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Abstract

Graphical user interfaces (GUIs) are the sole mode of iotiera between end-users and
back-end code for almost all of today’s software applicetioBecause of this strategic role
of GUIs, their quality has become important. During GUI itegt test cases—modeled as se-
guences of user events—sample the vast input space of aibfsequences with the goal
of detecting faults; for effective testing, it is importantsample this space carefully. Exist-
ing techniques either sample manually or employ manualhsttacted abstract models—the
abstraction and/or subsequent test-case generatioritaigsrenable sampling.

This paper presents an alternative approach to GUI testiilg focus is on developing
a fully automaticmodel-driven technique to generate GUI test cases. Thaitpahis novel
in that it uses feedback from the execution dkaed test suite’on a GUI. The seed suite is
generated automatically using an existing structekant-interaction graplfEIG) model of
the GUI. During its execution, the run-time effect of eachl@\ent on all other events pin-
points new importanévent-semantic interactiofieSl) relationships between them, which are
used to automatically create BSI graph(ESIG) model and generate new test cases. Together
with a reverse-engineering algorithm used to obtain the, EE&d suite, ESIG, and new test
cases, the feedback-based technique yields a fully auimneat-to-end GUI testing process.
Two independent studies on eight applications demondtnatehe feedback-based technique
(1) is able to significantly improve existing techniques datb identify serious problems in

the software and (2) the ESI relationships captured via Gatksyield test suites that most
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often detect more faults than their code-, event-, and awgsitaction-coverage equivalent

counterparts.

1 Introduction

Automated test case generation (ATCG) has become incggggopular due to its potential to
reduce testing cost and improve software quality [22]. Aidgpapproach used for ATCG is
to create an abstract model.g, state-machine model [8, 67, 73], event-flow model [44])rodf t
application under test (AUT) and employ the model to gemetast cases. While successful at
reducing overall testing cost, in practice, ATCG contintebe resource-intensive, especially to
create and maintain the model. A few researchers have rezgatjtinat the tasks of model creation
and maintenance may be aided by leveraging the executioftsed some existing test cases.
Consequently, they have developattomated feedback-based technigieeaugment the models
[14,21,25-27,37,52,54,83,84,86]. These techniquesreegn initial test case/suite to be created,
either manually or automatically, and executed on the sofwFeedback from this execution is
used tcautomaticallygenerate additional test cases. The nature of feedbackdefsgely on the
goal of the ATCG algorithm. A common example of feedback i®deccoverage report used to
automatically generate additional test cases that impooeeall test coverage [25-27, 37,52, 54].
Few techniques use feedback from the AUrMia-time statd¢o generate additional test casesy,
in the form of outcomes of programmer-supplied predicatdise code to cover all non-isomorphic
inputs [14], operational abstractions to cover increasednam behaviors [21, 84], and partially
generated non-exception-throwing method-call sequetoogsnerate longer sequences [57].
This paper presents a new feedback-based technique fanatged testing of graphical user
interfaces (GUIs). The technique starts with an automifticeversed engineeredructuralmodel
of the GUI, employs the model to automatically generateifipggpes of test cases (sequences of
GUI events that exercise GUI widgets), executes them, aesl e execution results as feedback
to automatically generate additional test cases. The #teddIls an abstraction of the run-time

state of GUI widgets. As noted by Mathur [41], there is a sfroglationship between events in a
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software and its states; GUIs are no exception. Because @&kemay drive the software into
potentially new states, this feedback-based approachdges run-time GUI state information to
prune the state-space, thereby helping to reduce the nwhtest cases that need to be executed.
The nature of GUIs, their test cases, and the maturity of misting model-based GUI test-
case generation algorithms lend themselves to feedbasdlachniques for a number of reasons.
First, GUI testing is extremely important because GUIs aeduas front-ends to most software
applications and constitute as much as half of software¥e66]. A correct GUI is necessary
for trouble-free execution of the application’s undertyitbusiness logic” [10, 67, 73]. Second,

our existing fully automatic model-based GUI test-caseegation algorithms produce test cases

that exhaustively tegtvo-way interactionbetween GUI events; these test cases are called smoke

tests [45]. They are used as the basis for feedback colfeciq they form the seed suite. Finally,
our existing tools are easily adapted to monitor and stareuh-time state of the GUI.

Our previous empirical studies showed that smoke test qasesl a large number of GUI
faults; we and other researchers have shown that additfenlds may be detected by testing
certain types of multi-way interactions [10,49]. The chatie, of course, is how to systematically
generate test cases for these interactions. Exhaustesiyng them is impossible because the
number of GUI test cases grows exponentially with numbewrehts in the test case. A practical
alternative is to identify small subsets of events thatraxtein interesting ways with one another
and hence should be tested together, and generate testteagest multi-way interactions among
members of each subset. In this paper, we use the feedbaek-@achnique tautomatically
identify such sets of events.

The new feedback-based technique has been used in a fulinatit end-to-end process for
a specific type of GUI testing. The seed test suite (in thi® ¢he smoke tests) is generated
automatically using an existingvent-interaction graptiEIG) model of the GUI. The EIG is a
structural model of the GUI. More specifically, it represesit possible sequences events that
may be executed on the GUI. Note that an EIG has the flavor ofdhgentional control-flow

model that represents all possible execution paths in aranod3], and a data-flow model that
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represents all possible definitions and uses of a memortidoc®2]; except that an EIG is at the
GUI event level of abstraction.

The EIG-generated smoke suite is executed on the GUI usiagitematic test case replayer.
During test execution, the run-time state of GUI widgetsallected and used to automatically
identify anEvent Semantic InteractidieSl) relationship between pairs of events. This relatigms
captures how a GUI event is related to another in terms of honodifies the other’'s execution
behavior. Informally, event, is ESl-related ta, iff e, influences the run-time behavior of,
where “run-time behavior” is evaluated in terms of properinf GUI widgets.

The ESI relationships are used to automatically constrmevamodel of the GUI, called the
Event Semantic Interaction GraffkSIG). Because the seed suite is generated from the EIG (a
structural model) and the ESI relationship is obtained rmm#eof event execution (a dynamic
activity), the ESIG captures certain structural and dymaaspects of the GUI. The ESIG is then
used to automatically generate new test cases. These sestltave an important property — each
event is ESl-related to its subsequent event, it was shown to influence the subsequent event
during execution of the seed suite.

This entire process, including the scripts required to peenecute, and tear down test cases,
has been implemented and executes without human inteoventwo independent studies have
been conducted on eight GUI-based Java applications taiaeabnd understand this new ap-
proach.

In an earlier report of this work [86], we described the fitsidy, which used four well-tested
and popular applications downloaded from SourceForgesttiy demonstrated that the feedback-
based technique improves our existing techniques witk hitiditional cost. The ESI relationship
is successful at identifying complex interactions betw&&i event handlers that lead to serious
failures. We presented details of some failures, emphagian why they were not detected by
the earlier techniques. The failures were reported on thecg&orge bug reporting sitein re-

sponse, the developers fixed some of the bugs. The develogensever detected our reported

1For example, https://sourceforge.net/tracker/?funtzideatid=535427&aid =1536078&groujal=72728.
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failures before because their own tools and testing presessre unable to comprehensively and
automatically test the applications.

We now extend the research with the second study, conduntéaliofault-seeded Java appli-
cations developed in house; this study shows that (1) thenaatically identified ESI relationships
between events help to generate test suites that detectfendte than their code-, event-, and
event-interaction-coverage equivalent counterparns;€&ain characteristics of the seeded faults
prevent their detection by the earlier technique, but netriew technique, (3) several of our
missed faults remain undetected because of limitatiorts eut automated GUI-based test oracle
(a mechanism that determines whether a test case passéday;, nd (4) several of the remaining
undetected faults require long event sequences.

Finally, we note that the use of software models to geneejaences of events (commands,
method calls, data inputs) for software testing is not newmirous researchers have developed
techniques that employ state machine models [1,11,173288274], grammars [5,31,42,71,72],
Al planning [30, 39,47, 66], genetic algorithms [35], prbb&tic models [75, 77—-79], architecture
diagrams [65], and specifications [32,33] to generate segbhences. All the above techniques are
useful, in that they can be used to generate different typiesbcases for different domains. All of
them are based on manually created models. The resear@mniges$n this paper is orthogonal to
the other model-based techniques; we focus on enhancingsdimg model (in our case the model
is obtained automatically) via test execution feedback.particular, we leverage our existing
graph-traversal techniques based on an automaticallyn@lotaeverse engineered GUI model [46,
50] to develop a fully automatic model-based testing tegii Run-time feedback is used to
enhance the model and generate new test cases. We feelighigfpth of approach may be used
for the other model-based techniques mentioned above e titker models may also be enhanced
with software execution and test execution feedback.

The main contributions of this work include:

e extension of our previous work on automated, model-basedematic GUI test-case gen-

eration,
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e definition of new relationships among GUI events based onGhi widgets that they
use/influence,

e utilization of run-time state to explore a larger input spand improve fault-detection ef-
fectiveness,

e immersion of the feedback-based technique into a fully mattc end-to-end GUI testing
process and demonstration of its effectiveness on fieldddaart-seeded applications,

e empirical evidence tying fault characteristics to the tgpeest suites, and

e demonstration that certain faults require well-craftechbmations of test cases and test

oracles.

The next section discusses related literature. Sectiontr@dnces basic GUI concepts and
reviews the EIG model that forms the basis of the new ESIG ind8ection 4 defines the ESI
relationship and uses it to define an ESIG. Sections 5 and leateathe new feedback-based

technique. Finally, Section 7 concludes with a discussidntare work.

2 Related Work

To the best of our knowledge, this is the first work that uédizun-time information as feedback
for model-based GUI test-case generation. However, me-tnformation has previously been
employed for various aspects of test automation, and mioalsdd testing has been applied to
conventional software as well @vent-driven softwar€EDS). This section presents an overview
of related research in the areas of model-based and ED8ge&tUI testing, and the use of run-

time information as feedback for test generation.

2.1 Model-based & EDS Testing

Model-based testing automates some aspect of softwanmegestemploying a model of the soft-
ware. The model is an abstraction of the software’s behdxaon a particular perspectiveq,

software states, configuration, values of variables,;aterjay be at different levels of abstraction,

6
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such as abstract states, GUI states, internal variablesstat path predicates. Models may be de-
rived from a formal specification of the software or revensgipeered by observing the software’s
execution behavior. They may be described using variougiages and mathematical objects.
State Machine Models: The most popular models used for software testingsséage machine
models They model the software’s behavior in terms of its abstoaatoncrete states; they are
typically represented as state-transition diagrams. r@ewgpes of state machine models have
been used for software testing, suchFasite State Machine Modeld&=SM) [4, 6, 24, 28],UML
Diagram-based Modelgl0] andMarkov Chaing34, 76].

There have been numerous reports of success stories usMgnielels for test automa-
tion. For example, Microsoft researchers [6] modeled therob flow of an object-oriented soft-
ware under test as an FSM and described it usingAtietract State Machine LanguagasmL
research. mcrosoft.com fse/ asm ). A traversal engine (part of Spec Explorer, a tool
for advanced model-based specification and conformantad®sused the resulting finite state
machine to produce behavioral tests to cover all exploesitions. Honget al. also used FSMs
for unit testing of classes in object-oriented programeythsed FSMs to model interactions be-
tween class data members and member functions [28]. The F&iMsedclass state machines
(CSM), were then transformed intass flow graphg§CFG); test case generation was done by
selecting test cases according to the locations of defitstamnd uses of variables in the CFG. In
another reported research, Farehal. used FSM models to test implementations of #@57.X
standard and/ava exception handling [24]. Both state machine models weratetefrom the
software specifications and represented usinga®d CHA Definition Languagéfhe GOTCHA-
TCBean test generator was then used to automatically exgiierstate space from the model and
generate an abstract test suite.

Various extensions of FSMs have also been used for testingselextensions use variables
to representontextin addition to states; the goal is to reduce the total numbstates by using
an orthogonal mechanism, in the form of explicit variabtesselect state transitions. For exam-

ple, anextended finite state machi(lEFSM) makes use of a data state along with the input for
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state transformation [4]; this EFSM is used by a tool calledtMaster to generate test cases by
traversing all paths from the start state to the exit state.

Because test cases for EDS are sequences of events, matilygmas and researchers have
found it natural to use state machine models for testing EIBS36,38,53]. The EDS is modeled in
terms of states; events form transitions between statgmrithms traverse these machine models
to generate sequences of events. For example, Cangilzdlhave applied state machine models
to test object-oriented reactive systems [16]. Objecéstate modeled in terms of instance variable
values; transitions are obtained from method invocatitest;cases are sequences of method calls
and are generated by traversing the model.

Table-based Models: Table-based models define software behavior in the formbddésaelating
model elements such as system modes, conditions, eventsramsl These tables are then used as
the basis for test case generation. The table-based mgagiproach SCR, which is an abbrevia-
tion for software cost reductigrhas been used for security functional testing [12] Btas Polar
Landersoftware to detect faults [13].

Grammars: Production grammars have been used to test large, complesadety-critical soft-
ware systems; a popular example is the Java Virtual Macléi@p [The grammars are collections
of non-terminal to terminal mappings that resemble requa@sing grammars. A production gram-
mar produces a programg., a set of terminals, or tokens) starting from a high-leveladiption
(i.e., a set of non-terminals). The composition of the generatedrams models the restrictions
placed on the software by the production grammar.

Summary: The above model-based testing techniques rely heavilyem#nual or semi-manual
construction of the abstract model. Consequently, theypiamee to errors. Moreover, any change
to the software requires reconstruction of the model, wimctypically cumbersome and time

consuming.
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2.2 GUI Test Case Generation

Several automated techniques have been developed for Gildase generation. All of them use
a model of the software and algorithms to generate test ¢asashe model.
State-Based Techniques:Finite state machines have been used to model GUIs [7, 73]JURsG
state is represented in terms of its windows and widget$t eser event triggers a transition in the
FSM. For the sake of test-case generation, a test case isi@s®gof user events and corresponds
to a path in the FSM. As is the case for conventional softwaisz(ssed in the previous section),
FSMs for GUIs also have scaling problems; this is due to tirgelaumber of possible states and
user events in modern GUIs. Several GUI-domain-specifeergits have been made to handle the
scalability issue. For example, Belli [7] converted a GUMFBIto simplified regular expressions.
The regular expressions were used to generate event segueSbehadt al. [67] proposed
variable finite state machine (VFSM), which augmented an F&\ GUI with global variables
that can assume a finite number of values during the execotiartest case. The value of each
variable is used to determine the next state and output ponse to an event. Event transition
may modify values of these variables.

Al planning has also been used to manage the state-spaosiexpby eliminating the need for
explicit states. Al planning models the infinite state spafcee GUI [48]. A description of the GUI
is manually created by a tester; this description is in tmefof planning operatorswhich model
the preconditions and effects (post-conditions) of each &ignt. Test cases are automatically
generated from tasks (pairs of initial and goal states) gkimg a planner which searches for a
path from the initial state to the goal state. However, thaliguof the test cases is determined by
the choice of tasks. Moreover, the manual operator defmdiud task selection may be expensive
for large GUIs.
Genetic Algorithm: Test cases have been generated using genetic algorithmsio novice
users [35]. The approach uses an expert to generate an @vidiat sequence manually and then
uses genetic algorithm techniques to generate longer segsie The assumption is that experts

take a direct path when performing a task via the GUI, wheneage users take longer, indirect
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paths. Although useful for generating multiple test caestechnique relies on an expert to gen-
erate the initial test case. The final test suite dependsliaon the paths taken by the expert user.
The idea of using a task and generating an initial test cagebmdetter handled by using plan-
ning, since multiple test cases may be generated autorthaacaording to some predetermined
coverage criterion.

Directed Graph Models: In order to reduce manual work, several new systematic tqubs
based on graph models of the GUI have recently been develdpey are based davent Flow
Graphs(EFG) [45] andEvent Interaction Graph€EIG). Because of their central role in this paper,
we discuss these models in Section 3.

Summary: FSM models and genetic algorithm based GUI testing suftanfthe problem of
manual creation of the modele., state machine and fitness function. The primary problerh wit
the GUI graph models is that the number of event sequencegsgrponentially with length.
Hence, the existing graph-model based GUI test-case gereedgorithms have only been able
to generate test cases that cover all edges in the graph snoeethey testwo-wayinteractions

between GUI events.

2.3 Execution Feedback for Test Case Generation

In an earlier report of this research [86], we introducedittea of employingeedbackirom the
execution of a seed test suite (our smoke tests generated th& EIG) to generate additional
multi-way interaction test cases. A study on four large Bel@dpen-source software applications
demonstrated the feasibility and usefulness of this newagmbh; we showed that feedback was
able to significantly improve our existing techniques anih dentify/report serious problems in
the software applications.

We now discuss similar feedback-based approaches usedchby reisearchers on non-GUI
software to generate test cases. Execution feedback tefenformation obtained during test
execution, and used to guide automatic test case/test geriteration. This is calledynamic

test case generatioand, to the best of our knowledge, was originally proposedvitier and

10
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Spooner [54]. In their technique, the software source cedastrumented to obtain execution
feedback. The overall test case generation process syaesdguting an initial test, which may
be a test suite or a single test case. The execution feedbaokected and analyzed. The results
are used to evaluate the “closeness,” according to sonegiont of the previous execution to the
desired outcome; the model used to generate test cases imtukfied accordingly and a new test
case is generated. This loop stops when the “closenessiati@il is satisfied.

Since then, several researchers have used similar idegsaifnic test generation.
Object Properties: The work of Xieet al.is most closely related to this research [83,84]. They
have developed a framework that uses feedback in the foopeyhational abstractionésummaries
of program run-time state) and object states to generatdestwases. This framework integrates
specification-based test generation and dynamic speficaiferences for test case generation.
Specification-based test generation is based on formalfgagions, which express the desired
behavior of a program. However, because formal specificataye difficult to obtain, dynamic
specification inference attempts to infer specificationsthe form of operational abstractions,
automatically from software execution. The test case geiwgr process starts from an existing
test suite. Through executions of these test cases, obgées gvalues of variables and parameters,
and return values) are recorded at the entry and exit of rdetkecutions. Based on the collected
traces and a set of pre-defined axiom-pattern templates)iggpatterns are searched to create
operational abstractions. The discovered operationatadi®ns consist of object properties that
hold for all the observed executions. By removing or relgiifferred preconditions on parameter
values in the operational abstractions, both legal andalléest cases are generated. The newly
generated test cases are executed. Because they weregebgreelaxing inferred preconditions,
some of these test cases may cause an uncaught runtimeiercdpte other, non-crashing test
cases are used to obtain new operational abstractionshalecagain used to generate additional
test cases. Other researchers have also used operatistraiciibns, combined with symbolic
execution, to guide the generation of test cases [21].

Method-call Sequences: Pacheccet al. [58] have improved random unit test generation by

11
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incorporating feedback obtained from executing test is@stthey are created. They build inputs
incrementally by randomly selecting a method call to apmigl inding arguments from among
previously-constructed inputs. The key idea of their warkhiat they build upon a legal sequence
of method calls, each of whose intermediate objects is Blenand none of whose methods throw
an exception. As soon as an input is built, it is executed d&tled against a set of contracts
and filters. The result of the execution determines whetteirput is redundant, illegal, contract-
violating, or useful for generating more inputs. The teglueioutputs a test suite consisting of unit
tests for the classes under test. Passing tests can be wsedite that code contracts are preserved
across program changes; failing tests (that violate onearsermontract) point to potential errors
that should be corrected.

Similarly, Boyapatiet al. employ a feedback-based technique to obtain all non-ispmaor
inputs (test cases) for a method [14]. A programmer develbys “guided test generation engine”
that outputs test cases to explore the method’s input spaté2a a predicate from the method’s
preconditions to check the validity of the generated ingditis technique prunes a large portion
of the input space by monitoring the execution of the prddica an initial test suite, guiding the
engine and yielding a suite of all non-isomorphic inputs.

Code Coverage Reports: All other techniques in this category instrument elemetites,
branches, etc.) of the program code, execute an initialcest/suite, obtain a coverage report
that contains the outcomes of conditional statements, aecautomated techniques to generate
better test cases. The techniques differ in their gaals, (cover a specific program path, satisfy
condition-decision coverage, cover a specific statemeick}lzeir test-case generation algorithms.
For example, Milleet al.[54] use code coverage and decision outcomes to generaiadiqeint
test data.

Severalterative techniquebave been used to generate a test case that executes a giyempr
path [26,27,37]. The generation is formulated as a funatigrimization problem. The gradient-
descent approach is used to gradually adjust an initiactest so that it executes the given path.

Control-flow information in the form of branch-predicatetoames is collected during software

12
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execution. One disadvantage of these approaches is tyatahget stuck in a local minima during
test case generation.

The chainingapproach [25] has been used to generate test cases, eaclet@agiven pro-
gram statement. An initial test case is executed; the pnograontrol- and data-flow are used
to determine whether the test case will lead to the giverestant. If not, the branch function
of the problematic branch is used to modify the test cases plucess continues until the given
statement is executed.

Genetic algorithmdave also been used to automatically generate test sudesdtisfy the
condition-decisioradequacy criterion [52], which requires that each condiiiothe program be
true for at least one test case and false for at least onedest A fitness function is defined
for each branch. An initial test suite is obtained and exegtui he fitness functions are used to
evaluate the “goodness” of each test case. If a test casescaveew condition-decision, it is
considered to be “more fit.” The test cases in the gene podvevo obtain a new generation of
test cases. The process stops until a desired level of filmessained.

Summary: All the above execution feedback-based techniques have leed for a specific
type of test case, that is, numerical data values. The fegdfa the form of branch predicate
evaluations, condition-decision coverage, and objetd¢s)# used to tweak these numerical values
in order to improve overall coverage. These techniques atreirectly applicable to GUI testing
because a GUI test case is a sequence of events. There iasnoat®n of tweaking a GUI test
case to improve coverage.

Although the techniques discussed in this section are mectlly applicable to feedback-
directed GUI test case generation, many of the underlyimgepts have been used. For example,
execution feedback is used to generate GUI test cases, GheBtlel is used to generate the orig-
inal seed suite, and traversal techniques from model-bestithg are used to cover nodes and

edges in the ESIG.
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@) (b)
Figure 1: (a) Radi o Button Denp” GUI, (b) its Partial Observable State

3 Preliminaries

The feedback-based technique utilizes an abstractioneofGtl’s run-time statecollected and
analyzed during the execution of test cases that dov@way interactiondetween GUI events in
order to generate test cases that testti-way interactions This section defines these terms and
introduces notations for subsequent sections.

This work focuses on the class of GUIs that accept discregrte\performed by a single user;
the events are deterministice., their outcomes are completely predictabld. GUI in this class
is composed of a sét” of widgets(e.g, buttons, text fields); each widget € 1V has a sef’,
of properties(e.g, color, size, font). At any time instant, each propesty= P, has a unique
value(e.g, red, bold, 16pt); each value is evaluated using a functiom fthe set of the widget’s
properties to the set of valués. The GUI stateat any time instant is a set of triples (p, v),
wherew € W,p € P, andv € V), i.e, the observable state of the GUI. Figure 1 shows the partial
GUI state of a simple application’s window call&hdi o Button Denp. The GUI contains
eight widgets labeled); throughws; a user can perform events throughe; onw; throughw-,
respectively; no event can be performeduan

A set of statesS; is called thevalid initial state sefor a particular GUI if the GUI may be in

2Testing GUIs that react to temporal and non-deterministents and those generated by other applications is
beyond the scope of this research.
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any stateS; € S; when itis first invoked. The singiaitial statefor Radi o But t on Denb has
Ci r cl e andNone selected; the text-field corresponding:te has a default color “white”; and
theRender ed Shape area (widgetug) is empty.

The state of a GUI is not static; events es, ..., e, performed on the GUI change its state
and hence are modeled as functions that transform one d$ttte GUI to another. FoRadi o
But t on Denp, evente; sets the shape to a circle; if there is already a square iR¢héer ed
Shape area, then it is immediately changed to a circle. Evens similar toe;, except that it
changes the shape to a square. Evgrgnables the text-field;, allowing the user to enter a
custom fill-color, which is immediately reflected in the sbdyeing displayed (if there is a shape
there). Event, reverts back to the “no fill color” state. Evesy is used to fill a custom color in
the text-fieldws. Eventeg creates a shape in tiRender ed Shape area according to current
settings ofw; . .. ws; evente; resets the entire software to its initial state.

GUIs contain two types of windows: (iIhodal window? (e.g, Fi | eQpen, Pri nt) that,
once invoked, monopolize the GUI interaction, restrictthg focus of the user to the range of
events within the window until explicitly terminated.{, usingCk, Cancel ), and (2)modeless
windows(e.g, Fi nd/ Repl ace) that do not restrict the user’s focus. If, during an exemubf
the GUI, modal windowM,, is used to open another modal windaw,, then M, is called the

parentof M, for that execution.

Ce——e.)
T
<7
q SiaVey
e, A =5 4
‘{‘O
85 @ @)

"

Figure 2: EIG of ‘Radi o Butt on Denp” GUI

3Standard GUI terminolog.g, see http://java.sun.com/products/jlf/ed2/book/HI{@alBys.html.
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The seed test suite is generated usingeagent-interaction grapiEIG) model of the GUI,
which is obtained automatically using a standard GUI-res@ngineering algorithm [49]. The
EIG abstraction of the GUI represents only two types of GUdres: terminationand system-
interactionevents. Termination events close modal windows. Ostrercturalevents are used to
open and close menus and modeless windows, and open modkwanbut are not represented
in the EIG (for reasons presented in earlier work [49]). Temaining events, called system-
interaction events, do not manipulate the structure of thH. ®irected edges between nodes
encodeexecution paths.e., sequences of events, in the GUI. For example, an edge,{ shows
thate, may be executed after, along someexecution path The EIG for theRadi o Button
Denvo is shown in Figure 2. Because this is a single-window GUI withmenus, it has no
structural events; it contains only system-interactioargs. There is one node for each of the
widgets on which a user can perform an event.

The basic motivation behind using a graph model to represe@Ul is that various types
of existing graph-traversal algorithms (with well-knowmrtime complexities) may be used to
“walk” the graph, enumerating the events along the visitedes, thereby generating test cases.
In earlier research [49], an algorithm callédnTest Cases was implemented that returned all
possible paths (sequences of events) in the graph boundeagecific length (number of EIG
events) of2. These length-2 sequences are said to testvallway interactiondetween the EIG
events. For the EIG of Figure 2, there are a total of 49 testcatlength 2, corresponding to the
49 edges in the EIG. This research will generate test casesuii-way interactionsi.e., longer
paths in an EIG. For example, a 3-way test case is; ey; e3 >; a 4-way test case is e;; es; er;
es >. Because EIG nodes do not represent events to open or closesn@ open windows, the
sequences obtained from the EIG may not be executable. Atigga time, other events needed to
reach the EIG events are automatically generated, yiekhrngxecutable test case [49]. To allow a
clean application exit, a test case is also automaticatiyreanted with additional events that close
all open modal windows before the test case terminates.

The function notatiorb; = e,(5;) denotes that; is the state resulting from the execution of
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evente, in stateS;. If e; ande, are two different events in a GUI's EIGg(, ¢3) is an edge, and
So € Sr is the initial state of the GUI, theay (Sy) is the GUI state after performing, e2(So)
is the GUI state after performing, andes(e;(Sy)) is the GUI state after performing trevent

Sequences e;; ey >.

4 Event Semantic Interaction Graph

The new feedback-based technique is based on our abilithetdify sets of events that need to be
tested together in multi-way interactions. Because eaehtas executed using its corresponding
event handler, one could hypothesize that an exvewhose event handler updates code element(s)
(e.g, variables, object fields) that are used (directly or inttig by another event,’s handler
could potentially influence it's executior; ande, are good candidates to be tested together.
For example, consider the event handlers for the ewgnéde, shown in Figure 3. As these
event handlers interact via the variabl&rentToo) the eventg; ande, should be tested together.
Similarly, events:; ande, interact viacurZoomand should be tested together. However, because

the handlers foe; andes; do not interact, these events need not be tested together.

e1:: select ellipse tool
public void ellipsePerformed (java.awt.event.ActionBivevt)
..., currentTool = toolEllipse; ..}

es:: drag mouse on canvas

public void mouseDragged(java.awt.event.MouseEvent{evt

..., currentTool.dragAction(newEvt, center);}..

es:: set zoom factor to double

public void zoom1Performed(java.awt.event.ActionEvevt) {
curZoom = zoom1; ..}

e4.. click left mouse button on canvas
public void mousePressed(java.awt.event.MouseEveht evt
if (currentTool == toolZoomy // if the zoom tool is being used
int temp = toolZoom.getZoom(){ current zoom level
if (SwingUitilities.isLeftMouseButton(evf) switch (temp{
case 1. zoom2.setBG(pColor); curZoom = zoom?2;
case 2: zoom3.setBG(pColor); curZoom = zoom3; .} }
theCanvas.repaint();.}.

Figure 3: Example Event Handlers
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One may employ a variety of static program-analysis tea#sdo identify such interactions
[64]. They can certainly be used in this example. However]ithitations of static analysis in the
presence of multi-language GUI implementations, callsaok event handlers, virtual function
calls, reflection, and multi-threading are well known [43];6these limitations complicate the
application of static analysis. Moreover, because most&dplications employ a large number of
library elements€.g, Java Swing), source code (an essential component for radit analysis
techniques) may not be available for parts of the GUI.

This research avoids static analysis; instead it appraesithe identification of interactions
between event handlers by analyzing feedback from theinnagtate of the GUI on an initial test
suite. Recall that testing all two-way interactions betwegents is already quite practical with
the smoke test suite; we treat this suite as a starting poicltect the feedback. The remaining
guestion, addressed in this section Wéhat dynamic behavior constitutes event interaction?

Consider the example shown in Figure 4. The top-left shoesitial state (S,) of an appli-
cation. After an event; (Select El | i pse t ool ; event handler shown in Figure 3) is executed,
the GUI changes its state to the one shown in the top-right)). In this state, the “ellipse tool”
remains selected. Starting fraf, one can execute another even{Drag mouse on canvaand
obtain the state shown in the bottom-lef{((Sy)); an area of the canvas has been selected. If, how-
ever, the sequence e; e, > is executed irby, a new stateeg(e1(5))), shown in the bottom-right
is obtained; an ellipse has been created. This executiajquisaent to the execution of evesy
in the states; (Sy). The sequence e;; e, > produces a GUI state that shows the influence, of
one,. Henceg; ande, are good candidates to be tested together in longer segiencleeck for
interaction problems. The code fer ande, (previously seen in Figure 3) shows that they do in
fact interact.

The remaining problem is to automatically compute the roretrelationship between event
e; ande, of Figure 4. We use four state descriptions for this comportatsy, e;(S), e2(Sy), and
es(e1(S0)). More specifically, to compute this relationship, we neefintd at least on@eewwidget

w with propertyp and valuev in statees(e1(S)), i.€., it is created by event sequencee;; e; >;
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Figure 4. Execution of Events (Select El | i pse t ool ) ande, (Drag mouse on canvas

but it does not exist in state) and could not be created by eithgror e; individually,i.e., no triple
involving widgetw exists in any of the state), e; (Sy) andey (Sy). This statement can be formally
described as a predicatéw € W,3p € P,,Jv € V,, Vp € P,, Vo € V,,s.t.* ((w,p,v) ¢
So) A ((w, p,0) & e1(S0)) A ((w,p,0) ¢ e2(S0)) A ((w,p,v) € ex(e1(S0)))). If this predicate
evaluates td RUE for a widget (in our case the ellipse), then we have discavarease where,
influencese,.

It is quite straightforward to encode such a predicate ingh{evel programming language,
such as Java. The implementation would loop through the sigtes and stop when one widget
satisfying the predicate is detected.

The reader should note that the above predicate is necdssahe computation of the rela-
tionship betweer; ande,. At first glance, the reader might be tempted to think thatkime
state non-equivalence would be sufficient to identify iatéing eventsj.e., by using a predi-
cate’P such as(e;(Sy) # ea(e1(S0))) V (e2(So) # ea(e1(Sp))). However, this is not the case.
Consider an example of two non-interacting eveatainde,, which toggle the states of two inde-
pendent check-box widgets, andO,, respectively. Starting in a statg = {0, 0, }, i.e., both
boxes unchecked, each event would “check” its correspgratiack-boxi.e., e, (Sy) = {4, O, },

ey (S0) = {0., @, }, ande, (e, (Sy)) = {4, @, }. Even thoughP would evaluate tdRUE for this

4Notation for “such that”
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example, events, ande, are non-interacting and need not be tested together.

Additional complexity arises from the nature of modal wingoin GUIs. Modal windows
create special situations due to the presence of termimatients. For example, instead of being
in the main window, had; ande, in Figure 4 been associated with widgets contained in a modal
window with termination everitERY, states;(Sy) , e2(Sp), andes(e1(Sp)) might not contain the
necessary information needed to compute the predicates i3Hiecause user actions in modal
windows do not cause immediate state changes; they typicdk effect after a termination event
has been executed. Hence, each of the stateéh) , e2(.Sy), andex(e;(Sy)) must be collected
after the execution of the termination eva&BRM. Similarly, problems arise whefy ande, are in
two differentmodal windowsg; is in a modal window but, is in a modeless window; is in a
modal window whereas, is in its parent window. All these situations require specéandling.

It turns out that the example illustrated in Figure 4 is just caseof how the GUI state may be

used to pinpoint interactions between event handlers e #rerseveral more cases, each requiring
a different predicate. Because of the need to define precezbcates for all these cases and for
special handling of modal windows, we take a two dimensi@mgiroach. We first define Six
predicates in oneontexti.e., wheree; ande, are system-interaction events in modeless windows;
this situation is calledContext 1 We will use the notatiorP,,,.,)(e1, e2) to represent a predicate
for casen in contextm. We then define two additional contexts; together, the sbesand three
contexts yields x 3 = 18 situations for computing run-time relationships betweesnés.
Case 1:Pyy(e1,e2) = Jw € Wyp € Py,v € Vp,v' € Vp,s.t. ((v # V') A ((w,p,v) € {So N
e1(S0) Nea(So)}) A ((w, p,v) € ea(e1(Sp)))); there is at least one widgetwith propertyp with
initial valuev (hence the tripléw, p, v) is in Sy), which is not affected by the individual events
or e, (the triple is also ire; (Sp) andes (Sy)); however, it is modified when the sequence;; e; >
is executedi.e., the value ofw’s propertyp changes from to v'.

Figure 5 gives an example @fase 1 Thisisa ‘GUl Deno” application with several widgets.

TheFi |l w th col or checkbox fills the currently selected shape (highlightetha deep

SWe have chosen to present only these six cases because wstared them numerous times in our work on
GUI testing. These cases are not exhaustive and we willlmoato add new cases, as and when needed, in the future.
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Figure 5:Case 1 e;: CheckFi | | with col or;ey: CheckApply to all

grey border) with the chosen color determined by the raditoheWhi t e andBl ue. Checkbox
Fill w th pattern determines whether to fill the selected shape with a pat&hecking
Apply to all setsall shapes in the right panel with the same color andmpatt

For the purpose o€ase 1 ¢, is CheckFi Il with col or ande; is CheckApply to
al | . The initial state has the rectangle widget selected anar ¢slset to white. The square
widget (marked withW) is not modified bye; or e, individually; however, the event sequence
< e1; e > fills the square with the white color. Heng ;) (e;, ;) evaluates td RUE — Case 1is
applicable here ang, is ESI related t@, because; influences:, and their combination modifies
the previously unmodified widg&tv.
Case 2: Pyy(er,e2) = Jw € Wip € Py,v € Vv € V0" € Vst (v # V') A (v #
v") A ((w,p,v) € {So N ex(So)}) A ((w, p, ') € e1(S0)) A ((w,p,v") € ex(e1(50)))) there is at
least one widgeiv with propertyp that has an initial value, which is not modified by the event
eq; it is modified bye;; however, it is modified differently by the sequence:;; e; >.

An example oifCase 2using the GUI Denp” application is given in Figure 6, wherg now
represent€heckFi I | w th col or ande, is Click radio buttonBl ue. The initial state has

the rectangle selected and color is set to white. Indivigual this initial state, eveng; fills
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Figure 6:Case 2 ¢;: CheckFi | | wi th col or;e,: Click radio buttonBl ue

the rectangle with the white color; evest sets the current color to blue. However, executing
< eg; e > now fills the rectangle with the color blue. HenBg)(e;, e;) evaluates tarRUE —
Case 2applies here as,; influences, execution; the widget (marked witlV) is modified bye;;

it is not modified bye,; however, it is modified differently by the sequence:;; ey, >.

Case 3: Psy(er,e2) = Jw € Wip € Py,v € Vv € V0" € Vst (v # V) A (v #
V") A ((w,p,v) € {SoNe1(So)}) A ((w,p,v) € es(So)) A ((w,p,v") € ea(e1(Sp)))) there is at
least one widgeir with propertyp that has an initial value, which is not modified by the event
e1; it is modified bye,; however, it is modified differently by the sequence:;; e; >. Note that
this case is different from Case 2 because the event seqremnea@s the sameeg,, ¢; is executed
beforee,.

An example oifCase 3using the GUI Denp” application is given in Figure 7, wherg now
represent€lick radio buttonBl ue ande, is CheckFi I | w th col or. The initial state has
the rectangle selected and color is set to white. Indivigual this initial state, event; sets
the current color to blue; evemt fills the rectangle with the white color. However, executing
< eg;e2 > now fills the rectangle with the color blue. HenBg)(e;, e;) evaluates tarRUE —

Case 3applies here as; influences; execution; the widget (marked witlV) is not modified by
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Figure 7:Case 3 ¢;: Click radio buttonBl ue; e,: CheckFi Il with col or

e1; it is modified bye,; however, it is modified differently by the sequence:;; e; >.

Case 4:Pyy(e1,e2) =Fw e Wip € Py,v €V, v' € V0" € Vv € Vst (v # V') A (v #
v") A (" # 0) A ((w,p,v) € So) A ((w,p,v) € er(So)) A ((w,p,v") € e2(So)) A ((w,p, ) €
es(e1(S0)))); there is at least one widget with propertyp that has an initial value, which

is modified by individual events; ande,y; however, it is modified differently by the sequence
< e1;€9 >.

Figure 8 shows one example of this case using tHdl “ Denp” application. In this exam-
ple, the initial state haBi | | w th col or checked, white is set to be the current color and
the rectangle is selected. Eventhere isClick radio buttonBl ue ande; is CheckFi | | with
pat t er n that fills the current shape with a pattern. Eventsande, modify the rectangle in-
dividually; however, executing: e;; e; > now modifies the rectangle differently. Therefoee,
influencese,, i.e., resulting in different modification of the existing widgetarked withw), and
Case 4applies becausBy)(e1, e2) evaluates td RUE.

The above four cases all handle widgets that persist adhesfutr states being considered,
i.e, So, e1(S0), €2(50), andey(e1(Sp)). In many cases, event execution “creates” new widgets,

e.g, by opening menus; the next case handles newly created tgidge
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Case 5:P5q)(e1,e2) = Jw € Wyp € Py,v € V,, v € Vp,s.t. (v #0') A ((w,p,v) € ex(So)) A
((w,p,v) & So) A ((w,p,v") € ea(e1(Spn)))); there is at least oneewwidgetw with propertyp
and valuev in e, (Sy), i.e., it was created by event, (eithere; or e;) but did not exist in staté;
it was created by the sequence:;; e, > but with a different value for some property.

Figure 9 shows an example f@ase 5using the Radi o Butt on Deno” application in-
troduced earlier. The initial state has t@ier cl e andNone radio button selected and an empty
Render ed Shape panel. In this initial state, event selectesSquar e; eventeg clicks the
buttonCr eat e Shape and creates a circle in tieender ed Shape panel. However, when
executing< es;eg > in the initial state, a square is created in RRender ed Shape panel.
Therefore g, influenceseg; Ps1) (€2, e6) evaluates td RUE — Case 5is applicable here.

It turns out that in this simple applicatio@ase 5also applies te< eg; es >, < e3;e6 > and
< eg; €3 >.

A common occurrence of event interaction in GUIs is enaldlisgibling widgets, which may
be modeled as the widgeBSABLED property being set tGRUE or FALSE.

Case 6:Ps1)(e1, e2) = Jw € W, ENABLED € P,,, TRUE € Viyppren, FALSE € Viwaprep, s.¢. (((w, ENABLED, FALSE)
So)A((w, ENABLED, TRUE) € e;(Sy))AEXEC(eq, w)); there exists at least one widgethat was dis-
abled inS, but enabled by,. Evente, is performed onw, represented by a predic&®€EC(ez, w).

Using theRadi o Butt on Deno application, we see in Figure 10 thatenables:;. Hence
Ps1 (€3, e5) evaluates td RUE — Case Gapplies.

As mentioned earlier, the second dimension of our defirstiare contexts. This is because
modal windows create special situations for Cases 1 thréutyie to the presence of termination
events. User actions in these windows do not cause immesiatte changes; they typically take
effect after a termination event has been executed, leadicontexts 2 and .3
Context 2: If both e; ande; are associated with widgets that are contained in one maodaiow
with termination evenTERY, then the definitions of;(Sy) , €2(Ss), andey(e1(Sy)) are modified
as follows:e;(S) is the state of the GUI after the execution of the event sexpiere;; TERM >,

ea(Sp) is the state of the GUI after the execution of the event secpien e;; TERM >, and
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ea(e1(Sp)) is the state of the GUI after the execution of the event secpiene;; e;; TERM >.
All the predicates defined in Cases 1 through 6 apply, usiegetmodified definitions, far; and

e in the same modal window. The notation used for these preticghen applied in Context 2 is
Pr2)(e1, e2), wheren is the case number.

Context 3: If e; is associated with a widget contained in a modal window vétimination event
TERM, ande, is associated with a widget contained in the modal windgasentwindow (.e.,
the window that was used to open the modal window) théf)) is the state of the GUI after the
execution of the event sequencee;; TERM >, e5(S)) is the state of the GUI after the execution
of the evente,, andey(e1(Sy)) is the state of the GUI after the execution of the event sexpien
< e1; TERM; e5 >. All the predicates defined in Cases 1 through 6 apply. Thatioot used for
these predicates when applied in Context B,is;) (e1, e2), wheren is the case number.

We are now ready to formally define the ESI relationship. €heanEvent Semantic Interac-
tion relationship between two eventsande; iff Py1y(e1, e2) V Poy(er1,e2) V ... Psay(er, e2) V
Pi(2)(€1,€2) V Py (e1,€2) V... Py (e1, €2) V Pia)(e1, e2) V Pagy(er, e2) V... Posy (e, e2). That
is, at least one of the predicates in Cases 1 through 6 eealt@RUE in at least one context;
this relationship is written as n(m) e2, Where the number is one of the case numbers 1 through
6; m is the context number. If multiple cases apply, then one efcise numbers is used. Due to
the specific ordering of the events in the sequencg; e, >, the ESI relationship is not symmet-

ric. As demonstrated earlier, for oRadi o But t on Denop application,e, 5@, €6y €6 5@, €9,

5(1 5(1 6(1
es3 O} €6y €6 5@, e3, andes s, es.

Once all of the cases have been implemented, the feedbaeklpeocess execution is straight-
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Figure 11: EIG with marked ESI relationships and ESIG featli o Butt on Deno” GUI

forward. The steps of the execution are as follows.

1. The seed suite consisting of all 2-way interactiens,; e, > between GUI events is exe-
cuted on the software in statg; these test cases are simple enumerations of all EIG edges.
All eventse, are also executed iffy. The state informatiomr,(.Sy), e,(So), e,(e+(So)) is
collected and stored.

2. The above predicates are evaluated for each pair of syistenaction events in the EIG that
are either (1) directly connected by an edge (Context 1) otdBnected by a path that does
not contain any intermediate system-interaction everdetéxts 2 and 3)i.e., there is at
least one termination event that closes a modal window arptth. If one of the predicates

evaluates td RUE, the two events are ESl-related.

Once all the ESls in a GUI have been identified, a graph modelcthe ESI graph (ESIG) is
created. The ESIG contains nodes that represent eventgcéedi edge from node, to n, shows
that there is an ESI relationship from the event represdmyed, to the event represented by.
The EIG annotated with the five ESI relationships foun&aali o Butt on Denvb are shown in
Figure 11; the ESIG (shown on the right) is a subgraph of tli& El

The ESIG may be traversed using a modified version of&eTest Cases algorithm dis-
cussed in Section 3. The differences are that (1) an ESIG wmataicn multiple connected compo-
nents in which case the event sequences are generated fioc@aponent separately, and (2) the

length of the obtained sequences is now a tunable parametead of a fixed number 2. Study 1
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in the next section uses values 3, 4, and 5 for this parameter.

Our new implementation of theenTest Cases algorithm is based on the adjacency matrix
representation of directed graphs. The key idea used imthkementation is that if we start with
a 0/1 adjacency matrix representation of the ESIG, and takenatrix to the N — 1) power,
the (7, j) entry in the resulting matrix is the number of paths of lengtlirom node: to node;
(recall that the length is measured in number of nodes enemahalong the path). In the trivial
case,N = 2 will return the input matrix — théi, j) entry is either O or 1i.e., the number of length
2 paths from nodeéto nodej. For N = 3, the (i, j) entry in the result matrix is the number of all
length 3 paths from nodgeto ;.

Because we want to output actual test cases, not just camt the use a variation of the above
approach. The only difference is that instead of just cagrtine paths, our implementation keeps
track of all the actual paths themselves. For this we had tdifynthe matrix multiplication algo-
rithm and the adjacency matrix representation. The ad@oeratrix is modified so that instead of
0/1, the(i, j) entry of the matrix is a list of paths fromto j. The matrix multiplication algorithm
is modified so that instead of multiplying and adding entnwes instead concatenate pairs of paths
together and union all of them (respectively) to eliminai@lccates. The final matrix entries are
paths of specific lengthgg., test cases of specific lengths.

Much of the functionality needed for this test-case gemamapproach is implemented in the
Mathematicapackage. The functioVat ri xPower [ mat, n], returns then’” matrix power
of matrix mat . If the matrix is encoded as a 0/1 adjacency Mt r i xPower returns a matrix
in which each entryi, j) is a count of the number of test cases of a specific length froden
1 to nodej. We used simple rewriting rules (provided a&kepl ace function denoted by the
operator f. ") built into Mathematicato alterVat r i xPower — we replaced thdi nes (i.e,
multiply) operator withJoi n (i.e., list concatenation) and tH&l us operator withUni on. We

thus generate all length— 1 test cases by using tiMathematicacommand:

Mat ri xPower[matrix, N]J/.{Power[x_, 2]->Join[x, x], Plus->Union,

Ti mes->Joi n}
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with an appropriate representation of the matrix.

Because our ESIG contains very few edges and nodes, theeadjamatrix tends to be sparse,
leading to fast computations. For increased efficieMgthematic& Mat r i xPower uses the
built-in Spar seAr r ay structure.

For our example ESIG of Figure 11, the test cases of length 3 @k; e5; e2 >, < e9; €6, €3 >
,< esiegies >, < es;eg; e >, < eg;€3; 65 >, and< eg; e9; 6 >. Note that because there is no
non-determinism in the test-case generation algoritheretis a uniqgue ESIG-based test suite of

specific-length test cases for an application.

5 Study 1: Evaluating the Feedback-based Technique on Fieddl

Applications

The test cases obtained from the modifte&zhTest Cases algorithm can be generated and ex-
ecuted automatically on the GUI. The only unavailable pathetest oracle a mechanism that
determines whether an AUT executed correctly for a test daghis first study, an AUT is consid-
ered to havgassed test case if it did not “crash” (terminate unexpectedlyhoow an uncaught
exception) during the test case’s execution; otherwitalgd. Such crashes may be detected au-
tomatically by the script used to execute the test cases.ETGeand ESIG, and their respective
test cases may also be obtained automatically. Hence, tlie end-to-end feedback-based GUI
testing process for “crash testing” could be executed withaman intervention. Note that, in the
next section (Study 2), this work is extended by employingoaaripowerful” test oracle to detect
additional failures.

Implementation of the crash testing process includedggtp a database for text-field values.
Since the overall process needed to be fully automatic,abdat containing one instance for each
of the text types in the sginegative number, real number, long file name, empty stripgcial
characters, zero, existing file name, non-existent file jawees used. Note that if a text field is

encountered in the GUI, one instance for each text typedd tri succession.
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This process provided a starting point for a feasibilitydstto evaluate the ESIG-generated test
cases. The following questions needed to be answered torde&ethe usefulness of the overall
feedback-based process:

S1Q1: How many test cases are required to test two-way interaxtioan EIG? How does this
number grow for 3-, 4-, ..., n-way interactions?

S1Q2: In how many ESI relationships does a given event participaiew many test cases are
required to test two-way interactions in an ESIG? How doesrthmber grow for 3-, 4-, ..., n-way
interactions?

S1Q3: How do the ESIG- and EIG-generated test suites comparenrstef fault-detection effec-

tiveness? Do the former detect faults that were not detdwtehe latter?

More specifically, the following process was used for thisigt

. Select software subjects with GUI front-ends.
. Generate a seed test suite using EIGs.

1

2

3. Execute the seed test suite. Report crashes.

4. During execution, construct the ESIG. Use the ESIG to ggaeadditional test cases.
5

. Execute the new test cases. Report crashes.

To answer the above questions while minimizing threats teraal validity, this study was con-
ducted using four extremely popular GUI-based open-soswéievare (OSS) applications down-
loaded from SourceForge. The fully-automatic crash tgspirocess was executed on them and
the causeile., thefault) of each crash in the source code was determined.

STEP 1: Selection of subject applicationsFour popular GUI-based OSS (CrosswordSage 0.3.5,
FreeMind 0.8.0, GanttProject 2.0.1, JMSN 0.9.9b2) wererdoaded from SourceForge. These
applications have been used in our previous experiment8@0details of why they were cho-
sen have been presented therein. In summary, all the afiptisdhave an active community of
developers and a high all-time-activity percentile on $e&orge. Due to their popularity, these
applications have undergone quality assurance beforaseldo further eliminate “obvious” bugs,

a static analysis tool calldeindBugg[29] was executed on all the applications; after the stuay, w
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Figure 12: Test Case Space Growth

verified that none of our reported bugs were detected by RigdB
STEP 2: Generation of EIGs & seed test suites.The EIGs of all subject applications were
obtained using reverse engineering. To add&bk91above, the number of test cases required
to test 2-, 3-, 4-, and 5-way interactions was computed. €kalt for each application is shown
as a solid line in Figure 12 (the y-axis in all these plots isgafithmic scale). The plot shows
that the number of test cases grows exponentially with thelbmu of interactions. The number
quickly becomes unmanageable for more than 2- and 3-wasaittens. In this study, only two-
way interactions were tested by the seed test suites. Tloetesesuites contained 920; 51,316;
29,033; and 4634 test cases for CrosswordSage, FreeMimttReaject, and JMSN, respectively.
STEP 3: Execution of the seed test suiteThe entire seed suite executed without any human
intervention. It executed in 0.39, 30.83, 22.89, and 2.68rb@n CrosswordSage, FreeMind,
GanttProject, and JMSN, respectively. In all, 163, 66, 14l 34 test cases caused crashes; these
crashes were caused by 5, 4, 3, anfhdts (as defined earlier) for CrosswordSage, FreeMind,
GanttProject, and JMSN, respectively. The GUI's run-tinadeswas recorded during test execu-
tion. All faults were fixed in the applications.

Note that debugging and fault-fixing was necessary due ta¢asons. First, had we not done
so, the longer test cases that we will generate in the nexsteps may contain these short test
cases as subsequences; the longer tests may hence alsduzdshhe faults previously detected

by the seed suite, yielding no new useful results. Seconsl,ighwhat would happen in a real
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situation; a fault will be fixed after it was detected. Howe\his is a threat to internal validity
because an obvious fix in one place may lead to a new fault #hanplace in the application. To
minimize the threat, we reran the seed test suite to ensarguality of the fixes. Of course, this
does not preclude the possibility of introducing faults @ exposed by longer event sequences.
To completely eliminate this threat, we later verified tted faults detected by our longer ESIG
suites were not caused by these fixes.

STEP 4: Generation of the ESIG.The above feedback was used to obtain the ESIs for each
application. To addresS1Q2 the number of ESI relationships in which each event padies is
shown in Figure 13. Each event in the GUI has been assignedjaaumteger ID; all event IDs
are shown on the x-axis. The y-axis shows the number of E&tioakhips in which the event
participates.

The result shows that certain events dominate (around 2B&oESI relationship in GUIs.
Manual examination of these “dominant” events revealetttiganature of the subject applications,
i.e., most of them have a single dominant object (crossword punzind map, project schedule,
messenger window) that are the focus of most events, is satlséveral key events influence a
large number of other events. In the future, we will creatlaagification of these dominant events.
Moreover, several events participate in very few or no EBlti@ns. These events include parts of
theHel p menu that has no interaction with other application eveartd, windowing events such
as scrolling for which no developer-written code exists.

The ESIs were used to obtain the ESIGs and, subsequentltioadtitest cases. The number
of test cases required to test 2-, 3-, 4-, and 5-way intemastusing an ESIG is shown, for each
application, as a dotted line in Figure 12. This result shthasthe growth of the ESIG-generated
test cases appears manageable for 3-, 4-, and (given suiffiesources) 5-way interactions. They
are in fact reduced from the EIG by 99.78%, 99.97%, and 99.88983-, 4-, and 5-way inter-
actions, respectively. In this study, test cases for 3-a¢ 5-way interactions were generated.
The total number of test cases for these interactions wa3, 38,629, 199,127, and 18,144 for

CrosswordSage, FreeMind, GanttProject, and JMSN, rasphsct
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STEP 5: Execution of the test caseslo addressS1Q3 all the newly-generated test cases were
executed. The execution lasted for several days. In all[168, 109, and 20 test cases caused
crashes; they were caused by 3, 3, 3, and 1 faults for CrodSage, FreeMind, GanttProject, and
JMSN, respectively. These faults had not been detectedebybrway test cases. We manually
verified that the faults were not introduced by our bug fixeSBEP 4. The result shows that the

ESIG-based test cases help to detect additional faults.

6 Study 2: Digging Deeper via Seeded Faults and In-House Ap-
plications

Although the previous study demonstrated the usefulneseeoESIG-based technique, it also
raised some important questions. One fundamental quetadrcomes to mind pertains to the
cause(s) of the added effectivendss, Is the added effectiveness an incidental side-effect of the
events, event interactions, and lines-of-code that thetés$lcases cover and their length; or is it
really due to targeted testing of the identified ESI relasioips?The empirical study presented in
this section is designed specifically to address the questibow the fault-detection effectiveness
of the suite obtained by the feedback-based technique aentpdhat of other “similar” suites,

where similarity is quantified in terms of statement coverayent coverage, edge coverage, and
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size (number of test cases).

This question will be answered by selecting four pre-te&edi-based applications, and gener-
ating and executing 2-way EIG-based and 3-way ESIG-basedu#ges on them. We will generate
additional test suites that are similar to the ESIG-baséd suterms of the aforementioned char-
acteristics and are at least 3-way interacting, and contpanefault-detection effectiveness. Fault
detection effectiveness will be measured on a per-tesg-bassis in terms of number of faults de-
tected. We will also study the faults, pinpointing reasamsithy some of them remain undetected

by our technique.

6.1 Preparing the Subject Applications & Test Oracles

Four open-source applications, called the TerpOffice sadasisting of Paint, Present, Spread-
Sheet and Word, have been selected for the stu@ighle 1 shows key metrics for TerpOffice.
These applications are selected very carefully for a nurabegasons. In particular, to minimize
threats to external validity, the selected applicatioesem-trivial, consisting of several GUI win-
dows and widgets. For reasons described later, artificidisfavere seeded in the applications —
this required access to source code, bug reports, and a Cx&ogeent history. To avoid (the
often difficult) distinction between GUI code and undertyiiibusiness logic,” GUI-intensive ap-
plications were selected.e., most of the source-code implemented the GUI. Finally, todst
implemented for this research, in particular for reversgireeering, are well-tuned for the Java
Swing widget library — the applications had to be implemdmtelava with a GUI front-end based
on Swing components. As is the case with all empirical stjdtee choice of subject applications
introduces some significant threats to external validitthefresults; these (and other) threats have
been noted in Section 7.

For the purpose of this study, a GUI fault is a mismatch, detkby a test oracle, between

the “ideal” (or expected) and actual GUI states. Hence, teadd¢aults, a description of ideal GUI

5Detailed specifications, requirements documents, sowrde €VS history, bug reports, and developers’ names
are available altt t p: / / www. cs. und. edu/ users/atif/ TerpOfice/.
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Subjects | Windows | Widgets | LOC | Classes| Methods
Paint 16 301 11,803| 330 1,253
Present 11 322 10,847| 292 2,057
SpreadSheet 9 176 5,381 135 746
Word 26 617 9,917 197 1,380
TOTAL 62 1,416 | 38,398 954 5,436

Table 1: TerpOffice Applications

execution state is needed. This description is used by tastes to detect faults in the subject
applications. There are several ways to create this deéserig-irst is to manually create a formal
GUI specification and use it to automatically create testlesa Second is to use a capture/replay
tool to manually develop assertions corresponding to tesles and use the assertions as oracles
to test other versions of the subject applications. Thitd tevelop the test oracle from a “golden”
version of the subject application and use the oracle tdaaitseeded versions of the application.
The first two approaches are extremely labor intensive shmeerequire the development of a for-
mal specification and the use of manual capture/replay;ttdwghird approach can be performed
automatically and has been used in this study.

Several faults were seeded in each application. In ordevdiml dault interaction and to sim-
plify the mapping of application failure to underlying faunultiple versions of each application
were created; each version was seeded with exactly one fteilice, a test case detects a faufit
there is a mismatch between versiqne., the version that was created by seeding fjudind the
original. A mismatch is detected by comparing, between tiiden and fault seeded version, the
values of all the properties of all the GUI widgets being thgpd, after each event.

The process used for fault seeding was similar to the oneinssatlier work [51, 82]. Details
will not be replicated here. In summary, during fault segdit? classes of known faults were iden-
tified, and several instances of each fault class were @atlifiecntroduced into the subject program
code in source code statements that were covered by the degikeases, thereby ensuring that
these statements were part of executable code. Care wasstakieat the artificially seeded faults
were similar to faults that naturally occur in real progradus to mistakes made by developers; the

faults were seeded “fairlyj'e., an adequate number of instances of each fault type weredeed
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Several graduate students were employed to seed faultslnsedject application; they created

263, 265, 234, and 244 faulty versions for Paint, Presemga&®sheet, and Word, respectively.

6.2 Generating and Executing the ESIG-Based Test Suite

The reverse engineering process was used to obtain the BIGRd original versions of each
application. The sizes of the EIGs, in terms of nodes and £daye shown in Table 2. These
numbers are important as they determine the number of gedetest cases and their growth in

number as test-case length increases.

Paint | Present| SpreadSheet Word

#EIG Nodes 300 321 175 616
#FEIG Edges | 21,391| 32,299 6,782 | 28,538
#ESIG Nodes 102 50 45 75
#ESIG Edges 233 233 197 204

Table 2: ESIG vs. EIG Sizes

The EIGs were then used to generate all possible 2-way tesst®., the smoke tests. The
numbers generated were exactly equal to the number of edglee EIGs — it was quite feasible
to execute such numbers of test cases in little more than adayr 50 machines in parallel. The
test cases were executed on their corresponding “corrpptications; the GUI state was collected
and stored. The reader should note that it is quite impradiicgenerate all possible length 3 test
cases for these EIGs.

While new software versions were being obtained (via fag#déng as discussed in Sec-
tion 6.1), the 2-way EIG-based test suites and GUI state weee to obtain all possible 3-way
ESIG covering test cases. The sizes of the ESIGs are showabie 2. The table shows that
the ESIGs are much smaller than the corresponding EIGs. @teetsmall number of nodes and
edges, the number of 3-way covering test cases was 2531, 2089, and 2345 for Paint, Present,
SpreadSheet, and Word, respectively. As noted earlieg iee unique set of length 3 test cases
for an ESIG; hence, there is a single ESIG test suite percaijn.

The 2-way EIG- and 3-way ESIG-based test cases were themtexieon the fault-seeded
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Paint | Present| SpreadSheet Word
Total Faults 263 265 234 244
2-way ElG-detected Faults 147 139 139 183
3-way ESIG-detected Faults (only new faults) 47 52 39 36

Table 3: ESIG vs. EIG Fault Detection

versions of the applications. The number of faults deteitastiown in Table 3. Note that the last
row reports the number of “new” faults detected by ESIG. Taide shows that ESIG-based suites

are able to detect a large number of faults missed by the EIG.

6.3 Developing “Similar” Suites

As mentioned earlier, this study required the developmeséweral new test suites. To minimize
threats to validity, the suites needed to satisfy a numbegaiirements, discussed next.

From previous studies, we know that statement, event, a@eddge coverage, and size (num-
ber of test cases) play an important role in the fault-deiaatffectiveness of a test suite [81].
For example, a small test suite that covers few lines of coilenost likely detect fewer faults
than another larger suite that covers many more lines. dwdHir comparison of fault-detection
effectiveness, we needed test suites that havedhee statement, event, and edge coverage, and
size (number of test casem that of ESIG-based test suites.

Previous studies have also shown that long test cases (mahB& events) fare better than
short ones in terms of the number of faults that they detéjt Because we did not want the new
suites to have any disadvantage, we ensured that all tistirdses had at least 3 EIG events (note
that all our ESIG test cases have exactly 3 ESIG/EIG events).

It is non-trivial to generate these test suites. For exangalesider the problem of generating
a GUI test suite that covers specific lines of code. Becauskeoflifferent levels of abstraction
between GUI events and code, one would need to manually eeatiné source code, the rela-
tionship between events and underlying code, and cardhillyr each event in every test case to
ensure that it covers a specific line. Because there are nmated techniques to do this task, the

process will be very resource intensive.
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Moreover, because the above criteria (same statement, emelredge coverage, and size) may
be met by a large number of test suites (with varying fautedigon effectiveness), the process of
generating different suites and comparing them to the B#i&:d suites needed to be repeated
several times. In this study, we generated 700 test suitesgpdication and compared their fault-
detection effectiveness to the ESIG suite.

GUI test cases are expensive to execute — each test casé&eap t@ 2 minutes to execute (on
average, each requires 30 seconds). Our 700 suites eadrigrfesent, SpreadSheet, and Word,
contained 1,054,064; 860,324; 850,808; and 974,235 tessceespectively; in all 3,739,431 test
cases. Each test case needed to be run on each fault-seesied;vihis task would have taken
several years on our 50-machine cluster — an impractickl @sher researchers, who have also
encountered similar issues of practicality, have circume this problem by creatingtast pool
consisting of a large number of test cases that can be exeiouaeeasonable amount of time [15].
Each test case in the pool is executed only once and it's @recattributese.g, time to execute
and faults detected are recorded. Multiple test suitesra@ed by carefully selecting test cases
from this pool. Their execution is “simulated” by combinitige attributes of constituent test cases
using appropriate function®.g, set unionfor faults detected). This research will also employ
the test pool approach to create a large number of test sUitestest-pool-based approach will
introduce some threats to validity, which we will note in &a&c 7.

Finally, we did not want to introduce any human bias when gpiteg these test cases. We
used a randomized guided mechanical process. A relatedagpwas employed by Rothernet|
al. [63] to create sequences of commands to test command-hatbedre. In their approach, each
command was executed in isolation and test cases were “BEs#rby concatenating commands
together in different permutations. Since GUI events (c@mds) enable/disable each other, most
arbitrary permutations result in unexecutable sequentesce, we used the EIG model to obtain
only executable sequences.

We generated test cases in batches of increasing lengtsuneel in terms of the number of

EIG events. We required that each EIG edge be covered bysitNetest cases of a particular
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batch. Moreover, we required that each fault-seeded statebe covered by at leadt test
cases of the overall pool. The test-case generation pretated by generating (using a process
described in the next paragraph) the batch of length-3 tesiscuntil each EIG edge was covered
by at leastN test cases; they were all executed and their statementagw/evas evaluated; the
next (and all subsequent) batch was generated ONLY IF eatfiskeded statement was not yet
covered by at least/ test cases.

The process of generating each batch of lerigést cases uses the following algorithm:

1. Initialize af r equency variable for each EIG edge t@ro.

2. For each event, in the EIG, do

(a) Add the single event, to a new empty test cage

(b) Form a list of all outgoing edges from.

(c) Selectthe edge, e,) that has the lowestrequency, breaking ties via random selec-
tion. Adde, to the test case

(d) Follow the selected edge to its destination evgnt

(e) Starting ak,, recurse thé r equency-based selection and follow-the-edge process
(described in Steps 2b through 2d and this recursive stet)the desired length is

obtained, adding events into the test case

3. Add the test caseto the suite.
4. If all EIG events have been covered andfakquency > NV, stop; otherwise go to the next

EIG event (via the iteration of Step 2 above).

The above algorithm was guaranteed to stop because al faadt been seeded in lines that
were executable by the smoke tests; the count for each statemould ultimately reacid/ and
stop. Finally, all the ESIG-based test cases were addea toctbl.

In this study, we setV = 10 and M = 15. This choice was dictated by the availability
of resources. As described earlier, all the test cases ddedee executed on the fault-seeded

versions of their respective application. Even with 50 nirae$ running the test cases in parallel,
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Figure 14: Histograms of Test Case Lengths in Pool

the entire process took over four months.

The total number of test cases per application is shown imr@ol2 of Table 4. The length
distribution of the test cases is shown as a histogram inr€igjd. As expected, longer tests were
able to cover more EIG edges than the short ones; hence fewgrtést cases were needed to
satisfy our coverage requirements.

After all the runs had completed, we had several matricegjpglication: (1) the fault matrix,
which summarized the faults detected per test case andr(@xébh coverage criterion (event, edge,
statement), a coverage matrix, which summarized the cgeesements covered per test case.

This test pool was then used to obtain coverage-adequaés skor example, event-adequate
suites were obtained by maintaining sets of test cases tivated each ESIG event. Test cases
were selected randomly without replacement from each sedaplicates eliminated, ensuring that

each event was covered by the resulting suite. A similargg®evas used for edge and statement
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Test Pool T Tr Ts Tg, TR+E
Event| Edge| Stmt. | Trys, Trys
Paint 119,583 | 103 | 190 | 123.64 2531

Present 231,680 | 50 264 | 18.24 2080
SpreadSheet 191,966 | 45 173 | 14.08 2069
Word 192,042 | 84 248 | 30.35 2345

Table 4: Test Pool and Average-Suite Sizes

coverage. The process was repeated 100 times to yield 1@3 slihe average size of the suites
is shown in Columns 3-5 of Table 4.

Finally, Tr was constructed using random selection without replaceeresuring that the final
size of Ty was the same as that of the ESIG suite. A total of 100 suchsspéeapplication were
obtained. Similarly, each of the suités;, T;, Ts were augmented with additional test cases,
selected without replacement at random from the pool talyi@l, ¢, Tr;, Tris, respectively.
The sizes of all these suites was equal to the size of the ESt& $-inally, 100 more suites that
sharedall the characteristics of interest in this studg ( event, edge, statement, and size) with the
ESIG suite were constructed; the symibal, . ;s will be used for these suites.

Note that the fault-detection effectiveness of each tegt san be obtained directly from the
fault matrix of the test pool without rerunning the test cas€he results are shown in Figure 15
as distributions. The box-plots provide a concise displagaxh distribution, each consisting
of 100 data points. The line inside each box marks the medsduey The edges of the box
mark the first and third quartiles. The whiskers extend frbm quartiles and cover 90% of the
distribution; outliers are shown as points beyond the wdrisk Visual inspection of the plots
shows that the fault-detection effectiveness of the ESt@Gegated test suite (shown as an asterisk)
is better than that of most individual similar-coverage amdilar-sized suites. Some suites that
lie in the whiskers and outliers do detect more faults thanBEBIG suite. However, we remind
the reader that unlike the ESIG suite, there is no systeraaticautomatic way to generate these
suites.

As demonstrated above, box-plots are useful to get an eef data distributions. However,

valuable information is lost in creating the abstractioar &xample, it is not clednow manytest
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Figure 15: Fault Detection Distribution

suites detect specific numbers of faults; we are especrdbyasted in the number of suites that do
better than the ESIG suites. This is important to partiafigerstand our EIG and ESIG suites. We
now show the number of test suites that detected specific ergab faults. Figure 17 shows eight
histograms for TerpPresent, one for each box in the box-plu x-axis represents the number of
faults; the y-axis shows the number of test suites that tkddbe particular number of faults. To
allow easy visual comparison, we have used the same x-adig-aris scales for all eight plots.
The vertical dotted line represents the number of faulteaet by the ESIG suites. Similar plots
are shown in Figures 17-19 for Present, SpreadSheet, ard] Y¥gpectively.

For all applications]s, T}, Ts, Tr, Tr. consistently did worse than the ESIG suites. For

a small percentage of test suités; ; and T, s did better than the ESIG suites. In particular,
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4%, 0%, 6%, and2% of the test suites fafz, ; did better than the ESIG suites, for Paint, Present,
SpreadSheet, and Word, respectivelyt, 0%, 2%, and11% of the test suites fof gz, 5 did better
than the ESIG suites, for Paint, Present, SpreadSheet, artl Yéspectivelyl'r, g, .5 outper-
formed all the other suites in most cases; Specificailyi, 2%, 8%, and9% of the test suites for
Tr. 4145 did better than the ESIG suites, for Paint, Present, SpresetSand Word, respectively.
It should be noted that the ESIG approach does better thattesbsuites considered in this study.
And that the ESIG-based approach is the only fully autonmegjgroach to generate the GUI test
suites; all other suites were obtained from the test pftet they had been executed and statement
coverage obtained. Moreover, the performance ofitheest suites indicates that the size of a suite
plays a very important role in fault-detection. We studgtissue in the next section.

The results discussed thus far have been based on visualetam of the data. We now want
to determine whether the differences in the number of fagitess coverage criteria are statistically

significant. In particular, we want to study the differenbesween the ESIG suite (a single value
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“number of faults detected”) and all the other “similar” s (100 values per distribution). We
may use asingle sample t-tesb test for the significance of the difference between theeoiesl
fault-detection of the ESIG suite and the mean of each Higion if certain conditions are met.

Many statistical tests are based upon the assumption tndath is normally distributed. These
tests are calleparametrictests; a common example includes the t-test [55]. Sincénalcom-
putations in parametric tests are based on the data noyragsumption, the significance level
(p-value) cannot be considered reliable when the datallisiton is not normal. Tests that do not
make assumptions about distribution are referred toaamsparametridests; these tests rank the
dependent variable from low to high and then analyze thesr§51.

Another factor that plays a role in choice of statisticaktdaes sample size. If the sample
size is small, choosing a parametric test with non-normaiyributed data, or choosing a non-
parametric test with normally distributed data, will yield inaccurate p-value. On the other hand,

if the sample size is large, the distribution can be consdi@ormal based upon the central limit
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theorem [55]. Consequently, in practice, with large sange, the choice of parametric vs.
non-parametric does not matter, although the p-value temle large for non-parametric tests;
however, the discrepancy is small.

For illustration, the solid line superimposed on the hisaogs (Figures 17-19) shows the nor-
mal distribution approximation; informally, the data sestm follow the normal distribution quite
well. There are several ways to formally determine normalftdata. A popular way is to use
a quantile-quantile (QQ) plot. A quantile is the fractiom fercentage) of points below a given
value. For example, 70% of the data fall below the “0.7 quahpoint. A QQ-plot shows the
guantiles of a data set (in our case the number of faults ufifferent selection criteria) against
the quantiles of a second data set (normal distribution). akn{x,y) on the plot means that
f2(x) and f,(y) share the same quantile, whefieand f, are the functions for the first and second
data set. If the two sets come from a population with the sastglltion, the plot will be along a

(r = y) straight line. The greater the departure from this refeedime, the greater the evidence for
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the conclusion that the two data sets have come from popuokatwith different distributions [60].

Figure 21 through Figure 22 show the quantile-quantilesplot each application. The x-axis is
the normal distribution; the y-axis is the “number of fatiltisstribution. The QQ-plots more or
less show a straight line, implying normality.

Based on normality, we usesingle sample t-tegb test for the significance of the difference
between the observed fault-detection of the ESIG suite hadrtean of each distribution. The
null hypothesis is that the two values are equal; the alterngpothesis is that they are unequal.
Note that a separate test is needed per pair (mean of eadbudisn, fault-detection of the ESIG
suite value). The resulting p-values were all more than.Ot#hce we reject the null hypothesis
and accept the alternate hypothesis; there is a significietethce between fault-detection of the
ESIG suite and the mean fault-detection of each of the “sirhfuites. The ESIG suites are better
at detecting faults compared to same-sized test suitesdkiat essentially the same events, edges,

and statements. This result helps to answer the primarytignesised in this study.
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6.4 Discussion

We now present details of why the ESIG-based test suitesatedo detect more faults than other
test suites. We specifically looked at three related isswaghability, manifestation, and number
of test cases. We note that the first two issues are relatdet tRELAY model [61, 70] of how a
fault causes a failure on the execution of some test. We defawhabilityas the coverage of the
statement in which a fault was seeded, arahifestatioras the fault leading to a failure so that our
GUI-based test oracle could detect it. As observed in [6dfl)lare necessary conditions for fault
detection. The data in Figure 15 indicates that the ESI@dbéest suites were able to outperform
their coverage-adequate equivalent counterparts. Heheg,must have been more successful,
than their counterparts, at the combination of reachglalitd manifestation of several faults. We
feel that this behavior is due to the nature of the ESI ratetiip, which is based on observed GUI
state, and hence the software’s output. Executing testddbas only on ESI events increases
the likelihood that a fault will be revealed on the GUI, andhée detected by our GUI-based test
oracle. Although we will not attempt to analyze this behawogreat detail here (indeed this is
a direction for future research), we will provide some quative data to show evidence of this
phenomenon by studying the test cases in the pool.

Figure 24 shows data of the number of test cases that coveltesséeded statement, and the
number of test cases in the pool that detect it. The figureviglelil into four parts, one for each
subject application. Each part is a 3-column table (londetalare wrapped); Column 1 is the
seeded fault number, corresponding to a statement in whecfatllt was seeded; Column 2 is the
number of test cases that detected the fault; Column 3 isuimdar of test cases that did not detect
the fault even though they executed the fault-seeded staiethe fault number entry is shaded if
at least one ESI test case detected it. For example, thensgatehat contained Fault 21 of Paint
was executed by a total of 845 test cases, of which 11 detéctdee fault was detected by at
least one ESI test case. On the other hand, Fault 127 of Paghot detected by any ESI test
case; it was however detected by 42 of the total 42+267 testscaHence, a statement-coverage

adequate test suite would have a probabilitylﬁ% of detecting this fault (assuming that faults
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are independent). The data in Figure 24 is in fact sorted lsygiobability, giving us a sense
of the “hardness” of the fault for statement-coverage adgxtest suites. This data helps us to
better interpret the results of Figure 15. First, the ESI& seites did detect many of the seeded
faults. Second, they did better th@dh because they detected many of the “hard” faults (this was
most apparent in Paint and SpreadSheet). Third, some faales detected by many of the test
cases that executed the statement. For example, Fault P2érnhwas detected by 747 of the total
747+446 test cases that executed the statement in whicls s@eled. The fault was seeded in the
handler of a termination event that closes e r i but es window and applies the attributes (if
any have changed) to the currentimage on the main canvase€ded fault caused the image size
to be computed incorrectly, resulting in an incorrectlyesizmage whenever at least one attribute
in theAt t ri but es window is modified by the user. Because there are many petiongseof
modifying the attributes, a large number of test cases deetaluletect this fault (12 in the ESIG
test suite and 735 in the rest of the test pool). In generaestent coverage adequate test suites
do really well for these types of faults that can be triggerechany different ways.

Forth, several faults were detected by very few test casasdt 84 of Paint is an example. This
fault flips the conditional statement in an event handler tfpe of curve tool. The condition is
to check whether the curve tool is currently selected; if ylesn the curve stroke is set according
to the selected line type for the curve tool. Due to the fahk, curve stroke is incorrectly set,
resulting in an incorrect image to be drawn on the main caomswhen the event sequence:
SelectCurvel ool; Select LineType; DrawOnCanvas > is executed. If the first two events are
not executed, theWrawOnCanvas does not trigger the fault even if the statement contairtieg t
seeded fault is executed. Hence, although there are margases that cover the faulty statement
(850), only 7 test cases in the test pool detected the faule @ them is the ESI test case; ESI-
relationships were found between the three events. In gerstatement coverage adequate test
suites do not do well for faults that are executed by manytesequences but manifest as failures
in very few cases.

The size of a suite seems to play a very important role in{fadetection. Indeed, théy test
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Figure 25: Probability of Detecting Faults by Random Test&3a
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suites, which were the same size as the ESIG-based suitebetier (in most cases) than their
coverage-adequate counterparts. We feel that this bahawaa artifact of the density of our fault
matrices. A large number of test cases are successful atidgtenany “easy” faults. Even if test
cases are selected at random, given adequate numbers,ithey able to detect a large number
of these easy faults. For example, given 192,042 test casks pool for Word and the size @i;
being 2345, the probability that Fault 24, which is detediganore than 84 test cases in the pool,
is detected by at least one test cas&inis 0.49 — this is quite high. In Figure 25, we show the
probability that a random suite of its corresponding EStessize would detect a particular fault.
This data shows that many of these difficult faults are detkbly at least one ESIG-based test
case, improving their fault-detection effectiveness. &bwer, 16 faults in Word have a detection
probability of more than 0.25. This number is much largettii@r other three applications, helping
to understand wh¥{'; and the other suites that included randomly selected tessadid so well.
Finally, we wanted to examine why some of the faults were mdécted. We manually ex-
amined each fault and tried to manually devise ways of matiifg the fault as a failure. We

determined that:

1. several of the faults were in fact manifested as failurethe GUI but our test oracle was
not capable of examining these parts of the GUI,

2. very few faults caused failures in non-GUI output,

3. several of the undetected faults require even longeresegs,

4. the effect of several faults was masked by the event haodtk even before our test oracle
could detect it,

5. some faults crashed their corresponding fault-seedesibve

We show the numbers of these faults in Table 5. The large nuafSgnored Widget Proper-
ties” has prompted us to improve our test oracles for futuvekw

This controlled study showed that the automatically ideadiESI relationships between events
generate test suites that detect more faults than their cedent-, and event-interaction-coverage

equivalent counterparts. Moreover, we saw that severaliofossed faults remained undetected
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Ignored Widget | Non-GUI Longer | Masked | Crash | Total
Properties Failure | Sequence| Error
Paint 0 0 1 6 0 7
Present 13 0 4 0 0 17
SpreadSheet 9 2 8 5 3 27
Word 5 0 4 11 0 20

Table 5: Undetected Faults Classification

because of limitations with our automated GUI-based testler and others required even longer

sequences.

7 Conclusions and Future Work

This paper presented a new fully automatic technique tontesti-way interactions among GUI
events. The technique is based on analysis of feedbacknebt&iom the run-time state of GUI
widgets. A seed test suite is used for feedback collectitve.t€chnique was demonstrated via two
independent studies on eight software applications. Téatseof the first study showed that the
test cases generated using the feedback were useful atidgtserious and relevant faults in the
applications. The second study compared the ESIG-baseslitsto similar EIG-based suites. It
showed that the added effectiveness is due to targetedgestihe identified ESI relationships, not
an incidental side-effect of the size of the suite, nor théitazhal events and code that it covers.
As is the case with all research involving empirical stugdibese studies are subject to threats
to validity. These threats need to be considered in ordessess their impact on the results.
First is the selection of subject applications and theiratiristics. The results may vary for
applications that have a complex back-end, are not develogieg the object-oriented paradigm,
or have non-deterministic behavior. Second, in study 2,télsé pool approach was used due
to practical limitations. It is expected that the repetitmf the same test case across multiple test
suites will have an impact on some of the results. The algoriised to create the test pool ensures
that each event (the first event in the test case) is execatadinown initial state; the choice of

this state may have an effect on the results. Third, the J&laalow the extraction of only 12
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properties of each widget; only these properties were useditaining the ESI relationship via
GUI state; moreover, faults are reported for mismatchewdst these 12 properties. Fourth,
we used one technique to generate test cases — using eterattion graphs. Other techniques,
e.g, using capture/replay tools and programming the test casesially may produce different
types of test cases, which may show different execution\nehaFifth, in study 2, a threat is
related to our measurement of fault detection effectiveneach fault was seeded and activated
individually. Note that multiple faults present simultaosly can lead to more complex scenarios
that include fault masking. Finally, several threats atateel to fault seeding in study 2. Threats
from issues such as human decision-making are minimizedsimguan objective technique for
uniformly distributing faults based on functional units.

This research has presented several exciting opportsifidiefuture work. In the immediate
future, the three contexts for the cases will be simplified, @npossible, combined. The current
special treatment of termination events, which led to antemhél two contexts, will be revised.
One possibility is the revision of the EIG model; the elintioa of all termination events from
this model will be explored. This revision will also lead teetdefinition of new, fundamentally
different cases for the ESI relationship.

The results showed that certain events in the GUI domina&t&®i relationship. These events
will be studied and classified. In the future, additional Gipplications and software problems
will be studied. The run-time state information was cokettising the Java Swing API for stan-
dard Swing widgets. Future work involves incorporatingtonszed API for application-specific
widgets into feedback collection and analysis.

The current test-case generation algorithms output a sditpodssible event sequences bounded
by a pre-determined length. As the goal of this work is to gat@emulti-way interactions among
GUI events, other techniques (suchcasering arrayqg85]) designed to minimize the number of
test cases while retaining high interaction coverage wlékplored.

The analysis summarized in Section 5 led to a deeper unddistpof the relationship be-

tween real GUI events and the underlying code in fielded G@liegtions. This may lead to
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new techniques that combine dynamic analysis of the GUI @tdt @nalysis of the event handler
code. For example, the code for related events may be givaestatic-analysis engine that could
examine the code for possible interactions that are onlyigpp at the code levet,g, data-flow
relationships.

The feedback currently obtained at run time is in the form bl @idgets. Mechanisms, such
as reflection, in modern programming languages may be usaltéin additional feedback from
non-GUI objects. The definition of state, in terms of a setlpéots with properties and values, is
general; it may be applied to any executing object. Someeo$ikhcases may be adapted for non-
GUI objects. Another straightforward way to enhance théli@ek is to instrument the software
for code coverage and run-time invariant collection. Teisdback may be used to generate new
types of test cases. Another logical extension of this wertoiexamine the redundancy in our
ESIG suites via existing test minimization techniques tgyed for user interfaces [9].

Some of the challenges of GUI testing are also relevant tintesf event-driven software,
e.g, web applications and object-oriented software. One waggbthese classes of software is
to generate test cases that are sequences of eeegutsveb user actions or method calls). Some
of the techniques developed in this research have alreagty iimed by other researchers to prune
the space of all possible event interactions to be testeadbrapplications [2]; similar extensions

will be explored for object-oriented software.
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