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 Carbon nanotubes (CNTs) provide an ideal medium for testing the behavior of 

one-dimensional electron systems and are promising candidates for electronic 

applications such as sensors or field-effect transistors. This thesis describes the use of 

low frequency resistance fluctuations to measure both the properties of the one-

dimensional electron system in CNTs, and the sensitivity of CNT devices to their 

environment. 

 Low frequency noise was measured in CNTs in field effect transistor (FET) 

geometry. CNTs have a large amount of surface area relative to their volume and are 

expected to be strongly affected by their environment, leading to speculation that 

CNTs should have large amounts of 1/f noise. My measurements indicate that the 

noise level is in the same range as that of traditional FETs, an encouraging result for 

possible electronic applications. The temperature dependence of 1/f noise from 1.2 K 

to 300 K can be used to extract the characteristic energies of the fluctuators 



  

responsible for the noise. The characteristic energies allows for the elimination of 

structural and electronic transitions within the CNT itself as possible sources of 1/f 

noise in CNTs, leaving the motion of defects in the gate dielectric, or possibly 

strongly physisorbed species, as the likely culprits. 

  Another form of low frequency noise found in CNTs is random telegraph 

signal (RTS), which manifests as the alternation between two current states at a stable 

voltage bias. In CNTs, this phenomenon occurs due to the tunneling of electrons into 

and out of the CNT from a nearby defect, and thus provides a way to probe the 

tunneling density of states of the CNT itself.  The tunneling density of states in turn 

provides information on the strength of the electron-electron interaction in CNTs. 

Due to the one-dimensional structure of CNTs their electronic state is expected to be 

a Luttinger liquid, which should manifest as a power-law suppression of the tunneling 

density of states at the Fermi energy.   The power law exponent is measured in both 

the temperature dependence and energy dependence of the tunneling rates.  In 

agreement with theory, the power-law exponent is significantly larger in 

semiconducting CNTs than found in previous experiments on metallic CNTs.  The 

RTS can also be used as a “defect thermometer” to probe the electron temperature of 

the CNT. The effect of the bias voltage on the electron temperature provides a means 

to determine the energy relaxation length for the electrons in the CNT. 
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Chapter 1 Introduction to carbon nanotubes 

 

1.1 Carbon nanotube overview 

 
 Carbon nanotubes (CNTs) are hollow tube-shaped structures with all of the 

carbon atoms bonded together by sp2 bonds in a honeycomb lattice identical to that of 

graphene. Conceptually, the CNT may be thought of as a single sheet of graphite 

(termed graphene) curved into a seamless cylinder.  These structures were first 

identified by Ijima[1]. Initially the CNTs were exclusively multi-walled, meaning that 

they consisted of several concentric cylinders. Future researchers were able to 

develop methods capable of producing single-walled CNTs of varying lengths[2-4], 

and some CNTs have been grown that are centimeters in length[5, 6]. CNTs have 

diameters from just under a nanometer[4] to dozens of nanometers[1] and hence have 

very large aspect ratios.  

 CNTs are characterized by many impressive properties. Individually they have 

extremely high mechanical rigidity and toughness, leading to many hypothetical 

applications for ropes and fibers[7], including the famous (or infamous) space 

elevator[8]. Networks of CNTs have been found to have numerous interesting 

properties including the ability to form fire resistant material[9] and liquid crystal 

suspensions[10]. CNTs also have a powerful Van der Waals attraction[11] with 

surfaces allowing them to be used as an adhesive material between paint and 

plastics[12].  
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 One of the main interesting properties of CNTs chemically and electronically 

is that every atom is a surface atom, and is electronically “in series” with every other 

atom in the CNT. This could be useful for creating chemical sensors that are able to 

detect very low amounts of contaminants[13]. This also leads to concerns about 

fluctuations and noise in CNTs[14]. CNTs can also be functionalized by many 

interesting molecules[15], including DNA[16], in the hope of enabling bottom-up 

construction of micro- and nano-structures.  

 CNTs also have fascinating electrical properties that derive from their 

graphene origin, as discussed below. CNTs are either semiconducting or metallic[17-

20], depending upon the relative direction of the CNT axis with respect to the 

graphene lattice. Obviously this and their nanoscale size makes them a speculative 

candidate for future electronics technologies, but as of now the difficulty of 

producing, orienting and contacting the CNTs has slowed the realization of this 

application. However, individual single electron transistors[21] , high mobility 

transistors[22] and other electronic devices have been realized using CNTs.  

 In one dimension, electrostatic interactions between electrons are strong, and 

the electrons form a correlated state termed the Luttinger liquid[23-25] (LL). This 

state of the electrons differs in many ways from that found in bulk conductors where 

the electrons are able to re-arrange themselves easily to reduce the energy of the 

interaction amongst them. This state should only exist in 1-D materials and thus 

CNTs offer an excellent opportunity to study LL physics.   
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1.2 Electronic band Structure 

 

 The ability of CNTs to form metallic and semiconducting devices derives 

from the band structure of graphene[26-28]. As mentioned above, CNTs can be 

thought of as strips of graphene sheets that are rolled up to form a seamless cylinder. 

The CNT will have different properties depending upon its helicity and diameter. 

Graphene is a honeycomb lattice, a two dimensional hexagonal Bravais lattice, with a 

basis of two carbon atoms as seen in Fig. 1-1. The distance between nearest neighbors 

in the carbon lattice is 0.142 nm. 

 

 

Figure 1-1. Hexagon lattice for a graphene sheet. The basis vectors are indicated in 

the bottom left and a rolling vector for cutting the sheet into a strip in the middle. 

When rolled into a cylinder the strip would form a CNT.  

 

 Since the method of rolling the CNT up from a graphene strip determines the 

properties of the resulting CNT, the vector that points from an atom to the atom it will 
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roll into is called the rolling vector, R = na1 + ma2, where n and m are integers and a1 

and a2 are the graphene unit lattice vectors; this vector also defines the circumference 

of the CNT. The strip is defined by the dashed lines perpendicular to the beginning 

and ending of this vector as in Fig. 1-1. The result of rolling up the sheet is shown in 

Fig. 1-2. 

 

 

Figure 1-2. A single walled CNT. This CNT has (n,m) = (5,5), and is metallic (see 

text). (courtesy R.E. Smalley) 

 

 The electronic structure of the CNT may be well approximated by starting 

with the band structure for graphene[29] and quantizing it so that the electronic wave-

function is single valued around the circumference of the CNT. The quantization 

condition is R∏k=2πi where i is an integer and k is the wave vector.  The result is that 

the two-dimensional band structure for graphene is cut along a series of equally 

spaced parallel lines to form a number of one-dimensional subbands.  

 The graphene band structure itself may be approximated as linear[29]: 

 03
( )

2F

qa
E E

γ= ±q         (1.1) 
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Figure 1-3. Metal CNT band structure. Slices through the band structure for graphene 

that determine the band structure for a metallic CNT.  The lowest two subbands are 

depicted in the band diagram at right.  

 

  

Figure 1-4. Semiconducting CNT band structure. Slices through the band structure for 

graphene that result in a semiconducting CNT.  The lowest two subbands are depicted 

in the band diagram at right. 
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where q = k - K is the wave vector measured from the K point, γ0 the nearest-neighbor tight-

binding integral, and a the graphite lattice constant.  Thus the band structure for graphene 

looks like a grid of cones with the tips at the vertices of the hexagonal Brillouin zone  

as show in Figs. 1-3 and 1-4. Since the bands only cross the Fermi surface at this 

point, the K point, only those CNTs which have R∏K=2πi will be metallic. All other 

CNTs will have a bandgap and be semiconducting. This condition can be expressed 

as n - m = 3q where q is an integer.  

 The values calculated via this method, e.g. the Fermi velocity, band gap, etc., 

agree very well with experiment, especially for larger diameter (d > 1 nm) CNTs, so 

we will use this approximation. 

 The dispersion relation of the lowest-lying subbands can be written: 

( ) ( )22 kvkE Fh+∆=        (1.2) 

where ħ is Planck’s constant, vF the Fermi velocity of graphene, and ∆ = 0 for 

metallic CNTs, and for semiconducting CNTs  

[nm] 

meV 308

3

2
2 0

g dd

a
E ≈=∆=

γ
       (1.3) 

where d is the diameter of the CNT. 

 

1.3 Electronic device properties 

 

 A field effect transistor (FET) may be constructed from a CNT by contacting 

the CNT with two metallic (source and drain) electrodes, and employing a third 

metallic electrode, separated from the CNT by a dielectric, as a gate (Chapter 2 will 
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discuss some fabrication methods for CNT FETs in detail).  Experimentally, it is 

difficult to determine the wrapping vector for an individual CNT.  However, once a 

FET is constructed from an individual CNT two types of behavior are observed, 

which are identified with metallic and semiconducting CNTs[19, 30]. 

 

 

 
Figure 1-5. Current vs. gate voltage for a CNT in field effect transistor geometry. 

 

 Fig. 1-5 is a typical data curve from a semiconducting CNT FET.  The current 

depends strongly on gate voltage, being finite for negative gate voltage (p-type FET 

behavior) and dropping to near zero for positive gate voltage.  Metallic CNT FETs 
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show nearly constant conductivity vs. gate voltage. All of the work in this thesis was 

done on semiconducting CNTs. 

 In my dissertation I will explore low-frequency electronic noise in CNT FET 

devices and the insights it gives about the behavior of electrons in one-dimensional 

systems. In Chapter 2 I will present the basics of CNT growth and device fabrication, 

followed by an explanation of the experimental setup. In Chapter 3 I will review the 

state of knowledge on 1/f noise in traditional systems and in CNTs. This will provide 

the theoretical and experimental background needed for Chapter 4 where I will 

present the work of our group on the temperature dependence of 1/f noise in CNT 

FETs.  

 Chapters 5-7 will investigate a different type of low-frequency noise, the 

random telegraph signal (RTS), in CNTs. RTS in CNTs resulting from the tunneling 

of an electron between the CNT and a nearby defect will be used to study the 

Luttinger liquid state in CNTs.  Chapter 5 will introduce the expected Luttinger liquid 

state for electrons in CNTs, followed by previous experimental work on Luttinger 

liquids in metallic CNTs and then a description of previous work using RTS to extract 

information on the correlated electron system of semiconducting materials. Chapter 6 

presents the use of RTS to determine the temperature of the electron system and the 

energy relaxation length of electrons in CNTs. Chapter 7 analyzes the gate-voltage 

and temperature dependence of the RTS to extract information about the Luttinger 

liquid state in semiconducting CNTs. 

 The information in Chapter 4 and in Chapters 6-7 is currently being prepared 

in the form of two publications, respectively, to be submitted to peer-reviewed 
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scientific journals. The material on room temperature noise in Chapter 4 has been 

published.[31] 
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Chapter 2 Sample fabrication and measurement 
 

 Carbon nanotubes (CNTs) grow robustly in many situations where high 

temperature and carbon meet. CNTs have even been synthesized from heated plant 

matter[32] (including hemp!). The details of nanotube growth are still not fully 

understood but I will give a brief overview of the main techniques used to grow 

carbon nanotubes and then a description of the chemical vapor deposition (CVD) 

method that was used to produce all of the CNTs that are discussed in this thesis. 

 Device fabrication consists of growing the CNTs on SiO2/Si substrates, and 

using photolithography or electron-beam lithography (EBL) to establish contact to the 

CNTs with metal electrodes. Afterwards the completed CNT devices are placed in a 

cryostat for measurement of their electrical properties at low temperature. 

 

2.1 Growth methods 

 

 Synthesis methods for production of small-diameter (single- or few-walled) 

CNTs share in common a source of atomic carbon, a nano-particle catalyst (typically 

a transition metal or alloy of transition metals), and high temperature.  Laser 

ablation[3] and arc discharge[1, 4] both use graphite as the source of carbon atoms. In 

the arc-discharge technique, a high current between a carbon cathode and an anode in 

an inert gas, e.g. helium, creates carbon-containing plasma, and if catalyst metal is 

added to the graphite electrodes, CNTs grow from tiny droplets of metal coalescing 

from the plasma.  The laser ablation technique involves striking a piece of graphite 
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with intense laser pulses. Again, the graphite is impregnated with transition-metal 

catalyst to produce single-walled CNTs. One of the drawbacks of these techniques is 

that the CNTs are generally produced in bundles as opposed to individual CNTs. This 

is a major drawback if one hopes to investigate the electrical properties of an 

individual CNT. The CNTs also must be removed from the growth chamber, put in a 

liquid suspension or solution, and then spun onto a chip before electrical 

measurements can be made. The CVD method allows CNTs to be grown directly on a 

silicon chip. 

 

2.2 Chemical vapor deposition 

 

 Chemical vapor deposition is initiated by creating nano-particles of a metal 

catalyst on the surface of an oxidized silicon chip.[2, 33]  In my work, iron nano-

particles were obtained by dipping a silicon chip in a ferric nitrate solution and then 

into hexane to force the ferric nitrate to precipitate out on the surface of the chip. The 

density of the ferric nitrate is important for determining the density of nanotubes that 

will be present on the chip after growth, values can range from 0.1 - 100 µg/ml with 

lower values typical for single CNT devices and higher values used to obtain dense 

films of CNTs.  
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temperature controller multi gas flow meter

quartz tube

coil

 

Figure 2-1. CVD furnace for CNT growth in the Fuhrer laboratory. The flow meters 

on the wall control the amount of carbon containing feedstock gases through the 

system. The silicon chips are placed inside the quartz tube and after the oven lid is 

closed the coils heat the oven to 850± C for the nanotube growth. Image courtesy Y. 

Chen. 

 

 After the chips are catalyzed, they are placed onto a quartz boat and set in a 

quartz tube oven; the growth recipe that I used is outlined in Table 1. The oven (see 

Fig. 2-1) is heated to 850± C while flowing argon through the tube.  At this stage, or 

shortly after introduction of hydrogen during growth, the ferric nitrate particles are 

reduced to iron. Once the oven has reached its final temperature, carbon-containing 
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feedstock gases (methane, ethylene) and hydrogen are fed through the quartz tube. 

The ratio and flow rate of the gases (see Table 1) are adapted from the Dai group[34] 

and have been optimized to produce long CNTs. In general the nanotubes will be 

oriented along the direction of the gas flow, but numerous exceptions can be found on 

any given chip, including CNTs that form arcs, circles or are perpendicular to the gas 

flow direction. 

 

Table 2-1. Typical recipe for CNT growth. 
 

Growth 
Recipe 

Gas Flow 
(sccm*) 

Temp 
(oC) 

Time 
(minute) 

Purge Ar 730 Room 
Temperature 

5 

Heat Ar 730 RT ö650 15 
Soak Ar 730 650 5 
Heat Ar 730 650ö730 2 
Soak Ar 730 730 3 
Heat Ar 730 730ö800 3 
Soak Ar 730 800 3 
Heat Ar 730 800ö850 5 
Soak Ar 730 850 10 

H2 1900 
CH4 1300 

 

Nanotube 
Growth C2H4 86 

850 10 

Cool Down Ar 730 850ö200 wait until cool 
*sccm=standard cubic centimeters per minute 

 

2.3 Locate and contact 

 

 The CVD growth method described above produces nanotubes distributed 

randomly on the surface of the chip. The next step of the process is to create 

alignment markers on the surface of the chips to serve as guides for locating and 
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creating contacts to the CNTs themselves. An alternative process[35], described in 

the next section, uses patterned catalyst and photolithography aligned to the catalyst 

locations. Photolithography is a more reliable and quicker process than EBL, but EBL 

does have the advantage of allowing maximal flexibility in creating devices of any 

length up to the length of the CNT.  

 A standard e-beam process, depicted in Fig. 2-2, was used to create the grids 

on the surface of the chip and is depicted in Fig. 2-3. This involves spinning resist 

layers on a chip followed by baking them on a hot plate. First the methylmethacrylate 

(MMA) is spun on at 4500 rpm for 45s and baked for 5 min at 150± C, and then the 

polymethylmethacrylate (PMMA) is spun at 6000 rpm for 45s and baked for 5 min at 

150± C. A modified scanning electron microscope (SEM) is then used to create a 

pattern in the resist layers; this is caused by the electron beam weakening the bonds in 

the polymer structure of the resist. After writing, the chip is developed in 

methylisobutylketone / isopropanol (MIBK/IPA) (3:1) for around 30 s to remove the 

written areas. Finally the chip is placed in a vacuum chamber where the resist acts as 

a stencil mask for the thermally-deposited metals used to create the pattern. The two 

layers of resist help create undercut; the MMA develops faster creating a tiered 

structure seen in Figure 2-2e.  The undercut separates the metal on the surface of the 

resist from the metal on the SiO2 surface, allowing the unwanted metal to be removed 

cleanly during lift-off. MMA is also more soluble in acetone which allows for better 

lift-off after deposition.  Lift-off is accomplished by soaking the chip in acetone to 

remove the remaining resist and the metal on top of it.   
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Figure 2-2. E-beam lithography process. (a) New Si/SiO2 chip. (b) Chip coated with 

MMA and PMMA (c) Section of resist exposed in the SEM (d) After exposed section 

is developed in MIBK. (e) Metal film deposited on chip (f) After lift-off. (Courtesy 

Tobias Durkop) 
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Figure 2-3. Electron micrograph of the square alignment marker pattern (array of 

small squares and symbols) and the electrodes (larger features leading off the edge of 

the image) for the individual CNTs. The four large markers in the corners are used 

during the second stage to allow for proper aligning of the two e-beam stages. 

Nanotubes can be seen individually and forming star-shaped patterns radiating from 

clumps of catalyst in the top middle of the image and the extreme lower right 

indicated by letters A and B. 

 

The alignment mark pattern can be used to locate CNTs to contact electrically. 

The SEM can be used in this “find” step to locate nanotubes with reference to the 

grid[36]. After the CNTs are located relative to the alignment marks, EBL resist must 

A 

B 
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then be spun and baked on the chip again and the computer assisted drawing (CAD) 

program can be used to create electrode patterns that are referenced to the grid. 

Typically the metal deposited on devices in our group is Cr/Au with 1nm of Cr and 

30nm of Au.  

 The EBL technique allows for creating metallic electrodes at any given 

separation (up to the length of the nanotube) whenever a CNT is found near the grid 

markers, this can be seen in Fig. 2-3. The device should be re-imaged after the leads 

are made to make sure that only one nanotube is in the junction area, as in Fig. 2-4, 

due to the fact that CNTs are often more visible after being contacted by metal; some 

CNTs may have been overlooked in the initial imaging.[36] At minimum, two 

electrodes contact the CNT.  The heavily doped silicon substrate under the SiO2 acts 

as a third or “gate” electrode, creating a field-effect transistor (FET) geometry.  

Satisfactory electrical contact to the gate can be made either by creating a scratch 

somewhere on the surface of the chip and using an ultrasonic wire bonder to attach a 

wire to the scratch or to silver paint placed on the scratch, or by contacting silver 

paint that is touching the side of the chip.  The wire bonder is also used to make 

electrical connections to the lithographically-patterned electrodes on the chip.  

 



 

 18 
 

 

Figure 2-4. Close up image of a CNT under contacts. The individual grid markers can 

be seen as well as an extra tube that almost created a two-tube device. The devices 

need to be imaged after creation to ensure that a single tube was contacted in the 

junction. 

 

2.4 Georgetown technique 

 

The entire process outlined above is called the “find-and–wire” approach to 

creating devices. If patterned catalyst is used, electrodes can be created aligned to the 

catalyst, where one expects the CNTs to be, and then the chip can be inspected to see 

if the CNTs were contacted by the electrodes. This has been called the “wire-and-
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find” approach, and was used by the group of Paola Barbara at Georgetown 

University[35] to create some of the devices studied in this thesis. 

The wire-and-find technique utilizes a patterned growth method that allows 

for the growth of nanotubes only at certain locations on the chip. The other attractive 

feature of the process is that it is done solely with photolithography which removes 

the need for an SEM (costly apparatus!). The first step involves creating a 

photolithographic pattern for the catalyst islands. The chip is then immersed in 

catalyst solution, which can only reach the surface of the chip through the 

photolithographic mask. When the mask is removed with acetone, the catalyst is only 

left in small islands on the chip’s surface. After growing CNTs, another 

photolithography step is done by aligning to the first pattern. This step puts electrodes 

down that are matched to the catalyst island locations. The electrodes for the CNT 

samples used in this study were Pd/Nb metal. Pd has a high work function and a good 

wetting interaction with the tubes[37] so it is a good choice for FET devices, the Nb 

was deposited to allow for superconductivity measurements done by the Georgetown 

group[38]. 

 

2.5 Experimental Setup 

 

 This thesis concerns electrical measurements made on CNT devices in the 

field effect transistor (FET) configuration. The conductance measurements are made 

in two-probe configuration which is acceptable given the devices’ high resistances 

(>100 KΩ). It is also difficult to make four probe measurements of nanotube devices 
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due to their complicated interaction with contacts[39]. Commonly the electrons will 

completely leave the CNT and enter the contact, making the flow of current through a 

four-probe device more like three two-probe devices in series.  

 The DC drain and gate voltages are sourced from a National Instruments 

BNC-2090 data acquisition device (DAQ), as depicted in Fig. 2-5. The source current 

is measured by an Ithaco 1201 current preamplifier which converts the current to a 

voltage that is measured by either a National Instruments board for telegraph signal 

measurements or a Stanford Research Systems SR785 spectrum analyzer for low-

frequency noise measurements.  The control of the DC voltages for the device and 

gate bias and the spectrum analyzer and A/D board were accomplished using 

programs created in LABVIEW. 

 All of the measurements were done inside of a Desert Cryogenics 4He flow 

cryostat. The accessible temperature range is 1.2 K to 325 K.  
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Figure 2-5. Schematic of the electronic setup used in the cryostat. The computer 

controls the bias and gate voltages as well as the data collection parameters. For low-

frequency noise the spectrum analyzer is triggered and the frequency span is set by 

the computer, for telegraph signals the computer takes in time series from the A/D 

board. Vbias is the bias voltage and IS-D in the current flowing from the source to the 

drain. 
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Chapter 3 1/f noise 
 

 1/f noise is the part of the spectrum at low frequencies where the noise power 

versus frequency approximately exhibits 1/f dependence. 1/f noise is found in such a 

wide range of physical phenomenon that it cries out to many people for a universal 

cause. How can traffic flow and ocean tides and symphonic music all have 1/f noise 

inside? However we are left with the simple fact that despite its bizarre universal 

presence no universal theory can account for it.[40] Even more discouragingly, 

instances where theory and experiment are able to merge the most satisfactorily occur 

where the mechanism clearly is of a non-universal nature[40]. 

 For years 1/f noise in condensed matter systems was not commonly studied. 

This attitude prevailed up until the 1970’s when some people noted that, despite the 

advances of solid state physics, it was difficult to explain the noise that appeared in a 

truly simple circuit comprised of a metal film and a voltage bias.[40] The spectral 

current noise power of such a circuit has a well-understood frequency-independent 

contribution from the thermal or Johnson noise that dominates at high frequencies, 

however at low frequencies the noise typically exhibits a 1/f spectrum. 

 In this chapter I will explain the basics of noise and introduce 1/f noise. Then I 

will present a theoretical framework within which the temperature dependence of the 

1/f noise can be related to the energy spectrum of the fluctuators that are responsible 

for the 1/f noise.  
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3.1 Introduction to noise 

 

 We first consider the circuit in Fig. 3-1 which depicts a sample to be tested 

connected to a current amplifier. 

When the voltage bias is zero the frequency spectrum of the voltage noise 

across the resistor will be white (frequency independent) and have a magnitude 

proportional to the magnitude of the resistance. This noise is called thermal or 

Johnson noise and is caused by the thermally distributed velocities of the charge 

carriers. It is found in any resistive element and in many other systems that can be 

thought of as involving energy loss to a random process (e.g. water flow through a 

pipe). Johnson noise is given by  

RTkfS bI /4)( =         (3.1) 

Here kb is the Boltzmann constant and SI is the current noise power per unit frequency 

(A2/Hz), T is the temperature and R is the resistance.  
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Figure 3-1. Noise circuit. This schematic illustrates the basic setup used for noise 

measurements. The op-amp is shown in a trans-impedance configuration which 

converts the current to a voltage for the spectrum analyzer to perform a fast-fourier 

transform (FFT) on. The bottom graph is an illustration of the three main types of 

noise to be expected in such circuits. 

 

 Once the voltage is non-zero two other types of noise appear. One is called 

shot noise and is caused by the finite size of the electrical charge, which leads to 

statistical fluctuations in the current crossing a junction, for example, electrons 

moving through the leads connected to the nanotube sample. This noise is also white 

and is commonly given by 
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eIfSI 2)( =         (3.2) 

where e is the electron charge and I is the current through the device. The dominant 

noise at low frequencies, however, will have a 1/f frequency dependence and its 

nature is still poorly understood for the majority of systems.  

 Unlike Johnson noise or shot noise, there is no equation that is derived from 

physical principles that can predict the magnitude of the 1/f noise in a conductor. A 

strictly phenomenological equation that I will frequently use as a tool was proposed 

by Hooge[41, 42] 

z
V fAVfS /)( 2 β+=        (3.3) 

In this equation, known as Hooge’s law, SV is the voltage noise power (V2/Hz), A is 

the noise magnitude (and is dimensionless as long as β=0 and z=1), V is the bias 

voltage and f is again the frequency where the noise is being measured. The quadratic 

dependence of the noise on voltage indicates that the fluctuations are not current 

driven but are actually due to 1/f fluctuations in the value of the resistance[40]. Hooge 

set A= ζ /N, where N is the number of carriers, to attempt to create a universal 

parameter, ζ, for 1/f noise where the size of the sample led to different values of A. If 

β is zero and z is one, ζ is dimensionless.  

 Hooge proposed that ζ was a universal quantity that would describe many 1/f 

processes in simple metals and semiconductors.   Initial analysis was heartening: 

Many semiconductors showed values of ζ near 2 x 10-3. Unfortunately it was found 

that the value can vary greatly even amongst samples fabricated in the same 
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batch.[42] Choosing the value of N to use in the equation can also be difficult; i.e. it is 

not clear how many of the carriers are participating in the noise process. It is also 

hard to separate out the contact-dependent portion of the 1/f noise. However the 

quadratic voltage dependence and the inverse dependence of the noise on the number 

of carriers (noise inversely proportional to the volume of the system) are commonly 

observed in 1/f systems. Bulk conductors commonly have a noise that is inversely 

proportional to their volume and gated transistors can be seen to have a noise that 

varies with the gate voltage, indicating that the number of charge carriers is 

determining the noise magnitude.[43]  

 It should be noted that Hooge’s law is strictly phenomenological and that 

many exceptions are known: 1/f noise processes can be current driven in some 

systems, z may differ from one, and the noise can be a surface effect in some systems, 

removing the N dependence[40]. Furthermore it is obvious at some very low 

frequency the noise must stop following this behavior or the total noise power 

integrated over all frequencies will diverge, which is unphysical. Hooge’s law does 

however prove to be a useful tool in many situations and will be referred to 

frequently. 

 

3.2 Semiconductors and transistors 

 

 Pure homogeneous semiconductor materials have been studied extensively. In 

semiconductors ζ values vary from 10-3 to 10-6 for Si, Ge, GaAs and other common 

semiconductors that have been measured.[42] Unfortunately the uncertainty for any 
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given material is usually about one order of magnitude due to variability between 

samples. Assuming that β@0 and z@1, we can see that the equation from Hooge, Eq. 

3.3, becomes 

fI
N

fAIfSI
22)(

ζ==       (3.4) 

which is a powerful way to parameterize the noise for comparison purposes. 

Measurements taken at different biases, currents or frequencies can be used for 

comparing the magnitude of the noise. 

 In transistor devices a good deal of work has been done to discern whether or 

not the source of the noise is fluctuations in carrier number or carrier mobility.[43] 

Since the observable is conductance fluctuations and conductance is σ=µne, where µ 

is the mobility and n is the number of carriers; it is not immediately clear which is the 

source (or if both are the source), but each assumption makes a different prediction 

for the way the noise should change with the gate voltage. For number fluctuations 

the value of ζ should vary with gate voltage but for mobility fluctuations it should 

remain constant. It appears that for many semiconductors, n type transistors exhibit 

number fluctuations and p type transistors have mobility fluctuations.[43] In the next 

chapter data and discussion will be presented for nanotube transistors. 

 

3.3 Basic noise model 

 

 Dutta and Horn present a theory that connects the most commonly used model 

for 1/f noise with the energy spectrum of the fluctuators responsible for the noise.[40] 
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I will start off by presenting the relevant beginning model and then will show the 

modifications to it to make it more physically plausible. The process is outlined 

pictorially in Fig. 3-2. 

 First I begin with the most basic of fluctuators, the two-level system. A two-

level fluctuator will have a Lorentzian spectrum[44] 

1
)( 22 +

∝
τω
τωS        (3.5) 

where ω is the angular frequency and τ is the characteristic time of the process. If we 

integrate this function over a distribution of two-level fluctuators we get 

∫ +
∝ ττ

τω
τ

dDwS )(
1

)(
22       (3.6) 

where D(τ) is the density of states for the fluctuators. To clear up some confusing 

notation,  
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       (3.7) 

where n is the density of electrons. The density of states is an operator that takes a 

derivative with respect to E or τ, this should not be taken to mean that E=τ. 

 Unfortunately by varying the distribution of fluctuators this equation can be 

used to produce many kinds of frequency spectrums. Assuming that the fluctuators 

are inhomogeneous, and in particular the they are distributed as 

1)( −∝ ττD         (3.8) 

leads to a noise spectrum that is 
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1)( −∝ ωωS         (3.9) 

We are now left with the problem of justifying this distribution of fluctuators. A first 

step is to think of the fluctuators as being caused by a thermally activated process. 

Then τ =τoexp(E/kBT) and the required energy distribution would be D (E) = const for 

all energies.  For example if noise in a semiconductor were caused by trapping and 

detrapping in the oxide, which modulated the carrier density, we would expect this 

kind of thermally activated process. Thus if over a wide range of energies all trap 

energies were equally probable, we would have a consistent explanation. 

 Unfortunately these assumptions lead to a linear dependence of the spectral 

noise power on temperature, which is usually not seen in semiconductors (or many 

other conductors, namely most metals). The flat distribution of the energies of the 

traps also cannot extend to arbitrarily low and high energies, which will be the topic 

of the next section. 

 



 

 30 
 

 

Figure 3-2. 1/f noise formation. This schematic depicts how the noise from many 

two-level systems can be summed to create a 1/f spectrum. The transform of the 

telegraph signal from a two level system is a Lorentzian, it has a flat spectrum 

followed by a knee and then a 1/f2 dependence. If these are summed over an 

appropriate distribution of energies the result is a 1/f spectrum. 

 

3.4 Theory for temperature dependence 

 

 A better model for noise would not force the distribution of energies to be flat 

for all values, a clearly non-physical requirement. To correct the unphysical nature of 

the assumption of an infinitely wide and flat distribution of fluctuators being 
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responsible for the noise, Dutta and Horn inserted a spectrum of two level fluctuators 

that is limited in energy distribution. This alteration removes the strictly 1/f nature of 

the noise by creating an exponent that should range between 0.8 and 1.4 and should 

also vary slowly with temperature and frequency[45, 46]. The most significant result 

is that the spectrum of the fluctuators can be directly related to the noise power, 

)('),( ED
Tk

TS B ′∝
ω

ω        (3.10) 

where E’ ������=-kTln(ωτ0). This is the first term of a Taylor series expansion of Eq. 3.6, 

with  D � (E �) allowed to be a smoothly varying function of E �.  This allows for the 

observation of the energy of the fluctuator that corresponds to the noise features at a 

given temperature through 

)ln(' 0ωτpBp TkE −≈        (3.11) 

This shows that a maximum at any temperature value, Tp, is correlated with a 

maximum in the energy of the fluctuators, E �p. τo is the characteristic attempt time for 

the fluctuators of order 10-14 s (i.e. inverse of a typical phonon frequency).  The ln 

term is of the order 30 for frequencies between 0.1 and 100Hz. The exponent of the 

1/f noise also varies with frequency and temperature, but the deviation from unity is 

proportional to 1/ln(2πfτo) and is therefore small and hard to measure experimentally. 

Data from Dutta and Horn[40] is shown in Fig. 3-3 and illustrates the peak in noise 

and then extracts a peak energy for the fluctuators that are responsible for that noise 

in Fig. 3-3c.  
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Figure 3-3. Graph from Dutta and Horn[40] illustrating the temperature dependence 

of the noise in a Ag metal film. The line is the theoretical prediction for the data and 

the points are the experimental values. (a) The data exhibits a peak in noise at a 

temperature around 400 K. (b) The theory also predicts a small shift in the power of 

the 1/f dependence with temperature. The predicted shift is from 1/f 1.1 and 1/f 0.8. The 

y-axis is the exponent, denoted as z in this chapter (c) This is the calculated density of 

states corresponding to the noise data in (a). The noise peak corresponds to a peak in 

the noise at an energy around 0.9 eV. 

 

3.5 Previous results in nanotubes 

 

 Nanotubes present an interesting medium for studying 1/f noise for several 

reasons.[13, 14, 31, 47-49] The strong sp2
 bonded carbon atoms in the nanotube 
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lattice should not be able to move around easily, eliminating a source of noise 

commonly considered in typical bulk metals. The nanometer diameter of the material 

presents the first straightforward opportunity to measure the phenomenon of 1/f noise 

in a 1-D conductor. The nanotube also has all of its atoms as surface atoms, which has 

led to the prediction that one-dimensional systems should intrinsically have more 1/f 

noise than their higher dimensional counterparts[14]. Nanotubes also have a one-

dimensional current, so any contaminant or adsorbate that interacts with an atom on 

the tube is interrupting the flow of current. In contrast, in 3-D systems the removal of 

a single atom in the bulk of the material will have a negligible impact on the 

conductivity of the device. Finally 1/f noise is considered to be a bulk effect in most 

materials due to its 1/N dependence on the number of carriers in the system - the most 

famous paper in the field is titled “1/f Noise is no surface effect”[41] - but nanotubes 

can be viewed as a material that is all surface. This has led to several papers on the 

magnitude of the noise in individual carbon nanotube devices and some of the 

relevant past work will be discussed here. 

 The first work on nanotube 1/f noise was from the Zettl group.[14] Their data 

indicated that the noise in the devices was strongly connected with the total device 

resistance for samples including bulk collections of CNTs (3D), “mats” or thin films 

of CNTs (2D) and devices constructed from individual or perhaps small bundles of 

CNTs (1D). They determined that A/R=10-11Ω-1 which for typical single tube devices 

gives a value for A of 10-7.  This value is extremely high, four to ten orders of 

magnitude higher than that for most typical resistors. This led the group to conclude 

that nanotubes may indeed be fulfilling the prediction that 1-D conductors would be 
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unusually noisy due to all of the atoms being surface atoms. The paper attempted to 

create an estimate for γ by taking the number of carriers as the number of atoms. This 

led to a value for γ =0.2 which is 100 times as high as Hooge proposed for 

semiconductors, and up to 10,000 times as high as is commonly seen in high quality 

semiconductor devices. This was further validation for the view that nanotubes (and 

perhaps all 1-D systems) are exceptionally noisy, but the calculation of the number of 

carriers as being equal to the number of carbon atoms in the device is probably 

inappropriate; it would certainly overestimate the carrier number in semiconducting 

CNTs. 

 In the next chapter I will present our group’s results on noise in nanotube 

transistors, first at room temperature and then as a function of temperature. 
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Chapter 4 Temperature dependence of 1/f noise in carbon 

nanotube transistors 

 

 This chapter will present the results of measurements performed on individual 

semiconducting CNTs in FET geometry. The most extensive measurements were 

taken on two FET devices provided by our Georgetown collaborators; the fabrication 

procedure for these devices is described in Chapter 2.  

 In the first three sections I will present the analysis techniques used to extract 

the noise parameters. In section 4, I will describe the results of the initial work done 

by our group on CNTs in FET geometry at room temperature and all the data will be 

from Ishigami et al[31]. In the last section I will discuss the behavior of the noise 

parameter γ at temperatures from 1.2 to 300 K, and the implications the data has for 

the origin of the 1/f noise in the devices. 

 As discussed in the last chapter, perfect 1/f noise would require a perfectly flat 

spectrum of fluctuators D(E) at all energies E. If this were true the pre-factor γ in 

equation 3.4 would show a linear dependence on temperature. However, if the 

spectrum of fluctuators D(E) is smoothly varying, it results in a temperature 

dependence for the 1/f noise with the same functional form as D(E), as indicated by 

equation 3.10.  

 All the data presented in this chapter (except section 4.4 which is from a 

separate set of devices) were taken on two CNT devices from the Georgetown group. 
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The data for all the plots in this chapter was taken on a 3 um long CNT with a 

diameter of 1.4 nm and will be referred to in the thesis as Sample 1. Data from the 

second device only appears in the final results in section 4.5 and is also 3um long 

CNT with a diameter of 1.9 nm and will be referred to in the thesis as Sample 2. 

 

Table 4-1. Device Characteristics 
Device Diameter (nm) Contact Metal Device Length 

(µm) 

Sample 1 1.4 Pd/Nb 3.5 nm / 215 nm 3 

Sample 2 1.9 Pd/Nb 3.5 nm / 215 nm 3 

 

4.1 Noise signal 

 

 Several methods are available to determine the noise parameter associated 

with a given noise spectrum. As a reminder from the last chapter we want to 

determine A where 

z
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       (4.1) 

if β=0. The two equations demonstrate the fluctuations can be measured as a function 

of either electrical parameter, in this thesis the current noise is always being 

measured. All of the data were generated on a spectrum analyzer that simply performs 

an analog-to-digital conversion of the incoming signal and then performs a fast 

Fourier transform (FFT) on the digital signal.  
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Figure 4-1. Dependence of noise on current bias. Numerator of the Hooge equation 

plotted vs. current to check on the expected squared dependence of the noise. The 

slope is 2.03 ± 0.03 on data from sample 1. 

 

 As a first check to see if our data follows Hooge’s law, I will show that the 

noise spectral power is indeed quadratic in current, which is expected for resistance 

fluctuations.  

BfAIf
SI

== 21
        (4.2) 
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Eq. 4.2 is a simplified version of Hooge’s law (Eq. 3.3) where β = 0 and z = 1. A plot 

of 1/B vs. current should display an I2 dependence. This is done in Fig. 4-1 for sample 

1 at 260 K and Vg = -8 V. 

 It is also useful to think about a form of Hooge’s law more suitable to 

transistors, 

z
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zz

I fI
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fI
N

fAIfS 222)(
ζζ ===     (4.3) 

where the last step is applicable if the bias voltage is held constant and the gate is 

varied in the linear regime of the transistor, so that N=CGVG/e. 

 Next, I will turn to a careful examination of the frequency dependence; i.e. 

can the frequency dependence be described as 1/f z?  If z varies from unity then the 

constant A is no longer dimensionless, which means variation in A will depend on the 

frequency of the measurement.  In many of the spectra I have taken at the same bias 

temperature and bias voltage the exponent varies from 0.9 to 1.1 between scans at 

different gate voltages, making it difficult to decide whether it is acceptable to ignore 

the variation when trying to determine the prefactors A or ζ. Furthermore the data is 

sometimes influenced by the presence of telegraph signal whose spectrum is 
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where b is a constant. Hopefully the magnitude of this noise is small, or a region in 

frequency space can be found where its effects are negligible. I will go through the 
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data analysis methods that I used to try to gain confidence that the trends observed in 

the variation of A with temperature and carrier number are real.  

 

4.2 Data analysis techniques 

 

 I attempted to analyze the noise spectra by several methods described below.  

Each method assumes a certain functional form for the spectra, and so may introduce 

systematic errors in the dependence of the noise pre-factor on temperature.  I will 

discuss the advantages and drawbacks of each method. 

 

4.2.1 Power-law method 

 

 A first way to think about extracting the value of A for a given noise spectrum 

is to plot the noise power vs. frequency on a log-log plot as in Fig. 4-2. Then the 

slope d(lnSI)/d(lnf) gives the value of z, and the value of AI2 is the given by SI at f = 1 

Hz. Since the value of z varies for different noise plots, the constant A is no longer 

unitless. This may cause problems for the comparison of different spectra; for 

example, the temperature dependence would in principle depend on the measurement 

frequency. The value of A is also very sensitive to the errors in the slope.  
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Figure 4-2. Current noise versus frequency. The log-log plot allows for a linear fit to 

extract the values of A and z for the spectrum. Here A = 2.67x10-8 and z = -1.11 

 

4.2.2 Inverse noise method 

 

 Another useful way to display the data is to plot the reciprocal of the noise 

power versus frequency as in Fig. 4-3. Since this should now be a proportional 

relation if the exponent z = 1, the parameter A is straightforward to extract; the 

reciprocal of the slope is AI2. The advantage of fitting the data with a line is that it 

forces all of the plots to have z = 1 and therefore have a dimensionless A. This means 

that comparison should be on a more equal footing.  The difference between this and 
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the power law method, and a crucial factor to consider in fits in general, is that the 

data will be weighted differently in these different methods. The default for most 

fitting programs is to assume that there is a constant percentage uncertainty in the 

data entered into the routine. Taking the reciprocal of the data without altering the 

uncertainty will lead to different values for the fits. 

 

 

Figure 4-3. Plot of 1/SI versus frequency. Here the frequency dependence becomes 

linear and fitting a proportional relation to the data forces z =1. For this spectrum A = 

1.36x10-8. 
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4.2.3 Inverse noise plus telegraph method 

  

 Some of the noise spectra appear to have a Lorentzian-like component, which 

could be due to telegraph noise from a single fluctuator.  If this is the case then it 

would be desirable to account for the telegraph contribution by fitting a sum of the 

telegraph noise spectrum and the 1/f spectrum to the data set[31], i.e. 
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I attempted this in the following manner.  In the fit the value of the knee frequency in 

the telegraph Lorentzian and the magnitude of the 1/f and telegraph noise are allowed 

to vary but the value of z is fixed at 1. This is for two reasons: If the value of z is 

allowed to vary the fitting process commonly fails to converge and the data needs to 

be successfully fit over a large range of data for the exponent’s deviation from one to 

be fit accurately.  There is an additional difficulty that, in introducing an additional 

component of the noise in the fit, that there will be a systematic reduction in the 

magnitude of the 1/f noise obtained in the fit (because the best fit to the noisy data set 

will always include some positive Lorentzian term).  Figs. 4-4 and 4-5 show this 

technique being applied to the reciprocal of the noise power and to the noise plotted 

directly. 
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Figure 4-4. A nonlinear fit for 1/noise versus frequency. The added telegraph term 

has a knee at 10 Hz and its effect is best seen by the fits bend at low frequencies. 
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Figure 4-5. Noise power versus frequency with a nonlinear fit. Same data as for the 

reciprocal fit Fig. 4-4. 

 

4.2.4 “Show all the data” method 

 

 Because of the difficulties discussed for the methods above, I developed a 

new method that uses each data point of the spectrum as an independent measure of A 

that is shown in Fig. 4-6. For each point I determine a value of 1/A = I2/fSI; this way 

each data point in the spectrum produces a value for 1/A instead of the spectrum as a 

whole. Then I can examine the dependence of 1/A at a particular frequency on gate 
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voltage and temperature, and determine whether there is a significant dependence on 

the frequency.  

 

 
Figure 4-6. “Show all the data” plot. a) Spectrum of 1/f noise from a CNT FET at a 

bias voltage of 100 mV, a gate voltage of -8 V, and a temperature of 150 K, shown on 

linear-linear scale (main panel) and log-log scale (inset). The solid line in the inset 

indicates a slope of -1.  b) Presentation of the noise spectra with the values 

recalculated to give the value of the constant 1/A = (I2/fSI) at each frequency, as 

discussed in the text. Colors indicate the value of the frequency the data is taken at 

and the points are separated by 1 Hz. 
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4.3 Gate dependence 

 

 The observed gate dependence of the nanotube noise is best plotted as 1/A 

versus gate voltage. Since the graph is linear it is easy to extract the value of γ from  

ζ
ζ eVC

AfI
N

fAI GGzz =⇒= /122
    (4.6) 

This dependence indicates that the transistor is in the linear regime where the gate 

voltage linearly increases the number of carriers in the nanotube. By comparing the 

1/A vs. gate curve with the current vs. gate curve in Fig. 4-7 it is clear that the current 

is not linear with gate voltage while the inverse of the noise magnitude is. This is an 

indication that the data is described by Hooge’s law, as seen in Eq. 4.6 it is expected 

that 1/A ∝ N. This is also strong evidence that the fluctuations are in mobility, not 

carrier number. 

 Specifically, a model of random potential fluctuations[50] that has been used 

to explain the noise in short, Schottky-barrier-dominated CNTs[51] predicts a much 

stronger dependence of 1/A on Vg.  Thus we can eliminate charge fluctuations in the 

dielectric as a source of noise in our CNT devices, at least in the linear regime.  

 Data were taken at different temperatures to determine the evolution of ζ. 

Another benefit of our use of ζ is that it also compensates for changes in the threshold 

voltage at different temperatures and for the change in the Fermi energy versus gate 

voltage; this is due to using the rate of change of 1/A vs Vg as seen in Eq. 4.6. 
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Figure 4-7. Reciprocal of the noise prefactor 1/A = I2/fSI (colored squares) and current 

(filled squares) versus gate voltage for sample 1 at 150 K. Current data are taken with 

drain voltage of 100mV.  The 1/A data are color-coded according to frequency as in 

Fig. 4-6. The open squares indicate the mean values of 1/A at each gate voltage, and 

the dotted line is a linear fit to these points. The standard deviation of the mean for 

these points is smaller than the size of the squares used to indicate the mean value. 

Note that larger 1/A values correspond to less noise. A benefit of plotting the data 

using this technique is that all of the data from the spectra are presented. 

 

 The main benefit of the show-all-the-data method is that all the data from the 

noise spectra can be displayed in a 1/A versus gate voltage graph, and is all used to 
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determine the value of ζ. The method does assume implicitly that z = 1, however the 

value is predicted to only vary slightly even for a non-constant D(E) as discussed in 

Chapter 3. The particular frequency range does not significantly alter the magnitude 

of the value of ζ. This can be seen by observing the color coding of the data. The 

frequency range chosen does not affect the value of the slope obtained from the 1/A 

vs Vg plot. 

 

4.4 Noise in semiconducting devices at room temperature 

 

 Two papers on 1/f noise in individual semiconducting devices came out 

concurrently in 2006, one from Maryland[31] and another from the IBM group[51]. 

Both papers revealed several significant aspects of the noise in CNTs and both found 

that the reciprocal of the noise amplitude is linear with gate voltage. In this section I 

will explain the results of the Maryland[31] paper and both of the plots, Figs. 4-8 and 

4-9, are taken from that paper. 

 Assuming that the transistor is in the linear regime we again use Eq. 4.6.  We 

calculate the capacitance Cg = cgL, where cg is the gate capacitance of the device per 

unit length, L is the length of the CNT and Vg is the applied gate voltage.  For our 

CNT devices, ( )dt
c sub

g /2ln

2 0επε
≅ with εsub the dielectric constant of the oxide, t the 

thickness of the oxide and d is diameter of the CNT. 
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Figure 4-8. Noise data from Ishigami et al.[31] Measurements taken on devices at a 

range of lengths to demonstrate that the source of the noise is the channel resistance 

not the contact resistance. If the noise was being sourced at the contacts it would be 

expected that the low length limit would be dominated by a contact term, while the 

longer CNTs would be dominated by noise from the CNT. However, the behavior is 

linear over the entire range indicating that the main source of noise is the CNT. 

 

 After seeing that the noise parameter 1/A varies linearly with the gate voltage 

as I have also shown for my data in Fig. 4-7, the experiments verified that the noise 

being measured in the two contact geometry is dominated by noise created in the 

CNT and not noise from the contacts. This was done by plotting the quantity D = 
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cgL/eγ vs. length for several different devices with lengths ranging from 2 to 30 µm, 

shown in Fig. 4-8. The linear behavior verifies that the noise is coming from the 

fluctuations of the length-dependent resistance of the CNT. The value for ζ obtained 

from this is 9.3µ10-3, comparable to traditional FET devices. This means that 

nanotubes are not excessively noisy; but since they do have far fewer carriers than 

normal semiconductors individual CNT devices will have larger A values. All of this 

data was taken in ultra-high vacuum (UHV). 

 Data were taken on the same device in UHV and ambient pressure to test the 

prediction that physisorption of gases was a possible cause of noise in CNT. The 

results of this indicate the reverse phenomenon from that expected if physisorption 

were the source of noise: The CNT is actually noisier in UHV as shown in Fig. 4-9. It 

is important to remember when looking at the graph that 1/A is the reciprocal of the 

1/f noise magnitude, so larger values indicate less 1/f noise. 
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Figure 4-9. Comparison of inverse noise amplitude 1/A vs gate voltage Vg − Vth for 

the same semiconducting CNT device in UHV and in air from Ishigami et al.[31] at 

room temperature. The amplitude of the 1/f noise in air is three times smaller than in 

UHV. 

 

4.5 Temperature dependence 

 

 Fig. 4-10a shows the temperature dependence of ζ for two CNT devices.  

Device 1 has a diameter of 1.4 nm, and Device 2 has a diameter of 1.9 nm.  The 
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Hooge’s constant ζ, where A=ζ /N, has an exponential dependence on temperature 

from 1.2 K to 150 K, with a change of about an order of magnitude, and is much less 

temperature dependent at temperatures greater than 150 K. As described in the 

previous chapter, we can use the temperature dependence of ζ to gain information 

about the density of states of the fluctuators that are causing the 1/f noise. This is 

done by using the Dutta and Horn result that Ep = -ln(2πfτ0)kB(T) ≈ 0.4 eV for f = 1 

Hz and τ0 = 10-14 s (this value is introduced in Ch. 3 and Eq. 3.11)) and T =150 K. 

The noise versus temperature data then indicated that the fluctuators responsible for 

the 1/f noise are mostly at and above 0.4 eV. The Dutta and Horn model also connects 

the exponential dependence of the noise to an exponential rise in the density of states 

responsible for the 1/f noise. 
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Figure 4-10. Noise vs temperature (a) Temperature dependence of the Hooge 

parameter ζ for two CNT devices. The data points are calculated using the slope from 

<1/A> vs Vg, as shown in Fig. 4-7. The significant upward trend between 1.2 K and 

about 150 K is seen in both samples.  (b) Distribution of activation energies of the 

fluctuators D(E) responsible for 1/f noise, calculated as described in text.  Filled 

squares and circles correspond to Device 1 and Device 2 respectively, in both (a) and 

(b) 

 

 For another way to plot the data that allows for an easier identification of the 

peak we can use a formula from the previous chapter, 

)(),( ED
Tk

TS B ′′∝
ω

ω        (3.10) 
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which means that ζ /T is proportional to the density of states, since ζ is also a measure 

of the magnitude of the noise. This is plotted in Fig. 4-10b. This is the same data set 

as in Fig. 4-10a, but this more clearly shows the location of the peak. 

 It is not surprising to see a spread between the two traces for the different 

samples, even though they were prepared identically, with the same contacts and 

similar lengths. Individual defect contributions for the two devices could be very 

different, as random structural defects could vary greatly between the tubes. The local 

density of defects in the oxide should also play a strong role in determining the 

strength of the 1/f noise.  

 The main feature of Fig. 4-10 is the peak in D(E) at E @ 0.4 eV.  This feature 

is responsible for the majority of the room-temperature noise.  The characteristic 

energy scale allows us to rule out some possibilities for the source of the noise.  The 

energy scale is comparable to the bandgap (@ 0.5 eV and @ 0.37 eV for Devices 1 and 

2 respectively) and therefore we can rule out electronic excitations (e.g. defect 

ionization, etc.) within the CNT itself as the major noise source; such mechanisms 

should have characteristic energies less than or equal to half the bandgap.  As 

discussed above, we also rule out potential fluctuations due to the motion of charged 

defects in the dielectric.  Structural fluctuations of defects in the CNT lattice itself are 

also ruled out, as they have very high characteristic energies. The energy is @ 10 eV 

for Stone-Wales defect formation[52, 53] which involves one of the hexagons of the 

lattice losing a carbon atom to become a pentagon. 

Unfortunately the characteristic energy @ 0.4 eV does not provide enough 

information to pinpoint what is causing the noise.  However, the fact that the noise 
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magnitude is comparable to conventional MOSFETs suggests that the noise may in 

fact result from similar processes in CNT-FETs, i.e. motion of defects in the dielectric 

or at the dielectric/CNT (or dielectric/vacuum) interface. Still, other processes, such 

as binding and unbinding of strongly physisorbed species cannot be ruled out; the 

binding energies for CO2 and H2O, for example, lie in this range[51, 54].  Though our 

measurements are carried out in helium gas with an extremely low partial pressure of 

atmospheric components, it is possible that previously-adsorbed water is still present 

on the SiO2 surface and could be responsible for the noise. 

To summarize, we have measured the Hooge parameter ζ(Τ) at temperatures 

between 1.2 K and 300 K. The room temperature value, ζ(300 Κ) ~ 10-3, we observe 

is comparable to α(Τ = 300 Κ) found in traditional FETs indicating that CNT-FETs 

are not afflicted by inherently large noise at room temperature. I use α(T) to estimate 

the distribution of activation energies of the fluctuators D(E) responsible for the 

noise; D(E) shows two features: a rise at low energy with no characteristic energy 

scale, and a broad peak at energy of order 0.4 eV.  By using the theory presented in 

Chapter 3, I determined that the latter feature is responsible for the room temperature 

noise.  Electronic excitations and structural fluctuations within the CNT itself can be 

ruled out as the source of this feature.  Fluctuations within, or at the surface of, the 

amorphous dielectric are likely responsible for the room temperature 1/f noise in 

CNT-FETs on SiO2, though some physisorbed species (e.g. H2O, CO2) have similar 

binding energies[54] and could be responsible for the room-temperature noise. 

 To further test whether the noise is coming from the oxide, the oxide layer 

under a CNT could be etched away. A particularly illuminating experiment would 
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create four leads on one CNT, measure the noise in the two devices created this way, 

and then etch out the oxide under one of the devices. This would eliminate tube to 

tube variation and make sure that the etching process didn’t damage the CNT. Other 

possibilities include testing devices on different substrates and treating the surface 

with chemicals that should passivate the traps in the substrate.  

 As a result of the work here at Maryland[31] and IBM[51] it is now clear that 

semiconducting CNT devices have a noise level very similar to that of traditional 

semiconductors. The value for γ is in line with many other materials and devices, and 

the high values for A obtained by early experiments[14] was merely an indicator of 

the small number of electrons in the material, not an indicator of an extraordinarily 

noisy material.  
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Chapter 5 Introduction to 1-D physics and telegraph signal 
  

 CNTs are an ideal laboratory for studying one-dimensional (1-D) electron 

behavior. This behavior is expected to differ from that in three-dimensional systems 

due to the inability of electrons to re-arrange themselves to minimize electron-

electron interactions.[55-57] This chapter will begin by motivating the need for a new 

description of the electron state in CNTs. Then it will introduce the technique we 

intend to use to study the phenomenon in semiconducting CNTs. The chapter will 

conclude by explaining how the hysteresis in CNTs makes it possible to uncover the 

state of the electrons in semiconducting CNTs. 

 

5.1 Drude and Luttinger 

 

 The initial successful description of electrons in solids was produced by 

Drude[58, 59]. This model for electron behavior assumes that the electrons do not 

interact at all with each other, termed the independent electron approximation. In fact 

it is assumed that the electrons only interact with the ion cores through hard core 

scattering processes, resulting in a characteristic scattering time and length for a given 

conductor. This assumption proves to be very good for most metals where the 

distance between electron-electron scattering events can be in the millimeter 

range.[59] This is the origin of the term electron gas, since the electrons are behaving 

like gas molecules in the ideal gas model. The addition of another electron, for 

example through tunneling, to the electron gas is possible at the energy of the highest 
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occupied state, as the other electrons will easily be able to re-arrange themselves to 

eliminate interactions. This means that there are excited states present just above the 

highest occupied electron state; there is no energy gap in the density of states for 

adding an electron, termed the tunneling density of states (TDS).  Superconductors 

are a good example where electron-electron interactions result in a correlated electron 

state which exhibits an energy cost to add another electron to the system; adding an 

unpaired electron to the superconductor requires giving the electron an additional 

energy above the energy of the highest occupied state.[60] It is important to keep in 

mind the distinction between the density of states D(E) for the system and the 

tunneling density of states (TDS). The TDS measures the energy distribution of 

excited states for the sudden addition of one electron to a system initially containing 

N electrons, i.e. a transition from N → N+1 electrons, while D(E) corresponds to the 

energy distribution of single-particle states of a system with N electrons. For non-

interacting electron systems the two densities of states are equivalent, but for 

interacting systems they can be very different.  This chapter will deal will almost 

exclusively with the TDS and not D(E) for electrons already in a system. 

 It may seem obvious that there will be situations in which ignoring the 

electron-electron scattering is no longer feasible. Shrinking the number of dimensions 

in the system should begin to cause problems to the concept of the electrons being 

free from interacting with each other. A first modification of this theory is the Fermi-

Liquid theory[59, 61, 62]. In this theory the electrons do have some small interaction 

with each other; however, it is assumed that this interaction can be treated as a small 

perturbation to the original free electron gas states. This results in the requirement of 
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using an effective mass to calculate the new wave-vectors and energies, but the TDS 

is still free-electron like; there is a one-to-one correspondence between non-

interacting electron states and the new interacting “quasiparticle” states. 

 In one dimension it seems reasonable that this approach should fail. The 

electrons will have to interact strongly with each other as they are confined to stay 

along the line defined by the 1-D conductor. In this situation Tomonaga and Luttinger 

predicted that the electrons would form an interacting electron state where the 

perturbative terms used in the Fermi-Liquid theory would diverge[63], this state is the 

Luttinger liquid state[55-57] (Tomonaga actually originated the concept of the new 

state, but only for a restricted set of conditions, Luttinger showed that it should occur 

in any arbitrarily weakly interacting 1-D electron state). The Luttinger state was first 

described in the 60’s but no experimental attempts to measure the signatures of this 

state were successful (or at least published) until 1995 for constricted AlGaAs/GaAs 

heterostructures[64-68] followed closely in 1999 for CNTs[69, 70]. 

 As opposed to the independent electron assumption, perhaps visualized as a 

few ping-pong balls bouncing around the Grand Canyon, the Luttinger liquid model 

could be thought of as the executive desk toy, where each electron knows exactly 

what the rest are doing, as depicted in Fig. 5-1. This will obviously create a different 

TDS spectrum than in the previous model, as each electron will have formed a 

coordinated lowest energy with all the other electrons in the system and each electron 

will have to be disturbed in order for an extra electron to enter the system. The result 

is that a finite energy is required to add an electron to the system; at T = 0 it is 
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impossible to add an extra electron to the system at exactly the Fermi level, and the 

TDS has a power law behavior.[63] 

 

 

Figure 5-1. Drude vs Luttinger. This is a visual depiction of the electron behavior in 

the two different models. In the Fermi gas the electrons act independently from one 

another, but in the Luttinger model electron-electron interactions should cause a 

bosonic state to form that would alter the physics of the system. 

 

 This power-law behavior, TDS(E) ∂ (E-Ef)
α is depicted in Fig. 5-2.  This can 

be measured experimentally in a tunnel junction between the Luttinger liquid and a 

Fermi liquid or another Luttinger liquid; such a junction shows a power-law behavior 
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for the zero-bias conductivity versus temperature and differential conductance bias 

voltage[63], G(T) ∂ Tα and  dI/dV ∂ V α.  

 

Figure 5-2. Tunneling density of states. The left graph depicts the availability of TDS 

just above the Fermi energy in a system described by Fermi statistics. On the right is 

a graph of the TDS for a Luttinger system, with its characteristic dip at energies near 

the Fermi Energy. This TDS leads to tunneling observables for the zero bias 

conductivity versus temperature G(T)~Tα,  and for the conductivity versus bias 

voltage, dI/dV~Vα. 

 

 There is a further complication for determining the TDS. The unitless 

parameter α that describes the experimentally measurable effects is determined by the 
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interaction parameter g, a unitless variable that describes the amount of electron 

interaction in the system. g should always be the same for a given one-dimensional 

system, but α depends on the geometry of the experiment, i.e. whether the electron is 

tunneling into the “end” of the one dimensional system or the “bulk”.  This will be 

illustrated in the next section where I describe the initial experiment on the Luttinger 

state in CNTs. g ranges from 1 to 0 with smaller values indicating stronger 

interactions. 

 

5.2 Previous measurements in carbon CNTs 

  

 The original measurements performed on the Luttinger state in CNTs were 

performed by Bockrath et al.[69] on metallic CNTs in two different geometries: metal 

electrodes on top of or below the CNT. The significance of doing this is that different 

tunneling behaviors are observed for the two contact situations. When metal leads are 

first placed on the chip and then CNTs are placed on top of the leads, the device is 

referred to as having bottom contacts. This contact geometry usually results in higher 

contact resistance due to a weaker coupling between the CNT and the metal contact. 

In essence the CNT is just resting on top of the metallic lead. This results in the 

electrons having the opportunity to tunnel into any part of the CNT that is lying above 

the contact, or the “bulk” of the CNT.  

 When the CNTs are first placed on the chip and then metal leads are created 

on top of the CNTs, as in the devices used in this thesis, the devices are said to have 

top contacts. In this situation the presence of the metal electrode “cuts” the CNT 
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electronically; electrons in the CNT impinging on the metal electrode have essentially 

zero probability of continuing under the electrode in the CNT.  Thus the electronic 

current from electrode to CNT essentially remains entirely within the metallic lead 

until it is forced at the last moment to exit the lead and tunnel into the CNT, and the 

geometry approximates tunneling into the “end” of the Luttinger liquid.  This picture 

is born out by low temperature measurements of the charging energy of devices in 

both configurations[71, 72]; CNTs with top contacts have energies determined by the 

length of the CNT between the leads while CNTs with bottom contacts have a 

charging energy determined by the entire length of the CNT. The equations for the 

exponent in the two different geometries are[73, 74] 
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 As a result of performing both temperature dependent (zero bias conductivity 

vs. T), as in Fig. 5-3, and bias voltage dependent (dI/dV vs. Vbias) measurements on 

CNTs of both geometries; Bockrath et al. were able to extract values for the 

exponents in both geometries αbulk = 0.3-0.4 and αend = 0.5-0.7. The values are in good 

agreement with theory which predicts g ≈ 0.28 and αbulk = 0.24 and αend = 0.65. Fig 5-

3. is a plot from Bockrath et al.[69] depicting the power law behavior of the 

conductivity, which allows for the extraction of the values for α and g. Later 

experiments were able to see this behavior in crossed metallic CNTs[25, 75], 

providing another example of bulk tunneling. Another experiment with a kinked 
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metallic CNT[25] saw behavior of end-end tunneling from one 1-D system to 

another. 

 

Figure 5-3. Plot from Bockrath et al.[69] showing the Luttinger liquid dependence of 

the conductance G against temperature T. The plot on the left shows tunneling into 

the bulk with the leads under the CNT and the plot on the right shows the opposite 

scenario with the leads on top. The effects of the lead placement are discussed in the 

text. The log-log plot shows the power-law dependence expected for Luttinger 

liquids, with the solid lines representing the data and the dashed lines taking into 

account a correction for Coulomb charging at low temperatures. Open circles in the 

inset indicate α values for end contacted samples and crosses indicate values for bulk 

contacted samples. 
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 It might not be obvious why attaching 3-D metallic leads to a metallic CNT 

results in a tunnel junction even at high temperatures. The exact nature of the barrier 

in these and many other experiments on CNTs remains unclear.  However, the fact 

that some processes can produce contacts with no (or almost no) barrier[37, 76, 77] 

indicates that the barrier is an extrinsic property of metal-CNT junctions.  It is 

fortuitous that this accidental barrier has good properties for studying the energy-

dependent tunneling into CNTs; the barrier itself must have relatively energy-

independent transmission. 

 Unfortunately semiconducting CNTs can’t be studied using the same 

techniques. Semiconducting CNTs form contacts which are more complicated than 

metallic CNTs, although a direct measurement in the vein of Bockrath et al. has been 

tried on multi-walled CNTs[78]. Schottky barriers[79] may form for semiconducting 

CNTs and have temperature, bias-voltage, and gate-voltage dependences of their 

own. Semiconducting CNTs also can be doped by nearby contaminants. This doping 

level will also have its own temperature dependence. These effects will mask the 

possible Luttinger effects on tunneling dependence. The rest of this chapter will set 

up a path to avoid the need to consider metallic contacts for probing the Luttinger 

liquid in semiconducting CNTs. 

 Other experiments have also measured the Luttinger parameter with 

photoemission studies on bundles of CNTs[70]. What is missing is a direct method of 

measuring the tunneling in a single CNT device without mixing in the effects of the 
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contacts. In the next two sections I will outline how telegraph noise and hysteresis in 

CNTs allow us to observe the tunneling of individual electrons into the CNT. 

 

5.3 Hysteresis in CNTs 

 

 Many semiconducting CNTs in an FET geometry show hysteresis in the 

current versus gate voltage curve.[80] This effect has been used to make memory 

elements from CNT devices and, since it involves the transfer of electrons from traps 

to the CNT, it is a useful tool to study tunneling into the electron system of the CNT. 

First I will discuss how it was used as a memory device and how that indicated it 

could be used for my purposes. 
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Figure 5-4. Semiconducting CNT hysteresis. This is a depiction of the stages of 

hysteresis in the I-Vg curve for a CNT-FET. The charge traps around the CNT-FET 

act as an additional gate for the circuit, and their long life creates a memory effect for 

the current state of the device. As can be seen if the gate voltage is swept to a 

negative value, holes will be present in nearby traps. If the gate voltage is returned to 

zero then the current will be suppressed by the field created by these traps. The 

opposite effect is seen if the gate voltage is swept to positive gate voltages. 

 

 As can be seen in Fig. 5-4, there is a large hysteresis in the I-Vg graph for 

CNTs. To think about what the source of this might be it is useful to think about the 
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strength of the electric fields near the CNT when gate voltages of -10V are applied to 

one of the devices. 

)ln( tgtg KRVE ρρ=        (5.2) 

Where ρt ~ 1 to 2 nm is the CNT radius, ρg > 500 nm is the dielectric thickness, and 

K = 3.9 is the dielectric constant of SiO2. This gives us field strengths in the range of 

0.1 to 1 V/nm which is on the order of the breakdown field of SiO2 (about 0.2 V/nm, 

but varies depending upon quality and growth technique for the SiO2). This suggests 

that a likely explanation for the hysteresis is charge reordering from traps near the 

CNT to the CNT.[80] It might be thought the charge rearrangement occurs between 

two traps near the CNT and not actually with the CNT itself. However, this would 

result in the hysteresis loop having the opposite sign: Positive gate voltage increasing 

the threshold voltage indicates that the electrons are actually entering and leaving the 

CNT. If the hysteresis were due to charges moving from trap to trap in the substrate 

we would expect the opposite sign for the hysteresis loop.[80] 

 In effect, the moving charge is acting as an extra gate voltage, meaning that 

the field the CNT is affected by is not just that applied through the gate, but also that 

created by the charge dislocated from the traps. This means that the hysteresis is 

caused by a number fluctuation. If instead the charges moving around created a 

mobility change by altering the scattering process in the CNT we would expect a 

completely different type of behavior to be seen in the I-Vg curves. Instead of having 

a horizontal shift of the curves, the threshold voltage would remain constant and the 

conductivity would shift up and down as the moving charges altered the mobility of 

the device. 
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 This can be used as a memory device by placing the gate voltage at Vg=0 since 

the current state will depend upon whether the gate voltage was ramped up or down 

to get to that point.[80] The high current and low current states are both very long 

lived (~10,000s) another important attribute for a memory bit. The state can be 

written, erased, read and rewritten repeatedly. 

 The important part of the story for my thesis is that this hysteresis implies that 

there is tunneling occurring between two different number states of the CNT, and that 

if this tunneling happens on an appropriate time scale we can measure the tunneling 

rates to gauge the TDS in the CNT. This will be an indication of whether the 

electrons in the semiconducting CNT are following the Luttinger liquid or Fermi gas 

model. 

 

5.4 Random telegraph signals 

 

 If the bias voltage and gate voltage are left constant, the same tunneling that 

results in hysteresis can instead give rise to a random telegraph signal (RTS) as in 

Fig. 5-5. This means that the system switches back and forth between (hopefully two) 

discrete states. These sorts of signals have been used in the past to understand the 

behavior of other novel electron systems.[81] Here I will discuss the concepts 

necessary to proceed from the observation of a two-state RTS to an understanding of 

the TDS in the CNT. 

 In particular RTS has been used to discern the electronic state of a transistor 

built from a two-dimensional electron gas (2DEG)[81], with an electron assumed to 
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be tunneling from a defect to the two-dimensional gas which allowed for the 

confirmation of the theoretical prediction for the electronic state of the electron 

system.  This experiment by Cobden et al.[81] was a direct inspiration for the work in 

the next chapters of this thesis, not only due to their use of telegraph signal to provide 

insight into the electron system of a novel material, but also in terms of understanding 

the evolution of the TDS with temperature. In this 2-D system the TDS at the Fermi 

level exhibits a maximum and follows a power law behavior with an exponent of 

about -0.8, i.e. the tunneling rate is proportional to (Ef-Ed)
-0.8. This is very analogous 

to the Luttinger liquid case where the TDS vanishes at the Fermi level as a power 

law, so it provides an immediate starting point for the theoretical analysis for the 

semiconducting CNT situation. 
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Figure 5-5. Previous RTS experiment. Taken from Cobden et al.[81] γ1 and γ2 are the 

rates for each state, Ed is the donor level and Ef is the Fermi energy. The upper left 

image depicts the effect of shifting the gate voltage on the relative energy between the 

defect and the Fermi energy and the semiconductor. The upper right image depicts the 

telegraph signal for a single gate voltage, the average time in each state is used to 

determine the transition rate. The data at the bottom depicts the rates for the switcher 

at two temperatures, as described in text. 
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 In Fig. 5-5 the lower left plot shows the data for a device at 1.2 K. The 

detailed balance equation for a system at thermal equilibrium is 

 

( )[ ]kTEE fde
−−=

2

1

γ
γ

       (5.3) 

Here γ1 and γ2 are the rates for each state (the reciprocal of the mean lifetime for each 

telegraph state), Ed is the defect energy, Ef is the Fermi energy and T is the 

temperature. The straight line in the log plot shows the ratio of the rates for the two 

states, this indicates that the system is at thermal equilibrium with the defect and that 

the gate voltage is shifting the energy of the defect. Above this is the plot of the 

individual rates for each of the states.  
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Here D is the density of states and ∆ is the tunneling matrix. The data is fit using 

Fermi statistics and Fermi’s golden rule shown in Eq. 5.4. The lower right plot shows 

data at 0.5 K where the system is no longer obeying Fermi statistics and there is an 

enhancement of tunneling at the Fermi energy. This allows for the extraction of 

information about the amount of interaction of the electron system in the 

semiconductor by fitting the data to a theory for the behavior of electrons in a 2DEG. 

For nanotubes, I will insert a theory for tunneling into a Luttinger liquid in Chapter 7. 

 In CNTs telegraph signals have been observed by numerous groups[80, 82]. It 

is not essential that these traps are located in the oxide as depicted in the figure; they 
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could also be in contaminants adsorbed on the surface of the chip, although the field 

strength is perhaps circumstantial evidence suggesting that they are in the oxide. As 

suggested above there are two reasons to suggest that the tunneling is actually 

occurring between the CNT and the defect: first, the electric field is strongest closest 

to the CNT, and second, the sign of the hysteresis loop indicates tunneling to and 

from the CNT. In this experiment we observe gate voltage dependent tunneling rates 

that follow that predicted for transition of an electron between two states in thermal 

equilibrium. 

 To make this study we need a sample with a defect with energy close to the 

Fermi level of the CNT and only one such defect. If there are several active defects 

the switching will be amongst many states and become much more difficult to 

interpret.  

 To discover whether a fluctuator can be isolated the device is cooled to the 

base temperature, 1.2 K, where the fewest defects should be active and the gate 

voltage is swept slowly. As the potential of the gate, Vg is varied, the defect energy, 

Ed, is also varied with respect to the Fermi energy, Ef, of the CNT. At some gate 

voltage switching of the current between two discrete states may be observed, as seen 

in Fig. 5-6.  These gate voltages cannot be chosen ahead of time since the technique 

relies upon defects that are intrinsic to the device; they are not designed by the 

experimenter. 
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Figure 5-6. Segment of an I-Vg curve taken on a CNT FET. Since the device was 

swept in both directions the hysteresis is visible. There are two regions in the image 

indicated by the arrows where two-level switchers are active, the left one of these is 

further investigated in the later chapters. 
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Chapter 6 Random telegraph signals in carbon nanotubes 
and their use as a defect thermometer 
  

 This chapter will characterize random telegraph signals in CNTs and show 

that the signals may be used to extract the electron temperature in the CNT.  The 

dependence of the electron temperature on bias voltage is used to extract the energy 

relaxation length lε in the CNT. 

 

6.1 Random Telegraph Signals in Carbon Nanotube Transistors 

 

 The initial goal is to find a region of gate voltage in which the current displays 

clear switching between two and only two states; i.e. that appears to be influenced by 

only a single two-level fluctuator that can be studied in isolation over a range of bias 

voltages and hopefully temperatures. The best fluctuator I was able to find showed 

consistent two-level behavior from 1 mV to 100 mV in bias voltage and from 

temperatures from 1.2 K to over 80 K. This was on sample 1 from the 1/f noise 

section 4.5 and has a length of 3 µm and a diameter of 1.4 nm.  

Fig. 6-1 depicts a section of an I-VG curve indicating the presence of a two 

level fluctuator.  At more negative Vg, it can be seen that the system prefers the high 

current state with occasional switching events to the low current state.  At 

intermediate gate voltages (-8.22 < Vg < -8.18) both states are nearly equal in 

occupation probability. As the gate voltage is swept more positive the lower-current 

state is favored.   
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Figure 6-1. Small section of the current versus voltage curve for a two level 

fluctuator. To visualize how the data was taken would require a third axis for time to 

be shown at many of the gate voltage locations. It can obviously be seen that the 

system is switching from preferring one state to the other with a section in the center 

where both states are nearly equal in occupation probability. 

 

This behavior suggests that the gate voltage controls the defect energy with 

respect to the Fermi energy of the CNT, which affects the probability of finding the 

system in one state or the other.  This allows us to develop a model for the gated 

defect-CNT system, as depicted in Figure 6-2 A-C.  In this model, the defect lies in 
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the gate dielectric between the CNT and gate electrode, close enough to the CNT for 

tunneling to occur.  In Fig. 6-2A, when Vg is lowered (corresponding to higher 

electron energy, or a rise in Fig. 6-2A), the defect chemical potential Ed is raised 

relative to the CNT chemical potential EF.  Likewise, when the Vg is raised, Ed is 

lowered relative to EF.  Thus the gate electrode controls the difference in chemical 

potential of the defect and CNT: 

( )0ggfd VVeEE −−=− η        (6.1) 

where Vgo is the gate voltage where Ed equals EF and η is the dimensionless gate 

efficiency which represents the ability of the gate voltage to move the defect potential 

with relation to the Fermi level in the CNT. The gate efficiency is less than unity due 

to the capacitive coupling of the CNT and defect to the gate, source and drain. 

Within this model, we identify the switching events between two states as the 

stochastic process of electron tunneling between the defect and CNT.  We can 

analyze this process by recording the current as a function of time.  Fig. 6-2D-F I 

shows data for the same RTS depicted in Fig. 1, but now the gate voltage is kept fixed 

while the current is recorded as a function of time.  In Fig. 6-2D, Vg - Vgo is negative, 

so the defect chemical potential is higher than the chemical potential of the CNT; this 

corresponds to the diagram in Fig. 6-2A.  Here the time trace of the RTS shows that 

the system spends most of its time in the higher current state.  Fig. 6-2E the defect is 

at the Fermi energy so the system spends an equal amount of time in both states. Fig. 

6-2F shows the opposite situation of 2D where the system now spends more time in 

the other state since Vg - Vgo is positive. 
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Figure 6-2. RTS schematic. (A-C) Schematic of the band diagrams for the 

semiconducting CNT, defect (in the SiO2), and gate electrode, for the conditions (A) 

Ed - Ef > 0, (B) Ed - Ef = 0, and (C) Ed - Ef < 0. The defect is shown as being located 

in the oxide but that is not essential to the physics. The thin solid lines indicate the 

spectrum of excited states at zero temperature in a Lutinger liquid.  The arrows 

indicate the direction of the largest tunneling rate.  (D-F) Time series of the current 

through the CNT at three gate voltages which correspond to the diagrams (A-C).  The 

current fluctuates between two discrete states. As the gate voltage is changed the 

relative tunneling rates between the two states change, resulting in the system 

spending more or less time in the respective states. This is reflected in the time series 

becoming more dominated by one current state or the other. 

 



 

 79 
 

 From time traces of the RTS as shown in Fig 2D-F, we can define two 

tunneling rates γ1 and γ2 corresponding to an electron tunneling into and out of the 

defect.  We determine these rates by calculating the mean time spent in each state 

(high current or low current) <t1>, <t2>, then γ1,2 =  <t1,2>
-1.   

 The experimental procedure is as follows.  Once an isolated RTS fluctuator is 

found, several time traces are taken. At a given temperature the voltage bias is set and 

then time traces of 30 to 150s are taken at a constant gate and bias voltage. Then the 

gate voltage is incrementally increased to take further time traces, with the fluctuator 

slowly changing from predominantly one state to the other.  This entire process is 

then repeated at different bias voltages and different temperatures. As a reminder, the 

bias voltage, gate voltage and temperature are all constant while the data is being 

recorded. (This was also true for the 1/f noise experiments.)  From the time traces the 

average times <t1,2> spent in each state are calculated, along with the number of 

switching events to gauge the statistical uncertainty. The reciprocal of the average 

times <t1,2>
-1 determines the switching rates γ1,2.   

The first point to verify is whether the data satisfies the detailed balance 

condition for a two level system: 
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,Using Eq. 6.1 above, we have: 
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As will be shown below, once the gate efficiency, η, is known, Eq. 6-3 may also 

be used to determine the electron temperature of the system.   

 Figure 6-3 shows the natural logarithm of the ratio of the rates ln(γ2/ γ1) as a 

function of gate voltage for the same RTS studied in Figs. 6-1 and 6-2. To compare 

with the exponential behavior predicted by Eq. 6.3, I plot the natural log of the ratio 

of the two rates.  The linear behavior of ln(γ2/ γ1) vs. Vg indicates Eq. 6-3 is obeyed.  

From the slope of ln(γ2/ γ1) vs. Vg we extract the exponential prefactor -ηe/kT. 

 

 

Figure 6-3. The natural log of the ratio of the tunneling rates versus gate voltage for 

the same RTS as Figs. 6-1 and 6-2.  
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It is tempting to simply use the base temperature of the cryostat as T, and 

therefore extract the gate efficiency η from the slope -ηe/kT in Figure 6-3.   However, 

it is necessary to ensure that the electron gas is in thermal equilibrium with the 

substrate before performing this calculation. To measure whether the electrons are 

being heated by the bias voltage, the slope is measured at many different bias 

voltages and several base temperatures.  At each bias voltage, I measure ln(γ2/ γ1) vs. 

Vg and set the slope equal to -ηe/kT to extract a temperature T which I identify with 

the electron temperature of the CNT.   The gate efficiency η is chosen such that the 

extracted T tends to the cryostat base temperature at low bias for cryostat 

temperatures of 20 K, 40 K, and 80 K; this determines η = 0.053.  The electron 

temperature as a function of bias voltage is shown in Fig. 6-4.  This demonstrates that 

it is indeed important to consider the effect of heating of the electron system by the 

bias voltage. 
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6.2 Defect thermometry 
 

 
Figure 6-4. Electron temperature as a function of bias voltage at various substrate 

temperatures.  Electron temperature is determined from the logarithmic slope of the 

tunneling rate ratio as a function of gate voltage as in Fig. 6-3.  The gate voltage 

efficiency η = 0.053 is chosen such that the low-bias electron temperature 

extrapolates to the substrate temperature (solid colored lines).  The rate of the 

switchers drops for lower electron temperature data, limiting the range where data can 

be taken. 

 

 As seen above in Fig. 6-4, the low-bias limit of the slope -ηe/kT taken at 

different temperatures can be used to extract the gate efficiency η.  However, the 
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slope -ηe/kT  at higher bias can be used to determine the rise in temperature of the 

electron system due to the influence of the bias voltage (and transport current).  The 

RTS acts as a “defect thermometer”; such a thermometer has been used previously to 

study heating of the electron gas in metal wires under conditions of charge 

transport[83-85]. 

 As the CNT electron temperature deviates from the substrate temperature, the 

main source of thermal resistance between the CNT electron system and the substrate 

can be determined. The CNT electrons equilibrate to the substrate through two 

effective thermal resistances in series: Λep, the thermal resistance of the CNT 

electrons interacting with the phonons, and Λsub, the thermal resistance of the CNT 

phonons interacting with the substrate. Different behaviors will result if one 

resistance is dominant. For Λep < Λsub, Joule heating of the CNT should cause the 

device temperature to rise above the substrate temperature, this should result in a ∆T 

~ V2.  However, as is typical in metals at low temperature, this behavior is not 

observed in Fig. 6-5; the slope of T vs. V on this log-log plot is 1, implying T ∝ V1.   

Interestingly, this indicates that the electrons do not achieve thermal equilibrium with 

the phonons in the CNT at moderate biases (~40 mV) even at high temperatures (40 

K).  This is an indication of the very small electron-phonon coupling in CNTs, which 

is partially due to their one-dimensional nature[86, 87].  

This implies that the electron-phonon process is the bottleneck for thermal 

transport from the electron system to substrate (i.e. Λep > Λsub); then the temperature 

dependence typically exhibits a power law in voltage[83]. The electrons will gain 
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energy from the electric field over a distance called the energy loss length, lε and 

Boltzmann transport theory predicts that the temperature of the electron system is[83]  

kT = 0.780eElε        (6.5) 

at high electric field, i.e. eElε >> kTsub where Tsub is the substrate temperature.  

For constant energy relaxation length, the temperature rise of the electron 

system is linear in bias voltage.  I can then use the slope of T vs. V in Fig. 6-5 to 

extract lε = 280 nm.  I currently do not understand why the energy relaxation length is 

constant; typically the energy relaxation length varies as a power-law in the electron 

temperature lε ∝ Ta, where p = 2, 3, or 4 has previously been calculated[88] 

depending on the dimensionality of the electron system (2 or 3) and phonon system (2 

or 3).  However, I am not aware of any calculations of the energy relaxation length 

for CNTs or other 1-D systems.  

The energy relaxation length lε may be used to extract an energy relaxation 

time τε = lε/vF, where vF is the Fermi velocity.  For a heavily doped semiconducting 

CNT, vF  approaches the value for a metallic CNT, 9.3 x 107 cm/s[29, 89, 90].  Then τε 

~ 300 fs.  This time is an upper bound to the coherence time for electrons in the CNT 

(at least under the transport conditions probed in our experiment), so has implications 

for use of CNTs in any quantum-coherent applications. 
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Chapter 7  Coherence and correlations in carbon nanotubes 

studied using random telegraph signals 

  

 Chapter 5 described the previous work on Luttinger liquids (LL) and 

discussed the techniques that have been used to study the LL state in carbon 

nanotubes (CNTs) and similar correlations in other electron systems. Chapter 6 

showed that random telegraph signals (RTS) in semiconducting CNT transistors 

result from tunneling of an electron between CNT and a defect, probably located in 

the gate dielectric.  The gate voltage can be used to control the energy of this defect 

relative to the Fermi energy of the CNT.  The ratios of the tunneling rates as a 

function of gate voltage were used to extract the electron temperature of the CNT 

using the detailed balance relation.  In this chapter I will study the gate voltage 

dependence of the individual rates from random telegraph signals in CNTs and 

analyze the data to arrive at a value for the Luttinger liquid interaction parameter g. 

 

7.1 1-D electron behavior 

 

 The previous chapter analyzed the RTS in a CNT and examined only the ratio 

of the tunneling rates as the gate voltage was swept.  Here we will examine how the 

individual tunneling rates change with gate voltage, which will allow us to test 

whether the electrons are obeying Fermi gas behavior or if the electron system of one-

dimensional CNTs is better described by Luttinger liquid theory.  



 

 86 
 

 Varying the gate voltage varies the energy difference between the defect level 

and the Fermi level of the nanotube, Ed - Ef according to Eq. 6.1. As the gate voltage 

alters this difference, the defect level acts as a probe of the occupation probability and 

tunneling density of states (TDS) of the system at that energy. The rates for tunneling 

into and out of the system predicted by Fermi gas theory combined with Fermi’s 

golden rule are 
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where D is the tunneling density of final states, f is the Fermi function, and ∆2 the 

overlap integral between initial and final states.  D and ∆2 are assumed not to vary 

with energy. I have shown previously in Chapter 6 (see Fig. 6.3) that Ed - Ef  is 

linearly related to the gate voltage, i.e. ( )0ggfd VVeEE −−=− η . 

 Plotting the individual rates vs. gate voltage there is a simple way to check if 

Fermi statistics are being obeyed.  Comparing the rates when the defect energy is near 

the Fermi energy of the nanotube and when the defect level is far away from the 

Fermi energy of the nanotube, we have for Fermi statistics 

( ) ( ) ( ) ( )1 1 2 2/ / 2d f d f d f d fE E E E E E E Eγ γ γ γ<< = = >> = =  (7.2) 

Stated in words, the rate of the switching at the edges of Fig. 6-1 should be twice the 

rate at the point where the two data sets cross (this is also where Ed - Ef). 

 However the data in Fig. 7-1 shows that the ratio clearly exceeds two. This 

indicates that Fermi statistics are not sufficient to explain the tunneling behavior into 

the CNT device. This indicates that the tunneling at Ed - Ef is suppressed compared to 
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its expected value, an indication that Luttinger liquid theory may better describe the 

phenomenon. 

 From the TDS at zero temperature one can create a corresponding tunneling 

rate for a Luttinger liquid at zero temperature[63] 

αθγ ))((~1 dfdf EEEE −−        (7.3) 

the tunneling exponent α differentiates the LL from the Fermi gas which has a 

uniform density of states just above the Fermi energy. This must be extended to finite 

temperature[88, 91] 
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where the sign in the exponential switches for the two different rates. By 

using ( )0ggfd VVeEE −−=− η  we have for the Luttinger case 
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which is fitted to the data in Fig. 7-1, where the Luttinger fit provides a superior fit to 

the data. This is due to the ability of the Luttinger model to take into account the 

reduced tunneling rate for the situation where the defect energy is close to the Fermi 

energy of the CNT. The only undetermined parameter in the fit is the value of α; the 

temperature, T, and the gate efficiency, η, are determined by the fit to the natural 

logarithm of the ratio of the rates for the two states versus gate voltage as in Fig. 6-3 

in chapter 6. 
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Figure 7-1. A typical plot of the individual transition rates versus gate voltage for a 

two-level RTS. The black curves are the fit to Fermi gas theory and the blue curves 

are the fit to the Luttinger liquid model described in text with α = 2.   

 

 As discussed in chapter 5 α reveals the strength of the interactions of the 

electrons in the Luttinger liquid system. The relation between α and the LL parameter 

g should be  
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for our system, since the defect is tunneling into the bulk of the tube. The value for α 

is extracted for several fluctuators in the last section of this chapter. This value is 

called arate to indicate that the value is obtained at one temperature and bias voltage. 

Remember that g can range from 1 to 0 with smaller values indicating stronger 

interactions amongst the electrons in the system. 

 The value for α can also be calculated by taking the switching rate at the point 

where Ef = Ed (equivalent to Vg = Vg0) and plotting it versus temperature. Eq. 7.5 

becomes 
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so that a plot of log rate vs. log temperature will yield the value of α as the slope. I 

will call this αtemp. 
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Figure 7-2. Degenerate rate vs. electron temperature. The rate of switching when the 

defect is at the Fermi energy vs. the temperature of the electron system. The 

temperature of the electron system is calculated using the detailed balance condition 

for the ratio of the rates. The power fit is used to give the value for α. Here 

αtemp=0.97. The red dots indicate points taken at low bias voltages, while the black 

points are from points where the tube is being heated by the bias voltage. (see Chapter 

6 for details) 

 

 The temperature dependence follows a power law, with an exponent of αtemp = 

0.97 ± 0.1.  Analysis of the temperature dependence of another RTS gives a power 

law exponent of αtemp = 0.7 ± 0.1.  Note that the expected behavior for tunneling into 
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a Fermi liquid would be an absence of temperature dependence; the strong 

temperature dependence in Figure 7-2 is in itself evidence for non-Fermi liquid 

behavior.  The data of Figure 7-2 are poorly fit by an activated (Arrhenius) 

temperature dependence, and such a fit results in an unphysically low activation 

energy on order of 2 meV.   

The theoretical value for g is given for any system by[69, 73, 74] 
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where U is the Coulomb charging energy and ∆ is the single particle level spacing. 

For a semiconducting CNT the level spacing is a function of the Fermi energy. For a 

metal the calculation yields a theoretical value of g = 0.28 and therefore αbulk = 0.24 

[71, 72]. Therefore we need to determine how the level spacing for the 

semiconducting CNT will vary versus gate voltage to replace the U/∆ ratio for the 

metallic nanotubes. 

 Since the charging energy will be the same for either metallic or 

semiconducting 
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and the single particle level spacing is  
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to find g all that is now needed is the density of states for the two systems. The 

energy of the electrons in a metallic CNT is E = (Ñvfk)2, where Ñ is Planck’s constant, 

vf = 9x107cm/s is the Fermi velocity and k = πn/4  is the wave vector, where n is the 
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number of carriers. So the density of states is D(E) = dn/dE=(dE/dn)-1=4/πÑvf. For a 

metal the calculation yields a theoretical value of g = 0.28 and therefore α = 0.24. For 

the semiconducting case the bandgap must be taken into account, and the new 

dispersion relation is approximated as hyperbolic E2 = δ2 + (Ñvfk)2, where δ is the 

bandgap. This makes the density of states 
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where the bandgap is 0.59eV for a tube with a diameter of 1.4nm. If I assume that the 

number of carriers is linear with the gate voltage, n = CgVg/e, I can plot how the 

parameters g and α should vary with gate voltage for a semiconducting CNT by using 

eqs. 5.1 and 7.10. This assumes that the only alteration required to Luttinger theory 

when switching from metallic to semiconducting CNTs is to take into account the 

new density of states.  

Figure 7-3 plots the expected variation of the LL tunneling exponent α with 

gate voltage, as well as my experimentally-determined values of α from analysis of 

the gate-voltage dependence and temperature dependence of the individual tunneling 

rates.  Fig 7-4 is the corresponding plot for the value of g assuming bulk tunneling.  

The values of α determined from experiment are significantly higher than the 

expected values.  There are several possible explanations for this.  First, it is quite 

possible that the simple analysis above overestimates g and underestimates α.  A 

more careful analysis by Egger and Gogolin[73] gives g = 0.18 for a 3 µm length 

metallic CNT, corresponding to α = 0.46, in good agreement with photoemission 

experiments on metallic CNTs[70]. This would result in a nearly doubled estimate of 
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the semiconducting α compared to the values plotted in Figure 7-3.  Second, our 

analysis also neglected any interaction between the electron system and the defect 

itself, which seems reasonable, since the typical change in resistance upon charging 

and discharging the defect is on order several kOhms, corresponding to a change in 

transmission on order 1/2.  However, the backscattering of electrons by the defect 

itself may cause correlations in the electron system (this is the essence of the work by 

Cobden et al.[81]). More theoretical work is needed to understand whether this is 

relevant in the CNT case.  Third, the interactions in semiconducting CNTs may 

simply be stronger than expected, for reasons not yet elucidated. 
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Figure 7-3. Depiction of the theoretical calculation of the Luttinger parameter α 

versus gate voltage. The red points are from two fluctuators on sample 1 and the 

black dot is from a fluctuator on sample 2. The squares indicate values obtained from 

fitting the individual rates vs gate voltage while the triangle points were obtained 

from fitting the rate vs. temperature. (both methods explained in text above) The 

details are given in the table below. The difference in the theoretical curves is due to 

the different diameters of the tubes, which results in a different band gap. 
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Figure 7-4. Depiction of the theoretical calculation of the Luttinger parameter g 

versus gate voltage. The red points are from two fluctuators on sample 1 and the 

black dot is from a fluctuator on sample 2. The squares indicate values obtained from 

fitting the individual rates vs gate voltage while the triangle points were obtained 

from fitting the rate vs. temperature. (both methods explained in text above) The 

horizontal line indicates the value for metallic CNTs. The difference in the theoretical 

curves is due to the different diameters of the tubes, which results in a different band 

gap. 
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Table 7-1. Luttinger parameter α for the three RTS. 
Fluctuators Diameter (nm) Vthreshold-Vg0 αrate αtemp 

Sample 1 1.4 5.0 0.5 +/- 0.1 0.9 +/- 0.1 

Sample 1 1.4 3.2 2.2 +/- 0.7 0.7 +/- 0.1 

Sample 2 1.9 3.9 0.8 +/- 0.1 NA 

 

 Table 7-1 gives the details for the RTS signal studied in this chapter. The first 

two fluctuators are on the same device but at different gate voltages, with the first 

fluctuator having the largest range of observable fluctuations with respect to 

temperature. The last fluctuator was not stable over a wide enough range of 

temperatures to extract a fit for the change in rate vs. temperature. 

In conclusion I have analyzed the temperature, bias voltage, and gate voltage 

dependence of the random telegraph signal resulting from an electron tunneling 

between a semiconducting carbon nanotube and a nearby defect.  The RTS is used as 

a sensitive probe of the tunneling density of states of the Luttinger liquid state of the 

semiconducting CNT.  We show that the tunneling rate is strongly suppressed at the 

Fermi level, consistent with Luttinger liquid theory confirming the more strongly 

interacting nature of electrons in semiconducting CNT relative to metallic CNT.   Our 

value of g<0.2 indicates that the electrons in semiconducting CNTS are interacting 

more strongly than the electrons in metallic CNTs. 
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Abbreviations 

 
1-D One dimensional 

2DEG Two-dimensional electron gas 

A/D Analog to digital 

CAD Computer assisted drawing 

CNT Carbon nanotube 

CVD Chemical vapor deposition 

DAQ Data acquisition 

EBL Electron beam lithography 

FET Field effect transistor 

IPA isopropanol 

LL Luttinger liquid 

MIBK methylisobutylketone 

MMA methylmethacrylate 

MOSFET Metal-oxide-semiconductor field-effect transistor 

PMMA polymethylmethacrylate 

RTS Random telegraph signal 

SEM Scanning electron microscope 

TDS Tunneling density of states 

UHV Ultra-high vacuum 
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Symbols 

 

a  graphite lattice constant 

a1,a2  graphene unit vectors 

A  noise magnitude 

β  correction to V2 dependence of noise 

CG  gate capacitance 

∆  bandgap 

D( )  density of states operator 

d  CNT diameter 

e  electron charge 

E  energy 

γ0  tight-binding integral 

γ1, γ2  rates into and out of an RTS system 

ħ  Planck’s constant 

I  current 

k  wave-vector 

kb  Boltzmann constant 

K  K point 

f  frequency 

n density of electrons 

N  number of electrons 
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q  wave vector from K point 

R  rolling vector 

R  resistance 

SI  current noise power 

SV  voltage noise power 

T  temperature 

τ  characteristic time of fluctuator 

V  voltage 

Vg  gate voltage 

Vsd  source-drain voltage 

Vth  threshold gate voltage (gate voltage where the device begins to conduct) 

vf  Fermi velocity 

ω  angular frequency 

z  exponent for 1/fz noise (z close to 1) 

ζ  Hooge noise parameter 
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