSTM can define a useful distance metric

which can be used to understand and model dynamics, and are possibly part of the reason

why LSTMs can model kinetics accurately inspite of quality of projection and associated

non-Markvoian effects.
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Figure 4.13: Analysis of embedding layers for model systems. Our analysis of the
embedding layer constructed for a the linear and triangular 3-state and b the 4-state model
systems. In a, we use solid circle and empty square markers respectively to represent
linear and triangular 3-state model potentials. In each plot, the data points are shifted
slightly to the right for clarity. The distances marked actual and LSTM represent rescaled
mean transition times as per Eqs. 4.38 and 4.37 respectively. Error bars were calculated
as standard errors over 50 different trajectories.
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4.4.5 Comparing with Markov state model and Hidden Markov Model

In this section, we briefly compare our LSTM model with standard approaches for

building kinetic models from trajectories, namely the Markov state model (MSM) [34]

and Hidden Markov model (HMM) [170–172]. Compared to LSTM, the MSM and HMM

have smaller number of parameters, making them faster and more stable for simpler sys-

tems. However, both MSM and HMM require choosing an appropriate number of states

and lag time [34, 172, 173]. Large number of pre-selected states or small lag time can

lead to non-Markovian behavior and result in an incorrect prediction. Even more criti-

cally, choosing a large lag time also sacrifices the temporal precision. On the other hand,

there is no need to determine the lag time and number of states using the LSTM network

because LSTM does not rely on the Markov property. Choosing hyperparameters such as

M and L may be comparable to choosing number of hidden states for HMM, while very

similar values of M and L worked for systems as different as MD trajectory of alanine

dipeptide and single molecule force spectroscopy trajectory of a riboswitch. At the same

time, LSTM always generates the data points with the same temporal precision as it has

in the training data irrespective of the intrinsic timescales it learns from the system. In

Fig. 4.14, we provide the results of using HMM and MSM for the riboswitch trajectory

with the same binning method and one-hot encoded input, to be contrasted with similar

plots using LSTM in Fig. 4.12. Indeed both MSM and HMM achieve decent agreement

with the true kinetics only if the commit time is increased approximately beyond 10 ms,

while LSTM as shown in Fig. 4.12 achieved perfect agreement for all commit times.

From this figure, it can be seen that the LSTM model achieves an expected agreement
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Model System Model training (s) Simulate data (s)

LSTM
linear 3-state 103 53.4

triangular 3-state 103 213.7
4-state 183 642.0

Table 4.2: Computational effort for a LSTM run.

Model τ Find tI (s) CK test (s) Model building (s) Simulate data (s)

MSM
1

23.9±0.08
32.6±0.36 3.0±0.04 84.4±3.3

5 35.6±0.36 2.9±0.04 15.4±0.22

HMM
1

48.6±1.89
597.0±7.39 79.4±1.34 290.6±4.01

5 134.2±1.00 157.2±0.52 57.8±0.77

Table 4.3: Computational efforts for Makov state model (MSM) and Hidden Markov
Model (HMM) when analyzing trajectories from model systems. The computational
efforts for MSM and HMM when analyzing trajectories from model systems. τ and tI are
the lag time used for building the models and the implied timescale of the system. The
recorded times are the sum for linear 3-state, triangular 3-state, and 4-state. The results
are averaged over 5 independent runs.

with as fine of a temporal precision as desired, even though we use 20 labels for alanine

dipeptide and 34 labels for experimental data to represent the states. The computational

efforts needed for the various approaches (LSTM, MSM and HMM) are also provided

in the Table. 4.2-4.3, where it can be seen that LSTM takes similar amount of effort as

HMM. The package we used to build the MSM and HMM is PyEMMA with version

2.5.6 [174]. The models were built with lag time=0.5ms for MSM and lag time=3ms for

HMM, where the HMM were built with number of hidden states=3.

4.5 Conclusion and outlook

In summary we believe this work demonstrates potential for using AI approaches

developed for natural language processing such as speech recognition and machine trans-

lation, in unrelated domains such as chemical and biological physics. This work repre-

sents a first step in this direction, wherein we used AI, specifically LSTM flavor of recur-
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Figure 4.14: Riboswitch kinetics through alternate approaches. Number of transitions
between different pairs of metastable states as a function of commitment time defined in
Results for the single molecule spectroscopy trajectory as learned by MSM (left column)
and HMM (right column). Associated error bars calculated as standard errors are also
provided.

rent neural networks, to perform kinetic reconstruction tasks that other methods [123,175]

could have also performed. We would like to argue that demonstrating the ability of AI

approaches to perform tasks that one could have done otherwise is a crucial first step.
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In future works we will exploring different directions in which the AI protocol devel-

oped here could be used to perform tasks which were increasingly non-trivial in non-AI

setups. More specifically, in this work we have shown that a simple character-level lan-

guage model based on LSTM neural network can learn a probabilistic model of a time

series generated from a physical system such as an evolution of Langevin dynamics or

MD simulation of complex molecular models. We show that the probabilistic model can

not only learn the Boltzmann statistics but also capture a large spectrum of kinetics. The

embedding layer which is designed for encoding the contextual meaning of words and

characters displays a nontrivial connectivity and has been shown to correlate with the

kinetic map defined for reversible Markov chains [117, 118, 176]. An interesting future

line of work for the embedding layer can be to uncover different states when they are

incorrectly represented by the same reaction coordinate value, which is similar to finding

different contextual meaning of the same word or character. For different model systems

considered here, we could obtain correct timescales and rate constants irrespective of the

quality of order parameter fed into the LSTM. As a result, we believe this kind of model

outperforms traditional approaches for learning thermodynamics and kinetics, which can

often be very sensitive to the choice of projection. Finally, the embedding layer can be

used to define a new type of distance metric for high-dimensional data when one has ac-

cess to only some low-dimensional projection. In the next chapter, we will introduce a

simple yet powerful method that allows the LSTM model to extrapolate new physics. We

hope that this work represents a first step in the use of RNNs for modeling, understanding

and predicting the dynamics of complex stochastic systems found in biology, chemistry

and physics.
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Chapter 5: Path sampling of recurrent neural networks by incorporating

known physics

5.1 Introduction

In Chapter. 4, we have proposed using a neural network-based language model built

upon long short-term memory (LSTM) to model long-term dependency within time series

obtained from MD simulations and single-molecule force spectroscopy experiments. We

show that our simple character-level language model can capture correct kinetic connec-

tivity. However, LSTM can’t learn physics that it doesn’t see in the training data. In this

chapter, we will introduce a simple yet powerful approach to overcome this limitation.

We will then show how we let LSTM extrapolate physics that it doesn’t see in the training

data.

Artificial neural networks (ANNs) and modern-day Artificial Intelligence (AI) seek

to mimic the considerable power of a biological brain to learn information from data

and robustly perform a variety of tasks, such as text and image classifications, speech

recognition, machine translation, and self-driving cars [143–145, 147, 152, 177–180]. In

recent years, ANNs have been shown to even outperform humans in certain tasks such

as playing board games and weather prediction [146, 181, 182]. Closer to physical sci-
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ences, ANNs have been used to make predictions of folded structures of proteins [183],

accelerate all-atom molecular dynamics (MD) simulations [156,158,184,185], learn bet-

ter order parameters in complex molecular systems [186–189], and many other exciting

applications. While the possible types of ANNs is huge, in this work we are interested in

Recurrent Neural Networks (RNNs). These are a class of ANNs that incorporate memory

in their architecture allowing them to directly capture temporal correlations in time series

data. [149,190] Furthermore, RNN frameworks such as long short-term memory (LSTM)

neural networks [150] can account for arbitrary and unknown memory effects in the time

series being studied. These features have made RNNs very popular for many applica-

tions such as weather, stock market prediction and dynamics of complex molecular sys-

tems [130, 146, 147, 191]. In such applications, the assumption of independence between

data points at different time steps is also invalid, and furthermore events that occurred at

an arbitrary time in the past can have an effect on future events [130, 146, 147, 149].

In spite of their staggering success, one concern applicable to RNNs and ANNs

in general is that they are only able to capture the information present in their training

datasets, unless additional knowledge or constraints are incorporated. Since a training

dataset is limited by incomplete sampling of the unknown, high-dimensional distribution

of interest, this can cause a model to overfit and not precisely represent the true distribu-

tion [192]. For instance, in the context of training MD simulations, partial sampling when

generating a training dataset is almost unavoidable. This may come from only being able

to simulate dynamics on a particular timescale that is not long enough to completely cap-

ture characteristics of interest [193] or simply thermal noise which could manifest as a

misleading violation of detailed balance [194]. In such cases, enforcing a constraint cor-
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responding to the characteristic of interest when training an RNN-based model is critical

for accurately modeling the true underlying distribution of data.

Given the importance of this problem, numerous approaches have been proposed in

the recent past to add constraints to LSTMs, which we summarize in Sec. 5.2.1. However,

they can generally only deal with very specific types of constraints, complicated further

by the recurrent or feedback nature of the networks [195–197]. In this work we provide a

generalizable, statistical physics based approach to add a variety of constraints to LSTMs.

To achieve this, we use ideas of path sampling combined with LSTM, facilitated through

the principle of Maximum Caliber. Our guiding principle is our previous work [130]

where we show that training an LSTM model is akin to learning path probabilities of

the underlying time series. This facilitates generating a large number of trajectories in a

controlled manner and in parallel, that conform to the thermodynamic and dynamic fea-

tures of the input trajectory. From these, we select a sub-sample of trajectories that are

consistent with the desired static or dynamical knowledge. The bias due to sub-sampling

is accounted for using the Maximum Caliber framework [126] by calculating weights for

different possible trajectories. A new round of LSTM is then trained on these sub-sampled

trajectories that in one-shot combines observed time series with known static and dynam-

ical knowledge. This framework allows for constrained learning without incorporating

an explicit constraint within the loss function. We demonstrate the usefulness of our ap-

proach on several problems, including constraining the dynamics of the 3-state Markov

model, correcting the predictions of left and right helix states of a synthetic peptide α-

aminoisobutyric acid 9 (Aib9) by LSTM on long timescale, and predicting the transition

times of slow modes by incorporating and constraining small structural fluctuations.

115



5.2 Theory

5.2.1 Previous approaches to add constraints to LSTM networks and their

limitations

A naive way of applying constraints when training LSTMs is incorporating a term

within the loss function in Eq. 4.11 whose value decreases as the model’s adherence to

the constraint increases. This approach has been successfully applied for instance in the

context of 4-D flight trajectory prediction [195]. A limitation of this naive approach is

that the desired constraint must have an explicit mathematical formulation parameterized

by the RNN’s raw output, so that the value of the regularization term in the constraint can

be adjusted through training. In the case of LSTMs, the raw output of the model passed

through a softmax layer is equivalent to the probability of a future event conditioned on

an observed past event. Formulating mathematical constraints solely in terms of such

conditional probabilities has been done for specific constraints [195] and can be very

challenging in general. Alternative more nuanced approaches to enforcing constraints

in LSTMs have also been employed specific to the particular application. For example,

when applying LSTMs to generate descriptions of input images, Ref. [196] constrained

part of speech patterns to match syntactically valid sentences by incorporating a part of

speech tagger, that tags words as noun, verb etc. within a parallel LSTM language model

architecture. The success of this approach relies on being able to reliably introduce more

information to the model through the predictive part of the speech tagger. In applying

LSTMs to estimating geomechanical logs, Ref. [197] incorporated a physical constraint
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by adding an additional layer into the LSTM architecture to represent a known interme-

diate variable in physical models. The success of this approach as well relies on utilizing

a known physical mechanism involved in the specific engineering problem.

5.2.2 Our approach: Path-sampled LSTM

The approaches described in Sec. 5.2.1 while useful in the specific contexts for

which they were developed, are not generally applicable to different constraints. For in-

stance, when combining experimental time series for molecular systems with known the-

oretical knowledge, the constraints are often meaningful only in an ensemble-averaged

sense. This per definition involves replicating many copies of the same system. With dy-

namical constraints involving rates of transitions, the problem is arguably even harder as it

involves averaging over path ensembles. Our statistical physics based approach deals with

these issues in a self-contained manner, facilitated by our previously derived connections

between LSTM loss functions and path entropy [130]. The key approach to constraining

the neural networks with desired physical properties is to sample a subset from predicted

trajectories generated from the trained LSTM models. The sampling is performed in a

way such that the subset satisfies desired thermodynamic or dynamic constraints. For a

long enough training set, we have shown in our previous work [130] that LSTM learns

the path probability, and thus a trained LSTM generates copies of the trajectory from the

correct path ensemble.

Our key idea behind constraining recurrent neural networks with desired physical

properties is to sample a subset from predicted trajectories generated from the trained
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LSTM models. The sampling is performed in a way such that the subset satisfies desired

thermodynamic or dynamic constraints. For a long enough training set, we have shown in

our previous work [130] that LSTM learns the path probability, and thus a trained LSTM

generates copies of the trajectory from the correct path ensemble. In other words, the final

output vector ŷ(t) will learn how to generate PΓ ≡ P (x(0)...x(T )), where PΓ is the path

probability associated to a specific path Γ in the path ensemble characterized by the input

trajectory fed to the LSTM. The principle of Maximum Caliber or MaxCal [96, 126, 198]

provides a way to build dynamical models that incorporate any known thermodynamic or

dynamic i.e. path-dependent constraints into this ensemble. Per MaxCal [126], one can

derive PΓ by maximizing the following functional called Caliber:

C =
∑
Γ

PΓ ln
PΓ

PU
Γ

−
∑
i

λi

(∑
Γ

si(Γ)PΓ − s̄i

)
(5.1)

where λi is the Lagrange multiplier associated to the i-th constraint that helps enforce

path-dependent static or dynamical variables si(Γ) to desired path ensemble averaged val-

ues s̄i. With appropriate normalization conditions for probabilities, maximizing Caliber

in Eq. 5.1 relates the constrained path probability P ∗
Γ to the reference or unconstrained

path probability PU
Γ as follows:

P ∗
Γ ∝ e−

∑
i λisi(Γ)PU

Γ (5.2)

From Eq. 5.2, it is easy to show that for two dynamical systems labelled A and B

that only differ in the ensemble averaged values for some j-th constraint being s̄Aj and s̄Bj ,
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Subset

Re-train LSTM with subset

P(si) ∝ e−Δλsi

LSTM

…Predict
Path sampling

s1

s2

s3

Time series

Train

Figure 5.1: Procedure for path sampling LSTM This schematic plot shows the work-
flow for constraining some static or dynamical variable s(Γi), given an unconstrained
LSTM model. The workflow begins with generating numerous predicted trajectories from
the constraint-free LSTM model. The corresponding variables that we seek to constrain
can be calculated from the predicted trajectories and are denoted by s(Γ1), s(Γ2), s(Γ3)
in the plot. We then perform a path sampling and select a smaller subset of trajec-
tories in a biased manner that conforms to the desired constraints, with a probability
P (s(Γi)) ∝ e−∆λs(Γi), where ∆λ is solved by the Eq. 5.4. The subset is then used as a
new dataset to train the LSTM model.

then their respective path probabilities for some path Γ are connected through:

PB
Γ ∝ e−∆λjsj(Γ)PA

Γ (5.3)

where ∆λj = λBj − λAj .

With this formalism at hand, we label our observed time series as the system A

and its corresponding path probability as PA
Γ . This time series or trajectory has some

thermodynamic or dynamical j-th observable equaling s̄Aj . On the basis of some other

knowledge coming from theory, experiments or intuition, we seek this observable to in-

stead equal s̄Aj . In accordance with Ref. [130] we first train a LSTM that learns PA
Γ . Our

objective now is to train a LSTM model that can generate paths with probability PB
Γ with
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desired, corrected value of the constraint. For this we use Eq. 5.3 to calculate ∆λ. This

is implemented through the following efficient numerical scheme. We write down the

following set of equations:

s̄Bj =
∑
Γ

PB
Γ sj(Γ)

=

∑
k∈Ω sj(Γk)e

−∆λjsj(Γk)∑
k∈Ω e

−∆λjsj(Γk)
(5.4)

where Ω is the set of labelled paths sampled from the path probability PA
Γ . By solving

for ∆λj from Eq. 5.4 we have the sought PB
Γ . In practice, this is achieved through the

procedure depicted in Fig. 5.1, where the LSTM model trained with time series for the

first physical system is used to generate a collection of predicted paths with a distribution

proportional to path probability PA
Γ . A re-sampling with an appropriate estimate of ∆λj is

then performed to build a subset. This value is obtained by computing the right hand side

of the second line in Eq. 5.4 over the resampled subset such that correct desired value of

the constraint is obtained. This subset denotes sampling from the desired path probability

PB
Γ and is used to re-train a new LSTM that will now give desired s̄Bj . The method can

be easily generalized to two or more constraints. For example, in order to solve for two

constraints, we can rewrite Eq. 5.3 as

PB
Γ ∝ e−∆λjsj(Γ)−∆λksk(Γ)PA

Γ (5.5)

where ∆λj and ∆λk are two unknown variables to be solved with two equations for the

ensemble averages s̄Bj and s̄Bk .
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Henceforth, we refer to the unconstrained version of LSTM as simply LSTM and

the constrained version introduced here as ps-LSTM for “path sampled” LSTM.

5.2.3 Solving state-to-state transitions of Markov processes

In this section we develop useful, exact results for constraining state-to-state tran-

sitions in Markov processes that serve as useful benchmarking. It has been shown that if

constraining pairwise statistics, maximizing Eq. 5.1 with appropriate normalization con-

ditions yields the Markov process [199]

P ∗
Γ = pi0

T−1∏
k=0

pikik+1
(5.6)

where pikik+1
are the time-independent transition probabilities defined by the Markov tran-

sition matrix. For such simple Markovian dynamics, we can easily solve for the outcome

transition kernel by the ∆λ chosen.

Now we suppose we would like to adjust the frequency of transition from state m

to state n. With Eq. 5.6, following Ref. [199], we can rewrite Eq. 5.3 as

T−1∏
k=0

pBikik+1
∝ e−∆λ

∑T−1
k=0 δik,mδik+1,n

T−1∏
k=0

pAikik+1
(5.7)

where δij is the Kronecker delta, equalling 1 when i = j and 0 otherwise. Therefore, it

can then be shown that

pBmn ∝ e−∆λ · pAmn (5.8)
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Eq. 5.8 with predetermined ∆λ can be used to predict our numerical results.

Based on Eq. 5.12 and the equations in the Appendix, we can analyze the difference

in transition kernel:

pps−LSTM
mn ∝ e

− ∆λ
Ltraj

(δm0δn1+δm1δn0+δm1δn2+δm2δn1) · pLSTM
mn (5.9)

where ∆λ we used is -56.1.

5.3 Model set-up and simulation details

In this section, we will introduce the model potentials and simulations that we will

use later in the discussion of Sec. 5.4.

5.3.1 Markov dynamics details

The time series used for training with the 3 state Markov dynamics was generated

through random sampling using the transition probability matrix shown below in Eq. 5.10.

The length of the time series used for input was 300000 units. The transition probability

matrix P used to generate 3-state Markov dynamics is given by:

P =


0.9300 0.0667 0.0033

0.0667 0.8667 0.0667

0.0033 0.0667 0.9300

 (5.10)

Predictions with the ps-LSTM when trained with the 3-state Markov Dynamics
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yielded the following transition matrix when constraining the first nearest neighbor tran-

sition rate

P =


0.8886± 0.00039 0.1078± 0.00039 0.0036± 0.00004

0.0833± 0.00057 0.8380± 0.00105 0.0787± 0.00056

0.0084± 0.00009 0.1029± 0.00047 0.8887± 0.00050

 (5.11)

5.3.2 Molecular dynamics and neural network details

The MD trajectory for Aib9 was obtained using the software GROMACS 5.0.4

[128, 129], patched with PLUMED 2.4 [102]. The Aib9 molecule consists of 129 atoms

solvated with 1540 TIP3P [200, 201] water molecules. CHARMM36m30 all atom force

field is used to parametrize the Aib9. Molecular dynamics (MD) was performed to gener-

ate the time-series, with temperature 500K using the Nose-Hoover thermostat [202] and

the pressure maintained at ambient pressure with Parrinello-Rahman barostat [203]. The

molecular dynamics integration time step is 2fs.

For training an LSTM to learn the 3-state Markov dynamics, we took the embedding

dimension M = 8 and the LSTM unit L = 128. The time series were batched into

sequences with a sequence length of 35 and the batch size of 64. The models were trained

with the method of stochastic gradient descent for 10 epochs. After sampling 100 LSTM

predictions of length 100 with ∆λ = -56.1 defined in Sec. 5.2.2, a ps-LSTM was retrained

with the same hyperparameters except for increasing epochs to 350. For training LSTM

to learn Aib9, we discretized the input into 32 states, took the embedding dimension

M = 32 and the LSTM unit L = 64. The time series were batched into sequences
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with a sequence length of 100 and the batch size of 64. The model was trained with the

method of stochastic gradient descent for 40 epochs. The subsets consist of 10 selected

trajectories for constraining the Aib9 MD simulations.

5.4 Results

5.4.1 Three-state Markovian dynamics

For the first illustrative example, we apply LSTM to a 3 state model system fol-

lowing Markovian dynamics for moving between the 3 states. This system, comprising

states labelled 0, 1 and 2 is illustrated in Fig. 5.2(a). Fig. 5.2(a) also shows the state-to-

state transition rates for the unconstrained system. We then seek to constrain the average

number of transitions per unit time between states 0,1 and 1,2 as defined below

⟨N⟩ = 1

Ltraj

(N0↔1 +N1↔2) (5.12)

where Ltraj is the length of trajectory and N0↔1 and N1↔2 are the number of times a

transition occurs between states 0 and 1 or states 1 and 2 respectively. This example can

then be directly compared with the analytical result Eq. 5.8 derived in Sec. 5.2.3, thereby

validating the findings from ps-LSTM.

Given the transition kernel shown in Fig. 5.2 (a), we generate a time series that

conforms to it. Following Sec. 5.2.2, we train ps-LSTM using this time series and the

constraint on ⟨N⟩ described in Eq. 5.12. As per the Markovian transition kernel we have

⟨N⟩ = 0.0894, while we seek to constrain it to 0.13. In other words, given a time series
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we want to increase the number of transitions per unit time between 2 of the 3 pairs

of states. In Fig. 5.2 (b), we show the transition kernel obtained from the time series

generated by ps-LSTM via direct counting. Fig. 5.2 (c) provides values of ⟨N⟩ from the

analytical transition kernel provided in Sec. 5.3.1 and those generated from the constraint-

free LSTM and ps-LSTM. In particular, we would like to highlight that when enforcing a

faster rate of state-to-state transitions sampling to increase the average number of nearest

neighbor transitions, the transition matrix of ps-LSTM predictions show correspondingly

increased rates of transition without completely destroying the original kinetics of the

system. Using Eq. 5.9 provided in Sec. 5.2.3, we can predict the new transition kernel

given by ps-LSTM. The comparison is also shown in Fig. 5.2.

5.4.2 MD simulations of α-aminoisobutyric acid 9 (Aib9)

For our second, more ambitious application, we study the 9-residue synthetic pep-

tide α-aminoisobutyric acid 9 (Aib9) [204, 205]. Aib9 undergoes transitions between

fully left-handed (L) helix and fully right-handed (R) helix forms. This is a highly col-

lective transition involving concerted movement of all 9 residues. During this global

transition, there are many alternate pathways that can be taken, connected through a net-

work of several lowly-populated intermediate states [204,205]. This makes it hard to find

a good low-dimensional coordinate along which the dynamics can be projected without

significant memory effects [204, 205]. The problem is further accentuated by the pres-

ence of numerous high-energy barriers between the metastable states that result in their

poor sampling when studied through all-atom MD. For example, through experimental
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(c)

(d)
Markov 3-state Input LSTM ps-LSTM, ⟨N⟩=0.13

⟨N⟩ 0.0894 0.0934±0.0015 0.1271±0.0001

(a) (b)

Figure 5.2: 3-state Markovian system: ps-LSTM and analytical predictions. Here we
show results of applying ps-LSTM to the 3 state Markovian system where we constrain
⟨N⟩. In (a), we provide the input transition kernel without constraints. In (b), we show
the transition kernel obtained from ps-LSTM generated time-series via direct counting,
where we achieve a ⟨N⟩ close to the target ⟨N⟩=0.13. In (c), we show the comparison
of the transition probabilities from state-m to n, pmn, between the input trajectory used
to train our newtork, the predicted values given from analytical results in Eq. 5.9, and
the actual transition probability obtained via direct counting using the 200 predictions by
ps-LSTM. The calculated values for ⟨N⟩ are shown in (d) for LSTM as the average of
100 predictions and for ps-LSTM as the average of 200 predictions.
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measurements [206] and enhanced sampling simulations [204, 205], the achiral peptide

should show the same equilibrium likelihood of existing in the L and R forms. However,

due to force-field inaccuracies [204] and insufficient sampling, MD simulations typically

are too short to obtain such a result. In the first type of constraint, which enforces static

or equilibrium probabilities, we show how our ps-LSTM approach can correct the time

series obtained from such a MD simulation to enforce the symmetric helicity. In a second

type of dynamical constraint, we show how we can enforce a desired local transition rate

between different protein conformations.

5.4.2.1 Equilibrium constraint on Aib9

We first discuss results for enforcing the constraint of symmetric helicity on Aib9,

shown in Fig. 5.3. Here we have defined the free energy F = −kBT lnP , where kB

and T are the Boltzmann constant and temperature, and P is the equilibrium probability

calculated by direct counting from a respective time series. In Figs. 5.3 (a)-(c) we have

projected free energies from different methods along the summation χ of the 5 inner

dihedral angles ϕ, which allows us to distinguish the L and R helices. We define χ ≡∑7
i=3 ϕi and note that χ ≈ 5.4 and χ ≈ −5.4 for L and R respectively [205]. In order

to have a reference to be compared with, we perform the simulation at temperature 500K

under ambient pressure. As can be seen from Fig. 5.3(b), we are able to see a symmetric

free energy profile after 100ns.

For LSTM to process the time series for χ as done in Ref. [130], we first spatially

discretize χ into 32 labels or bins. To quantify the symmetry between left- and right-
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handed populations, we define a symmetry parameter κ:

κ =

∑i=15
i=0 Pi∑i=32
i=16 Pi

(5.13)

where Pi denotes equilibrium probability for being found in bin label i. For symmetric

populations we expect κ ≈ 1. In Fig. 5.3 (a), we show the free energy from the first

20ns segment of time series from MD. This 20ns time series is then later used to train

our LSTM model. It can be seen that the insufficient amount of sampling results in an

incorrect asymmetry of populations between L and R helix states with κ ≈ 0.5. We

first train a constraint-free LSTM on this trajectory following Ref. [130] with which we

generate a 200ns time series for χ. Fig. 5.3(b) shows how a longer 200ns MD trajectory

would have been sufficient to converge to a symmetric free energy with κ ≈ 1. However,

Fig. 5.3(b) also shows the population along χ measured from the LSTM generated time

series, which preserves the initially asymmetry that it witnessed in the original training

trajectory.

In Fig. 5.3(c) we show the results from using ps-LSTM where we apply the con-

straint κ = 1. For this, we let the constraint-free LSTM model generate 200 indepden-

dent time series of length 20ns long and used the method from Sec. 5.2.2 to enforce the

constraint κ = 1 for 200ns long time series. We calculate κ values from the different pre-

dicted time series and use Eq. 5.4 to solve for an appropriate ∆λ needed for ⟨κ⟩ = 1. We

then perform path sampling with a biased probability ∝ e−∆λ to select 10 trajectories from

the 200 predictions. These 10 time series were then used to construct a subset and train

a new ps-LSTM. As can be seen in Fig. 5.3(c), ps-LSTM captures the correct symmetric
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free energy profile giving κ = 1. Interestingly, ps-LSTM also significantly reduces the

deviations from the reference free energy at |χ| > 10. In Fig. 5.4, we have also provided

the eigenspectrum of the transition matrix and shown that relative to LSTM, ps-LSTM

pushes the kinetics for events across timescales in the correct direction. In Fig. 5.3(d), we

show the κ calculated from the trajectories of 20ns and 200ns MD simulations of Aib9

and from the predicted 200ns trajectories of LSTM and ps-LSTM.

5.4.2.2 Dynamical constraint on Aib9

Our second test is performed to enforce a dynamical constraint, i.e. one that explic-

itly depends on the kinetics of the system [97]. Specifically, we constrain the ensemble

averaged number of nearest neighbor transitions per unit time ⟨N⟩ along the sum of dihe-

dral angle χ introduced in Sec. 5.4.2.1. ⟨N⟩ is defined as

⟨N⟩ = 1

Ltraj

∑
i

Ni,i+1 (5.14)

where Ltraj is the length of trajectory, and Ni,i+1 equals 1 if the values of χ at times i and

i + 1 are separated only by a single bin, otherwise 0. The nearest neighbor transitions

can be seen as a quantification of diffusivity when comparing the form of transition rate

matrix from the discretized Smoluchowski equation to the one derived from principle of

Maximum Caliber [97]. In Fig. 5.5 (a), we show a free energy profile calculated from a

100ns MD trajectory. As can be seen here, this trajectory is long enough to give sym-

metric populations for the L and R helix states. We find that the averaged number of

nearest neighbor transitions ⟨N⟩ for this trajectory is approximately 0.4. In Fig. 5.5 (a)
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(a)

(b) (c)

Subset

Path sampling

Train with 
subset

Aib9 MD 20ns MD 200ns LSTM ps-LSTM

𝜿 0.478 1.149 0.867±0.385 1.209±0.143

(d)

P(κi) ∝ e−Δλsi

Figure 5.3: Comparing predictions at 200ns for different values of the symmetry
parameter κ. Here we show that ps-LSTM learns the correct symmetry κ. The original
training data is a 20ns Aib9 trajectory generated from MD simulation at 500K, where
(a) shows its calculated free energy profile has an asymmetry of population between L
and R helix states. The snapshots of L and R configurations at χ = 5.2 and χ = −5.31
are also displayed as insets above the free energy profile. Training LSTM model with
this asymmetric data and using it to predict what would happen at 200ns leads to the
result shown in (b), where the LSTM predictions retain and even enhance the undesired
free energy asymmetry while the free energies calculated from a longer 200ns trajectory
shows the desired symmetric profile. In (c), we show that ps-LSTM trained as described in
Sec. 5.4.2.1 can not only predict the correct symmetry, but also deviate less from the true
free energy calculated from the reference 200ns data. The table in (d) shows the κ values
defined in Eq. 5.13 for different trajectories. The free energy profiles and the κ values in
(b) and (c) are averaged over 10 independent training processes. The corresponding error
bars are filled with transparent colors.

we have also shown the free energy from a 200ns long MD simulation which we use later

for comparison. In Fig. 5.5 (b), we show trajectory generated from training constraint-

free LSTM [130] which follows the same Boltzmann statistics and kinetics as the input
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Figure 5.4: Eigenspectrum of transition probability matrices. In this plot, we show
the eigenspectrum of the transition probability matrices calculated via direct counting
from the reference 200ns MD simulation of Aib9 (red squares), the LSTM prediction
(blue circles), and the ps-LSTM prediction (orange circles). We can see that both ps-
LSTM and LSTM capture the first four slow modes. While there are some deviations
at 4th and 5th modes, the deviations mainly come from the training of LSTM. The ps-
LSTM method performs path sampling from the predicted trajectories of LSTM therefore
it simply captures the errors from the LSTM itself.

trajectory.

In order to constrain ⟨N⟩, we generate 800 independent time series from the constraint-

free LSTM, and sample a subset consisting of 10 time series. With an appropriate ∆λ,

our path-sampled subsets are constrained to two different ⟨N⟩ values and used for training

two distinct ps-LSTMs. In Fig. 5.5(c) and (d), we have shown the free energy profiles cor-

responding to ps-LSTM predictions trained on subsets with ⟨N⟩ = 0.38 and ⟨N⟩ = 0.42.

As can be seen, compared to the actual 200ns MD simulation of Aib9, the potential wells

of L and R helix become narrower for ⟨N⟩ = 0.38 and wider for ⟨N⟩ = 0.42, which is the

direct effect of changing fluctuations via nearest-neighbor transitions. Moreover, the po-

tential barriers along χ become higher for ⟨N⟩ = 0.38 and become lower for ⟨N⟩ = 0.42.

In Fig. 5.5 (e), we provide the averaged transition times τ from L to R helix states and

vice versa, where we can also see that the transition times do become longer for smaller

⟨N⟩ and shorter for larger ⟨N⟩, which is the expected result for decreased and increased
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diffusivities respectively [25, 97].

To summarize so far, the results from constraining ⟨N⟩ show that through the path

sampling method, ps-LSTM extrapolates the phenomena affected by changing small fluc-

tuations, which was not provided in the training data set.

5.5 Conclusion and outlook

In this work, we proposed a method integrating statistical mechanics with machine

learning in order to add arbitrary knowledge in the form of constraints to the widely used

long short-term memory (LSTM) neural network used for predicting generic time series

in diverse problems. These models are trained on available time series for the system

at hand, which often have errors of different kinds. These errors could arise from either

poor sampling due to rareness of the underlying events, or simply reprsent instrumentation

errors. Using high fidelity artificial intelligence tools [130,157,207] to generate computa-

tionally cheaper copies of such time series is then prone to preserving such errors. Thus,

it is extremely important to introduce systematic constraints that introduce prior knowl-

edge in the LSTM network used to replicate the time series provided in training. The

recurrent nature of the LSTM and the non-Markovianity of the time series make it hard

to impose such constraints in a trainable manner. For this, here our approach involves

path sampling method with the principle of Maximum Caliber, and is called ps-LSTM.

We demonstrated its usefulness on illustrative examples with varying difficulty levels and

knowledge that is thermodynamic or kinetic in nature. Finally, as our method relies only

on data post-processing and pre-processing, it should be easily generalized to other neural
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(a) (b)

(c) (d)

Aib9 MD 100ns MD 200ns LSTM ps-LSTM, ⟨N⟩=0.38 ps-LSTM, ⟨N⟩=0.42

⟨N⟩ 0.397 0.399 0.405±0.001 0.372±0.001 0.422±0.001

𝛕L➔R (ps) 2326±390 2083±230 1934±297 4107±807 920±63

𝛕R➔L (ps) 2273±322 2083±193 1912±254 4062±822 922±64

(e)

Figure 5.5: Comparing predictions at 200ns for different values of the dynamical
constraint ⟨N⟩. In this plot, we show the free energy profiles calculated from (a) the
100ns trajectory in the training set, (b) both the actual 200ns trajectory and direct pre-
diction from LSTM, (c) the reference 200ns trajectory and ps-LSTM prediction with
constraint of nearest-neighbor (NN) transitions ⟨N⟩ = 0.38, and (d) the reference 200ns
trajectory and prediction with constraint ⟨N⟩ = 0.42. The table above lists the kinetic
constraint ⟨N⟩ calculated from corresponding trajectories. The averaged transition time
τR→L and τL→R in picoseconds were calculated by counting the numbers of transitions in
each trajectory. For reference MD, the error bars were calculated by averaging over transi-
tion time in a single 100ns or 200ns trajectory, while for the predictions from LSTM and
ps-LSTM, the error bars were averaged over 10 independent predictions with the transi-
tion time for each predicted trajectory calculated in the same way as MD trajectories. The
free energy profiles and the first NN values ⟨N⟩ in (b), (c), and (d) are averaged over 10
independent training processes. The corresponding error bars are filled with transparent
colors.

network models such as transformers and others [207, 208], and for modeling time series

from arbitrary experiments.
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Chapter 6: Conclusion and Outlook

In this dissertation, we examine time series produced from various complex dy-

namical systems including simulations of Langevin dynamics, molecular dynamics of

nucleation and protein conformational changes, and single-molecule force spectroscopy

experiment of riboswitch folding dynamics. These dynamical systems are intrinsically

high-dimensional, making them hard to analyze. In addition, most important rare events

happen at the timescale of minutes or even hours and so are rarely observed in MD due

to MD’s timescale limitation of milliseconds. Therefore, many enhanced sampling meth-

ods such as metadynamics have been developed to help sampling such rare events. In

this dissertation, we use metadynamics as our main enhanced sampling method to sample

rare events such as liquid-droplet nucleation of Lennard-Jones particles and crystal nu-

cleation of urea. However, it is still challenging to study the kinetics and mechanisms of

rare events as these enhanced sampling methods often rely on the low-dimensional rep-

resentation called reaction coordinates (RCs). In the first chapter, we show, with various

example, that the reaction coordinate is often constructed using order parameters that are

important to the rare event kinetics. We discuss that the reaction coordinate should capture

important physics of the rare events, and the rare event dynamics described by reaction

coordinates should ideally follow Markov process. Unfortunately, there isn’t a systematic
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way to find reaction coordinate given any complicated systems. Inappropriately chosen

RCs not only introduces complicated memory effect but also leads to incorrect kinetic

connectivity between states. In this dissertation, we have shown how incorrect kinetic

connectivity and such memory effect can cause underestimate of kinetic rates in droplet

nucleation and even completely wrong kinetic pathways in Langevin dynamics of model

potentials.

In the first part of this dissertation, we study systems where we assumed we have a

complete set of order parameters which have already capture all important physics for its

dynamics. We first show how inappropriate reaction coordinate constructed from these

order parameters can lead to memory effect. We then focus on finding optimal RCs which

could capture all slowly varying physics and minimize such memory effect. For instance,

in the problem of liquid-droplet nucleation of Lennard-Jones particles, we consider RC as

a 1-dimensional linear combination of three order parameters, where one the number of

liquid-like atoms and the other two for local density fluctuations. Using our RC finding

method Spectral Gap Optimization of Order Parameters (SGOOP), we find that as the su-

persaturation decreases, the RC ceases to simply be the number of liquid-like atoms, and

instead, it becomes important to explicitly consider local density fluctuations that corre-

late with shape and density variations in the nucleus. Thus, at lower supersaturation levels,

density fluctuations are non-Markovian and cannot be ignored from the RC by virtue of

being noise. We then use SGOOP to find an optimal RC which explicitly considers these

slow variables. By performing metadynamics with bias potential built as a function of

this optimal RC, we show that we systematically improve the rate estimation. The im-

provement becoming more significant in the low supersaturation regime again shows that
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the the local density and shape fluctuations become more important order parameters.

For more complicated systems, 1-dimensional RC can lead to incorrect kinetic con-

nectivity. Therefore, in Chapter. 3, we developed an approach to find SGOOP-based

kinetic distances or SGOOP-d. The approach allows us to systematically find additional

RCs which capture missing slow degrees of freedom and further minimize the memory

effect. One key feature of our method is that it can work with unbiased as well as biased

simulations. We not only use the method to find a sufficient number of RCs but also repro-

duce the correct kinetic connectivity for alanine dipeptide and 23 and all 28 out of the 28

dominant state-to-state transitions in Ace-Ala3-Nme. Our next step is to use this method

to study crystal nucleation of urea from aqueous solution, where complicated polymor-

phism can exist. Our goal is to see if SGOOP-d can not only reproduce the correct kinetic

connectivity but also predict the most probable nucleation pathways.

We also consider the application of the Artificial Intelligence (AI)-based method to

build kinetic models with arbitrary memory as a long-term dependency, which constitutes

the second part of this dissertation. In this direction, we apply a simple language model

built upon a special type of Recurrent Neural Network (RNN) called Long Short-Term

Memory (LSTM) to model memory within time series obtained from not only MD sim-

ulations but also single-molecule force spectroscopy experiments. Our model captures

Boltzmann statistics and also reproduces kinetics across a spectrum of timescales. We

also demonstrate how training the LSTM is equivalent to learning a path entropy, and

that its embedding layer, instead of representing the contextual meaning of characters,

reproduces kinetically truthful connectivity between different metastable states. In Chap-

ter. 6, we further improve LSTM by incorporating known physics using the path sampling
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method. We demonstrate our method by applying it to various examples with different

levels of difficulty. In the first example of 3-state Markov model, we show that our path

sampling method can reproduce the correct transition probability predicted by theory. In

the second example, we use path sampling method to constrain the LSTM to learn cor-

rect chiral symmetry. In the third and final example, we show how we can path sampling

LSTMs to extrapolate new physics, where we let LSTM learn and predict the trajectories

constrained at a different diffusion-related parameter.

In summary, our work combines statistical mechanics and machine learning and

applies to generic time series from high-dimensional complex dynamical systems. For

example, we have been working on using our methods in Chapter. 2 and 3 to study kinetic

pathways in the crystal nucleation of urea from aqueous solution. SGOOP-d itself also

presents an approach for systematically finding the sufficient dimension of RCs. We are

also working on using our methods in Chapter. 4 and 5 to study open quantum systems,

which also shows the interdisciplinary nature of our work including but not limited to

classical, quantum chemical, biological physics, and machine learning. Several prelimi-

nary results of open quantum systems are shown in Appendix A.
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Appendix A: Learning quantum jump dynamics from open quantum sys-

tems using path sampling LSTM

A.1 Introduction

Simulating the dynamics of quantum systems is a long-lasting challenge in the

physics community. In the real world, typically, the quantum-mechanical systems are

governed by non-unitary evolutions because they are surrounded by a dissipative environ-

ment. The general form of the quantum Markov process is the Lindblad equation [209].

However, due to the non-unitarity, we need to solve a partial differential equation of den-

sity matrix instead of quantum states (vectors), which is classically challenging. However,

we can only measure observables in experiments where the density matrices are inacces-

sible. Here, we combine the quantum jump approach [210,211] and ps-LSTM to generate

quantum trajectories that provide correct expectation values of observable.

In this section, we will show a more challenging example, an open quantum sys-

tem that consists of a single two-level atom experiencing interactions from initially seven

photons, where the photons continuingly dissipate to the environment via a certain dis-

sipation rate (see Fig. A.1). This example is intrinsically hard because the system has

a Hilbert space with 20 dimensions yet we only let LSTM see the individual quantum
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trajectories of a 1-dimensional observable. Although the quantum trajectories produced

by Monte Carlo simulation in Hilbert space are Markovian, the dimensionality reduction

from high-dimensional Hilbert space to the observable results in non-Markovian trajecto-

ries. In this example, we will let LSTM learn a dissipative observable which is the number

of photons. We will then show how we can use our ps-LSTM method to learn to predict

trajectories of observable with dissipation rate γ = 0.2 given training data consisting of

only trajectories generated from simulations with γ = 0.1.

The time-evolution of an open quantum system with dimH = N is governed by

Lindblad Master equation [209, 212–214]:

ρ̇ = − i

ℏ
[H, ρ] +

N2−1∑
i=1

γi

(
LiρL

†
i −

1

2

{
L†
iLi, ρ

})
. (A.1)

where ρ is the density matrix, H is a Hamiltonian of the system, and Li are commonly

called the Lindblad or jump operators of the system. γi is the dissipation rate correspond-

ing to jump operator Li. For convenience, we choose the natural unit where ℏ = 1.

For a large system, directly solving (A.1) is a formidable task. Therefore, an alternative

approach is to perform Monte Carlo (MC) quantum-jump method [215–217], which re-

quires us to generate a large enough number of trajectories to produce correct expectation

values of observables. Our training data for LSTM is therefore a set of quantum jump

trajectories generated by the Monte Carlo quantum jump algorithm. Here we consider a

simple two-level atom coupled to a leaky single-mode cavity through a dipole-type inter-
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action [218]:

Hsys = ω1a
†a+ ω2σ+σ− + g(σ−a

† + aσ+) (A.2)

The a, a† and σ−, σ+ are the annihilation and creation operators of photon and spin, re-

spectively. Suppose above system is surrounded in a dissipative system which induces

single-photon loss of cavity. In the quantum jump picture, we can write down following

non-Hermitian Hamiltonian

H = Hsys −
iγ

2
a†a (A.3)

where there is only one dissipation channel which is called photon emission with jump

operator
√
γa.

We use the built-in Monte Carlo solver in the qutip package [210, 211] with a pre-

selected dissipation rate γ to generate a bunch of quantum jump trajectories of the cavity

photon number nt. It is important to note that although the Lindbladian and quantum

jump method are Markov processes in Hilbert space, the quantum jump trajectories of nt

learned by LSTM do not need to be Markovian in a coarse-grained state space ⟨n⟩.

In an approxmated sense, the dissipation rate γ appears as a parameter controlling

the classically exponential decay of ⟨nt⟩:

⟨nt⟩theory ≈ n0e
−γt (A.4)

therefore, given the values of γ and t, we can estimate the corresponding ⟨nt⟩theory. This
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⟨nt⟩theory will later be used as the constraint variable for ps-LSTM.

In general, the Lindbladian equation describes the time-evolution of a N × N ma-

trix which is computationally challenging. However, the averaged trajectory of the ob-

servables, i.e. ⟨nt⟩, is typically governed by a set of differential equations whose number

of coefficients is much less than N2. Previous work [219] has already demonstrated that

standard LSTM can learn the feature of decaying pattern from the averaged trajectory

⟨nt⟩, while it is definitely more useful yet challenging for the LSTM to learn the prob-

abilistic model from the individual quantum trajectories nt and generate the stochastic

trajectories with the correct expectation of the observable at every single time step since

learning such stochastic trajectories allows us to do ps-LSTM and generate trajectory of

observable with a different dissipation rate.

A.2 Results

Here we demonstrate how to apply ps-LSTM trained by individual trajectories from

one dissipation rate to generate quantum trajectories with another dissipation rate. The

parameters of Hamiltonian Eq. (A.2) are ω1 = ω2 = 2π, and g = π
2
. As what we did in the

previous example, we first spatially discretize nt, which is the trajectories generated from

the actual Monte Carlo quantum jump simulations with γ = 0.1, into 20 bins. We then

let LSTM learn such trajectories and generate a set of predictions given only the starting

condition of nt = 7, as shown in Fig. A.1(c). For training LSTM to learn the quantum

jump trajectories, we took the embedding dimension M = 16 and the LSTM unit L =

64. The time series were batched into sequences with a sequence length of 100 ana batch
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Figure A.1: Path sampling quantum jump trajectories generated from LSTM (a) The
schematic plot of the open quantum system we simulate. The system consists of a two-
level atom surrounded by the cavity, where the initial state is chosen to be 7 ⊗ ↑. The
cavity photons not only experience interaction with the atom but also interact with the
environment via continuously dissipating photons to the environment. The system can
be described by the Hamiltonian written below the plot, where system Hamiltonian Hsys

is just Eq. A.2 with ω1 = ω2 = 2π, g = π
2
. ω1 and ω2 is the frequency of the cavity

and two-level atom, respectively. (b) Some example trajectories from the quantum jump
simulations which we used to train LSTM and ps-LSTM. (c) The expectation of photon
number ⟨n⟩ as a function of time obtained by averaging over 2000 MC simulations with
γ = 0.1 and 2000 predictions generated by LSTM. The inserted panel shows the distribu-
tion of the variance calculated over each trajectory. The calculation from MC is shown by
the red dashed curve and LSTM by the orange solid curve. (d) The expectation of pho-
ton number ⟨n⟩ as a function of time obtained by averaging over 2000 MC simulations
with γ = 0.2 and 2000 predictions generated by ps-LSTM. The inserted panel shows the
distribution of the variance calculated over each trajectory. The calculation from MC is
shown by a red dashed curve and ps-LSTM by the blue solid curve.

size of 64. The models were trained with the method of stochastic gradient descent for

20 epochs. After sampling 20,000 LSTM predictions of length 500, a ps-LSTM was

retrained with the same hyperparameters except for increasing sequence length to 140. In

Fig. A.1(d), it can be seen that these predictions from LSTM follow the correct evolution

curve averaged from the actual Monte Carlo quantum jump simulation with γ = 0.1.
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Now we will constrain our LSTM model to learn a different dissipation rate γ = 0.2. In

order to use ps-LSTM to sample γ = 0.2, we use Eq. A.4 to estimate the corresponding

⟨n⟩∗t within the time interval t ∈ (5, 7). Following the similar spirit of s-ensemble, we

define a dynamical variable δn, where

δn =
1

∆t

K∑
j=1

t+∆t∑
s

∥nj
s − ⟨ns⟩theory∥2 (A.5)

where ⟨n⟩theory is calculated from Eq. A.4 with γ = 0.2. K is the number of subsamples,

which was chosen to be 2000. t = 5 and ∆t = 2 are chosen such that minimizing δn leads

to a curve fit of exponential decay in classical regime. The ps-LSTM is then performed

by constraining δn = 0. Constraining LSTM to learn a different γ is very challenging

if we only let LSTM learn the averaged trajectory as in Ref. [219], since the oscillating

feature within the first 5 time units is a quantum mechanical effect and is hard to capture

by simply changing γ.

However, by performing path sampling, we show that by constraining only the δn

in classical regime, ps-LSTM produced the correct quantum dynamics it captures from

the quantum jump trajectories, which can be seen in Fig. A.1(d). It is also worth noting

that we actually perform a more challenging task in the prediction, where we let LSTM

and ps-LSTM predict 5 time units more than the trajectories in the training set. That said,

LSTM and ps-LSTM still give the prediction of ⟨nt⟩ for t > 20, wherein it captures that

the cavity photon number has been mostly dissipated and the averaged photon number

does not change.
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A.3 Method

Here, we start to explain the quantum jump algorithm [210, 211]. We monitored

the environment continuously which along with a series of quantum jumps conditioned

on the increase in information gained via the environmental measurements. In general,

this evolution is governed by the Schrödinger equation with a non-Hermitian effective

Hamiltonian

Heff = Hsys −
i

2

∑
i

C†
iCi, (A.6)

where Ci =
√
γiLi.

Here, the strictly negative non-Hermitian part of Eq. A.6 gives rise to a reduction

in the norm of the wave function, that to first-order in a small time δt is given by

⟨ψ(t+ δt)|ψ(t+ δt)⟩ = 1− δp, (A.7)

where

δp = δt
∑
n

〈
ψ(t)|C+

n Cn|ψ(t)
〉
. (A.8)

The wave function at time t undergoes a jump operator Cn into a state corresponding to

the measurement:

|ψ(t+ δt)⟩ = Cn |ψ(t)⟩
⟨ψ(t)|C+

n Cn|ψ(t)⟩1/2
. (A.9)
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The probability of collapse due to the ith-operator Ci is given by

Pi(t) =

〈
ψ(t)|C+

i Ci|ψ(t)
〉

δp
. (A.10)

To simply simulating the first order differential equation for large system is quite diffi-

cult. So we use the following algorithm [210, 211]. Here, we illustrate the steps for MC

evolution, first we start from a pure state |ψ(0)⟩ .

• Choose a random number r1 ∈ [0, 1], representing the probability that a quantum

jump occurs.

• Choose a random number r2 ∈ [0, 1], used to select which collapse operator was

responsible for the jump.

• Integrate the Schrödinger equation, using the effective Hamiltonian Eq. A.6 until

a time τ such that the norm of the wave function satisfies ⟨ψ(τ) |ψ(τ)⟩ = r1, at

which point a jump occurs.

• The resultant jump projects the system at time τ into one of the renormalized states

given by Eq. A.9. The corresponding collapse operator Ln is chosen such that n is

the smallest integer satisfying:
∑n

i=1 Pn(τ) ≥ r2 where the individual Pn are given

by Eq. A.10.

• Using the renormalized state from step III as the new initial condition at time τ ,

draw a new random number, and repeat the above procedure until the final simula-

tion time is reached.
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List of Publications

Part of this thesis is based on work published by the author. Here we present the

references that each chapter is based on and also mention other relevant publications of

the author that do not appear in this thesis.

• Chapter. 2 is based on

– “Reaction coordinates and rate constants for liquid droplet nucleation: quanti-

fying the interplay between driving force and memory”, Sun-Ting Tsai, Zachary

Smith, Pratyush Tiwary, J. Chem. Phys. 151 (15), 154106 (2019)

• Chapter. 3 is based on

– “SGOOP-d: Estimating kinetic distances and reaction coordinate dimension-

ality for rare event systems from biased/unbiased simulations”, Sun-Ting Tsai,

Zachary Smith, Pratyush Tiwary, J. Chem. Theory Comput. 17, 11, 6757-

6765 (2021)

– “On the distance between A and B in molecular configuration space”, Sun-Ting Tsai

and Pratyush Tiwary, Molecular Simulation. 1-8 (2020)

– “Multi-dimensional spectral gap optimization of order parameters (SGOOP)

through conditional probability factorization”, Zachary Smith, Sun-Ting Tsai,

146



Debabrata Pramanik, Pratyush Tiwary, J. Chem. Phys. 149 (23), 234105

(2018)

• Chapter. 4 is based on

– “Learning Molecular Dynamics with Simple Language Model built upon Long

Short-Term Memory Neural Network”, Sun-Ting Tsai, En-Jui Kuo, Pratyush

Tiwary, Nat. Commu. 11 5115 (2020)

• Chapter. 5 is based on

– “Path sampling of recurrent neural networks by incorporating known physics”,

Sun-Ting Tsai, Eric Fields, Pratyush Tiwary, arXiv preprint arXiv:2203.00597.

• Other relevant publications that do not appear in this thesis

– “Toward Automated Sampling of Polymorph Nucleation and Free Energies

with the SGOOP and Metadynamics”, Ziyue Zou, Sun-Ting Tsai, Pratyush

Tiwary, J. Phys. Chem. B 125, 47, 13049–13056 (2021)

– “Crumple-Origami Transition for Twisting Cylindrical Shells”, Li-Min Wang,

Sun-Ting Tsai, Chih-yu Lee, Pai-Yi Hsiao, Jia-Wei Deng, Hung-Chieh Fan

Chiang, Yicheng Fei, Tzay-Ming Hong, Phys. Rev. E 101 (5), 053001 (2020)

– “Kinetics of Ligand–Protein Dissociation from All-Atom Simulations: Are

We There Yet?”, João Marcelo Ribeiro, Sun-Ting Tsai, Debabrata Pramanik,

Yihang Wang, Pratyush Tiwary, Biochemistry 58 (3), 156-165 (2018)
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Ghosh, and Ken A Dill. Perspective: Maximum caliber is a general variational

principle for dynamical systems. The Journal of chemical physics, 148(1):010901,

2018.

[97] Pratyush Tiwary and BJ Berne. Predicting reaction coordinates in en-

ergy landscapes with diffusion anisotropy. The Journal of chemical physics,

147(15):152701, 2017.

[98] DJ Bicout and Attila Szabo. Electron transfer reaction dynamics in non-debye

solvents. J. Chem. Phys., 109(6):2325–2338, 1998.

[99] Pratyush Tiwary and BJ Berne. Spectral gap optimization of order parameters for

sampling complex molecular systems. Proceedings of the National Academy of

Sciences, 113(11):2839–2844, 2016.

161



[100] Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling

through velocity rescaling. The Journal of chemical physics, 126(1):014101, 2007.

[101] Erik Lindahl, Berk Hess, and David Van Der Spoel. Gromacs 3.0: a package

for molecular simulation and trajectory analysis. Molecular modeling annual,

7(8):306–317, 2001.

[102] Carlo Camilloni et. al. Massimiliano Bonomi, Giovanni Bussi. Promoting trans-

parency and reproducibility in enhanced molecular simulations. Nature methods,

16:670–673, 2019.

[103] Rodrigo Casasnovas, Vittorio Limongelli, Pratyush Tiwary, Paolo Carloni, and

Michele Parrinello. Unbinding kinetics of a p38 map kinase type ii inhibitor from

metadynamics simulations. J. Am. Chem. Soc., 139(13):4780, 2017.

[104] Baron Peters and Bernhardt L Trout. Obtaining reaction coordinates by likelihood

maximization. The Journal of chemical physics, 125(5):054108, 2006.

[105] Robert B Best and Gerhard Hummer. Reaction coordinates and rates from transi-

tion paths. Proc. Natl. Acad. Sci., 102(19):6732, 2005.

[106] K Binder. Nucleation barriers, spinodals, and the ginzburg criterion. Physical

Review A, 29(1):341, 1984.

[107] J Juraszek, G Saladino, TS Van Erp, and FL Gervasio. Efficient numerical re-

construction of protein folding kinetics with partial path sampling and pathlike

variables. Physical Review Letters, 110(10):108106, 2013.

162



[108] Sun-Ting Tsai, Zachary Smith, and Pratyush Tiwary. Reaction coordinates and rate

constants for liquid droplet nucleation: Quantifying the interplay between driving

force and memory. The Journal of chemical physics, 151(15):154106, 2019.

[109] Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Mar-

tin Held, John D. Chodera, Christof Schütte, and Frank Noé. Markov models of
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