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Natural scenes and ecological signals are inherently complex and understanding of 

their perception and processing is incomplete.  For example, a speech signal contains 

not only information at various frequencies, but is also not static; the signal is 

concurrently modulated temporally.  In addition, an auditory signal may be paired 

with additional sensory information, as in the case of audiovisual speech.  In order to 

make sense of the signal, a human observer must process the information provided by 

low-level sensory systems and integrate it across sensory modalities and with 

cognitive information (e.g., object identification information, phonetic information).  

The observer must then create functional relationships between the signals 

encountered to form a coherent percept.  The neuronal and cognitive mechanisms 

underlying this integration can be quantified in several ways: by taking physiological 

measurements, assessing behavioral output for a given task and modeling signal 

relationships.  While ecological tokens are complex in a way that exceeds our current 

  



understanding, progress can be made by utilizing synthetic signals that encompass 

specific essential features of ecological signals. 

 

The experiments presented here cover five aspects of complex signal processing 

using approximations of ecological signals : (i) auditory integration of complex tones 

comprised of different frequencies and component power levels; (ii) audiovisual 

integration approximating that of human speech; (iii) behavioral measurement of 

signal discrimination; (iv) signal classification via simple computational analyses and 

(v) neuronal processing of synthesized auditory signals approximating speech tokens.  

To investigate neuronal processing, magnetoencephalography (MEG) is employed to 

assess cortical processing non-invasively.  Behavioral measures are employed to 

evaluate observer acuity in signal discrimination and to test the limits of perceptual 

resolution.  Computational methods are used to examine the relationships in 

perceptual space and physiological processing between synthetic auditory signals, 

using features of the signals themselves as well as biologically-motivated models of 

auditory representation.  Together, the various methodologies and experimental 

paradigms advance the understanding of ecological signal analytics concerning the 

complex interactions in ecological signal structure. 
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Introduction 
 

Processing of the sensory environment by the nervous system at all levels 

(periphery, ascending and descending sensory pathways, cortex) requires the parsing 

of complex signals, both ecological and non-ecological.  For example, in the case of 

an auditory speech signal, the auditory pathway must analyze parameters such as the 

frequency content, temporal evolution and location of a signal simultaneously and 

often in the presence of other auditory signals that may lower the intelligibility of the 

signal of interest (Belin et al., 2000; Hickok and Poeppel, 2000; Hickok and Poeppel, 

2007).  In the case of an audiovisual speech signal, auditory and visual information 

must be combined across space and time to form a coherent percept (Molholm et al., 

2002; Molholm et al., 2004; Amedi et al., 2005; Macaluso and Driver, 2005; Miller 

and D'Esposito, 2005; Molholm et al., 2006; Lalor et al., 2007; Kelly et al., 2008).  

The challenge for an experimenter then is not only to determine how the nervous 

system performs the computations required for signal parsing, but also the correct 

signals to employ. 

 

Determination of the correct signals to use largely depends on the 

experimental questions being investigated.  Simple signals (e.g. sinusoids) are useful 

in determining basic sensory processing (such as filter or neuronal spiking dynamics) 

but the results gained from such experiments may not necessarily be generalizable to 

a larger set of signals, especially complex ecological ones.  On the other hand, signals 

such as audiovisual speech are too complex in a manner that exceeds the current state 

of the art, though they have the ability to inform about how cognition relates to signal 
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processing.  One way to examine the interaction between basic sensory processing 

and cognitive aspects of signal evaluation (essentially, having one’s cake and eating it 

too) is to employ synthetic signals that capture relevant (or salient) parameters of 

ecological signals, e.g., sine wave speech.  These signals serve as an intermediate 

level between simple signals that may lack ecological relevance and the more 

complex, incompletely understood, ecological/environmental signals that are 

typically processed.   

 

The main advantage of employing synthetic signals is that the experimenter 

has the ability to parametrically control specific parameters or salient dimensions as 

parametric control of ecological tokens is limited at best.  For example, when 

investigating timbre (tone color) perception, using synthetic signals and then 

modifying specific attributes of those signals (e.g., harmonic content, envelope 

structure) can allow the researcher to explore the interaction between signal 

dimensions/parameters as well as their independence from one another (Caclin et al., 

2007).  Naturally, employing synthetic signals is not enough.  The use of such signals 

must be coupled with the appropriate experimental paradigms (e.g., physiological or 

behavioral) and analysis techniques (e.g., evoked response component power, 

observer acuity) to characterize how signals of an intermediate nature inform about 

sensory information capture in the periphery, the complex transformations that occur 

in the ascending and descending sensory pathways and cognitive input used in 

forming a coherent percept. 
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The experiments presented in this thesis employ synthetic signals of an 

intermediate nature to explore (i) frequency and amplitude contributions of the 

individual components of two-frequency auditory signals and how the tone content is 

reflected in the major auditory evoked component; (ii) examining audiovisual 

integration over extended time scales using signals that contain the major features of 

an ecological speech signal; (iii) examine the relationship between the mathematical 

descriptions of auditory signals and the judgment of a human observer as they relate 

to timbre perception using signals that are approximations to vowels; (iv) preattentive 

processing of signals that are approximations to vowels.  The experiments use several 

paradigms: magnetoencephalography (MEG) to evaluate cortical physiology, 

discrimination tasks to probe observer resolution and clustering and texture analyses 

to explore possible timbre space configurations.  The first two chapters (cortical 

evaluation of two-frequency complexes and audiovisual integration) have already 

been published. 

 

M100 Responses to Two-Frequency Complex Tones 
 

Magnetoencephalographic (MEG) and electroencephalographic (EEG) studies 

have determined the response properties of the auditory evoked components.  These 

components, namely the P50/M50, N1/N1m/M100 and P2/P2m are sensitive to such 

features as the bandwidth, fundamental frequency (F0), harmonic content and spacing 

and complexity of an auditory signal (Roberts et al., 2000; Chait et al., 2004; Shahin 

et al., 2005; Shahin et al., 2007; Chait et al., 2010).  The most well-studied of these 

components is that of the N1/N1m/M100, which tends to display its peak activity at 
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~100 msec post-signal onset.  The latency and amplitude of the M100 is modulated 

by parameters such as waveform shape, fundamental frequency, pitch and signal level 

(Poeppel et al., 1997; Roberts et al., 1998; Stufflebeam et al., 1998; Roberts et al., 

2000).  In the frequency domain, signals with lower detection thresholds and that the 

auditory system are more sensitive to (~1000 Hz) exhibit faster M100 latencies and 

larger RMS amplitudes than lower frequency signals (~100 Hz).  Regarding signal 

power level, it has been demonstrated that an increase in signal level amplitude 

results in faster M100 latencies, especially for low-frequency signals (Stufflebeam et 

al., 1998). 

 

The complex interactions between frequency content and signal level warrant 

further consideration due to the structure of ecological signals.  Ecological signals 

contain components of varying frequencies and these components have varying 

power levels (Poeppel et al., 1997; Vihla et al., 2000; Vihla and Salmelin, 2003; 

Jacobsen et al., 2004a; Jacobsen et al., 2004b).  The majority of M100 studies use 

either very simple signals (e.g., single-frequency sinusoids) or ecological signals 

(e.g., vowel tokens), but there are few studies investigating signals of an intermediate 

nature and how their processing is reflected in the M100.  The first chapter describes 

an experiment using auditory signals consisting of two frequencies (in different 

critical bands and without harmonic and/or octave relationships) presented at different 

signal levels to examine how frequency content and power level of the components is 

reflected in M100 latency and amplitude (Stufflebeam et al., 1998).  The experiment 

is designed to examine the relationship between the physical structure of a stimulus, 
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its perceptual attributes and the neuronal processing reflected in the M100.  The 

deeper motivation is to understand how different features of signals are integrated 

across critical bands and to explore how the modulation of the M100 might be used to 

explore cognitive evaluation of signals. 

 

Elicitation of Audiovisual Steady-State Responses using Pseudo-Speech Signals 
 

The ecological speech signal usually consists of both an auditory and a visual 

component that must be integrated across space and time to form a coherent percept 

(Macaluso and Driver, 2005; Miller and D'Esposito, 2005; Lalor et al., 2007).  The 

auditory signal typically consists of linguistic units and other extra-linguistic sounds 

used in communication.  A reductive characterization of the auditory speech signal is 

that it is a broadband signal that undergoes simultaneous amplitude and frequency 

modulations.  The visual signal generally consists of facial movements; movement of 

the mouth, eyes and facial muscles help to increase the intelligibility of the signal as 

they are paired with vocal excitation (Sumby and Pollack, 1954).  The salient aspects 

of the visual component of an audiovisual speech signal could then be reduced at the 

very least to mouth movements.  The importance of having both auditory and visual 

information is supported by data which indicate that the pairing of a matched visual 

component to an auditory signal substantially decreases reaction times and increases 

signal-to-noise ratio, rather than vice-versa.   

 

The benefits of having redundant information in an ecological communication 

signal are reflected in neuronal dynamics both in both the temporal and frequency 
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domains.  Evoked response temporal analyses have demonstrated that redundant 

information affects processing in what have been considered traditionally unisensory 

cortical areas, exhibiting a facilitation of the latency and amplitude of evoked 

components (Molholm et al., 2002; Besle et al., 2004).  In the frequency domain, 

specific frequency bands are associated with such tasks such as working memory and 

speech processing (Senkowski et al., 2007; Senkowski et al., 2008).  Regarding the 

ecological speech signal, redundant information (i.e. having both and auditory and a 

visual component in the signal) results in an increase in power of several frequency 

bands (Howard and Poeppel, 2010; Luo et al., 2010).  The advantage of having 

crossmodal information present in a signal is thus reflected in both behavioral and 

physiological measures of signal analysis (i.e., RT, response additivity). 

 

A synthetic signal of an intermediate nature approximating a speech signal 

would need to represent the broadband carrier characteristics of the auditory 

component, the mouth movements of the visual component, the quasi-steady-state 

nature of the signal and any of the modulation inherent in ecological speech.  The 

experiment presented in the second chapter employs three-octave pink noise 

(broadband carrier) amplitude modulated within the range typical syllabic rate for 

human speech (3.125 Hz) and paired with an ellipse modulated at the same rate to 

simulate mouth movements.  The temporal and spectral characteristics of the evoked 

response are analyzed to determine how the presence of redundant information affects 

neuronal processing. 
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Psychophysical Discrimination and Clustering of Ecologically Approximate 
Synthetic Signals 
 

Auditory signal processing, like sensory processing in other modalities, is 

perhaps fundamentally pattern recognition processing.  Auditory cognition involves 

not only low-level decomposition along the ascending and descending auditory 

pathways (e.g., extracting spectral content, temporal modulations) but also higher-

level inputs (e.g., phonemic information).  Auditory signals are then grouped into 

functional categories in order for the observer to navigate the environment based on 

their content and structure as well as relatedness to other signals. 

 

A full accounting of how this process is accomplished is incomplete.  

Previous research has established how the ascending and descending auditory 

pathways parse signals, but this has not led to any great insight concerning category 

formation (McAdams et al., 1995; Hickok and Poeppel, 2007; Okamoto et al., 2010).  

It is known however, that the auditory signal attribute most responsible for signal 

identification and hence category formation is that of timbre.  Timbre is a 

multidimensional attribute that is integral to the identity of the source of a signal 

(McAdams et al., 1995; Lakatos et al., 1997; Lakatos, 2000; Meyer et al., 2006).  

Psychophysical data provide evidence of the salient signal dimensions that contribute 

to timbre perception (Plomp et al., 1967; Plomp and Steeneken, 1969; Pols et al., 

1969; Caclin et al., 2007).  The majority of studies focus on how spectral information 

contributes to timbre perception, but other dimensions (e.g., spectral spread and 

irregularity) depending on task demands and the signals employed also contribute. 
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A logical way to examine timbre perception and possible signal taxonomies 

would be to employ psychophysical paradigms in addition to computational analyses 

that create possible taxonomies based on mathematical representations of auditory 

signals.  Several psychophysical paradigms have been successfully implemented 

(e.g., multidimensional scaling, forced-choice, verbal or semantic scales, Garner 

interference) to examine the relationships between the different dimensions in an 

auditory signal, while testing the limits of timbral resolution.  Computational analyses 

are instructive in that their use can illustrate how low-level/intrinsic signal features 

and mathematical representations of signals, similar to the operations performed by 

the auditory system, can create possible functional categories and signal taxonomies 

(Fellowes et al., 1997; Lakatos, 2000). 

 

The two experiments presented in the third chapter utilize a psychophysical 

discrimination task and simple computational analyses to probe the limits of spectral 

resolution regarding timbre and how signal features can combine to create functional 

taxonomies, respectively.  The signals employed are synthetic approximations to 

vowel tokens in accordance with source-filter theory (Fant, 1980; Hillenbrand et al., 

1995; Fant et al., 2000; Diehl, 2008); timbral differences within vowel categories are 

created by removing harmonics from the source waveform.  The psychophysical 

discrimination task tests the ability of a human observer to discriminate signals based 

on their spectral structure (von Bismarck, 1974a,b; Luo et al., 2007), with special 

attention given to the discrimination (or lack thereof) of metamers – physically 

different yet perceptually identical signals.  The clustering analyses examine how 
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mathematical descriptions that relate to the signal processing performed by the 

auditory pathway (waveform structure, power spectral density, gross structure and 

fine feature enhancement) give rise to possible signal taxonomies and timbre spaces.  

The psychophysical and computational results are then compared to see how well 

they agree and to what extent each paradigm is useful for investigating auditory 

perception. 

 

Preattentive Classification and Physiological Measurement of Ecologically 
Approximate Synthetic Signals using MEG  
 

As noted previously, the evoked response components are modulated by 

different aspects of the physical structure of auditory signals, with each of the 

components exhibiting different sensitivities to different parts of a signal’s physical 

structure.  The M50 component is sensitive to signal bandwidth and signals having 

larger bandwidths typically result in more robust M50 responses (Chait et al., 2004).  

The N1/N1m/M100 component is sensitive to features such as F0, vowel transfer 

function structure, signal complexity and waveform structure (Poeppel et al., 1997; 

Roberts et al., 1998; Stufflebeam et al., 1998; Gage and Roberts, 2000; Roberts et al., 

2000; Mäkelä et al., 2004; Salajegheh et al., 2004; Tiitinen et al., 2004, 2005; Howard 

and Poeppel, 2009).  The P2/P2m component tends to be more robust when auditory 

signals are more complex, e.g., the signals contain a large number of harmonics 

(Shahin et al., 2005; Shahin et al., 2007).  Parametrically controlled synthetic signals 

with timbral differences are an ideal way to examine how differences in auditory 

signal structure modulate the latency and amplitude of evoked response components 

since adjustment in different attributes (e.g. harmonic content) can be used to probe 
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how different features are processed and how processing of these features are 

reflected in the evoked response component (Caclin et al., 2005; Caclin et al., 2007; 

Caclin et al., 2008). 

 

 Modulation of evoked response component amplitude latency does not 

necessarily depend on behavioral measures or some sort of participant training 

(Brattico et al., 2003).  Rather, evoked response sensitivity to features such as spectral 

envelope, fundamental frequency and harmonic content are processed preattentively, 

even in synthetic signals sharing major features of ecological signals (Vihla et al., 

2000; Vihla and Salmelin, 2003; Jacobsen et al., 2004a; Jacobsen et al., 2004b; 

Tiitinen et al., 2004, 2005).  The latency and amplitude of the M100 simultaneously 

reflects fundamental frequency and spectral envelope structure and can thus be used 

as a measure of the differences in these dimensions between signals.  More 

specifically, the M100 exhibits hemispheric asymmetries in the processing of signals.  

For example, based on neuroimaging data, it has been argued that the LH 

preferentially processes temporal information whereas the RH preferentially 

processes spectral information in speech (Poeppel and Hickok, 2004), though 

multiple scales are present.  This has been extended to some extent for synthesized 

approximations presented in isolation (Tiitinen et al., 2004, 2005). 

 

 The goal of the fourth experiment is to use synthesized signals approximating 

vowels (identical to those used in the computational experiment) to examine to what 

extent spectral structure is reflected in the evoked component response.  A priori, it is 
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expected that fundamental frequency, bandwidth and spectral envelope structure will 

be represented in both amplitude and latency for the evoked response components.  

The main goal of the experiment is to determine whether or not the evoked response, 

specifically the M100, reflects the ability to resolve subtle differences in harmonic 

structure, either in the component’s amplitude or latency. 
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M100 Responses to Two-Frequency Complex Tones 

Introduction 

Magnetoencephalographic (MEG) studies have shown that both physical and 

perceptual attributes of auditory stimuli are reflected in the timing and magnetic field 

deflection of the major auditory-evoked component, called the N100m or M100 

(Mäkinen et al. 2004; Salajegheh et al. 2004; Hari et al. 1980; Hari and Mӓkelӓ 1988; 

Eulitiz et al. 1995; Fujioka et al. 2003; Seither-Preisler et al. 2003; Kirveskari et al. 

2006; Lütkenhӧner et al. 2006).  This field component, occurring ~100 msecs after 

stimulus onset, has been shown to be sensitive to differences in the frequency, 

waveform shape (e.g., sinusoidal versus sawtooth), and intensity of the stimulus (see 

Roberts et al. 2000 for review).  For example, lower frequency signals (~100 Hz), a 

frequency range typical of the fundamental frequency of male voices, show longer 

latencies and decreased field deflections than higher frequency signals (~1000 Hz), a 

frequency range typical for the first formant in speech (Fant 1960).  Crucially, this 

relation holds even when frequencies are equated for loudness level.  However, this 

interaction is not static.  The latency and amplitude in response to lower frequency 

signals can be decreased and increased, respectively, by increasing the intensity 

(amplitude) of the signal (Stufflebeam et al. 1998).   

 

It has also been argued that the processing reflected in the M100 reflects 

perceptual attributes of a stimulus (Roberts et al. 2000).  This implies that the 

perceptual attributes of signals are at least partially reflected in the latency and 
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amplitude of the M100 component, insofar as the particular attribute can be extracted 

by 80 msecs, the time at which the M100 is generated.  To that end, it is useful to 

investigate the link between loudness, a perceptual attribute of an auditory stimulus 

with a clear and obvious contribution from the physical structure (intensity) of the 

stimulus (although not a one-to-one relationship), and its effect on the latency and 

amplitude of the M100.  In short, the question is to contrast the effect on the M100 of 

direct physical properties of the signal and properties derived from the signal.   

 

The principal paradigm has been to play simple single signals (e.g., sinusoids 

and square waves) or single speech sounds (e.g., vowels) and to evaluate the timing, 

amplitude, and dipole localization of the M100 (Pantev et al. 1989; Eulitz et al. 1995; 

Diesch et al. 1996; Diesch & Luce 1997, 2000; Lütkenhӧner et al. 2001; Obleser et al. 

2003, Obleser et al. 2004 a,b).  On one hand, there have been numerous studies 

utilizing such signals that have been useful in characterizing response properties of 

the M100.  At the other extreme, studies using ecological signals such as speech and 

music employ stimuli that are acoustically and spectrally complex in a way that 

exceeds our current understanding.  However, there is not yet a rich literature on 

acoustic stimuli that are of an “intermediate” nature.  Therefore, the linking 

hypotheses between the processing of simple stimuli and the processing of 

ecologically natural stimuli remain a bit underspecified.  Signals such as speech, 

music, and natural and artificial sounds contain not only mixtures of frequency 

components but also components that contribute in unequal ways to the overall 
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structure of the signal, i.e., the power levels of the components may be heavily biased 

toward a single component or group of components.   

 

There are two—somewhat independent—motivations to pursue a deeper 

understanding of the M100 and its properties.  First, there is a need to understand 

more about auditory neuroscience in the context of human auditory processing, and 

specifically the integration across auditory channels and critical bands, with a view to 

the cortical parsing of complex signals.  The features of ecological signals contain 

components that must be integrated across a variety of critical bands and processing 

channels.  The M100 may be particularly well suited to elucidate relatively early 

cortical aspects of neuronal encoding of complex sound processing (see Chait et al. 

2006, 2007 for studies on the analysis of Huggins pitch and change detection, 

respectively).  A second motivation derives from the fact that the M100 response and 

its predictable variability have been used increasingly in the investigation of auditory 

cognition.  For example, the M100 latency dependency on frequency has been used to 

test theories of vowel perception (Poeppel 1997; Vihla et al. 2000; Vihla & Salmelin 

2002, Tiitinen et al. 2005), virtual pitch (Monahan et al. 2008), and other phenomena.  

Insofar as the M100 is used to test models in auditory cognitive neuroscience, studies 

that investigate the factors modulating it merit further attention.   

 

To put the study into context, the mid- and long-latency auditory-evoked 

potentials/auditory-evoked fields have been productively used in many studies 

investigating auditory perception.  For example, investigation of the latency of 
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evoked components has yielded important insights into auditory system development 

(Eggermont 1995), functional reorganization (Hirata et al. 1999; Brattico et al. 2003; 

Nikjeh et al. 2009; Okamato et al. 2009), cochlear damage (Dietrich et al. 2001), and 

loudness perception and processing in both humans and nonhuman primates (Tucker 

et al. 2001; Tanji et al. 2010).  Our study was designed to test specific hypotheses 

concerning loudness perception and signal component integration across critical 

bands.  Because complex sounds contain multiple frequencies that vary in their 

relative power, it is important to get a more quantitative understanding of the 

response structure.   

 

In this study, we used MEG, a technique well suited for the analysis of 

temporal information in auditory cortex (Roberts et al. 2000; Lütkenhӧner & Poeppel 

2010), to examine the effect on the M100 of variations in the frequency and 

amplitude of complex sinusoidal signals, i.e., signals composed of sinusoids of more 

than one frequency.  Response attributes of the M100 for complex stimuli are 

compared with the M100 response attributes for the individual components of the 

complex stimuli.  Intuitively speaking, the most straightforward hypothesis may be 

that the integrative processing (across frequency and time) required by complex 

signals may be associated with response prolongation, amplitude increases, and other 

factors reflective of the engagement of additional neural resources because of the 

increased complexity implicit in the perceptual analysis of structured signals.  

Interestingly, we observe the opposite pattern for response latency.   
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Materials and Methods 

Subjects 

Fourteen right-handed (Oldfield 1971) normal-hearing adult subjects (nine 

females) underwent MEG scanning.  One subject was excluded from the analysis 

because of an insufficient signal to noise ratio for all experimental conditions.  Age 

range was 19 to 27 yrs, mean 21.8 yrs.  Subjects were compensated ($10/hr) for their 

participation.  Presentation of stimuli and biomagnetic recording was performed with 

the approval of the institutional committee on human research of the University of 

Maryland, College Park.  Before the start of the experiment, informed written consent 

was obtained from each subject. 

 

Threshold Testing 

 Threshold testing was conducted using the Hughson-Westlake paradigm 

(Carhart & Jerger 1959) while the subject was in the MEG shielded room.  Subjects’ 

hearing threshold was determined using 250, 500, 1000, and 2000 Hz tone pulses 

delivered via an Earscan 3 audiometer (Micro Audiometrics Corp., Murphy, NC).  

Potential subjects with 5 dB HL difference between ears or a hearing threshold 15 dB 

HL for any frequency were rejected. 

 

Perceptual Loudness Estimation 

 Perceptual loudness was estimated by placing the subject in the MEG scanner 

with the experimental earphones (to simulate experimental conditions) before the start 
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of the experiment.  Each subject was asked to discriminate a pair of signals, with both 

members of a pair consisting of sinusoids.  Subjects had to indicate which pair of 

signals had the same loudness (Moore 2004).  The first signal in a pair was a 1000 Hz 

signal presented at 60 dB above threshold.  The second signal was 127, 252, or 800 

Hz signal at one of the three varying levels.  The levels were chosen based on 

previous loudness studies and standards (ISO 226:2003), which give an estimate of 

the SPL for the loudness of sinusoids of varying frequencies to be matched to a 1000-

Hz sinusoid.  For all subjects, the levels of the lower frequency signals ranged from 

50 to 75 dB SPL.  The three levels were as follows: (a) 5 dB below the SPL most 

likely to provide a match to the 1000 Hz signal, (b) at the sound pressure level most 

likely to match that of the 1000 Hz signal, and (c) 5 dB above the sound pressure 

level most likely to match the 1000 Hz signal.  All signals were of 1 sec duration and 

had a 7 msec cos2 onset and offset.  Subjects were first asked to evaluate the loudness 

of the signal pairs independently as many times as needed and then to respond via 

button press when the two signals had the same perceptual loudness.  If the signals 

were not matched in loudness then the level of the volume of the lower frequency 

signal was adjusted by the experimenter, and the subject was asked to repeat the task 

until the perceptual loudness was matched.  The signals with the same perceptual 

loudness were carried over and used as the 0 dB signals for the experiment (see 

below).   
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Stimuli 

Signals for the experiment were generated with MATLAB (v7, The 

Mathworks, Natick, MA).  Four sinusoidal signals of the frequencies 127, 252, 800, 

and 1000 Hz were sampled at 44.1 kHz with 16-bit resolution.  Signals were 

generated using the sine function not the cosine function.  Duration was 400 msec 

with a 7 msec cos2 onset/offset ramp.  Complex signals consisted of combinations of 

127 Hz with 1000 Hz and 252 Hz with 800 Hz.  Individual frequencies and their 

combinations were selected to be in non-overlapping critical bands.   

 

The two lower frequencies were presented at five different signal levels (with 

respect to the 800 and 1000 Hz signals 60 dB above the subject’s threshold).  A 

reference value of 1000 Hz was used because of the human auditory system’s 

sensitivity to frequencies between 1000 and 2000 Hz, as well as the well known 

M100/N100m and associated parameters for this frequency.  The relative values used 

were -20, -10, 0, +10, and +20 dB.  The two high-frequency signals, the 800 and 1000 

Hz signals, were only presented at one loudness level (0 dB).  The two complex 

signals were presented in mixtures of amplitudes for a total of 22 signals (12 single 

signals and 10 complex signals; see Fig. 1).  The energy of the complex signals and 

simple signals was not identical because it was important to keep all signal 

components that constituted the complex signals identical to their simple signal 

counterparts to accurately gauge the effect on M100 latency and peak root mean 

square (RMS).  Each stimulus was presented 100 times, pseudorandomly interleaved.  

Complex signals were more akin to “chords” rather than being mathematically 
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additive; as such, special care was taken to make sure that both ears received the same 

signal being applied.  The experimental materials were passively listened to; no 

response was required from the subjects.  To maintain the vigilance of the subjects, a 

distracter task was incorporated into the experiment.  Approximately Gaussian white 

noise (400 msec duration) was used as the target during the experiment and was 

pseudorandomly presented with the signals (17% of total).  Subjects had to press a 

button in response to the noise target; these trials were excluded from analysis. 

 

Delivery 

All experimental stimuli were presented using a Dell Optiplex computer with 

a SoundMAX Integrated HD sound card (Analog Devices, Norwood, MA) via 

Presentation stimulus presentation software (Neurobehavioral Systems, Inc., Albany, 

CA).  Stimuli were delivered to the subjects binaurally via Eartone ER3A transducers 

and nonmagnetic air tube delivery (Etymotic, Oak Brook, IL).  The inter-stimulus 

interval varied randomly in the time interval between 300 and 700 msecs.  The 

decision to use a relatively short interstimulus interval (ISI) was based on practical 

considerations; the use of such an ISI ensured that subjects would not be in the 

scanner more than 1 hour, after which considerable discomfort may occur.  Previous 

studies have investigated the impact of ISI on the peak and latency of the N1/N1m 

(Hari et al. 1982) with shorter ISIs exhibiting longer latencies.  However, because it 

takes 10 to 12 secs for the response to the previous stimulus to disappear completely, 

extending the ISI may be artificially inflating the M100 response.  Subjects were 

instructed to stay as still as possible while positioned inside of the scanner; no 
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mechanical measures were taken (such as a foam neck support) to maintain that 

position.  However, the amount of deviation between the start of the experiment and 

its conclusion was quantified by taking measurements of the subjects’ head positions 

using marker coils. 

 

Recording 

Data were acquired using a 160-channel whole-head biomagnetometer with 

axial gradiometer sensors (KIT System, Kanazawa, Japan).  Recording bandwidth 

was DC-100 Hz, with a 60 Hz Notch filter, at 1000 Hz sampling rate.  Data were 

noise reduced using time-shifted principal component analysis (de Cheveigné & 

Simon 2007), trials averaged offline (artifact rejection ± 2.5 pT), bandpass filtered 

between 0.03 and 20 Hz, and baseline corrected over the 100-msec prestimulus 

interval.  The relatively low upper frequency cutoff value is not unusual; auditory-

evoked field studies generally have filter cutoff values of 20 to 30 Hz (see Tiitinen et 

al. 1993; Eulitz et al. 1995).  In addition, time-shifted principal component analysis 

does not remove eye-blink artifacts, but trials with excessive frontal field deflections 

were excluded from the analysis.   

 

Data Analysis: Peak RMS and Latency Analysis 

Selection of maximally responsive auditory channels was performed in a 

pretest, using 250 and 1000 Hz sinusoidal signals of 400 msec duration presented at 

65 dB SPL.  On average, the 1000 Hz signal resulted in a stronger auditory response.  

Five channels from source and sink from each hemisphere (i.e., 20 channels total) 
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with the maximum measured magnetic field deflection to the 1000 Hz signal were 

used for subsequent analysis.  M100 peak RMS amplitude and latency (search 

window: 90 to 210 msecs after stimulus onset) for each signal for each hemisphere 

were determined using the localizer channels.  M100 peak RMS and latency data 

values for each hemisphere for each condition were averaged across the subjects (see 

Figs. 2 and 3 for visualization).  The signal evaluation window ranged from 100 msec 

pretrigger to 600 msec posttrigger.  M100 peak RMS time values for all data channels 

were collected and averaged across subjects for each stimulus and were plotted 

topographically to confirm the M100 response.  In addition, when a subject’s data did 

not show an auditory cortex magnetic field topography for a given condition, after 

averaging and filtering, that data (peak RMS and latency) was excluded from further 

analysis (Luo & Poeppel 2007).  A total of 31 such exclusions were made.   

 

Across-subject responses for all subjects showing a quantifiable M100 were 

characterized by collecting the individual RMS vectors into a matrix (according to 

condition) and then calculating the RMS of that matrix.  The individual RMS values 

were calculated from the sensors selected from the pretest data for all time points of 

the observed response.  The peak RMS value and latency for the across subject 

response was quantified in the same time window as the individual subject data.  The 

motivation for using the RMS of the RMS (see Fig. 7) is as follows: (a) MEG is a 

technique well suited for within-subject analyses and (b) because the sensor positions 

are not in the same place for all subjects, unlike EEG where there are consistent 

points of reference, grand averages are not as straightforward.  Although some 
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researchers do present grand averaged data, the interpretation of the results still 

requires RMS.  Because of the inherent difficulty of presenting grand averages of 

channels in MEG data because of the fact that channels are not in canonical positions, 

we use the RMS of RMS measure to present grand averages over a derived measure 

(RMS) that provides an index of regional activation.  This has proven a valuable and 

valid measure in previous studies (Chait et al. 2006).   

 

To assess the significance of the effect of auditory signal manipulation on the 

M100 latency and peak RMS, the values were collected and analyzed using repeated 

measures analysis of variance (ANOVA) (SPSS 16.0, SPSS Inc., Chicago, IL).  

Missing M100 values (see above) were replaced with the across-subject series mean 

for the particular signal type.  A full factorial design was employed with amplitude 

and latency as the dependent measures and hemisphere (right hemisphere (RH) versus 

left hemisphere (LH)), signal type (simple versus complex), and loudness level as the 

factors.  Three additional planned comparisons were performed using paired t-tests.  

The first compared simple low-frequency signals with complex signals (e.g., 127 Hz 

20 dB to 127 Hz 20 dB/1000 Hz) for the M100 latency in the same hemisphere, the 

second compared the same kind of signal across hemispheres (e.g., 127 Hz 0 dB RH 

versus 127 Hz 0 dB LH), and the third analysis compared high-frequency signals with 

complex signals (e.g., 800 –252 Hz 10 dB/800 Hz) within the same hemisphere.  All 

statistical effects (repeated measures ANOVA and paired t-tests) are reported as 

significant at p < 0.05.   
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Data Analysis: Dipole Source Estimation 

Because (a) the M100 response should not solely be defined by its peak 

amplitude and latency and (b) the evidence that stimulus frequency may influence the 

sources of the M100, we conducted an analysis of the estimated position of the M100 

sources.  Dipole sources were estimated based on data from five subjects who 

exhibited quantifiable M100 responses for a majority of conditions and from whom 

we had robust digitized head-shape data.  We did not have access to structural 

magnetic resonance images from our subjects and are consequently unable to perform 

individual anatomically constrained localizations.  Single equivalent current dipole 

estimates with a goodness-of-fit less than 80% were excluded from subsequent 

statistical analyses.  A simple spherical head model was used to determine the source 

of the M100 response (x, y, z axes) as well as the dipole angles (Φ and θ) using 40 

channels per hemisphere (20 source and 20 sink) with the greatest magnetic field 

deflection for a single moving dipole.  Given their differences in spectral 

composition, we performed a single equivalent current dipole analysis to assess 

whether the different signals were associated with measurably different source 

localizations.  The dipole modeling, performed on individual subjects head shapes 

using a spherical model, implemented in the MEG160 platform, yielded x, y, and z 

coordinates of the dipole, angles Φ and θ, as well as dipole moment in nAm.  

Statistical significance of the values of x, y, z, Φ, and θ were assessed using a mixed 

effects ANOVA and Wilcoxon signed-rank tests in R using the “languageR” 

statistical package (R Foundation for Statistical Computing, v 2.8.1; Baayen 2008).  
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Wilcoxon tests were performed on the values of Φ and θ both across and within 

subjects to asses any potential differences in the source orientation of the M100 

response.  The nonparametric tests were performed on single-frequency data values 

versus complex-frequency data values, e.g., 127 Hz versus 127/1000 Hz and 1000 Hz 

versus 127/1000 Hz.  We employed the more conservative nonparametric tests 

because we could only use the data for 5 of 13 subjects for dipole localization.  

Because of such a small sample size out of the original subject pool, we thought it 

was more correct to assume that the data were not parametric.   

 

Results 

The stimuli typically elicited a robust M100 response, although the quality of 

the M100 varied as a function of signal type.  Figure 2 illustrates a typical evoked 

field distribution recorded from 157 channels for one subject presented with one 

complex signal.  The displayed (averaged and filtered) data show the prominent 

magnetic field deflection in both RH and LH channels.  The peak (and trough) 

responses demonstrate the canonical distribution associated with the sensor 

configuration used in the current experiment (Fig. 2a).  The spatial extent of the 

response, and the putative temporal lobe origin, is well captured by the absence of 

evoked activity along the midline channels.  Calculating the topographic distribution 

of the response at the peak (Fig. 2b) provides evidence that the M100 recorded here 

yields the standard spatial response pattern observed for most auditory signals.   
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The butterfly plot depicted in Figure 3a shows the response to a 252 Hz signal 

at the +20 dB presentation level for one subject.  Both the individual channel 

responses (black) and the aggregate response across channels (RMS, red) point to the 

large peak slightly after 100 msecs after stimulus onset.  The quantitative analysis 

across experimental conditions that we perform here is based on a more selective 

group of channels.  Figure 3b illustrates the dependent variable.  The left and right 

panels show channels from the LH and RH, respectively.  As described above, we 

selected five channels from the source and sink of each hemisphere (black lines) and 

calculated the RMS response (red) across the 10 selected channels in each 

hemisphere.  The subsequent analyses here focus on the RMS peak derived from this 

visualization of the data.   

 

Figure 3c shows the RMS for a 252 Hz signal presented at the five different 

loudness levels.  The RMS curves show clearly the relationship between the peak 

response and loudness; in particular, for this subject and these data, one observes a 

clear grouping, with the two lowest loudness values being associated with 

significantly lower and later M100 peaks, replicating previous findings on loudness 

effects on the M100 (Stufflebeam et al. 1998).   

 

Figure 4 summarizes the mean latency and peak M100 values across subjects 

for the 127, 252, 800, and 1000 Hz signals at the equal loudness (0 dB) level.  The 

800 and 1000 Hz signals demonstrate decreased M100 latencies and increased peak 

M100 values relative to the 127 and 252 Hz signals.  Although the peak RMS values 
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across hemispheres show no significant difference (Fig. 4a), the RH shows 

significantly decreased latencies relative to the LH for all frequencies, replicating 

previous data.   

 

Figure 5 summarizes the mean peak RMS and latencies for simple low 

frequency and complex signals.  Relative to simple signals, the complex signals show 

a significant increase in the peak RMS at all loudness levels for both sets of complex 

signals (127/1000 Hz and 252/800 Hz; Figs. 5c,d).  Complex signals also show 

decreased latencies relative to simple signals; however, for the loudest simple signals 

and complex signals, the latency values are approximately the same (Figs. 5a,b).  This 

decrease in M100 latency is contrary to the intuitive prediction that complexity would 

yield slower latency values because of increased cortical processing as a result of 

allocating more neuronal resources to parse the incoming signal.  However, it has 

been shown in macaque auditory cortex that signal complexity decreases the latency 

of physiological responses (Lakatos et al. 2005).  In addition, the time range of the 

M100 latency across loudness levels is not as great for the complex signals as 

opposed to the simple signals (~130 to 180 msecs for simple signals, ~120 to 140 

msecs for complex signals).  As with simple signals, the latency of the M100 is faster 

in the RH than in the LH.  There were two significant main effects regarding M100 

peak latency for the ANOVA that replicate findings from previous studies, namely 

those of hemisphere (F(1,12) = 28.397) and loudness level (F(2.125,25.504) = 

20.246).  The data show that the RH yields faster M100 peak latency values than the 
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LH and that as the level of the signal increases, the M100 peak latency decreases (see 

Figs. 5a,b).   

 

The core result of the ANOVA is the finding that complex signals yield faster 

M100 peak latencies than low-frequency simple signals (F(3,36) = 23.730).  Across 

all loudness levels, the complex signals generated faster mean M100 values, although 

not all the mean latency values were significant (see below).  There were two 

interaction effects: a two-way interaction effect of signal type loudness level 

(F(12,144) = 4.726) and a three-way effect of hemisphere signal type loudness level 

(F(6.282,75.387) = 3.088).  The complex signals generated faster M100 latencies at 

low signal levels (-20 to 0 dB) but not for the higher signal levels.  The three-way 

interaction indicates that the two-way interaction was confined to the RH.   

 

In addition, the planned comparisons involving paired t-tests on the M100 

peak latency for simple low-frequency signals versus complex signals (within 

hemisphere) indicated that on average, the simple signals, except at the highest 

loudness levels, generated slower M100 peak latency values relative to the complex 

signals.  All values for the paired comparisons and their significance were greater 

than t(12) = 3.46 and r  = 0.707 for the RH and t(12)  = 2.63 and r = 0.604 for the LH.   

 

Figure 6 summarizes the across subject group response in terms of the peak 

and latency of the RMS of individual subject RMS vectors.  We observe that the 

pattern for the maximum RMS value and its latency hold for both the simple and 
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complex tones, for all combinations explored.  Crucially, the loudest and fastest 

latency simple signals (both low and high frequencies) peak at ~130 msecs, except for 

the 800 and 1000 Hz signals in the RH, where the M100 response peaks at ~120 

msecs.  As with the mean peak latency ANOVA, there were several main significant 

results regarding the mean peak RMS value, those of signal type (F(3,36) = 35.086), 

loudness level (F(4,48) = 34.644), and the two-way interaction of signal type 

loudness (F(12,144) = 6.729).  No paired comparisons between simple and complex 

signals across hemispheres were performed on the peak RMS value because there was 

significant overlap upon graphical inspection and that there was no significant 

difference between hemispheres resulting from the ANOVA analysis (see Figs. 5c,d).   

 

The experiment shows that as signal level increased, the M100 peak RMS 

increased and the latency decreased.  For 127 and 252 Hz single signals, the range of 

the M100 latency was about the same (~130 to 180 msecs), with no obvious 

lateralization.  The effect size for the M100 amplitude is the same for both the LH 

and RH for the 127 and 252 Hz signals.  For both single and complex signals, for 

both hemispheres, the M100 latency seems to converge on the same approximate 

value (~125 msecs), indicating that the latency reaches a possible point of saturation.   

 

Mean M100 latency (~130-180 msecs) across subjects for 127 and 252 Hz 

single signals at all loudness levels, for both hemispheres, was approximately the 

same.  As the signal amplitude increased, the M100 latency decreased and peak RMS 

value increased.   
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Additional ANOVAs were performed on the data without excluding any data.  

For the ANOVA performed on the latency of the M100, significant effects were 

found for hemisphere (F(1,12) = 16.754), signal type (F(3,36) = 10.427), and 

loudness level (F(1.951,23.407) = 5.527).  No significant two-way and three-way 

effects were found.  For the ANOVA performed on the peak RMS of the M100, 

significant effects were found for signal type (F(3,36) = 48.221), loudness level 

(F(2.194,26.331) = 33.621), and signal type loudness level (F(12,144) = 10.651).  No 

other significant interactions were found.  Analyses with and without replacement 

both found significant effects of hemisphere and loudness level for M100 latency and 

signal type, loudness level, and type level for the RMS.   

 

In no spatial dimension was there a systematic effect of stimulus on the 

localization.  This is consistent with (i) the resolution of the method and model 

employed, and (ii) the fact that even expected spatial differences (e.g., between 250 

and 1000 Hz) are not at all reliable (see Lütkenhӧner 2003 for extensive data and 

discussion).  The mixed effects ANOVA performed on the dipole source data found 

only a significant interaction of hemisphere (F(1,152) = 5112), not surprising because 

of the independence of hemispheric responses.  No other significant responses were 

found.  The across-subject and within-subject Wilcoxon signed-rank tests did not find 

any statistical differences in the orientation of the M100 source.   
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Discussion 

The major auditory-evoked component, the M100/N100m, exhibits variation 

in both the magnetic field amplitude and the peak latency as a function of signal 

frequency and level.  In this study, we expand on the dominant paradigm to 

investigate to what extent the relative level of components and complexity of a signal 

affect the magnetic field deflection and peak latency of the M100.  The signals for the 

current experiment are an important intermediate level of spectral complexity 

between simple sinusoids and more ecologically valid signals such as vowels or 

musical tones.  Typical MEG studies focusing on the M100 component use either 

simple sinusoidal signals or more complex speech tokens (e.g., synthetic vowels with 

three sinusoidal or approximately sinusoidal components) but do not examine how 

the individual simple components of a complex signal contribute to the overall M100 

response of the complex signal.  The data for the simple signals replicate previous 

findings, namely that as the signal level increases, the field deflection increases and 

the peak latency decreases and that the RH exhibits faster latencies than the LH 

(Stufflebeam et al. 1998; Lütkenhӧner & Klein 2007; Howard & Poeppel 2009).  The 

analysis was performed in sensor space, not source space, to stay as close as possible 

to the recorded data without making source configuration assumptions.  However, the 

sources of the auditory M100 are well understood (Lütkenhӧner & Steinstrater 1998), 

and hypotheses about localization are not at issue in this experiment.  Although we 

did not obtain anatomic magnetic resonance images for subjects and can therefore not 

perform high-resolution anatomically constrained source localization on individual 

subjects, the contour maps for both simple and complex signals are indistinguishable 
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from the patterns in the prior literature investigating the cortical sources underlying 

the M100.  The cortical sources lie in the superior temporal lobe and are likely to 

include multiple distinct generators.  The data we report here are highly likely to be 

associated with the same cortical generators.  We were able to verify that there were 

no signal-driven source differences when using single equivalent current dipole 

modeling with a spherical head model derived from individual subject head shapes.   

 

The core finding of this study is that complex signals demonstrate increased 

amplitude but decreased peak latency values.  The finding that the magnetic field 

amplitude increases with complexity is not surprising: an increase in the amount of 

signal across channels would drive more neurons, and an increase in activity seems a 

reasonable hypothesis.  What was unexpected is that complexity does not yield 

longer, slower latencies in cortical populations as a consequence of the integration 

across critical bands.  This could be for several reasons.  First, it could be that the 

signals are parsed and integrated very early in the ascending auditory pathway and the 

results of this early analysis are reflected in the response of cortical neurons.  The 

signals used contained components well separated in frequency (in different critical 

bands, no harmonic or octave relationships), and from a physiological and perceptual 

standpoint, the signals “appear” to be two separate sinusoids played simultaneously.  

Such a separation could theoretically aid in the analysis of the signals starting from 

the cochlea and proceeding to cortical neurons.   
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The data also suggest that certain frequencies may have a privileged analysis 

by the auditory system (i.e., the excitation thresholds for these frequencies are 

relatively low).  This is evidenced by the finding that even at perceptually matched 

loudness levels, the 800 and 1000 Hz signals elicit greater response amplitudes and 

shorter M100 peak latencies than the 127 and 252 Hz signals.  The preferential 

treatment (lower thresholds) given to these frequencies may contribute to the 

decreased M100 peak latencies of the complex signals used in the experiment.  This 

view is supported by the across-subject data presented in Figure 7.  Although the data 

presented in Figure 7 suggests that the latency of the complex signals is wholly 

determined by the higher frequency component, the results of the ANOVAs for 

latency found statistically significant effects for signal type and loudness level, a 

finding that cannot be completely discounted.  Even when both the power and the 

perception of the complex signals was dominated by the lower frequency component, 

the latency of the complex signal is closer to that of the higher frequency component.  

This creates an interesting dissociation between perception and the physiological 

response (see below).   

 

Another possible explanation for the data is related to the integration window 

of the M100 and the amount of sound energy located in that window.  The physical 

structure of the signal and any modulations to the signal within the first 30 to 40 

msecs after onset can have profound effects on the latency, amplitude, and shape of 

the M100 (Gage et al. 2000).  The complex signals have relatively more energy in 
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this time period than the simple signals.  The latency and amplitude facilitation may 

be analogous to that seen with pulse data (Sams et al. 1993).   

 

An alternative scenario is that because the complex signals used here more 

closely resemble ecologically valid signals (e.g., vowels), cortical neurons are more 

“tuned” to them (Jacobsen et al. 2004), and this facilitates more robust and faster 

processing.  It should be noted that the signals used contained only two frequency 

components as opposed to the three normally used with vowel tokens.  Perceptually, 

this is a significant difference.  Once three or more sinusoidal or approximately 

sinusoidal components are used, different perceptual effects can occur, based on the 

frequency grouping of the components as well as presentation of the signals (e.g., 

modulation and harmonic structure).  As a kind of “halfway point” between simple 

sinusoids and the complex signals encountered normally in the environment, the 

signals shed light on the interactive effects of the processing reflected in the M100 

response.  The signals used also give evidence of the interactive effects associated 

with the processing (hemisphere, signal type, level, etc.), which would be harder to 

disentangle if the same method in this experiment was applied to more complex 

signals.  However, this processing has a natural limit as evidenced by the apparent 

saturation of peak latency values (see Figs. 5a,b) whereby the values for both simple 

and complex signals converge onto the same approximate value.   

 

Previous data suggest that different signal frequencies have different M100 

source orientations, with low-frequency signals having the steepest angles in the 
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saggital plane and high frequencies the shallowest angles (Tiitinen et al. 1993).  The 

results of the mixed-effects ANOVA and the Wilcoxon tests on the phase angles of 

the responses did not replicate this finding.  This could be due to an inability to 

resolve these components because of the spatial limitations of MEG (Lütkenhӧner &  

Steinstrater 1998; Lütkenhӧner 2003).  However, previous studies have found that 

signal level and context may affect the localization of the source (Okamoto et al. 

2009; Tanji et al. 2010).  The primary purpose of this experiment, however, was not a 

focus on source localization but rather quantifying direct, surface measurements.  

Furthermore, even though we were not concerned with differences in hemispheric 

processing for the M100 for this particular study, it is vital to consider the data from 

each hemisphere separately for several reasons.  First, the M100 literature shows that 

the RH exhibits faster response latencies than the LH as well as a greater power at the 

peak.  Second, there is evidence that the hemispheres evaluate different aspects of the 

auditory signal.  Finally, the cytoarchitecture and the cortical folding between 

hemispheres differ.  Thus, it would be safer to evaluate each hemisphere as a separate 

entity for statistical purposes.   

 

One finding of particular interest is that of the dissociation of perception from 

the physiological response that we are quantifying.  It was previously proposed that 

the M100 reflects perceptual attributes of the signal rather directly (Stufflebeam et al. 

1998).  In this experiment, the lower frequency components at their loudest levels 

(+10 and +20dB) completely dominated the perception of the complex signals.  

However, the latency and the peak RMS values were not closer to the values for the 
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simple signals at those levels presented alone.  The data suggest that the loudness of a 

signal is not entirely reflected in the M100 in the case of complex signals or at least 

that there is another mechanism that assists in assessing the loudness of signal and its 

individual components.  At the very least, loudness cannot be “read out”—from a 

neural coding point of view—by decoding properties of the M100.  This is consistent, 

of course, with stable loudness estimates developing over a period of about 200 msecs 

(cf.  Moore 2004).   

 

Further studies into this topic should focus on the different grouping of 

signals, e.g., complex signals composed of 400 and 720 Hz components, or even 

components where frequencies are in the same critical band (Soeta & Nakagawa 

2006).  The facilitation of a complex signal and the proximity of its latency to that of 

a particular component may depend on the constituent frequencies, the position of 

those frequencies relative to hearing bandwidth, and their distance (logarithmic, 

linear, and log-linear) from each other.   
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Figures  

 
 

Figure 1.  Schematic spectrograms of stimuli.  Top panel, spectrograms of single 

sinusoids (left to right: 127, 252, 800, and 1000 Hz) at 0 dB loudness level. Middle 

panel, loudness series for 252 Hz single sinusoid from -20 dB at the far left to +20 dB 

at the far right.  Bottom panel, loudness series for 127/1000 Hz complex sinusoid. 

Panels show full range of lower frequency component of stimuli from -20 to +20 dB 

levels.   
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Figure 2a.  Sensor configuration of whole-head biomagnetometer.  The response of 

157 data channels for one subject’s response to a 252/800 Hz complex signal is 

shown.  The peaks and troughs in the evoked magnetic field illustrate the typical 

distribution of an auditory-evoked response measured by axial gradiometers.  The 

latency of M100 peak is 122 msecs.  As expected, channels along the midline, i.e., 

not overlaying temporal lobe cortical areas, do not reflect any interpretable evoked 

activity elicited by an auditory signal.  Figure 2b.  Contour map of the response peak 

of the sensor data shown in (a).  Magnetic field source is in red and sink is in green, 

depicting the canonical left vs. right dipolar configurations.   

 

 37 
 



 

 

Figure 3a.  Data from single subject for 157 channels in response to 252 Hz single 

signal at +20 dB presentation level.  Black lines are magnetic field deflections from 

each channel; red line shows the root mean square (RMS) across all data channels.  

The data shown are averaged (88 trials) and bandpass filtered (0.03 to 20 Hz).  This 

“global” view of the response (across hemispheres) illustrates the large and robust 

response profile elicited by the stimuli and provides a sense of the scale of the 

response under consideration in terms of timing and amplitude.  Figure 3b.  Response 

broken down by hemisphere.  For each hemisphere, the 10 best channels (maximum 

field deflection), 5 from the source and 5 from the sink, are selected and their RMS 

calculated.  Data from single subject shown in (a) for 252 Hz +20 dB single signal. 
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Left/right panels are the left/right hemispheres.  Figure 3c.  Data from single subject 

in (a) and (b) for 252 Hz single signals at all loudness levels (-20, -10, 0, +10, and 

+20 dB) from the 10 right hemisphere channels with the maximum magnetic field 

deflection.  Displayed are the RMS values with peaks corresponding to M100 for 

each signal.  Signals with lower intensity levels (-20 and -10 dB) show delayed 

latencies and lower peak M100 amplitudes relative to other signals in the series.  

Latency values: 140 (-20 dB), 137 (-10 dB), 129 (0 dB), 128 (+10 dB), and 128 (+20 

dB) msecs.   
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Figure 4a.  Mean M100 latency across subjects for single signals at matched loudness 

levels (matched sensation level).  Latencies for the right hemisphere are faster than 
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those for the left hemisphere.  The latency pattern replicates a number of previous 

reports that show a striking latency-frequency dependence independent of sensation 

level (see Roberts et al. 2000 for review).  Figure 4b.  Mean peak root mean square 

(RMS) values for M100 across subjects for single signals at matched loudness levels.  

Peak RMS values are approximately the same in each hemisphere (i.e., effect size is 

about the same).   

 

 

 

Figure. 5a.  127 Hz single signal and 127/1000 Hz complex signal M100 latencies 

across subjects, for both hemispheres, plotted separately.  Simple signals are indicated 

by the solid bold lines and complex signals by the dashed lines, the RH values are 

indicated by gray color and the LH by black color.  Data are the subject means at each 

loudness level for single signals and mixture levels for complex signals.  The means 
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and SEs of the means presented exclude subject data that did not generate the M100 

response.  As loudness level/mixture level (signal intensity and/or power) increases 

(see Materials and Methods section for details), the M100 latency decreases.  Data for 

single signals (solid lines) replicate findings from Stufflebeam et al. 1998 (latency 

decreases with increasing signal intensity and/or loudness).  Complex signals (dashed 

lines) also show decreased latency relative to single signals.  This pattern is contrary 

to the possible prediction that complex signals yield longer latencies.  Figure 5b.  The 

same data for the 252 Hz single signals and 252/800 Hz complex signals.  Figure 5c.  

Mean peak RMS values across subjects for 127 Hz single signals (solid lines) and 

127/1000 Hz complex signals (dashed lines).  Relative to single signals, complex 

signals generate an increase in the M100 amplitude across all mixture levels.  The 

effect size is the same in both the left hemisphere and right hemisphere.  Figure 5d.  

Analogous to the data in (c) for the 252 Hz single signals and 252/800 Hz complex 

signals.  
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Figure 6a.  127 Hz single signal and 127/1000 Hz complex signal M100 latencies 

across subjects, for both hemispheres, plotted separately.  Conventions used are the 

same as in Figure 5.  Data are the RMS of subject RMS vectors collected for subjects 

demonstrating a quantifiable M100 for a specific condition.  Across-subject RMS 

responses show the same response pattern as the mean values for the peak and latency 

of the M100. Figure 6b–d.  The same data as their counterparts in Figure 5, except 

that mean values are replaced with across-subject RMS values.   
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Figure 7a.  127/1000 Hz complex signal and 1000 Hz single signal M100 latency 

values for both hemispheres.  Conventions used are the same as in Figure 5.  Latency 

values are the RMS of subject RMS vectors collected for subjects demonstrating a 

quantifiable M100 for a specific condition.  The latencies of the complex signals are 

closest to that of the 1000 Hz signal.  Figure 7b.  The same data for the 252/800 Hz 

complex signals and 800 Hz single signal.  Figure 7c.,  Peak RMS values of across-

subject RMS vectors for 127/1000 Hz and 1000 Hz single signals for both 

hemispheres.  Figure 7d.  The same data for the 252/800 Hz complex signals and 800 

Hz single signal.  
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Elicitation of Audiovisual Steady-State Responses using 
Pseudo-Speech Signals 

 

Introduction 

The majority of naturalistic sensory experiences require the observer not only 

to segregate information into separate objects or streams but also to integrate related 

information into a coherent percept across sensory modalities - as well as across 

space and time (Amedi et al. 2005; Kelly et al. 2008; Lalor et al. 2007; Macaluso and 

Driver 2005; Miller and D’Esposito 2005; Molholm et al. 2002, 2004, 2007; Murray 

et al. 2005; Senkowski et al. 2006).  Integration of this information not only unifies 

the perception of events, but the presence of redundant information also facilitates 

recognition, increases signal-to-noise ratios, and decreases reaction times to 

crossmodal events (Driver and Spence 1998; Hershenson 1962; Senkowski et al. 

2006; Stein et al.1989).  Studies examining the simultaneous serial and parallel 

computations and physiological responses underlying the integration of information 

and the recognition of a unified percept have important implications for advancing the 

understanding of the binding of crossmodal information for ecologically valid 

behaviors such as motion perception and speech recognition and comprehension 

(Baumann and Greenlee 2007; Lakatos et al. 2008; Miller and D’Esposito 2005; 

Schroeder and Lakatos 2009; Schroeder et al. 2008).   

 

While it has traditionally been thought that processing of crossmodal events 

occurs primarily in association cortices (Jones and Powell 1970; Mesulam 1998), 
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much recent evidence indicates that information from other sensory modalities can 

influence cortical areas conventionally assumed to be unimodal (Ghazanfar and 

Schroeder 2006).  For example, electroencephalographic (EEG), functional magnetic 

resonance imaging (fMRI) and magnetoencephalographic (MEG) studies in humans 

have provided evidence that visual and somatosensory signals can influence neuronal 

activity in the auditory cortex (e.g., see Schroeder and Foxe 2005 for a review).  

Intracranial recordings and anatomical tracings in macaques have affirmed the 

existence of multisensory inputs to putatively unimodal cortical areas (Kayser et al. 

2008).  In humans, several functional imaging and intracranial studies have identified 

cortical networks involved in object recognition, auditory-somatosensory and visual-

somatosensory processing and integration of audiovisual speech (Calvert et al. 1999, 

2000, 2001; Molholm et al. 2004, 2006; Senkowski et al. 2008).  Human imaging 

studies have identified the superior colliculus, superior temporal sulcus, intraparietal 

sulcus, insula and several frontal cortical areas as being involved in crossmodal 

computation (Calvert et al. 2001).  With regard to speech, the traditional speech areas 

(perisylvian) have been implicated, as well as the superior parietal, inferior parietal, 

inferior frontal, superior temporal sulcus and left claustrum areas (Calvert et al. 2000; 

Campbell 2008; Fort et al. 2002; Olson et al. 2002).  These findings emphasize the 

importance of rapid synchronization of crossmodal information in heteromodal 

cortical areas.   

 

A number of event-related potential (ERP) studies have examined the 

temporal aspects of crossmodal interactions, motivated by the hypothesis that the 
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decrease in reaction time and facilitation of object recognition should be visible in 

electrophysiological recordings.  These studies have found significant activity within 

several latency windows, with the most surprising results for audiovisual interactions 

coming at ~50–100 ms post-stimulus onset, suggesting early cortical processing of 

audiovisual interactions (Molholm et al. 2002).  In addition, several ERP studies have 

also evaluated facilitation of bimodal interactions via an additive model (Besle et al. 

2004).  These studies typically have shown amplitude and latency facilitation due to 

bimodal interactions localized to multimodal cortical areas, as well as suppression of 

electrophysiological responses with cortical generators in (putatively) unimodal areas.   

 

A slightly different electrophysiological paradigm for investigating the 

computational advantages of crossmodal interactions is provided by the steady-state 

response (SSR), which is the result of entrainment to the temporal properties of a 

modulated stimulus.  This response has been documented for both visual and auditory 

signals and has been used extensively for clinical and diagnostic purposes (Sohmer et 

al. 1977).  Auditory SSRs are generally elicited by amplitude or frequency modulated 

signals, or both (e.g., Luo et al. 2006), while visual SSRs are typically elicited by 

transient high-contrast stimuli such as checkerboard reversals or luminance flicker.  

Though commonly measured with EEG, the same principles of frequency 

entrainment to periodic stimuli have been evaluated in MEG (Muller et al. 1997; Ross 

et al. 2000).  Ecological stimuli that are temporally extended and have a quasi-steady-

state nature, such as speech, can also be modeled via stimuli that approximate the 

excitation produced by domain-specific information (Grant and Seitz 2000).  SSRs 

 47 
 



 

have a potential further advantage: they can be used to exploit endogenous cortical 

oscillations.  These oscillations are amplified when preferential stimuli (i.e., stimuli 

that match the frequency and phase of the endogenous oscillations) constitute the 

sensory input (Schroeder and Lakatos 2009; Schroeder et al. 2008; Senkowski et al.  

2008).  Oscillatory activity of particular interest occurs in frequency ranges that are 

important for relevant behaviors such as speech comprehension, working memory 

function and selectional attention (Luo et al. 2010; Luo and Poeppel 2007; Senkowski 

et al. 2008; Talsma et al. 2006). 

 

The motivation for the current study was to model an ecologically typical 

audiovisual interaction, multisensory speech, incorporating some of its critical 

temporal attributes.  The auditory component of speech consists of relatively rapid 

frequency fluctuations in the spectral domain, along with slower amplitude 

modulation (i.e., the envelope)—reminiscent of an amplitude-modulated (AM) 

sinusoidal auditory signal.  The speech signal itself shows significant AM activity in 

the 2–16 Hz range (Steeneken and Houtgast 1980), and it has been shown that 

cortical decomposition of the speech envelope is particularly sensitive to frequencies 

in the range of 4–16 Hz.  For example, recent MEG evidence supports this 

generalization: Luo and Poeppel (2007) and Howard and Poeppel (2010) observed 

that fluctuations in the speech envelope are associated with intrinsic oscillations in the 

theta frequency band (~4–8 Hz).  Luo et al. (2010) extended that to the delta band (1–

3 Hz) when AV speech was used.  Paired with the auditory signal is a visual 

component in which facial features—and especially mouth movements—aid 

 48 
 



 

comprehension, especially in noisy environments (Sumby and Pollack 1954).  We 

thus crafted stimuli consisting of modulated auditory and visual components within 

the frequency range of the envelope of speech.  By building on results investigating 

SSRs to auditory and visual stimuli presented alone, we assess the SSR to bimodal 

audiovisual signals.   

 

For the experiment reported, the visual signal consists of an ellipse to 

approximate a mouth opening and closing, and the auditory signal consists of 

amplitude-modulated three-octave pink noise to approximate the envelope and the 

wideband carrier features of the speech signal.  We hypothesize that the SSRs elicited 

by concurrently modulated (comodal) audiovisual signals should be greater than the 

responses elicited by unimodally modulated auditory or visual stimuli, as reflected by 

the amplitude spectrum at the modulation frequency and its harmonics.  The 

increased signal power of the comodal conditions relative to unimodal conditions 

might reflect increased activity due to synchrony of different neural populations 

involved in evaluating the multimodal signal.  By manipulating the phase congruence 

of one modality relative to the other, we additionally aimed to elucidate the online 

cross-talk between modalities.  In the experiment presented here, we demonstrate the 

feasibility of bimodal SSR as an experimental paradigm, the cortical/sensor areas that 

are predictors for evaluating signal component synchronicity, and the particular SSR 

component that indexes signal envelope component synchronicity.   
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Materials and Methods 

 The experimental design and data presented result from an earlier 

experimental design where we determined the feasibility of eliciting a bimodal SSR 

(at two distinct modulation frequencies) as well as the most appropriate methods to 

analyze the data.  The major methodological points from that pilot experiment are as 

follows: (i) pretest stimuli to determine sensors that responded preferentially to a 

given modality (see pretests below); (ii) for the SSR analysis, we first averaged trial 

presentations, multiplied the data within the signal evaluation window in the temporal 

domain by a Kaiser window (β = 13) to remove spurious frequency contributions and 

minimize onset and offset responses and then evaluated the Fourier transform; (iii) 

evaluated the significance of SSR activity using a combination of F tests and 

Rayleigh’s phase test; (iv) evaluated onset responses using principal component 

analysis (PCA); (v) performed a crossmodal control analysis to verify the responses 

recorded were not sensor-dependent and (vi) evaluated the significance of the results 

using a combination of parametric and non-parametric statistical tests.   

 

The results of the prior experiment revealed whether or not there was any 

asymmetry in the response power to each modality, and also allowed us to fine-tune 

the signal evaluation methods and statistics used to evaluate the responses, which are 

applied to the data presented below.   
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Participants 

 Fourteen participants (thirteen right-handed; one ambidextrous, as tested by 

the Edinburgh Handedness Inventory (Oldfield 1971); six female) with normal 

hearing and normal or corrected-to-normal vision underwent MEG scanning.  Data 

from two participants were excluded due to an insufficient signal-to-noise ratio for all 

conditions.  Age range was 18–27 (mean 20.1 years).  Participants were compensated 

for their participation ($10/hr).  Presentation of stimuli and biomagnetic recording 

was performed with the approval of the institutional committee on human research of 

the University of Maryland, College Park.  Prior to the start of the experiment, written 

informed consent was obtained from each participant.   

 

Stimuli 

 In the strictest sense, all signals presented were bimodal; we use the terms 

‘‘unimodal’’ and ‘‘comodal’’ in a specific manner here to distinguish signal types.  

Unimodal refers to conditions where only one modality undergoes envelope 

modulation, while the other modality is presented with a static signal to control for 

basic sensory excitation.  Comodal conditions refer to simultaneous envelope 

modulation of both modalities.   

 

As mentioned in the Introduction, the modulation frequency employed was 

intended to model the naturalistic modulation rates found in speech.  Though the 

majority of SSR studies in both the visual and auditory domains use high modulation 

rates (e.g., 30–80 Hz), we observed unique challenges most likely due to the shape 
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and contrast of the experimental signals and the extended duration of the experiment 

(approximately 60 min).  During a piloting phase, we tested modulation frequencies 

of 6–8 Hz.  Although we observed SSR activity at these frequencies, modulation at 

these rates caused participant eye fatigue and discomfort, leading us to lower the 

modulation frequency to 3.125 Hz.  This modulation frequency satisfies several 

criteria: (i) it is in the range of speech modulation, (ii) it falls within a specific 

frequency bin to eliminate the need for filtering and windowing the SSR response to 

make signal extraction easier and reduce information loss and (iii) it was more 

comfortable for participants to attend to.   

 

The SSR-inducing stimuli consisted of five types of audiovisual signals 

presented at one modulation frequency, along with three target signals, for a total of 

eight signals.  The five types of SSR-inducing signals were: (i) amplitude-modulated 

three-octave pink noise presented concurrently with a static white rectangle on black 

background; (ii) a radius-modulated white ellipse on black background concurrently 

presented with approximately Gaussian white acoustic noise; (iii–v) a radius-

modulated ellipse paired with amplitude modulated three-octave pink noise at one of 

three envelope phase relationships (in phase, π/2 radians out of phase, π radians out of 

phase).  The amplitude-modulated three-octave pink noise and radius-modulated 

ellipses were modulated at 3.125 Hz with a modulation depth of 25% of peak 

amplitude and radius for audio and visual signals, respectively (Fig. 1).  The SSR-

inducing signals were 3.520 s in duration.  For the comodulated conditions, the 

auditory and visual signal components had the same onset and offset, with the 
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auditory component reaching the maximum value of the modulation envelope first for 

out-of-phase conditions.   

 

Auditory signal components were generated with MATLAB (R2009a, The 

Mathworks, Natick, MA) and consisted of a cosine wave envelope (3.125 Hz 

modulation frequency) applied to a three-octave pink noise carrier signal with 6 ms 

cos2 onset and offset ramps presented at approximately 65 dB SPL.  Using the cosine 

function for the envelopes was done to enhance the onset responses; the cosine 

function starts at the maximum value, which will generate a more robust onset 

response.  The pink noise was generated using the NSL Toolbox (Chi and Shamma, 

http://www.isr.umd.edu/Labs/NSL/Software.htm) for MATLAB.  The three-octave 

pink noise contained a lowest frequency of 125 Hz; these parameters cover the 

fundamental frequency range of the human voice as well as the frequency region 

where most of the energy arising from the first formant tends to be concentrated.  The 

signals were sampled at 44.1 kHz with 16-bit resolution.  Visual signal components 

were generated using Gnu Image Manipulation Program (www.gimp.org).  The 

radius-modulated white ellipses were centered on a 640 x 480 pixel black 

background, and ranged from 0.84° to 1.68° visual angle for the minor radius and 

3.71° visual angle for the major radius.  The minor radius was modulated to simulate 

mouth movements.  The individual frames were compiled into Audio–Video 

Interleave (AVI) format using Virtual Dub (www.virtualdub.org) for presentation.  

Stimulus timing/frequency was verified with an oscilloscope.  The visual components 
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were projected on a screen approximately 30 cm from the participant’s nasion.  

Participants were supine in the MEG scanner for the duration of the experiment.   

 

To maintain participant vigilance to both modalities, brief targets were 

pseudorandomly interleaved throughout the experimental trials.  Targets were of three 

types: (i) an auditory only target consisting of approximately Gaussian white noise; 

(ii) a visual only target consisting of a white crosshair on a black background; (iii) an 

audiovisual target consisting of a white crosshair on black background paired with 

approximately Gaussian white noise.  Target duration was 500 ms.   

 

Experimental stimuli were presented in six blocks, with 15 repetitions per 

signal per block, for a total of ninety trials per condition.  Presentation of conditions 

was randomized within blocks.  The SSR-inducing materials were passively attended 

to; no response to those signals was required.  For the target signals (38% of trials), 

participants were required to press a button indicating their detection of the target.   

 

Delivery 

 All experimental stimuli were presented using a Dell Optiplex computer with 

a M-Audio Audiophile 2496 soundcard (Avid Technology, Inc., Irwindale, CA) via 

Presentation stimulus presentation software (Neurobehavioral Systems, Inc., Albany, 

CA).  Stimuli were delivered to the participants binaurally via Eartone ER3A 

transducers and non-magnetic air-tube delivery (Etymotic, Oak Brook, IL).  The 

inter-stimulus interval varied pseudo-randomly between 980 and 2000 ms.   
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Recording and Filtering 

 Data were acquired using a 160-channel whole-head biomagnetometer with 

axial gradiometer sensors (KIT System, Kanazawa, Japan).  Recording bandwidth 

was DC-200 Hz, with a 60 Hz Notch filter, at 1000 Hz sampling rate.  The data were 

noise reduced using time-shifted PCA (de Cheveigné and Simon 2007) and trials 

were averaged offline (artifact rejection ± 2.5 pT) and baseline corrected.  Data for 

the SSR analysis were not filtered; however, data for examining the onset responses 

were filtered.  The filter employed was a 4th order lowpass elliptical filter with a 40 

Hz cutoff frequency, 0.5 dB peak-to-peak ripple and at least 60 dB stopband 

attenuation.   

 

Sensor Selection from Pre-Test 

 Determination of maximally responsive auditory and visual channels was 

performed in separate pre-tests.  The auditory pre-test consisted of amplitude-

modulated sinusoidal signals with an 800 Hz sinusoidal carrier signal, modulation 

frequency (Fm) 7 Hz, modulation depth 100% and 11.3 s duration.  The visual pre-

test consisted of a checkerboard flicker pattern (Fm = 4 Hz), of 240 s duration.  The 

sensor space was divided into quadrants to characterize the auditory response and 

sextants to characterize the visual response based on the peak and trough field 

topography expected for each modality as recorded from axial gradiometers (see Fig. 

2).  Sensor channel designations were anterior temporal (front of head), posterior 
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temporal (rear quadrants/middle of head) and occipital (back of head overlying 

occipital lobe).  Five channels from source and sink from each sensor division (i.e., 

ten channels for auditory response and five channels for visual response per 

hemisphere; 15 channels per hemisphere total) with the maximum measured magnetic 

field deflection were used for subsequent analyses.  The analysis window for the PSD 

analysis of the visual pretest was 10 s and for the auditory pretest 11 s.   

 

Onset Response Evaluation 

 The signal evaluation window (averaged and filtered sensor data) ranged from 

500 ms pre-trigger to 3519 ms post-trigger.  For several participants with 

exceptionally clean and robust onset responses, examination of the data revealed three 

distinct evoked peaks: (i) in the range of ~70–85 ms post-stimulus onset, with an 

auditory magnetic field topography; (ii) in the range of ~120–150 ms post-stimulus 

onset, with a visual field topography and (iii) in the range of ~180–240 ms post-

stimulus onset, which was a combination of auditory and visual topographies.  For the 

majority of participants however, such clear response patterns were not observed.  

Due to the univariate design, we calculated the RMS of the individual participant 

RMS vectors, and grand averages of the magnetic field deflections.  Permutation tests 

were performed on time ranges obtained from visible peaks in the grand averaged 

waveform.  Latency values used in permutation tests were taken from individual 

RMS vectors in the time ranges of the peaks observed.  These data were taken from 

the filtered and baseline corrected individual participant data; baseline correction 
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within participants served as a normalization of the data used in the grand averages.  

The number of trials averaged was, at a minimum, 80 out of 90 presentations.   

 

SSR Analysis 

 The magnitude and phase spectra of the SSR were determined using the Fast 

Fourier Transform (FFT) of the baseline corrected channel data.  The FFT was 

calculated from 320 ms post-stimulus onset to the end of the signal evaluation 

window (3519 ms) for a total of 3200 samples analyzed; this yielded frequency bins 

commensurate with the modulation frequency and its harmonics.  The magnitude of 

the response was calculated using the RMS of the FFT across channels.  The phase 

response was determined by calculating the mean direction as described by Fisher 

(1996) based on the phase angle of the Fourier transformed data.  The across 

participant response power was determined by calculating the mean of the individual 

participant power vectors.  To determine the across participant phase response, the 

mean direction of the individual mean directions was calculated. 

 

Across-Participant Response Averaging 

 Onset responses were collected and evaluated as described above.  A similar 

procedure was used for the Fourier transformed data (collection of FFT vectors and 

grand averages computed).  Individual participant vectors for response power 

(squared magnitude) and phase were collected and the relevant statistics calculated as 

described below. 
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Statistical Analyses 

 The significance of the SSR amplitude at a specific frequency was analyzed 

by performing an F test on the squared RMS (power) of the Fourier transformed data 

using the MATLAB Statistics Toolbox.  The F test takes into account both amplitude 

and phase (Valdes et al. 1997; Picton et al. 2003).  For the across-participant data, F 

tests were performed on the power of the SSR at the modulation frequency and the 

second harmonic.  The response power in linear values and decibels (dB) was 

assessed using ANOVAs as well as General Linear Models (GLMs) using the 

‘‘languageR’’ statistical package (R Foundation for Statistical Computing, v. 2.10.1; 

Baayen 2008).  Factors for both sets of statistical tests were Hemisphere, Harmonic, 

Condition, and Sensor Area, with Participant as a random effect.  To determine the 

separation of densities, distributions of the responses for each hemisphere, harmonic, 

condition and area were compared using Kolmogorov–Smirnov tests.  Use of 

ANOVAs is standard when comparing responses across participants in 

electrophysiological experiments (Jenkins et al. 2010); we used the power afforded by 

GLMs to determine more robustly the predictors of the response.  K–S tests were 

used to see if the response distributions in each of the sensor areas were statistically 

different.   

 

Additionally, we compared response additivity using the AV versus (A + V) 

model, but not via RMS of the recorded responses (if the additivity were assessed 

using RMS, this would assume a single source is generating the response; because the 
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responses examined involve two sensory domains, this would not be parsimonious).  

As such, additivity evaluations were made using the complex representation from the 

Fourier transform of the data on the frequency bins containing the frequencies of 

interest, specifically the modulation frequency and the second harmonic.  Responses 

at the third harmonic were not statistically different from background noise.  

Statistical differences were assessed using Wilcoxon signed-rank tests in order to 

decrease the assumptions concerning the distribution of the data recorded between 

pairs of conditions.   

 

Participant Head Location 

 Though we did not perform dipole localization, we did take marker 

measurements and recorded digitized headshapes for the participants.  The marker 

coils were placed by common anatomical markers: by each preauricular point and 

three frontal coils based on spacing from the nasion.  Head position measurements 

were taken prior to and after experimental completion to determine proper head 

placement within the dewar and that the sensors were recording from the entire head 

(occipital, posterior temporal/parietal, anterior temporal/frontal areas).  This also 

aided in ensuring that sensor selection from the pretests was correct.   

 

Results 

 Figure 3 illustrates the nature of the data recorded using a single participant; 

magnetic flux is in black, RMS in red.  The panels, from top to bottom, (i) data from 

pre-stimulus onset to the end of the analysis frame, (ii) a zoomed-in view of the onset 
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response and (iii) the steady-state portion of the evoked response.  For the onset 

response, there are two distinct peaks in the RMS, one occurring at ~140 ms and the 

other at ~210 ms post-stimulus onset.  The oscillatory activity seen in the evoked 

response indicates entrainment to the periodic properties of the experimental stimuli 

(verified via the Fourier transform of the magnetic signals and statistical assessment).   

 

SSR responses were reliably generated.  The response pattern observed 

indicated (as measured using ANOVAs and GLMs as well as data visualization) that 

there was no difference between hemispheres in the power of the response, and that 

the posterior temporal and occipital channels captured the response best (Fig. 4).   

 

Examination and analysis of the SSR power indicated that it would be more 

advantageous to analyze the responses in terms of decibel (dB) power, rather than 

linear power values, due to the effectively normally distributed nature of dB power 

measurements (Dobie and Wilson 1996; see Fig. 5).  Data visualization of power 

densities was performed using the ‘‘ggplot2’’ package for R (Wickham 2009).  The 

dB values readily yield to a more robust and easily comprehensible statistical 

analysis.   

 

Across-Participant Power Analysis 

 Most of the response power was generated in the sensors overlying the 

posterior temporal and occipital areas.  Response power was concentrated at the 

modulation frequency and the second harmonic, and the power values at those 
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frequencies were used for the subsequent statistical analyses.  Statistical significance 

was assessed using F tests with 2 and 12 degrees of freedom (df = 2, 12, α = 0.05) and 

was confirmed by comparing the average power of the background noise 

(surrounding frequency bins) with the bin containing the modulation frequency.  On 

average, the frequency bins containing the frequencies of interest were an order of 

magnitude (~10 dB) greater than the background, with exceptions for certain sensor 

areas and conditions (i.e., responses measured at anterior temporal sensors).   

 

For the unimodal modulation conditions, statistically significant F ratios were 

found at the modulation frequency for the occipital sensors in both hemispheres (LH: 

F = 37.441, p < 0.01; RH: F = 10.539, p < 0.01), but not for the anterior and posterior 

temporal sensors; the second harmonic F ratio was significant only in the RH 

occipital sensors (F = 7.853, p < 0.01).  For the Φ = 0 comodal condition at the 

modulation frequency, significant F ratios were found for the posterior temporal and 

occipital sensors in the LH (F = 7.822, p < 0.01 and F = 60.107, p < 0.01, 

respectively); the RH occipital sensors F ratio was marginally significant (F =  4.113, 

p < 0.05); this same pattern held for the second harmonic (F = 4.839, p < 0.05; F = 

4.733,p < 0.05; F = 4.061, p < 0.05, respectively).  For the Φ = π/2 condition, 

significant F ratios were found for the occipital sensors in both hemispheres at the 

modulation frequency (LH: F = 74.436, p < 0.01; RH: F = 10.040, p < 0.01) and the 

LH occipital sensors for the second harmonic (F = 37.351, p < 0.01).  For the Φ = π 

condition, significant F ratios were found for the posterior temporal (LH: F = 16.833, 

p < 0.01; RH: F = 7.358, p < 0.01) and occipital sensors (LH: F = 23.954, p < 0.01; 
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RH:F = 12.864, p < 0.01) at the modulation frequency; at the second harmonic 

significant F ratios were found for the occipital sensors (LH: F = 12.663, p < 0.01; 

RH: F = 8.127, p < 0.01) and the RH posterior temporal sensors (F = 3.901, p < 

0.05).   

  

Statistical Summary 

 Separate ANOVAs were calculated with the following interactions: (i) 

Hemisphere (two levels) x Harmonic (two levels) x Condition (four levels) x Sensor 

Area (three levels), (ii) Harmonic x Condition x Sensor Area and (iii) Condition x 

Sensor Area.  For the first ANOVA, significant interactions were found for Harmonic 

(F(1,13) = 148.053, p < 0.001), Sensor Area (F(2,13) = 134.441, p < 0.001), and 

Condition x Sensor Area (F(6,13) = 4.208, p < 0.001); the interaction Hemisphere x 

Sensor Area was marginally significant (F(2,13) = 3.013, p = 0.049).  For the second 

ANOVA, significant interactions were found for Harmonic (F(1,13) = 150.546, p < 

0.001), Sensor Area (F(2,13) = 136.705, p < 0.001) and Condition x Sensor Area 

(F(6,13) = 4.279, p < 0.001).  For the third ANOVA, significant interactions were 

found for Sensor Area (F(2,13) = 111.093, p < 0.001) and Condition x Sensor Area 

(F(6,13) = 3.477, p < 0.05).   

 

GLMs were then implemented to statistically determine the predictors of the 

responses (e.g., hemisphere, harmonic, condition, sensor area).  GLMs used the same 

factors as the ANOVAs to evaluate the response power.  For the first and second set 

of factors the second harmonic (p < 0.05), occipital sensors (p < 0.01), and the π 

 62 
 



 

initial offset condition coupled with the posterior temporal sensors (p < 0.05) were 

predictors of the response power.  For the third set of factors, the predictors were the 

posterior temporal sensors by themselves (p < 0.05), the occipital sensors (p < 0.01) 

and the posterior temporal sensors coupled with the three comodal conditions (p < 

0.05).   

 

Two-sample Kolmogorov–Smirnov tests indicated that the power distributions 

for the harmonics (D = 0.324, p < 0.001), anterior and posterior temporal sensors (D 

= 0.455, p < 0.001), anterior temporal and occipital sensors (D = 0.4821, p < 0.001) 

and posterior temporal and occipital sensors (D = 0.134, p < 0.05) differed 

significantly.   

 

Post hoc analyses on the posterior temporal channels found significant 

interactions of Harmonic (F(1,13) = 49.199, p < 0.001; F(1,13) = 50.157, p < 0.001) 

and Condition (F(3,13) = 10.103, p < 0.001; F(3,13) = 10.300, p < 0.001) for the 

triple- and double-factor ANOVAs and Condition (F(3,13) = 8.348, p < 0.001) for the 

single-factor ANOVA.  GLMs indicated statistically different response power 

predicted by the second harmonic (triple-factor: p < 0.05; double-factor: p < 0.001) 

and the comodal conditions (triple-factor: p < 0.05; double- and single-factor: p < 

0.001).   
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SSR Power Comparisons 

 Figure 6 illustrates the differences in overall power between harmonics for 

each condition for the entire dataset for all sensor divisions (collapsed across 

hemispheres since there was no statistical difference in power between the 

hemispheres).  Plots of the mean dB power show there is no statistical difference in 

power between the different conditions, but there is a difference in the power between 

harmonics, with the modulation frequency exhibiting greater power for each 

condition than the second harmonic.  Additionally, though there is no statistical 

difference between conditions, the relational pattern of topographies observed seems 

commensurate with the hypotheses regarding representation of the comodal signal 

either as complete or separate entities (see Discussion).   

 

Figure 7 illustrates the changes in response power for the posterior temporal 

(left panel) and occipital (right panel) sensors.  Several trends can be observed.  First, 

there is greater power at the modulation frequency than at the second harmonic.  

Second, the comodal conditions exhibit greater power than the unimodal conditions.  

Third, and most importantly, the difference in power between unimodal and comodal 

conditions seems to be directly attributable to the sensors overlying the posterior 

temporal areas (and possibly parietal lobes).  No difference in power for either 

harmonic across conditions is observed in the occipital sensors.   

 

Results of the Wilcoxon signed-rank tests for additivity indicated that the 

medians for the unimodal and comodal conditions did not differ except for Φ = π and 
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unimodal modulation pairwise comparison (LH: signed-rank = 3, Z = -3.107; RH: 

signed-rank = 4, Z = -3.045).  This difference may be due to the nature of the 

representation used, as the Wilcoxon signed-rank tests for additivity used the complex 

numbers derived from the Fourier transform and not the power values as were used in 

the ANOVAs and GLMs.   

 

Figures 8 and 9 illustrate the grand average topography at the modulation 

frequency and the second harmonic, respectively, in the form of phasor plots, which 

show the sink-source distribution and the phase of the response (Simon and Wang 

2005).  Two clear source-sink patterns can be observed for each frequency, while for 

each comodal condition more complex patterns are observed, especially for the 

second harmonic.  The sink-source distribution (and phase distribution) at the 

modulation frequency (Fig. 8) for all conditions resembles that of a visual response 

recorded from axial gradiometer sensors; this is in line with the results from the 

power analyses, namely that the occipital sensors generated larger responses than the 

anterior and posterior temporal sensors.   

 

For the response at the second harmonic (Fig. 9), the topographies seen are 

more complex, as they seem to reflect the degree of AV integration.  For the 

unimodal auditory condition, the sink-source distribution reflects responses typically 

recorded from auditory cortex.  For the unimodal visual condition, the sink-source 

distribution appears to be somewhat mixed.  The sink-source distribution for the 

comodal conditions indicates (i) the degree of synchronicity and integration between 
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the signal components and (ii) the contribution of the posterior temporal sensors (and 

perhaps the auditory cortex and/or parietal lobes).  For the Φ = 0 condition, a clear 

auditory sink-source distribution is observed.  For the Φ = π/2 and Φ = π conditions, 

especially for the sensors overlying the posterior of the participants’ heads, the sink-

source distribution reflects the posterior auditory field topography, while for the 

remaining sensors the magnetic field distribution is not easily interpretable.  Taken 

with the results of the statistical analyses, it is compelling that the changes in the 

response topographies and response power are due to the second harmonic and 

information from the posterior temporal lobes and/or auditory cortex, and possibly 

parietal lobes (Howard and Poeppel 2010).   

 

Grand-averaged data yielded two peaks in the RMS for both unimodal 

modulation conditions and the comodal conditions.  For the unimodal auditory 

condition these peaks occurred at ~140 and ~215 ms post-stimulus onset, for the 

unimodal visual condition the peaks occurred at ~109 and ~204 ms.  For the comodal 

conditions, these peak latencies were ~140 ms for the first peak and ~210–217 ms for 

the second peak.  These values suggested that synchronicity was also reflected in the 

temporal domain, because the peak latencies to comodal conditions were very close 

to those observed for unimodal auditory modulation and because the statistics on the 

SSR power indicated significant auditory contribution to the bimodal responses.  

However, the permutation tests did not show significant differences in peak latencies 

between conditions. 
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Discussion 

The audiovisual MEG experiment presented has (i) extended a paradigm 

previously used to evaluate unimodal responses to investigate bimodal responses, (ii) 

elicited the bimodal SSR using novel stimulus types and (iii) elucidated some of the 

factors affecting the neural signal recorded.  In the larger context of AV experiments, 

we have replicated several findings: (i) that visual contribution is greater than 

auditory (in the sense that the response power in visual areas is greater than in 

auditory areas) and (ii) when change is induced in bimodal signal components, the 

response in sensors overlying auditory areas changes the most, suggesting that 

auditory information contributes greatly when comodulated AV signals are presented, 

in particular when stimuli are temporally aligned across modalities.   

 

Although this experiment contained a large number of trials and hence a high 

SNR, we did not find any differences between the three comodal conditions as we 

initially hypothesized; however, a potential pattern of integration is borne out in the 

phasor plots.  The data we present show effects of condition reflected in the power of 

the second harmonic for particular sensor areas, suggesting long-term dynamics are 

reflected in the first two harmonics of the SSR.  While we found no statistically 

significant increase in signal power overall (see Fig. 6), there was a significant 

increase in power at the second harmonic for the comodal signals relative to the 

unimodal signals.  As illustrated in Figs. 8 and 9, which show the magnetic field 

topographies for each harmonic in phasor plots, there is a clear difference in source-

sink distribution for each harmonic.  At the modulation frequency, the source-sink 
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distribution mirrors that of a visual response, while at the second harmonic, the 

distribution observed mirrors that of an auditory response, depending on condition.   

 

These topographic phasor plots (and the statistical results) suggest that the 

harmonics may be representing differential processing within and across modalities.  

The activity at the modulation frequency may reflect the modality where attention is 

directed or which is more salient to the observer (Talsma et al. 2006; Saupe et 

al.2009; Gander et al. 2010).  Second harmonic activity may reflect envelope 

congruency changes between modalities, which, based on the observed field patterns, 

may be related to the degree of statistical regularity and synchronicity in the overall 

signal.  This response, most likely originating from auditory or parietal areas, 

contributes most to the neurocomputational analysis of comodal AV signals.   

 

As mentioned previously, we did not have access to structural MRs for our 

participants.  However, we are fairly certain of the cortical areas that are most likely 

generating these signals.  First, the lack of MRs did not prevent getting an estimate of 

participant headshape (see Materials and Methods).  As such, we had a reliable 

estimate of the shape and outline of each participant’s head.  Second, we were able to 

place the location of each participant’s head within the scanner by using head marker 

coils; this allowed us to make sure all cortical areas of interest (based on headshape 

measurements) were being recorded.  Lastly, special care was taken to select the 

sensors from domain-specific pretests.  Combined, these procedures, though without 
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anatomical constraints, assisted us in narrowing down the most likely generators of 

the responses observed.   

 

Prior to executing the experiment, we had hypothesized that the signals would 

be represented cortically in three ways.  When the signal envelopes are completely 

congruent, the signals may be observed and ‘computed’ as a single object.  When the 

initial envelope phase offset is π/2 radians, then over the time course of the comodal 

signal, the signal components would be alternately perceived as one or two objects, as 

the synchronicity changes between being out-of-phase and in-phase.  Lastly, when the 

offset is π radians between component envelopes, then each component would be 

perceived as a single object.  As the signal component envelopes are desynchronized, 

the correlations and redundancies in the bimodal signal decrease, modifying the 

processing and representation of the percept.  To verify these hypotheses, a 

psychophysical task would have to be incorporated along with characterization of the 

electrophysiological responses.  Although we have anecdotal data from experimental 

piloting and participant debriefing, the current data do not support these hypotheses.   

 

The congruency potentially indexed by the phase separation in this paradigm 

may have practical limits.  There is evidence that integration of bimodal signals, with 

the auditory signal leading, takes place within a 40–60 ms duration window (van 

Wassenhove et al. 2007).  For the modulation frequencies employed here, the 

incongruity between signal components did not fall within this integration window.  It 

is entirely possible that the response patterns we observe are dependent on the 
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modulation frequency.  Higher envelope modulation rates (e.g., 7–11 Hz) with phase 

separations falling within the temporal window of AV integration could test the SSR 

response to perceptually simultaneous but physically asynchronous signals.   

 

A related issue is to sample more phase separation values around the entire 

unit circle.  One possible hypothesis is that the representation of the phase separation 

will be symmetric (except when both signal envelopes are completely synchronized), 

i.e. the response power for a phase separation of π/2 radians and 3π/2 radians will be 

represented equally.  The indexing of signal component congruity might also be 

dependent on which component reaches the maximum of the envelope first.  It has 

been shown that when visual information precedes auditory information, signal 

detection and comprehension increases (Senkowski et al. 2007; van Wassenhove et 

al. 2007).  In the current study, for the asynchronous bimodal conditions, the auditory 

component of the signal reached the maximum of the modulation envelope first.  It 

would be useful to examine the interactions that occur when the visual component 

modulation envelope reaches the maximum value before the auditory envelope.   

 

Adding ‘jitter’ or noise to the signal component envelopes may also yield a 

more ecologically valid set of stimuli for further experimentation.  This would add the 

variability inherent in speech, while retaining the modulation information of the 

signal component envelopes.  Finally, the modulation depth of the auditory signal 

component might be made more variable to correspond with the conditions occurring 
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in natural human speech, where the mouth opens and closes fully (modulation depth 

ranging from 0 to 100%).   

 

Much in the same way as traditional unimodal steady state responses are used 

to probe auditory and visual function, it may be possible to use the paradigm we 

introduce to assess audiovisual integration in humans.  Deviations from the 40 or 80 

Hz aSSR response have been suggested to correlate with impairments in CN VIII, the 

brainstem, or possibly cortical processing (Valdes et al.1997).  Application of this 

paradigm could be used as a clinical assessment of audiovisual integration.   

 

In summary, we demonstrate that an experimental technique commonly 

applied to unimodal signals, the SSR, can be applied to signals of a bimodal nature 

approximating the spectro-temporal properties of speech.  We observed that the 

presence of bimodal information increased response strength in auditory areas.   

 

Our findings are in line with several studies regarding AV integration, 

especially with regard to the specific contributions of auditory information (Cappe et 

al. 2010).  In a real-world stimulus analogous to our ‘noislipses’, Chandrasekaran et 

al. (2009) characterized bimodal speech stimuli (with no phase incongruities) and 

observed (i) a temporal correspondence between mouth opening and the auditory 

signal component envelope and (ii) mouth openings and vocal envelopes are 

modulated in the 2–7 Hz frequency range.  That modulation frequencies in this range 

play a key neurophysiological role in the parsing of neurophysiological signals has 
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now been amply demonstrated.  For example, Luo et al. (2010) show that audiovisual 

movies incorporating conversational speech bear a unique signature in the delta and 

theta neural response bands, values congruent with the Chandrasekaran behavioral 

data.  Cumulatively, it is now rather clear that low-modulation frequency information 

lies at the basis of analyzing uni- and multimodal signals that have extended temporal 

structure.  The results of this MEG study offer additional support for this claim, and 

future iterations of this paradigm could further elucidate the neural computations 

underlying multisensory perception of ecologically relevant stimuli. 
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Figures 

 
  

Figure  1a.  Schematic of stimuli employed.  This panel illustrates the movement of 

the visual signal component throughout the duration of stimulus (see Materials and 

Methods for details).  The stimuli were presented at Fm = 3.125 Hz, modulation depth 

was 25%.  The x-axis shows the horizontal visual angle of the signal component and 

the y-axis the ranges of vertical visual angles.  Figure1b.  This panel illustrates the 

auditory signal component spectral structure.  This component consisted of three-

octave pink noise (lowest frequency: 125 Hz), amplitude modulated at 3.125 Hz, 25% 

modulation depth.  Intensity values are plotted using a grayscale intensity axis.  The 

x-axis is time in seconds; the y-axis is Frequency (Hz) on a logarithmic scale.  Figure 

1c.  Schematized temporal evolution of comodal signal, signal component envelopes 

completely in phase, over several cycles.  Top portion illustrates the visual 
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component; bottom portion the auditory component.  The visual component is seen to 

‘open’ and ‘close’ over the duration of the signal; it is easily seen that in this 

experimental condition, the ellipse modulation is synchronized with the amplitude 

modulations in the auditory component.   

 

 
 
Figure 2.  Left panel:  Sensor layout of whole-head biomagnetometer with field 

deflections overlaid.  Anterior portion of the head is at the top.  This figure gives a 

sense of the positioning of the sensors in the dewar; robust evoked activity is seen at 

the channels overlying the occipital and posterior temporal lobes.  Data are from a 

single participant, Φ = 0 comodal condition.  Right panel: Division of 

magnetoencephalographic sensors. Top panel shows division of auditory sensors for 

experimental pre-test; bottom panel shows sensor division for visual pre-test.  Sensor 
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division was based on expected field topography for auditory and visual cortical 

responses recorded from axial gradiometer sensors (see Materials and Methods for 

details). Sensor designation is as follows: A = anterior temporal sensors, P = posterior 

temporal sensors, O = occipital sensors.  Placement of letters roughly corresponds to 

the locations of the sensors selected for the analysis of the experimental data.   
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Figure 3.  Top panel: MEG waveforms and RMS in the temporal domain from a 

single participant, Φ = 0 comodal condition.  Time is plotted on the x-axis; field 

deflection in fT on the y-axis.  The top panel illustrates the magnetic fields recorded 

from all 157 data channels.  Magnetic fields are in black, RMS is in red.  The time 

duration shown is from 500 ms pre-stimulus onset to the end of the analysis frame.  

This panel illustrates both the onset (~0–500 ms) and the steady-state response 

(towards end of onset to end of analysis frame).  Middle panel:  The middle panel 

provides a more detailed view of the onset response.  Conventions are identical to the 

previous panel.  Two clear peaks can be observed in the onset response at ~140 ms 

and ~210 ms post-stimulus onset (see Results for details).  Bottom panel:  Bottom 

panel illustrates the steady-state portion of the magnetic fields recorded.  Conventions 

are the same as in the previous two panels.  Oscillatory activity is clearly observed in 

the RMS of the signal, indicating entrainment to the physical structure of the comodal 

signals.  
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Figure 4.  Grand averaged squared RMS power (linear) for all participants, 

completely synchronous comodal condition.  Left column shows left hemisphere 

response, right column shows right hemisphere.  Rows (top to bottom) show anterior 

temporal, posterior temporal, and occipital sensors.  Hash marks on the x-axis 

indicate modulation frequency and second harmonic.  It is clear that there is 

significant activity in the posterior temporal and occipital sensors at the frequencies 

of interest.   
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Figure 5.  Density plots for linear (a) and decibel (b) power values.  Linear power 

values are heavily skewed to the right and the combination of large numeric values 

and the skewedness of the distribution make these data somewhat hard to interpret 

visually and statistically.  Subsequent analyses focus on decibel power values.  

Though still somewhat skewed, the decibel power values are more normally 

distributed than the linear power values, which yields to more easily interpretable 

visualization and statistical analysis.  Additionally, representation and analysis of the 

data in this manner has been previously performed in the literature (Dobie and Wilson 

1996) and may be more biologically plausible.   
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Figure 6.  Mean harmonic power at the modulation frequency (3.125 Hz) and second 

harmonic (6.250 Hz); experimental condition is on the abscissa and power (dB) is on 

the ordinate.  Power is collapsed across hemispheres and sensor areas.  Solid line with 

circles denotes the modulation frequency and dotted line with triangles denotes the 

second harmonic.  While there is no statistical difference in power between 

conditions, there is a clear separation in power between harmonics, with the second 

harmonic exhibiting lower power values than the modulation frequency, a result 

typical of SSRs.  
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Figure 7.  Left panel:  Mean harmonic power for the modulation frequency and 

second harmonic by experimental condition for the posterior temporal sensors.  

Conventions used are the same as in Figure 6.  Several trends can be observed: (i) 

response power at the second harmonic is lower than at the modulation frequency; (ii) 

the power for all three comodal conditions is greater than the unimodal conditions 

and (iii) there is no overall power difference between the comodal conditions.  Right 

panel:  Mean harmonic power for the modulation frequency and second harmonic by 

experimental condition for the occipital sensors.  For the occipital sensors, the power 

at the modulation frequency is greater than that at the second harmonic and the power 

for all conditions in the occipital sensors is greater than that of the posterior temporal 

sensors.  For the occipital sensors, there is no statistical difference between either the 

unimodal or comodal conditions or the comodal conditions themselves.  
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Figure 8.  Phasor plot of grand averaged complex-valued topography at the 

modulation frequency (3.125 Hz) for each experimental condition.  Top row shows 

unimodal conditions, bottom row comodal conditions.  Magnetic source is indicated 

by green and magnetic sink by red.  Phasors (arrows) indicate overall phase 

coherence and direction.  For all experimental conditions, the source-sink distribution 

observed resembles that of a visual response as recorded by axial gradiometers.  The 

topographies observed are in accordance with the finding that the overall visual 

response is greater than the auditory response, even for unimodal auditory 

modulation.  
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Figure 9.  Phasor plot of grand-averaged complex-valued topography at the second 

harmonic (6.250 Hz) for each experimental condition.  Conventions used are the same 

as in Figure 8.  The source-sink distributions observed at the second harmonic more 

closely resemble that of an auditory response as recorded by axial gradiometers.  For 

unimodal auditory modulation, the pattern observed (sink-source distribution and 

phasor direction and distribution) are rather clear, while for unimodal visual 

modulation, the topography is muted somewhat, but still observable.  The source-sink 

distribution changes most significantly for the comodal conditions.  For the Φ= 0 

condition, a clear auditory pattern is observed, while for the Φ = π/2 and Φ = π 

conditions the topography seems to be a mix of auditory and visual activation.  The 

constant between the three comodal conditions is that the sink-source distributions 
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towards the posterior end of the sensor distribution (posterior temporal and occipital 

sensors) resembles an auditory response topography. These plots agree well with the 

statistical results that the changes between conditions are predicted by the second 

harmonic, specifically in the posterior temporal sensors.  
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 Psychophysical Discrimination and Clustering of Ecologically 

Approximate Synthetic Signals 

 

Introduction 

 Our current understanding of how the auditory system creates functional 

groupings of auditory signals is underspecified.  The prevailing and most intuitive 

viewpoint focuses on the physical characteristics of the signal (e.g., temporal and 

spectral features) being primary for the classification of the signals encountered in the 

environment.  Neuroimaging methodologies, such as electroencephalography (EEG) 

and functional magnetic resonance imaging (fMRI) have identified cortical areas that 

specialize in the recognition of auditory objects (Binder et al., 2004) as well as 

selectively discriminating speech and vocal information (Belin et al., 2000; Belin et 

al., 2004; Hickok and Poeppel, 2007).  The auditory percept most responsible for 

these processes is timbre.  Timbre (or tone color) is an extremely salient 

multidimensional percept associated with the spectro-temporal profile of a signal.  

Timbre is “considered to be the acoustic quality of auditory objects [signals] and is 

integral to the identity of the source” (McAdams et al., 1995; Moore, 1995; Lakatos 

et al., 1997; Lakatos, 2000; Meyer et al., 2006).  Timbre then, is a “psychologically 

relevant” auditory cue whose physiological and perceptual bases are not currently 

well understood (Meyer et al., 2006). 
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Due to its multidimensional nature, timbre perception is somewhat difficult to 

study.  The multidimensional nature of timbre arises from spectral information, rise 

time between signal segments (frequency modulation -- FM) and envelope (amplitude 

modulation -- AM) evolution.  Further complicating the investigation of timbre 

perception is the fact that auditory attributes, such as pitch, loudness and spectral 

content are not separable to some extent (Melara and Marks, 1990b, a) However, 

timbre studies have converged on a set of common (mostly orthogonal, i.e. 

independent) dimensions (McAdams et al., 1995).  These dimensions commonly 

include attack time (rise time of envelope), spectral centroid (amplitude weighted 

frequency content), spectral flux (spectro-temporal evolution), spectral spread 

(bandwidth and spacing), spectral irregularity (harmonicity and inharmonicity), 

spectrum fine structure, and ‘brightness’ (odd and even harmonics contained in the 

spectrum) (Plomp et al., 1970; von Bismarck, 1974b, a; Grey, 1977; Hall, 1977; 

Kendall and Carterette, 1993; McAdams et al., 1995; Samson et al., 1997; Pressnitzer 

and McAdams, 1999; Pressnitzer et al., 2000; Marozeau et al., 2003; Caclin et al., 

2005; Caclin et al., 2006; Caclin et al., 2007; Caclin et al., 2008).  Based on 

observations of correlations between acoustic structure and behavior, it has been 

possible to design experiments that yield estimates of the perceptual space as well as 

test the interactions between the dimensions commonly reported (Samson et al., 1997; 

Lakatos, 2000).  Signals of special interest for probing the structure of perceptual 

space and the interactions between acoustic signal structure and cognitive perception 

and processing are metamers -- signals that have different physical structures, yet are 

perceived as being the same.  Probing the physical bases of perceptual resolution 
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(e.g., frequency, temporal, spectro-temporal integration) will help advance 

understanding of how functional categories are created and accessed. 

 

Timbre has been extensively studied by using such an approach by employing 

a variety of signals, such as parametrically controlled synthesized signals, music, 

vowel tokens and musical tones and sequences, with signal space estimations 

recovered from behavioral output.  Paradigms that have been utilized include verbal 

ratings and semantic scales (von Bismarck, 1974b, a), numerical scales (Slawson, 

1968), multidimensional scaling (MDS) (Pols et al., 1969; Caclin et al., 2005) and 

Garner interference (Caclin et al., 2007).  MDS studies have been crucial in 

elucidating the dimensions that are most salient to timbre perception, while ratings 

and scales have been fundamental in providing cognitive descriptions of signal 

attributes.  Typically, two to four dimensions have been consistently found in 

psychophysical studies examining timbre perception; these dimensions tend to be 

orthogonal (independent), though there is some evidence that nonorthogonal factors 

are used in judgments (Lakatos, 2000).  Additionally, when the studies employ vocal 

or vocal-based experimental signals, human observers may or may not use linguistic 

information in distinguishing or categorizing signals (Sinnott et al., 1997). 

 

With respect to speech and voice perception, timbre contributes to such 

diverse processes as speaker identification, gender and affective state (Fellowes et al., 

1997; Belin et al., 2000; Binder et al., 2004).  In regards to the ecological speech 

signal, the excitation of the vocal folds and speaker vocal tract shape determines the 
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timbre of segments produced (generally phonemes).  However, while there is a robust 

literature on speech production and comprehension, the multidimensional nature of 

the speech signal itself confounds investigation to some degree and the entirety of the 

complexity inherent in the signal is beyond our current understanding (Cleveland, 

1977; Chartrand and Belin, 2006).  To that end, in the experiment presented in this 

paper, we use synthetic signals that share some aspects of the speech and vocal 

signals but also allow us to probe timbre perception in a more general sense. 

 

To be more specific, we model the production of acoustic signals in general 

and speech signals specifically in accordance with source-filter theory (Fant, 1980; 

Lakatos et al., 1997; Fant et al., 2000; Obleser et al., 2003; Tiitinen et al., 2005; 

Diehl, 2008).  Here, a source signal is produced by an object, and a filter shapes the 

source signal by providing frequency-specific attenuation and boosting, giving rise to 

its timbre.  In fact, there is evidence that source information can be extracted and 

exploited in characterizing the perceptual attributes of signals encountered (Slawson, 

1968; Lakatos et al., 1997).  In the case of a speech signal, the source waveform is the 

excitation pattern produced by the vocal folds and the shape of the vocal tract acts as 

the filter.  For example, vowels are all-pole filters (Stevens, 1998), and the 

relationship of the poles (formant values) gives each vowel their unique timbre (e.g., 

formant transitions -- spectro-temporal evolution, spectral peaks -- pitch, spectral 

center of gravity/centroid and fine structure information -- glottal excitation).  Speech 

(or more generally, vocal) signals also have a typical structure: they tend to be 

harmonic (Lewicki, 2002; Tiitinen et al., 2004, 2005), and the auditory system 
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decomposes the signal in such a way that ecological signals are perhaps preferentially 

and efficiently encoded (Sinnott et al., 1997; Lewicki, 2002; Smith and Lewicki, 

2006; Diehl, 2008).  The ability to preferentially encode and learn specific signal 

structures is also present at very early ages and may be important for the learning of 

linguistic patterns (Diehl, 1981; Thorpe et al., 1988; Trehub et al., 1990; Clarkson and 

Clifton, 1995; Trainor et al., 2004; Werker and Yeung, 2005; Cristia and Seidl, 2008). 

 

In regards to the perception and processing of vowels (natural or synthesized), 

neuroimaging and behavioral studies have shown that several features are important 

for the physiological and perceptual analysis of vowel signals.  For example, the first 

two formant frequencies seem to be crucial to vowel categorization and appear to be 

related to the first two principal components extracted from behavioral information 

(Slawson, 1968; Pols et al., 1969; Vihla et al., 2000; Jacobsen et al., 2004b; Tiitinen 

et al., 2004, 2005).  Other factors crucial to vowel perception include general spectral 

features (Eulitz et al., 1995; Ragot and Lepaul-Ercole, 1996; Diesch and Luce, 1997; 

Poeppel et al., 1997), speaker information (Ragot and Lepaul-Ercole, 1996; Poeppel 

et al., 1997), harmonic structure (Darwin and Gardner, 1986) and phonetic and 

articulatory information (Tiitinen et al., 2005).  Results of neuroimaging experiments 

link physiological processing propagated from the periphery to cortical and 

behavioral measures of timbre perception. 

 

The psychophysical experiment presented here uses four different source 

signals and three different vowel spectra as filters.  The vowel spectra are derived 
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from American English male formant measurements /ɑ/, /i/ and /u/ (Hillenbrand et al., 

1995) and the source waveforms are a sawtooth wave comprised of twenty-three 

harmonics, a sawtooth wave with every fourth harmonic removed, a sawtooth wave 

with every second harmonic removed and a square wave where the maximum 

harmonic is the twenty-third.  Even though the signals presented are entirely synthetic 

approximations to speech signals, the individual vowel transfer functions are intended 

to act as distinct categories, based on phonetic and spectral information (Pastore et al., 

1990; Jacobsen et al., 2004a; Jacobsen et al., 2004b).  Removal of harmonics creates 

a timbral continuum (Singh and Hirsh, 1992; Jones and Perez, 2001) and the sawtooth 

wave with every second harmonic removed and the square wave are metamers (there 

is a slight phase difference between the signals). 

 

We employ a one-alternative (interval)-forced choice (1AFC/1IFC) same-

different (or AX discrimination) experiment in order to determine how sounds of 

differing and identical timbres are perceived.  We employed this paradigm due to its 

ease and efficiency and due to the fact that the participants did not need to know a 

priori on what basis the signals differed.  In addition, we also conducted a simple 

modeling study using various representations of a broader timbre continuum: the 

physical structure of the waveform, the power spectral density (PSD) and a cochlear 

filterbank representation, clustered using k-means clustering, hierarchical 

agglomerative clustering and scaling based on dissimilarity measures (Fellowes et al., 

1997; Lakatos, 2000).  The goal of the psychophysical experiment was to (i) probe 

timbre sensitivity, (ii) test the resolution of timbre perception via metamers and (iii) 
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see how acoustic structure and linguistic information interact to create a timbre 

perceptual space. The clustering models were employed to see how relationships 

between the signals might be created (based on known attributes of the signals 

themselves and parsing of the acoustic signal) and what features (those consistently 

found in the literature, as well as nonorthogonal relationships) specifically contribute 

to those groupings. 

 

For the psychophysical experiment, we hypothesized (i) that the source 

waveforms consisting of a sawtooth wave with every second harmonic removed and 

the square with the twenty-third harmonic as the maximum (metameric pair) would 

be confused the most often (i.e., labeled as the ‘same’ though physically different), 

(ii) the waveforms falling at the extremes of the timbral continuum would be labeled 

correctly as ‘different’ the majority of the time (e.g., sawtooth wave comprised of 23 

harmonics and square wave) and (iii) that the signals in the middle of the timbral 

continuum would be confused on occasion, but would be identified as ‘different’ a 

majority of the time.  We additionally hypothesized that the confusion in item 

relationships in our crucial comparison (timbral metamers) would be preserved across 

vowel categories.  Clustering/partitioning of the data was employed to see to what 

degree the physical structure and dimensions that can be recovered mathematically 

relate to behavioral and perceptual measures.  Clustering of waveforms (and 

psychophysical responses) has been performed previously; we aim for a more 

rigorous approach using some of the data the auditory system evaluates (waveform 

dynamics, frequency and time-frequency transformations) to examine the 
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relationships between hypothesized and actual perceptual categories.  A priori, we 

first hypothesized that there should be at least three clusters, one for each of the 

vowel categories used.  Our second hypothesis was that the timbral metamers would 

be closest together in the clustered/partitioned space and this relationship would be 

constant across the different algorithms.  We also entertained the possibility that the 

signals that were confused the most in the psychophysical data (i.e., the signals in the 

middle of the continuum) would be closest together within the clusters (aside from 

the metamers). 

 

Part I: Psychophysical Evaluation of Signal Pairs 

Materials and Methods 

Participants 
 

Thirty-two normal-hearing adult participants participated in signal 

comparison.  Age range was 18-36 years, mean 20.9 years, median 20 years.  

Twenty-three participants identified as female, nine identified as male; one 

participant reported a non-English native language (Russian).  Participants were 

compensated ($7/half-hour) for their involvement.  Three participants were removed 

from the final pool due to a prevalence of incorrect responses over all trials presented 

(> 50%).  Presentation of stimuli and responses was performed with the approval of 

the institutional committee on human research of the University of Maryland, College 

Park.  Before the start of each experiment, informed written consent was obtained 

from each participant.  Participants were also asked to fill out a brief questionnaire 

documenting their musical or vocal training and experience.  Eighteen participants 
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indicated that they had musical training, seven indicated that they were currently 

practicing their instrument.  Additionally, five subjects indicated that they had some 

degree of ear training. 

 
Stimuli 
 
 Experimental signals were generated with MATLAB (v7.8 R2009a), The 

Mathworks, Natick, MA).  Four complex source signals were filtered using the 

transfer functions for the American English Vowels /ɑ/, /i/, and /u/ (Hillenbrand et al., 

1995).  Vowel bandwidth measurements were likewise derived from ecological token 

measurements (Fant, 1972).  Source signals were generated using Fourier synthesis 

and the transfer functions were generated from an all-pole filter derived from 

measurements of the mean frequency values (Hz) of the first three formants for male 

speakers.  Signal duration was 250 msec (average approximate length of a vowel) 

with eleven msec cos2 onset and offset ramps.  Signals were sampled at 44.1 kHz 

with 16-bit resolution. 

 

The experimental materials were designed to be (i) ecologically valid, (ii) 

create timbral differences within and across signals classes and (iii) test the limits of 

the resolution of auditory perception (via timbral metamers).  To that end, care was 

taken to select and synthesize source waveforms and filters (transfer functions) that 

satisfied these criteria.  Since speech identification and processing is heavily reliant 

on timbre (Culling and Darwin, 1993; Fellowes et al., 1997; Gfeller et al., 1998; 

Dissard and Darwin, 2001), we chose to use as the basis for our experiments a source 

waveform that mimicked the glottal excitation pattern and modified its structure to 
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induce timbral differences.  Further ecological validity was added by filtering the 

source waveforms through different vowel transfer functions as vowels are 

differentiated by their (i) timbre, (ii) vocal tract filtering characteristics and (iii) 

linguistic category.  We chose vowel transfer functions that are well-separated 

timbrally and linguistically, namely the American English vowels /i/ (high front 

unrounded vowel), /u/ (high back rounded vowel) and /ɑ/ (low back unrounded 

vowel).  These vowels were chosen as they are the 'point vowels' and are well 

separated linguistically and perceptually.  The source waveforms had a fundamental 

frequency (F0) of 150 Hz (gender-neutral fundamental voice frequency) and 

contained a maximum of twenty-three harmonics to approximate the glottal excitation 

pattern (Cleveland, 1977; Miller, 1989).  Figure 1 illustrates the transfer functions for 

each of the signals used in the experiment, acting as filters on a white noise source 

signal to illustrate their properties.  For each of the vowel types used in the 

experiment, the formant structure can clearly be observed; namely the peaks in the 

transfer function/vowel at each of the formant values, as well as the spacing between 

them. 

 

The four experimental source signals consisted of a sawtooth waveform 

comprised of twenty-three harmonics, a sawtooth waveform with every fourth 

harmonic removed, a sawtooth waveform with every second harmonic removed, and 

a square wave where the maximum harmonic is the twenty-third; the sawtooth wave 

with every second harmonic removed and the square wave were the timbral 

metamers.  Each source waveform was filtered digitally, for a total pool of twelve 
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signals.  Signal power was equalized between signals (i.e., filtered source waveforms) 

via the root-mean-square (RMS) of the signal after filtering.  Experimental materials 

for the psychophysical experiment were a subset of the signals clustered using 

different clustering methods and algorithms (see Part II below).  Figure 2 illustrates 

the construction of the experimental materials, with the transfer function for the 

vowel /i/ acting as the filter and the sawtooth waveforms as the source waveforms.  

The left column illustrates the temporal structure of the waveform pre-filtering, the 

middle column, the effect of the filter (i.e., transfer function) on the structure of the 

waveform, while the last column illustrates the power spectral density estimate of the 

filtered waveform using Welch’s method.  The top row illustrates the sawtooth wave 

comprised of twenty-three harmonics, the middle the sawtooth waveform with every 

fourth harmonic removed and the bottom row the sawtooth waveform with every 

second harmonic removed.  Figure 2 clearly illustrates the harmonic construction of 

the source signals in the temporal domain, the effect of the transfer function on the 

overall physical structure of the signal and the typical comb structure found in vowel 

and vowel-like sounds. 

 
 
Experimental Procedure 
 
 Participants were randomly assigned to one of two separate experimental 

groups: one group was required to compare signals with the transfer functions 

corresponding to /ɑ/ and /i/; the other /ɑ/ and /u/.  Participants were required only to 

indicate whether or not the two signals within a pair were the same or different, to 

provide a quick and efficient measure of participants’ judgment and accuracy in 
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comparing pairs of signals, without them knowing a priori the basis on which the 

signals differed.  Signal pairs were entirely within vowel categories (e.g., saw-23-a: 

sawtooth waveform, twenty-three harmonics, /ɑ/ vowel; saw-4-rem-a: sawtooth 

waveform, every fourth harmonic removed, /ɑ/ vowel) and counterbalanced; each 

pair was presented 10 times (20 counterbalanced pairs, 400 total trials).  Participants 

were instructed to respond as quickly and accurately as possible.  Participants were 

instructed not to chew chewing gum or other substances and to relax their jaw (to 

avoid pitch-shift effects) for the duration of the experiment (Hartmann, 1998).  The 

inter-stimulus interval varied in the range between 272 and 578 msec and the inter-

trial interval ranged between 714 and 1598 msec.  Responses longer than 2000 msecs 

were not recorded.  Experimental signals and participant responses were collected via 

DMDX stimulus presentation software (Forster and Forster, 2003).  Signals were 

presented using Dell Optiplex 320, running the Windows XP operating system with a 

SoundMax Integrated Digital HD Audio sound card.  Stimuli were delivered to the 

participants binaurally via Eartone ER3A transducers and non-magnetic air-tube 

delivery (Etymotic, Oak Brook, IL). Participant responses were input using a 

Microsoft Sidewinder USB gamepad. 

 
 
Data Analysis 
 
 Three participants who performed at chance or worse over all items (<50% 

correct over all items) were excluded from the final analyses; all three had been 

assigned to the /ɑ/ - /u/ vowel transfer function pairing.  For the remaining 

participants, d’ values were calculated according to the independent observation 
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model and the differencing model of the 1AFC same-different (AX) paradigm to 

assess sensitivity in discriminating the signal pairs along with the observer criteria C, 

C’ and lnβ.  For the d’ values, Hits were defined as when a participant responded with 

a correct response and the item pairs differed, and False Alarms when the response 

was incorrect and the items were physically identical, Misses were defined as when 

the response was incorrect and the items differed and Correct Rejections when the 

response was correct and the items identical.  For participant sensitivity, we were 

additionally interested to see if musically/vocally trained participants showed greater 

discrimination sensitivity overall and signal discrimination within trials. 

 

To compute d’ for the independent observation model, we followed the 

method suggested by Macmillan and Creelman (1991).  First, we estimated the 

proportion correct if item pairs were evaluated maximally: 

Pcmax = cumnorm([(z(pH) – z(pF)]/2) 

where Pcmax is the maximum proportion correct, cumnorm is the cumulative normal 

function, z is the z-score, pH is the hit rate and pF is the false alarm rate.  d’ is then: 

d’ = 2z(0.5[1 + sqrt(2Pcmax – 1)]) 

where z and Pcmax are the same as before and sqrt is the square root function. 

Observer criterion C was calculated as: 

C = -[z(pH) + z(pF)]/2 

where z, pH, pF are the same as previously. 

Criterion C’ was calculated as:  

C/d’ 
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Criterion lnβ was calculated as: 

lnβ = [z(pF)2 – z(pH)2]/2 

For the differencing model, we first calculated the differencing criterion k: 

k = -z(pF/2)*sqrt(2) 

where k is the criterion on which the signals differ.  d’ is given by finding the HIT 

rate that gives a specific d’ value.  A last analysis examined the correlation between 

the different observer criteria and the d’ values via correlation using Spearman’s 

method.  Calculation of psychophysical parameters was performed using R 2.10.1 (R 

Development Core Team, 2010). 

 

Participant response (proportion correct and reaction time (RT)) data were 

collected and analyzed using R 2.10.1.  The data for each participant pool were 

analyzed by participant, vowel transfer function and item (trial).  Statistical 

significance of the responses was assessed using General Linear mixed effects (GLM) 

models using the “languageR” statistical package (Baayen, 2010).  Log (base10) RT 

and proportion correct were analyzed with Participant as a variable interaction; prior 

to execution of the final statistical models and analyses a list of possible factors was 

produced.  A priori, we hypothesized the following factors would be most likely for 

the statistical analyses: Vowel, Vowel Height and Vowel Position as these are 

acoustic and linguistically relevant features of real vowel tokens, which are reflected 

in the construction of the synthetic signals employed in the experiment.  The 

experimental data were analyzed first according to experimental assignment, and then 

on the pooled data (i.e., data from both experimental assignments).  For each 
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experimental assignment the factors were Vowel (/ɑ/ and /i/ or /ɑ/ and /u/), Vowel 

Height (low or high), Vowel Position (front or back -- /ɑ/ - /i/ assignment only) and 

Item.  Analyses for the pooled data focused on Vowel Height, Vowel Position and 

Item.  Interactions for the GLMs for each experimental assignment were as follows: 

(i) Vowel x Item, (ii) Vowel Height x Item, (iii) Vowel Position x Item and (iv) Item; 

any other potential factors (e.g., formant values or formant ratios) would have been 

collinear with the vowel and/or item categories.  For the pooled data, Vowel, Vowel 

Height and Vowel Position were used as factors without any interactions. 

 

Additional GLMs were implemented separately for participants by dividing 

the participant pool into two different groups, those that indicated they had musical 

training and those without.  For the participants who indicated they had musical 

training, the factors were Training Type (formal or informal), Years playing the 

instrument, whether or not the instrument was currently being played, and whether or 

not the participant had ear training.  The factor interactions for the analysis of the 

participants with musical training were (i) Training Type x Years played x Current 

playing x Ear Training, (ii) Training Type x Years played x Current playing, (iii) 

Training Type x Years played, (iv) Training Type, (v) interactions i-iv convolved 

with Item (to determine if the participants with musical training were more sensitive 

to the timbral differences).  Two final statistical analyses compared the responses 

between those with musical training and those without (Crummer et al., 1994; 

Lakatos, 2000; Samson, 2003; Chartrand and Belin, 2006) and the effect of native 

language on sensitivity in discriminating within the vowel categories. 
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Results 

Signal Discrimination Correctness 
  
 Proportion correct for each experimental group was calculated for each item 

pair presented and overall for each transfer function.  Contrary to our hypotheses, we 

observed a surprising asymmetry in percent correct identification in both 

experimental assignments; Figure 3 shows the proportion correct over all items for 

each vowel in the pooled experimental data.  For both experimental assignments, 

signals in the /ɑ/ category were discriminated correctly much less than the signals in 

the /i/ or /u/ categories.  For the /ɑ/ signals, the percent correct was ~50%; for the /i/ 

and /u/ signals, the percent correct was ~80%. 

 

Figures 4 and 5 plot the proportion correct for each item pair; Figure 4 for the 

/ɑ/ - /i/ experimental assignment and Figure 5 for the /ɑ/ - /u/ experimental 

assignment.  In accordance with our hypotheses, the signals with perceptually 

identical source waveforms (sawtooth with every second harmonic removed and the 

square wave) were identified as being the same, when physically different; this 

pattern held across all vowel categories.  For the /i/ signal pairs, no signal pair had a 

percent correct identification less that 76%; for the /u/ signal pairs, no pair had a 

percent correct identification less that 42%.  Interestingly, for both the /i/ and /u/ 

signals the non-metameric pairs with the lowest percent correct were the ones were a 

sawtooth wave comprised of 23 harmonics was paired with a sawtooth wave with 

every fourth harmonic removed.   
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The asymmetry observed between the different vowel categories was due to 

signals in the middle of the timbral continuum for the /ɑ/ signal class.  Aside from the 

/ɑ/ signal pairs where each signal in the pair was identical, which had percent correct 

values of ~90%, the signal pairs a-23-4, a-23-2, a-23-square, a-4-2 and a-4-square had 

percent correct values of ~10-45% for both experimental assignments.  These 

observations suggest that the formants and/or formant ratios differentially affect the 

filtering of the source signals and possibly the shape of perceptual space of the signals 

and their relationship to one another (see Discussion).   

 

Since reaction times were not statistically different between items, we decided 

to focus solely on the responses to the items; namely (i) what factors were most likely 

to predict a correct or an incorrect response and (ii) what factors predicted the 

asymmetry seen between the different vowels.  Due to the rather large degrees of 

freedom values for our initial statistical analyses, we decided not to evaluate each 

individual trial response, but to collapse the data by taking the mean response for 

each factor. We focused on the proportion correct for the factors Vowel, Item, and 

SCG differences for the individual experimental assignment data and Vowel, Item, 

SCG, and Vowel Height and Vowel Position for the pooled data.  Collapsing the data 

resulted in a more conservative analysis with respect to the responses given on each 

trial.  The data in the resulting data frames were then evaluated using GLMs. 
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For the /ɑ/ - /i/ experimental assignment, analysis of the collapsed data 

revealed a significant difference in the proportion correct between vowel categories, 

with the /i/ signals as a predictor of a correct response (coef = 0.284, SE = 0.027, t = 

10.560).  For the analysis of proportion correct by item, significant predictors were 

observed to be all /ɑ/ trials where the signals were not identical (a-2-square: coef = -

0.831, SE = 0.058, t = -14.266; a23-2: coef = -0.481, SE = 0.058, t = -8.259; a-23-4: 

coef = -0.726, SE = 0.058, t = -12.979; a-23-square: coef = -0.463, SE = 0.058, t = -

7.937; a-4-2: coef = -0.544, SE = 0.058, t = -9.332; a-4-square: coef = -0.591, SE = 

0.058, t = -10.136), the /i/ metamer trials (coef = -0.697, SE = 0.058, t = -11.960) and 

a single /i/ signal comparison (i-23-4: coef = -0.116, SE = 0.058, t = -1.984).  The 

results of the statistical analyses indicate that these trials were predictors of an 

incorrect response. 

 

For the /ɑ/-/u/ assignment, statistical analysis revealed the response 

asymmetry in the proportion correct between the /ɑ/ and /u/ signals was significant, 

with the /u/ signals as a predictor of a correct response (coef = 0.232, SE = 0.024, t = 

9.704).  As with the /ɑ/ - /i/ experimental assignment, all the /ɑ/ trials where the 

signals were not identical were significant predictors of an incorrect response (a-2-

square: coef = -0.877, SE = 6.492e-02, t = -13.507; a23-2: coef = -0.488, SE = 

6.492e-02, t = -7.524; a-23-4: coef = -0.788, SE = 6.492e-02, t = -12.145; a-23-

square: coef = -0.492, SE = 6.492e-02, t = -7.583; a-4-2: coef = -0.604, SE = 6.492e-

02, t = -9.301; a-4-square: coef = -0.615, SE = 6.492e-02, t = -9.479) as well as the /u/ 

metamers (coef = -0.819, SE = 6.492e-02, t = -12.619).   
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For the pooled experimental data, the proportion correct responses to the /i/ 

(coef = 0.279, SE = 0.023, t = 12.050) and /u/ (coef = 0.238, SE = 0.025, t = 9.390) 

signals were found to significantly differ from those of the /ɑ/ signals, being 

predictors of an overall correct response.  For the effect of vowel height, the low 

vowel signals (/ɑ/ signals) were found to be predictors of an incorrect response (coef 

= -0.261, SE = 0.018, t = -13.970).  For the effect of vowel position the front vowel 

(/i/ signals) overall (coef = 0.256, SE = 0.026, t = 9.871) were found to be predictors 

of a correct response.  For the last two sets of statistical analyses (effects of musical 

training and native language), there were no differences in response patterns between 

participants with and without musical training as well as between the native and non-

native English speakers.  There was no difference in signal evaluation for musically 

trained participants with and without ear training. 

 

Based on the asymmetries observed in the response data for the /ɑ/ signals as 

well as the surprising findings from the signals in the middle of the continuum for the 

/ɑ/, /i/ and /u/ signals, we conducted post hoc tests on (i) the /ɑ/ signals and (ii) 

differences in the spectral center of gravity (SCG) between the signals compared 

within a trial as a factor.  We employed a modified version of the formula for SCG, 

derived from Caclin (2005).  The spectral center of gravity measurement (which 

involves amplitude-weighted spectral information) was derived via power spectral 

density (PSD) estimates of the digitized, RMS-equalized waveforms presented to the 

experimental participants using Welch’s method implemented in MATLAB’s signal 
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processing toolbox.  The PSD was estimated only for the present in the spectrum 

(harmonics and spectral envelope).  SCG was computed as follows: 

 

SCG = (Σnn x An)/Σn An 

 

where n denotes the frequency in Hz, and A is the amplitude in decibels (dB).  We 

also included a version of the SCG where frequency is log-transformed (log base 10) 

to improve ecological validity; a log-log representation of the signals would more 

accurately represent how the auditory system parses the signal (Hartmann, 1998).  For 

the GLMS implemented, the SCG measurements were the only factors considered.  

The post hoc /ɑ/ GLMs only considered item (trial) and the SCG measures as the only 

factors considered. 

 

Statistical evaluation of the SCG measures (linear and log frequency) found 

significant predictors to be trials that predicted both correct and incorrect responses.  

For the /ɑ/ - /i/ experimental assignment, the trials where the difference in SCG 

(linear frequency) were predictors were the metamer trials (a-2-square: coef = -0.863, 

SE = 0.063, t = -13.620; i-2-square: coef = -0.728, SE = 0.063, t = -11.498) as well as 

the /ɑ/ trials where the signals within the trials were not identical (a-23-square: coef = 

-0.494, SE = 0.063, t = -7.970; a-23-4: coef = -0.788, SE = 0.063, t = -12.435; a-23-2: 

coef = -0.5125, SE = 0.063, t = -8.093; a-4-square: coef = -0.622, SE = 0.063, t = -

9.820; a-4-2: coef = -0.575, SE = 0.063, t = -9.080).  The only other /i/ signal 

comparison found to be a predictor, were the trials that had the lowest proportion 
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correct (i-23-4: coef = -0.147, SE = 0.063, t = -2.319).  For the logarithmically 

weighted SCG measurements, the metamer trials were found to be predictors of an 

incorrect response (a-2-square: coef = -0.716, SE = 0.063, t = -11.300; i-2-square: 

coef = -0.581, SE = 0.063, t = -9.178), as well as the /ɑ/ trials where the signals 

differed (a-4-2: coef = -0.428, SE = 0.063, t = -6.760; a-4-square: coef = -0.475, SE = 

0.063, t = -7.501; a-23-4: coef = -0.641, SE = 0.063, t = -10.116; a-23-2: coef = -

0.366, SE = 0.063, t = -5.774; a23-sq: coef = -0.347, SE = 0.063, t = -5.477).  These 

observations parallel the findings from the previous statistical analyses.  Additionally, 

several of the /i/ trials were found to be predictors of a correct response (i-23-2: coef 

= 0.138, SE = 0.063, t = 2.171; i-23-sq: coef = 0.147, SE = 0.063, t = 2.319).  The last 

predictor of a correct response was having a log frequency SCG difference of zero 

(coef = 0.139, SE = 0.063, t = 2.190).  Interestingly, the log frequency SCG values 

and the difference between the signals evaluated within a trial based on the log 

frequency SCG values seemed to be a better indicator of signal relatedness at least for 

the metamers; the resulting values indicated the signals more closely resembled each 

other as opposed to the linear frequency SCG measures (/ɑ/ metamers: 6.46e-05; /i/ 

metamers: 8.77e-05). 

 

For the /ɑ/ - /u/ experimental assignment, both SCG measures found 

significant predictors of correct and incorrect responses.  For the linear frequency 

SCG measure, predictors of an incorrect response were the timbral metamers (a-2-

square: coef = -0.385, SE = 0.651, t = -5.907; u-2-square: coef = -0.327, SE = 0.651, t 

= -1.890) as well as several, but not all, of the /ɑ/ signal trials where the signals 
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within a trial differed (a-23-4: coef = -0.297, SE = 0.651, t = -4.548; a-4-sq: coef = -

0.123, SE = 0.651, t = -1.890).  Predictors of a correct response were the trials where 

the signals were identical (coef = 0.475, SE = 0.651, t = 7.302) as well as several of 

the /u/ trials where the signals differed (u-23-square: coef = 0.492, SE = 0.651, t = 

7.561; u-23-2: coef = 0.442, SE = 0.651, t = 6.852; u-4-square: coef = 0.442, SE = 

0.651, t = 6.793; u-4-2: coef = 0.419, SE = 0.651, t = 6.438).  For the log frequency 

SCG measures, the timbral metamers were found to be predictors of an incorrect 

response (a-2-square: coef = -0.860, SE = 0.065, t = -13.209; u-2-square: coef = -

0.802, SE = 0.065, t = -12.323), as well as the /ɑ/ signals where the signals within a 

trial differed (a-4-2: coef = -0.587, SE = 0.065, t = -9.015; a-4-square: coef = -0.599, 

SE = 0.065, t = -9.192; a-23-4: coef = -0.772, SE = 0.065, t = -11.850; a-23-2: coef = 

-0.472, SE = 0.065, t = -7.243; a-23-square: coef = -0.475, SE = 0.065, t = -7.303).  A 

single /u/ trial was found to be a predictor an incorrect response (u-23-4: coef = -

0.479, SE = 0.651, t = -7.361).  No predictors for correct responses were observed.   

 

The post hoc analyses for the /ɑ/ trials focused only on item as factor; 

responses were collapsed as with the previous statistical analyses.  The post hoc 

analyses confirmed the results of the experimental assignment analyses, namely that 

the /ɑ/ trials where the signals differed were predictors of an incorrect response (a-2-

square: coef = -0.852, SE = 0.046, t = -18.344; a-23-2: coef = -0.484, SE = 0.046, t = 

-10.435; a-23-4: coef = -0.771, SE = 0.046, t = -10.249; a-4-2: coef = -12.291, SE = 

0.046, t = -0.571; coef = -12.960, SE = 0.046, t = -0.602). 
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d’ (Participant Acuity) Values 
 
 Figure 6 displays the histograms of the d’ values for both the independent 

observation and differencing models of signal discrimination.  A priori, it could be 

hypothesized that the differencing model was the more likely descriptor of participant 

behavior, due to the large number of items employed (Macmillan and Creelman, 

1991).  The values of d’ for each participant according to the independent observation 

model ranged from 0.535 to 3.379, with the majority of participants having d’ scores 

in the range from 1 to 3.  For the differencing model, d’ ranged from 0.622 to 4.180, 

with the majority of participants exhibiting d’  scores in the range from 1 to 4. The 

observed d’ values are consistent with the proportion correct values observed for each 

participant and the difficulty of the task.  While the timbral metamers would have 

decreased the overall participant sensitivity (perhaps only slightly), the signals in the 

middle of the continuum (especially the /ɑ/ signals) seem to have kept the observer 

sensitivity from being greater.  Examination of the histograms for d’ scores indicated 

that participants overall did well in discriminating the signals. 

 

Figure 7 displays histograms of the various observer criteria for the 

independent observation model (C, C’and ln β) and the differencing model (k).  

Observer criteria C values for the independent observation model ranged from 0.092 

to 1.138, with the majority of values lying in the range from 0.3 to 1.2.  Observer 

criteria C’ values ranged from 0.064 to 0.756, with most values lying in the range 

from 0.3 to 0.5.  Observer criteria ln β values ranged from from 0.020 to 3.103, with 

the majority of values lying in the range from 0.4 to 1.2.  Criteria k for the 
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differencing model ranged from 1.175 to 3.867, with the majority of values lying in 

the range from 2 to 3.2.  For the independent observer model, weak or nonexistent 

correlations were observed for the criteria C (0.486) and C’ (-0.122), while a strong 

correlation was observed between the criteria lnβ (0.808) and d’ scores.  For the 

differencing model, a strong correlation (0.794) was observed between differencing 

criteria k and d’ scores.  

 
 

Discussion 

 The psychophysical measurement of the ecologically approximate signals in 

the experiment presented has demonstrated some of the complex interactions between 

the structure of a source signal and its spectral filter.  While our main hypothesis 

concerning the timbral metamers was supported by the data, we observed surprising 

findings regarding the /ɑ/ signals employed, and to some extent, some of the /i/ and 

/u/ signals also. 

 

Concerning the timbral metamers, these source signals were engineered to 

have identical spectral structures.  A more in-depth examination, with respect to the 

calculation of the PSD of the metamers, indicates that even after RMS equalization 

for power, there was a slight difference in the amplitudes of the sawtooth wave with 

every second harmonic removed and the square wave source signals.  However, this 

amplitude (and hence perhaps loudness difference) did not seem to affect the 

comparison of these signals across all synthesized vowel classes; the timbral 

metamers were confused as being the same, in spite of the minimal phase difference.  
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This is in line with the previous literature that phase plays a minimal effect regarding 

the timbre perception of steady-state signals.  Our data also agree with the timbral 

literature in that the timbre of steady-state signals is completely determined by 

spectral structure, a duplex perception where the spectral envelope (formant structure) 

and the source signal (harmonics/frequencies present) combine to determine the 

timbre. 

 

Regarding the unique findings pertaining to the /ɑ/ signals and the /i/ and /u/ 

signals in the middle of the timbral continuum, we hypothesize that this is due to the 

filtering characteristics of the spectral envelope (formant structure), especially for the 

/ɑ/ signals.  The transfer functions of each of the synthesized vowels serves to 

attenuate and/or boost specific frequencies.  Based on the pattern of 

attenuation/boosting, each signal will have a specific center of gravity and have 

different perceptual distances from each other within a perceptual category.  While 

categories need not be mutually exclusive, especially when linguistic experience 

causes difficulty in the processing of specific sound categories, it is still important to 

learn in a general sense within and across categories (Pastore et al., 1990).  Evidence 

from this is based on the statistical analyses where differences in SCG was a factor in 

GLMs.  The majority of signals that were confused the most often had very small 

differences in spectral center of gravity, indicating that this was perhaps a very salient 

cue when comparing signals within a trial.  Additionally, because the signals 

employed in the experiment were based on vowel data, the formant structure may 

have also induced the asymmetry observed.  For example, vowel identity seems to be 
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highly correlated with the F1/F2 ratio and the formant values may be ‘averaged’ in a 

sense.  The closeness of the formants, then, may result in an inability to distinguish 

signals within a particular class/category.  The psychophysical results also support the 

hypothesis and agree with previous findings regarding SCG as a dimension or factor 

that is used in signal discrimination.  More specifically, the SCG values with log 

frequency maybe a better predictor.  This is borne out by the statistical analyses; the 

signals with very small differences in log frequency SCG were more often predictors 

of an incorrect response with few exceptions.  Those exceptions that did occur may 

be a result of the effects spectral envelope structure influencing factors such as virtual 

pitch. 

 

With the psychophysical results in mind then, the clustering/partitioning of the 

waveforms and their various representations can potentially aid in the understanding 

of the ordering and creation of functional classes/groupings and the relationships of 

signals within classes.  They can also help to tease apart to what extent the 

implementation of clustering algorithms on the various representations (especially 

biologically motivated representations) match the psychophysical responses observed. 

 

Part II: Clustering of ecologically-based synthesized signals 

Signals 

 Experimental signals were generated with MATLAB (v7.8 (R2009a), The 

Mathworks, Natick, MA).  Complex source signals were filtered using the transfer 

functions for the American English Vowels /ɑ/, /i/, and /u/ (Hillenbrand et al., 1995).  
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Vowel bandwidth measurements were likewise derived from ecological token 

measurements (Fant, 1972).  Source signals were generated using Fourier synthesis 

and the transfer functions were generated from an all-pole filter derived from 

measurements of the mean frequency values (Hz) of the first three formants for male 

voices.  Signal duration was 250 msec (approximate average length of a vowel) with 

eleven msec cos2 onset and offset ramps.  The experimental materials were designed 

in the same manner as the signals employed in the psychophysical experiment, but 

with a larger signal set.  Seven different source waveforms were employed to create a 

timbral continuum.  The signals were as follows: sawtooth waveform approximating 

the glottal excitation pattern (twenty-harmonics in spectrum), sawtooth waveforms 

with every sixth, fifth, fourth, third, and second harmonic removed and a square wave 

where the maximum harmonic is the twenty-third.  The source signals had the same 

F0, were filtered using the same transfer functions, the same onset and offset ramps as 

in the psychophysical experiment for a total of twenty-one signals.  Signals were 

equated for power via RMS after filtering. 

 

The signals were represented in three different ways: (i) the physical structure 

of the waveform, (ii) the PSD of the waveform and (iii) a wavelet-based time-

frequency cochlear-model transformation of the physical structure.  All signal 

manipulations were performed in MATLAB.  Implementation of the cochlear 

representation required resampling to 16 kHz.  The physical structure (temporal 

evolution) of the signals was obtained after signal creation via MATLAB.  The PSD 

estimate via Welch’s method of the signals was computed using MATLAB’s Signal 
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Processing Toolbox.  The wavelet-based cochlear model representations were 

performed using the NSL Toolbox (Chi and Shamma) in MATLAB. 

 

Clustering Methods 

 The signal representations were clustered/partitioned using a variety of 

algorithms and methods: (i) k-means clustering, (ii) hierarchical agglomerative 

clustering and (iii) image classification via image similarity measures in conjunction 

with MDS.  K-means and hierarchical clustering as well as the statistical assessment 

of the classifications, were performed using R 2.10.1.  Calculation of image similarity 

was performed using MATLAB, while MDS was implemented using R 2.10.1.   

 

K-means clustering was implemented using the default k-means clustering 

algorithm, with aggregation based on mean values.  A more robust version of k-

means clustering was also implemented using the “fpc” package in R (Hennig, 2010), 

with aggregation based on medioids instead of means.  Clustering was initially 

implemented with three clusters extracted (corresponding to each of the vowel 

categories); after performing this initial clustering, we used calculation of the within 

group sum of squares (ordinary k-means) and the optimum average silhouette width 

(“fpc” package, robust k-means) to determine the optimum number of clusters. 

 

Hierarchical agglomerative clustering was implemented using Ward’s method 

to create the clusters and Euclidean distance to calculate the distance matrix.  The 

resulting dendrogram was initially cut into three clusters in accordance with our 
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initial hypothesis; additional dendrogam cutting was also implemented based on the 

secondary hypotheses regarding linguistic information and signal structure, as well as 

the optimum clusters found via k-means clustering.  Statistical significance of the 

resulting clusters was evaluated using, the “pvclust” package in R (Suzuki and 

Shimodaira, 2009), which evaluates the dendrogram results via multiscale bootstrap 

resampling (1000 bootstrap resamplings). 

 

The cochlear transformations of the signals resulted in a three-dimensional 

representation: time x frequency x intensity.  The parameters for the cochlear 

representation were a frame jump of 4 msec, a time constant of 16 msec and a 

nonlinear factor of -1. The final dimensions were 32 channels by 128 time points.  

The resulting spectro-temporal profiles were compared as images, where time and 

frequency replace the spatial axes and luminance is replaced by intensity.  This may 

have some biological relevance, especially at the cortical level, as texture analysis 

may be a common method of evaluating signals (Yau et al., 2009; Bruckert et al., 

2010; Overath et al., 2010).  Figure 8 illustrates the cochlear model representation of 

the sawtooth waveform approximating the glottal excitation pattern for the vowel /ɑ/.  

The cochlear representation emphasizes the concentration of energy in the F1-F2 

formant region as well as the harmonic structure of the signal. 

 

To calculate the spectro-temporal profile of the cochlear and cortical 

representations of the signals, we used the structural similarity index (SSIM) for 

image quality assessment (Wang et al., 2004).  Two distinct spatial filters were used: 
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the first was a symmetric Gaussian (window: 11 x 11 square matrix; standard 

deviation: 1.5) and the second was a contrast enhancement filter (window: negative of 

Laplacian, 3 x 3 matrix; alpha: 0.2).  The Gaussian was employed as a smoothing 

filter to compare gross aspects of the signal representations (averaging within image 

followed by inter-image comparison) and the negative of Laplacian filter to compare 

fine structure features (differences/contrasts within image followed by inter-image 

comparison).  Figure 9 illustrates the effects of the Gaussian smoothing filter and the 

contrast enhancement filter on the experimental signals.  The effect of the Gaussian in 

Figure 9a is to highlight the gross features of the signal; the energy concentrated in 

the F1-F2 range as well as the third formant is clearly visible, while contributions 

from the harmonic structure of the source waveforms is minimized.  The effect of the 

contrast enhancement (Figure 9b) is to emphasize the harmonic structure of the 

source waveform (horizontal bands), including and beyond the first formant. 

 

After applying the spatial filter and calculating image similarity, symmetric 

matrices were then computed, with the indices from the spatial smoothing and 

comparison interpreted as similarity measures (values of the symmetric matrix 

produced were subtracted from 1 to produce dissimilarity values) and the indices 

from image contrast enhancement and comparisons interpreted as dissimilarity 

measures (no subtraction was needed).  The symmetric matrices were then evaluated 

using metric and Kruskal’s nonmetric multidimensional scaling in R; nonmetric 

multidimensional scaling was implemented using the “MASS” package (Shepard, 

1962; Kruskal, 1964a, b; Venables and Ripley, 2002).  MDS dimensional reduction 
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solutions were calculated in two and three dimensions (Plomp et al., 1967; McAdams 

et al., 1995; Sinnott et al., 1997; Lakatos, 2000; Caclin et al., 2005).  K-means and 

hierarchical clustering of the cochlear signals was accomplished by reshaping each of 

the transformations into one-dimensional vectors.   

 

Results 
 

Out of the clustering/partitioning methods employed, hierarchical clustering 

and MDS were most effective in clustering the signals.  Results from k-means 

clusters were not very parsimonious, even though the first two principal components 

explained ~80% of the variance.  This was a function of the manner in which the data 

were apportioned and represented; graphical representation of the clusters indicated 

that the data were clustered as to specific time point or frequency in Hz, instead of 

according to signal structure itself.  This issue was not present with hierarchical 

clustering and MDS of the signals. 

 
Hierarchical Clustering Signal Division 
 

Figure 10 illustrates the dendrograms for the different representations of the 

signals with three clusters, in line with our initial hypothesis.  Contrary to our 

hypotheses, the signals were not clustered completely according to their 

linguistic/phonetic categories.  While this is unsurprising in one sense, namely that is 

there is little information present in the signals (aside from the structure imposed by 

the formant values and periodicity) that would yield this potential separation of the 

signals, upon initial inspection there does not seem to be any consistent relationship 

between the dendrogram branches. 
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The clustering of the temporal waveforms with the initially specified three 

cluster solution seems to be based partially on vowel/formant information and 

partially on the source waveform.  This is evidenced by almost all the /ɑ/ signals 

being in one cluster (low vowel), the /i/ and /u/ signals being in another (high vowels) 

and the waveforms with square wave source signals in a separate cluster.  For the 

PSD, the link between clusters and vowel/formant information was somewhat 

stronger; with a few exceptions, the signals were clustered within each vowel (/ɑ/, /i/ 

or /u/).  Hierarchical clustering of the cochlear representations was not able to be 

implemented; this was due to errors in the calculation of the distance matrix.  

Calculation of the distances between vectors resulted in NaN values due to the 

presence of negative similarity and dissimilarity values. 

 

Analysis of the within sum of squares indicated that 4-5 clusters was ideal for 

the waveforms and 4-6 clusters for the PSD of the signals.  Initial observation of the 

four cluster solutions for the temporal waveform indicated that this particular solution 

was better at dividing the signals according to linguistic categories, though some 

signals (a-5-rem, i-2-rem, u-3-rem) were not clustered with their vowel categories.  

The signals with square wave source waveforms were still placed in separate clusters, 

as in the three cluster solution.  The five cluster solution for the temporal waveforms 

added a separate cluster for a single signal (sq-a-23), while the other clusters were 

unchanged.   
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As with the three cluster solution for the PSD of the signals, the four cluster 

solution for the PSD of the signals primarily grouped the data by vowel information, 

with the exceptions being the timbral metamers for the /i/ signals (i-2-rem,sq-i-23) 

and a separate cluster for one signal (a-5-rem).  The five cluster solution added a 

cluster with the metamers for the high vowels.  The six cluster solution was identical 

to the five cluster solution, with the addition of a cluster for the /ɑ/ metamers. 

 

Figure 11 displays the dendrograms for the bootstrap supported clusters.  

Multiscale bootstrap resampling of the dendrograms is interpreted as follows: the 

numbers in red are approximately unbiased p-values, while the numbers in green are 

the bootstrap probability values.  Rectangles surround those clusters with > 95% 

confidence.  The number of bootstrap-supported clusters was less than that of the 

suggested optimal number of clusters from the within sum of squares analysis.  For 

the temporal waveforms and PSD, there were only two clusters supported after 

multiscale bootstrap resampling.  For the temporal waveform, the clusters seemed to 

be grouped by vowel information (most of the high vowel signals were grouped 

together), while the /ɑ/ signals and square wave source waveform signals were in the 

second cluster.  For the PSD, there were two bootstrap-supported clusters; the clusters 

grouped the high vowel signals (/i/ and /u/) separately from the low vowel signals 

(/ɑ/).  

 

A last examination of the dendrograms and their branches examined how 

closely signals were clustered together, based on SCG (linear and logarithmic 
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frequency scaling) as a complexity measure.  The raw waveform dendrograms and 

branches seem to have no relationship to the SCG values, as they vary widely within 

clusters.  The PSD clusters seemed to have a greater relation to the SCG values for 

the three cluster solution (based on the ranges of SCG values of the signals within the 

cluster) and for the bootstrap supported clusters.  The /i/ and /u/ signal SCG values 

ranged from 1933.447 to 2034.875 (linear frequency) and 3.105 to 3.135 (log 

frequency); for the /ɑ/ signals, the SCG values ranged from 2075.842 to 2094.353 

(linear frequency) and 3.135 to 3.149 (log frequency).  This implies that the linear 

SCG (or central tendency) may have been a dimension that the algorithm was able to 

extract, since the different signals classes had well-separated ranges. 

 
MDS Signal Division 
 
 Implementation of MDS performed on the cochlear representations of the 

signals was successful except for non-metric MDS on the contrast-enhanced (fine 

structure comparison) two- and three-dimensional representations; this was due to a 

zero/negative distance between two of the objects.  For the classical MDS 

implementation, the constant c* was added in order to prevent negative eigenvalues 

from occurring.  Non-metric MDS yielded no easily interpretable results for the gross 

structure comparison. There were two overall groups/clusters of signals from the non-

metric MDS implementation; within these groups however, the signals had essentially 

identical coordinate values and this solution was uninformative. 

 

Figures 12-14 illustrate classical MDS solutions for the gross feature and fine 

structure enhanced cochlear transformations.  Significant areas are shaded to 
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highlight their position in the MDS space.  Figure 12a plots the two-dimensional 

classical MDS solution for the gross feature comparison, with each signal identified 

by its vowel category and source waveform harmonic structure.  The gross feature 

comparisons (λ1,2 = [1.390, 0.203], GOF = 75%) produced a better fit to the data than 

the fine structure comparisons (λ1,2 = [197.60, 169.015], GOF = 16%) for the two-

dimensional solution.  From this visualization of the signals and their relationship to 

each other, it appears that the first principal coordinate separates the signal according 

to vowel height (high vowels are on the right of the abscissa); the high vowel signals 

(/i/ and /u/) are distinctly separated from the /ɑ/ signals along this coordinate.  With 

regards to vowel category, it does not appear that the second coordinate groups or 

indexes vowel category in any meaningful manner.  Rather, the second principal 

coordinate seems to separate the high vowel metamers from the rest of the signals, as 

with multiscale bootstrap resampling of the PSD.  The signals in the lower right 

corner of the figure are the high vowel metamers.  In line with our hypotheses, it is 

not surprising the metamers would be located closest to one another.  However, it is 

somewhat surprising that the coordinates for the /i/ and /u/ metamers do not overlap, 

at least not completely.  Inspection of the /ɑ/ metamers (located at (-0.20,-0.36)) 

indicates that these signals almost completely overlap, in line with our initial 

hypotheses.  The difference between the high vowel and low vowel metamers may be 

a result of differences in spectral envelope as well as the phase difference (though 

slight) between the metamer source signals.  Further examination of the two-

dimensional gross feature comparison indicates that the /u/ and /i/ signals exhibited a 

high degree of self-similarity and were tightly clustered within their vowel class, with 
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a single exception (u-3-rem).  Aside from the metamers, the /ɑ/ signals were more 

spread out in their distribution in the principal coordinate space, with one signal (a-5-

rem) being considerably further from the rest of the /ɑ/ signals.  Interestingly, this is 

the signal that was furthest away from the other /ɑ/ signals when hierarchical 

clustering was implemented.  The data visualization indicates that harmonic structure 

of the source waveforms was not indexed by either principal coordinate.  Analysis of 

the two-dimensional solution space according to linear and log frequency SCG values 

indicated that the density of the clusters seemed to be partly based on log frequency 

SCG values. 

  

Figure 12b illustrates the two-dimensional classical MDS solution to for the 

fine structure comparison.  Unlike the two-dimensional solution for the gross feature 

comparison, there is no clear division within either of the principal coordinates of the 

signals according to vowel category.  The /ɑ/ signal with every fifth harmonic 

removed was still furthest from the rest of the signals, as in the hierarchical clustering 

and gross feature comparisons clusterings. 

 

Figures 13a and 14 illustrate the three-dimensional MDS solutions for the 

gross signal feature comparisons.  The three-dimensional representations exhibited 

better GOF values than the two-dimensional solutions.  As with the two-dimensional 

solutions, the gross feature comparisons fit the data better (λ1,2,3 = [1.390, 0.203, 

0.182], GOF = 83%) than the fine structure comparison (λ1,2,3 = [197.160, 169.015, 

154.004], GOF = 23%).  The figures provide visualization in two ways: (i) three-
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dimensional plots of the MDS signal space and (ii) two-dimensional plots where each 

of three coordinates are plotted against one another. As in the two-dimensional 

solution, the three-dimensional classical MDS solution for the gross feature 

comparison seemed to be better at classifying the data according to vowel category.   

 

Figure 13a highlights the major divisions of the three-dimensional MDS space 

for the gross feature comparison.  There are three major groupings.  First, the /ɑ/ 

signals red ellipse) are separate from the /i/ (gray rounded rectangle) and /u/ signals 

(blue rectangle) along Coordinate 1.  Second, the /i/ and /u/ metamers are separate 

from the remaining /i/ and /u/ signals along Coordinate 2.  Lastly, the third coordinate 

seems to separate the /u/ signals from the /i/ signal (black line).  Figure 13b illustrates 

the three-dimensional MDS space for the fine structure comparisons.  As with the 

two-dimensional solution, the fine structure space is not highly ordered. 

 

Examining the MDS space for coordinates 1 and 3 indicates that the third 

coordinate seems to separate the /i/ and /u/ signals from one another.  The third 

dimension may also index what might be interpreted as tongue position; the /i/ signals 

are located ‘higher’ than the /u/ signals.  Examination of the MDS space for 

coordinates 2 and 3 seems to indicate that not only are the metamers separated, but an 

interaction between the points in the space seems to index where in timbral 

continuum the signals lie.  For example, the back vowel (/ɑ/ and /u/) signals that are 

not metamers lie mostly between the points (-0.05, 0.05) for coordinate 2 and the 

points (-0.15, 0.1) for coordinate 3.  Figure 14 illustrates the 3D gross feature 
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comparison by plotting each coordinate against each other.  The relationships in terms 

of vowel category mentioned above are much more easily identifiable when 

visualized in this manner.  Fine structure spatial configuration did not seem to index 

the signals in any meaningful way; this resulted in their not yielding an easily 

interpretable representation of the space as previously.   

 

Based on the results of the fine structure comparison analysis, we conducted 

post hoc tests examining whether or not the fine structure comparisons were better at 

evaluating relationships within vowel categories, as opposed to the gross feature 

comparisons, which seemed to index mostly vowel categories along with some 

indexing of within-category differences.  

 

The two-dimensional MDS solutions for the within-vowel signal comparisons 

produced better GOF values than when the total pool of signals was considered 

together, with the high vowel signals exhibiting slightly better GOF values (/ɑ/: λ1,2 = 

[3.139, 2.877] GOF = 40%; /u/: λ1,2 = [22.846, 13.405], GOF = 46%; /i/: λ1,2 =[ 

81.387, 54.072], GOF 46% ).  Overall however, none of the dimensional reduction 

fits was of high quality, with all the GOF values <50%.  Within the MDS signal space 

for each vowel, there does not seem to be a high degree of order, and for only one 

vowel category (/ɑ/), the metamers are positioned close to one another in the space.  

This is unsurprising in one sense, as all the GOF of fit values < 50%, but could also 

be a result of using having only seven source signals for each vowel, resulting in a 

sparse space.  Neither of the principal coordinates seems to index signal structure in 
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any systematic way.  The three-dimensional solutions for the within-vowel 

comparisons fit the data much better than the two-dimensional solutions; an 

asymmetry between the high and low vowel signals was still observed however: (/ɑ/: 

λ1,2,3 = [3.139, 2.877, 2.698], GOF = 58%; /u/: λ1,2,3 = [22.846, 13.405, 12.937], GOF 

= 62%; /i/ = [81.387, 54.072, 53.179], GOF = 64%).   

 

Discussion 

 The clustering algorithms, especially the texture analyses, were successful in 

dividing the various signals according to their basic physical and sensory features.  

The observation that the signals could be grouped according to linguistic 

information/category was somewhat surprising, though this grouping may be a result 

of some of the characteristics of the signal categories explored in the experiment (see 

below).  For the textural analysis of a possible signal space, the dimensions the signal 

were clustered/portioned along seemed to reflect the most salient attributes of steady-

state signals reported in timbre psychophysical studies (spectral envelope, harmonic 

content/structure, spectral center of gravity/centroid, source waveform).  Somewhat 

unsurprisingly, the gross feature identification of the texture analysis of the signals 

seemed to correlate well with the most salient features of the signals and their overall 

categories, while the fine structure comparisons were better at mapping a signal space 

within categories.   

 

The successful implementation of various clustering algorithms and signal 

space measures using different signal representations demonstrates the feasibility of 
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grouping signals according to their basic features.  This implies that (especially with 

regards to the cochlear texture analysis) absent some sort of context (other phonetic 

cues, temporal and spectral evolution of a sequence) auditory signals can be grouped 

and characterized by essentially only their basic sensory features.  While in a 

psychophysical context this is not surprising, as certain features are more salient than 

others, it is surprising from a purely mathematical standpoint.  There was no 

particular reason a priori for the signals to cluster according to their structure for the 

hierarchical clustering algorithms (even though we hypothesized this might be the 

case), but the implementation was successful, with the bootstrap supported clusters in 

some cases largely grouping the signals according to phonetic/linguistic information.  

A possible explanation for the results observed is that some vowel characteristics 

were able to be extracted by the algorithms; vowels are distinguished (especially in 

the frequency domain) by their formant spacing and spectral peaks and valleys. 

(Stevens, 1998) 

 

While there is evidence that it is possible (and likely) that textural analysis of 

sensory signals is a common method of evaluating information in different modalities 

in cortex, this has not been shown in the sensory periphery.  The cochlea is well-

studied and performs a time-frequency-intensity analysis of auditory signals, lending 

itself to a texture analysis of the signals.  The results of MDS on the gross features 

and fine structure comparisons of the cochlear representation textures suggest that 

textural analysis may well be a viable way of signal evaluation at the periphery.  The 

results of MDS on the different textures additionally indicate that emphasis of 
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different features work better at different scales: the gross feature comparison were 

better at separating the signals based on vowel category and source waveform 

structure, while the fine structure comparisons were better at within-category 

separation (though not with very high GOF values).  The gross features MDS space 

may have reflected those attributes that are more salient to the observer/algorithm and 

agree quite well with previous psychophysical data (e.g. spectral envelope structure, 

source waveform structure, SCG).  The limits of the fine structure comparisons may 

be due to the relatively low number of signals (yielding a low-density space) used or 

perhaps the characteristics of the window or spatial filter employed. 

 

While it is tempting to say the algorithms employed are capable of extracting 

phonetic data from the signals used in the cluster analyses, the results (aside from the 

biologically-based cochlear transformations) may not entirely support this view.  The 

spectral envelopes of the signals were taken from human vowel data, and as such, this 

may have influenced the groupings of the signals.  Certain vowels have certain 

characteristics (e.g., unique spectral tilts) and these features have been known and 

studied since the 19th  century by linguists and auditory scientists.  It is almost 

certainly the case, even though the signals used are completely synthetic and lack 

certain features of real vowel tokens (e.g., formant transitions breathiness), that these 

characteristics were reflected in the signals employed.  It is thus unclear as to what 

extent phonetic information contributes to groupings of the signals (though phonetic 

information seems to be represented in some manner). 
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That being said, the signal representations (especially the cochlear textural 

representations), seem to lend themselves to clustering/grouping by other algorithms.  

For the MDS signal spaces, their orientations could possibly be learned by neural 

network algorithms (e.g., a simple perceptron or support vector machines).  Networks 

and models incorporating biological parameters or that are biologically inspired could 

be used to group sensory signals into a signal space.  Additionally, the use of various 

clustering algorithms and signal representations could be applied to such problems as 

learning signal generalities across speakers, differences in signal duration, differences 

in presentation, etc.   

 

Overall, we find it is possible to examine the physical and perceptual 

relationships of auditory signals using a variety of mathematical and statistical 

techniques in addition to using biologically-motivated signal representations.  The 

results of the analyses presented demonstrate that to some extent, low-level signal 

attributes and peripheral mechanisms correlate well with abstract mathematical 

transformations and perceptual saliency. 

 

General Discussion 

Our initial hypotheses for the psychophysics were that the timbral metamers 

would be confused the most, while the other signals would be correctly discriminated 

the majority of the time.  We based this hypothesis on the steady-state nature of the 

signals; differences in spectral center of gravity and spectral content would most 

likely determine how the signals were discriminated.  For the clusters, working from 
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the basis of spectral envelope information, we hypothesized the signals would be 

grouped according to vowel category while making no predictions about the 

orientation of the space.   

 

While our hypothesis concerning the timbral metamers was preserved across 

categories in the psychophysical experiment, we did observe an asymmetry in the 

proportion correct for the /ɑ/ signals; overall they were discriminated correctly less 

than the /u/ and /i/ signals.  This asymmetry was due to the signals in the middle of 

the continuum.  This led us to hypothesize that the spectral envelope affected 

discrimination of the /ɑ/ signals.  Clustering, and especially the texture analyses 

coupled with MDS, resulted in a signal space that was able to group signals mostly 

along vowel categories.  Statistical analysis of the psychophysical responses and 

analysis of the MDS signal space indicated the most salient attributes of the signals 

were most likely those previously reported in the literature (spectral envelope, 

spectral center of gravity, source waveform structure). 

 

The consistency between the psychophysical responses from human observers 

and the clustering results (using ecologically-motivated signals and signal 

representations) strongly suggests that basic sensory features and attributes of 

auditory signals are what primarily determine signal groupings and signal space 

orientations.  The data are not informative as to how cognitive information may 

contribute, though the majority of clusters and groupings did have relevance to 

phonetic information (Sinnott et al., 1997).  The experimental design could be 
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expanded on in several ways.  First, the psychophysical paradigm could be a 

complete design, using the schwa vowel as a fourth signal; to make the discrimination 

efficient, a 2IFC same-different paradigm could be used.  Second, a variety of 

synthetic signals using male, female and child vowel formant values could be 

employed and compared to investigate the resolution of normalization of speaker 

differences.  Lastly, a greater variety of signals (synthesized in the manner described 

in this experiment, synthesized using Klatt synthesis, actual vowel tokens) could be 

transformed using a cochlear representation, analyzed according to texture and then 

subjected to MDS of the signal similarities and differences 
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Figures 

 
 
Figure 1.  Spectral envelopes of vowel transfer functions employed in the experiment.  

Top panel illustrates the transfer function for /i/, middle panel transfer function for /u/ 

and the bottom panel the transfer function for /ɑ/ (/a/).  The x-axis is frequency (Hz); 
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y-axis is the power spectral density (PSD) estimate (dB/Hz).  Power spectral density 

estimates were computed using Welch’s method.  The vowels /i/ and /u/ are the high 

vowels and /ɑ/ and /u/ are the back vowels.  The transfer functions are acting as filters 

on a white noise signal.  Transfer functions were created by taking data derived from 

American English male formant values (Hz) for each vowel (Hillenbrand et al., 1995) 

and converting the values into the coefficients of a transfer function to filter the 

various source waveforms employed.  The visualization illustrates several important 

features of each vowel.  For the high vowels, it is easy to see that the value of the first 

formant is relatively close to the fundamental frequency (150 Hz) and that the 

spectral valley below the first formant is shallow compared to the transfer function 

for /ɑ/.  For the back vowels, the first and second formant vowels are rather close to 

each other and the spectral tilt is more pronounced that in the front vowel /i/. 
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Figure 2.  Illustration of stimuli construction, with transfer functions corresponding to 

the vowel /i/ as an example.  Left column illustrates the structures of several source 

waveforms in the temporal domain; middle column illustrates the structure of the 

source waveform after filtering by the transfer function; right column illustrates the 

PSD estimate of the filtered waveform.  Top tow illustrates the sawtooth wave 

approximating the glottal excitation pattern; middle row the sawtooth wave with 

every fourth harmonic removed; bottom row sawtooth wave with every second 

harmonic removed.  Source waveforms were constructed using Fourier synthesis.  

Visualization of source waveform structure in the temporal domain illustrates (i) the 

effect of Fourier synthesis in producing the harmonic waveforms and (ii) the effect of 

selectively removing harmonics to produce discontinuities (in the frequency domain) 
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and timbre differences between the source waveforms.  Visualization of the transfer 

function (filters) on the source waveforms illustrates the steady-state temporal 

dynamics of the signals.  The steady-state nature of the signals is readily apparent, 

i.e., the waveforms oscillate at a combination of the fundamental frequency and the 

harmonics present.  Though somewhat difficult to see, close inspection of the 

sawtooth wave approximating the glottal excitation pattern and the sawtooth wave 

with every fourth harmonic removed reveals that (i) the essential sawtooth nature of 

the signals is preserved, despite differences in the harmonic structure and (ii) the 

selective removal of harmonics results in slight differences in the temporal evolution 

of the signals.  PSD estimates more clearly reveal the timbral differences in frequency 

domain.  The spectral peaks that stand out most prominently are at the values of the 

formants; though synthetic the signals employed exhibit the comb structure typical of 

vowel tokens and vowel-like signals.  The effect of selectively removing harmonics is 

also clear; there are ‘gaps’-- discontinuities introduced by the removal of harmonics -- 

in the spectrum where those harmonics are not present. 
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Figure 3.  Proportion correct for each vowel signal class, pooled experimental data.  

X-axis plots each vowel, y-axis total proportion correct over all trials.  Data are taken 

from pooled data after rejecting participants that performed at chance or worse (< 

50% correct) over all items.  The legend indicates the proportion correct via a color 

scale; colors towards the blue end of the spectrum indicate greater incorrect 

responses.  There is a clear asymmetry in the proportion correct between the /i/ and 

/u/ signals and the /ɑ/ (/a/) signals.  Over all trials, the /i/ and /u/ signals were 
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discriminated more correctly (~0.80) than the /ɑ/ signals (~0.50).  The asymmetry 

observed may be a result of the formant structure of the /ɑ signals. 

 

 

Figure 4.  Proportion correct for each item (trial) across participants for the /ɑ/ - /i/ 

experimental assignment.  Y-axis is proportion correct, x-axis indicates the trial.  X-

axis labels are formatted as follows: the letter at the beginning of the label indicates 

the vowel signal, numbers indicate harmonic structure of source waveform (i.e. ‘23’ = 
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sawtooth wave comprised of 23 harmonics, ‘4’ = sawtooth wave with every fourth 

harmonic removed, ‘2’ = sawtooth wave with every second harmonic removed, 

‘square’ indicates square source waveform).  The legend colors indicate overall 

proportion correct as in Figure 3.  In line with our hypotheses, the trials containing 

the metameric comparison (a-2-square and i-2-square) were incorrectly discriminated 

the majority of the time.  There is also an obvious asymmetry between the vowel 

signals.  The /i/ signal trials where the metamers were not compared exhibited high 

proportion correct values, with the minimum being ~0.76.  In contrast the /ɑ/ signal 

trials that were not either the metameric comparison or where the signals being 

compared were identical, exhibited low proportion correct values.  Values for these 

trials ranged from ~0.15 to 0.4. 
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Figure 5.  Proportion correct for each item (trial) across participants for the /ɑ/ - /u/ 

experimental assignment.  Conventions are the same as used in Figure 4.  As in the 

/ɑ/ - /i/ assignment, our hypotheses concerning metameric comparison were supported 

by the data; the trials containing the metamers exhibited very low proportion correct 

values.  The asymmetry between the /ɑ/ and the /u/ signals was also present as in the 

/ɑ/ - /i/ assignment, with the /ɑ/ signal trials that were not either the metameric 

comparison or where the signals being compared were identical having low 
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proportion correct values, ranging from ~0.15 to 0.45.  The results of the proportion 

correct analyses in both pools suggests that differences in formant structure between 

vowel transfer functions gives rise to these asymmetries (see Discussion).  The 

signals in the middle of the continuum were thus responsible for the overall 

proportion correct asymmetry observed. 
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Figure 6.  d’ (observer acuity) score distributions for the independent observation (a) 

and differencing models (b) for the 1AFC same-different experimental paradigm.  

Data are taken from the pooled experimental data, after rejection of participants who 
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performed at chance or worse over all trials.  The distribution of observer acuity 

distributions for each model demonstrates that overall, participants were able to 

discriminate between signals rather well.  For the independent observation model, the 

majority of d’ scores were in the range from 1 to 3, while for the differencing model, 

the majority of scores were in the range from 1 to 4. 
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Figure 7.  Figure 7 illustrates the distributions of the different discrimination criteria 

for the independent observation (C, C’, ln β) and differencing models (k).  Figure 7a 

illustrates the distribution for discrimination criterion C, 7b for criterion C’, 7c for ln 

β and 7d for k.  The distributions for the different criteria vary greatly, possibly 

indicating a wide variety of perceptual dimensions the various participants used in 

discriminating between signals.  The only two discrimination criteria to exhibit a 

strong correlation to d’ scores were ln β (0.808) and k (0.794). 

 

 

 

Figure 8.  Figure 8 illustrates the cochlear model representation of an experimental 

signal.  The signal is the sawtooth wave approximating the glottal excitation pattern 
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for the vowel /ɑ/.  The y-axis is frequency (Hz) and the x-axis is time (msec).  Color 

values indicate relative intensity; red values indicate a high concentration of energy.  

Several aspects of the signal are apparent from the visualization of the cochlear 

representation.  First, since the signal is steady-state, then there is little temporal 

evolution; what temporal evolution is present comes from the ramping of the signals 

at onset and offset and from the initial effects of the transfer function on the source 

waveform.  Second, the comb structure typical of vowels and vowel-like signals is 

present; several horizontal bands are present, indicating the presence of the 

harmonics.  These bands appear rather faint due to spectral tilt.  Third, a large amount 

of energy is present in the region of the first two formants (~700-1000 Hz); the peaks 

in the spectral envelope arising from the first two formants are not present, but rather 

they are averaged in a sense to produce a frequency range where a substantial amount 

of energy is concentrated.   
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Figure 9.  Figure 9 illustrates the effects of the different filters on the cochlear 

representation of the signal.  The signal and conventions used for the colormap are 

the same as in Figure 8; the axes are the indices of the matrices of the cochlear 

representation.  The Gaussian filter (9a) can clearly be seen to emphasize the gross 
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features of the signal, with several crucial differences from the visualization provided 

in Figure 8.  First, the amount of energy concentrated in the vicinity of the first two 

formants is more clearly pronounced and is more evident throughout the duration of 

the signal.  Second, the presence of the third harmonic is more clearly visible.  Third, 

the contribution of the source waveform harmonics is attenuated by employing the 

Gaussian smoothing filter.  Figure 9b illustrates the effect of the contrast 

enhancement (negative of Laplacian) filter on the cochlear representation.  While the 

energy concentration in the range of the first two formants is still visible, contrast 

enhancement more clearly emphasizes the harmonic structure of the source 

waveform.  In fact, the contribution of harmonics greater than the third formant in 

spite of spectral tilt is more readily apparent. 
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Figure 10.  Dendrograms for physical structure (waveform) and PSD estmates, initial 

3 cluster solution using Ward’s method and Euclidean distance.  Figure 10a displays 

the dendrogram for the waveform physical structure.  The three clusters largely group 

the signals by vowel class as well as source waveform; the high vowel signals (/i/ and 

/u/) are in a separate cluster from most of the /ɑ/ signals, the square source waveform 

signals are located in a separate cluster.  Figure 10b displays the dendrogram for the 

PSD estimates.  For this dendrogram and data representation, the signals are grouped 

mostly according to vowel category, with signals from each vowel mostly being 

placed within separate clusters. 
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Figure 11.  Bootstrap supported dendrogram clusters, 1000 bootstrap resamplings.  

The numbers in red indicate approximately unbiased p-values; numbers in green are 

the bootstrap probability values.  The number of bootstrap supported clusters was less 

than both the clusters from our initial hypotheses and those indicated by the within 

sum of squares.  Figure 11a displays the dendrogram for the physical structure; 

signals were mostly clustered according to vowel category (high or low); the square 

source waveform signals were clustered along with the /ɑ/ signals.  Figure 11b 

displays the dendrogram for the PSD estimates; the signals are placed in two separate 

clusters with the high vowel signals in a separate cluster from the low vowel signals. 
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Figure 12.  Two-dimensional MDS solutions for the cochlear representations.  The 

first coordinate is on the x-axis, second coordinate on the y-axis.  Text strings indicate 

the placement of the signals within the MDS space.  Figure 12a displays the 2D MDS 

solutions for the gross feature comparison; 12b for the fine structure comparison.  
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Coordinate 1 seems to index vowel height; the high vowels are located on the right 

side (values > 0 in Coordinate 1, to left of black line) of the MDS space.  The second 

Coordinate does not seem to index or group vowel information, but does seem to 

group the high vowel metamers from the rest of the signals.  For the gross feature 

comparison, there are three distinct areas within the MDS space, delineated by 

rectangles (left of solid black line).  One area contains the metamers for the high 

vowel signals (blue rectangle), located in the range (0.05, 0.2) for Coordinate 1 and (-

0.23,-0.15) for Coordinate 2.  A second area contains the /ɑ/ signals (red rectangle); 

within this area, the metamers are mapped to the same space, approximately at the 

coordinates (-0.4,-0.03).  A third area contains the non-metamer high vowel signals 

(gray rectangle).  Unlike the gross feature comparison MDS space, the fine structure 

comparison across vowel categories exhibits no ordered structure within the space.   
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Figure 13.  Three-dimensional MDS solutions for the cochlear representations.  

Figure 13a visualizes the 3D solution for the gross feature comparisons; 13b for the 
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fine structure comparisons. The first two coordinates are unchanged from the 2D 

solution.  The 3D plot viewed from this angle gives a sense of the density of the MDS 

space for this dimensionally reduced solution.  The /ɑ/ portion of the space (red 

ellipse) is considerably less dense than the spaces where the /i/ (gray rounded 

rectangle above black line) and /u/ signals (blue rectangle below black line) are 

clustered; the /ɑ/ with a source waveform where every fifth harmonic is removed is 

still considerably further away than the rest of the signals.  The /ɑ/ metamers and the 

/ɑ/ with every sixth harmonic removed and approximating the glottal excitation 

pattern are closely positioned in the three dimensional solution.  High vowel non-

metameric signals are highlighted by the gray rectangle; high vowel metamers are 

highlighted by the blue rectangle.  The /i/ signals are positioned ‘higher’ (further up 

in elevation on the plot, division indicated by solid black line) than the /u/ signals; 

this may be analogous to tongue position for these signals.  The relationship holds for 

the /i/ and /u/ signals overall, including the metamers, with a single exception (u-3-

rem).  The three-dimensional solution for the fine structure comparisons did not yield 

a high GOF nor was it apparent what each coordinate indexed. 
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Figure 14.  Three-dimensional MDS solution visualization for the gross feature 

comparison, with each coordinate plotted against each other in separate planes.  

Figure 14a visualizes the space for coordinates 1 and 2; 14b for coordinates 1 and 3; 

14c for coordinates 2 and 3.  The visualization of coordinates 1 and 2 in Figure 14a is 

unchanged from Figure 12.  In the visualization of the plane where coordinates 1 and 

3 intersect, it is apparent that coordinate 3 separates the high vowel signals according 

to their vowel categories, i.e. /i/ (yellow rectangle) and /u/ (blue rectangle).  There is 

no apparent systematic ordering of the /ɑ/ signals along the third coordinate axis.  

However, the /ɑ/ metamers (green rectangle) are close together in the MDS space, in 

line with our hypotheses.  Visualization of the 2-3 plane demonstrates the second 

coordinate separates the high vowel metamers from the rest of the signals (division 
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denoted by black line).  This plane appears to index a combinationof vowel category 

and spectral information; the majority of /ɑ/ (red rectangle), /i/ (yellow rectangle) and 

/u/ (blue rectangle) signals are clustered together and progress along coordinate 3 

seems to index spectral complexity or harmonic structure.  Only two signals (aside 

from the metamers) were not included in their vowel category in this plane. 
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Preattentive Classification and Physiological Measurement of 

Ecologically Approximate Synthetic Signals using MEG 

 

Introduction 

 It is a remarkable fact about the human auditory and communication systems 

that a healthy listener -- one without hearing loss, stroke, aphasia, autism, etc. -- is 

able to successfully group auditory signals into relatively abstract categories within 

fractions of a second.  For example, it has been argued on the basis of event-related 

potential (ERP) data that within 50-100 msec after stimulus onset, listeners can 

preconsciously distinguish between living and inanimate objects in the auditory 

domain (Murray et al., 2006).  Apparently then, for successful auditory cognition to 

occur, and thus successful communication, the brain exploits subtle cues and 

differences in signals to group them into categories.  However, we understand 

surprisingly little about how short auditory segments elicit the complex internal 

representations associated with auditory cognition in general and speech in particular.  

Despite there being a considerable body of work regarding cochlear function, signal 

transduction through the auditory pathway, cortical parsing of auditory signals and 

linguistic effects on sound perception, we still lack a complete understanding of how 

vastly disparate auditory patterns are learned, stored, retrieved and classified. 
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Though it is unclear how the brain creates these functional groupings of 

auditory signals, evidence from psychophysical and neuroimaging studies have 

identified several dimensions that are most salient for determining how a signal is 

grouped/evaluated.  In addition to an increased understanding of the physical cues 

used in creating functional groupings, there is a solidifying consensus concerning the 

existence of auditory processing pathways, similar to those in the visual system, that 

process the spatial location (‘where’) and identity (‘what’) of the signal encountered 

(Belin and Zatorre, 2000; Inui et al., 2006; Okamoto et al., 2010).  Imaging studies 

using electroencephalography (EEG) and functional magnetic resonance imaging 

(fMRI) have identified cortical areas that specialize in the recognition of auditory 

objects as well as selective discrimination of speech and voice recognition (Belin et 

al., 2000; Hickok and Poeppel, 2000; Belin and Zatorre, 2003; Belin et al., 2004; 

Obleser et al., 2006; Hickok and Poeppel, 2007).  The auditory system is also 

structured in such a way as to take advantage of the objects encountered in the 

environment and ecological communication signals.  For example, computational 

models derived from physiological measurements can capture the harmonic structure 

found in vocalizations (Shamma and Klein, 2000; Lewicki, 2002; Smith and Lewicki, 

2006) as well as the broadband carrier statistics of vocal carrier signals (Moore, 2003; 

Diehl, 2008; Mesgarani et al., 2008) and the time courses of these events over a wide 

range of situations and signal presentations (Loizou et al., 2003).  The auditory 

percept most responsible for identification of a signal as it is processed by the 

auditory pathway is timbre, or tone color (Fellowes et al., 1997; Belin et al., 2000; 

Binder et al., 2004; Zatorre et al., 2004).  In regards to the ecological speech signal, 
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the excitation of the vocal folds and speaker vocal tract shape determines the timbre 

of segments produced (generally phonemes). To increase understanding of how 

functional groups are created then, it would be best to study timbre and its 

relationship to other basic auditory attributes such as pitch and loudness. 

 

Despite timbre being a “psychologically relevant” auditory cue involved in 

identifying the source of a signal, its physiological and psychological bases are not 

well understood.  This is due mostly to the multidimensionality of timbre.  Timbral 

cues arise primarily from spectral (McAdams et al., 1995; Caclin et al., 2005; Caclin 

et al., 2006), envelope amplitude modulation (AM), frequency modulation (FM) 

(Hall, 1977; Iverson and Krumhansl, 1993; Meyer et al., 2006; Luo et al., 2007) and 

contextual information (Bigand and Pineau, 1997; Pardo and Fowler, 1997; Nelken, 

2004; Obleser et al., 2007; Obleser and Kotz, 2010); these cues often interact with 

one another at very fine time scales, making investigation quite complicated (Melara 

and Marks, 1990; Diesch and Luce, 1997; Caclin et al., 2007; Caclin et al., 2008).  

However, use of neuroimaging techniques can help in discovering the relationship 

between timbre perception and auditory architecture (Crummer et al., 1994; Meyer et 

al., 2006; Caclin et al., 2008).  Current neuroimaging evidence links the results of the 

dimensions commonly found in psychophysical studies -- attack time (Singh and 

Hirsh, 1992; Samson et al., 1997; Singh and Bregman, 1997; Caclin et al., 2005; 

Caclin et al., 2007), spectral centroid/center of gravity (Grey and Gordon, 1978; 

Iverson and Krumhansl, 1993; Lakatos et al., 1997), spectral flux (Iverson and 

Krumhansl, 1993; McAdams et al., 1995; Caclin et al., 2005; Caclin et al., 2008), 
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spectral spread (Marozeau et al., 2003) and ‘brightness’ (von Bismarck, 1974b, a; 

Grey and Gordon, 1978; Kendall and Carterette, 1993; Pressnitzer and McAdams, 

1999; Marozeau and de Cheveigné, 2007) -- to quantifiable physiological measures 

such as the latency and amplitude of evoked response components and brain areas 

sensitive to specific features of an auditory signal/object.  Basic physical features of 

auditory signals also contribute to timbre perception, as different frequencies and 

waveform shapes tend to have specific semantic descriptions of their timbre (von 

Bismarck, 1974b, a; Hartmann, 1998).  The dimensions commonly reported in the 

literature tend to be the most salient perceptually (depending on signal context and 

task demands) and generally have a basis in the physical structure of the signal (e.g. 

spectral envelope, fundamental frequency).  Further confounding the investigation of 

timbre perception is the fact that, to some extent, timbre is not separable from other 

attributes such as pitch and loudness (Melara and Marks, 1990).  For example, sine 

waves and piano tines are described as having a ‘pure’ sound, while fundamental 

frequency affects if a sound is described as being ‘dull’ or ‘buzzy’ (Hartmann, 1998; 

Marozeau and de Cheveigné, 2007). 

 

In relation to the ecological speech signal, timbre contributes to processes 

such as speaker identification, gender and affective state (Fellowes et al., 1997; Belin 

et al., 2000; Binder et al., 2004; Zatorre et al., 2004).  This is most likely 

accomplished by the auditory system's evaluation of the statistics of a signal: its 

underlying dynamics (Balzano, 1986; Lakatos, 2000), commonalities in signal 

structure and fate arising from the sound sources processed by the cochlea (Bregman 
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and Pinker, 1978) and inferences about sound source (Lakatos et al., 1997).  Studies 

of musical timbre have demonstrated that a signal’s timbre is not determined only by 

its own spectral profile, but by also that of the signals preceding and subsequent to it 

(Bregman, 1990; Deutsch, 1999).  Processing of ecological signals in humans 

encompasses not only general auditory processing areas, but also areas that seem to 

process different aspects of speech and music preferentially, forming a distributed 

analysis network (Samson and Zatorre, 1994; Auzou et al., 1995; Hickok and 

Poeppel, 2000; Samson et al., 2002; Samson, 2003; Hickok and Poeppel, 2007; 

Obleser et al., 2008).  Evidence for the hemispheric specialization for different 

aspects of general auditory processing and speech and music perception has been 

provided via neuroimaging and lesion studies using preattentive/preconscious signal 

evaluation as well as psychophysical measures (Boucher and Bryden, 1997; Chait et 

al., 2004; Jacobsen et al., 2004b; Jacobsen et al., 2004a). 

 

Electroencephalographic and magnetoencephalographic (MEG) studies have 

demonstrated that perceptual and physical attributes of auditory stimuli are reflected 

in the timing and field deflections of the evoked components.  The most prominent 

components are the P50/M50, N100/N1m/M100 and P2/P2m, with each component 

showing differential sensitivity to various aspects of an auditory signal.  These 

aspects include signal bandwidth, fundamental frequency, waveform shape (Roberts 

et al., 2000) and signal level (Jenkins et al., 2010).  For example, the latency and 

amplitude of the M50 is sensitive to signal bandwidth (Chait et al., 2004).  The 

N1m/M1000 is well-studied and has been shown to be sensitive to perceptually 
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primary and salient parameters such as pitch, frequency, vowel information, temporal 

modulation of auditory signals, spectral complexity and is additionally modulated by 

musical and frequency discrimination training (Eulitz et al., 1995; Diesch et al., 1996; 

Poeppel et al., 1997; Diesch and Luce, 2000; Gage and Roberts, 2000; Roberts et al., 

2000; Brattico et al., 2003).  The P2/P2m evoked component seems to index spectral 

complexity, with spectrally complex signals eliciting greater amplitudes (Shahin et 

al., 2005; Shahin et al., 2007). 

 

With regards to ecological signals, vowel spectra (Tiitinen et al., 2004, 2005), 

tokens recorded from human speakers (Tiitinen et al., 2005) and vowel-like sounds 

(Vihla et al., 2000; Vihla and Salmelin, 2003; Jacobsen et al., 2004a) have been 

employed as stimuli in a number of studies, with their physical and perceptual 

characteristics being reflected in different evoked components.  Signals of this nature 

are valuable as experimental stimuli as they have a well-defined spectral structure, 

have a relatively steady-state nature and tend to elicit robust neuronal activity and are 

quite salient perceptually.  The evoked responses measured using vowel stimuli are 

modulated by factors such as the structure of the source signal, the perceived pitch of 

the vowel and the formant structure (spectral envelope) of the stimuli.  Data from 

MEG and EEG experiments also indicate that linguistic information is integrated into 

the generation of an evoked response (Eulitz et al., 1995; Diesch et al., 1996; Diesch 

and Luce, 1997, 2000; Obleser et al., 2003b; Obleser et al., 2003a, 2004; Tavabi et 

al., 2007) and that classification of a sound into its functional group can also be 

accomplished very rapidly (Murray et al., 2006).  More specifically, different classes 
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of vowels contain certain characteristics that allow them to be classified and 

distinguished from one another.  For example, high vowels (e.g., /i/ and /u/, called 

'high' due to position of the tongue in the mouth) tend to have a low-frequency first 

formant (F1) relative to the low vowels, that is close to the fundamental frequency of 

the speaker and have damped oscillation that at the frequency of the first formant.  

Low vowels (e.g., /ɑ/) exhibit large spacing between the first formant and the 

fundamental frequency and have a deeper spectral valley below the first formant.  

This results in a comb structure for signals of this nature, and the resonances 

(formants/spectral envelope) are the primary cue to vowel category (see Figure 1).  

These properties can be described as phonation and articulation (Tiitinen et al., 2005) 

and are related to the source and filter characteristics of vocal fold excitation and 

formant structure, respectively (Fant, 1980; Fant et al., 2000).  Vowels and vowel-like 

sounds, due to their salience, spectral structure and ability to be parametrically 

controlled aid in the investigation of timbre due to their (i) source waveform 

structure, (ii) bandwidth effects, (iii) differences in spectral envelope and (iv) 

temporal modulation of auditory signals. 

 

To investigate how sounds are classified (categorized) preconsciously 

(preattentively), we employ sounds of intermediate complexity that approximate 

ecological signals and incorporate some of the dimensions previously reported to be 

especially salient in the timbre literature.  More specifically, we employ 

parametrically controlled synthetic signals that allow us to probe an ecologically 

relevant signal, but also timbre perception in a more general sense.  We model the 
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production of acoustic speech in accordance with source-filter theory, where a source 

signal produced by an object is filtered by a transfer function, giving rise to its 

specific timbre.  As filters, we use formant values (and the transfer functions created 

by them) of the American English vowels /ɑ/, /i/ and /u/ (with formant values 

obtained from Hillenbrand et al., 1995).  To increase the ecological validity of the 

signals, the source waveform is a sawtoooth wave comprised of twenty-three 

harmonics (Cleveland, 1977).  Creation of a timbral continuum, is accomplished by 

selectively removing harmonics (from every sixth to every second); the last source 

waveform is a square wave where the maximum harmonic is the twenty-third.  The 

sounds employed in this experiment differ from real vowel tokens in that they are 

completely steady-state and as such, lack features such as breathiness.  We employ 

MEG as an experimental paradigm due to its superior precision to temporally (and 

spectrally) record cortical activity. 

 

Previous human electrophysiological recording has shown that vowels 

themselves and signals that contain information like that of vowels (e.g., similar 

spectral envelope structure) can be categorized preconsciously and this is reflected in 

the evoked component amplitudes and latencies (Eulitz et al., 1995; Diesch and Luce, 

1997; Poeppel et al., 1997; Diesch and Luce, 2000; Obleser et al., 2003a, 2004; 

Mizuochi et al., 2005; Mizuochi et al., 2007).  With regards to the signals we employ 

in this experiment, we have several a priori conjectures.  We hypothesize that each 

vowel category/transfer function should exhibit different amplitudes and latencies, 

especially for the N1/M100 component, as this component seems to index features 
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such as fundamental frequency, spectral envelope and signal complexity (Obleser et 

al., 2003a; Mäkelä et al., 2004; Obleser et al., 2006; Monahan et al., 2008).  We also 

hypothesize that the more spectrally complex signals (those with more harmonics in 

the spectrum) will elicit faster M100 latencies and larger amplitudes (Diesch and 

Luce, 1997).  Since the signals are relatively broadband (see Methods), we 

additionally hypothesize that M50 responses should be elicited, though we have no 

specifics concerning the direction of latency and amplitude modulations based on 

spectral structure (Chait et al., 2004; Howard and Poeppel, 2009).  For the P2m, we 

hypothesize the more spectrally complex signals will elicit larger amplitudes in this 

evoked component (Shahin et al., 2005; Shahin et al., 2007).  However, we are most 

curious as to how signals are processed within vowel categories; namely if there will 

be differences in the amplitude and latency of the evoked components recorded due to 

the harmonic structure of the source waveforms.  The main thrust of the experiment is 

to explore the sensitivity of the major evoked components to the presence or absence 

of harmonics.  Additionally, we aim to investigate the population-level resolution of 

auditory processing; we are curious to see if the timbral metamers also generate 

similar gross patterns of auditory processing.  Ultimately then, the goal is to link low-

level features and processing with the complex cortical parsing of auditory signals, 

with signals that may be processed using top-down (e.g., cognitive, phonetic) 

information (Sinnott et al., 1997). 

 

Materials and Methods 

Participants 
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 Forty-six normal-hearing adult participants participated in non-invasive 

cortical magnetic field recording.  Participants were compensated ($10/hour) for their 

involvement.  Presentation of stimuli and responses was performed with the approval 

of the institutional committee on human research of the University of Maryland, 

College Park.  Before the start of each experiment, informed written consent was 

obtained from each participant.  Participants were also asked to fill out a brief 

questionnaire documenting their musical or vocal training and experience.   

 

Stimuli 
  
 Experimental signals were generated with MATLAB (v7.8 , R2009a, The 

Mathworks, Natick, MA).  Seven complex source signals were filtered using the 

transfer functions for the American English Vowels /ɑ/, /i/, and /u/ (Hillenbrand et al., 

1995).  Vowel bandwidth measurements were likewise derived from ecological token 

measurements (Fant, 1972).  Source signals were generated using Fourier synthesis 

and the transfer functions were generated from an all-pole filter derived from 

measurements of the mean frequency values (Hz) of the first three formants for male 

speakers.  Signal duration was 250 msec with eleven msec cos2 onset and offset 

ramps; this duration was chosen because it is (i) the approximate average length of a 

vowel and (ii) allows for robust elicitation of evoked signals in a passive listening 

condition.  Signals were sampled at 44.1 kHz with 16-bit resolution.  These signals 

are identical to those employed in a separate psychophysical and modeling 

experiment.  Figure 1 illustrates the main properties of the synthesized signal formant 

(transfer function) structure.  The peaks corresponding to the first three formants are 
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clearly visible, in addition to the spacing between formants and the spectral tilt for 

each vowel.  For the /i/ and /u/ signals (high vowels), the proximity of the first 

formant to the fundamental frequency is readily apparent; for the /ɑ/ and /u/ (back 

vowel signals), the close spacing of the first two formants is easily visible. 

 

The experimental materials were designed to be (i) be ecologically valid, (ii) 

create timbral differences within and across signal classes and (iii) test the limits of 

the resolution of auditory perception (via timbral metamers).  To that end, care was 

taken to select and synthesize source waveforms and filters (transfer functions) that 

satisfied these criteria.  Since speech identification and processing is heavily reliant 

on timbre (Culling and Darwin, 1993; Fellowes et al., 1997; Gfeller et al., 1998; 

Dissard and Darwin, 2001), we chose to use as the basis for our experiment a source 

waveform that mimicked the glottal excitation pattern and modified its structure to 

induce timbral differences.  Further ecological validity was added by filtering the 

source waveforms through the different vowel transfer functions as vowels are 

differentiated by their (i) timbre, (ii) vocal tract filtering characteristics and (iii) 

linguistic information.  We chose vowel transfer functions that are well-separated 

(theoretically) timbrally and linguistically, namely the American English vowels /i/ 

(high front unrounded vowel), /u/ (high back rounded vowel) and /ɑ/ (low back 

unrounded vowel).  These vowels were chosen as they are the 'point vowels' and are 

well separated linguistically and perceptually.  The source waveforms had a 

fundamental frequency (F0) of 150 Hz (gender-neutral fundamental voice frequency) 
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and contained a maximum of twenty-three harmonics to approximate the glottal 

excitation pattern (Cleveland, 1977; Miller, 1989).   

 

Seven different source waveforms were employed to create a timbral 

continuum.  The signals were as follows: sawtooth waveform approximating the 

glottal excitation pattern comprised of twenty-three harmonics, sawtooth waveforms 

with every sixth, fifth, fourth, third, and second harmonic removed and a square wave 

where the maximum harmonic is the twenty-third; the sawtooth wave with every 

second harmonic removed and the square wave were the timbral metamers.  Each 

source waveform was filtered digitally, for a total pool of twelve signals.  Signal 

power was equalized between signals (i.e., filtered source waveforms) via the root-

mean-square (RMS) of the signal.  Figure 2 illustrates the construction of several 

stimuli for the vowel /i/.  This figure displays the temporal evolution of the source 

waveforms over several cycles, the effect of the transfer function on the source 

waveform and the power spectral density (PSD) estimate of the filtered source 

waveform spectral structure.  Signals shown are the sawtooth wave approximating the 

glottal excitation pattern (top row), sawtooth wave with every fourth harmonic 

removed (middle row) and sawtooth wave with every second harmonic removed 

(bottom row).  The effect of the harmonics present in the spectrum on source 

waveform structure (left column) to produce timbre differences is evident in the 

differences between the temporal structures of the signals.  The oscillation of the 

waveform at F0 and the harmonics present is clearly in the middle column of the 

figure.  The right column illustrates differences in spectral structure in the frequency 
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domain between the signals; presence and absence of source waveform harmonics is 

indicated by the ‘gaps’ – discontinuities introduced by the removal of harmonics.  

Figure 3 illustrates the timbral metamers for the /ɑ/ signals.  The left column 

illustrates the temporal structure of the sawtooth wave with every second harmonic 

removed (2F0 spacing) and the square wave source waveforms.  There is a slight 

phase difference between the signals; the sawtooth wave begins at the minimum of 

the cycle, while the square wave begins at the maximum. Visualization of the spectral 

information (PSD) indicates that the signals are identical in the frequency domain and 

thus should be perceived as identical. 

 

Experimental Procedure 
 
 Prior to the start of the experiment, two auditory pretests were performed.  

The first pretest used 250 and 1000 Hz sinusoidal signals of 400 msec duration 

presented at ~65 dB SPL; this pretest was used to establish that the participants 

generated an observable auditory-evoked response.  On average, the 1000 Hz signal 

generated a more robust response.  Selection of maximally responsive auditory 

channels was derived from a second pretest.  The second pretest used 250, 1000 and 

2000 Hz sinusoidal, square wave and sawtooth wave signals of 100 msec duration 

presented at ~65 dB SPL.  This pretest was employed for two reasons: (i) to provide 

information about the relationship between signal frequency and waveform type (as 

this is somewhat underspecified (Roberts et al., 2000)) and (ii) provide information 

about the evoked response amplitude and latency distributions of the source 

waveforms used in the experiment.  Five channels from source and sink for each 
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hemisphere (twenty channels total) with the maximum measured field deflection 

common to all waveforms and frequencies presented employed in the second pretest 

were used for analysis of the responses to the experimental materials.  The ISI for the 

pretests ranged between 300 and 1000 msec; the analysis frame length was from 100 

msec pretrigger to 400 msec posttrigger for the first pretest and from 115 msec 

pretrigger to 275 msec postrigger for the second pretest. 

 

For the main timbral experiment, participants were randomly assigned to one 

of two separate experimental groups:  one group was required to passively listen to 

signals with the transfer functions corresponding to /ɑ/ and /i/; the other /ɑ/ and /u/.  

Several participants were rejected due to insufficient signal-to-noise ratios in each 

pool (/ɑ/ - /i/: eight participants; /ɑ/ - /u/: 9 participants).  Several additional 

participants were rejected due to having a reversed auditory field topography for the 

M100 (/ɑ/ - /i/: one participant; /ɑ/ - /u/: two participants).  The final number of 

participants in the /ɑ/ - /i/ pool was fourteen (out of twenty-three); for the /ɑ/ - /u/ 

pool eleven (out of twenty-one).  Ten participants in the final pool for the /ɑ/ - /i/ 

assignment stated musical experience, two participants stated they were currently 

practicing and two stated they had ear training.  Ten participants in the final pool for 

the /ɑ/ - /u/ assignment stated musical experience, two participants stated they were 

currently practicing and one stated they had ear training.  The final pool of 

participants for both assignments consisted primarily of native English speakers, with 

three participants in the /ɑ/ - /i/ assignment being bilinguals for Chinese, Russian and 

Spanish natively.  Two participants in the /ɑ/ - /u/ assignment were native speakers of 
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Czech and Korean.  Each signal was presented 130 times, pseudorandomly 

interleaved, were passively attended to and presented at ~65 dB SPL.  To maintain 

participant vigilance, a distracter task was incorporated.  Approximately Gaussian 

white noise (400 msec duration) was used as a target during the experiment and was 

psuedorandomly presented with the signals (~ 17% of total).  Participants had to press 

a button in response to the noise target; these trials were excluded from analysis.   

 

Delivery 
 
 All experimental stimuli were presented using a Dell Optiplex computer with 

a M-Audio Audiophile 2496 sound card (Avid Technology, Inc., Irwindale, CA) via 

Presentation stimulus presentation software (Neurobehavioral Systems, Inc., Albany, 

CA).  Stimuli were delivered to the participants binaurally via Eartone ER3A 

transducers and non-magnetic air-tube delivery (Etymotic, Oak Brook, IL).��The inter-

stimulus interval varied pseudo-randomly between 700 and 1100 msec. 

 

Recording 
 
 Data were acquired using a 160-channel whole-head biomagnetometer with 

axial gradiometer sensors (KIT System, Kanazawa, Japan).  Recording bandwidth 

was DC-200 Hz, with a 60 Hz Notch filter, at 1000 Hz sampling rate.  Data were 

noise reduced using time-shifted principal component analysis (de Cheveigné and 

Simon, 2007), the trials averaged and baseline corrected offline (artifact rejection 

±2.5 pT).  Signals for the evoked response (i.e. after trial averaging) were low-pass 

filtered using a fourth order elliptical filter with a cutoff frequency of 40 Hz, 0.5 dB 
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peak-to-peak ripple and at least 60 dB stopband attenuation.  Time-shifted principal 

component analysis does not remove eye-blink artifacts, but trials with excessive 

frontal field deflections were excluded from the analysis. 

 

Evoked Response Analysis 
 
 The magnetic field evoked response data for the main timbral experiment 

were analyzed so as to (i) take advantage of the ability of MEG to capture-within 

participant responses and (ii) account for the univariate design of the experiment. 

 

Peak RMS and latency values for M50 (search window: 35 to 84 msec), M100 

(search window: 85 to 170 msec) and P2m (search window: 171 to 250) responses 

were determined using the localizer pretest channels.  The signal evaluation window 

ranged from 250 msec pretrigger to 600 msec posttrigger.  Evoked response peak 

RMS and latency values for data channels selected from the second pretest were 

averaged across participants and evoked responses were plotted topographically to 

confirm the response.  In addition, when a participant’s data did not show an auditory 

cortex magnetic field topography for a given condition, after averaging and filtering, 

the data (peak RMS and latency) were excluded from further analysis (Luo & 

Poeppel 2007).  Significance of the peak RMS and latency values collected was 

evaluated using General Linear Models (GLMs) (see below). 

 

Due to the univariate design of the experiment, RMS vectors for each 

hemisphere and condition for each participant were collected and placed into matrices 
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for further analysis.  Grand average RMS measurements (taken from filtered and 

baseline corrected data) were computed via RMS of the RMS for each vowel transfer 

function and condition, by hemisphere.  Differences between the grand average 

responses for amplitude were calculated via bootstrapped 95% confidence intervals 

(CIs) -- see below (Chait et al., 2010).  

 

Statistical Analysis of Responses 
 
 Statistical analyses of the evoked response data were analyzed suing R 2.10.1.  

GLMs were implemented using the “languageR” statistical package (Baayen, 2010).  

For the experimental pretest, GLMs were implemented for the M100 peak RMS and 

latency for the factors Hemisphere, Frequency, and Waveform with Participant as the 

variable interaction.  The factors and interactions for the pretest GLMs were (i) 

Hemisphere x Frequency x Waveform, (ii) Frequency x Waveform and (iii) 

Waveform and (iv) each factor independently.  The GLMs for each main 

experimental assignment evaluated M50, M100 and P2m peak RMS and latency for 

the factors Hemisphere, Vowel, Waveform and Harmonic Structure, with Participant 

as the variable interaction.  The initial models considered the following factors and 

interactions: (i) Hemisphere x Vowel x Waveform x Structure, (ii) Vowel x 

Waveform x Structure, (iii) Waveform x Structure, (iv) Structure and (v) each factor 

independently.   

 

Additional statistical analyses were implemented separately for participants by 

dividing the participant pool into two different groups, those that indicated they had 
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musical training and those without.  For the participants who indicated they had 

musical training, the factors were Training Type (formal or informal), Years playing 

the instrument, whether or not the instrument was currently being played, and 

whether or not the participant had ear training.  The factor interactions for the 

analysis of the participants with musical training were (i) Training Type x Years 

Played x Current Playing x Ear Training, (ii) Training Type x Years Played x Current 

Playing, (iii) Training Type x Years Played and (iv) Training Type.  A final statistical 

analysis for each experimental assignment compared the responses between those 

with musical training and those without (Crummer et al., 1994; Lakatos, 2000; 

Samson, 2003; Chartrand and Belin, 2006).  Significance for all statistical evaluations 

was performed at the α = 0.05 level. 

 

Amplitude differences were evaluated via 95% Bca bootstrap confidence 

intervals on the difference between RMS vectors from the hemispheres for (i) each 

vowel overall (ii) each condition by hemisphere and (iii) the timbral metamers via 

MATLAB’s Statistics Toolbox.  The procedure was as follows: for each condition 

(for vowels, all conditions) the individual RMS vectors from each participant were 

collected into a matrix, with each participant vector in a single row.  The difference 

was then calculated via subtraction (e.g., LH – RH, /ɑ/ - /i/) of one matrix from the 

other.  Five consecutive time points where either the lower or upper bounds were both 

less than or greater than zero were taken as significant (Chait et al., 2010).  For CI 

calculation, there were 500 bootstrap resamples.  
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To account for individual cortical differences in the processing of the 

experimental signals, Bca 95% bootstrap confidence intervals were calculated for the 

(i) correlation between the participant latency values (for each hemisphere and 

condition) and timbral complexity measures using Spearman’s rank correlation and 

(ii) participant differences in latency values for each hemisphere and condition using 

the “boot” package in R 2.10.1 with 1000 resamplings (Davison and Hinkley, 1997; 

Canty and Ripley, 2010).  Since the signals employed were completely steady-state, 

their timbre thus depended entirely on frequency content.  In addition, since they 

were ecologically based, we decided to use a measure that reflected this fact and have 

been implicated in the electrophysiological literature as possibly affecting evoked 

response activity.  The correlations were between the evoked component latencies 

and the spectral center of gravity.  Spectral center of gravity is an amplitude-weighted 

measure that indicates where energy is concentrated in the frequency domain (i.e., a 

measure of central tendency).  Amplitude-weighted spectral information was derived 

via power spectral density (PSD) estimates of the digitized, RMS-equalized 

waveforms presented to the experimental participants using Welch’s method using 

MATLAB’s Signal Processing Toolbox.  The PSD was estimated only for the 

harmonics present in the spectrum.  Spectral center of gravity was calculated as 

follows: 

SCG = (Σnn x An)/Σn An 

where n denotes the frequency in Hz, and A is the amplitude in decibels (dB).  We 

also included a version of the SCG where frequency is log-transformed (log base 10) 

to improve ecological validity; a log-log representation of the signals would more 
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accurately represent how the auditory system parses the signal (Hartmann, 1998; 

Moore, 2004). 

  

Results 

M100 Amplitude and Latency Pretest Results 
 
 The main objective of the pretests was to determine the channels that recorded 

from the auditory areas responding most robustly to the signals presented; a minor 

objective was to determine response properties to signals that would be decomposed 

harmonically (sawtoooth and square waves) as in the main experimental signals, in 

addition to signals that have been traditionally used to determine basic auditory 

function (sinusoidal waves).  Data from two participants from the final pool of 

participants were excluded due to not generating robust SNRs for a majority of 

pretest conditions.  Figures 4-6 summarize the data from the second pretest, analyzed 

according to hemisphere, waveform and oscillation frequency.  Figure 4 illustrates the 

normal approximations to the M100 amplitudes and latencies for each hemisphere.  

Though not apparent in the boxplots, the data replicate several previous findings 

concerning M100 amplitude and latency responses.  First, the signals elicited typical 

M100 responses; namely that the RH exhibited a greater M100 amplitude and faster 

M100 latency; this was verified via statistical analysis.  Inter-participant variability 

was also high; aside from a few exceptions, there was no difference in either M100 

amplitude or latency between waveform oscillation frequencies. 
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Figure 5 illustrates the mean M100 amplitude values, separated by hemisphere 

and identified according to frequency (250, 1000, 2000 Hz) and waveform (sawtooth, 

square, sinusoid), while Figure 6 illustrates the mean M100 latency data, with the 

same separations as in Figure 5.  This data visualization makes the relationships 

observed to be statistically significant more readily apparent.  Statistical evaluation of 

M100 latency data for each of the factors assessed independently (Hemisphere, 

Frequency, Waveform) found significant predictors to be each hemisphere (coef = -

3.211, SE = 1.195, t = -2.690), with the RH exhibiting a faster M100 latency.  No 

significant differences were observed for frequency and waveform assessed 

independently.  Based on the observed difference between hemispheres we performed 

post hoc tests, evaluating waveform structure and oscillation frequency independently 

as well as their interaction with each other, within each hemisphere.  Statistical 

evaluation of LH M100 latency found  2000 Hz signals to be significant predictors 

compared to the 250 and 1000 Hz signals (coef = 5.793, SE = 2.083, t = 2.780).  No 

significant differences were observed between waveform types in the LH.  

Assessment of the interaction Frequency x Waveform, 2000 Hz signals were again 

found to be significant predictors (coef = 11.788, SE = 3..669, t = 3.210) as well as 

2000 Hz sinusoidal wave signals (-15.255, SE = 5.093, t = -3.000).  Evaluation of the 

RH M100 responses found no significant differences for oscillation frequency and 

waveform evaluated independently; however, the interaction Frequency x Waveform 

for 2000 Hz sinusoidal signals was observed to be a significant response predictor 

(coef = -7.649, SE = 4.032, t = -1.900). 
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Statistical analysis of M100 amplitude data for each of the factors assessed 

independently found Hemisphere to be a significant response predictor (coef = 

18.271, SE = 2.980, t = 6.133) as well as the square wave signals (coef = -5.735, SE = 

3.711, t = -1.515); both the RH and the square wave signals exhibited larger M100 

amplitudes.  Based on these results we performed post hoc tests in the same manner 

as the tests on the M100 latency data.  Evaluation of the LH responses with each 

factor assessed independently found 1000 Hz signals to be significant predictors (coef 

= -12.074, SE = 4.113, t= -2.936) in addition to square waveform signals (coef = 

9.819, SE = 3.988, t = 2.462).  Assessment of the interaction between oscillation 

frequency and waveform found significant response predictors to be square wave 

signals overall (coef = 23.292, SE = 6.776, t = 3.438) and 1000 Hz square wave 

signals (-23.724, SE = 9.393, t = -2.526). 

 

Statistical analysis of the three-way interaction latency data for the 

interactions Hemisphere x Frequency x Waveform found 2000 Hz signals (coef = 

13.198, SE = 3.617, t = 3.650), specifically 2000 Hz signals in the RH (coef = -

12.542, SE = 4.971, t = 2.520) and 2000 Hz sine waves (coef = -16.633, SE = 5.023, t 

= -3.310) to be significant response predictors.  For the interaction Frequency x 

Waveform, 2000 Hz signals (coef = 6.356, SE = 2.556, t = 2.490), sine waves (coef = 

5.184, SE = 2.555, t = 2.030) and most specifically 2000 Hz sine wave signals (coef = 

-12.248, SE = 3.552, t = -3.450) were observed to be significant response predictors.  

Analysis of the three-way interaction of amplitude data for the interaction 

Hemisphere x Frequency x Waveform found square wave signals (coef = 22.394, SE 
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= 8.982, t = 2.493) to be significant predictors of response amplitude.  Analysis of the 

interaction Frequency x Waveform found square waves to be significant predictors 

(coef = 19.906, SE = 6.707, t = 2.968) and specifically 1000 Hz square wave signals 

(coef = -13.310, SE = 9.261, t = -2.265). 

 

Analysis of the sensors that responded most robustly revealed that across 

conditions and within participants, the same sensors tended to respond to the signals 

presented.  Analysis of the response density distribution revealed that participant 

responses were highly variable, but that within-participant neuronal processing was 

stable. 

 

Preattentive Timbre Classification Results 
 

The majority of subjects did not exhibit robust M50 or P2m responses, with 

the M50 being generated more often than the P2m.  As such, we decided to focus our 

initial analysis on the M100 responses generated to the signals presented, which were 

reliably generated.  One participant, in the /ɑ/ - /i/ pool, had a very left-lateralized 

M100 response.  For the statistical analyses, where a participant did not exhibit an 

evoked response (via evaluation of the magnetic field topography), missing values 

were not imputed with the series mean to stay as close as possible to the observed 

data.  Mean values from both hemispheres were summarized according to factors 

previously reported to affect to be affecting M100 latency in the literature 

(hemispheric differences, vowel identity) as well as the factors which we were 

specifically investigating.  Histograms and smooth density estimates of the M100 
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latency data were skewed left slightly (though the latency data in the /ɑ/ - /u/ 

assignment were more normally distributed), while the peak RMS response data were 

skewed right, a result typical of response power values. 

  

 /ɑ/ - /i/ Experimental Assignment 
 
 Analysis of the M100 latency and peak RMS data across participants 

(averaging of individual evoked response latency and peak RMS values) for the /ɑ/ - 

/i/ experimental assignment by hemisphere and vowel revealed that the data 

replicated several previous findings.  First, there was an asymmetry between the 

hemispheres: the RH displayed a faster latency and larger amplitude than the LH.  

Also replicating previous data, there was no overall consistent difference between the 

evoked responses to each vowel signal class (Mizuochi et al., 2007). 

 

Overall, Hemisphere was observed to be a consistent predictor of M100 

amplitude and latency, with the RH exhibiting greater amplitude and faster latency 

values than the LH.  The only other consistent predictor was Waveform.  The 

observation that there was no significant difference between /ɑ/ and /i/ signals overall, 

in latency and amplitude is in line with previously reported data concerning signals of 

a vocal nature (Mizuochi et al., 2007).  Based on the observations from the initial 

statistical tests, we conducted post hoc tests where the data from each hemisphere was 

separated and the remaining factors were evaluated independently and interactively. 
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Statistical analysis via GLMs found Hemisphere (LH vs RH) and Waveform 

(sawtooth vs square) to be consistent predictors of M100 amplitude overall.  RH 

amplitude (coef: 14.637, SE = 3.752, t = 3.901) and latency for the RH (coef = -

2.536, SE = 0.956, -2.650) and square source waveform (coef = -3.691, SE = 1.290, -

2.860) were significant predictors when evaluated independently.  Significant results 

were obtained for Hemisphere when evaluated both interactively for amplitude (RH 

minimum significance: coef = 15.842, SE = 5.716, t = 2.772) and latency (RH 

minimum significance: coef = -2.777, SE = 1.329, t = -2.090).  No specific SCG 

value was observed to be a significant response predictor for either amplitude or 

latency.  Post hoc tests where we separated the data from each hemisphere and then 

evaluated the remaining factors independently and interactively found several 

significant predictors.  For the LH M100 amplitude responses, significant predictors 

were observed to be the /i/ signals (coef = 6.155, SE = 2.586, t = 2.380) and the 

square waveform signals (coef = 14.919, SE = 4.536, t = 3.289) for the interaction 

Vowel x Waveform; the square waveform signals were also observed to be a 

significant predictor when Waveform was evaluated independently (coef = 10.261, 

SE = 3.435, t = 2.987).  For the RH data, the square waveform signals were observed 

to be a significant predictor with Waveform evaluated as a factor independently (coef 

= 13.030, SE = 4.100, t = 3.179).  For the M100 latency, square waveform signals in 

the RH were observed to be significant response predictors when evaluated 

independently (coef = -4.729, SE = 1.868, t = -2.530).  Within vowel signals, the RH 

was observed to be a significant response predictor for the /ɑ/ signals for both M100 

amplitude (minimum significance coef = 16.670, SE = 5.551, t = 3.003) and latency 
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(minimum significance: coef = -2.874, SE = 1.308, t = -2.200).  For the /i/ signals, the 

only significant predictor was the RH for M100 amplitude (coef = 14.790, SE = 

5.315, t = 2.783). 

 

Figures 7-9 summarize the analysis of bootstrapped confidence intervals and 

grand averaged evoked responses.  Figure 7 illustrates the grand averaged RMS 

waveforms (RMS of RMS) and the time points observed to be significant for the 

RMS amplitude via bootstrap resampling, separated by hemisphere for several 

conditions.  One striking characteristic of the data is that across conditions, there is an 

asymmetry in the peaks of the evoked response between the hemispheres.  In the LH, 

there is a distinct peak in the time range where a M50 response would be expected to 

be observed (~90 msec) in addition to the M100 peak.  As previously mentioned, not 

all participants showed a M50; however, for those participants who exhibited a robust 

M50 response, the response (i.e. magnetic field topography and RMS peak) was very 

left-lateralized.  We limited our analyses of the bootstrapped RMS amplitude 

differences to the time windows of interest for the evoked responses based on our 

initial hypotheses and the previous literature.  Due to the large variance observed, we 

decided to compute grand averages of the magnetic field deflections of the filtered 

and baseline corrected participant data to determine if the responses were likely 

generated in auditory cortex based on the topography observed.  

 

There was no consistent relationship between conditions regarding the time 

points where the differences between the response amplitudes generated by the /ɑ/ 
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and /i/ signals.  Several time points in the sustained field (~300 msec post-onset) were 

observed to contain significant RMS amplitude differences, but this observation was 

not consistent.  Comparison with the grand averaged magnetic field deflections 

indicated that the sustained field time ranges did display a sink-source distribution 

similar to that of the M100, but its relationship to the M100 and its generators is 

unclear.   

 

Figure 8 illustrates the grand averaged RMS responses for each of the 

metamers in each vowel class.  The RMS responses parallel each other closely; in 

fact, they almost completely overlap each other in the temporal domain.  Bootstrap 

analyses of the metamers for each vowel signal found significant differences in 

amplitude in the LH prior to M100 generation and in the sustained field.  However, it 

is not clear if these differences between metamers are significant, due to the large 

variance in significant time points observed for all signals across both classes.  Figure 

9 illustrates the differences between each vowel signal (all conditions aggregated), 

separated by hemisphere.  In parallel with the analyses of means of the overall 

responses, especially for the M100, there are very few differences between the 

vowels; the RMS time courses are essentially identical.  Figure 10 illustrates the 

relationship between the RMS grand averages, magnetic field grand averages and 

grand average topography.  The top panel illustrates the temporal evolution of the 

evoked responses; data are taken from 28 sensors common to all participants in both 

hemispheres.  Three distinct peaks can be observed one corresponding to a typical 

M50 response (~90 msec), another corresponding to the M100 (~150 msec) and a 
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third in the sustained field (~308 msec).  The topographies for each of the responses 

are displayed below the grand averaged magnetic field deflections.  The M50 

topography indicates that is has an opposite dipolar pattern to that of the M100 and 

sustained field and is extremely left-lateralized. 

 

Based on the asymmetries observed in the RMS grand averages, we followed 

our initial analyses with post hoc tests on the M50 responses.  We analyzed data from 

each hemisphere separately, due to the M50 responses being extremely left-

lateralized and previous data indicating that the LH may play a special role in 

distinguishing between variations in source waveform spectral structure (Tiitinen et 

al., 2005).  Statistical evaluations of the M50 amplitude and latency only found 

significant differences between the hemispheres for both amplitude (coef = -20.093, 

SE = 3.465, t = -5.799) and latency (GLM:  coef = -5.462, SE = 1.570, t = -3.480); no 

other significant differences within hemisphere for any other factors or interactions 

between factors was observed. 

 

Analysis of the bootstrap distributions and quartile plots using SCG as a proxy 

for harmonic and vowel structure indicated that within-participant responses to the 

signals were consistent.  Analysis of the bootstrapped latency differences revealed 

that the across-participant responses were highly variable and that bootstrap 

estimations and distributions were not appropriate for assessing the differences. 
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 /ɑ/ - /u/ Experimental Assignment 
 
 Figure 11 illustrates mean M100 amplitude and latency for each hemisphere 

and vowel.  In replication of previous data, the RH exhibits a greater M100 amplitude 

and shorter latency.  Also in agreement with previously reported data, the /ɑ/ signals 

exhibit a greater M100 amplitude than the /u/ signals, as well as a shorter M100 

latency (Poeppel et al., 1997; Mizuochi et al., 2007).  Hemisphere, Vowel and SCG 

were observed to be consistently significant predictors of M100 amplitude and 

latency overall.  SCG as a predictor in the /ɑ/ - /u/ assignment differed from SCG in 

the /ɑ/ - /i/ assignment in that specific SCG values were identified as being specific 

predictors using GLMs.  As with the /ɑ/ -/i/ assignment, we separated the data from 

each hemisphere and evaluated the remaining factors independently and interactively. 

 

For analysis of the M100 amplitude data using GLMs, the RH (minimum 

significance: coef = 21.448, SE = 3.982, t = 5.386) and the /u/ signals (minimum 

significance: coef = -8.869, SE = 3.999, t = -2.217) were consistently found to be 

significant response predictors; the same factors were also consistent predictors for 

the M100 latency (RH minimum significance: coef = -4.150, SE = 1.380, t = -3.010; 

/u/ minimum significance: coef = 3.547, SE = 1.386, t = 2.560).  Additionally, there 

were several SCG values (linear and log frequency) found to be significant response 

predictors for M100 amplitude and latency, but significance was not consistent across 

models.  Incidentally, the SCG values that were found to be significant predictors 

came from /ɑ/ signal class.  As done previously, we performed post hoc tests 

separating the hemispheres and evaluating the remaining factors independently and 
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interactively.  For the LH amplitude responses, the /u/ signals were found to be 

significant predictors for the interaction Vowel x Waveform (coef = -8.821, SE = 

3.021, t = -2.920) and when evaluated independently (coef = -9.012, SE = 2.808, t = -

3.209).  For the RH amplitude responses the /u/ signals (coef = -15.015, SE = 3.173, t 

= -4.733) and the square waveform signals (coef = 13.407, SE = 6.120, t = 2.191) 

were found to be significant predictors for the interaction Vowel x Waveform; the /u/ 

signals were also found to be significant predictors when evaluated independently 

(coef = -16.233, SE = 2.971, t = -5.464).  The linear SCG values that were found to 

be significant responses for M100 amplitude were all the in the RH and corresponded 

to the sawtooth wave with every second harmonic removed (coef = 34.398, SE = 

7.223, t = 4.762), the sawtooth wave with every fourth harmonic removed (coef = 

16.099, SE = 7.223, t = 2.229) and the square wave (coef = 26.095, SE = 7.440, t = 

3.616) source waveforms.  The log SCG values that were found to be significant 

response predictors for M100 amplitude were likewise contained in the RH and were 

the /ɑ/ timbral metamers (a-2-rem: coef = 24.832, SE = 7.366, t = 3.371; a-sq: coef = 

32.326, SE = 7.151, t = 4.520). 

 

The /u/ signals were observed to be significant response predictors of M100 

latency in both hemispheres (LH minimum significance: coef = 2.890, SE = 1.317, t = 

2.190; RH minimum significance: coef = 4.417, SE = 0.878, t = 5.030).  Linear SCG 

values observed to be significant response predictors (all /ɑ/ signals) of LH M100 

latency were the sawtooth wave with every third harmonic removed (coef = -7.333, 

SE = 3.237, t = -2.270), second harmonic removed (coef = -6.841, SE = 3.142, t = -
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2.180) and square wave (coef = -9.310, SE = 3.141, t = -2.960) source waveforms.  In 

the RH, every /ɑ/ waveform except for the sawtooth wave with every fifth harmonic 

removed was a significant predictor for their linear SCG values (minimum 

significance: coef = -5.959, SE = 2.091, t = -2.850); for the log SCG values, the 

sawtooth wave approximating the glottal excitation pattern (coef = -7.400, SE = 

2.070, t = -3.580) and the square wave source waveforms (coef = -6.266, SE = 2.132, 

t = -2.940) were observe to be significant predictors.  Within-vowel analyses of the 

/ɑ/ signals revealed that the RH was a significant response predictor for both M100 

amplitude and latency (amplitude minimum significance: coef = 21.625, SE = 4.440, t 

= 4.871; latency minimum significance: coef = -4.105, SE = 1.313, t = -3.130); the 

same was true for the /u/ signals (amplitude minimum significance: coef = 15.172, SE 

= 3.498, t = 4.337; latency minimum significance: coef = -3.871, SE = 1.353, t = -

2.860).  The only other significant response predictors were the sawtooth wave with 

every second harmonic removed for the /ɑ/ signals (coef = 9.951, SE = 8.8034, t = 

2.468) for the factor Harmonic and for linear SCG value (coef = 17.082, SE = 8.149, t 

= 2.096) for M100 amplitude. 

 

Figure 12 illustrates the grand averaged RMS waveforms (RMS of RMS) and 

the time points observed to be significant for the RMS amplitude via bootstrap 

resampling, separated by hemisphere for the /ɑ/ - /u/ metamers.  As with the /ɑ/ - /i/ 

signals, there was considerable variance in the time points found to be significant; the 

identical procedure was used to evaluate the RMS responses.  As in the /ɑ/ - /i/ 

assignment, there was an asymmetry between the hemispheres, with a distinct peak in 
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the time range expected for a M50 response occurring more often and robustly in the 

LH.  There was no consistent relationship between conditions for the time points 

where the RMS amplitudes were observed to be different via bootstrap resampling.  

Again, there were several time points in the sustained field with a distribution similar 

to that of the M100, the relationship between the M100 responses generated and the 

sustained fields from this experiment assignment are unclear.  Amplitude differences 

between the metamers were observed, but due to the large variance observed for all 

conditions, the significance is once again unclear.   

 

Figure 13 illustrates the grand average magnetic field deflections and 

topographies for each vowel class across condition for the /ɑ/ - /u/ assignment.  

Conventions used are the same as that of Figure 10.  Visualization of the evoked 

response in the temporal domain reveals that the /ɑ/ signals exhibited a greater M100 

amplitude and shorter latency than the /u/ signals.  Topographical illustration of the 

M50 and M100 evoked response distributions reveal that the responses have opposite 

sink-source distributions, indicating different patterns of neuronal activity.  In the 

experimental pool the overall M50 response was not as left-lateralized for the /ɑ/ 

signals. 

 

Statistical analysis of the M50 responses found only significant differences 

between hemispheres for amplitude(coef = -5.071, SE = 2.077, t = -2.441) and 

latency (coef = -5.219, SE = 1.533, t = -3.400); as before, this may have been a 

consequence of the M50 being more reliably and robustly generated in the LH. 
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Effects of Musical Training and Native Language 
 
 For both experimental assignments, no statistically significant differences 

were observed in evoked response amplitude or latency for (i) musical/vocal training, 

(ii) musical or vocal training type (formal or informal), (iii) whether or not the 

instrument trained on was currently being played and (iv) native language.  The 

negative result for musical training may have been due to several factors: the large 

number of subjects in the final pools with musical/vocal training, the stability of 

evoked response for the signal employed or perhaps the lack of a psychophysical task.  

The negative result for the effect of native language may have been due to the 

participants being in an American English immersive environment as well as the use 

of tokens that did not contain features of tonal language vowels (e.g., low-high tonal 

transitions). 

 

Discussion 

The data presented in this experiment reproduce several findings regarding the 

processing of auditory signals having formant or formant-like spectral structures.  

First, we reproduced the hemispheric asymmetries observed for the M100, with the 

RH exhibiting faster latencies and larger amplitudes than the LH.  We also replicated 

previous findings for hemispheric asymmetry for the M50, with a LH bias in the 

generation of the M50 (Howard and Poeppel, 2009).  We also replicated data from 

several studies regarding differences in vowel processing, namely that the evoked 

responses between the /ɑ/ and /u/ signals differed in M100 amplitude, latency and 
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temporal evolution, while those between the /ɑ/ and /i/ signals were essentially 

identical (Poeppel et al., 1997; Mizuochi et al., 2007).  While our specific hypotheses 

regarding how harmonic structure affected evoked response latency and amplitude 

were not supported by the data, the hypotheses concerning vowel category processing 

were supported.  Though the signals we employed in this experiment lacked several 

features of real vowel tokens (e.g., formant transitions, breathiness, pitch contour) 

their composition reflected crucial features of vowel formant structure and these 

features were reflected at a gross level in cortical processing. 

 

The data recorded support the view that signals, especially vowels or vowel-

like signals, can be categorized preattentively/preconsciously (Diesch and Luce, 

2000; Vihla and Salmelin, 2003; Jacobsen et al., 2004a), at least by the time the 

M100 is generated (Gage and Roberts, 2000).  Contribution of F0 to categorization 

and the evoked responses was minimal at best, as the signals all had the exact same 

fundamental frequency.  However, the M100 responses observed occur rather late 

(~130-140 msec post-onset) in a range typical of signals with a fundamental of ~150 

Hz (Roberts et al., 2000). The evoked response evolution was most likely due to the 

spectral envelope of the signals, which imposes specific dynamics on the temporal 

aspects of the signal in addition to shaping the frequency content.  Spectral envelope 

has been identified as an especially salient dimension and this saliency (though not 

measured through psychophysics) seems to be reflected in the evoked response data.  

Statistical analyses as well as investigation of the grand averaged RMS and magnetic 

field deflection demonstrate that the effects observed were reliable and robust across 
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participants, though there was considerable variation across participants.  However, 

the extreme degree of similarity between the /ɑ/ and /i/ signals is not explainable by 

the data.  These signals belong to well-separated vowel classes and thus have 

markedly different spectral envelope structures.  The similarity between the signals 

may be due to 'averaging' of the formant values; if this theoretical averaging does take 

place, then the average of the first two formant values for /ɑ/ may be close to the F1 

value for that of /i/.  This is linguistically plausible as the F1/F2 ratio is very salient to 

an observer and F1 value can aid in tasks such as vowel identification (Darwin et al., 

1989; Sinnott et al., 1997; Vihla and Salmelin, 2003; Jacobsen et al., 2004a).  Though 

we have no psychophysical data to support this notion, it is possible that phonetic 

information may have also contributed to the analysis of the signals employed.  

Previous MEG and psychophysical data has shown that, depending on context, 

phonological cues as well as basic sensory processes contribute to signal 

identification (Sinnott et al., 1997; Monahan et al., 2008).  Once again, this is 

reflected in our replication of data concerning evoked responses to vowel and vowel-

like sounds.  It stands to reason then, that signal parsing by the auditory system as 

well as top-down information contributes to preattentive signal classification, though 

the specifics of this process still elude us. 

 

Previous data has shown that the hemispheres are differentially sensitive to 

different aspects of the vowel and vowel-like signals (Tiitinen et al., 2005).  

Specifically, variations in harmonic structure are processed preferentially in the LH, 

while spectral envelope is preferentially processed in the RH.  Our results in the /ɑ/ - 
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/u/ experimental assignment mirror that of Tiitinen et al (2005), where the excitation 

produced by /ɑ/ and /u/ signals using varying source waveforms was explored using 

passively attended stimuli.  The fact that our results do not agree completely may be 

due to the fact that particular study used a more varying set of source waveforms 

(glottal excitation, sine wave, aperidodic noise) than we employed; all our source 

signals were harmonic in nature.  Though we created a timbral continuum, the 

majority of source waveforms were sawtooth in some respect.  Another possible 

cause of the discrepancy is that there was a wide amount of variation between 

participant evoked responses to the harmonic structure of the source waveforms, 

though responses within categories were consistent.  Due to the variance observed in 

the data, it appears that neuronal computation within signal categories varies greatly.  

Psychophysical tasks or participant training could enhance perception of subtle 

timbral differences.  For example, evoked responses can be enhanced (faster response 

latencies, greater amplitudes or both) if participants are trained (musical or otherwise) 

to detect specific signals, signal features or discriminate between signals (Crummer et 

al., 1994; Hirata et al., 1999; Brattico et al., 2003; Chartrand and Belin, 2006).  

Though we did observe some statistically significant responses to several of the 

source waveforms, the degree of variation observed within categories precludes us 

from making any definitive statements about that significance and further 

investigation is warranted. 

 

While this study was not concerned with the cortical generators of the evoked 

response, the evoked response temporal evolution supports several previous 
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observations regarding the generators of the responses involved.  It is well-established 

that the M100 has several generators that contribute to its slope and latency (Eulitz et 

al., 1995; Pantev et al., 1995; Lütkenhöner and Steinsträter, 1998; Lütkenhöner, 2003; 

Okamoto et al., 2008; Howard and Poeppel, 2009).  Relative to the M50, the M100 is 

much larger and has a tendency to overlap somewhat with the M50.  In addition to the 

M50 asymmetries observed, examination of the grand averaged RMS and magnetic 

field deflection topography illustrate this overlap and dominance of the M100 relative 

to the M50, indicating that the generators of the responses observed in this 

experiment are most likely identical to those found via dipole analyses (Godey et al., 

2001; Yvert et al., 2001; Yvert et al., 2005; Inui et al., 2006; Howard and Poeppel, 

2009).  Observation of M50 responses may have been aided by fact the signals 

employed were relatively broadband in nature (Chait et al., 2004).  The generators of 

the sustained field deflections as well as their functional significance is unclear at this 

point in time; their topography indicates that they share many of the same generators 

as the M100, but this does not lend itself to an explanation of what the sustained field 

is indexing. 

 

The experimental paradigm and materials reported could be expanded in 

several ways.  Most obviously, a greater number of transfer functions corresponding 

to different vowels (e.g., vowels in the middle of the vowel space) could be 

employed.  The transfer functions could also be expanded to include data derived 

from the measurements of female and child vocal measurements; the M100 especially 

has been shown to be sensitive to the formant structure and has exhibited different 
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response profiles to the spectral structure of vowels taken from males, females and 

children; the different genders and ages have different vocal tract lengths (Fant, 1972) 

which are directly related to the formant structure.  While we aimed to but not find 

any differences in the evoked response due to source waveform structure, it would be 

useful to expand the source waveforms to those such as used by Tiitinen (2005).  It 

may well be the case that harmonic waveforms, regardless of whether or not they 

resemble that of the glottal excitation pattern, may be preferred relative to other 

waveforms (e.g., sine waves, aperiodic noise). 

 

Overall, we find that spectral envelope information allows synthesized signals 

to be categorized preattentively, as indexed primarily by the M100 evoked response 

component.  However, differences in the latency and amplitude of this component 

may lack the resolution to distinguish between certain signals (e.g., /ɑ/ and /i/).  The 

data support the view that this preattentive categorization is derived from spectral 

envelope information, with possible contributions from top-down information and the 

fundamental frequency of the signal.  The data do not support the view that 

differences in harmonic structure are reflected in the evoked response; however, this 

may be due to the observers lacking specific instruction concerning the nature of the 

signals employed as well the lack of psycophysical measures or training in the 

experiment (Pastore et al., 1990).   
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Figures 
 

 
 
Figure 1.  Spectral envelopes of vowel transfer functions employed in the experiment.  

Top panel illustrates the transfer function for /i/, middle panel transfer function for /u/ 

and the bottom panel the transfer function for /ɑ/ (/a/).  The x-axis is frequency (Hz); 
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y-axis is the power spectral density (PSD) estimate (dB/Hz).  Power spectral density 

estimates were computed using Welch’s method.  The vowels /i/ and /u/ are the high 

vowels and /ɑ/ and /u/ are the back vowels.  The transfer functions are acting as filters 

on a white noise signal.  Transfer functions were created by taking data derived from 

American English male formant values (Hz) for each vowel (Hillenbrand et al., 1995) 

and converting the values into the coefficients of a transfer function to filter the 

various source waveforms employed.  The visualization illustrates several important 

features of each vowel.  For the high vowels, it is easy to see that the value of the first 

formant is relatively close to the fundamental frequency (150 Hz) and that the 

spectral valley below the first formant is shallow compared to the transfer function 

for /ɑ/.  For the back vowels, the first and second formant vowels are rather close to 

each other and the spectral tilt is more pronounced that in the front vowel /i/. 
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Figure 2.  Illustration of stimuli construction, with transfer functions corresponding to 

the vowel /i/ as an example.  Left column illustrates the structures of several source 

waveforms in the temporal domain; middle column illustrates the structure of the 

source waveform after filtering by the transfer function; right column illustrates the 

PSD estimate of the filtered waveform.  Top tow illustrates the sawtooth wave 

approximating the glottal excitation pattern; middle row the sawtooth wave with 

every fourth harmonic removed; bottom row sawtooth wave with every second 

harmonic removed.  Source waveforms were constructed using Fourier synthesis.  

Visualization of source waveform structure in the temporal domain illustrates (i) the 

effect of Fourier synthesis in producing the harmonic waveforms and (ii) the effect of 
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selectively removing harmonics to produce discontinuities (in the frequency domain) 

and timbre differences between the source waveforms.  Visualization of the transfer 

function (filters) on the source waveforms illustrates the steady-state temporal 

dynamics of the signals.  The steady-state nature of the signals is readily apparent, 

i.e., the waveforms oscillate at a combination of the fundamental frequency and the 

harmonics present.  Though somewhat difficult to see, close inspection of the 

sawtooth wave approximating the glottal excitation pattern and the sawtooth wave 

with every fourth harmonic removed reveals that (i) the essential sawtooth nature of 

the signals is preserved, despite differences in the harmonic structure and (ii) the 

selective removal of harmonics results in slight differences in the temporal evolution 

of the signals.  PSD estimates more clearly reveal the timbral differences in frequency 

domain.  The spectral peaks that stand out most prominently are at the values of the 

formants; though synthetic the signals employed exhibit the comb structure typical of 

vowel tokens and vowel-like signals.  The effect of selectively removing harmonics is 

also clear; there are ‘gaps’ in the spectrum where those harmonics are not present. 
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Figure 3.  Visualization of timbral metamers for the /ɑ/ (/a/) signals.  Pictured are the 

source waveforms in the temporal domain as well as the filtered and RMS-equalized 

signals in the frequency domain.  Sawtooth wave with every second harmonic 

removed (2F0 spacing) is on the top row; square wave on bottom.  Source waveforms 

in the temporal domain are pictured prior to RMS equalization.  Examination of the 

sawtooth wave with every second harmonic removed and the square wave signals 

demonstrates that though their frequency content is identical, there is a slight phase 

difference between the signals.  Similarity of the signals in the frequency domain is 

clearly evident when examining the PSD estimate via Welch’s method.  The peaks in 

the spectrum are identical between signals and since they are completely steady-state, 
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then their timbre is identical.  We hypothesize that perception and cortical processing 

of the signals should likewise be identical. 
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Figure 4.  Boxplots illustrating normal approximations to pretest signals for M100 

amplitude and latency, separated by hemisphere.  RH is represented by the cyan box; 

LH magenta.  Figure 4a illustrates the approximations for M100 amplitude, 4b for 

M100 latency.  Though not apparent from the boxplots, the RH exhibited, on average, 

a larger amplitude and faster latency than the LH.  This visualization also 

demonstrates the large variance observed across participants as they passively 

attended to the signals. 
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Figure 5.  Mean M100 amplitude for each hemisphere, waveform and frequency for 

the experimental pretests.  LH is on the left panel, RH on the right.  Sawtooth 

waveforms are in magenta, square waveforms in green, sinusoidal waveforms in blue.  

Frequency increases from 250 Hz to 2000 Hz from L to R.  From this visualization it 

is clear that the RH displays a greater M100 amplitude on average than the LH.  

Aside from a few isolated frequencies, no significant statistical difference between 

the waveforms at each frequency or overall was observed. 
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Figure 6.  Mean M100 latency for each hemisphere, waveform and frequency for the 

experimental pretests.  Conventions used are the same as in Figure 5.  On average, the 

RH exhibited a faster latency than the LH.  As with the M100 amplitude, aside from a 

few isolated cases, there was no consistent separation between each waveform and 

frequency. 
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Figure 7.  Grand averaged (RMS of RMS) waveforms for several conditions for the 

/ɑ/ - /i/ experimental assignment.  The data are taken from the following source 

waveforms: (i) sawtooth wave approximating the glottal excitation pattern (top row), 

(ii) sawtooth wave with every fifth harmonic removed (middle row) and (iii) sawtooth 

wave with every third harmonic removed (bottom row).  Data from the LH evoked 

responses are in the left column, RH data in the right column.  Consecutive time 

points found to be statistically significant for evoked response amplitude differences 

are highlighted in yellow.  Grand averages for the /ɑ/ signals are in blue; grand 

averages for the /i/ signals are in black.  From the data visualizations, it is apparent 

that there is an asymmetry in the temporal evolution of the response; the LH 

consistently exhibits a peak (~90 msec) where a M50 response would be expected.  

The asymmetry in the M100 peak is also apparent; on average, the RH exhibited a 

larger M100 amplitude than the LH.  Examination of the time points found to be 

significant via bootstrap resampling revealed that no time range was consistent across 

conditions.   
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Figure 8.  Grand averages (RMS of RMS) for the metameric comparisons for each 

vowel, /ɑ/ - /i/ experimental assignment.  Consecutive time points found to be 

statistically significant for evoked response amplitude differences are highlighted in 

yellow.  The sawtooth wave evoked response temporal evolution is plotted in blue; 
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square wave in black.  In line with our hypotheses concerning the possible cortical 

processing of the metameric signals, the temporal evolution of the evoked responses 

of the metamers for each vowel are almost completely identical, especially in the time 

ranges for the M50 and M100 responses.  However, since the differences in the 

evoked responses between the vowels was not significantly different nor were there 

any consistent differences regarding the time points found to be significant via 

bootstrap resampling, the functional implications of this observation are unclear. 

 

 

 

Figure 9.  Grand averages (RMS of RMS) of the evoked responses to all vowel 

signals, collapsed across condition.  Consecutive time points found to be statistically 
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significant for evoked response amplitude differences are highlighted in yellow.  /ɑ/ 

evoked response grand averages are in blue; /i/ grand averages in black.  In line with 

the statistical analyses of the mean evoked response values, there is very little 

difference between the /ɑ/ and /i/ signal grand averages; in fact, the responses nearly 

overlap in the temporal domain.  The asymmetry between the hemispheres regarding 

M50 generation and M100 amplitude and latency is clearly discerned; the LH M50 

response is more robust.  In spite of the near-identical responses, there are a series of 

time points near prior to M100 generation that are significant; though we did not 

perform dipole analyses, these time points may reflect differences in the source 

activity of the M100 generators.  It should be noted the responses are somewhat late 

for a ‘typical’ M100; this may be a result of fundamental frequency.  The 

fundamental frequency of the signals was 150 Hz; the M100 latencies observed (~140 

msec) are typical of signals in that frequency range.  The data suggest that M100 

latency is thus a function spectral envelope and fundamental frequency. 
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Figure 10.  Grand average of the magnetic field deflections and RMS with grand 

averaged topography, /ɑ/ - /i/ experimental assignment.  Grand averages of the 

magnetic field deflection and resulting RMS in the temporal domain are visualized in 

Figure 10a; magnetic field topographies in 10c-d.  Magnetic field deflections are 

plotted in black, RMS in red.  For the magnetic field topographies, magnetic source is 

in red; magnetic sink in green.  Data for the field deflections are taken from the grand 

averages of the /i/ signals across conditions from 28 channels common to all 

participants in both hemispheres.  Channels/sensors selected were taken from 

individual subject data and were those found to record the largest field deflections as 

determined by the second experimental pretest.  From this visualization of the data, it 

is clear that there are three distinct components of the evoked response: the M50 (~90 

msec), M100 (~150 msec) and a sustained field component (~308 msec).  The M50 

response is much weaker than the M100 and exhibits a topography (sink-source 

distribution) opposite that of the M100 and sustained field components; it is also 

much more left-lateralized. 
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Figure 11.  Bar plots of the mean M100 amplitude and latency and standard errors for 

the /ɑ/ - /u/ experimental assignment.  The data are separated as to hemisphere (11a,b) 

and vowel identity (11c,d).  Hemispheric data is in the left column; vowel data in the 

right column.  Mean M100 amplitude is on the top row; mean M100 latency on the 

bottom.  Magenta bars indicate the LH and the /ɑ/ signals; cyan the RH and /u/ 
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signals. The data replicate previous findings, namely, that the evoked responses to the 

/u/ signals are slower and generate a smaller M100 amplitude.   
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Figure 12.  Grand averages (RMS of RMS) of the metameric comparisons for the /ɑ/ - 

/u/ experimental assignment.  Consecutive time points found to be statistically 

significant for evoked response amplitude differences are highlighted in yellow.  The 

sawtooth wave evoked response temporal evolution is plotted in blue; square wave in 

black.  As in the /ɑ/ - /i/ assignment, the temporal evolution of the evoked responses 

for the metamers closely resemble one another.  However, since the time points found 

to be significant for the difference in amplitudes were not consistent across 

conditions, it is not clear what the functional significance of the differences are. 
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Figure 13.  Grand average of the magnetic field deflections and RMS with grand 

averaged topography, /ɑ/ - /u/ experimental assignment.  Waveform and source-sink 

conventions are the same as in Figure 10.  Grand averages to the /ɑ/ signals are in the 

left column; grand averages for /u/ in the right column.  The visualization illustrates 

the evoked responses to each vowel across conditions, along with the topographies 

for the M50 and M100 responses.  The asymmetry between the hemispheres present 

in the /ɑ/ - /i/ assignment is clearly visible here; though much weaker than the M100 

the M50 exhibits a stronger response in the LH.  The topographical difference 

between each component is also clearly delineated; the topographies are reversed 

between the M50 and M100 and sustained field, reflecting different patterns of 

neuronal activity. 
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Summary 
 

The experiments presented cover three broad areas: physiological 

measurement of preattentive auditory processing, processing of audiovisual 

integration and signal discrimination.  The first, third and fourth chapters share the 

most conceptually, while the second (audiovisual integration) provides data 

concerning the addition of visual information to an auditory signal.  Together, all four 

chapters provide an account of the neuronal processing of signals that share important 

aspects of ecological signals in addition to the cognition of such signals. 

 

The first chapter examines the processing of two-frequency tone complexes.  

The complexes consisted of a high frequency and a low frequency component, and 

the low frequency component was presented at one of five different loudness values.  

Both the tone complexes and their single frequency components were presented to the 

observers and the evoked response was evaluated using MEG.  The M100 evoked 

component was consistently elicited and we observed that the complex tones 

exhibited a larger amplitude and faster latency than the single frequency tones at 

certain signal levels.  The finding regarding the larger amplitude for the M100 was 

not unexpected; the complex signals contained more frequencies and a larger amount 

of energy than the single frequency signals.  The larger amplitude might then be a 

consequence of driving a larger neuronal population.  The finding concerning the 

faster M100 latency was however, unexpected, though not completely (Diesch and 

Luce, 1997; Lakatos et al., 2005).  The data demonstrating the faster M100 latency is 
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a replication of previous data (Diesch and Luce, 1997), but several points confound 

the results.  The first concerns to what extent the higher frequency component was 

driving the response.  Frequencies in the 1-4 kHz range have lower detection 

thresholds than those in the ~100-500 Hz range, and this increased sensitivity may 

have been reflected in the M100 latency (Moore, 2004).  A second possibility is that 

the amount of energy contained in the M100 analysis window (Gage and Roberts, 

2000) may have resulted in the M100 latency facilitation (see, e.g., Sams et al., 1993).  

The increased energy in the M100 evaluation window for the complex signals may be 

analogous to that seen in pulse train data.   

 

The last point, which relates the most to evaluation of the signals in the fourth 

chapter, is that the two-frequency complexes may significantly resemble ecological 

signals in some way, resulting in a faster and more robust response (Jacobsen et al., 

2004).  For example, vowels are mostly characterized by the spectral envelope 

structure, specifically the peaks (formants) in the spectral envelope (Plomp et al., 

1967; Slawson, 1968; Klein et al., 1970; Hillenbrand et al., 1995; Diesch et al., 1996; 

Vihla and Salmelin, 2003; Jacobsen et al., 2004; Tiitinen et al., 2004; Mesgarani et 

al., 2008).  The ratio of the first two formants especially, has been shown to be crucial 

to vowel identification and processing.  The complex tones in the experiment share an 

obvious relationship to the formant structure of vowels in there are two distinct 

spectral peaks in the signal and these peaks may be evaluated in a manner similar to 

that of vowels.  Additional analyses and experiments could analyze two-frequency 

complexes with spectral envelope structure similar to that of vowels (and within 
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critical bands) and source waveforms like those employed in the discrimination and 

MEG timbre experiments.  The results of an experiment with different spectral peak 

distances and frequency values would provide data concerning frequency sensitivity 

and spectral peak evaluation.  Another possible method of analyzing the signals is to 

calculate SCG as in other studies (Caclin et al., 2005) and see if that value is a 

predictor if evoked M100 amplitude and latency, when harmonic structural 

differences are present in a broad class of signals . 

 

The third chapter examines the ability of an observer to discriminate between 

signals based on their spectral structure and the creation of hypothetical signal 

taxonomies and timbre spaces.  The signals employed were synthesized in accordance 

with source-filter theory and were based on vowel token data (Hillenbrand et al., 

1995; Fant et al., 2000).  The filters corresponded to the transfer functions for the 

American English vowels /ɑ/, /i/ and /u/.  Source waveforms were based off of a 

sawtooth wave approximating the glottal excitation pattern and timbral differences 

were created by selectively removing harmonics.  The set of source waveforms were 

as follows: a sawtooth waveform comprised of twenty-three harmonics, a sawtooth 

waveform with every fourth harmonic removed, a sawtooth waveform with every 

second harmonic removed, and a square wave where the maximum harmonic is the 

twenty-third.  The sawtooth wave with every second harmonic removed and the 

square wave were the timbral metamers: signals that are physically different yet 

perceptually identical. 
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For the discrimination task, we hypothesized the metamers would be confused 

most often and that differences between non-metameric signals would be easily 

discriminated.  The psychophysical data supported the metameric hypothesis; the 

metamers were confused the majority of the time.  There was one surprising result 

concerning the proportion correct of the signals when analyzed by vowel category: 

the /ɑ/ signals exhibited a much lower proportion correct than either the /i/ or /u/ 

signals.  This may have been due to the transfer function of the /ɑ/ signals.  

Specifically, the spectral peaks of the first two formants may have been ‘averaged’ in 

a sense; this would result in one overall peak as opposed to two distinct peaks and a 

‘smearing’ of spectral information. 

 

Possible signal taxonomies used a larger set of signals than in the 

discrimination task; the transfer functions were identical, but the source waveforms 

consisted of a sawtooth wave approximating the glottal excitation pattern, sawtooth 

waveforms with every sixth, fifth, fourth, third and second harmonic removed and a 

square wave where the maximum harmonic was the twenty-third.  Possible 

taxonomies were created using hierarchical agglomerative clustering using the 

physical structure and PSD of the signals.  Creation of possible timbre spaces was 

accomplished by transforming the signals into cochlear textures, applying spatial 

filters to highlight either gross or fine structure features and then applying MDS.  We 

hypothesized the signals would be clustered according to vowel category (based on 

transfer function structure) and the metameric signals would be positioned closest to 

one another. 
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The results of the simple computational analyses demonstrated that is possible 

to cluster signals according to mathematical properties describing them (Fellowes et 

al., 1997; Lakatos, 2000).  Hierarchical clustering of the signals was largely based on 

a combination of the transfer function structure and source waveforms (for the 

physical structure) and transfer function structure for the PSD.  For the MDS timbre 

space, the metamers were positioned closest to one another (this relationship was not 

entirely consistent for hierarchical clustering) and each of the coordinates and/or 

planes indexed either vowel category or some feature of spectral structure.  Timbre 

space densities also differed according to transfer function; the /ɑ/ signals were much 

less tightly clustered than the /i/ or /u/ signals.  The results of these analyses are very 

promising and could be expanded in several ways.  The first is to employ a greater 

variety of spatial filters for the texture analyses and increase the resolving power of 

the resulting texture.  A second way is to employ more sophisticated methods; e.g., 

using a support vector machine as a pattern recognizer.  The last way is to perhaps 

solve the one dimensional wave equation and cluster the resulting 

coefficients/representation.  This would effectively constrain the boundary conditions 

for the problem and perhaps result in more informative timbre spaces. 

 

The fourth chapter employs the identical signals to those used in the 

computational analyses to analyze preattentive timbre processing using MEG.  Here, 

the hypotheses centered on how the latency and amplitude of the M50, M100 and 

P2m evoked components were modulated by the spectral structure of the signals. We 
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hypothesized the M50 would be elicited to their broadband nature, the M100 would 

exhibit sensitivity to spectral complexity, fundamental frequency and vowel transfer 

function structure, while the P2m would exhibit a larger amplitude to more spectrally 

complex signals.  The most interesting analyses would be within vowel categories; 

we were curious as to how harmonic structure would be reflected in the evoked 

components.  Specifically, we hypothesized the M100 latency (within vowel 

categories) would be faster for the more spectrally complex signals. 

 

The data from the MEG timbre experiment indicate that the evoked response 

is not sufficient to characterize differences in harmonic structure.  Rather, the M100 

was the only component consistently elicited, and seemed to be sensitive to 

fundamental frequency and vowel transfer function (Diesch et al., 1996; Diesch and 

Luce, 1997; Obleser et al., 2003b; Obleser et al., 2003a, 2004; Tiitinen et al., 2004, 

2005; Obleser et al., 2006).  In other words, once in a specific latency regime for 

fundamental frequency, the M100 latency and amplitude was distinguished by vowel 

transfer function.  However, even this processing had its limits: the latency and 

amplitude for /ɑ/ and /i/ signals were statistically identical.  Dipole analyses may 

reveal that the sources for the neuronal populations generating these responses are 

different, with the neurons generating the response to /i/ being located more anteriorly 

than the /ɑ/ signals. 

 

The paradigm in the MEG timbre experiment could be expanded by removing 

more harmonics from the source spectrum and analyzing to what extent spectral 
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envelope structure, specifically the ratio between the first two formants, affects M100 

latency and amplitude.  The data analysis could be improved by analyzing the 

induced response, using a time-frequency transform, since the evoked response does 

not seem to capture subtle differences in harmonic structure.  Spectral center of 

gravity (Caclin et al., 2005) might also be a useful index frequency contributions to 

evoked response latency and amplitude. 

 

The audiovisual experiment presented in the second chapter would seem to 

only bear passing resemblance to the other auditory-centric experiments.  It fits in the 

larger narrative in the sense that it examines signals of an intermediate nature that 

capture crucial aspects of ecological signals.  However, in the ecological speech 

signal, it is not typical to only process auditory information; visual information 

greatly facilitates signal processing (Sumby and Pollack, 1954).  The audiovisual 

experiment can then be viewed as exploring how redundancy across modalities 

facilitates processing (Molholm et al., 2002; Molholm et al., 2004). 

 

The signals employed in the audiovisual experiment approximate the auditory 

and visual components of ecological speech.  The visual component consists of an 

ellipse modulated as to resemble mouth movements while the auditory component 

consists of AM pink noise.  The modulation rate (3.125 Hz) is consistent with those 

found in ecological speech signals (typically 2-16 Hz).  The experiment uses the SSR 

and MEG as paradigms to explore how AV signals are processed in the spectral 

domain (i.e., privileged time scales) and how each component contributes to the 
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overall neuronal response.  We hypothesized that the presence of redundancy resulted 

in a stronger SSR (as opposed to unimodal stimulation) and the difference in response 

power observed would be detected in the sensors overlying the parietal lobe. 

 

The data demonstrated that an AV response was larger than a unimodal 

response in either modality and that the changes in the neuronal response did most 

likely arise in the parietal lobe.  Our findings agree well with previous data 

concerning the evaluation of SSR and we have demonstrated for the first time 

entrainment to a unique set of bimodal signals (Chandrasekaran et al., 2009; Luo et 

al., 2010).  The paradigm could be expanded by using ecological tokens as well as 

exploring more variable interactions by not using completely steady-state signals. 

 

In sum, the experiments presented contribute to the literature concerning 

auditory and audiovisual processing by expanding on several experimental paradigms 

and using signals that of an intermediate nature to inform fundamental issues in 

cognition.  The experiments not only replicate several previous findings, but also 

expand the literature by using novel signal sets in thereof the four experiments.  

Together, along with their possible iterations and extensions can aid in the 

understanding of auditory sensory processing, behavior and cognition, in regards to 

the processing of environmental and ecological signals. 
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