ABSTRACT

Title of Dissertation: COMPATIBILITY TESTING FOR COMPONENT-
BASED SYSTEMS

llchul Yoon, Doctor of Philosophy, 2010

Dissertation directed by: Professor Alan Sussman
Department of Computer Science

Many component-based systems are deployed in diverseoenvants, each
with different components and with different componentsiens. To ensure the
system builds correctly foall deployable combinations (or, configurations), de-
velopers often perfornsompatibility testingoy building their systems on various
configurations. However, due to the large number of possibdigurations, test-
ing all configurations is often infeasible, and in practimely a handful of popular

configurations are tested; as a result, errors can escape feeld. This problem

is compounded when components evolve over time and whemetssiirces are
limited.

To address these problems, in this dissertation | introdupeocess, algo-
rithms and a tool called Rachet. First, | describe a formatlefiog scheme for
capturing the system configuration space, and a samplitegion that determines
the portion of the space to test. | describe an algorithm mapda configurations
satisfying the sampling criterion and methods to test tinepdad configurations.

Second, | present an approach that incrementally tests ataoiljpy between
components, so as to accommodate component evolutionclildesnethods to
compute test obligations, and algorithms to produce cordigans that test the
obligations, attempting to reuse test artifacts.

Third, | present an approach that prioritizes and tests gardtions based on
developers’ preferences. Configurations are tested, byulleftarting from the
most preferred one as requested by a developer, but casédelactors are also
considered to reduce overall testing time.

The testing approaches presented are applied to two laaje-systems in the
high-performance computing domain, and experimentallteshow that the ap-
proaches can (1) identify compatibility between composetfitectively and effi-

ciently, (2) make the process of compatibility testing manactical under constant

component evolution, and also (3) help developers achimfemped compatibility

results early in the overall testing process when time asdures are limited.

COMPATIBILITY TESTING FOR COMPONENT-BASED SYSTEMS

by

lichul Yoon

Dissertation submitted to the Faculty of the Graduate Slobicthe
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2010

Advisory Committee:

Professor Alan Sussman, Chairman/Advisor
Professor Adam Porter

Professor Atif Memon

Professor Ramani Duraiswami

Professor Derek Richardson

(©Copyright by
llchul Yoon

2010

DEDICATION

To my wife — Heejong for her endless love and support.

ACKNOWLEDGEMENTS

It is my honor to know so many good people who helped me to com-
plete this dissertation. First and foremost, | deeply thawykadvisor,
Prof. Alan Sussman. He guided me to set up my research directi
and helped me with his deep insight to realize my rough idetts i
concrete artifacts. He has always been generous to me amérals
couraged me to be confident. | would also like to thank Profard
Porter and Prof. Atif Memon. Throughout discussions withrtt)

| could get many ideas to analyze and to present resultsteg#éc
Also, | have always been amazed whenever they touched tkeotor
my monotonous manuscript and transformed it into a shingepa

work in concise and polished sentences.

Thanks are due to Prof. Derek Richardson and Prof. Ramani Du-
raiswami for agreeing to serve on my dissertation comm i for

sparing their invaluable time to review my dissertationeylgave me

excellent suggestions to improve the quality of the disdrn.

| owe my deepest thanks to my family - my wife, parents, pa-émt
law, sister and brothers. | was able to finish this long joyinecause
of their enormous love and support. Especially, it is imassfor
me to fully express my gratitude to my wife, Heejong Sung,Her

endless patience, advice, encouragement, faith, pragdosae.

During my years at University of Maryland, | had the pleasafe
sharing my life with good people around me. | was so lucky &otst
my study with Jik-Soo Kim, Minkyoung Cho and Youngmin Kim.
They always stood by me in joy and sorrow, and spent their time
to discuss my problems. | will remember forever the momengs w
shared together. | am also grateful to my godfather, Prolu Kgng

Choi and the members of Darak-bang — Seong Sook Kim, Yeon Seok
Kim, Ellen Kim, Won Joon Choi and Myoung Deok Shin and Hyo

Jung Kim — for their prayers to God for me.

I would like to thank my lab colleagues, Jaehwan Lee, Suki8amg,
Gary Jackson, Puneet Sharma and Teng Long. They attended my
practice talks and helped me to improve the presentatiothfode-

iv

fense. | also would like to acknowledge Ananta Tiwari and no¢ K
rean colleagues: Jaeyong Lee, Seungryul Choi, Bongwon Sum-H

mo Kang, Joonhyuk Yoo, Jae-Yoon Jung, Beomseok Nam, Ji Sun
Shin, Jikhyuk Jung, Hyunyoung Song, Jaehwan Lee, Sukhyung,So
Sungwoo Park, Eunhui Park, Chanhyun Kang, Hyuk Oh, AngelgSon
le Noh, Tak Yeon Lee, Jaehwa Choi, Sunhee Kim, Sangchul Sahg an
Min-Young Kim. Because of them, my graduate experience at Un

versity of Maryland has been one that | will cherish forever.

| also would like to acknowledge the financial support fror thsti-
tute of Information Technology in Korea during the early ggeaf my

study.

Lastly, | truly thank God for letting me know wonderful peepnd

for all the achievements | have made during my study.

TABLE OF CONTENTS

List of Tables X

List of Figures Xi

1 Introduction 1
1.1 Motivating Applications oL 6
1.2 Thesisand Contributions 9
1.3 Structure of the Dissertation 11

2 The Compatibility Test Process Using Rachet 12

3 Related Work 16

4 Sampling and Testing Configurations 21
4.1 Configuration SpaceModel, 21
4.2 Direct Dependency between Components 25

Vi

4.3 Configurations with Exhaustive Coverage 28

4.4 Configurations with DD-Coverage 30
45 TestPlanSynthesis 34
4.6 TestPlan Execution Strategies 36
4.6.1 Parallel Depth-First Strategy 38
4.6.2 Parallel Breadth-First Strategy 40
46.3 HybridStrategy L. 42
4.7 Dynamic FailureHandling 43
4.8 RachetArchitecture L 45
49 Evaluation 50
4.9.1 Modeling the Subject Systems 50
49.2 ExperimentSetup., 53
4.9.3 Cost/Benefit Assessment of DD-Coverage 55
4.9.4 Comparing Plan Execution Strategies 59
4,10 SUMMaAry o e e e e e e e 66
Embracing Component Evolution 69
5.1 TestAdequacy Criterion 70
5.2 Cache-Aware Configuration Generation 75
5.3 Managing Cached Configurations 79

vii

5.4 Evaluation 83

5.4.1 Modeling the Subject Systems 83
542 StudySetup 89
5.4.3 RetestAllvs. Incremental Test. 94
5.4.4 Benefits from Optimization Techniques 96
5.4.5 Comparing Optimization Techniques 102
55 Summary 105
Prioritizing Configurations with User Preference 107
6.1 Specifying Preferences 108
6.2 Computing Configuration Preferences 109
6.3 Preference-Guided Plan Execution 12 1
6.4 Evaluation. 117
6.4.1 ExperimentSetup., 118
6.4.2 Cost/Benefit Analysis of Prioritized Test. 221
6.4.3 Quantitative Analysis 129
6.5 Summary 135
Conclusions and Future Work 138
7.1 Thesisand Contributions 138

viii

7.2 Future Work

Bibliography

LIST OF TABLES

4.1 Component Version Annotations for InterComm and PETSc . 52

4.2 Test Plan Statistics for InterComm and PETSc 53

5.1 History of version releases and code changes for conmp®iire
the InterComm and PETScbuilds 86
5.2 Numbers of DD-instances for the InterComm build sequence 91

5.3 Numbers of DD-instances for the PETSc build sequence . . .92

6.1 Example Preference Assignments (Bigger values arefasbiher

preferences) 111

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF FIGURES

An Example SystemModel 13

DD-Coverage apply BuildCFG for generating each DD-instan
forcomponentsinaCDG 31
Algorithm to generate a configuration to cover a DD-ins&. . . 33
EX-plan (top) and DD-plan (bottom) for example model .. . 36
Rachet Software Architecture 45
A Combined CDG for InterComm and PETSc. (Shaded nodes are
specificfor PETSC.) 51
Actual turnaround time for executing InterComm and PEERe

plans and DD-plans using depth-first strategy. 56
Turnaround times for executing the InterComm and PETSe DD

plan with different plan execution strategies. 60

Xi

4.8

5.1

5.2

5.3

5.4

5.5

Simulated time to execute InterComm and PETSc EX-plah wit
hybrid execution strategy, and DD-plan with all strategessum-

ingnobuildfailure. oL 64

The DD-instances for two consecutive buildg/d;_; andbuild;.

The DD-instances represented by the shaded areas need to be
tested inbwild;. e 72
Test plans: Retest-All (56 components) vs. IncreméBtatom-
ponents). The shaded nodes can also be reused from theysevio
testsession. 73
Test plan produced from configurations selected in aeccagbare
manner. 34 component versions must be built. (Shaded noees a
cached, from the previous testsession.) 77
A Combined CDG for InterComm and PETSc. (Grey nodes are
specific for PETSc. Black nodes are dependencies required fo

gf version4.0.Qorlater) 85
Turnaround times for testing D¢, andD D! ,,— DD’} . for each

build of InterComm and PETSc (8 machines (M=8) and 4 cache

entries permachine (C=4)) 95

Xii

5.6 Asthe number of cache entries per machine increasesgaigd
test cost decreases up to 24% for InterComm and up to 28% for
PETSc when optimization techniques are applied, compared t
the baseline incrementaltest. 97
5.7 test-diffvs. integrate-all There are significant cost savings for
some builds from the optimization techniques. 100
5.8 Each optimization technique contributes differenty different

cachesizes. 103

6.1 Algorithm for Preference-Guided Plan Execution 113
6.2 Prioritized (W=1) vs. Hybrid strategy for InterComm (togr&aphs)
and PETSc (bottom 4 graphs) with 4 clients (M=4) and 8 cache
entriesperclient(C=8) 123
6.3 Turnaround time difference between the prioritized guechybrid
strategy with different cache entries perclient 126
6.4 Turnaround Times for InterComm and PETSc Test Plan ireDiff
entWindow Sizes 128
6.5 Configuration completion times with different window essz(In-

terComm, Scenario 1 (left 4 graphs) and Scenario 2 (right glgga

6.6 Configuration completion times with different windowessZ PETSc,

Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphsy M=

C=8 . e 131
6.7 Conformance to preference order varying the window srzeit

Comm, M=4, C=8, Successfully tested configurations) 313
6.8 Conformance to preference order varing the window sigg &,

M=4, C=8, Successfully tested configurations) 341

Xiv

Chapter 1

Introduction

Modern software systems are becoming increasingly largeeamplex, and little
software is developed entirely from scratch. Instead, fatding systems cor-
rectly, a majority of software systems requires (third¢pacomponents such as
libraries and tools [15, 17, 70]. One of the top concerns mralopers of such
software systems is to ensure that their systems can bevithibut any prob-
lem and behave as expected in field environmentgdafiguration3 that might
be realized in end-users’ machines, which may contain reiffesets of compo-
nents and their versions required for building the systertighe systems are
released with undetected incompatibilities between caomapts, they can make
users spend time for resolving such incompatibilities, alst make it difficult

for developers to rationally manage support activitiester systems [16, 39].

To reduce latent incompatibilities between componentiéywsoe researchers
have developed methods and tools such as configuration sy systems,
interconnection standards, middleware frameworks anduymiline and service-
oriented architectures [13, 20, 36, 45]. However, despiésé¢ advances, it is still
challenging to guarantee the compatibility of a system \ilhign expected set of
configurations, for several reasons.

First, the number of configurations on which a componenebtaystem may
build and execute can be enormous. A system may requirepleuttomponents
each with multiple versions where each version depends dtipheuthird-party
components, and each of these components in turn has reulgpgions and de-
pendencies on other components. In principle, each pessiphbination of these
components is a configuration that some end-user might ngenamany cases,
it is infeasible to test all possible configurations andéifigre it is necessary to in-
telligently sample configurations from the vast set of fekesconfigurations and
test them efficiently.

Another challenge is that each component can evolve indkpaly. Com-
ponent developers may release new versions of their cormt®ioe modify de-
pendencies to other components without any notice, edpjeifidne components

are developed and maintained by independent groups ofajemsl. In the worst

case, a component change can mandate retesting the entfeceafigurations.
Given the high cost of testing, it is important not to wastegiand money for test-
ing compatibilities. However, considering that a largetwafe system involves
many components interconnected with complex dependentiessdifficult for
developers to identify configurations that are affecteddoyponent changes, and
also past test results should be best utilized for savirtgetést.

Moreover, the time and resources allowed for the compadtiltiésting can
be limited. In such resource-constrained situations, ld@egs want to see com-
patibility results they have the most interest early in thgt pprocess. Because it
is impractical for developers to manually specify an omdgracross all the con-
figurations to be tested, and also because there is potgrdiédrge number of
such configurations, they need a prioritization mechantsah takes into account
developers’ preferences over components and their vession

In practice, to identify configurations with which a compat®ased system is
(in)compatible, developers have perfornmenpatibility testing49] by selecting
a set of configurations — each configuration is an ensemblernoponent versions
that respects known dependencies — and by testing whethiersitstem builds
and functions properly for each configuration. However, @scdbed above, the

large number of possible configurations and the lack of aatethtesting support

have limited developers to pare down the set to a handful plilam configura-
tions [1, 6] or use only configurations that are already pealion test machines
they can access [33, 34]. This implies that the softwareléased with nearly all
of its possible field configurations untested. So costlyreroan and do escape
to the field. While it might appear that these issues could belad by radically
restricting the set of supported configurations, in redhigt could unacceptably
restrict the potential user base.

The goal of this research is to investigate methods for jperiftgy compati-
bility testing of complex and evolving component-basedeys in an effective
and efficient manner. This involves (1) sampling a small $atomfigurations
that effectivelytest compatibilities between components from the set ofeall
sible configurations of the systems, and (2) testing the Badngonfigurations
efficientlyon limited test resources.

To achieve this goal, | present in this dissertation a pcalgorithms and a
tool calledRachet Developers can identify compatibilities between compase
by applying Rachet on a formal graph-based model that ersabeeconfiguration
space of a software system. Based on the model, Rachet cateseomfigura-
tions that satisfy a test adequacy criterion, which is to addirect dependency

relationshipsbetween components in the model. Then, sampled configosatio

are tested over a set of test resources by leveraging hagduréwalization tech-
nology that enables reusing partially-built configura@and not contaminating
the state of test resources. This approach can be appligeiffarming the com-
patibility testing of a model that consists offized set of components and their
versions, and is extended in two directions.

First, | extend the test adequacy criterion for a fixed modeddcommodate
the evolution of components involved in a model. The exteraeerion requires
testing only compatibilities that involve components niiedi since the last test
session. This dissertation also presents an algorithmstraples configurations
satisfying the criterion and makes use of test results frast fest sessions.

Second, | develop a method that prioritizes the order tacstigurations tak-
ing into account developers’ preferences, because diffetevelopers can have
different interests over components and their versiorg,(hey may want to first
see compatibility results related to recently releasedpmmnt versions). The
method evaluates the priorities of sampled configuraticesetl on the prefer-
ences specified by developers and then the configurationsstesl from the most
important one, thereby providing developers results oferiorportance early in
the test process.

| evaluate the presented approaches through extensivemems, and show

that developers can identify (in)compatibility betweermgmnents effectively

with less test effort and can efficiently utilize availaldsttiresources.

1.1 Motivating Applications

This research is originally inspired by the following amaiiions.

InterComm InterComnt [47, 48, 64, 65] is a middleware library that supports
coupled scientific simulations by redistributing data ingl@l between data struc-
tures managed by multiple parallel programs. For exampdenalation studying
the effect of solar weather patterns on cell phone perfooaan the U.S. might
involve multiple simulation modeling applications: soéativity on the sun’s sur-
face, radiation propagation in the region between the sdrtamearth, the effects
of the solar wind on earth’s ionosphere, etc. InterComm cesifiie applications,
which may be written in different languages and run in patalh diverse operat-
ing systems, and enables data to be transferred betweeratregpropriate times
and at appropriate simulation scales.

To support that, InterComm relies on sevesgtem componeniscluding

multiple C, C++ and Fortran compilers, parallel data commaitin libraries, a

Ihttp://www.cs.umd.edu/projects/hpsl/chaos/Reseaedsyic

process management library and a structured data managkonary. Each com-
ponent has multiple versions and there are complex deperedeaind constraints

between the components and their versions.

PETSc PETSc (Portable, Extensible Toolkit for Scientific comiata)? [12,
43] is a collection of data structures and interfaces usetttelop scalable high-
end scientific applications. Similar to InterComm, PETScesigned to work
on many Unix-based operating systems and Windows. It pesvidterfaces and
implementations for serial and parallel applications agpehds on multiple com-
pilers and parallel data communication libraries to prewide functionality. Also,
to enhance the performance of application developed usfigSE, PETSc also
relies on third-party numerical libraries such as BLAS [a2H LAPACK [9], and

uses Python as the deployment driver.

Although these systems have been used for building manyt#aeapplica-
tions and have been improved to correct bugs and also togeavbre function-
ality, there has been no systematic effort to test the caipigt of the systems
on diverse field configurations. InterComm has been extelysiested inonly

three different configurations, where each is realized oreldpers’ and users’

2http://www-unix.mcs.anl.gov/petsc/petsc-as

machines running different operating systems. Likewikerd is no detailed in-
formation on configurations on which PETSc is compatiblerfoompatible), al-
though PETSc developers have documented brief discussiohsilding PETSc

on multiple configurations with different operating system

Sugar interface (OLPC) The One Laptop Per Child (OLPC) projéds an
international effort to provide educational opportursti®r the world’s poorest
children by empowering each child with a low-cost, connédéptop with free
content and software. All software tools running on thepttgs are free and
there are groups of volunteer developers for creating so&what runs on the
laptops. In order to develop applications, developers havese a development
environment calleugar There are dependency chains between components re-
quired for building Sugar on an operating system. For exapfpligar depends on
Telepathy a framework for real-time conversations, including imstenessaging
and voice/video calls, and Telepathy in turn depends\athi a network service
that enables programs to publish and discover services asi$ hunning on a

local network without any specific configuration.

3http://laptop.org

The Sugar environment is an example system that requirepatiiity testing
in a non-scientific domain. Currently, to develop applicasidhat use the latest
Sugar features, developers have to use an operating sys¢ontains Sugar al-
ready in the operating system distribution, or they havestailimited set of op-
erating systems and versions for building the Sugar fronsthece code. In other
words, developers have to change or upgrade their opersyisigms. If Sugar
developers perform compatibility testing and identify ongpatibilities between
components required for building the Sugar environmemntoitild be possible to

increase or at least to figure out the range of platforms teegldpers can use.

1.2 Thesis and Contributions

In this dissertation, | support the following thesBirect-dependency-based con-
figuration sampling techniques can be effectively empléyaesting build-comp-
atibility of component-based systeni® support this thesis, a set of algorithms
and tools have been developed and evaluated by performimgatibility test-
ing for two real-world systems. More specifically, | make fiolowing novel

contributions not addressed in previous related research:

1. | present the first approach for systematically suppgrtiompatibility test-

ing by examining a small set of configurations sampled froenagbnfigu-
ration space of component-based systems. The approacbsaan this
dissertation can help developers to rapidly and effegtiwgntify compat-

ibilities between components required for building theistems.

2. | present and evaluate an approach for incremental capilfigittesting .
When components in a system model evolve constantly over tlraeap-
proach can decrease the time required for testing the caloilggtof the
modified system by a large amount by sampling and testingamjigura-
tions that test compatibilities related to modified compusgwhile utiliz-

ing previous test results for the sampling and testing mece

3. | present and evaluate a prioritization mechanism thiaédules the test
order of sampled configurations. The mechanism makes usevefapers’
preferences over components and their versions for comgpuptiiorities of
configurations, and can provide developers with compdéibiesults for

highly-preferred configurations early in the test process.

The usefulness of this research is demonstrated by perfigrexperiments
and simulations on the InterComm and PETSc. In this dissemtaihe applica-

tion of compatibility testing is restricted to tHauild process(i.e. compilation

10

and deployment) of a component with other components redudar building the

component.

1.3 Structure of the Dissertation

The rest of this dissertation is organized as follows. Thet cbapter presents
studies related to this research. Chapter 2 describes aldwghoverview of
the steps needed to perform compatibility testing for congot-based systems.
Chapter 4 formally defines a model for capturing the configomaspace of a
component-based system and algorithms for sampling atidgeonfigurations.
Chapter 5 presents an approach for incremental compatibdgting under the
circumstances that components in a system model evolveiowerIin Chapter 6,
a mechanism for prioritizing the test order of configuratigaspecting develop-
ers’ preferences is presented. Experiments and simulatgults obtained from
empirical studies are presented in each of Chapters 4, 5, dfiddlly, Chapter 7

concludes this dissertation with a brief discussion anth&mwork.

11

Chapter 2

The Compatibility Test Process Using Rachet

| describe in this chapter a high-level overview of the stepeded to perform
compatibility testing for a given software system undet (88 T) using Rachet.

1. Model system configuration spaceTo define the configuration space, i.e.,
the ways in which the SUT may be legitimately configured, ttgvers first need
to identify the components required for building the SUTisTimformation can
often be obtained, at least in part, from the component dey¢i Dependency
relationships between components are then encoded asctedit@cyclic graph
called aComponent Dependency Graph (CDGhe example CDG depicted in
Figure 2.1 shows dependencies for a SUT component calléd captured in the
figure via anAND node (represented by), A requires componer and either

one ofB or C (captured via arXOR node represented by). Component$ and

12

Version Annotations

Component | Versions
A A
B Bi, B>
C Ci, C
D Dy, D,
E Eq, E,, E3
F F,, F,, F3
G G

Constraints

(ver(C) == C;,) — (ver(E) = E3)

Figure 2.1: An Example System Model

C require E; D requiresF; and E and F require G the bottom node that does
not depend on any other componeAmnnotationsinclude version identifiers for
components and constraints between components and/ofuthvesnfigurations,
written in first-order logic. For example, in Figure 2.1, coomentC has two
version identifiers and compone@t s versionC, may only be built withE’s
versionsE; and higher. Together, the CDG and Annotations form the malkdad
anAnnotated Component Dependency Model (ACDM formally describe our

model in Section 4.1.

13

2. Determine test coverage criterion: The model encodes the configuration
space for the SUT, representing all the different ways incwiihe SUT may be
legally configured in end users’ machines. For non-trivaitware, this space
can be quite large and developers must determine which painiecspace will
be tested for compatibility testing. For example, they magide to test config-
urations exhaustively, which is often infeasible becahsee are a large number
of configurations to be tested and also building componemsamed in config-
urations can take a long time. Instead, they may choose nratiqal criteria
thatsystematically samplihe space. One such sampling strategy is based on the
observation that the ability to successfully build a comgrdr is strongly influ-
enced by the components on whictirectly dependshe definition and rationale

behind this criterion is further described in Section 4.2.

3. Sample configurations and create test planGiven the model and the cov-
erage criterion, Rachet samples configurations that gdtsf coverage criterion
where each configuration describes a set of component wesrtobuild and de-
pendency information used for the build process. Then,tptan is created from
the sampled configurations. The test plan specifies a sahéatést successful

builds of the components contained in the configurations.

14

4. Execute test plan:Finally, Rachet executes the test plan by distributing ¢pnfi
urations to multiple machines and collecting results. €lean be various ways to
schedule the configuration test order. We describe in sedti® three scheduling
strategies we have developed.

In this dissertation, testing a configuration checks whetoenponent ver-
sions contained in the configuration can be built without emgr when Rachet
builds each component on top of other components in the agatign. There-
fore, a sequence of instructions for building componensiegs is executed dur-
ing the execution of a test plan.

When a component build fails, Rachet dynamically modifiesag&n so as
not to lose test coverage. Such build failure may prevetingsther components
in the configuration. In this case, Rachet creates additmm#igurations that try

to build those component versions in alternate ways, agitesiin Section 4.7.

15

Chapter 3

Related Work

This chapter introduces efforts by software researchees the last decade for

ensuring compatibilities of a system with various field cgafations.

Compatibility Testing on Multiple Configurations

Duarte et al. [33, 34] describe a technique that tests thawahof a soft-
ware system on diverse field configurations. They distrildliait test suites of
a system onto multiple heterogeneous machines accessibl@etwork of ma-
chines. The distributed software is built on the machinebtast suites are run
for testing the behavior of the software. The configuratioovfsioning and ac-
tual build of the software are handled by a system called &may [61], which
uses a model-based approach for describing configurat@ttsough their work

pursues a similar goal to the approaches presented in #ssrtition, they do not

16

analyze the configuration space of the system for samplinfigurations that can
effectively identify compatibilities between componeriigt instead they simply
run given test suites only on a limited set of configuratioreized on available
machines at the time tests are performed.

VMware has developed approaches calledt lab automatioandVirtual lab
manager[6, 7, 8] to support compatibility testing on top of variousnéigura-
tions. Although this approach can provide developers witioated support for
testing software systems in various configurations redlia virtual machines,
developers have to manually customize configurations. Ppircach can achieve
this without any intervention from developers after theydmlothe configuration

space of their software system.

Combinatorial Interaction Testing

The Skoll system [56, 57, 72, 73] is designed to ensure cob@td and exe-
cution of a software system across a large configurationespdiizing heteroge-
neous and distributed resources. Skoll is different fromweark in that Rachet
addresses a configuration space defined by architecturaknm Skoll is more
focused on the configuration space as defined by traditicorapde- and run-

time options. Techniques to test highly configurable systeave been extended

17

to testing of software product-lines. Cohen et al. [26] apmynbinatorial inter-
action testing methods to define test configurations thakeaela desired level
of coverage, and identify challenges to scaling such methodarge, complex
software product lines. Although not directly related to @ea of sampling con-
figuration spaces via testing DD-instances, they too réusthow software prod-
uct line modeling notations can be mapped onto an underhgfagional model
that captures variability in the feasible product-linetamees. They use the rela-
tional model as the basis for defining a family of coveragteda for product-line

testing.

Software Regression Testing

There have been studies on software regression testingdleat test cases for
testing modified systems, since running all test cases caeyeexpensive and
also there are test cases not related to modified parts ofygterss [42, 55, 58,
59]. Qu et al. [58] showed that a combinatorial interactiesting technique can
be used to select test cases for user configurable systetheugh the basic idea
of incremental compatibility testing in Chapter 5 is simitartheir work, their
approach is applied only to a flat configuration space, wisatoit for hierarchi-

cally arranged systems. Robinson et al. [59] presented een fiok testing user

18

configurable systems incrementally by identifying confajle elements that are
affected by changes on a user configuration and by runningasss callefire-
walls for testing the identified elements. However, they do noaptively test
the configuration space and instead postpone testing unskeahas changed a

deployed system configuration.

Continuous System Integration

As an effort to reduce integration problems during the safewvdevelopment
process, there is an industry practice calbedtinuous integratiofl4, 38]. Itis
an effort to ensure the compatibility of a system throughlifiespan of the system
by integrating source code changes frequently into the éetegoftware system
and by inspecting whether those changes cause problem$ @f t@rious ma-
chine configurations. As reported in [60], it has been stipagvocated because
it can be applied to many software projects with relativadw leffort and also
because problems originating from the difference betwesmldpment and field
configurations can be detected earlier in the software dpweént process. There
are several practical tools supporting continuous intégmnaon top of diverse con-
figurations through a uniform build interface. Such toolslinle ETICS [54],

CruiseControl [2] and Maven [51]. Although these systemsquarfbuild tests

19

for components, their build process is limited to a set oflptermined configura-
tions. Rachet rather produces plausible configurationsnaatically considering

available information on component versions and inter{gonent dependencies.

Component Installation Management

Our work is broadly related to component installation masraghat deal with
dependencies between components. Opium [68] and EDOSH&0)a example
projects. Opium makes sure a component can be installed tard machine.
The problem of determining whether a component can be Iadtain a client
machine is modeled as a satisfiability problem and is sohsagua SAT solver
for finding an optimal satisfiable configuration for instajithe component. The
EDOS project checks for conflicting component requiremante distribution
server. It provides a set of tools for managing the comgétitmf components
contained in a distribution server. Both projects assuna¢ ¢omponent depen-
dencies and constraints are correctly specified by compg@reriders and that
there is no compatibility problem if the dependencies anmbtraints are satisfied,
Our approach differs in that we validate component compi@s by testing a

set of configurations in which the components may be installe

20

Chapter 4

Sampling and Testing Configurations

In this chapter, | describe in detail each step in the prodessribed in Chapter 2.
| first define a formal graph-based model that encodes allogaple configu-
rations and a test adequacy criterion for compatibilitytitgs Then, | present
algorithms that generate configurations satisfying theegan. Then, | describe
a method to test sampled configurations efficiently utiizmultiple machines
and present experiment and simulation results obtainedpplyimg the Rachet

process to two real-world systems [74, 75].

4.1 Configuration Space Model

Components, their versions, inter-component dependemcidsconstraints de-

fine the configuration space of a system under test (SUT) wther8UT is sup-

21

posed to be deployed successfully. The configuration sddbe 8UT is captured
into a formal model called Annotated Component Dependency Model (ACDM)
An ACDM consists of &omponent Dependency Graph (CD&jdAnnotations
(Ann).

A CDG has two types of nodes — component nodes and relatiorspndde
rected edges represent dependencies between componendeey the nodes.
For example, Figure 2.1 depicts an SWATthat requires component8 @nd D)
or (CandD), each of which depends in turn on other components. As shiown
the figure, inter-component dependencies are capturedidtyore nodes labeled
either “” or “+”, which are interpreted respectively as applying gilwal AND or
XOR over the relation node’s outgoing edges.

Annotations provide additional information about compatsen a CDG. The
first set of annotations for this example system is an ordesedf version identi-
fiers for each component. Each identifier represents a unigsgon of the corre-
sponding component. In Figure 2.1, compon@iias two version identifierd3;
andB;.

Version-specific constraints are common between varioumspoments in a

model. For example, in Figure 2.1 componéhhas two versions and depends

on componentk, which has 3 versions. Suppose that compor&rd version

22

C, may only be compiled using's versionsk; and higher. This “constraint” is
written in first order logic and appears asef (C) ==C,) — (ver (E) > Ey).
Global constraints may also be defined over entire configamsit For instance,
for our case studies in this dissertation, we require all gonents depending on
a C++ compiler version to use the identical C++ compiler versioany single
configuration.

We now formally define the ACDM:

Definition 1 AnAC' DM is a pair (C DG, Ann), whereC' DG is a directed acyclic

graph andAnn is a set of annotations.

Definition 2 A CDG (Component Dependency Graph) is a gai, £), where:
(1) N = CUR. C'is a set of labeled component nodes. Component node labels
are mapped 1-1 to componentg. is a set of relation nodes whose labels come

from the set{" «”

“+”}. Relation nodes are interpreted as applying a logical
function, AND or XOR, across their outgoing edges; £2is a set of dependency
edges, with each edge connecting two nodes. Valid edges asgraioerd such
that no two component nodes are connected by an ellge:{(u,v)|u € C,v €

R} U {(u,v)|lu € R,v € R} U{(u,v)lu € R,v € C}. Thatis, dependencies

between components are solely defined by relation nodes.

23

Furthermore, valid CDGs must obey the following propertigs:There is a
single distinguished component node with no incoming edgied top. Typi-
cally top represents the SUT. (ii) There is a single distinguishedpmrant node
with no outgoing edges, calldabttom. This component is not dependent on any
other component. (The bottom node may represent an opgrsystem, but that
is not required.) Dependencies between components may @lsndoded using
other formalisms such as feature-based [29, 30] or ruledobmodels [66F. (iii)

All other component nodes, € {C//{top,bottom}}, have exactly one incoming

edge and one outgoing edge.

Definition 3 The annotation setdnn used in an ACDM contains two parts: (i)
For each componente C, a set of component properties. One example property
is the range of elements (versions) over whighay be instantiated, which must
be specified for each component. (ii) A set of constrainte/éeh components
and over configurations. The constraints are specified int@sexpressions that
use boolean operators/(A, —, =) and relational operators<, >, ==, <, >);

component properties are used to evaluate the expressions.

To capture dependencies, graphical notations similareadPG are used for feature-based

models, and textual descriptions are used for rule-basetetso

24

4.2 Direct Dependency between Components

Except for the component encoded by the bottom node, eachawent in a CDG

depends on all components on any path from the node encddrapmponent to
the bottom node. However, the correct build of the compodepends on a set of
components that are directly used by the compoAddéfinition 5 defines a set

of components on which a componelitectly depends

Definition 4 In A CDG, a componentdirectly depends on a set of components,
DD, such that for every componef®?,D; € DD, there exists at least one path in
the CDG, not containing any other component node, from the eododing: to

the node encodin@ D;.

For example, the componeBtin the example from Figure 2.1 directly de-
pends on the componeR although it also uses functionalities provided by the
componentthrough the componelit.

From these direct dependencies defined between compoiatket com-

putesDD-instanceswhich are the concrete realizations of direct dependsncie

2Hence, in practice, for building a component, many compbibeild tools such as GNU
Autoconf/Automake [31, 69] and Ant [44] check only for theisggnce of other components on
which the component to build directly depends, and checlb&sic functionalities provided by

the components, by generating and testing a simple proguimgthe build process.

25

specifying component versions. BD-instanceis a tuple,(c,, d), wherec, is

a versionv of component:, andd is the set of component versions on which

directly depends. For each component in a model, Rachetu@®p set of DD-

instances. When multiple relation nodes lie on a path betwessmponent and

other components on which it directly depends, Rachet apptie following set

operations recursively for the relation nodes: Union forX@odes and Cartesian
product for AND nodes. For examplel\({B;,D; }) is one of 8 DD-instances for
the componend in the example from Figure 2.1.

Since the application context for the compatibility tegtin this dissertation
is restricted to checking error-free build of componéntssting a DD-instance
(c,, d) means checking whethey can be built without any build error with the
component versions containeddn If ¢, can be built without any error, we say
thatc, is build-compatiblewith d.

Note that, for testing a DD-instance (i.e., checking thédsaompatibility of
¢, With d), it is necessary to build in advance the component versiontained in
d. Hence, in addition to the DD-instance to be testemrdigurationmust contain

all DD-instances to build component versions containedlédependency part of

3In many Unix-based operating systems, building a compor@mimonly includes three steps

— configuring, compiling and deployirthe component.

26

any DD-instance in the configuration. In a CDG, a configuratmtest a DD-

instance of a component can be formally defined as follows:

Definition 5 In a CDG G = (N, E), a configuration to test a DD-instance of a
component represented by a component nodelV, is an annotated subgraph of
G,G = (N',E'), such that (1)» € N’, (2) for every component nodé € N’,

n' is annotated with a DD-instance far, (3) for a component nod€ € N’ and
another component nodé’, n” € N’ if and only if a version of the component
represented by is contained in the dependency part of the DD-instancenfor
(4) for an AND relation node’ € N, n’ € N’ if and only if all nodes connected
by n’’s outgoing edges are contained ivY, (5) foran XOR node’ € N,n’ € N’

if and only if at least one node connected/3s outgoing edge is contained in

N', (6) for every edge = (v, w) € E, e € E'ifand only ifv € N"andw € N'.

From this definition, for the example system from Figure 4. tpnfiguration
to test the DD-instanceA(,{B;,D, }) is the subgraph of the CDG that contains
component nodeA, B, D, E, F andG where each component node is annotated
with DD-instances:4,{B1,Di}), (Bi,{Es}), (D1,{F2}), (Es.{G'}), (F2,{G}) and
(G.,0), respectively. All relational nodes connecting the comgrt nodes must

also be contained in the subgraph.

27

To test each configuration, component versions encoded bynBiances for
component nodes in a subgraph have to be built, enforcindgpendency to build
each component version, starting from the component fobdttoam node of the
subgraph. Therefore, for the rest of this dissertation,rdigaration is considered
as an ordered list of DD-instances, where the list starts aiDD-instance of the
component with no dependency and other DD-instances aeremtdespecting

dependencies for building component versions encodedeéBrinstances.

4.3 Configurations with Exhaustive Coverage

The most straightforward way to identify the range of confedions in which the
SUT is build-compatible is to build the exhaustive set ofgdlole configurations.
To compute an exhaustive configuration set, we start fronbtittom nodef the
CDG, and for each node type, do the following:

e Component nodecompute new configuration set by extending each (partial)
configuration in the configuration set of its child node (atien node) with each
DD-instance of the component, only when adding the DD-ims#eto the config-
uration does not violate any constraints. For each DD-ieg&:,,, d) of the com-

ponent, we first identify configurations in the configuratset of the child node

28

where each configuration has all DD-instances for buildiogponent versions
contained ind. Then, extend each configuration with the DD-instanged), if
adding the DD-instance to the configuration does not vidateconstraints. For
the bottom nodesimply return the set of configurations where each contains
DD-instance of the component represented by the bottom, @sdbe component
has no dependency.
e AND node:compute the Cartesian product of configurations taken frooh ea
configuration set computed for the child nodes of the AND ntlen merge the
configurations in each combination in the product by crggtimew configuration
that contains all DD-instances from the configurations. Weree two rules im-
plicitly in merging configurations. First, only one versi@r each component is
allowed in a combined configuration. That is, we do not allanbining con-
figurations when each contains a DD-instance for the sam@aoemnt, but with
a different version. Second, we require that a combined gordtion contains a
single DD-instance for each component version.
¢ XOR nodethe result set is simply the union of the configuration seitsafhild
nodes.

Even for the simple CDG in Figure 2.1, the number of configoraiin the

exhaustive set for building componeftis 60. Since a CDG for a real applica-

29

tion can be very complex and contain many components, asrshmokigure 4.5,

the number of configurations for exhaustive coverage matge! Considering
the potentially long time required for building each comeleonfiguration, for
many CDGs it may be infeasible to test all possible configorgti This means
that we need a method that samples configurations intetligso that the results
from testing the sampled configurations are sufficient faedeining whether a
configuration realized in a user's machine can be used fddibgia system. Test-
ing randomly sampled configurations may not provide conepieformation for

making the decision.

4.4 Configurations with DD-Coverage

The default sampling strategy of Rachet is call2d-coverageand is based on
testing the DD-instances for components in a model. Thewvaudn for this
strategy is that the correct build of a component mostly ddpen a set of com-
ponents on which the component directly depends.

OnceDD-instancedor all components have been computed, Rachet computes
a set of configurations in which each DD-instance appearsaat lonce. This

is achieved by applying the algorithBD-Coverageshown in Figure 4.1 to all

30

Algorithm DD-Coverage (C DG G)
1: ConfigSet «— () Il configuration set
2. for each component nodec G in topological order from theéop nodedo
3. Letcthe component represented by the nade

4. Let DD, the set of DD-instances for the component
5. for each uncovereddi = (¢,,d) € DD, do

6: C' «— BUIldCFG ({ddi}, d)

7: if C'# () then

8: ConfigSet «— ConfigSet U {C};

9: setddi covered,;

10: end if

11: end for

12: end for

13: return Con figSet

Figure 4.1: DD-Coverage apply BuildCFG for generating eachibddance for
components in a CDG

DD-instances for components in a CDG. The algorithm taket eamponent
in a CDG in a topological order, starting from the top node drehtattempts to
generate a configuration that tests each DD-instance faaitmponent by running
the algorithmBuildCFG shown in Figure 4.2, and we say that the DD-instance is
coveredby the generated configuration.

The algorithmBuildCFG takes two parameters: (1) a list of DD-instances al-
ready selected for the configuration under constructiod(aha set of component
versions whose DD-instances must still be added to the mucanfiguration. To

generate a configuration for a given DD-instance (caldit, = (c¢,, d)), Rachet

31

callsBuildCFG with the first parameter set thli; and the second parameter con-
taining all the component versionsdn The algorithm then selects a DD-instance
for some component version in the second parameter (lin&lg.configuration
(the first parameter) is extended with that DD-instance, @rdponent versions
contained in the dependency part of the DD-instance areckiddihe second pa-
rameter, if DD-instances for those component versions atget in the config-
uration (line 5). Then, the algorithm checks whether therdéd configuration
violates any constraints. If the configuration does notat®lconstraintsBuild-
CFG is called recursively with the updated parameters (line lfIhere has been
a constraint violation, the algorithm backtracks to théeskeefore the DD-instance
was selected and tries another DD-instance, if one existe. algorithm returns
true if the configuration has been completed (i.e., the spanameter is empty)
or false if it runs out of DD-instances that can be selecte, W constraint vi-
olations. If all of those calls return success, the configomaunder construction
contains all DD-instances necessary for a configurationdbeersddi; (and all
other DD-instances selected for making the configurationmete).

The algorithms for generating configurations work greedisach configu-
ration it generates covers as many previously uncoveredr3i2nces as possi-

ble, with the goal of minimizing the total number of configuwas necessary to

32

Algorithm BuildCFG (C'fg,U)

1: /I C'fg: configuration under construction

2: I/ U: component versions whose DD-instances need to be picked
3: ¢, «— acomp. version frond/

4: for ddi' = (¢,,d') € DD, do

5. (Cfg,U") — (append('fg,ddi'), d UU — {c,})

6: /| DD, is the DD-instance set @f,

7. if C'fq¢' does not violate any constrairttsen

8

9

if U == () then
setddi’ coveredyeturn C'f¢'

10: else
11: Cfqg" «— BuilldCFG(Cfg',U")
12: if C'fg"” # () then
13: setddi’ coveredyeturn C'fg”
14: end if
15: end if
16: end if
17: end for

18: return () // there is no legal way to build, with the DD-instances i@’ f ¢

Figure 4.2: Algorithm to generate a configuration to coveriiDstance

33

cover all DD-instances for components. This is achievethénaigorithm, by (1)
selecting aruncovered DD-instance firsh the selection process (line 4 in the
BuildCFG algorithm), and by (2) applying the algorithm for the DD-issces

of components in topological order, starting from tio@ component in a CDG
(line 2 in theDD-Coveragealgorithm), since more DD-instances may be covered
from multiple DD-instance sets when applied to a DD-instéan€ components
close to thaop component in the CDG, compared to those farther ftom For

the example systenD-Coverageproduced 11 configurations that cover all 31

DD-instances for the components involved in the model.

4.5 Test Plan Synthesis

In order to test generated configurations, we take each ofahégurations and
topologically sort the DD-instances contained in the camftjon to produce an
ordered sequence of components. That isjtheomponent in this sequence does
not depend on any component with an index greater th@herefore it is legal to
build the configuration by first building the®* component in the sequence, then
building the2"? component, etc.

The configurations may be tested one at a time by building eaniponent

34

in each configuration on a machine according to the sequemiss. oHowever,
the total number of component versions that must be builtlm@ameduced by
utilizing the fact that multiple configurations may cont&ientical sequences of
DD-instances. For example, all configurations contain #mesfirst DD-instance,
that builds an operating system, if only one version of therapng system is used
in the model.

To reduce the number of components to build, Rachet then ic@skhe build
sequences for all configurations intgeefix treeby representing each common
build prefix (a build subsequence starting from the first congnt) exactly once.
Thus, each path from the root node to a leaf node corresporalsuild sequence,
but common build subsequences are explicitly represented.

The rationale behind combining configurations is that mamfigurations are
guite similar, so we can reduce test effort by sharing placbafigurations across
multiple configurations. The prefix tree then acts éessh plan showing all oppor-
tunities to share common build effort. Figure 4.3 depicts test plans, one from
the 60 configurations produced exhaustively (EX-plan) dwadather from the 11
configurations with DD-coverage (DD-plan) for the examplstesm. An example
configuration contained in both plans is shaded in the figliee DD-plan for

the example system contains 11 configurations, with 37 n¢ot@aponent ver-

35

CLp

2{GL

CLED

o e B

CED G G G2 G GiiD)

GT)

=T o =T
GLEW CLEDGIED (G e (B2 ()6 () C2 £ B e i (69
EED EGeD@eD @) G @eD Fo
G G2) GLFD ©LFD GLED @) 61ED
10251 4 (02 (02,82 (01511 (53 G &1 (0182 (1 (52.02) 4 0152

Figure 4.3: EX-plan (top) and DD-plan (bottom) for exampledal

ol

+

sions to be built), reduced from 56, the number of DD-ins¢é@snmontained in the

configurations generated by applying tBeildCFG algorithm.

4.6 Test Plan Execution Strategies

A test plan created by the process described in the previectos can be exe-
cuted in several ways. Test plan execution visits all nodesplan, and when a
plan node is visited, Rachet tests theld-compatibilityof the DD-instancéc,, d)

represented by the node. That is, Rachet buildwith the component versions

36

in d and records the result. However, to do that, Rachet firstweeduild all
component versions represented by the nodes in the pathtf®@moot node to the
parent of the plan node, and it can be time consuming if Ramhkts all the com-
ponent versions from scratch on an empty configuration, whenRachet visits
a plan node.

Therefore, Rachet usesvartual machine(VM) for a partial configuration
(i.e., a prefix of the test plan under execution). A benefibfriouilding compo-
nents inside a VM is that we can avoid contaminating the pensi state of a
physical test resource (machine). In addition, if the congrds in a prefix are
built successfully without any error, the modified machite&tes has the correct
state for the prefix and the VM may beusedo test DD-instances represented by
descendant nodes in a subtree rooted at the last node oflirg pince a VM can
be represented as a file and can be cloned by copying the VM. Wadast the
DD-instances, we need only to build additional componegtselising the VM
state.

In this section, we describe three plan execution strasegiel also describe
the mechanism for dynamically handling component builtlfas. Although not
required, for executing a test plan, we assume that a sieglescontrols the plan

execution and dispatches prefixes to multiple clients. \We aksume that each

37

client has disk space available to cache VMs (completedxa®ffor reuse.
Rachet'dinal output after the execution of a test plan are test resudlicating
whether each DD-instance was (Ested and built successfull{?) tested and
failed to build or was (3)untestable meaning that there was no way to produce
a configuration to test that DD-instance. For example, ss@ploat in testing the
system in Figure 2.1 all attempts to buld with E; throughE; fail. Then all

DD-instances that require a versionAfto be built overB, are untestable.

4.6.1 Parallel Depth-First Strategy

The parallel depth-first strategy is designed to maximiegduse of locally cached
prefixes at each client during the plan execution. When a testtcompletes
testing a prefix from the plan root to a nodeand subsequently requests a new
prefix, the test server assigns a prefix according to thevialig rules, attempting

to maximize the reuse of cached prefixes.

First, if the noden is a non-leaf node in the plan, the prefix for onencs
unassigned child nodes is chosen as the next prefix for taetciihe client will
then reuse the VM state from its previously tested prefix,rdg bas to build one
additional component (the one represented by the last nbtdeemew prefix).

This is typically the least expensive way to test a new pré@cause the cost to

38

test the prefix is only the time to boot up the VM and to build coenponent on
top of the VM.

Second, if the node is a leaf node, prefixes already stored in the cache space
of the client are utilized to assign a new prefix. Startingrfrime node for the most
recently cached prefix, the algorithm searches for an ugasdidescendant node
in the plan in depth-first order. Nodes whose DD-instanceiisenitly under test
by other clients, and their subtrees in the plan, are notidersd by the search.
In this case, the test client must build tiéferencebetween the assigned prefix
and the reused prefix.

Finally, if the algorithm cannot find an unassigned node gifiie first or sec-
ond rule, the plan is searched in depth-first order from tlo¢ n@de. As for the
second rule, the nodes currently being tested, and theliremg are not visited. In
this case, to reduce the time to test the assigned prefixgsheerver looks for the
best cached prefix for the assigned prefix (i.e. the one wahdhgest matching
prefix), so the VM corresponding to the cached prefix must &iestierred across
the network from the client that produced the cached prefincivcan take a sig-
nificant amount of time (a cached VM can be large, up to 1GB aerdepending
on the components built inside). The difference betweeratisggned prefix and

the cached prefix must then be built.

39

For the depth-first strategy, the decision to cache a prefikhhs just been
tested is based on the number of child nodes a node has inahe Iplthe node
has two or more children, the prefix may be reused to test getfia the child
nodes, so the test server requests the client to cache the. giowever, if the
node has only one child, the prefix for the child node will beigised to the same
client by the first rule, so there is no reason to cache thexprefi

Since the depth-first strategy tries to first utilize locatlched prefixes, the
number of locally reused prefixes is maximized and the nuroberefixes that
require VM transfers between clients is minimized. Howetle cost to build the
components in a prefix will be high if the difference betweeraasigned prefix
and a locally cached prefix is large. In addition, when a lang@ber of test clients
are available and the test plan does not have many nodeshegat of the plan,
many clients could be idle during the early stage of plan etien, waiting for

enough prefixes to become available.

4.6.2 Parallel Breadth-First Strategy

The parallel breadth-first strategy focuses on increadiegnumber of prefixes
being tested simultaneously, and secondarily tries to mae the reuse of locally

cached prefixes. To dispatch prefixes in breadth-first otderserver maintains a

40

priority queue of plan nodes ordered according to their d@pthe plan.

At the initialization step, the algorithm initializes thaqrity queue by travers-
ing the plan in breadth-first order, adding nodes to the queti€the number of
nodes exceeds the number of test clients. When a leaf node joheth is traversed,
it remains in the queue. On the other hand, when a non-leaf isadaversed, it is
removed from the queue and instead its child nodes are addéd gjueue. That
is, we increase the number of prefixes that can be tested ailgddry assigning
prefixes for the child nodes, instead of the prefix for the feaf-node.

When a prefix is requested by a client, the test server assignfirst unas-
signed prefix in the queue. Then, if a prefix is tested by trentkuccessfully, the
algorithm locates the node corresponding to the prefix imtieue, and appends
the child nodes to the queue. To reduce the time to test a ptieéixest server al-
ways finds the best cached prefix to initialize the state oMo test the prefix,
although the cost to transfer the VM across the network méyidpe

Unlike the depth-first strategy, for the breadth-first @ggt a completed prefix
is always cached if its corresponding node in the plan is aleahnode. The
rationale behind this choice is that in many cases the prefoxethe child nodes
will not be assigned to the same client. This strategy wi#kall clients busy

as long as there are unassigned nodes in the queue througaglan execution.

41

Therefore, we expect a high level of parallelism. Howeves, also expect less
local cache reuse and increased network cost compared tiee-first strategy,

because of transferring many cached prefixes across theretw

4.6.3 Hybrid Strategy

We have described costs and benefits of the depth-first aadlthrdirst strategy.
Although the depth-first strategy tries to maximize the lbvgaf reused prefixes,
during the early stage of plan execution it may not fully nmaizie the parallelism
that could be obtained by testing prefixes on all availablents. On the other
hand, the breadth-first strategy may achieve a high levebhddlfelism, but may
also increase the network cost to test prefixes.

The hybrid strategy is designed to balance both the locafitgused prefixes
and the parallelism throughout plan execution, by comigiiiie features of both
strategies. As in the breadth-first strategy, a prioritywgief plan nodes is created
by traversing the test plan, and is used to increase thel@éal during the early
execution stages of the plan. That is, for the initial retgdé®m test clients,
prefixes for nodes in the queue are assigneaitavailable clients immediately at
the beginning of plan execution.

To maximize locality for reused prefixes, the first and seconds for the

42

depth-first strategy are subsequently applied to assigixpsdo requesting clients.
If both rules fail to find an unassigned node, the test plaraigetsed in breadth-
first order from the root node to find an unassigned node. Ehizased on the
heuristic that a node closer to the root node will likely haviarger subtree be-
neath it than nodes deeper in the tree, which will lead to mank being made

available for a client reusing locally cached prefixes.

4.7 Dynamic Failure Handling

For a DD-instanced,, d), if test plan execution failed to build, on top of the
component versions id, c, is build-incompatiblewith the component versions
contained ind, and Rachet uses this failure information to guide furtHanpex-
ecution. Since the DD-instance is encoded by a node of a prefhe plan, the
build failure prevents testing of all DD-instances represd by the descendant
nodes of the node in a test plan. This is because we need a VMich ail DD-
instances of the ancestor nodes have been built to test thief@nces. However,
the failure does not imply failure faall the DD-instances affected by the failure.
Instead of simply regarding the DD-instancesuasestablewe dynamically ad-

just the test plan under execution for testing the DD-instanin alternate ways,

43

if possible. That is achieved by producing additional camfigions that cover
the DD-instances, and merging the new configurations intotéist plan. This
strategy attempts to maximize the number of DD-instancgededuring the plan
execution.

Since one DD-instance in the test plan can participate irtiphellconfigura-
tions, it can appear as multiple nodes in different brandiestest plan. If one
of the nodes encoding an identical DD-instance fails, wesekihe others to also
fail from Definition 5. Thus, the test plan nodes affected byudd failure are
not confined to the descendant nodes in the subtree of tesl fadde, but also
include all descendant nodes in the subtrees of the nodesliegcthe same DD-
instance. Therefore we must produce new configurationsweral! the affected
DD-instances.

To reduce the number of newly produced configurations weyabg!Build-
CFG algorithm in Section 4.4 for the affected DD-instances espnted by the
nodes under the subtrees in a post-order tree traversal.eAgewerate configura-
tions for covering DD-instances of components in the CDG potogical order,
we expect that a DD-instance represented by a node will beredwvhile gener-

ating configurations for the DD-instances representeddgiescendant nodes.

44

Global Coordinator Local Coordinator

/Tepa o] A 1)

[Configuration Generator] Task Manager
I { Task Manager }
[Test Plan Builder] s

[E) VM
k Coordinator

— E

VM Cache

Figure 4.4: Rachet Software Architecture

| B
LC handler

LC handler

Execution
Manager

LC handler

4
H
4

4.8 Rachet Architecture

We have developed an automated test infrastructure thabsigthe Rachet pro-
cess. The Rachet infrastructure is designed in a clien#sarchitecture, as il-
lustrated in Figure 4.4, utilizing hardware virtualizatitechnology. We call the
Rachet server th&lobal Coordinator (GC)and the client thé_ocal Coordina-

tor (LC).

Global Coordinator (GC)

The GC is the centralized test manager that directs oversllgrogress, inter-
acting with multiple clients. It first generates configuoas that satisfy the de-

sired coverage criteria (e.g., DD-coverage) and also presla test plan from the

45

configurations, using the algorithms described in Secti®n Fhen, the GC dy-
namically controls test plan execution by dispatching gesfiand the ancillary
information necessary to test the prefix to multiple clieatording to one of the
test plan execution strategies described in Section 4.6.

Specifically, the GC has testmanageand a set ofchandlers where each
Ichandleris dedicated to a client machine. Tlestmanageis responsible for
creating configurations and a test plan. During the testugi@t, thetestman-
ager satisfies requests from clients and updates test resultdatedase. When a
client first requests a prefix to test, the GC createkhandlerfor the client and
thatlchandleris responsible for all further communication with the clie&kach
Ichandlerenqueues requests from the LC intsleared request queudhen, the
testmanagehandles the requests in first-in-first-out (FIFO) order andueues
matched responses intshared response queughich enables eadbhandlerto

send responses to the LC with which it communicates.

Local Coordinator (LC)

The LC controls testing prefixes in a client. One LC runs orhdast machine
and interacts with the GC to receive information on prefix@sesst and also to

report execution results.

46

As described previously, testing a prefix in the current Raakesign and
implementation meansuilding the component versions represented by the DD-
instances contained in the prefix, taking into account thpeddency information
used for building the component versions. To do the builus [1C employs hard-
ware virtualization technology. The components are buthiw avirtual machine
(VM), which provides a virtualized hardware layer. This desgadvantageous
since the persistent state of the test machine is never edarsg a large num-
ber of prefixes can be executed on a limited number of physastlmachines.
The Rachet implementation currently uséslware Servems its virtualization
technology, since it handles virtual machines reliably atsdb provides a set of
well-defined APIs to control the VM. A key feature of VMwarer8er is that the
complete state of a VM is stored as files on the disk of the testine, so can be
saved and later reused (i.e. the VM can be stopped and camedhe original
VM and the copy can be restarted independently). We assueshedlch client has

disk space for storingcéching VMs.

47

Virtual Machine Coordinator (VMC)

The VMC is responsible for the actual component build preéesa VM. When
a VM is started by the LC, the VMC is automatically deployedhe ¥M and
started by the LC. The VMC then interacts with the LC to recaeenmands
for building component versions contained in the prefix gssd to the LC and
also to send command execution results back to the LC. Theiatisins to build
each component are translated into approprsgemcommands by the VMC

and executed in the VM for actual component builds.

Interactions among GC, LC and VMC

Three coordinators in the Rachet system interact with ettoér do execute a test

plan as follows:

1. Prepare testThe GC produces configurations and builds a test plan. Then,

it listens for LC requests.

2. Assign a prefixWhen a LC requests a new prefix, the GC looks for a prefix
from the plan based on a desired plan execution strategydepatches

the prefix with ancillary information. For example, the LCeals to know

48

which VM should be reused for testing the prefix.

. Provision a VM Each LC provisions a VM chosen to test the assigned pre-
fix. If alocally cached VM is to be reused, the cached VM is daepressed
into a directory. However, if a VM stored in a remote machisehosen,

the LC fetches the VM over the network and decompresses it.

. Deploy and Launch the VMOhe LC starts the provisioned VM, and de-
ploys and launches the VMC in the VM. The VMC automaticallyeects

to the LC and establishes a communication channel.

. Build componentsThe LC sends instructions to the VMC to build the com-
ponents contained in the prefix, and the VMC translates steuiations into
a series of commands (e.g., for Unix, commands for execyingrams

from ashell) and then executes them on the VM.

. Report Results and Cache VNlhe LC reports the test result to the GC.
The GC stores the result and uses it to guide further planutixerc If the
prefix is tested successfully and if the GC has requested@h® cache the
prefix, the LC requests a unique cache identifier from the GCragisters
the cached prefix with the GC. The VM is compressed into a fileshoikd

in the LC’s local cache space.

49

4.9 Evaluation

In this section, we present experimental and simulationlte®btained by per-
forming empirical studies with the two scientific middlewaystems described in
Chapter 1. In particular, we focus on examining the cost anetiteof testing only
configurations with DD-coverage compared to testing alsitela configurations,

and on investigating the performance behavior of plan exacstrategies.

4.9.1 Modeling the Subject Systems

To perform compatibility testing for the subject systems, fivst modeled com-
ponent dependencies, working directly with the InterComwetigpers and care-
fully inspecting documentation provided by the PETSc daepets. In Figure 4.5,
we show the component dependencies captured for InterCordnPBMSC in a
single CDG. The nodes specific to PETSc are shaded in the figersion anno-
tations and brief description on the components used in th& @i2 depicted in
Table 4.1.

In addition to component versions, the following constisiare specified as
part of the annotations and must be satisfied by each configuirarirst, if the

same vendor compilers (i.egcr, gxx, gf, gf77or pc, pxx, pf are used in a con-

50

Component| Version Identifiers Description

petsc 2.2.0 PETSc, the SUT

ic 15 InterComm, the SUT

python 2.3.6,25.1 Dynamic OOP language

blas 1.0 Basic linear algebra subprograms

lapack 2.0,3.1.1 A library for linear algebra operations

ap 0.7.9 High-level array management library

pvm 3.2.6,3.3.11,3.45 Parallel data communication component

lam 6.5.9,7.0.6,7.1.3 A library for MPI (Message Passing Interface) standard
mch 1.2.7 A library for MP1 (Message Passing Interface) standard
of 4.0.3,4.11 GNU Fortran 95 compiler

of77 3.3.6,3.4.6 GNU Fortran 77 compiler

pf 6.2 PGI Fortran compiler

gXX 3.3.6,3.4.6,4.0.3,4.1.1 GNU C++ compiler

pXX 6.2 PGI C++ compiler

mpfr 2.2.0 A C library for multiple-precision floating-point number contptions
gmp 421 A library for arbitrary precision arithmetic computation
pc 6.2 PGI C compiler

gcr 3.3.6,3.4.6,4.0.3,4.1.1 GNU C compiler

fc 4.0 Fedora Core Linux operating system

Table 4.1: Component Version Annotations for InterComm an@d &Rt

figuration, they must have the same version identifier. Seconly a single MPI
component (i.elamor mch can be used in a configuration. Third, only one C++
compiler, and only one of its versions (gxx version X or pxxsien Y) can be
used in a configuration. Fourth, if both a C and a C++ compilerwsed in a
configuration, they must be developed by the same vendar (&NJJ Project or
PGI). For PETSc, we applied one additional constraint: dtergpfrom thesame
vendor must be used to build the PETSc or MPI component. Witlse con-

straints, there are 302 and 160 DD-instances for the comrmgeentained in the

InterComm and PETSc models, respectively.

52

System Coverage # of cfgs | # of Comp,s | # of Compyan
InterComm | EX-Coverage 3552 39840 9919
InterComm| DD-Coverage 158 1642 677
PETSc EX-Coverage 1184 14336 3493
PETSc DD-Coverage 90 913 309

Table 4.2: Test Plan Statistics for InterComm and PETSc

4.9.2 Experiment Setup

For each subject system, we generated two test plans. Tabgurhmarizes the
number of produced configurations, and the number of comisremntained in
those configurations and in the test plan. The first test @alhed EX-plan, was
generated using the exhaustive coverage criteria, andttie test plan, called
DD-plan, only covers all DD-instances identified for the gmments in a model.
For example, the PETSc EX-plan has 1184 configurations agang a total of
14336 components to be built. However, the number of commutsria the final
test plan is only 3493, since configurations are merged tduyme the test plan.
We first conducted experiments to measure the costs and tsen&fDD-
coverage compared to EX-coverage, and also to see the beb&®Rachet as the
overall system scales. To do that, we executed both the BX-@hd DD-plans
with 4, 8, 16 and 32 client machines, using the parallel dépshplan execution

strategy. To compare the various test plan execution giegewe also executed

53

the DD-plans for both subject systems using the paralledirefirst and hybrid
strategies with the same numbers of client machines.

For actual experiments, we ran the GC on a machine with alteri2.4GHz
CPU and 512MB memory, running Red Hat Linux 2.4.21-53.EL,wedan LCs
on up to 32 machines, all with Pentium 4 2.8GHz Dual-CPU and bé&#ory,
running Red Hat Enterprise Linux version 2.6.9-11. All miaels were connected
via Fast Ethernet. One LC runs on each machine, and each lSbneVM at a
time for testing a prefix. The number of entries in the VM cafdreeach LC is set
to 8, because we observed little benefit from more cachessifor the InterComm
example in another experiment, and also because test @laRET Sc are smaller
than test plans for InterComm in this scenario.

In addition to these experiments on the real system, we raalations using
our event-based simulator that mimics the behavior of tiydRachet components,
described in Section 4.8, to better understand the perfocmaharacteristics of
the Rachet on larger sets of resources than we were able tmue real ex-
periment (both because of limited resource availabilitg #re time required for
performing experiments). For the simulations, we used ifi@ination obtained
from running actual experiments. Such information inclutlee test results for

DD-instances and average times required for building camepbversions.

54

4.9.3 Cost/Benefit Assessment of DD-Coverage

As shown in Table 4.2, the EX-plans for both systems havegelaumber of
configurations compared to the DD-plans. Since it takes up tours to build
a configuration for either InterComm or PETSc, it requireswld®600 and 470
CPU hours to execute the InterComm EX-plan or DD-plan, respegtand 3500
or 270 CPU hours for the corresponding PETSc plans.

With a naive plan execution strategy where each configurasi@always built
from scratch, with 8 machines it would still take 1325 or 43Rifs, respectively
for the EX-plans with perfect speedup, and 59 or 34 hourdfedD-plans. How-
ever, since our plan execution strategies reuse buildtedfoss configurations,
the plan execution times for both plans are expected to b&smaller than times
with the naive execution strategy. In our experiments, eten times were fur-
ther shortened due to many build failures during the plarcetien.

The cost savings obtained by executing the DD-plans arersioigure 4.6.
With 8 machines, the InterComm EX-plan took about 29 hours wie parallel
depth-first strategy, during which 461 component buildsenserccessful and 687
failed. All other builds could not be tested due to build daéls of other com-
ponents required for the builds. For the PETSc EX-plan, al8uhours were

needed, during which we observed 724 build successes antulldi7failures,

95

60

InterComm»E)‘(EXXX]
InterComm-DD
7 PETSc-EX rtzzz

. PETSc-DD

30 | 4

20

Actual Plan Execution Time (in hours)

10 -

0 N iZN\ AN
4 8 16
Number of Client Machines

Figure 4.6: Actual turnaround time for executing InterComnd #ETSc EX-
plans and DD-plans using depth-first strategy.

with the rest not able to be tested. Compared to the EX-pléres|nterComm
DD-plan took 12 hours with 275 successful component buiag] the PETSc
DD-plan took 10 hours with 216 successful builds.

In our experiments, the execution times for the EX-plangktonly 2.5 — 3
times more than those for the DD-plans, because many bulldtda occurred
during plan execution, especially for the components ctosthe bottom node
in the CDG. Note that the difference in execution times betwe EX-plans
and DD-plans decreases as more clients are used, since¢hetRgstem always
tries to best utilize the machines for plan execution ancefloee a larger plan can

benefit more when many clients are available.

56

The results show that Rachet was able to achieve large psafare benefits
by testing only configurations covering DD-instances, aisd avas able to exe-
cute the test plans efficiently using the depth-first executirategy. However, we
also need to know the potential loss of test effectiveness fising the DD-plan,
which only samples a subset of the configurations that ateddsy the EX-plan.
To do that, we identified the successes and failures for ali¥ances of com-
ponents in the InterComm and PETSc model by executing EXsplaspectively.
Then, we checked whether building a component version exttbgt each DD-
instance succeeds or fails in the DD-plan.

We found that each failed DD-instance from the InterComm Eatgxecu-
tion exactly maps to a corresponding DD-instance failurtheaDD-Plan. How-
ever, for the PETSc EX-plan, we observed 8 DD-instances avkiee PETSc
component build success or failure depended on the corepileed for build-
ing components on which the PETSc component depends (éngn Rachet tries
to build a version of the PETSc component with the GNU comgpiten a VM,
the MPICH component might have been previously built on thetmmee with the
GNU compilersor with the PGI compilers.) Unfortunately, all those instasice
were reported as successful builds during the DD-plan gi@tuWe observed

that this happened because there were missing constraitiis model. For these

57

instances, the missing constraint was that compilers fieersame vendor must
be used to build all the components on which the PETSc conmaliectly de-
pends. PETSc developers might have simply assumed thigramns However,
users do not always have complete information on the comspilsed to build
those components on their system, especially if the systemanaged by a sepa-
rate system administrator. Another observation for the ®&domponent is that it
was never able to be built successfully using the LAM/MPI poment. It seems
that some undocumented method is required to build PET$g tisat MPI im-
plementation.

For InterComm, due to many build failures of the componenthémodel
(mainly, because of not being able to build older versiortheVM component),
we were therefore only able to test build compatibility fobD-instances out of
the 156 total DD-instances for the InterComm component. Hewedhey were
not the ones on which InterComm had been tested previously.rds$ults show
that InterComm can be successfully built with the combinstiof PGl C/C++
compiler version 6.2, all versions of the GNU Fortran77 orlGRortran90 com-
pilers specified in the model, and MPICH version 1.2.7. Thia larger set of

components than what the InterComm developers had preyitestied, as doc-

58

umented on the InterComm distribution web pagéhe DD-instance with GNU
C/C++ compiler version 3.3.6 and with the PGI Fortran compitasion 6.2 failed
to build. The failure occurred because the InterCooamfigureprocess reported a
problem in linking to Fortran libraries from C code. Thisudss interesting since
the InterComm developers were able to build successfully ®NU C/C++ ver-
sion 3.2.3 and PGl Fortran version 6.0. InterComm developeestigated the
reason for the failure, and it turned out that the failure @as to a missing envi-
ronment variable required for thenfigurestep. This was not documented in the
InterComm manual, and InterComm developers updated the rhacc@rdingly

to notify users that the environment variabldDFLAGS) must be set correctly if

a PGI Fortran compiler is used for the InterComm build.

4.9.4 Comparing Plan Execution Strategies

As seen in Figure 4.6, Rachet scales very well as the numberachines used
for running Rachet clients increases from 4 to 32. When we ldotlie nhumber
of available machines, the execution time decreases bysalnadf, up to 16 ma-
chines. This means that Rachet can fully utilize additiseaburces to maximize

the number of prefixes tested in parallel. However, Figuéeohly shows results

*http://www.cs.umd.edu/projects/hpsl/chaos/Reseaszsyic

59

45

40

35

30

25

20

15

10

Test Plan Execution Time (in hours)

45

40

35

30

25

20

15

10

Test Plan Execution Time (in hours)

Dépth-first m
Breadth-first
Hybrid -

16
-------------------- Actual times

32

64

128
Simulated times ---------

Number of Client Machines (for InterComm)

Dépth—first R
Breadth-first
Hybrid -

-------------------- Actual times

32

64

128
Simulated times ---------

Number of Client Machines (for PETSc)

Figure 4.7: Turnaround times for executing the InterComm R&Bd Sc DD-plan
with different plan execution strategies.

60

obtained by executing the DD and EX plans for the subjecesystusing the par-
allel depth-first strategy. To analyze the performance iehaf the different plan
execution strategies, we also executed the DD-plans fer@omm and PETSc
using the other strategies.

Figure 4.7 shows the combined results from both actual andlated test plan
executions with different strategies. For both systemstameactual experiments
with 4, 8, 16 and 32 clients. For larger numbers of clients,ram simulations
to compute expected plan execution times. The data usedhdositnulations,
including the component build successes/failures, thegifor managing VMs
(e.g., VM start-up time) and the times for building compadisewere all obtained
from real experiments. The simulated execution times weneaverage, about
18% less than the real execution times for up to 32 clients.

We found that the breadth-first strategy performed worstniaist runs. As
described before, with the breadth-first strategy, Raaies to utilize as many
machines as possible throughout the plan execution, anayalveuses the best
cached VM for testing each prefix. However, the time to trantie VMs across
the network was a performance bottleneck, even though ikatslwere con-
nected via Fast Ethernet. Breadth-first performed espgqalorly with 4 ma-

chines compared to the other strategies, because in matanoes the cached

61

prefix that requires the minimum additional component ®iita testing a newly
dispatched prefix had already been replaced in the VM cadioediéwas needed,
and as a result all components contained in the prefix had teHnslt> For
our experiments and simulations, we used a Least-Recbstyt (LRU) cache
replacement policy to manage the VM cache on each machineal8eexperi-
mented with a First-In-First-Out (FIFO) cache replacenpaticy, but did not see
a significant performance difference compared to LRU.

Many build failures that occurred during the plan execudiane responsible
for the similar performance between the hybrid and dep#t-gtrategy in Fig-
ure 4.7. With a small number of clients, the depth-first sggtcan maximize the
number of prefixes that are tested in paradlebrtly after starting the plan execu-
tion. However, with many clients, build failures negate btemefits of the hybrid
strategy that are achieved by maximizing the number of peefdispatched early
in the plan execution.

We also observe that little benefit is achieved with more tBammachines
for all strategies, because many machines remained idkngdor prefixes to be

dispatched, after all available prefixes are dispatchedheranachines. More-

5The percentage of VM reuse to execute the InterComm and PEDSRlans was on average

53% for the breadth-first and 80% for the depth-first and hi/btiategies.

62

over, the execution times may even increase slightly withrgd number of ma-
chines, because the local cache hit rate drops when prefieepeead across the
machines, and also because additional time is needed &fdrazached prefixes
across the network, negating the benefit of greater pataponent builds. De-
spite these overheads, we expect that the hybrid strateljyactiieve the best
performance as we increase the number of machines, if aleeshps fewer fail-
ures.

Therefore, for our final experiment, we evaluated how Rableéiaves as the
number of successful component builds grows. As previonstgd, many DD-
instances were classified as untestable in the actual expets, because at least
one component in the dependency part of the DD-instancdd notibe built suc-
cessfully in all possible ways. If developers were to fix sahéhese problems,
many more DD-instances would be testable, greatly inangatsie effective size
of the test plan.

We ran simulations for this scenario and measured the begfaésting only
DD-instances, under the assumption that no build failuesiowed during plan
execution. Figure 4.8 shows expected plan execution timethé subject sys-
tems. Both the EX-plan and the DD-plan are executed with theith strategy,

and we also applied the other strategies for the DD-plan. bW¢ewve that the hy-

63

1024 v T T T T o i !
EX-plan with hybrid ==~

w DD-plan with depth-first wzszz
=] 512 4 DD-plan with breadth-first -
2 DD-plan with hybrid ©zzzzzzz2
E 6 7
) \
=
= 128 - i
5 \ \
ERY S N 7
o \ \
% . \
w 32 11BN
5 \
o \ - 7

16 |80 \
ke \ \
Q \ N -
© N N
= 8r \ N
& \ \
i 4t \ \ -

\ \
2 N N \ \ \ \ \
4 8 16 32 64 128 256
Number of Client Machines (for InterComm)
1024 1 1 T 1

IEX—pIan wit'h hybrid s

@ DD-plan with depth-first zzzzss
3 512 DD-plan with breadth-first —
2 DD-plan with hybrid 777777772
E 256
(] 71
=
= 128
c .
2
5 64 [\
o \ o
Q \
b \
L 32 |
5 \]
° \
Q \\;\\ \
© N
= 8
£ \
(9] 4 b \
\ \ S
2 \ \ \ N

4 8 16 32 64 128
Number of Client Machines (for PETSc)

Figure 4.8: Simulated time to execute InterComm and PETS@EBX-with hy-
brid execution strategy, and DD-plan with all strategiesuming no build failure.

64

brid strategy balances well both the prefix reuse locality parallel component
builds across all numbers of clients. The hybrid strategyoispetitive with the
depth-first strategy for small numbers of clients, becatug#es to maximize the
reuse of locally cached prefixes. And the hybrid strategy atshieves good per-
formance for a large number of clients, since the extra dostsaching prefixes
and reusing VMs during the early stage of test plan execwreravoided, com-
pared to the depth-first strategy. Although the breadth-$irategy shows good
performance with 32 or more machines, such performancesreln the availabil-
ity of a fast network connectingll client machines and small plan sizes. In other
simulations that execute a larger test plan with 52618 ptades, by employing
64 clients, each with 8 cache entries, we observed that #edthn-first strategy
took much longer than the hybrid strategy and also involveshynmore cache
replacement8. The simulation results show that the breadth-first strategk
much longer than the hybrid strategy and also involved aelamgmber of cache
replacements.

With 256 machines, the time required to execute the InterC@nPETSc
DD-plans must be close to the optimal execution time, sidlceoafigurations

involved in each plan are dispatched to available machihes@ and tested in

6The test plan was for the monolithic InterComm model in Chapt

65

parallel. For this case, the overall plan execution timehes time required for

building the configuration that takes the longest.

4.10 Summary

In this chapter, | have presented an effective and scalabtbad for performing
compatibility testing of component-based systems.

First of all, to encode the entire set of configurations wheereomponent-
based system can be deployed, | developed a formal gragubegresentation
annotated with component versions and constraints beteemponents and/or
over configurations. Because there are large number of agatigns for a system
and also because available resources are limited, it iagitiee in many cases to
test all feasible configurations.

To address this problem | focused on the observation thagubeessful build
of a component mostly depends on other components thatractlgdiused by the
component to build. Based on the observation, | defined atEsjuacy criterion
calledDD-coveragewhich tests all version relationshipgdD-instanceybetween
a component and other components on which the compaimectly dependsand

| also developed an algorithm for generating a set of condiioms that satisfy

66

the coverage. The results from empirical studies on twoelagftware systems
demonstrated that compatibilities between componentdeadentified rapidly
and effectively by testing configurations with DD-coverage

Since there are many configurations that share common psefixeveloped
a method to further reduce efforts required for testing gpmtions. | first com-
bined all configurations into a single prefix tree calledeat planand reused
common efforts required for testing prefixes shared acrosfigurations. This
is accomplished by utilizing hardware virtualization taology. | used virtual
machines (VMs) for building components and saving partmadfigurations into
files. This approach was advantageous because | could amuidinating states
of test resources and also because VM states could be stumediles on test
resources for further reuse and could be transferred betvest resources.

To execute a test plan efficiently utilizing multiple tessoarces, | developed
three plan execution strategigsafallel depth-first, parallel breadth-first and hy-
brid) where each strategy is designed for increasing the reupartél configu-
rations locally stored on each test machine and/or for @estng the number of
idle machines throughout the plan execution. For all sffiate | employed a con-
tingency planning mechanism for improving the test coveragmpared to static

approaches when an attempt to build a component fails. yaedlthe tradeoffs

67

between plan execution strategies when different numbensachines are em-
ployed, by running both actual experiments and simulatidie results suggest
that the hybrid strategy can achieve the best performanagthining both high
locality to optimize prefix reuse and high parallelism, fathp small and large

numbers of client machines.

68

Chapter 5

Embracing Component Evolution

The previous chapter describes an approach for testing atisies between
components for a system that involvesieed set of components and their ver-
sions. In the approach, | developed methods that sampleesh@ treduced set
of configurations that test all DD-instances of the comptsmena model. While
effective, that approach is impractical for testing evolyisystems, because no
matter how much or how little a system changes, that appra@tfenerate con-
figurations that satisfy the DD-coverage for a modified syséad will retest all
the generated configurations. This is unnecessary becaarsg ahthe generated
configurations are to test DD-instances whose results werady known from
previous testing sessions. Clearly, such unnecessary wwotka be avoided.

To remedy this limitation, | have improved the approach ia pinevious sec-

69

tion to supportincremental build testing As part of the approach, | present in
this chapter (1) a new adequacy criterion fimcremental build testing(2) an al-
gorithm for computing incremental testing obligationsyegi the test adequacy
criterion and the changes to the system configuration sgaren algorithm for
selecting small sets of configurations that efficiently futhe incremental test-
ing obligations, and finally (4) optimization techniqueattiise artifacts and test
results from previous test sessions to improve the configuraelection and test

process.

5.1 Test Adequacy Criterion

To support incremental build testing | have extended theagmh in the previous
chapter to (1) identify a set of DD-instances that need toelséet given a set
of changes to a system, and (2) compute a set of configuratangest those
DD-instances.

Consider the running example from Figure 2.1. Suppose thagithe last
testing sessioB, could not be built over any version of componé&ntAs a re-
sult, all DD-instances in which componeAtmust be built oveB, have been

untestable Now suppose that new versions of compon&#mdD become avail-

70

able, and that the latest version Bf E;, has been modified. In this case, the
configuration model changes in the following ways. Firsg tlew versions oB
andD are added to the configuration model as versi®nandDs;. Next, the modi-
fied component is handled by removing the old versignand then adding a new
version,E,. For this example, the previous approach would producetgtas
with 56 component versions to build (Figure 5.2(a)). Thigrger than necessary.
Some DD-instances involving new or previously untested maments (and their
versions) need to be tested, but other unchanged DD-iretad@not.

The types of changes that are relevant to build testing dechdding or delet-
ing components, component versions, dependencies oramtst To deal with
all such changes in a uniform way, | compute the set of DDaimsts for both
the old and new configuration models and then use a set ditfarg operation
to compute the DD-instances to be tested. Assuming thatichdil component
names and version identifiers always refer to the same undgrsoftware com-
ponents, the relationship between the DD-instances fostwoessive models for
a system is easily described using a Venn diagram. Figurshoivs the set of
DD-instances for two consecutive buildsild;_, andbuild;. DD",' andDD?,,
represent the sets of all DD-instances in the respectiddshub D! represents

new

the DD-instances i D¢, but not inDD",'. DD . is the subset DD’

71

Figure 5.1: The DD-instances for two consecutive builds/d; ; and build;.
The DD-instances represented by the shaded areas needetstdud ithuild;.

whose build status (success or failure) was determinedsitntgbuild; , and
DD: L e IS the subset oD D' whose build status is unknown — each of those
DD-instances could not be tested because at least one obtimgonent versions
in the dependency part of the DD-instance could not be budllipossible ways.

Using this set view, the DD-instances that must be testeblfidd; are shown

as the shaded area in the figure, and are computed as follows:
DDiest - DD(izll - DD;;?}ied

Previously untestable DD-instances are included in theeatitesting obliga-
tions, as newly introduced component versions might pewiew ways to build
a given component, thus enabling previously untestablgyooents to be tested.
As just described, the sé&tD:,_, contains all DD-instances that must be tested
for build;. The next step applies tlBuIldCFG algorithm as many times as neces-
sary to generate a set of configurations that cover all theiidEances inD D!

test"

72

©D)
(E2)) (E4)

SECE® F E) 2 (F2 [FD) 3)
B) 6 &) Y D &) G (B2 (3 &) €D &I
©® ®@ 02 0 @Y @) 0D @Y 03 ©F Y ©3) () @3 @3
@) @D @) @D @) @D @) @D @) GD @Y @A) (Y () @Y

(a) Atestplan

that retests all DD-instances

(b) Anincremental test plan

Figure 5.2: Test plans: Retest-All (56 components) vs. dmantal (35 compo-
nents). The shaded nodes can also be reused from the préesbgession.

The algorithm is applied to generate configurati@my for DD-instances that
have not yet been covered by any generated configuratioralaadpplied start-
ing from DD-instances that build components closest to dipertode in a CDG.
When finished the configurations are merged into a test plartterdexecuted.

An outline of this process is as follows:

1. ComputeDD;,.,.
2. Select the DD-instance fro D;,_, that is closest to the top node of the

CDG (if more than one, select one at random).

73

2.1 Generate a configuration that covers the selected Diarios, by ap-
plying BuildCFG.
2.2 Remove all DD-instances contained in the generated groation

from DD;,.,
2.3 If DDi,,, is not empty, go to step 2.

3. Merge all generated configurations into a test plan.

4. Execute the test plan.

On the running example, this new algorithm produces 9 cordigans, reduc-
ing the test plan size from 56 (Figure 5.2(a)) to 35 companérigure 5.2(b)).
As the test plan executes, Rachet cagbagially-built configurations(prefixes
in the test plan) on the client machines when a prefix can beerkiater in the
test process, to speed up testing longer prefixes that dmaefix. As a result,
for the running example, the total number of components tll lisionly 30, be-
cause the 5 components depicted by shaded nodes in Figipg ba¥e already
been built in the previous test session and those partidigroations were cached
(assuming that those partial configurations were not deletéhe end of testing).

In the following sections, | will explore performance betgfihat can be
achieved by better using the partial configurations thaehsen cached on the
client machines.

74

5.2 Cache-Aware Configuration Generation

The approach in Chapter 4 assumed that the cache space ofleathmachine

is empty at the beginning of each test session. For increxhtggting, however,
previous efforts can and should be reused. On the other hastgreserving the
cache between test sessions may not actually result in eddeftort unless the
prefixes in the cache are shared by at least one configuragimerated for the new
test session. This section describes a method that usemation about cached
prefixes from previous test sessions in the process of gemg@nfigurations, to
attempt to increase the number of configurations that steariesed prefixes. More
specifically, step 2.1 in the configuration generation atgor from Section 5.1 is

modified as follows:

2.1.1 Pick thebestprefix in the cache for generating a configuration that covers
the DD-instance.

2.1.2 Generate a configuration by applyiBgildCFG, using the prefix as an
extension point.

2.1.3 Repeat from step 2.1.1 with the next best prefix, if nufigaration can be

generated by extending the best prefix.

75

To generate a configuration that covers a DD-instance, m 2te.1, the al-
gorithm first picks thebestprefix, which is the one that requires the minimum
number of additional DD-instances to turn the prefix into ladanfiguration that
tests the DD-instance. Then in the 2.1.2, BweldCFG algorithm is used to ex-
tend the prefix by adding DD-instances. It is possible B@ildCFG fails to
generate a configuration by extending the best prefix, duerstraint violations.
In that case, the algorithm repeats from step 2.1.1 with éx¢Ipest cached prefix,
until one is found that does not have any constraint viotegio

However, the best cached prefix can be found aftgr applying theBuild-
CFG algorithm to every prefix in the cache. This process can bg eestly, be-
cause the algorithm must check for constraint violationemdver a DD-instance
is added to the configuration under construction. Thereforerder to pick a
prefix that will be extended into a full configuration for tegt a DD-instance,
we instead employ a heuristic. We first compute a sub-grapgheo€DG for the
system under test, starting at the node that representthpanent for which
the DD-instance is computed. Then, the best prefix is the lo@iecbntains the
maximum number of DD-instances that are needed to build dneponents in
the sub-graph. The rationale behind this heuristic is tbaef DD-instances may

be needed, when we construct a configuration by extendinglaedaprefix that

76

Figure 5.3: Test plan produced from configurations seleated cache-aware
manner. 34 component versions must be built. (Shaded nodesehed, from
the previous test session.)

already contains components required to test the DD-iostaRrefixes that con-
tain DD-instances for components outside the sub-grapmatreonsidered for
the extension.

As previously discussed, running tBeildCFG algorithm with a prefix in the
cache as an extension point may fail to generate a configaratnd it would im-
prove performance if there is an efficient method to deteemvhether a configu-
ration that covers a DD-instance can be generated by extgradgiven cached
prefix, especially if a large number of cached prefixes islalé@. Although
that decision cannot be made until the algoritBuldCFG is applied, it is at
least possible to check whether any constraint is violateenithe DD-instance is
added to the prefix. This is efficiently achieved by maintagnan auxiliary data

structure called @ache planwhich is a prefix tree that combines prefixes in the

1

cache. (In Figure 5.3, the sub-tree reaching the shadedn®tiee cache plan for
the example system, after the first test session complétesg DD-instance that
is to be tested, the cache plan is traversed in depth-firgroctiecking whether
constraints are violated when the DD-instance is addede@ath from the root
node to a node in the cache plan. If there is a violation, &fixes reaching any
node in the subtree starting at the node are filtered out.

Figure 5.3 shows a test plan created by merging the confignsagenerated
by applying the cache-aware algorithm to the example sysfidm test plan has
34 nodes, 1 fewer than the test plan that does not consideedarefixes (Fig-
ure 5.2(b)). The number of components that actually needetbuilt is 30 in
both cases because prefixes in the cache can be reused. Meteeshdhe average
build sequence length decreases in the cache-aware plaotgythan 1 compo-
nent, because almost half the configurations are extendeddached prefixes.
This factor significantly decreases the turnaround timelade¢o complete the test

plan.

We average the number of components that must be built addlty when we reuse the best

cached prefix for testing each configuration.

78

5.3 Managing Cached Configurations

If it were possible to cache all prefixes built during testrpéxecution for later
use, the overall time required for executing each test planlevdecrease, since
the best prefix in the cache can always be reused. Howeveraatige, cache
space is a limited resource, so when the cache is full a prslyiacached prefix
must be discarded to add a new one. The approach in the psesi@pter em-
ploys the commonly useldeast-Recently-Usgd RU) cache replacement policy.
However, during the execution of a test plan, Rachet canedgh prefix in the
cache, compute how many times the prefix can be reused famgestditional
DD-instances. This information can then be used to selecwittim prefix to
be replaced in the cache. For example, if all the plan nodéseisubtree rooted
at the last node of a prefix have already been tested, the mafixbe deleted
from the cache even though it has been recently used, withorgasing overall
test plan execution time. However, this strategy does riket itato account reuse
across multiple test sessions.

In order to keep prefixes with more reuse potential longenédache through-
out multiple test sessions, | have designed a heuristi@dsgsses the reuse poten-
tial of prefixes in the cache. The reuse potential consis{4)ahe expected time

that can be saved by reusing the prefix for executing the r@ngportion of the

79

current test plan, and (2) the average change frequencyngpaoents contained
in the prefix across previous test sessions. When a prefix ioatiee needs to be
replaced, the reuse potential has to be first computed fdr gatix in the cache.

The expected time savings measures how useful a prefix casr kgdcuting
the current test plan. To compute the expected time savimgedch prefix in
the cache, we first identify, for each test plan node, the @dghefix that enables
saving the most time to test the node by reusing that cacheftkprThen, we
multiply the number of nodes that benefit the most from regisire prefix by
the time required for building the prefix from an empty confafion. For our
running example, in Figure 5.3, prefixe&,, E;> (call thatp,) and<G,, E;, Fy>
(call thatp,) are cached during the first test session. When the test pltrein
figure is executed in the next test session, the time savixgsceed from prefix
p1 is 0, since prefixp, is the best prefix for testing all plan nodes in the subtree
starting fromp,. Therefore, if a prefix in the cache has to be delefgd¢an
be removed without increasing plan execution time, sinceoeeruseful one is
available in the cache.

We also estimate how likely a prefix cached during the exeoudf a test plan
is to be helpful for executing test plans in subsequent esstisns, by considering

change frequencies of components in the prefix. Componesioveannotations

80

in the CDG can include both officially released versions of mponent and also
the latest states of development branches for a componamt dr source code
repository, because developers often want to ensure theatdoity of a com-
ponent with the most recent versions of other componentsndadel an updated
system build, a developer must specify modified componersises in version
annotations, including patches for released versions de @hanges for devel-
opment branches. We regard such changes as version reglaiseim the CDG
annotations, but also keep track of the test sessions irtvthé&cchanges occurred.

The change frequency of a cached prefix is computed by cautitexnumber
of preceding test sessions in which a component version hasged. We do
the counting for each component version contained in th&xpasad compute
the average across the components for computing the freguen the whole
prefix. Therefore, if a prefix in the cache contains only conmgat versions that
have not changed at all, the change frequency is 0, which srteahcomponents
involved in the prefix are not likely to change in the futurethat it may be
worthwhile to keep the prefix in the cache. On the other hdralprefix contains
only component versions that have changed often acrossdssions, it is more
likely that the prefix is not reusable in later test sessions.

When a cache replacement is necessary, the victim is the phefixhas the

81

least time savings. The highest change frequency is usediaseaker. That
is, we first focus on completing the test plan under executiane quickly and
secondarily try to keep prefixes that may be useful for last $essions.

The scheduling strategy for test plan execution cannot Insidered sepa-
rately from the cache replacement policy. For Hybrid scheduling strategy de-
scribed in Chapter 4, when a client requests a new prefix to ttestscheduler
searches the test plan in breadth-first order starting flemraot node, or, if that
client has cached prefixes available for the test plan, inldBgst order from the
last node of the most recently used cached prefix.

For the new cache replacement policy, the prefix with thet lease potential,
call it py, is replaced when the cache is full. If the test plan is sestctarting
from the most recently used cached prefixcould be replaced before it is reused.
If such a replacement happens, we must pay the cost touitdm scratch later
when we neeg, for testing plan nodes beneath the subtree rooted.atlence,
we search the test plan giving higher priority to prefixedmiaw reuse potential,
because such prefixes are more likely to be reused for testiyga small part
of the test plan. By testing those parts of the plan earliersé prefixes can be

replaced after they are no longer needed.

82

5.4 Evaluation

Having developed a foundation for incremental build tegsbhevolving compon-
ent-based systems, this section describes evaluatiolisrestiained by applying
the presented approach on the subject systems describedteCh.

For this study, | tested InterComm, PETSc and other compsmeqtired for
building InterComm and PETSc; for each | used the changerkgistier a 5 year
period. To limit the scope of the study, this 5 year periodveded into 20 epochs,
each lasting approximately 3 months. | took a snapshot oétitiee system at the
end of each epoch, producing a sequence of 20 snapshotg. rentlainder of the
dissertation, these snapshots are referrdaiitlllsand the sequence of models for
the builds are used as the model for testing the evolving@Qaem and PETSc

systems.

5.4.1 Modeling the Subject Systems

We first modeled the configuration space of InterComm and PETSgs in-
volved creating the CDGs, and specifying version annotati@md constraints.
Two types of version identifiers are considered — one is feniiying versions

officially released by component developers, and the othéarithe change his-

83

tory of branches (or tags) in source code repositories. @tiyzehe modeling is
done manually based on careful inspection of the documbatsdescribe build
sequences, dependencies and constraints for each componen

Figure 5.4 depicts the dependencies between componerdaddyuild of In-
terComm and PETSc. Table 4.1 provides brief descriptionsaohe&omponent.
The CDGs for other builds were different. For instance, GNUutiao (f) ver-
sion4. 0 did not yet exist when the first version of InterComint{ was released.
Therefore, the CDG that captures the configuration spacenferComm for that
build does not contain the Fortran component and all itstedlalependencies

(black nodes in the figure).

84

Figure 5.4: A Combined CDG for InterComm and PETSc. (Grey nodesge-
cific for PETSc. Black nodes are dependencies requiredffarersion4. 0. 0 or
later)

85

98

Table 5.1: History of version releases and code change®faponents in the InterComm and PETSc builds

Development Branches Version Release
ic gcr of77 of gmp | mpfr || ic | ger | gf77| of gmp mpfr| lam | pvm | petsc| lapack| python
Build| Date gXX gXX
0 | 08/25/04 3.4d1 3.4d1 1.113.4.0/3.4.0 6.5.9| 3.2.6(2.2.0, 3.0 2.3.4
3.4.1(34.1 7.0.6/3.3.11
1 [11/25/04{ 1.1d1 3.4d2 3.4d2 3.4.2(3.4.2 3.4.5
3.4.3/3.4.3
2 | 02/25/05 3.4d3 3.4d3 2.3.5,24
3 | 05/25/05 3.4d4, 4.0d1 3.4d4 4.0d1 3.4.4/3.4.4/4.0.0/4.1.04.1.12.1.0 2.2.1 2.4.1
4.0.0 4.1.2,4.132.1.1
4.1.4
4 | 08/25/05 3.4d5, 4.0d2 3.4d5 4.0d2 4.0.1 4.0.1 2.1.2
5 |11/25/05)| 1.1d2| 3.4d6, 4.0d3 3.4d6 4.0d3 4.0.2 4.0.2 2.2.0 2.4.2
6 | 02/25/06 3.4d7, 4.0d4 3.4d7 4.0d4 3.45|3.45 2.3.0
7 | 05/25/06|| 1.1d3 3.4d8 3.4d8| 4.0d5, 4.1d1 1.5/3.4.6/3.4.6/4.0.3/4.2.0,4.2.1
4.0d5, 4.1d1 4.0.3 4.1.0
4.1.0 411
4.1.1
8 |08/25/06|| 1.5d1| 4.0d6, 4.1d2 4.0d6, 4.1d2
9 |11/25/06 4.0d7, 4.1d3 4.0d7, 4.1d3 231 2.3.6,25
10 |02/25/07|| 1.5d2| 4.0d8, 4.1d4 4.0d8, 4.1d4 2.2d1 4.0.4 4.0.4 221/7.1.3
11 |05/25/07|| 1.5d3 4.1d5 4.1d5 2.2d2 4.1.2 4.1.2 23.2| 3.11 2.4.3,25.1
12 |08/25/07|| 1.5d4 4.1d6 4.1d6
13 | 11/25/07|| 1.5d5 4.1d7 4.1d7 2.3d1 4.2.2 2.3.0 2.4.4
14 | 02/25/08| 4.1d8 4.1d8 2.3d2 2.3.1 2.5.2
15 | 05/25/08| 4.1d9 4.1d9 2.3.7,2.45
16 |08/25/08 4.1d10 4.1d10 2.3d3 4.2.3
17 |11/25/08 2.3d4 4.2.4 2.3.2 2.3.3
18 |02/25/09 4.1d11 4.1d11 2.3d5 2.4.6,2.5.3,2.5.4
19 | 05/25/09 4.3d1 4.3.0,4.3.1

Table 5.1 shows the history of releases and source code ebémgthe com-
ponents in each build. Each row corresponds to a specifid datle (a snapshot),
and each column corresponds to a component. For each boiftesin the last
11 columns of the table indicate official version releasesamfiponents. For ex-
ample, InterCommi(c) versionl. 5 was released between 02/25/2006i(ds)
and 05/25/2006Hild;).> We use a version released at a given build date to
model that build and also for modeling all subsequent builEstries in the 6
columns labele®evelopment Branchescontain version identifiers for develop-
ment branches. We assign a unique version identifier forttite of a branch at
a given build date by affixing to the branch name an integerdtats at 1 and
is incremented when the branch state at a build date has etddram its state
in the previous build. For examplel. 1d2 in the third column ofbuilds indi-
cates that there were file changes in the InterComm develdpbnanchl. 1d
between 08/25/2009ild,) and 11/25/2005Huilds). Compared to a released
version whose state is fixed at its release date, the statd@reh can change

frequently and developers typically only care about theenirstate for testing.

2The actual release date was 05/05/2006.

3Branches are not used for modeling builds unless there rers ditdeast one official version

released from the branch.

87

Therefore, for a branch used to model a build, we consider thrd latest version
identifier of the branch, so include the latest version idiemtin the model and
remove the previous version identifier for the branch.

Using this information, we define a build to contain all reded component
version identifiers available on or prior to the build dataddhe latest version
identifiers for branches available on that date. Note thatera.1 does not in-
clude versions for several componerfts: version4. 0, ap version0. 7. 9, nth
versionl. 2. 7, and the PGI compilerpkx, pc, pf)version6. 2. Forthese
components, we could access only one versiarh(ap and PGl compilers) or
we considered only one version to limit the required tesbreftf c). For this
study, we assumed that these versions were available frenfirgt build date.
Also, we considered only 4 major GNU compiler versions and&gomPython
versions, due to the limited test resource availabilitythar experiments.

In addition to the CDGs and version annotations, InterComrogsaeveral
constraints on configurations. First, if compilers from same vendor for dif-
ferent programming languages are used in a configuratign, @cr , gxx, gf
andgf 77), they must have the same version identifier. Second, oritygesMPI
component (i.el,amor nth) can be used in a configuration. Third, only one C++

compiler, and only one of its versiongXx version X orpxx version Y) can be

88

used in a configuration. Fourth, if both a C and a C++ compilenesed in a con-
figuration, they must be from the same vendor (i.e., GNU Rtae PGI). Fifth,
compilers from the same vendor must be used to build the MPpoments. Fi-
nally, the GNU compilers must be used for buildimgf r in a configuration ifgf

is also contained in the configuration. These constraintsmted configurations

that we knew a priori would not build successfully.

5.4.2 Study Setup

To evaluate our incremental testing approach, we first gatheomponent com-
patibility data (i.e., the success or failure of each DDtanse) and the time re-
quired to build each component version. To obtain this datacreated a sin-
gle configuration space model that contains identifiers foeleased component
versions and all branch snapshots that appear in any buiklthéh built every
configuration using a single server (Pentium 4 2.4GHz CPU #itAMB mem-

ory, running Red Hat Linux 2.6.9-78.0.13.EL) and 32 clietamines (Pentium 4
2.8GHz Dual-CPU machines with 1GB memory), all running RetlEfderprise

Linux version 2.6.9-78.0.17.ELsmp, connected via Fasefigt. To support the
experiment, we enhanced Rachet to work with multiple sonodke repositories,

to retrieve source code for development branches. CurteRtighet supports

89

CVS [5], SVN [4] and Mercurial [3] source code managementeyst

For testing the InterComm builds, we obtained compatibiktsults for 15128
DD-instances. Building components was successful for @d@8nstances and
failed for 1098 DD-instances. The remaining 7952 DD-instwereauntestable
because there was no possible way to build one or more comfmimethe de-
pendency part of the DD-instances. For example, all the Dddances involving
an InterComm version and the PVM component verdo. 6 were untestable,
because building that PVM version failed in all possible sayor testing the
PETSc builds, compatibility results for 24708 DD-instameeere required. We
obtained successful component builds for 6497 DD-instaracel failed builds
for 12883 DD-instances. 5328 DD-instances were untestable

Using the data obtained from the integrated configurati@cepwe simulated
a variety of use cases with different combinations of clie@ichines and cache
sizes. Our event-driven simulator, described in Secti®r?4used results obtained
from the experimental run for calculating expected timaegined to execute test
plans for the builds described in Section 5.4.1. Table 5258 show the number
of DD-instances that correspond to each region in the dmagnaFigure 5.1.

For the:-th build in the InterComm and PETSc build sequences, thenseco

column in the tables is the total number of DD-instancB),,) for building

90

i || ddiy | ddyzgeq | ddyntestane | ddhew | # Of plan nodes
Ndd, Ndd:,
0 123 0 0 123 252
1 403 44 42 317 577
2 | 403 141 186 76 170
3| 781 141 186 | 454 756
4 945 271 320 354 809
5 || 1129 287 255| 587 1154
6 || 1229 411 498 320 561
7 || 2480 416 341 | 1723 2854
8 || 2921 981 1170 770 1016
9 || 2921 1050 1488 383 758
10 || 4407 981 1170| 2256 3546
11 || 4407 1450 1886| 1071 1662
12 || 4407 1585 1940 882 904
13 || 5064 1585 1940| 1539 2236
14 | 5296| 2031 2514| 751 1742
15 || 5296 2355 2622 319 706
16 | 5576 2193 2568 815 1840
17 | 6146 2586 2728 832 1607
18 || 6146 2877 2622 647 1721
19| 7073 3301 2844 928 1745

Table 5.2: Numbers of DD-instances for the InterComm builfleace

91

i ddyy | ddigeq | ddiptestapie | e | # OF plan nodes
Ndd:, Ndd:,
0 55 0 0 55 74
1 85 39 0 46 52
2 133 61 8 64 155
3 499 95 14 390 746
4 627 291 a0 246 520
5 852 347 147 358 808
6 1103 489 201 413 870
7 1993 657 254 | 1082 2274
8 1993 1342 404 247 518
9 || 2930 1342 404 | 1184 2318
10 4437 1933 668 | 1836 3909
11 9332 3076 950 | 5306 8319
12 9332 6667 2192 473 774
13 || 10030 6667 2192| 1171 2828
14 | 11041 7009 2246| 1786 3895
15 | 12583| 7871 2554 | 2158 2684
16 || 12879 8825 2860 | 1194 3410
17 || 15415 9685 2932 | 2798 7669
18 || 17287 10901 3394 | 2992 5887
19| 18214| 13270 4016 928 3164

Table 5.3: Numbers of DD-instances for the PETSc build secgie

92

components in a CDG. Note that for some builds the number ofiri3fances
does not differ from the previous build. This is because rhobanges between
builds only involved replacing version identifiers of deyg@inent branches with
more recent ones. The next column is the number of DD-inswmtD D!,
where results for the DD-instances were already determiméesting previous
builds. The fourth column is the number of DD-instance®iR’ ;, where results
for the DD-instances wenentestablen the previous build. The last column is the
number of nodes in the initial test plan for each build. In sdmilds, the number
of nodes in a test plan is fewer than the number of DD-instatweover (the sum
of the 4th and 5th columns). That happens when a large nunilidDenstances
are classified as untestable when we generate the set of watiams that are
merged into the test plans for the builds.

We ran the simulations with 4, 8, 16 and 32 client machinesh daving 4 to
2048 cache entries. To distribute configurations, we usegldn execution strat-
egy described in Section 5.3. For each machine-cache catdmnwe conducted
multiple simulations to test the InterComm and PETSc buiffusaice: (1)etest-
all: retests all DD-instances for each build from scratthX,_,, = DD,), (2)
test-diff tests builds incrementally{D: ., = DD}, — DD:), (3) c-forward

test-diffwith forwarding cached configurations across builds,n@y-replace c-

93

forward plus applying the improved cache management scheme (8€ewi3),

(5) c-aware c-forwardplus applying cache aware configuration generation (Sec-
tion 5.2), (6)integrate-all c-forward also applying all optimization techniques.
We measured the turnaround time for testing each build irsdggience, for all

the simulations.

5.4.3 Retest All vs. Incremental Test

The configuration space for the subject systems grows awver lecause it incor-
porates more component versions. As a result, incremesgthg is expected to
be more effective for later builds. Figure 5.5 depicts the&nound times for test-
ing all 20 builds of InterComm and PETSc. The testing is donsvmways: by
retesting all DD-instances for each build and by testing iD&ances incremen-
tally. It is clear that turnaround times are drastically ueeld with incremental
testing. For example, for the last builds of InterComm and B& fetest-alltakes
about 6 days and 18 days, respectively, while incremengéhggtakes about one
day for both systems.

With retest-all the turnaround time required for a test session increastsea
number of DD-instanced{D!,,) increases. However, for incremental testing, the

testing time varied depending on the number of DD-instatested by generated

94

retest all vs. incremental test (InterComm, M=8,C=4)

T T T T T T T T T T T T T T T T T T |
retest-all -
test-diff m——
7 ° l
©
©
E 4 1
(0]
£
|_
c 3 i
k=)
5
[8)
$ 2 1
1
c
©
o 1 .
0
012 3 456 7 8 9101112131415 1617 1819
Builds
retest all vs. incremental test (PETSc, M=8,C=4)
20 T T T T T T T T T T T T T T T T T T T
retest-all
test-diff m——
3
g 15]
£
[}
S
"~ 10]
K]
5
(8]
(0]
x
al
c 5 .
<
o

012 3 456 7 8 91011121314151617 1819

Builds

Figure 5.5: Turnaround times for testidgD:, and DD!, — DD:.} . for each
build of InterComm and PETSc (8 machines (M=8) and 4 cacheéesnper ma-
chine (C=4))

95

configurations. For example, as seen in Table 5.2, the siz&s,, (DD, —

DD}) for build 11 and build 15 are comparable (2957 for build 11 2941

for build 15), but the required testing time for build 11 isit& as much as the
time for build 15. The reason is that 857 DD-instance®iP’, ., were covered
by configurations generated for build 11, compared to 36%iwid 15. The rest
of the DD-instances were classified as untestable whilergéng configurations,
because there was no possible way to generate configurgtiantest those DD-
instances due to build failures identified in earlier build#/e observe similar
patterns for build 10 and 12 of PETSc. For build 12, we were @ablgenerate
configurations that cover only 485 DD-instances out of th@S2BD-instances in

DDgest'

5.4.4 Benefits from Optimization Techniques

Figure 5.6 depicts aggregated turnaround times requireteting 20 builds of
InterComm and PETSc. The turnaround times are obtained byngmncremen-
tal testing without reusing cached prefixes across buiktsdif) and by running
incremental testing with all optimization techniques agl(ntegrate-al). The

x-axis is the number of cache entries per client and the g-{axurnaround times.

The simulations use 4 to 32 client machines and the numbeadfecentries per

96

Turnaround Times for testing all 20 InterComm builds

700 T

—

n

o

o
T

' ' M=4 (iﬁtegrate'-all) ——
M=8 (integrate-all) —=—

M=16 (integraté-all) —e—
M=32 (integrate-all) —=—
M=4 (test-diff) ——<—
M=8 (test-diff) —=—

M=32 (test-diff)y —=— |

]
]
]

— —
= =

0

Plan Execution Time (hours)

16 32 64 128 256 512 1024 2048
Number of cache entries per each machine

Turnaround Times for testing all 20 PETSc builds

1800 :
1600 |

1400

1200
1000

800
600

Plan Execution Time (hours)

400 $———

M=4 (integrate-all) —+—

M=8 (integrate-all) —=— |
M=16 (integrate-all) —e—
=32 (integrate-all) —+—
(test-diff) ——<—

M=32 (test-diff) —=—

200

16 32 64 128 256 512 1024 2048
Number of cache entries per each machine

Figure 5.6: As the number of cache entries per machine isesggaaggregated
test cost decreases up to 24% for InterComm and up to 28% foSPEhen
optimization techniques are applied, compared to the lvesigicremental test.

97

machine varies from 4 to 2048.

As we increase the number of cache entries, we observe thaiptimiza-
tion techniques reduce turnaround times by up to 24% for@denm and up to
28% for PETSE. That is because a larger cache enables storing more preéixes b
tween builds, so more configurations can be generated bgdirg prefixes in the
cache and also cached prefixes can be more often reused tutiexgetest plans
in subsequent builds. On the other hand, test-diff we see few benefits from
the increased cache size. The results for InterComm arestensiwith results
reported in our previous study [74], that little benefit wa®s beyond a cache
size of 8. Also, as described in Chapter 4, turnaround timesedsed by almost
half as the number of machines doubles. For PETSc, we didbs#ree further
benefit beyond 16 or more cache entries per machine.

We also observed that the benefits from the optimizationrieicies decrease
as more client machines are employed. For InterComm, with dhinas, the
turnaround time decreases by 24% when the number of cachesgpér machine
increases from 4 to 2048, but decreases by only 10% when 3Bingscare used.

Although this pattern is not clear for PETSc in Figure 5.6aimother simulation

4Even with 4 machines, turnaround times did not decreas@dumith more than 128 and

2048 cache entries per machine for InterComm and PETSactgply.

98

that employs 128 machines, we observed that the time desdns14% when
we increase the cache size from 4 to 2048. There are two redsothis effect.
First, with more machines the benefits from the increasedpcational power
offset the benefits from the intelligent cache reuse. WittoB&nore machines,
for InterComm builds, parallel test execution enables higtiggmance even with
only 4 cache entries per machine. Second, communicatidnremeases as more
machines are used, because each machine is responsibener fodes in a
test plan and machines that finish their work faster will tak@k from other
machines. In many cases, the best cached prefixes for thefarsed work must
be sent over the network for reuse.

As we previously noted, the cost savings from incrementstirtg vary de-
pending on changes between builds. In Figure 5.7, we contpararound times
for each build, fortest-diffandintegrate-all We only show results for 16 ma-
chines, each with 128 cache entries, but the overall reste similar for other
machine/cache size combinations.

For both InterComm and PETSc, we see significant cost redhsfimr sev-
eral, but not all, builds — (1, 5, 7-8, 10-14) for InterComm &b, 9-11, 17) for
PETSc. We found that for those builds there were new vergtgases for Inter-

Comm or PETSc. Since we have to first build all component vessrequired

99

Plan Execution Time (in hours)

Plan Execution Time (in hours)

25

20

15

10

70

65

60
55
50
45
40
35
30
25
20
15
10

Times required for testing InterComm builds (M=16,C=128)

T telst_dllﬁ T T T T T T T T T T T T T T T
integrate-all

012 3 456 7 8 91011121314 151617 1819
Builds

Times required for testing PETSc builds (M=16,C=128)

" test-diff m—

integrate-all

012 3 456 7 8 9 1011121314151617 18 19

Builds

Figure 5.7:test-diffvs. integrate-all There are significant cost savings for some
builds from the optimization techniques.

100

for building InterComm or PETSc, we can significantly reduoe plan execution
time for the builds of interest, by extending configuratidhat require adding
fewer DD-instances in the process of configuration geramand also by reusing
the configurations during test plan execution. In the restittr InterComm, we
see a time decrease of more than 50% in build time for buildarid 12. For
PETSc, we see a 49% decrease in time for build 17 and more 0%rf& builds
6 and 9. On average, we see a 37% and 33% time reduction foruitus lof
interest for InterComm and PETSc, respectively.

The optimization techniques are heuristics, and do notysdweaduce testing
time much. For example, there were smaller cost reductioinfterComm builds
0-4 and 15-19. There are several reasons for that. Firstpkess for builds
0—4 contain fewer nodes than for other builds, and theretfogeplan execution
times are dominated by the parallel computation. Secomdyuitdds 15-19, there
were no changes for InterComm or for other components closkeetdop node
in the CDGs, as seen in Table 5.1. Although the test plan saehdse builds,
as seen in Table 5.2, were comparable to those for other kms$ pvhere we
achieved larger cost savings, for these builds we could ange configurations
with fewer DD-instances that can be built quickly from an éyngonfiguration,

because changes are confined to components (e.g., conpitess to the bottom

101

node in the CDGs. Similar results are seen in the results faiSeEFor instance,
we see the maximum time reduction is for build 17, for whicheavrPETSc
version @. 3. 3) was available. Therefore, many prefixes in the cache coald b
reused for testing DD-instances for building the PETScigersOther changes
for the build were for components close to the bottom nodéef@DG, and for

the build the changes are not relevant to the DD-instanceREd Sc.

5.4.5 Comparing Optimization Techniques

Figure 5.8 shows turnaround times for testing each buildgu$b machines, with
cache sizes of 4 (left) and 128 (right) per machine. We onbystesults for builds
for which a new version is available for InterComm or PETSk¢eiwe have seen
large benefits for the builds in Figure 5.7 when both optimiaatechniques are
applied. For each build of interest, we show results for figeas -test-diff c-
forward, new-replacec-awareandintegrate-all

In both graphs, we do not see large time decreases from sifopharding
cached prefixes across buildsforward), even for a large cache. This implies
that we must utilize cached configurations intelligentlyr Ehe c-forward case,
whether cached prefixes are reused or not solely dependsamrdier in which

the DD-instances in the test plans for subsequent buildgeated, and the order

102

Plan Execution Time (in hours)

Plan Execution Time (in hours)

Figure 5.8: Each optimization technique contributes d#ifely for different cache

sizes.

25

20

15

10

80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

Turnaround times for testing InterComm builds (M=16,C=4,128)

T T T T T T T T T T
testdiff ———
c-forward —3
new-replace B2 ||
c-aware ==

. integrate-all m—m

|
o
K
K
K
K
K
K
K
M
M
K
K
K
K
K
K
K
o
K

o
i
K4
i b
K4
4 b
§ H
b b
b t
o b
M K
bl t
M K
K K
t
M K

i

011 12 13 - 1 5 7

8 10 11 12 13
C=128

Builds

Turnaround times for testing PETSc builds (M=16,C=4,128)

T T T
testdiff ——
c-forward ——
new-replace ExEza
c-aware = - M
integrate-all m——

17 - 3 6 9
C=128

11 17

Builds

103

in which configurations are cached and replaced.

With a smaller cache size, benefits from the optimizatiohnéues are lim-
ited because prefixes cached from earlier builds often gédiced before they are
needed in later builds. However, we still see a small timéngmvby keeping the
most valuable configurations in the cache.

With 128 cache entries, we observe that the cache-awareyoostiion genera-
tion technique¢-awarg plays a major role in reducing turnaround times. A larger
cache can hold more prefixes for reuse, and therefore fevatrecaeplacements
are necessary, and also we can extend cached configuraiibres few additional
DD-instances in the configuration generation step. Congety i takes less time
to execute the resulting test plans. In both graphs, the aetvecmanagement pol-
icy (new-replacgdid not greatly decrease test plan execution time. Sincelan
execution strategy tests nodes in a test plan mostly in eisthorder, in many
cases, the least recently used prefixes in the cache werkeatsgaluable for the
new policy.

In the bottom graph, with 128 cache entries per machine, essme benefits
for builds 11 and 17 wittest-diff compared to the cases with 4 cache entries. This
is because the test plan sizes for the builds were large éntouget benefits by

reusing prefixes cached in the process of executing theltass for the builds.

104

In the InterComm simulation with 16 machines, each with 12heeentries,
there was no cache replacement for the entire build sequémeestill observe
some additional time savings fortegrate-all compared to the-awarecase. We
believe that the benefit is from synergy between the scheglydolicy for dis-

patching prefixes to client machines and the new cache maradeolicy.

5.5 Summary

In this chapter, | have presented an approach that testsamanpcompatibilities
incrementally as components in a system model evolve ores.tiWhen there
are component changes after the completion of a test seddist identify the
test obligations for the modified system and generate a sadrdfgurations that
satisfy the obligations. | also designed optimization teghes that make use of
artifacts and test results from prior test sessions for dmgiguration selection and
test process.

To identify the test obligations, | defined a test adequadgroon, which is
to test DD-instances that anewly introducedn a model or that werentestable
in the previous test session, due to component build faluréhe session. The

test obligations are computed by applying set differenceramons between the

105

sets of DD-instances between two consecutive builds. iegphe algorithm de-
scribed in Chapter 4 for generating configurations that fyatie test adequacy
criterion. The results from simulations performed over Hagear evolution his-
tory of components required to build InterComm and PETSc destnate that the
plan execution time can decrease by a large amount by emldlye incremental
testing approach, compared to retesting all DD-instanaas &cratch for each
build.

To further reduce the time to test DD-instances for a buildeveloped two
optimization techniques. One is to generate configuratfonsesting the DD-
instances by extending prefixes cached in prior test sessibims technique en-
ables saving test effort by increasing the reuse chanceaatfed prefixes. The
other technique is to keep prefixes with more reuse potelotigler in the cache.
| designed a heuristic that assesses the reuse potentatiofoeefix in the cache,
by computing the expected time savings by reusing the prefixew likely the
prefix is to be useful for testing subsequent builds. Thenaigtition techniques
contributed together to significantly reduce the time regpiifor executing test

plans.

106

Chapter 6

Prioritizing Configurations with User Preference

Software developers are often more interested in some aoafigns than oth-
ers. For instance, they may be more interested in configursithat test recently
changed components or more popular versions of particolaponents. Consid-
ering that the time for compatibility testing is often limdt, we need a systematic
method for prioritizing configurations to quickly providewklopers with results
for configurations that test compatibilities between congaas and versions of
more interest. In the software engineering community, éi@ve been studies
that prioritize test cases by incorporating user requingisier test history [46, 62],
especially for regression testing [18, 35, 41, 63, 71], wientime and resources
available for testing are limited.

Similar to the studies for regression testing that consider requirements for

107

prioritizing test cases, | present in this chapter a metlotfsting configurations,
taking into account differing developer preferences [76].

This chapter first describes a simple method for developgespécify their
preferences, then discusses how the preferences are usathéaluling the order
in which configurations are tested. Key objectives are taiefiitly test configu-
rations sampled by applying tiizD-Coveragealgorithm described in Chapter 4,
and to obtain test results for configurations with higherfgnence before ones

with lower preference.

6.1 Specifying Preferences

Modern systems can have an enormous number of configuragouisit is im-
practical for developers to explicitly specify prefereader all configurations to
be tested. Therefore, we use a simple method in which deseddpst express
preferences across all components in a CDG. Then for eachammpdevelopers
express preferences across all versions of that component.

Developer preferences may be represented in any form teatfsgs relative
interest across components and their versions. For thik,wae encode version

preferences as positive integer values with larger valnégating higher prefer-

108

ence. If developers do not care to specify preferences fidicpar components
or component versions, we assign a default preference — khvaa all developer-
specified preferences — in which components closer tofnaodeof the CDG are
preferred over lower ones, and more recent versions of a oaemt are preferred
over older ones.

We interpret these partial preference assignments as raaptihe develop-
ers’ preferred ordering of test results. That is, we expbat tlevelopers want
test results for configurations that test high-prefererasions of high-preference

components before test results for other configurations.

6.2 Computing Configuration Preferences

We now give more details on how to use developer preferercgsitle the test
process. Given a set of developer preferences, we couldppstrtunistically test
configurations that contain the most preferred componemiscamponent ver-
sions first. That could be quite inefficient. As shown in Chagtentelligently
coordinating build effort across multiple configuratiorencsave substantial time
and effort. Thus, our testing approach needs to consideymptdeveloper prefer-

ences, but also the structure of the test plan so that tatadtiort can be reduced.

109

To this end, we transform developer preferences (expresssdcomponents
and component versions) into preferences over nodes int plees Recall that
every prefix in a test plan (i.e., every path from the root ntml@ node in the
test plan) corresponds topartial configuration and testing a plan node means
building all components represented by the nodes on the phatrefore, when we
test a prefix from scratch, we build components on top of antgegnfiguration,
starting from the one represented by the plan root, whiletgs prefix by reusing
a cached prefix means the builds start from somewhere in ttiélenof the path.

Logically, the preference for a component version is regmésd as a vector,
called apreference vectorA preference vector has one element for each compo-
nent in a CDG, with these elements ordered by component prefet Values
of the elements are assigned as follows: for a compofiemith versionc,, each
element takes the value 0, except for the element assoewted’, whose values
takes the preference assignment.ofFor example, consider the example system

shown in Figure 2.1. Assume that the components A—G havemmies from

1To simplify the presentation we restrict discussion to sasavhich preference assignments
for components are uniquBachet can, however, handle non-unique component preferences by
allowing an element in a preference vector to encode vemieferences for multiple components

with identical preferences.

110

Component & Version
Pref.Valuel A B C D FE F G

1 A1 Bl 01 D1 El Fl Gl
2 By Cy Dy Ey F
3 Es Fy

Table 6.1: Example Preference Assignments (Bigger valuesised for higher
preferences)

7 down to 1 respectively. Assume further that the versiorigpemces for each
component are sequentially numbered preferences stattibgwhich is the low-
est preference for the oldest version of the component. d&ia is represented
graphically in Table 6.1.

Given these preference assignments, we write the prefenesaior for com-
ponentB, version B,, for example, ag0,2,0,0,0,0,0). This is becauses is
the second highest preferred component and because véssibas preference
assignment 2. Similarly, the preference vector for compbi€ versionF3 is
(0,0,0,0,0,3,0)

Given the component preference vectors, we can now defirierpree vec-
tors for every prefix in a test plan. For a given prefix, we dthy taking a
component-wise vector sum of each node contained in thexprieér example,
looking back at Figure 4.3, consider the gray-shaded ledénath the label start-

ing with A;. To build that node from scratch, we must build each node filoen

111

root of the test plan to this node. Therefore, we compute thépence vector
for this entire prefix by summing the preference vectors bhatles appearing in
that path:G, : (0,0,0,0,0,0,1), E;, : (0,0,0,0,2,0,0), B, : (0,1,0,0,0,0,0),
F;: :(0,0,0,0,0,1,0), D, : (0,0,0,2,0,0,0), A : (1,0,0,0,0,0,0). This gives a
resulting preference vector ¢f, 1,0,2,2, 1, 1). Note that the third vector element
is zero because componénis not contained in the prefix.

In the next section we describe how we use preference vezssigned to all

prefixes in a test plan to guide the execution of the test plan.

6.3 Preference-Guided Plan Execution

As earlier, each test client repeatedly requests testsrforpefrom a test server
— tests are encoded as prefixes (partial configurationseitetst plan under exe-
cution. For each request, the server selects the prefix tedved next in a greedy
fashion, by first ordering preference vectors computed &mheprefix that ends
with a plan node that has not yet been tested by any clienticathg this order-
ing can be done by sorting preference vectors for all prefieggographically.
We give the description of the selection process in Figute 6.

In the algorithm, when a client requests a new configuratotest, we first

112

Algorithm Prioritized-Execution(Plan, C, W

10:
11:

12:

13:
14:

15:

/I C: requesting clientyV: window size
PrefixList«— an empty list

for each prefix for not-yet assigned node< Plan do
pref, < the preference vector for
l, < the minimum number of components needed additionally fstirtg
p on a prefix cached i€
d, < n’s depth inPlan
steal,, < the number of clients that contain a prefix reusable fornesti
Add {< p,pref,,l,, steal,, d, >} to the listPrefixList

end for

SortPrefixListby preference vectors

if no prefix cached i€ is a prefix of any of the firswV prefixes inPrefixList
then
return, among the firsW prefixes, the prefix with minimursateal,, using
minimumd,, as tie breaker
else
return, among the firsW prefixes, the prefix with minimurf),, using max-
imum d,, as tie breaker
end if

Figure 6.1: Algorithm for Preference-Guided Plan Exeautio

113

compute, for each prefix in a test plan, three auxiliary variables used in the
prioritized plan execution to reduce overall plan exeaqutione. The algorithm
also uses a parameter calledimdow sizewhich is related to trading off between
reducing test effort and enforcing preferences and willisewssed further in this
section.

The variablel, is the minimum number of component versions that must be
built additionally, when the client testsby reusing a prefix previously cached in
the client. When multiple clients are employed for executimg test plan, test-
ing prefixes with the smalle$f value can increase benefits from reusing cached
prefixes.

The variablesteal, is the number of clients that have in their cache space at
least one prefix reusable for testipg This is used for reducing redundant work
across clients. When there is no prefix (in a test plan) thabeaasted by reusing
a prefix cached in the client, the server dispatches the pwafix the smallest
steal, to the client, and this enables multiple clients to test neerapping re-
gions of the test plan under execution.

The variabled, is the number of DD-instances containedpinlt is used as
the tie breaker when a test plan has multiple prefixes withstivael,, or steal,

value for a given client. For a prefix request from a clientewlhere are multiple

114

prefixes with the samég, value in the test plan, the server dispatches the prefix
with maximumd,, value, the longest prefix. This is based on the heuristicttieat
longest prefix may require more time to build if it is deleteoihh the cache space.
On the other hand, if the client must reuse a prefix cached athan client for
testing any prefix that ends with a plan node that has not yat bested, and if
there are multiple prefixes with the samal, value, the server dispatches the
prefix with the minimunm,, value, the shortest prefix. This is based on the heuris-
tic that a node closer to the root node will likely have a largebtree beneath

it than nodes deeper in the tree, as was done fohtfeid test plan execution
strategy described in Section 4.6.

Note that Algorithm 6.1 has to be repeatedly applied for ed@nt test re-
guest, since the plan execution state (including cachesstttclients) changes
continually, and the values for auxiliary variables ardaté#nt depending on the
client requesting a new test, and the current state of thekas (i.e., which parts
have been completed).

Although the auxiliary variables may be used to decreaseatiylan execu-
tion time by efficiently sharing the effort necessary to f@sffixes in a test plan,
the most important concern for developers is still the pefees. Therefore, we

sort thePrefixListin preference order, and always test the first prefix in the lis

115

which is the one with the highest preference vector, to pcedesults for more
highly preferred prefixes earliérHowever, due to the large size of cached pre-
fixes and the long time to transfer VMs across clients, scliaglprefixes by only
taking into account preference values may increase the auoflremote prefix
requests and as a result, the rate of local cache reusesatidgstal plan execu-
tion time can increase compared to a pure cost-based samggolicy.

Rachet allows developers to determine how rigidly they wiheir prefer-
ences enforced. If they want to enforce preferences styptigg test server al-
ways chooses the most highly preferred prefix that has ndigen tested by any
client. If developers allow weaker preference enforcentietscheduling consid-
ers other factors, such as prefix reuse locality and worknddocy across clients,
which help to reduce the overall plan execution time, in exge for allowing
less highly preferred prefixes to be tested earlier.

The preference strength is expressed weredow sizeparameter, denoted by
W. As shown in Algorithm 6.1, we inspect the fik&tprefixes in theéPrefixListand
select the one that requires the fewest component buildsusing a prefix cached

in that client. This means that less highly preferred prefis@n be chosen if they

2However, results may still not be produced in preferenceobeécause of varying component

build times.

116

can be tested at low cost by reusing prefixes previouslyddsgethat client. If
such prefix reuse is not possible, the scheduling algoritlecss a prefix that has
the smallest overlap with prefixes tested by other client&¢rease the chances
for future reuse of the prefix.

An interesting case occurs when the window size is set towe\@gleater than
or equal to the number of nodes in a test plan. In that cash, tht scheduling
policy described above, the test plan is executed in a gimorider to the hybrid

execution strategy.

6.4 Evaluation

We now evaluate our prioritization approach by construgtiwo scenarios that
often occur during compatibility testing. In the first sceaawe prefer config-
urations that test more recent versions of the SUT. In therskscenario, we
prefer configurations that use recent versions of specificpoments required for
building the SUT. In this section, we describe these sceaamd apply our priori-
tization approach to the software systems described indett Then we analyze
benefits and tradeoffs of the overall approach. Specificadywant to compare

our prioritization approach with thieybrid approach, which showed the best per-

117

formance in Chapter 4. We measured the times for executingegt@lan created
from configurations with DD-coverage for each system, arst aécorded the
times at which test results for configurations are produdée also want to study
the tradeoffs involved in varying the window size paramefeklgorithm 6.1, and

in varying the number of clients and cache sizes used fongxerthe test plan.

6.4.1 Experiment Setup

For modeling subject systems for this study, we have exetiteemodels for the
two systems described in Section 4.9.1 by adding more ves$ar some compo-
nents and also by specifying preferences on componentshairdversions. The
component versions newly added are: versiord andl. 6 for the InterComm

(i ¢) component, versiog. 3. 2 for the MPFR (pf r) component and version

4. 2. 4 for the GNU MP gnp) component.

Scenarios

We constructed two scenarios to evaluate our approach. elfirdt scenario,
developers want to test recent versions of the SUT, InterCamthPETSc. This
scenario was actually encountered during the developnfdntesxComm. When

InterComm version 1.6 was released, InterComm developerseddan test the

118

build-compatibility of the new InterComm version in varioosnfigurations. In

addition, they also preferred to test configurations basechore recent versions
of other components; they believed that a large portion eir thser base had al-
ready updated the system components on their machinesdotreersions. To

meet this requirement, we assigned components preferemées in the Inter-

Comm model by traversing the CDG in reverse topological order, (nterComm

had the highest component preferences). For version prates, higher values
are assigned to more recent component versions (the oldesom had value 1).
We applied the same preference assignment method for th&8@&@oddel.

In the second scenario, developers prefer to test configngathat contain
recent versions of specific components required for bugdime SUT. That is,
developers want to see first whether their systems are cdvigpatith recently
released versions of specific components. For this studgedel that developers
prefer configurations that use recent versions of the MPFRtaa GNU MP
component for building InterComm and PETSc. Thus, we set prgifierence
ranks for those components, and also set higher versiorngrete values for

recent versions.

119

Compatibility Results for DD-instances

From the CDG and annotations, there are a total of 639 DDnestfor com-
ponents in the InterComm CDG, and Rachet produced 476 cortiignsasatis-
fying the DD-coverage criterion. These configurations aomé421 component
builds, but the actual number of component builds is reduoe®08 since the
configurations are combined into a single test plan. For RETi®re are 185
DD-instances and 88 configurations that contain 846 commpdnelds, which is
reduced to 522 component builds in the test plan.

In order to obtain compatibility results for DD-instances tomponents in
the models, we first ran actual experiments with the testgpfan InterComm
and PETSc. For the InterComm model, 134 out of 639 DD-insanere tested
without errors, which means that there were 134 successdybwo build com-
ponent versions (18 for the top-level InterComm componehtipotal of 58 DD-
instances failed to build (3 for InterComm). The remaining 43D-instances
were untestable because there was no successful way toablddst one of the
component versions needed to perform the component buileeéting the DD-
instances. For the PETSc model, 107 out of 185 DD-instaness tested suc-
cessfully (8 for the top-level PETSc component) and 62 Dfances failed (56

for PETSc). The remaining 16 DD-instances were untestable.

120

Simulations

In the remainder of this study, we use test results obtairyadibning the ac-
tual experiments, including the compatibility results &lrDD-instances and the
times required for building each component version. We ramukations with
two test plan execution strategies (prioritized vs. hypnging different numbers
of clients (4, 8, 16, 32), different number of cache entries gient (8, 16, 32,
64) and different window sizes (1, 16, 256, 2048) - windoveanly matters for
the prioritized strategy. In all, for each scenario, we dated the 80 possible
combinations across the dimensions (16 for the hybrid anfb6the prioritized
strategy).

For each plan execution we recorded the time when testinfigtoations suc-
ceeded or failed. We say that testing a configurasiooceeded all component
versions contained in the configuration are built withoyt amor, and that testing
a configuratiorfailed if the process for building a component version contained
in the configuration returned errors. Note that if a companension encoded by
a DD-instance in a configuration failed, then all configunasi that contain the
DD-instance also fail. Thus, when a DD-instance appearsvaral branches in a

test plan, all configurations that contain the DD-instarakesimultaneously.

121

6.4.2 Cost/Benefit Analysis of Prioritized Test

Prioritized vs. Hybrid

In Figure 6.2, we show the times at which testing configuretifor the subject
systems succeeded (shown as diamonds) or failed (showrugassigins). The
left graphs in the figure show results from executing therldéenm and PETSc
test plans with the hybrid strategy for two test scenarios] #he right graphs
show results with the prioritized strategy. The x-axis irclegraph shows all
configurations generated for executing the InterComm and3eldst plan, sorted
in their preference orders — the leftmost is the most preteoonfiguration). The
y-axis shows the time at which test results for configuratiare determined. In
this result, we set the window size to 1 and the number of tieachines to
4. From these plots, we clearly see that the prioritizedefaachieved results
for highly preferred configurations quickly compared to thbrid strategy. The
hybrid strategy achieved some results for highly prefeedfigurations almost
at the end of the plan execution.

Failed configurations formed multiple bands in the grapmgHte prioritized

strategy. This is because multiple configurations failedusianeously when a
component version encoded by a DD-instance failed to bulNthny of those

configurations were different by only one or two DD-instas@® had similar

122

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Figure 6.2: Prioritized (W=1) vs. Hybrid strategy for Inten@m (top 4 graphs)
and PETSc (bottom 4 graphs) with 4 clients (M=4) and 8 caclesrper client

(C=8)

Conflg Completlon Time (Hybrid, Scenario 1)

90 Success | o
Failure
80 - -
70 - - 7
£
60 - - Y
£
- =
=3
@
- 2
2
K
- w
600 800 1000 1200 1400 1600
Configuration Preference (InterComm)
Conflg Completlon Time (Hybrid, Scenario 2)
90 | ' ' ' Success "o !
Failure
80 - -
70 - - %
£
60 - - g
50 - N _ £
© < o
40 § - %’
0 ° © - i
I .
20 f ¥t ABGEPN ¥, -
w q.?s e T 't.~ ..,.» Ty 'Q,,
10 S e+ s e 4 -
, BAESA SR m‘&sﬁ%ﬁ“ ‘
0 200 400 600 800 1000 1200 1400 1600
Configuration Preference (InterComm)
Config Complenon Time (Hybrid, Scenario 1)
30 | | | [
Success o
Failure -+
25 -
@
20 - £
o ° g
15 % - =
° AR 3
o % © 9
K
0, ° ° &0 © - m}
o 00
) %P
5T @ Lo Lo, Ce
o o
0 ad B s NP . L 00no
0 20 40 60 80 100 120 140
Configuration Preference (PETSc)
Config Completlon Time (Hybrid, Scenario 2)
30 ' ' ' T
Success ©
Failure
25 -
°
20 F - £
£
15} 0 o =
+ °o B
< * a
° < g
10 L o ot o - 5
< o &
[XD 0+ ®
s [« - ?, " ©
AAAAAA 0o
0 L 1 L L O 4 o 1©
0 40 60 80 100 120 140

Configuration Preference (PETSc)

123

90
80
70
60
50
40
30
20
10

Conflg Completlon Time (Prioritized, Scenario 1, W=1)

Success ' o
Failure,
5 & v & s prwee
Frs Fap Fap -
PRIt -
15 e A ‘:*..:x?,ziw .. s)
200 400 600 800 1000 1200 1400 1600

Configuration Preference (InterComm)

Conflg Completlon Time (Prioritized, Scenario 2, W=1)

. . . .
Success ' © -
Failure

/7

°©
P 0,»,:,, g@»
W iy el ,.,,m,.,‘,,
e

R, e

30

25

20

200 400 600 800 1000 1200 1400 1600

Configuration Preference (InterComm)

Config Completlon Time (Prioritized, Scenario 1, W= 1)

Success ©
Failure
R
o Y sl

0 h
0 20 40 60 80 100 120 140
Configuration Preference (PETSc)
Config Completion Time (Prioritized, Scenario 2, W=1)
30 - ' ' ' ' ' | T
Success ¢
Failure
25 -
o
P
0 0 R
20 + PR -
o
15 + -
10 + " -
o L= ST
0 20 40 60 80 100 120 140

Configuration Preference (PETSc)

priority differences.

Each plot in the figure contains a different number of confagjons for the pri-
oritized and hybrid plan execution strategies because &agplies contingency
planning when there are build failures, and so generatei§@ul configurations
to test those DD-instances affected by the failures in@dtier ways. The number
of additional configurations differs depending on the time #he order failures
are discovered, and that is the reason that the graphs #nCaimm contain al-
most ten times more configurations than those for PETSc.oatih we initially
produced 5 times more configurations for InterComm, more gonditions were
added to the test plan by contingency planning during thewgian of the Inter-
Comm test plan.

We see that plan execution with the prioritized strategktomger than with
the hybrid strategy. For InterComm, by employing 4 machieesh with 8 cache
entries per machine, the prioritized strategy took 84% ntione for the first sce-
nario and 44% for the second scenario, for a window size ofdr. FETSc, the
prioritized strategy took 17% and 23% lower, respectivelhis is mostly at-
tributed tolow prefix reuse localityduring the execution of a test plan. When
we strongly guide the plan execution by developers’ prefege Rachet always

schedules the most preferred prefix to a requesting cligtiipwt considering po-

124

tential cost savings from reusing a prefix already cacheterctient. That is, in
many cases, the newly dispatched prefix to the client doeshet build effort
with the prefixes tested previously by the client. As a resaltest the dispatched
prefix, the client ends up reusing a prefix cached in anothentglby transfer-
ring the VM with the reused prefix. This process is always nexgensive than

reusing a locally available prefix and increases the ovptat execution time.

Varying the Number of Cache Entries per Client

The prioritized strategy with the window size of 1 took mared in all cases
for executing a test plan. However, as demonstrated in Eigu3, we observed
that the plan execution time can decrease when there is mace dor caching
prefixes during the execution of a test plan. The top graptvsttoat for executing
the InterComm test plan with the first scenario, the pricettiztrategy took 84%
more time with 8 cache entries per machine compared thybeid strategy, but
31% more with 64 cache entries.

With the prioritized plan execution, each client is moreelikto test prefixes

that do not share build effort with prefixes cached in thentland also the prefixes
in the cache may be replaced before they are reused. Therédoger cache size

can increase the reuse opportunities for cached prefixeeaaoles saving test

125

Plan Execution Times with Different Cache Sizes

90 ‘ ‘ ‘ ‘ ﬁrioritiz‘ed,w=‘1 —
Hybrid - —
80
» 710
<
5 60 -
£
i 50 -
°
% 40 -
o
®©
o 30 -
20 | -
10 + -
0
C=8 C=16 C=32 C=64 C=8 C=16 C=32 C=64
———————— Scenario 1 -------- -------- Scenario 2 --------
Number of Cache Entires per Machine (InterComm, M=4,W=1)
Plan Execution Times with Different Cache Sizes
30 [! T
Prioritized, W=1
Hybrid m—
25

20

Elapsed Time (hrs)
=
[6;]

10 -
5 L —
0
C=8 C=16 C=32 C=64 C=8 C=16 C=32 C=64
-------- Scenario 1 -------- -------- Scenario 2 --------

Number of Cache Entires per Machine (PETSc, M=4,W=1)

Figure 6.3: Turnaround time difference between the piimed and the hybrid
strategy with different cache entries per client

126

effort for building components contained in prefixes sulssdly dispatched to
the client. Note that the benefits from a larger cache ardduinior the hybrid
strategy, because the strategy executes a test plan mosiypth-first order.

For the PETSc test plan, we did not see much benefit from additicache
entries. This is because the test plan has fewer branchesht@anterComm test
plan and also because we cache a prefix only if the last nodhe girefix has two
or more child nodes. Hence, fewer prefixes were cached dtiimgxecution of

the test plan.

Varying Window Size

The algorithm in Figure 6.1 allows developers to control h&twongly their
preferences are enforced, by modifying thendow sizeparameter. A window
size of 1 means that developers only care about their preess not overall plan
execution cost. In this case, Rachet always schedules theprederred prefix for
any client request. As the window size increases, Rachediders other factors,
including prefix reuse locality, that can reduce the ovestah execution time.

Figure 6.4 shows that the InterComm and PETSc test plans weied

faster with larger window sizes for both scenarios. When thelaw size is equal

to or greater than the number of nodes in a test plan (the ciéls&W= 2048), the

127

Plan Execution Times in Different Window Sizes

90 ‘ Pridritized,W:l _——
Prioritized, W=16 ———1
80 Prioritized, W=256 mm—— _
Prioritized, W=2048 =
& 70 Hybrid m—
£
o 60
S
= 50
e)
2 40
o
o
w30
20
10
0
Scenario 1 Scenario 2
Scenario with Various Window Sizes for InterComm (M=4,C=8)
Plan Execution Times in Different Window Sizes
30 S
Prioritized, W=1
Prioritized, W=16 ==
25 Prioritized, W=256 mmmmm _
Priaritized, W= —
- —
2
£ 20
[}
E
'_
- 15
[}
%]
5
o 10
5

Scenario 1 Scenario 2
Scenario with Various Window Sizes for PETSc (M=4,C=8)

Figure 6.4: Turnaround Times for InterComm and PETSc Test RidDifferent
Window Sizes

128

execution time with the prioritized strategy was compagdblthe hybrid strategy.
In this case the prioritized strategy ignores the develpezferences, and instead
executes the test plan so as to maximize the reuse of preficbed in each client
and to minimize redundant work across clients. This trenkss clear for the
PETSc test plan execution, because the PETSc test plan is smaller than
the InterComm test plan and the benefit of larger window sizeesofrom the
increased chances to reuse cached prefixes.

The cost to gain the improved overall performance, as se€igure 6.5 and
Figure 6.6, is that test results for less highly preferrexfigurations are produced

earlier than some more highly preferred configurations \étger window sizes.

6.4.3 Quantitative Analysis

In the previous section, we measured the costs and benetiits pfioritized strat-
egy by visually inspecting patterns in the scatter plots.

To evaluate the results more quantitatively, we developegiic to measure
conformance to preference order. Specifically, whenewetdbt result for a con-
figuration is identified, we compute the ratio between: (£)tlamber of already
tested configurations whose preferences were greater lieacutrent configura-

tion’s preference and (2) the number of already tested coratgpns.

129

Conﬂg Completlon Time (Prioritized, Scenario 1, W=1) Conﬂg Completion Time (Prioritized, Scenario 2, W=1)

90 F ' ' Success e 90 + ' ' ' ' Success "o !
Failure, - Failure
80 - 80 r -
& 70F - & T0F / -
£ £
2 60 - T 60 -
£ £
= 50 - F 50 -
3 B
o 40 - @ 40 + .
a a
K ©
w - w 30 -
PN - 20| -
- 10 | -
+ LT Il 0 L)
1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Configuration Preference (InterComm) Configuration Preference (InterComm)
Config Complellon Time (Prioritized, Scenario 1, W=16) Config Completion Time (Pnormzed Scenario 2, W=16)
90 + ' ' ' ' Success o - 90 | ' ' ' ' Success ' o
Failure - Failure
80 - - 80 -
& T0Ff o 0% - & T0F -
£ 8 o £ @
o 6or - S 60r ? -
£ ° £
= - E 50 & -
k3 k=3 Ps
Kl © o
w - w 30 -
° °
- 20 | -
) 10 iﬁ{‘ by ’Efg«; W"W"g e .
+ »...
. . 0 ! .
0 200 400 600 800 1000 1200 1400 1600 800 1000 1200 1400 1600
Configuration Preference (InterComm) Conflguratlon Preference (InterComm)
Conng Complenon Time (Pnormzed Scenario 1, W=256) Config Completion Time (Prlormzed Scenario 2, W=256)
90 | ' Success ' o B 90 + ' ' ' ' Success ' o !
Failure -+ Failure
80 - - 80 - -
& T0r - & 70+ -
< el - < el -
o o ©ABRO 2
£ o R o PR £
£ 50 8, E 50t ©
3 SRS " G
g aof 8o 8 %g g aof ¢ .
o 30| o . %:g ¥ %g : wos0f °°
o
8 <§’§§'
20 f °, o N - 20 3 & R
g % ? to &
3 10 Lew. - 3. :,31 v 7 M(! o

0 200 400 600 800 1000 1200 1400 1600 0 600 BOO 1000 1200 1400 1600
Configuration Preference (InterComm) Conflguration Preference (InterComm)
Config Completlon Time (Prlormzed Scenario 1, W=2048) Config Complet|on Time (Prioritized, Scenario 2, W=2048)
90 | Success S R 90 | ' ' Success S !
Failure - Failure
80 - 80 r -
& T0F - & T0F -
£ £
T 60 - T 60 -
£ £
= [
° k=3
Q O
& &
a a
o S
w w

800 1000 1200 1400 1600 800 1000 1200 1400 1600
Configuration Preference (InterComm) Configuration Preference (InterComm)

Figure 6.5: Configuration completion times with differentndow sizes (Inter-
Comm, Scenario 1 (left 4 graphs) and Scenario 2 (right 4 gjapis4, C=8

130

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Config Completion Time (Prioritized, Scenario 1, W=1)

30 ' ' ' ' | [
Success @
Failure
25 - -
>
20 1 o®%°w -
e
15 - ¥ -
B .
40 60 80 100 120 140

Configuration Preference (PETSc)

rioritized, Scenario 1, W=16)

Config Completion Time (P

30 ' ' ' | [
Success ¢
Failure
25 -
20 - . . 0%@6&9 -
S5
o
15 A -
10 b e T Loeel R
. e
40 60 80 100 120 140
Configuration Preference (PETSc)
Config Completion Time (Prioritized, Scenario 1, W=256)
30 ' ' ' ' | [
Success ¢
Failure
25 -
20 | . Lt L _
. N o
< @ °
15 N e s O -
+ + o+ o
. o ©
. L. %00 oo%%&
0 o 5t e . . o A -
N P A .3
. 5. - " o
5t ° o R
° o ? @
0
0 20 40 60 80 100 120 140
Configuration Preference (PETSc)
Config Completion Time (Prioritized, Scenario 1, W=2048)
30 ' ' ' ' ' -
Success ¢
Failure
25 - -
20F * . . -
. RS
15 . DRI -
N N Ooo&oo %
10k . ¥
" <
. ; i L B %
5to © -
o @ ?
0 . . h
0 20 40 60 80 100 120 140

Configuration Preference (PETSc)

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Elapsed Time (hrs)

Config Completion Time (Prioritized, Scenario 2, W=1)

30 ' ' ' ' ' | [
Success @
Failure
25 -
Qo@)&&
0 o B
20 PSS -
_—
15 -
10 ¢ PRI -
0 L= M
0 20 40 60 80 100 120 140
Configuration Preference (PETSc)
Config Completion Time (Prioritized, Scenario 2, W=16)
30 ' ' ' ' ' | [
Success ¢
Failure
25 -
L RS
20 g 153 %535
15 -
10 L _
5L -
0 i fadiias L L i L
0 20 80 100 120 140

Configuration Preference (PETSc)

Config Completion Time (Prioritized, Scenario 2, W=256)

30 r ' | '
Success ¢
Failure
25t -
20 - - © -
% % oo
. . 3 LS
+ R Y
I e -
o * © &
w0}, R
. o
- ° © o °
5L e e e B
. °
0 e R L e® ‘
0 20 40 60 80 100 120 140

Configuration Preference (PETSc)

Config Completion Time (Prioritized, Scenario 2, W=2048)

30 ' ' ' ' ' '
Success ¢
Failure
25 - -
20 - N -
y o R
FEN . ® oo
. @O %
10 - w + - -
R oo T o © .
- o o o &
0 L e @
0 20 40 60 80 100 120 140

Configuration Preference (PETSc)

Figure 6.6: Configuration completion times with differentwow sizes (PETSc,
Scenario 1 (left 4 graphs) and Scenario 2 (right 4 graphsy NG=8

131

If all configurations finish testing in preference order, rtiteis metric will
always be 1. In fact, for many of our experiments using therfirzed strategy
with a window size of 1, the metric stayed very close to 1.

However, in some cases test results come out of order. Thig®tor several
reasons. First, the times for building components conthinevarious configura-
tions are different, and client machine speeds can also #éttyough we schedule
more highly preferred configurations earlier, results faode configurations may
be produced out of order. Second, when we fail to build a corepbversion
encoded by a DD-instance, multiple configurations thataarthe DD-instance
are classified as failures at the same time, while other migtdyhpreferred con-
figurations are still being executed.

Figure 6.7 and 6.8 show conformance to preference orderudocessfully
tested configurations, when we execute the InterComm and @&EESplans for
the two scenarios with the hybrid strategy and with the piired strategy, with
different window sizes. The x-axis in the figures is the plaacaition time, nor-
malized to the range between 0 to 1, because plan executhas tre different
across simulations, and the y-axis is conformance to pFater order.

Since test results for configurations can come out of pratexerder (even for

the proritized strategy with the window size of 1), and thdeuris ignored in the

132

Conformance to Preference Order (InterComm, Scenario 1)

1 [
0.8 | .
je i
T
x| TR
Hybrid =====
0.2 - Prioritized (W=1) —— _
. Prioritized (W=16) =--------
Prioritized (W=256) e
0 ‘ ‘ ‘ ‘ _ Prioritized (W=2048) |
0O 01 02 03 04 05 06 07 08 09 1
Time Proportion
Conformance to Preference Order (InterComm, Scenario 2)
1+
/
9 .
T
o

Y
0.2 1 Prioritized (W=1) —— _
- Prioritized (W=16) =--------
Prioritized (W=256)
0 w ‘ ‘ ‘ _ Prioritized (W=2048)

0O 01 02 03 04 05 06 07 08 09 1
Time Proportion

Figure 6.7: Conformance to preference order varying the aingdize (Inter-
Comm, M=4, C=8, Successfully tested configurations)

133

Conformance to Preference Order (PETSc, Scenario 1)

| | | | | | | | | |
1 L
0.8 |,
S 06
@
o
0.4 |
Hybrid ===
02t Prioritized (W=1) —— _
' Prioritized (W=16) ===sss==-
Prioritized (W=256) -
0 ‘ ‘ ‘ ‘ | Prioritized (W=2048) ‘
0 01 02 03 04 05 06 07 08 09 1
Time Proportion
Conformance to Preference Order (PETSc, Scenario 2)
kel
IS
ad

Prioritized (W=1) —— _

021 Prioritized (W=16) =--------
Prioritized (W=256) -
0 ‘ ‘ ‘ ‘ _ Prioritized (W=2048) |

0O 01 02 03 04 05 06 07 08 09 1
Time Proportion

Figure 6.8: Conformance to preference order varing the windize (PETSc,
M=4, C=8, Successfully tested configurations)

134

hybrid strategy and prioritized stratetgy with large wimdsizes, it was difficult to
see a pattern if we merge test results from the simulaticosaigraph. Therefore,
we applied a smoothing technique calleokss smoothinf1, 22] for making it
easier to analyze the results. As seen in the figures, witmdow size of 1 the
plan execution conforms almost completely to developeiepeaces and that the
degree of conformance drops as we increase the window sineextkeme case
is when we execute the plans with a window size equal to the glee. For that
case, the prioritized strategy shows similar behavior ®ftibrid strategy, since
both strategies execute the test plan completely ignohiegieveloper specified

preferences.

6.5 Summary

In this chapter, | have presented a systematic method foritizing the order in
which configurations are tested, in order to obtain testlte$or configurations of
higher importance rapidly, in resource-constrained sibns. To accomplish this
goal, I first designed a method for specifying developersfgnences over compo-
nents and their versions, and then | used the preferencegtemmining priorities

of configurations, by computingreference vectorfor all configurations, refer-

135

ring to the specified component and version preferences.

| also presented a test plan execution strategy that sa®dohfigurations
considering both the priorities of configurations and thsteequired for testing
the configurations. In order to test more important confijars earlier during
the test plan execution, | ordered configurations by presiand then dispatched
the one with the highest vector value to a client requestingva configuration.

Results from our empirical studies clearly show that ouhtegue can help
developers obtain results for preferred configuration$yaarthe overall testing
process, compared to a cost-based strategy. The resutighiemost important
configurations may be produced almost at the end of the placution without
the prioritization technique. In addition, while explogithe performance varying
the number of employed client machines and cache entriempehine, | also
observed that the preference-guided plan execution caevacmore benefits with
larger cache sizes.

Developers can control the strength of preference enfoecgiiny specifying
a parameter, thevindow size The prioritized strategy uses the parameter value
for increasing prefix reuse locality and for decreasing wedtundancy between
multiple clients. The simulation results showed that therized plan execu-

tion can perform comparably to the cost-based strategy hartier window sizes

136

and can produce results for more important configuratiopgha with smaller

window sizes.

137

Chapter 7

Conclusions and Future Work

In this chapter, | conclude this dissertation by reviewihg thesis and its contri-

butions and present several directions for future work.

7.1 Thesis and Contributions

In this dissertation, | supported the following thesBirect-dependency-based
configuration sampling techniques can be effectively eypapldor testing build-
compatibility of component-based systeribe goal of this research was to de-
velop effective and efficient methods and tools for perforgncompatibility test-
ing of complex and evolving component-based systems. Thiibations made

by this dissertation include:

138

An effective and efficient method for sampling and testing cofigurations

| have developed and presented in this dissertation theafystoach for testing
the compatibility of component-based systems by systeaigtisampling and
testing configurations. That approach consisted of a weflkhdd test process, a
formal model for capturing the configuration space of congrarbased systems,
algorithms for sampling and testing configurations, andlffreatool that realizes
the algorithms.

Based on the observation that a successful component lsuifebstly influ-
enced by other components on which the component direcpgrtts, the con-
figuration sampling algorithm can produce a set of configonatthat effectively
identify compatibilities between directly-dependent gaments (DD-instances)
and those configurations can be tested efficiently on maltiphchines in paral-
lel. Compared to testing all possible configurations, whicmfeasible in many
cases, results from experiments and simulations on twamsiigesoftware sys-
tems showed that the presented approach can quickly igerdihpatibility re-
sults (successes/failures of DD-instances), and for tséeBys evaluated in this

dissertation, the results were identical to the resultsftioe exhaustive approach.

139

A set of techniques to support incremental compatibility testing

I have developed a set of techniques to support incremeamapatibility testing
as components in a system model evolve over time. The methtsists of a test
adequacy criterion that defines DD-instances that shoutddied for a modified
model and an algorithm for producing configurations thassathe criterion. The
method is incremental in that DD-instances tested in a e=stign are not tested
again in subsequent sessions unless they are containeafigurations for testing
other DD-instances. In addition, two cache-aware optitionatechniques were
developed to further decrease test effort by utilizing pest results. Simulations
over the 5-year evolution history of components in the medai two large-scale
systems showed that the testing time can decrease by a lamenaby applying
incremental testing and also the optimization techniqaessignificantly reduce

the time required for the test.

A method for prioritizing configurations via developers’ preferences

It is important to provide developers with the compatililiesults they have the
most interest early in the test process when test resouredsrated. To achieve
that goal, | have developed a method that consists of a simwgeof specifying

developers’ preferences on components and their versaonalgorithm for com-

140

puting the priorities of sampled configurations based omptbeéerences and finally
a scheduling policy that guides the test order of configarstby considering both
the priorities of configurations and the cost required fatitey the configurations.
Developers are allowed to control how rigidly to enforce pineferences over time
savings.

The results from empirical studies demonstrated that theguted method can
enable developers to acquire more important compatilvgisylts early in the test-
ing process, and also showed that the scheduling policy edaorm comparably
to the pure cost-based strategy when a large cache spaeelabéeror developers

weaken the rigidity of preference enforcement.

7.2 Future Work

There can be many possible extensions and improvements tedfk presented
in this dissertation. Although a set of algorithms and téghes have been devel-
oped for testing compatibilities between components &ffely and efficiently,

this work may still be improved in several directions.

141

Automatic extraction of constraints and dependencies

The CDGs and Annotations used for experiments and simukatiothis disser-
tation were created manually by carefully inspecting tHerimation acquired by
working with system developers or from available documeHtswever, manual
modeling can be error-prone and faulty models can produséeading compat-
ibility results. Therefore, it is necessary to investigatethods that can extract
component dependencies and constraints automaticattydmmponent distribu-
tions. In fact, there is no standard way of building compdsgehut there are
common practices used by many developers. Although conmpaterelopers
can use any method in which they check dependency requiteraed build their
components, it may be possible to extract dependenciesarsdraints system-
atically for components packaged with well-establishethgonent distribution

methods, such as RPM [11, 37], Autotools [31, 69] and Ant.[44]

Exploring other coverage criteria

Through extensive experiments and simulations with realehsystems, this dis-
sertation has demonstrated that the cost required to perf@mpatibility tests
can be reduced by a large amount and compatibilities beta@®ponents can be

discovered effectively by testing a reduced set of configoma that satisfy a test

142

adequacy criterion, namely DD-coverage. Despite the obgdrenefits, it is still
necessary to explore new types of coverage criteria thatpoatuce fewer but
perhaps a more effective set of configurations. Especidly}component directly
depends on multiple other components, each with many vesstbe number of
DD-instances for the component increases by a large amadnt & very expen-
sive to build all configurations for testing the DD-instasce

This problem may be addressed by employing combinatoriataetion test-
ing techniques developed for generating test cases that ogeractions between
test factors of a system [19, 23, 24, 25, 27, 28, 52, 53, 67iskothe techniques,
it is necessary to investigate how to compute test obligatemd how to enforce

constraints for the computation.

Extending to functional and performance testing

This research has focused on testing clean component lasldse first step to
support compatibility testing of component-based systelimshe build process,
many component build tools check whether basic featurasined)by a compo-
nent are provided by other existing components in a conftguraHowever, com-
ponent developers often provide test cases that test thectdrehavior of their

components after deployment, since components cleanliydsua configuration

143

can show incorrect behavior at run-time.

This means that the functional and performance test shauloelbformed in
addition to build testing. It is possible that testing dirdependencies is not
enough to ensure the correct behavior of a component in ageoafion. More-
over, it is also possible that a configuration for running ggenance test suite
cannot be realized as a virtual machine. Therefore, it wbeldeeded to investi-
gate a new coverage criterion and also methods for proviggoronfigurations on

physical machines, when configurations cannot be realigetitmal machines.

Adapting the Cloud computing paradigm

As observed from the experimental and simulation resultkisresearch, testing
the compatibility of a component-based system requiresga @mount of storage
and computing power — even for building components witharfqgrming other
types of tests. Moreover, developers often cannot test atibilities with com-
mercial components because they cannot afford those canpmnor because
source code for the components cannot be obtained.

Although the Rachet tool has been developed with a clagsittederver archi-
tecture and all experiments have been run on a cluster of imestthe tool could

also be implemented to be run as a service in a Cloud computivigpement.

144

Considering the recent growth of Cloud computing [10, 40],hsan extension
may open up the possibility for developers of independestesys to save test

effort when configurations for testing the compatibilitytbé systems are shared.

145

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

Accelerate software development, testing and deployment with the VBIwigu-
alization platform - whitepaper, VMware Inc.
http://cruisecontrol.sourceforge.net.

http://mercurial.selenic.com.

http://subversion.tigris.org.

http://www.nongnu.org/cvs.

Streamlining software testing with IBM, Rational and VMware: Test lalmemation
solution - whitepaper. VMware, 2003.

Accelerating test management through self-service provisioning - pditer.
VMware, 2006.

Virtual lab automation (a quantum leap in it cost reduction and applicateeldp-
ment process improvement) - whitepaper. VMware, 2006.

E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKendeR. Croz, S. Ham-

marling, J. Demmel, C. H. Bischof, and D. C. Sorensen. LAPACK: A posthear

146

algebra library for high-performance computers. Aroceedings Supercomputing
'90, pages 2-11, Nov. 1990.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kwmski, G. Lee,
D. A. Patterson, A. Rabkin, |. Stoica, and M. Zaharia. Above the cloAd®erkeley
view of cloud computing. Technical Report UCB/EECS-2009-28, Diepamt of
Electrical Engineering and Computer Sciences, University of CalifotriBzekeley,
Feb. 2009.

[11] E. C. Bailey.Maximum RPM Sams, first edition, 1997.

[12] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, ®.Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. TexdtRéport
ANL-95/11 - Revision 2.3.2, Argonne National Laboratory, Sep. 2006.

[13] L. Bass, P. Clements, and R. Kazm&uftware Architecture in PracticAddison-
Wesley, 2nd edition, 2003.

[14] K. Beck. Extreme Programming Explained: Embrace Chandealdison-Wesley,
1999.

[15] B. Boehm. Some future trends and implications for systems and sofemgiereer-
ing processesSystems Engineering(1):1-19, Jan. 2006.

[16] B. Boehm and C. Abts. COTS integration: Plug and praylEEE Software

32(1):135-138, Jan. 1999.

147

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Bosch and P. Bosch-Sijtsema. From integration to composition: Oimitect
of software product lines, global development and ecosystdmgnal of Systems
and Software83(1):67-76, Jan. 2010.

R. C. Bryce and C. J. Colbourn. Test prioritization for pairwiseraddion coverage.
ACM Software Engineering Note30(4):1-7, Jul. 2005.

R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework cfegly methods
for constructing interaction test suites. Rroceedings of the 27th IEEE/ACM In-
ternational Conference on Software Engineering (ICSE@Papes 146-155, May
2005.

P. Clements and L. NorthropSoftware Product Lines: Practices and Patterns
Addison-Wesley, 2001.

W. Cleveland. Robust locally weighted regression and smoothirtesgits.Jour-
nal of the American Statistical Associati@8:829—836, 1979.

W. Cleveland and S. Devlin. Locally weighted regression: An agginoto re-
gression analysis by local fittinglournal of the American Statistical Associatjon
83:596-610, 1988.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The @Eystem: An
approach to testing based on combinatiorial dedig&E Transactions on Software
Engineering 23(7):437-444, Jul. 1997.

D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The conabiabdesign

approach to automatic test generatitlhEE Software13(5):83—-88, Sep. 1996.

148

[25] M. B. Cohen. Designing Test Suites for Software Interaction TestiRgD thesis,
University of Auckland, New Zealand, Sep. 2004.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequaspftware prod-
uct line testing. InProceedings of the ISSTA 2006 Workshop on Role of Software
Architecture for Testing and Analysis (ROSATEA@@es 53—63, Jul. 2006.

[27] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbo@anstructing test
suites for interaction testing. IAroceedings of the 25th IEEE/ACM International
Conference on Software Engineering (ICSE@2)ges 38-48, May 2003.

[28] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A deterministicsigralgorithm
for pairwise interaction coverage. Rroceedings of the IASTED International Con-
ference on Software Engineering (IASTED(Hges 242—-252, Feb. 2004.

[29] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cditliftizased fea-
ture models and their specializatioBoftware Process: Improvement and Practice
10(2):7-29, Jan./Mar. 2005.

[30] K.Czarneckiand A. Wasowski. Feature diagrams and logicsteTdned back again.
In Proceedings of the 11th International Software Product Line Confer€aPLC
2007) pages 23-34, Sep. 2007.

[31] M. B. Doar. Practical Development Environment®’Reilly Media, first edition,

2005.

149

[32] J. Dongarra, J. D. Croz, S. Hammarling, and I. S. Duff. A sdewél 3 basic linear
algebra subprogramsACM Transactions on Mathematical Softwale(1):1-17,
Mar. 1990.

[33] A. Duarte, G. Wagner, F. Brasileiro, and W. Cirne. Multi-envirommsoftware
testing on the Grid. IfProceeding of the 2006 Workshop on Parallel and Distributed
Systems: Testing and Debugging (PADTADQG). 2006.

[34] A. N. Duarte, W. Cirne, F. Brasileiro, and P. Machado. GridUnift®are testing
on the Grid. InProceedings of the 28th IEEE/ACM International Conference on
Software Engineering (ICSEQGYlay 2006.

[35] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritizaofamily
of empirical studieslEEE Transactions on Software Engineerji2$(2):159-182,
Feb. 2002.

[36] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, amsijbe
Prentice Hall, 2005.

[37] E. Foster-JohnsorRed Hat RPM GuideRed Hat, first edition, 2003.

[38] M. Fowler. http://martinfowler.com/articles/continuousintegration.html, Ma§&0

[39] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Wdyse is so
hard. IEEE Softwarel12(6):17—-26, Nov. 1995.

[40] R. Giordanelliand C. Mastroianni. The cloud computing paradigmr&haristics,
opportunities and research issues. Technical Report RT-ICARG@L, Institute

of High Performance Computing and Networking, Apr. 2010.

150

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rotheltn#e empirical
study of regression test selection technique$roceedings of the 20th IEEE/ACM
International Conference on Software Engineering (ICSEP8yes 188-197, Apr.
1998.

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rotheltn#e empirical
study of regression test selection techniques. 10(2):184—-208, A(pt. 2

W. D. Gropp and B. F. Smith. Scalable, extensible, and portable ncahkbraries.
In Proceedings of the 1994 Scalable Parallel Libraries Conferepeges 87-93,
1994.

S. Holzner, D. Nehren, and B. Galbraitnt: The Definitive Guide O’'Reilly &
Associates, Inc, first edition, 2005.

M. N. Huhns and M. P. Singh. Service-oriented computing: Keycepts and
principles.|IEEE Internet Computing?(1):75-81, Jan./Feb. 2005.

J.-M. Kim and A. Porter. A history-based test prioritization technifpueegression
testing in resource constrained environment®roceedings of the 24th IEEE/ACM
International Conference on Software Engineering (ICSEpayes 119-129, May
2002.

J.-Y. Lee and A. Sussman. Efficient communication between paratigiams with
InterComm. Technical Report CS-TR-4557 and UMIACS-TR-2004t04versity

of Maryland, Department of Computer Science and UMIACS, 2004.

151

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J.-Y. Lee and A. Sussman. High-performance communication betpazraiiel pro-
grams. InProceedings of 2005 Joint Workshop on High-Performance Grid @bmp
ing and High-Level Parallel Programming Models (HIPS-HPGC 20@%r. 2005.

W. E. Lewis. Software Testing and Continuous Quality ImprovemeZiRC Press
LLC, 2000.

F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, »erdy, and

R. Treinen. Managing the complexity of large free and open sourceapaeased
software distributions. lProceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE#jes 199-208, Sep. 2006.

V. Massol and T. M. O'BrienMaven: A Developer’s Notebook)'Relilly Media,
2005.

K. Meagher, L. Moura, and L. Zekaoui. Mixed covering arrapgyraphs - to appeatr.
Journal of Combinatorial Designs

K. Meagher and B. Stevens. Covering arrays on grapbarnal of Combinatorial
Theory Series B95(1):134-151, Sep. 2005.

A. D. Meglio, M.-E. Begin, P. Couvares, E. Ronchieri, and E. Takacs. ETICS:
the international software engineering service for the Griburnal of Physics:
Conference Seried419, 2008.

A. Memon. Automatically repairing event sequence-based GUI tesssfor re-
gression testing.ACM Transactions on Software Engineering and Methodqglogy

18(2), Nov. 2008.

152

[56] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and Btdxa-
jan. Skoll: Distributed continuous quality assurance.Phoceedings of the 26th
IEEE/ACM International Conference on Software Engineering (ICSEpdyes
459-468, May 2004.

[57] A. Porter. Towards a distributed continuous certification procéss2roceedings
of the 21th International Parallel & Distributed Processing SymposiunD@B807)
2007.

[58] X.Qu, M. B. Cohen, and G. Rothermel. Configuration-awareaggjon testing: An
empirical study of sampling and prioritization. Rroceedings of the 2008 Inter-
national Symposium on Software Testing and Analysis (ISSTA,2041$)s 75-86,
Jul. 2008.

[59] B. Robinson and L. White. Testing of user-configurable softwgstems using fire-
walls. InProceedings of the 19th International Symposium on Software Reliability
Engineering (ISSREO8pages 177-186. ABB, Case Western Reserve Univ., Nov.
2008.

[60] B. Rumpe and A. Sclkider. Quantitative survey on Extreme Programming projects.
In Proceedings of the 3rd International Conference on Extreme Progiag and
Flexible Processes in Software Engineeripgges 95-100, May 2002.

[61] R. Sabharwal. Grid infrastructure deployment using SmartFrogntdolyy. In

Proceedings of the 2006 International Conference on Networking amdices

153

[62]

[63]

[64]

[65]

[66]

[67]

[68]

(INCS06) Jul. 2006.

H. Srikanth and L. Williams. On the economics of requirements-baseddss
prioritization. ACM Software Engineering Note30(4):1-3, Jul. 2005.

H. Srikanth, L. Williams, and J. Osborne. System test case prioritizafioew and
regression test cases.Pnoceedings of 2005 International Symposium on Empirical
Software EngineeringNov. 2005.

A. Sussman. Building complex coupled physical simulations on the Grid Iwith
terComm.Engineering with Computer22(3—4):311-323, Dec. 2006.

A. Sussman and H. Andrade. Enabling coupled scientific simulationseoGitial.

In J. Dongarra, K. Madsen, and J. $vewski, editorsProceedings of the PARA
2004 Workshop on State-of-the-Art in Scientific Compuytimume LNCS 3732 of
Lecture Notes in Computer Scieppages 217-224. Springer-Verlag, 2006.

T. Syrjanen. A rule-based formal model for software configuration. Techiire-
port A55, Helsinki University of Technology, Laboratory for Thetical Computer
Science, Dec. 1999.

K.-C. Tai and Y. Lei. A test generation strategy for pairwise testli§cE Transac-
tions on Software Engineering8(1):109-111, Jan. 2002.

C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. OPIUMti@pl package in-
stall/uninstall manager. IRroceedings of the 29th IEEE/ACM International Con-

ference on Software Engineering (ICSEQ¥3ges 178-188, May 2007.

154

[69]

[70]

[71]

[72]

[73]

[74]

[75]

G. V. Vaughn, B. Elliston, T. Tromey, and I. L. TayloGNU Autoconf, Automake,
and Libtool Sams, 1st edition, 2000.

K. Wallnau, S. Hissam, and R. SeacoBlilding Systems from Commercial Com-
ponents Addison Wesley Professional, 2001.

W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A stuflgfective re-
gression testing in practice. Proceedings of the 8th International Symposium on
Software Reliability Engineering (ISSRE9@ages 230-238. bell communications,
Nov. 1997.

C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering arrays fdiaént fault char-
acterization in complex configuration spa¢dEEE Transactions on Software Engi-
neering 32(1):20-34, Jan. 2006.

C.Yilmaz, A. Porter, and D. C. Schmidt. Distributed continuous qualispesnce:
The skoll project. InProceedings of the 1st International Workshop on Remote
Analysis and Measurement of Software Systems (RAMS3a3P003.

[.-C. Yoon, A. Sussman, A. Memon, and A. Porter. Direct-depeiogi-based soft-
ware compatibility testing. IdProceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASEOX). 2007.

[.-C. Yoon, A. Sussman, A. Memon, and A. Porter. Effective andlable soft-
ware compatibility testing. IiProceedings of the 2008 International Symposium on

Software Testing and Analysis (ISSTA 20@8ges 63—74, Jul. 2008.

155

[76] 1.-C. Yoon, A. Sussman, A. Memon, and A. Porter. Prioritizing comgra compati-
bility tests via user preferences.Bmoceedings of the 25th International Conference

on Software Maintenance (ICSMQ®ep. 2009.

156

