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Abstract4

Graphical user interfaces (GUIs) are the sole mode of interaction between end-users and5

back-end code for almost all of today’s software applications. Because of this strategic role6

of GUIs, their quality has become important. During GUI testing, test cases—modeled as se-7

quences of user events—sample the vast input space of all possible sequences with the goal8

of detecting faults; for effective testing, it is importantto sample this space carefully. Exist-9

ing techniques either sample manually or employ manually constructed abstract models—the10

abstraction and/or subsequent test-case generation algorithms enable sampling.11

This paper presents an alternative approach to GUI testing –it’s focus is on developing12

a fully automaticmodel-driven technique to generate GUI test cases. The technique is novel13

in that it uses feedback from the execution of a“seed test suite”on a GUI. The seed suite is14

generated automatically using an existing structuralevent-interaction graph(EIG) model of15

the GUI. During its execution, the run-time effect of each GUI event on all other events pin-16

points new importantevent-semantic interaction(ESI) relationships between them, which are17

used to automatically create anESI graph(ESIG) model and generate new test cases. Together18

with a reverse-engineering algorithm used to obtain the EIG, seed suite, ESIG, and new test19

cases, the feedback-based technique yields a fully automatic, end-to-end GUI testing process.20

Two independent studies on eight applications demonstratethat the feedback-based technique21

(1) is able to significantly improve existing techniques andhelp identify serious problems in22

the software and (2) the ESI relationships captured via GUI state yield test suites that most23



often detect more faults than their code-, event-, and event-interaction-coverage equivalent1

counterparts.2

1 Introduction3

Automated test case generation (ATCG) has become increasingly popular due to its potential to4

reduce testing cost and improve software quality [22]. A typical approach used for ATCG is5

to create an abstract model (e.g., state-machine model [8, 67, 73], event-flow model [44]) of the6

application under test (AUT) and employ the model to generate test cases. While successful at7

reducing overall testing cost, in practice, ATCG continuesto be resource-intensive, especially to8

create and maintain the model. A few researchers have recognized that the tasks of model creation9

and maintenance may be aided by leveraging the execution results of some existing test cases.10

Consequently, they have developedautomated feedback-based techniquesto augment the models11

[14,21,25–27,37,52,54,83,84,86]. These techniques require an initial test case/suite to be created,12

either manually or automatically, and executed on the software. Feedback from this execution is13

used toautomaticallygenerate additional test cases. The nature of feedback depends largely on the14

goal of the ATCG algorithm. A common example of feedback is a code coverage report used to15

automatically generate additional test cases that improveoverall test coverage [25–27, 37, 52, 54].16

Few techniques use feedback from the AUT’srun-time stateto generate additional test cases,e.g.,17

in the form of outcomes of programmer-supplied predicates in the code to cover all non-isomorphic18

inputs [14], operational abstractions to cover increased program behaviors [21, 84], and partially19

generated non-exception-throwing method-call sequencesto generate longer sequences [57].20

This paper presents a new feedback-based technique for automated testing of graphical user21

interfaces (GUIs). The technique starts with an automatically reversed engineeredstructuralmodel22

of the GUI, employs the model to automatically generate specific types of test cases (sequences of23

GUI events that exercise GUI widgets), executes them, and uses the execution results as feedback24

to automatically generate additional test cases. The feedback is an abstraction of the run-time25

state of GUI widgets. As noted by Mathur [41], there is a strong relationship between events in a26
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software and its states; GUIs are no exception. Because GUI events may drive the software into1

potentially new states, this feedback-based approach leverages run-time GUI state information to2

prune the state-space, thereby helping to reduce the numberof test cases that need to be executed.3

The nature of GUIs, their test cases, and the maturity of our existing model-based GUI test-4

case generation algorithms lend themselves to feedback-based techniques for a number of reasons.5

First, GUI testing is extremely important because GUIs are used as front-ends to most software6

applications and constitute as much as half of software’s code [56]. A correct GUI is necessary7

for trouble-free execution of the application’s underlying “business logic” [10, 67, 73]. Second,8

our existing fully automatic model-based GUI test-case generation algorithms produce test cases9

that exhaustively testtwo-way interactionsbetween GUI events; these test cases are called smoke10

tests [45]. They are used as the basis for feedback collection, i.e., they form the seed suite. Finally,11

our existing tools are easily adapted to monitor and store the run-time state of the GUI.12

Our previous empirical studies showed that smoke test casesreveal a large number of GUI13

faults; we and other researchers have shown that additionalfaults may be detected by testing14

certain types of multi-way interactions [10,49]. The challenge, of course, is how to systematically15

generate test cases for these interactions. Exhaustively testing them is impossible because the16

number of GUI test cases grows exponentially with number of events in the test case. A practical17

alternative is to identify small subsets of events that interact in interesting ways with one another18

and hence should be tested together, and generate test casesthat test multi-way interactions among19

members of each subset. In this paper, we use the feedback-based technique toautomatically20

identify such sets of events.21

The new feedback-based technique has been used in a fully automatic end-to-end process for22

a specific type of GUI testing. The seed test suite (in this case the smoke tests) is generated23

automatically using an existingevent-interaction graph(EIG) model of the GUI. The EIG is a24

structural model of the GUI. More specifically, it represents all possible sequencesof events that25

may be executed on the GUI. Note that an EIG has the flavor of theconventional control-flow26

model that represents all possible execution paths in a program [3], and a data-flow model that27
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represents all possible definitions and uses of a memory location [62]; except that an EIG is at the1

GUI event level of abstraction.2

The EIG-generated smoke suite is executed on the GUI using anautomatic test case replayer.3

During test execution, the run-time state of GUI widgets is collected and used to automatically4

identify anEvent Semantic Interaction(ESI) relationship between pairs of events. This relationship5

captures how a GUI event is related to another in terms of how it modifies the other’s execution6

behavior. Informally, eventex is ESI-related toey iff ex influences the run-time behavior ofey,7

where “run-time behavior” is evaluated in terms of properties of GUI widgets.8

The ESI relationships are used to automatically construct anew model of the GUI, called the9

Event Semantic Interaction Graph(ESIG). Because the seed suite is generated from the EIG (a10

structural model) and the ESI relationship is obtained in terms of event execution (a dynamic11

activity), the ESIG captures certain structural and dynamic aspects of the GUI. The ESIG is then12

used to automatically generate new test cases. These test cases have an important property – each13

event is ESI-related to its subsequent event,i.e., it was shown to influence the subsequent event14

during execution of the seed suite.15

This entire process, including the scripts required to set up, execute, and tear down test cases,16

has been implemented and executes without human intervention. Two independent studies have17

been conducted on eight GUI-based Java applications to evaluate and understand this new ap-18

proach.19

In an earlier report of this work [86], we described the first study, which used four well-tested20

and popular applications downloaded from SourceForge; thestudy demonstrated that the feedback-21

based technique improves our existing techniques with little additional cost. The ESI relationship22

is successful at identifying complex interactions betweenGUI event handlers that lead to serious23

failures. We presented details of some failures, emphasizing on why they were not detected by24

the earlier techniques. The failures were reported on the SourceForge bug reporting site;1 in re-25

sponse, the developers fixed some of the bugs. The developershad never detected our reported26

1For example, https://sourceforge.net/tracker/?func=detail&atid=535427&aid =1536078&groupid=72728.
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failures before because their own tools and testing processes were unable to comprehensively and1

automatically test the applications.2

We now extend the research with the second study, conducted on four fault-seeded Java appli-3

cations developed in house; this study shows that (1) the automatically identified ESI relationships4

between events help to generate test suites that detect morefaults than their code-, event-, and5

event-interaction-coverage equivalent counterparts, (2) certain characteristics of the seeded faults6

prevent their detection by the earlier technique, but not the new technique, (3) several of our7

missed faults remain undetected because of limitations with our automated GUI-based test oracle8

(a mechanism that determines whether a test case passed or failed), and (4) several of the remaining9

undetected faults require long event sequences.10

Finally, we note that the use of software models to generate sequences of events (commands,11

method calls, data inputs) for software testing is not new. Numerous researchers have developed12

techniques that employ state machine models [1,11,17–20,23,68,74], grammars [5,31,42,71,72],13

AI planning [30,39,47,66], genetic algorithms [35], probabilistic models [75,77–79], architecture14

diagrams [65], and specifications [32,33] to generate such sequences. All the above techniques are15

useful, in that they can be used to generate different types of test cases for different domains. All of16

them are based on manually created models. The research presented in this paper is orthogonal to17

the other model-based techniques; we focus on enhancing an existing model (in our case the model18

is obtained automatically) via test execution feedback. Inparticular, we leverage our existing19

graph-traversal techniques based on an automatically obtained reverse engineered GUI model [46,20

50] to develop a fully automatic model-based testing technique. Run-time feedback is used to21

enhance the model and generate new test cases. We feel that this type of approach may be used22

for the other model-based techniques mentioned above – these other models may also be enhanced23

with software execution and test execution feedback.24

The main contributions of this work include:25

• extension of our previous work on automated, model-based, systematic GUI test-case gen-26

eration,27
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• definition of new relationships among GUI events based on theGUI widgets that they1

use/influence,2

• utilization of run-time state to explore a larger input space and improve fault-detection ef-3

fectiveness,4

• immersion of the feedback-based technique into a fully automatic end-to-end GUI testing5

process and demonstration of its effectiveness on fielded and fault-seeded applications,6

• empirical evidence tying fault characteristics to the typeof test suites, and7

• demonstration that certain faults require well-crafted combinations of test cases and test8

oracles.9

The next section discusses related literature. Section 3 introduces basic GUI concepts and10

reviews the EIG model that forms the basis of the new ESIG model. Section 4 defines the ESI11

relationship and uses it to define an ESIG. Sections 5 and 6 evaluate the new feedback-based12

technique. Finally, Section 7 concludes with a discussion of future work.13

2 Related Work14

To the best of our knowledge, this is the first work that utilizes run-time information as feedback15

for model-based GUI test-case generation. However, run-time information has previously been16

employed for various aspects of test automation, and model-based testing has been applied to17

conventional software as well asevent-driven software(EDS). This section presents an overview18

of related research in the areas of model-based and EDS testing, GUI testing, and the use of run-19

time information as feedback for test generation.20

2.1 Model-based & EDS Testing21

Model-based testing automates some aspect of software testing by employing a model of the soft-22

ware. The model is an abstraction of the software’s behaviorfrom a particular perspective (e.g.,23

software states, configuration, values of variables, etc.); it may be at different levels of abstraction,24
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such as abstract states, GUI states, internal variable states, or path predicates. Models may be de-1

rived from a formal specification of the software or reverse engineered by observing the software’s2

execution behavior. They may be described using various languages and mathematical objects.3

State Machine Models: The most popular models used for software testing arestate machine4

models. They model the software’s behavior in terms of its abstractor concrete states; they are5

typically represented as state-transition diagrams. Several types of state machine models have6

been used for software testing, such asFinite State Machine Models(FSM) [4, 6, 24, 28],UML7

Diagram-based Models[40] andMarkov Chains[34,76].8

There have been numerous reports of success stories using FSM models for test automa-9

tion. For example, Microsoft researchers [6] modeled the control flow of an object-oriented soft-10

ware under test as an FSM and described it using theAbstract State Machine Language(AsmL11

research.microsoft.com/fse/asml). A traversal engine (part of Spec Explorer, a tool12

for advanced model-based specification and conformance testing), used the resulting finite state13

machine to produce behavioral tests to cover all explored transitions. Honget al.also used FSMs14

for unit testing of classes in object-oriented programs; they used FSMs to model interactions be-15

tween class data members and member functions [28]. The FSMs, calledclass state machines16

(CSM), were then transformed intoclass flow graphs(CFG); test case generation was done by17

selecting test cases according to the locations of definitions and uses of variables in the CFG. In18

another reported research, Farchiet al.used FSM models to test implementations of thePOSIX19

standard andJava exception handling [24]. Both state machine models were created from the20

software specifications and represented using theGOTCHA Definition Language. The GOTCHA-21

TCBean test generator was then used to automatically explore the state space from the model and22

generate an abstract test suite.23

Various extensions of FSMs have also been used for testing. These extensions use variables24

to representcontextin addition to states; the goal is to reduce the total number of states by using25

an orthogonal mechanism, in the form of explicit variables,to select state transitions. For exam-26

ple, anextended finite state machine(EFSM) makes use of a data state along with the input for27
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state transformation [4]; this EFSM is used by a tool called TestMaster to generate test cases by1

traversing all paths from the start state to the exit state.2

Because test cases for EDS are sequences of events, many practitioners and researchers have3

found it natural to use state machine models for testing EDS [16,36,38,53]. The EDS is modeled in4

terms of states; events form transitions between states. Algorithms traverse these machine models5

to generate sequences of events. For example, Campbellet al.have applied state machine models6

to test object-oriented reactive systems [16]. Object states are modeled in terms of instance variable7

values; transitions are obtained from method invocations;test cases are sequences of method calls8

and are generated by traversing the model.9

Table-based Models: Table-based models define software behavior in the form of tables relating10

model elements such as system modes, conditions, events andterms. These tables are then used as11

the basis for test case generation. The table-based modeling approach SCR, which is an abbrevia-12

tion for software cost reduction, has been used for security functional testing [12] andMars Polar13

Landersoftware to detect faults [13].14

Grammars: Production grammars have been used to test large, complex and safety-critical soft-15

ware systems; a popular example is the Java Virtual Machine [69]. The grammars are collections16

of non-terminal to terminal mappings that resemble regularparsing grammars. A production gram-17

mar produces a program (i.e., a set of terminals, or tokens) starting from a high-level description18

(i.e., a set of non-terminals). The composition of the generated programs models the restrictions19

placed on the software by the production grammar.20

Summary: The above model-based testing techniques rely heavily on the manual or semi-manual21

construction of the abstract model. Consequently, they areprone to errors. Moreover, any change22

to the software requires reconstruction of the model, whichis typically cumbersome and time23

consuming.24
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2.2 GUI Test Case Generation1

Several automated techniques have been developed for GUI test case generation. All of them use2

a model of the software and algorithms to generate test casesfrom the model.3

State-Based Techniques:Finite state machines have been used to model GUIs [7, 73]. A GUI’s4

state is represented in terms of its windows and widgets; each user event triggers a transition in the5

FSM. For the sake of test-case generation, a test case is a sequence of user events and corresponds6

to a path in the FSM. As is the case for conventional software (discussed in the previous section),7

FSMs for GUIs also have scaling problems; this is due to the large number of possible states and8

user events in modern GUIs. Several GUI-domain-specific attempts have been made to handle the9

scalability issue. For example, Belli [7] converted a GUI FSM into simplified regular expressions.10

The regular expressions were used to generate event sequences. Shehadyet al. [67] proposed11

variable finite state machine (VFSM), which augmented an FSMfor a GUI with global variables12

that can assume a finite number of values during the executionof a test case. The value of each13

variable is used to determine the next state and output in response to an event. Event transition14

may modify values of these variables.15

AI planning has also been used to manage the state-space explosion by eliminating the need for16

explicit states. AI planning models the infinite state spaceof a GUI [48]. A description of the GUI17

is manually created by a tester; this description is in the form of planning operators, which model18

the preconditions and effects (post-conditions) of each GUI event. Test cases are automatically19

generated from tasks (pairs of initial and goal states) by invoking a planner which searches for a20

path from the initial state to the goal state. However, the quality of the test cases is determined by21

the choice of tasks. Moreover, the manual operator definition and task selection may be expensive22

for large GUIs.23

Genetic Algorithm: Test cases have been generated using genetic algorithms to mimic novice24

users [35]. The approach uses an expert to generate an initial event sequence manually and then25

uses genetic algorithm techniques to generate longer sequences. The assumption is that experts26

take a direct path when performing a task via the GUI, whereasnovice users take longer, indirect27
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paths. Although useful for generating multiple test cases,the technique relies on an expert to gen-1

erate the initial test case. The final test suite depends largely on the paths taken by the expert user.2

The idea of using a task and generating an initial test case may be better handled by using plan-3

ning, since multiple test cases may be generated automatically according to some predetermined4

coverage criterion.5

Directed Graph Models: In order to reduce manual work, several new systematic techniques6

based on graph models of the GUI have recently been developed. They are based onEvent Flow7

Graphs(EFG) [45] andEvent Interaction Graphs(EIG). Because of their central role in this paper,8

we discuss these models in Section 3.9

Summary: FSM models and genetic algorithm based GUI testing suffer from the problem of10

manual creation of the model,i.e., state machine and fitness function. The primary problem with11

the GUI graph models is that the number of event sequences grows exponentially with length.12

Hence, the existing graph-model based GUI test-case generation algorithms have only been able13

to generate test cases that cover all edges in the graph models, i.e., they testtwo-wayinteractions14

between GUI events.15

2.3 Execution Feedback for Test Case Generation16

In an earlier report of this research [86], we introduced theidea of employingfeedbackfrom the17

execution of a seed test suite (our smoke tests generated using the EIG) to generate additional18

multi-way interaction test cases. A study on four large fielded open-source software applications19

demonstrated the feasibility and usefulness of this new approach; we showed that feedback was20

able to significantly improve our existing techniques and help identify/report serious problems in21

the software applications.22

We now discuss similar feedback-based approaches used by other researchers on non-GUI23

software to generate test cases. Execution feedback refersto information obtained during test24

execution, and used to guide automatic test case/test suitegeneration. This is calleddynamic25

test case generationand, to the best of our knowledge, was originally proposed byMiller and26
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Spooner [54]. In their technique, the software source code is instrumented to obtain execution1

feedback. The overall test case generation process starts by executing an initial test, which may2

be a test suite or a single test case. The execution feedback is collected and analyzed. The results3

are used to evaluate the “closeness,” according to some criterion, of the previous execution to the4

desired outcome; the model used to generate test cases is then modified accordingly and a new test5

case is generated. This loop stops when the “closeness” evaluation is satisfied.6

Since then, several researchers have used similar ideas of dynamic test generation.7

Object Properties: The work of Xieet al. is most closely related to this research [83, 84]. They8

have developed a framework that uses feedback in the form ofoperational abstractions(summaries9

of program run-time state) and object states to generate newtest cases. This framework integrates10

specification-based test generation and dynamic specification inferences for test case generation.11

Specification-based test generation is based on formal specifications, which express the desired12

behavior of a program. However, because formal specifications are difficult to obtain, dynamic13

specification inference attempts to infer specifications, in the form of operational abstractions,14

automatically from software execution. The test case generation process starts from an existing15

test suite. Through executions of these test cases, object states (values of variables and parameters,16

and return values) are recorded at the entry and exit of method executions. Based on the collected17

traces and a set of pre-defined axiom-pattern templates, equality patterns are searched to create18

operational abstractions. The discovered operational abstractions consist of object properties that19

hold for all the observed executions. By removing or relaxing inferred preconditions on parameter20

values in the operational abstractions, both legal and illegal test cases are generated. The newly21

generated test cases are executed. Because they were generated by relaxing inferred preconditions,22

some of these test cases may cause an uncaught runtime exception. The other, non-crashing test23

cases are used to obtain new operational abstractions, which are again used to generate additional24

test cases. Other researchers have also used operational abstractions, combined with symbolic25

execution, to guide the generation of test cases [21].26

Method-call Sequences: Pachecoet al. [58] have improved random unit test generation by27
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incorporating feedback obtained from executing test inputs as they are created. They build inputs1

incrementally by randomly selecting a method call to apply and finding arguments from among2

previously-constructed inputs. The key idea of their work is that they build upon a legal sequence3

of method calls, each of whose intermediate objects is sensible and none of whose methods throw4

an exception. As soon as an input is built, it is executed and checked against a set of contracts5

and filters. The result of the execution determines whether the input is redundant, illegal, contract-6

violating, or useful for generating more inputs. The technique outputs a test suite consisting of unit7

tests for the classes under test. Passing tests can be used toensure that code contracts are preserved8

across program changes; failing tests (that violate one or more contract) point to potential errors9

that should be corrected.10

Similarly, Boyapatiet al. employ a feedback-based technique to obtain all non-isomorphic11

inputs (test cases) for a method [14]. A programmer develops(1) a “guided test generation engine”12

that outputs test cases to explore the method’s input space and (2) a predicate from the method’s13

preconditions to check the validity of the generated input.This technique prunes a large portion14

of the input space by monitoring the execution of the predicate on an initial test suite, guiding the15

engine and yielding a suite of all non-isomorphic inputs.16

Code Coverage Reports: All other techniques in this category instrument elements (lines,17

branches, etc.) of the program code, execute an initial testcase/suite, obtain a coverage report18

that contains the outcomes of conditional statements, and use automated techniques to generate19

better test cases. The techniques differ in their goals (e.g., cover a specific program path, satisfy20

condition-decision coverage, cover a specific statement) and their test-case generation algorithms.21

For example, Milleret al.[54] use code coverage and decision outcomes to generate floating-point22

test data.23

Severaliterative techniqueshave been used to generate a test case that executes a given program24

path [26,27,37]. The generation is formulated as a functionminimization problem. The gradient-25

descent approach is used to gradually adjust an initial testcase so that it executes the given path.26

Control-flow information in the form of branch-predicate outcomes is collected during software27
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execution. One disadvantage of these approaches is that they can get stuck in a local minima during1

test case generation.2

The chainingapproach [25] has been used to generate test cases, each to cover a given pro-3

gram statement. An initial test case is executed; the program’s control- and data-flow are used4

to determine whether the test case will lead to the given statement. If not, the branch function5

of the problematic branch is used to modify the test case. This process continues until the given6

statement is executed.7

Genetic algorithmshave also been used to automatically generate test suites that satisfy the8

condition-decisionadequacy criterion [52], which requires that each condition in the program be9

true for at least one test case and false for at least one test case. A fitness function is defined10

for each branch. An initial test suite is obtained and executed. The fitness functions are used to11

evaluate the “goodness” of each test case. If a test case covers a new condition-decision, it is12

considered to be “more fit.” The test cases in the gene pool evolve to obtain a new generation of13

test cases. The process stops until a desired level of fitnessis obtained.14

Summary: All the above execution feedback-based techniques have been used for a specific15

type of test case, that is, numerical data values. The feedback (in the form of branch predicate16

evaluations, condition-decision coverage, and object states) is used to tweak these numerical values17

in order to improve overall coverage. These techniques are not directly applicable to GUI testing18

because a GUI test case is a sequence of events. There is no clear notion of tweaking a GUI test19

case to improve coverage.20

Although the techniques discussed in this section are not directly applicable to feedback-21

directed GUI test case generation, many of the underlying concepts have been used. For example,22

execution feedback is used to generate GUI test cases, the EIG model is used to generate the orig-23

inal seed suite, and traversal techniques from model-basedtesting are used to cover nodes and24

edges in the ESIG.25
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Figure 1: (a) “Radio Button Demo” GUI, (b) its Partial Observable State

3 Preliminaries1

The feedback-based technique utilizes an abstraction of the GUI’s run-time statecollected and2

analyzed during the execution of test cases that covertwo-way interactionsbetween GUI events in3

order to generate test cases that testmulti-way interactions. This section defines these terms and4

introduces notations for subsequent sections.5

This work focuses on the class of GUIs that accept discrete events performed by a single user;6

the events are deterministic,i.e., their outcomes are completely predictable.2 A GUI in this class7

is composed of a setW of widgets(e.g., buttons, text fields); each widgetw ∈ W has a setPw8

of properties(e.g., color, size, font). At any time instant, each propertyp ∈ Pw has a unique9

value(e.g., red, bold, 16pt); each value is evaluated using a function from the set of the widget’s10

properties to the set of valuesVp. TheGUI stateat any time instant is a set of triples (w, p, v),11

wherew ∈ W, p ∈ Pw andv ∈ Vp, i.e., the observable state of the GUI. Figure 1 shows the partial12

GUI state of a simple application’s window calledRadio Button Demo. The GUI contains13

eight widgets labeledw1 throughw8; a user can perform eventse1 throughe7 on w1 throughw7,14

respectively; no event can be performed onw8.15

A set of statesSI is called thevalid initial state setfor a particular GUI if the GUI may be in16

2Testing GUIs that react to temporal and non-deterministic events and those generated by other applications is
beyond the scope of this research.
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any stateSi ∈ SI when it is first invoked. The singleinitial statefor Radio Button Demo has1

Circle andNone selected; the text-field corresponding tow5 has a default color “white”; and2

theRendered Shape area (widgetw8) is empty.3

The state of a GUI is not static; eventse1, e2, . . . , en performed on the GUI change its state4

and hence are modeled as functions that transform one state of the GUI to another. ForRadio5

Button Demo, evente1 sets the shape to a circle; if there is already a square in theRendered6

Shape area, then it is immediately changed to a circle. Evente2 is similar toe1, except that it7

changes the shape to a square. Evente3 enables the text-fieldw5, allowing the user to enter a8

custom fill-color, which is immediately reflected in the shape being displayed (if there is a shape9

there). Evente4 reverts back to the “no fill color” state. Evente5 is used to fill a custom color in10

the text-fieldw5. Evente6 creates a shape in theRendered Shape area according to current11

settings ofw1 . . . w5; evente7 resets the entire software to its initial state.12

GUIs contain two types of windows: (1)modal windows3 (e.g., FileOpen, Print) that,13

once invoked, monopolize the GUI interaction, restrictingthe focus of the user to the range of14

events within the window until explicitly terminated (e.g., usingOk, Cancel), and (2)modeless15

windows(e.g., Find/Replace) that do not restrict the user’s focus. If, during an execution of16

the GUI, modal windowMx is used to open another modal windowMy, thenMx is called the17

parentof My for that execution.18

e1 e2

e3
e4

e5 e6 e7

Figure 2: EIG of “Radio Button Demo” GUI

3Standard GUI terminology,e.g., see http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html.
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The seed test suite is generated using anevent-interaction graph(EIG) model of the GUI,1

which is obtained automatically using a standard GUI-reverse-engineering algorithm [49]. The2

EIG abstraction of the GUI represents only two types of GUI events: terminationandsystem-3

interactionevents. Termination events close modal windows. Otherstructuralevents are used to4

open and close menus and modeless windows, and open modal windows, but are not represented5

in the EIG (for reasons presented in earlier work [49]). The remaining events, called system-6

interaction events, do not manipulate the structure of the GUI. Directed edges between nodes7

encodeexecution paths, i.e., sequences of events, in the GUI. For example, an edge (ex, ey) shows8

that ey may be executed afterex along someexecution path. The EIG for theRadio Button9

Demo is shown in Figure 2. Because this is a single-window GUI withno menus, it has no10

structural events; it contains only system-interaction events. There is one node for each of the11

widgets on which a user can perform an event.12

The basic motivation behind using a graph model to representa GUI is that various types13

of existing graph-traversal algorithms (with well-known run-time complexities) may be used to14

“walk” the graph, enumerating the events along the visited nodes, thereby generating test cases.15

In earlier research [49], an algorithm calledGenTestCases was implemented that returned all16

possible paths (sequences of events) in the graph bounded toa specific length (number of EIG17

events) of2. These length-2 sequences are said to test alltwo-way interactionsbetween the EIG18

events. For the EIG of Figure 2, there are a total of 49 test cases of length 2, corresponding to the19

49 edges in the EIG. This research will generate test cases for multi-way interactions, i.e., longer20

paths in an EIG. For example, a 3-way test case is< e1; e2; e3 >; a 4-way test case is< e1; e2; e7;21

e2 >. Because EIG nodes do not represent events to open or close menus, or open windows, the22

sequences obtained from the EIG may not be executable. At execution time, other events needed to23

reach the EIG events are automatically generated, yieldingan executable test case [49]. To allow a24

clean application exit, a test case is also automatically augmented with additional events that close25

all open modal windows before the test case terminates.26

The function notationSj = ex(Si) denotes thatSj is the state resulting from the execution of27
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eventex in stateSi. If e1 ande2 are two different events in a GUI’s EIG, (e1, e2) is an edge, and1

S0 ∈ SI is the initial state of the GUI, thene1(S0) is the GUI state after performinge1, e2(S0)2

is the GUI state after performinge2, ande2(e1(S0)) is the GUI state after performing theevent3

sequence< e1; e2 >.4

4 Event Semantic Interaction Graph5

The new feedback-based technique is based on our ability to identify sets of events that need to be6

tested together in multi-way interactions. Because each event is executed using its corresponding7

event handler, one could hypothesize that an eventex whose event handler updates code element(s)8

(e.g., variables, object fields) that are used (directly or indirectly) by another eventey ’s handler9

could potentially influence it’s execution;ex and ey are good candidates to be tested together.10

For example, consider the event handlers for the eventse1 ande2 shown in Figure 3. As these11

event handlers interact via the variablecurrentTool, the eventse1 ande2 should be tested together.12

Similarly, eventse3 ande4 interact viacurZoomand should be tested together. However, because13

the handlers fore1 ande3 do not interact, these events need not be tested together.14

e1:: select ellipse tool
public void ellipsePerformed (java.awt.event.ActionEvent evt){
...; currentTool = toolEllipse; ...}

e2:: drag mouse on canvas
public void mouseDragged(java.awt.event.MouseEvent evt) {
...; currentTool.dragAction(newEvt, center); ...}

e3:: set zoom factor to double
public void zoom1Performed(java.awt.event.ActionEventevt){
...; curZoom = zoom1; ...}

e4:: click left mouse button on canvas
public void mousePressed(java.awt.event.MouseEvent evt) { ...
if (currentTool == toolZoom){ // if the zoom tool is being used
int temp = toolZoom.getZoom();// current zoom level
if (SwingUtilities.isLeftMouseButton(evt){ switch (temp){
case 1: zoom2.setBG(pColor); curZoom = zoom2;
case 2: zoom3.setBG(pColor); curZoom = zoom3;...} }}

theCanvas.repaint();...}

Figure 3: Example Event Handlers
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One may employ a variety of static program-analysis techniques to identify such interactions1

[64]. They can certainly be used in this example. However, the limitations of static analysis in the2

presence of multi-language GUI implementations, callbacks for event handlers, virtual function3

calls, reflection, and multi-threading are well known [43, 64]; these limitations complicate the4

application of static analysis. Moreover, because most GUIapplications employ a large number of5

library elements (e.g., Java Swing), source code (an essential component for most static analysis6

techniques) may not be available for parts of the GUI.7

This research avoids static analysis; instead it approximates the identification of interactions8

between event handlers by analyzing feedback from the run-time state of the GUI on an initial test9

suite. Recall that testing all two-way interactions between events is already quite practical with10

the smoke test suite; we treat this suite as a starting point to collect the feedback. The remaining11

question, addressed in this section, is:What dynamic behavior constitutes event interaction?12

Consider the example shown in Figure 4. The top-left shows the initial state(S0) of an appli-13

cation. After an evente1 (Select Ellipse tool; event handler shown in Figure 3) is executed,14

the GUI changes its state to the one shown in the top-right (e1(S0)). In this state, the “ellipse tool”15

remains selected. Starting fromS0, one can execute another evente2 (Drag mouse on canvas) and16

obtain the state shown in the bottom-left (e2(S0)); an area of the canvas has been selected. If, how-17

ever, the sequence< e1; e2 > is executed inS0, a new state (e2(e1(S0))), shown in the bottom-right18

is obtained; an ellipse has been created. This execution is equivalent to the execution of evente219

in the statee1(S0). The sequence< e1; e2 > produces a GUI state that shows the influence ofe120

on e2. Hence,e1 ande2 are good candidates to be tested together in longer sequences to check for21

interaction problems. The code fore1 ande2 (previously seen in Figure 3) shows that they do in22

fact interact.23

The remaining problem is to automatically compute the run-time relationship between event24

e1 ande2 of Figure 4. We use four state descriptions for this computation: S0, e1(S0), e2(S0), and25

e2(e1(S0)). More specifically, to compute this relationship, we need tofind at least onenewwidget26

w with propertyp and valuev in statee2(e1(S0)), i.e., it is created by event sequence< e1; e2 >;27
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Figure 4: Execution of Eventse1 (Select Ellipse tool) ande2 (Drag mouse on canvas)

but it does not exist in stateS0 and could not be created by eithere1 or e2 individually, i.e., no triple1

involving widgetw exists in any of the statesS0, e1(S0) ande2(S0). This statement can be formally2

described as a predicate:∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t.
4 (((w, p̄, v̄) /∈3

S0) ∧ ((w, p̄, v̄) /∈ e1(S0)) ∧ ((w, p̄, v̄) /∈ e2(S0)) ∧ ((w, p, v) ∈ e2(e1(S0)))). If this predicate4

evaluates toTRUE for a widget (in our case the ellipse), then we have discovered a case wheree15

influencese2.6

It is quite straightforward to encode such a predicate in a high-level programming language,7

such as Java. The implementation would loop through the state triples and stop when one widget8

satisfying the predicate is detected.9

The reader should note that the above predicate is necessaryfor the computation of the rela-10

tionship betweene1 ande2. At first glance, the reader might be tempted to think that checking11

state non-equivalence would be sufficient to identify interacting events,i.e., by using a predi-12

cateP such as(e1(S0) 6= e2(e1(S0))) ∨ (e2(S0) 6= e2(e1(S0))). However, this is not the case.13

Consider an example of two non-interacting events,ex andey, which toggle the states of two inde-14

pendent check-box widgets2x and2y, respectively. Starting in a stateS0 = {2x, 2y}, i.e., both15

boxes unchecked, each event would “check” its corresponding check-box,i.e., ex(S0) = {2�x, 2y},16

ey(S0) = {2x, 2�y}, andey(ex(S0)) = {2�x, 2�y}. Even thoughP would evaluate toTRUE for this17

4Notation for “such that”
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example, eventsex andey are non-interacting and need not be tested together.1

Additional complexity arises from the nature of modal windows in GUIs. Modal windows2

create special situations due to the presence of termination events. For example, instead of being3

in the main window, hade1 ande2 in Figure 4 been associated with widgets contained in a modal4

window with termination eventTERM, statese1(S0) , e2(S0), ande2(e1(S0)) might not contain the5

necessary information needed to compute the predicate. This is because user actions in modal6

windows do not cause immediate state changes; they typically take effect after a termination event7

has been executed. Hence, each of the statese1(S0) , e2(S0), ande2(e1(S0)) must be collected8

after the execution of the termination eventTERM. Similarly, problems arise whene1 ande2 are in9

two differentmodal windows;e1 is in a modal window bute2 is in a modeless window;e1 is in a10

modal window wherease2 is in its parent window. All these situations require special handling.11

It turns out that the example illustrated in Figure 4 is just onecaseof how the GUI state may be12

used to pinpoint interactions between event handlers – there are several more cases, each requiring13

a different predicate. Because of the need to define precise predicates for all these cases and for14

special handling of modal windows, we take a two dimensionalapproach. We first define six5
15

predicates in onecontext, i.e., wheree1 ande2 are system-interaction events in modeless windows;16

this situation is calledContext 1. We will use the notationPn(m)(e1, e2) to represent a predicate17

for casen in contextm. We then define two additional contexts; together, the six cases and three18

contexts yield6 × 3 = 18 situations for computing run-time relationships between events.19

Case 1:P1(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, s.t. ((v 6= v′) ∧ ((w, p, v) ∈ {S0 ∩20

e1(S0) ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at least one widgetw with propertyp with21

initial valuev (hence the triple(w, p, v) is in S0), which is not affected by the individual eventse122

or e2 (the triple is also ine1(S0) ande2(S0)); however, it is modified when the sequence< e1; e2 >23

is executed,i.e., the value ofw’s propertyp changes fromv to v′.24

Figure 5 gives an example ofCase 1. This is a “GUI Demo” application with several widgets.25

The Fill with color checkbox fills the currently selected shape (highlighted with a deep26

5We have chosen to present only these six cases because we encountered them numerous times in our work on
GUI testing. These cases are not exhaustive and we will continue to add new cases, as and when needed, in the future.
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Figure 5:Case 1: e1: CheckFill with color; e2: CheckApply to all

grey border) with the chosen color determined by the radio buttonsWhite andBlue. Checkbox1

Fill with pattern determines whether to fill the selected shape with a pattern.Checking2

Apply to all sets all shapes in the right panel with the same color and pattern.3

For the purpose ofCase 1, e1 is CheckFill with color ande2 is CheckApply to4

all. The initial state has the rectangle widget selected and color is set to white. The square5

widget (marked withW) is not modified bye1 or e2 individually; however, the event sequence6

< e1; e2 > fills the square with the white color. HenceP1(1)(e1, e2) evaluates toTRUE – Case 1is7

applicable here ande1 is ESI related toe2 becausee1 influencese2 and their combination modifies8

the previously unmodified widgetW.9

Case 2: P2(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, v

′′ ∈ Vp, s.t. ((v 6= v′) ∧ (v′ 6=10

v′′) ∧ ((w, p, v) ∈ {S0 ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈ e2(e1(S0)))) there is at11

least one widgetw with propertyp that has an initial valuev, which is not modified by the event12

e2; it is modified bye1; however, it is modified differently by the sequence< e1; e2 >.13

An example ofCase 2using the “GUI Demo” application is given in Figure 6, wheree1 now14

representsCheckFill with color ande2 is Click radio buttonBlue. The initial state has15

the rectangle selected and color is set to white. Individually, in this initial state, evente1 fills16
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Figure 6:Case 2: e1: CheckFill with color; e2: Click radio buttonBlue

the rectangle with the white color; evente2 sets the current color to blue. However, executing1

< e1; e2 > now fills the rectangle with the color blue. HenceP2(1)(e1, e2) evaluates toTRUE –2

Case 2applies here ase1 influencese2 execution; the widget (marked withW) is modified bye1;3

it is not modified bye2; however, it is modified differently by the sequence< e1; e2 >.4

Case 3: P3(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, v

′′ ∈ Vp, s.t. ((v 6= v′) ∧ (v′ 6=5

v′′) ∧ ((w, p, v) ∈ {S0 ∩ e1(S0)}) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p, v′′) ∈ e2(e1(S0)))) there is at6

least one widgetw with propertyp that has an initial valuev, which is not modified by the event7

e1; it is modified bye2; however, it is modified differently by the sequence< e1; e2 >. Note that8

this case is different from Case 2 because the event sequenceremains the same,i.e., e1 is executed9

beforee2.10

An example ofCase 3using the “GUI Demo” application is given in Figure 7, wheree1 now11

representsClick radio buttonBlue ande2 is CheckFill with color. The initial state has12

the rectangle selected and color is set to white. Individually, in this initial state, evente1 sets13

the current color to blue; evente2 fills the rectangle with the white color. However, executing14

< e1; e2 > now fills the rectangle with the color blue. HenceP3(1)(e1, e2) evaluates toTRUE –15

Case 3applies here ase1 influencese2 execution; the widget (marked withW) is not modified by16
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Figure 7:Case 3: e1: Click radio buttonBlue; e2: CheckFill with color

e1; it is modified bye2; however, it is modified differently by the sequence< e1; e2 >.1

Case 4:P4(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, v

′′ ∈ Vp, v̄ ∈ Vp, s.t. ((v 6= v′) ∧ (v 6=2

v′′) ∧ (v′′ 6= v̄) ∧ ((w, p, v) ∈ S0) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈ e2(S0)) ∧ ((w, p, v̄) ∈3

e2(e1(S0)))); there is at least one widgetw with propertyp that has an initial valuev, which4

is modified by individual eventse1 ande2; however, it is modified differently by the sequence5

< e1; e2 >.6

Figure 8 shows one example of this case using the “GUI Demo” application. In this exam-7

ple, the initial state hasFill with color checked, white is set to be the current color and8

the rectangle is selected. Evente1 here isClick radio buttonBlue ande2 is CheckFill with9

pattern that fills the current shape with a pattern. Eventse1 ande2 modify the rectangle in-10

dividually; however, executing< e1; e2 > now modifies the rectangle differently. Therefore,e111

influencese2, i.e., resulting in different modification of the existing widget(marked withW), and12

Case 4applies becauseP4(1)(e1, e2) evaluates toTRUE.13

The above four cases all handle widgets that persist across the four states being considered,14

i.e., S0, e1(S0), e2(S0), ande2(e1(S0)). In many cases, event execution “creates” new widgets,15

e.g., by opening menus; the next case handles newly created widgets.16
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Case 5:P5(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, s.t. ((v 6= v′) ∧ ((w, p, v) ∈ ex(S0)) ∧1

((w, p, v) 6∈ S0) ∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at least onenewwidgetw with propertyp2

and valuev in ex(S0), i.e., it was created by eventex (eithere1 or e2) but did not exist in stateS0;3

it was created by the sequence< e1; e2 > but with a different value for some property.4

Figure 9 shows an example forCase 5using the “Radio Button Demo” application in-5

troduced earlier. The initial state has theCircle andNone radio button selected and an empty6

Rendered Shape panel. In this initial state, evente2 selectesSquare; evente6 clicks the7

buttonCreate Shape and creates a circle in theRendered Shape panel. However, when8

executing< e2; e6 > in the initial state, a square is created in theRendered Shape panel.9

Therefore,e2 influencese6; P5(1)(e2, e6) evaluates toTRUE – Case 5is applicable here.10

It turns out that in this simple application,Case 5also applies to< e6; e2 >, < e3; e6 > and11

< e6; e3 >.12

A common occurrence of event interaction in GUIs is enabling/disabling widgets, which may13

be modeled as the widget’sENABLED property being set toTRUE or FALSE.14

Case 6:P6(1)(e1, e2) = ∃w ∈ W, ENABLED ∈ Pw, TRUE ∈ VENABLED, FALSE ∈ VENABLED, s.t. (((w, ENABLED, FALSE) ∈15

S0)∧((w, ENABLED, TRUE) ∈ e1(S0))∧EXEC(e2, w)); there exists at least one widgetw that was dis-16

abled inS0 but enabled bye1. Evente2 is performed onw, represented by a predicateEXEC(e2, w).17

Using theRadio Button Demo application, we see in Figure 10 thate3 enablese5. Hence18

P6(1)(e3, e5) evaluates toTRUE – Case 6applies.19

As mentioned earlier, the second dimension of our definitions are contexts. This is because20

modal windows create special situations for Cases 1 through6 due to the presence of termination21

events. User actions in these windows do not cause immediatestate changes; they typically take22

effect after a termination event has been executed, leadingto contexts 2 and 3.23

Context 2: If both e1 ande2 are associated with widgets that are contained in one modal window24

with termination eventTERM, then the definitions ofe1(S0) , e2(S0), ande2(e1(S0)) are modified25

as follows:e1(S0) is the state of the GUI after the execution of the event sequence< e1; TERM >,26

e2(S0) is the state of the GUI after the execution of the event sequence < e2; TERM >, and27
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Figure 9:Case 5: e2: SelectSquare; e6: Click buttonCreate Shape
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Figure 10:Case 6: e3: SelectColor; e5: Input color

e2(e1(S0)) is the state of the GUI after the execution of the event sequence < e1; e2; TERM >.1

All the predicates defined in Cases 1 through 6 apply, using these modified definitions, fore1 and2

e2 in the same modal window. The notation used for these predicates when applied in Context 2 is3

Pn(2)(e1, e2), wheren is the case number.4

Context 3: If e1 is associated with a widget contained in a modal window with termination event5

TERM, ande2 is associated with a widget contained in the modal window’sparentwindow (i.e.,6

the window that was used to open the modal window) thene1(S0) is the state of the GUI after the7

execution of the event sequence< e1; TERM >, e2(S0) is the state of the GUI after the execution8

of the evente2, ande2(e1(S0)) is the state of the GUI after the execution of the event sequence9

< e1; TERM; e2 >. All the predicates defined in Cases 1 through 6 apply. The notation used for10

these predicates when applied in Context 3 isPn(3)(e1, e2), wheren is the case number.11

We are now ready to formally define the ESI relationship. There is anEvent Semantic Interac-12

tion relationship between two eventse1 ande2 iff P1(1)(e1, e2) ∨ P2(1)(e1, e2) ∨ . . .P6(1)(e1, e2) ∨13

P1(2)(e1, e2)∨P2(2)(e1, e2)∨ . . .P6(2)(e1, e2)∨P1(3)(e1, e2)∨P2(3)(e1, e2)∨ . . .P6(3)(e1, e2). That14

is, at least one of the predicates in Cases 1 through 6 evaluates toTRUE in at least one context;15

this relationship is written ase1
n(m)
−→ e2, where the numbern is one of the case numbers 1 through16

6; m is the context number. If multiple cases apply, then one of the case numbers is used. Due to17

the specific ordering of the events in the sequence< e1; e2 >, the ESI relationship is not symmet-18

ric. As demonstrated earlier, for ourRadio Button Demo application,e2
5(1)
−→ e6, e6

5(1)
−→ e2,19

e3
5(1)
−→ e6, e6

5(1)
−→ e3, ande3

6(1)
−→ e5.20

Once all of the cases have been implemented, the feedback-based process execution is straight-21
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Figure 11: EIG with marked ESI relationships and ESIG for “Radio Button Demo” GUI

forward. The steps of the execution are as follows.1

1. The seed suite consisting of all 2-way interactions< ex; ey > between GUI events is exe-2

cuted on the software in stateS0; these test cases are simple enumerations of all EIG edges.3

All eventsey are also executed inS0. The state informationex(S0), ey(S0), ey(ex(S0)) is4

collected and stored.5

2. The above predicates are evaluated for each pair of system-interaction events in the EIG that6

are either (1) directly connected by an edge (Context 1) or (2) connected by a path that does7

not contain any intermediate system-interaction events (contexts 2 and 3),i.e., there is at8

least one termination event that closes a modal window on this path. If one of the predicates9

evaluates toTRUE, the two events are ESI-related.10

Once all the ESIs in a GUI have been identified, a graph model called the ESI graph (ESIG) is11

created. The ESIG contains nodes that represent events; a directed edge from nodenx to ny shows12

that there is an ESI relationship from the event representedby nx to the event represented byny.13

The EIG annotated with the five ESI relationships found inRadio Button Demo are shown in14

Figure 11; the ESIG (shown on the right) is a subgraph of the EIG.15

The ESIG may be traversed using a modified version of theGenTestCases algorithm dis-16

cussed in Section 3. The differences are that (1) an ESIG may contain multiple connected compo-17

nents in which case the event sequences are generated for each component separately, and (2) the18

length of the obtained sequences is now a tunable parameter instead of a fixed number 2. Study 119
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in the next section uses values 3, 4, and 5 for this parameter.1

Our new implementation of theGenTestCases algorithm is based on the adjacency matrix2

representation of directed graphs. The key idea used in the implementation is that if we start with3

a 0/1 adjacency matrix representation of the ESIG, and take that matrix to the(N − 1)th power,4

the (i, j) entry in the resulting matrix is the number of paths of lengthN from nodei to nodej5

(recall that the length is measured in number of nodes encountered along the path). In the trivial6

case,N = 2 will return the input matrix – the(i, j) entry is either 0 or 1,i.e., the number of length7

2 paths from nodei to nodej. ForN = 3, the(i, j) entry in the result matrix is the number of all8

length 3 paths from nodei to j.9

Because we want to output actual test cases, not just count them, we use a variation of the above10

approach. The only difference is that instead of just counting the paths, our implementation keeps11

track of all the actual paths themselves. For this we had to modify the matrix multiplication algo-12

rithm and the adjacency matrix representation. The adjacency matrix is modified so that instead of13

0/1, the(i, j) entry of the matrix is a list of paths fromi to j. The matrix multiplication algorithm14

is modified so that instead of multiplying and adding entries, we instead concatenate pairs of paths15

together and union all of them (respectively) to eliminate duplicates. The final matrix entries are16

paths of specific lengths,i.e., test cases of specific lengths.17

Much of the functionality needed for this test-case generation approach is implemented in the18

Mathematicapackage. The functionMatrixPower[mat, n], returns thenth matrix power19

of matrixmat. If the matrix is encoded as a 0/1 adjacency list,MatrixPower returns a matrix20

in which each entry(i, j) is a count of the number of test cases of a specific length from node21

i to nodej. We used simple rewriting rules (provided as aReplace function denoted by the22

operator “/.”) built into Mathematicato alterMatrixPower – we replaced theTimes (i.e.,23

multiply) operator withJoin (i.e., list concatenation) and thePlus operator withUnion. We24

thus generate all lengthN− 1 test cases by using theMathematicacommand:25

MatrixPower[matrix, N]/.{Power[x_, 2]->Join[x, x], Plus->Union,26

Times->Join}27
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with an appropriate representation of the matrix.1

Because our ESIG contains very few edges and nodes, the adjacency matrix tends to be sparse,2

leading to fast computations. For increased efficiency,Mathematica’s MatrixPower uses the3

built-in SparseArray structure.4

For our example ESIG of Figure 11, the test cases of length 3 are< e2; e6; e2 >, < e2; e6; e3 >5

, < e3; e6; e3 >, < e3; e6; e2 >, < e6; e3; e6 >, and< e6; e2; e6 >. Note that because there is no6

non-determinism in the test-case generation algorithm, there is a unique ESIG-based test suite of7

specific-length test cases for an application.8

5 Study 1: Evaluating the Feedback-based Technique on Fielded9

Applications10

The test cases obtained from the modifiedGenTestCases algorithm can be generated and ex-11

ecuted automatically on the GUI. The only unavailable part is thetest oracle, a mechanism that12

determines whether an AUT executed correctly for a test case. In this first study, an AUT is consid-13

ered to havepasseda test case if it did not “crash” (terminate unexpectedly or throw an uncaught14

exception) during the test case’s execution; otherwise itfailed. Such crashes may be detected au-15

tomatically by the script used to execute the test cases. TheEIG and ESIG, and their respective16

test cases may also be obtained automatically. Hence, the entire end-to-end feedback-based GUI17

testing process for “crash testing” could be executed without human intervention. Note that, in the18

next section (Study 2), this work is extended by employing a more “powerful” test oracle to detect19

additional failures.20

Implementation of the crash testing process included setting up a database for text-field values.21

Since the overall process needed to be fully automatic, a database containing one instance for each22

of the text types in the set{negative number, real number, long file name, empty string, special23

characters, zero, existing file name, non-existent file name} was used. Note that if a text field is24

encountered in the GUI, one instance for each text type is tried in succession.25
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This process provided a starting point for a feasibility study to evaluate the ESIG-generated test1

cases. The following questions needed to be answered to determine the usefulness of the overall2

feedback-based process:3

S1Q1: How many test cases are required to test two-way interactions in an EIG? How does this4

number grow for 3-, 4-, ..., n-way interactions?5

S1Q2: In how many ESI relationships does a given event participate? How many test cases are6

required to test two-way interactions in an ESIG? How does this number grow for 3-, 4-, ..., n-way7

interactions?8

S1Q3:How do the ESIG- and EIG-generated test suites compare in terms of fault-detection effec-9

tiveness? Do the former detect faults that were not detectedby the latter?10

More specifically, the following process was used for this study:11

1. Select software subjects with GUI front-ends.12

2. Generate a seed test suite using EIGs.13

3. Execute the seed test suite. Report crashes.14

4. During execution, construct the ESIG. Use the ESIG to generate additional test cases.15

5. Execute the new test cases. Report crashes.16

To answer the above questions while minimizing threats to external validity, this study was con-17

ducted using four extremely popular GUI-based open-sourcesoftware (OSS) applications down-18

loaded from SourceForge. The fully-automatic crash testing process was executed on them and19

the cause (i.e., thefault) of each crash in the source code was determined.20

STEP 1: Selection of subject applications.Four popular GUI-based OSS (CrosswordSage 0.3.5,21

FreeMind 0.8.0, GanttProject 2.0.1, JMSN 0.9.9b2) were downloaded from SourceForge. These22

applications have been used in our previous experiments [80, 86]; details of why they were cho-23

sen have been presented therein. In summary, all the applications have an active community of24

developers and a high all-time-activity percentile on SourceForge. Due to their popularity, these25

applications have undergone quality assurance before release. To further eliminate “obvious” bugs,26

a static analysis tool calledFindBugs[29] was executed on all the applications; after the study, we27
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Figure 12: Test Case Space Growth

verified that none of our reported bugs were detected by FindBugs.1

STEP 2: Generation of EIGs & seed test suites.The EIGs of all subject applications were2

obtained using reverse engineering. To addressS1Q1above, the number of test cases required3

to test 2-, 3-, 4-, and 5-way interactions was computed. The result for each application is shown4

as a solid line in Figure 12 (the y-axis in all these plots is a logarithmic scale). The plot shows5

that the number of test cases grows exponentially with the number of interactions. The number6

quickly becomes unmanageable for more than 2- and 3-way interactions. In this study, only two-7

way interactions were tested by the seed test suites. The seed test suites contained 920; 51,316;8

29,033; and 4634 test cases for CrosswordSage, FreeMind, GanttProject, and JMSN, respectively.9

STEP 3: Execution of the seed test suite.The entire seed suite executed without any human10

intervention. It executed in 0.39, 30.83, 22.89, and 2.68 hours on CrosswordSage, FreeMind,11

GanttProject, and JMSN, respectively. In all, 163, 66, 14, and 34 test cases caused crashes; these12

crashes were caused by 5, 4, 3, and 3faults (as defined earlier) for CrosswordSage, FreeMind,13

GanttProject, and JMSN, respectively. The GUI’s run-time state was recorded during test execu-14

tion. All faults were fixed in the applications.15

Note that debugging and fault-fixing was necessary due to tworeasons. First, had we not done16

so, the longer test cases that we will generate in the next fewsteps may contain these short test17

cases as subsequences; the longer tests may hence also crashdue to the faults previously detected18

by the seed suite, yielding no new useful results. Second, this is what would happen in a real19
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situation; a fault will be fixed after it was detected. However, this is a threat to internal validity1

because an obvious fix in one place may lead to a new fault at another place in the application. To2

minimize the threat, we reran the seed test suite to ensure the quality of the fixes. Of course, this3

does not preclude the possibility of introducing faults that are exposed by longer event sequences.4

To completely eliminate this threat, we later verified that the faults detected by our longer ESIG5

suites were not caused by these fixes.6

STEP 4: Generation of the ESIG.The above feedback was used to obtain the ESIs for each7

application. To addressS1Q2, the number of ESI relationships in which each event participates is8

shown in Figure 13. Each event in the GUI has been assigned a unique integer ID; all event IDs9

are shown on the x-axis. The y-axis shows the number of ESI relationships in which the event10

participates.11

The result shows that certain events dominate (around 25%) the ESI relationship in GUIs.12

Manual examination of these “dominant” events revealed that the nature of the subject applications,13

i.e., most of them have a single dominant object (crossword puzzle, mind map, project schedule,14

messenger window) that are the focus of most events, is such that several key events influence a15

large number of other events. In the future, we will create a classification of these dominant events.16

Moreover, several events participate in very few or no ESI relations. These events include parts of17

theHelp menu that has no interaction with other application events,and windowing events such18

as scrolling for which no developer-written code exists.19

The ESIs were used to obtain the ESIGs and, subsequently, additional test cases. The number20

of test cases required to test 2-, 3-, 4-, and 5-way interactions using an ESIG is shown, for each21

application, as a dotted line in Figure 12. This result showsthat the growth of the ESIG-generated22

test cases appears manageable for 3-, 4-, and (given sufficient resources) 5-way interactions. They23

are in fact reduced from the EIG by 99.78%, 99.97%, and 99.99%for 3-, 4-, and 5-way inter-24

actions, respectively. In this study, test cases for 3-, 4-,and 5-way interactions were generated.25

The total number of test cases for these interactions was 3592, 160,629, 199,127, and 18,144 for26

CrosswordSage, FreeMind, GanttProject, and JMSN, respectively.27
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STEP 5: Execution of the test cases.To addressS1Q3, all the newly-generated test cases were1

executed. The execution lasted for several days. In all, 68,157, 109, and 20 test cases caused2

crashes; they were caused by 3, 3, 3, and 1 faults for CrosswordSage, FreeMind, GanttProject, and3

JMSN, respectively. These faults had not been detected by the two-way test cases. We manually4

verified that the faults were not introduced by our bug fixes ofSTEP 4. The result shows that the5

ESIG-based test cases help to detect additional faults.6

6 Study 2: Digging Deeper via Seeded Faults and In-House Ap-7

plications8

Although the previous study demonstrated the usefulness ofthe ESIG-based technique, it also9

raised some important questions. One fundamental questionthat comes to mind pertains to the10

cause(s) of the added effectiveness,i.e., Is the added effectiveness an incidental side-effect of the11

events, event interactions, and lines-of-code that the ESItest cases cover and their length; or is it12

really due to targeted testing of the identified ESI relationships?The empirical study presented in13

this section is designed specifically to address the question of how the fault-detection effectiveness14

of the suite obtained by the feedback-based technique compare to that of other “similar” suites,15

where similarity is quantified in terms of statement coverage, event coverage, edge coverage, and16
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size (number of test cases).1

This question will be answered by selecting four pre-testedGUI-based applications, and gener-2

ating and executing 2-way EIG-based and 3-way ESIG-based test suites on them. We will generate3

additional test suites that are similar to the ESIG-based suite in terms of the aforementioned char-4

acteristics and are at least 3-way interacting, and comparetheir fault-detection effectiveness. Fault5

detection effectiveness will be measured on a per-test-suite basis in terms of number of faults de-6

tected. We will also study the faults, pinpointing reasons for why some of them remain undetected7

by our technique.8

6.1 Preparing the Subject Applications & Test Oracles9

Four open-source applications, called the TerpOffice suite, consisting of Paint, Present, Spread-10

Sheet and Word, have been selected for the study.6 Table 1 shows key metrics for TerpOffice.11

These applications are selected very carefully for a numberof reasons. In particular, to minimize12

threats to external validity, the selected applications are non-trivial, consisting of several GUI win-13

dows and widgets. For reasons described later, artificial faults were seeded in the applications –14

this required access to source code, bug reports, and a CVS development history. To avoid (the15

often difficult) distinction between GUI code and underlying “business logic,” GUI-intensive ap-16

plications were selected,i.e., most of the source-code implemented the GUI. Finally, the tools17

implemented for this research, in particular for reverse engineering, are well-tuned for the Java18

Swing widget library – the applications had to be implemented in Java with a GUI front-end based19

on Swing components. As is the case with all empirical studies, the choice of subject applications20

introduces some significant threats to external validity ofthe results; these (and other) threats have21

been noted in Section 7.22

For the purpose of this study, a GUI fault is a mismatch, detected by a test oracle, between23

the “ideal” (or expected) and actual GUI states. Hence, to detect faults, a description of ideal GUI24

6Detailed specifications, requirements documents, source code CVS history, bug reports, and developers’ names
are available athttp://www.cs.umd.edu/users/atif/TerpOffice/.
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Subjects Windows Widgets LOC Classes Methods
Paint 16 301 11,803 330 1,253

Present 11 322 10,847 292 2,057
SpreadSheet 9 176 5,381 135 746

Word 26 617 9,917 197 1,380
TOTAL 62 1,416 38,398 954 5,436

Table 1: TerpOffice Applications

execution state is needed. This description is used by test oracles to detect faults in the subject1

applications. There are several ways to create this description. First is to manually create a formal2

GUI specification and use it to automatically create test oracles. Second is to use a capture/replay3

tool to manually develop assertions corresponding to test oracles and use the assertions as oracles4

to test other versions of the subject applications. Third isto develop the test oracle from a “golden”5

version of the subject application and use the oracle to testfault-seeded versions of the application.6

The first two approaches are extremely labor intensive sincethey require the development of a for-7

mal specification and the use of manual capture/replay tools; the third approach can be performed8

automatically and has been used in this study.9

Several faults were seeded in each application. In order to avoid fault interaction and to sim-10

plify the mapping of application failure to underlying fault, multiple versions of each application11

were created; each version was seeded with exactly one fault. Hence, a test case detects a faulti if12

there is a mismatch between versioni (i.e., the version that was created by seeding faulti) and the13

original. A mismatch is detected by comparing, between the golden and fault seeded version, the14

values of all the properties of all the GUI widgets being displayed, after each event.15

The process used for fault seeding was similar to the one usedin earlier work [51,82]. Details16

will not be replicated here. In summary, during fault seeding, 12 classes of known faults were iden-17

tified, and several instances of each fault class were artificially introduced into the subject program18

code in source code statements that were covered by the smoketest cases, thereby ensuring that19

these statements were part of executable code. Care was taken so that the artificially seeded faults20

were similar to faults that naturally occur in real programsdue to mistakes made by developers; the21

faults were seeded “fairly,”i.e., an adequate number of instances of each fault type were seeded.22
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Several graduate students were employed to seed faults in each subject application; they created1

263, 265, 234, and 244 faulty versions for Paint, Present, SpreadSheet, and Word, respectively.2

6.2 Generating and Executing the ESIG-Based Test Suite3

The reverse engineering process was used to obtain the EIGs for the original versions of each4

application. The sizes of the EIGs, in terms of nodes and edges, are shown in Table 2. These5

numbers are important as they determine the number of generated test cases and their growth in6

number as test-case length increases.7

Paint Present SpreadSheet Word
#EIG Nodes 300 321 175 616
#EIG Edges 21,391 32,299 6,782 28,538

#ESIG Nodes 102 50 45 75
#ESIG Edges 233 233 197 204

Table 2: ESIG vs. EIG Sizes

The EIGs were then used to generate all possible 2-way test cases,i.e., the smoke tests. The8

numbers generated were exactly equal to the number of edges in the EIGs – it was quite feasible9

to execute such numbers of test cases in little more than a dayon our 50 machines in parallel. The10

test cases were executed on their corresponding “correct” applications; the GUI state was collected11

and stored. The reader should note that it is quite impractical to generate all possible length 3 test12

cases for these EIGs.13

While new software versions were being obtained (via fault seeding as discussed in Sec-14

tion 6.1), the 2-way EIG-based test suites and GUI state wereused to obtain all possible 3-way15

ESIG covering test cases. The sizes of the ESIGs are shown in Table 2. The table shows that16

the ESIGs are much smaller than the corresponding EIGs. Due to the small number of nodes and17

edges, the number of 3-way covering test cases was 2531, 2080, 2069, and 2345 for Paint, Present,18

SpreadSheet, and Word, respectively. As noted earlier, there is a unique set of length 3 test cases19

for an ESIG; hence, there is a single ESIG test suite per application.20

The 2-way EIG- and 3-way ESIG-based test cases were then executed on the fault-seeded21
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Paint Present SpreadSheet Word
Total Faults 263 265 234 244

2-way EIG-detected Faults 147 139 139 183
3-way ESIG-detected Faults (only new faults) 47 52 39 36

Table 3: ESIG vs. EIG Fault Detection

versions of the applications. The number of faults detectedis shown in Table 3. Note that the last1

row reports the number of “new” faults detected by ESIG. Thistable shows that ESIG-based suites2

are able to detect a large number of faults missed by the EIG.3

6.3 Developing “Similar” Suites4

As mentioned earlier, this study required the development of several new test suites. To minimize5

threats to validity, the suites needed to satisfy a number ofrequirements, discussed next.6

From previous studies, we know that statement, event, and EIG-edge coverage, and size (num-7

ber of test cases) play an important role in the fault-detection effectiveness of a test suite [81].8

For example, a small test suite that covers few lines of code will most likely detect fewer faults9

than another larger suite that covers many more lines. To allow fair comparison of fault-detection10

effectiveness, we needed test suites that have thesame statement, event, and edge coverage, and11

size (number of test cases)as that of ESIG-based test suites.12

Previous studies have also shown that long test cases (number of EIG events) fare better than13

short ones in terms of the number of faults that they detect [86]. Because we did not want the new14

suites to have any disadvantage, we ensured that all their test cases had at least 3 EIG events (note15

that all our ESIG test cases have exactly 3 ESIG/EIG events).16

It is non-trivial to generate these test suites. For example, consider the problem of generating17

a GUI test suite that covers specific lines of code. Because ofthe different levels of abstraction18

between GUI events and code, one would need to manually examine the source code, the rela-19

tionship between events and underlying code, and carefullytailor each event in every test case to20

ensure that it covers a specific line. Because there are no automated techniques to do this task, the21

process will be very resource intensive.22
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Moreover, because the above criteria (same statement, event, and edge coverage, and size) may1

be met by a large number of test suites (with varying fault-detection effectiveness), the process of2

generating different suites and comparing them to the ESIG-based suites needed to be repeated3

several times. In this study, we generated 700 test suites per application and compared their fault-4

detection effectiveness to the ESIG suite.5

GUI test cases are expensive to execute – each test case can take up to 2 minutes to execute (on6

average, each requires 30 seconds). Our 700 suites each for Paint, Present, SpreadSheet, and Word,7

contained 1,054,064; 860,324; 850,808; and 974,235 test cases, respectively; in all 3,739,431 test8

cases. Each test case needed to be run on each fault-seeded version; this task would have taken9

several years on our 50-machine cluster – an impractical task. Other researchers, who have also10

encountered similar issues of practicality, have circumvented this problem by creating atest pool11

consisting of a large number of test cases that can be executed in a reasonable amount of time [15].12

Each test case in the pool is executed only once and it’s execution attributese.g., time to execute13

and faults detected are recorded. Multiple test suites are created by carefully selecting test cases14

from this pool. Their execution is “simulated” by combiningthe attributes of constituent test cases15

using appropriate functions (e.g., set unionfor faults detected). This research will also employ16

the test pool approach to create a large number of test suites. The test-pool-based approach will17

introduce some threats to validity, which we will note in Section 7.18

Finally, we did not want to introduce any human bias when generating these test cases. We19

used a randomized guided mechanical process. A related approach was employed by Rothermelet20

al. [63] to create sequences of commands to test command-based software. In their approach, each21

command was executed in isolation and test cases were “assembled” by concatenating commands22

together in different permutations. Since GUI events (commands) enable/disable each other, most23

arbitrary permutations result in unexecutable sequences.Hence, we used the EIG model to obtain24

only executable sequences.25

We generated test cases in batches of increasing lengths, measured in terms of the number of26

EIG events. We required that each EIG edge be covered by at least N test cases of a particular27
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batch. Moreover, we required that each fault-seeded statement be covered by at leastM test1

cases of the overall pool. The test-case generation processstarted by generating (using a process2

described in the next paragraph) the batch of length-3 test cases until each EIG edge was covered3

by at leastN test cases; they were all executed and their statement coverage was evaluated; the4

next (and all subsequent) batch was generated ONLY IF each fault-seeded statement was not yet5

covered by at leastM test cases.6

The process of generating each batch of lengthi test cases uses the following algorithm:7

1. Initialize afrequency variable for each EIG edge tozero.8

2. For each eventex in the EIG, do9

(a) Add the single eventex to a new empty test caset.10

(b) Form a list of all outgoing edges fromex.11

(c) Select the edge (ex, ey) that has the lowestfrequency, breaking ties via random selec-12

tion. Addey to the test caset.13

(d) Follow the selected edge to its destination eventey.14

(e) Starting atey, recurse thefrequency-based selection and follow-the-edge process15

(described in Steps 2b through 2d and this recursive step) until the desired length is16

obtained, adding events into the test caset.17

3. Add the test caset to the suite.18

4. If all EIG events have been covered and allfrequency ≥ N , stop; otherwise go to the next19

EIG event (via the iteration of Step 2 above).20

The above algorithm was guaranteed to stop because all faults had been seeded in lines that21

were executable by the smoke tests; the count for each statement would ultimately reachM and22

stop. Finally, all the ESIG-based test cases were added to the pool.23

In this study, we setN = 10 and M = 15. This choice was dictated by the availability24

of resources. As described earlier, all the test cases needed to be executed on the fault-seeded25

versions of their respective application. Even with 50 machines running the test cases in parallel,26
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Figure 14: Histograms of Test Case Lengths in Pool

the entire process took over four months.1

The total number of test cases per application is shown in Column 2 of Table 4. The length2

distribution of the test cases is shown as a histogram in Figure 14. As expected, longer tests were3

able to cover more EIG edges than the short ones; hence fewer long test cases were needed to4

satisfy our coverage requirements.5

After all the runs had completed, we had several matrices perapplication: (1) the fault matrix,6

which summarized the faults detected per test case and (2) for each coverage criterion (event, edge,7

statement), a coverage matrix, which summarized the coverage elements covered per test case.8

This test pool was then used to obtain coverage-adequate suites. For example, event-adequate9

suites were obtained by maintaining sets of test cases that covered each ESIG event. Test cases10

were selected randomly without replacement from each set and duplicates eliminated, ensuring that11

each event was covered by the resulting suite. A similar process was used for edge and statement12
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Test Pool TE TI TS TR, TR+E

Event Edge Stmt. TR+I , TR+S

Paint 119,583 103 190 123.64 2531
Present 231,680 50 264 18.24 2080

SpreadSheet 191,966 45 173 14.08 2069
Word 192,042 84 248 30.35 2345

Table 4: Test Pool and Average-Suite Sizes

coverage. The process was repeated 100 times to yield 100 suites. The average size of the suites1

is shown in Columns 3–5 of Table 4.2

Finally,TR was constructed using random selection without replacement ensuring that the final3

size ofTR was the same as that of the ESIG suite. A total of 100 such suites per application were4

obtained. Similarly, each of the suitesTE, TI , TS were augmented with additional test cases,5

selected without replacement at random from the pool to yield TR+E, TR+I , TR+S , respectively.6

The sizes of all these suites was equal to the size of the ESIG suite. Finally, 100 more suites that7

sharedall the characteristics of interest in this study (i.e., event, edge, statement, and size) with the8

ESIG suite were constructed; the symbolTR+E+I+S will be used for these suites.9

Note that the fault-detection effectiveness of each test suite can be obtained directly from the10

fault matrix of the test pool without rerunning the test cases. The results are shown in Figure 1511

as distributions. The box-plots provide a concise display of each distribution, each consisting12

of 100 data points. The line inside each box marks the median value. The edges of the box13

mark the first and third quartiles. The whiskers extend from the quartiles and cover 90% of the14

distribution; outliers are shown as points beyond the whiskers. Visual inspection of the plots15

shows that the fault-detection effectiveness of the ESIG-generated test suite (shown as an asterisk)16

is better than that of most individual similar-coverage andsimilar-sized suites. Some suites that17

lie in the whiskers and outliers do detect more faults than the ESIG suite. However, we remind18

the reader that unlike the ESIG suite, there is no systematicand automatic way to generate these19

suites.20

As demonstrated above, box-plots are useful to get an overview of data distributions. However,21

valuable information is lost in creating the abstraction. For example, it is not clearhow manytest22

41



0

5

10

15

20

25

30

35

40

45

50

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

0

10

20

30

40

50

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

Paint Present

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 D

et
ec

te
d 

F
au

lts

SpreadSheet Word

TE TI TS TR TR+E TR+I TR+S TR+E+I+S TE TI TS TR TR+E TR+I TR+S TR+E+I+S

TE TI TS TR TR+E TR+I TR+S TR+E+I+S TE TI TS TR TR+E TR+I TR+S TR+E+I+S

Figure 15: Fault Detection Distribution

suites detect specific numbers of faults; we are especially interested in the number of suites that do1

better than the ESIG suites. This is important to partially understand our EIG and ESIG suites. We2

now show the number of test suites that detected specific numbers of faults. Figure 17 shows eight3

histograms for TerpPresent, one for each box in the box-plot. The x-axis represents the number of4

faults; the y-axis shows the number of test suites that detected the particular number of faults. To5

allow easy visual comparison, we have used the same x-axis and y-axis scales for all eight plots.6

The vertical dotted line represents the number of faults detected by the ESIG suites. Similar plots7

are shown in Figures 17–19 for Present, SpreadSheet, and Word, respectively.8

For all applications,TE, TI , TS, TR, TR+E consistently did worse than the ESIG suites. For9

a small percentage of test suites,TR+I andTR+S did better than the ESIG suites. In particular,10
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Figure 16: Histogram for Paint

4%, 0%, 6%, and2% of the test suites forTR+I did better than the ESIG suites, for Paint, Present,1

SpreadSheet, and Word, respectively;4%, 0%, 2%, and11% of the test suites forTR+S did better2

than the ESIG suites, for Paint, Present, SpreadSheet, and Word, respectively.TR+E+I+S outper-3

formed all the other suites in most cases; Specifically,15%, 2%, 8%, and9% of the test suites for4

TR+E+I+S did better than the ESIG suites, for Paint, Present, SpreadSheet, and Word, respectively.5

It should be noted that the ESIG approach does better than most test suites considered in this study.6

And that the ESIG-based approach is the only fully automaticapproach to generate the GUI test7

suites; all other suites were obtained from the test poolafter they had been executed and statement8

coverage obtained. Moreover, the performance of theTR test suites indicates that the size of a suite9

plays a very important role in fault-detection. We study this issue in the next section.10

The results discussed thus far have been based on visual examination of the data. We now want11

to determine whether the differences in the number of faultsacross coverage criteria are statistically12

significant. In particular, we want to study the differencesbetween the ESIG suite (a single value13
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“number of faults detected”) and all the other “similar” suites (100 values per distribution). We1

may use asingle sample t-testto test for the significance of the difference between the observed2

fault-detection of the ESIG suite and the mean of each distribution if certain conditions are met.3

Many statistical tests are based upon the assumption that the data is normally distributed. These4

tests are calledparametrictests; a common example includes the t-test [55]. Since all the com-5

putations in parametric tests are based on the data normality assumption, the significance level6

(p-value) cannot be considered reliable when the data distribution is not normal. Tests that do not7

make assumptions about distribution are referred to asnon-parametrictests; these tests rank the8

dependent variable from low to high and then analyze the ranks [55].9

Another factor that plays a role in choice of statistical tests is sample size. If the sample10

size is small, choosing a parametric test with non-normallydistributed data, or choosing a non-11

parametric test with normally distributed data, will yieldan inaccurate p-value. On the other hand,12

if the sample size is large, the distribution can be considered normal based upon the central limit13
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Figure 18: Histogram for SpreadSheet

theorem [55]. Consequently, in practice, with large samplesize, the choice of parametric vs.1

non-parametric does not matter, although the p-value tendsto be large for non-parametric tests;2

however, the discrepancy is small.3

For illustration, the solid line superimposed on the histograms (Figures 17-19) shows the nor-4

mal distribution approximation; informally, the data seems to follow the normal distribution quite5

well. There are several ways to formally determine normality of data. A popular way is to use6

a quantile-quantile (QQ) plot. A quantile is the fraction (or percentage) of points below a given7

value. For example, 70% of the data fall below the “0.7 quantile” point. A QQ-plot shows the8

quantiles of a data set (in our case the number of faults usingdifferent selection criteria) against9

the quantiles of a second data set (normal distribution). A mark (x,y) on the plot means that10

f2(x) andf1(y) share the same quantile, wheref1 andf2 are the functions for the first and second11

data set. If the two sets come from a population with the same distribution, the plot will be along a12

(x = y) straight line. The greater the departure from this reference line, the greater the evidence for13
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Figure 20: Quantile-Quantile plot for Paint
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Figure 21: Quantile-Quantile plot for Present
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Figure 22: Quantile-Quantile plot for SpreadSheet
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Figure 23: Quantile-Quantile plot for Word

the conclusion that the two data sets have come from populations with different distributions [60].1

Figure 21 through Figure 22 show the quantile-quantile plots for each application. The x-axis is2

the normal distribution; the y-axis is the “number of faults” distribution. The QQ-plots more or3

less show a straight line, implying normality.4

Based on normality, we use asingle sample t-testto test for the significance of the difference5

between the observed fault-detection of the ESIG suite and the mean of each distribution. The6

null hypothesis is that the two values are equal; the alternate hypothesis is that they are unequal.7

Note that a separate test is needed per pair (mean of each distribution, fault-detection of the ESIG8

suite value). The resulting p-values were all more than 0.99. Hence we reject the null hypothesis9

and accept the alternate hypothesis; there is a significant difference between fault-detection of the10

ESIG suite and the mean fault-detection of each of the “similar” suites. The ESIG suites are better11

at detecting faults compared to same-sized test suites thatcover essentially the same events, edges,12

and statements. This result helps to answer the primary question raised in this study.13
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6.4 Discussion1

We now present details of why the ESIG-based test suites wereable to detect more faults than other2

test suites. We specifically looked at three related issues:reachability, manifestation, and number3

of test cases. We note that the first two issues are related to the RELAY model [61, 70] of how a4

fault causes a failure on the execution of some test. We definereachabilityas the coverage of the5

statement in which a fault was seeded, andmanifestationas the fault leading to a failure so that our6

GUI-based test oracle could detect it. As observed in [61], both are necessary conditions for fault7

detection. The data in Figure 15 indicates that the ESIG-based test suites were able to outperform8

their coverage-adequate equivalent counterparts. Hence,they must have been more successful,9

than their counterparts, at the combination of reachability and manifestation of several faults. We10

feel that this behavior is due to the nature of the ESI relationship, which is based on observed GUI11

state, and hence the software’s output. Executing tests that focus only on ESI events increases12

the likelihood that a fault will be revealed on the GUI, and hence detected by our GUI-based test13

oracle. Although we will not attempt to analyze this behavior in great detail here (indeed this is14

a direction for future research), we will provide some quantitative data to show evidence of this15

phenomenon by studying the test cases in the pool.16

Figure 24 shows data of the number of test cases that cover a fault-seeded statement, and the17

number of test cases in the pool that detect it. The figure is divided into four parts, one for each18

subject application. Each part is a 3-column table (long tables are wrapped); Column 1 is the19

seeded fault number, corresponding to a statement in which the fault was seeded; Column 2 is the20

number of test cases that detected the fault; Column 3 is the number of test cases that did not detect21

the fault even though they executed the fault-seeded statement; the fault number entry is shaded if22

at least one ESI test case detected it. For example, the statement that contained Fault 21 of Paint23

was executed by a total of 845 test cases, of which 11 detectedit; the fault was detected by at24

least one ESI test case. On the other hand, Fault 127 of Paint was not detected by any ESI test25

case; it was however detected by 42 of the total 42+267 test cases. Hence, a statement-coverage26

adequate test suite would have a probability of42
42+267

of detecting this fault (assuming that faults27
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158 1 1247 248 3 115 214 1 262 94 45 479 226 12 1130 156 126 2336
159 1 1173 255 3 115 215 21 4242 157 46 484 232 13 1048 209 68 1238

65 3 721 256 3 115 212 4 520 222 46 484 33 172 13445 157 131 2331
36 4 869 261 3 115 33 2 259 218 91 912 34 179 13438 158 130 2146
52 5 830 262 3 115 73 4 257 127 48 476 163 129 9679 88 4 65
64 5 772 42 10 381 61 6 255 177 49 481 233 14 1037 93 4 65
33 6 856 47 21 762 34 6 250 102 44 431 164 133 9675 210 74 1185
34 7 843 46 10 359 30 7 254 151 19 169 218 35 2429 211 74 1185
90 6 722 93 21 748 62 7 254 106 50 425 180 67 4512 212 70 1072

179 1 120 98 21 730 71 7 250 57 26 207 15 25 1681 155 167 2295
180 1 118 68 21 729 72 7 250 58 30 230 200 25 1681 159 175 2101
246 1 117 54 11 379 80 7 249 59 30 230 214 37 2427 102 5 57
249 1 117 45 12 383 32 8 253 105 54 411 220 37 2427 30 7 75
191 1 116 30 4 127 36 8 248 154 133 862 160 69 4510 66 6 63
192 1 116 31 4 127 38 8 248 198 107 601 161 70 4509 67 6 63

89 7 773 43 12 373 162 8 247 197 115 593 133 12 772 79 6 63
211 1 110 67 23 707 192 9 258 199 118 590 182 71 4508 80 6 63
212 1 110 124 3 89 216 10 282 182 45 217 230 17 1053 83 6 63

50 10 934 97 27 771 56 8 225 196 124 584 47 2 123 101 6 56
101 24 2206 41 15 402 29 9 252 76 46 215 48 2 123 91 7 62
102 23 2093 87 5 127 161 131 3119 115 96 428 17 28 1678 76 7 55

85 8 720 73 28 703 40 25 580 89 103 421 28 311 18223 103 7 55
22 9 796 72 31 744 8 177 4086 48 53 210 231 19 1051 81 8 61
77 9 735 44 15 339 167 121 2780 47 54 209 8 57 3150 85 8 61
57 4 311 86 11 180 66 11 250 99 98 377 208 77 4224 25 10 72
21 11 845 14 1 15 75 11 250 159 682 2479 192 83 4496 29 10 72
51 13 874 120 15 220 166 138 3112 55 58 205 234 19 1025 114 12 72
56 5 331 32 10 122 194 23 517 152 715 2446 32 19 1010 57 11 58
19 13 850 253 9 109 165 139 3111 123 106 357 39 87 4481 97 11 58
20 14 891 119 19 216 178 12 260 118 60 202 210 82 4219 116 14 70

177 2 125 259 11 107 185 12 255 122 63 199 2 206 10485 117 17 65
96 12 711 59 33 314 43 27 568 211 169 355 54 393 19389 118 20 64
55 6 354 58 36 337 6 198 4065 224 168 209 209 89 4212 120 21 62

100 12 704 123 25 207 5 177 3630 93 301 223 221 67 3140 121 21 62
247 2 116 128 39 270 9 206 4057 90 310 214 20 36 1670 160 54 153
250 2 116 127 42 267 7 208 4055 202 313 211 204 69 3138 115 27 57
260 2 116 134 853 3273 41 30 575 117 314 210 211 93 4208 119 30 54

76 14 781 178 28 99 85 220 4043 201 322 202 41 34 1512 32 76 100
26 2 108 229 28 98 12 223 4040 203 332 192 38 105 4463 6 122 129
18 18 920 200 357 372 16 32 573 200 333 191 191 74 3100 24 56 28
66 15 764 136 747 446 78 228 4035 147 933 325 45 3 122 122 60 24
69 14 688 137 557 260 187 29 508 148 936 322 130 20 786
37 17 834 104 26 439 5 84 3123
74 16 755 17 34 571 53 53 1916
75 15 707 229 75 1216 224 10 300
92 15 698 221 32 498 37 20 576
71 15 696 96 32 492 55 68 1074
99 17 769 137 15 229 225 201 3006

125 2 90 153 267 3996 56 76 1066
126 2 90 95 33 491 36 44 569

84 17 762 184 35 495 44 17 164
48 16 717 52 18 245 18 237 1469
80 16 714 227 37 490 229 738 404
94 16 705 111 37 487 30 745 397
83 16 704 186 37 487 228 746 396
82 17 743 150 13 168 42 1030 516
79 17 719 82 39 491 43 1030 516
88 1 42 158 39 491 31 746 362
81 16 664 226 39 491 132 615 191
70 18 746 225 41 489 131 618 188
91 18 738 128 41 483 78 546 157

251 2 82 156 57 668 79 546 157
252 2 82 220 42 488 75 1155 330

17 24 978 108 38 437 136 1161 324
78 19 762 176 44 486 135 614 170
95 19 761 219 84 919 134 615 169

245 3 115 79 45 485 76 1088 296
77 544 137

SpreadSheetPaint Present Word

Figure 24: Test Cases Covered Faulty Statements and Their Fault Detection.

50



are independent). The data in Figure 24 is in fact sorted by this probability, giving us a sense1

of the “hardness” of the fault for statement-coverage adequate test suites. This data helps us to2

better interpret the results of Figure 15. First, the ESIG test suites did detect many of the seeded3

faults. Second, they did better thanTS because they detected many of the “hard” faults (this was4

most apparent in Paint and SpreadSheet). Third, some faultswere detected by many of the test5

cases that executed the statement. For example, Fault 136 inPaint was detected by 747 of the total6

747+446 test cases that executed the statement in which it was seeded. The fault was seeded in the7

handler of a termination event that closes theAttributes window and applies the attributes (if8

any have changed) to the current image on the main canvas. Theseeded fault caused the image size9

to be computed incorrectly, resulting in an incorrectly sized image whenever at least one attribute10

in theAttributes window is modified by the user. Because there are many permutations of11

modifying the attributes, a large number of test cases are able to detect this fault (12 in the ESIG12

test suite and 735 in the rest of the test pool). In general, statement coverage adequate test suites13

do really well for these types of faults that can be triggeredin many different ways.14

Forth, several faults were detected by very few test cases. Fault 34 of Paint is an example. This15

fault flips the conditional statement in an event handler of atype of curve tool. The condition is16

to check whether the curve tool is currently selected; if yes, then the curve stroke is set according17

to the selected line type for the curve tool. Due to the fault,the curve stroke is incorrectly set,18

resulting in an incorrect image to be drawn on the main canvasonly when the event sequence:<19

SelectCurveTool; SelectLineType; DrawOnCanvas > is executed. If the first two events are20

not executed, thenDrawOnCanvas does not trigger the fault even if the statement containing the21

seeded fault is executed. Hence, although there are many test cases that cover the faulty statement22

(850), only 7 test cases in the test pool detected the fault. One of them is the ESI test case; ESI-23

relationships were found between the three events. In general, statement coverage adequate test24

suites do not do well for faults that are executed by many event sequences but manifest as failures25

in very few cases.26

The size of a suite seems to play a very important role in fault-detection. Indeed, theTR test27
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158 0.0212 41 0.2745 214 0.0090 156 0.4020 47 0.0214 88 0.0480
159 0.0212 44 0.2745 33 0.0179 157 0.4073 48 0.0214 93 0.0480
179 0.0212 120 0.2745 73 0.0354 222 0.4179 45 0.0320 102 0.0596
180 0.0212 74 0.2899 212 0.0354 218 0.4335 224 0.1027 66 0.0711
246 0.0212 48 0.2899 34 0.0527 127 0.4916 226 0.1219 67 0.0711
249 0.0212 80 0.2899 61 0.0527 177 0.5313 133 0.1219 79 0.0711
191 0.0212 94 0.2899 30 0.0612 102 0.5599 232 0.1314 80 0.0711
192 0.0212 83 0.2899 62 0.0612 151 0.5793 233 0.1408 83 0.0711
211 0.0212 81 0.2899 71 0.0612 106 0.5869 230 0.1683 101 0.0711
212 0.0212 37 0.3049 72 0.0612 57 0.6051 44 0.1683 30 0.0824

88 0.0212 99 0.3049 80 0.0612 58 0.6156 231 0.1861 91 0.0824
14 0.0212 84 0.3049 32 0.0696 59 0.6191 234 0.1861 76 0.0824

177 0.0419 82 0.3049 36 0.0696 105 0.6456 32 0.1861 103 0.0824
247 0.0419 79 0.3049 38 0.0696 154 0.6551 130 0.1949 81 0.0936
250 0.0419 18 0.3196 56 0.0696 198 0.6643 37 0.1949 85 0.0936
260 0.0419 70 0.3196 162 0.0696 197 0.6733 15 0.2373 25 0.1156

26 0.0419 91 0.3196 29 0.0780 199 0.6933 200 0.2373 29 0.1156
125 0.0419 78 0.3340 192 0.0780 182 0.6987 17 0.2617 57 0.1264
126 0.0419 95 0.3340 216 0.0862 196 0.7120 41 0.3082 97 0.1264
251 0.0419 119 0.3340 66 0.0944 76 0.7146 218 0.3157 114 0.1371
252 0.0419 47 0.3619 75 0.0944 115 0.7803 20 0.3230 116 0.1580

65 0.0622 93 0.3619 178 0.1026 89 0.7823 214 0.3303 117 0.1885
245 0.0622 98 0.3619 185 0.1026 48 0.7975 220 0.3303 118 0.2179
248 0.0622 68 0.3619 150 0.1106 47 0.7975 36 0.3793 120 0.2274
255 0.0622 102 0.3886 137 0.1265 99 0.8324 53 0.4370 121 0.2274
256 0.0622 67 0.3886 52 0.1498 159 0.8441 8 0.4609 115 0.2823
261 0.0622 101 0.4016 151 0.1575 55 0.8469 180 0.5162 119 0.3083
262 0.0622 17 0.4016 215 0.1725 152 0.8626 221 0.5162 160 0.4850
124 0.0622 123 0.4143 194 0.1873 123 0.8663 55 0.5215 24 0.4975

36 0.0820 97 0.4388 40 0.2019 118 0.8722 160 0.5266 122 0.5216
57 0.0820 73 0.4507 57 0.2090 122 0.9101 204 0.5266 209 0.5664
30 0.0820 178 0.4507 104 0.2090 211 0.9339 161 0.5317 212 0.5769
31 0.0820 229 0.4507 43 0.2161 224 0.9390 182 0.5368 210 0.5972
52 0.1014 72 0.4848 187 0.2301 93 0.9407 191 0.5516 211 0.5972
64 0.1014 59 0.5064 41 0.2371 90 0.9412 56 0.5612 32 0.6070
56 0.1014 58 0.5371 58 0.2371 202 0.9453 208 0.5659 6 0.7767
87 0.1014 128 0.5659 59 0.2371 117 0.9500 210 0.5888 156 0.7874
33 0.1205 127 0.5929 16 0.2507 201 0.9505 192 0.5933 158 0.7976
90 0.1205 200 0.9995 96 0.2507 203 0.9979 5 0.5977 157 0.8001
55 0.1205 137 1.0000 221 0.2507 200 0.9984 39 0.6105 155 0.8716
34 0.1391 136 1.0000 95 0.2574 147 0.9998 209 0.6189 159 0.8836
89 0.1391 134 1.0000 17 0.2641 148 0.9998 211 0.6351
85 0.1573 184 0.2707 38 0.6796
22 0.1751 111 0.2837 163 0.7530
77 0.1751 186 0.2837 164 0.7635

253 0.1751 227 0.2837 33 0.8451
50 0.1926 108 0.2902 34 0.8564
42 0.1926 82 0.2965 225 0.8869
46 0.1926 158 0.2965 2 0.8928
32 0.1926 226 0.2965 18 0.9235
21 0.2097 128 0.3091 28 0.9657
54 0.2097 225 0.3091 54 0.9859
86 0.2097 220 0.3153 77 0.9973

259 0.2097 102 0.3276 78 0.9973
96 0.2264 176 0.3276 79 0.9973

100 0.2264 79 0.3336 135 0.9987
45 0.2264 94 0.3336 132 0.9987
43 0.2264 182 0.3336 134 0.9987
51 0.2428 76 0.3396 131 0.9988
19 0.2428 157 0.3396 229 0.9997
20 0.2588 222 0.3396 30 0.9997
76 0.2588 127 0.3514 228 0.9997
69 0.2588 177 0.3572 31 0.9997
66 0.2745 106 0.3630 42 1.0000
75 0.2745 48 0.3800 43 1.0000
92 0.2745 47 0.3856 76 1.0000
71 0.2745 105 0.3856 75 1.0000

136 1.0000

Paint Present SpreadSheet Word

Figure 25: Probability of Detecting Faults by Random Test Cases.
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suites, which were the same size as the ESIG-based suites, did better (in most cases) than their1

coverage-adequate counterparts. We feel that this behavior is an artifact of the density of our fault2

matrices. A large number of test cases are successful at detecting many “easy” faults. Even if test3

cases are selected at random, given adequate numbers, they will be able to detect a large number4

of these easy faults. For example, given 192,042 test cases in the pool for Word and the size ofTR5

being 2345, the probability that Fault 24, which is detectedby more than 84 test cases in the pool,6

is detected by at least one test case inTS is 0.49 – this is quite high. In Figure 25, we show the7

probability that a random suite of its corresponding ESI-suite size would detect a particular fault.8

This data shows that many of these difficult faults are detected by at least one ESIG-based test9

case, improving their fault-detection effectiveness. Moreover, 16 faults in Word have a detection10

probability of more than 0.25. This number is much larger forthe other three applications, helping11

to understand whyTR and the other suites that included randomly selected test cases did so well.12

Finally, we wanted to examine why some of the faults were not detected. We manually ex-13

amined each fault and tried to manually devise ways of manifesting the fault as a failure. We14

determined that:15

1. several of the faults were in fact manifested as failures on the GUI but our test oracle was16

not capable of examining these parts of the GUI,17

2. very few faults caused failures in non-GUI output,18

3. several of the undetected faults require even longer sequences,19

4. the effect of several faults was masked by the event handler code even before our test oracle20

could detect it,21

5. some faults crashed their corresponding fault-seeded version.22

We show the numbers of these faults in Table 5. The large number of “Ignored Widget Proper-23

ties” has prompted us to improve our test oracles for future work.24

This controlled study showed that the automatically identified ESI relationships between events25

generate test suites that detect more faults than their code-, event-, and event-interaction-coverage26

equivalent counterparts. Moreover, we saw that several of our missed faults remained undetected27
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Ignored Widget Non-GUI Longer Masked Crash Total
Properties Failure Sequence Error

Paint 0 0 1 6 0 7
Present 13 0 4 0 0 17

SpreadSheet 9 2 8 5 3 27
Word 5 0 4 11 0 20

Table 5: Undetected Faults Classification

because of limitations with our automated GUI-based test oracle, and others required even longer1

sequences.2

7 Conclusions and Future Work3

This paper presented a new fully automatic technique to testmulti-way interactions among GUI4

events. The technique is based on analysis of feedback obtained from the run-time state of GUI5

widgets. A seed test suite is used for feedback collection. The technique was demonstrated via two6

independent studies on eight software applications. The results of the first study showed that the7

test cases generated using the feedback were useful at detecting serious and relevant faults in the8

applications. The second study compared the ESIG-based test suite to similar EIG-based suites. It9

showed that the added effectiveness is due to targeted testing of the identified ESI relationships, not10

an incidental side-effect of the size of the suite, nor the additional events and code that it covers.11

As is the case with all research involving empirical studies, these studies are subject to threats12

to validity. These threats need to be considered in order to assess their impact on the results.13

First is the selection of subject applications and their characteristics. The results may vary for14

applications that have a complex back-end, are not developed using the object-oriented paradigm,15

or have non-deterministic behavior. Second, in study 2, thetest pool approach was used due16

to practical limitations. It is expected that the repetition of the same test case across multiple test17

suites will have an impact on some of the results. The algorithm used to create the test pool ensures18

that each event (the first event in the test case) is executed in a known initial state; the choice of19

this state may have an effect on the results. Third, the Java API allow the extraction of only 1220
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properties of each widget; only these properties were used for obtaining the ESI relationship via1

GUI state; moreover, faults are reported for mismatches between these 12 properties. Fourth,2

we used one technique to generate test cases – using event-interaction graphs. Other techniques,3

e.g., using capture/replay tools and programming the test casesmanually may produce different4

types of test cases, which may show different execution behavior. Fifth, in study 2, a threat is5

related to our measurement of fault detection effectiveness; each fault was seeded and activated6

individually. Note that multiple faults present simultaneously can lead to more complex scenarios7

that include fault masking. Finally, several threats are related to fault seeding in study 2. Threats8

from issues such as human decision-making are minimized by using an objective technique for9

uniformly distributing faults based on functional units.10

This research has presented several exciting opportunities for future work. In the immediate11

future, the three contexts for the cases will be simplified and, if possible, combined. The current12

special treatment of termination events, which led to an additional two contexts, will be revised.13

One possibility is the revision of the EIG model; the elimination of all termination events from14

this model will be explored. This revision will also lead to the definition of new, fundamentally15

different cases for the ESI relationship.16

The results showed that certain events in the GUI dominate the ESI relationship. These events17

will be studied and classified. In the future, additional GUIapplications and software problems18

will be studied. The run-time state information was collected using the Java Swing API for stan-19

dard Swing widgets. Future work involves incorporating customized API for application-specific20

widgets into feedback collection and analysis.21

The current test-case generation algorithms output a set ofall possible event sequences bounded22

by a pre-determined length. As the goal of this work is to generate multi-way interactions among23

GUI events, other techniques (such ascovering arrays[85]) designed to minimize the number of24

test cases while retaining high interaction coverage will be explored.25

The analysis summarized in Section 5 led to a deeper understanding of the relationship be-26

tween real GUI events and the underlying code in fielded GUI applications. This may lead to27

55



new techniques that combine dynamic analysis of the GUI and static analysis of the event handler1

code. For example, the code for related events may be given toa static-analysis engine that could2

examine the code for possible interactions that are only apparent at the code level,e.g., data-flow3

relationships.4

The feedback currently obtained at run time is in the form of GUI widgets. Mechanisms, such5

as reflection, in modern programming languages may be used toobtain additional feedback from6

non-GUI objects. The definition of state, in terms of a set of objects with properties and values, is7

general; it may be applied to any executing object. Some of the six cases may be adapted for non-8

GUI objects. Another straightforward way to enhance the feedback is to instrument the software9

for code coverage and run-time invariant collection. This feedback may be used to generate new10

types of test cases. Another logical extension of this work is to examine the redundancy in our11

ESIG suites via existing test minimization techniques developed for user interfaces [9].12

Some of the challenges of GUI testing are also relevant to testing of event-driven software,13

e.g., web applications and object-oriented software. One way totest these classes of software is14

to generate test cases that are sequences of events (e.g., web user actions or method calls). Some15

of the techniques developed in this research have already been used by other researchers to prune16

the space of all possible event interactions to be tested forweb applications [2]; similar extensions17

will be explored for object-oriented software.18
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