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Many component-based systems are deployed in diverse environments, each

with different components and with different component versions. To ensure the

system builds correctly forall deployable combinations (or, configurations), de-

velopers often performcompatibility testingby building their systems on various

configurations. However, due to the large number of possibleconfigurations, test-

ing all configurations is often infeasible, and in practice,only a handful of popular

configurations are tested; as a result, errors can escape to the field. This problem



is compounded when components evolve over time and when testresources are

limited.

To address these problems, in this dissertation I introducea process, algo-

rithms and a tool called Rachet. First, I describe a formal modeling scheme for

capturing the system configuration space, and a sampling criterion that determines

the portion of the space to test. I describe an algorithm to sample configurations

satisfying the sampling criterion and methods to test the sampled configurations.

Second, I present an approach that incrementally tests compatibility between

components, so as to accommodate component evolution. I describe methods to

compute test obligations, and algorithms to produce configurations that test the

obligations, attempting to reuse test artifacts.

Third, I present an approach that prioritizes and tests configurations based on

developers’ preferences. Configurations are tested, by default starting from the

most preferred one as requested by a developer, but cost-related factors are also

considered to reduce overall testing time.

The testing approaches presented are applied to two large-scale systems in the

high-performance computing domain, and experimental results show that the ap-

proaches can (1) identify compatibility between components effectively and effi-

ciently, (2) make the process of compatibility testing morepractical under constant



component evolution, and also (3) help developers achieve preferred compatibility

results early in the overall testing process when time and resources are limited.



COMPATIBILITY TESTING FOR COMPONENT-BASED SYSTEMS

by

Ilchul Yoon

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:

Professor Alan Sussman, Chairman/Advisor
Professor Adam Porter
Professor Atif Memon
Professor Ramani Duraiswami
Professor Derek Richardson



c©Copyright by

Ilchul Yoon

2010



DEDICATION

To my wife – Heejong for her endless love and support.

ii



ACKNOWLEDGEMENTS

It is my honor to know so many good people who helped me to com-

plete this dissertation. First and foremost, I deeply thankmy advisor,

Prof. Alan Sussman. He guided me to set up my research direction

and helped me with his deep insight to realize my rough ideas into

concrete artifacts. He has always been generous to me and also en-

couraged me to be confident. I would also like to thank Prof. Adam

Porter and Prof. Atif Memon. Throughout discussions with them,

I could get many ideas to analyze and to present results effectively.

Also, I have always been amazed whenever they touched the core of

my monotonous manuscript and transformed it into a shiny piece of

work in concise and polished sentences.

Thanks are due to Prof. Derek Richardson and Prof. Ramani Du-

raiswami for agreeing to serve on my dissertation committeeand for

iii



sparing their invaluable time to review my dissertation. They gave me

excellent suggestions to improve the quality of the dissertation.

I owe my deepest thanks to my family - my wife, parents, parents-in-

law, sister and brothers. I was able to finish this long journey because

of their enormous love and support. Especially, it is impossible for

me to fully express my gratitude to my wife, Heejong Sung, forher

endless patience, advice, encouragement, faith, prayer and love.

During my years at University of Maryland, I had the pleasureof

sharing my life with good people around me. I was so lucky to start

my study with Jik-Soo Kim, Minkyoung Cho and Youngmin Kim.

They always stood by me in joy and sorrow, and spent their time

to discuss my problems. I will remember forever the moments we

shared together. I am also grateful to my godfather, Prof. Kyu Yong

Choi and the members of Darak-bang – Seong Sook Kim, Yeon Seok

Kim, Ellen Kim, Won Joon Choi and Myoung Deok Shin and Hyo

Jung Kim – for their prayers to God for me.

I would like to thank my lab colleagues, Jaehwan Lee, SukhyunSong,

Gary Jackson, Puneet Sharma and Teng Long. They attended my

practice talks and helped me to improve the presentation forthe de-

iv



fense. I also would like to acknowledge Ananta Tiwari and my Ko-

rean colleagues: Jaeyong Lee, Seungryul Choi, Bongwon Suh, Hyun-

mo Kang, Joonhyuk Yoo, Jae-Yoon Jung, Beomseok Nam, Ji Sun

Shin, Jikhyuk Jung, Hyunyoung Song, Jaehwan Lee, Sukhyun Song,

Sungwoo Park, Eunhui Park, Chanhyun Kang, Hyuk Oh, Angela Song-

Ie Noh, Tak Yeon Lee, Jaehwa Choi, Sunhee Kim, Sangchul Song and

Min-Young Kim. Because of them, my graduate experience at Uni-

versity of Maryland has been one that I will cherish forever.

I also would like to acknowledge the financial support from the Insti-

tute of Information Technology in Korea during the early years of my

study.

Lastly, I truly thank God for letting me know wonderful people and

for all the achievements I have made during my study.

v



TABLE OF CONTENTS

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivating Applications . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Thesis and Contributions . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . 11

2 The Compatibility Test Process Using Rachet 12

3 Related Work 16

4 Sampling and Testing Configurations 21

4.1 Configuration Space Model . . . . . . . . . . . . . . . . . . . . . 21

4.2 Direct Dependency between Components . . . . . . . . . . . . . 25

vi



4.3 Configurations with Exhaustive Coverage . . . . . . . . . . . . . 28

4.4 Configurations with DD-Coverage . . . . . . . . . . . . . . . . . 30

4.5 Test Plan Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Test Plan Execution Strategies . . . . . . . . . . . . . . . . . . . 36

4.6.1 Parallel Depth-First Strategy . . . . . . . . . . . . . . . . 38

4.6.2 Parallel Breadth-First Strategy . . . . . . . . . . . . . . . 40

4.6.3 Hybrid Strategy . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Dynamic Failure Handling . . . . . . . . . . . . . . . . . . . . . 43

4.8 Rachet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9.1 Modeling the Subject Systems . . . . . . . . . . . . . . . 50

4.9.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 53

4.9.3 Cost/Benefit Assessment of DD-Coverage . . . . . . . . . 55

4.9.4 Comparing Plan Execution Strategies . . . . . . . . . . . 59

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Embracing Component Evolution 69

5.1 Test Adequacy Criterion . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Cache-Aware Configuration Generation . . . . . . . . . . . . . . 75

5.3 Managing Cached Configurations . . . . . . . . . . . . . . . . . 79

vii



5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Modeling the Subject Systems . . . . . . . . . . . . . . . 83

5.4.2 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Retest All vs. Incremental Test . . . . . . . . . . . . . . . 94

5.4.4 Benefits from Optimization Techniques . . . . . . . . . . 96

5.4.5 Comparing Optimization Techniques . . . . . . . . . . . 102

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Prioritizing Configurations with User Preference 107

6.1 Specifying Preferences . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Computing Configuration Preferences . . . . . . . . . . . . . . . 109

6.3 Preference-Guided Plan Execution . . . . . . . . . . . . . . . . . 112

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Cost/Benefit Analysis of Prioritized Test . . . . . . . . . . 122

6.4.3 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . 129

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Future Work 138

7.1 Thesis and Contributions . . . . . . . . . . . . . . . . . . . . . . 138

viii



7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 146

ix



LIST OF TABLES

4.1 Component Version Annotations for InterComm and PETSc . . .52

4.2 Test Plan Statistics for InterComm and PETSc . . . . . . . . . . .53

5.1 History of version releases and code changes for components in

the InterComm and PETSc builds . . . . . . . . . . . . . . . . . 86

5.2 Numbers of DD-instances for the InterComm build sequence. . . 91

5.3 Numbers of DD-instances for the PETSc build sequence . . .. . 92

6.1 Example Preference Assignments (Bigger values are usedfor higher

preferences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



LIST OF FIGURES

2.1 An Example System Model . . . . . . . . . . . . . . . . . . . . . 13

4.1 DD-Coverage apply BuildCFG for generating each DD-instance

for components in a CDG . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Algorithm to generate a configuration to cover a DD-instance . . . 33

4.3 EX-plan (top) and DD-plan (bottom) for example model . . .. . 36

4.4 Rachet Software Architecture . . . . . . . . . . . . . . . . . . . . 45

4.5 A Combined CDG for InterComm and PETSc. (Shaded nodes are

specific for PETSc.) . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Actual turnaround time for executing InterComm and PETScEX-

plans and DD-plans using depth-first strategy. . . . . . . . . . . .56

4.7 Turnaround times for executing the InterComm and PETSc DD-

plan with different plan execution strategies. . . . . . . . . . .. 60

xi



4.8 Simulated time to execute InterComm and PETSc EX-plan with

hybrid execution strategy, and DD-plan with all strategies, assum-

ing no build failure. . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 The DD-instances for two consecutive builds,buildi−1 andbuildi.

The DD-instances represented by the shaded areas need to be

tested inbuildi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Test plans: Retest-All (56 components) vs. Incremental(35 com-

ponents). The shaded nodes can also be reused from the previous

test session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Test plan produced from configurations selected in a cache-aware

manner. 34 component versions must be built. (Shaded nodes are

cached, from the previous test session.) . . . . . . . . . . . . . . 77

5.4 A Combined CDG for InterComm and PETSc. (Grey nodes are

specific for PETSc. Black nodes are dependencies required for

gf version4.0.0 or later) . . . . . . . . . . . . . . . . . . . . . 85

5.5 Turnaround times for testingDDi
all andDDi

all−DDi−1

tested for each

build of InterComm and PETSc (8 machines (M=8) and 4 cache

entries per machine (C=4)) . . . . . . . . . . . . . . . . . . . . . 95

xii



5.6 As the number of cache entries per machine increases, aggregated

test cost decreases up to 24% for InterComm and up to 28% for

PETSc when optimization techniques are applied, compared to

the baseline incremental test. . . . . . . . . . . . . . . . . . . . . 97

5.7 test-diffvs. integrate-all. There are significant cost savings for

some builds from the optimization techniques. . . . . . . . . . . .100

5.8 Each optimization technique contributes differently for different

cache sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Algorithm for Preference-Guided Plan Execution . . . . . .. . . 113

6.2 Prioritized (W=1) vs. Hybrid strategy for InterComm (top 4graphs)

and PETSc (bottom 4 graphs) with 4 clients (M=4) and 8 cache

entries per client (C=8) . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Turnaround time difference between the prioritized andthe hybrid

strategy with different cache entries per client . . . . . . . . .. . 126

6.4 Turnaround Times for InterComm and PETSc Test Plan in Differ-

ent Window Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Configuration completion times with different window sizes (In-

terComm, Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphs),

M=4, C=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiii



6.6 Configuration completion times with different window sizes (PETSc,

Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphs), M=4,

C=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Conformance to preference order varying the window size (Inter-

Comm, M=4, C=8, Successfully tested configurations) . . . . . . 133

6.8 Conformance to preference order varing the window size (PETSc,

M=4, C=8, Successfully tested configurations) . . . . . . . . . . . 134

xiv



Chapter 1

Introduction

Modern software systems are becoming increasingly large and complex, and little

software is developed entirely from scratch. Instead, for building systems cor-

rectly, a majority of software systems requires (third-party) components such as

libraries and tools [15, 17, 70]. One of the top concerns for developers of such

software systems is to ensure that their systems can be builtwithout any prob-

lem and behave as expected in field environments (orconfigurations) that might

be realized in end-users’ machines, which may contain different sets of compo-

nents and their versions required for building the systems.If the systems are

released with undetected incompatibilities between components, they can make

users spend time for resolving such incompatibilities, andalso make it difficult

for developers to rationally manage support activities forthe systems [16, 39].
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To reduce latent incompatibilities between components, software researchers

have developed methods and tools such as configuration management systems,

interconnection standards, middleware frameworks and product-line and service-

oriented architectures [13, 20, 36, 45]. However, despite these advances, it is still

challenging to guarantee the compatibility of a system withthe expected set of

configurations, for several reasons.

First, the number of configurations on which a component-based system may

build and execute can be enormous. A system may require multiple components

each with multiple versions where each version depends on multiple third-party

components, and each of these components in turn has multiple versions and de-

pendencies on other components. In principle, each possible combination of these

components is a configuration that some end-user might use, and in many cases,

it is infeasible to test all possible configurations and therefore it is necessary to in-

telligently sample configurations from the vast set of feasible configurations and

test them efficiently.

Another challenge is that each component can evolve independently. Com-

ponent developers may release new versions of their components or modify de-

pendencies to other components without any notice, especially if the components

are developed and maintained by independent groups of developers. In the worst
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case, a component change can mandate retesting the entire set of configurations.

Given the high cost of testing, it is important not to waste time and money for test-

ing compatibilities. However, considering that a large software system involves

many components interconnected with complex dependencies, it is difficult for

developers to identify configurations that are affected by component changes, and

also past test results should be best utilized for saving test effort.

Moreover, the time and resources allowed for the compatibility testing can

be limited. In such resource-constrained situations, developers want to see com-

patibility results they have the most interest early in the test process. Because it

is impractical for developers to manually specify an ordering across all the con-

figurations to be tested, and also because there is potentially a large number of

such configurations, they need a prioritization mechanism that takes into account

developers’ preferences over components and their versions.

In practice, to identify configurations with which a component-based system is

(in)compatible, developers have performedcompatibility testing[49] by selecting

a set of configurations – each configuration is an ensemble of component versions

that respects known dependencies – and by testing whether their system builds

and functions properly for each configuration. However, as described above, the

large number of possible configurations and the lack of automated testing support
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have limited developers to pare down the set to a handful of popular configura-

tions [1, 6] or use only configurations that are already realized on test machines

they can access [33, 34]. This implies that the software is released with nearly all

of its possible field configurations untested. So costly errors can and do escape

to the field. While it might appear that these issues could be avoided by radically

restricting the set of supported configurations, in realitythat could unacceptably

restrict the potential user base.

The goal of this research is to investigate methods for performing compati-

bility testing of complex and evolving component-based systems in an effective

and efficient manner. This involves (1) sampling a small set of configurations

that effectivelytest compatibilities between components from the set of allfea-

sible configurations of the systems, and (2) testing the sampled configurations

efficientlyon limited test resources.

To achieve this goal, I present in this dissertation a process, algorithms and a

tool calledRachet. Developers can identify compatibilities between components

by applying Rachet on a formal graph-based model that encodes the configuration

space of a software system. Based on the model, Rachet can sample configura-

tions that satisfy a test adequacy criterion, which is to test all direct dependency

relationshipsbetween components in the model. Then, sampled configurations
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are tested over a set of test resources by leveraging hardware virtualization tech-

nology that enables reusing partially-built configurations and not contaminating

the state of test resources. This approach can be applied forperforming the com-

patibility testing of a model that consists of afixedset of components and their

versions, and is extended in two directions.

First, I extend the test adequacy criterion for a fixed model to accommodate

the evolution of components involved in a model. The extended criterion requires

testing only compatibilities that involve components modified since the last test

session. This dissertation also presents an algorithm thatsamples configurations

satisfying the criterion and makes use of test results from past test sessions.

Second, I develop a method that prioritizes the order to testconfigurations tak-

ing into account developers’ preferences, because different developers can have

different interests over components and their versions (e.g., they may want to first

see compatibility results related to recently released component versions). The

method evaluates the priorities of sampled configurations based on the prefer-

ences specified by developers and then the configurations aretested from the most

important one, thereby providing developers results of more importance early in

the test process.

I evaluate the presented approaches through extensive experiments, and show
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that developers can identify (in)compatibility between components effectively

with less test effort and can efficiently utilize available test resources.

1.1 Motivating Applications

This research is originally inspired by the following applications.

InterComm InterComm1 [47, 48, 64, 65] is a middleware library that supports

coupled scientific simulations by redistributing data in parallel between data struc-

tures managed by multiple parallel programs. For example, asimulation studying

the effect of solar weather patterns on cell phone performance in the U.S. might

involve multiple simulation modeling applications: solaractivity on the sun’s sur-

face, radiation propagation in the region between the sun and the earth, the effects

of the solar wind on earth’s ionosphere, etc. InterComm couples the applications,

which may be written in different languages and run in parallel on diverse operat-

ing systems, and enables data to be transferred between themat appropriate times

and at appropriate simulation scales.

To support that, InterComm relies on severalsystem componentsincluding

multiple C, C++ and Fortran compilers, parallel data communication libraries, a

1http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas /ic
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process management library and a structured data management library. Each com-

ponent has multiple versions and there are complex dependencies and constraints

between the components and their versions.

PETSc PETSc (Portable, Extensible Toolkit for Scientific computation)2 [12,

43] is a collection of data structures and interfaces used todevelop scalable high-

end scientific applications. Similar to InterComm, PETSc is designed to work

on many Unix-based operating systems and Windows. It provides interfaces and

implementations for serial and parallel applications and depends on multiple com-

pilers and parallel data communication libraries to provide the functionality. Also,

to enhance the performance of application developed using PETSc, PETSc also

relies on third-party numerical libraries such as BLAS [32]and LAPACK [9], and

uses Python as the deployment driver.

Although these systems have been used for building many scientific applica-

tions and have been improved to correct bugs and also to provide more function-

ality, there has been no systematic effort to test the compatibility of the systems

on diverse field configurations. InterComm has been extensively tested inonly

three different configurations, where each is realized on developers’ and users’

2http://www-unix.mcs.anl.gov/petsc/petsc-as
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machines running different operating systems. Likewise, there is no detailed in-

formation on configurations on which PETSc is compatible (orincompatible), al-

though PETSc developers have documented brief discussionson building PETSc

on multiple configurations with different operating systems.

Sugar interface (OLPC) The One Laptop Per Child (OLPC) project3 is an

international effort to provide educational opportunities for the world’s poorest

children by empowering each child with a low-cost, connected laptop with free

content and software. All software tools running on their laptops are free and

there are groups of volunteer developers for creating software that runs on the

laptops. In order to develop applications, developers haveto use a development

environment calledSugar. There are dependency chains between components re-

quired for building Sugar on an operating system. For example, Sugar depends on

Telepathy, a framework for real-time conversations, including instant messaging

and voice/video calls, and Telepathy in turn depends onAvahi, a network service

that enables programs to publish and discover services and hosts running on a

local network without any specific configuration.

3http://laptop.org
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The Sugar environment is an example system that requires compatibility testing

in a non-scientific domain. Currently, to develop applications that use the latest

Sugar features, developers have to use an operating system that contains Sugar al-

ready in the operating system distribution, or they have to use a limited set of op-

erating systems and versions for building the Sugar from thesource code. In other

words, developers have to change or upgrade their operatingsystems. If Sugar

developers perform compatibility testing and identify incompatibilities between

components required for building the Sugar environment, itwould be possible to

increase or at least to figure out the range of platforms that developers can use.

1.2 Thesis and Contributions

In this dissertation, I support the following thesis:Direct-dependency-based con-

figuration sampling techniques can be effectively employedfor testing build-comp-

atibility of component-based systems. To support this thesis, a set of algorithms

and tools have been developed and evaluated by performing compatibility test-

ing for two real-world systems. More specifically, I make thefollowing novel

contributions not addressed in previous related research:

1. I present the first approach for systematically supporting compatibility test-
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ing by examining a small set of configurations sampled from the configu-

ration space of component-based systems. The approach proposed in this

dissertation can help developers to rapidly and effectively identify compat-

ibilities between components required for building their systems.

2. I present and evaluate an approach for incremental compatibility testing .

When components in a system model evolve constantly over time, that ap-

proach can decrease the time required for testing the compatibility of the

modified system by a large amount by sampling and testing onlyconfigura-

tions that test compatibilities related to modified components, while utiliz-

ing previous test results for the sampling and testing process.

3. I present and evaluate a prioritization mechanism that schedules the test

order of sampled configurations. The mechanism makes use of developers’

preferences over components and their versions for computing priorities of

configurations, and can provide developers with compatibility results for

highly-preferred configurations early in the test process.

The usefulness of this research is demonstrated by performing experiments

and simulations on the InterComm and PETSc. In this dissertation, the applica-

tion of compatibility testing is restricted to thebuild process(i.e. compilation

10



and deployment) of a component with other components required for building the

component.

1.3 Structure of the Dissertation

The rest of this dissertation is organized as follows. The next chapter presents

studies related to this research. Chapter 2 describes a high-level overview of

the steps needed to perform compatibility testing for component-based systems.

Chapter 4 formally defines a model for capturing the configuration space of a

component-based system and algorithms for sampling and testing configurations.

Chapter 5 presents an approach for incremental compatibility testing under the

circumstances that components in a system model evolve overtime. In Chapter 6,

a mechanism for prioritizing the test order of configurations respecting develop-

ers’ preferences is presented. Experiments and simulationresults obtained from

empirical studies are presented in each of Chapters 4, 5, and 6. Finally, Chapter 7

concludes this dissertation with a brief discussion and further work.
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Chapter 2

The Compatibility Test Process Using Rachet

I describe in this chapter a high-level overview of the stepsneeded to perform

compatibility testing for a given software system under test (SUT) using Rachet.

1. Model system configuration space:To define the configuration space, i.e.,

the ways in which the SUT may be legitimately configured, developers first need

to identify the components required for building the SUT. This information can

often be obtained, at least in part, from the component providers. Dependency

relationships between components are then encoded as a directed acyclic graph

called aComponent Dependency Graph (CDG). The example CDG depicted in

Figure 2.1 shows dependencies for a SUT component calledA. As captured in the

figure via anAND node (represented by*), A requires componentD and either

one ofB or C (captured via anXOR node represented by+). ComponentsB and

12



*

+ D

B C

*

E

*

F

*

G

A

Version Annotations 

Constraints

   (ver(C) == C2)  (ver(E)  E3)

Component Versions 

A A1

B B1, B2

C C1, C2

D D1, D2

E E1, E2, E3

F F1, F2, F3

G G1

Figure 2.1: An Example System Model

C requireE; D requiresF; andE andF requireG, the bottom node that does

not depend on any other component.Annotationsinclude version identifiers for

components and constraints between components and/or overfull configurations,

written in first-order logic. For example, in Figure 2.1, componentC has two

version identifiers and componentC’s versionC2 may only be built withE’s

versionsE3 and higher. Together, the CDG and Annotations form the model called

anAnnotated Component Dependency Model (ACDM). We formally describe our

model in Section 4.1.
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2. Determine test coverage criterion: The model encodes the configuration

space for the SUT, representing all the different ways in which the SUT may be

legally configured in end users’ machines. For non-trivial software, this space

can be quite large and developers must determine which part of the space will

be tested for compatibility testing. For example, they may decide to test config-

urations exhaustively, which is often infeasible because there are a large number

of configurations to be tested and also building components contained in config-

urations can take a long time. Instead, they may choose more practical criteria

thatsystematically samplethe space. One such sampling strategy is based on the

observation that the ability to successfully build a componentc is strongly influ-

enced by the components on whichc directly depends; the definition and rationale

behind this criterion is further described in Section 4.2.

3. Sample configurations and create test plan:Given the model and the cov-

erage criterion, Rachet samples configurations that satisfy the coverage criterion

where each configuration describes a set of component versions to build and de-

pendency information used for the build process. Then, a test plan is created from

the sampled configurations. The test plan specifies a schedule to test successful

builds of the components contained in the configurations.
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4. Execute test plan:Finally, Rachet executes the test plan by distributing config-

urations to multiple machines and collecting results. There can be various ways to

schedule the configuration test order. We describe in section 4.6 three scheduling

strategies we have developed.

In this dissertation, testing a configuration checks whether component ver-

sions contained in the configuration can be built without anyerror when Rachet

builds each component on top of other components in the configuration. There-

fore, a sequence of instructions for building component versions is executed dur-

ing the execution of a test plan.

When a component build fails, Rachet dynamically modifies a test plan so as

not to lose test coverage. Such build failure may prevent testing other components

in the configuration. In this case, Rachet creates additional configurations that try

to build those component versions in alternate ways, as described in Section 4.7.
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Chapter 3

Related Work

This chapter introduces efforts by software researchers over the last decade for

ensuring compatibilities of a system with various field configurations.

Compatibility Testing on Multiple Configurations

Duarte et al. [33, 34] describe a technique that tests the behavior of a soft-

ware system on diverse field configurations. They distributeJUnit test suites of

a system onto multiple heterogeneous machines accessible in a network of ma-

chines. The distributed software is built on the machines and test suites are run

for testing the behavior of the software. The configuration provisioning and ac-

tual build of the software are handled by a system called SmartFrog [61], which

uses a model-based approach for describing configurations.Although their work

pursues a similar goal to the approaches presented in this dissertation, they do not
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analyze the configuration space of the system for sampling configurations that can

effectively identify compatibilities between components, but instead they simply

run given test suites only on a limited set of configurations realized on available

machines at the time tests are performed.

VMware has developed approaches calledTest lab automationandVirtual lab

manager[6, 7, 8] to support compatibility testing on top of various configura-

tions. Although this approach can provide developers with automated support for

testing software systems in various configurations realized as virtual machines,

developers have to manually customize configurations. Our approach can achieve

this without any intervention from developers after they model the configuration

space of their software system.

Combinatorial Interaction Testing

The Skoll system [56, 57, 72, 73] is designed to ensure correct build and exe-

cution of a software system across a large configuration space, utilizing heteroge-

neous and distributed resources. Skoll is different from our work in that Rachet

addresses a configuration space defined by architectural concerns. Skoll is more

focused on the configuration space as defined by traditional compile- and run-

time options. Techniques to test highly configurable systems have been extended
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to testing of software product-lines. Cohen et al. [26] applycombinatorial inter-

action testing methods to define test configurations that achieve a desired level

of coverage, and identify challenges to scaling such methods to large, complex

software product lines. Although not directly related to our idea of sampling con-

figuration spaces via testing DD-instances, they too illustrate how software prod-

uct line modeling notations can be mapped onto an underlyingrelational model

that captures variability in the feasible product-line instances. They use the rela-

tional model as the basis for defining a family of coverage criteria for product-line

testing.

Software Regression Testing

There have been studies on software regression testing thatselect test cases for

testing modified systems, since running all test cases can bevery expensive and

also there are test cases not related to modified parts of the systems [42, 55, 58,

59]. Qu et al. [58] showed that a combinatorial interaction testing technique can

be used to select test cases for user configurable systems. Although the basic idea

of incremental compatibility testing in Chapter 5 is similarto their work, their

approach is applied only to a flat configuration space, which is not for hierarchi-

cally arranged systems. Robinson et al. [59] presented an idea for testing user
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configurable systems incrementally by identifying configurable elements that are

affected by changes on a user configuration and by running test cases calledfire-

walls for testing the identified elements. However, they do not proactively test

the configuration space and instead postpone testing until auser has changed a

deployed system configuration.

Continuous System Integration

As an effort to reduce integration problems during the software development

process, there is an industry practice calledcontinuous integration[14, 38]. It is

an effort to ensure the compatibility of a system through thelifespan of the system

by integrating source code changes frequently into the complete software system

and by inspecting whether those changes cause problems on top of various ma-

chine configurations. As reported in [60], it has been strongly advocated because

it can be applied to many software projects with relatively low effort and also

because problems originating from the difference between development and field

configurations can be detected earlier in the software development process. There

are several practical tools supporting continuous integration on top of diverse con-

figurations through a uniform build interface. Such tools include ETICS [54],

CruiseControl [2] and Maven [51]. Although these systems perform build tests
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for components, their build process is limited to a set of predetermined configura-

tions. Rachet rather produces plausible configurations automatically considering

available information on component versions and inter-component dependencies.

Component Installation Management

Our work is broadly related to component installation managers that deal with

dependencies between components. Opium [68] and EDOS [50] are two example

projects. Opium makes sure a component can be installed on a client machine.

The problem of determining whether a component can be installed on a client

machine is modeled as a satisfiability problem and is solved using a SAT solver

for finding an optimal satisfiable configuration for installing the component. The

EDOS project checks for conflicting component requirementsat the distribution

server. It provides a set of tools for managing the compatibility of components

contained in a distribution server. Both projects assume that component depen-

dencies and constraints are correctly specified by component providers and that

there is no compatibility problem if the dependencies and constraints are satisfied,

Our approach differs in that we validate component compatibilities by testing a

set of configurations in which the components may be installed.
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Chapter 4

Sampling and Testing Configurations

In this chapter, I describe in detail each step in the processdescribed in Chapter 2.

I first define a formal graph-based model that encodes all deployable configu-

rations and a test adequacy criterion for compatibility testing. Then, I present

algorithms that generate configurations satisfying the criterion. Then, I describe

a method to test sampled configurations efficiently utilizing multiple machines

and present experiment and simulation results obtained by applying the Rachet

process to two real-world systems [74, 75].

4.1 Configuration Space Model

Components, their versions, inter-component dependenciesand constraints de-

fine the configuration space of a system under test (SUT) wherethe SUT is sup-
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posed to be deployed successfully. The configuration space of the SUT is captured

into a formal model called aAnnotated Component Dependency Model (ACDM).

An ACDM consists of aComponent Dependency Graph (CDG)andAnnotations

(Ann).

A CDG has two types of nodes – component nodes and relation nodes; di-

rected edges represent dependencies between components encoded by the nodes.

For example, Figure 2.1 depicts an SUTA that requires components (B andD)

or (C andD), each of which depends in turn on other components. As shownin

the figure, inter-component dependencies are captured by relation nodes labeled

either “∗” or “+”, which are interpreted respectively as applying a logical AND or

XOR over the relation node’s outgoing edges.

Annotations provide additional information about components in a CDG. The

first set of annotations for this example system is an orderedlist of version identi-

fiers for each component. Each identifier represents a uniqueversion of the corre-

sponding component. In Figure 2.1, componentB has two version identifiers:B1

andB2.

Version-specific constraints are common between various components in a

model. For example, in Figure 2.1 componentC has two versions and depends

on componentE, which has 3 versions. Suppose that componentC’s version
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C2 may only be compiled usingE’s versionsE3 and higher. This “constraint” is

written in first order logic and appears as (ver(C) == C2) → (ver(E) ≥ E3).

Global constraints may also be defined over entire configurations. For instance,

for our case studies in this dissertation, we require all components depending on

a C++ compiler version to use the identical C++ compiler version in any single

configuration.

We now formally define the ACDM:

Definition 1 AnACDM is a pair (CDG,Ann), whereCDG is a directed acyclic

graph andAnn is a set of annotations.

Definition 2 A CDG (Component Dependency Graph) is a pair(N,E), where:

(1) N = C ∪ R. C is a set of labeled component nodes. Component node labels

are mapped 1-1 to components.R is a set of relation nodes whose labels come

from the set{“ ∗” |“ +” }. Relation nodes are interpreted as applying a logical

function, AND or XOR, across their outgoing edges; (2)E is a set of dependency

edges, with each edge connecting two nodes. Valid edges are constrained such

that no two component nodes are connected by an edge:E = {(u, v)|u ∈ C, v ∈

R} ∪ {(u, v)|u ∈ R, v ∈ R} ∪ {(u, v)|u ∈ R, v ∈ C}. That is, dependencies

between components are solely defined by relation nodes.
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Furthermore, valid CDGs must obey the following properties: (i) There is a

single distinguished component node with no incoming edges,called top. Typi-

cally top represents the SUT. (ii) There is a single distinguished component node

with no outgoing edges, calledbottom. This component is not dependent on any

other component. (The bottom node may represent an operating system, but that

is not required.) Dependencies between components may also be encoded using

other formalisms such as feature-based [29, 30] or rule-based models [66].1 (iii)

All other component nodes,v ∈ {C/{top,bottom}}, have exactly one incoming

edge and one outgoing edge.

Definition 3 The annotation set,Ann used in an ACDM contains two parts: (i)

For each componentc ∈ C, a set of component properties. One example property

is the range of elements (versions) over whichc may be instantiated, which must

be specified for each component. (ii) A set of constraints between components

and over configurations. The constraints are specified in a set of expressions that

use boolean operators (∨, ∧,→, ¬) and relational operators (≤, ≥, ==, <, >);

component properties are used to evaluate the expressions.

1To capture dependencies, graphical notations similar to the CDG are used for feature-based

models, and textual descriptions are used for rule-based models.
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4.2 Direct Dependency between Components

Except for the component encoded by the bottom node, each component in a CDG

depends on all components on any path from the node encoding the component to

the bottom node. However, the correct build of the componentdepends on a set of

components that are directly used by the component.2 Definition 5 defines a set

of components on which a componentdirectly depends.

Definition 4 In A CDG, a componentc directly depends on a set of components,

DD, such that for every component,DDi ∈ DD, there exists at least one path in

the CDG, not containing any other component node, from the node encodingc to

the node encodingDDi.

For example, the componentB in the example from Figure 2.1 directly de-

pends on the componentE, although it also uses functionalities provided by the

componentG through the componentE.

From these direct dependencies defined between components,Rachet com-

putesDD-instances, which are the concrete realizations of direct dependencies,

2Hence, in practice, for building a component, many component build tools such as GNU

Autoconf/Automake [31, 69] and Ant [44] check only for the existence of other components on

which the component to build directly depends, and check forbasic functionalities provided by

the components, by generating and testing a simple program during the build process.
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specifying component versions. ADD-instanceis a tuple,(cv, d), wherecv is

a versionv of componentc, andd is the set of component versions on whichc

directly depends. For each component in a model, Rachet computes a set of DD-

instances. When multiple relation nodes lie on a path betweena component and

other components on which it directly depends, Rachet applies the following set

operations recursively for the relation nodes: Union for XOR nodes and Cartesian

product for AND nodes. For example, (A1,{B1,D1}) is one of 8 DD-instances for

the componentA in the example from Figure 2.1.

Since the application context for the compatibility testing in this dissertation

is restricted to checking error-free build of components3, testing a DD-instance

(cv, d) means checking whethercv can be built without any build error with the

component versions contained ind. If cv can be built without any error, we say

thatcv is build-compatiblewith d.

Note that, for testing a DD-instance (i.e., checking the build-compatibility of

cv with d), it is necessary to build in advance the component versionscontained in

d. Hence, in addition to the DD-instance to be tested, aconfigurationmust contain

all DD-instances to build component versions contained in the dependency part of

3In many Unix-based operating systems, building a componentcommonly includes three steps

– configuring, compiling and deployingthe component.
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any DD-instance in the configuration. In a CDG, a configurationto test a DD-

instance of a component can be formally defined as follows:

Definition 5 In a CDGG = (N,E), a configuration to test a DD-instance of a

component represented by a component noden ∈ N , is an annotated subgraph of

G, G′ = (N ′, E ′), such that (1)n ∈ N ′, (2) for every component noden′ ∈ N ′,

n′ is annotated with a DD-instance forn′, (3) for a component noden′ ∈ N ′ and

another component noden′′, n′′ ∈ N ′ if and only if a version of the component

represented byn′′ is contained in the dependency part of the DD-instance forn′,

(4) for an AND relation noden′ ∈ N , n′ ∈ N ′ if and only if all nodes connected

byn′’s outgoing edges are contained inN ′, (5) for an XOR noden′ ∈ N , n′ ∈ N ′

if and only if at least one node connected byn′’s outgoing edge is contained in

N ′, (6) for every edgee = (v, w) ∈ E, e ∈ E ′ if and only ifv ∈ N ′ andw ∈ N ′.

From this definition, for the example system from Figure 2.1,a configuration

to test the DD-instance (A1,{B1,D1}) is the subgraph of the CDG that contains

component nodesA, B, D, E, F andG, where each component node is annotated

with DD-instances: (A1,{B1,D1}), (B1,{E3}), (D1,{F2}), (E3,{G1}), (F2,{G1}) and

(G1,∅), respectively. All relational nodes connecting the component nodes must

also be contained in the subgraph.
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To test each configuration, component versions encoded by DD-instances for

component nodes in a subgraph have to be built, enforcing thedependency to build

each component version, starting from the component for thebottom node of the

subgraph. Therefore, for the rest of this dissertation, a configuration is considered

as an ordered list of DD-instances, where the list starts with a DD-instance of the

component with no dependency and other DD-instances are ordered respecting

dependencies for building component versions encoded by the DD-instances.

4.3 Configurations with Exhaustive Coverage

The most straightforward way to identify the range of configurations in which the

SUT is build-compatible is to build the exhaustive set of possible configurations.

To compute an exhaustive configuration set, we start from thebottom nodeof the

CDG, and for each node type, do the following:

• Component node:compute new configuration set by extending each (partial)

configuration in the configuration set of its child node (a relation node) with each

DD-instance of the component, only when adding the DD-instance to the config-

uration does not violate any constraints. For each DD-instance (cv, d) of the com-

ponent, we first identify configurations in the configurationset of the child node
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where each configuration has all DD-instances for building component versions

contained ind. Then, extend each configuration with the DD-instance (cv, d), if

adding the DD-instance to the configuration does not violateany constraints. For

the bottom node, simply return the set of configurations where each containsa

DD-instance of the component represented by the bottom node, as the component

has no dependency.

• AND node:compute the Cartesian product of configurations taken from each

configuration set computed for the child nodes of the AND node, then merge the

configurations in each combination in the product by creating a new configuration

that contains all DD-instances from the configurations. We enforce two rules im-

plicitly in merging configurations. First, only one versionfor each component is

allowed in a combined configuration. That is, we do not allow combining con-

figurations when each contains a DD-instance for the same component, but with

a different version. Second, we require that a combined configuration contains a

single DD-instance for each component version.

• XOR node:the result set is simply the union of the configuration sets ofits child

nodes.

Even for the simple CDG in Figure 2.1, the number of configurations in the

exhaustive set for building componentA is 60. Since a CDG for a real applica-
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tion can be very complex and contain many components, as shown in Figure 4.5,

the number of configurations for exhaustive coverage may be large. Considering

the potentially long time required for building each complete configuration, for

many CDGs it may be infeasible to test all possible configurations. This means

that we need a method that samples configurations intelligently so that the results

from testing the sampled configurations are sufficient for determining whether a

configuration realized in a user’s machine can be used for building a system. Test-

ing randomly sampled configurations may not provide complete information for

making the decision.

4.4 Configurations with DD-Coverage

The default sampling strategy of Rachet is calledDD-coverageand is based on

testing the DD-instances for components in a model. The motivation for this

strategy is that the correct build of a component mostly depends on a set of com-

ponents on which the component directly depends.

OnceDD-instancesfor all components have been computed, Rachet computes

a set of configurations in which each DD-instance appears at least once. This

is achieved by applying the algorithmDD-Coverageshown in Figure 4.1 to all
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Algorithm DD-Coverage (CDG G)

1: ConfigSet← ∅ // configuration set
2: for each component noden ∈ G in topological order from thetop nodedo
3: Let c the component represented by the noden

4: Let DDc the set of DD-instances for the componentc

5: for each uncoveredddi = (cv, d) ∈ DDc do
6: C ← BuildCFG ({ddi}, d)
7: if C 6= ∅ then
8: ConfigSet← ConfigSet ∪ {C};
9: setddi covered;

10: end if
11: end for
12: end for
13: return ConfigSet

Figure 4.1: DD-Coverage apply BuildCFG for generating each DD-instance for
components in a CDG

DD-instances for components in a CDG. The algorithm takes each component

in a CDG in a topological order, starting from the top node and then attempts to

generate a configuration that tests each DD-instance for thecomponent by running

the algorithmBuildCFG shown in Figure 4.2, and we say that the DD-instance is

coveredby the generated configuration.

The algorithmBuildCFG takes two parameters: (1) a list of DD-instances al-

ready selected for the configuration under construction, and (2) a set of component

versions whose DD-instances must still be added to the current configuration. To

generate a configuration for a given DD-instance (call itddi1 = (cv, d)), Rachet
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callsBuildCFG with the first parameter set toddi1 and the second parameter con-

taining all the component versions ind. The algorithm then selects a DD-instance

for some component version in the second parameter (line 4).The configuration

(the first parameter) is extended with that DD-instance, andcomponent versions

contained in the dependency part of the DD-instance are added to the second pa-

rameter, if DD-instances for those component versions are not yet in the config-

uration (line 5). Then, the algorithm checks whether the extended configuration

violates any constraints. If the configuration does not violate constraints,Build-

CFG is called recursively with the updated parameters (line 11). If there has been

a constraint violation, the algorithm backtracks to the state before the DD-instance

was selected and tries another DD-instance, if one exists. The algorithm returns

true if the configuration has been completed (i.e., the second parameter is empty)

or false if it runs out of DD-instances that can be selected, due to constraint vi-

olations. If all of those calls return success, the configuration under construction

contains all DD-instances necessary for a configuration that coversddi1 (and all

other DD-instances selected for making the configuration complete).

The algorithms for generating configurations work greedily. Each configu-

ration it generates covers as many previously uncovered DD-instances as possi-

ble, with the goal of minimizing the total number of configurations necessary to
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Algorithm BuildCFG (Cfg, U )

1: // Cfg: configuration under construction
2: // U : component versions whose DD-instances need to be picked
3: c′v ← a comp. version fromU
4: for ddi′ = (c′v, d

′) ∈ DDc′ do
5: (Cfg′, U ′)← (append(Cfg, ddi′), d′ ∪ U − {c′v})

6: // DDc′ is the DD-instance set ofc′v
7: if Cfg′ does not violate any constraintsthen
8: if U ′ == ∅ then
9: setddi′ covered;return Cfg′

10: else
11: Cfg′′ ← BuildCFG (Cfg′, U ′)
12: if Cfg′′ 6= ∅ then
13: setddi′ covered;return Cfg′′

14: end if
15: end if
16: end if
17: end for
18: return ∅ // there is no legal way to buildc′v with the DD-instances inCfg

Figure 4.2: Algorithm to generate a configuration to cover a DD-instance
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cover all DD-instances for components. This is achieved in the algorithm, by (1)

selecting anuncovered DD-instance firstin the selection process (line 4 in the

BuildCFG algorithm), and by (2) applying the algorithm for the DD-instances

of components in topological order, starting from thetop component in a CDG

(line 2 in theDD-Coveragealgorithm), since more DD-instances may be covered

from multiple DD-instance sets when applied to a DD-instance of components

close to thetop component in the CDG, compared to those farther fromtop. For

the example system,DD-Coverageproduced 11 configurations that cover all 31

DD-instances for the components involved in the model.

4.5 Test Plan Synthesis

In order to test generated configurations, we take each of theconfigurations and

topologically sort the DD-instances contained in the configuration to produce an

ordered sequence of components. That is, theith component in this sequence does

not depend on any component with an index greater thani. Therefore it is legal to

build the configuration by first building the1st component in the sequence, then

building the2nd component, etc.

The configurations may be tested one at a time by building eachcomponent
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in each configuration on a machine according to the sequence order. However,

the total number of component versions that must be built canbe reduced by

utilizing the fact that multiple configurations may containidentical sequences of

DD-instances. For example, all configurations contain the same first DD-instance,

that builds an operating system, if only one version of the operating system is used

in the model.

To reduce the number of components to build, Rachet then combines the build

sequences for all configurations into aprefix treeby representing each common

build prefix (a build subsequence starting from the first component) exactly once.

Thus, each path from the root node to a leaf node corresponds to a build sequence,

but common build subsequences are explicitly represented.

The rationale behind combining configurations is that many configurations are

quite similar, so we can reduce test effort by sharing partial configurations across

multiple configurations. The prefix tree then acts as atest plan, showing all oppor-

tunities to share common build effort. Figure 4.3 depicts two test plans, one from

the 60 configurations produced exhaustively (EX-plan) and the other from the 11

configurations with DD-coverage (DD-plan) for the example system. An example

configuration contained in both plans is shaded in the figure.The DD-plan for

the example system contains 11 configurations, with 37 nodes(component ver-
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Figure 4.3: EX-plan (top) and DD-plan (bottom) for example model

sions to be built), reduced from 56, the number of DD-instances contained in the

configurations generated by applying theBuildCFG algorithm.

4.6 Test Plan Execution Strategies

A test plan created by the process described in the previous section can be exe-

cuted in several ways. Test plan execution visits all nodes in a plan, and when a

plan node is visited, Rachet tests thebuild-compatibilityof the DD-instance(cv, d)

represented by the node. That is, Rachet buildscv with the component versions
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in d and records the result. However, to do that, Rachet first needs to build all

component versions represented by the nodes in the path fromthe root node to the

parent of the plan node, and it can be time consuming if Rachetbuilds all the com-

ponent versions from scratch on an empty configuration, whenever Rachet visits

a plan node.

Therefore, Rachet uses avirtual machine(VM) for a partial configuration

(i.e., a prefix of the test plan under execution). A benefit from building compo-

nents inside a VM is that we can avoid contaminating the persistent state of a

physical test resource (machine). In addition, if the components in a prefix are

built successfully without any error, the modified machine state has the correct

state for the prefix and the VM may bereusedto test DD-instances represented by

descendant nodes in a subtree rooted at the last node of the prefix, since a VM can

be represented as a file and can be cloned by copying the VM. Whenwe test the

DD-instances, we need only to build additional components by reusing the VM

state.

In this section, we describe three plan execution strategies and also describe

the mechanism for dynamically handling component build failures. Although not

required, for executing a test plan, we assume that a single server controls the plan

execution and dispatches prefixes to multiple clients. We also assume that each
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client has disk space available to cache VMs (completed prefixes) for reuse.

Rachet’sfinal output after the execution of a test plan are test results indicating

whether each DD-instance was (1)tested and built successfully, (2) tested and

failed to build, or was (3)untestable, meaning that there was no way to produce

a configuration to test that DD-instance. For example, suppose that in testing the

system in Figure 2.1 all attempts to buildB2 with E1 throughE3 fail. Then all

DD-instances that require a version ofA to be built overB2 are untestable.

4.6.1 Parallel Depth-First Strategy

The parallel depth-first strategy is designed to maximize the reuse of locally cached

prefixes at each client during the plan execution. When a test client completes

testing a prefix from the plan root to a noden and subsequently requests a new

prefix, the test server assigns a prefix according to the following rules, attempting

to maximize the reuse of cached prefixes.

First, if the noden is a non-leaf node in the plan, the prefix for one ofn’s

unassigned child nodes is chosen as the next prefix for the client. The client will

then reuse the VM state from its previously tested prefix, so only has to build one

additional component (the one represented by the last node of the new prefix).

This is typically the least expensive way to test a new prefix,because the cost to
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test the prefix is only the time to boot up the VM and to build onecomponent on

top of the VM.

Second, if the noden is a leaf node, prefixes already stored in the cache space

of the client are utilized to assign a new prefix. Starting from the node for the most

recently cached prefix, the algorithm searches for an unassigned descendant node

in the plan in depth-first order. Nodes whose DD-instance is currently under test

by other clients, and their subtrees in the plan, are not considered by the search.

In this case, the test client must build thedifferencebetween the assigned prefix

and the reused prefix.

Finally, if the algorithm cannot find an unassigned node using the first or sec-

ond rule, the plan is searched in depth-first order from the root node. As for the

second rule, the nodes currently being tested, and their subtrees, are not visited. In

this case, to reduce the time to test the assigned prefix, the test server looks for the

best cached prefix for the assigned prefix (i.e. the one with the longest matching

prefix), so the VM corresponding to the cached prefix must be transferred across

the network from the client that produced the cached prefix, which can take a sig-

nificant amount of time (a cached VM can be large, up to 1GB or more depending

on the components built inside). The difference between theassigned prefix and

the cached prefix must then be built.
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For the depth-first strategy, the decision to cache a prefix that has just been

tested is based on the number of child nodes a node has in the plan. If the node

has two or more children, the prefix may be reused to test prefixes to the child

nodes, so the test server requests the client to cache the prefix. However, if the

node has only one child, the prefix for the child node will be assigned to the same

client by the first rule, so there is no reason to cache the prefix.

Since the depth-first strategy tries to first utilize locallycached prefixes, the

number of locally reused prefixes is maximized and the numberof prefixes that

require VM transfers between clients is minimized. However, the cost to build the

components in a prefix will be high if the difference between an assigned prefix

and a locally cached prefix is large. In addition, when a largenumber of test clients

are available and the test plan does not have many nodes near the root of the plan,

many clients could be idle during the early stage of plan execution, waiting for

enough prefixes to become available.

4.6.2 Parallel Breadth-First Strategy

The parallel breadth-first strategy focuses on increasing the number of prefixes

being tested simultaneously, and secondarily tries to maximize the reuse of locally

cached prefixes. To dispatch prefixes in breadth-first order,the server maintains a
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priority queue of plan nodes ordered according to their depth in the plan.

At the initialization step, the algorithm initializes the priority queue by travers-

ing the plan in breadth-first order, adding nodes to the queueuntil the number of

nodes exceeds the number of test clients. When a leaf node in the plan is traversed,

it remains in the queue. On the other hand, when a non-leaf node is traversed, it is

removed from the queue and instead its child nodes are added to the queue. That

is, we increase the number of prefixes that can be tested in parallel by assigning

prefixes for the child nodes, instead of the prefix for the non-leaf node.

When a prefix is requested by a client, the test server assigns the first unas-

signed prefix in the queue. Then, if a prefix is tested by the client successfully, the

algorithm locates the node corresponding to the prefix in thequeue, and appends

the child nodes to the queue. To reduce the time to test a prefix, the test server al-

ways finds the best cached prefix to initialize the state of theVM to test the prefix,

although the cost to transfer the VM across the network may behigh.

Unlike the depth-first strategy, for the breadth-first strategy, a completed prefix

is always cached if its corresponding node in the plan is a non-leaf node. The

rationale behind this choice is that in many cases the prefixes for the child nodes

will not be assigned to the same client. This strategy will keep all clients busy

as long as there are unassigned nodes in the queue throughoutthe plan execution.
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Therefore, we expect a high level of parallelism. However, we also expect less

local cache reuse and increased network cost compared to thedepth-first strategy,

because of transferring many cached prefixes across the network.

4.6.3 Hybrid Strategy

We have described costs and benefits of the depth-first and breadth-first strategy.

Although the depth-first strategy tries to maximize the locality of reused prefixes,

during the early stage of plan execution it may not fully maximize the parallelism

that could be obtained by testing prefixes on all available clients. On the other

hand, the breadth-first strategy may achieve a high level of parallelism, but may

also increase the network cost to test prefixes.

The hybrid strategy is designed to balance both the localityof reused prefixes

and the parallelism throughout plan execution, by combining the features of both

strategies. As in the breadth-first strategy, a priority queue of plan nodes is created

by traversing the test plan, and is used to increase the parallelism during the early

execution stages of the plan. That is, for the initial requests from test clients,

prefixes for nodes in the queue are assigned toall available clients immediately at

the beginning of plan execution.

To maximize locality for reused prefixes, the first and secondrules for the
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depth-first strategy are subsequently applied to assign prefixes to requesting clients.

If both rules fail to find an unassigned node, the test plan is traversed in breadth-

first order from the root node to find an unassigned node. This is based on the

heuristic that a node closer to the root node will likely havea larger subtree be-

neath it than nodes deeper in the tree, which will lead to morework being made

available for a client reusing locally cached prefixes.

4.7 Dynamic Failure Handling

For a DD-instance (cv, d), if test plan execution failed to buildcv on top of the

component versions ind, cv is build-incompatiblewith the component versions

contained ind, and Rachet uses this failure information to guide further plan ex-

ecution. Since the DD-instance is encoded by a node of a prefixin the plan, the

build failure prevents testing of all DD-instances represented by the descendant

nodes of the node in a test plan. This is because we need a VM on which all DD-

instances of the ancestor nodes have been built to test the DD-instances. However,

the failure does not imply failure forall the DD-instances affected by the failure.

Instead of simply regarding the DD-instances asuntestable, we dynamically ad-

just the test plan under execution for testing the DD-instances in alternate ways,
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if possible. That is achieved by producing additional configurations that cover

the DD-instances, and merging the new configurations into the test plan. This

strategy attempts to maximize the number of DD-instances tested during the plan

execution.

Since one DD-instance in the test plan can participate in multiple configura-

tions, it can appear as multiple nodes in different branchesof a test plan. If one

of the nodes encoding an identical DD-instance fails, we expect the others to also

fail from Definition 5. Thus, the test plan nodes affected by abuild failure are

not confined to the descendant nodes in the subtree of the failed node, but also

include all descendant nodes in the subtrees of the nodes encoding the same DD-

instance. Therefore we must produce new configurations to cover all the affected

DD-instances.

To reduce the number of newly produced configurations we apply theBuild-

CFG algorithm in Section 4.4 for the affected DD-instances represented by the

nodes under the subtrees in a post-order tree traversal. As we generate configura-

tions for covering DD-instances of components in the CDG in topological order,

we expect that a DD-instance represented by a node will be covered while gener-

ating configurations for the DD-instances represented by its descendant nodes.
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Figure 4.4: Rachet Software Architecture

4.8 Rachet Architecture

We have developed an automated test infrastructure that supports the Rachet pro-

cess. The Rachet infrastructure is designed in a client/server architecture, as il-

lustrated in Figure 4.4, utilizing hardware virtualization technology. We call the

Rachet server theGlobal Coordinator (GC)and the client theLocal Coordina-

tor (LC).

Global Coordinator (GC)

The GC is the centralized test manager that directs overall test progress, inter-

acting with multiple clients. It first generates configurations that satisfy the de-

sired coverage criteria (e.g., DD-coverage) and also produces a test plan from the
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configurations, using the algorithms described in Section 4.5. Then, the GC dy-

namically controls test plan execution by dispatching prefixes and the ancillary

information necessary to test the prefix to multiple clients, according to one of the

test plan execution strategies described in Section 4.6.

Specifically, the GC has atestmanagerand a set oflchandlers, where each

lchandler is dedicated to a client machine. Thetestmanageris responsible for

creating configurations and a test plan. During the test execution, thetestman-

agersatisfies requests from clients and updates test results in adatabase. When a

client first requests a prefix to test, the GC creates anlchandlerfor the client and

that lchandler is responsible for all further communication with the client. Each

lchandlerenqueues requests from the LC into ashared request queue. Then, the

testmanagerhandles the requests in first-in-first-out (FIFO) order and enqueues

matched responses into ashared response queue, which enables eachlchandlerto

send responses to the LC with which it communicates.

Local Coordinator (LC)

The LC controls testing prefixes in a client. One LC runs on each test machine

and interacts with the GC to receive information on prefixes to test and also to

report execution results.
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As described previously, testing a prefix in the current Rachet design and

implementation meansbuilding the component versions represented by the DD-

instances contained in the prefix, taking into account the dependency information

used for building the component versions. To do the builds, the LC employs hard-

ware virtualization technology. The components are built within avirtual machine

(VM), which provides a virtualized hardware layer. This design is advantageous

since the persistent state of the test machine is never changed, so a large num-

ber of prefixes can be executed on a limited number of physicaltest machines.

The Rachet implementation currently usesVMware Serveras its virtualization

technology, since it handles virtual machines reliably andalso provides a set of

well-defined APIs to control the VM. A key feature of VMware Server is that the

complete state of a VM is stored as files on the disk of the test machine, so can be

saved and later reused (i.e. the VM can be stopped and copied,and the original

VM and the copy can be restarted independently). We assume that each client has

disk space for storing (caching) VMs.
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Virtual Machine Coordinator (VMC)

The VMC is responsible for the actual component build process in a VM. When

a VM is started by the LC, the VMC is automatically deployed in the VM and

started by the LC. The VMC then interacts with the LC to receivecommands

for building component versions contained in the prefix assigned to the LC and

also to send command execution results back to the LC. The instructions to build

each component are translated into appropriatesystemcommands by the VMC

and executed in the VM for actual component builds.

Interactions among GC, LC and VMC

Three coordinators in the Rachet system interact with each other to execute a test

plan as follows:

1. Prepare test: The GC produces configurations and builds a test plan. Then,

it listens for LC requests.

2. Assign a prefix: When a LC requests a new prefix, the GC looks for a prefix

from the plan based on a desired plan execution strategy, anddispatches

the prefix with ancillary information. For example, the LC needs to know
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which VM should be reused for testing the prefix.

3. Provision a VM: Each LC provisions a VM chosen to test the assigned pre-

fix. If a locally cached VM is to be reused, the cached VM is decompressed

into a directory. However, if a VM stored in a remote machine is chosen,

the LC fetches the VM over the network and decompresses it.

4. Deploy and Launch the VMC: The LC starts the provisioned VM, and de-

ploys and launches the VMC in the VM. The VMC automatically connects

to the LC and establishes a communication channel.

5. Build components: The LC sends instructions to the VMC to build the com-

ponents contained in the prefix, and the VMC translates the instructions into

a series of commands (e.g., for Unix, commands for executingprograms

from ashell) and then executes them on the VM.

6. Report Results and Cache VM: The LC reports the test result to the GC.

The GC stores the result and uses it to guide further plan execution. If the

prefix is tested successfully and if the GC has requested the LC to cache the

prefix, the LC requests a unique cache identifier from the GC and registers

the cached prefix with the GC. The VM is compressed into a file andstored

in the LC’s local cache space.
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4.9 Evaluation

In this section, we present experimental and simulation results obtained by per-

forming empirical studies with the two scientific middleware systems described in

Chapter 1. In particular, we focus on examining the cost and benefit of testing only

configurations with DD-coverage compared to testing all feasible configurations,

and on investigating the performance behavior of plan execution strategies.

4.9.1 Modeling the Subject Systems

To perform compatibility testing for the subject systems, we first modeled com-

ponent dependencies, working directly with the InterComm developers and care-

fully inspecting documentation provided by the PETSc developers. In Figure 4.5,

we show the component dependencies captured for InterComm and PETSc in a

single CDG. The nodes specific to PETSc are shaded in the figure.Version anno-

tations and brief description on the components used in the CDG are depicted in

Table 4.1.

In addition to component versions, the following constraints are specified as

part of the annotations and must be satisfied by each configuration. First, if the

same vendor compilers (i.e.,gcr, gxx, gf, gf77or pc, pxx, pf) are used in a con-
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Component Version Identifiers Description

petsc 2.2.0 PETSc, the SUT

ic 1.5 InterComm, the SUT

python 2.3.6, 2.5.1 Dynamic OOP language

blas 1.0 Basic linear algebra subprograms

lapack 2.0, 3.1.1 A library for linear algebra operations

ap 0.7.9 High-level array management library

pvm 3.2.6, 3.3.11, 3.4.5 Parallel data communication component

lam 6.5.9, 7.0.6, 7.1.3 A library for MPI (Message Passing Interface) standard

mch 1.2.7 A library for MPI (Message Passing Interface) standard

gf 4.0.3, 4.1.1 GNU Fortran 95 compiler

gf77 3.3.6, 3.4.6 GNU Fortran 77 compiler

pf 6.2 PGI Fortran compiler

gxx 3.3.6, 3.4.6, 4.0.3, 4.1.1 GNU C++ compiler

pxx 6.2 PGI C++ compiler

mpfr 2.2.0 A C library for multiple-precision floating-point number computations

gmp 4.2.1 A library for arbitrary precision arithmetic computation

pc 6.2 PGI C compiler

gcr 3.3.6, 3.4.6, 4.0.3, 4.1.1 GNU C compiler

fc 4.0 Fedora Core Linux operating system

Table 4.1: Component Version Annotations for InterComm and PETSc

figuration, they must have the same version identifier. Second, only a single MPI

component (i.e.,lamor mch) can be used in a configuration. Third, only one C++

compiler, and only one of its versions (gxx version X or pxx version Y) can be

used in a configuration. Fourth, if both a C and a C++ compiler are used in a

configuration, they must be developed by the same vendor (e.g., GNU Project or

PGI). For PETSc, we applied one additional constraint: compilers from thesame

vendor must be used to build the PETSc or MPI component. With these con-

straints, there are 302 and 160 DD-instances for the components contained in the

InterComm and PETSc models, respectively.
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System Coverage # of cfgs # of Compcfgs # of Compplan

InterComm EX-Coverage 3552 39840 9919

InterComm DD-Coverage 158 1642 677

PETSc EX-Coverage 1184 14336 3493

PETSc DD-Coverage 90 913 309

Table 4.2: Test Plan Statistics for InterComm and PETSc

4.9.2 Experiment Setup

For each subject system, we generated two test plans. Table 4.2 summarizes the

number of produced configurations, and the number of components contained in

those configurations and in the test plan. The first test plan,called EX-plan, was

generated using the exhaustive coverage criteria, and the other test plan, called

DD-plan, only covers all DD-instances identified for the components in a model.

For example, the PETSc EX-plan has 1184 configurations, containing a total of

14336 components to be built. However, the number of components in the final

test plan is only 3493, since configurations are merged to produce the test plan.

We first conducted experiments to measure the costs and benefits of DD-

coverage compared to EX-coverage, and also to see the behavior of Rachet as the

overall system scales. To do that, we executed both the EX-plan and DD-plans

with 4, 8, 16 and 32 client machines, using the parallel depth-first plan execution

strategy. To compare the various test plan execution strategies, we also executed
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the DD-plans for both subject systems using the parallel breadth-first and hybrid

strategies with the same numbers of client machines.

For actual experiments, we ran the GC on a machine with a Pentium 4 2.4GHz

CPU and 512MB memory, running Red Hat Linux 2.4.21-53.EL, andwe ran LCs

on up to 32 machines, all with Pentium 4 2.8GHz Dual-CPU and 1GBmemory,

running Red Hat Enterprise Linux version 2.6.9-11. All machines were connected

via Fast Ethernet. One LC runs on each machine, and each LC runs one VM at a

time for testing a prefix. The number of entries in the VM cachefor each LC is set

to 8, because we observed little benefit from more cache entries for the InterComm

example in another experiment, and also because test plans for PETSc are smaller

than test plans for InterComm in this scenario.

In addition to these experiments on the real system, we ran simulations using

our event-based simulator that mimics the behavior of the key Rachet components,

described in Section 4.8, to better understand the performance characteristics of

the Rachet on larger sets of resources than we were able to usefor the real ex-

periment (both because of limited resource availability and the time required for

performing experiments). For the simulations, we used the information obtained

from running actual experiments. Such information includes the test results for

DD-instances and average times required for building component versions.
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4.9.3 Cost/Benefit Assessment of DD-Coverage

As shown in Table 4.2, the EX-plans for both systems have a large number of

configurations compared to the DD-plans. Since it takes up to3 hours to build

a configuration for either InterComm or PETSc, it requires about 10600 and 470

CPU hours to execute the InterComm EX-plan or DD-plan, respectively, and 3500

or 270 CPU hours for the corresponding PETSc plans.

With a naive plan execution strategy where each configuration is always built

from scratch, with 8 machines it would still take 1325 or 438 hours, respectively

for the EX-plans with perfect speedup, and 59 or 34 hours for the DD-plans. How-

ever, since our plan execution strategies reuse build effort across configurations,

the plan execution times for both plans are expected to be much smaller than times

with the naive execution strategy. In our experiments, execution times were fur-

ther shortened due to many build failures during the plan execution.

The cost savings obtained by executing the DD-plans are shown in Figure 4.6.

With 8 machines, the InterComm EX-plan took about 29 hours with the parallel

depth-first strategy, during which 461 component builds were successful and 687

failed. All other builds could not be tested due to build failures of other com-

ponents required for the builds. For the PETSc EX-plan, about 29 hours were

needed, during which we observed 724 build successes and 407build failures,
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Figure 4.6: Actual turnaround time for executing InterComm and PETSc EX-
plans and DD-plans using depth-first strategy.

with the rest not able to be tested. Compared to the EX-plans, the InterComm

DD-plan took 12 hours with 275 successful component builds,and the PETSc

DD-plan took 10 hours with 216 successful builds.

In our experiments, the execution times for the EX-plans took only 2.5 – 3

times more than those for the DD-plans, because many build failures occurred

during plan execution, especially for the components closeto the bottom node

in the CDG. Note that the difference in execution times between the EX-plans

and DD-plans decreases as more clients are used, since the Rachet system always

tries to best utilize the machines for plan execution and therefore a larger plan can

benefit more when many clients are available.
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The results show that Rachet was able to achieve large performance benefits

by testing only configurations covering DD-instances, and also was able to exe-

cute the test plans efficiently using the depth-first execution strategy. However, we

also need to know the potential loss of test effectiveness from using the DD-plan,

which only samples a subset of the configurations that are tested by the EX-plan.

To do that, we identified the successes and failures for all DD-instances of com-

ponents in the InterComm and PETSc model by executing EX-plans, respectively.

Then, we checked whether building a component version encoded by each DD-

instance succeeds or fails in the DD-plan.

We found that each failed DD-instance from the InterComm EX-plan execu-

tion exactly maps to a corresponding DD-instance failure inthe DD-Plan. How-

ever, for the PETSc EX-plan, we observed 8 DD-instances where the PETSc

component build success or failure depended on the compilers used for build-

ing components on which the PETSc component depends (e.g., when Rachet tries

to build a version of the PETSc component with the GNU compilers on a VM,

the MPICH component might have been previously built on the machine with the

GNU compilersor with the PGI compilers.) Unfortunately, all those instances

were reported as successful builds during the DD-plan execution. We observed

that this happened because there were missing constraints in the model. For these
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instances, the missing constraint was that compilers from the same vendor must

be used to build all the components on which the PETSc component directly de-

pends. PETSc developers might have simply assumed this constraint. However,

users do not always have complete information on the compilers used to build

those components on their system, especially if the system is managed by a sepa-

rate system administrator. Another observation for the PETSc component is that it

was never able to be built successfully using the LAM/MPI component. It seems

that some undocumented method is required to build PETSc using that MPI im-

plementation.

For InterComm, due to many build failures of the components inthe model

(mainly, because of not being able to build older versions ofthe PVM component),

we were therefore only able to test build compatibility for 7DD-instances out of

the 156 total DD-instances for the InterComm component. However, they were

not the ones on which InterComm had been tested previously. The results show

that InterComm can be successfully built with the combinations of PGI C/C++

compiler version 6.2, all versions of the GNU Fortran77 or GNU Fortran90 com-

pilers specified in the model, and MPICH version 1.2.7. This isa larger set of

components than what the InterComm developers had previously tested, as doc-
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umented on the InterComm distribution web page4. The DD-instance with GNU

C/C++ compiler version 3.3.6 and with the PGI Fortran compilerversion 6.2 failed

to build. The failure occurred because the InterCommconfigureprocess reported a

problem in linking to Fortran libraries from C code. This result is interesting since

the InterComm developers were able to build successfully with GNU C/C++ ver-

sion 3.2.3 and PGI Fortran version 6.0. InterComm developersinvestigated the

reason for the failure, and it turned out that the failure wasdue to a missing envi-

ronment variable required for theconfigurestep. This was not documented in the

InterComm manual, and InterComm developers updated the manual accordingly

to notify users that the environment variable (LDFLAGS) must be set correctly if

a PGI Fortran compiler is used for the InterComm build.

4.9.4 Comparing Plan Execution Strategies

As seen in Figure 4.6, Rachet scales very well as the number ofmachines used

for running Rachet clients increases from 4 to 32. When we double the number

of available machines, the execution time decreases by almost half, up to 16 ma-

chines. This means that Rachet can fully utilize additionalresources to maximize

the number of prefixes tested in parallel. However, Figure 4.6 only shows results

4http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas /ic
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Figure 4.7: Turnaround times for executing the InterComm andPETSc DD-plan
with different plan execution strategies.
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obtained by executing the DD and EX plans for the subject systems using the par-

allel depth-first strategy. To analyze the performance behavior of the different plan

execution strategies, we also executed the DD-plans for InterComm and PETSc

using the other strategies.

Figure 4.7 shows the combined results from both actual and simulated test plan

executions with different strategies. For both systems, weran actual experiments

with 4, 8, 16 and 32 clients. For larger numbers of clients, weran simulations

to compute expected plan execution times. The data used for the simulations,

including the component build successes/failures, the times for managing VMs

(e.g., VM start-up time) and the times for building components, were all obtained

from real experiments. The simulated execution times were,on average, about

18% less than the real execution times for up to 32 clients.

We found that the breadth-first strategy performed worst formost runs. As

described before, with the breadth-first strategy, Rachet tries to utilize as many

machines as possible throughout the plan execution, and always reuses the best

cached VM for testing each prefix. However, the time to transfer the VMs across

the network was a performance bottleneck, even though the clients were con-

nected via Fast Ethernet. Breadth-first performed especially poorly with 4 ma-

chines compared to the other strategies, because in many instances the cached
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prefix that requires the minimum additional component builds for testing a newly

dispatched prefix had already been replaced in the VM cache before it was needed,

and as a result all components contained in the prefix had to berebuilt.5 For

our experiments and simulations, we used a Least-Recently-Used (LRU) cache

replacement policy to manage the VM cache on each machine. Wealso experi-

mented with a First-In-First-Out (FIFO) cache replacementpolicy, but did not see

a significant performance difference compared to LRU.

Many build failures that occurred during the plan executions are responsible

for the similar performance between the hybrid and depth-first strategy in Fig-

ure 4.7. With a small number of clients, the depth-first strategy can maximize the

number of prefixes that are tested in parallelshortlyafter starting the plan execu-

tion. However, with many clients, build failures negate thebenefits of the hybrid

strategy that are achieved by maximizing the number of prefixes dispatched early

in the plan execution.

We also observe that little benefit is achieved with more than32 machines

for all strategies, because many machines remained idle waiting for prefixes to be

dispatched, after all available prefixes are dispatched to other machines. More-

5The percentage of VM reuse to execute the InterComm and PETScDD-Plans was on average

53% for the breadth-first and 80% for the depth-first and hybrid strategies.
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over, the execution times may even increase slightly with a large number of ma-

chines, because the local cache hit rate drops when prefixes are spread across the

machines, and also because additional time is needed to transfer cached prefixes

across the network, negating the benefit of greater parallelcomponent builds. De-

spite these overheads, we expect that the hybrid strategy will achieve the best

performance as we increase the number of machines, if a test plan has fewer fail-

ures.

Therefore, for our final experiment, we evaluated how Rachetbehaves as the

number of successful component builds grows. As previouslynoted, many DD-

instances were classified as untestable in the actual experiments, because at least

one component in the dependency part of the DD-instances could not be built suc-

cessfully in all possible ways. If developers were to fix someof these problems,

many more DD-instances would be testable, greatly increasing the effective size

of the test plan.

We ran simulations for this scenario and measured the benefitof testing only

DD-instances, under the assumption that no build failures occurred during plan

execution. Figure 4.8 shows expected plan execution times for the subject sys-

tems. Both the EX-plan and the DD-plan are executed with the hybrid strategy,

and we also applied the other strategies for the DD-plan. We observe that the hy-
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brid strategy balances well both the prefix reuse locality and parallel component

builds across all numbers of clients. The hybrid strategy iscompetitive with the

depth-first strategy for small numbers of clients, because it tries to maximize the

reuse of locally cached prefixes. And the hybrid strategy also achieves good per-

formance for a large number of clients, since the extra costsfor caching prefixes

and reusing VMs during the early stage of test plan executionare avoided, com-

pared to the depth-first strategy. Although the breadth-first strategy shows good

performance with 32 or more machines, such performance relies on the availabil-

ity of a fast network connectingall client machines and small plan sizes. In other

simulations that execute a larger test plan with 52618 plan nodes, by employing

64 clients, each with 8 cache entries, we observed that the breadth-first strategy

took much longer than the hybrid strategy and also involved many more cache

replacements.6 The simulation results show that the breadth-first strategytook

much longer than the hybrid strategy and also involved a large number of cache

replacements.

With 256 machines, the time required to execute the InterCommand PETSc

DD-plans must be close to the optimal execution time, since all configurations

involved in each plan are dispatched to available machines at once and tested in

6The test plan was for the monolithic InterComm model in Chapter 5.
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parallel. For this case, the overall plan execution time is the time required for

building the configuration that takes the longest.

4.10 Summary

In this chapter, I have presented an effective and scalable method for performing

compatibility testing of component-based systems.

First of all, to encode the entire set of configurations wherea component-

based system can be deployed, I developed a formal graph-based representation

annotated with component versions and constraints betweencomponents and/or

over configurations. Because there are large number of configurations for a system

and also because available resources are limited, it is infeasible in many cases to

test all feasible configurations.

To address this problem I focused on the observation that thesuccessful build

of a component mostly depends on other components that are directly used by the

component to build. Based on the observation, I defined a testadequacy criterion

calledDD-coverage, which tests all version relationships (DD-instances) between

a component and other components on which the componentdirectly depends, and

I also developed an algorithm for generating a set of configurations that satisfy
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the coverage. The results from empirical studies on two large software systems

demonstrated that compatibilities between components canbe identified rapidly

and effectively by testing configurations with DD-coverage.

Since there are many configurations that share common prefixes, I developed

a method to further reduce efforts required for testing configurations. I first com-

bined all configurations into a single prefix tree called atest planand reused

common efforts required for testing prefixes shared across configurations. This

is accomplished by utilizing hardware virtualization technology. I used virtual

machines (VMs) for building components and saving partial configurations into

files. This approach was advantageous because I could avoid contaminating states

of test resources and also because VM states could be stored into files on test

resources for further reuse and could be transferred between test resources.

To execute a test plan efficiently utilizing multiple test resources, I developed

three plan execution strategies (parallel depth-first, parallel breadth-first and hy-

brid) where each strategy is designed for increasing the reuse ofpartial configu-

rations locally stored on each test machine and/or for decreasing the number of

idle machines throughout the plan execution. For all strategies, I employed a con-

tingency planning mechanism for improving the test coverage compared to static

approaches when an attempt to build a component fails. I analyzed the tradeoffs
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between plan execution strategies when different numbers of machines are em-

ployed, by running both actual experiments and simulations. The results suggest

that the hybrid strategy can achieve the best performance byattaining both high

locality to optimize prefix reuse and high parallelism, for both small and large

numbers of client machines.
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Chapter 5

Embracing Component Evolution

The previous chapter describes an approach for testing compatibilities between

components for a system that involves afixedset of components and their ver-

sions. In the approach, I developed methods that sample and test a reduced set

of configurations that test all DD-instances of the components in a model. While

effective, that approach is impractical for testing evolving systems, because no

matter how much or how little a system changes, that approachwill generate con-

figurations that satisfy the DD-coverage for a modified system and will retest all

the generated configurations. This is unnecessary because many of the generated

configurations are to test DD-instances whose results were already known from

previous testing sessions. Clearly, such unnecessary work should be avoided.

To remedy this limitation, I have improved the approach in the previous sec-
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tion to supportincremental build testing. As part of the approach, I present in

this chapter (1) a new adequacy criterion forincremental build testing, (2) an al-

gorithm for computing incremental testing obligations, given the test adequacy

criterion and the changes to the system configuration space,(3) an algorithm for

selecting small sets of configurations that efficiently fulfill the incremental test-

ing obligations, and finally (4) optimization techniques that use artifacts and test

results from previous test sessions to improve the configuration selection and test

process.

5.1 Test Adequacy Criterion

To support incremental build testing I have extended the approach in the previous

chapter to (1) identify a set of DD-instances that need to be tested given a set

of changes to a system, and (2) compute a set of configurationsthat test those

DD-instances.

Consider the running example from Figure 2.1. Suppose that during the last

testing sessionB2 could not be built over any version of componentE. As a re-

sult, all DD-instances in which componentA must be built overB2 have been

untestable. Now suppose that new versions of componentsB andD become avail-
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able, and that the latest version ofE, E3, has been modified. In this case, the

configuration model changes in the following ways. First, the new versions ofB

andD are added to the configuration model as versionsB3 andD3. Next, the modi-

fied component is handled by removing the old version,E3, and then adding a new

version,E4. For this example, the previous approach would produce a test plan

with 56 component versions to build (Figure 5.2(a)). This islarger than necessary.

Some DD-instances involving new or previously untested components (and their

versions) need to be tested, but other unchanged DD-instances do not.

The types of changes that are relevant to build testing include adding or delet-

ing components, component versions, dependencies or constraints. To deal with

all such changes in a uniform way, I compute the set of DD-instances for both

the old and new configuration models and then use a set differencing operation

to compute the DD-instances to be tested. Assuming that individual component

names and version identifiers always refer to the same underlying software com-

ponents, the relationship between the DD-instances for twosuccessive models for

a system is easily described using a Venn diagram. Figure 5.1shows the set of

DD-instances for two consecutive builds,buildi−1 andbuildi. DDi−1

all andDDi
all

represent the sets of all DD-instances in the respective builds. DDi
new represents

the DD-instances inDDi
all, but not inDDi−1

all . DDi−1

tested is the subset ofDDi−1

all
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Figure 5.1: The DD-instances for two consecutive builds,buildi−1 and buildi.
The DD-instances represented by the shaded areas need to be tested inbuildi.

whose build status (success or failure) was determined in testing buildi−1 and

DDi−1

untestable is the subset ofDDi−1

all whose build status is unknown – each of those

DD-instances could not be tested because at least one of the component versions

in the dependency part of the DD-instance could not be built in all possible ways.

Using this set view, the DD-instances that must be tested forbuildi are shown

as the shaded area in the figure, and are computed as follows:

DDi
test = DDi

all −DDi−1

tested

Previously untestable DD-instances are included in the current testing obliga-

tions, as newly introduced component versions might provide new ways to build

a given component, thus enabling previously untestable components to be tested.

As just described, the setDDi
test contains all DD-instances that must be tested

for buildi. The next step applies theBuildCFG algorithm as many times as neces-

sary to generate a set of configurations that cover all the DD-instances inDDi
test.
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(a) A test plan that retests all DD-instances
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(b) An incremental test plan

Figure 5.2: Test plans: Retest-All (56 components) vs. Incremental (35 compo-
nents). The shaded nodes can also be reused from the previoustest session.

The algorithm is applied to generate configurationsonly for DD-instances that

have not yet been covered by any generated configuration, andalso applied start-

ing from DD-instances that build components closest to the top node in a CDG.

When finished the configurations are merged into a test plan andthen executed.

An outline of this process is as follows:

1. ComputeDDi
test.

2. Select the DD-instance fromDDi
test that is closest to the top node of the

CDG (if more than one, select one at random).
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2.1 Generate a configuration that covers the selected DD-instance, by ap-

plying BuildCFG .

2.2 Remove all DD-instances contained in the generated configuration

from DDi
test

2.3 If DDi
test is not empty, go to step 2.

3. Merge all generated configurations into a test plan.

4. Execute the test plan.

On the running example, this new algorithm produces 9 configurations, reduc-

ing the test plan size from 56 (Figure 5.2(a)) to 35 components (Figure 5.2(b)).

As the test plan executes, Rachet cachespartially-built configurations(prefixes

in the test plan) on the client machines when a prefix can be reused later in the

test process, to speed up testing longer prefixes that share the prefix. As a result,

for the running example, the total number of components to build is only 30, be-

cause the 5 components depicted by shaded nodes in Figure 5.2(b) have already

been built in the previous test session and those partial configurations were cached

(assuming that those partial configurations were not deleted at the end of testing).

In the following sections, I will explore performance benefits that can be

achieved by better using the partial configurations that have been cached on the

client machines.
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5.2 Cache-Aware Configuration Generation

The approach in Chapter 4 assumed that the cache space of each client machine

is empty at the beginning of each test session. For incremental testing, however,

previous efforts can and should be reused. On the other hand,just preserving the

cache between test sessions may not actually result in reduced effort unless the

prefixes in the cache are shared by at least one configuration generated for the new

test session. This section describes a method that uses information about cached

prefixes from previous test sessions in the process of generating configurations, to

attempt to increase the number of configurations that share cached prefixes. More

specifically, step 2.1 in the configuration generation algorithm from Section 5.1 is

modified as follows:

2.1.1 Pick thebestprefix in the cache for generating a configuration that covers

the DD-instance.

2.1.2 Generate a configuration by applyingBuildCFG , using the prefix as an

extension point.

2.1.3 Repeat from step 2.1.1 with the next best prefix, if no configuration can be

generated by extending the best prefix.
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To generate a configuration that covers a DD-instance, in step 2.1.1, the al-

gorithm first picks thebestprefix, which is the one that requires the minimum

number of additional DD-instances to turn the prefix into a full configuration that

tests the DD-instance. Then in the 2.1.2, theBuildCFG algorithm is used to ex-

tend the prefix by adding DD-instances. It is possible thatBuildCFG fails to

generate a configuration by extending the best prefix, due to constraint violations.

In that case, the algorithm repeats from step 2.1.1 with the next best cached prefix,

until one is found that does not have any constraint violations.

However, the best cached prefix can be found onlyafter applying theBuild-

CFG algorithm to every prefix in the cache. This process can be very costly, be-

cause the algorithm must check for constraint violations whenever a DD-instance

is added to the configuration under construction. Therefore, in order to pick a

prefix that will be extended into a full configuration for testing a DD-instance,

we instead employ a heuristic. We first compute a sub-graph ofthe CDG for the

system under test, starting at the node that represents the component for which

the DD-instance is computed. Then, the best prefix is the one that contains the

maximum number of DD-instances that are needed to build the components in

the sub-graph. The rationale behind this heuristic is that fewer DD-instances may

be needed, when we construct a configuration by extending a cached prefix that
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Figure 5.3: Test plan produced from configurations selectedin a cache-aware
manner. 34 component versions must be built. (Shaded nodes are cached, from
the previous test session.)

already contains components required to test the DD-instance. Prefixes that con-

tain DD-instances for components outside the sub-graph arenot considered for

the extension.

As previously discussed, running theBuildCFG algorithm with a prefix in the

cache as an extension point may fail to generate a configuration, and it would im-

prove performance if there is an efficient method to determine whether a configu-

ration that covers a DD-instance can be generated by extending a given cached

prefix, especially if a large number of cached prefixes is available. Although

that decision cannot be made until the algorithmBuildCFG is applied, it is at

least possible to check whether any constraint is violated when the DD-instance is

added to the prefix. This is efficiently achieved by maintaining an auxiliary data

structure called acache plan, which is a prefix tree that combines prefixes in the
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cache. (In Figure 5.3, the sub-tree reaching the shaded nodes is the cache plan for

the example system, after the first test session completes.)For a DD-instance that

is to be tested, the cache plan is traversed in depth-first order, checking whether

constraints are violated when the DD-instance is added to the path from the root

node to a node in the cache plan. If there is a violation, all prefixes reaching any

node in the subtree starting at the node are filtered out.

Figure 5.3 shows a test plan created by merging the configurations generated

by applying the cache-aware algorithm to the example system. The test plan has

34 nodes, 1 fewer than the test plan that does not consider cached prefixes (Fig-

ure 5.2(b)). The number of components that actually need to be built is 30 in

both cases because prefixes in the cache can be reused. Note however, the average

build sequence length decreases in the cache-aware plan by more than 1 compo-

nent, because almost half the configurations are extended from cached prefixes.1

This factor significantly decreases the turnaround time needed to complete the test

plan.

1We average the number of components that must be built additionally when we reuse the best

cached prefix for testing each configuration.
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5.3 Managing Cached Configurations

If it were possible to cache all prefixes built during test plan execution for later

use, the overall time required for executing each test plan would decrease, since

the best prefix in the cache can always be reused. However, in practice, cache

space is a limited resource, so when the cache is full a previously cached prefix

must be discarded to add a new one. The approach in the previous chapter em-

ploys the commonly usedLeast-Recently-Used(LRU) cache replacement policy.

However, during the execution of a test plan, Rachet can, foreach prefix in the

cache, compute how many times the prefix can be reused for testing additional

DD-instances. This information can then be used to select the victim prefix to

be replaced in the cache. For example, if all the plan nodes inthe subtree rooted

at the last node of a prefix have already been tested, the prefixcan be deleted

from the cache even though it has been recently used, withoutincreasing overall

test plan execution time. However, this strategy does not take into account reuse

across multiple test sessions.

In order to keep prefixes with more reuse potential longer in the cache through-

out multiple test sessions, I have designed a heuristic thatassesses the reuse poten-

tial of prefixes in the cache. The reuse potential consists of(1) the expected time

that can be saved by reusing the prefix for executing the remaining portion of the
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current test plan, and (2) the average change frequency of components contained

in the prefix across previous test sessions. When a prefix in thecache needs to be

replaced, the reuse potential has to be first computed for each prefix in the cache.

The expected time savings measures how useful a prefix can be for executing

the current test plan. To compute the expected time savings for each prefix in

the cache, we first identify, for each test plan node, the cached prefix that enables

saving the most time to test the node by reusing that cached prefix. Then, we

multiply the number of nodes that benefit the most from reusing the prefix by

the time required for building the prefix from an empty configuration. For our

running example, in Figure 5.3, prefixes<G1,E2> (call thatp1) and<G1,E2,F2>

(call thatp2) are cached during the first test session. When the test plan inthe

figure is executed in the next test session, the time savings expected from prefix

p1 is 0, since prefixp2 is the best prefix for testing all plan nodes in the subtree

starting fromp1. Therefore, if a prefix in the cache has to be deleted,p1 can

be removed without increasing plan execution time, since a more useful one is

available in the cache.

We also estimate how likely a prefix cached during the execution of a test plan

is to be helpful for executing test plans in subsequent test sessions, by considering

change frequencies of components in the prefix. Component version annotations
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in the CDG can include both officially released versions of a component and also

the latest states of development branches for a component from a source code

repository, because developers often want to ensure the compatibility of a com-

ponent with the most recent versions of other components. Tomodel an updated

system build, a developer must specify modified component versions in version

annotations, including patches for released versions or code changes for devel-

opment branches. We regard such changes as version replacements in the CDG

annotations, but also keep track of the test sessions in which the changes occurred.

The change frequency of a cached prefix is computed by counting the number

of preceding test sessions in which a component version has changed. We do

the counting for each component version contained in the prefix and compute

the average across the components for computing the frequency for the whole

prefix. Therefore, if a prefix in the cache contains only component versions that

have not changed at all, the change frequency is 0, which means that components

involved in the prefix are not likely to change in the future sothat it may be

worthwhile to keep the prefix in the cache. On the other hand, if a prefix contains

only component versions that have changed often across testsessions, it is more

likely that the prefix is not reusable in later test sessions.

When a cache replacement is necessary, the victim is the prefixthat has the
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least time savings. The highest change frequency is used as atie breaker. That

is, we first focus on completing the test plan under executionmore quickly and

secondarily try to keep prefixes that may be useful for later test sessions.

The scheduling strategy for test plan execution cannot be considered sepa-

rately from the cache replacement policy. For thehybrid scheduling strategy de-

scribed in Chapter 4, when a client requests a new prefix to test, the scheduler

searches the test plan in breadth-first order starting from the root node, or, if that

client has cached prefixes available for the test plan, in depth-first order from the

last node of the most recently used cached prefix.

For the new cache replacement policy, the prefix with the least reuse potential,

call it p1, is replaced when the cache is full. If the test plan is searched starting

from the most recently used cached prefix,p1 could be replaced before it is reused.

If such a replacement happens, we must pay the cost to buildp1 from scratch later

when we needp1 for testing plan nodes beneath the subtree rooted atp1. Hence,

we search the test plan giving higher priority to prefixes with low reuse potential,

because such prefixes are more likely to be reused for testingonly a small part

of the test plan. By testing those parts of the plan earlier, those prefixes can be

replaced after they are no longer needed.
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5.4 Evaluation

Having developed a foundation for incremental build testing of evolving compon-

ent-based systems, this section describes evaluation results obtained by applying

the presented approach on the subject systems described in Chapter 1.

For this study, I tested InterComm, PETSc and other components required for

building InterComm and PETSc; for each I used the change history over a 5 year

period. To limit the scope of the study, this 5 year period is divided into 20 epochs,

each lasting approximately 3 months. I took a snapshot of theentire system at the

end of each epoch, producing a sequence of 20 snapshots. In the remainder of the

dissertation, these snapshots are referred tobuildsand the sequence of models for

the builds are used as the model for testing the evolving InterComm and PETSc

systems.

5.4.1 Modeling the Subject Systems

We first modeled the configuration space of InterComm and PETSc. This in-

volved creating the CDGs, and specifying version annotations and constraints.

Two types of version identifiers are considered – one is for identifying versions

officially released by component developers, and the other is for the change his-
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tory of branches (or tags) in source code repositories. Currently, the modeling is

done manually based on careful inspection of the documents that describe build

sequences, dependencies and constraints for each component.

Figure 5.4 depicts the dependencies between components forone build of In-

terComm and PETSc. Table 4.1 provides brief descriptions of each component.

The CDGs for other builds were different. For instance, GNU Fortran (gf) ver-

sion4.0 did not yet exist when the first version of InterComm (ic) was released.

Therefore, the CDG that captures the configuration space for InterComm for that

build does not contain the Fortran component and all its related dependencies

(black nodes in the figure).

84



*

+

+

+ +

pvma p

*

m c hl a m

***

*

pc

pxx

gxx

pf gf g f77

*

*

*

mpfr

*

g m p

gcr

*

fc

*

*

lapackpython

b las

*

icpe tsc

Figure 5.4: A Combined CDG for InterComm and PETSc. (Grey nodes are spe-
cific for PETSc. Black nodes are dependencies required forgf version4.0.0 or
later)

85



Table 5.1: History of version releases and code changes for components in the InterComm and PETSc builds
Development Branches Version Release

ic gcr gf77 gf gmp mpfr ic gcr gf77 gf gmp mpfr lam pvm petsc lapack python
Build Date gxx gxx

0 08/25/04 3.4d1 3.4d1 1.1 3.4.0 3.4.0 6.5.9 3.2.6 2.2.0 3.0 2.3.4
3.4.1 3.4.1 7.0.6 3.3.11

1 11/25/04 1.1d1 3.4d2 3.4d2 3.4.2 3.4.2 3.4.5
3.4.3 3.4.3

2 02/25/05 3.4d3 3.4d3 2.3.5,2.4

3 05/25/05 3.4d4, 4.0d1 3.4d4 4.0d1 3.4.4 3.4.4 4.0.0 4.1.0,4.1.1 2.1.0 2.2.1 2.4.1
4.0.0 4.1.2,4.1.3 2.1.1

4.1.4

4 08/25/05 3.4d5, 4.0d2 3.4d5 4.0d2 4.0.1 4.0.1 2.1.2

5 11/25/05 1.1d2 3.4d6, 4.0d3 3.4d6 4.0d3 4.0.2 4.0.2 2.2.0 2.4.2

6 02/25/06 3.4d7, 4.0d4 3.4d7 4.0d4 3.4.5 3.4.5 2.3.0

7 05/25/06 1.1d3 3.4d8 3.4d8 4.0d5, 4.1d1 1.5 3.4.6 3.4.6 4.0.3 4.2.0,4.2.1
4.0d5, 4.1d1 4.0.3 4.1.0

4.1.0 4.1.1
4.1.1

8 08/25/06 1.5d1 4.0d6, 4.1d2 4.0d6, 4.1d2

9 11/25/06 4.0d7, 4.1d3 4.0d7, 4.1d3 2.3.1 2.3.6,2.5

10 02/25/07 1.5d2 4.0d8, 4.1d4 4.0d8, 4.1d4 2.2d1 4.0.4 4.0.4 2.2.1 7.1.3

11 05/25/07 1.5d3 4.1d5 4.1d5 2.2d2 4.1.2 4.1.2 2.3.2 3.1.1 2.4.3,2.5.1

12 08/25/07 1.5d4 4.1d6 4.1d6

13 11/25/07 1.5d5 4.1d7 4.1d7 2.3d1 4.2.2 2.3.0 2.4.4

14 02/25/08 4.1d8 4.1d8 2.3d2 2.3.1 2.5.2

15 05/25/08 4.1d9 4.1d9 2.3.7,2.4.5

16 08/25/08 4.1d10 4.1d10 2.3d3 4.2.3

17 11/25/08 2.3d4 4.2.4 2.3.2 2.3.3

18 02/25/09 4.1d11 4.1d11 2.3d5 2.4.6,2.5.3,2.5.4

19 05/25/09 4.3d1 4.3.0,4.3.1
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Table 5.1 shows the history of releases and source code changes for the com-

ponents in each build. Each row corresponds to a specific build date (a snapshot),

and each column corresponds to a component. For each build, entries in the last

11 columns of the table indicate official version releases ofcomponents. For ex-

ample, InterComm (ic) version1.5 was released between 02/25/2006 (build6)

and 05/25/2006 (build7).2 We use a version released at a given build date to

model that build and also for modeling all subsequent builds. Entries in the 6

columns labeledDevelopment Branchescontain version identifiers for develop-

ment branches. We assign a unique version identifier for the state of a branch at

a given build date by affixing to the branch name an integer that starts at 1 and

is incremented when the branch state at a build date has changed from its state

in the previous build.3 For example,1.1d2 in the third column ofbuild5 indi-

cates that there were file changes in the InterComm development branch1.1d

between 08/25/2005 (build4) and 11/25/2005 (build5). Compared to a released

version whose state is fixed at its release date, the state of abranch can change

frequently and developers typically only care about the current state for testing.

2The actual release date was 05/05/2006.

3Branches are not used for modeling builds unless there has been at least one official version

released from the branch.
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Therefore, for a branch used to model a build, we consider only the latest version

identifier of the branch, so include the latest version identifier in the model and

remove the previous version identifier for the branch.

Using this information, we define a build to contain all released component

version identifiers available on or prior to the build date, and the latest version

identifiers for branches available on that date. Note that Table 5.1 does not in-

clude versions for several components:fc version4.0, ap version0.7.9, mch

version1.2.7, and the PGI compilers (pxx, pc, pf) version6.2. For these

components, we could access only one version (mch, ap and PGI compilers) or

we considered only one version to limit the required test effort (fc). For this

study, we assumed that these versions were available from the first build date.

Also, we considered only 4 major GNU compiler versions and 3 major Python

versions, due to the limited test resource availability forthe experiments.

In addition to the CDGs and version annotations, InterComm places several

constraints on configurations. First, if compilers from thesame vendor for dif-

ferent programming languages are used in a configuration (e.g., gcr, gxx, gf

andgf77), they must have the same version identifier. Second, only a single MPI

component (i.e.,lam ormch) can be used in a configuration. Third, only one C++

compiler, and only one of its versions (gxx version X orpxx version Y) can be
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used in a configuration. Fourth, if both a C and a C++ compiler are used in a con-

figuration, they must be from the same vendor (i.e., GNU Project or PGI). Fifth,

compilers from the same vendor must be used to build the MPI components. Fi-

nally, the GNU compilers must be used for buildingmpfr in a configuration ifgf

is also contained in the configuration. These constraints eliminated configurations

that we knew a priori would not build successfully.

5.4.2 Study Setup

To evaluate our incremental testing approach, we first gathered component com-

patibility data (i.e., the success or failure of each DD-instance) and the time re-

quired to build each component version. To obtain this data,we created a sin-

gle configuration space model that contains identifiers for all released component

versions and all branch snapshots that appear in any build. We then built every

configuration using a single server (Pentium 4 2.4GHz CPU with512MB mem-

ory, running Red Hat Linux 2.6.9-78.0.13.EL) and 32 client machines (Pentium 4

2.8GHz Dual-CPU machines with 1GB memory), all running Red Hat Enterprise

Linux version 2.6.9-78.0.17.ELsmp, connected via Fast Ethernet. To support the

experiment, we enhanced Rachet to work with multiple sourcecode repositories,

to retrieve source code for development branches. Currently, Rachet supports
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CVS [5], SVN [4] and Mercurial [3] source code management systems.

For testing the InterComm builds, we obtained compatibilityresults for 15128

DD-instances. Building components was successful for 6078DD-instances and

failed for 1098 DD-instances. The remaining 7952 DD-instances wereuntestable

because there was no possible way to build one or more components in the de-

pendency part of the DD-instances. For example, all the DD-instances involving

an InterComm version and the PVM component version3.2.6 were untestable,

because building that PVM version failed in all possible ways. For testing the

PETSc builds, compatibility results for 24708 DD-instances were required. We

obtained successful component builds for 6497 DD-instances and failed builds

for 12883 DD-instances. 5328 DD-instances were untestable.

Using the data obtained from the integrated configuration space, we simulated

a variety of use cases with different combinations of clientmachines and cache

sizes. Our event-driven simulator, described in Section 4.9.2, used results obtained

from the experimental run for calculating expected times required to execute test

plans for the builds described in Section 5.4.1. Table 5.2 and 5.3 show the number

of DD-instances that correspond to each region in the diagram in Figure 5.1.

For thei-th build in the InterComm and PETSc build sequences, the second

column in the tables is the total number of DD-instances (DDi
all) for building
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i dd
i
all dd

i−1

tested dd
i−1

untestable dd
i
new # of plan nodes

∩ dd
i
all ∩ dd

i
all

0 123 0 0 123 252

1 403 44 42 317 577

2 403 141 186 76 170

3 781 141 186 454 756

4 945 271 320 354 809

5 1129 287 255 587 1154

6 1229 411 498 320 561

7 2480 416 341 1723 2854

8 2921 981 1170 770 1016

9 2921 1050 1488 383 758

10 4407 981 1170 2256 3546

11 4407 1450 1886 1071 1662

12 4407 1585 1940 882 904

13 5064 1585 1940 1539 2236

14 5296 2031 2514 751 1742

15 5296 2355 2622 319 706

16 5576 2193 2568 815 1840

17 6146 2586 2728 832 1607

18 6146 2877 2622 647 1721

19 7073 3301 2844 928 1745

Table 5.2: Numbers of DD-instances for the InterComm build sequence
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i dd
i
all dd

i−1

tested dd
i−1

untestable dd
i
new # of plan nodes

∩ dd
i
all ∩ dd

i
all

0 55 0 0 55 74

1 85 39 0 46 52

2 133 61 8 64 155

3 499 95 14 390 746

4 627 291 90 246 520

5 852 347 147 358 808

6 1103 489 201 413 870

7 1993 657 254 1082 2274

8 1993 1342 404 247 518

9 2930 1342 404 1184 2318

10 4437 1933 668 1836 3909

11 9332 3076 950 5306 8319

12 9332 6667 2192 473 774

13 10030 6667 2192 1171 2828

14 11041 7009 2246 1786 3895

15 12583 7871 2554 2158 2684

16 12879 8825 2860 1194 3410

17 15415 9685 2932 2798 7669

18 17287 10901 3394 2992 5887

19 18214 13270 4016 928 3164

Table 5.3: Numbers of DD-instances for the PETSc build sequence
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components in a CDG. Note that for some builds the number of DD-instances

does not differ from the previous build. This is because model changes between

builds only involved replacing version identifiers of development branches with

more recent ones. The next column is the number of DD-instances in DDi
all,

where results for the DD-instances were already determinedin testing previous

builds. The fourth column is the number of DD-instances inDDi
all, where results

for the DD-instances wereuntestablein the previous build. The last column is the

number of nodes in the initial test plan for each build. In some builds, the number

of nodes in a test plan is fewer than the number of DD-instances to cover (the sum

of the 4th and 5th columns). That happens when a large number of DD-instances

are classified as untestable when we generate the set of configurations that are

merged into the test plans for the builds.

We ran the simulations with 4, 8, 16 and 32 client machines, each having 4 to

2048 cache entries. To distribute configurations, we used the plan execution strat-

egy described in Section 5.3. For each machine-cache combination, we conducted

multiple simulations to test the InterComm and PETSc build sequence: (1)retest-

all: retests all DD-instances for each build from scratch (DDi
test = DDi

all), (2)

test-diff: tests builds incrementally (DDi
test = DDi

all −DDi−1

tested), (3) c-forward:

test-diffwith forwarding cached configurations across builds, (4)new-replace: c-
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forward plus applying the improved cache management scheme (Section 5.3),

(5) c-aware: c-forwardplus applying cache aware configuration generation (Sec-

tion 5.2), (6)integrate-all: c-forward also applying all optimization techniques.

We measured the turnaround time for testing each build in thesequence, for all

the simulations.

5.4.3 Retest All vs. Incremental Test

The configuration space for the subject systems grows over time because it incor-

porates more component versions. As a result, incremental testing is expected to

be more effective for later builds. Figure 5.5 depicts the turnaround times for test-

ing all 20 builds of InterComm and PETSc. The testing is done intwo ways: by

retesting all DD-instances for each build and by testing DD-instances incremen-

tally. It is clear that turnaround times are drastically reduced with incremental

testing. For example, for the last builds of InterComm and PETSc,retest-alltakes

about 6 days and 18 days, respectively, while incremental testing takes about one

day for both systems.

With retest-all, the turnaround time required for a test session increases as the

number of DD-instances (DDi
all) increases. However, for incremental testing, the

testing time varied depending on the number of DD-instancestested by generated
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configurations. For example, as seen in Table 5.2, the sizes of DDi
test (DDi

all −

DDi−1

tested) for build 11 and build 15 are comparable (2957 for build 11 and 2941

for build 15), but the required testing time for build 11 is twice as much as the

time for build 15. The reason is that 857 DD-instances inDDi
test were covered

by configurations generated for build 11, compared to 369 forbuild 15. The rest

of the DD-instances were classified as untestable while generating configurations,

because there was no possible way to generate configurationsthat test those DD-

instances due to build failures identified in earlier builds. We observe similar

patterns for build 10 and 12 of PETSc. For build 12, we were able to generate

configurations that cover only 485 DD-instances out of the 2665 DD-instances in

DDi
test.

5.4.4 Benefits from Optimization Techniques

Figure 5.6 depicts aggregated turnaround times required for testing 20 builds of

InterComm and PETSc. The turnaround times are obtained by running incremen-

tal testing without reusing cached prefixes across builds (test-diff) and by running

incremental testing with all optimization techniques applied (integrate-all). The

x-axis is the number of cache entries per client and the y-axis is turnaround times.

The simulations use 4 to 32 client machines and the number of cache entries per
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machine varies from 4 to 2048.

As we increase the number of cache entries, we observe that the optimiza-

tion techniques reduce turnaround times by up to 24% for InterComm and up to

28% for PETSc.4 That is because a larger cache enables storing more prefixes be-

tween builds, so more configurations can be generated by extending prefixes in the

cache and also cached prefixes can be more often reused for executing test plans

in subsequent builds. On the other hand, fortest-diff, we see few benefits from

the increased cache size. The results for InterComm are consistent with results

reported in our previous study [74], that little benefit was seen beyond a cache

size of 8. Also, as described in Chapter 4, turnaround times decreased by almost

half as the number of machines doubles. For PETSc, we did not observe further

benefit beyond 16 or more cache entries per machine.

We also observed that the benefits from the optimization techniques decrease

as more client machines are employed. For InterComm, with 4 machines, the

turnaround time decreases by 24% when the number of cache entries per machine

increases from 4 to 2048, but decreases by only 10% when 32 machines are used.

Although this pattern is not clear for PETSc in Figure 5.6, inanother simulation

4Even with 4 machines, turnaround times did not decrease further with more than 128 and

2048 cache entries per machine for InterComm and PETSc, respectively.
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that employs 128 machines, we observed that the time decreases by 14% when

we increase the cache size from 4 to 2048. There are two reasons for this effect.

First, with more machines the benefits from the increased computational power

offset the benefits from the intelligent cache reuse. With 32or more machines,

for InterComm builds, parallel test execution enables high performance even with

only 4 cache entries per machine. Second, communication cost increases as more

machines are used, because each machine is responsible for fewer nodes in a

test plan and machines that finish their work faster will takework from other

machines. In many cases, the best cached prefixes for the transferred work must

be sent over the network for reuse.

As we previously noted, the cost savings from incremental testing vary de-

pending on changes between builds. In Figure 5.7, we compareturnaround times

for each build, fortest-diffand integrate-all. We only show results for 16 ma-

chines, each with 128 cache entries, but the overall resultswere similar for other

machine/cache size combinations.

For both InterComm and PETSc, we see significant cost reductions for sev-

eral, but not all, builds – (1, 5, 7–8, 10–14) for InterComm, and (6, 9–11, 17) for

PETSc. We found that for those builds there were new version releases for Inter-

Comm or PETSc. Since we have to first build all component versions required
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for building InterComm or PETSc, we can significantly reduce the plan execution

time for the builds of interest, by extending configurationsthat require adding

fewer DD-instances in the process of configuration generation and also by reusing

the configurations during test plan execution. In the results, for InterComm, we

see a time decrease of more than 50% in build time for builds 11and 12. For

PETSc, we see a 49% decrease in time for build 17 and more than 30% for builds

6 and 9. On average, we see a 37% and 33% time reduction for the builds of

interest for InterComm and PETSc, respectively.

The optimization techniques are heuristics, and do not always reduce testing

time much. For example, there were smaller cost reduction for InterComm builds

0–4 and 15–19. There are several reasons for that. First, test plans for builds

0–4 contain fewer nodes than for other builds, and thereforethe plan execution

times are dominated by the parallel computation. Second, for builds 15–19, there

were no changes for InterComm or for other components close tothe top node

in the CDGs, as seen in Table 5.1. Although the test plan sizes for those builds,

as seen in Table 5.2, were comparable to those for other test plans where we

achieved larger cost savings, for these builds we could onlyreuse configurations

with fewer DD-instances that can be built quickly from an empty configuration,

because changes are confined to components (e.g., compilers) close to the bottom
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node in the CDGs. Similar results are seen in the results for PETSc. For instance,

we see the maximum time reduction is for build 17, for which a new PETSc

version (2.3.3) was available. Therefore, many prefixes in the cache could be

reused for testing DD-instances for building the PETSc version. Other changes

for the build were for components close to the bottom node of the CDG, and for

the build the changes are not relevant to the DD-instances for PETSc.

5.4.5 Comparing Optimization Techniques

Figure 5.8 shows turnaround times for testing each build using 16 machines, with

cache sizes of 4 (left) and 128 (right) per machine. We only show results for builds

for which a new version is available for InterComm or PETSc, since we have seen

large benefits for the builds in Figure 5.7 when both optimization techniques are

applied. For each build of interest, we show results for five cases –test-diff, c-

forward, new-replace, c-awareandintegrate-all.

In both graphs, we do not see large time decreases from simplyforwarding

cached prefixes across builds (c-forward), even for a large cache. This implies

that we must utilize cached configurations intelligently. For thec-forward case,

whether cached prefixes are reused or not solely depends on the order in which

the DD-instances in the test plans for subsequent builds aretested, and the order
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in which configurations are cached and replaced.

With a smaller cache size, benefits from the optimization techniques are lim-

ited because prefixes cached from earlier builds often get replaced before they are

needed in later builds. However, we still see a small time savings by keeping the

most valuable configurations in the cache.

With 128 cache entries, we observe that the cache-aware configuration genera-

tion technique (c-aware) plays a major role in reducing turnaround times. A larger

cache can hold more prefixes for reuse, and therefore fewer cache replacements

are necessary, and also we can extend cached configurations with a few additional

DD-instances in the configuration generation step. Consequently, it takes less time

to execute the resulting test plans. In both graphs, the new cache management pol-

icy (new-replace) did not greatly decrease test plan execution time. Since our plan

execution strategy tests nodes in a test plan mostly in depth-first order, in many

cases, the least recently used prefixes in the cache were alsoless valuable for the

new policy.

In the bottom graph, with 128 cache entries per machine, we see some benefits

for builds 11 and 17 withtest-diff, compared to the cases with 4 cache entries. This

is because the test plan sizes for the builds were large enough to get benefits by

reusing prefixes cached in the process of executing the test plans for the builds.
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In the InterComm simulation with 16 machines, each with 128 cache entries,

there was no cache replacement for the entire build sequence. We still observe

some additional time savings forintegrate-all, compared to thec-awarecase. We

believe that the benefit is from synergy between the scheduling policy for dis-

patching prefixes to client machines and the new cache management policy.

5.5 Summary

In this chapter, I have presented an approach that tests component compatibilities

incrementally as components in a system model evolve over time. When there

are component changes after the completion of a test session, I first identify the

test obligations for the modified system and generate a set ofconfigurations that

satisfy the obligations. I also designed optimization techniques that make use of

artifacts and test results from prior test sessions for the configuration selection and

test process.

To identify the test obligations, I defined a test adequacy criterion, which is

to test DD-instances that arenewly introducedin a model or that wereuntestable

in the previous test session, due to component build failures in the session. The

test obligations are computed by applying set difference operations between the
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sets of DD-instances between two consecutive builds. I applied the algorithm de-

scribed in Chapter 4 for generating configurations that satisfy the test adequacy

criterion. The results from simulations performed over the5-year evolution his-

tory of components required to build InterComm and PETSc demonstrate that the

plan execution time can decrease by a large amount by employing the incremental

testing approach, compared to retesting all DD-instances from scratch for each

build.

To further reduce the time to test DD-instances for a build, Ideveloped two

optimization techniques. One is to generate configurationsfor testing the DD-

instances by extending prefixes cached in prior test sessions. This technique en-

ables saving test effort by increasing the reuse chances of cached prefixes. The

other technique is to keep prefixes with more reuse potentiallonger in the cache.

I designed a heuristic that assesses the reuse potential of each prefix in the cache,

by computing the expected time savings by reusing the prefix and how likely the

prefix is to be useful for testing subsequent builds. The optimization techniques

contributed together to significantly reduce the time required for executing test

plans.
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Chapter 6

Prioritizing Configurations with User Preference

Software developers are often more interested in some configurations than oth-

ers. For instance, they may be more interested in configurations that test recently

changed components or more popular versions of particular components. Consid-

ering that the time for compatibility testing is often limited, we need a systematic

method for prioritizing configurations to quickly provide developers with results

for configurations that test compatibilities between components and versions of

more interest. In the software engineering community, there have been studies

that prioritize test cases by incorporating user requirements or test history [46, 62],

especially for regression testing [18, 35, 41, 63, 71], whenthe time and resources

available for testing are limited.

Similar to the studies for regression testing that consideruser requirements for
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prioritizing test cases, I present in this chapter a method for testing configurations,

taking into account differing developer preferences [76].

This chapter first describes a simple method for developers to specify their

preferences, then discusses how the preferences are used for scheduling the order

in which configurations are tested. Key objectives are to efficiently test configu-

rations sampled by applying theDD-Coveragealgorithm described in Chapter 4,

and to obtain test results for configurations with higher preference before ones

with lower preference.

6.1 Specifying Preferences

Modern systems can have an enormous number of configurations, and it is im-

practical for developers to explicitly specify preferences for all configurations to

be tested. Therefore, we use a simple method in which developers first express

preferences across all components in a CDG. Then for each component developers

express preferences across all versions of that component.

Developer preferences may be represented in any form that specifies relative

interest across components and their versions. For this work, we encode version

preferences as positive integer values with larger values indicating higher prefer-
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ence. If developers do not care to specify preferences for particular components

or component versions, we assign a default preference – lower than all developer-

specified preferences – in which components closer to thetop nodeof the CDG are

preferred over lower ones, and more recent versions of a component are preferred

over older ones.

We interpret these partial preference assignments as capturing the develop-

ers’ preferred ordering of test results. That is, we expect that developers want

test results for configurations that test high-preference versions of high-preference

components before test results for other configurations.

6.2 Computing Configuration Preferences

We now give more details on how to use developer preferences to guide the test

process. Given a set of developer preferences, we could justopportunistically test

configurations that contain the most preferred components and component ver-

sions first. That could be quite inefficient. As shown in Chapter 4, intelligently

coordinating build effort across multiple configurations can save substantial time

and effort. Thus, our testing approach needs to consider notonly developer prefer-

ences, but also the structure of the test plan so that total test effort can be reduced.
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To this end, we transform developer preferences (expressedover components

and component versions) into preferences over nodes in a test plan. Recall that

every prefix in a test plan (i.e., every path from the root nodeto a node in the

test plan) corresponds to apartial configuration, and testing a plan node means

building all components represented by the nodes on the path. Therefore, when we

test a prefix from scratch, we build components on top of an empty configuration,

starting from the one represented by the plan root, while testing a prefix by reusing

a cached prefix means the builds start from somewhere in the middle of the path.

Logically, the preference for a component version is represented as a vector,

called apreference vector. A preference vector has one element for each compo-

nent in a CDG, with these elements ordered by component preference.1 Values

of the elements are assigned as follows: for a componentC with versioncv, each

element takes the value 0, except for the element associatedwith C, whose values

takes the preference assignment ofcv. For example, consider the example system

shown in Figure 2.1. Assume that the components A–G have preferences from

1To simplify the presentation we restrict discussion to cases in which preference assignments

for components are unique.Rachet can, however, handle non-unique component preferences by

allowing an element in a preference vector to encode versionpreferences for multiple components

with identical preferences.
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Component & Version
Pref. Value A B C D E F G

1 A1 B1 C1 D1 E1 F1 G1

2 B2 C2 D2 E2 F2

3 E3 F3

Table 6.1: Example Preference Assignments (Bigger values are used for higher
preferences)

7 down to 1 respectively. Assume further that the version preferences for each

component are sequentially numbered preferences startingat 1, which is the low-

est preference for the oldest version of the component. Thisdata is represented

graphically in Table 6.1.

Given these preference assignments, we write the preference vector for com-

ponentB, versionB2, for example, as(0, 2, 0, 0, 0, 0, 0). This is becauseB is

the second highest preferred component and because versionB2 has preference

assignment 2. Similarly, the preference vector for component F , versionF3 is

(0, 0, 0, 0, 0, 3, 0)

Given the component preference vectors, we can now define preference vec-

tors for every prefix in a test plan. For a given prefix, we do this by taking a

component-wise vector sum of each node contained in the prefix. For example,

looking back at Figure 4.3, consider the gray-shaded leaf node with the label start-

ing with A1. To build that node from scratch, we must build each node fromthe
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root of the test plan to this node. Therefore, we compute the preference vector

for this entire prefix by summing the preference vectors of all nodes appearing in

that path:G1 : (0, 0, 0, 0, 0, 0, 1), E2 : (0, 0, 0, 0, 2, 0, 0), B1 : (0, 1, 0, 0, 0, 0, 0),

F1 : (0, 0, 0, 0, 0, 1, 0), D2 : (0, 0, 0, 2, 0, 0, 0), A1 : (1, 0, 0, 0, 0, 0, 0). This gives a

resulting preference vector of(1, 1, 0, 2, 2, 1, 1). Note that the third vector element

is zero because componentC is not contained in the prefix.

In the next section we describe how we use preference vectorsassigned to all

prefixes in a test plan to guide the execution of the test plan.

6.3 Preference-Guided Plan Execution

As earlier, each test client repeatedly requests tests to perform from a test server

– tests are encoded as prefixes (partial configurations) in the test plan under exe-

cution. For each request, the server selects the prefix to be tested next in a greedy

fashion, by first ordering preference vectors computed for each prefix that ends

with a plan node that has not yet been tested by any client. Logically, this order-

ing can be done by sorting preference vectors for all prefixeslexicographically.

We give the description of the selection process in Figure 6.1.

In the algorithm, when a client requests a new configuration to test, we first
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Algorithm Prioritized-Execution(Plan, C, W)

1: // C: requesting client,W: window size

2: PrefixList← an empty list

3: for each prefixp for not-yet assigned noden ∈ Plan do

4: prefp ← the preference vector forp

5: lp ← the minimum number of components needed additionally for testing

p on a prefix cached inC

6: dp← n’s depth inPlan

7: stealp← the number of clients that contain a prefix reusable for testingp

8: Add {< p, prefp, lp, stealp, dp >} to the listPrefixList

9: end for

10: SortPrefixListby preference vectors

11: if no prefix cached inC is a prefix of any of the firstW prefixes inPrefixList

then

12: return , among the firstW prefixes, the prefix with minimumstealp, using

minimumdp as tie breaker

13: else

14: return , among the firstWprefixes, the prefix with minimumlp, using max-

imumdp as tie breaker

15: end if

Figure 6.1: Algorithm for Preference-Guided Plan Execution
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compute, for each prefixp in a test plan, three auxiliary variables used in the

prioritized plan execution to reduce overall plan execution time. The algorithm

also uses a parameter called awindow size, which is related to trading off between

reducing test effort and enforcing preferences and will be discussed further in this

section.

The variablelp is the minimum number of component versions that must be

built additionally, when the client testsp by reusing a prefix previously cached in

the client. When multiple clients are employed for executingthe test plan, test-

ing prefixes with the smallestlp value can increase benefits from reusing cached

prefixes.

The variablestealp is the number of clients that have in their cache space at

least one prefix reusable for testingp. This is used for reducing redundant work

across clients. When there is no prefix (in a test plan) that canbe tested by reusing

a prefix cached in the client, the server dispatches the prefixwith the smallest

stealp to the client, and this enables multiple clients to test non-overlapping re-

gions of the test plan under execution.

The variabledp is the number of DD-instances contained inp. It is used as

the tie breaker when a test plan has multiple prefixes with thesamelp or stealp

value for a given client. For a prefix request from a client, when there are multiple
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prefixes with the samelp value in the test plan, the server dispatches the prefix

with maximumdp value, the longest prefix. This is based on the heuristic thatthe

longest prefix may require more time to build if it is deleted from the cache space.

On the other hand, if the client must reuse a prefix cached in another client for

testing any prefix that ends with a plan node that has not yet been tested, and if

there are multiple prefixes with the samestealp value, the server dispatches the

prefix with the minimumdp value, the shortest prefix. This is based on the heuris-

tic that a node closer to the root node will likely have a larger subtree beneath

it than nodes deeper in the tree, as was done for thehybrid test plan execution

strategy described in Section 4.6.

Note that Algorithm 6.1 has to be repeatedly applied for eachclient test re-

quest, since the plan execution state (including cache states at clients) changes

continually, and the values for auxiliary variables are different depending on the

client requesting a new test, and the current state of the test plan (i.e., which parts

have been completed).

Although the auxiliary variables may be used to decrease overall plan execu-

tion time by efficiently sharing the effort necessary to testprefixes in a test plan,

the most important concern for developers is still the preferences. Therefore, we

sort thePrefixList in preference order, and always test the first prefix in the list,
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which is the one with the highest preference vector, to produce results for more

highly preferred prefixes earlier.2 However, due to the large size of cached pre-

fixes and the long time to transfer VMs across clients, scheduling prefixes by only

taking into account preference values may increase the number of remote prefix

requests and as a result, the rate of local cache reuses dropsand total plan execu-

tion time can increase compared to a pure cost-based scheduling policy.

Rachet allows developers to determine how rigidly they wanttheir prefer-

ences enforced. If they want to enforce preferences strongly, the test server al-

ways chooses the most highly preferred prefix that has not yetbeen tested by any

client. If developers allow weaker preference enforcement, the scheduling consid-

ers other factors, such as prefix reuse locality and work redundancy across clients,

which help to reduce the overall plan execution time, in exchange for allowing

less highly preferred prefixes to be tested earlier.

The preference strength is expressed via awindow sizeparameter, denoted by

W. As shown in Algorithm 6.1, we inspect the firstWprefixes in thePrefixListand

select the one that requires the fewest component builds by reusing a prefix cached

in that client. This means that less highly preferred prefixes can be chosen if they

2However, results may still not be produced in preference order because of varying component

build times.
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can be tested at low cost by reusing prefixes previously tested by that client. If

such prefix reuse is not possible, the scheduling algorithm selects a prefix that has

the smallest overlap with prefixes tested by other clients, to increase the chances

for future reuse of the prefix.

An interesting case occurs when the window size is set to a value greater than

or equal to the number of nodes in a test plan. In that case, with the scheduling

policy described above, the test plan is executed in a similar order to the hybrid

execution strategy.

6.4 Evaluation

We now evaluate our prioritization approach by constructing two scenarios that

often occur during compatibility testing. In the first scenario, we prefer config-

urations that test more recent versions of the SUT. In the second scenario, we

prefer configurations that use recent versions of specific components required for

building the SUT. In this section, we describe these scenarios and apply our priori-

tization approach to the software systems described in Section 1. Then we analyze

benefits and tradeoffs of the overall approach. Specifically, we want to compare

our prioritization approach with thehybrid approach, which showed the best per-
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formance in Chapter 4. We measured the times for executing thetest plan created

from configurations with DD-coverage for each system, and also recorded the

times at which test results for configurations are produced.We also want to study

the tradeoffs involved in varying the window size parameterof Algorithm 6.1, and

in varying the number of clients and cache sizes used for executing the test plan.

6.4.1 Experiment Setup

For modeling subject systems for this study, we have extended the models for the

two systems described in Section 4.9.1 by adding more versions for some compo-

nents and also by specifying preferences on components and their versions. The

component versions newly added are: version1.1 and1.6 for the InterComm

(ic) component, version2.3.2 for the MPFR (mpfr) component and version

4.2.4 for the GNU MP (gmp) component.

Scenarios

We constructed two scenarios to evaluate our approach. In the first scenario,

developers want to test recent versions of the SUT, InterCommand PETSc. This

scenario was actually encountered during the development of InterComm. When

InterComm version 1.6 was released, InterComm developers wanted to test the
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build-compatibility of the new InterComm version in variousconfigurations. In

addition, they also preferred to test configurations based on more recent versions

of other components; they believed that a large portion of their user base had al-

ready updated the system components on their machines to recent versions. To

meet this requirement, we assigned components preference ranks in the Inter-

Comm model by traversing the CDG in reverse topological order (i.e., InterComm

had the highest component preferences). For version preferences, higher values

are assigned to more recent component versions (the oldest version had value 1).

We applied the same preference assignment method for the PETSc model.

In the second scenario, developers prefer to test configurations that contain

recent versions of specific components required for building the SUT. That is,

developers want to see first whether their systems are compatible with recently

released versions of specific components. For this study, wemodel that developers

prefer configurations that use recent versions of the MPFR and the GNU MP

component for building InterComm and PETSc. Thus, we set highpreference

ranks for those components, and also set higher version preference values for

recent versions.
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Compatibility Results for DD-instances

From the CDG and annotations, there are a total of 639 DD-instances for com-

ponents in the InterComm CDG, and Rachet produced 476 configurations satis-

fying the DD-coverage criterion. These configurations contain 4421 component

builds, but the actual number of component builds is reducedto 1908 since the

configurations are combined into a single test plan. For PETSc, there are 185

DD-instances and 88 configurations that contain 846 component builds, which is

reduced to 522 component builds in the test plan.

In order to obtain compatibility results for DD-instances for components in

the models, we first ran actual experiments with the test plans for InterComm

and PETSc. For the InterComm model, 134 out of 639 DD-instances were tested

without errors, which means that there were 134 successful ways to build com-

ponent versions (18 for the top-level InterComm component).A total of 58 DD-

instances failed to build (3 for InterComm). The remaining 447 DD-instances

were untestable because there was no successful way to buildat least one of the

component versions needed to perform the component build for testing the DD-

instances. For the PETSc model, 107 out of 185 DD-instances were tested suc-

cessfully (8 for the top-level PETSc component) and 62 DD-instances failed (56

for PETSc). The remaining 16 DD-instances were untestable.
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Simulations

In the remainder of this study, we use test results obtained by running the ac-

tual experiments, including the compatibility results forall DD-instances and the

times required for building each component version. We run simulations with

two test plan execution strategies (prioritized vs. hybrid), using different numbers

of clients (4, 8, 16, 32), different number of cache entries per client (8, 16, 32,

64) and different window sizes (1, 16, 256, 2048) - window size only matters for

the prioritized strategy. In all, for each scenario, we simulated the 80 possible

combinations across the dimensions (16 for the hybrid and 64for the prioritized

strategy).

For each plan execution we recorded the time when testing configurations suc-

ceeded or failed. We say that testing a configurationsucceededif all component

versions contained in the configuration are built without any error, and that testing

a configurationfailed if the process for building a component version contained

in the configuration returned errors. Note that if a component version encoded by

a DD-instance in a configuration failed, then all configurations that contain the

DD-instance also fail. Thus, when a DD-instance appears in several branches in a

test plan, all configurations that contain the DD-instance fail simultaneously.
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6.4.2 Cost/Benefit Analysis of Prioritized Test

Prioritized vs. Hybrid

In Figure 6.2, we show the times at which testing configurations for the subject

systems succeeded (shown as diamonds) or failed (shown as plus signs). The

left graphs in the figure show results from executing the InterComm and PETSc

test plans with the hybrid strategy for two test scenarios, and the right graphs

show results with the prioritized strategy. The x-axis in each graph shows all

configurations generated for executing the InterComm and PETSc test plan, sorted

in their preference orders – the leftmost is the most preferred configuration). The

y-axis shows the time at which test results for configurations are determined. In

this result, we set the window size to 1 and the number of client machines to

4. From these plots, we clearly see that the prioritized strategy achieved results

for highly preferred configurations quickly compared to thehybrid strategy. The

hybrid strategy achieved some results for highly preferredconfigurations almost

at the end of the plan execution.

Failed configurations formed multiple bands in the graphs for the prioritized

strategy. This is because multiple configurations failed simultaneously when a

component version encoded by a DD-instance failed to build.Many of those

configurations were different by only one or two DD-instances so had similar

122



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  200  400  600  800  1000  1200  1400  1600

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (InterComm)

Config Completion Time (Hybrid, Scenario 1)

Success
Failure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  200  400  600  800  1000  1200  1400  1600

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (InterComm)

Config Completion Time (Prioritized, Scenario 1, W=1)

Success
Failure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  200  400  600  800  1000  1200  1400  1600

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (InterComm)

Config Completion Time (Hybrid, Scenario 2)

Success
Failure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  200  400  600  800  1000  1200  1400  1600

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (InterComm)

Config Completion Time (Prioritized, Scenario 2, W=1)

Success
Failure

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (PETSc)

Config Completion Time (Hybrid, Scenario 1)

Success
Failure

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (PETSc)

Config Completion Time (Prioritized, Scenario 1, W=1)

Success
Failure

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (PETSc)

Config Completion Time (Hybrid, Scenario 2)

Success
Failure

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

E
la

ps
ed

 T
im

e 
(h

rs
)

Configuration Preference (PETSc)

Config Completion Time (Prioritized, Scenario 2, W=1)

Success
Failure

Figure 6.2: Prioritized (W=1) vs. Hybrid strategy for InterComm (top 4 graphs)
and PETSc (bottom 4 graphs) with 4 clients (M=4) and 8 cache entries per client
(C=8)
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priority differences.

Each plot in the figure contains a different number of configurations for the pri-

oritized and hybrid plan execution strategies because Rachet applies contingency

planning when there are build failures, and so generates additional configurations

to test those DD-instances affected by the failures in alternate ways. The number

of additional configurations differs depending on the time and the order failures

are discovered, and that is the reason that the graphs for InterComm contain al-

most ten times more configurations than those for PETSc. Although we initially

produced 5 times more configurations for InterComm, more configurations were

added to the test plan by contingency planning during the execution of the Inter-

Comm test plan.

We see that plan execution with the prioritized strategy took longer than with

the hybrid strategy. For InterComm, by employing 4 machines,each with 8 cache

entries per machine, the prioritized strategy took 84% moretime for the first sce-

nario and 44% for the second scenario, for a window size of 1. For PETSc, the

prioritized strategy took 17% and 23% lower, respectively.This is mostly at-

tributed to low prefix reuse localityduring the execution of a test plan. When

we strongly guide the plan execution by developers’ preference, Rachet always

schedules the most preferred prefix to a requesting client, without considering po-
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tential cost savings from reusing a prefix already cached in the client. That is, in

many cases, the newly dispatched prefix to the client does notshare build effort

with the prefixes tested previously by the client. As a result, to test the dispatched

prefix, the client ends up reusing a prefix cached in another client, by transfer-

ring the VM with the reused prefix. This process is always moreexpensive than

reusing a locally available prefix and increases the overallplan execution time.

Varying the Number of Cache Entries per Client

The prioritized strategy with the window size of 1 took more time in all cases

for executing a test plan. However, as demonstrated in Figure 6.3, we observed

that the plan execution time can decrease when there is more space for caching

prefixes during the execution of a test plan. The top graph shows that for executing

the InterComm test plan with the first scenario, the prioritized strategy took 84%

more time with 8 cache entries per machine compared to thehybrid strategy, but

31% more with 64 cache entries.

With the prioritized plan execution, each client is more likely to test prefixes

that do not share build effort with prefixes cached in the client and also the prefixes

in the cache may be replaced before they are reused. Therefore, larger cache size

can increase the reuse opportunities for cached prefixes andenables saving test
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effort for building components contained in prefixes subsequently dispatched to

the client. Note that the benefits from a larger cache are limited for the hybrid

strategy, because the strategy executes a test plan mostly in depth-first order.

For the PETSc test plan, we did not see much benefit from additional cache

entries. This is because the test plan has fewer branches than the InterComm test

plan and also because we cache a prefix only if the last node of the prefix has two

or more child nodes. Hence, fewer prefixes were cached duringthe execution of

the test plan.

Varying Window Size

The algorithm in Figure 6.1 allows developers to control howstrongly their

preferences are enforced, by modifying thewindow sizeparameter. A window

size of 1 means that developers only care about their preferences, not overall plan

execution cost. In this case, Rachet always schedules the most preferred prefix for

any client request. As the window size increases, Rachet considers other factors,

including prefix reuse locality, that can reduce the overallplan execution time.

Figure 6.4 shows that the InterComm and PETSc test plans were executed

faster with larger window sizes for both scenarios. When the window size is equal

to or greater than the number of nodes in a test plan (the case with W = 2048), the
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execution time with the prioritized strategy was comparable to the hybrid strategy.

In this case the prioritized strategy ignores the developers preferences, and instead

executes the test plan so as to maximize the reuse of prefixes cached in each client

and to minimize redundant work across clients. This trend isless clear for the

PETSc test plan execution, because the PETSc test plan is much smaller than

the InterComm test plan and the benefit of larger window size comes from the

increased chances to reuse cached prefixes.

The cost to gain the improved overall performance, as seen inFigure 6.5 and

Figure 6.6, is that test results for less highly preferred configurations are produced

earlier than some more highly preferred configurations withlarger window sizes.

6.4.3 Quantitative Analysis

In the previous section, we measured the costs and benefits ofthe prioritized strat-

egy by visually inspecting patterns in the scatter plots.

To evaluate the results more quantitatively, we developed ametric to measure

conformance to preference order. Specifically, whenever the test result for a con-

figuration is identified, we compute the ratio between: (1) the number of already

tested configurations whose preferences were greater than the current configura-

tion’s preference and (2) the number of already tested configurations.
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Figure 6.5: Configuration completion times with different window sizes (Inter-
Comm, Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphs), M=4, C=8
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Figure 6.6: Configuration completion times with different window sizes (PETSc,
Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphs), M=4, C=8
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If all configurations finish testing in preference order, then this metric will

always be 1. In fact, for many of our experiments using the prioritized strategy

with a window size of 1, the metric stayed very close to 1.

However, in some cases test results come out of order. This occurs for several

reasons. First, the times for building components contained in various configura-

tions are different, and client machine speeds can also vary. Although we schedule

more highly preferred configurations earlier, results for those configurations may

be produced out of order. Second, when we fail to build a component version

encoded by a DD-instance, multiple configurations that contain the DD-instance

are classified as failures at the same time, while other more highly preferred con-

figurations are still being executed.

Figure 6.7 and 6.8 show conformance to preference order for successfully

tested configurations, when we execute the InterComm and PETSc test plans for

the two scenarios with the hybrid strategy and with the prioritized strategy, with

different window sizes. The x-axis in the figures is the plan execution time, nor-

malized to the range between 0 to 1, because plan execution times are different

across simulations, and the y-axis is conformance to preference order.

Since test results for configurations can come out of preference order (even for

the proritized strategy with the window size of 1), and the order is ignored in the
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Comm, M=4, C=8, Successfully tested configurations)
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hybrid strategy and prioritized stratetgy with large window sizes, it was difficult to

see a pattern if we merge test results from the simulations into a graph. Therefore,

we applied a smoothing technique calledLoess smoothing[21, 22] for making it

easier to analyze the results. As seen in the figures, with a window size of 1 the

plan execution conforms almost completely to developer preferences and that the

degree of conformance drops as we increase the window size. An extreme case

is when we execute the plans with a window size equal to the plan size. For that

case, the prioritized strategy shows similar behavior to the hybrid strategy, since

both strategies execute the test plan completely ignoring the developer specified

preferences.

6.5 Summary

In this chapter, I have presented a systematic method for prioritizing the order in

which configurations are tested, in order to obtain test results for configurations of

higher importance rapidly, in resource-constrained situations. To accomplish this

goal, I first designed a method for specifying developers’ preferences over compo-

nents and their versions, and then I used the preferences fordetermining priorities

of configurations, by computingpreference vectorsfor all configurations, refer-
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ring to the specified component and version preferences.

I also presented a test plan execution strategy that schedules configurations

considering both the priorities of configurations and the cost required for testing

the configurations. In order to test more important configurations earlier during

the test plan execution, I ordered configurations by priorities and then dispatched

the one with the highest vector value to a client requesting anew configuration.

Results from our empirical studies clearly show that our technique can help

developers obtain results for preferred configurations early in the overall testing

process, compared to a cost-based strategy. The results from the most important

configurations may be produced almost at the end of the plan execution without

the prioritization technique. In addition, while exploring the performance varying

the number of employed client machines and cache entries permachine, I also

observed that the preference-guided plan execution can achieve more benefits with

larger cache sizes.

Developers can control the strength of preference enforcement by specifying

a parameter, thewindow size. The prioritized strategy uses the parameter value

for increasing prefix reuse locality and for decreasing workredundancy between

multiple clients. The simulation results showed that the prioritized plan execu-

tion can perform comparably to the cost-based strategy withlarger window sizes
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and can produce results for more important configurations rapidly with smaller

window sizes.
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Chapter 7

Conclusions and Future Work

In this chapter, I conclude this dissertation by reviewing the thesis and its contri-

butions and present several directions for future work.

7.1 Thesis and Contributions

In this dissertation, I supported the following thesis:Direct-dependency-based

configuration sampling techniques can be effectively employed for testing build-

compatibility of component-based systems. The goal of this research was to de-

velop effective and efficient methods and tools for performing compatibility test-

ing of complex and evolving component-based systems. The contributions made

by this dissertation include:
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An effective and efficient method for sampling and testing configurations

I have developed and presented in this dissertation the firstapproach for testing

the compatibility of component-based systems by systematically sampling and

testing configurations. That approach consisted of a well-defined test process, a

formal model for capturing the configuration space of component-based systems,

algorithms for sampling and testing configurations, and finally a tool that realizes

the algorithms.

Based on the observation that a successful component build is mostly influ-

enced by other components on which the component directly depends, the con-

figuration sampling algorithm can produce a set of configurations that effectively

identify compatibilities between directly-dependent components (DD-instances)

and those configurations can be tested efficiently on multiple machines in paral-

lel. Compared to testing all possible configurations, which is infeasible in many

cases, results from experiments and simulations on two scientific software sys-

tems showed that the presented approach can quickly identify compatibility re-

sults (successes/failures of DD-instances), and for the systems evaluated in this

dissertation, the results were identical to the results from the exhaustive approach.
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A set of techniques to support incremental compatibility testing

I have developed a set of techniques to support incremental compatibility testing

as components in a system model evolve over time. The method consists of a test

adequacy criterion that defines DD-instances that should betested for a modified

model and an algorithm for producing configurations that satisfy the criterion. The

method is incremental in that DD-instances tested in a test session are not tested

again in subsequent sessions unless they are contained in configurations for testing

other DD-instances. In addition, two cache-aware optimization techniques were

developed to further decrease test effort by utilizing pasttest results. Simulations

over the 5-year evolution history of components in the models for two large-scale

systems showed that the testing time can decrease by a large amount by applying

incremental testing and also the optimization techniques can significantly reduce

the time required for the test.

A method for prioritizing configurations via developers’ preferences

It is important to provide developers with the compatibility results they have the

most interest early in the test process when test resources are limited. To achieve

that goal, I have developed a method that consists of a simpleway of specifying

developers’ preferences on components and their versions,an algorithm for com-
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puting the priorities of sampled configurations based on thepreferences and finally

a scheduling policy that guides the test order of configurations by considering both

the priorities of configurations and the cost required for testing the configurations.

Developers are allowed to control how rigidly to enforce thepreferences over time

savings.

The results from empirical studies demonstrated that the presented method can

enable developers to acquire more important compatibilityresults early in the test-

ing process, and also showed that the scheduling policy can perform comparably

to the pure cost-based strategy when a large cache space is available or developers

weaken the rigidity of preference enforcement.

7.2 Future Work

There can be many possible extensions and improvements to the work presented

in this dissertation. Although a set of algorithms and techniques have been devel-

oped for testing compatibilities between components effectively and efficiently,

this work may still be improved in several directions.
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Automatic extraction of constraints and dependencies

The CDGs and Annotations used for experiments and simulations in this disser-

tation were created manually by carefully inspecting the information acquired by

working with system developers or from available documents. However, manual

modeling can be error-prone and faulty models can produce misleading compat-

ibility results. Therefore, it is necessary to investigatemethods that can extract

component dependencies and constraints automatically from component distribu-

tions. In fact, there is no standard way of building components, but there are

common practices used by many developers. Although component developers

can use any method in which they check dependency requirements and build their

components, it may be possible to extract dependencies and constraints system-

atically for components packaged with well-established component distribution

methods, such as RPM [11, 37], Autotools [31, 69] and Ant [44].

Exploring other coverage criteria

Through extensive experiments and simulations with real-world systems, this dis-

sertation has demonstrated that the cost required to perform compatibility tests

can be reduced by a large amount and compatibilities betweencomponents can be

discovered effectively by testing a reduced set of configurations that satisfy a test
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adequacy criterion, namely DD-coverage. Despite the observed benefits, it is still

necessary to explore new types of coverage criteria that canproduce fewer but

perhaps a more effective set of configurations. Especially if a component directly

depends on multiple other components, each with many versions, the number of

DD-instances for the component increases by a large amount and it is very expen-

sive to build all configurations for testing the DD-instances.

This problem may be addressed by employing combinatorial interaction test-

ing techniques developed for generating test cases that cover interactions between

test factors of a system [19, 23, 24, 25, 27, 28, 52, 53, 67]. Touse the techniques,

it is necessary to investigate how to compute test obligations and how to enforce

constraints for the computation.

Extending to functional and performance testing

This research has focused on testing clean component buildsas the first step to

support compatibility testing of component-based systems. In the build process,

many component build tools check whether basic features required by a compo-

nent are provided by other existing components in a configuration. However, com-

ponent developers often provide test cases that test the correct behavior of their

components after deployment, since components cleanly built on a configuration
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can show incorrect behavior at run-time.

This means that the functional and performance test should be performed in

addition to build testing. It is possible that testing direct dependencies is not

enough to ensure the correct behavior of a component in a configuration. More-

over, it is also possible that a configuration for running a performance test suite

cannot be realized as a virtual machine. Therefore, it wouldbe needed to investi-

gate a new coverage criterion and also methods for provisioning configurations on

physical machines, when configurations cannot be realized as virtual machines.

Adapting the Cloud computing paradigm

As observed from the experimental and simulation results inthis research, testing

the compatibility of a component-based system requires a large amount of storage

and computing power – even for building components without performing other

types of tests. Moreover, developers often cannot test compatibilities with com-

mercial components because they cannot afford those components, or because

source code for the components cannot be obtained.

Although the Rachet tool has been developed with a classic client-server archi-

tecture and all experiments have been run on a cluster of machines, the tool could

also be implemented to be run as a service in a Cloud computing environment.
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Considering the recent growth of Cloud computing [10, 40], such an extension

may open up the possibility for developers of independent systems to save test

effort when configurations for testing the compatibility ofthe systems are shared.
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