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This dissertation treats quantum open system dynamics, focusing on the

coherent evolution of a two-level atom (as the system) interacting with an

electromagnetic field (as the bath), for purposes relevant to quantum computing.

In order to maintain the quantum correlations that develop between the system

and bath throughout the evolution path integral formalisms such as the influence

functional and closed time path formalisms are used. Predictions of effects due to

the quantum correlations in the composite interacting system are computed.

Conventional treatments using Schrödinger-master equation and

Heisenberg-Langevin approaches usually ignore system+bath quantum

correlations as a technical simplification. It is argued that although neglect of

system+bath correlations is generally a good approximation when the bath has a

large continuous set of degrees of freedom, a residual coherence effect remains

due to the non-zero bath correlation time. Though small, these effects are



becoming more relevant as, with the advent of ultra cold atom sources, atom

optics experiments are reaching levels at which such residual effects are becoming

measurable.

Three specific problems are investigated in this thesis: First is a self-dressing

rederivation of the Casimir-Polder retardation force. The well known stationary

atom result is reproduced and a result for a slowly moving atom is obtained

which is up to twice the stationary atom correction. Second is the entangled

evolution of a qubit with an initially thermal low temperature bath. The

diagonal matrix elements are found to thermalize and the off-diagonal elements to

decohere as expected, however they do so non-exponentially due to the quantum

correlations that develop between the qubit and bath. Third is a calculation of

qubit dynamics in the presence of quantized atomic motion as well as zero point

fluctuations of the electromagnetic field. The decoherence rate of the qubit is

found to increase slightly in that case due to the additional degree of freedom.
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Chapter 1

Introduction

This dissertation is focused on applying path integral techniques toward

predicting effects due to system+bath correlations in atomic-molecular-optical

(AMO) systems. At their core, correlation effects are due to interference in

entangled system+bath evolution. Predicting them requires that the correlations

between interacting subsystems be carefully maintained throughout their

evolution. Path integral techniques are particularly well suited to this task

because in computations of transition amplitudes, correlations between the

interacting systems are naturally kept throughout the evolution. The resulting

reduced dynamics is non-Markovian. The reason for choosing AMO systems in

particular is first that the simplicity of the interactions and the delicate control

attainable in experiments. Strongly motivated by the organized effort to build a

working quantum computer and its requirement to maintain and use

entanglement, current experiments are reaching a regime in which they can

measure and apply effects due to maintained coherence. Second, since the

Hamiltonian governing the dynamics is well understood, realistic situations can
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be modelled theoretically.

The system of a two-level atom (qubit) interacting with the

electromagnetic field (EMF) is used as a model to isolate and predict coherent

back-action effects. Such systems offer simplicity and realism in analytic

descriptions. The interactions are well known from the QED Hamiltonian, and

since the EMF modes do not interact with each other except via the qubit,

correlations that develop between the qubit and the field modes are not

randomized by interactions within the environment. The net back-action of the

EMF modes will then coherently accumulate to a nontrivial effect. We focus on

two situations in which effects due to coherent back-action is the main goal and

one situation which is related to it. The former include dynamic derivation of the

Casimir-Polder (retardation van der Waals) force near a conducting wall [1] and

coherent evolution of a qubit in an initially thermal EMF bath [2]. The latter is

evolution of a qubit interacting with its own center of mass degree of freedom in

addition to a zero temperature vacuum EMF [3]. Detailed summaries of the

applications described in this dissertation are given in the next section.

In all three applications, the full system is evolved as a single entity, so

that the entanglement between the subsystems is kept to a maximum throughout

the evolution. Reduction of designated bath degrees of freedom then yields an

effective dynamics for the subsystem of interest which includes fully coherent

back-action from the bath. Path integral methods such as the influence

functional formalism are used in order to maintain full coherence between the
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atom, EMF, and the atom’s center of mass motion. In addition, all three

applications described above are computed in a resummed 2nd order vertex

approximation, which allows non-perturbative results that include the effects of

entangled evolution, but with the technical simplification of a small coupling

approximation.

1.1 Summary of Research

1.1.1 Casimir-Polder retardation force

A well known situation in which the quantum correlations between two

interacting systems is of critical importance is the Casimir-Polder retardation

force between a polarizable atom and conducting wall. The retardation force is a

quantum modification of the electrostatic attraction of an atom to its image in

the wall [4]. In its usual interpretation the retardation force is understood

physically to be a result of dressing of the atomic ground state by the vacuum

EMF in the presence of a boundary. That is, the ground state of the atom-EMF

interacting system is not a product of the separate free ground states, but is

instead an entangled atom-EMF state. It is in that sense that the retardation

force is an effect of system+bath correlations. Recent experiments have measured

the presence of the Casimir-Polder retardation force [5, 6]. Since coherent effects

are experimentally verifiable in this situation, it is a good choice in which to

3



confirm the coherence of the path integral approach as well as look for additional

coherent effects. Using that approach we rederive the Casimir-Polder retardation

force in terms of recoil associated with emission and reabsorption of virtual

photons, rather than as the gradient of a spatially dependent dressed ground

state. This mode of calculation allows extension to an atom that moves

adiabatically, whereas the gradient calculation of the force assumes a stationary

atom.

In the case of a stationary atom, our result is in exact agreement with the

Casimir-Polder force. In the case of an adiabatically moving atom, we find a

coherent retardation correction up to twice the stationary value. Since in both

the stationary and adiabatically moving cases, the source of the retardation force

can be thought of as being due to entanglement between the EMF and the

atomic degrees of freedom, reproduction of the stationary atom result verifies

that our calculation indeed captures coherent behavior. The additional correction

for a moving atom can be understood in the energy gradient interpretation as

indicating that the dressed ground states for stationary and moving atoms are

not the same. The cause of the difference is due to the Doppler shift of the EMF

modes with respect to the conducting wall. That is, a moving atom is in a

Doppler shifted vacuum, so its dressed ground state is altered from the stationary

one.

This work is relevant to applications in which atoms are trapped on the

order of a resonant atomic wavelength near a surface. Examples include
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evanescent wave gravito-optical [7], microlens array [8], and magnetic chip

trapping [9]. Recent experiments have demonstrated the measurable effects of

retardation on atomic motion near a surface [5, 6], and those effects will become

more important as such applications become more refined. That is especially true

when exacting control over the motion will need to be applied (e.g. to implement

two qubit gates). In addition, what is usually pictured physically in terms of a

gradient force is framed here in terms of the recoil associated with emission and

absorption of virtual photons. It thus adds detail to a well known alternative

interpretation of the dipole force [10]

The approach taken here is to allow an atom placed near a conducting

wall in an initially factorizable state with the EMF vacuum to evolve according

to the minimal coupling QED Hamiltonian in the dipole approximation. A path

integral technique is used to compute the ground state-EMF vacuum transition

amplitude of the evolved system, from which the expectation value of the

momentum operator is computed. In the path integral, Grassmannian and

bosonic coherent states are used to label the atomic and EMF degrees of

freedom, respectively. The position and momentum basis are used for the atom’s

center of mass degree of freedom. The major approximation applied is a

resummed 2nd order vertex approximation. The 2nd order vertex approximation

allows the computation to be coherent at long and short times, as it is a partial

resummation of all orders of the coupling. Only at the end of the calculation is

the mass of the atom taken to infinity and its extension to a point, while
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retaining finite terms due to their effect on the dynamics.

The extra correction from coherent QED calculation makes a verifiable

prediction. The alteration of the force has its best chance of being measured in

experiments involving cold atoms bouncing off the evanescent field of a laser

beam totally internally reflected in a crystal. In those experiments the laser is

blue detuned, which imposes a repulsive potential to counter the attractive

potential of the wall and create a barrier for cold atoms moving toward the

crystal to bounce against. As the intensity of the evanescent laser field is lowered

the height of the barrier is lowered. At some threshold value the barrier height

will fall below the classical tunnelling height and no atoms will be reflected. The

van der Waals, Casimir-Polder, and our coherent QED (corrected

Casimir-Polder) forces all give different predictions for that threshold laser

intensity. The calculations done here are for a perfect conductor, not a dielectric

boundary, so the modifications predicted here should not be applied directly to

the case of a dielectric boundary. However, a general statement can be made that

a coherent QED correction will cause a lowered prediction for the threshold laser

power, since it will tend to decrease the atom-wall attraction. If one naively

applies a dielectric factor to our result for the conducting plate to compensate for

the difference, the present prediction for the threshold energy in units of the

natural line width (14.8 Γ) is close to the measured value (14.9±1.5 Γ), compared

to the previously predicted value of (15.3 Γ) [6].
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1.1.2 Qubit in an initially thermal bath

Another situation in which the effects of coherent back-action may be observable

is for a 2-level atom (qubit) evolving in an initially low temperature EMF. The

atom is in free space. This physical system describes applications where

maintaining entanglement of qubits is important. That is especially true in

neutral atom and ion proposals for quantum computers, which use internal

atomic states as their qubits. Previous analysis has included Markovian thermal

vacuum treatments [11] and a non-Markovian zero temperature treatment [12].

The approach of the present work is closely related to the latter. The major

distinction between the present and previous thermal bath calculations is that we

assume the bath is thermal only initially. In particular, we do not impose that

the bath be completely undisturbed by its interaction with the qubit. That

allows entanglement between the qubit and bath to be part of the evolution and

will give insight into the basic issue of entanglement in quantum mechanics.

The results we find are valid in the low temperature regime (temperature

less than the qubit transition temperature). We find thermalization for the

diagonal elements of the qubit density matrix (known as the populations) and

complete decoherence of the off-diagonals, which is in agreement with Markovian

predictions. However, in disagreement with Markovian predictions, we find the

decoherence to be non-exponential. Altered decay dynamics is found for the

diagonal matrix elements as well. The reason for this difference is back-action of
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the quantum correlations that develop between the qubit and EMF modes (i.e.

the entangled evolution). That is, via interaction with the qubit the initially

thermal EMF becomes entangled with the qubit. Due to the correlations the

reduced dynamics is altered from its fixed thermal bath prediction. Particularly

interesting, and consistent with the cause, is that initially, when the qubit and

bath are assumed to be in a product state, the decoherence and decay rates

match the uncorrelated prediction.

This work is relevant to showing how entangled evolution between a qubit

and the EMF can lead to qubit dynamics different from the Markovian

prediction. Coherent back-action effects like the one found here will not be

limited to interaction with a thermal EMF. Altered qubit dynamics due to

entangled evolution can be expected when a qubit interacts with the EMF in any

initial state [13, 14, 15]. In quantum computing such altered evolution will have

special relevance since it is through control fields that single qubit gates are

proposed to be realized. For example, laser π
2
−pulses are proposed to realize one

qubit gates in ion and neutral atom implementations. Although the effect is

expected to be small, an understanding of the coherent back-action effects can

help tune control pulses to achieve the desired gates.

The method of calculation used to model this system is a path integral for

computing transition amplitudes similar to the one used in the previously

described computation. Again, Grassmannian and bosonic coherent states are

used to represent the qubit and EMF degrees of freedom. By combining the
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transition amplitudes and tracing over the final EMF states, we construct the

reduced dynamics of the qubit density matrix. The initial state of the qubit-EMF

bath combination is taken to be in a factorized state, with the bath in an initial

thermal state. During the evolution no assumptions are imposed on the state of

the full system. Only after the combined system has been allowed to evolve is the

trace over EMF states taken and the reduced qubit density matrix computed. As

in the coherent QED calculation of the Casimir-Polder correction 2nd order

vertex approximation is used, which allows for coherent evolution valid for all

times. In addition, a low temperature approximation is taken which limits the

regime of validity to temperatures lower than the qubit transition frequency.

Physically that means that EMF modes resonant with the qubit are mostly

unoccupied.

1.1.3 Qubit with quantized center of mass motion

Another problem of interest which illustrates the effect of coherent back-action is

the evolution of a qubit’s internal density matrix in the presence of quantized

center of mass motion as well as a zero temperature EMF vacuum. The physical

system is a qubit in free space coupled to the EMF as in the previous case. In

this case the atom’s center of mass (COM) motion will be included as an

additional quantum degree of freedom with which the qubit interacts. The COM

only adds three extra degrees of freedom but they are different from the EMF in
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that the coupling between the qubit and COM degree of freedom is non-linear.

The significance of adding motional degrees of freedom is that the decoherence

and dissipation of the qubit will be altered. For qubits constructed from atoms,

center of mass motion will always be present. For that reason understanding its

effects are important.

The result for the qubit’s density matrix in this case is a small increase in

the decoherence and dissipation rates due to the inclusion of the extra degrees of

freedom. For infinite mass, the decoherence and dissipation rates asymptote to

the stationary atom value. As the mass of the atom is made smaller the

decoherence and dissipation rates increase. These results are consistent with the

atom’s COM motion being more affected by recoil during virtual emission and

absorption processes when it has a smaller mass. However, the change in the

decoherence and dissipation rates for realistic implementations is well below

current AMO experimental measurement limits. For example, for a qubit with an

optical transition frequency, the mass of the atom would need to be five orders of

magnitude smaller than a typical alkali atomic mass in order for the decoherence

and dissipation rates to increase by 1 percent.

The relevance of this work to quantum computing is both in the

calculation of motional decoherence and the methodology for entangled

qubit-COM dynamics. In the free space decoherence calculation, we set a

feasibility requirement on atomic qubit quantum computing by putting a limit on
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when motional decoherence can safely be neglected (when log10[Mc2

~ωo
] > 1), and

find that current atomic qubit implementations are well within that range. More

generally, our work is a completely non-Markovian computation of entangled

evolution between an atomic qubit and its COM degrees of freedom. It can thus

be extended to the computation of motional decoherence in other situations. An

important example is the calculation of decoherence when the COM degree of

freedom is entangled with the qubit state, as in certain lattice and microarray

two qubit gates. In that case the result will also be a feasibility condition relating

the separation distance and the extra decoherence.

The evolution of the reduced qubit density matrix is calculated in a

modified version of the influence functional formalism. It is modified in that the

trace over the unobserved degrees of freedom is postponed to the end of the

calculation as a technical simplification for handling the exponential coupling to

the COM. As in the two previously discussed computations, Grassmannian and

bosonic coherent states represent the qubit and EMF degrees of freedom,

respectively, while the COM motion is labelled by the position basis. With the

influence functional an initially factorizable qubit-EMF-COM state is allowed to

evolve. After fully coherent evolution, the final EMF and center of mass degrees

of freedom are traced out to give the reduced qubit density matrix.
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1.2 Organization of Dissertation

The organization of the dissertation is as follows. In Chapter 2 the approach of

this dissertation is placed in perspective with other standard approaches. First,

reviews of the Schrödinger-master equation and Heisenberg-Langevin approaches

are presented. Special attention is given to the approximations applied in the

derivations. In the remaining section of Chapter 2 the path integral approach, as

utilized in the main work of this dissertation, is reviewed. In Chapters 3-5, three

applications are presented of the use of path integral techniques to derive

coherent dynamics. In Chapter 6 the main conclusions of the dissertation are

summarized, along with a final comparison of the Schrödinger-master equation,

Heisenberg-Langevin, and path integral approaches.
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Chapter 2

Review of open system dynamics

A closed linearly coupled composite system consisting of two interacting

subsystems, the smaller of which is usually denoted as the ”system” and the

larger as the ”bath”, is generically described by a Hamiltonian with three terms:

H = Hs + Hb + V (2.1)

with the last term being the product of a system and bath operator, V = SB.

The first term in Eq. (2.1) is the free Hamiltonian of the system, the second term

is the free Hamiltonian of the bath, and the third term is the interaction between

the system and the bath. In principle, the Hamiltonian, the associated Hilbert

spaces, and the Schrödinger or Heisenberg equations of motion fully describe the

closed composite system. However, predictions of the closed composite system

dynamics is often not tractable, nor is it often what is of greatest interest. That

is especially true when the bath has infinite degrees of freedom, since in that case

tracking all the bath degrees of freedom may not be possible. In those cases in

which it is only the few finite number of system degrees of freedom which are

13



available for experimental measurement and control, maintaining the full

complement of bath degrees of freedom can seem unnecessary 1. Theoretical

techniques have thus been developed which can predict the dynamics of the

system degrees of freedom without the need to consider the specific evolution of

the bath degrees of freedom. Such dynamical techniques are all in some sense

”reduced”, meaning that the effect of the bath on the system has been

incorporated into the effective dynamics of the system. Reduction of the bath

degrees of freedom exchanges the closed composite system dynamics for open

system only dynamics.

Since they are rooted in quantum mechanics, the techniques applied to

calculations in AMO are all based on either Schrödinger or Heisenberg quantum

dynamics, the Schrödinger dynamics approach being master equations, and the

Heisenberg dynamics approach being Langevin equations. In transforming the

full system+bath dynamics into system only reduced dynamics, approximations

need to be applied in order to make the solutions tractable. Before continuing

with the main topic of the dissertation, which is the application of path integral

techniques to two-level systems in order to derive coherent reduced dynamics, it

will be interesting to review these two major techniques, and understand better

where approximations are applied and why they are applied. Brief summaries are

1We shall see later that this is not true for certain specific purposes such as keeping the

quantum coherence and entanglement of the combined system. That is where the path integral

method excels over others.
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given in the next few paragraphs followed by more detailed summaries in the

next two subsections.

In the derivation of the Markovian master equation [11, 16, 17, 18, 19, 20],

approximations applied include the 2nd order Born approximation, the Markov

approximation, and the assumption of a bath which is fixed in its initial state.

The 2nd order Born approximation is an approximation in the strength of the

coupling constant alone, and applying it neglects terms of higher than 2nd order

in the coupling. The Markov approximation is an approximation in the

backaction correlation time. It is called a Markov approximation because it

causes that the backaction of the system onto itself through the bath at time t to

depend only on the state of the combined system+bath at time t, and not on the

past history. The last of the above three approximations is the assumption of a

bath state which is fixed for all time. That last assumption specifically excludes

any correlation between the system and bath. The usual justification for this

assumption is that the bath is so much larger than the system, that interaction

with the system will negligibly affect the bath [11, 19]. Although that argument

is true to some extent, the order of terms neglected by making such an

approximation contains orders of the bath correlation time as well as the

coupling constant [16, 18, 21]. It thus neglects any accumulated effect due to

finite correlation time, which is a good approximation for short times, but

becomes progressively worse as the system+bath continue to interact.

In the derivation of the quantum Langevin equations only the Markov

15



approximation is in principle necessary to obtain some interesting results (e.g.

resonance florescence). An important point to emphasize is that, when applied to

the quantum Langevin equations, the Markovian approximation still leaves

coherent noise in the fluctuation term. It is because of this last point that it is

called the 1st Markov approximation, and not simply the Markov approximation

in Ref. [20]. As is explained in Ref. [20], applying the 1st Markov approximation

still leaves history dependence through the choice of initial bath state and the

bath’s subsequent dynamics. As applied in this approach, it is a weak coupling

and short correlation time approximation on the reaction term alone. Additional

approximations on the fluctuation term are needed to go beyond the vacuum

EMF cases, such as making the assumption of a white noise spectrum in a

quantum stochastic differential equation or truncation in van Kampen’s cumulant

expansion. Such additional approximations make the quantum Langevin

equations equivalent to the Markovian master equation.

2.1 Review of Schrödinger-master equation approach

An approach which has found wide usage in describing system-bath interactions

is the master equation technique. The goal of this approach is to find an

approximate evolution for the reduced density matrix of the system alone which

still satisfies a semigroup property [21]. It is achieved by applying the above

mentioned three approximations to the Schrödinger dynamics of the density
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operator. The density operator is the outer product of the Hilbert space state of

a system,

χ(t) = |ψ(t)〉〈ψ(t)|. (2.2)

The master equation is an equation for the evolution of the density matrix

operator. It’s derivation for a general Hamiltonian,

H = Hs + Hb + V, (2.3)

begins with the Schrödinger equation for the density operator,

χ̇(t) =
1

i~
[Hs + Hb + V, χ(t)]. (2.4)

The equation of motion for the density operator is opposite in sign to the

Heisenberg equation for a quantum operator since the density operator is

actually an outer product of quantum states. Since Eq. (2.4) is in the

Schrödinger picture the operators in the Hamiltonian are constant and it is the

density operator which evolves in time. By transforming to the interaction

picture, the free evolution of the system and bath states can be removed from the

dynamics. Operators in the interaction picture will be denoted by a capital ”I”

subscript, unless specifically defined otherwise. The transformed operators are

χ̇I(t) = e−
i
~Hotχ(t)e

i
~Hot (2.5)

and

VI(t) = e
i
~HotVe−

i
~Hot. (2.6)
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The dynamical equation in the interaction picture is then

χ̇I(t) =
1

i~
[VI(t), χI(t)]. (2.7)

Integrating Eq. (2.7) gives an implicit integral equation for the density matrix,

χI(t) = χI(to) +
1

i~

∫ t

to

dt′[VI(t
′), χI(t

′)]. (2.8)

The integrated Eq. (2.8) is then substituted back into Eq. (2.7) to give a

generalized master equation for the total density operator,

χ̇I(t) =
1

i~
[VI(t), χI(to)]− 1

~2

∫ t

to

dt′[VI(t), [VI(t
′), χI(t

′)]]. (2.9)

The reduced dynamics of the system alone is carved from Eq. (2.9) by

taking the trace over the bath degrees of freedom. With the reduced density

operator defined as the total density operator after the bath state is traced out,

ρI(t) = trB(χI(t)), (2.10)

the dynamical equation for the reduced density operator is

ρ̇I(t) =
1

i~
trB[VI(t), χI(to)]− 1

~2

∫ t

to

dt′trB[VI(t), [VI(t
′), χI(t

′)]]. (2.11)

From this point the derivation of the Markovian master equation can follow two

slightly different lines of reasoning. I shall first describe the line of derivation as

detailed by Refs. [11, 19, 20, 22], and then continue with the derivation as

detailed by Refs. [16, 18]. The major difference between the two is in how they

justify omission of the system+bath correlations which develop during

interaction.
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2.1.1 Fixed bath assumption

In modern treatments of the master equation technique, a simplifying assumption

is usually made at this point that the total density matrix, χI(t), is at all times a

direct product of the bath in its initial state and the system state,

χI(t) = ρB ⊗ ρI(t). The resulting dynamical equation is

ρ̇I(t) =
1

i~
trB[VI(t), χI(to)]− 1

~2

∫ t

to

dt′trB[VI(t), [VI(t
′), ρB ⊗ ρI(t

′)]]. (2.12)

Rewriting this in the more compact notation of superoperators,

L1(t)χ = [VI(t), χ], (2.13)

and allowing the system to be coupled to each bath mode separately, as it is in

QED,

L1(t) =
∑

k

lk(t), (2.14)

the master equation of Eq. (2.12) becomes

ρ̇I(t) =
1

i~
trB

∑

k

lk(t)χI(to)− 1

~2

∫ t

to

dt′trB

∑

k

lk(t)
∑

p

lp(t
′)ρB ⊗ ρI(t

′). (2.15)

Applying the condition

trB

∑

k

lk(t)ρB = 0 (2.16)

gives

ρ̇I(t) = − 1

~2

∫ t

to

dt′trB

∑

k

lk(t)lk(t
′)ρB ⊗ ρI(t

′). (2.17)

Simplification beyond this point requires application of the Markovian

approximation. In general the correlation function trB

∑
k lk(t)lk(t

′)ρB will die off
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on some time scale, which is called the correlation time, τc. By appealing to the

shortness of the correlation time relative to the time scale on which the system

density operator, ρI(t
′), evolves one can replace ρI(t

′) → ρI(t) in the time

integral of Eq. (2.17). The result is the Markovian master equation,

ρ̇I(t) = − 1

~2

∫ t

to

dt′trB

∑

k

lk(t)lk(t
′)ρB ⊗ ρI(t). (2.18)

In a high temperature thermal bath, the bath correlation time is inverse to the

temperature and will be orders of magnitude smaller than the evolution time

scale, so the Markovian approximation is very good. As the temperature of the

bath is lowered the thermal correlation time becomes infinite and the correlation

functions of the bath become inverse quadratic in the time separation [20], due to

the remaining vacuum fluctuations. Thus the Markovian master equation of

Eq. (2.18) is particularly trustworthy at high temperatures. At low temperature

the finite bath correlation time introduces errors in the Markovian

approximation [11, 23, 24, 25].

In addition to the Markovian approximation in Eq. (2.18), the shortness

of the correlation timescale is critical to the justification of the fixed bath

approximation, although it is sometimes attributed to the Born approximation.

The reason for the confusion seems to be that the fixed bath assumption, when

applied to the second order integro-differential equation, Eq. (2.11), is actually

two approximations applied simultaneously, one of them being the Born

approximation. In a derivation by Haake [22] he expands Eq. (2.8) before
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applying any approximations, in order to more precisely understand the

assumptions which are applied to the master equation. Following a line of

derivation similar to Haake’s 2, it is possible to split the above assumption into

two separate assumptions.

First, iterating Eq. (2.8) to infinite order turns it into an explicit integral

equation for the density operator,

χI(t) = χI(to) +
1

i~

∫ t

to

dt′[VI(t
′), χI(to)]

− 1

~2

∫ t

to

dt′
∫ t′

to

dt′′[VI(t
′), [VI(t

′′), χI(to)]] + ...

(2.19)

which, written in the more compact super-operator notation is

χI(t) = χI(to) +
1

i~

∫ t

to

dt′L1(t
′)χI(to)− 1

~2

∫ t

to

dt′
∫ t′

to

dt′′L1(t
′)L1(t

′′)χI(to) + ...

=
∞∑

n=0

(−i/~)n

n!

∫ t

to

dt1..

∫ t

to

dtnT{L1(t1)..L1(tn)}χI(to). (2.20)

Clearly, Eq. (2.20) is simply the formal Dyson series solution of Eq. (2.7).

Substituting Eq. (2.14), inserting an initially uncorrelated state

χI(to) = ρB ⊗ ρI(to), and taking the trace over the bath, gives an expression for

the reduced density operator,

ρI(t) =
∞∑

n=0

(−i/~)n

n!

∫ t

to

dt1..

∫ t

to

dtntrB T

[∑

k1

lk1(t1)..
∑

kn

lkn(tn)

]
ρB ⊗ ρI(to).

(2.21)

2In Haake’s derivation there is a small error which hides the distinctness of the second order

Born approximation from the unaltered bath assumption. In the derivation detailed in this

dissertation that distinction is emphasized.
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The time ordering can be removed by rewriting the expression as a sum over

imbedded time integrations summed over all orderings, giving

ρI(t) =
∞∑

n=0

(−i/~)n

∫ t

to

dt1

∫ t1

to

dt2..

∫ tn−1

to

dtntrB

∑

k1..kn

lk1(t1)..lkn(tn)ρB ⊗ ρI(to).

(2.22)

This explicit integral equation will now be reorganized to facilitate the

application of the second order Born approximation. Imposing first the condition

trB(lk)
2n+1ρB ⊗ ρI(to) = 0, (2.23)

which is true for the system-bath interactions in QED if the initial bath state is a

diagonal mixed state (e.g. a thermal bath), Eq. (2.21) can be restricted to terms

in which each kth mode super-operator appears an even number of times,

ρI(t) =
∞∑

n=0

(−i/~)2n

∫ t

to

dt1

∫ t1

to

dt2..

∫ t2n−1

to

dt2n

× trB

∑

k1..kn

∑
pairs

lk1(t1)..lkn(t2n)ρB ⊗ ρI(to).

(2.24)

The interaction with each bath mode is understood to occur an even number of

times in the above equation, so the interaction term can be expanded as a sum

over all the possible orderings of interactions,

∑
pairs

lk1(t1)..lkn(t2n) =lk1(t1)lk1(t2)lk2(t3)lk2(t4)..lkn(t2n−1)lkn(t2n)

+ lk1(t1)lk2(t2)lk1(t3)lk2(t4)..lkn(t2n−1)lkn(t2n)

+ all other permutations.

(2.25)

The first term in the sum over all pairs is the one in which the members of each

pair are consecutive. Since the sequence of interactions is time-ordered that
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means that each pair of interactions occurs without any overlap from other bath

modes. Keeping only this first term is equivalent to making the second order

Born approximation. Written in this way a link between the Born approximation

applied in the master equation and the same applied in non-perturbative

techniques, such as the resolvent and effective action, can be made.

Perturbatively, they are both partial resummations of infinite series, and are both

approximations second order in the coupling strength which neglect overlapping

diagrams. After restricting to the second order Born approximation, Eq. (2.24)

can be rewritten more clearly with a few changes of notation as

ρI(t) =
∞∑

n=0

(−1

~2

)n

trB

[ n∏
m=1

∫ τm−1

to

dtm

∫ tm

to

dτm

∑

km

lkm(tm)lkm(τm)

]
ρB ⊗ ρI(to)

(2.26)

with τ0 = t. Taking the time derivative of Eq. (2.26) yields

ρ̇I(t) = −
∫ t

to

dτ trB

∑

k

lk(t)lk(τ)

×
∞∑

n=0

(−1

~2

)n[ n+1∏
m=2

∫ τm−1

to

dtm

∫ tm

to

dτm

∑

km

lkm(tm)lkm(τm)

]
ρB ⊗ ρI(to)

(2.27)

with τ0 = τ . Comparison of Eq. (2.26) and Eq. (2.27) shows that the second line

of Eq. (2.27) is the untraced density operator at time τ in the Born

approximation,

χI(τ) =
∞∑

n=0

(−1

~2

)n[ n+1∏
m=2

∫ τm−1

to

dtm

∫ tm

to

dτm

∑

km

lkm(tm)lkm(τm)

]
ρB ⊗ ρI(to),

(2.28)
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so that Eq. (2.27) can be written

ρ̇I(t) = −
∫ t

to

dτ trB

∑

k

lk(t)lk(τ) χI(τ). (2.29)

This equation is the dynamical equation for the reduced density operator in the

Born approximation, but it still requires the assumption that

χI(τ) = ρB ⊗ ρI(τ) (2.30)

before it will match Eq. (2.17) with the assumption of an unaltered bath state.

Thus although the Born and unaltered bath approximations seem like the same

approximation when they are made in a single step in Eq. (2.11), they are

actually two separate approximations, and they can be made separately. The

significance of this is simply to show that the fixed bath assumption is not just

an approximation in orders of the coupling. It is also an order in the bath

correlation time approximation.

2.1.2 Coarse graining approximation

An alternative derivation which explicitly exploits the separation of time scales

between the bath correlation time and the system evolution time scale is pursued

by Refs. [16, 18]. Their derivation is based on the recognition that the Markovian

master equation gives only a coarse grained dynamics. They begin with a

perturbative truncation of the system+bath dynamics, which allows them to

circumvent the assumption that the system and bath are in a product state with

24



the bath fixed in its initial state for all intermediate times. The short time

perturbative dynamics is then replaced by a dynamics valid on long time scales

via the coarse graining assumption.

The derivation along this line begins with an iterative expansion of

Eq. (2.8), as in Eq. (2.19), but this time truncated to second order,

χI(t) = χI(to) +
1

i~

∫ t

to

dt′[VI(t
′), χI(to)]

− 1

~2

∫ t

to

dt′
∫ t′

to

dt′′[VI(t
′), [VI(t

′′), χI(to)]],

(2.31)

so that the system+bath density operator in the last term is evaluated at the

initial time. This equation is valid only for short time dynamics since it is a

truncated series. After the trace over the bath, with the assumptions that the

system+bath density operator is a product state at time to and that the trace

over the initial state of the interaction is zero, trB[VI(t)χI(to)] = 0, the equation

becomes

ρI(t) = ρI(to)− 1

~2

∫ t

to

dt′
∫ t′

to

dt′′trB[VI(t
′), [VI(t

′′), ρB ⊗ ρI(to)]]. (2.32)

This equation can be used to find the evolution of the reduced density operator

over a short period of time, ∆t. The short time evolution is

ρI(to+∆t) = ρI(to)− 1

~2

∫ to+∆t

to

dt′
∫ t′

to

dt′′trB[VI(t
′), [VI(t

′′), ρB⊗ρI(to)]]. (2.33)

The coarse grained rate of variation of the reduced density operator after a

change of variables is then

∆ρI

∆t
(t) =

1

∆t

−1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′trB[VI(t
′), [VI(t

′′), ρB ⊗ ρI(t)]]. (2.34)
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As before, the fast die off of the correlation function trB[VI(t
′), [VI(t

′′), ρB]] and

the weakness of the interaction are applied, but this time toward extending

Eq.(2.34) to long time dynamics. Denoting by τr the relaxation timescale, the

validity of extension is based on the requirement that τc << τr, so that an

intermediate timescale can be chosen such that τc << ∆t << τr. Following

Ref. [18], the order of magnitude of the RHS of Eq.(2.34) is

1

τr

≈ V 2τc

~2
(2.35)

so that the the separation of time scales, τc << τr, requires

V 2τc

~
<< 1. (2.36)

The shortness of the coarse graining time versus the system dynamical timescale,

∆t << τr, then justifies extending the perturbative treatment of Eq. (2.8) to long

time predictions. However, by doing so the fixed bath assumption is implicitly

introduced. The shortness of the bath correlation time scale versus the coarse

graining time, τc << ∆t, then justifies the neglect of system+bath

correlations [16].

2.2 Review of Heisenberg-Langevin approach

In the Heisenberg-Langevin approach, quantum Langevin equations are derived

by evolving the Heisenberg picture system and bath operators, rather than

evolving the density matrix of the system. In that sense it is the Heisenberg
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dynamics complement to the master equation. As for the master equation, the

quantum Langevin equation can also be traced over bath degrees of freedom to

leave reduced quantum Langevin equations for the system operators alone. The

Schrödinger and Heisenberg pictures are equivalent, however, the approximations

applied to the master equation and quantum Langevin approaches make them

inequivalent. It is interesting to examine how the approximations which are made

in their respective derivations compare. After a short review of the quantum

Langevin equations a linkage between the two methods shall be drawn.

Derivations of quantum Langevin equations are given by many different

authors [16, 18, 19, 20]. They all follow a standard sequence of steps. I will follow

most closely the derivations of Refs. [18, 20]. First, being more specific about the

Hamiltonian, for a two-level system interacting with a harmonic oscillator bath in

the RWA the Hamiltonian is

Hs =
1

2
~ωoSz (2.37)

Hb = ~
∑

n

ωnb†nbn (2.38)

V = ~
∑

n

κn

(
S+bn + b†nS−

)
, (2.39)

where S and bn are the qubit and bath operators satisfying the usual

commutation relations. Since the Hamiltonian commutes with itself, it is

constant and its form at time t requires simply the replacement of the operators

within it by their evolved versions. Let M(t) denote any arbitrary system
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operator. Then the Heisenberg equation for it is

Ṁ(t) =
i

~
[H(t), M(t)]

=
iωo

2
[Sz(t), M(t)] + i

∑
n

κn

(
[S+(t), M(t)] bn(t) + b†n(t) [S−(t), M(t)]

)
.

(2.40)

System and bath operators at equal time commute, but they do not generally

commute at unequal times. The ordering in Eq. (2.40) is chosen to maintain

normal ordering in proceeding expressions. The Heisenberg equation for the bath

operators is

ḃn(t) =
i

~
[H(t), bn(t)]

= −iωnbn(t)− iκnS−(t)

(2.41)

and its conjugate, with the solutions

bn(t) = bn(0)e−iωnt − iκn

∫ t

0

eiωn(t−t′)S−(t′)dt′ (2.42)

and its conjugate. Substituting Eq. (2.42) into Eq. (2.40) gives a dynamical

equation for the system operators,

Ṁ(t) =
iωo

2
[Sz(t), M(t)] +

∫ t

0

∑
n

κ2
ne−iωn(t−t′) [S+(t), M(t)] S−(t′)dt′

−
∫ t

0

∑
n

κ2
ne

iωn(t−t′)S+(t′) [S−(t), M(t)] dt′ + F (t),

(2.43)

with the quantum Langevin force given by

F (t) = i
∑

n

κn

(
[S+(t), M(t)]bn(0)e−iωnt + b†n(0)[S−(t), M(t)]eiωnt

)
. (2.44)
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In this form the quantum Langevin equation, Eq. (2.43), has no approximations

and is therefore exact within the chosen Hamiltonian.

The function κn is related to the density of modes. As ω2κ(ω) tends to a

flat distribution, the sum over modes tends to δ(t− t′) [20]. Assuming then a

short correlation for the sum over modes, replacements S±(t′) → S±(t)e∓iωo(t−t′)

are applied [18], which assumes that the evolution of S± due to the interaction is

small over the bath correlation time. The time integration, in the condition that

t > τc then gives δ(ω − ωo). Subsequently evaluating the integration over bath

modes gives the quantum Langevin equation under the 1st Markov

approximation,

Ṁ(t) =
iωo

2
[Sz(t), M(t)] +

γ

2
[S+(t), M(t)] S−(t)− γ

2
S+(t) [S−(t), M(t)] + F (t).

(2.45)

The damping rate, γ, comes from the density of modes evaluated at ωo. It

includes a frequency shift (Lamb shift) which can be renormalized into the the

atomic frequency. The approximation applied here is a weak coupling and short

correlation time approximation. If M denotes the qubit operators S+, S−, and Sz,
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the quantum Langevin equations are

Ṡ+(t) = −
(
−iωo +

γ

2

)
S+(t)− 2i

∑
n

κnb†n(0)eiωntSz(t) (2.46)

Ṡ−(t) = −
(
iωo +

γ

2

)
S−(t) + 2iSz(t)

∑
n

κnbn(0)e−iωnt (2.47)

Ṡz(t) = −γ (Sz(t) + 1)− 2iS+(t)
∑

n

κnbn(0)e−iωnt + 2i
∑

n

κnb†n(0)eiωntS−(t).

(2.48)

The Langevin forces (the last terms in Eqs. (2.46-2.48)) couple the spin operators

with each other. As a result of the coupling the above equations are a non-linear

set which can not be solved. The effects of the Langevin force on a two-level

system (and thus the nonlinearity) can be removed if the bath is assumed to be

in vacuum. In that case the creation and annihilation operators, b†n and bn,

annihilate the vacuum state on the left and right, respectively, and the Langevin

force will not be a part of the bath averaged dynamical equations. That will not

generally be the case for bath averages of products of system operators.

It is important to remark that the quantum Langevin equations are not

equivalent to the Markovian master equation. As mentioned before, even though

the 1st Markov approximation has been applied to the quantum Langevin

equations, they still retain non-Markovian dependence in the quantum noise

source [20]. An easy way to see that is to integrate Eqs. (2.46-2.48), and

substitute them into each other. The result will be integro-differential equations

with non-local kernels. It is clear that the approximations applied to the

Markovian master equation are more restrictive than those applied to the
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quantum Langevin equations. An interesting distinction between the quantum

Langevin and Markovian master equation approaches is that, since the quantum

Langevin equations come from an evolution of the operators rather than the

state, the assumption that the system+bath are in a product state with the bath

state fixed at all intermediate times is not relevant. The state of the

system+bath does not evolve in the Heisenberg picture, so imposing an initial

system+bath state is all that is necessary.

The quantum Langevin equations can be made equivalent to the

Markovian master equation by applying approximations of short correlation time

and weak coupling to the quantum noise source, as well as the reaction terms. A

conceptually clear method of doing so, which will be sketched below, is described

in Ref. [20] using van Kampen’s cumulant expansion [21]. By first constructing

an adjoint object, µ(t), with the definition

trs [M(t)ρ(0)] = trs [M(0)µ(t)] (2.49)

enforced to be true for any system operator, M(t), the quantum Langevin

equations are transformed into an equivalent equation for the adjoint, µ(t). The

trace over the bath on the adjoint then reconstructs the reduced density operator,

ρ(t) = trB [ρBµ(t)] , (2.50)

and leads to a master equation generated from the quantum Langevin equation.
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After transforming to the interaction picture this master equation is of the form

ρ̇I(t) =

∫ t

0

trB [VI(t)VI(t
′)µI(t

′)] dt′. (2.51)

Compare this and Eq. (2.29) with the parallel identification µI ↔ χI . The

assumption needed to put this into the form of the Markovian master equation is

µI(t) = ρB ⊗ trBµI(t) = ρB ⊗ ρI(t), (2.52)

which is exactly Eq. (2.30). The natural interpretation of this derivation is that

the quantum Langevin equation is more exact than the Markovian master

equation in that it includes more of the system+bath correlations, by avoiding

the fixed bath assumption. In the same reference as the above cumulant

technique, the authors of Ref. [20] show that the quantum Langevin equations

can be transformed to a form equivalent to the Markovian master equation by

transforming it into a quantum stochastic differential equation, and imposing a

white noise spectrum for the Langevin force. Assumption of such a spectrum

apparently also discards system+bath correlations and is equivalent to the above

assumption.

2.3 Review of influence functional approach

In contrast to Schrödinger-master equation and Heisenberg-Langevin approaches,

in path integral approaches to reduced system dynamics it is not necessary to

neglect system+bath correlations during the evolution. The maintenance of the
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system+bath correlations is implicit in the path integrals because they are

constructed from integration over complete sets of states at all intermediate

times. Such approximation is avoided by simply allowing the combined

system+bath to evolve coherently throughout the interaction period. Then, only

at the end of all coherent evolution, the bath variables are traced out to leave the

reduced system evolution. The major difficulty of path integral techniques,

besides the identification of a suitable representation, is the evaluation of the

path integrals themselves. That step requires the weak coupling approximation,

but not the short correlation time approximation. In the work of this dissertation

that approximation is applied as a 2nd order pole approximation equivalent to the

2nd order Born approximation, and a neglect of branch cut contributions.

2.3.1 General overview

The general idea behind the application of path integral techniques to quantum

mechanics is to break the evolution operator, U(t, 0) = Te−
i
~
R t
0 H(s)ds, into a series

of infinitesimal steps,

U(t, 0) =
N∏

n=1

U(εn, ε(n− 1))), (2.53)
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with t = Nε. After inserting a complete set of states between each evolution

operator the transition amplitude 〈xf |U(t, 0)|xi〉 becomes

K(xf , t|xi, 0) =

∫ [
N−1∏
n=1

dµ(xn)

]
〈xN |U(εN, ε(N − 1)))|xN−1〉

×
[

N−1∏
n=1

〈xn|U(εn, ε(n− 1)))|xn−1〉
]

,

(2.54)

with xN = xf , x0 = xi, and dµ(x) the measure in the resolution of unity for the

complete set of states,

1 =

∫
dµ(x)|x〉〈x|. (2.55)

The evolution operator for an infinitesimal step can be expanded to O(ε2),

U(εn, ε(n− 1))) = e−
i
~
R t
0 H(s)ds

= 1− i

~
Hnε + O(ε2),

(2.56)

so that the infinitesimal transition amplitude is

K(xn, n|xn−1, n− 1) = 〈xn|xn−1〉 − i

~
〈xn|Hn|xn−1〉ε + O(ε2)

= 〈xn|xn−1〉e− i
~H(xn,xn−1)ε+O(ε2).

(2.57)

The matrix element of the Hamiltonian in Eq. (2.57) may be called the ”x-rep”

Hamiltonian and is denoted H(xn, xn−1) = 〈xn|Hn|xn−1〉/〈xn|xn−1〉. The states

|x〉 are not assumed to be orthogonal in this derivation. This expression

substituted into Eq.(2.54) gives

K(xf , t|xi, 0) =

∫ [ N−1∏
n=1

dµ(xn)〈xN |xN−1〉〈xn|xn−1〉
]

e−
i
~H(xN ,xN−1)ε+O(ε2)− i

~
PN−1

n=1 [H(xn,xn−1)ε+O(ε2)].

(2.58)
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In the limit that ε → 0 and N →∞ such that t = Nε, the product in

square brackets becomes the path integral measure and Eq. (2.58) becomes a

continuous path integral,

K(xf , t|xi, 0) =

∫ x(t)=xf

x(0)=xi

Dµ[x(s)]e−
i
~
R t
0 H[x(s)]ds. (2.59)

In the continuous limit the O(ε2) terms no longer contribute to the transition

amplitude, so Eq. (2.59) as written is exact. It is interesting to note that although

the path integral is defined by a discrete sequence, it is equal to the transition

amplitude is only in the continuous limit. Any operator ambiguities that arise in

the continuous version can be resolved by appealing to the discrete version.

Although Eq. (2.59) is an exact expression for the transition amplitude, it

is obviously not a final result in any sense. Evaluation of the path integral

constitutes the major difficulty in this approach. The best method with which to

evaluate Eq. (2.59) will depend on the details of the Hamiltonian and the

representation chosen. Some popular methods are diagonalization of the

Hamiltonian, Gelfand-Yaglom, stationary phase, and recursive evaluation of the

action. Diagonalization of the Hamiltonian involves finding the basis in which the

Hamiltonian is diagonal so that the path integral can be evaluated as a

determinant [26, 27]. The Gelfand-Yaglom method is similar to the

diagonalization method. In it a discrete equation is found for the determinant of

the discrete version of Eq. (2.59) with (n+1)-steps in terms of the determinant

with n-steps. In the continuous limit an equation of motion for the determinant
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is acquired, which is used to solve for the transition amplitude [28]. In the

stationary phase method the destructive interference of paths which deviate from

the ”classical path” is exploited. By applying a variation over the path x(s) in

the action of Eq. (2.59), Euler-Lagrange type equations can be found for the

stationary path. Evaluation of the action along the stationary path then leads to

an approximate result for the transition amplitude. In the case of a quadratic

action the stationary path evaluation is exact since in that case the action is

Gaussian [26, 27]. Finally, recursive evaluation of the action is a type of

Gelfand-Yaglom method in that discrete equations are derived for the action of

the path integral. This last method is used in much of the original work of this

dissertation. It is described in more depth in subsequent sections.

The transition amplitude can be used to derive the reduced dynamics of a

system interacting with a bath by constructing from it the reduced propagator,

which is forward and backward versions of the transition amplitude integrated

over the final state. Working with the density operator of Eq. (2.2), the evolved

density operator can be written in terms of the evolution operators,

χ(t) = U(t, 0)χ(0)U†(t, 0). (2.60)

A matrix element of the density operator is then 〈zf , xf |χ(t)|z′f , x′f〉, with |x〉

and |z〉 denoting system and bath states, respectively. A trace over the bath of

Eq. (2.60) gives the reduced density matrix,

〈xf |ρ(t)|x′f〉 =

∫
dµ(zf )〈zf , xf |U(t, 0)χ(0)U†(t, 0)|zf , x

′
f〉. (2.61)
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Inserting complete sets of states at the initial times puts the reduced density

matrix in terms of the transition matrix elements. With the definition from

Eq. (2.59) expanded to include an interacting system and bath, the transition

amplitude is

K(zf , xf , t|zi, xi, 0) = 〈zf , xf |U(t, 0)|zi, xi〉

=

∫
Dµ[z]Dµ[x]e−

i
~
R t
0 (Hs[x,z]+Hb[x,z]+V[x,z])ds,

(2.62)

and the reduced density operator becomes:

〈xf |ρ(t)|x′f〉 =

∫
dµ(zf )dµ(zi)dµ(xi)dµ(z′i)dµ(x′i)

×K(zf , xf , t|zi, xi, 0)χ(0)K∗(zf , x
′
f , t|z′i, x′i).

(2.63)

If the initial state of the system is assumed to be a product state, ρB(0)⊗ ρ(0),

the integrations over the bath and system states can be separated to define the

reduced propagator,

J(xf , x
′
f , t|xi, x

′
i, 0) =

∫
Dµ[x]Dµ[x′]e−

i
~
R t
0 (Hs[x]−Hs[x′])dsF[x, x′], (2.64)

and the influence functional,

F[x, x′] =

∫
dµ(zf )dµ(zi)dµ(z′i)

∫
Dµ[z]Dµ[z′]

× e−
i
~
R t
0 (Hb[z]+V[x,z]−Hb[z

′]−V[x′,z′])ds〈zi|ρB(0)|z′i〉.
(2.65)

In terms of the above expressions the matrix elements of the reduced density

operator are

〈xf |ρ(t)|x′f〉 =

∫
dµ(xi)dµ(x′i)J(xf , x

′
f , t|xi, x

′
i, 0)〈xi|ρ(0)|x′i〉. (2.66)
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The most important point to take away from this derivation is that in this

technique the system and bath evolve coherently throughout their period of

interaction. Except initially, no assumptions are made about the system+bath

state, and the reduced dynamics is obtained only after all coherent interaction.

This characteristic of the path integral approach allows circumvention of the

assumption of free evolution over a short bath correlation time, which is critical

to both the master equation and quantum Langevin approaches.

2.3.2 Coherent state path integrals

2.3.2.1 coherent state representation

Grassmannian coherent states were first formulated for use in a path integral by

Ohnuki and Kashiwa [29]. An excellent review of their properties is available

from Cahill and Glauber [30]. Those of the bosonic coherent states are detailed

in Refs. [31, 32]. Coherent states are defined as any set of states generated by the

exponentiated operation of a creation operator and a suitable label on a chosen

fiducial state [29, 31],

|zk〉 = exp(zkb
†
k)|0k〉 (2.67)

|η〉 = exp(ηS+)|0〉. (2.68)

In the case of the bosonic coherent states, defined in Eq. (2.67), the label zk is a

complex number, and in the case of the Grassmann coherent states, defined in

Eq. (2.68), the label η is an anti-commuting number. The chosen fiducial states
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are the harmonic oscillator ground state and the lower two-level state,

respectively. A state of the combined atom-field system can be expanded in a

direct product coherent state basis,

|{zk}, η〉 = |{zk}〉 ⊗ |η〉. (2.69)

A bosonic coherent state basis, |zk〉, is used to represent the EM field. A

Grassmann coherent state basis, |η〉, is used to represent the atomic internal

two-level degree of freedom.

In order for any set of states to be useful for an equivalent decomposition

they must have a resolution of unity. The EM field and Grassmannian coherent

states have the following decompositions of unity:

1 =

∫
dµ(zk)|zk〉〈z̄k| =

∫
dµ(η)|η〉〈η̄|, (2.70)

with the measures

dµ(zk) = exp(−z̄kzk) (2.71)

dµ(η) = exp(−η̄η). (2.72)

The fact that these measures are exponential functions is what makes the

coherent states a particularly suitable representation for transition amplitudes

written as path integrals. The time discretization involved in the construction of

the path integral necessarily involves the product of infinitesimal exponentials.

The exponential form for the measure facilitates rewriting the products of

exponentials as the exponential of a sum. Grassmann coherent states also share
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other well known properties of bosonic coherent states, such as being

non-orthogonal and eigenstates of the annihilator,

〈z̄k|z′k〉 = exp(z̄kz
′
k) 〈η̄|η′〉 = exp(η̄η′) (2.73)

bk|zk〉 = zk|zk〉 S−|η〉 = η|η〉. (2.74)

The non-orthogonality property is a minor complication, but since the inner

products are exponential in form they can be absorbed into the measure. A great

simplification is created by the annihilator eigenstate property, that gives any

operator which can be written in terms of creation and annihilation operators,

such as the Hamiltonian, a label space Q-representation,

H({zk}, η, {z′k}, η′) =
〈{zk}, η| H |{z′k}, η′〉
〈η|η′〉 〈{zk}|{z′k}〉

. (2.75)

Using the coherent states as a representation the transition amplitude can be

written as a path integral over the coherent state label spaces.

For the bosonic coherent states, the evaluation of the path integrals can

be done using any of the methods previously mentioned, however with the

Grassmann coherent states extra care must be taken. A particular point of

concern is that these Grassmann coherent states are not single fermion coherent

states that are generated by the fermionic creation operator. As a result,

Hamiltonians which contain single spin up/down operator terms will contain odd

terms in this representation and the recombination of infinitesimal transition

amplitudes becomes problematic due to the anticommutivity of the terms. The
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correct expressions can be found with the introduction of time-indexed

anticommuting partners to the Grassmann variables. These anticommuting

partners make the formulation more consistent by carrying the effect of the

nilpotency and anticommutation of the Grassmann variables in the infinitesimal

propagators into the full propagator. As a result, when the Grassmann variables

at intermediate times are integrated over all values, the effect of their

anticommutivity will be carried along. The resulting path integrals look similar

to a boson coherent state path integral. The difference is that the

anticommutivity of the Grassmann partners must be remembered during further

evaluation with the amplitude. A recursive evaluation of the path integrals

maintains the effects the anticommutivity. Details are given in the next section

2.3.2.2 Evaluation of Grassmann path integrals

In the use of coherent state path integrals to describe spin systems three

representations have been prevalent. Two of them have been to describe the spin

degrees of freedom via coherent states of SU(2) [33, 34] and to use a stereograhic

projection of the SU(2) sphere onto the complex plane (i.e. boson mapping) [35].

These two representations do not mesh well with the path integral approach

because they have non-exponential measures. The third choice, which is the one

taken here, is to use Grassmannian coherent states to represent the spin [12, 36].

One drawback of this approach is that it is restricted to representations of spin-1
2

or two-level systems. Within the Grassmannian representation there are also two
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variations. One variation to generate Grassmannian coherent states by an

exponentation of the single fermion creation operators. The other variation is to

generate them by exponentiation of spin increasing operators. The advantage of

the first is that the Hamiltonian so defined always has definite even parity since

the fermion operators always appear in pairs, thereby avoiding mixed Grassmann

parity in the Hamiltonian. This fact has caused the first variation to be

predominant [37]. However an advantage to the second variation is that the

interaction terms in many Hamiltonians of interest remain bilinear, thereby

allowing more straightforward evaluation of the path integrals. The advantages of

these two variations are combined in the treatment here. The framework is

sketched below. In the appendices two simple examples are developed and shown

to match known exact results.

The construction of a Grassmann path integral begins to diverge from the

bosonic case at Eq. (2.54). At that point the product of infinitesimal transition

amplitudes can not be naturally combined into a single exponential, as is

desirable in a path integral formulation. The reason is that there can be odd

terms which anticommute in the infinitesimal amplitudes. With bosonic path

integrals that is not a problem since c-numbers commute. In order to avoid this

problem a time-indexed anticommuting partner is introduced to all Grassmann

coherent state variables. Then the transition amplitude can be written as a
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discrete time path integral of a single exponential, e.g.

K(t, 0) =

∫ N∏
j=1

dµ(ηj) exp{η̄fηN − iε

~

N∑
i=1

Hi,i−1}. (2.76)

Although the introduction of the Grassmann factors allows the amplitudes to be

written as above in Eq. (2.76) (since they make each infinitesimal amplitude

even), that does not justify their introduction or elucidate their use. The

justification for introducing the anticommuting partners is that they are a

counting tool that helps to preserve the truncations and signs of formal

expressions. That can be most clearly illustrated by a sample evaluation of the

amplitude. For example, the transition amplitude for a single infinitesimal

interval can generically be written

K(ε, 0) = exp{η̄1η0 − iε

~
H1,0} = eη̄1ψ1+φ1 , (2.77)

with ψ and φ being Hamiltonian dependent and containing a mixture of even and

odd terms. For two infinitesimal intervals the amplitude is

K(2ε, 0) =

∫
dµ(η1) exp{η̄2η1 − iε

~
H2,1}K(ε, 0)

=

∫
dµ(η1)e

ψ̄2η1+φ̄2eη̄1ψ1+φ1 6=
∫

dµ(η1)e
ψ̄2η1+η̄1ψ1+φ̄2+φ1 . (2.78)

If any of the terms in the exponent are odd then simply adding the exponents in

the integrand, as would be done for c-numbers, does not give the correct

expression, which is the source of the inequality of the integrands. However, if

one introduces anticommuting factors multiplying each Grassmann coherent state

variables, then the inequality becomes an equality and the integral can be done

43



with standard Grassmann integration techniques. The distinction may seem

small, but at later points effects due to Grassmann anticommutivity are retained

in the anticommuting factors. It should be emphasized that the anticommuting

factors do not impose the equality, but make the RHS simplify to the correct

expression for the LHS.

A recursive evaluation which continues the above single step to successive

infinitesimal unitary evolutions can now be performed. After each evolution

anticommuting partners are introduced at that time index and the amplitude is

rewritten in a standard form to facilitate the next evolution,

K(ε, 0) = exp{η̄1η0 − iε

~
H1,0} = eη̄1ψ1+φ1 (2.79)

K(2ε, 0) =

∫
dµ(η1) exp{η̄2η1 − iε

~
H2,1}K(ε, 0) = eη̄2ψ2+φ2 (2.80)

.

.

K(Nε, 0) =

∫
dµ(ηN−1) exp{η̄NηN−1 − iε

~
HN,N−1}K((N − 1)ε, 0) = eη̄NψN+φN .

(2.81)

At each step the terms in the action for a j step transition amplitude are

computed from those for a j − 1 action,

ψj ≡ F (ψj−1, φj−1) (2.82)

φj ≡ G(ψj−1, φj−1), (2.83)

with F and G being the equations governing the forward steps.
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Although the continuous limit of Eq. (2.82) can give first order differential

equations from which the transition amplitude can be computed, that is not the

correct procedure. The amplitude in this form is only formally valid because the

introduction of the time-indexed anticommuting parts to the couplings cause

complicated truncations in the polynomial expansion of Eq. (2.81). The next step

is to instead expand the propagator into a polynomial series,

K(t, 0) = eη̄f ψN+φN =
∞∑

m=0

1

m!
(η̄fψN + φN)m, (2.84)

and use the finite difference equations for the exponents and the

anticommutation properties to find finite difference equations for the terms in the

polynomial series,

[ψj]
m = [F (ψj−1, φj−1)]

m (2.85)

[φj]
m = [G(ψj−1, φj−1)]

m (2.86)

[ψj]
m[φj]

n = [F (ψj−1, φj−1)]
m[G(ψj−1, φj−1)]

n. (2.87)

Each of the left hand sides (e.g. [ψj]
m[φj]

n) should be thought of as a new

function. Differential equations for these new functions can be found by taking

Eqs. (2.85-2.87) to the continuous limit. Substituting the solutions back into the

expansion of the amplitude and resumming gives the final expression for the

transition amplitude. Only in the form of Eq. (2.84) with the solutions from

Eqs. (2.85-2.87) does the amplitude cease to be a formal expression. Two

examples of this applied to exactly solvable situations are given in Appendix A to

illustrate the technique and to demonstrate its efficacy.
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Chapter 3

Casimir-Polder Retardation Force

The physical system studied in this chapter is an atom in a polarizable ground

state near a conducting wall. The interaction of the atom with the quantum

electromagnetic field (EMF) vacuum, whose spatial modes are restricted by the

wall with imposed boundary conditions, generates a force that pulls it toward the

conducting wall (for general discussion see Ref. [38]). The details of such a force

is important in any experiments and applications in which an atom is held near a

surface by a trapping scheme using evanescent waves or magnetic fields. The

atom-wall force is divisible into two parts. First, there is the electrostatic

attraction that the atom feels toward its image on the other side of the wall,

called the van der Waals (vdW) force. Second is a quantum mechanical

modification of the vdW force first calculated by Casimir and Polder [4]. They

dubbed the quantum modification ”retardation” of the vdW force, because its

source is the non-instantaneous transverse EMF. Extensions of Casimir and

Polder’s results for a polarizable atom were later derived for an atom in a

cavity [39] and near a dielectric wall [40, 41]. Closest in philosophy to what is
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done in this chapter is the work of Milonni in Ref. [42]. There, the author

computes the second order alteration of the EMF mode functions due to the

presence of the atom, from which the ground state energy shift is the expectation

value of the interaction Hamiltonian in the altered vacuum 1. However, the

author neglects time dependence in the mode functions and thus neglects effects

due to Doppler shifts of the EMF modes. Retardation correction of the vdW force

has been demonstrated experimentally [5, 6]. Verification of the Casimir-Polder

force can be viewed as a demonstration of the entangled quantum behavior of the

entire system, since it involves the dressing of the atom by the EMF vacuum.

Although Casimir and Polder and others’ calculations do treat the

quantum entanglement in the system, analysis up to now has been restricted to

stationary atoms. It has been assumed (wrongly, as we shall show) that such a

method can also treat the adiabatic motion of the atom. Adiabatic motion means

in this context that as the atom moves, it continuously shifts into the position

dependent stationary dressed ground state on a timescale much shorter than the

timescale of motion. Treatments assuming that the atom is stationary or is

instantaneously static exclude correlations that are developed in the system

during the motion. The key point is that the adiabatic and stationary dressed

1The author of Ref. [42] refers to this method as radiation reaction. We would advise against

using this terminology because it is different from the usual meaning referring radiation reaction

to the force exerted on a charged object due to its emitted radiation, which manifests as a classical

effect.
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vacuum states are not the same. An example where this situation is encountered

generically and dealt with in depth is in cosmology, specifically, quantum field

processes in an expanding universe [43]. For stationary systems a vacuum state is

well defined at all times (due to the existence of a Killing vector), but not for

arbitrary dynamics, especially fast motion. However, for slow dynamics,

adiabatic vacuum states can be defined and renormalization procedures

constructed [44, 45, 46]. The adiabatic method we use here is similar in spirit

(though not in substance, as our purpose is somewhat different from that in

cosmology). To predict motional effects, entanglement in the evolution needs to

be accounted for theoretically. We use the influence functional (IF) method here,

which keeps track of full coherence in the evolution to derive the force between

the atom and the wall while allowing the atom to move adiabatically. In the case

of a stationary atom, our result is in exact agreement with the Casimir-Polder

force. In the case of an adiabatically moving atom, we find a coherent retardation

correction up to twice the stationary value, thus our coherent QED calculation

will make verifiable predictions. This chapter shows the derivation and explains

the cause due to coherent back-action. Section 3.1 outlines the model and details

of the calculation. The results for stationary and adiabatic motion are then given

in Section 3.2, and discussed in Section 3.3.
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3.1 Model and Approach

In contrast to obtaining the force via the gradient of the ground state energy

shift, we obtain it through the expectation value of an atom’s center of mass

(COM) momentum. Our system consists of an atom placed near a conducting

wall. We assume an initially factorized state of the atom in its ground state and

the EMF in its vacuum. A path integral technique is used to derive the ground

state-EMF vacuum transition amplitude of the evolving system. Inclusion of

coherent back-action allows the system to self-dress [47, 48, 49] and preserves

maximal entanglement in the non-Markovian evolution of an atom-EMF

quantum system. The expectation value of the momentum operator is then

computed. In the path integral, Grassmannian and bosonic coherent states are

used to label the atomic and EMF degrees of freedom, respectively. The position

and momentum basis are used for the atom’s center of mass degree of freedom.

The major approximation applied here is a second order vertex approximation.

With the second order vertex, the propagator is partially resummed to all orders

of the coupling constant. The result is a non-perturbative propagator which

yields coherent long time dynamics [18, 50]. The mass of the atom and the size of

its external wavepacket are kept finite throughout the calculation. Only at the

end of the calculation do we allow the mass of the atom to go to infinity and its

extension shrunk to a point, while retaining finite terms due to their effect on the

dynamics.
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Highlights of the calculation are given in this section and details are given

in the Appendices B and C. In Section 3.1.1 the Hamiltonian and spatial mode

functions that describe the system are introduced. In Section 3.1.2 the transition

amplitude of the EMF vacuum with the atom in its ground state is calculated in

a coherent state path integral, with an effective action expanded to second order

in the coupling (equivalent to a second order vertex resummation), and

semiclassically in the COM motion. The momentum expectation value and the

retardation correction force is then calculated from the transition amplitude in

Section 3.1.3.

3.1.1 Hamiltonian

The spinless non-relativistic QED Hamiltonian is given by 2

H =
P2

2M
+

1

2m
(p + eA)2 + eV(X) + Hb. (3.1)

The first term is the COM kinetic energy of an atom with mass M . The second

term is the kinetic energy of the electron sitting in the transverse EMF. The

third term is the potential energy of the electron around the atomic nucleus. The

last term is the energy of the free EMF. After taking the dipole approximation,

2The Hamiltonian takes the form of Eq. (3.1) and Eq. (3.2), with separated internal and

external degrees of freedom because, for an atom, the mass of the nucleus is much greater than

the mass of the electrons. For an arbitrary system of charges and masses forming a bound state,

a valid separation of the internal from the external degrees of freedom would require going to the

multipolar form of the Hamiltonian [51, 52, 53].
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and restricting to two internal levels of the atom, the Hamiltonian in minimal

coupling form becomes (see Appendix A of Ref. [12] without the rotating wave

approximation)

H =
P2

2M
+ ~ω0S+S− + ~

∑

k

ωkb
†
kbk + HI1 + HI2 = H0 + HI . (3.2)

The operators S± are the up and down operators of the atomic qubit and ω0 is

the atomic transition frequency. The operators bk and b†k are the EMF mode

annihilation and creation operators, and ωk are the frequencies of the EMF

modes. The two parts of the interaction Hamiltonian are

HI1 = ~
∑

ke

g√
ωk

[pegS+ + pgeS−] · [ukbk + u†kb
†
k] (3.3)

HI2 = ~
∑

kl

λ2

√
ωkωl

[uk · ulbkbl + u†k · ul(δkl + 2b†kbl) + u†k · u†lb†kb†l ]. (3.4)

The vector peg is the dipole transition matrix element, which is defined as

peg = 〈e|p|g〉 = −imω0〈e|r|g〉. The vectors uk contain the photon polarization

vectors ε̂k and the spatial mode functions fk(X), i.e., uk(X) = ε̂kfk(X). The

coupling constants are g = −
√

8π2αc
m2 and λ =

√
4π2~αc

m
, with α being the fine

structure constant.

In the presence of a conducting plane the spatial mode functions of the

EMF which satisfy the imposed boundary conditions are the TE and TM

polarization modes [42],

uk1(X) =

√
2

L3
k̂‖ × Ẑ sin(kZZ)eik‖·X (3.5)

uk2(X) =

√
2

L3

1

k
[k‖Ẑ cos(kZZ)− ikZk̂‖ sin(kZZ)]eik‖·X, (3.6)
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and their complex conjugates.

3.1.2 Transition amplitude

The transition amplitude between the initial and final coherent states with initial

and final positions is given by

〈Xf , {z̄kf}, ψ̄f ; t + τ | exp[− i

~

∫ t+τ

t

H(s)ds]|Xi, {zki}, ψi; t〉. (3.7)

The transition amplitude relevant to the atom-wall force is the amplitude that

the atom moves from Xi to Xf without the emission of any physical photons.

This is a very good assumption, since the probability for physical photon

emission is extremely small [49]. The initial and final states are thus

characterized by the atom being in its ground state and the EMF in vacuum,

with arbitrary COM position states. The initial and final coherent state labels

can be set to zero to reflect those states, although during the evolution the

system evolves freely, and the motion of the COM is affected by recoil from

emission and re-absorption of virtual photons,

K[Xf ; t + τ,Xi; t] = 〈Xf ; t + τ | exp[− i

~

∫ t+τ

t

H(s)ds]|Xi; t〉. (3.8)

Normally, a variational approach would be a sensible way to compute the

functional integrals that make up the transition amplitude. However, since in

this case both the anti-resonant as well as resonant rotating wave terms are

included in the Hamiltonian (i.e., no RWA), the variational equations for the
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Grassmann variables will have bosonic sources even when the EMF is taken to be

in the vacuum. We know from earlier work that when a Grassmann field variable

has a bosonic source, the variational technique cannot unambiguously define the

evolution of the Grassmann variable. A better way is to leave the transition

amplitude as a discrete product of infinitesmal propagators. The necessary

functional integrals can then be computed recursively. Details are in

Appendix B. After the EMF and Grassmann path integrals are evaluated, the

transition amplitude from the initial motional state Xi to the final motional state

Xf (while keeping the same initial and final atomic ground state and EMF

vacuum) is given to O(e2) vertex by

K[Xf ; t + τ,Xi; t] =

∫
DX exp

{
i

∫ t+τ

t

[
MẊ2

2~
−

∑

k

λ2

ωk

u∗k(X(s)) · uk(X(s)) + O(e4)

+ ip2
z

∫ s

t

dr
∑

k

g2

ωk

e−i(ωk+ω0)(s−r)uk(X(s)) · u∗k(X(r))

]
ds

}

(3.9)

where p2
z = 〈g|p2

z|g〉 is the ground state expectation value of p2
z.

A semi-classical approximation to the transition amplitude Eq. (3.9) is

obtained by evaluating the action along its classical path. This will neglect the

fluctuation terms of order O( 1
M

). The classical path is the straight line path plus

terms of order O( e2

M
),

Xc(s) = Xi +
Xf −Xi

τ
(s− t) + O

(
e2

M

)
= X0

c(s) + O

(
e2

M

)
. (3.10)
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Evaluating the transition amplitude along that path gives

K[Xf ; t + τ,Xi; t] =

(
M

2πi~τ

)3/2

× exp

{
i

∫ t+τ

t

[
MẊ0

c

2

2~
−

∑

k

λ2

ωk

u∗k(X
0
c(s)) · uk(X

0
c(s)) + O(e4/M)

+ ip2
z

∫ s

t

dr
∑

k

g2

ωk

e−i(ωk+ω0)(s−r)uk(X
0
c(s)) · u∗k(X0

c(r))

]
ds

}
.

(3.11)

Using the spatial mode functions of Eqs. (3.5-3.6) in the above gives the

semi-classical transition amplitude in the presence of a conducting wall (see

Eq. (C.1)).

3.1.3 Momentum expectation and force

Given the above expression for the transition amplitude and an initial center of

mass wavefunction for the atom, Ψ(P), the momentum expectation and the force

on the atom (the time derivative of the expectation momentum) can be

computed. The momentum expectation is

〈P̂〉(t + τ) =
~
N

∫
dPf

(2π)3
Pf

∫
dXidX

′
i K[Pf ; t + τ |Xi; t] Ψ(Xi)

×Ψ∗(X′
i) K∗[Pf ; t + τ |X′

i; t],

(3.12)

with the normalization factor

N =

∫
dPf

(2π)3

∫
dXidX

′
i K[Pf ; t + τ |Xi; t] Ψ(Xi)Ψ

∗(X′
i) K∗[Pf ; t + τ |X′

i; t].

(3.13)

The initial wavefunction can be taken to be a Gaussian centered at (R,P0) with

the standard deviations (σ, 1/σ). Such a choice will allow for the possibility that
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the atom and the wall are moving toward or away from one another. Following

the line of calculation detailed in Appendix C, a momentum moment generating

function is computed in the limits M →∞ and σ → 0 such that P0

M
→ V and

σ2M →∞ (see Eq. (C.12)). From the generating function the momentum

expectation value can be computed,

P(t + τ) =
~

iZ(0)

∂Z(J)

∂J

∣∣∣∣∣
J=0

. (3.14)

In the above limits

P(t + τ) = P0 − 2iλ2~
L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds e−2ikz·(R+V(s−t))

+
g2p2

z~
L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds

∫ s

t

dr e−ikz·(2R+V(s+r−2t))

×
[
e−i(ωk+ω0)(s−r) − ei(ωk+ω0)(s−r)

]
.

(3.15)

The momentum depends on the position and velocity only through the distance

from the wall and the velocity toward or away from the wall, so motions parallel

to the wall have no effects. Define R = êz ·R and v = êz ·V, with êz defined as

positive away from the wall. Taking the time derivative of the momentum

expectation value will give the force that is exerted on the atom by the transverse

EMF in the presence of the wall. Doing so, as well as applying the

Thomas-Reiche-Kuhn sum rule,

λ2 =
g2p2

z

ω0

, (3.16)
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and rewriting in terms of the static ground state polarizability, α0, the force is

Fc(R, v, t + τ) =− 2πiα0~ω2
0

L3

∑

k

kz cos2 θ

ωk

e−2ikz·(R+Vτ)

+
πα0~ω3

0

L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds e−ikz·(2R+V(τ+s−t))

×
[
e−i(ωk+ω0)(t+τ−s) − ei(ωk+ω0)(t+τ−s)

]
.

(3.17)

The subscript ”c” is a reminder that the force calculated from the transverse field

is the retardation correction to the electrostatic force. Inspection of the force

reveals that it is a sum over recoil momenta weighted by amplitudes which

depend on the distance of the atom from the wall and the velocity of the atom.

As will be discussed in Section IV, the recoil momenta come from virtual photon

emission and re-absorption. In that sense the net force reflects an interference

phenomenon, since it is the net sum of many different possible virtual processes.

3.2 Results

3.2.1 Stationary atom

If the atom is stationary, then setting v = 0 gives the retardation force to be

F(0)
c (R, v = 0, t + τ) =− 2πiα0~ω2

0

L3

∑

k

kz cos2 θ

ωk

e−2ikz·R

+
πα0~ω3

0

L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds e−2ikz·R

×
[
e−i(ωk+ω0)(t+τ−s) − ei(ωk+ω0)(t+τ−s)

]
.

(3.18)
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Figure 3.1: This plot shows the transient behavior in the atom-wall force as it

rings down to steady state. The value of the atom-wall force at R = 3000 vs time

in atomic units is plotted. The spike at τ = 6000 is the time at which a photon

emitted at τ = 0 will have just returned. Before τ = 6000 the force is experiencing

transient behavior, and afterward it rings down to the stationary atom value.

Combining the correction force with the electrostatic force gives the total force

on a stationary atom,

Fsa(R, t + τ) = −êz
3α0~ω0

8R4
+ F(0)

c (R, v = 0, t + τ). (3.19)

The stationary atom force exhibits a transient behavior when the atom first

”sees” itself in the wall. Then, on a timescale of several atom-wall round trip

light travel times it asymptotes to a constant steady state value. The transient

behavior is plotted in Fig. (3.1) and Fig. (3.2) for an optical transition frequency

in an alkali atom.

The steady state value of the stationary atom-wall force can also be

57



0 2000 4000 6000 8000
atom-wall distance, R

-0.1

0

0.1

0.2

0.3

0.4

R
4
F

0 500 1000 1500 2000 2500 3000

R

-0.02

-0.01

0

0.01

0.02

0.03

R
4

F

Figure 3.2: This plot shows a snapshot of the coefficient of the 1
R4 behavior of the

the atom-wall force at a time τ = 6000 in atomic units. The location of the spike

at R = 3000 corresponds to the location at which a photon emitted at τ = 0 will

have just returned to R = 3000. At locations R < 3000 the force has begun to

asymptote to its steady state behavior, and those at R > 3000 are still experiencing

transient behavior. The inset image is a magnification near the wall. The dotted

line is the coefficient of the 1
R4 dependence of a stationary atom.
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determined analytically to be

Fsa(R, τ >> 2R/c) = −êz
3αo~ω0

8R4
− êz

αo~ω2
0

4π

(
d

dR

)3 ∫ ∞

0

dk

kc + ω0

sin(2kR)

2kR
,

(3.20)

which can be simplified to

Fsa(R, τ >> 2R/c) = êz
αo~ω2

0

8π

(
d

dR

)3
1

R

∫ ∞

0

dx

x2 + ω2
0

e−2Rx/c. (3.21)

From Eq. (3.21) the potential which a stationary atom feels is easily found to be

Usa(R) = −αo~ω2
0

8π

(
d

dR

)2
1

R

∫ ∞

0

dx

x2 + ω2
0

e−2Rx/c, (3.22)

with asymptotic limits

Usa(R) → −αo~ω0

8
1

R3 for R << c
ω0

Usa(R) → −3αo~c
8π

1
R4 for R >> c

ω0

, (3.23)

which exactly reproduces the results of energy gradient approaches. Although the

results are the same as those previously derived, the interpretation behind how

the results are obtained is different. The energy gradient approach can be

described as a kinematic approach since the atom-EMF system is assumed to be

held static in its entangled dressed ground state. The self-dressing approach used

here, on the other hand, allows the atom-EMF entanglement to evolve

dynamically. That is, the atom and EMF system, beginning in a factorized state,

evolves into a stationary dressed state (i.e. it self-dresses). When the atom is

stationary the two forces match because after some time to ’get acquainted’, the

self-dressing atom does indeed evolve into the stationary dressed state. It should

59



be stressed that the agreement between the results of the two methods

demonstrates the coherence of the self-dressing method as applied here.

3.2.2 Adiabatic motion

The self-dressing method prediction of the retardation correction force for a

slowly moving atom will now be shown to differ from the energy gradient

prediction 3. The key difference will be that as a moving atom and EMF get

acquainted, they evolve into an entangled dressed state which is different from

the stationary atom dressed state. The reason for the difference is the Doppler

shift of the EMF modes in combination with the presence of the wall, as will be

discussed in more detail in Section 3.3.

3.2.2.1 Adiabatic evaluation

The retardation force for a moving atom can be determined from Eq. (3.17) by

applying a separation of short time scale dynamics from long time scale dynamics

and determining how they affect each other. The adiabaticity will be applied

here in the same way that it is applied in standard methods for determining the

dipole force on an atom in a laser beam [10]. There, assuming that the atom’s

position is constant on short time-scales, the optical Bloch equations are solved

3Strictly speaking, such a comparison can not be made since energy gradient approaches

implicitly assume the atom to be stationary, although they are often assumed to be applicable

to moving atoms often with no justification.
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for the steady state values of the internal state density matrix elements. On long

time-scales the matrix elements are replaced by their steady state values and put

into the Heisenberg equation of motion for the atomic COM momentum. Such a

procedure is justified when the internal and external dynamics evolve on vastly

different timescales. The analogous separation here will be of the short timescale

describing the self-dressing of the atom-EMF system and the long timescale

describing the motion of the atom.

In order to be explicit about the timescale separation it will be elucidating

to first rewrite Eq. (3.17) with the definition x = s− t, and remember that t is

the time at which the atom-EMF system begins to evolve from a factorized state,

Fc(Rt, vt, τ) =− 2πiα0~ω2
0

L3

∑

k

kz cos2 θ

ωk

e−2ikz·(Rt+Vtτ)

+
πα0~ω3

0

L3

∑

k

kz cos2 θ

ωk

∫ τ

0

dx e−ikz·(2Rt+Vt(τ+x))

×
[
e−i(ωk+ω0)(τ−x) − ei(ωk+ω0)(τ−x)

]
,

(3.24)

so that the short timescale dynamics (parameterized by τ and x) is explicitly

separated from the long timescale dynamics (parameterized by t) on which Rt

and Vt evolve. An adiabatic evaluation of the retardation correction for a

moving atom can be extracted from a Taylor series expansion of Eq. (3.24),

Fc(Rt, vt, τ) =
∞∑

n=0

vn
t

n!
F(n)(Rt, vt = 0, τ) (3.25)

where n denotes the nth derivative with respect to velocity. The Taylor series

expansion is an equivalent representation of the LHS as long as the RHS
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converges. Each function F(n)(Rt, vt = 0, τ) exhibits a transient behavior while

the atom first ”sees” itself in the wall (during times τ ∼ 2R
c

) and asymptotes to

steady state behavior on a timescale of several round trip light travel times. The

adiabatic approximation is applied at this point by replacing each function

F(n)(Rt, vt = 0, τ) by its asymptotic behavior

F(n)(Rt, vt = 0, τ) →

F(n)
ss (Rt, τ) =− êz

τn

2n

α0~ω2
0

4π

(
d

dRt

)n+3 ∫ ∞

0

dk

kc + ω0

sin(2kRt)

2kRt

,

(3.26)

which means replacing the Taylor expansion, Eq. (3.25), by its steady state form,

Fc(Rt, vt, τ) → Fss
c (Rt, vt, τ) =

∞∑
n=0

vn
t

n!
F(n)

ss (Rt, τ) (3.27)

This is the step that is analogous to replacing the internal state density matrix

by its steady state value in adiabatic computations of the dipole force on an atom

in a laser beam. Replacing the Taylor expansion by its steady state behavior is

adiabatic because it assumes that the expansion terms asymptote to their dressed

state form on a timescale much shorter than the timescale on which either the

position or velocity of the atom changes. More specifically, for the change in

position, the adiabatic condition means that during a round trip light travel time

the the atom-wall distance has very little relative change, v 2R
c

<< R, which is

equivalent to the condition that the atomic velocity be non-relativistic,

v

c
<<

1

2
. (3.28)

Similarly, the adiabatic condition for the change in velocity is that it has very

little relative change during a round trip light travel time, Fnet

M
2R
c

<< V, which
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can be restated as the net force not changing the kinetic energy of the atom

much during a light travel time,

(Fnet v)
R

c
<<

1

2
Mv2, (3.29)

since Fnet v is the power that the net force puts into the atoms mechanical

motion. Both these conditions are satisfied in typical experimental setups.

Note that rather than tending to a constant steady state value the terms

in the Taylor expansion, Eq. (3.26), asymptote to steady state polynomial time

dependence, the source of the polynomial time dependence being the kz ·V

Doppler shift term in the exponents of Eq. (3.24). In distinction to the stationary

atom case those polynomial time dependencies will lead to non-zero partial time

derivatives as well as the convective changes due simply to motion of the atom

d

ds
Fc =

(
dR

ds

∂

∂R
+

dv

ds

∂

∂v
+

∂

∂s

)
Fc. (3.30)

The differential change in Fc can then be split into two parts, one coming from

the convective change and the other from the partial time derivative,

dFc = dFc

∣∣
convective

+ ds
∂Fc

∂s
. (3.31)

The convective differential change is the differential change in the force not

including any short timescale time dependence, in other words, the steady state

expression at τ = 0,

dFc = dFss
c

∣∣∣∣
τ=0

+ ds
∂Fc

∂s
, (3.32)
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with, from Eq. (3.27), dFss
c

∣∣
τ=0

= dF
(0)
c . The behavior of the force on long

time-scales is computed by integrating the differential change from an initial time

at which v = 0 up to the final time,

Fc(t) = F(0)
c (t) +

∫ t

to

ds1
∂Fc

∂s
(s1), (3.33)

where it has been substituted that Fc(t0) = F
(0)
c (t0) (since v = 0 at t0). A similar

analysis for the differential of the first partial time derivative gives,

d

(
∂Fc

∂s

)
= d

(
∂Fss

c

∂s

)

τ=0

+ ds
∂

∂s

(
∂Fc

∂s

)
(3.34)

from which,

∂Fc

∂s
(s1) =

vs1

2

d

dR
F(0)

c (s1) +

∫ s1

to

ds2
∂2Fc

∂s2
(s2). (3.35)

Carrying on similar analysis (and rewriting in terms of the zeroth order

expansion term) leads to the general expression

∂nFc

∂sn
(sn) =

vs1vs2 ..vsn

2n

dn

dRn
F(0)

c (sn) +

∫ sn

to

dsn+1
∂n+1Fc

∂sn+1
(sn+1). (3.36)

Concatenating Eq. (3.33) with Eqs. (3.36) leads to an expression for the

retardation correction force which is the sum of a series of imbedded integrals,

Fc(t) = F(0)
c (t) +

∫ t

to

ds1
vs1

2

d

dR
F(0)

c (s1)

+

∫ t

to

ds1

∫ s1

to

ds2
vs1vs2

22

d2

dR2
F(0)

c (s2) + . . . .

(3.37)

This result could have been written down directly since it has a straightforward

interpretation of being the sum of the integrated effects of each of the partial

time derivatives. Each term in Eq. (3.37) can be evaluated by making a change of
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variables from time to position with the identity v = dR/dt. For example, the

first term gives,

∫ t

to

ds1
v

2

d

dR
F(0)

c (s1) =

∫ R(t)

R(to)

dR1
1

2

d

dR
F(0)

c (R1) =
1

2

[
F(0)

c (Rt)−F(0)
c (R0)

]
, (3.38)

and further terms give,

∫ t

to

ds1

∫ s1

to

ds2...

∫ sn−1

to

dsn
vs1vs2 ..vsn

2n

dn

dRn
F(0)

c (sn) =
1

2n

[
F(0)

c (Rt)− F(0)
c (R0)

]
.

(3.39)

Substituting these into Eq. (3.37) gives a geometric series with the result

Fc(R) = F(0)(R) +
∞∑

n=1

(
1

2

)n(
F(0)(R)− F(0)(R0)

)

= 2F(0)(R)− F(0)(R0), (3.40)

where Ro = R(t0) is the distance from the conducting wall at which the atom was

originally at rest. The force F(0)(R) is the stationary atom retardation correction

to the vdW force.

3.2.2.2 Force and potential

Inspection of Eq. (3.40) shows that if the atom is released but remains stationary,

then the retardation force will be the stationary atom value. On the other hand

if the atom is released infinitely far from the conducting wall and moves in

toward the wall, then the retardation force near the wall will be twice the

stationary value. At a finite initial distance the retardation force will vary

between these values. The force in all cases will depend only on the position.

65



Thus the atom still moves as if it were in a conservative potential and the

potential it feels depends on where it started.

Combining the retardation correction force with the electrostatic force and

simplifying as in Eq. (3.21) gives the atom-wall force to be

Fam(R) = êz
αo~ω2

0

8π

(
d

dR

)3
1

R

∫ ∞

0

dx

x2 + ω2
0

e−2Rx/c

− êz
αo~ω2

0

4π

(
d

dr

)3 ∫ ∞

0

dk

kc + ω0

sin(2kr)

2kr

∣∣∣∣∣

R

R0

.

(3.41)

The first term is the stationary atom-wall force and the second term is a residual

force which pulls the atom back to its original point of release. The force can

easily be turned into the potential which the atom feels:

Uam(R) = −αo~ω2
0

8π

(
d

dR

)2
1

R

∫ ∞

0

dx

x2 + ω2
0

e−2Rx/c

+
αo~ω2

0

4π

(
d

dr

)2 ∫ ∞

0

dk

kc + ω0

sin(2kr)

2kr

∣∣∣∣∣

R

R0

.

(3.42)

Since the first term in the potential is the stationary atom-wall potential, in the

regions near and far from the wall it will have the expected inverse powers of

distance dependence, as shown in Eq. (3.23). The second term is the residual

potential due to the motion.

3.3 Discussion

3.3.1 Physical interpretation

In the energy gradient approach, one interprets the force between a polarizable

atom and a wall as arising from the Lamb shift in the atomic ground state
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energy. Spatial variation of the ground state energy is expected to generate a

force which pushes the atom to lower energy positions, but the mechanism for

such a force is not given explicitly. In the final analysis, since the only players in

the full system are the atom and the EMF field, such a force must come from the

emission and reabsorption of photons. Our approach provides an interpretation

of how a net force arises from the emission-reabsorption processes in the presence

of a boundary.

The connection between the Lamb shift calculation and our calculation is

the dressed ground state of the atom, which is the true ground state of the full

Hamiltonian. Expanded in the free (or bare) Hamiltonian basis, the dressed

ground state is a quantum superposition of bare atom-EMF states, and is often

described as an atom surrounded by a cloud of virtual photons which it

continually emits and reabsorbs. In the energy gradient approach, the atom-EMF

is assumed to always be in the stationary dressed ground state. By contrast, in

our approach a bare state is allowed to evolve quantum mechanically into the

dressed ground state. The difference between these two is crucial to

understanding how the coherent QED correction comes about. By allowing the

atom-EMF to evolve into a dressed ground state we leave open the possibility

that the motion of the atom can affect how closely to the stationary dressed

ground state the system evolves. Or in the language of the virtual photon cloud,

the distribution of virtually occupied modes is allowed to differ from the

stationary atom case.
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3.3.1.1 Stationary atom

Even without motion, the atom’s virtual photon cloud is altered by the presence

of the wall. For a perfectly conducting wall, the TE and TM spatial mode

functions of the EMF are given by Eqs. (3.5- 3.6). Those mode functions are

determined by solving the wave equations with the given boundary conditions on

the wall, and are constructed by linear combinations of plane wave modes. The

creation and annihilation operators of the TE and TM EMF modes (b†, b) are

thus combinations of the creation and annihilation operators of plane wave modes

(a†, a) moving toward and away from the wall. Inspection of the Hamiltonian and

the propagator shows that it is emission followed by absorption, which is the

source of the force. In the interest of finding a physical interpretation, one can

think of virtual processes in the presence of the wall in terms of plane waves.

Then the emission-reabsorption of a wall-constrained mode is:

bkb
†
kuk(X) ∼ (ake

ik·X − a−ke
−ik·X)(a†ke

−ik·X − a†−ke
ik·X) (3.43)

∼ aka
†
k + a−ka

†
−k − a−ka

†
ke
−2ik·X − aka

†
−ke

2ik·X (3.44)

The first two terms are emission-reabsorption of the same photon and contribute

no net momenta to the atom. The second two terms are emission of one photon

and reabsorption of the reflected photon. Each of those contributes a 2kz

momentum to the atom. The effect of those processes on the force can be seen

explicitly in Eq. (3.24). The first term in Eq. (3.24) originates from the HI2

interaction and the second terms from the HI1 interaction. In both terms, the
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sum over wavevectors is a sum over emission followed by reflected absorption

processes, with each contributing a 2kz momentum. Thus, the presence of the

wall alters the atoms virtual photon cloud by reflecting some of the modes. The

process of emission and reabsorption puts the photon cloud into a steady state

distribution with the net effect on the atom of a retardation force.

3.3.1.2 Moving atom

Once the stationary retardation force is understood in terms of the wall effect on

the virtual photon cloud, the modification of it for an adiabatically moving atom

can be interpreted as part of the Doppler effect. The effect is easiest to explain in

the reference frame of the atom, in which it is the wall which will be moving

toward or away from the atom. Then, as in the stationary case, the virtual

photon cloud will be altered by reflection off the wall. However, in the case of the

moving wall, the reflected photons will be Doppler shifted due to the walls

motion. In the language of the virtual photon cloud, the distribution of photons

around a moving atom will be Doppler shifted. This shift builds up in the photon

cloud much like charge in a capacitor connected to a loop of wire in a changing

magnetic field, and it can only be discharged through absorption into the atom.

The net effect, over the retardation force, will be to push the atom against such

built up Doppler shift, back to its original point of release.
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3.3.2 Prospects for experimental observation

3.3.2.1 Reflection from an evanescent laser

A situation in which the motional modification of the retardation correction will

be important is for the reflection of cold atoms off the evanescent field of an

otherwise totally internally reflected laser beam. For example, in an experiment

by Landragin et. al. [6], cold alkali atoms are dropped onto a crystal with an

evanescent wave running along the surface. The atom-wall interaction pulls the

atoms towards the wall. The dipole potential of the evanescent wave, on the

other hand, causes a repulsion of the atoms from the crystal. The combination of

those two creates a barrier through which some fraction of the atoms tunnel and

the rest reflect back out. The authors measure the fraction of reflected atoms

versus the barrier height. As the barrier height is lowered it will at some point

drop below the energy of the incoming atoms. At that point, all the atoms will

be able to classically roll over the barrier, and no atoms will be reflected. The

evanescent laser power required to reach that barrier height depends sensitively

on the the atom-wall attraction. By comparison of measurement with theory, the

authors show that the electrostatic attraction alone does not accurately predict

the threshold laser power. They show that the prediction of a retardation

corrected force is closer to the measured value. When we combine the motional

modification to the retardation correction we are able to make a further modified

prediction for the threshold. The calculations done in this chapter are for a
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perfect conductor, not a dielectric boundary, so the modifications predicted here

should not be applied directly to the case of a dielectric boundary. However, a

general statement can be made that a coherent QED correction will cause a

lowered prediction for the threshold laser power, since it will tend to decrease the

atom-wall attraction. If one naively applies a dielectric factor to our result for

the conducting plate to compensate for the difference, the present prediction for

the threshold energy in units of the natural line width (14.8 Γ) is closer to the

measured value (14.9±1.5 Γ), compared to the previously predicted value (15.3

Γ) [6], but both are still within the error bounds. Extension of the present work

to a dielectric wall is ongoing.

3.3.2.2 Transmission between parallel plates

Another experiment which has been able to observe the retardation of the

van der Waals force involves a stream of ground state atoms passing between two

plates [5]. Due to the attraction of the atoms toward the plates, some of the

atoms fall onto and stick to the plates. The fraction of atoms that pass through

the gap depends on the atom-wall potential. By measuring the opacity (fraction

of atoms that do not pass through) for different gap widths, the authors probe

the attractive atom-wall potential. This experiment holds less promise of

observing a coherent QED correction to the retardation, than the previous

example. The reason being that in this experiment the atoms first come into

interaction with the walls at a distance of only a few resonant atomic
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wavelengths. The atom and EMF thus do not have as much motion over which

to develop a coherent effect. Within that caveat, a general prediction can be

made that the coherent correction will tend to decrease the opacity.

3.3.3 Conclusion

Our result exactly reproduces the Lamb shift result for a stationary atom. For an

adiabatically slowly moving atom, a correction due to the Doppler shift is found.

Agreement with the energy gradient result in the stationary atom case shows

that our non-perturbative approach captures the effects of entanglement which

we sought. The physical interpretation is that the atom-EMF system evolves

from an initially factorizable bare state into the interacting Hamiltonian ground

state, which is an entangled state in the free Hamiltonian basis. This process is

known as self-dressing. The correction for a slowly moving atom shows how our

approach can go beyond Lamb shift calculations. The correction is due to the

Doppler shift in that the virtual photon cloud which dresses the atom is shifted.
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Chapter 4

Thermal Bath

The situation we analyze is that of a qubit interacting with a thermal EMF bath

in the Jaynes-Cummings Hamiltonian. This model is a very well studied one and

is a frequent subject of textbook discussions. Treatments include, for example

Refs. [36, 54], and references therein. However, the most well known analysis

remains the Schrödinger-master equation approach, which is a coarse grained

dynamical equation that is valid at high temperature, as explained in Chapter 1.

In particular, by making the assumption that the bath is fixed in its initial state,

that analysis a priori excludes effects due to correlation between the qubit and the

bath. A thorough Markovian analysis can be found in Ref. [11]. In this chapter

we extend our pursuit of the third option of path integral approaches to the

coherent reduced dynamics of qubit in a thermal bath. As previously discussed,

the path integral approach offers advantages over the master equation approach

in that it does not require the imposition of an unaltered bath assumption. Path

integral approaches to reduced system dynamics avoid that approximation by

allowing the combined system+bath to evolve coherently throughout the
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interaction period. Then, only at the end of all coherent evolution, the bath

variables are traced out to leave the reduced system evolution. In that way the

effects of system+bath correlations are incorporated into the reduced dynamics.

The approach we take to computing the reduced qubit density matrix is

straightforward, although the actual implementation includes some non-standard

techniques involving Grassmann path integrals. First, we compute the transition

matrix elements of the evolution operator constructed from the multi-mode

Jaynes-Cummings Hamiltonian. We utilize the coherent state representation for

the bosonic degrees of freedom and Grassmann states for the qubit degrees of

freedom. Doing so will involve a recursive computation which exploits the

semigroup property of the transition matrix. The reason for this type of

evaluation, rather than a stationary phase evaluation, is that a stationary phase

evaluation has ambiguities in the Grassmann evolution whenever the Grassmann

variables have both bosonic and Grassmann sources. In the special case of an

initial EM field vacuum, the Grassmann variables have only Grassmann sources,

and a stationary phase evaluation is sufficient. After evaluating the transition

amplitudes in an intermediate form, we combine the forward and backward

versions and trace over the final bosonic coherent states to construct the reduced

propagator. The final step is to insert an initial state, which in this case is a

thermal EMF, and compute the qubit reduced density matrix elements.
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4.1 Model and Approach

4.1.1 Hamiltonian

The model of atom-field interaction used is the standard Jaynes-Cummings

Hamiltonian of a two-level system interacting with a harmonic oscillator bath.

Under the dipole, rotating wave (RWA) and two-level approximations the

Hamiltonian is given by

H = ~ωo

(
Sz +

1

2

)
+ ~

∑

k

[
ωkb

†
kbk +

(
λkS+bk + λ̄kS−b†k

)]
(4.1)

where b̂†k, b̂k are the creation and annihilation operators for the kth bath mode

with frequency ωk of the electromagnetic field, and ~ωo is the energy separation

between the two levels. Here

Ŝz =
1

2
σ̂z (4.2)

Ŝ± = σ̂± ≡ 1

2
(σ̂x ± iσ̂y) (4.3)

where σx,y,z are the standard 2x2 Pauli matrices with σz = diag(1,−1), etc. The

coupling constant λk = d21kfk(X) where

dijk ≡ − iωij√
2~ωkε0V

dij · êkσ (4.4)

and dij ≡ e
∫

φ̄ixφjd
3x is the dipole matrix element between the eigenfunctions

φi of the electron-field system, êkσ is the unit polarization vector ( σ = 1, 2 are

the two polarizations), and fk(x) is the spatial mode functions of the vector

potential of the electromagnetic field (in free space, fk(x) = e−ik·x, V is the
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volume of space.). Under the dipole approximation fk is evaluated at the

position of the atom X. Since dij = d̄ji, d̄ijk = djik, we will choose a mode

function representation such that gk is real.

The model Hamiltonian of Eq. (4.1) is not complete due to the use of the

rotating wave approximation [55, 56]. However, we use this model to provide a

comparison between the non-Markovian dynamics, which we derive below, and

the Markovian dynamics of previous analysis [11]. The neglect of the A2 terms is

justified since they do not couple the two-level activity with the EMF modes. In

the case of a stationary qubit, for which the center-of-mass degrees of freedom

are irrelevant, the contribution of the A2 term can be absorbed into the free

EMF hamiltonian [50]. That is not generally true for a moving qubit, and if one

wanted to know something about the motion of the atom, the A2 terms would

need to be included [52, 53].

The coherent state and Grassmann representation which is used

throughout this dissertation is described in Chapter 1. As previously mentioned,

any functions containing Grassmann variables are only formal expressions. Since

a Grassmann variables have no actual ”values”, as c-numbers do, they are always

to be thought of as labels in a general sense. One may ask: what is the

exponential of a Grassmann number? The answer is that the exponential of a

Grassmann variable is defined by the polynomial expansion of an exponential

function. That fact needs to always be remembered when working with

Grassmann variables, although often it seems to be hidden during the
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calculations since the result of Grassmann manipulations in which the functions

are expanded, manipulated, and reconstituted, is usually the same as the result

of working with the functions directly as if the Grassmann variables were

c-numbers. The application of the stationary phase method in the case for which

the Grassmann variables are combinations of Grassmann and c-number sources is

one case in which there is a distinction. Physical results in terms of Grassmann

variables also require further simplification. Only when all the Grassmann

variables are eliminated, which always requires polynomial expansion, can the

results of the Grassmann manipulations be obtained. The process of expanding

the Grassmann functions and finding physical results will be the main focus of

one of the below sections.

4.1.2 Transition amplitude

Here we construct and evaluate the transition amplitude in the Grassmann and

coherent state representation. In a shorthand notation of writing K(t2, t1) to

mean the transition amplitude from coherent states at time t1 to coherent states

at time t2,

K(t, 0) = 〈η̄f z̄f |U(t, 0)|ηizi〉. (4.5)

with U(t, 0) being the time evolution operator,

U(t, 0) = e−
i
~
R t
0 Hds, (4.6)
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In the usual methodology the path integral is a product of infinitesimal steps.

That is, the interval [0, t] is partitioned into a large number (N) of time steps,

such that t = Nε. The n-step transition amplitude (n < N) can then be written

as the exponential of a set of general action terms,

K(nε, 0) = exp

{
η̄nψn +

∑

k

z̄nkfnk +
∑

k

η̄ngnk +
∑

k

z̄nkφnk

}
. (4.7)

By applying the semigroup property of the transition amplitude,

K((n + 1)ε, 0) =

∫
dµ(ηn)

∫
dµ({zk})K((n + 1)ε, nε)K(nε, 0), (4.8)

finite difference relations can be found for the coefficients in the action,

ψn = (1− iωoε)ψn−1 +
∑

k(iλn,kε)φn−1,k ψ0 = ηi

φn,k = (iλ̄n,kε)ψn−1 + (1− iωkε)φn−1,k φ0,k = 0

(4.9)

gn,k = (1− iωoε)gn−1,k + (iλn,kε)fn−1,k g0,k = 0

fn,k = (iλ̄n,kε)
∑

l gn−1,l + (1− iωkε)fn−1,k f0,k = zi,k

. (4.10)

The coupling constants in the above relations have time indices because they are

in fact an indexed set of Grassmann pairs. The necessity for their introduction is

to make manipulations with functions of Grassmann variables match their

expanded and manipulated form. As explained previously we use this evaluation

technique rather than a stationary phase evaluation because the Grassmann

variables in this case have both bosonic and Grassmann sources. It is the

necessity of introducing these time-indexed Grassman variables, and their

ordering when they are introduced, that is lost in the stationary phase method,
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since taking the continuous limit without accounting for the nilpotency of the

Grassmann sources would lead to an erroneous result.

Using the recursive method the transition amplitude can be written

K(t, 0) = exp{η̄fψN +
∑

k

z̄fkfNk +
∑

k

η̄fgNk +
∑

k

z̄fkφNk}. (4.11)

Since this equation is a function of Grassmann variables it is to be treated as a

formal expression that has meaning only in its polynomial expansion. In that

polynomial expansion many terms will be truncated due to the nilpotency of the

Grassmann variables. Expanding out Eq. (4.11) and defining the functionals

F [mk] =
∏

k(fNk)
mk Gl[mk] = gNl

∏
k(fNk)

mk

Ψf [mk] = ψN

∏
k(fNk)

mk Φf
p [mk] = φNp

∏
k(fNk)

mk

Φg
lp[mk] = gNpφNl

∏
k(fNk)

mk

(4.12)

gives the following expanded expression for the transition amplitude:

K(t, 0) =
∞∑

{mk}=0

[∏

k

(z̄fk)
mk

mk!

](
F [mk] + η̄fΨ

f [mk] +
∑

l

η̄fGl[mk]

+
∑

p

z̄fpΦ
f
p [mk] +

∑

lp

η̄f z̄flΦ
g
pl[mk]

)
.

(4.13)

The variable mk is the number of photons in the kth mode. The transition

amplitude as written above is a functional sum over all distributions {mk}.

Differential equations for the functionals that appear in the transition
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amplitude can be found from the finite difference equations of Eqs. (4.9-4.10).

Ḟ [mk] = −i
∑

q

mqωqF [mk] + i
∑

lp

mlλ̄lGp[mk − δkl] (4.14)

Ġp[mk] = −i(ωo +
∑

mω)Gp[mk] + iλpF [mk + δkp] (4.15)

Ψ̇f [mk] = −i(ωo +
∑

mω)Ψf [mk] + i
∑

p

λpΦ
f
p [mk]

+ i
∑

lp

mlλlΨ
g
p[mk − δkl] (4.16)

Ψ̇g
p[mk] = −i(2ωo +

∑
mω)Ψg

p[mk]− i
∑

l

λlΦ
g
lp[mk]

+ iλpΨ
f [mk + δkp] (4.17)

Φ̇f
q[mk] = −i(ωq +

∑
mω)Φf

q [mk] + iλqΨ
f [mk]

+ i
∑

lp

mlλlΦ
g
qp[mk − δkl] (4.18)

Φ̇g
qp[mk] = −i(ωo + ωq +

∑
mω)Φg

qp[mk]− iλqΨ
g
p[mk]

+ iλpΦ
f
q [mk + δkp] (4.19)

The transition amplitude of Eq. (4.13) and the differential equations of

Eqs. (4.14-4.19) can be used from this point onward, but it is simpler instead to

work with Eq. (4.11) during the trace over final EMF states. The differential

equations, Eqs. (4.14-4.19), will still be needed in the expansion of the reduced

propagator.
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4.1.3 Reduced propagator

Now that the form of the transition amplitude is known, the reduced density

matrix can be computed. The reduced evolution of an initial atomic state is

ρ(t) =

∫
dµ(ηi)dµ(η′i)

∏

k

[dµ({zik})dµ({z′ik})] JR(t, 0)ρ(0) (4.20)

from which JR(t, 0) is the reduced propagator,

JR(t, 0) =

∫
dµ({zf})K(t, 0)K̄ ′(t, 0). (4.21)

Carrying out the integration with Eq. (4.11) and its barred conjugate, the

reduced propagator is found to be

JR(t, 0) = exp

{
η̄fψN + ψ′Nη′f+

∑

k

η̄fgNk +
∑

k

ḡ′Nkη
′
f

+
∑

k

(
f̄ ′Nk + φ′Nk

)
(fNk + φNk)

}
.

(4.22)

4.2 Results

For thermal vacuum the initial state is,

ρ(0) =

[∏

k

exp{e−βωk z̄ikz
′
ik}

]
× [ρ00 + η̄iρ10 + η′iρ01 + η̄iη

′
iρ11] (4.23)

Evaluating Eq. (4.20) with substitutions from Eq. (4.22) and Eq. (4.23) one may

obtain the evolved reduced density operator. After expanding completely, the
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reduced density matrix elements become

ρ11(t) = ρ00

∑

{mk}

∑

l

mlGl[mk − δkl]Ḡ
′
l[mk − δkl] e−β

P
mω

+ρ11

∑

{mk}

(
Ψf [mk] +

∑

l

mlΦ
g
ll[mk − δkl]

)

×
(

Ψ̄′f [mk] +
∑

l

mlΦ̄
′g
ll [mk − δkl]

)
e−β

P
mω

(4.24)

ρ00(t) = ρ11

∑

{mk}

∑

l

(ml + 1)Φf
l [mk]Φ̄

′f
l [mk] e−β

P
mω

+ ρ00

∑

{mk}
F [mk]F̄

′[mk] e−β
P

mω

(4.25)

ρ10(t) = ρ10

∑

{mk}

(
Ψf [mk] +

∑

l

mlΦ
g
ll[mk − δkl]

)
F̄ ′[mk] e−β

P
mω

(4.26)

ρ01(t) = ρ10

∑

{mk}
F [mk]

(
Ψ̄′f [mk] +

∑

l

mlΦ̄
′g
ll [mk − δkl]

)
e−β

P
mω

(4.27)

in terms of the definitions of Eq. (4.12).

4.2.1 Low temperature

The computation of the reduced density matrix elements involves the calculation

of the the functionals of Eq.(4.12) and the evaluation of the functional

summations in Eqs. (4.24-4.27). In order to calculate the functionals a low

temperature and a weak coupling approximation are applied to Eqs.(4.14-4.19).

The solutions are given in Appendix D, as is the evaluation of the functional

summations of Eqs. (4.24-4.27). The resulting expressions for the reduced density
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matrix elements, valid at low temperature and weak coupling, are

ρ11(t) =

[
1−Υ(t)

]
ρ00 +

[
1−

(
1− e−Γot

1− e−βωo−Γot

)
Υ(t)

]
ρ11 (4.28)

ρ00(t) =

(
1− e−βωo

1− e−βωo−Γot

)
ρ00 +

(
1− e−Γot

1− e−βωo−Γot

)
Υ(t)ρ11 (4.29)

ρ10(t) = e−Γot/2−iωotΥ(t)ρ10 (4.30)

with the definition

Υ(t) =
1− e−βωo

1− e−βωo−Γot
(4.31)

and Γo = 2λ2ωo

π
being the zero temperature spontaneous emission rate. In the

long time limit the populations tend to their low temperature thermal values

ρ11(t →∞) = e−βωo (4.32)

ρ00(t →∞) = 1− e−βωo (4.33)

and the off-diagonal coherence decays completely

ρ10(t →∞) = 0. (4.34)

4.2.2 Zero temperature limit

At zero temperature β = ∞ and Eqs. (4.28-4.30) become,

ρ11(t) = ρ11e
−Γot (4.35)

ρ00(t) = ρ00 + ρ11

(
1− e−Γot

)
(4.36)

ρ10(t) = ρ10e
−Γot/2−iωot (4.37)

which is the expected result from Ref [12].
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4.3 Discussion

We have studied the two level atom coupled to a photon bath at finite

temperature in the multimode Jaynes-Cummings model. We have computed the

reduced evolution of the two level degree of freedom and focused on the two

issues of decoherence and relaxation. Our approach is that of a modified

influence functional technique. Within that approach it is possible to compute

the reduced system dynamics while including the evolution of the bath degrees of

freedom as well as those of the qubit. Standard master equation approaches

make the assumption of a fixed bath, which by definition excludes any dynamics

in the bath. The method we use relies on low temperature and weak coupling

approximations in a Grassmann coherent state path integral for the atom degrees

of freedom and bosonic coherent state path integral for the electromagnetic field.

The results we have found are as follows.

4.3.1 Decoherence

The decoherence rate is found by computation of the off-diagonal elements of the

reduced density matrix ρ10(t). The inclusion of bath as well as system dynamics

causes the fall off of the off-diagonal matrix elements to become slightly

non-exponential. From previous work [12] we know that at zero temperature the

decoherence rate is Γ0/2 = λ2ωo/π, and master equation approach predicts a

decoherence rate at non-zero temperatures of Γ0

2
coth(βωo/2) [11]. To contrast
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with that, the predictions of the present calculation can be interpreted as a

decoherence rate that changes as the total system evolves. In Fig. (4.1) the

decoherence rate is plotted as a function of time. The decoherence rate at t = 0,

when the bath is by assumption in a thermal state uncorrelated with the qubit,

agrees with the prediction of master equation approaches. As the system and

bath evolve together the decoherence rate falls back down to the zero

temperature value. Our interpretation of this is that initially the system truly is

(by assumption) in the state assumed in master equation approaches (i.e. a

product state of qubit and thermal bath), which is why the two predictions for

the decoherence rate match. As the combined system-bath interact, its state

evolves away from that initial state, and the correlations that arise cause changes

in the reduced system dynamics.

4.3.2 Relaxation

The relaxation time scale is measured by the value of ρ11(t), assuming that

ρ11(0) = 1. Fig. (4.2) shows a comparison of the prediction here and the

Markovian prediction. As for the decoherence, our method yields a prediction

which matches that of master equation approaches at t = 0, at which time the

states of the combined system-bath match by assumption. Then as the system

and bath interact, dynamics in the bath as well as in the qubit cause a deviation

in the reduced system dynamics from the master equation prediction. However,
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Figure 4.1: This plot shows the ratio of the decoherence rate predicted here over the

zero temperature decoherence rate, R∗ = Γ(t)/2
Γo/2

, versus a non-dimensionalized time,

t∗ = Γot, for eβωo = 0.02. The dotted line is the value of the Markovian thermal

prediction, R∗
T = cosh(βωo/2)Γ/2

Γo/2
. Note that initially the prediction here matches the

Markovian finite temperature result. As the qubit and EMF become correlated the

reduced dynamics deviates from the Markovian prediction and asymptotes back

to the zero temperature decoherence rate.

the long time behavior of our prediction matches the thermalization prediction of

the master equation prediction. It is only evolution at intermediate times which

varies.
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Figure 4.2: This plot shows the difference between the prediction here and the

Markovian prediction for the diagonal matrix element, D∗ = ρ11−ρmarkov
11 , versus

the non-dimensionalized time, t∗ = Γot, for eβωo = 0.02 The inset image is a

magnification near t∗ = 0 and shows that the two predictions match initially, then

deviate away from each other as the qubit and EMF become correlated.
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Chapter 5

Motional Decoherence

Atomic motion is an unavoidable element in the consideration of any AMO

system and an integral part of experimental designs in atom trapping devices. At

issue here is the interaction between the internal degrees of freedom of an atom,

assumed to contain an effective two-level system (qubit), and the electromagnetic

field (EMF), modified by the atom’s quantal motional degree of freedom. This

problem has two aspects: 1) How does the two level activity affect the atomic

motion? and 2) How does atomic motion affect the two level activity? The first

aspect is the basis for laser cooling and atom trapping, which have been studied

in great detail and successfully implemented by well-known experiments (for

reviews see [10, 57, 58, 59]). This chapter is aimed at the second aspect,

specifically, how quantized motion affects the qubit-EMF system dynamics,

which is of interest in the design of quantum computers based on atomic qubits

(in the form of a neutral atom [60, 61, 62, 63, 64, 65] or ion [66]) in a QED cavity

or optical potential. Effects on internal dynamics due to quantized center of mass

(COM) motion have previously been studied in the situations of an atom in free
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space [67], in a cavity [68, 69, 70], and when the atom’s qubit and COM degrees

of freedom are entangled [71]. However, all have focused on spontaneous emission

rather than decoherence. The present work probes the non-Markovian regime of

atom-EMF interaction, under the modest aim of explicitly computing how

entanglement with quantized motion through recoil affects the decoherence and

relaxation rates of an atomic qubit in free space. In order to achieve that end, we

first discuss two issues of importance in computations of coherent reduced

dynamics, using path integral methods.

The importance of including back-action

It is well-known that the interaction between a two-level system (2LS, or qubit)

and the EMF is the primary source of its relaxation and decoherence, while

effects associated with the atom’s motional degrees of freedom are usually

relegated to the background. Assuming that the atom moves adiabatically limits

one’s consideration to those circumstances wherein the external degrees of

freedom act merely as a passive parameter in the environment (here comprised of

the EMF and atomic motion) of our system (the qubit), with no dynamical

interplay. In technical terms, this amounts to a ‘test-field’ approximation – that

the qubit lives in a fixed environment defined by a set of parameters, amongst

them the adiabatic motion 1. The test field approximation leaves out effects of

1A familiar example is a thermal bath: When characterized only by its temperature one

ignores its dynamical response to the system in question.
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changes in the environment on the system. To include the effects of the

environmental variables dynamically it is essential to perform a self-consistent

back-action calculation. This was done for the effect of a cavity EMF on the 2LA

in Ref. [12, 72].

Full coherence requires self-consistent treatment

In tackling problems where many factors enter, it is useful to isolate one factor

after another so that the remaining factors of interest to us can be simplified

enough to yield some solution. For quantum coherence and entanglement such

simplifications can lead to erroneous results, since phase information is lost if one

artificially isolates the linking components of the complete quantum system. This

brings up the necessity of self-consistency in any treatment of quantum coherence

and entanglement issues. In the present case of a qubit in an EMF this requires

that the fully entangled system of atomic 2LS (internal), the EMF, and the

center of mass (external) degrees of freedom be treated coherently as a whole and

each factor involved be allowed to evolve under the influence of the others in a

self-consistent manner. This self-consistency requirement leads to non-Markovian

dynamics since memory effects arise naturally and are necessary to preserve

maximal coherence during the evolution 2.

2A familiar example is given by Zwanzig in his discussion of the projection operator approach:

one can write down two differential equations for two interacting subsystems which make up the

total system, but if one decides to focus only on one of these subsystems, its dynamics is governed
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Grassmannian and coherent state representation of influence functional

A theoretical scheme we found satisfactory in meeting these requirements is the

influence functional (IF) formalism of Feynman and Vernon [73] or the related

closed-time-path (CTP) effective action of Schwinger and Keldysh [74]. The

influence of the environmental variables on the system of interest is incorporated

in the IF (or effective action) in such a way that the equations of motion

obtained for the system will already have included the back-action of the

environmental variables on the system in a dynamically self-consistent manner.

This scheme has been applied to a two-level atom (2LA) interacting with an

electromagnetic field (EMF) in reference [12]. There, a first-principles derivation

of the general master equations is given and applied to the study of the

decoherence of a 2LA in an EMF, for the cases of a free quantum field and a

cavity field in the vacuum at zero temperature. The authors found that for the

standard resonant type of coupling characteristic of such systems the decoherence

time is close to the relaxation time.

by an integro-differential equation with nonlocal kernels, signifying memory effects. Note that

the Markov approximation underlies many common treatments of quantum systems, such as the

Fermi Golden rule, the Wigner-Weisskopf form, the Pauli master equation, to name a few. It

clamps down on the dynamical interactions which may result in the violation of the consistency

requirement described above, and hence could yield inadequate or erroneous results pertaining

to issues of quantum coherence and entanglement in certain circumstances, such as under strong

interaction, at low temperature or for a supra-ohmic environment.
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Here we use the influence functional method for the treatment of the

back-action of the quantum field and the quantal motion of the atom on the

qubit. In Section 5.1 we compute the transition amplitude between an initial and

final state using a coherent state label for the (bosonic) states of the EMF and a

Grassmannian for the (fermionic) 2LS. The coherent state basis allows us to

identify the Hilbert space of states with a space of coherent states. The sum over

all quantum evolutions is then a sum over all paths in this space. Once the

transition amplitude is computed in some sufficiently simplified form, forward

and backward versions can be combined and reduced to form the reduced density

matrix evolutionary operator. In Section 5.2 we calculate the evolutionary

operator for the reduced density matrix when the EMF and motional degrees of

freedom are integrated over. We derive an equation describing the evolution of

the on and off-diagonal elements, the latter is the coherence function we seek. We

end in Section 5.3 with a discussion of our results and comments on possible

further developments on this subject.

5.1 Transition amplitude

Our system is a 2-level atom interacting with its own center of mass (COM)

motion and the EMF. We begin with a modified multi-mode Jaynes-Cummings
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type Hamiltonian (see Appendix A of Ref. [12]),

H =
P2

2M
+ ~ωoSz + ~

∑

k

[ωkb
†
kbk + gk(X)S+bk + ḡk(X)S−b†k]. (5.1)

The first term in the Hamiltonian is the COM kinetic energy. The next two

terms are the qubit and EMF energies, respectively. The last two terms are the

interaction between the qubit, EMF, and the atom’s COM degree of freedom.

Note that P and X are both operators. Coupling of the qubit to its COM motion

is through the spatial mode functions of the EMF. We shall restrict our

consideration to an initial vacuum EMF at zero temperature. The result of this

calculation will thus be the modification of the vacuum decoherence and

relaxation rates of a qubit when the effects of quantized atomic motion are

included.

The first step towards obtaining the reduced system dynamics while

retaining the full system’s coherence is to compute the transition amplitudes

between the initial and final states which are the matrix elements of the evolution

operator of the full system. We do this with coherent state path integrals. For the

EMF we use a bosonic coherent state representation and for the 2-level system

(qubit) degree of freedom we use the Grassmannian coherent states [29, 31, 32].

Coherent states are by definition generated by the exponentiated operation of the

creation operator and a suitable label on a chosen fiducial state:

|zk〉 = exp(zkb
†
k)|0k〉 (5.2)

|η〉 = exp(ηS+)|0〉 (5.3)
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In the case of bosonic coherent states defined in Eq. (5.2) the label, zk, is a

complex number, and in the case of the Grassmann coherent states defined in

Eq. (5.3) the label, η, is an anti-commuting number. The chosen fiducial states

are the EMF vacuum and the lower 2-level state, respectively.

In order for any set of states to be useful for the decomposition of the

transition matrix they must have a resolution of unity. The EMF and

Grassmannian coherent states have the following decompositions of unity

1 =

∫
dµ(zk)|zk〉〈z̄k| =

∫
dµ(η)|η〉〈η̄| (5.4)

with the measures

dµ(zk) = exp(−z̄kzk)

dµ(η) = exp(−η̄η)

Grassmann coherent states also share other well known properties of coherent

states such as being non-orthogonal and eigenstates of the annihilator:

〈z̄k|z′k〉 = exp(z̄kz
′
k) 〈η̄|η′〉 = exp(η̄η′)

bk|zk〉 = zk|zk〉 S−|η〉 = η|η〉

The center of mass or external degree of freedom can be represented in either the

position or momentum basis. In the coherent state basis the Hamiltonian

Eq. (5.1) can be written in its Q-representation [75, 17, 19, 50] as [cf Eq. (2.8)
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of [12]]

H({z̄k}, {zk}, η̄, η,X) =
MẊ2

2
+ ~ωoη̄η + ~

∑

k

[ωkz̄kzk + η̄gk(X)zk + z̄kḡk(X)η].

(5.5)

The transition matrix elements between the initial and final coherent states are

then

K(t, 0) = 〈{z̄fk}η̄fXf , t| exp(− i

~
Ht)|{zik}ηiXi, 0〉. (5.6)

Using the completeness1 property of the (EMF and Grassmann) coherent

state basis to facilitate time-discretization of the transition matrix [73] puts the

transition matrix elements in a coherent state path integral representation. After

inserting the Q-representation, the transition elements transform into a sum over

paths in the coherent state labels. Having done the above the transition matrix

becomes a triple functional integral:

K(t, 0) =

∫
DX

∫
Dη̄Dη

∏

k

Dz̄kDzk exp

[
η̄fη(t) +

∑

k

z̄fkzk(t)− iM

2

∫ t

0

Ẋ ds

]
eiωot/2

× exp

[
−

∫ t

0

(
η̄η̇ + iωoη̄η +

∑

k

z̄kżk

+ i
∑

k

ωkz̄kzki
∑

k

η̄gk(X)zk + i
∑

k

z̄kḡk(X)η
)
ds

]

(5.7)

In this form the transition matrix elements can be evaluated exactly by a

combination of stationary phase and correlation function methods which exploit

the truncating properties of Grassmann variables. The order of evaluation will be
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the EMF, COM, and then Grassmann functional integrals. The details follow.

5.1.1 EMF path integral

First, the EMF coherent state part of the triple path integral can be evaluated by

the stationary phase method [73]. The variational equations of motion for the

electromagnetic field variables in Eq. (5.7) are

żk = −iωkzk − iḡk(X)η (5.8)

which have integral solutions [cf Eq. (2.14) of [12]]

zk(s) = zike
−iωks − i

∫ s

0

dr ḡk(X(r))e−iωk(s−r)η(r). (5.9)

The transition amplitude from an initial EMF vacuum ({zik} = 0) to an

arbitrary final state becomes

K(t, 0) =

∫
DX

∫
Dη̄Dη exp

[
η̄fη(t)−

∫ t

0

(
η̄η̇ + iωoη̄η +

iM

2
Ẋ )ds

]
eiωot/2

×
∏

k

exp

[
− i

∫ t

0

dsḡk(X(s))e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

drgk(X(s))ḡk(X(r))e−iωk(s−r)η̄(s)η(r)

]
.

(5.10)

The path integral for the EMF degrees of freedom is now complete.

5.1.2 COM path integral

Second, the position path integral can be evaluated as a set of 0, 1 and 2 point

functions. Note in the transition amplitude of Eq. (5.10) that since the EMF is
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taken to be in an initial vacuum, any source term for η(s) will be proportional to

ηi. The variational equation of motion derived from Eq. (5.10) for η(s) yields

η̇(s) = −iωoη(s)− i

∫ s

0

dr
∑

k

gk(X(s))ḡk(X(r))e−iωk(s−r)η(r) (5.11)

with the boundary condition η(0) = ηi. Therefore η(s) = u(s)ηi. We use this to

expand the exponent in the transition amplitude of Eq. (5.10). Due to the

nilpotency of the Grassmann variables (i.e. η2
i = 0) it will truncate after the first

term in the expansion.

After expanding and truncating the integrand, the position path integral is

∫
DX exp

[
− iM

2

∫ t

0

ds Ẋ

]

×
[
1− i

∫ t

0

ds
∑

k

ḡk(X(s))e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

dr
∑

k

gk(X(s))ḡk(X(r))e−iωk(s−r)η̄(s)η(r)

]
.

(5.12)

There are thus three correlation functions which need to be computed.

First the spatial mode functions must be chosen in order to specify the targeted

correlation functions. For an electromagnetic field in free space (no cavity or

boundaries)

gk(X) =
λ√
ωk

exp(ik ·X), (5.13)

the correlations functions are computed in Appendix E. Substituting these
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expressions back into the Eq. (5.10) gives for the transition amplitude

K(t, 0) =

(
M

2πit

)3/2

eiωot/2e−iωk(s−r)

×
∫

Dη̄Dη exp

[
iM

2t
(Xf −Xi)

2 + η̄fη(t)−
∫ t

0

(
η̄η̇ + iωoη̄η

)
ds

]

×
{

1− i

∫ t

0

ds
∑

k

λ√
ωk

exp

[
i
s

t
k · (Xf −Xi)− i

2M

s(t− s)

t
k2

]
e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

dr
∑

k

λ2

ωk

exp

[
− i

s− r

t
k · (Xf −Xi)

− i

2M

(t− (s− r))(s− r)

t
k2

]
η̄(s)η(r)

}
.

(5.14)

The path integral for the external degrees of freedom is now complete.

5.1.3 Qubit path integral

Finally, the Grassmann variable path integral can be evaluated along its

stationary path. The variational equation of motion for the Grassmann field

variable in Eq. (5.14) is

η̇t(s) = −iωoηt(s)−
∫ s

0

dr
∑

k

λ2

ωk

µt(s− r) ηt(r) (5.15)

with the definition:

µt(s) = exp

[
− iωks− i

s

t
k · (Xf −Xi)− i

2M

s(t− s)

t
k2

]
. (5.16)

Note that the final time t enters as a parameter in the variational equation of

motion just as the mass or position do. The reason for this is that the above
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variational equation of motion is for the evolution of the atom from an initial

time to a final time, so the time is an explicit parameter.

Rewriting the above variational equation in Laplace space allows the

non-local integral part to be transformed with the convolution theorem. The

solution is in terms of an inverse Laplace transform,

ηt(s) = ηiut(s) =
ηi

2πi

∫ γ+i∞

γ−i∞

eszdz

z + iωo + µ̃(z)
(5.17)

with the definition:

µ̃t(z) =
λ2

ωk

∫ ∞

0

e−sz exp

[
− iωks− i

s

t
k · (Xf −Xi)− i

2M

s(t− s)

t
k2

]
dz. (5.18)

The solution thus becomes a contour integral. The pole of the denominator in

Eq. (5.17) can be found to O(λ2)

zo = −iωo − µ̃(−iωo) + O(λ4). (5.19)

Finding the pole to order O(λ2) gives a solution to the same order:

ut(s) = e−iωot exp

{
− λ2t

∑

k

1

ωk

∫ ∞

0

ds

× exp

[
− i

(
ωk − ωo +

k · (Xf −Xi)

t
− k2

2M

)
s− ik2

2Mt
s2

]}
.

(5.20)

Evaluating the transition amplitude along its stationary path with the

second order pole approximation yields an expression for the transition matrix
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that is second order in its action:

K(t, 0) =

(
M

2πit

)3/2

exp

[
iωot/2 +

iM

2t
(Xf −Xi)

2 + O(λ4)

]

× exp

[
η̄fηt(t)− i

∫ t

0

ds
∑

k

λ√
ωk

× exp
[− iωk(t− s) + i

s

t
k · (Xf −Xi)− is(t− s)

2Mt
k2

]
z̄fk ηt(s)

]
.

(5.21)

All three functional integrals are now evaluated. In the next section we proceed

to derive the evolutionary operator for the density matrix by combining the

transition amplitudes into a closed loop.

5.2 Evolutionary operator

At this point the expression of Eq. (5.21) for the transition amplitude can be

combined with its counterpart propagating backwards in time and traced over all

final EMF states. The result gives the evolutionary operator for the reduced

density matrix (we may call it the reduced propagator, for short),

JR =

∫
dXf

∏

k

dµ(zfk)K(t, 0)K∗(t, 0), (5.22)

and is formed by integrating out the environmental variables which in our case

are the EMF and the atom’s motional degrees of freedom.

The evolution of the qubit density matrix elements with back-action from

the EMF and the atomic motion can be calculated from the reduced propagator

ρR(t) =

∫
dµ(ηi)dµ(η′i)dµ(Xi) JR ρA(0)⊗ ρX(0). (5.23)
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The functions ρA(0) and ρX(0) are initial states for the 2-level atomic and

external degrees of freedom, respectively:

ρA(t) = ρ00(0) + η̄iρ10(0) + η′iρ01(0) + η̄iη
′
iρ11(0) (5.24)

ρX(t) = Φ(Xi)Φ
∗(Xi) (5.25)

The function Φ(X) is the initial (external) center of mass wavefunction of the

atom. From Eq. (5.23) the on and off-diagonal components of the reduced

density matrix elements evolved to time t are given by

ρ11(t) = ρ11(0)

(
M

2πit

)3 ∫
dXf

∫
dX′

i

∫
dXiΦ(Xi)Φ

∗(X′
i)ūt(t)ut(t)

× exp

{
iM

2t
(Xf −Xi)

2 − iM

2t
(Xf −X′

i)
2

}

(5.26)

ρ10(t) = ρ10(0)

(
M

2πit

)3 ∫
dXf

∫
dX′

i

∫
dXiΦ(Xi)Φ

∗(X′
i)ut(t)

× exp

{
iM

2t
(Xf −Xi)

2 − iM

2t
(Xf −X′

i)
2

}
.

(5.27)

The EMF, as previously stated, is in a vacuum state, but the choice of an initial

center of mass wavefunction has not yet been made. To closely model an atom

with fixed position and momentum, we use a minimum uncertainty Gaussian

wavefunction centered at (Xo = 0,Po = 0).

Φ(X) = π−3/4σ−3/2 exp

[
− X2

2σ2

]
(5.28)
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Such an initial wavefunction simplifies the expressions for the diagonal and

off-diagonal matrix elements of the qubit.

The result for the off-diagonal components which measures the coherence

of the qubit under such conditions is shown here:

ρ10(t) = ρ10(0)
4√
π

(
M2σ2

t2 − 2iMσ2t

)3/2 ∫ ∞

0

dx x2u(x, t) exp

[
− M2σ2

t2 − 2iMσ2t
x2

]

(5.29)

The function u(x, t) is given by Eq. (5.20) with x = |Xf −Xi|.

The evolution of the coherence function is found to follow an exponential

decay with a decay rate slightly faster than in the infinite mass case. The

percentage change in the decoherence rate of the off-diagonal versus the the

stationary qubit case is plotted in Fig. (5.1). The decay rate increases with

decreasing mass and matches the stationary qubit result given by [12] in the limit

of infinite mass. We expect that a qubit in a smaller mass object is more affected

by recoil than a qubit in heavy mass. The variation in the decoherence rate with

changes in the external wavefunction size is relatively flat and cannot reliably be

resolved with the available computing power and machine accuracy. We find that

so long as the resonant frequency is small enough or the mass large enough that

the atomic recoil velocity is non-relativistic, which is where this theory is valid,

then the motional decoherence will contribute negligibly to the decay of the

qubit.
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Figure 5.1: A plot of the percentage increase in the decoherence of the off-diagonal

matrix elements of the reduced density matrix versus the non-dimensionalized mass

(m∗ = Mc2

~ωo
). The decoherence rate increases as the mass of the atom containing

the qubit is decreased. As the mass is increased the decoherence rate asymptotes

to the value of a stationary atom obtained by Anastopoulos and Hu [12]. This is

consistent with a smaller mass qubit being more affected by its recoil than a heavy

mass qubit. Typical experimental parameters fall to the right end of the shown

plot.
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5.3 Discussion

Often, one may separate the dynamics of an atom’s motion from those of its

internal degrees of freedom by arguing that the time scales associated with the

motion of the atom are much longer than those of the two level activity. This is

the rationale behind the adiabatic approximation adopted for most considerations

of the atomic dynamics. However, coherence requirements in quantum computing

implementations may prompt one to question this assumption. One aim of our

investigation is to test for non-adiabatic effects in atomic quantum computing

schemes. Another is to describe the effect of recoil from the emission and

re-absorption of virtual particles in the atom-EMF interaction upon the center of

mass motion. These two problems correspond to the two aspects described in the

Introduction. Here we consider the second aspect mentioned above, aiming at the

effect of quantum motional decoherence of the qubit, i.e., the back-action of

atomic motion on a two level system in free space as mediated by the EMF.

We find that the inclusion of the external degrees of freedom only slightly

alters the decoherence and relaxation rates as compared to a stationary atom.

Typical experimental parameters fall to the right end in the plot of Fig. (5.1). A

Rubidium atom used as a qubit would have a non-dimensionalized mass of

approximately log10(
Mc2

~ωo
) = 8, which places it in a regime in which the effect of

motion-induced decoherence is negligible. For optical qubit transition frequencies

in general, motion-induced decoherence will not be a factor unless the mass of

104



the qubit is four to five orders of magnitude smaller than the mass of a typical

alkali atom. One can conclude tentatively that in general AMO implementations,

motion-induced decoherence of a free qubit is negligibly small. Since the

calculation done here is coherent and non-Markovian, one can view our result as

confirming the validity of the adiabatic approximation in alkali atom qubits.

Although the result of the calculation is the expected one, the technique

described here is the first able to compute the decoherence of a qubit coupled to

its own quantized COM without any form of Markovian approximation, while

allowing the qubit-EMF coupling to be the non-linear form derived from the

EMF spatial mode functions. Useful applications of this method will include any

situations in which the COM motion of an atom back-acts onto its internal qubit

dynamics and the full multi-mode structure of the EMF is relevant. Two such

examples, as drawn from the references cited in the Introduction, are an atomic

qubit in a cavity and an atom with entangled qubit and EMF degrees of freedom.

In the former, the presence of the cavity walls increases the cavity mode recoils

on the atom [76]. The latter is at the center of certain two qubit gate

implementations [64, 65], with the question there being how well coherence is

maintained when a qubit is entangled both internally and externally. Calculation

in that case can provide an important feasibility test of quantum computing

applications which utilize such entanglement.
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Chapter 6

Discussion

Approaches to quantum dynamics can be categorized into three major

subheadings. There are those based on the Schrödinger picture, those based on

the Heisenberg picture, and path integral approaches. The work of this

dissertation has focused on the last of the three, path integral approaches.

Reviews of the first two as they are applied to AMO systems have been given. In

the reviews, particular emphasis was placed on the approximations made during

transformation from closed system+bath to open system only dynamics. In all

cases the approximations can be boiled down to combinations of the small

coupling and short correlation time approximations. By small coupling is meant

the weakness of the interaction term relative to the free Hamiltonian terms. By

short correlation time is meant the time scale over which backaction of the

system state onto itself dephases. It is given by the timescale τc, above which the

bath correlation function trB

∑
k lk(t)lk(t− τ)ρB dies off.

The derivation of open system dynamics in the Schrödinger picture leads

to a Markovian master equation for the system density operator. Two equivalent
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derivations of the Markovian master equation exist. Both apply the weak

coupling and short correlation time approximations, but do so in different ways.

The derivation of the Markovian master equation as described in [11] makes two

assumptions. The first is the assumption that the total system+bath density

operator is a product state with a fixed bath at all times, and the second is the

Markov approximation. The assumption of a product state with fixed bath

specifically neglects any correlations between the system and bath. The reason

that this is a weak coupling plus short correlation time approximation is that the

order of the terms neglected are O(V 2τc) [18, 21]. The Markov approximation, as

applied in the derivation of Ref. [11], is the standard one. It was pointed out that

the Markov approximation is also an approximation in both the coupling

strength and correlation time. That is, since the density operator is in the

interaction picture, the substitution of ρI(t
′) → ρI(t) in the expression

ρ̇I(t) = − 1

~2

∫ t

to

dt′trB

∑

k

lk(t)lk(t
′)ρB ⊗ ρI(t

′) (6.1)

implicitly assumes that the evolution of ρI(t) during a correlation time can be

approximated by its free evolution during that period [20, 21].

The second equivalent derivation of the Markovian master equation is

described in, for example, Ref. [18]. There, the master equation is derived from a

perturbative truncation that is valid only for short time dynamics.

Approximations are then applied which extend it to a coarse grained dynamical

equation that is valid for long times under the given assumptions. The validity of
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extension of the perturbative result to long time dynamics is based on a

separation of time scales between the bath correlation time, τc, and the system

evolution time scale, τr, such that τc << τr. If there is wide separation between

those time scales, then a coarse graining time scale can be chosen between them

such that τc << ∆τ << τr. The relation ∆τ << τr is required for the coarse

graining time to be short enough that the perturbative result is valid. The

relation τc << ∆τ is required so that the system+bath correlations can be

ignored, as in the previous derivation. The condition for large separation of time

scales is found to be the same as for the approximations in the previous

derivation,

V 2τc << 1. (6.2)

The major difference between this and the previous derivation is that the

Markovian master equation is shown to be a coarse grained equation.

In the Heisenberg picture it is the quantum operators which are evolved,

while the states are static. This leads to quantum Langevin equations for

interacting systems. Application of this technique to AMO systems is described

in Refs. [18, 20], among others. The major approximation applied in the

derivation of the quantum Langevin equations is the 1st Markov

approximation [20], which is the usual Markov approximation, but applied to the

reaction term only and not to the noise operator. It is an approximation of weak

coupling and short correlation time, since as mentioned previously, it assumes
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that the system evolution due to the interaction term is small during a

correlation time, so it neglects terms of order O(V 2τc). Since the Markov

approximation is applied only to the reaction term, the quantum Langevin

approach is more exact than the Markovian master equation approach. By

applying weak coupling and short time approximations to the noise operator, via

an adjoint equation or quantum stochastic differential equation, the two

approaches can be made equivalent [20].

In path integral approaches, rather than evolving either the states or

operators of a system, it is directly the transition amplitudes which are the focus.

After the choice of a suitable representation, they can be used to compute

objects, such as the reduced propagator, which lead to reduced system dynamics.

Unlike the Markovian master equation and quantum Langevin approaches, in

path integral approaches interesting results can be found with the weak coupling

approximation alone via a 2nd order vertex approximation. That leads to an

order O(V 2) approximation, compared to O(V 2τc) for the other methods. The

source of their advantage that they allow coherent evolution of the full

system+bath. Then, after the full evolution of the closed system, unobserved

bath degrees of freedom can be traced out, leaving reduced system dynamics. In

this way the effects due to correlations that develop between the system and bath

are retained. That is the approach taken in the three applications described in

the previous three chapters.

The results of analysis in these three problems involving the qubit-EMF
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system are briefly summarized as follows. First, in our coherent computation of

the Casimir-Polder retardation of the van der Waals force, a result is obtained

which is up to twice the stationary atom correction. The modification is due to

correlations that develop between the atom and its virtual photon cloud during

adiabatic motion. Second, in the entangled evolution of a qubit with an initially

thermal low temperature bath, quantum correlations that evolve between the

qubit and bath alter the reduced dynamics. The diagonal matrix elements

thermalize and the off-diagonal decohere as expected, however they do so

non-exponentially. The result can interpreted as a time dependent decoherence

rate. Third, in the calculation of qubit dynamics in the presence of quantized

atomic motion the decoherence rates increase slightly due to the additional

degree of freedom.

The message of the first two results is that when the entanglement

between a system and an environment is maintained in their evolution, the

dynamics of the system can exhibit novel behavior different from Markovian

predictions. The message of the third is that including extra degrees of freedom

in an environment interacting with a qubit will increase the decay of the qubit.

The novel behavior in the first two problems can be interpreted as the

accumulated back-action of each individual mode of the EMF. The influence on

the system of the individual field modes do not cancel each other out because it

is through the interaction with the system itself that the EMF modes become

correlated. The inclusion of coherent back-action leads to new effects in
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circumstances like this when no mechanism exists for the environmental degrees

of freedom to randomize their quantum correlations independent of the system.

Future work can follow three main lines, but all involve computation of

entangled evolution effects. The first, involving the coherent QED modification of

the Casimir-Polder force is to change either the reflective characteristics or

geometry of the walls. An extension which is important for comparison with

experimental results is allowing the wall to be a dielectric. When the wall is a

dielectric rather than a perfect conductor the boundary conditions on the wall

become somewhat more complicated, but in principle the decomposition of

modes that satisfy the boundary conditions can be found in terms of evanescent

and travelling modes [41]. Changing the geometry of the wall will also change the

mode decomposition of the EMF. Two interesting geometries, which may

quantum computing relevance are a curved surface (trapping over a curved

surface) [77], and a cavity (pair of parallel walls) [78].

The second extends the finding of altered reduced qubit dynamics due to

entangled evolution with a thermal EMF to entangled evolution with EMF

control fields. Normally the laser fields that mediate and control the atomic

qubits are treated as classical fields. Such treatments are generally good

approximations to the true nature of the control fields, although in reality the

control fields are quantum. The major distinction between the two from an

applications point of view is that classical fields are unaffected by interaction

with quantum systems, while a quantum field will become entangled with any
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quantum system with which it interacts. For rough usage in applications where

quantum coherence is not important, the distinction between quantum and

classical control fields can be neglected. However, for applications such as

quantum processing, for which the entangled evolution of the system is of

paramount importance, the entanglement between the system and control fields

should be considered. The modifications of the evolution of a neutral atom qubit

due to entanglement with the control fields will include additional decoherence of

the qubits and changes in the evolution during gates [14].

The third line of future work extends the computation of decoherence due

to COM motional degrees of freedom. It can be extended to the computation of

motional decoherence when the COM position is entangled with the qubit state,

as in some two qubit gate proposals [64, 65]. The result will be an important

feasibility condition relating the separation distance and the extra decoherence.
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Appendix A

Simple examples of Grassmann path integrals

A.1 Spin- 1
2 in a general time-dependent classical magnetic

field

To illustrate the use of time-indexed anticommuting couplings the following is a

calculation of the evolution of a spin-1
2

in a classical magnetic field. The simplest

non-trivial case is that of a spin in a Bz field with the addition of a possibly

time-dependent Bx and By field. The Hamiltonian for this system is

H = γS ·B ≡ 1

2
~ωSz +~BxSx+~BySy = ~ωS+S−− 1

2
~ω+~[S+B+B∗S−]. (A.1)

Here it is written in a “hermitian” form in anticipation of the addition of a

Grassmann part to the classical field. The propagator between initial and final

Grassmann coherent states is

K(t, 0) = 〈η̄t|e− i
~
R t
0 H(s)ds|η0〉. (A.2)
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In the usual way (t = Nε) the propagator can be time sliced into a discrete time

formulation. The propagator for one infinitesimal time step is (up to O(ε))

K(j, j−1) = 〈η̄j|e− i
~Hε|ηj−1〉 = exp{(1−iωε)η̄jηj−1−η̄j(iBjε)−(iB∗

j ε)ηj−1}. (A.3)

With Eq. (A.3) the propagator for a single infinitesimal step can be written down,

K(ε, 0) = e(1−iωε)η̄1η0−η̄1(iB1ε)−(iB∗1 ε)η0 = eη̄1η1−φ1 (A.4)

and the propagator for two infinitesimal time steps is

K(2ε, 0) =

∫
dµ(η1)〈η̄2|e− i

~H2ε|η1〉〈η̄1|e− i
~H1ε|η0〉

= e(1−iωε)2η̄2η0 [1− η2(iB2ε)− (iB∗
1ε)η0 −B2B

∗
1ε

2η̄2η0 − η̄2(iB1ε)(1− iωε)

− (1− iωε)(iB∗
2ε)η0 −B∗

2B1ε
2 + B2B

∗
1ε

2(1− iωε)2η̄2η0]. (A.5)

These two propagators have very different forms. However if at this point a

time-indexed anticommuting part is given to the classical field such that

{Bn, Bm} = 0 and {Bn, η} = {Bn, η̄} = 0 then the 2ε propagator can be rewritten

as a single exponential,

K(2ε, 0) = eη̄2[−iB2ε+(1−iωε)(−iB1ε+(1−iωε)η0)]+[−iB∗1 εη0−(iB∗2 ε)(−iB1ε+(1−iωε)η0)]

≡ eη̄2η2+φ2 (A.6)

with the definitions

η2 = (1− iωε)η1 − iB2ε (A.7)

φ2 = φ1 − iB∗
2εη1. (A.8)
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Now the 2ε propagator is in the same form as the ε propagator. This facilitates a

recursive evaluation, so that process can be continued to find the propagator for

any number of steps,

K(jε, 0) = eη̄jηj+φj (A.9)

with the recursive definitions

ηj = (1− iωε)ηj−1 − iBjε η0 = ηi

φj = φj−1 − iB∗
j εηj−1 φ0 = 0.

(A.10)

Inserting the boundary condition η̄N = η̄f , one gets for the full propagator

K(t = Nε, 0) = exp{η̄fηN + φN}, (A.11)

with the variables ηN and φN defined by Eq. (A.10).

The propagator in the above form can not yet be shown to satisfy the

Schrödinger equation because it hides a major pitfall. The pitfall is that it is a

formal expression and has meaning only as a polynomial expansion. Due to the

introduction of the time-indexed anticommuting part in the magnetic field, many

terms in the polynomial expansion truncate due to the nilpotency of the

Grassmann variables. However this is not a weakness, but a strength, since the

truncation of polynomial expansions is the reason Grassmann variables were

introduced. If the continuous limit were taken at this point the correct expansion

of the exponential propagator would be lost. Expanding the propagator gives

K(t, 0) = eη̄f ηN+φN =
∞∑

m=0

(φN)m

m!
[1 + η̄fηN ]. (A.12)
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In the expansion above the Grassmann variable η̄f causes a truncation.

Analogously, in the mth order terms such as (φN)m, the time-indexed Grassmann

parts of the magnetic field cause a truncation. That is, φN is a sum of terms

containing many products of Grassmann variables. Products of these coefficients

have many terms that are truncated due to nilpotency of the Grassmann

variables. Keeping track of the truncations in the final coefficients would be a

formidable task, however doing so in the infinitesimal equations of motion is

sufficient. For example, instead of calculating (φN)m by calculating φN first, one

can find a differential equation for (φN)m and calculate it directly. The functions

that need to be calculated are thus (φN)m and (φN)mηN . Adhering to the

anticommutation rules one finds (up to O(ε)),

(φm)j = (φm)j−1 − imB∗
j ε(φ

m−1η)j−1 (A.13)

(φmη)j = (1− iωε)(φmη)j−1 − iBjε(φ
m)j−1. (A.14)

The above equations can now safely be taken to the continuous limit,

d

dt
(φm)t = −imB∗(t)(φm−1η)t (A.15)

d

dt
(φmη)t = −iω(φmη)t − iB(t)(φm)t, (A.16)

and used to show that the propagator satisfies the Schrödinger equation,

i~
d

dt
〈η̄f |K(t, 0)|η0〉 = i~

d

dt

∞∑
m=0

1

m!
[(φm)t + η̄f (φ

mη)t]

= ~
∞∑

m=0

1

m!
[B∗(φmη)t + η̄fB(φm)t + ωη̄f (φ

mη)t] (A.17)
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〈η̄f |HK(t, 0)|η0〉 =

∫
dµ(η)〈η̄f |H|η〉〈η̄|K(t, 0)|η0〉

= ~
∞∑

m=0

1

m!
[B∗(φmη)t + η̄fB(φm)t + ωη̄f (φ

mη)t] . (A.18)

The propagator Eq. (A.12) and Eq. (A.15-A.16) give a novel expansion of the

propagator and equations for the terms in its expansion. The Schrödinger

equation can be reformed from it, but in the expanded form it may be possible to

apply new approximations. This issue is addressed in future work.

Having introduced and justified the introduction of the Grassmann

partners, they can now be used to rewrite the propagator as a true path integral.

The propagator for finite time is

K(t, 0) =

∫ N−1∏
j=1

dµ(ηj)〈η̄N |e− i
~Hε|ηN−1〉〈η̄N−1|e− i

~Hε|ηN−2〉...〈η̄1|e− i
~Hε|η0〉.

(A.19)

Due to the anti-commuting properties of the Grassmann variables, the

infinitesimal propagators in the above expression could not be combined into a

single exponential if a time-indexed anticommuting part were not introduced.

After their introduction the propagator becomes,

K(t, 0) =

∫ N−1∏
j=1

d2ηj exp{η̄NηN

+
N∑

j=1

[−η̄jηj + (1− iωε)η̄jηj−1 − iη̄jBjε− iB∗
j εηj−1

]}. (A.20)

One may now evaluate this discrete path integral at the saddle point. Varying

discretely, the discrete equation for the stationary path is found to be

ηj = (1− iωε)ηj−1 − iBjε (A.21)
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and the propagator is

K(t, 0) = exp{η̄NηN +
N∑

j=1

[−(iB∗
j ε)ηj−1

]}. (A.22)

Or, defining again the variable

φj = −i

j∑
i=1

B∗
i εηi−1 = φj−1 − iB∗

j εηj−1, (A.23)

and inserting the correct boundary conditions η̄N = η̄f and η0 = ηi, one gets for

the propagator

K(t, 0) = exp{η̄fηt + φt}, (A.24)

with the variables ηN and φN defined by Eq. (A.21) and Eq. (A.23). This is the

same as the exact result previously derived. This example was handled, in the

stationary path approximation, using a boson mapping in [35] and using the

SU(2) representation in [33]. The result found here of exactness of the stationary

path approximation agrees with the same result found in those references.

A.2 Single mode Jaynes-Cummings

The Jaynes-Cummings Hamiltonian for a qubit interacting with a single EM field

mode is

H = ~ωoS+S− + ~ωa†a + ~[S+λa + a†λS−]. (A.25)

Here again it is written in a “hermitian” form in anticipation of the addition of a

Grassmann part to the spin-boson coupling constant. The propagator between
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initial and final coherent states is

K(t, 0) = 〈η̄tz̄t|e− i
~
R t
0 H(s)ds|η0z0〉. (A.26)

In the usual way (t = Nε) the propagator can be time sliced into a discrete time

formulation. The propagator for one infinitesimal time step is (up to O(ε))

K(j, j − 1) = 〈η̄j z̄j|e− i
~Hε|ηj−1zj−1〉

= exp{(1− iωε)z̄jzj−1 + (1− iωoε)η̄jηj−1

− η̄j(iλjε)zj−1 − z̄j(iλjε)ηj−1}. (A.27)

Using this equation the single infinitesimal step propagator is,

K(ε, 0) = 〈η̄1z̄1|Uε|η0z0〉 = eη̄1[ψ1+g1]+z̄1[f1+φ1] (A.28)

with the definitions,

g1 = (iλ2ε)z0 ψ1 = (1− iωoε)η0

f1 = (1− iωε)z0 φ1 = (iλ2ε)η0

(A.29)

The 2ε propagator is then computed from the above to be,

K(2ε, 0) = 〈η̄2z̄2|U2ε|η0z0〉 =

∫
dµ(z1)dµ(η1)〈η̄2z̄2|Uε|η1z1〉〈η̄1z̄1|Uε|η0z0〉 (A.30)

which yields the following unwieldy expression,

K(2ε, 0) =e(1−iωoε)η̄2ψ1+(1−iωε)z̄2f1 [1 + iλεz̄2ψ1 + (1− iωoε)η̄2g1

+ iλεη̄2f1 + (1− iωε)z̄2φ1 + iλεz̄2g1 + iλεη̄2φ1

+ iλεη̄2φ1(1− iωε)z̄2f1 − iλεz̄2g1(1− iωoε)η̄2ψ1] (A.31)
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At this point a time-indexed anticommuting part is given to the coupling

constants such that {λn, λm} = 0 and {λn, η} = {λn, η̄} = 0. The 2ε propagator

can be rewritten as a single exponential in the same form as the ε propagator,

K(2ε, 0) = exp{η̄2[ψ2 + g2] + z̄2[φ2 + f2]} (A.32)

with the definitions,

g2 = (1− iωoε)g1 + (iλ2ε)f1 ψ2 = (1− iωoε)ψ1 + (iλ2ε)φ1

f2 = (iλ2ε)g1 + (1− iωε)f1 φ2 = (iλ2ε)ψ1 + (1− iωε)φ1

. (A.33)

Or for greater ease of use,

K(2ε, 0) = exp{η̄2η2 + z̄2z2} (A.34)

with the definitions,

η2 = (1− iωoε)η1 + (iλ2ε)z1 (A.35)

z2 = (iλ2ε)η1 + (1− iωε)z1. (A.36)

This process can be continued to find the propagator for any number of

infinitesimal steps, with the result,

K(jε, 0) = exp{η̄jηj + z̄jzj} (A.37)

and the definitions,

ηj = (1− iωoε)ηj−1 + (iλjε)zj−1 (A.38)

zj = (iλjε)ηj−1 + (1− iωε)zj−1. (A.39)
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After inserting the correct boundary conditions η̄N = η̄f , η0 = ηi, z̄N = z̄f , and

z0 = zi the propagator for time t = Nε is

K(t = Nε, 0) = exp{η̄fηN + z̄fzN} (A.40)

with the variables ηN , and zN defined by Eq. (A.38) and Eq. (A.39).

As in the previous example the propagator in the above form is only a

formal expression and has meaning only as a polynomial expansion. Many terms

in the polynomial expansion truncate due to the nilpotency of the Grassmann

variables. Expanding the propagator gives

K(t, 0) = eη̄f ηN+z̄f zN =
∞∑

m=0

(z̄fzN)m

m!
[1 + η̄fηN ]. (A.41)

As before differential equations are found for the functions in the expansion of

the propagator. The functions that need to be calculated are (zN)m and

(zN)mηN . Adhering to the anticommutation rules one finds (up to O(ε)),

(zm)j = (1− imωε)(zm)j−1 − imλjε(z
m−1η)j−1 (A.42)

(zmη)j = (1− imωε− iωoε)(z
mη)j−1 − iλjε(z

m+1)j−1. (A.43)

Or in the continuous limit,

d

dt
(zm)t = −imω(zm)t − imλ(zm−1η)t (A.44)

d

dt
(zmη)t = (−imω − iωo)(z

mη)t − iλ(zm+1)t. (A.45)

The propagator of Eq. (A.41) can now be shown to satisfy the Schrödinger
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equation.

i~
d

dt
〈η̄f z̄f |K(t, 0)|η0z0〉 = i~

d

dt

∞∑
m=0

(z̄f )
m

m!
[(zm)t + η̄f (z

mη)t] (A.46)

= ~
∞∑

m=0

(z̄f )
m

m!

[
(mω(zm)t + mλ(zm−1η)t)

+ η̄f ((mω + ωo)(z
mη)t + λ(zm+1)t)

]

〈η̄f z̄f |HK(t, 0)|η0zo〉 =

∫
dµ(η)dµ(z)〈η̄f z̄f |H|ηz〉〈η̄z̄|K(t, 0)|η0z0〉 (A.47)

= ~
∞∑

m=0

(z̄f )
m

m!

[
(mω(zm)t + mλ(zm−1η)t)

+ η̄f ((mω + ωo)(z
mη)t + λ(zm+1)t)

]

As in the previous example the propagator Eq. (A.41) and Eqs. (A.44-A.45) give

a novel expansion of the propagator and equations for the terms in its expansion.

However, in this case the unexpanded expression may offer an advantage when

seeking the reduced dynamics. In that case the final state of the e.g. boson can

be traced out using the formal exponential version of Eq. (A.41), leaving a formal

expression for the reduced propagator. Equations (A.44-A.45) can then be used

to find solutions for terms in the expansion of the reduced propagator.

It remains to show that the stationary path approximation yields the

same exact result in this example. The propagator for finite time in this case is

K(t, 0) =

∫ N−1∏
j=1

dµ(ηj)dµ(zj)〈η̄N z̄N |e− i
~Hε|ηN−1zN−1〉

× 〈η̄N−1z̄N−1|e− i
~Hε|ηN−2zN−2〉...〈η̄1z̄1|e− i

~Hε|η0z0〉. (A.48)
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As for the previous example the infinitesimal propagators in the above expression

can be combined into a single exponential only after the introduction of a

Grassmann partners to the coupling constants. The propagator is then written,

K(t, 0) =

∫ N−1∏
j=1

d2ηjd
2zj exp{z̄NzN + η̄NηN} exp{

N∑
j=1

[−z̄jzj − η̄jηj

+ (1− iωε)z̄jzj−1 + (1− iωoε)η̄jηj−1 − η̄j(iλjε)zj−1 − z̄j(iλjε)ηj−1]}.

(A.49)

Varying discretely about the saddle point, equations for the stationary path are

found to be

zj = (1− iωε)zj−1 − iλjεηj−1 (A.50)

ηj = (1− iωoε)ηj−1 − iλjεzj−1 (A.51)

and the propagator after inserting the correct boundary conditions η̄N = η̄f ,

η0 = ηi, z̄N = z̄f , and z0 = zi is

K(t, 0) = exp{η̄fηN + z̄fzN}. (A.52)

with the variables ηN and φN defined by Eqs. (A.50-A.51). This again is the

same as the exact result, thereby demonstrating that the stationary path

approximation is exact for the Jaynes-Cummings Hamiltonian. This specific

example was computed with the stationary path approximation in [12] using a

Grassmannian path integral and in [34] using the SU(2) representation. The

results here agree with those found in [34], where it was also found that the

stationary path approximation yielded exact results. The range of validity for the
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Grassmannian path integral method in [12] was restricted to an initial bosonic

vacuum state, but for that restricted range they also found the stationary path

approximation to be exact.
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Appendix B

Recursive calculation of effective action

The Hamiltonian is given in Eq. (4.1). The evaluation of the transition amplitude

as a path integral begins with slicing it into infinitesimal steps. A single

infinitesimal step transition amplitude for initial EMF vacuum and atomic

ground state (i.e. the initial EMF and Grassmannian labels set to zero) is,

〈X1,{z̄1k}, ψ̄1; t + ε| exp[− i

~
Hε]|X0, {0k}, 0; t〉

= exp

[
iM(X1 −X0)

2ε

2ε2~
− i

∑

ke

ψ̄1z̄1k
g1ε√
ωk

peg · u†k − i
∑

kl

z̄1kz̄1l
λ2ε√
ωkωl

u†k · u†l
]

(B.1)

= exp

[
iM(X1 −X0)

2ε

2ε2~
+ A1 +

∑

ke

ψ̄1z̄1kB1ke +
∑

kl

z̄1kz̄1lC1kl

]
(B.2)

With the obvious definitions of A1, B1ke, and C1,kl. The first infinitesimal step

transition amplitude, Eq. (B.1), can be used to derive the 2 infinitesimal step
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amplitude:

〈X2,{z̄k2}, ψ̄2; t + 2ε| exp[−2
i

~
Hε]|X0, {0k}, 0; t〉 =

∫
dµ(X1)dµ(z1)dµ(ψ1)〈X2, {z̄2k}, ψ̄2; t + 2ε| exp[− i

~
Hε]|X1, {z1k}, ψ1; t + ε〉

× 〈X1, {z̄1k}, ψ̄1; t + ε| exp[− i

~
Hε]|X0, {0k}, 0; t〉 (B.3)

The result is:

〈X2,{z̄2k}, ψ̄2; t + 2ε| exp[−2
i

~
Hε]|X0, {0k}, 0; t〉

=

∫
dµ(X1) exp

[
A2 +

∑

ke

ψ̄2z̄2kB2ke

∑

kl

z̄2kz̄2lC2kl +
2∑

j=1

iM(Xj −Xj−1)
2ε

2ε2~

]

(B.4)

For definitions of the coefficients see Eq. (B.6) with n = 2. The 2-step transition

amplitude can be generalized to an n-step transition amplitude:

〈Xn,{z̄nk}, ψ̄n; t + nε| exp[− i

~

n∑
j=1

Hjε]|X0, {0k}, 0; t〉

=

∫ n∏
j=1

dµ(Xj) exp

[
An +

∑

ke

ψ̄nz̄nkBnke

+
∑

kl

z̄nkz̄nlCnkl +
n∑

j=1

iM(Xj −Xj−1)
2ε

2ε2~

]
(B.5)
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with the finite difference equations:

An = An−1 − iε
∑

k

λ2

ωk

(u†nk · unk)− iε
∑

ke

ḡn√
ωk

(pge · unk)Bn−1,ke + O(ε2) (B.6)

Bnke = (1− iω0ε− iωkε) Bn−1,ke − iε
gn√
ωk

(peg · u†nk)

+ iε
∑

le′

ḡn√
ωl

(pge′ · unl)Bn−1,le′ Bn−1,ke

− iε
∑

l

2λ2

√
ωkωl

(u†nk · unl)Bn−1,le

− iε
∑

l

2gn√
ωl

(peg · unl)Cn−1,kl + O(ε2) (B.7)

Cnkl = (1− iωkε− iωlε)Cn−1,kl − iε
λ2

√
ωkωl

(u†nk · u†nl)

− iε
∑
q

2λ2

√
ωqωl

(u†nl · unq)Cn−1,kq

− iε
∑
q

2λ2

√
ωqωk

(u†nk · unq)Cn−1,ql

− iε
∑
qe

2ḡn√
ωq

(pge · unq)Cn−1,lqBn−1,ke

− iε
∑

e

ḡn√
ωl

(pge · u†nl)Bn−1,ke + O(ε2) (B.8)
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In the continuous limit those become first order differential equations with the

following integral solutions:

A(t + τ) = −i

∫ t+τ

t

ds
∑

k

λ2

ωk

(u†k(s) · uk(s))

− i

∫ t+τ

t

ds
∑

ke

ḡ√
ωk

(pge · uk(s))Bke(s) (B.9)

Bke(t + τ) = −i

∫ t+τ

t

ds
g√
ωk

e−i(ω0+ωk)(t+τ−s)(peg · u†k(s))

+ i

∫ t+τ

t

ds
∑

le′

ḡ√
ωl

(pge′ · ul(s))Ble′(s) Bke(s)

− i

∫ t+τ

t

ds
∑

l

2λ2

√
ωkωl

(u†k(s) · ul(s))Ble(s)

− i

∫ t+τ

t

ds
∑

l

2g√
ωl

(peg · ul(s))Ckl(s) (B.10)

Ckl(t + τ) = −i

∫ t+τ

t

ds
λ2

√
ωkωl

(u†k(s) · u†l (s))

− i

∫ t+τ

t

ds
∑
q

2λ2

√
ωqωl

(u†l (s) · uq(s))Ckq(s)

− i

∫ t+τ

t

ds
∑
q

2λ2

√
ωqωk

(u†k(s) · uq(s))Cql(s)

− i

∫ t+τ

t

ds
∑
qe

2ḡ√
ωq

(pge · uq(s))Clq(s)Bke(s)

− i
∑

e

∫ t+τ

t

ds
ḡ√
ωl

(pge · u†l (s))Bke(s) (B.11)

The transition amplitude of Eq. (B.5) can be further simplified by setting the

final EMF and atomic states to vacuum and ground, respectively. The transition
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amplitude is then:

〈Xn,{0k}, 0; t + τ | exp[− i

~

∫ t+τ

t

Hds]|X0, {0k}, 0; t〉

=

∫
Dµ(X(s)) exp

[
A(t + τ) +

∫ t+τ

t

ds
iMẊ2(s)

2~

]
(B.12)

The equations for B(s) and C(s), Eq. (B.10) and Eq. (B.11), are Volterra type

integral equations. Their solutions are infinite Born series in orders of the

coupling. Approximations in the above coefficients are approximations in the

basic vertex. To O(g2):

A(t + τ) =− i

∫ t+τ

t

ds
∑

k

λ2

ωk

[u†k(X(s)) · uk(X(s))]

−
∫ t+τ

t

ds

∫ s

t

dr
∑

ke

g2

ωk

e−i(ωk+ω0)(s−r)[uk(X(s)) · pge][u
∗
k(X(r)) · peg]

(B.13)

The transition amplitude with an O(g2) vertex is thus:

〈Xf ; t + τ | exp[− i

~

∫ t+τ

t

Hds]|Xi; t〉 =

∫
DX exp

{
i

∫ t+τ

t

[
MẊ2

2~
−

∑

k

λ2

ωk

u∗k(X(s)) · uk(X(s))

+ i

∫ s

t

dr
∑

ke

g2

ωk

e−i(ωk+ω0)(s−r)[uk(X(s)) · pge][u
∗
k(X(r)) · peg]

]
ds

}
(B.14)

In the above transition amplitude the polarization mode functions are

dotted with the dipole vector of the atom. The direction that the atom’s dipole

vector takes will depend on the quantization direction chosen for the atom’s

internal state, but we are not free to choose a quantization direction. That is

because the atom’s dipole is induced by the vacuum fluctuations, and is free to
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point in any direction. In that light, choosing a particular direction seems

invalid. Due to the form of the dipole - EM polarization function couplings, the

induced atomic dipoles in different directions do not interfere, and a set of

excited states (and thus different quantization directions) can be summed over.

Such a set of independent excited states will form a resolution of unity and thus

give a factor of unity contribution. The above transition amplitude can then be

generalized to reflect the induced dipole:

〈Xf ;t + τ | exp[− i

~

∫ t+τ

t

Hds]|Xi; t〉

=

∫
DX exp

{
i

∫ t+τ

t

[
MẊ2

2~
−

∑

k

λ2

ωk

u∗k(X(s)) · uk(X(s))

+ ip2
z

∫ s

t

dr
∑

k

g2

ωk

e−i(ωk+ω0)(s−r)uk(X(s)) · u∗k(X(r)) + O(e4)

]
ds

}

(B.15)

with p2
z = 〈g|p2

z|g〉 (the ground state expectation value of p2
z).
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Appendix C

Momentum computation

Putting in the spatial mode functions of Eq. (3.5) into the above gives the

semi-classical transition amplitude in the presence of a conducting wall.

K[Xf ;t + τ,Xi; t] =

(
M

2πi~τ

)3/2

× exp

{
iM(Xf −Xi)

2

2~τ
− 2iλ2

L3

∫ t+τ

t

ds
∑

k

1

ωk

+ O(e4/M)

+
iλ2

L3

∫ t+τ

t

ds
∑

k

cos2 θ

ωk

[
e2ikz·X0

c(s) + e−2ikz·X0
c(s)

]

− g2p2
z

L3

∫ t+τ

t

ds

∫ s

t

dr
∑

k

1

ωk

e−i(ωk+ω0)(s−r)+ik||·(X0
c(s)−X0

c(r))

×
[
eikz·(X0

c(s)−X0
c(r)) + e−ikz·(X0

c(s)−X0
c(r))

]

+
g2p2

z

L3

∫ t+τ

t

ds

∫ s

t

dr
∑

k

cos2 θ

ωk

e−i(ωk+ω0)(s−r)+ik||·(X0
c(s)−X0

c(r))

×
[
eikz·(X0

c(s)+X0
c(r)) + e−ikz·(X0

c(s)+X0
c(r))

]}
(C.1)

With the inclusion of the conducting boundary spatial mode functions the sums

over momentum space are now over the positive half space. Despite it’s

complicated appearance, the transition amplitude above is in a useful form for

computing the evolution of the momentum expectation value. The key point is
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that the transition amplitude of Eq. (C.1) is the product of several exponentials

of exponentials, and contains only c-numbers. Therefore, each exponential can be

expanded out into a series, the summands of all the series collected together, and

the necessary integrations performed on the collected summand before

redistributing the summand and resuming each exponential. That is, the

individual exponentials in Eq. (C.1) can be expanded in terms such as:

exp

{
iλ2

L3

∫ t+τ

t

ds
∑

k

cos2 θ

ωk

e2ikz·X0
c(s)

}

=

[ ∞∑
n=0

1

n!

(
iλ2

L3

)n n∏
m=1

∫ t+τ

t

dsm

∑

km

cos2 θm

ωkm

]
e2i
P

m kmz·X0
c(sm) (C.2)

exp

{
− g2p2

z

L3

∫ t+τ

t

ds

∫ s

t

dr
∑

k

1

ωk

e−i(ωk+ω0)(s−r)+ik·(X0
c(s)−X0

c(r))

}

=

[ ∞∑
n=0

1

n!

(
− g2p2

z

L3

)n n∏
m=1

∫ t+τ

t

dsm

∫ sm

t

drm

∑

km

1

ωkm

e−i(ωkm+ω0)(sm−rm)

]

× ei
P

m km·(X0
c(sm)−X0

c(rm)) (C.3)

132



The resulting collected summand is,

Summand({n}) = exp

{
2i

n1∑
m1=1

km1z ·X0
c(sm1)− 2i

n2∑
m2=1

km2z ·X0
c(sm2)

+ i

n3∑
m3=1

(km3|| + km3z) · (X0
c(sm3)−X0

c(rm3))

+ i

n4∑
m4=1

(km4|| − km4z) · (X0
c(sm4)−X0

c(rm4))

+ i

n5∑
m5=1

km5|| · (X0
c(sm5)−X0

c(rm5))

+ i

n5∑
m5=1

km5z · (X0
c(sm5) + X0

c(rm5))

+ i

n6∑
m6=1

km6|| · (X0
c(sm6)−X0

c(rm6))

− i

n6∑
m6=1

km6z · (X0
c(sm6) + X0

c(rm6))

}
(C.4)

= exp

{
ic({n}) · (Xf −Xi) + ib({n}) ·Xi

}
(C.5)

with definitions

c({n}) =2

n1∑
m1=1

km1z
sm1

τ
− 2

n2∑
m2=1

km2z
sm2

τ

+

n3∑
m3=1

(km3|| + km3z)
sm3 − rm3

τ
+

n4∑
m4=1

(km4|| − km4z)
sm4 − rm4

τ

+

n5∑
m5=1

km5||
sm5 − rm5

τ
+

n5∑
m5=1

km5z
sm5 + rm5

τ

+

n6∑
m6=1

km6||
sm6 − rm6

τ
−

n6∑
m6=1

km6z
sm3 + rm3

τ
(C.6)

and

b({n}) = 2

n1∑
m1=1

km1z − 2

n2∑
m2=1

km2z + 2

n5∑
m5=1

km5z − 2

n6∑
m6=1

km6z (C.7)
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The momentum expectation value is then,

P(t + τ) =
~
N

∑

{n,n′}
∆({n, n′})

∫
dPf

(2π)3
Pf

∫
dXidX

′
idXfdX

′
f Ψ(Xi)Ψ

∗(X′
i)

× exp

{
− iPf ·Xf + iPf ·X′

f

}

× exp

{
ic({n}) · (Xf −Xi) + ib({n}) ·Xi

− ic({n′}) · (X′
f −X′

i)− ib({n′}) ·X′
i

}
(C.8)

The momentum expectation value, the normalization factor, and other moments

of the momentum operator can be computed with the generating function:

Z(J) =
∑

{n,n′}
∆({n, n′})

∫
dPf

(2π)3

∫
dXidX

′
idXfdX

′
f Ψ(Xi)Ψ

∗(X′
i)

× exp

{
− iPf ·Xf + iPf ·X′

f + iPf · J
}

× exp

{
ic({n}) · (Xf −Xi) + ib({n}) ·Xi

− ic({n′}) · (X′
f −X′

i)− ib({n′}) ·X′
i

}
(C.9)

from which:

P(t + τ) =
~

iZ(0)

dZ(J)

dJ

∣∣∣∣∣
J=0

(C.10)

The factor ∆({n, n′}) is the summation measure. The initial wavefunction is

taken to be a Gaussian centered at (R,P0) with the standard deviations (σ, 1/σ).

This choice allows the possibility that the atom is slowly moving toward the wall.

Slowly, in this case, means adiabatically such that the external motion is much
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slower than internal time scales.

Ψ(Xi) =

(
1√
πσ2

)3/2

exp

{
− (Xi −R)2

2σ2
+ iP0 ·Xi

}
(C.11)

In the limits M →∞ and σ → 0 such that P0

M
→ V and σ2M →∞ the

generating function is:

Z(J) = exp

{
iλ2

L3

∫ t+τ

t

ds
∑

k

cos2 θ

ωk

eikz·J
[
e2ikz·(R+Vs) − c.c.

]

− g2p2
z

L3

∫ t+τ

t

ds

∫ s

t

dr
∑

k

1

ωk

[
e−i(ωk+ω0)(s−r)+ik·V(s−r) + c.c.

]
(C.12)

+
g2p2

z

L3

∫ t+τ

t

ds

∫ s

t

dr
∑

k

cos2 θ

ωk

eikz·J

[
e−i(ωk+ω0)(s−r)+ikz·(2R+V(s+r−2t))+ik||·V(s−r) + c.c.

]

− J2

4σ2
+ iJ ·P0 + O(e4/M) + O(σ2)

}

Finally, in the limits M →∞ and σ → 0 the momentum expectation value is:

P(t + τ) = P0 − 2iλ2~
L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds e−2ikz·(R+Vs)

+
g2p2

z~
L3

∑

k

kz cos2 θ

ωk

∫ t+τ

t

ds

∫ s

t

dr e−ikz·(2R+V(s+r−2t))

[
e−i(ωk+ω0)(s−r) − ei(ωk+ω0)(s−r)

]
(C.13)
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Appendix D

Calculational details of qubit in a thermal bath

D.1 Approximated functional solutions

Eqs. (4.14-4.19) are two sets of coupled differential equations. One set being the

pair of equations

Ḟ [mk] = −i
∑

q

mqωqF [mk] + i
∑

lp

mlλ̄lGp[mk − δkl] (D.1)

Ġp[mk] = −i(ωo +
∑

mω)Gp[mk] + iλpF [mk + δkp] (D.2)

and the remaining four equations comprising the other set. This solution method

for this pair in the low temperature and weak coupling limits will be sketched out

in this appendix. The solutions for the other set in the same limits will follow a

similar sequence. First, given the initial conditions

F [mk](t = 0) = 1 (D.3)

Gp[mk](t = 0) = 0 (D.4)
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the Laplace transforms of the above equations are

zF̃ [mk](z)− 1 = −i
∑

q

mqωqF̃ [mk](z) + i
∑

lp

mlλ̄lG̃p[mk − δkl](z) (D.5)

zG̃p[mk](z) = −i(ωo +
∑

mω)G̃p[mk](z) + iλpF̃ [mk + δkp](z). (D.6)

The second equation can be rearranged into

G̃p[mk](z) =
iλpF̃ [mk + δkp](z)

z + i(ωo +
∑

mω)
, (D.7)

which can be substituted back into Eq. (D.5) to give

(
z + i

∑
q

mqωq

)
F̃ [mk](z) = 1 + i

∑

lp

imlλ̄lλpF̃ [mk − δkl + δkp](z)

z + i(ωo − ωl +
∑

mω)
. (D.8)

In this expression the low temperature approximation is applied by setting p = l

in the summation of the RHS. The justification is that the summation on the

RHS will be peaked about ωl = ωo such that the greatest contribution from

F̃ [mk − δkl + δkp](z) will be for ωl = ωo. However, at low temperatures those

frequencies will not be populated. As a result the vacuum will be annihilated,

unless δkp = δkl, which will cause the major contribution from the p summation

to be from p = l. Applying this approximation, Eq. (D.8) can be rewritten as

F̃ [mk](z) =

(
z + i

∑
q

mqωq +
∑

l

mlλ
2
l

z + i(ωo − ωl +
∑

mω)

)−1

. (D.9)
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The zeroth order pole of F̃ [mk](z) is at z = −i
∑

mω. Evaluating the reaction

term at this point,

lim
z→Pmω

(∑

l

mlλ
2
l

z + i(ωo − ωl +
∑

mω)

)
= lim

z→0

(∑

l

mlλ
2
l

z + i(ωo − ωl)

)

=
∑

l

mlλ
2

ωl

(
δ(ωo − ωl) + P

1

ωo − ωl

)

=
Γmo

2
+ i∆.

(D.10)

gives the second order shift in the pole of a real part and a frequency shift. After

absorbing the frequency shift in a renormalization of the frequency, the second

order pole is z = −i
∑

mω − Γmo

2
with the definitions

mo =
∑

ωl=ωo

ml (D.11)

The desired functional can be calculated as in inverse Laplace transform of

Eq. (D.9) at the second order pole to give

F [mk](t) = exp

{
−Γmo

2
t− i

∑
mωt

}
. (D.12)

The other functional in the pair can be calculated by integrating Eq. (4.15)

Gl[mk − δkl](t) = i
λ√
ωl

1− exp
{−Γmo

2
t− i

∑
mωt

}
Γmo

2
+ i(ωl − ωo)

ei(ωl−ωo−
P

mω)t. (D.13)
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Following similar calculations the rest of the functionals are found to be

Ψf [mk](t) = exp

{
−Γ(mo + 1)

2
t− i(ωo +

∑
mω)t

}
(D.14)

Ψg
l [mk − δkl](t) =

λ exp
{−Γ

2
t− i(ωo +

∑
mω)t

}
√

ωl(ωl − ωo − iΓmo

2
)

[
ei(ωl−ωo)t − e−

Γmo
2

t
]

(D.15)

Ψf
q [mk](t) =

λ exp
{−Γmo

2
t− i(ωo +

∑
mω)t

}
√

ωq(ωq − ωo − iΓ
2
)

[
e−

Γ
2
t − ei(ωq−ωo)t

]
(D.16)

Ψg
ql[mk − δkl](t) =

λ2 exp {−i(ωo + ωq − ωl +
∑

mω)t}√
ωq
√

ωl

× exp
{−Γ

2
t + i(ωq − ωo)t

}− 1

(ωq − ωo) + iΓ
2

× 1− exp
{−Γmo

2
t− i(ωl − ωo)t

}

(ωl − ωo)− iΓmo

2

(D.17)

D.2 Computation of density matrix elements

The solutions of Eqs. (D.12-D.17) can be substituted into Eqs. (4.24-4.27) to

evaluate the reduced density matrix elements in the limits of low temperature

and weak coupling. The reduced density matrix elements in that form are

summations over all distributions {mk}. The ρ10(t) matrix element will be

demonstrated below as a representative calculation. The evaluation of the other

summations follow along similar lines. From Eq. (4.26), the off-diagonal density

matrix element is

ρ10(t) = ρ10

∑

{mk}

(
Ψf [mk] +

∑

l

mlΦ
g
ll[mk − δkl]

)
F̄ ′[mk] e−β

P
mω. (D.18)
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First, from Eqs. (D.12-D.17) the functional in parentheses can be determined to

be

Ψf [mk] +
∑

l

mlΦ
g
ll[mk − δkl] = exp

{
−Γ(mo + 1)

2
t− i(ωo +

∑
mω)t

}
, (D.19)

so that the off-diagonal matrix element becomes

ρ10(t) = ρ10

∑

{mk}
exp

{
−Γ(2mo + 1)

2
t− iωot

}
e−β

P
mω. (D.20)

Denoting by primes those terms for which ωk = ωo and double primes those for

which ωk 6= ωo, the summand can be rewritten with the substitution

mo =
∑′

k mk,

ρ10(t) = ρ10 e
Γ
2
t−iωot

∑

{mk}
exp

{
−Γt

′∑
mk − βωk

∑
mk

}
(D.21)

= ρ10 e
Γ
2
t−iωot

∑

{mk}

′∏

k

exp {−(Γt + βωo)mk}
′′∏

k

exp {−βωkmk} . (D.22)

The summation over distributions can be more clearly written as

∑

{mk}
=

[∏

k

∞∑
mk=0

]
=

[ ′∏

k

∞∑
mk=0

][ ′′∏

k

∞∑
mk=0

]
, (D.23)
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so that Eq. (D.22) becomes

ρ10(t) = ρ10 e
Γ
2
t−iωot

[ ′∏

k

∞∑
mk=0

exp {−(Γt + βωo)mk}
][ ′′∏

k

∞∑
mk=0

exp {−βωkmk}
]

(D.24)

= ρ10 e
Γ
2
t−iωot

[ ′∏

k

1

1− exp {−(Γt + βωo)}

][ ′′∏

k

1

1− exp {−βωk}

]
(D.25)

= ρ10 e
Γ
2
t−iωot exp

{
−

′∑
ln

[
1− e−(Γt+βωo)

]−
′′∑

ln
[
1− e−βωk

]
}

(D.26)

= ρ10 e
Γ
2
t−iωot exp

{
−

′∑
ln

[
1− e−(Γt+βωo)

1− e−βωo

]
−

∑
ln

[
1− e−βωk

]
}

(D.27)

= ρ10 e
Γ
2
t−iωot

(
1− e−βωo

1− e−(Γt+βωo)

)
exp

{
−

∑
ln

[
1− e−βωk

]}
(D.28)

The factor at the end is removed by normalization of the reduced matrix element

by its Γ = 0 value. The final result for the off-diagonal matrix element is

ρ10(t) = ρ10 e
Γ
2
t−iωot

(
1− e−βωo

1− e−(Γt+βωo)

)
(D.29)

with Γ/2 the zero temperature decoherence rate. The rest of the reduced density

matrix elements are given in Chapter 4.
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Appendix E

COM functional integration

The position path integral which needs to be evaluated is:

∫
DX exp

[
− iM

2

∫ t

0

ds Ẋ

]
(E.1)

× exp

[
− i

∫ t

0

ds
∑

k

ḡk(X(s))e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

dr
∑

k

gk(X(s))ḡk(X(r))e−iωk(s−r)η̄(s)η(r)

]

which can be expanded and truncated to:

∫
DX exp

[
− iM

2

∫ t

0

ds Ẋ

]
(E.2)

×
[
1− i

∫ t

0

ds
∑

k

ḡk(X(s))e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

dr
∑

k

gk(X(s))ḡk(X(r))e−iωk(s−r)η̄(s)η(r)

]

There are thus three correlation functions which need to be computed.

First the spatial mode functions must be chosen in order to specify the targeted

correlation functions. For an electromagnetic field in free space (no cavity or

boundaries)

gk(X) =
λ√
ωk

exp(ik ·X), (E.3)
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the correlations functions are:

∫ Xf ,t

Xi,0

DX exp[− iM

2

∫ t

0

dτ Ẋ(τ)] =

(
M

2πit

)3/2

exp

[
iM

2t
(Xf −Xi)

2

]
(E.4)

∫ Xf ,t

Xi,0

DX exp[ik ·X(s)− iM

2

∫ t

0

dτ Ẋ(τ)]

=

(
M

2πit

)3/2

exp

[
iM

2t
(Xf −Xi)

2 + i
s

t
k · (Xf −Xi)− i

2M

s(t− s)

t
k2

]

(E.5)

∫ Xf ,t

Xi,0

DX exp[−ik ·X(s) + ik ·X(r)− iM

2

∫ t

0

dτ Ẋ(τ)]

=

(
M

2πit

)3/2

exp

[
iM

2t
(Xf −Xi)

2 − i
s− r

t
k · (Xf −Xi)

− i

2M

(t− (s− r))(s− r)

t
k2

]
(E.6)

Substituting these expressions back into the Eq.(5.10) gives for the

transition amplitude:

K(t, 0) =

∫
Dη̄Dηeiωot/2

(
M

2πit

)3/2

× exp

[
η̄fη(t)−

∫ t

0

(
η̄η̇ + iωoη̄η

)
ds

]
exp

[
iM

2t
(Xf −Xi)

2

]
e−iωk(s−r)

×
[
1− i

∫ t

0

ds
∑

k

λ√
ωk

exp

[
i
s

t
k · (Xf −Xi)− i

2M

s(t− s)

t
k2

]
e−iωk(t−s)z̄fk η(s)

−
∫ t

0

ds

∫ s

0

dr
∑

k

λ2

ωk

exp

[
− i

s− r

t
k · (Xf −Xi)

− i

2M

(t− (s− r))(s− r)

t
k2

]
η̄(s)η(r)

]
(E.7)
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