THESIS REPORT
Ph.D.

Supported by the
National Science Foundation

Engineering Research Center
Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

Ph.D. 91-5

Adaptive Array Systems
Using QR-Based RLS and CRLS Techniques
with Systolic Array Architectures

by C.-.F.T.Tang
Advisor: K.J.R. Liu

ABSTRACT

Title of Dissertation: Adaptive Array Systems Using QR-Based RLS and CRLS
Techniques with Systolic Array Architectures

Che-Fen Tom Tang, Doctor of Philosophy, 1991

Dissertation directed by: Dr. S. A. Tretter, Associate Professor
Dr. K.J. R. Liu, Assistant Professor
Systems Research Center
Electrical Engineering Department
University of Maryland
College park, Maryland 20742

In this dissertation the basic techniques for designing more sophisticated
adaptive array systems are first developed. Then several systolic architec-
tures based on numerically stable and computationally efficient algorithms
are proposed for adaptive array systems. Compared to the existing archi-
tectures proposed elsewhere in the literature, our new systolic architectures
are more efficient structures for real-time signal processing applications and
VLSI hardware implementation. The reasons are: (1) the proposed systolic
architectures are based on numerically stable and computationally efficient
systolic algorithms, (2) there is no bottleneck in the whole architecture since
QR decomposition by the square root free fast Givens method is used, (3) the
whole architecture has a fully pipelined design since backward substitution is
avoided, (4) it is a single fully pipelined open-loop system without any feed-
back arrangement, and (5) the systolic architectures function recursively to
update the result for each new snapshot. Therefore, the new VLSI systolic
architectures proposed in this dissertation using QR-recursive least squares
(QR-RLS) and QR-constrained recursive least squares (QR-CRLS) techniques
achieve minimal memory and maximal parallelism for real-time signal process-
ing applications and VLSI hardware implementation.

Adaptive Array Systems
Using QR-Based RLS and CRLS Techniques
with Systolic Array Architectures

by
Che-Fen Tom Tang

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
1991

Advisory Committee:
Dr. K.J. R. Liu, Assistant Professor, Electrical Engineering, Advisor
Dr. S. A. Tretter, Associate Professor, Electrical Engineering, Advisor
Dr. A. Mahalanobis, Assistant Professor, Electrical Engineering
Dr. S. L. Koh, Professor, Associate Dean of College of Engineering
Dr. S. Peng, Assistant Professor, Computer Science

Dr. S. M. Yuen, Scientific Staff, GE Aerospace

To my wife: Betty Cheng
To my parents: F. Tang and P.S. Chang

for their love, support, inspiration

i

ACKNOWLEDGMENTS

I wish to thank my professors who have contributed to my dissertation. In
particular, I thank my advisors Dr. S. A. Tretter for guiding me in writing and
correcting this dissertation and Dr. K.J. R. Liu for his numerous discussions,
suggestions, and inspiration which make this dissertation possible. I thank
them for spending many hours helping me. It is my privilege to be their
student and friend. I also wish to thank the other members of the dissertation
committee, Dr. S. L. Koh, Dr. A. Mahalanobis, Dr. S. Peng, and Dr. S. M.

Yuen for reading this dissertation and providing numerous helpful comments.

I would like to express my appreciation to Dr. Henry E. Lee of Westing-
house for introducing me to the area of systolic arrays. I would like to express
my gratitude to Dr. Stanley M. Yuen of GE Aerospace for his constant help
and valuable inputs. T gratefully acknowledge Dr. Y. J. Chen, Dr. C. I
Chang, and Dr. C. Menyuk at UMBC for their financial support and help.
Special thanks are due to Dr. Severino L. Koh, Associate Dean of College of

Engineering, for his continuous financial support and encouragement.

This work was performed at Systems Research Center and Electrical Engi-
neering Department, University of Maryland, College Park as well as at Uni-
versity of Maryland Graduate School, Baltimore. I appreciate the excellent

research environment and computational facilities at University of Maryland.

ii

Contents

1 Introduction and Motivation 1
2 Systolic Array Linear Algebra Processing 7
2.1 Introduction 7
2.2 Systolic Array QR Decomposition by Complex Givens Method 9
2.2.1 Givens Algorithmo 00000 9
2.2.2 Givens Based Systolic Array Processors 10
2.3 Systolic Array QR Decomposition by Complex Fast Givens Method 13
23.1 Fast Givens Algorithm 14
2.3.2 Fast Givens Based Systolic Array Processors 15
2.4 Systolic Array for Forward Substitution 16
2.5 Systolic Array for Backward Substitution 22

3 Parallel/Pipelined Weight Extraction for RLS and CRLS Adap-
tive Array Systems 26
3.1 Introduction 26

iv

3.2 RLS Adaptive Array System 35

3.3 QR Based RLS Algorithm 39
3.3.1 Initialization Procedure 40
3.3.2 Recursive Updating 40

3.4 Systolic RLS Weight Extraction System 42

3.5 Fast Givens Based RLS Algorithm 43

3.6 CRLS Adaptive Array System 54

3.7 QR Based CRLS Algorithm 57
3.7.1 Imtialization Procedure 58
3.7.2 Recursive Updating 59

3.8 Systolic CRLS Weight Extraction System 61

3.9 Fast Givens Based CRLS Algorithm 67

Fully Parallel and Pipelined CRLS Systolic Array for MVDR
Beamforming 75
4.1 Introduction 5

4.2 Comparison Between McWhirter’s RLS and MVDR Algorithms 78

4.2.1 McWhirter’s RLS Algorithm 79
4.2.2 McWhirter’s MVDR Beamforming 83
4.3 A Novel MVDR algorithm 883
4.3.1 Initialization Procedure 90
4.3.2 Recursive Updating 90

44 MVDR Systolic Array Processors

4.5 Fast Givens Based-MVDR Beamforming

5 VLSI Algorithms and Architectures for Complex Householder

Transformation with Application to Array Processing

5.1

5.2

5.3

5.4

3.5

Introduction

Systolic Arrays of Complex Householder Transformation

5.2.1 Systolic Complex Householder Algorithm

5.2.2 VLSI Array Processors Implementation

Systolic CHT-RLS Algorithm and Architecture

5.3.1 Systolic CHT-RLS Algorithm

5.3.2 Systolic Array Implementation

Application to Array Processing

Conclusions

6 Conclusions and Future Research

vi

104

104

109

110

116

136

137

144

146

List of Figures

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Givens Based Upper Triangular Systolic Array 11
The Boundary and Internal Cells of Givens Based Systolic Array 12
Fast Givens Based Upper Triangular Systolic Array 17

The Boundary Cell and Internal Cell for Fast Givens Based

Systolic Array 18
Systolic Array Processors for Forward Substitution 21
Systolic Array Processors for Backward Substitution 25
Gentleman and Kung’s Systolic Architecture [6] 28
Hudson-Shepherd’s Parallel Weight Extraction Structure [9] . 31

McWhirter’s Parallel Weight Extraction Structure by Using Fixed

Matrix Operator [11] 32
oidelobe Cancellation Adaptive Beamforming System 36
RLS Systolic Array Processors [10] 45
Processor Elements of RLS Systolic Array Processor 46
Fast RLS Systolic Array Processor 51

vil

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

9.3

5.4

Processor Elements of Fast RLS Systolic Array Processor . . . 52

CRLS Adaptive Beamforming System 54
CRLS Systolic Array Processors (Case 1) [4,10] 63
CRLS Systolic Array Processors (Case 2) [4] 64
Processor Elements of CRLS Systolic Array Processor 65
Fast CRLS Systolic Array Processors (Case 1) 71
Fast CRLS Systolic Array Processors (Case 2) 72
Processor Elements of CRLS Systolic Array Processor 73
McWhirter’s RLS Systolic Array Processor [11] 84
McWhirter’s MVDR Systolic Array Processors [14] 87
MVDR Systolic Array Processor 95
Processor Elements of MVDR Systolic Array 96
Fast MVDR Systolic Array Processor 101
Processor Element of Fast MVDR Systolic Array 102

The Boundary and Internal Cells of Systolic Householder Trans-
formation 119

Processor Pair of Boundary and Internal Cells 120
Triangular Systolic Architecture for Householder Transformation 121
Linear Triangular Systolic Architecture for Householder Trans-

formations with Feedback Configuration 122

viii

3.9

5.6

5.7

Systolic Architecture for CHT-RLS
The Boundary, Internal, and Final Cells of Systolic CHT-RLS

Systolic Architecture for CHT-RLS with Backward Propagation

1x

139

List of Tables

2.1 Givens Algorithms for the Boundary Cell and Internal Cell . . 13
2.2 Fast Givens Algorithms for the Boundary Cell and Internal Cell 16
2.3 The Parallel/Pipelined Algorithm for Forward Substitution . . 20
2.4 The Parallel/Pipelined Algorithm for Backward Substitution . 24
3.1 Summary of Parallel/Pipelined QRD-RLS Algorithm 44
3.2 The Givens Based-RLS Algorithm of Mode 1 47
3.3 The Givens Based-RLS Algorithm of Mode 2 47
3.4 Summary of Fast Givens-RLS Algorithm 50
3.5 The Fast Givens-RLS Algorithm of Mode 1. 53
3.6 The Fast Givens-RLS Algorithm of Mode 2. 53
3.7 Summary of Parallel/Pipelined QRD-CRLS Algorithm 62
3.8 The Givens Based-CRLS Algorithm of Mode 1 66
3.9 The Givens Based-CRLS Algorithm of Mode 2 66
3.10 Summary of Fast Givens-CRLS Algorithm 70
3.11 The Fast Givens-CRLS Algorithm of Mode 1 74

3.12 The Fast Givens-CRLS Algorithm of Mode 2

4.1

4.2

4.3

4.4

4.5

4.6

9.1

3.2

5.3

3.4

5.5

Summary of Parallel/Pipelined QRD-MVDR. Algorithm
The Algorithm for Mode 1 « « « o oo
The Algorithm for Mode 2 . « . . oo
Summary of Parallel/Pipelined Fast Givens-MVDR Algorithm
The Fast Algorithmof Mode 1.

The Fast Algorithmof Mode 2.

The Algorithm for the Boundary Cell of Complex Householder
Transformation 0oL
The Algorithm for the Internal Cell of Complex Householder
Transformation L oo L
The Algorithm for the Boundary Cell of Systolic CHT-RLS . .
The Algorithm for the Internal Cell of Systolic CHT-RLS . . .

The Algorithm for the Final Cell of Systolic CHT-RLS

xi

94

97

97

100

103

103

Chapter 1

Introduction and Motivation

The problem of designing an adaptive array system is an important part of gen-
eral radar and communication systems. The performance of conventional sig-
nal reception systems is sensitive to decreases in signal-to-noise (SNR) caused
by undesired interference signals which may enter the system either by the
beam pattern sidelobes or by the mainlobe. These interference signals which
include waveforms from point sources in other than the look direction are
lightning, jammers, noise from nearby vehicles, and localized incoherent clut-
ter. Such SNR degradation may be further aggravated by antenna motion,
poor siting conditions, multipath ray effects, and a constantly changing inter-
ference environment. As radar and communication traffic increases, the sup-
pression of interference becomes more important in all applications. In radar,

sonar, seismic, and communication systems, adaptive arrays can be utilized to

9
preserve the desired signal in the presence of interference signals. Moreover,
adaptive array systems have the ability to automatically sense the presence of
interference signals and to suppress precisely these interference signals while
simultaneously enhancing the desired signal without prior knowledge of the
signal/interference environment. Therefore, an adaptive array system consists
of an array of sensors and a real-time computational processor to automati-
cally adjust the array sensitivity beam pattern so that the array performance
is improved. As a result, adaptive array systems offer enhanced reliability

compared to that of conventional multi-sensor systems [1].

In designing adaptive array systems, the recursive least-squares (RLS) and
constrained recursive least-squares (CRLS) approaches are adopted to achieve
faster convergence compared to that of least-mean-square (LMS) approaches
because the RLS and CRLS algorithms utilize all the information contained
in the input data from the start of the adaptation up to the present whereas
the LMS algorithm does not. The price to be paid for this improvement is
increased complexity. Algorithms based on the RLS or CRLS criterion are
considered to be the best candidates for adaptive filters. They have two fun-
damental properties [2]. First, the LS estimate is the best linear unbiased
estimate under the condition of white with zero mean for the measurement
error process. That is, it has minimum variance among the class of all linear

unbiased estimates. Second, if the noise involved satisfies the independent and

3
Gaussian condition, the RLS or CRLS estimate is the most efficient estimate
among all unbiased estimates. In other words, it achieves the Cramer-Rao
bound. In the radar and communication community, the conventional ap-
proach for solving RLS or CRLS problems generally uses direct sample matrix
inversion (SMI). Although the direct SMI solution is straightforward, it has
two major disadvantages. One of the disadvantages is that the SMI method
has undesirable numerical characteristics when the sample covariance matrix
is ill conditioned. Extremely high arithmetic precision is required when using
the direct SMI method to prevent numerical instability. Another disadvantage
is that the SMI algorithm can not be implemented as parallel/pipelined array
processors for real-time signal processing applications. To remedy the prob-
lems of ill-conditioning and VLS implementation, a family of algorithms based
on orthogonalization techniques can be used. They are the Givens, modified
Givens, Householder, Gram-Schmidt, and modified Gram-Schmidt methods.
The QR-based algorithms which deal directly with the observed data matrix
achieve the requirements of computational efficiency, robust numerical stabil-
ity and VLSI parallel/pipelined architecture implementation. Therefore, the
subject of mapping orthogonalization algorithms onto systolic arrays has be-
come very important for real-time signal processing applications with VLSI

hardware.

The importance of developing numerically stable and computationally effi-

4

cient systolic algorithms as well as mapping them into VLSI parallel /pipelined
architectures will be demonstrated in this dissertation. Modern signal pro-
cessing algorithms, especially adaptive arrays and multichannel algorithms,
are well structured to share the common attributes of regularity, recursive-
ness, and local communication. These properties are effectively exploited in
VLSI parallel/pipelined architectures. In VLSI hardware devices, memory and
processing power are relatively cheap and the main emphasis of the design is
concentrated on reducing the overall interconnection complexity and on keep-
ing the overall architecture highly regular, parallel, and pipelined. Moreover,

these devices offer massive concurrent computing which is essential to real-time

high throughput signal processing [7,30,44,45,46,48].

Among existing algorithms and their related systolic architectures, the QR-
based RLS and CRLS methods have proven to be very useful and effective
in adaptive array systems used for system identification, channel equalization,
adaptive antenna arrays, spectrum estimation, etc. [1,2,3,4,6,7,8,9,10,11,12,14,
15,16,17,22,23,24,27,28,31,32,33,34,35,36,37,45,49,63,61,62,63,64,65,66.,68,69,72,
73]. In this dissertation, the design of numerically stable and computation-
ally efficient systolic algorithms using QQR-based RLS and CRLS techniques
with implementation by VLSI systolic array architectures is the major sub-
ject. The dissertation begins with a design for a parallel /pipelined weight

extraction systems based on systolic RLS and CRLS techniques. Then an er-

5

ror in McWhirter’s MVDR systolic array processors is pointed out and a new
design for MVDR systolic array processors is presented. Finally systolic array
architecture design using the Householder transformation which is the best
computational efficient and numerical stable method among the family of QR

decomposition for adaptive array system is discussed.

This dissertation is organized as follows. In Chapter 2, the theory for
the QR decomposition-based Givens and fast Givens methods is stated in
detail and the new developments of the systolic array matrix computations
are described for designing matrix-based parallel signal processing. Chapter
3 is divided into two parts. The first part consists of the QR-based RLS
weight extraction algorithm and its related systolic array architecture. The
second part consists of the QR-based CRLS weight extraction algorithm and
its systolic array architecture. Since the proposed systolic architectures based
on numerically stable algorithms are the only known fully pipelined structures
without the need for a back substitution processor, they are considered to be

the best design.

In Chapter 4 we point out an error in McWhirter’s MVDR systolic algo-
rithm and architecture and propose the correct MVDR, systolic algorithm and
architecture. In Chapter 5, the most computationally efficient and numeri-
cally stable Houscholder method in the family of QR decompositions with the

systolic array architecture is presented and the application to an RLS array

6

system is described along with systolic array implementation. Finally, Chapter

6 is devoted to conclusions and suggestions for future research.

Chapter 2

Systolic Array Linear Algebra

Processing

2.1 Introduction

In the emerging field of algorithmic engineering introduced by McWhirter [11],
the hybrid disciplines of designing numerically stable parallel algorithms suit-
able for parallel computation and mapping them onto VLSI systolic architec-
tures to achieve high throughput rates and VLSI hardware implementation
are demanded for sophisticated, high performance real-time modern signal
processing. In real-time modern signal processing applications, numerically re-
liable and computationally efficient algorithms for techniques such as recursive

least squares estimation (RLS), constrained recursive least squares estimation

8

(CRLS), solving linear systems, and performing singular value decomposition
are required. Furthermore, in these applications it is also necessary to design a
highly parallel/pipelined structure for the use in parallel supercomputers and

for implementation by systolic processors.

In this chapter some key processors are developed as the basic tools for de-
signing sophisticated adaptive array systems. Moreover, the parallel /pipelined
techniques invented here make it possible to design more advance adaptive ar-
ray systems such as the RLS and CRLS arrays studied in this dissertation.
A detailed description of linear-algebra-based parallel algorithms with systolic
array processors is provided in the following sections. In the first two sections,
QR decompositions based on the Givens and fast Givens method with systolic
array processors are described in detail. In the third section a brief descrip-
tion of how a QR decomposition updates a system is presented. In the rest of
the sections the important matrix computations used in the array systems are
studied and the associated systolic array processors are designed. By using the
parallel/pipelined techniques developed in this chapter, we are able to design

more complicated adaptive array systems.

9

2.2 Systolic Array QR Decomposition by Com-

plex Givens Method

An N x N data matrix X(n) can be reduced to an upper triangular matrix

R(n) by a transformation of the form
= Q(n)X(n) (2.1)

where R(n) is the upper triangular matrix

7"11(tn) 7‘12(tn) T13(tn) T T1N(tn)
0 7"22(tn) 7"23(tn) T T2N(tn)
0 0 ras(tn) --- ran(te) |-
O O O v TNN<tn)

and (n) is an n X N unitary matrix.

2.2.1 Givens Algorithm

To illustrate how a complex Givens orthogonalization triangularizes the data
matrix X, we apply a 2 by 2 unitary matrix to the two rows of X to zero out

an element.

—8 ¢ Toy Ty rr Ta N 0 =z, - Tyn

10

where
Ty =\t + |22 ? (2.3)
r
c=— (2.4)
T11
x
s == (2.5)
T
and
7",1]- :Crlj—{—s*ij forj :2,...,]\/'_ (26)
Ty; = —8T1; + CToj forj=2---,N. (2.7)
Note that ¢, ry;, and ry, are real and s, $/1j7 :c;j are complex for j = 2,.-., N.

In addition, the diagonal elements of R can be made real because X can be
also expressed as (QD)(D~'R) which is also a QR decomposition when D is

any unitary diagonal matrix [29].

2.2.2 Givens Based Systolic Array Processors

A Givens upper triangular systolic array processor is illustrated in Figure 2.1.
The symbols for the boundary and internal cells for a Givens upper triangu-
lar structure are depicted in Figure 2.2. In Table 2.1 the algorithms for the

boundary cell and internal cell are described.

x](t 2
x](t])

X[t,) N
x3(t2) x4(t‘)

x{t) X5(t)

2
xz(t)
r r r - — —
21t gz 4 —— rlN
r r —_ — - r
237" 241-P e IEPY
r —_— — — r
34T — SN
- — _ r

Figure 2.1: Givens Based Upper Triangular Systolic Array

11

12

x(t) X(t)
I M
X(t) x(t
2 i+
X(t,) x(ti)

c c c

5 5 —P r] —

y(t)
M
y(t)

Figure 2.2: The Boundary and Internal Cells of Givens Based Systolic Array

13

Boundary Cell: Internal Cell:

d— r2 4 |z(t)]? y(t;) « —sr+ cz(t;)

ce= r o cr + s*z(t;)

Table 2.1: Givens Algorithms for the Boundary Cell and Internal Cell

2.3 Systolic Array QR Decomposition by Com-

plex Fast Givens Method

One of the important subjects in implementing QR decomposition onto VLSI
hardware is to avoid the square root. Since the computation of the square root
is complicated, it creates the bottleneck in the QR systolic processor. To speed
up the system, a square root free version of Givens method is necessitated and
leads to the name fast Givens method as first proposed by Gentleman [19] and
Hammarling [20]. Since the square root can be stored in the diagonal elements,

the upper triangular matrix D%—Rupper is expressed as follows.

VI

D¥(n)R(n) = Q(n)X (n) 2.8)

where D(n) is a N by N diagonal matrix which has form

di(t) 0 .- 0
0 dy(tn) -+ 0
0 0 dn(t,)

and R(n) is an upper triangular matrix which is given

1 ria(tn) ris(tn) -+ rin(tn)
0 1 ng(tn) s TZN(tn)
0 0 1 < ran(tn)
0 0 0 1

2.3.1 Fast Givens Algorithm

The following example of 2 x 2 matrix will show how the fast Givens method
works. A complex fast Givens method triangularizes the data matrix as fol-
lows: First let

™M1 Tz - TIN \/E 0 I rg -+ ry

Ty Tz o TaN 0 V6 Yi Y2 o YN

where d = r?, and §=k?

r;==2 for ;j=2,---,N.

I zn

15
yj==L for ;j=2,---,N.

Then, the complex fast Givens method applied to the data matrix to zero an

element is [19,20]

¢ s ||V oo |1 m oy VI 0 |1
—s c 0 V6 Yi Y2 - YN 0 V& 0 y; ;y}\,
(2.10)

An analogous algorithm for fast Givens orthogonalization is given as

d =d+ 8y (2.11)

v dé
§ = — 2.12
. 2.12)
¢ =y (2.13)
) (2.14)

§ = — L.
d/yl
and

r;. :rj+s“y;~ forj=2,--- N. (2.15)
y;z —clrj-I-y]' forj=2--- N. (2.16)

2.3.2 Fast Givens Based Systolic Array Processors

The upper triangular systolic array processor based on the fast Givens tech-

nique is illustrated in Figure 2.3. The symbols for the boundary and internal

Boundary Cell

6out « %

C — x(tl)

Internal Cell:

k14 6,|2t)? y(t;) « —cr + z(t;)

r—r+ s*y(t;)

16

Table 2.2: Fast Givens Algorithms for the Boundary Cell and Internal Cell

cells for this upper triangular structure are described in Figure 2.4. The algo-

rithms for the boundary cell and internal cell are stated in Table 2.2.

2.4 Systolic Array for Forward Substitution

In [21] the computation of R~# X by the Comon-Robert’s algorithm is carried

out in two steps when an upper triangular matrix R and a matrix X are given.

In the first step, a matrix R™! is computed when the matrix R is fed into the

systolic array. In the second step, the vector X is given as input to compute

XHR1. As a result, the complex conjugate of R~ X is computed by a systolic

parallelogram structure. In [14,22] the same computation of R~ X requires

only one step with the matrix R prestored in the systolic array and the matrix

X as input fed into the array. A more detailed description of the computation

X (t
x Ut
X, (t,) N
x3(t2) x4(t])
x2(t J X5(t)
X (t
X (t))
x‘(t l) ¢ i i i
r12—> r13—> r|4—>_ — =P r]N
F ol | M = — =
23 24 N

4t — T

Figure 2.3: Fast Givens Based Upper Triangular Systolic Array

18

X(ti) x(t)

I M

X(t) x(t i+l)

2
X(t) X(t)
6in

C C C
S S —P r_] e

out
y(t)
M

y(t)

Figure 2.4: The Boundary Cell and Internal Cell for Fast Givens Based Systolic

Array

19

of R""X can be easily generalized from Liu-Yao’s algorithm [22]. We give
below a brief description of the algorithm for computation R~# X .

Assume r;; = (R);; and r;-j = (R™f);;, where R is an upper triangular
matrix and R~ is a lower triangular matrix. It is known that the relationship

! .
between r;; and r;; is

l . _ .
. = for 1= N
i frued . (44.17)
J=1 0 Tk . .

The following equations show how to compute ¥ = R™7 X recursively where
R is a n x n matrix and X is a n x m matrix. Assume yi; = (R7HX);;

where z;; = (X);;. Hence, y;; is given by
Yij = Zr;lxlj for 1=1,---n. and 7=1,---,m. (2.18)
I=1

Since we want to use R and X to compute R~7 X, let us express y;; in terms
of r;; and z;;. By substituting Equation 2.17 into Equation 2.18 and rewriting
the equation, we have

1 =
Yij = (T35 — D vinTi;) (2.19)

73

The pipelined data-parallel algorithm presented in Table 2.3 computes Y =
R X where Y is n x m matrix, R is n x n upper triangular matrix, and X
is n X m matrix. A systolic parallelogram structure for computing R™# X is

illustrated in Figure 2.5.

Table 2.3:

An Algorithm for Computing ¥ = R°H X

for 1=1 ton
begin
Yn = 7}‘1‘1'@'1
wn parallel for j=2 to m
begin
Zij = Tij
i parallel for k=1 to j—1
Zij = Zij — YikTk;
Yij — f;L
end

end

The Parallel/Pipelined Algorithm for Forward Substitution

R™ X

Figure 2.5: Systolic Array Processors for Forward Substitution

21

22

2.5 Systolic Array for Backward Substitution

In adaptive array systems, we have to compute backward substitution for
the system. Since the vector z and the lower triangular matrix R~ are the
given data, the question now is how to design a systolic structure to compute
R7'z, backward substitution, by using the given vector z and the given lower
triangular matrix R=#. Fortunately, this can be easily carried out on a systolic
array recursively. A more detailed description of this computation is given and
the systolic structure is described below.

Assume that a 3 x 3 matrix B~! has the form

11 Ti12 Z13

R =10 24 (2.20)
] 0 0 33 |
and a 3 x 1 vector z is given by
_ i -
2= 1 (2:21)
L %3 J
The computation of R71z is
F T1121 + Z1222 + T13%3 _
Rlz= T2y + L2373 (2.22)

T3323

23

Let us employ a lower triangular matrix R~ to carry out the computation of

R7'z. Then, R~ has the form

z;; 0 0

R =1 gr 2z 0 (2.23)

| Tls T3z Tag |

In Table 2.4, a pipelined data-parallel algorithm for computing R~z is
described. The systolic array shown in Figure 2.6 is designed by concurrently
sending each element of the vector z to multiply the complex conjugate of each

element of the matrix R~ and then by summing them together to obtain the

vector R71z.

An Algorithm for Computing R™'z

i parallel for 1=1to m, j=1 to m
begin
temp(i, j) = 2(j) * z*(3, j)
end in parallel
in parallel for i=1 to m
begin
w(z) =0
wmn parallel for 7=1 to m
begin
w(i) = w(i) + temp(i,)
end in parallel

end in parallel

Table 2.4: The Parallel/Pipelined Algorithm for Backward Substitution

IN

Figure 2.6: Systolic Array Processors for Backward Substitution

25

Chapter 3

Parallel /Pipelined Weight
Extraction for RLS and CRLS

Adaptive Array Systems

3.1 Introduction

The problem of parallel/pipelined weight extraction for systolic adaptive beam-
forming systems has been the subject of intense research since the first well
known work of Gentleman and Kung on recursive least squares (RLS) systolic
arrays [6,7]. As shown in Figure 3.1, although QR-updates are pipelined on
a triangular array proposed in [6], a fully parallel/pipelined weight extraction

from the RLS systolic array consists of the two separate steps of QR-updates

26

27

and backsolve and has been shown to be unrealizable.

A major issue in implementing the algorithm for adaptive beamforming by
systolic array processors is to design a single fully pipelined structure. The
critical obstruction appears because the process of QR-updates runs from the
upper-left corner to lower-right corner and the process of the backsolve runs
in exactly the opposite direction as pointed out in [8]. Much research has
been done on this subject recently [9,10,11]. In [9], Hudson and Shepherd
proposed a theoretically equivalent open-loop system and a closed-loop sys-
tem for parallel weight extraction. Compared to the unstable theoretically
equivalent open-loop system, a Kalman closed-loop feedback structure shown
in Figure 3.2 which consists of a systolic QR decomposition post-processor to
compute least squares weighting vector is considered to be more promising in
systolic implementation. However, it is shown in Figure 3.2 that the paral-
lel RLS weight extraction system proposed is not efficient for VLSI hardware
implementation. The major hurdles are (1) this system, which requires two
modes to update the data and to freeze the updated data for computing the
weight vector error at same time, has a significant problem in obtaining the in-
stant weight vector recursively, and (2) the feedback configuration may create

serious routing problems in VLSI hardware implementation.

A brief description of Hudson-Shepherd’s algorithm is presented next using

the same notation as in Section 3.2. The associated weight vector update called

y
X y
X X y
X X
X

| | PE2 |] PE2 || P2 |

y O

PE3 /

PE1 | PE2 || PE2 - (

N1

PEI || PE2 L | pes

Figure 3.1: Gentleman and Kung’s Systolic Architecture [6]

28

29
the “Kalman state update” has a form which is adopted from a recent paper

[9]. The equation for using the Kalman state update method to update the

RLS weighting vector is
w(n) = w'(n —1) = M7 ()2 (ta)ens(m-1) (3.1)
where M, the data covariance matrix, is
M=Xx"Xx
€n/(n—-1), the residual error, is given by

enfn-1) = 2 (ta)w(n — 1) — 2(n),

and z7(¢,) is given as a input data vector. By applying QR decomposition to

the observed data X, Equation 3.1 can be rewritten as follows:
w(n) = w(n —1) = R (n) R (n)z" (tn)enj(n1) (3.2)
According to Figure 3.2, a vector f(n) and a vector g(n) are defined as follows:
f(m) = B (n)z (1) (3.3)

and
g(n) = R_l(n)i(n) (3.4)

It can be seen from Equation 3.3 that zT(¢,) used to update the upper tri-

angular matrix R(n) in one mode is employed again as the input sent to the

30

updated matrix R(n) for computing the vector f(n) in a different mode. As a
consequence, Hudson-Shepherd’s algorithm is not suitable for real-time appli-

cation and VLSI hardware implementation.

In [11] McWhirter introduced a parallelogram fixed matrix operator struc-
ture for the parallel weight extraction problem shown in Figure 3.3. As men-
tioned by McWhirter, however, to update his RLS systolic array and to avoid
freezing the array, a more complicated post-processor cell is required. As de-
scribed in Figure 3.3, McWhirter’s RLS weight extraction system does not
function recursively to update the weight vector since the system requires
freezing the array to compute the weight vector. By improving McWhirter’s
parallel weight extraction fixed operator algorithm and adding the updating
processor to avoid freezing the array, a new algorithm will be derived to up-
date the whole parallelogram systolic arrays and at same time to compute the

RLS adaptive weight vector recursively.

In a recent paper [12], a numerically stable and computationally efficient al-
gorithm for weight extraction for a constrained recursive least squares (CRLS)
problem has been described by Schreiber. Although the algorithm shown in
[12] has robust numerical properties, it is difficult to arrange the whole algo-
rithm into a single fully pipelined structure as pointed out in [28,14]. The
difficulty, which is the same as that in the RLS case, arises because the CRLS

algorithm consists of several steps particularly involving the backsolve step.

-y

-N
z
DELAYS
i
1 win-1) I
b)
* g I
_ €
w(n-1)

Figure 3.2: Hudson-Shepherd’s Parallel Weight Extraction Structure [9]

31

T

|

Nig

D,R(n-1)
D,R(n)

32

yt,)
l Freezing the
processors to compute
W(n-1) by using
u(n-1) and K(n-1)
— -
u(n-1) | Kn-1)
u(n) K ()

D(n-1) Win-1)

Figure 3.3: McWhirter’s Parallel Weight Extraction Structure by Using Fixed

Matrix Operator [11]

33
Many CRLS systolic array structures proposed in [28,14,15] are designed to
avoid the extra backsolve processor for computing the residual. Unfortunately,
for the problem of parallel/pipelined weight extraction, very little has been
done in implementing the CRLS algorithm into a single fully pipelined systolic
array structure without the need of the backsolve processor. In recent research
[16,17] Owsley developed an adaptive CRLS beamformer with a systolic ar-
ray implementation using Schreiber’s algorithm for parallel weight extraction.
Nevertheless, Owsley’s CRLS systolic array structure which consists of sev-
eral block processors including a backsolve processor has been shown to be

unpipelinable.

In this chapter a single fully parallel/pipelined systolic array for weight
extraction for RLS and CRLS adaptive array systems without the need of the
backsolve is described. There are two procedures required in both systems.
First, for a parallel/pipelined RLS weight extraction system, the initializa-
tion procedure computes the initial upper triangular matrix R(N), a vector
u(N), and a lower triangular matrix R~#(N) for time 0 < n < N where
N is the number of sensors. Second, the recursive procedure is employed
to update the whole system and to compute the optimal weight vector re-
cursively. For the parallel/pipelined CRLS weight extraction algorithm, the
initialization procedure computes the initial upper triangular matrix R(N),

a parameter vector z(N), and a lower triangular matrix R=7(N). The re-

34

cursive procedure is used to update the system and to compute the optimal
weight vector for CRLS adaptive beamforming. It is well-known [2] that the
solution of the parallel/pipelined weight extraction problem is defined only in
the recursive procedure during time n > N. The proposed RLS and CRLS
adaptive array systems have four advantages: (1) there is no bottleneck in
the whole architecture since QR decomposition by the square root free fast
Givens method is used, (2) the whole architecture has a fully pipelined design
since backward substitution is avoided, (3) it is a single fully pipelined open-
loop system without any feedback arrangement, and (4) the parallel /pipelined
weight extraction system functions recursively to update the instantaneous
optimal weight vector since only one mode is required in the recursive proce-
dure. Therefore, the new VLSI systolic architectures achieve minimal memory
and maximal parallelism for real-time signal processing applications and VLSI
hardware implementation. A similar architectural concept without mathemat-
ics details for updating optimal weights presented independently by Shepherd,
McWhirter, and Hudson recently [10]. Their proposed architecture reinforces

our work in this chapter.

This chapter is organized as follows: In Section 2, the background and the
new techniques implementing the RLS and CRLS adaptive array systems into
systolic arrays structures are introduced. The problem of arranging an RLS

adaptive array system into a systolic array structure is presented in Sections 3

35
to 6. In Section 3 the recursive least squares (RLS) array problem is discussed.
Then in sections 4 and 5, a parallel/pipelined RLS weight extraction algorithm
with an initialization procedure and recursive procedure and their systolic
array processors which do not need backsolving are described. In Section 6 the
fast Givens method is employed for RLS array systems. This has the advantage
of the speeding up the systems. Another important adaptive array system, the
constrained recursive least squares (CRLS) system, is presented in Section 7.
In Sections 8 and 9, the parallel/pipelined CRLS weight extraction algorithm
1s presented without the need for a backsolving algorithm and systolic array
processors are illustrated. In the last section, the fast Givens method is used

for a CRLS adaptive array system to speed it up.

3.2 RLS Adaptive Array System

In this section we address the partially adaptive beamforming problem by
considering the recursive least squares (RLS) method for choosing statistically
optimal weights to generate the output residual. The block diagram of a
partially adaptive beamforming system such as a sidelobe noise cancellation
system is shown in Figure 3.4.

The sidelobe cancellation technique is employed to suppress the sidelobe
interference and noise by subtracting the estimate from the radar main channel

output. It is easy to see from Figure 3.4 that the output at ¢¢h snapshot can

36

INTERFERENCE
DESIRED SIGNAL SIGNALS
1 2 J-1
\ / J
1 B N SENSOR
CHANNEL T T
NOISE]] -
i N X
X
z
W ﬁ W adaptive
/ beamformer
y
X
; Y
output

Figure 3.4: Sidelobe Cancellation Adaptive Beamforming System

be expressed as
N
y(i) = Y mi(i)w — (i)
=1

Equation 3.5 can be represented in the matrix form.

where y(n) is an n by 1 output vector matrix

y(t)

y(tz)

X(n) is an n by N observed input data matrix

z1(t) xa(th) -+ xn(ty)

ZUl(tQ) .’Eg(tz) .’L‘N(tQ)

z(tn) za(tn) -+ zn(tn)

37

(3.5)

(3.6)

(3.9)

33

an w(n) is an N by 1 weight vector

w(n) = ' . (3.10)

The aim of the optimal adaptive array system is to minimize the output
residual of the total interferences and noises by adjusting the weights while
maintaining a fixed gain in the direction of the desired signal; i.e. to minimize
the sum of the squares of the elements of the n by 1 output residual vector
y(n). This leads to a maximization of output residual signal to noise (including
interferences and receiver noises) ratio. Therefore, we have the least-squares

problem

min [fy(n)ll: = min [|X(n)w(n) - z(n)|l2 (3.11)

The solution to this minimization problem is
wrs(n) = (XH(n)X(n))7 X7 (n)z(n) (3.12)

This is called the normal equation.

This solution using the normal equation, generally known as the sample ma-
trix inversion (SMI) method in adaptive array and multichannel applications,
may sometimes be sensitive to roundoff errors and can not be implemented

by systolic arrays for VLSI hardware implementation. Therefore, the major

39

issues in this chapter are: (1) to compute the optimal weight vector based on
the QR decomposition for improved numerical accuracy and (2) to map the
QR-based weight extraction algorithm into a systolic array processors which

does not need backward substitution.

3.3 QR Based RLS Algorithm

The least squares problem introduced may be solved by the numerically sta-
ble QR decomposition which will now be described [6,11]. Applying the QR

decomposition to the data X(n), we have

Q(n)X (n) (3.13)

i

where R(n) is an N X N upper triangular matrix and Q)(n) is a unitary matrix

which has the property Q¥ (n)Q(n) = I.

Applying the same unitary matrix @Q(n) to the desired data z(n) gives

Q(n)z = (3.14)

where u(n) is an N x 1 vector and p(n) is an (n — N) x 1 vector. The
optimal weight vector is obtained by substituting Equations 3.13 and 3.14

into Equation 3.12. The resulting QR-based weight vector is

wrs(n) = R_l(”)ﬂ(n) (3.15)

40

3.3.1 Initialization Procedure

The initial upper triangular matrix R(N) given by applying QR decomposition

to the data X (V) has the form
R(N) = Q(N)X(N) (3.16)

Then by applying the same Q(N) to the desired data z(/N), the initial data

vector of u(V) is given by
u(N) = Q(N)z(N) (3.17)
Combining Equations 3.16 and 3.17, we obtain
[R(N) u(N)] =Q(N) [X(N) z(N) } (3.18)

Finally, the initial lower triangular matrix R~ (V) is computed by using the

systolic forward substitution algorithm described in 2.4 which is

RH(N)=RH(N)I (3.19)

3.3.2 Recursive Updating

In this subsection the parallel/ pipelined RLS weight extraction system is
computed recursively to update the instantaneous optimal weight vector for

each new data sample vector. It is known [24] that the unitary matrix @(n)

41

can be applied to update the upper triangular matrix R(n — 1) as follows

BR(n —1) R(n)
om| o =] o (3.20)
I I I U

The same unitary matrix @(n) is used to update u(n — 1) by the equation

Bu(n — 1) u(n)
Q"(n) | po(n—1) | = | Bu(n—1) (3.21)
BRONEEON

It is necessary to update the lower triangular matrix R=#(n —1) for computing
the instantaneous optimal RLS weighting vector. It is also known [9] that the
same unitary matrix @(n), which updates the upper triangular matrix R(n—1),
can also be used to update the lower triangular matrix R~ (n—1). The reason

is explained by following equation.

= | BRE(n—1) 0 z*(t,) | @"(n)Q(n) 4 (3.22)

42
where # denotes an arbitrary vector of no interest in mathematical and phys-

ical concept. Therefore,

%R‘H(n —1) R~H(n)

Q(n) 4 = # (3.23)
0 #

L. - L B

Let us summarize the updating procedure for the upper triangular matrix

R(n — 1), the vector u(n — 1), and the lower triangular matrix R~ (n — 1) at

same time.
BR(—1) ¢ fu(n—1) LR(n—1)
Q(n) 0 : PBu(n —1) #
i zT(t,) z(tn) 0]
R(n) u(n) R~ (n)
= 0 Bo(n —1) : # (3.24)
L 0 o # _

Therefore, the weight vector for RLS problem is given by

wirs(n) = R~ (n)u(n) (3.25)

3.4 Systolic RLS Weight Extraction System

In this section we first summarize the systolic RLS weight extraction algorithm

shown in Table 3.1. Then, a single fully pipelined structure is illustrated for

43

the case of four sensors to receive the observed data and a desired data and
is shown in Figure 3.5 [10]. Our systolic RLS architecture consists of four
processor elements which are shown in Figure 3.6. The mode 1 algorithm for
the RLS systolic array for each processor element is described in Table 3.2 and
the mode 2 algorithm is presented in Table 3.3. To operate the RLS systolic
array processors, the initialization procedure is used for time 0 < n < N to
obtain the initial upper triangular matrix R(/N), the initial parameter vector
u(N), and the lower triangular matrix R~¥(N). It is shown in Figure 3.5
that the two different modes described in Table 3.2 and 3.3 are used in the
initialization procedure. The recursive procedure for parallel/pipelined weight
extraction used at times n > N only requires mode 1. Since the optimal
weight vector only occurs in the recursive procedure, the parallel/pipelined
RLS weight extraction system described is very promising for VLSI hardware

implementation and real-time signal processing applications.

3.5 Fast Givens Based RLS Algorithm

As mentioned in Section 2, QR decomposition by the fast Givens method is

carried out by a diagonal matrix and an upper triangular matrix as follows.

44

1. Initialize Conditions at n = 0 by setting

R(0)=0 2(0)=0 R-H(0)=0

2. Initialization Procedure for 0 <n < N:

BR(n-1) | | R(n)
() Q(n) 0 =| o
:T—T(tn) 0
Pu(n —1) u(n)
(b) Q(n) Bu(n—1) | = | Bv
2(t,) a
%R‘H(n - 1) RH(n)
(c) Q(n) # =
0

(d) wrrs(n) = B~ (n)u(n)

(Mode 1)

Table 3.1: Summary of Parallel/Pipelined QRD-RLS Algorithm

45

QO O —~00O0C CO

QOO0 ~000CC

S OO0OO0OO0 —0O0CO0

N NNO OO NNN

K’ X X— OO X X X

» X X O — O

>

X X X L

f=-

|| PE4

J

| PE4

»-| PE4

J

p| PE4

] PE4

|| PE4

- PE3

|| PE3

|| PE3

PE2

PE1

Lo PE2

-

PE1

|| PE2

PE1

optimal weight vector

Figure 3.5: RLS Systolic Array Processors [10]

x
x

PE1 PE2

X:
lm Xin lwin
PE3 Y y PE4
— r L C ; — r -
s
Xout l
o Xout wout

Figure 3.6: Processor Elements of RLS Systolic Array Processor

47

PE?2 PE3 PE4
d— (B2 4 [2])7 y — —sPr+ex Tou — — 55T+ CTin Tow — — 557 + i
recfr+sc re %cr + sz, r e %CT + s T,
Yyer Wout ¢ Y1~ + Wiy,

Table 3.2: The Givens Based-RLS Algorithm of Mode 1

PE1 PE2 PE3 PE4

S L YT — ST Y CT— 8T Toys & Tin
c«—1 1f T 1

then 1 «— s%

Table 3.3: The Givens Based-RLS Algorithm of Mode 2

48

R H(n)=D7TR "(n) (3.28)

According to the RLS algorithm based on fast Givens method, in the initializa-
tion procedure, a diagonal matrix D%(N), an upper triangular matrix R(N),

and a vector T(N) are generated in the same mode.

(3.29)

Q(N)[X(N) : g(N)]:D%(N)[—R(N) : @(N)}

By using the other mode, the initial lower triangular matrix F—H(N) is then

computed as follows.

(3.30)

In order to update the optimal weight vector recursively, a vector w(n—1) and a
lower triangular matrix R~ (n —1) must be updated at each new data sample.

The following equation shows how to update the whole system together.

-

BDIR(n ~1) i fu(n—1) i LR "(n—1)
Q(n) 0 Bi(n — 1) 4
2T (t) y(tn) 0 |
DwRe) i aw) ¢ E) |
= 0 Bu(n —1) 4 (3.31)
L 0 # # _

where # denotes an arbitrary matrix or vector with no special interest.

Finally, the optimal weight vector, which can be updated recursively, has

49

the form

w(n) =R (n)u(n) (3.32)

The algorithm and systolic array processors for the fast Givens-RLS algo-
rithm with modifications from those of Givens-RLS algorithm are described
in Table 3.4 and Figure 3.7. The proposed fast RLS weight extraction system
consists of four processor elements with two modes. The symbols of these
four processor elements are illustrated in Figure 3.8 and the functions of each

processor element in the two modes are also described in Tables 3.5 and 3.6.

30

. Initialize Conditions at n = 0 by setting

item D3(0)E(0) =0 m(0)=0 B 7(0)=0

. Imitialization Procedure for 0 <n < N:

(a) Q(N)[X(N) : _z_(N)] = DE(N)| R(N)
(Mode 1)
(b) BNy =R (V)1 (Mode 2)

. Recursive Procedure for n > N (Mode 1 only):

BDz(n — 1)R(n —1) D%(n)ﬁ(n)
(a) Q(n) 0 = 0
z7(t,) 0
ﬂD%(n —1Dz(n —1) D%(n)_@(n)
(b) Q(n) 4 = 4
z(t,) #
IR (n-1)
(c) B (n) = Q(n) 4
0

—-1

(d) w(n) =R (n)u(n)

wN)

Table 3.4: Summary of Fast Givens-RLS Algorithm

o1

QO O—000O0CO

QOO0 —00O0C0OO0O

© O0O0O0OQ0QO —0O0O0

N NNO OO NNN

K X X— OO X X X

» X X O — O

~N

X X X L

| =-

> PE41

J

»| PE4

| | PE4

pt4

J

»| PE4

|| PE4

|| PE3

] PE3

|| PE3

PE2

PE1

| PE2

=

PE1

o] PE2

PE

optimal weight vector

Figure 3.7: Fast RLS Systolic Array Processor

X
6in
PET K
_>C
S
out
Xin
K PE3
C—— r |

out

52

X
K PE2
C r L C
S S
b4
Xinlwvin
Yy PE4 y
C r —
5 S
Xout Wout

Figure 3.8: Processor Elements of Fast RLS Systolic Array Processor

53

PE1

PE?2 PE3

PE4

k— B + binlz|? y — —cBr+z

1

Tout —Cﬁ?" + Tin Tout < —ﬁCT + Tin

2 8
Sout — —ﬁ% re fBr+sy r— Br+ 8T T %r + 8 T out
7
cCe— =z Yye—z Woyt «— Yr™ + Wiy
Sin®
§
r«k

Table 3.5: The Fast Givens-RLS Algorithm of Mode 1

PE1 PE2 PE3

PE4

S4— T Y & CT — 8" Tous ¢ Tin

c—1

LTout ¢ Lin

then 7 «— sx%

Table 3.6: The Fast Givens-RLS Algorithm of Mode 2

o4

INTERFERENCE
SIGNALS

“\ /o

CHANNEL T T

NOISE o] - >

1 2 X

w w /@ w adaptive
/ beamformer

Yy

'

output

Figure 3.9: CRLS Adaptive Beamforming System

3.6 CRLS Adaptive Array System

In this section, we consider a constrained recursive least squares (CRLS) prob-
lem for a fully adaptive beamforming system. The block diagram of a general
adaptive beamforming system is shown in Figure 3.9. An adaptive beam-
former is a processor used in conjunction with an array of sensors to adjust its

weights based on a certain criterion so as to provide versatile beam patterns

35

to suppress the interference signals. From Figure 3.9 an output y at the kth
snapshot of the adaptive beamformer is expressed as a linear combination of
weighted inputs,
N
Yk =) Thgwy (3.33)
=1
Furthermore, if n snapshots of input data flow into the system, the output of

the adaptive beamformer is
y(n) = X(n)w(n) (3.34)

where X (n) is an n by N input matrix which consists of n row vectors. Each

row vector results from a snapshot by N sensors, so

zi(t) @a(t) - an(l)
X(n) _ I (tg) (I}Q(tg) s ZCN(tQ) 7 (335)
i z1(tn) xo(tn) -+ 2n(ts)]

w(n) is an N by 1 weight vector given by

wl(n) = [wi(tn) wa(tn) - -wi(ty) } : (3.36)

y(n) is an n by 1 output vector given by

y'(n) = [y(t) y(ta) - y(t)] : (3.37)
and the superscript T' denotes transpose. A signal received from the direction

of interest 6; is called a beamformer response r* given by

H

rr=d w (3.38)

96

where ¢ is the N by 1 mainbeam steering direction vector given by

gz =11 6]%\ﬂDsm(O;) 6]2;"12Dszn(9,') 6]3)-"5(N—1)Dsm(6',')

where D is the distance between two sensors in the array, A is the wavelength,
and the superscript H denotes Hermitian. Taking expectation of y”(n)y(n)

yields
Ely" (n)y(n)] = Elw™(n) X" (n)X (n)w(n)] = w" (n)M(n)w(n) (3.39)

where M(n) is the n by n covariance matrix for X (n).
In general, to design a fully adaptive array beamforming system is to solve a

constrained optimization problem where a beamformer response is constrained

by a fixed gain. Then the CRLS problem is
min w"” Mw

subject to ¢ = for 1=1,2,--- K.

Using the method of Lagrange multipliers, the optimal weight vector, Qf)pt, is

found to be
. z'M—l)
" r (n)c

7 —— :) — R 3.4
_opt(n) g’HM‘l(n)g‘ fOT' ! 17 7]\ (3 O)

In practice, M(n) used in Equation 3.40 is the sample covariance matrix of

the observed data X(n),

M(n) = X"(n)X (n) (3.41)

LY

not the covariance matrix of X(n) used in Equation 3.39.

Pipelined data-parallel algorithms that can be implemented on systolic ar-
ray processors (SAPs) are called systolic algorithms (SAs). The SAs designed
in this thesis not only can be implemented by SAPs but also are numerically
stable, an important property which the Sample Matrix Inversion method
does not possess. SAPs have additional nice properties such as simplicity,
modularity, and expandability which are very attractive for implementations
of CRLS adaptive beamforming systems. As shown in Equation 3.40, adaptive
beamforming involves a procedure for inverting a sample covariance matrix.
It is known that a commonly used method, the sample matrix inversion (SMI)
method, generally leads to some undesirable numerical characteristics if the
sample covariance matrix is ill-conditioned. In order to alleviate this difficulty,
the QR decomposition can be used. In the rest of this chapter, we introduce
a systolic CRLS algorithm based on a QR decomposition approach. Our algo-

rithms will be designed by using the Givens method and fast Givens method.

3.7 QR Based CRLS Algorithm

In this section, a numerically stable and fully pipelined algorithm is intro-

duced for weight extraction in a systolic CRLS adaptive array system. A QR

58

decomposition is applied to the input observed data X(n), so that

R(n)
Q)X (n) = (3.42)

Substituting Equation 3.42 into 3.41, we have

M(n) = R¥(n)R(n) (3.43)

On substituting Equation 3.43 into 3.40, the CRLS adaptive weight vector

becomes

i r'R7 ()R~ (n)¢ : . .
WerLs = FTR(n)R-H(n)o for i =1,--- K. (3.44)

where the lower triangular matrix R is equal to (R7)~!.

Define a parameter vector z(n), so that
2'(n) = R7H(n)¢ (3.45)

The weight vector of CRLS adaptive array system is given by

QERLS - I%‘I‘é‘R_l(n)gl(n) for 7 = 1, RN K. (346)

3.7.1 Initialization Procedure

By applying the QR decomposition to the observed data X (N), the initial

upper triangular matrix R(N) is given by

R(N) = Q(N)X(N) (3.47)

59

where X(N) is an N by N observed data matrix consisting of N row vectors
and each row vector is a snapshot of N sensors, and () is an N by N unitary
matrix which satisfies the property of @Q#Q = I. Then the initial parameter
vector z'(N) can be computed by using the systolic forward substitution (F'S)

algorithm

£(N) = RI(N)E (3.48)

Finally, the initial lower triangular matrix R~ (V) is obtained by replacing

the steering vector in Equation 3.48 by an identity matrix, so that

RH(N)=RH(N)I (3.49)

Z(N) R-H(N)]=R‘H(N)[ci 5 1} (3.50)

3.7.2 Recursive Updating

It has been shown in [14] that a QR decomposition of X (n) can be carried out
recursively. To update the upper triangular matrix R(n —1), a unitary matrix

@(n) is used with form

Q(n) 0 =1 o0 (3.51)

60

where 3, the forgetting factor, is defined as the weight factor applied to the

previous data. To update a parameter vector z(n — 1), notice that

o,

R (n —1)z(n —1)

-~

BRE(m —1) 0 2°(t,) | Q" (n)Q(n)

Therefore, we have

&

(3.52)

(3.53)

where # denotes an arbitrary vector of no interest in mathematical and phys-

ical concept.

As described in Section 3.3.2, the same unitary matrix used to update

the upper triangular matrix R(n — 1) can be employed to update the lower

triangular R~ . Therefore,

L)
o~
3
N

(3.54)

Let us summarize the updating procedure for an upper triangular matrix R(n—

61

1), a vector z(n — 1), and a lower triangular R~ (n — 1) at same time.

BR(n —1) : %g(n -1) %R‘H(n —1)

Q(n) 0 P # 5 #

=l 0 i # 1 # (3.55)

w'(n) = R™'(n)z'(n) (3.56)

It is straightforward to obtain the @'(n) by using the updated z'(n) and the
updated R~ (n) in the systolic arrays. As a result, the weight vector @'(n) is
also updated. Finally, the weight vector for the CRLS adaptive array system

is given by

,r.l

WorLs(n) = W@i(n) for i=1,--- K. (3.57)

3.8 Systolic CRLS Weight Extraction System

A single fully pipelined structure is shown for the case of three sensors and
one constraint in Figure 3.10. Another single fully pipelined structure is shown
for three sensors and two constraints in Figure 3.11. There are five processor

elements shown in Figure 3.12 for our proposed fully pipelined structure.

62

1. Initialize Conditions at n = 0 by setting

R(0)=0 z(0)=0 R-H(0)=0

2. Initialization Procedure for 0 <n < N:

:R-H(N)[gi : [} (Mode 2)

3. Recursive Procedure for n > N (Mode 1 only):

BR(n —1) R(n)
(a) Q(n) 0 =1 0
g’ (tn) | 0]
52'(n—1) Z'(n)
(b) Q(n) 4 =
0 || #
%R‘H(n —1) R~H(n)
(©) Q(n) 4 =| g
0] #

‘

(d) w(n) = R~ ()2 (n)

Table 3.7: Summary of Parallel/Pipelined QRD-CRLS Algorithm

63

[oNel NeNeoNeNoNeNe/

COO— 00000

PES

p| PE4

-

PES

»| PE4

p| PE4

-

OO OCO—00 OO0 »

PE4

p| PE4

_——

| PE4

COO0O0OO—0CO0OC0 -

X X —~—O O

X X O — O

g PES

Lot PE3

|| PE3

|| PE3

xX X X ’

PE2

PE1

| | PE2

O X X X L

PE1

|| PE2

— 0 X X x—»

~ l=-

PE1

Figure 3.10: CRLS Systolic Array Processors (Case 1) [4,10]

64

Bt PE2 it PE2 PE3 PE4
P: PE! PE3 PE4

PEI PE3 PE4

PES

v

PE4
PE4 PE4
PES PES

optimal weight vector

Figure 3.11: CRLS Systolic Array Processors (Case 2) [4]

65

x
x

PE1 PE?2
r p-C C— r ———p C
S S S
y
“in In oW,
l ml
PE3 Y y PE4 y
C gl r | C ; — r —
s S S
1] l
out
out HDUt W oo
luIn
PES
J] —
r
l'Uout

Figure 3.12: Processor Elements of CRLS Systolic Array Processor

66

PFE1 PE2 PE3 PFE4

de— (B2 + |z2)7 y— —sfr+cx Tou — —%sr + CTin Tout — —%57‘ + ¢z
C — % re—cfr+sct re —é—cr + 5™z, T %cr + s*z;,
$e 2 yer Wour = Y1~ + Win,
red Nout < |7|* + 7in

PE5 Wout — 531

Table 3.8: The Givens Based-CRLS Algorithm of Mode 1

PE1 PE2 PE3 PE4 PES
8 % Y € €T — ST Tout < Tin Loyt ¢— Tin Weout — Win
c—1 if T =1 if x4 1

then r «— sx then r « sx%

Table 3.9: The Givens Based-CRLS Algorithm of Mode 2

67

To demonstrate how the parallel /pipelined weight extraction system func-
tions, the summary of the whole system to obtain the optimal weight vector for
CRLS adaptive beamforming is described in Table 3.7. The algorithm for each
processor element for mode 1 of the CRLS systolic array system is provided in
Table 3.8 and the algorithm for mode 2 is provided in Table 3.9. To operate
the CRLS systolic array processors, the initialization procedure is used for
time 0 < n < N to obtain the initial upper triangular matrix R(/V), the initial
parameter vector z(N), and the lower triangular matrix R=#(N). Two dif-
ferent modes described in Table 3.8 and 3.9 are also used in the initialization
procedure. The recursive procedure for parallel/pipelined weight extraction
used at time n > N only requires mode 1. The solution of the proposed
CRLS adaptive array system only occurs in the recursive procedure. Since
only one mode is required to update the weight vector recursively, the CRLS
adaptive array system described should be very promising for VLSI hardware

implementation and real-time high throughput array processing applications.

3.9 Fast Givens Based CRLS Algorithm

QR decomposition by the fast Givens method is easy to carry out by replacing

the following matrices and vectors with a product of a diagonal matrix and

68

new matrices and vectors.

R(n) = D*(n)R(n) (3.58)
Z(n) = DT Z(n) (3.59)
R Hn)=DTR "(n) (3.60)

In the initialization procedure, the initial upper triangular matrix can be ob-

tained by applying a QR decomposition with the form.
QU)X (N) = R(N) (3.61)

The initial vector Z'(N) and the initial lower triangular matrix E—H(N) are

then computed as follows.

Z(N) @ B } =1 " (N) [¢ i } (3.62)
It is required to update the system for computing the optimal weight vector.

The following equation shows how the whole system can be updated to obtain

the optimal weight vector.

BD3R(n—1) i tzn—1) i R (n-1)
Q(n) 0 P# #
i 2T (tn) : 0 : 0]

= 0 Po# o # (3.63)

69

For convenience, let
@i(n) = R '(n)D7(n)Z(n) (3.64)

Finally,

@'(n) for i=1,--- K (3.65)

; r
w

= DR
The algorithm and systolic array processors for the fast Givens-CRLS algo-
rithm with modifications from those of the Givens-CRLS algorithm are de-
scribed in Table 3.10 and Figures 3.13 3.14. There are five processor elements
of two modes in our systolic array. The symbols of processor elements are
illustrated in Figure 3.15 and the functions of each processor element in two

modes are also described in Tables 3.11 and 3.12.

70

Initialize Conditions at n = 0 by setting

——H

item DZ(0)R(0) =0 2(0)=0 B "(0)=0

Initialization Procedure for 0 <n < N:

(Mode 2)

Recursive Procedure for n > N (Mode 1 only):

P BDz(n —1)R(n —1) -
(n)

(a) Q

L

r—=(n)R ' (n)D~'(n)Z(n)

= A m)D(n)z

Table 3.10: Summary of Fast Givens-CRLS Algorithm

71

o NI e NoNoNeNeoNel — — ——p] n
)
[= %
COO0O—0CO00OO0OO0 —_ | < "
= a
OCO0OQ0O0O—00C 0O > — > ¥ n
o =9 o

O0O0O0OO0O—00O0 1 n " b

o a o

X X - OO0 U X X X »

X X O — O

PE1

! PE2

| | PE2

O X X X L

PE2

PE!

]CXXX'

~ lz— |

PE1

Figure 3.13: Fast CRLS Systolic Array Processors (Case 1)

PE1 PE2 PE2
Y Y
PET PE2

;

PE1

].b

PE3 1
PE3 PE4 1
PE3 PE4 PE4

PES PES

PES

72

Figure 3.14: Fast CRLS Systolic Array Processors (Case 2)

x
x

6In l
PE1 K K PE2 5
r »C € — r —» €
S s S
5nut y
RN
in in R oW,
l ml
K PE3 y y PE4 y
C r [» C ; —»> r >
s s
s

=

H
out ‘out
H[]Ut lIJoul
w in
PES
o r
W gat

Figure 3.15: Processor Elements of CRLS Systolic Array Processor

73

74

PE1

PE?2

PE3

PE4

ke Br+églzf y——cbr+z

1
Tout “Ecr + Zin

1
Tout < —ECT + Tip

Sout ﬁz?l;ﬂ repfr+sty re %7’ + $*Tous T %7’ + $*Tout
C— 2z Yye—r wouﬂ—%%-wm
S<_§Lg£ nout(_J","]'CE"l‘nin
r«k
PE5 Woyt 1‘;;;;1
Table 3.11: The Fast Givens-CRLS Algorithm of Mode 1
PE1 PE2 PE3 PF4 PE5

c—1

ST Y CT — 8T Toyp < Tip
Zf :Ein(——l

then r « &

Loyt < Tin

Sk

k

then r « sx

Wout < Wip

Table 3.12: The Fast Givens-CRLS Algorithm of Mode 2

Chapter 4

Fully Parallel and Pipelined
CRLS Systolic Array for

MVDR Beamforming

4.1 Introduction

Research in implementing the minimum variance distortionless response (MVDR)
algorithm by systolic array processors to compute the residual has been very
active in the last few years. This is due to the advancements in VLSI circuit
technology and the demand for sophisticated systems with high throughput
rate and superior numerical accuracy. The major issues in implementing the

algorithm are (1) numerical stability, (2) computational efficiency, and (3)

75

76

a single fully pipelined structure. Recently, McWhirter and Shepherd [14]
proposed a systolic array for a linearly constrained least-squares problem con-
sisting of a pre-processor and canonical least-squares processor which can only
handle one constraint. Yang and Bohme [15] also proposed a close-loop sys-
tolic array processors consisting of CORDIC-based processor elements with a
feedback configuration for MVDR beamforming. However, those architectures
are not designed as a single fully pipelined structure. Therefore, such struc-
tures may face difficulties in VLSI circuit design such as the use of available
chip area and the control of propagation delays.

In a recent paper a numerically stable and computationally efficient algo-
rithm for MVDR beamforming was introduced by Schreiber [12]. His algorithm
only requires O(N?+ K N) arithmetic operations per sample time, where N is
the number of sensors from an adaptive antenna array and K is the number of
look direction constraints. It has robust numerical properties. However, it is
difficult to implement the whole algorithm as a single fully pipelined structure
as described in [28,14]. Recently, Bojanczyk and Luk [28] suggested an algo-
rithm for MVDR beamforming which modifies McWhirter’s previous work in
[14], extends it to many constraints, and avoids the back substitution. Lately,
McWhirter and Shepherd [14] proposed a single fully pipelined systolic ar-
ray processor for MVDR beamforming by implementing Schreiber’s algorithm

without the need of an extra back substitution processor for computing the

7

residual. Moreover, they also presented an algorithm for MVDR beamforming
using the recursive least squares algorithm proposed in McWhirter’s previous
paper [24]. According to McWhirter and Shepherd’s paper, by comparing
the residual for MVDR and RLS algorithms, it seems easy to obtain MVDR
beamforming from the recursive least squares algorithm by forcing the desired
input data to be zero. Unfortunately, the residual of the recursive least squares
algorithm described in [24] is derived by employing the lower part of a unitary
matrix, S, while the residual of MVDR beamforming is obtained by using the

upper part of a unitary matrix, P, where the upper part and lower part of

P(n)
the unitary matrix @Q(n) is defined as Q(n) = . Therefore, the algo-

S(n)
rithm for MVDR beamforming can not be obtained directly by adopting the

recursive least squares algorithm.

In this chapter, the problem of MVDR beamforming using an RLS systolic
array is addressed and a new algorithm for MVDR beamforming to compute
the residual is also presented. In the next section Mcwhirter’s RLS and MVDR
algorithms are summarized and the problem of using the RLS algorithm for
MVDR beamforming to compute the residual is discussed. In the third section
a newly developed MVDR beamforming algorithm with single fully pipelined
systolic array processors is described in detail. Mcwhirter’s MVDR and our

newly developed MVDR beamforming methods are compared. Compared to

McWhirter’s MVDR method, the new MVDR beamforming algorithm not only

78

has the advantage with a single fully pipelined structure but also is numerically

stable.

4.2 Comparison Between McWhirter’s RLS

and MVDR Algorithms

In this section, the problem of using the RLS algorithm for MVDR beam-
forming is addressed and McWhirter’s RLS algorithm and MVDR adaptive
beamforming are summarized. We claim that MVDR beamforming can not
use RLS algorithm simply by driving the desired data z(t,) to zero. The cor-
rect algorithm for McWhirter’s MVDR beamforming will be rederived since
the RLS algorithm can not be used directly. To understand why the solution
of the MVDR algorithm for computing the residual can not use the RLS al-
gorithm, McWhirter’s famous RLS systolic arrays and MVDR systolic arrays
are necessarily examined in detail. Comparison between the two McWhirter
architectures is very important to get a clear picture of the approach described
in this chapter. Therefore, we start a the detailed description of McWhirter’s
work and then present a better solution for computing the residual in MVDR
beamforming. In the next two subsections Mcwhirter’s algorithm for RLS
approximation is summarized and the MVDR algorithm for computing the

residual by driving the desired data to be zero is described [24].

79
4.2.1 McWhirter’s RLS Algorithm

McWhirter’s RLS algorithm is summarized as follows. The n x 1 residual

vector for the least squares problem is
gn) = X(n)w(n) — z(n) (4.1)

where X(n), is a given n X p observed data matrix
XT(0) = B0) | 1) 2l - 2o |
z(n), is a given n x 1 desired data vector
z(n) = B(n) [2(th) 2(ty) -+ z(t) }
w(n), is a given p x 1 weight vector

w'(n) = [wi(tn) wa(ty) - wN(t”)]

e(n), the residual vector, is

—e-(n)T = [e(tl) e(tg) s e(tn) }
and where B(n), an exponential forget factor which emphasizes the statistical

weight on the new data and gradually scales down the old data in the least

squares computation, is given by

gt 0 0 0 0
0 B2 0 0 0
B(n)=1{ o 0 . 0 0

0 60 0 poO

80

A QR decomposition can be applied to the data matrix X (n), so that

R(n)
Qn)X(n) = (4.2)
0

The unitary matrix @(n) can be partitioned into two submatrices which

are a p x n matrix P(n) and a (n — p) X n matrix S(n) as follows

Qn) = (4.3)

The QR decomposition can be also be applied to the desired data vector

z. Then
P(n)z(n
Qn)z(n) = (n)z(n)
5(n)z(n)
= uln) (4.4)
v(n)
The L, norm of the residual is
lle(m)l] = [|X(n)w(n) - z(n)|
R(n) u(n)
=]|1Q™(w(n) — ||
0 v
R(n)w(n) —u(n)
= | 1 (4.5)

wys(n) = R (n)u(n) (4.6)

81

Hence the minimized ||e|], is

lle(m)]lz = [lo(n)]l2 (4.7)

where v(n) = S(n)z(n).

It was shown in [24] that the unitary matrix @(n) which can be applied to

update the whole system is

Q(n) = Q()Q(n — 1) (4.8)
where Q(n — 1) is
P(n—1) 0
Qn—1)=| S(n-1) 0 (4.9)
0 1
and Q(n) is
A(n) 0 a
Qn)=| o 1 0 (4.10)
0 o

P(n) =] A(n)P(n—1) a(n) (4.11)
and

S(n) = (4.12)
F(n)P(n 1) 7

§2

By substituting Equation 4.6 into Equation 4.1, the residual vector is found
to be

ers(n) = X(n)R™ (n)u(n) — z(n) (4.13)

The nt* element of the residual vector of recursive least squares described by

McWhirter is given as follows.

R u
ers(n) = Q"(n) R~ (n)u(n) — Q" (n) (4.14)
0 v(n)

Therefore, the residual vector has the form
ers(n) = Q"(n)
= ST (n)y(n) (4.15)

where ST(n) has the form

and v(n) has the form
Bu(n —1)
a(n)

The n'* element of the residual vector ez ¢ described in [24] has the form

e(tn) = 1(n)a(n) (4.16)

Equation 4.15 shows that the residual for the recursive least squares prob-

lem is obtained from the lower part of the unitary matrix S(n). Notice that

83

the upper part of unitary matrix, P(n), is not used to compute the residual.
We will describe in the next section that without the desired data the up-
per part of the unitary matrix P(n) is used to compute the residual for the
case of MVDR beamforming. According to the RLS algorithm discussed in
this section, McWhirter’s systolic array for the recursive least-squares problem

illustrated in [24] is shown in Figure 4.1.

4.2.2 McWhirter’s MVDR Beamforming

MVDR beamforming can be formulated as follows. The n x 1 residual vector

for the MVDR problem is
e(n) = X(n)w(n) (4.17)

where X (n) and w(n) are the same as in the least squares problem.

The MVDR problem is to find w(n) so that

min w? (n) Mw(n)

w(n) B
subject to gin(n) =r for i=1,2--- K.
Using the method of Lagrange multipliers the optimal weight vector _ﬁgf)pt is

TAf—1 1
. Mg
w

~~opt giHM—lgi

for i=1,---. K. (4.18)

where

M=Xx"x (4.19)

PE!

|| PE2

PE2

PE2

PE2

PE!

PE2

PE2

PE2

Figure 4.1: McWhirter’s RLS Systolic Array Processor [11]

PE1

PE2

PE2

PEY

PE2

PE3

85

By applying QR decomposition to the input observed data X(n), we have

Q(n)X(n) = (4.20)
Substituting Equation 4.20 into 4.19, we have
M(n) = R*(n)R(n) (4.21)
Therefore, the optimal weight vector is
r'R™Y(n)R~H(n)¢'

W = AR Ay O LK 42

Let us define a parameter vector z(n) given by
z(n) = R (n)¢ (4.23)

On substituting Equation 4.23 into 4.22, the residual vector for MVDR beam-

forming is
,’.l

NEOLE

For convenience, define a vector €(n) as

e(n) X(n) R~ (m)z(n) (4.24)

&n) = X(n)R™(n)z(n) (4.25)

Unfortunately, rather than directly computing Equation 4.25 for the n'* term
of the residual vector, the following equation is used to match the RLS algo-
rithm by driving the desired data to zero in McWhirter and Shepherd’s paper
[14].

emvpr(ts) = 27 (t.) R (n)z(n) (4.26)

86

By changing the data matrix X(n) into a data vector at the n'® snapshot in

Equation 4.13, the n'* residual of the RLS algorithm can be written as

erps(tn) = 2" (ta) R (n)u(n) — 2(t,) (4.27)

Comparing to Equations 4.26 and 4.27, it seems that by forcing the desired
data z(t,) to be zero, the residual for MVDR beamforming can be obtained by
using the RLS algorithm. Therefore, according to Equation 4.16, the residual

for MVDR beamforming seems to be

emvpr(tn) = 7v(n)a(n)

= CpCp_y - Cycra(n) (4.28)

Comparing the two residual equations for RLS and MVDR shown in [14],
McWhirter’s MVDR beamforming seems to have the same residual for RLS
by driving the desired data to zero. Therefore, it looks as if the MVDR systolic
array could employ the RLS systolic array by inputting zeroes. In [14], the
systolic array processor for MVDR, beamforming has the structure given by
Figure 4.2.

The question arises “Can MVDR beamforming use the RLS algorithm by
driving the desired data to zero to compute the residual?” The question will
be answered negatively because given the zero desired data, the algorithm to
compute the n** residual is not the same as McWhirter’s RLS algorithm de-

scribed in this section. By a simple derivation in the next section, we point out

87

, AN N S ' '

PE1 | PE2 L_p»| PE2 || PE2 | PES || PES

PEI | PE2 || PE2 L_p| PE3 | PE3
L] y L] Y

PE1 .| PE2 | PE3 | PE3

y L y

PE1 -1 PE3 PE3

PE4 | PE4

' v

residuals

Figure 4.2: McWhirter’s MVDR Systolic Array Processors [14]

88

that the algorithm for McWhirter’s MVDR beamforming, using Equation 4.28

to compute the residual by forcing the desired data z(t,) in the Equation 4.27

to be zero, is not correct. The modified algorithm to compute the nt* element

of the residual vector for MVDR beamforming will be given in the next section.

4.3 A Novel MVDR algorithm

Recall that the residual vector for MVDR beamforming is

(n) = WX(")R—l(n)i(n)

€

For convenience, define a vector €(n) as

) Clrm |
) = Q"(n) B (n)u(n)
I 0
= oy | 2

I 0
= PP(n)z(n)

where P (n) is

PH(n — 1) A (n)

a(n)

(4.29)

(4.30)

(4.31)

39

Therefore, the n** element of the residual vector for the case of MVDR

beamforming has the form

é(t,) = QH(n) (n) (4.32)

S

where a”(n) has the form

H _
a’(n) = S§1 8201 $3C3C1 -+ SNCN—1'--C1

Comparing Equations 4.15 and 4.31, we see that instead of using McWhirter’s
RLS algorithm, the MVDR beamforming should use our newly developed al-
gorithm for computing the residual. The n'* element of the residual vector
18

eftn) = a(n)z(n) (4.33)

The solution obtained by the MVDR algorithm for the residual is used only
for time n > N for which the data matrix X (n) is of full rank. However, the
initial constant which sets the whole system to be zero requires an initialization
algorithm. The exact initialization procedure is used for the period 0 < n <
N. Initialization algorithm must be used first before the recursive algorithm
is employed. The initialization procedure and the recursive procedure are

described in the following subsection.

90

4.3.1 Initialization Procedure

The initialization procedure for data samples taken for 0 < n < N will now
be introduced to obtain the initial upper triangular matrix R(/N) and a vector
z(N). Mode 1 and mode 2 for computing the upper triangular matrix R(N)
and a parameter vector z(/N) are described.

The QR decomposition applied to the first NV data snapshots to obtain the

initial upper triangular matrix under mode 1 has the form

Q(N)X(N) = R(N) (4.34)

z(N) = R7H(N)¢ (4.35)

4.3.2 Recursive Updating

The recursive algorithm is applied for time n > N to update and compute
the residual. It is well known [14] that the QR decomposition of the observed
data X(n) can be implemented recursively on a triangular systolic array. The

upper triangular matrix can be updated by using the QR decomposition given

by

Q(n) 0 =| o0 (4.36)

91

where Q(n) has the form
A(n) 0 a(n)
Qm)=| o 1 o

b'(n) 0 4(n)

The matrix A(n), the vector a(n), the vector ', and a scalar v(n) have the

following forms

- -
Cq 0 0 v 0
_S; c2 O PO O
A(n) = —83C3C251 —S83C382 —5383 e 0]
* * * o
—35,Ch—1"""C281 —8,Cn—1"""C382 —85,Cpw1""C483 -+ Cp
(4.37)
al(n)=| ¢ g%, s* . (4.38)
= - Sy S9€1 S3C2C1 +r §,Chq0Cq) .
T —
b (n) = [—CpCp_1 - *"C28] —Cp-++0389 —Cp+-C4S83 -+ —3,] , (4.39)
and,
Y(n) = cpcpy -0 (4.40)
Since

= RH(n—l)

N

(n—1)

BRE(m —1) 0 z*(,)

Q(n)

%g(n - 1)

#

0

Q" (n

r

)Q(n)

92

(4.41)

The same QR decomposition can be applied to update the parameter z(n —1).

where # denotes an arbitrary vector of no interest in mathematical and phys-
ical concept.
Recall from Equation 4.33 that the n** element of the residual vector is

i Pf(nxz_(n)

Iz (]
- ||225“1

|lz(n

e(tn) =

(4.43)

-(i=1)%j

In this chapter, we found that the equation for the n'* element of the
residual proposed by McWhirter and Shepherd is incorrect. According to the
discussion section in [24], McWhirter’s algorithm requires reinitialization of
the MVDR system every 5000 samples to retain sufficient accuracy for most
practical applications. In conclusion, McWhirter’s algorithm for MVDR beam-
forming using the RLS algorithm has an error in computing the residual which

creates the numerical instability. A robust numerically stable and computa-

tionally efficient MVDR algorithm which is mapped into a single fully pipelined

93

systolic array is described in this section. In the next section, a state of the

art systolic array processor is designed for MVDR beamforming.

4.4 MVDR Systolic Array Processors

In this section, first, the newly developed MVDR algorithm is summarized in
Table 4.1. Then, a single fully pipelined structure is described for the case of
four sensors and two constraints in Figure 4.3. To operate the MVDR systolic
array processors, the initialization procedure is required for time 0 < n < N
to obtain the initial upper triangular R(N) and the initial parameter vector
z(N). Two different modes shown in Tables 4.2 and 4.3 are introduced to form
the initial upper triangular matrix and initial parameter vector. The recursive
procedure used for n > N only requires mode 1 to obtain the residuals. In Fig-
ure 4.4, the symbols for four processor elements are depicted and in Tables 4.2

and 4.3, the algorithms for mode 1 and mode 2 are described in detail.

4.5 Fast Givens Based-M VDR Beamforming

The QR decomposition by the fast Givens method is easy to carry out by
replacing the following matrices and vectors with a product of diagonal matrix

and new matrices and vectors as shown in the next equations

R(n) = D*(n)R(n) (4.44)

94

1. Initialize Conditions at n = 0 by setting

R0)=0 2(0)=0 R H(0)=0
2. Initialization Procedure for 0 <n < N:
(1) QVX(N) = R(N) (Mode 1)

(b) 2Y(N) = R7H(N)¢ (Mode 2)

3. Recursive Procedure for n > N (Mode 1 only):

-ﬂR(n—l)- —R(n)-
(2) Q(n) 0 =1 0
| oz'(t) | | 0]
- 1zi(n 1) 1 Z'(n) -
By Q| # |=| #
_ o | | #
(c) €(tn) = Ty et $5Cio1 *** Cim(i=1)%;

Table 4.1: Summary of Parallel/Pipelined QRD-MVDR Algorithm

95

PE1 PE2 || PE2 | | PE2 PE3 | | PE3
Y Y Y Y Y

PE1 | | PE2 |] PE2 PE3 | | PE3

Y Y Y Y

PE 1 || PE2 PE3 || PE3

Y Y Y

PE1 PE3 || PE3

PE4 PE4

residuals

Figure 4.3: MVDR Systolic Array Processor

xX
x

PE1 PE2

5mxwew"m In
PE3 PE4
' —— r L C r
] S

' l

auufxnufenulnuut
out

Figure 4.4: Processor Elements of MVDR Systolic Array

96

PE1 PE?2 PE3 PFE4
d — (#r* + |x|2)% Y — —SPr+cx Toys — —s%r +cTin € — 52
c<—%’1 r «— cfr + s*zx r<—c%r+3*xm
§ — :i_c Mout < IT‘|2 + Nin
r«d Oout — Coin,
€out = $0inT + €iy,
Table 4.2: The Algorithm for Mode 1

PE1 PE2 PE3 PE4

S L y—cr — ST Tou — Tin Eout < Ein

c—1 of @i — 1

then 1 « s*

Table 4.3: The Algorithm for Mode 2

97

98
z’(n) = D_lei(n) (4.45)
For the initialization procedure, the initial upper triangular is first computed

as

Q(N)X(N) = D*(N)R(N) (4.46)

(N)¢' (4.47)

Update the system is required for computing the residual. The following equa-

tion shows how to update the whole system together.

BD:(n—1)R(n —1) Lz(n —1)

f_Q)
2
O
=

=l 0 i o4 (4.48)

&(n) = d'(n)D1(n)Z'(n) (4.49)

Finally

en) ==z —= e(n) for i=1,--- K (4.50)

99

The algorithm and systolic array processors for the fast Givens-RCLS with
modifications from those of the Givens-RCLS are described in Tables 4.4 and
Figures 4.5. The four processor elements of the fast Givens MVDR. systolic
array are depicted in Figure 4.6 and their algorithms for mode 1 and mode 2

are stated in Table 4.5 and 4.6.

100

1. Initialize Conditions at n = 0 by setting

Dz(0)R(0)=0 2(0)=0 R H(0)=0
2. Initialization Procedure for 0 <n < N:

(a) Q(N)X(N) = Dz(N)R(N) (Mode 1)

(b) Z(N) = R-H(N)¢ (Mode 2)

3. Recursive Procedure for n > N (Mode 1 only):

’ BDZ(n —1)R(n —1) | | R(n) _
(a) Q(n) 0 =1 o0
| 2" (L) [
o | |2
(b) Q(n) # =1 #
L 0 J L # B

() e(tn) = D Tz Lom 8361 Ci=G-1 7

Table 4.4: Summary of Parallel/Pipelined Fast Givens-MVDR Algorithm

101

PET |] PE2 PE2 PE2 PE3 || PE3
B Y Y Aj A

PEI PE2 PE2 PE3 || PE3

Y Y Y Y

PE} PE2 PE3 || PE3

Y Y Y

PE1 PE3 || PE3

PE4 PE4

residuals

Figure 4.5: Fast MVDR Systolic Array Processor

102

xX
x

PE1 d d PE2 d
L - C C r L C
r S S S
6 ¢
out
b
6ilixin’ein’nin eln
d PE3 d PE4
 — r — C r
S s

' :

6nuf}fnut’e ouf "out e
out

Figure 4.6: Processor Element of Fast MVDR Systolic Array

PE1 PE?2

PE3 PE4

d e B+ 6|z y— —cfr+z

Br
C p

T fBr4s*y

w
T
a8

T
QU

Tout —c%r + &, € —
1 *
TG + 8" Tout
2
T
Nout < I—dl— + Nin
5out — 062'71

r
Cout Séina‘ + €in

roe,,

n

Table 4.5: The Fast Algorithm of Mode 1

PE1 PE2 PE3 PFE4
S L YT — ST Tout — Tin Cout < Ein
ce 1 i [— 1

thenr «— %

Table 4.6: The Fast Algorithm of Mode 2

103

Chapter 5

VLSI Algorithms and
Architectures for Complex
Householder Transformation
with Application to Array

Processing

5.1 Introduction

Mapping QR decomposition algorithms onto systolic arrays has received con-

siderable attention recently. There are several reasons. One of them is that

104

105

recent developments in VLSI technology make it possible to build a multi-
processor system on a chip. Another reason is that many real-time signal
processing applications require both a high throughput rate and superior nu-
merical accuracy. Therefore, the combination of numerical analysis problems
and VLSI designs has played an important role in real-time applications of
modern signal processing due to the increasing use of numerical analysis in
these areas. Recently, many issues such as systolic Cholesky decomposition
[63,12], systolic Givens rotation [6,12,14,65], systolic modified Givens rota-
tion [14,11,65,70], systolic-like modified Gram-Schmidt [68], and systolic block
Householder transformation [57,59] have been reported elsewhere in the liter-
ature.

Recently, the problem of designing algorithms based on the Householder
transformation (HT) and its associated systolic architectures has been of great
interest [36,37,57,59,62,64]. This is because the HT generally outperforms the
Givens rotation under finite precision computations [37,57,59,62]. It is also
true that the Householder method requires less computation than the Givens
and modified Gram-Schmidt methods do. Recently, a systolic architecture for
the recursive block Householder transformation has been presented in [57,59].
Compared to the recursive block HT, the developed programmable complex
HT systolic architecture in this paper saves (M —1) x N in computation time

to form the upper triangular matrix during the initialization procedure, where

106

N is the number of sensors and M is the block size. Furthermore, rather than
employing the real HT reported in [57,59], the complex HT is considered and
developed since in many signal processing areas we often deal with complex
data. Therefore, it is very important to develop a programmable complex HT
systolic architecture for real-time high throughput modern signal processing
applications.

The QR approaches for recursive least-squares (RLS) problem have played
an important role in adaptive signal processing, such as adaptive beamform-
ing, adaptive equalization, adaptive spectrum estimation, and so on. One of
the reasons is that the apparent robust numerical stability is observed in those
implementations since the rounding error caused by finite word length effect
will not be accumulated by using the QR-RLS approaches. Another reason
is that the QR-RLS algorithms can be mapped onto systolic arrays which are
promising candidates for real-time signal processing applications and VLSI
implementations. Basically, there are three approaches to the QR-RLS prob-
lem, namely, Householder transformations, Givens rotations, and the modified
Gram-Schmidt method. Especially, the Givens rotation is a special case of the
Householder transformation [55].

Systolic array implementations for QR-RLS algorithms have been explored

by numerous researchers [6,4,9,24,36,37,57,59,65,66,68,69]. Gentleman and

Kung introduced the linear least squares problem based on the Givens ro-

107

tations with systolic array implementation to derive the optimal weights [6].
Their method for linear least squares computation consists of two steps which
are the orthogonal triangularization and the backward substitution. Step one
was carried out by a triangular systolic array for the QR decomposition and
step two was implemented by a systolic linear array for the back substitution.
However, the triangular systolic array runs from the upper-left corner to the
lower-right corner of the array, while the back solve systolic array runs in pre-
cisely the opposite direction. Although Gentleman-Kung’s systolic architec-
ture is not fully pipelined between the two modules, it was the pioneering work
in discovering the systolic array implementation for the least squares problem.
McWhirter then showed how the proposed Givens rotations based recursive
least squares algorithm can be implemented efficiently on a single systolic array
for directly computing the residual by avoiding the back solve processor [24].
The resulting McWhirter’s Givens based-RLS array is both fully parallel and
pipelined. Ling et al. proposed a recursive modified Gram-Schmidt (RMGS)
algorithm for least-squares estimation [69]. Ling’s RMGS-LS algorithm and
architecture has also been demonstrated to be fully pipelined for computing
the residual. In [70], Kalson and Yao have similar results.

Up to now, most of the systolic array implementations for the QR-RLS
algorithms are based on the Givens rotation method and modified Gram-

Schmidt method except the recently introduced systolic array for the block

108

householder transformation based RLS (SBHT-RLS) [57,59]. Compared to
the SBHT-RLS method, the systolic architecture for the complex Householder
transformation based recursive least squares (CHT-RLS) algorithm developed
in this paper saves (N —1)M in computation time to obtain the first residual
vector, where N is the number of sensors and M is the block size. More pre-
cisely, the residuals can be obtained immediately from our CHT-RLS systolic
architecture when an N x N data block is received by the sensors, while an
NM x N data block is needed in [57,59]. In our proposed systolic architec-
ture, the number of data snapshots needed for the initialization and the block
size M for the recursive updating are controlled by simply sending the control
code into the boundary cells and it can be changed freely by sending another
control code into the cells.

This chapter is organized as follows. The first part consists of a com-
plex Householder transformation algorithm and its associated systolic array
processor [3]. We begin with the development of a systolic complex House-
holder algorithm which is programmable to handle both the initialization and
recursive computation. The complex Householder algorithm requires N snap-
shots of data for the initialization to compute the upper triangular matrix
while the recursive Householder algorithm in [57,59] needs N x M snapshots

of data. Then we introduce the systolic architectures for the parallel complex

Householder algorithms. A two-level pipelined implementation of the com-

109

plex Householder transformation is also considered. The second part consists
of a complex Householder-based recursive least squares (CHT-RLS) systolic
algorithm and its systolic array implementation. First, a systolic algorithm
for CHT-RLS with fast initialization is described. Then, the systolic array

processor of CHT-RLS systolic algorithm is proposed.

5.2 Systolic Arrays of Complex Householder

Transformation

In many signal processing applications, the QR decomposition can provide
a numerically stable and efficient solution. There are many schemes to per-
form such a decomposition, e.g. Givens/modified Givens, Householder, Gram-
Schmidt/modified Gram-Schmidt. Of particular interest in this paper is a
sample-by-sample form of the Householder orthogonalization technique. Since
in many applications of signal processing, the observed data matrix is complex,
it is necessary to consider the complex case of the Householder transformation.
We assume X is a observed complex data matrix and let X be the number of
snapshots and N is the number of sensors. The initialization is needed for k
less than or equal to N since the upper triangular matrix is still not available
and the recursive computation can be started when there are more than N

data snapshots.

110

5.2.1 Systolic Complex Householder Algorithm

The following Lemma shows how a Householder transformation be applied to

a column vector z to zero out all elements except the first one.

Lemma [55]

Suppose £ € CK and that z; = |:c1|ej9 with 0 € R. Assume z # 0 and
define u = z + ejgllg”ze_l where e_1T = [10 .- 0 } Then the K by K

complex Householder transformation B defined as

2
B=1- “H—‘MH
uu
is unitary and Bz = —e?’||z||;e; where H is complex conjugate transpose.

Initialization

The factorization of a data matrix X € CV*¥ can be achieved by a sequence of
Householder transformations [57,59] which produces a unitary N by N matrix

() and an upper triangular matrix R such that

R
X =Q" ,
0
where X = | 2 2 , --+ xp |- Thealgorithm for applying successive House-

holder transformations to zero out a given N by N complex observed data

matrix X can be described as follows. Let

Q= GnN-1 Q261 (5.1)

111

be a sequence of Householder transformations applied to X where @); is an NV

by N complex Householder Transformation matrix of the form

-

Liixi-1 ¢ 0

Qi = A I for i=1,---,N —1, (5.2)

0 : B;

where B; € CIV=+)x(N=i+1) j5 o ynitary matrix given by [55]

2

H
Bi =1~ mu&i) (5.3)
and u; is defined as
u = [zi(ti) + Oyl wiltin) -+ wlin) (5.4)
for 27 = [zi(ts) - w(ty)] and the phase 6;(¢;) is given by
Hz(tl) = =7 10ge .
(%)

As a result, applying a sequence of Householder transformations @); to the
data matrix X can be described in two parts. First, foreach i =1,---, N —1,

we apply a Householder transformation to z; and obtain

(Bi‘_r_i)T:[Tii 0o --- 0}

for 1=1,2,--- N —1 (5.5)

where r; = —el%i(t)

LH?

Define a scalar parameter A as

A= ugu = (|laill2(|]zil]2 + |z (t:)]) ™" (5.6)

27 2

Then, the same Householder algorithm Bj is applied to the remaining N — ¢
column vectors zZ = ze(t) -+ ai(tn) | € CN-#*! fork=i+1,---,N.

Thus, the new set of column vectors can be obtained as follows.
Bz, = z), — dwul'zy, =, — 0w, (5.7)
where « is a scalar parameter given by

a=Muf'z, = Nz, + 2 (8:) e |z 12),

-

and

zi(t;) — az;(t;) + ary;

i (tiv1) — owi(tisn)
Bz, = , for k=i+1,--- N. (5.8)

i zk(tn) — azi(ty)]
According to the above procedure, after applying @; to X, the first column of
()1 X is zeroed except for the first element. The second column of .1 X is
zeroed from the third component to the M —th when a chosen N —1 by N —1
unitary matrix H, is applied to the N — 1 by N — 1 lower right submatrix of

@1.X. It is obvious that)2¢)1.X has zeros below the diagonal in both the first

two columns. Continuing in this way, the data matrix X can be transformed

113

into a upper triangular form by applying N — 1 unitary transformations to it.
It is well known that the number of arithmetic operations gradually decreases

in each of the subsequent Householder transformations.

Recursive Complex Householder Algorithm

The triangular matrix R can be updated by employing unitary Householder

transformations P which has the form

BR R
P = , (5.9)
X 0
it T2r - TNl
0 ryo -+ rap
where R = , X = Z, Ty - Ty |0 PH represents
0 0 v+ T'NN

a sequence of complex Householder transformations used to zero out the new
complex M by N data matrix X, and J is the forgetting factor.

The sequence of Householder transformations to update the triangular ma-
trix R is given by

P:PNPN—I"'PQPh (510)

where an M + N by M + N complex Householder transformation P; has the

form

Pz': e) fOT i:1a25"'7N7

where B; € CIMAN=HDX(M+N=i+1) {5 5 ypitary matrix given by

2
H
Bi =1 — —g—uu,".
U u;

i
When given a column vector z; of the form

1T

Ly '—'[ﬂrii 0 --- 0 $i(t1) ’fi(tfu)]’

u; can be defined by

uf:[ﬂ7~ﬁ+eﬂ’m||z;-|lz 0 0 @ilt) - :cl-(tm},

where 0,,; is a real parameter given by 8,., = —j log, k.

Therefore, the Householder transformation B; is readily available as

Hlxl 0 HMxl
Bi = 0 In_ixn—; 0)
HlxM 0 HMxM

where Hyxy = 1 — M@ rfrii + [zil 5 + 28rilll2i]2),

114

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

115

Hypxy = —A(Bri + eiii||z;|[,)zH,
Hisnr = =X(Bri; + 7%z 2)z,
Hyxm =1 — gzl

and

2 o 1
A= —— = (|lzll(|zillz + Blral) ™ (5.16)

U u;

£

Given a column vector z; described in equation (13), a Householder trans-

formation applied to this matrix gives

k23

(Bi.@Q)T:lr’.. 0 ... 0]

for i=1,2,--- N (5.17)

where i, = —e?%nii ||z |,.
When the same Householder transformation is applied to the rest of column

! .
vectors z;, with

Ly =\ Prei -or Prie 0 o0 0 ap(ty) oo aplta) |

116

the new set of column vectors can by obtained by

I
Bri; — ar; + ary;

ﬂT'k i+1

Bri

Bz, = , for k=1+1,--- N, (5.18)

zi(ty) — az;(ty)

xk(tM) - oz:ci(tM)

. . ' tH ¢+ 1
where a is given by o = Aullz, = Mz, zp — rii75i).

It is apparent that the upper triangular matrix can be updated by apply-
ing a sequence of N Householder transformations. It is also known that the
number of data to be zeroed is the same for each of the N Householder trans-
formations at updating procedure while the number of data to be zeroed is

reduced at initialization.

5.2.2 VLSI Array Processors Implementation

The parallel complex Householder algorithms with initialization have been

presented so far. We now consider the issue of VLSI systolic implementation.

117

Figure 5.1 shows the boundary cell and internal cell of the systolic recursive
Householder transformations. The operation of the boundary cell is given in
‘able 5.1 and that of the internal cell is described in Table 5.2. Based on the
initialization procedure described before, the block size is decreasing such that
only N data rows are needed to obtain the first upper triangular matrix R.
For the systolic array implementation, a control code to change the block size
is sent down to the boundary cells as illustrated in Figure 5.3. In [57,59], a
fixed block size is used instead. As a result, NV x M data rows are used for
the initialization. Figure 5.2 illustrates the operation carried out by a given
pair of boundary and internal cells. The data flowed from the boundary cell
to internal cell is pipelined sample-by-sample. The boundary cell and internal
cell are functioned as follows. In the boundary cell, the previous data r stored
in the processor element is sent to the internal cell first, then the input data z
received is accumulated and added, and also sent to the internal cell. Accord-
ing to Table 5.1, the newly updated data r which replaces the previous r is
also sent to the internal cell. The data flow and computation in both proces-
sor elements are fully pipelined down to the word level to update the previous
data and to produce the output data y to the next cell. A similar two-level
pipelined architecture for the modified Householder transformation algorithm
[60] is given in [59]. The two-level pipelined architectures for the conventional

and modified Householder transformation have some similarities and differ-

118

ences. Compared to the two-level pipelined architecture shown in [59], the
architecture based on conventional Householder transformation described in
Figure 5.2 requires one more multiplication and addition computation than
that of the modify Householder transformation. The similarity of two archi-
tectures is that both are fully pipelinable at the vector and word levels. The
triangular systolic architecture for the parallel complex Householder algorithm
is shown in Figure 5.3. In adaptive antenna and radar applications, the period
of updating the optimum weights is significantly larger than the actual com-
putation time [68], and the two-dimensional systolic array processors can be
reduced into one-dimensional systolic array processors by employing a simple
feedback configuration as illustrated in Figure 5.4. The one-dimensional linear
architecture using the feedback configuration and the two-dimensional trian-
gular architecture require their own local memory and some minimal control

circuity and programmable capabilities.

119

x(t) x(t)

| M

x(t) X(L

2
X(tl) X(ti)
M
1\
wi(t) wi(t)
_»W(t]) 1 > i
0 M — r; —» M
A’ x’H'\ l”\
\ M
out
y¢ tm)

y(t)

Figure 5.1: The Boundary and Internal Cells of Systolic Householder Trans-

formation

xl(tN)

xl(t3)
x_ {.)
M xl()

x2(‘3)
xz(tz)

Xy (tl)

J\wm 5tp) X ¢
r AY

M

y(ty)

Y(tl)

Figure 5.2: Processor Pair of Boundary and Internal Cells

120

121

X, (t,) N
x3(t2) x4(t,)
x2(t 2) x}(tl)

/x
]
|
ll]——
|olf——

r ; o > _ _>§ M
—_ _>§ F2N

—~
= — I

- i
B =

N |

\ I

AN \

Figure 5.3: Triangular Systolic Architecture for Householder Transformation

Ho(ty)
H,¢,) H(t)
Hz(tz) H3(tl)
Hi(t:) H(t,)
H,(t)
" r— r— r—
(- =rs] .
-l . Hel . He . He
(- i< mi- i
Y vy Ly |
memories:
rll
I M2
33 I3 s
U4 N4
L LIVIRYY Dvaw LIVIETY

R, (t,)
B (t,)

L]
LAA]

[£1Y

Figure 5.4: Linear Triangular Systolic Architecture for Householder Transfor-

mations with Feedback Configuration

Initialization : Recursive :
r— z(t1) el = "
el = = s« 0

Irl
s« 0 for ¢=0,M,,
for 1 =1,M;, w(t;) «r
w(t;) «r S «— s+ r*r

o — /5

r e —elo
Ae—o(o+|r|)
w(ta,41) 7

Mout — Mm -1

g — /s

r o« ——ejeTa
A —o(o+ p|r])
w(tMin+1) T

A{out — Mm

123

‘able 5.1: The Algorithm for the Boundary Cell of Complex Householder

Transformation

124

Initialization :

Recursive :

T(tMipt1) — —2(t1)
s« 0

for i=1,M;, +1
s — s+ w*(t;)z(t;)
end
a3

r— —a(ty, 1) — ow(ty) + cw(ty, 41)
for i=2,M

y(t:) — z(t;) — aw(t;)

end

z(tp,,41) & —r
s« 0

for 1 =0 M, +1
s — s+ w(t;)r
ro—x(tiy)

end
@t
r o —Ba(tp,+1) — cw(to) + cwllag, +1)
for 1 =1, M

y(ti) « (t;) — ow(ty)

end

‘able 5.2: The Algorithm for the Internal Cell of Complex Householder Trans-

formation

125
5.3 Systolic CHT-RLS Algorithm and Archi-

tecture

In this section we consider the recursive least-squares based on the systolic
complex Householder transformations (CHT-LS) derived above.

Assume the observed data and the desired data are received by N + 1
sensors of an adaptive array system for time period of m snapshots. Then, the

k x N observed data matrix and the k x 1 desired data vector are

2" (ty)

2T 2
X(1:k)=| () (5.19)

and

The least-squares residual vector is

e(l:k)=X(1:k)w(k)—y(l:k) (5.21)

where the weights for each of N sensors are

wy(tx)

wy(tx)

wN(tk)

and the residual vector is

e(1:R)" = | e(ty) elty) -+ elty)
The optimal weight vector w,,,(k) minimizes the quantity

B(1: k) = [IX(L: B)(k) - y(1: 8o (5.23)
The solution to this minimization problem is

W (k) = (XH(1:B)X(1: k)T XA K)y(1: k). (5.24)

5.3.1 Systolic CHT-RLS Algorithm

The approach described in (5.24) is generally known as direct sample matrix
inversion (SMI). It is well known that the classical method, the sample matrix
inversion method (SMI), may sometimes lead to undesired numerical charac-
teristics due to ill-conditioned matrices. This means that an extremely high
arithmetic precision is required when employing the sample matrix inversion

method. To alleviate such roundoff sensitivity caused by the SMI method,

127

the QR decomposition deserves serious consideration. A family of algorithms
based on the QR decomposition can be employed. These include the Givens,
modified Givens, Householder and modified Gram-Schmidt orthogonalization
techniques. In this section, we introduce complex Householder transformation
based-least squares (CHT-LS) algorithm to compute the residual. In CHT-LS,
as before, the initialization is performed when &, the number of data snapshots,
is less than or equal to NV, and the recursive computation is started when there

are more than N data snapshots.

Initialization Procedure

The initialization procedure for the complex Householder transformation to
form the upper triangular matrix requires only N data snapshots. The factor-
ization of a data matrix X (1 : N) € CNV*¥ described in the last section can be
achieved by a sequence of Householder transformations [57,59] and produces

a unitary N by N matrix Q(N) and an N x N upper triangular matrix R(N)

such that
R(N)
X(IN):QH(N) ’
0
where X(1: N) = 2T(ty) 2T(t) --- 2T(tw) |

The least-squares residual vector for the initialization procedure 1s

e(1:N)=X(1:N)w(N)-y(l:N). (5.25)

123

Therefore,

E1:N) = [IQIN)X(L: Nw(N) —Q(N)y(1: N
= [[B(N)w(N) = u(N)]},- (5.26)
Since (V) is unitary, according to (5.26), the optimal weight vector is given
by
R(N)ope(N) — u(N) = 0 (5.27)
Substituting (5.27) into (5.25), the least-squares residual vector for the initial-

ization is given by

e(l:N) = X(1:N)wy(N)—y(1:N)

= 0 (5.28)

Recursive Updating

Given a k x N matrix X(1 : k), where k£ > N, a k x k unitary matrix Q(k)

can be generated such that

R(k)
X(1:k)= Q" (k) (5.29)

0

where R(k) is a N x N upper triangular matrix.

The least-squares residual vector is

e(l1:k)=X(1:k)w(k) —y(l:k) (5.30)

129

The CHT-RLS algorithm is formulated to derive the optimal weight vector by

minimizing the following quantity

E(L:k) = [|Q(k)X(1: k)w(k) — Q(R)y(1: k)|
R(k) u(k)
= | w(k) — |2 (5.31)
0 v(k)

where ()(k) can be partitioned into Qi(k), a N x k matrix, and Q.(k), a
(k — N) x k matrix, is

Qk) = (5.32)
Q2

and u(k), a N x 1 vector, and v(k), a (k — N) x 1, vector are defined by

Quy(1: k) = u(k), (5.33)

Quy(1 : k) = v(k). (5.34)

To minimize the quantity £(1 : k), the optimal weight vector obtained from (5.31)

has the form

R(k)w,p (k) = u(k), (5.35)

where the optimal weight vector is given by

wl(tk)

wopt(k) = w2(tk) 9

’U)N(tk)

130

Then, substituting (5.35) into (5.31), the residual vector is given by

) | R k)
el k) = Q"(k) Wopi (k) — Q7 (k)
0 v(k)
0
= . (5.36)
—Q2v(k)
Therefore, the residual vector for the least-squares problem is
(N +1):k)=—-QFv(k). (5.37)

When a new M x N data block is received by an adaptive array system,

the observed data matrix becomes

X(1: (h+ M) = AXQL - £) , (5.38)

X((k+1):(k+M))

where the M x N data matrix is given by

E_T(tk+1)
&T(tk+2)
X((k+1):(k+M)) = ,
2" (trymr)
and the desired data vector is given by
y(1: k)
y(L: (k+ M)) = : (5.39)

y((k+1): (k+ M)

131
where y((k+ 1) : (k+ M)) is a new desired data vector given by

Y(tks1)

y((k+1): (k+ M)) = Y(thtz)

Y(tesnr)

The new (k+ M) x (k+ M) complex Householder transformation Q(k+ M)

is defined as

Qlk+ M) = P(k+ M)Q(k) (5.40)

where Q(k) is given by

0 Juxm
The desired Householder transformation P(k + M) described in [57,59] for

updating the upper triangular matrix has the form

Hy(k+ M) 0 Hy(k+ M)
P(k + M) - 0 I(k—N)x(k-N) 0) (5-41)
Hyy(k + M) 0 Hyy(k + M)

where Hy (k+ M) is an N x N matrix,
Hiy(k + M) is an N x M matrix,
Hyi (k+ M) is an M x N matrix,

and Hay(k+ M) is an M x M matrix.

132

Applying Q(k) € CWWHMXIN+M) t4 the (k4 M) x N data matrix X (1 :

(k+ M)), gives

QR)X(1: (k+ M))

Qk) 0
0 Iarxm
BR(k)

0

X((k+1): (k+ M)

BX(1:k)

X((K +1): (k+ M))

(5.42)

Therefore, the N x N upper triangular matrix R(k + M) can be updated by

employing the new unitary Householder transformation Q(k + M) which has

the form

Q(k+ M)X(L: (k+ M))

BR(k)
0

X((k+1): (k+ M))

(5.43)

where R(k + M) = Hy(k+ M)BR(k) + Hio(k+ M)X((k+ 1) : (k+ M)).

The procedure for applying the updated complex Householder transforma-

tion to the desired data vector g(l : (k4 M)) is the same as that described

for the observed data matrix. First, applying @(k) to the desired data vector

133
y(1:(k+ M)), we have

Q Q(k 0 By(l:k
Qk)y(1: (k+M)) = (k) y(1: k)
0 Iuxar | | g((k+1): (k+ M)
Bu(k)
- Bu(k) : (5.44)
| y((k+1): (k+ M)

Then, by employing the new unitary Householder transformation Q(k + M)

to the desired data vector y(1: (k + M)), we have

Bu(k)
Q(k + M)y(1: (k+M)) = P(k+M) Bo(k)

<

y((k+1): (k4 M)) |
u(k+ M)
, (5.45)

v(k + M)

where u(k + M) = Hyy(k + M)Bu(k) + Hip(k + M)y((k+1) : (k+ M)),
Bu(k)

a(k + M)

o(k+ M) =

?

and a(k + M) = Hy (k4 M)pu(k) + Hy(k + M)y((k+1) : (k+ M)).
The residual vector for the recursive least-squares problem is

e(l:(k+M))=X(1:(k+M)w(k+M)+y(L:(k+ M)), (5.46)

134

and by the definition

E(L:(k+M)) = ||Q(k+M)X(L: (k+ M)w(k+ M) —Q(k+ M)y(1:k+ M)l
Rk+ M u(k+ M

= || () w(k+ M) - () |2 (5.47)
0 v(k+ M)

To minimize the quantity F(1: (k+ M)), the optimal weight vector obtained

from the (5.47) is
Rk 4+ M)w, i (k + M) = u(k+ M). (5.48)

Then, substituting (5.48) into (5.47), the optimal residual vector becomes

R(k+ M) u(k+ M)

e1:(k+M) = Q"(k+ M) ok + M) — QU(K + M)
0 v(k+ M)
0
= (5.49)
—QH(k+ M)v(k + M)

Therefore, the most current optimal residual vector is

E(N+1): (k+ M) = —QF(k+ M)v(k+ M)

v(k
= —QU(k+ M) flh . (5.50)

a(k+ M)

The new complex Householder transformation Q(k -+ M) has the form

Q:i(k + M)
Qlk+ M) =

@20k + M)

135

= P(k+ M)O(R)
Hu(k + M) 0 Ho(k+ M) | | Qi(k) 0
= 0 Tk—Nyx (k-N) 0 Qa(k) 0
i Hy(k+ M) 0 Hoy(k + M) 1 0 Inrwnr]

- Hyy(k+ M)Qy(k) Hyo(k+ M) -

Qa(k) 0 . (5.51)

i Hayy(k+ M)Q1(k) Ha(k+ M) |

Therefore, Q2(k + M) has the form

Q2(k+ M) =

Substituting (5.52) into (5.50). we have

e((N+1):(k+ M)

Q2(k) 0
(5.52)
Hoi(k+ M)Q1(k) Hayg(k + M)
e((N+1): k)
(5.53)
e((k+1):(k+ M))
Qi (k) Qi (R)H{(k + M) (k)
0 HE(k+ M) alk + M)

Q' (k)Bu(k) + Q' (k) Hyi (k + M)a(k + M)

HE(k + M)a(k + M)

where the optimal residual vector €((k + 1) : (k 4+ M)) during the time period

from ty4q to txyar 1s given by

e(k+1): (k+ M) =—HE(k+ M)a(k + M), (5.54)

136

where

N)
Hg = HHJ(\jI)va

=1

where H](‘ff)x a 18 given in (5.15), 7 denotes the ith Householder transformation,

and

e(tisr/ (ks < thanr))

e((k+1): (k+ M) = Alasal (s Buee)) | (5.56)

e(trpns/(tigr @ trgnr))

L =

Compared to the SBHT-RLS algorithm in [59], our CHT-RLS algorithm
saves (N —1)M computation time in the initialization. Compared to McWhirter’s
GR-RLS algorithm, our algorithm has better estimation of the residuals since
the CHT-RLS algorithm uses a data block to compute the residuals. Then,
the more data information is used for CHT-RLS than GR-RLS to compute
the residuals. For example, from (5.56), it is seen that the data block at time

from t;,4 to tz1ps is used to derive the residual at each instant time.

5.3.2 Systolic Array Implementation

The parallel complex Householder transformation based-recursive least-squares
algorithm with fast initialization has been presented so far. We now consider
the issue of VLSI systolic implementation. The systolic architecture for the

parallel complex Householder transformation based-recursive least-squares al-

137

gorithm is shown in Figure 5.5 which is able to obtain the residual immediately.
However, it involves the matrix by matrix multiplication in the boundary cell
between which a large bandwidth of transmission line is required. Therefore, in
Figure 5.7 a backward propagation array is added into the Figure 5.5 to avoid
the matrix-matrix multiplication and br replaced by vector-vector multiplica-
tion as pointed out in [59]. In Figure 5.7, the delayed buffers are needed for
each row to temperately store w(t;) for vector multiplication. The boundary
cell, internal cell, and the final cell are illustrated in Figure 5.6. The systolic
algorithm for the boundary cell of the CHT-RLS system is shown in Table 5.3,
the algorithm for the internal cell is shown in Table 5.4, and the algorithm for

the final cell is described in Table 5.5.

5.4 Application to Array Processing

Adaptive arrays are currently the subject of extensive investigation for the ap-
plication of automatically suppression of the sidelobe interference or jamming
signals in many military radar, communications, and navigation systems. A
more sophisticated adaptive array system is required to have rapid conver-
gence, high cancellation performance and operational flexibility and is also
necessitated to achieve high throughput rate and instant response in the ap-
plications of real-time signal processing. For those applications it is necessary

to build an open-loop recursive QR decomposition-based systolic array system.

138

x(t) 4ty
x tt)
X£t,) N
xLt,) xLt))
x?_(tz) x{t))
X (t) XLty
P,\x(t)
5); = - B
N r
—- > P I
—% = == I
{ N
- - = B
\ v
_ *; E
N !
N ' |
AN | |
4 \J Y

Figure 5.5: Systolic Architecture for CHT-RLS

139

L W)
—» M

out

x(ti)
|
x(tz)
M x(t])
. n
in \
-———»}{V,l(ti) wit)
S =l M —
in
\ A
\ M
out
7uut
Xin
Y
X

out

Figure 5.6: The Boundary, Internal, and Final Cells of Systolic CHT-RLS

140

Residual
vector

}

-
-—
——
<_

Figure 5.7: Systolic Architecture for CHT-RLS with Backward Propagation

array

Initialization : Recursive :
0y . T

r— z(ty) e’ = 1
elfr = s 0

I
s« 0 for 1 =0,M,,
for e =1,M;, w(t;) «r
w(t;) «r § «— 8+ r¥r

r— z(tiy1)
end
g — S

r« —elbrg
A—o(o+]r])
w(tMin+1) —7r

Mout — Min —1

P
r— —etfra

A —ofo+p8lr|)
W(tM41) < 7

Mout — A[m

— H
HMxM = IMxM -)\L'L-

Yout = 7inHMxM

Table 5.3: The Algorithm for the Boundary Cell of Systolic CHT-RLS

141

142

Initialization :

Recursive :

et +1) — —(t1)
s 0

for i=1,M;, +1
s — s+ w*(t;)x(t;)
end
ot

r e —x(ly, 1) — aw(ty) + aw(ty, 41)
for i=2,M

y(t:) — z(t;) — aw(t;)

end

T(tMi,41) & =T
s«—0

for i =0,M;, +1
s — s+ w(t;)r
e 2(tiy1)

end
@t

r— —Ba(ty,,+1) — aw(ty) + aw(tar, +1)
for i=1,M

y(t;) «— z(t:) — aw(t;)

end

Table 5.4: The Algorithm for the Internal Cell of Systolic CHT-RLS

Tout = P)/wout

Table 5.5: The Algorithm for the Final Cell of Systolic CHT-RLS

143

Compared to the conventional adaptive array system, the QR-based systolic
array system not only improves the numerical accuracy but also increases
the computation speed to update the output signal instantly. The research
in designing QR-based systolic arrays for sidelobe cancellation and adaptive
antennas is quit intense. However, most of the work are based on Givens ro-
tations and modified Gram-Schmidt. Only until recently, Householder-based
method has just been considered [59]. In this paper, a CHT-RLS systolic array
is designed for the application to sidelobe cancellation. The sidelobe cancella-
tion technique is employed to suppress the sidelobe interference and noise by
subtracting the estimate from the radar main channel output. It is easy to see

from Figure 3.4 that the output at ith snapshot can be expressed as

N
= > o(t)w —y(z (5.57)

=1

and the matrix form expression which is the same as 5.21 is given by
e(n) = X(n)w(n) — y(n). (5.58)

Therefore, the CHT-RLS systolic algorithm and architecture described in Sec-
tion 5.3 can be directly applied to sidelobe cancellation and adaptive antennas
to achieve high throughput rate and high speed requirements of real-time sig-

nal processing.

144

5.5 Conclusions

In order to achieve computational efficiency with robust numerical stability,
the Householder transformation has been shown to be one of the best or-
thogonal factorizations. It is also known that the Householder transformation
outperforms the Givens rotation in numerical stability under finite-precision
implementation, and that it requires fewer arithmetic operations than the
modified Gram-Schmidt does. As a result, the QR decomposition using the
Householder transformation is very promising for VLSI implementation and
real-time high throughput modern signal processing.

In this chapter, the recursive complex Householder algorithm with a fast
initialization which can be programmed for both initialization and recursive
computation is presented. Then a complex Householder transformation based
recursive least squares algorithm with a systolic array processor is also pro-
posed. Compared to the recursive block Householder algorithm described in
[57,59], the complex Householder algorithm saves (M — 1) x N computation
time for the initialization to form the upper triangular matrix. In our proposed
systolic architecture, the number of data snapshots needed for the initialization
and recursive updating is controlled by a control code and it can be changed
freely by sending another code. Our CHT-RLS systolic architecture is a gen-
eralization of McWhirter’s QRD-RLS systolic array since it is well-known that

the Givens rotation is a special case of the Householder transformation [55].

145

The algorithm and architecture described in this paper are very promising for
the real-time array processing applications and VLSI hardware implementa-

tion.

Chapter 6

Conclusions and Future

Research

In this dissertation several systolic algorithms are developed and then several
different systolic array architectures are proposed for real-time high through-
put adaptive array processing applications and VLSI hardware implementa-
tions. In Chapter 2 the design techniques and basic background for the field of
algorithmic engineering are developed to serve as the basic elements of more
sophisticated and higher performance array processing systems. In Chapter
3, the only two known systolic array processors for parallel weight extraction
are developed for the recursive least squares (RLS) and constrained recursive

least squares (CRLS) array systems [4]. In Chapter 4 a systolic array proces-

sor for MVDR beamforming is compared to the McWhirter’s MVDR systolic

146

147

array. We also point out an error McWhirter and Shepherd made in their
architecture [14]. In Chapter 5 the pipelined data-parallel algorithm for the
Householder orthogonalization technique is described and mapped into a sys-
tolic array for generating the upper triangular matrix. Furthermore, a complex
Householder-based recursive least squares (CHT-RLS) algorithm with systolic
array architecture is presented. As described in [3], it is well-known that the
Householder method outperforms the Givens method in numerical stability
under finite-precision implementation, and that it requires fewer arithmetic
operations than the modified Gram-Schmidt method. As a result, the QR
decomposition using the Householder technique is very promising for VLSI

implementation and real-time high throughput modern signal processing.

The proposed adaptive array systems in this dissertation have the following

advantageous features:

e Since it is well-known that the QR based RLS and CRLS techniques have
robust numerical properties, reduce the rounding error caused by finite
word length effect, and avoid the use of sample matrix inversion. Our
systolic array architecture based on QR decomposition is very promising

for hardware implementation.

e In Chapters 2 and 3 there is no bottleneck in the proposed fast Givens
based systolic array architectures since the fast Givens method is square

root free.

148

e The proposed systolic array architectures in this dissertation are fully
pipelined since the backward substitution processor in each proposed

architecture is avoided.

e The proposed systolic array architectures are designed to be single fully

pipelined open-loop systems without any feedback arrangement.

e The proposed systolic array architectures function recursively to update

the output based on each input data snapshot.

e The proposed systolic architectures involve repetition of a simple pro-

cessor element making it relatively easy to design a VLSI chip.

¢ The proposed systolic array architectures only involving regular commu-
nication among the nearest neighbor processor elements without feed-
back arrangement are very promising for the better use of available chip
area, the reduction of propagation delays and the simpler VLSI circuit

design.

e Since the proposed systolic array architectures are highly pipelined, they

achieve the highest possible throughput rate.

Therefore, our proposed systolic array architectures are very promising for
real-time modern signal processing applications and VLSI hardware imple-

mentation.

149

Future research will focus on (1) remedying the drawbacks of systolic arrays
and (2) applying the systolic QR decomposition to the singular value decom-
position and the symmetric eigendecomposition for superresolution spectral
analysis and direction finding [29]. A list of the suggested research areas cas-

ily evolving from this dissertation includes:

e Wavefront Array Processors. Since the systolic arrays require global
synchronization, there may be a problem with clock skew for a large
arrays. The concept of wavefront array processors is the solution to
this problem. Instead of using global synchronization, an asynchronous
wavefront technique is used for wavefront array processors [45,46,47].
Systolic arrays studied in this dissertation can be easily extended into

wavefront arrays.

e Fault Tolerance. For large arrays of processors on VLSI chips, the sys-
tolic arrays may have a serious reliability problem due to manufacturing
defects, device failures, etc. Fault tolerance techniques for systolic arrays

is the solution for this problem [26].

e Wafer Scale Integration. It is necessary to connect several chips on
printed circuit boards to yield a large array due to integrated circuit
fabrication limitations. The solution is a wafer scale integration tech-

nique. The advantage of this technique is that it may lead to higher

150

speeds of operation and less power consumption. Therefore, the wafer

scale integration deserves study [25].

Singular Value Decomposition by Systolic Arrays. In the ap-
plications of superresolution spectral analysis and direction finding, the
singular value decomposition is one of the most powerful tools in numer-
ical algebra. For real-time signal processing applications, it is important
to study the parallel/pipelined algorithm and architecture for singular
value decomposition [29]. Tt is not difficult to apply the systolic House-
holder method described in this dissertation to systolic singular value

decomposition.

Bibliography

[1] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. New

York: Wiley, 1980.

[2] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, New

Jersey, 1986.

[3] C.F. T. Tang, K.J. R. Liu, and S. A. Tretter, “On Systolic Arrays for
Recursive Complex Householder Transformations with Applications to

Array Processing,” to appear, Proc. of Int. Conf. on ASSP, May, 1991.

[4] C.F. T. Tang, K.J. R. Liu, and S. A. Tretter, “A VLSI Algorithm and
Architecture of CRLS Adaptive Beamforming,” in press, Proc. of the

Conf. on Information Sciences and Systems, March, 1991.

[5] B. L. Drake, J. M. Speiser, and J. J. Symanski, “SLAPP: A Systolic

Linear Algebra Parallel Processor,” IEEFE on Computer, July, 1987, pp.

45-49.

151

152

[6] W. M. Gentleman and H. T. Kung, “Matrix Triangularization by Systolic

8]

[9]

[10]

[11]

12)

Array,” Proc. SPIE, Real-Time Signal Processing IV, 1981, 298, pp. 19-

26.

H. T. Kung, “Why systolic architectures?” Computer, 15, 37, 1982, pp.

37-45.

M. Moonen and J. Vandewalle, “Recursive Least Squares with Stabilized

Inverse Factorization,” Signal Processing, Vol. 21, 1990, 1, pp. 1-15.

J. E. Hudson and T. J. Shepherd, “Parallel Weight Extraction by a Sys-
tolic Least squares Algorithm,” Proc. SPIFE, Advanced Algorithms and

Architectures for Signal Processing IV, 1989, 1152, pp. 68-77.

T. J. Shepherd, J. G. McWhirter and J. E. Hudson, “Parallel Weight FEx-
traction from a Systolic Adaptive Beamforming,” Mathematics in Signal

Processing 11, 1990.

J. G. McWhirter, “Algorithmic Engineering - an Emerging Discipline,”
Proc. SPIE, Advanced Algorithms and Architectures for Signal Processing

1V, 1989, 1152, pp. 2-15.

R. Schreiber, “Implementation of Adaptive Array Algorithms,” IEEE
Trans. Acoust. Speech, Signal Processing, vol. ASSP-34, NO. 5, Oct. 1986,

pp. 1038-1045.

[13]

14]

[16]

[17]

[18]

[19]

153
R. Schreiber and P. J. Kuekes, “Systolic Linear Algebra Machines in Dig-

ital Signal Processing,” in VLSI and Modern Signal Processing, 1985, pp.

389-405.

J. G. McWhirter and T. J. Shepherd, “Systolic Array Processor for
MVDR Beamforming,” IEFE proceedings, Vol 136, No. 2, April 1989, pp.

75-80.

B. Yang and J.F. Bome, “Systolic Implementation of A General Adaptive
Array Processing Algorithm,” Proc. IEEE ICASSP, April 1988, pp. 2785-

2788.

N. L. Owsley, “Systolic Array Adaptive Beamforming,” NUSC' report

7971, 1987.

N. L. Owsley, “Systolic Array Adaptive Beamforming” in Haykin ed.,

Selected Topics in Signal Processing, Pentice-Hall, 1989.

W. Givens, “Computation of Plane Unitary Rotations Transforming a
General Matrix to Triangular Form,” J. Soc. Ind. Appl. Math., 6, pp.26-

50, 1958.

W. M. Gentleman, “Least Squares Computations by Givens Transforma-

tion without Square Roots,” J.Inst. Maths Applics, 12, pp329-336, 1973.

[20]

21)

[22]

[23]

[24]

[25]

[26]

154

S. Hammarling, “A Note on Modifications to the Givens Plane Rotation,”

J. Inst. Maths Applics, 13, pp 215-218, 1974.

P. Comon and Y. Robert, “A Systolic Array for Computing BA™!)” IEEE
Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, No. 5 June. 1987,

pp- T17-723.

K.J. R. Liu and K. Yao, “Multi-Phase Systolic Algorithms for Spectral
Decomposition,” Accepted and to Appear in IEEE Trans. Acousl. Speech,

Signal Processing.

J. G. McWhirter and T. J. Shepherd, “A Systolic Array for Linearly
Constrained Least-Squares Problems,” Proc. SPIE, 696, Advanced Algo-

rithms and Architectures for signal Processing, 1986, pp. 80-86.

J. G. McWhirter, “Recursive Least-Squares Minimization Using a Systolic
Array,” Proc. SPIE, 431, Real-Time Signal Processing VI, 2983, 1983,

pp. 105-112.

C. M. Rader, D. B. Glasco, D. L. Allen, and C. E. Woodward, “MUSE -

a Systolic Array for Adaptive Nulling with 64 Degrees of Freedom, Using

”

Givens Transformations and Wafer Scale Integration,” Technical Report

886, Lincoln Laboratory, MIT,1990.

J. A. Abraham, P. Banerjee, C. Y. Chen, W. K. Fuchs, and S. Y. Kuo,

[27]

[28]

[29]

[33]

155

“Fault Tolerance Techniques for Systolic Arrays,” IFEE on Computer,

1987, pp. 65-75.

M. G. Bellanger, Adaptive Digital Filter and Signal Analysis, Marcel

Dekker, Inc., New York and Basel, 1987.

A. W. Bojanczyk and F. T. Luk, “A Novel MVDR Beamforming Algo-
rithm,” Proc. SPIE, Advanced Algorithms and Architectures for Signal

Processing 11, 1987, 826, pp. 12-16. .

R. Schreiber, “Bidiagonalization and Symmetric Tridiagonalization by
Systolic Arrays,” Journal of VLSI Signal Processing, 1, 1990, pp. 279-

283.

S. Haykin,ed., Array Signal Processing, Prentice-Hall, Englewood Cliffs,

New Jersey, 1985.

J. M. Cioffi, “The Fast Adaptive ROTOR’s RLS Algorithm,” IEEE Trans.

on ASSP, Vol 38, No. 4, 1990, pp. 631-653.

R. T. Compton Jr., Adaptive Antennas: Concepts and Performance,

Prentice Hall, 1988.

J. Gotze, B. Bruckmeier, and U. Schwiegelshohn, “VLSI-Suited Solution

of Linear Systems,” IFEE ISCAS, 1989, pp. 187-190.

[34]

[35]

[37]

[38]

[39]

[40]

[41]

156

J. Gotze and U. Schwiegelshohn, “An Orthogonal Method for Solving Sys-
tems of Linear Equations Without Square Roots and with Few Divisions,”

Proc. IEEE ICASSP, 1989, pp. 1298-1301.

M. L. Honig and D. G. Messerschmitt, Adaptive Filters, Kluwer Academic

Publishers, 1984.

J. Cioffi, “The Fast Householder Filters RLS Adaptive Filter.” Proc.

ICASSP 1990, pp. 1619-1621.

L. Johnson, “A Computational Array for The QR method,” 1982 Con-

ference on Advanced Research in VLSI, MIT, pp. 123-129.

G. Bienvenue and H.F. Mermoz, “New Principle of Array Processing in
Underwater Passive Listening,” in VLSI and Modern Signal Processing, S.
Y. Whitehouse, and T. Kailath, Eds. Englewood Cliffs, NJ: Prentice-Hall,

1984.

K.M. Buckley, “Spatial/Spectral Filtering with Linearly Constrained
Minimum Variance Beamformers,” IEEE Trans. Acoust. Speech, Signal

Processing, vol.ASSP-35, NO.3, pp.249-266, Mar. 1987.

A. B. Fortes and B. W. Wah, “Systolic Arrays—From Concept to Imple-

mentation”, IEEF ON COMPUTER, 1987.

O. L. Frost III, “An Algorithm for Linearly Constrained Adaptive Array

157
Processing,” Proceedings of The IEEE, vol. 60,NO.8, pp.926-935, Aug.

1972.

[42] W, Givens, “Numerical Computation of the Characteristic Values of a
Real Symmetric Matrix.” Report ORNL-1574, Oak Ridge National Lab-

oratory.

[43] G. H. Golub and C. F. Van Loan, Matriz Computations, The Johns Hop-

kins University Press, Baltimore and London, 1989

[44] S. Y. Kung, H. J. Whitehouse and T. Kailath (Eds.) VLSI and Modern

Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[45] S. Y. Kung, VLSI Array Processors. Prentice-Hall, Englewood Cliffs, New

Jersey, 1988.

[46] S. Y. Kung, “VLSI Array Processors,” IEEE ASSP Magazine, 1985, pp.

4-22.

[47] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. B. Rao, “Wavefront Ar-
ray Processor: Language, Architecture, and Applications,” IEEE Trans.

on Computer, vol. ¢-31, No. 11, 1988, pp. 1054-1066.

[48] C. Mead and L. Conway, Introduction to VLSI System Addison-Wesley,

Reading, Mass. 1980.

158

[49] S. K. Rao and T. Kailath, “VLST Arrays for Digital Signal Processing.
Part I: A Model Identification Approach to Digital Filter Realization.

IEEE Trans. Circuits Syst., CAD-32, 1105, 1985.

[50] R. Schreiber and P. J. Kuekes, in VLSI and Modern Signal Processing.

Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[51] L.H. Sibul and A.L. Fogelsanger, “Application of Coordinate Rotation
Algorithm to Singular Value Decomposition,” PROC. of 198/ IFEE In-

ternational Symposium on Circuits and Systems, 1984.

[52] L.H. Sibul, “Application of Singular Value Decomposition to Adaptive

Beamforming,” Proc. of ICASSP 84, March 1984.

[53] B.D. Van Veen and K. M. Buckley, “Beamforming: a Versatile Approach

to Spatial Filtering,” IEEE ASSP MAGAZINE, pp. 4-24, Apr 1988.

[54] B.D. Van Veen and R.A. Roberts, “Systolic Arrays for Partially Adap-
tive Beamforming,” 21-stAsilomar Conference on Signals, Systems, and

Computers, pp.584-588, Nov. 1987.

[55] Gene H. Golub and Charles F. Van Loan, Matriz Computation. The Johns

Hopkins University Press 1983.

[56] Charles I.. Lawson and Richard J. Hanson, Solving Least Squares Prob-

lems. Prentice-Hall Inc. New Jersey, 1974.

[57]

[58]

[59]

(60]

[61]

[62]

[63]

159
K. J. R. Liu, S. F. Heieh, and K. Yao, “Recursive LS Filtering using

Block Householder Transformations.” Proc. IEEE [ICASSP, 1990, pp.

1631-1634.

K. J. R. Liu, S. F. Heieh, and K. Yao, “Two Level Pipelined Implementa-
tion of Systolic Block Householder Transformations with Application to
RLS Algorithm.” Proc. Int’l Conf. on Application-Specific Array Proces-

sors, pp. 748-769, Princeton, Sep. 1990.

K.J. R. Liu, S. F. Heieh, and K. Yao, “Systolic Block Householder Trans-
formation for RLS Algorithm with Two-lwvel Pipelined Implementation,”

to appear in IEEE Trans. on Signal Processing, April 1992.

N. K. Tsao, “A Note on Implementing the Householder Transformation,”

SIAM J. Numer. Anal., Vol. 12, No. 1, pp. 53-58, 1975.

James W. Longley, Least Squares Computations Using Orthogonalization

Method. Marcel Dekker Inc. 1984.

Charles M. Rader and Allan O. Steinhardt, “Hyperbolic Householder
Transformations.” IEEFE Trans. on ASSP, vol ASSP-34, No. 6 DEC. 1986,

pp. 1589-1602.

R. Schreiber and W. P. Tang, “On Systolic Arrays for Updating the

Cholesky Factorization,” Swedish Roy. Inst. Technol., Dep. Numeric.

160
Anal. Comput. Sci., Stockholm, Sweden, Tech. Rep. TRITA-INA-8313,

1983.

[64] Allan O. Steinhardt, “Householder Transformations in Signal Processing.”

IEEE ASSP Magazine, July 1988, pp. 4-12.

[65] C.R.Ward, P.J. Hargrave, and J.G. McWhirter, “A Novel Algorithm and
Architecture for Adaptive Digital Beamforming,” IEEE Trans. on AP,

AP-34, pp. 338-346, Mar. 1986.

[66] C.R.Ward, A. J. Robson, P.J. Hargrave, and J.G. McWhirter, “Appli-
cation of a Systolic Array to Adaptive Beamforming,” IEE Proceedings,

Vol. 131, Pt. F, 6, Oct. 1984, pp. 638-645.

[67] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford 1965.

[68] Stanley M. Yuen, “Algorithmic, Architectural, and Beam Pattern Issues
of Sidelobe Cancellation,” IEEE on AES, VOL.25, NO.4, July 1989, pp.

459-472.

[69] F. Ling, D. Manolakis, and J. G. Proakis, “A Recursive Modified
Gram-Schmidt Algorithm for Least-Squares Estimation,” [EEE Trans.

on ASSP, VOL.34, NO.4, 1986, pp. 829-836.

[70] S. Z. Kalson and K. Yao, “A Class of Least-Squares Filtering and Identi-

fication Algorithms with Systolic Array Architectures,” IEEE Trans. on

161
Information Theory, Vol 37, Jan. 1991, pp. 43-52.

[71] J. G. Nash and S. Hansen, “Modified Faddeeva Algorithm for Concurrent
Execution of Linear Algebraic Operations,” IEEE Trans. on Computer,

Vol 37, Feb. 1988, pp. 129-137.

[72] P. Strobach, Linear Prediction Theory: A Mathematical Basis for Adap-

tive Systems, Springer-Verlag 1990.

[73] J. R. Treichler, Jr. C. R. Johnson, and M. G. Larimore, Theory and Design

of Adaptive Filters, John Wiley & Sons, New York, 1937.

