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Most hydrologic models use point rainfall data.  Point data do not account for 

spatial characteristics of a storm.  This research investigated the benefits of spatially- 

and temporally-varying rainfall data.  Semivariogram analyses were made to assess 

the importance of the following storm characteristics: size, shape, type, and velocity.  

Rainfall and flow gage data from the aridlands Walnut Gulch Watershed and regional 

data were used.  A model was developed to estimate transmission losses (TL) using 

hydrograph routing (temporally-varying data), then a procedure was developed to use 

radar rainfall data (spatially-varying data) to develop unit hydrographs (UH).  

Exponentially shaped UHs resulted from TLs.  UHs developed from radar data agreed 

closely with Thiessen-averaged UHs developed from rain gage data, indicating that 

radar UHs better represented the overall watershed processes than a UH based on a 

single rain gage. Therefore, accurate UHs can be developed from radar data.   
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CHAPTER 1  

INTRODUCTION 

1.1 . RESEARCH PROBLEMS IN ARIDLANDS HYDROLOGIC 

DESIGN 

1.1.1. Transmission Losses 

Transmission losses are known to be a significant process in arid and semi-

arid regions (Cornish, 1961; Keppel and Renard, 1962; Peebles et al., 1981).  

Transmission losses can be defined as flow that infiltrates into the channel bed, which 

is thus removed from the surface floodwave.  The result of transmission loss can be 

significant reductions in flow volume, peak flow, flow velocity, and flow rate 

(Jordan, 1977).  In some scenarios losses may not even be noticed because the water 

lost is replaced by local inflow, or surface runoff from the watershed entering the 

channel between an upstream and a downstream flow gage. 

Transmission losses are primarily a concern in arid and semi-arid regions 

because these streams tend to be ephemeral, flowing only in response to a rainfall 

event.  In contrast, streams in more humid climates tend to have some baseflow 

constantly.  The beds, banks, and floodplains of streams in arid regions are usually 

made up of coarse-textured alluvial material.  These soils have high infiltration 

potential, and they tend to have very low moisture content in the time between flow 

events, leading to high potential for losses to infiltration (Keppel and Renard, 1962).   

Hydrographs for arid and semi-arid regions also tend to have somewhat 

different characteristics than those for more humid regions.  The typical hydrograph 
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consists of three stages: a rising limb, a peak, and then a receding limb.  In arid 

regions, there is typically a delay to the start of runoff due to transmission losses, then 

a very rapid rise to the peak.  The receding limb of a hydrograph in an arid region 

also tends to be shorter than usual, which has also been attributed to transmission 

losses (Peebles, 1981) that occur when the rainfall intensity drops below the 

infiltration capacity of the channel bed. 

1.1.2. Analyses That Involve Radar Rainfall 

The rain gage is the traditional method for measuring rainfall.  These are 

placed in various locations around a region, so that rainfall can be measured at these 

points.  Rain gages are only capable of measuring point rainfall, so various estimation 

methods must be used in order to derive regional characteristics of the rainfall.  

Unfortunately, only a few rain gages are generally located within a region, resulting 

in a low density rain gage network.  With only a few rain gages, it can be quite 

difficult to determine the spatio-temporal variation of a rainfall event over the 

watershed area.  Because of these challenges, many in the field of hydrology have 

begun to consider either supplementing or completely replacing rain gage data with 

radar data.  Radar data are better able to characterize spatial variation of rainfall; 

however, these data are not without their own challenges.  Using both data sets, the 

rain gage data and the radar data, may allow the strengths of each to decrease the 

weaknesses of the other (Hoblit and Curtis, 2002). 

One reason that radar data are not yet commonly used in hydrologic 

applications is that the technology is still developing.  While radar has been used in 

many applications for a long time, the level of accuracy currently seen in weather 
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radar could be improved.  Common sources of error include blockage of the radar 

beam due to ground clutter, atmospheric refraction, wind drift moving the rain drops 

horizontally between the time they are registered by the radar beam and the time they 

hit the ground, and evaporation of rain drops as they fall through the air.  There is 

also potential for error in how the raw radar data are interpolated and analyzed to 

derive information about the rainfall intensity.  Despite these errors, many people 

believe that radar data has great potential for use in hydrologic applications (Gerstner 

and Heinemann, 2008; Sharif et al., 2004; Islam et al., 2008). 

1.1.1.1. Analysis of Spatial Data Problems Using Synthetic Data 

Synthetic data are often useful in the initial examination of research questions.  

Synthetic data can be designed to avoid the uncertainty that observed data are likely 

to include.  It can be helpful to use synthetic data in an initial study to observe trends 

and draw conclusions.  Similar studies can then be conducted using observed data to 

determine that the trends and conclusions identified remain true for observed data.  

Analyses investigating the benefit of spatial data sets are likely to be complex and the 

data themselves are likely to be complicated.  Using synthetic data when initially 

addressing these questions will eliminate some of the complexity and allow 

preliminary conclusions to be drawn.  Based on the outcome of the preliminary 

studies using synthetic data further studies can be conducted using real data sets to 

verify the preliminary findings.   

1.1.1.2. Z-R Relationship 

A radar beam does not directly measure the rainfall intensity experienced over 

the watershed.  Instead, the beam is reflected back off of the rain drops it encounters 

in the air and returned to the radar station.  This reflectance measurement must be 
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related in some way to the rainfall amount in order to compute useful information 

such as the rainfall intensity (Gerstner and Heinemann, 2008).  Due to many 

investigations, a power model equation, known as a reflectance (Z)-rainfall rate (R) 

equation, has been identified as the best method of transforming reflectance data (in 

mm6/m3) to a rainfall rate (mm/hr).  The standard form of the equation is: 

bZ AR=      (1-1) 

where Z is reflectance (mm6/m3), R is rainfall rate (mm/hr), and A and b are 

coefficients.   

A single, universal transformation equation has not been identified, so the 

choice of which equation to use can result in large errors in rainfall intensity 

measurements.  This explains why the Z-R transformation equation is often 

mentioned as one of the largest sources of error in radar data.  Many equations have 

already been developed for various climates and rainfall characteristics, but the 

National Weather Service has identified the following equation as being fairly widely 

applicable (Ulbrich and Miller, 2001): 

1.4300Z R=      (1-2) 

It is used for most of the United States and for most rainfall types.  For specific 

rainfall scenarios a few other equations are used by the National Weather Service.  It 

is also possible, if radar and rain gage data are available for the same location, to 

calibrate a new, location specific Z-R transformation equation, if desired.  The 

problem at this point is that the value of calibrating a Z-R relationship for a location 

of interest is not known. 
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1.1.3. Analysis of Factors Affecting the Semivariogram 

Semivariograms are used to illustrate spatial or temporal variance in a dataset.  

They have been commonly used in hydrologic modeling applications as input to the 

kriging method, which is a method that can be used to predict rainfall for areas in 

which data are not present (Cheng et al., 2007).  Semivariograms are represented 

using the notation γ(h), where h is a given separation distance, which is related to the 

size of the grid used in the calculations.  Though using a regular grid is advantageous 

in calculating semivariograms, it is not absolutely necessary.  The value of γ(h) is 

typically plotted against h, with two characteristics influencing the shape of this plot.  

The first characteristic, the radius of influence, is the separation distance (h) at which 

point the semivariogram plot approaches a constant value.  The second characteristic, 

the sill, is the portion of the semivariogram where γ(h) is approximately equal to the 

sample variance (Hromadka et al., 1993).   

Rain gage data can be used to compute semivariograms; however, rain gages 

are rarely found in a grid pattern, and they are rarely found in sufficiently high 

densities in a given region to compute accurate values of the sill and radius of 

influence.  These factors can make calculating semivariograms somewhat 

challenging, so another method of calculating semivariograms in order to make 

rainfall predictions could be desirable.  One possible source of input data to be 

considered would be radar data.  Radar data would provide more accurate spatial 

information about rainfall and would not face the problem of a low density of 

measurements over a watershed of interest.  The objective of this research was to 

determine the effect that various storm characteristics would have on the calculated 

semivariogram.     
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1.1.4. Rain Gage Density Analyses 

Rain gages are the traditional method of measuring rainfall.  An individual 

rain gage measures rainfall at a specific point, thus the term point rainfall is used to 

describe these measurements.  Many possible factors can cause a rain gage to 

incorrectly measure rainfall, including wind drift, blockage by trees or other 

structures located near the gage, and mechanical failure, among others.  However, a 

major problem with rain gage measurements is that they often fail to reflect the 

spatial variability of rainfall.  The accuracy of watershed-wide rainfall estimates 

derived from rain gages will depend on both the number of rain gages located within 

the watershed and also on their specific locations relative to each other.  Larger 

numbers of rain gages within a watershed will better indicate spatial variations in the 

rainfall, and they will reduce the effect of inaccurate measurements due to an 

individual rain gage.  The location of the rain gages relative to each other is equally 

important.  A high number of rain gages clustered very close together in a large 

watershed will not provide a good indication of spatial variations in rainfall, whereas 

a network of gages spaced out across the entire watershed will provide a good 

understanding of any spatial characteristics of the rainfall (Sieck et al., 2007). 

1.1.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data 

Unit hydrographs are frequently used tools in hydrologic analysis and design.  

A unit hydrograph can be defined as a hydrograph that results from exactly one inch 

of precipitation excess falling uniformly over a watershed during a specific time 

interval.  The ultimate purpose of the unit hydrograph is to transform precipitation 

excess into direct runoff.  The first step to deriving a unit hydrograph is to separate 
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losses.  Losses needed to be separated from runoff to obtain direct runoff, while initial 

abstraction and losses need to be separated from precipitation to obtain precipitation 

excess.  Two methods are commonly used to derive unit hydrographs.  The more 

simple method, known as the rainfall-excess reciprocal method, divides each ordinate 

of the direct runoff by the reciprocal of the precipitation excess in order to obtain the 

ordinates of the unit hydrograph.  This ensures that the unit hydrograph ordinates will 

sum to one.  The second option, known as the least squares analysis, is a regression 

analysis that uses the precipitation excess and direct runoff to determine the optimum 

values of unit hydrograph parameters.  A specific distribution must be assumed for 

the unit hydrograph in order to use this method (McCuen, 2005). 

 Unit hydrographs are typically used in design to predict the watershed 

response to a given storm event, e.g., the likely runoff that a hydrological design 

would need to be able to accommodate.  The procedure is to calculate a unit 

hydrograph and then convolve that with a particular design storm.  Convolution is a 

mathematical operation that involves multiplication, translation, and then addition, 

resulting in the ordinates of the direct runoff.  This provides information about the 

runoff that would result from a given storm, which can then be used to properly size a 

hydrologic design (McCuen, 2005). 

 Precipitation information is usually obtained from rain gages in deriving unit 

hydrographs.  Unfortunately, rain gages can not often provide information about the 

spatial characteristics of rainfall due to the fact that dense rain gage networks are rare, 

so the ability to provide rainfall information from an alternate source could improve 

the unit hydrograph derivation procedure.  The ideal choice would be radar data 
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because most of the United States falls within the coverage area of a radar station, and 

because it can easily provide more spatial information about rainfall.   

1.2. GOALS AND OBJECTIVES 

1.2.1. Transmission Losses 

Given the potential effect of transmission losses on the characteristics of a 

runoff hydrograph, channel characteristics might be a significant factor in the 

response of an aridlands watershed.  As a unit hydrograph is used to reflect a 

watershed response, the effect of transmission losses on unit hydrographs is currently 

a need for hydrologic analysis and design in aridlands.  One objective of this research 

was to develop a method to estimate transmission losses along a channel using a 

hydrograph method, rather than the typical flow volume reduction method (Lane et 

al., 2007).  Transmission losses must account for infiltration as a flow hydrograph is 

routed downstream. 

1.2.2. Analyses Involving Radar Rainfall 

The possibility of using radar rainfall data in hydrologic applications is still a 

fairly new idea that has not yet been thoroughly investigated.  Synthetic data sets can 

be used to investigate the limitations of point rainfall data.  With respect to this aspect 

of the research two objectives were addressed.  First, the abilities of two averaging 

methods, the Thiessen polygon and the arithmetic averaging methods, to make 

regional rainfall estimates based on point rainfall data are investigated.  Second, 

regional rainfall estimates derived using these averaging methods based on point data 

will be compared to a known, synthetic rainfall surface.  This will illustrate the 
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failings of point rainfall data and provide evidence that adapting hydrologic models to 

use spatial rainfall is beneficial. 

The most readily available spatial data set that could be used in hydrologic 

applications is radar data.  After studies using synthetic data have provided evidence 

that spatial data could be beneficial to hydrologic application, studies investigating 

the potential of radar data to serve as input to hydrologic models should be studied.  

Since semivariograms are often used to estimate rainfall when point rainfall data are 

lacking, the possibility of using radar data as an input should be evaluated.  In doing 

this, the effect of varying Z-R transformation equations could also be investigated.  

The objective of this research is to determine whether radar data could be used 

instead of rain gage data in calculating storm semivariograms, and to investigate the 

effect of varying the coefficients of the Z-R transformation equation.  A final 

objective involving radar rainfall data is to assess the potential benefits of calibrating 

location-specific Z-R transformation equations.  Typically the National Weather 

Service’s standard equation is used; however, calibrating equations for a specific 

location or storm type could improve the accuracy of the rainfall predictions made 

using the radar data. 

1.2.3. Analysis of Factors Affecting the Semivariogram 

In order to demonstrate that spatial data are beneficial to hydrologic 

applications, it is necessary to address the limitations of point data.  As previously 

mentioned, semivariograms are often used to interpolate rainfall when point data are 

not available.  The objective of this part of the study was to investigate the factors 

that influence the calculation of a storm semivariogram and to determine which of 
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those factors have the most significant influence.  Four factors to be investigated are 

the shape, size, and velocity of the storm, and the storm type (peaked vs. uniform).   

1.2.4. Rain Gage Density Analyses 

One of the most serious limitations to rain gage density is the lack of high-

density rain gage networks.  Semivariograms are used to predict rainfall when point 

data are not available for an area, but the accuracy of semivariograms based on a low-

density rain gage network must be called into question.  The objective of this study is 

to investigate the effect of varying rain gage network densities on the calculation of a 

storm semivariogram. 

Semivariograms are not the only hydrologic application that could be 

influenced by rain gage density.  Rain gage data can be used to make regional 

estimates of rainfall amounts using several averaging methods.  This study will 

investigate the effect that rain gage density has on the accuracy of regional rainfall 

estimates. 

1.2.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data 

Unit hydrographs are frequently used tools in hydrologic applications, but 

they are usually derived from rain gage measurements taken at a single rain gage.  As 

the purpose of the unit hydrograph is to predict the watershed response to a given 

storm event, it would seem that spatial data could be of great benefit in the unit 

hydrograph procedure.  Several topics related to the unit hydrograph procedure need 

to be investigated.  First, the limitations of point data in the unit hydrograph 

procedure must be evaluated.  The variation of unit hydrographs derived based on 

different rain gage hyetographs within the same area of the watershed should be 



 

 11 
 

investigated.  A similar investigation should evaluate the level of variation present in 

unit hydrographs derived based on rain gages located in different subareas of the 

watershed.  Second, the ability of radar rainfall data to produce accurate unit 

hydrographs should be investigated.  Finally, the impact of unit hydrograph variation 

based on rainfall input on design calculations using the unit hydrograph should be 

assessed.  The true level of significance of variations in unit hydrographs based on the 

rainfall input used in the derivation process depends on the level of variation that 

would exist in design calculations based on the unit hydrographs. 

1.2.6. Summary of Research Objectives 

• The overall goal of this research was to demonstrate the value of radar rainfall 

data to hydrologic applications 

• The research objectives included: 

o Develop a channel routing-based transmission loss estimation method  

o Determine the benefit of calibrated radar-rainfall relationships 

o Evaluate storm factors influencing the calculated semivariogram 

o Evaluate the impact of rain gage density on regional rainfall estimates 

o Determine the benefit of using radar rainfall as input to unit 

hydrograph procedure 
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CHAPTER 2  

LITERATURE REVIEW  

2.1. TRANSMISSION LOSSES 

2.1.1. Infiltration 

Infiltration has been found to be one of the most important hydrological 

processes in arid regions.  Because many people have chosen to model transmission 

losses as infiltration losses the process of infiltration warrants further study.  McCuen 

et al. (1981) examined possible methods for determining parameters for both the 

Green-Ampt infiltration equation and the Brooks-Corey procedure.  Both of these 

equations are commonly used in determining infiltration losses; however, both 

require values for parameters that can be difficult to determine in areas where soil 

parameter measurements are not available.  The main interest in this study was 

determining whether or not any trend existed in these parameters based on soil texture 

classes.  This study determined that the parameters for these infiltration models do 

vary across the soil texture classes (McCuen et al., 1981).    

Haws et al. (2004) also studied infiltration parameters, though this study 

focused on determining representative rates for field-scale rates.  Determining these 

values can be difficult because soil can be extremely variable in the field.  To 

determine these parameters steady-state infiltration was measured at a local scale, a 

hillslope scale, and a landscape scale.  Data analyzed by geostatistical methods 

indicated that the sample variance decreased and the spatial correlation of infiltration 
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rates increased with depth.  This study also showed that the typical infiltrometer ring 

method of measuring infiltration may not be sufficient to capture the spatial 

variability of infiltration properties (Haws et al., 2004). 

Meadows et al. (2005) noted that typical methods of measuring infiltration 

properties in the lab tend to destroy the structure of the soil samples, which limits the 

ability to truly determine the infiltration properties.  Also, most field methods produce 

average values, and do not fully capture the spatial variation within the field.  In order 

to correct these problems, Meadows et al. developed a procedure that could determine 

the unsaturated hydraulic properties of a soil sample.  The methods used in the 

laboratory under this procedure were then compared to infiltration tests conducted in 

the field.  The laboratory methods developed were found to agree reasonably well 

with the field tests, with some differences possibly due to errors introduced in the 

field (Meadows et al., 2005). 

Along with the Green-Ampt infiltration equation, Horton’s infiltration 

equation is commonly used to model infiltration.  Horton’s equation states that: 

( ) Kt
c o cf f f f e−= + −      (2-1) 

In equation 2-1 f represents the infiltration capacity, fc represents the infiltration 

capacity of the soil after an extended wetting period, fo represents the initial 

infiltration capacity, K is a constant related to the decay of infiltration rate with time, 

which can be related to soil cover, and t represents time.  This equation is most often 

used to construct infiltration-capacity curves for storm events, which are then used to 

determine rainfall excesses and losses.  The parameters of this equation are a function 
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of surface texture and cover and both the initial and the ultimate infiltration capacities 

tend to be higher for sandy soils than other soil types (McCuen, 2005). 

 Horton’s equation as presented above only applies when the rainfall excess is 

greater than the infiltration capacity, as the infiltration capacity then decreases at 

maximum capacity.  However, when the rainfall excess is less than the infiltration 

capacity, the decrease in capacity occurs at a different rate.  To determine this rate the 

mass-infiltration method can be used.  The equation for this method is: 

( )
(1 )Kto c

c

f f
F f t e

K
−−

= + −     (2-2) 

In equation 2-2 F represents the total mass of water infiltrated at time t, and the rest of 

the parameters were explained with Horton’s equation (2-1).  This equation can be 

used to generate a mass-infiltration curve.  The infiltration capacity (f) can be 

computed for any value of F from the mass infiltration curve.  The infiltrated volume 

F, assumed to be equal to the total rainfall volume up to some point in time t, can be 

computed when the rainfall volume is less than infiltration capacity, and then the 

infiltration capacity itself can be calculated (McCuen, 2005). 

2.1.2. Sealing of the Surface Soil 

A common problem in arid environments is soil crusting or sealing, in which 

the top layer of soil has a greater density and shear strength than the lower soil layers, 

as well as finer pores and lower hydraulic conductivity.  This surface seal can impact 

the ability of the soil to infiltrate water, which has already been declared to be a major 

hydrologic process in these climates.  Carmi and Berliner (2008) studied the factors 

that influence the generation of runoff under natural rain conditions.  The factors that 

were considered in the study were permeability of the crust, the roughness of the 
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crust, the soil salt content, and the time between rain events.  Two treatments were 

evaluated, in the first treatment a crust built up over a long period of time, while the 

second treatment involved a complete destruction of any crust prior to the start of the 

experiment.  The effects caused by the differences in treatment were evident only for 

the first two rainfall events, and thereafter did not cause differences in runoff 

generation.  Roughness was shown to increase more markedly on plots that initially 

had a crust destroyed than the plots on which a long-term crust had developed.  For 

most of the plots runoff was found to be similar between the two treatments; 

however, a few of the plots that had their crusts destroyed exhibited much higher 

runoff than the others.  The results of this study indicated that the saturated hydraulic 

conductivity of the upper soil layer was not related to the generation of runoff from 

the plot.  Results also showed a greater correlation between runoff and rainfall 

intensity as the time between rainfall events decreased (Carmi and Berliner, 2008). 

Ben-Hur and Lado (2008) also evaluated the effect of soil surface sealing on 

infiltration rates.  The interest of this study was in wetting conditions that would be 

experienced in the field, while many previous studies had focused on fast (and in 

some cases unrealistic) wetting conditions.  The effects of various initial wetting 

conditions were therefore evaluated, along with interactions between the initial 

wetting condition and the formation of surface seals, infiltration rate, runoff, and soil 

loss.  It was found that increases in soil wetting increased aggregate disaggregation, 

which increased seal formation, runoff, and soil loss.  It was also seen that higher clay 

content made soil aggregates stronger and thus led to lower seal formation, runoff, 
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and soil loss.  Also, the wetting rate was seen to be more influential to soil loss than 

to runoff generation (Ben-Hur and Lado, 2008).     

2.1.3. Accounting for Transmission Loss by Volume Loss 

Much of the research conducted into transmission losses so far has focused on 

accounting only for the loss in volume of flow, and in some cases accounting for the 

reduction in peak flow.  Several of these papers are presented in the discussion below.  

Keppel and Renard (1962) measured transmission losses in two streams located in 

Walnut Gulch, the experimental watershed located near Tucson, Arizona.  They 

provided a description of the observations made in the arid climate of Arizona to aid 

researchers as they began to understand the importance of transmission losses.  

Keppel and Renard found that a shorter rise time was common in the downstream 

hydrograph compared to the upstream hydrograph, and that the volume of runoff 

measured at the downstream station was often much less than that at the upstream 

station (Keppel and Renard, 1962). 

 Jordan (1977) recognized the importance that a comprehensive understanding 

of transmission losses could have to all types of hydrologic modeling, and attempted 

to develop general relations that could be used to estimate transmission losses when 

little observed data were available.  He calculated the volume of flow at upstream and 

downstream gaging stations from discharge records when flow was known to be due 

mainly to surface flow.  Ultimately Jordan was able to develop an equation to 

calculate volume loss over the length of a stream section and also an equation to 

predict volume loss in the first mile of that stream section.  He believed that the 
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second equation would be more useful in comparing transmission losses between 

different events and streams (Jordan, 1977). 

 Walters (1990) noted that most of the research into transmission losses had 

been applied to arid regions in the United States and developed regression equations 

that could be applied to transmission losses in Saudi Arabia.  He based his work on 

that of Jordan (1977); developing several equations that could be used to estimate 

transmission losses, one of which estimated losses only for the first mile of the 

stream, allowing for better comparison between different streams.  He also took into 

account the influence that antecedent moisture could have on the infiltration process 

responsible for transmission losses, which had not previously been examined in detail 

(Walters, 1990). 

 The 2007 edition of the National Engineering Handbook included a chapter on 

transmission losses.  The methods were developed to account for transmission losses 

both when measured flow data were and were not available.  These methods allow 

prediction equations for outflow volume to be developed given a set of observed data, 

and they allow prediction equations for peak flow rate to be developed.  Stated 

disadvantages to this method include a lack of hydrograph routing, no consideration 

of attenuation due to storage, and no consideration for the influence of antecedent 

moisture condition (Lane et al., 2007). 

2.1.4. Accounting for Transmission Loss by Hydrograph Routing 

As discussed above, the majority of research into transmission losses has 

focused on accounting for transmission losses on a volume basis, rather than 

accounting for the losses as the flow is routed through the channel.  There have been 



 

 18 
 

a few studies focusing on accounting for losses through the duration of the routing 

procedure.  Cornish (1961) acknowledged that classical routing methods could not be 

used in arid climates due to the assumption in those methods of constant flow 

volume.  Cornish studied and reported on the characteristics and properties of flow in 

a channel that were revealed by inflow and outflow hydrographs for a channel subject 

to transmission losses.  After studying these characteristics and properties, he was 

able to develop a technique for channel routing that could be used for river 

forecasting.  Two routing methods were studied, a Verdigris-routing method and a 

modified Kohler routing method.  Both methods were found to give acceptable and 

similar results, though the Kohler method was noted to be the faster, simpler method.  

Cornish concluded this study by providing an example calculation proving that the 

channel bed material was capable of absorbing the volume of water found to have 

been lost in the observed flow records (Cornish, 1961). 

Moench et al. (1974) used a convolution integral that was already accepted to 

represent the interactions between a stream and groundwater when little information 

about the aquifer itself was available.  The convolution integral enables computation 

of variations in both transmission losses and base flow in a channel on a continuous 

basis, which is much closer to reality than merely calculating volume of loss.  This 

technique also utilized the unit response method, which is based on the superposition 

of individual responses, to route the hydrograph in this example.  The results of this 

study indicate how necessary it is to account for transmission losses and base flow 

when evaluating discrepancies between observed and modeled flow, though in 
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general fairly good agreement was found between the observations and the values 

predicted by the model (Moench et al., 1974). 

2.2. RAIN GAGE MEASUREMENTS 

2.2.1. Temporal and Spatial Sampling 

Meselhe et al. (2009) evaluated the response of a conceptual lumped 

hydrologic model (HEC-HMS) and a physically based distributed hydrologic model 

(MIKE SHE) to changes in temporal and spatial rainfall sampling.  This research was 

conducted in the Goodwin Creek experimental watershed in northern Mississippi, 

which has a network of 30 rain gages and 14 flow gages.  To evaluate the effects of 

temporal rainfall sampling both models were run using rain gage data on a 15 minute 

time step, then on a 30 minute time step, a 1 hour time step, 2 hour time step, and a 6 

hour time step.  To evaluate the effects of spatial rainfall sampling both models were 

run using all 30 of the available rain gages, then 20 of the rain gages, 10 of the rain 

gages, 5 of the rain gages, 2 rain gages, and 1 of the rain gages.  Unsurprisingly, the 

distributed model (MIKE SHE) was found to perform better, in terms of reproducing 

observed hydrographs and fitting peak discharges, than the conceptual lumped model, 

and it was also found to be more sensitive to both the temporal and spatial rainfall 

sampling schemes.  The overall conclusion of this research was that coarse sampling, 

whether it is temporally or spatially coarse, can introduce significant errors in 

hydrologic model predictions (Meselhe et al., 2009). 
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2.3. RADAR RAINFALL 

2.3.1. Sources of Error in Radar Data 

Many sources of error exist in radar rainfall data.  Many studies have been 

conducted to determine the best methods to correct these errors.  Chumchean et al. 

(2006a) determined four main sources of error in radar rainfall measurements and 

attempted to determine the relative importance of these sources.  The sources of error 

cited in this paper were variability in the vertical profile of reflectivity, error in 

measuring the radar reflectivity, error in the conversion from reflectivity to rainfall 

rate, and finally error in using rain gages (points) to represent mean-aerial rainfall 

over a radar pixel during the calibration of radar data with rain gage data.  

Chumchean et al. determined that rain gages were not able to represent mean-aerial 

rainfall with high accuracy and that radar reflectivity measurement errors were due to 

radar beam spreading with distance from the radar.  Two mean field bias-adjustment 

methods were developed and tested in this study, one involving the estimation of bias 

at each time step using sample observations and the other involving a Kalman filter to 

estimate bias.  It was found that both methods were able to decrease error in radar 

rainfall as levels of error correction were added (Chumchean et al., 2006a). 

Chumchean et al. (2006b) addressed the errors in the measurement of 

reflectivity and in the conversion from reflectivity to rainfall rate.  The study 

developed a statistical basis that could be used to correct residual errors in the radar 

data.  To do this radar data were compared to rain gage data, and a Kalman filter was 

used to update the bias and error variance used in the procedure.  This study aimed to 

determine the number of rain gages necessary for accurate results and to determine 
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differences in the bias due to storm types.  The research concluded that larger 

numbers of rain gages led to more representative results, and that biases could not be 

corrected using this procedure for convective events; however, for climatological and 

stratiform events the Kalman filter procedure could be used to correct biases in the 

radar data (Chumchean et. al, 2006b). 

Islam et al. (2008) acknowledged that radar data were still less accurate than 

rain gage data when rainfall values needed to be estimated in a quantitative manner.  

The goal of this particular study was, therefore, to evaluate several methods that 

could be used to bring radar rainfall data and rain gage data into closer agreement 

with each other.  The specific objectives included adding a space-time interpolator to 

radar scans, adding a wind-drift correction scheme, and adding an attenuation 

correction scheme.  It was determined that a 10-minute scan interval may not be 

frequent enough to truly capture the spatio-temporal variation in rainfall rates, thus 

leading to the desire for the space-time interpolator.  The problem of wind-drift was 

addressed by a Lagrangian-based trajectory algorithm that could calculate the 

displacement of precipitation between the radar scan height and the ground.  Finally, 

the attenuation correction algorithm developed previously by Wexler and Altas 

(1963) was added to the procedure.  These correction schemes were then tested on six 

storms occurring in 2000 in the city of Winnipeg (Islam et al., 2008). 

2.3.2. Error and Bias Correction of Radar Data 

Various sources of error have been cited in the literature to explain the 

frequent inaccuracies of radar rainfall estimates.  Prior to the work of Seo et al. 

(1999) the focus of error correction was to minimize error variance.  Seo et al.  
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proposed a procedure that could be used at the National Weather Service (NWS) 

River Forecast Center (RFC) and the Weather Forecast Offices (WFO) to adjust bias 

in radar data based on the operational experience and existing procedures in those 

offices.  The emphasis was to create a procedure that was unbiased, intuitive, and 

parsimonious, rather than just focusing on minimizing the errors.  To achieve the 

intuitive and parsimonious goals in this procedure a simple Kalman filtering method, 

recursive estimation via exponential smoothing, was chosen for use.  Radar-rain gage 

pairs were used to determine mean field bias in order to validate the procedure.  

Overall this procedure was shown to be unbiased in the long run and it was found to 

perform well under a wide variety of conditions related to rain gage network density 

and radar calibration (Seo et al., 1999). 

 Jordan et al. (2000) explained that the main resistance to using radar data in 

hydrology was due to concern about errors in radar precipitation measurement.  Their 

study examined the statistical properties of error related to the radar rainfall data 

sampling strategy.  They believed that this would be the first step in the design of 

hydrological models that could withstand the significant amount of measurement 

noise that existed in radar data.  They determined that errors of larger magnitude 

existed in a five-minute precipitation sampling scheme than in a ten-minute sampling 

scheme.  They also concluded that spatial averaging of precipitation estimates was 

not an efficient means to reduce errors related to poor temporal sampling schemes.  It 

was also determined that a time integration process generally led to a smaller mean 

standard error.  A final conclusion drawn from the study was that parameters 
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controlling error distributions increased for hourly rainfall accumulations compared 

to instantaneous accumulations (Jordan et al., 2000). 

 Sharif et al. (2002) used simulation rather than observed data to examine the 

propagation of error in radar rainfall.  An atmospheric model was used to simulate a 

convective storm and generate radar data.  To determine the effect of radar errors on 

hydrologic predictions they also modeled runoff over the land surface using Horton’s 

equation.  To compare the radar rainfall estimates to “true” rainfall measurements the 

watershed total rainfall volume ratio, the root-mean-square error in the simulated 

hydrograph, the total runoff volume ratio, and the runoff peak discharge ratio were 

evaluated.  The results of the study indicated that errors related to the radar 

measurement range and the orientation of the radar were amplified in the modeled 

runoff, and that errors in radar calibration could either reduce or amplify range and 

orientation errors.  The errors in predicted runoff were found to be relatively small 

within a range of 70-km from the radar, but they increased steadily beyond this range.  

From the study Sharif et al. (2002) concluded that range and orientation related error 

could not be addressed adequately in calculating only storm total volumes and that 

orientation errors could be reduced by either decreasing the resolution or reducing the 

width of the radar beam. 

 Sharif et al. (2004) attempted to understand the effects that the distance 

between a radar station and a watershed can have on radar rainfall estimates for that 

watershed.  They were particularly interested in the effects on the average rainfall 

volume for the watershed, the peak discharge in runoff from the storm event, the 

runoff volume, and the root-mean-square error of the runoff hydrograph.  Again 
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Sharif et al. worked with simulated data rather than real data, in this case using a 

radar simulator to create radar-rainfall estimates that were used as input to a 

physically-based, infiltration-excess hydrologic model.  Statistical analyses were 

performed to determine relationships between rainfall volume errors, runoff volume 

errors, peak discharge errors, and their range effect.  From the study Sharif et al. 

determined that the relationship between peak discharge errors and the runoff volume 

errors were not dependent on the radar range or the magnitude of rainfall error; 

however, errors in the rainfall volume were found to be amplified during the 

transformation between radar reflectivity and rainfall estimates.  They again 

concluded that errors began to increase significantly beyond a range of 80-km (Sharif 

et al., 2004). 

 Wood et al. (2000) further investigated the accuracy of radar rainfall estimates 

calibrated with rain gage data.  The method of calibrating the radar data in this case 

involved combining a single rain gage with a radar estimate, allowing the calibration 

factor to vary in time.  The study assessed the ability of a single rain gage and a radar 

station to estimate rainfall at several important spatial scales.  The dynamic 

calibration factor described above was compared to a static calibration, which is not 

allowed to vary in time, and a hybrid calibration factor.  At short distances from the 

radar the hybrid calibration factor was allowed to vary in time and at larger distances 

the hybrid calibration factor more closely resembled a static calibration factor.  The 

results of this study showed that the hybrid calibration factor performed better than 

rain gages, uncalibrated radar estimates, and statically calibrated radar estimates for 

most of the rain gages in the study watershed.  These results can be used to draw 
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conclusions as to the rain gage network density required in combination with a radar 

station to improve the ability to accurately predict flood events (Wood et al., 2000). 

Borga et al. (2002) identified three categories of radar errors: miscalibration 

of radar system and lack of electronic stability of the radar, the radar detection 

environment, and fluctuations in the atmosphere.  They investigated possible 

processing scenarios that could correct for systematic and range-dependent radar 

errors.  The focus in range dependent errors was within 30 to 70-km from the radar 

station, which is within the range that Sharif et al. (2002 and 2004) reported to lead to 

acceptable accuracy.  The results of the study, however, indicated that a range smaller 

than 70-km can affect the accuracy of radar rainfall estimates.  The combined 

adjustment technique using rain gage-based radar adjustments utilized was shown to 

reduce the overall error in rainfall estimates over the study watershed, implying that 

homogeneity in the accuracy of radar rainfall estimates with respect to range and 

scanning elevation is necessary in order to apply gage-based adjustment of radar data 

(Borga et al., 2002). 

2.3.3. Rain Gage-Adjusted Radar Rainfall Measurements 

Many people believe that combining radar data and rain gage data could help 

eliminate many of the errors and biases in radar data discussed above, and that 

merging the two datasets could reduce the limitations of both. There are equally as 

many potential sources of error in rain gage data as there are in radar data.  Sieck et 

al. (2007) evaluated several sources or rain gage error, focusing on rain gage location, 

rain gage calibration, and correction for wind effects.  The purpose of this research 

was to illustrate the difficulties that could be encountered in obtaining acceptably 
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accurate rain gage data, and to prevent future users from blindly accepting rain gage 

data without considering the potential inaccuracies.  The research was conducted in 

the Goodwin Creek experimental watershed in Mississippi, which had a network of 

43 rain gages.  They examined rainfall data for two storms, and between those events 

they found a total of eight rain gages reporting suspicious or inaccurate data.  Rain 

gages located above the ground surface were compared to rain gages located in pits at 

the ground surface.  The above-ground rain gages were found to catch less rainfall 

than the in-ground rain gages, which is likely a direct result of wind effects.   

In evaluating the necessity of calibration of rain gages Sieck et al. determined 

that type of rain gage (such as tipping bucket or weighing rain gage) influenced the 

necessity of calibration, and that accuracy of rainfall measurements made even after 

calibration was completed was dependent on the rainfall intensity.  Wind forces 

raindrops to fall at an angle, which will be some function of the speed of the wind and 

the diameter of the raindrop), so wind tends to cause above-ground rain gages to 

catch less rainfall than rain gages at the ground surface.  In this study tipping bucket 

rain gages were seen to have an undercatch of 2 to 6% compared to in-ground rain 

gages, while weighing bucket rain gages were found to have an undercatch of 1.5 to 

3.5%.  Sieck et al. (2007) concluded that properly installing and maintaining rain 

gages, as well as frequently calibrating them, is necessary for accurate rain gage 

measurements.  Calibration at a variety of rainfall intensities improves the effects of 

calibration.  Location of the rain gage is very important to data accuracy, and placing 

several rain gages close together can provide redundancy in data that is necessary for 

quality control.  Finally, the wind effect influences the catch of above-ground rain 
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gages; however, it is still difficult to exactly quantify the effect of wind on rain gage 

catch (Sieck et al., 2007).     

Westcott et al. (2008) compared rain gage data and radar data on a daily and a 

monthly time basis over three years in the Midwestern United States.  They 

determined that radar data and rain gage data tended to agree to within approximately 

25%.  They also found that as actual precipitation totals increased the radar 

precipitation estimates tended to be equal to or smaller than the rain gage estimates; 

however, when precipitation totals were lower, the radar estimates tended to be larger 

than the gage estimates.  This study concluded that a multi-sensor (including radar 

and rain gage data) improved precipitation estimates on a daily basis over radar data 

alone (Westcott et al., 2008). 

Hoblit et al. (2003) attempted to create a seamless radar map over the state of 

Florida while using gage-adjusted radar precipitation estimates.  The purpose of this 

was to eliminate discontinuities that occur in radar estimates when two radar stations 

have overlapping ranges.  The rain gage data were used to improve the accuracy of 

the radar estimates.  A spatial adjustment algorithm was used to adjust the radar data 

to the gage data after a uniform radar-rain gage ratio was found to be insufficient.  

The spatial adjustment method adjusted each radar pixel based on a weighted average 

of ratios from nearby gages and did not actually force the radar data to exactly match 

the gage data at each gage location.  This algorithm was found to slightly warp the 

gage-adjusted radar data so that rainfall estimates were generally close to the rain 

gage estimates without compromising the spatial signature of the radar data (Hoblit et 

al., 2003).  
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 Vieux et al. (2009) compared rain gage rainfall data, raw radar data, and rain 

gage corrected radar data as input dataset to the model Vflo.  They were interested in 

determining how the initial parameter estimates and input datasets influenced the 

ability of the model to predict runoff.  Rainfall data from two typhoon events and two 

heavy convective storm events were used as input to the model.  The results of this 

research indicate that rain gage-adjusted radar data, which has been corrected for bias, 

provides more accurate runoff predictions than either raw rainfall data or rain gage 

data.  Raw radar data was found to underestimate peak discharges, while rain gage 

data was found to produce inconsistent results (Vieux et al., 2009). 

2.3.4. Accounting for Spatial Variability of Rainfall 

A major advantage to radar data over rain gage data is the ability to better 

show the spatial variability of rainfall events.  Arnaud et al. (2002) studied the 

sensitivity of hydrological models to the spatial distribution of rainfall.  They were 

especially interested in determining how spatial variability influenced flood 

prediction ability.  Three models using different methods of predicting runoff were 

evaluated in this study.  The three models were applied to four hypothetical 

homogeneous watersheds, with the sensitivity of the model being determined by the 

differences between the observed peak flow distributions.  It was found that 

differences in the flows increased the most for larger watersheds because the 

variability in rainfall increases over the watershed.  Based on the results of this study 

Arnaud et al. (2002) concluded that the calibration of these hydrologic models can be 

severely affected when spatially averaged rainfall is used rather than the actual rain 

fields. 



 

 29 
 

 Cheng et al. (2007) studied the spatial and temporal effects of rainfall in 

Taiwan.  Ordinary kriging was used to examine the efficiency and the accuracy of 

rainfall events with particular attention paid to events in which rain gage data were 

missing.  The accuracy of various weighting procedures was evaluated under 

conditions of missing data and complete data sets.  Spatial variation of the rainfall 

was described by semivariograms while the kriging, co-kriging, and block kriging 

methods were used to interpolate the rainfall.  When data were missing, block kriging 

was found to most accurately estimate the rainfall distribution, and overall the results 

showed the interpolation processes to represent the observed rainfall well.  This 

implies that the rainfall interpolation process used can be used to create a spatio-

temporal rainfall input for hydrologic models (Cheng et al., 2007). 

2.3.5. Runoff Simulations Using Radar Data 

Runoff simulation and prediction is one aspect of hydrology that could be 

greatly improved by the use of radar rainfall estimates.  Peters and Easton (1996) 

believed that improved techniques of predicting runoff could result from the wide 

availability of radar data.  They developed an adaptation to the Clark runoff model 

that could model translation and linear storage attenuation of surface runoff.  The 

rainfall excess from storm events was lagged to the watershed of the outlet based on 

grid cells and a runoff hydrograph for the event was calculated.  The hydrographs 

created by this model provided a reasonably good fit to the observed event 

hydrographs.  Peters and Easton (1996) concluded that, if a storm with large spatial 

variability were modeled using this method, large differences between the modeled 
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and observed hydrographs could result because of the grid-based calculation of losses 

and translation of rainfall excess. 

 Vieux et al. (2005) also evaluated a runoff simulation method, with their 

interest lying in predicting runoff more accurately in urban environments.  A 

distributed model that used the spatial resolution of radar data was developed and led 

to the discovery that the spatial resolution influenced the prediction accuracy of the 

model.  This phenomenon was found to scale with the size of the watershed being 

studied.  The model developed was a physics-based hydrologic model, the results of 

which indicated that fairly accurately provide real-time rainfall-runoff prediction was 

possible.  The data provided could be used to more accurately predict floods for 

specific locations (Vieux et al., 2005). 

2.3.6. Effects of Storm Type and Movement 

 It has long been suspected that the type of storm event can influence radar 

rainfall estimates, and movement of a storm has also been found to affect rainfall 

estimates.  March et al. (1979) developed regression equations that related storm 

rainfall depth to both watershed topography and storm type.  Equations were 

developed for six different storm types, as well as one equation that considered all of 

the storm types.  Results of this study showed that equations considering storm type 

as a variable did not more accurately predict rainfall, compared to the rainfall 

measured by rain gages, for specific sites than equations that did not consider storm 

type (March et al., 1979).   

 Lee and Huang (2007) considered storm movement to be one of the more 

important factors responsible for spatial and temporal rainfall variability.  They were 
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interested in determining the effect of storm movement on equilibrium discharge.  

Two conceptual models were developed representing different watershed geometries 

and using algorithms based on the kinematic-wave theory to model runoff.  The 

results of this study indicated that, when storms move downstream across the 

watershed, the runoff can reach an equilibrium condition, despite the fact that the 

storm length is shorter than the watershed length and the rainfall duration is less than 

the time to equilibrium runoff for a stationary uniform storm.  According to Lee and 

Huang (2007) this is contradictory to conventional hydrologic design, in which the 

storm duration must be equal to the equilibrium time in order to attain the maximum 

discharge. 

2.3.7. Reflectance-Rainfall (Z-R) Relationship 

2.3.7.1. Sensitivity to Z-R Relationship 

The relationship between reflectivity Z and rainfall rate R began to be 

investigated thoroughly by Marshall and Palmer in the late 1940’s.  Research into this 

relationship has indicated that a power law of the form: 

bZ AR=      (2-3) 

where Z is the radar reflectance in decibels of reflectivity, R is the rainfall intensity as 

measured by a rain gage, and A and b are coefficients, is the correct form for this 

relationship.   Marshall et al. (1947) conducted experiments to verify the theoretical 

finding that the power reflected from raindrops was proportional to Z.  This 

experiment utilized radar data as well as filter papers showing raindrop distributions.  

The filter papers determined the value of Z, which corresponded to the measurements 
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of the radar, and the rainfall rate used during the experiment was known.  This 

allowed Marshall et al. (1947) to determine that the relationship:  

1.72190Z R=      (2-4) 

applied to the data used in this experiment.  

Marshall and Palmer (1948) continued their work examining the distribution 

of raindrops.  They again compared the distribution of raindrops on filter paper with 

radar readings.  Using this data they were able to develop relationships between drop 

diameter and number of drops, the mass or rainwater per unit volume of space and the 

reflectivity, and the reflectivity and the rainfall rate.  They confirmed the equation 

from their previous paper, that: 

1.72190Z R=      (2-5) 

Since the work of Marshall and Palmer, the National Weather Service (NWS) 

has determined a standard relationship between Z and R that can be applied in most 

rainfall situations across the country.  This relationship is:  

1.4300Z R=      (2-6) 

Ulbrich and Miller (2001) wished to evaluate the degree to which variations in 

the coefficients A and b affects the accuracy of radar measurements.  They also 

wished to determine if inaccuracies due to the Z-R relationship could explain the 

often large discrepancies between radar data and rain gage data for the same region.  

Raindrop size distribution was determined using a Joss drop disdrometer, and radar 

and rain gage data were obtained for regions in upstate South Carolina.  The first 

stage of this experiment found that the standard equation stated previously was 

adequate, but only when adjustments had been made for calibration errors.  They 
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found, as many others have, that when adjustments were made to take into account 

storm type, accuracy in radar measurements, as compared to the disdrometer 

measurements, can be improved.  Ultimately Ulbrich and Miller determined that 

while adjusting A and b can lead to some improvement in the accuracy of radar 

measurements, the improvement is minor compared to errors caused by calibration 

offset of the radar, but when adjustments for this calibration offset have been made, 

good agreement was found between radar and rain gage data (Ulbrich and Miller, 

2001). 

 Habib et al. (2008) also examined errors in the Z-R relationship; however, 

they considered the errors with respect to the sensitivity of runoff simulations.  They 

used a physically based, continuous-mode distributed hydrological model to predict 

runoff during rainfall events.  They were most interested in the variation in Z-R 

relationships at different temporal scales, so they determined appropriate relationships 

for different temporal scales.  The experiment was performed using both disdrometer 

data and radar data.  Habib et al. concluded that the method that was used to derive 

parameters of the Z-R relationship was largely responsible for the sensitivity of runoff 

simulations.  When event-specific relationships were used along with bias removal 

procedures and minimization of random errors fairly accurate hydrographs resulted. 

2.3.7.2. Dynamic Z-R Relationship 

Gerstner and Heinemann (2008) listed a slightly different set of error sources 

in radar rainfall measurement.  This list of errors included attenuation of the radar 

beam, ground clutter, beam occlusion, and the relationship between reflectivity and 

rainfall rate (Z-R relationship) utilized.  The purpose of this research was to develop a 
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statistical objective analysis method to improve the accuracy of rainfall data in order 

that radar data could eventually come to replace rain gage data.  In order to conduct 

this research, an algorithm was developed to identify different types of precipitation 

(stratiform versus convective).  After this algorithm had identified the precipitation 

type, the Z-R relationship was applied to determine the rainfall rates, and then a bias 

correction was applied.  Once this was done, the modified statistical objective 

analysis scheme was applied to adjust the radar data to more closely match the rain 

gage measurements.  The algorithm to determine storm type was deemed reasonably 

accurate, and the statistical objective analysis was able to reduce errors, compared to 

rain gage measurements, in radar rainfall data in 75% of the tested cases. 

2.4. UNIT HYDROGRAPHS 

2.4.1. History and Evolution of the Unit Hydrograph 

Clark developed his unit hydrograph (UH) technique in order to better define 

the relationship between unit hydrographs and flood routing and to then use this 

relationship to derive more accurate unit hydrographs.  Kull et al. (1998) detailed the 

history of the UH from Clark’s work to ModClark, a program developed by the 

Hydrologic Engineering Center (HEC) to integrate data from new technologies into 

the UH procedure.  After detailing this history, the authors then provided a 

demonstration of the ModClark program in the Salt River Basin, Missouri, in order to 

demonstrate the ability of this program to work with the existing HEC-1 method, and 

to utilize data from Digital Elevation Models (DEMs) and radar rainfall data, as well 

as other data sources (Kull et al., 1998). 
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Hoblit and Curtis (2002) further demonstrated the use of ModClark and other 

HEC programs in their attempt to integrate radar rainfall data and hydrologic models.  

In their study, they used the abilities of ModClark to characterize the variation in 

rainfall rates within the watershed and to route runoff through the various sub-

watersheds based on the location of the rainfall within the watershed.  This will 

increase the ability of the model to place the correct amount of rainfall at the correct 

location in the watershed at the correct moment in time, an ability which is lacking 

when rain gage data are used (Hoblit and Curtis, 2002). 

Many watershed do not have rain gages or flow gages that can be used for 

deriving unit hydrographs from rainfall and runoff data.  In these ungaged watersheds 

synthetic unit hydrograph procedures can be used to develop necessary unit 

hydrographs.  There are many methods available for deriving synthetic unit 

hydrographs, including Snyder’s Method and the NRCS (SCS) Method, but assuming 

the form of a probability density function (pdf) for the unit hydrograph has become 

popular.  Bhunya et al. (2007) evaluated four pdfs for use in deriving synthetic unit 

hydrographs.  The pdfs evaluated were the two-parameter Gamma, the three-

parameter Beta, the two-parameter Weibull, and the one-parameter Chi-square 

distribution.  Analytical and numerical schemes were used to determine values for the 

various distribution parameters, and then observed data were used to validate the 

synthetic unit hydrographs.  The Beta and Weibull distributions were found to be 

more flexible than the Gamma and Chi-square distributions, due to the fact that they 

can have either positive or negative skew.  This allowed them to more accurately fit 

the observed hydrographs.  A disadvantage to using a pdf to develop a unit 
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hydrograph is that a unit hydrograph recession limb must have some point where the 

flow equals zero.  With the exception of the Beta distribution, all of the pdfs 

considered approach zero asymptotically.  Bhunya et al. (2007) concluded that each 

of the four pdfs produced more accurate unit hydrographs that the current methods of 

computing synthetic unit hydrographs (Snyder’s method, NRCS (SCS) method, and 

Gray’s Method), and that the Beta and Weibull distributions were the most accurate 

of the pdfs.  The Beta distribution has been found to approximate the Gamma 

distribution, and the Chi-square distribution is also similar to the Gamma distribution, 

so the final conclusion reached was that the three-parameter Beta distribution, where 

two parameters are non-dimensional shape parameters and the third parameter is a 

scale parameter, would be the best pdf to use in calculating synthetic unit 

hydrographs.       

2.4.2. Digital Elevation Model and GIS Technology 

As mentioned in the discussion of the development of the program ModClark 

considerable technology has been developed since the original development of the 

UH procedure, much of which could provide very useful hydrologic information.  

Noto and La Loggia (2007) attempted to use some of these technological 

developments to aid in modeling hydrological processes with a distributed UH 

procedure.  A Geographic Information System (GIS) provided a digital elevation 

model (DEM) of the watershed, which was used to determine the flow paths for 

runoff water, as well as watershed morphology and land use.  This knowledge of the 

watershed enabled the time-area curve to be computed by the program.   The 

watershed was separated into cells, and the total watershed response was calculated as 
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the sum of the responses from each cell.  Cell response was determined by a process 

of channel flow and linear reservoir routing (Noto and La Loggia, 2007). 

Cleveland et al. (2008) also attempted to use watershed topographical 

information to develop unit hydrographs.  The procedure that they developed 

estimated UH parameters by analyzing the distribution of raindrop arrival time.  

Information about the slope of the watershed provided by a DEM was used to 

determine flow paths and speeds of the raindrops, and a particle tracking program was 

used to generate the arrival time distribution.  A unit hydrograph was then fit to the 

arrival time distribution.  This procedure was evaluated on 126 watersheds in Texas, 

and was determined to be a reasonable approach, though it was acknowledged to be 

very computationally demanding (Cleveland et al., 2008).   

2.4.3. Arid Region Unit Hydrograph Procedure 

The method for developing unit hydrographs in arid regions must be 

somewhat different from that for non-arid regions due to the differences in climate.  

Sen has conducted multiple studies into the development of UHs for Saudi Arabia.  

Sen (2007) noted that infiltration effects were not considered in the UH procedure; 

however, infiltration is a major hydrologic process in arid climates.  Sen, therefore, 

developed an equation that could be used to produce a UH that would account for the 

condition of the soil and sub-soil prior to the wetting event.  The method developed 

was actually an adaptation of the commonly used Snyder’s method. 

Sen (2008) addressed the problem of data scarcity in arid region hydrology 

and noted that traditional methods of hydrological modeling would not work in these 

regions due to the differences in climate.  Sen again modified Snyder’s UH method, 
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this time to develop hydrographs for ungaged watersheds.  The hydrograph calculated 

using the method is similar to the Natural Resources Conservation Service (NRCS) 

dimensionless UH; however, for arid regions more values along the recession limb 

were deemed necessary (Sen, 2008). 
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CHAPTER 3  

DATA SOURCES 

3.1. WALNUT GULCH EXPERIMENTAL WATERSHED 

The Walnut Gulch Experimental Watershed, located near Tucson, Arizona, in 

the San Pedro River Basin, was chosen as the study area for this research because it is 

heavily gaged and because data are readily available through the United States 

Department of Agriculture’s Southwest Watershed Research Center website.  Walnut 

Gulch is part of the United States Department of Agriculture (USDA) Agricultural 

Research Service (ARS) Southwest Watershed Research Center.  The Walnut Gulch 

Experimental Watershed is approximately 149 km2 in area, and the watershed 

elevation ranges from 1220 m to 1950 m above mean sea level (Goodrich et al., 

2008), with much of the watershed ranging in elevation from 1220 m to 1500 m 

above mean sea level.  The minimum daily temperatures in Walnut Gulch range from 

approximately 0 °C to 15 °C and the maximum daily temperatures range from 

approximately 25°C to 45 °C (Keefer et al., 2008).  The watershed consists of 16 

large subwatersheds within the boundaries of the Walnut Gulch Experimental 

Watershed, each of which contains a number of rain gages as well as at least one flow 

gage at the outlet (Anon., 2007).  Precipitation and flow gages have been in place in 

the watershed since 1953.  The average annual precipitation between the years of 

1956 and 2006 was measured to be approximately 316 mm, more than half of which 

occurs during the summer monsoon season (July through September) (Goodrich et 

al., 2008).  The streams located within the watershed are ephemeral, dry 
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approximately 99% of the time (Anon., 2007).  Runoff is usually in response to 

thunderstorm events, and the events are generally fairly short, with peak flows 

arriving very quickly (Stone et al., 2008).  All data sets, including rain gage and flow 

gage data sets, are available on the internet (Southwest Watershed Research Center, 

2008).     

3.1.1. Rain Gage Data 

Digitally recording rain gages have been used to monitor precipitation in 

Walnut Gulch since 1999.  A network of 88 weighing-type recording rain gages 

currently operates in the watershed.  This gives a gage density of approximately 0.6 

gages/km2, which is among the most dense rain gage networks in the world.  The 

weighing-type rain gages used were developed by the scientists working at the 

Southwest Watershed Research Center.  Using an electronic strain gage, the 

weighing-type rain gages convert the weight of rainfall in the bucket to a voltage, 

then a linear relationship between voltage and rainfall depth is used to calculate the 

rainfall depth in a given time period.  Rain gage data are available through the 

Southwest Watershed Research Center’s website, which was given previously.  The 

data sets include the rain gage number recording the rainfall, the date of the event, the 

time the event started, the number of minutes elapsed between the start of the rainfall 

and a given measurement, the cumulative depth of rainfall measured, and the rainfall 

intensity at the time of a given measurement.  Rainfall data for a variety of storm 

events were utilized in several portions of this research (Goodrich et al., 2008). 
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3.1.2. Flow Gage Data 

The Walnut Gulch Experimental Watershed has a total of 30 flow gages.  

Eleven of these are on large (2.27 to 149 km2) subwatersheds, eight are on medium 

(0.35 to 1.60 km2) subwatersheds, and eleven are on small (0.0018 to 0.59 km2) 

subwatersheds.  A specific type of flume has been developed in response to the 

ephemeral nature of Walnut Gulch streams.  Walnut Gulch supercritical flumes were 

used to measure flow on the larger watersheds, while Smith supercritical flumes were 

used to measure flow over the smaller watersheds.  These special flumes are 

necessary because the runoff is very high in sediment.  A potentiometer attached to 

the stilling well of the flume is used to measure flow depth, and the known geometry 

of the flume is used to determine the flow velocity and rate.  Flow in medium-sized 

watersheds is measured using a stock pond.  The change in water level in the stock 

pond is measured, and a stage-volume relationship developed from the pond 

topography is used to determine the flow.  As with the rain gages, digital flumes have 

been in use since 1999.  The record of runoff for Walnut Gulch is the longest flow 

record for a semiarid watershed in the world.   As with rain gage data, flow gage data 

was obtained for the USDA Walnut Gulch Experimental Watershed website (Stone et 

al., 2008).   

3.2. RADAR DATA 

Radar data for the San Pedro River Basin was obtained from the Hydro-

NEXRAD system.  This is an internet service, developed by a group of researchers 

from the University of Iowa, Princeton University, the National Oceanographic and 

Atmospheric Administration, the National Climatic Data Center, and UCAR’s 
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Unidata Program Center.  The University of Iowa is currently providing most of the 

service support.  The goal of this service is to make it easier for hydrologists to access 

radar data, so that this data can be better utilized in hydrologic applications.  This 

service allows users to request a variety of radar data products for a given time period 

either for a specific radar station or for a specific watershed.  The website for this 

service is www.hydronexrad.net. 

  Radar data can be downloaded from Hydro-NEXRAD in either ASCII or 

Arc-ASCII format.  This provides a text file of radar readings (in decibels of 

reflectance) for the watershed or radar station chosen by the user.  An added benefit 

of the Arc-ASCII files is that they can be loaded into ArcGIS.  This allows to user to 

examine the radar data along with a map of the watershed or area in question.  This 

method was used to identify radar pixels specifically corresponding to the area of the 

Walnut Gulch watershed.  The radar data and a map showing the boundary of Walnut 

Gulch Experimental Watershed were viewed in ArcGIS simultaneously.  From this 

the position of the pixels covering Walnut Gulch could be identified in the text files 

that contain radar data.  The locations of rain gages and flow gages could also be 

added to the map of Walnut Gulch in ArcGIS, which helped determine which rain 

and flow gages would be associated with which radar pixels in later portions of the 

research.  When radar data for the desired storm events were downloaded, it was 

important to note that radar data were recorded in Coordinated Universal Time 

(UTC), while the rain and flow gage data were recorded in local time.  Therefore, the 

radar data were seven hours ahead of the rain and flow gage data, which needed to be 

accounted for when choosing the desired radar data. 
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CHAPTER 4  

TRANSMISSION LOSSES 

4.1. INTRODUCTION 

Transmission losses (TL) have been proven to be a significant hydrologic 

process in arid and semi-arid climates.  Jordan (1977) defines transmission losses as 

water that is part of the streamflow at one location, but which has been lost through 

channel infiltration prior to reaching some location downstream.  This could lead to a 

significant reduction in flow volumes, velocities, and rates, depending on the 

magnitude of local inflow from the drainage area between the two locations and the 

infiltration characteristics of the channel.  The ability to estimate TL is necessary for 

applications such as flood routing and forecasting, floodplain delineation, and for 

predicting ground-water recharge (Jordan, 1977).   

 Transmission losses are a key concern in arid and semi-arid regions especially 

because ephemeral streams, or streams that flow only in response to storm or 

snowmelt events, generally predominate in these regions.  The beds, banks, and 

floodplains of these streams are generally composed of coarse-textured alluvial 

materials.  High intake rates and low moisture contents characterize such alluvium 

and can lead to significant decreases in downstream flow volumes (Keppel and 

Renard, 1962).  Because ephemeral streams do not contain flow most of the time their 

hydrographs have different characteristics than streams with continuous flow.  The 

hydrograph for an ephemeral stream is often characterized as having an initial delay 

in the start of flow followed by a very rapid rise to peak flow and a receding limb of 
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short duration, due in part to transmission losses (Peebles et al., 1981).  The relatively 

steep rise occurs because the initial part of the runoff is lost to TL so the initial runoff 

at the downstream section is the result of the peak flow portion of the runoff 

hydrograph from the upstream section.   

4.2. METHODS AND MATERIALS 

4.2.1. Purpose of Research 

Much of the research on transmission losses to date has involved reducing the 

total volume of flow by some appropriate factor and possibly evaluating the reduction 

of the peak flow.  Few studies have attempted to account for TL as the streamflow is 

routed along the channel.  While it is true that transmission losses do reduce the 

volume and peak flow of a flood event, this approach does not allow the spatio-

temporal variation of TL to be understood.  The objective of this research was to 

develop a hydrograph routing method that could estimate the volume of TL at each 

point along the channel and each time increment of the flow hydrograph.  The model 

was tested and calibrated using flow gage data from Walnut Gulch Experimental 

Watershed, located near Tucson, Arizona.  Both storm-to-storm variation and reach-

to-reach analyses were made.   

4.2.2. Flow Gage Data 

Flow gage data were obtained from the United States Department of 

Agriculture (USDA) Agricultural Research Service (ARS) Southwest Watershed 

Research Center website.  Study reaches were identified as lengths of stream between 

an upstream and a downstream flow gage.  Six potential reaches were identified for 
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use in this research, the lengths of which varied from 2400 m to 8100 m.  Based on 

images from GoogleEarth a rectangular cross-section was assumed for each reach.  

The watershed area draining into the upstream flow gage was also necessary input 

information.  The six drainage areas ranged in size from 227 ha to 12723 ha.  

Ultimately flow gage data from eighteen events were determined to be acceptable for 

use in this study.  Data were downloaded as Microsoft Excel files, converted to text 

files, filtered of unnecessary information, and then underwent several pre-processing 

steps prior to use. 

4.2.3. Data Conversion 

As mentioned previously, the raw data were obtained from Walnut Gulch 

Experimental Watershed.  Flow data for selected events were downloaded from the 

USDA ARS Southwest Watershed Research Center website.  The data were not 

separated by gage, but were grouped by event, the gages had not been recording on a 

constant time interval, and few of the gage flow records for one event began at the 

same time.  For use in modeling TL the desired data format included pairs of 

upstream and downstream flow gages, a constant recording time interval, and the 

same start time for each upstream and downstream flow gage pair.  Several pre-

processing programs were developed to convert the data into the desired format.   

The first step, separating the data by gage and converting the data to text files, 

was done by hand.  Each flow event was examined, and separate files were created 

for each gage that recorded flow during that event.  The number of ordinates in the 

flow record was noted, and then the Excel files were converted to text files.  

Occasionally two flow events were recorded on the same day; in these flow events, 
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only one event was chosen, based on event duration, magnitude of flow, and the 

number of gages recording flow at that time. 

After individual text files had been created for each gage registering flow in 

each event, the data were converted to a constant time interval.  A preprocessing 

program was developed that read in the original text files and interpolated flow values 

for any missing data points.  The output files from this program had a constant 

reporting time interval of one minute, which was chosen because it seemed to be the 

dominant reporting interval in the raw data.  A simple linear interpolation scheme was 

used to fill in flow values that were missing from the raw data.  A few flow gages had 

the ability to report data every fifteen seconds, though even these gages had missing 

data that needed to be interpolated.  As it was believed that there would be little 

change in flow rates over the course of fifteen seconds, the preprocessing program 

also deleted these extra values from the record. 

The next step in the data preparation was to combine the individual flow gage 

records into upstream and downstream gage pairs and to make sure both the upstream 

and downstream gage records started at the same time.  First, a map of Walnut Gulch 

Experimental Watershed including flow gage locations and the stream network was 

examined to determine appropriate gage pairings.  It was determined that in some 

cases multiple upstream gages would feed into the same downstream gage.  In 

combining two upstream gages, several problems needed to be overcome.  First, one 

of the flow gage records needed to be adjusted so that both gages had the same flow 

start time, and second, the two records needed to be added together.  A program was 

developed that could input two individual data files, add the appropriate number of 
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zeros to the file with the later start time, and then add the two records together.  This 

created one upstream flow record. 

Once an upstream flow record was obtained, another preprocessing program 

was needed to combine the upstream flow record and the downstream flow record 

into one text file.  This program also needed to be able to account for differences in 

the start time of the two files.  A second program was developed that could add the 

appropriate number of zeros to either the upstream or downstream record, whichever 

had the later start time, and then create one file that contained the upstream and then 

the downstream hydrograph.  The output file from this preprocessing program was 

then ready to be input into the program that was developed to model transmission 

losses, which will be described next. 

4.2.4. Spatio-Temporal Transmission Loss Model 

The final step was to develop a program that could model transmission losses 

in a channel.  The purpose of this program was to route the upstream flow, using the 

Convex routing method, through the channel reach while infiltrating, using Horton’s 

equation and the mass-infiltration equation, the appropriate amount of that flow into 

the channel bed.  The overall model developed in this study combines lateral inflow 

(LI), TL, and channel routing into one algorithm.  Figure 4-1 shows a pictorial 

representation of the model. The stream (shown as the black rectangular box with 

blue lines indicating the water surface) is modeled as having a rectangular cross-

section, with a number of equally sized cells.  Each cell has a rectangular land area of 

equal size (shown as the green rectangles attached to the stream) contributing lateral 

inflow to the stream.  Transmission losses are modeled as flowing out of the bottom 
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of the stream (represented by blue arrows) into a box located below the stream 

(brown rectangular box) representing the infiltration capacity. 

 Runoff enters the stream either as flow from the upstream contributing area or 

LI into the stream section between the upstream and downstream gages.  Both the 

upstream flow and LI are represented as time-dependent hydrographs rather than total 

storm volumes.  During the first time step LI is introduced to each cell and 

streamflow from the watershed that contributes runoff to the upper gage enters the 

first or uppermost cell.  Transmission losses are computed for each cell based on this 

initial amount of water in the storage of each stream cell.  Next the streamflow is 

routed one time step through the channel.  During each subsequent time step both 

upstream inflow and LI are added and streamflow is routed to the next downstream 

cell.  Transmission losses are computed based on the amount of water storage in each 

cell.  The outflow from the most downstream cell for each time step represents the 

computed downstream hydrograph. 

 
Figure 4-1: Diagram of Transmission Loss Model 



 

 49 
 

4.2.5. Modeling of Transmission Losses 

Transmission losses were modeled using the mass-infiltration method which 

uses Horton’s infiltration equation:   

( ) Kt
c o cf f f f e−= + −      (4-1) 

where fc is the ultimate infiltration capacity (capacity after a long period of wetting), 

fo is the initial infiltration capacity (capacity at beginning of storm event when soil is 

dry), and K is a constant that describes the decay of the infiltration capacity with 

time.  Parameters fc, fo, and K reflect channel soil properties.  Because it is common 

in arid and semi-arid regions for the infiltration capacity to be greater than the amount 

of water available in the runoff for infiltration, the mass-infiltration method was used.  

This method can be applied to cases where the water supply is less than the 

infiltration capacity, which in this case would mean that not all of the storage capacity 

below the channel was filled.  When the storage volume in a cell is greater than the 

infiltration capacity, the infiltration capacity decreases at the maximum rate for that 

time step, which can be found by Horton’s equation.  However, when the runoff 

volume is less than the infiltration capacity, the decrease in capacity occurs at a lower 

rate, and therefore must be modeled differently in order to accurately estimate the 

volume of losses.  The mass infiltration method calculates the total mass of water 

infiltrated using the integral of Equation 4-1: 

( )
(1 )Kto c

c

f f
F f t e

K
−−

= + −     (4-2)    

in which F is the cumulative mass of water infiltrated at a given time, t from the 

beginning of the storm event, and fc, fo, and K are defined as in Horton’s equation (4-

1) (McCuen, 2005). 
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4.2.6. Streamflow Routing 

The routing model with transmission loss included was based on the 

continuity of mass, which is the standard form for most hydrologic routing methods: 

I T

dS
I L L O

dt
+ − − =       (4-3) 

in which I is the inflow to the channel either at the upstream section or local inflow, O 

is the outflow in the channel at the downstream section, LT is the transmission loss 

between the two sections, LI is lateral inflow, S is the storage within the reach, and t 

is time.  Transmission losses were estimated using F from equation 4-2 for a given 

time period.  Equation 4-3 was applied through subsections, or cells, of the channel so 

that the spatio-temporal distribution of the TL could be computed.  The outflow from 

each cell was computed numerically by solving for the outflow of Equation 4-4: 

I T

dS
O I L L

dt
= + − −      (4-4) 

The inflow and transmission losses are added to and subtracted from the storage and 

the outflow from any cell is proportional to the storage: 

O CS=      (4-5)   

in which C is the routing coefficient and the outflow is transformed from a flow rate 

to a volume.  As the surface storage of water increases in a channel cell, the outflow 

will increase according to the value of C.  However, as the storage in a cell increases, 

the TL also increases, which decreases the amount of storage. 

 Unless LI, which is the runoff into the stream reach from the land between the 

two sections, occurred, TL should decrease as the runoff hydrograph moves 

downstream because TL reduce the storage as the flood wave moves downstream.  
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Even if transmission losses did not occur, translation and attenuation of the 

hydrograph would occur, which spreads the flood hydrograph over time.  With less 

storage at any point because of transmission losses, the pressure head decreases.  

Because TL decrease the volume of surface water stored in each cell, the streamflow 

will have a greater head at upstream sections when compared with downstream cell 

sections.  As the head decreases as the floodwave moves downstream, the TL lessens. 

 When lateral inflow is present, the transmission loss hydrograph may or may 

not attenuate as the distance downstream increases.  The characteristics of the TL 

hydrograph as well as the outflow hydrograph will depend on the volume and timing 

of the LI relative to the volume and timing of the upstream hydrograph.  If the 

volume of LI replaces the lost TL volume, then the downstream hydrograph will not 

show the attenuation from the TL and routing.  Both the TL and downstream 

hydrographs may increase because the LI will increase the storage in each cell of the 

channel.  Thus, the outflow from the stream reach will be difficult to analyze. 

4.2.7. Detailed Model Description 

In addition to a data file that contains an upstream and downstream flow-gage 

pair for a runoff event, physical information about the channel was input to the 

Spatio-Temporal Transmission Loss (STTL) Model.  This physical information 

includes the number of stream cells, the width of the cells, the length of the cells, and 

the area of the watershed draining into the upstream gage.  Information about the 

stream segments, including width and length, as well as watershed area, was derived 

from GIS.  Initial estimates for fo, fc, K, and C were also input.  A routing time 

increment, determined based on the raw flow data, was also necessary input 
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information, and a percentage of lateral inflow to the channel could be specified.  In 

this program lateral inflow was accounted for as the specified percentage multiplied 

by the upstream hydrograph as a simplifying assumption.   

After the input information was entered, initial step sizes were entered for 

each of the infiltration and routing parameters (fo, fc, K, and C).  The program then 

used a numerical optimization scheme to determine the optimum value for each 

parameter.  The goal in optimizing these parameters was to determine values that 

provided the lowest possible standard error ratio and bias for the model.  As initial 

estimates for the infiltration parameters, the means of the values provided by Bedient 

et al. (2008) for various types of sandy soil were used (fo = 329.5 mm/hr, fc = 49.75 

mm/hr, and K = 17.41 hr-1).  The initial routing coefficient was set at 0.2 as large 

storage attenuation effects were expected.  After the program had determined the 

optimum parameters for the conditions being modeled, those values were used to 

model the infiltration and routing of the runoff, then an output file comparing the 

modeled runoff to the observed runoff and detailing the bias and goodness-of-fit 

statistics calculated for that model was produced.  

4.3. RESULTS AND DISCUSSION 

4.3.1. Model Goodness-of-Fit Results 

Tables 4-1 and 4-2 present the input information and model results for nine 

runoff events between various gage pairs.  It is important to note that LI was not 

added to every event.  Lateral inflow was added on a case-by-case basis, when it 

appeared that the addition of LI could improve upon the goodness-of-fit statistics.  

The Walnut Gulch data files did not indicate whether or not LI occurred.  The ratio of 
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the downstream-to-upstream volumes ranged from 12% to 65%.  In general, the 

relative biases were more negative for low values of the ratio of the downstream to 

upstream volumes of flow.  As an example, the model of the flow event of August 4, 

2007, which had a volume ratio of 0.1161, had a bias of -40%, a standard error ratio 

greater than 0.8, and a correlation coefficient of less than 0.6.  To a lesser extent this 

was also evident in the event that occurred on June 17, 2000, for which the volume 

ratio was 0.2259 and the model had a relative bias of approximately -10%, a standard 

error ratio greater than 0.45, and a correlation coefficient of 0.89.  In general, as the 

volume ratio approached 0.5, the relative biases lessened to less than -10%, the 

standard error ratios improved to less than 0.5, and the correlation coefficients 

increased to greater than 0.9.  In the process of optimizing the model parameters for 

these events, improvement in one goodness-of-fit statistic (bias or standard error) 

occurred with a simultaneous loss of accuracy in the other statistic (standard error or 

bias, respectively).  To further evaluate the performance of the STTL Model several 

graphs comparing the observed and predicted downstream flow events were created.  

These figures are presented in Appendix A. 

Table 4-1: Model Input Information 

Date of Event 7/20/07 8/05/99 8/11/06 8/06/07 8/04/07 8/17/07 6/17/00 8/04/07 7/20/07 
Gage Pair 6→2 6→2 6→2 6→2 6+3→2 6+3→2 4→3 4→3 2→1 
Upstream 
Volume (*105 
m3) 

1.4041 0.4954 2.3352 1.582 2.4977 3.8837 0.1473 0.0856 0.9416 

Downstream 
Volume (*105 
m3) 

0.6663 0.2647 1.258 0.7777 0.2901 2.4091 0.0333 0.0560 0.5695 

Downstream 
Volume/ 
Upstream 
Volume 

0.4745 0.5343 0.5389 0.4916 0.1161 0.6203 0.2259 0.6547 0.6048 

Channel Length 
(m) 

5574 5574 5574 5574 5308 5308 2400 2400 8096 

Lateral Inflow 
(%) 

10 0 0 0 0 0 0 10 30 
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Table 4-2: Results of Model 

Date of Event 7/20/07 8/05/99 8/11/06 8/06/07 8/04/07 8/17/07 6/17/07 8/04/07 7/20/07 
Gage Pair 6→2 6→2 6→2 6→2 6+3→2 6+3→2 4→3 4→3 2→1 
Predicted Downstream  
Volume (*105 m3) 

0.6305 0.2407 1.1606 0.7186 0.1740 2.3055 0.0302 0.0539 0.5814 

fo (mm/hr) 425 5834 1500 2674 2064 2747 550 280 494 
fc (mm/hr) 69.3 49.3 10.0 9.1 294.0 150.0 522.1 73.6 36.0 
fo/fc 6.13 11.84 150.00 293.80 7.02 18.32 1.05 3.80 13.71 
k (hr-1) 0.352 34.370 1.850 4.447 0.010 1.575 0.027 4.182 4.820 
C 0.051 0.076 0.116 0.198 0.098 0.132 0.099 0.091 0.050 
Relative Bias -0.054 -0.091 -0.078 -0.076 -0.400 -0.043 -0.094 -0.039 0.021 
Se/Sy 0.501 0.369 0.425 0.322 0.823 0.195 0.454 0.366 0.758 
R 0.866 0.930 0.906 0.947 0.571 0.981 0.893 0.932 0.655 
R2 0.751 0.864 0.820 0.897 0.326 0.962 0.798 0.868 0.430 

4.3.2. Analysis of Fitted Parameters 

In evaluating the results for both the reach-to-reach and the storm-to-storm 

events a large variation in the TL parameters fo, fc, and K occurred, while the routing 

coefficient varied little, from 0.05 to 0.2.  In general, the values of fo and C were 

positively correlated, as shown in Figure 4-2.  If the soils were relatively dry, then the 

initial infiltration capacity was high and a relatively large value of C was needed to 

ensure that too much transmission loss did not occur.  Generally, the routing 

coefficient C was lower when lateral inflow was included, i.e. mean values of 0.064 

versus 0.120.  A smaller routing coefficient tends to reduce the peak outflow because 

the water is kept in channel storage for a longer period of time, which has the 

additional effect of increasing TL.   

The values determined for Horton’s decay coefficient K varied significantly 

between events.  The K values ranged from 0.01 to 34.37 hr-1, with most of the values 

falling between 1.5 and 4.8 and a median value of 1.85 hr-1.  Because K is the rate at 

which the transmission loss rate drops from the initial capacity fo to the ultimate rate 

fc, a large value of K would indicate a very rapid decline from the initial to the 

ultimate infiltration rate.  The value of K will vary with the shape of the upstream 

hydrograph.  When calibrating a relatively flat hydrograph with low volumes at the 
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start of the storm, the TL capacity does not drop rapidly.  Thus, a low K is expected.  

For a rapidly rising upstream storm hydrograph, the capacity will drop quickly, which 

produces a large value of K.  It would not be unexpected to see such a sudden drop 

off in infiltration rate in an arid region where a high initial infiltration rate would lead 

to a rapid decrease in infiltration capacity.  The flow event which had a K value of 

0.01 also had the poorest goodness-of-fit statistics of any of the events.  This event 

also had very high infiltration rate parameters, which would imply that the channel 

experienced high TL during this event.  Because the modeled TL would be so large, 

the model would predict a very low runoff volume, which led to a large negative bias. 

C = 3E-05*fo + 0.063
R2 = 0.6191
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Figure 4-2: Relationship Between fo and C Values Determined by STTL Model 

4.3.3. Storm-to-Storm Variation 

Variation in the model parameters between storms for the same gage pair were 

examined for two purposes.  First, one objective was to determine if one set of 

parameters could apply to that region of the watershed under multiple storm 

conditions.  Second, another objective was to identify the data characteristics that 

influenced the ability of the model to fit the measured data.  For instance, could a 

particularly high or low antecedent moisture condition explain a given set of model 

results?  If this was found to be the case, a set of guidelines could be developed to 
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help model users find the correct parameter values for the conditions that they wished 

to model.   

The first step was to assess the storm-to-storm variation of the coefficients.  

For the six storm events that occurred at either gage 6 into 2 or gages 6 and 3 into 2 

the range of parameter values, the mean parameter values, the standard deviations of 

the parameter values, and the coefficients of variation were computed.  The initial 

infiltration capacity (fo) was found to range from 425 mm/hr to 2747 mm/hr.  The 

mean of this was 1666 mm/hr, and the standard deviation was 1008 mm/hr.  This 

resulted in a coefficient of variation of 0.61.  For the ultimate infiltration capacity (fc) 

the range was 9.1 mm/hr to 294 mm/hr, with a mean of 97 mm/hr and a standard 

deviation of 110 mm/hr, which yields a coefficient of variation of 1.13.  The decay 

coefficient (K) ranged from 0.01 hr-1 to 34.37 hr-1, with a mean of 7.1 hr-1, and a 

standard deviation of 13.45 hr-1.  The coefficient of variation for K was 1.89.  The 

routing coefficient (C) ranged from 0.051 to 0.198, with a mean of 0.112 and a 

standard deviation of 0.051, resulting in a coefficient of variation of 0.455.  The 

higher the coefficient of variation the more variable the results are for a given 

parameter.   

In evaluating the storm-to-storm variation it appears that the decay coefficient 

and the ultimate infiltration coefficient have the highest variability.  These values 

could not likely be transferred to another event without causing serious inaccuracies.  

The variation in initial infiltration capacity is also fairly high, indicating that these 

values should not be transferred to other events.  The variation in routing parameter, 



 

 57 
 

however, may be low enough to apply the mean values to other events without 

causing significant inaccuracies. 

 Without examining the rainfall data for a given time period prior to these 

flow events it is difficult to quantify the exact reasons for the variation in infiltration 

parameters between storms.  The high storm-to-storm variation in the three 

parameters of Horton’s equation can likely be explained by differences in antecedent 

moisture conditions, which would influence the initial infiltration rate during an 

event.  It is also possible that differences in rainfall characteristics such as intensity 

and duration could explain some of this variation in infiltration parameters.  For 

instance, a high intensity storm would likely produce high runoff and little 

infiltration, while a low intensity storm would result in high infiltration and little 

runoff.  Similarly a long duration storm may completely satisfy the infiltration 

capacity of the channel and cause high runoff towards the end of the storm, while a 

short duration storm may never completely satisfy the infiltration demand, in which 

case most of the flow could become TL.  

4.3.4. Site-to-Site Variation 

Site-to-site variation in model parameters was examined to determine whether 

or not one set of parameters could be valid for the entire watershed.  In the nine 

studies conducted and presented in Tables 1 and 2, three stream sections were 

studied.  To compare the variation between the sites, average values of each 

parameter were determined for the sites where multiple events had been studied (i.e., 

gages 6 into 2 or gages 6 and 3 into 2, and gage 4 into 3).  These averages were 

assumed to be representative of that particular site.  This yielded one set of 
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parameters for each of the three sites in question.  The initial infiltration capacities 

(fo) ranged from 280 mm/hr to 1666 mm/hr, with a mean of 858 mm/hr and a 

standard deviation of 701 mm/hr, which yields a coefficient of variation of 0.82.  The 

ultimate infiltration capacities (fc) ranged from 36 mm/hr to 522 mm/hr, with a mean 

of 137 mm/hr, a standard deviation of 137 mm/hr, and a coefficient of variation of 1.  

The decay coefficients (K) ranged from 0.027 hr-1 to 7.101 hr-1, with a mean of 4.67 

hr-1, a standard deviation of 2.5 hr-1, and a coefficient of variation of 0.54.  The 

routing coefficients (C) range from 0.05 to 0.132, with a mean of 0.086, a standard 

deviation of 0.032, and a coefficient of variation of 0.37.  The site-to-site variation 

shows that the initial and ultimate infiltration capacities have the highest variation, 

and therefore should not be transferred to other sites on the watershed.  The decay 

coefficient also had a fairly high coefficient of variation and is likely too variable to 

be transferred from one location to another.  However, the routing coefficient had a 

fairly low variability, and could likely be transferred throughout the watershed 

without introducing undue error.  

The site-to-site variation can likely be explained by variations in soil 

properties.  A detailed soil map of Walnut Gulch Experimental Watershed shows the 

large variation in soil types from one portion of the watershed to the next.  The 

different soil types will have different infiltration properties, which would lead to 

differences in the infiltration parameters determined in the model.  Reasoning similar 

to that presented for the storm-to-storm variation can also apply to site-to-site 

variation.  Differences in both antecedent moisture conditions and storm 

characteristics are also a possible explanation for site-to-site variation.  Previous 
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storms may have affected different portions of the sites in the watershed differently, 

leading to different antecedent moisture conditions in different portions of the 

watershed.  Also variations in storm characteristics such as intensity or duration 

across the watershed would influence the infiltration parameters at different locations. 

4.3.5. Effects of Lateral Inflow 

A significant volume of lateral inflow can mask the effect of transmission 

losses.  With no LI, the volume and peak of the upstream hydrograph should decrease 

as the flood wave moves downstream.  However, as the volume of LI increases, the 

water volume reduction due to TL will be offset such that a decrease in volume and 

peak at the downstream section may not be evident from the measured flow.  The 

runoff entering the stream as LI may approximately match the water infiltrated from 

the channel as TL.  If the only measurements are the upstream and downstream 

hydrographs, the effects of TL and LI may not be evident. 

The shape, volume, and peak of the downstream hydrograph depend on the 

corresponding characteristics of the upstream hydrograph, the TL characteristics of 

the channel bed, and the magnitude and timing of any LI to the channel.  Lateral 

inflow can also have a significant effect on the distribution of TL along the channel, 

not just the characteristics of the downstream hydrograph.  Lateral inflow into a 

channel subsection occurs before streamflow from the upper gage is routed to the 

cells, thus satisfying a portion of the TL demand of that cell.  As the infiltration 

demand of a cell decreases, a higher percentage of the streamflow ultimately routed to 

the cell will remain in surface storage and be routed to the next cell.  This increases 

both the volume and the peak flow of the downstream hydrograph.   
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 Figure 4-3 shows the effect that LI has on the distribution of TL along a 

channel.  The same scenario was modeled four times for the July 20, 2007, event, 

with increasing amounts of lateral inflow.  The control run, with no LI, demonstrates 

that, as the flow travels downstream, the volume of TL decrease because streamflow 

is less and, therefore, from a physical standpoint, the pressure head is lower.  This 

lower head means that storage in the cells along the reach will cause water to 

infiltrate at a lower rate than from the cells upstream.  As LI is added, the head in 

each cell increases such that a higher volume of water infiltrates into the downstream 

cells than they could infiltrate when lateral inflow was not present.  As Figure 4-3 

shows, as the volume of LI added to the stream increases, the downstream cells are 

able to infiltrate larger volumes of water, leading to increasing TL volumes.  The total 

TL of Figure 4-3 indicate that, when the LI is about 20% of the volume of the 

upstream hydrograph, the lateral inflow volume offsets the volume of transmission 

losses such that the measured downstream hydrograph would suggest that TL were 

not a factor.  Table 4-3 illustrates the effects that LI can have on the downstream 

hydrograph volume, the predicted downstream hydrograph peak, and the 

downstream-to-upstream volume ratio for the same modeling scenarios as shown in 

Figure 4-3.   

 The assumption of LI affects both the TL hydrograph and the accuracy of the 

model calibration.  Measurements of lateral inflow are generally not available, so the 

actual volume and distribution of LI is generally not known.  However, LI can affect 

the characteristics of the downstream hydrographs, so an incorrect assumption can 

cause the calibration to yield inaccurate parameter estimates and poor goodness of fit.  
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The magnitude of LI could be estimated using a standard computer program such as 

TR-20 if desired, but again, without the presence of gages along the stream bank, 

there is no method of determining LI that is completely accurate. 

To better understand the effect that LI has on the results of the STTL model, 

including the model parameter estimates and the goodness-of-fit statistics, the August 

5, 1999, event was modeled three times.  First the scenario was modeled with no LI, 

to serve as a control, then the scenario was modeled with 10% LI, and finally the 

scenario was modeled with 30% LI.  Table 4-4 provides a summary of these results.  

The final infiltration parameter values showed significant variation with amount of 

lateral inflow.  With increasing amounts of LI, the initial infiltration rate (fo) 

decreased and the ultimate infiltration rate (fc) increased, to the point that the 

difference between the two values is quite small.  A clear trend is not evident for the 

variation in K values in this situation, as K was a less sensitive parameter; however, it 

is quite clear that the presence of LI influences the final parameter values.  The 

routing coefficient did not change significantly with the addition of LI; however, the 

decreasing trend is logical as explained earlier.  

In actual situations, the amount of LI is not known, so an assumption must be 

made.  The amount assumed will influence both the goodness-of-fit statistics and the 

model parameters.  When LI occurs, less water needs to be removed from storage in 

the stream to satisfy the infiltration demand, so the routing coefficient decreases.  The 

goodness-of-fit statistics for the scenario in which 30% lateral inflow was added are 

poorer than statistics from the other cases because in this situation 30% lateral inflow 

is too high, and the model is being forced to overpredict the flow.  A lower amount of 
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LI, such as 15% or 20%, would probably have had somewhat better goodness-of-fit 

statistics; however, 30% lateral inflow was chosen in this case to show the effect that 

a larger than necessary amount of LI could have on model results. 
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Figure 4-3: Effect of Lateral Inflow on Transmission Loss Distribution 

Table 4-3: Effect of Lateral Inflow on Model Results 

 0% LI  10% LI  20% LI  30% LI  
Computed Downstream 
Volume (*105 m3) 

0.4380 0.4818 0.5256 0.5695 

Predicted Downstream 
Peak Flow (m3/s) 

215 250 283 313 

Downstream Volume/ 
Upstream Volume 

0.6047 0.6047 0.6048 0.6048 

 
Table 4-4: Comparison of One Event with Varying Amounts of Lateral Inflow 

 0% LI 10% LI  30% LI  
fo 584 200 74 
fc 49 59 66 
k 34.37 7.974 29.90 
C 0.0764 0.0697 0.0500 
Relative Bias -0.0906 -0.0826 0.0819 
Se/Sy 0.3694 0.3695 0.4860 
R 0.9296 0.9296 0.8746 
R2 0.8642 0.8641 0.7648 

4.3.6. Advantages of Spatio-Temporal Transmission Loss Model 

The Spatio-Temporal Transmission Loss (STTL) model, which was 

developed to account for TL in arid climates, has several advantages.  First, the model 

is based on physical principles.  A channel routing method based on the continuity of 
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mass and storage is utilized.  Most other methods only account for the total volume of 

TL based on the reduction in hydrograph volume and peak flow.  Because channel 

routing was used and the channel was divided into multiple cells, the model allows 

for TL to be evaluated in both time and space.  The model uses an established 

infiltration method to account for losses into the channel.  Therefore, the values 

determined for the infiltration parameters and the routing coefficient have a physical 

basis.   

Second, the STTL model can allow for the presence of LI.  As demonstrated 

previously, the presence or absence of LI can have a significant effect on the 

distribution of TL with distance downstream and on the parameters and the accuracy 

of the fit.  Third, the volume of TL can be determined at any point along the length of 

the reach.  This can be done by using multiple cells, and then fitting an equation to 

the TL distribution provided in the model output.  Fitting an equation based on 

predictions for each of the cells allows the calculation of transmission loss at any 

point in the stream, as opposed to providing transmission loss estimates only at 

certain locations based on the cell size.  Fourth, this method could easily be adapted 

to allow for variation of the infiltration parameters along the length of the stream.  

This would be highly advantageous when studying a long stream reach or a watershed 

that had high variability in soil characteristics. 

4.3.7. Comparison to Lane’s Model 

The NRCS method of Lane et al. (2007) is currently the most widely used 

method of computing volumes of TL.  The STTL method has much in common with 

Lane’s method of computing TL for arid environments.  Both calculate a volume of 
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TL based on upstream and downstream flow records, and both can take into account 

the effect that LI can have on the streamflow.  Both methods can predict the change 

in downstream flow volume and peak that will result from TL.  Despite these 

similarities, however, a number of differences exist between the methods. 

 The STTL method and the method developed by Lane rely on different 

underlying theories.  Lane used a differential equation as the basis for his model, 

while the STTL method is based on the principles of channel routing and Hortonian 

infiltration.  As a result of this, the parameters (three infiltration parameters and a 

routing coefficient) have a physical meaning.  Further, the use of four parameters in 

this method, as opposed to two parameters used in Lane’s method, increases the 

flexibility of this model as compared to Lane’s model. 

 Another key difference between the models is when and how the models 

approach zero.  To predict TL along the length of a channel, Lane’s model uses an 

exponential decay model that approaches zero as distance down the channel 

increases.  In contrast, TL in the STTL model approaches zero only when fc (the 

ultimate infiltration capacity) is very small.  The routing coefficient C also influences 

the decay in this model.  The use of the downstream hydrograph is a third key 

difference between the two models.  Lane’s model uses end-of-channel volumes to 

calibrate its coefficients, while the STTL model uses the hydrograph ordinates.  Using 

the hydrograph in this model means that the shape of the hydrograph will influence 

the parameter values.   

 In order to calibrate Lane’s model, linear least squares is used between 

multiple events.  Also, only upstream and downstream volumes of the total 
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streamflow are required.  The regression parameters determined from the linear least 

squares analysis determine the exponential decay value for the model.  The linear 

least squares regression model requires that that multiple storm events be analyzed to 

determine parameter values.  The STTL model, on the other hand, is able to 

determine parameter values using only one storm event.  This is especially 

advantageous when data are sparse.  However, because more data are used, the 

calibration process is more involved than the calibration process for Lane’s method. 

 A final important difference between the STTL model and Lane’s model is the 

ability to calculate TL at intermediate points.  Lane’s model provides a regression 

equation that could calculate the TL at any point along the channel.  In comparison, 

the STTL model can only calculate TL at intermediate locations along the channel if 

multiple cells are used in the model.  Transmission losses would then be calculated 

for each cell.  Alternatively, if multiple cells are used, an equation could be fit to the 

points given that define the spatial distribution of the TL.  With an equation fitted to 

the TL distribution, then TL could be calculated for any point along the channel.  

 Another program was written and used to compare the STTL method to 

Lane’s method.  This new program took the same data that was used in testing the 

STTL method and computed results based on Lane’s method.  Figures 4-4, 4-5, and 

4-6 illustrate the varying degrees of agreement in results between the STTL method 

and Lane’s method.  The flow event occurring on August 17, 2006, gave almost 

perfect agreement in calculated downstream volume between the methods.  However, 

the event occurring on August 11, 2006, showed an overprediction in downstream 

volume, meaning an underprediction of TL, by Lane’s method.  Conversely, the event 
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occurring on August 5, 1999, showed an underprediction of downstream volume, and 

thus an overprediction of TL, by Lane’s method as compared to the STTL method.  

The differences between the results of the two models for the August 5, 1999, event 

required further investigation.  As reported in Table 4-2, this event had the highest K 

value of any event modeled, which was believed to account for the difference 

between the model results.  The hydrograph for this event was found to have a double 

peak and a rapid, steeply sloped rise time, which may have influenced the K value.  

Because the STTL model is based on one hydrograph and Lane’s model is based on 

regression of five total streamflow volumes, this difference between the results of the 

two methods for an event with an unusual hydrograph is not unexpected.   
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Figure 4-4: Good Agreement Between Lane and STTL Methods for 8/17/2006 
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Figure 4-5: Moderate Agreement Between Lane and STTL Methods for 8/11/2006 
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Figure 4-6: Poor Agreement Between Lane and STTL Models for 8/5/1999 

4.4. CONCLUSIONS 

A model was developed with the ability to estimate transmission losses along 

a channel reach while routing the floodwave through the channel.  The three 

Hortonian infiltration parameters (fo, fc, and K), as well as a routing coefficient (C) 

were optimized using the nonlinear least-squares method, and then used to model 

streamflow routing and TL into the channel bed material.  The model also allows the 

addition of LI from the watershed surrounding the stream reach into the channel.  The 

Walnut Gulch Experimental Watershed located near Tucson, Arizona, was chosen as 

the location for this study because it is heavily gaged and because data are easily 
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available.  Flow gage data for several combinations of upstream and downstream 

flow gages were collected and used to calibrate and test this model.  Analyses of both 

storm-to-storm variation and site-to-site variation were made, in the hope of 

determining an average parameter set that would apply under many conditions 

throughout the watershed.  Unfortunately it was seen that the variation in parameters 

was so high that average parameters could not be accurately used to predict TL.  

However, when the numerical optimization scheme was used to determine 

appropriate parameter values for each storm event and for each stream reach, the 

model was seen to perform well, with acceptable bias and goodness-of-fit statistics in 

nearly all of the test cases.   

 The STTL model allows for analyses of TL based on flow hydrographs, rather 

than just total flow volumes.  Thus, the model parameters are sensitive to more than 

just the total volume under the hydrograph, with the model parameters reflecting how 

TL vary with time and along the lengths of the channel.  This method is also based on 

the physical processes of Hortonian infiltration and channel routing.  The model 

allows for the input of LI into the channel reach, and TL could fairly easily be 

determined for any point along the channel.  Also, this model would be fairly easy to 

adapt to allow for variation in parameters along the channel. 

Further research is still needed in many areas to more accurately predict TL in 

arid and semi-arid climates.  A method for estimating LI when such measurements 

are not readily available would help improve the accuracy of transmission loss 

predictions.  If information about antecedent soil moisture condition or antecedent 

precipitation could be collected it could be related to the infiltration parameters fo, fc, 
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and K.  Knowledge of the storm event antecedent moisture condition in combination 

with knowledge about storm characteristics could aid in explaining the variations 

seen in both site-to-site and storm-to-storm analyses.  Similarly, measures of soil 

porosity and its variation along a channel reach could help explain variations in the 

optimum infiltration parameters determined by the model.   
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CHAPTER 5  

ANALYSES THAT INVOLVE RADAR RAINFALL 

5.1. INTRODUCTION 

The traditional method for measuring rainfall is the rain gage.  Rain gages, 

however, only measure point rainfall, so an estimation method is necessary in order to 

derive spatial rainfall characteristics.  According to Chumchean et al. (2003), the 

accuracy of rain gage data in representing average rainfall over a large area is quite 

low.  Deriving spatial characteristics of rainfall can be especially difficult when a low 

rain gage density exists in a watershed, as is often the case.  Due to these problems 

associated with rain gage data, as well as other potential inaccuracies in rain gage 

data, many hydrologists have begun to consider the idea of either replacing or 

supplementing rain gage data with radar measurements.  According to Hoblit and 

Curtis (2002) merging radar and rain gage data would combine the strengths of each 

data set while reducing the weaknesses associated with each of them.   Radar data has 

the ability to provide spatial characteristics of rainfall events much more easily than 

rain gage data; however, the technology is still being improved and sources of error 

are still being identified and reduced or eliminated.  According to Krajewski and 

Smith (2002) radar-rainfall data has great potential for use in runoff and flood 

forecasting models, which should soon be realized in application.  A few applications 

in which they believe that radar data could be useful include design of flood control 

structures, control of urban storm water systems, water supply forecasting, 
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groundwater recharge assessment, and non-point source pollution assessment 

(Krajewski and Smith, 2002). 

5.1.1. Errors and Problems Existing in Radar Data 

Many sources of error in radar data have been identified.  Gerstner and 

Heinemann (2008) identified several sources of error related to the radar beam itself 

and to interpretation of the radar readings.  The radar beam itself could be attenuated 

by heavy rainfall, ground clutter could interfere with the beam, or beam occlusion 

could occur.  Radar data does not provide information about rainfall directly.  Rather, 

the radar beam is reflected off of raindrops in the air and the scatter of the beam that 

is reflected back to the radar station is measured.  A relationship between this 

reflectance and rainfall rate is used to transform the radar readings to useful 

information about the rainfall.  This equation is called the reflectance (Z) – rainfall 

rate (R) relationship.  Many Z-R relationships are possible, and the choice of equation 

can influence the amount of rainfall that was measured.  Therefore the choice of Z-R 

equation is a potential source of error in radar measurements (Gerstner and 

Heinemann, 2008).  They conclude that, while these errors remain strong, radar data 

can not currently take the place of rain gage data in hydrological applications. 

 Sharif et al. (2004) also discussed the relationship between reflectance and 

rainfall rate as a source of error in radar data.  They state that no unique relationship 

exists between the two, making accurate conversion between them difficult.  They 

also suggest other reasons for inaccuracies in radar measurements, including the 

curvature of the earth and atmospheric refraction caused by the height of the radar 

beam increasing with distance away from the radar station.  This means that, as the 
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distance between the radar station and the location being measured by the radar 

increases, the radar beam is measuring at a higher distance above the ground surface.  

Because of this, for large enough distances away from the radar station it cannot be 

assumed that the radar rainfall readings are representative of the rainfall falling at the 

ground.  Many processes, including wind drift and evaporation, could alter the 

rainfall between the location of the radar measurement and the ground surface.  Sharif 

et al. (2004) cite a study done by Kitchen and Jackson (1993) that claims that the 

range effect described above could be one of the major causes of observed 

underestimation of rainfall accumulation by radar. 

 Islam et al. (2008) specifically discussed the errors that wind could cause in 

radar rainfall measurements.  They state that wind gusts could cause rainfall to drift 

and be horizontally displaced by up to several kilometers between the point in the air 

at which the radar measured the rainfall and the point at which the rainfall hits the 

ground.   If raindrops do not fall directly vertically, but rather drift some distance 

horizontally, there will be a mis-match between radar data and corresponding rain 

gage data.  If rain gage data were being used to calibrate radar data or check for 

accuracy this could cause significant problems.  However, Islam et al. (2008) 

believed that with the addition of an algorithm to correct for wind drift the agreement 

between radar and rain gage data could be much improved. 

 Young (2008) compared radar and rain gage data for an area in Mississippi to 

quantify their differences.  He examined the long-term bias in radar data, as well as 

the correlation between the rain gage and radar data for multiple time periods.  In 

plotting this data, he observed a high degree of scatter between the rain gage and 
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radar data, indicating that good agreement between the two data sets, which should 

essentially be measuring the same rainfall, did not exist.  In examining the bias 

between the two data sets, he found that during the cold season an overall bias of -

39% existed, while during the warm season the overall bias was only -32%.  This 

finding of under-prediction of rainfall by the radar data has also been found in many 

other studies. 

 Despite the many sources of errors and problems with radar data, there still 

exists great potential for radar data to be utilized in hydrological applications in the 

future.  As stated earlier, the radar data can much more easily provide spatial 

information about rainfall events, saving the expense of a dense rain gage network.  

When some of the error sources discussed above, including accounting for wind drift, 

beam occlusion, and the use of improper Z-R relationships, have been reduced, radar 

data will likely be a valuable tool to hydrologists. 

5.2. ANALYSIS OF SPATIAL DATA PROBLEMS USING 

SYNTHETIC DATA 

5.2.1. Introduction 

It is often helpful to set up analyses using synthetic data prior to analyzing 

observed data.  In this case, synthetic data were analyzed to draw conclusions about 

the smoothing effect that various point rainfall averaging methods could have 

compared to true spatial rainfall data.  Both the arithmetic averaging method and the 

Thiessen polygon method were investigated for averaging point rainfall 

measurements.  Preliminary conclusions about the effect of pixel size, area associated 

with each rain gage, amount of rainfall, and rainfall pdf on the estimated rainfall 



 

 74 
 

averages for a pixel were also made.  The conclusions from this preliminary study 

could then be used to guide more detailed investigations into the accuracy of radar 

data compared to rain gage data.   

The overall goal of this analysis was to assess the interaction of pixel size and 

the spatial extent of storm rainfall.  This goal is assessed using a simulation approach 

so that relevant variation can be controlled.  The specific objectives used to meet this 

goal were: (1) to show the effect of storm peakedness within a pixel on the variance 

reduction of Thiessen and arithmetic average storm rainfall methods; (2) to examine 

the effect of storm magnitude on variance reduction with the averaging methods; and 

(3) to evaluate the effect of the randomness of rainfall rates on observations made 

from the previous analyses. 

A simulation program was developed that could compute the arithmetic and 

Thiessen polygon rainfall averages for a given pixel from two rain gages.  This 

program allowed the user to specify the number of simulations, the minimum rainfall 

depth and the slope of the rainfall depth surface, the distribution of error in the 

rainfall, and the fraction of the pixel area assigned to each rain gage.  Rainfall was 

computed as the sum of systematic and nonsystematic components.  The systematic 

component was a linear model with a user specified slope, including zero.  The 

nonsystematic variation could be generated from any one of five distribution 

functions with user specified parameters.  Based on the user specified mean and 

slope, the rainfall depth surface was assumed to vary linearly over the pixel.  The 

program output provided the mean and standard deviation of the rainfall depth 
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measured at each gage, as well as the mean and standard deviation of the rainfall 

averages computed by both the arithmetic method and the Thiessen polygon method. 

5.2.2. Effect of Pixel Size Variation 

5.2.2.1. Methods and Materials 

Over the spatial extent of a rainfall event, the depth is expected to vary.  As 

the area increases, the variation in depth should increase.  To show spatial variation in 

the rainfall depth, the slope of the rainfall depth surface was changed to simulate 

change in the size of the pixel.  An increased slope yields greater variation in rainfall, 

which simulated a larger spatial area, while a decreased slope simulated a more 

uniform rainfall that is expected over a smaller pixel.  The first analysis investigated 

whether or not the size of the pixel influenced the amount of smoothing done by the 

rainfall depth averaging methods.  Four scenarios were set up to evaluate this 

analysis, with only the slope of the rainfall depth surface varying between them.  

Slopes of 1.5, 3, 4.5, and 6 were evaluated in the study.  The minimum depth of 

rainfall simulated was 2 mm, and a normal pdf with a mean of 2 and a standard 

deviation of 0.4 was used for the random component of the rainfall depth. 

5.2.2.2. Results and Discussion 

All averaging methods smooth data.  For example, moving average filtering is 

used to smooth hydrologic time series.  The arithmetic average and Thiessen polygon 

methods are commonly used for spatial averaging of rainfall data.  The smoothing of 

rainfall data reduces the variation, i.e., the standard deviation, while preserving the 

mean.  While variance reduction is at times desirable, in other cases it can mask a 

relationship with another variable.  In the case of radar rainfall data and point rain 

gage data, smoothing of the spatial estimates of the point measurements could mask 
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the correlation between spatially distributed radar rainfall estimates and areal 

estimates based on point measurements. 

 The results of the simulation analyses were evaluated in terms of loss of 

variation between the areal averaged gage-measured rainfall depths and the calculated 

average rainfall depths.  The standard deviations of the rainfall depths at the gages 

were considered to reflect the true variation in the rainfall depth, while the standard 

deviations of the arithmetic and Thiessen polygon averaging methods represented the 

variation in areal averaged rainfall depth.  The standard deviation of rainfall depth 

measurements reported for a rain gage was subtracted from the Thiessen polygon 

standard deviation and the arithmetic average standard deviation.  The rain gage 

standard deviations were subtracted from the averaging method standard deviations 

so that a negative difference would emphasize the loss in variation due to smoothing 

by the averaging method. 

 The first analysis investigated the effect that cell size has on the average 

rainfall depth by varying the slope of the rainfall depth surface in the program.  A 

greater slope yields a more peaked rainfall event which reflects a greater pixel size.  

The results of this study are presented in Table 5-1, and the summary of loss of 

variation is presented in Table 5-2.  In examining Table 5-2, it is evident that the 

Thiessen polygon method has a smaller loss of variation than the arithmetic averaging 

method.  Specifically, the standard deviations for the Thiessen estimates are much 

closer to the gage estimates than are the arithmetic average estimates, which is 

evident from the smaller differences in Table 5-2.  This means that the Thiessen 
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polygon method is smoothing the rainfall depth results less than the arithmetic 

method when the average rainfall for a pixel is calculated based on two rain gages.   

It is interesting to note here that in some cases the Thiessen polygon method 

had a standard deviation higher than the standard deviation for one of the rain gages, 

resulting in a positive difference between the two. For instance, the difference 

between the Thiessen polygon standard deviation and the standard deviation for rain 

gage 1 was -0.078 for a rainfall surface slope of 1.5, but the difference was 0.028 for 

a rainfall surface slope of 6.  This does not imply that the Thiessen method introduces 

variation in these scenarios.  Instead, it reflects the fact that the rainfall depth surface 

for one rain gage is greater than the other gage, and thus has a higher standard 

deviation.  The Thiessen method averages the rainfall depth based on the values at the 

two gages, therefore when one gage has a significantly higher standard deviation than 

the other, it is expected that the Thiessen polygon standard deviation will be higher 

than the standard deviation of the gage receiving the lower rainfall amount.   

It is also interesting to note that while the difference between the Thiessen 

polygon method standard deviations and the rain gage standard deviations become 

less negative as the slope of the rainfall surface increases, the difference between the 

arithmetic method standard deviations and the rain gage standard deviations becomes 

more negative as the rainfall surface slope increases.  For instance, the difference 

between the arithmetic standard deviation and the standard deviation of rain gage 1 is 

-0.132 for a slope of 1.5, but the difference is -0.279 for a slope of 6.  This indicates 

that the absolute smoothing of the arithmetic averaging method increases as the 

variability of the rainfall surface increases.  However, when computing the ratios of 
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the standard deviations of the arithmetic method to the standard deviations of the rain 

gages, it is seen that the ratio is relatively constant.  The ratio of the standard 

deviation of the arithmetic method to the standard deviation of rain gage 1 for a 

rainfall surface slope of 1.5 is 0.711 while the ratio is 0.705 for a rainfall surface 

slope of 6.  This indicates that while the absolute smoothing increases with increasing 

storm variability, the relative smoothing remains constant as the storm variability 

increases. 

Table 5-1: Results of Analysis of Changing Pixel Size, where Arith. Means Arithmetic, and Std. Dev. Means 
Standard Deviation 

Slope Gage 1  
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith.  
Mean 

Arith.  
Std.  
Dev. 

1.5 4.37 0.45 5.12 0.45 4.75 0.37 4.75 0.32 
3 4.74 0.58 6.25 0.58 5.50 0.55 5.50 0.42 
4.5 5.12 0.76 7.38 0.75 6.25 0.76 6.25 0.54 
 
Table 5-2: Summary of Loss of Variation in Averaging Methods for Changing Pixel Size, where Arith. 
Means Arithmetic and Std. Dev. Means Standard Deviation 

Slope Std. Dev. 
Thiessen-Gage 1 

Std. Dev. 
Arith.-Gage 1 

Std. Dev. 
Thiessen-Gage 2 

Std. Dev. 
Arith.-Gage 2 

1.5 -0.078 -0.132 -0.074 -0.127 
3 -0.035 -0.171 -0.030 -0.166 
4.5 0.000 -0.222 0.005 -0.217 
6 0.028 -0.279 0.034 -0.273 
 

5.2.3. Effect of Rain Gage Area 

5.2.3.1. Methods and Materials 

Each rain gage within a pixel represents an area within the pixel.  A gage near 

the boundary of the pixel likely reflects less of the rainfall occurring over the spatial 

extent of the pixel than would a gage in the center of the pixel.  If one of two gages 

represents a relatively large area, then taking the arithmetic average of the two gage 

estimates would place too much weight on the less representative gage measurement.  

Therefore, it was believed that the portion of the pixel area represented by a rain gage 
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would influence the amount of smoothing seen in the average rainfall depth 

calculations.  The simulation program allowed the user to specify a fraction of the 

pixel in which the first gage was located, with the rest of the area assigned to the 

second gage.  Seven scenarios were modeled in this case, with the fraction assigned to 

the first gage varying from 0.2 to 0.8.  This study was also conducted once with a 

rainfall depth surface slope of 0 and a second time with a slope of 3.  A slope of 0 

indicated a uniform storm, while a slope of 3 would have linearly increasing rainfall 

between the two gages.  Again 2 mm of rainfall were simulated as the minimum 

rainfall depth, and a normal pdf with a mean of 2 and a standard deviation of 0.4 was 

used to provide the random component of the rainfall depth. 

 
5.2.3.2. Results and Discussion 

The second analysis evaluated the effect of varying the amount of pixel area 

associated with each rain gage.  The results of the analyses with a slope of 0 are 

presented in Table 5-3, and a summary of loss of variation due to the averaging 

methods is presented in Table 5-4.  Table 5-5 contains the results of the analyses with 

a slope of 3, and Table 5-6 contains the corresponding summary of loss of variation.  

From the values in Tables 5-4 and 5-6, it is clear that the Thiessen polygon averaging 

method generally loses less variation than the arithmetic averaging method, meaning 

that less smoothing will result from using the Thiessen polygon averaging method 

than from using the arithmetic averaging method.  The differences between the two 

methods are more dramatic when the rainfall depth varies more over the pixel.  For 

instance, when the rainfall surface was uniform and rain gage 1 had 70% of the pixel 

area assigned to it the difference in standard deviations of the Thiessen polygon 
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method and rain gage 1 was -0.105, while for the same scenario when there was 

variability in the rainfall surface the difference between the standard deviations of the 

Thiessen method and gage 1 was -0.180.  When the gages represent different areas, 

taking the average essentially amounts to assigning an incorrect weight to each gage 

estimate.  A slope of 0 results in a uniform storm with no difference in rainfall 

between the two gages.  Thus, differences in the variations are expected to be smaller 

in this case.  

 It is again interesting to note that when the rainfall surface varied the standard 

deviations calculated for the Thiessen polygon averaging method were in some cases 

higher than the standard deviations calculated for one of the two rain gages.  For 

instance, when the rainfall surface had a slope to it the difference in standard 

deviations between the Thiessen method and rain gage 1 was 0.071, while the 

difference in standard deviations between the Thiessen method and rain gage 2 was -

0.174.  This is again due to one of the rain gages receiving a higher amount of rainfall 

than the other because of the sloping rainfall surface. 

Table 5-3: Results of Analyses for Varying Fraction of Area Associated with Each Rain Gage with a Slope 
of 0, where Arith. Means Arithmetic, and Std. Dev. Means Standard Deviation 

Area 
Fraction 

Gage 1 
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith.  
Mean 

Arith.  
Std. 
Dev. 

0.2 4.00 0.399 4.00 0.394 4.00 0.299 4.00 0.280 
0.3 4.00 0.399 4.00 0.394 4.00 0.295 4.00 0.280 
0.4 4.00 0.399 4.00 0.394 4.00 0.292 4.00 0.280 
0.5 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280 
0.6 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280 
0.7 4.00 0.399 4.00 0.394 4.00 0.293 4.00 0.280 
0.8 4.00 0.399 4.00 0.394 4.00 0.297 4.00 0.280 
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Table 5-4: Summary of Loss of Variation Due to Averaging for Varying Areas Associated with Each Rain 
Gage with a Slope of 0, where Arith. Means Arithmetic, and Std. Dev. Means Standard Deviation 

Area 
Fraction 

Std. Dev. 
Thiessen-Gage 1 

Std. Dev. 
Arith.-Gage 1 

Std. Dev. 
Thiessen-Gage 2 

Std. Dev. 
Arith.-Gage 2 

0.2 -0.100 -0.119 -0.095 -0.114 
0.3 -0.104 -0.119 -0.099 -0.114 
0.4 -0.107 -0.119 -0.102 -0.114 
0.5 -0.108 -0.119 -0.103 -0.114 
0.6 -0.107 -0.119 -0.102 -0.114 
0.7 -0.105 -0.119 -0.101 -0.114 
0.8 -0.102 -0.119 -0.097 -0.114 
 

Table 5-5:  Results of Analyses for Varying Fraction of Area Associated with Each Rain Gage with a Slope 
of 3, where Arith. Means Arithmetic, and Std. Dev. Means Standard Deviation 

Area 
Fraction 

Gage 1 
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith. 
Mean 

Arith. 
Std.  
Dev. 

0.2 4.30 0.433 5.80 0.792 4.92 0.539 5.05 0.454 
0.3 4.45 0.474 5.95 0.718 5.11 0.545 5.20 0.433 
0.4 4.60 0.526 6.10 0.648 5.31 0.549 5.35 0.420 
0.5 4.74 0.586 6.25 0.581 5.50 0.551 5.50 0.415 
0.6 4.89 0.653 6.40 0.521 5.69 0.549 5.65 0.420 
0.7 5.04 0.723 6.55 0.469 5.88 0.544 5.80 0.433 
0.8 5.19 0.798 6.70 0.428 6.07 0.538 5.94 0.455 
 
Table 5-6: Summary of Loss of Variation for Varying Fractions of Pixel Area Associated with Each Rain 
Gage with a Slope of 3, where Arith. Means Arithmetic, and Std. Dev. Means Standard Deviation 

Area 
Fraction 

Std. Dev. 
Thiessen-Gage 1 

Std. Dev. 
Arith.-Gage 1 

Std. Dev. 
Thiessen-Gage 2 

Std. Dev. 
Arith.-Gage 2 

0.2 0.106 0.021 -0.253 -0.338 
0.3 0.071 -0.041 -0.174 -0.285 
0.4 0.024 -0.106 -0.098 -0.228 
0.5 -0.035 -0.171 -0.030 -0.166 
0.6 -0.104 -0.233 0.028 -0.101 
0.7 -0.180 -0.290 0.075 -0.035 
0.8 -0.260 -0.343 0.110 0.027 
 

5.2.4. Effect of Varying Amount of Rainfall 

5.2.4.1. Methods and Materials 

The third analysis investigated the effect that increasing the minimum rainfall 

depth had on the average rainfall depths.  The minimum rainfall depths used were 1 

mm, 2 mm, 5 mm, 10 mm, and 15 mm.  This analysis was done twice, first with a 
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slope of 0 and then with a slope of 3.  A slope of 0 represented a uniform storm with 

no systematic variation between the gages, while a slope of 3 had increasing rainfall 

across the pixel.  Again a normal pdf was used with a mean of 2 and a standard 

deviation of 0.4 to provide the random component of the rainfall depth. 

5.2.4.2. Results and Discussion 

The third analysis considered the impact that varying amounts of rainfall 

could have on the calculated average rainfall depth values.  Table 5-7 presents the full 

results of this analysis for a rainfall surface with a slope of 0 and Table 5-8 presents 

the summary of loss of variation associated with each of the averaging methods.  

Table 5-9 then presents the results of the same analysis for a slope of 3, and Table 5-

10 presents the summary of loss of variation for this scenario.  The results of this 

analysis again suggest that the Thiessen polygon averaging method results in 

somewhat less smoothing than the arithmetic averaging method.  For example, the 

difference in standard deviations between the Thiessen method and rain gage 1 for a 

minimum rainfall depth of 5 mm was -0.108, while the difference in standard 

deviations between the arithmetic method and rain gage 1 was -0.119 when the 

rainfall depth surface had no variability.  The difference between these two values is 

not significant.   

For slopes of both 0 and 3 it would appear that the amount of rainfall does not 

have an effect.  The loss in variation is essentially constant, with some slight random 

variation, regardless of the amount of rainfall.  As table 5-10 shows, the difference in 

standard deviations between the Thiessen method and rain gage 1 varied from -0.106 

to -0.108 for minimum rainfall depths varying from 1 mm to 15 mm, and the 
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differences in standard deviations between the arithmetic method and rain gage 1 

varied from -0.119 to -0.121 for the same depths.   

Table 5-7: Results of Analysis of Varying Rainfall Amounts with a Slope of 0, where Std. Dev. Means 
Standard Deviation, and Arith. Means Arithmetic 

Minimum 
Rainfall 
 Depth 
(mm) 

Gage 1 
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith. 
Mean 

Arith. 
Std.  
Dev. 

1  3.00 0.399 3.00 0.394 3.00 0.291 3.00 0.280 
2  4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280 
5  7.00 0.399 7.00 0.394 7.00 0.291 7.00 0.281 
10  12.00 0.399 12.00 0.394 12.00 0.293 12.00 0.280 
15  17.00 0.399 17.00 0.396 17.00 0.292 17.00 0.278 
 
Table 5-8: Summary of Loss of Variation of Averaging Methods for Varying Rainfall Amounts with a Slope 
of 0, where Arith. Means Arithmetic, and Std. Dev. Means Standard Deviation 

Minimum 
Rainfall 
Depth (mm) 

Std. Dev. 
Thiessen- 
Gage 1 

Std. Dev. 
Arith.- 
Gage 1 

Std. Dev. 
Thiessen- 
Gage 2 

Std. Dev. 
Arith.- 
Gage 2 

1 -0.108 -0.119 -0.103 -0.113 
2 -0.108 -0.119 -0.103 -0.114 
5 -0.108 -0.119 -0.103 -0.114 
10 -0.106 -0.119 -0.101 -0.114 
15 -0.107 -0.121 -0.104 -0.118 
 

Table 5-9: Results of Analysis of Varying Rainfall Amounts with a Slope of 3, where Std. Dev. Means 
Standard Deviation and Arith. Means Arithmetic 

Minimum 
Rainfall 
 Depth 
(mm) 

Gage 1 
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith. 
Mean 

Arith. 
Std.  
Dev. 

1 3.74 0.586 5.25 0.581 4.50 0.551 4.50 0.415 
2 4.74 0.586 6.25 0.581 5.50 0.551 5.50 0.415 
5 7.74 0.586 9.25 0.581 8.50 0.552 8.50 0.456 
10 12.74 0.586 14.25 0.580 13.50 0.552 13.50 0.415 
15 17.74 0.587 19.25 0.581 18.50 0.552 18.50 0.412 
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Table 5-10: Summary of Loss of Variation for Varying Rainfall Amounts with a Slope of 3, where Arith. 
Means Arithmetic, and Std. Dev. Means Standard Deviation 

Minimum 
Rainfall 
Depth (mm) 

Std. Dev. 
Thiessen- 
Gage 1 

Std. Dev. 
Arith.- 
Gage 1 

Std. Dev. 
Thiessen- 
Gage 2 

Std. Dev. 
Arith.- 
Gage 2 

1 -0.035 -0.171 -0.030 -0.166 
2 -0.035 -0.171 -0.030 -0.166 
5 -0.035 -0.170 -0.029 -0.165 
10 -0.034 -0.171 -0.029 -0.165 
15 -0.035 -0.175 -0.030 -0.170 

5.2.5. Effect of Probability Distribution Function 

5.2.5.1. Methods and Materials 

The final factor investigated was the effect of the choice of pdf of the random 

variation on the computed average rainfall depths for the pixel.  The program allowed 

the user to choose from a uniform pdf, a normal pdf, an exponential pdf, a gamma 

pdf, and an extreme value pdf.  Five scenarios were set up, one for each of the above 

mentioned pdfs.  When using the uniform pdf the parameters to be specified are the 

lower bound and the upper bound.  Values of 1.5 and 5, respectively, were chosen for 

these parameters.  In simulations using the normal pdf the mean and standard 

deviation were the parameters to be specified.  As with the previous analyses, a mean 

of 2 and a standard deviation of 0.4 were chosen.  The exponential pdf required 

specification of only one parameter.  This parameter was set to 2.5 for this analysis.  

The gamma pdf needed both a scale and a shape parameter.  Values chosen for these 

parameters were 2.5 and 3 respectively.  The extreme value pdf also required that two 

parameters, the location parameter and the scale parameter, be specified.  Again 

values of 2.5 and 3, respectively, were chosen.  A minimum rainfall depth of 2 mm 

was simulated.  While the results of these analyses are not directly comparable 

because of the differences in the pdfs, it was an interesting question to examine.   
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5.2.5.2. Results and Discussion 

The final analysis compared the smoothing effects for several different rainfall 

pdfs.  Table 5-11 presents the results of these analyses, while Table 5-12 presents the 

summary of loss of variation for each of the averaging methods.  Due to differences 

in the different pdfs it is difficult to truly compare these results; however some 

general conclusions can be reached.  In every case the Thiessen polygon averaging 

method smoothes the results less than the arithmetic averaging method, as seen in 

Table 5-12.  For example, for the exponential pdf the difference in standard 

deviations between the Thiessen method and rain gage 1 was -0.634, while the 

difference in standard deviations between the arithmetic method and rain gage 1 was -

0.708.  The normal pdf, which was used in all of the previous analyses, has the 

smallest difference in loss of variation between the two averaging methods, with a 

loss of variation of -0.108 for the Thiessen averaging method and a loss of variation 

of -0.119 for the arithmetic averaging method, while the exponential, gamma, and 

extreme value pdfs have significantly higher differences between the averaging 

methods.  If one of these pdfs were to be used further then it would clearly be to the 

best advantage to use the Thiessen polygon averaging method rather than the 

arithmetic averaging method to maintain as much of the original variation as possible.  

However, the differences between the Thiessen polygon and the arithmetic averaging 

methods are significantly lower for the normal and uniform pdfs, indicating that the 

arithmetic method could be used without excessive loss of variation in an analysis 

using either of these pdfs, because the parameters were set to have lower variation 

and therefore fewer extreme rainfall values. 
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Table 5-11: Results for with Varying PDFs, where Std. Dev. Means Standard Deviation and Arith. Means 
Arithmetic 

PDF Gage 1 
Mean 

Gage 1 
Std. 
Dev. 

Gage 2 
Mean 

Gage 2 
Std. 
Dev. 

Thiessen 
Mean 

Thiessen 
Std. 
Dev. 

Arith. 
Mean 

Arith. 
Std.  
Dev. 

Uniform 5.26 1.011 5.24 1.015 5.25 0.745 5.25 0.717 
Normal 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280 
Exponential 4.48 2.505 4.53 2.566 4.51 1.871 4.51 1.796 
Gamma 9.49 4.347 9.61 4.382 9.56 3.213 9.55 3.087 
Extreme 
Value 

3.44 2.646 3.39 2.651 3.42 1.947 3.41 1.873 

 
Table 5-12: Summary of Loss of Variation for Varying PDFs, where Arith. Means Arithmetic, and Std. 
Dev. Means Standard Deviation 

PDF Std. Dev. 
Thiessen- 
Gage 1 

Std. Dev. 
Arith.- 
Gage 1 

Std. Dev. 
Thiessen- 
Gage 2 

Std. Dev. 
Arith.- 
Gage 2 

Uniform -0.266 -0.294 -0.270 -0.298 
Normal -0.108 -0.119 -0.103 -0.114 
Exponential -0.634 -0.708 -0.695 -0.770 
Gamma -1.134 -1.260 -1.169 -1.295 
Extreme Value -0.699 -0.772 -0.704 -0.777 

5.2.6. Conclusions 

 Analyses were conducted to determine the influence that several factors had 

on the loss of variation in rainfall estimates caused by using averaging methods.  The 

averaging methods compared were the Thiessen polygon method and the arithmetic 

method.  It was acknowledged that any averaging method would lead to smoothing, 

or loss of variation, in the rainfall estimates calculated as compared to the true rainfall 

values.  The impact of four factors on the degree of smoothing was investigated.  The 

first was the storm variability, as measured by the slope of the storm surface, and then 

the amount of watershed area represented by each of two rain gages was investigated.  

Next varying the amount of rainfall observed over the watershed was investigated, 

and the final factor was using different probability density functions to represent the 
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random variation added to the rainfall estimates to represent the lack of perfect 

correlation between real data sets. 

 One consistent trend was discovered in investigating the four factors 

described.  In all cases the Thiessen averaging method was seen to result in a smaller 

amount of smoothing, and therefore less loss of variation as compared to the true 

data, than the arithmetic method.  In examining the results of the investigation into 

the effects of storm variation two conclusions were reached.  First, the difference 

between the variation in the Thiessen averages and the true data decreased as the 

storm variability increased.  The opposite was true for the arithmetic averages, as the 

storm variability increased the difference between the variability of the average value 

and the true value was observed to increase.  The second conclusion reached was that 

though the absolute smoothing increased with increasing storm variability, the 

relative smoothing remained fairly constant as the storm variability increased.   

The results of the gage area investigation showed that the amount of 

watershed represented by each of the rain gages was most important for a highly 

variable storm, as would be expected.  Rain gage measurements would likely be less 

accurate for a highly variable storm, and thus any rainfall estimates made using the 

rain gage data would be a less accurate representation of the true rainfall.  Varying the 

amount of rainfall observed over the watershed was not observed to influence the loss 

of variation in rainfall estimates made using averaging methods.  Finally, the results 

of the analysis of varying probability distribution functions were somewhat 

inconclusive, as the different functions are difficult to compare to each other.  It was 

determined; however, that the differences in variation between the Thiessen polygon 
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averaging method and the arithmetic averaging method were less severe when using a 

normal or uniform probability distribution function as compared to the exponential, 

gamma, and extreme value distributions.   

5.3. Z-R RELATIONSHIPS 

5.3.1. Introduction 

As mentioned previously, radar data does not measure rainfall intensity 

directly.  Instead, the radar beam is reflected off of raindrops in the air and back to the 

radar station to be measured.  In order to obtain useful information about the rainfall 

intensity a relationship between this reflectance and rainfall rate is used.  This 

relationship transforms the radar readings to rainfall intensity.  This equation is called 

the reflectance (Z) – rainfall rate (R) relationship.  A unique Z-R relationship does not 

exist, and the choice of equation used can influence the amount of rainfall that was 

measured.  This lack of a unique relationship between the radar reflectivity and the 

rainfall intensity experienced can result in potentially significant errors in converting 

radar data to rainfall measurements (Gerstner and Heinemann, 2008).  The Z-R 

equation is usually of the form: 

bZ AR=      (5-1) 

The National Weather Service uses one standard equation for most of the United 

States.  This equation is applicable to most of the climates and types of rainfall 

experienced in the United States.  This standard equation (Ulbrich and Miller, 2001) 

is: 

1.4300Z R=      (5-2) 
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5.3.2. Effect of Varying Z-R Relationship on Semivariograms – Trial 1 

5.3.2.1. Introduction 

Semivariograms are used to illustrate spatial variance in data sets.  

Semivariograms are easiest to evaluate when measurements are made on a grid, 

where the grid lines are a distance h apart.  The notation γ(h) is used to represent the 

semivariogram for a separation distance h, related to the grid size, and they tend to be 

plotted as γ(h) versus h.  To determine the shape of the semivariogram two 

characteristics are important.  The separation distance where the semivariogram 

begins to approach a constant value is called the radius of influence.  This value 

occurs when a semivariogram approaches the sample variance.  The second 

characteristic is the sill.  The sill is the portion of the semivariogram where γ(h) is 

approximately the sample variance (Hromadka, 1993).  Semivariograms will be 

discussed in more detail in chapter 6.  This experiment evaluated the effect that the Z-

R transformation equation used to convert radar data to rainfall rate data had on the 

storm semivariogram. 

5.3.2.2. Methods and Materials 

The first experiment conducted to determine the effect that the Z-R 

transformation equation had on the storm semivariogram used several different Z-R 

relationships to determine the rainfall rate for the same measured reflectance values.  

Watershed 1, which was a synthetic 60-km by 48-km with a total of 208 rain gages 

was used with a synthetic storm, identified for future use as storm 2.  This storm had 

ellipses with major axes of 0-km at the center, 5-km, 12-km, 19-km, and 28-km.  

Rather than a rainfall depth, a reflectance value, in decibels of reflectance, which is a 

log scale, was input to the program for each ellipse.  The reflectance values used were 
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55-dBZ at the center, then 45-dBZ, 30-dBZ, 20-dBZ, and 5-dBZ.  The program then 

converted these values into true reflectance values from the decibel scale used by the 

radar, and calculated a semivariogram for the reflectance values.   

After calculating the true reflectance values the program converted those 

values into rainfall rate values using the given Z-R relationship.  Finally the program 

multiplied each rainfall rate value by a time increment of 5 minutes, which is the 

standard time interval of radar scans.  A semivariogram was then computed for the 

rainfall depths.  Five different commonly used Z-R relationships (Collier, 1996; 

Morin et al., 2006) were compared in this experiment.  Those relationships were: 

1.4300Z R=      (5-3) 

1.4655Z R=      (5-4) 

1.5500Z R=      (5-5) 

1.5250Z R=      (5-6) 

1.6200Z R=      (5-7) 

As with all of the semivariogram analysis experiments the relative bias, standard error 

ratio, correlation coefficient, sill value, and radius of influence were recorded for 

comparison. 

5.3.2.3. Results and Discussion 

The results of trial 1, shown in Tables 5-13 through 5-15, indicate that the 

choice of Z-R transformation equation can significantly affect the computation of the 

semivariogram.  Table 5-13 shows the results of a semivariogram computed from 

reflectance data before a transformation was applied.  Obviously the transformation 

equation did not cause any change to occur in this data as there was change was not 
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evident in the semivariogram parameters as the transformation equation varied.  This 

semivariogram was computed in order to compare any trends in the data to trends 

found in semivariograms computed from rainfall depth information.  In comparing 

Table 5-13 to Tables 5-14 and 5-15 it is obvious that the sill values are significantly 

different when reflectance data is used versus rainfall depth data, but the radius of 

influence does not seem to be significantly different between the two data types. 

Table 5-13: Semivariogram Calculated for Reflectance Data 

Z-R 
Equation 

Maximum 
Separation 
Distance (km) 

Sill  
(*1010 mm2) 

Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error  
Ratio 

R 

Z=300R1.4  28 0.25 29 -0.011 0.138 0.992 
Z=300R1.4 32 0.18 18 -0.002 0.909 0.990 
Z=655R1.4 28 0.25 29 -0.011 0.138 0.992 
Z=655R1.4 32 0.18 18 -0.002 0.909 0.990 
Z=500R1.5 28 0.25 29 -0.011 0.138 0.992 
Z=500R1.5 32 0.18 18 -0.002 0.909 0.990 
Z=250R1.5 28 0.25 29 -0.011 0.138 0.992 
Z=250R1.5 32 0.18 18 -0.002 0.909 0.990 
Z=200R1.6 28 0.25 29 -0.011 0.138 0.992 
Z=200R1.6 32 0.18 18 -0.002 0.909 0.990 
 
Table 5-14: E-W Semivariograms of Rainfall Depths Calculated from Reflectance Data Using Varying Z-R 
Transformation Equations 

Z-R 
Equation 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error  
Ratio 

R 

Z=300R1.4 24 801.7 37 0.004 0.053 0.999 
Z=300R1.4 28 629.8 27 0.010 0.157 0.980 
Z=300R1.4 32 490.3 20 0.009 0.818 0.653 
Z=655R1.4 24 262.6 37 0.003 0.053 0.999 
Z=655R1.4 28 206.4 27 0.010 0.157 0.980 
Z=655R1.4 32 160.8 20 0.009 0.818 0.653 
0.500R1.5 24 238.8 41 0.006 0.063 0.998 
Z=500R1.5 28 173.0 27 0.014 0.187 0.985 
Z=500R1.5 32 136.0 21 0.011 0.801 0.671 
Z=250R1.5 24 602.7 41 0.006 0.063 0.998 
Z=250R1.5 28 435.9 27 0.014 0.187 0.985 
Z=250R1.5 32 342.8 21 0.011 0.801 0.671 
Z=200R1.6 24 519.6 16 0.001 0.938 0.516 
Z=200R1.6 28 334.2 47 0.008 0.078 0.998 
Z=200R1.6 32 264.8 27 0.017 0.213 0.981 
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Table 5-15: N-S Semivariograms of Rainfall Depths Calculated from Reflectance Data Using Varying Z-R 
Transformation Equations 

Z-R 
Equation 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error  
Ratio 

R 

Z=300R1.4 20 1145.7 49 0.007 0.076 0.998 
Z=300R1.4 24 615.4 24 0.017 0.207 0.983 
Z=300R1.4 28 469.1 18 0.013 0.589 0.620 
Z=655R1.4 20 355.0 46 0.008 0.075 0.998 
Z=655R1.4 24 201.7 24 0.017 0.207 0.983 
Z=655R1.4 28 153.8 18 0.012 0.859 0.620 
Z=500R1.5 20 377.5 60 0.011 0.094 0.997 
Z=500R1.5 24 168.5 23 0.020 0.240 0.977 
Z=500R1.5 28 129.7 18 0.015 0.845 0.637 
Z=250R1.5 20 1048.5 66 0.010 0.094 0.997 
Z=250R1.5 24 424.5 23 0.020 0.240 0.977 
Z=250R1.5 28 326.9 18 0.015 0.845 0.637 
Z=200R1.6 20 1501.3 125 0.012 0.111 0.995 
Z=200R1.6 24 324.4 23 0.023 0.267 0.971 
Z=200R1.6 28 252.0 18 0.017 0.831 0.651 
 

Tables 5-14 and 5-15 show the effect that the Z-R transformation equation has 

on both the East-West and the North-South semivariograms.  Five commonly used Z-

R relationships were examined in this trial, but they do not vary in any systematic 

way that allows data trends to be evident.  What is evident, however, is that the 

choice of transformation equation used can have significant influence on the fitted sill 

and radius of influence.  This indicates that calibration of a transformation equation 

for a specific location would be necessary to obtain an accurate semivariogram.  In 

most weather radar applications, however, calibration of the Z-R relationship is not 

done, and one or two standard equations are applied to most of the area of the United 

States of America. 
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5.3.3. Effect of Varying Z-R Relationship on Semivariograms – Trial 2 

5.3.3.1. Introduction 

The previous evaluation of the effect of Z-R equation on the storm 

semivariogram considered several commonly used Z-R equations.  This did not allow 

for evaluation of the A and b coefficients individually.  The purpose of this research 

was to determine the effect of each coefficient individually on the calculated storm 

semivariogram. 

5.3.3.2. Methods and Materials 

The second experiment used to study the effects of the Z-R relationship on the 

semivariogram was designed to consider the effect of each coefficient individually.  

Therefore four Z-R relationships were used, which may or may not be relationships 

commonly accepted, but which spanned the range of commonly used values.  The Z-

R relationships used were: 

1.4200Z R=      (5-8)  

1.6200Z R=      (5-9) 

1.4600Z R=               (5-10) 

1.6600Z R=                                                    (5-11) 

These relationships varied the A and b values individually and thus were able to 

provide insight into the effect each coefficient had on the computed semivariogram.  

Watershed 1 and storm 2 were used as they were in trial 1, and as always the relative 

bias, standard error ratio, correlation coefficient, sill, and radius of influence were 

compared among the fitted semivariograms. 
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5.3.3.3. Results and Discussion 

Because the Z-R relationships examined in trial 1 did not vary in a systematic 

way firm conclusions about the effect of the coefficients A and b individually could 

not be drawn.  In order to determine the individual effect of the coefficients a second 

study was conducted.  The results of this study are presented in Tables 5-16 and 5-17.  

From these tables it is obvious that neither of the coefficients has any significant 

effect on the radius of influence.  An increase in either of the coefficients, however, 

leads to a decrease in the sill values.  This result is expected because the standard 

form of the equation calculates reflectance based on rainfall rate, so to calculate 

rainfall rate based on reflectance the equation must be solved for R, and the 

reciprocals of A and b must be used.  When A or b increase their reciprocals decrease, 

which explains the corresponding decrease in sill.  This study again illustrates the 

effect the choice of Z-R relationship can have on the semivariogram, which reinforces 

the idea that the Z-R relationship must be calibrated in order to obtain an accurate 

semivariogram.  

Table 5-16: E-W Semivariogram for Varying Z-R Transformation Equations 

Z-R 
Equation 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error  
Ratio 

R 

Z=200R1.4 24 1428.9 37 0.004 0.053 0.999 
Z=200R1.4 28 1123.8 27 0.010 0.157 0.990 
Z=200R1.4 32 875.0 20 0.009 0.818 0.653 
Z=200R1.6 24 512.0 46 0.009 0.078 0.998 
Z=200R1.6 28 334.2 27 0.017 0.213 0.981 
Z=200R1.6 32 264.8 21 0.013 0.785 0.687 
Z=600R1.4 24 297.8 37 0.004 0.053 0.999 
Z=600R1.4 28 233.9 27 0.010 0.157 0.990 
Z=600R1.4 32 182.2 20 0.009 0.818 0.652 
Z=600R1.6 24 128.4 45 0.009 0.078 0.998 
Z=600R1.6 28 84.7 27 0.017 0.213 0.981 
Z=600R1.6 32 67.1 21 0.013 0.785 0.687 
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Table 5-17: N-S Semivariogram for Varying Z-R Transformation Equations 

Z-R 
Equation 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error  
Ratio 

R 

Z=200R1.4 20 1974.6 47 0.008 0.076 0.998 
Z=200R1.4 24 1098.4 24 0.017 0.207 0.983 
Z=200R1.4 28 837.5 18 0.013 0.859 0.620 
Z=200R1.6 20 1501.3 125 0.012 0.111 0.996 
Z=200R1.6 24 324.4 23 0.023 0.267 0.971 
Z=200R1.6 28 252.0 18 0.017 0.831 0.651 
Z=600R1.4 20 401.5 46 0.008 0.075 0.998 
Z=600R1.4 24 228.6 24 0.017 0.207 0.983 
Z=600R1.4 28 174.3 18 0.013 0.859 0.620 
Z=600R1.6 20 386.9 127 0.012 0.111 0.995 
Z=600R1.6 24 82.1 23 0.023 0.237 0.971 
Z=600R1.6 28 63.8 18 0.017 0.831 0.651 

5.3.4. Conclusions 

Two studies were conducted to examine the effect of using radar reflectance 

data rather than rain gage data to compute a semivariogram.  To do this rainfall 

reflectance was measured, and then a Z-R transformation equation was used to 

convert the reflectance data to rainfall intensity, and then rainfall depth data.  A 

unique Z-R equation does not exist, and the choice of equation used was seen to 

significantly influence the semivariogram calculated.  The sill values were found to 

be much more affected than the radius of influence values when radar reflectance data 

rather than rainfall depth data were used.  In fact, any increase in either the A or b 

coefficient values was found to decrease the sill value.  This finding led to the 

conclusion that it would be necessary to calibrate a Z-R equation for a specific 

location in order to calculate an accurate semivariogram.   



 

 96 
 

5.3.5. Visual Comparison Between Radar and Rain Gage Data 

5.3.5.1. Introduction 

In order to make use of radar and rain gage data for future research into the 

relationship between reflectance and rainfall rate, and into the use of spatial data as 

input to the unit hydrograph procedure, it was important to understand how the radar 

data related to the rain gage data.  Several methods were used to develop this 

understanding, including a visual comparison using plots of both data sets and 

calculating the correlation between the radar data and the rain gage data.  Ideally the 

visual inspection would reveal common patterns or trends to the data sets, such as 

rising and peaking at corresponding times.  The correlation analysis would ideally 

show a high degree of correlation, indicating a strong relationship between the 

various data sets. 

5.3.5.2. Methods and Materials 

In order to visually compare the radar data and the rain gage data, both data 

sets needed to be obtained.  The Hydro-NEXRAD database used to obtain radar data 

provides five possible radar scan elevations, at 0.5°, 1.5°, 2.5°, 3.5°, and 4.5° tilt 

angles.  Because which of these elevation scans would provide optimum coverage of 

the Walnut Gulch Experimental Watershed was unknown, all five were obtained for 

two storm events, occurring on August 13, 2006, and July 20, 2007.  The rain gage 

data were obtained from the Agricultural Research Services’ website for both of these 

storms.  Then five of the sixteen radar pixels covering the Walnut Gulch area were 

chosen for use in several analyses in an effort to get a thorough sample of the 

watershed.  The pixels chosen for this comparison were pixels 1, 4, 7, 10, and 16, as 

described below as they appear in Figure 5-1.  The squares of varying gray colors are 
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the pixels, and the dots within the watershed boundary are the rain gages.  The top 

left-most pixel, which contains the watershed outlet, is identified as pixel 1, while the 

top right-most pixel, which has only two rain gages within it, is identified as pixel 7.  

Pixels 2 through 6 are located between these two pixels.  The second row of pixels 

can be identified, moving from left to right, as pixels 8 through 13.  The pixels in the 

bottom row are identified as pixels 14, 15, and 16, again moving from left to right.  

The final preparation step was to identify which rain gages were located within the 

boundaries of the pixels chosen for this study.   

 
Figure 5-1:  Map of Walnut Gulch Experimental Watershed Boundaries, Including the Locations of Rain 
Gages and the Radar Pixels Associated with the Watershed 

Once all of the data sets had been identified and obtained, they could be 

plotted against each other for comparison.  The five radar scan elevations were 

plotted on one graph in order to assess the degree of variation between the scan 

heights.  The rain gages were also plotted together, as either one figure or two figures, 

depending on the number of rain gages.  Pixels 1 and 16 had six rain gages each, and 

pixels 4 and 10 had eight rain gages each.  After plotting six and eight rain gages on 

one graph, it was observed that the graphs were cluttered and difficult to read; 

therefore two plots that contained half of the total number of rain gages were made 



 

 98 
 

for each of the pixels.  Pixel 7, on the other hand, only contained two rain gages, 

which were plotted on one graph without difficulty. The plot(s) that contained rain 

gage data associated with each pixel were then compared to the plot that contained 

the radar scan elevation data, to determine what similarities existed between the data 

sets.  Perfect agreement between the radar data and rain gage data was not expected, 

as the two do not actually measure exactly the same thing; however the desired 

outcome was to detect general trends shared between the two data sets. 

5.3.5.3. Results and Discussion 

Figures 5-2, 5-3, and 5-4 and Figures 5-5, 5-6, and 5-7 provide a visual 

comparison between the radar data for each of the five possible scan elevations and 

the eight rain gages located within the bounds of the pixel for two different storms.  

The pixel identified as pixel 10 on the map was chosen for demonstration purposes, 

because reasonable agreement was seen between the radar and rain gage data for one 

storm, while less agreement was seen for the other storm.  The rain gage data for each 

storm are presented on two separate graphs because including data from eight rain 

gages on one plot resulted in a cluttered and difficult to read graph.   

 In examining the three plots associated with the storm on August 13, 2006, 

(Figures 5-2, 5-3, and 5-4) the agreement between the radar data and the rain gage 

data appears moderate at best.  However, it is important to note that the radar data are 

presented in decibels of reflectance (dBZ), which is a log scale.    The initial peak 

seen in the radar data for scans 2 through 5 (Figure 5-2) is mirrored in the rain gage 

data (Figures 5-3 and 5-4) fairly well; however, the rest of the data do not agree so 

well.  For the duration of the storm comparatively little variation in the radar 

reflectivity readings is evident, which should indicate little variation in the rainfall 
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intensities.  However, in the rain gage data, a large decrease in rainfall intensity is 

clearly seen.  After this decrease only small variation in the measured rainfall 

intensities is evident; however, the radar data seem to imply that the intensities being 

measured should be higher.  Also, a clear nonlinearity to the data is visible in the 

radar reflectivity readings, which is not well reflected in the rain gage data.  Better 

agreement is observed when the radar data are transformed from decibels of 

reflectance (dBZ) to reflectance (Z), but these graphs show such a large variation in 

the reflectance values that they are impractical to plot.   

 The three plots associated with the storm on July 20, 2007, (Figures 5-5, 5-6, 

and 5-7) show somewhat better agreement between the radar data (dBZ) and the rain 

gage data.  Again the first peak of the storm agrees well between the radar readings 

and the rain gage readings.  Then the radar measurements decrease somewhat, which 

is also seen in the rain gage measurements.  The decrease does again seem more 

severe in the rain gage data than it does in the radar data.  The more severe decrease 

in magnitude of the rain gage data can be explained by the fact that the radar data 

measures decibels of reflectance, rather than reflectance directly.  Decibels of 

reflectance are measured by radar stations rather than reflectance because variations 

over orders of magnitude are possible in reflectance.  A conversion equation, which 

will be discussed in more detail later, is used to convert the radar measurements from 

decibels of reflectance to reflectance in order to use the radar data for hydrologic and 

meteorological purposes.  Therefore, the rainfall measurements in decibels of 

reflectance mask the true severity of the changes in rainfall intensity.  In actuality, 

reasonable agreement does exist between the radar reflectance data and the rain gage 



 

 100 
 

data; however, it is not practical to plot this information due to the large variation in 

reflectance values.   

A final point of comparison between the radar and rain gage data is the 

nonlinearity evident in the data sets.  Similar to the storm event on August 13, 2006, 

the radar reflectivities for the storm event on July 20, 2007, (Figure 5-5) increase and 

then decrease again in a nonlinear pattern.  While the rain gage measurements 

(Figures 5-6 and 5-7)  remain at a much lower level than that seen at the beginning of 

the storm, the nonlinearity evident in the data is seen in all of the rain gage records.  

While the radar measurements do not indicate that there should have been such a 

decrease in the intensity of rainfall between the beginning and end of the storm as is 

seen in the rain gage measurements, the rain gages more accurately match the trends 

of the radar data than was seen in the storm from August 13, 2006. 

0

10

20

30

40

50

60

10:00:00 11:12:00 12:24:00 13:36:00

Time

R
ad

ar
 R

ef
le

ct
iv

it
y 

R
ea

d
in

g
s 

(d
B

Z
)

Scan 1

Scan 2

Scan 3

Scan 4

Scan 5

 
Figure 5-2: Radar Reflectivity Readings for Scan Elevations for Pixel 10 for 8-13-06 Event 
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Figure 5-3: Four Rain Gages Located Within Pixel 10 for 8-13-06 Event 
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Figure 5-4: Four Rain Gages Located Within Pixel 10 for Storm on 8-13-06 
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Figure 5-5: Radar Reflectivity Readings for Scan Elevations for Pixel 10 for 7-20-07 Event 



 

 102 
 

0

10

20

30

40

50

60

18:00 19:12 20:24 21:36 22:48

Time

R
ai

n
 G

ag
e 

R
ai

n
fa

ll 
In

te
n

si
ty

 
R

ea
d

in
g

s 
(m

m
/h

r)
Gage 17

Gage 24

Gage 28

Gage 29

 

Figure 5-6: Four the Rain Gages Located Within Pixel 10 for 7-20-07 Event 
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Figure 5-7: Four Rain Gages Located Within Pixel 10 for 7-20-07 Event 

5.3.6. Cross-Correlation of Radar and Rain Gage Data 

5.3.6.1. Introduction 

The results of the visible comparison of the radar data and the rain gage data 

warranted further investigation.  The visual comparison did not provide convincing 

evidence that a reasonably strong relationship existed between the two data sets.  

Therefore, the cross-correlation analyses between the radar and rain gage data sets 

was made for radar scan elevations 2 through 5 and every rain gage in the five sample 

pixels chosen. 
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5.3.6.2. Methods and Materials 

A cross-correlation program was used to compute the correlation between 

each radar scan and each rain gage in the pixel.  The correlation was calculated 

between the data sets for nine different time lags: -4 (which means that the rain gage 

data was four time steps ahead of the radar data), -3, -2, -1, 0 (which means that the 

radar and rain gage data were on the same time step), 1, 2, 3, and 4 (which means that 

the radar data was four time steps ahead of the rain gage data).  It was assumed that 

only a positive lag made physical sense because the radar measurements were taken 

while the rain was in the atmosphere, and the rain gage measurements were taken 

when the rain reached the ground surface.  Therefore the radar would have to measure 

a given set of raindrops in the air before the rain gage could measure those same 

raindrops on the ground.  The correlation results for each time lag were compared to 

determine the optimum time lag for each radar and rain gage combination.   

The correlations were computed for two scenarios, described later, which 

differed in how zero values were dealt with.  First the correlations were computed for 

the raw data sets, in which the radar measurements were taken in decibels of 

reflectance.  Some alteration was necessary because the radar data sets and the rain 

gage data sets needed to be the same lengths in order to compute the correlations.  

Adjustments were also necessary to temporally align the data sets.  The radar 

measurements were taken at a fairly constant time increment of approximately every 

four minutes and twelve seconds.  The rain gage measurements, however, were taken 

at non-constant intervals depending on the intensity of rainfall.  Therefore, rain gage 

measurements could occur as frequently as every minute, or there could be as much 

as an hour or more between readings.  To calculate the correlations between the data 
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sets it was necessary to have one rain gage reading for every one radar reading.  At 

points when rain gage readings came more frequently than radar readings an average 

rainfall intensity was calculated for the extra time steps, while the intensity of rainfall 

was assumed to be constant when the time between rain gage readings was greater 

than the time between radar readings.  Once adjusted data sets had been created using 

this procedure, the correlations between the data sets could be calculated.   

The final step involved eliminating zero values from the data sets.  Because 

these data sets were eventually going to be used to calibrate the Z-R relationships 

between the radar and rain gage data, which use a power law, zero values could not 

be included in the data sets.  Two different methods were used to eliminate zero 

values in the data sets.  For scenario 1, a zero value that was present in a data record 

for either the radar or the rain gage data record was completely deleted.  In the second 

scenario, zero values were eliminated by adding a small number, insignificant to the 

magnitude of the radar and rain gage measurements, to each measurement.  A value 

of 0.001 was chosen for this purpose.  This resulted in any values that had been zero 

in the original data set becoming 0.001, which could be logarithmically transformed 

for use in the power model.  

5.3.6.3. Results and Discussion 

The results of the cross-correlation analysis for the storm on August 13, 2006, 

are presented in Tables 5-18 through 5-22.  Each table presents the cross-correlation 

result for each rain gage and radar scan level for one of the sample pixels used in this 

analysis.  For instance, Table 5-18 contains the cross-correlation results for each of 

the four radar scan elevations for each of the six rain gages located within pixel 1.  

Tables 5-23 through 5-27 present the results of the analysis for the storm on July 20, 
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2007.  Again, each table presents the cross-correlation results for each of the four 

radar scan elevations for all of the rain gages located within a specific pixel.  The 

correlations calculated for the same pixels appear to be relatively similar for the 

different storms.  The highest correlations are seen in the pixels located closest and 

farthest, pixels 1 and 16, respectively, from the radar station located near Tucson, 

Arizona, while the pixels in the middle of the watershed have consistently lower 

correlations.  While it makes sense that pixel 1 would have high correlation, since it is 

closest to the actual radar, the reason for the high correlation of pixel 16 compared to 

the three pixels in the center of the watershed is unclear.  The variations in elevation 

of the pixels could be responsible for this.   

Wide variation in correlation is seen between the rain gages and radar scans in 

the sample pixels, ranging from excellent correlations of up to approximately 95% to 

poor correlations as low as 0.7%.  However, overall acceptable correlation is seen 

between each radar scan elevation and at least one rain gage.  In some cases, a time 

lag of 1 to 4 time steps, meaning that the rain gage data was between 1 and 4 time 

steps ahead of the rain gage data, gave the optimum correlation between the data sets.  

This indicates that a time delay of several minutes is necessary to properly align the 

radar and rain gage data sets to allow the raindrops measured by the radar to reach the 

rain gage at the ground surface.   

For this analysis, each lag unit corresponded to a time delay of 5 minutes.  A 

rough mathematical estimation was done to determine whether or not these lag values 

made physical sense.  The Walnut Gulch Experimental Watershed is located from 

approximately 50 km to approximately 70 km away from the radar station in Tucson, 
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Arizona.  Therefore, for scan level 2, for which the angle of the radar beam was 1.5°, 

the radar beam was measuring the air between 1.31 km and 1.83 km above ground.  

Assuming the rain drops were falling at terminal velocity, found to be approximately 

6.5 m/s (Foote and Du Toit, 1969), it would take between 3.36 minutes and 4.69 

minutes for these raindrops to reach the ground surface.   

A similar analysis was completed for scan level 5.  For scan level 5, for which 

the angle of the beam was 4.5°, the radar beam was measuring the air between 

approximately 3.94 and 5.51 km above the ground surface.  From these heights, 

falling at terminal velocity, the raindrops would take approximately 10.1 minutes to 

14.13 minutes to reach the ground.  Based on these calculations, lags of 1, 2, or 3 time 

units do make physical sense.  It should also be considered that the raindrops may not 

actually be falling at terminal velocity.  For instance, updrafts in the atmosphere 

could force the droplets to move in a jerky pattern, periodically being forced in the 

upward direction by wind.  Also, the terminal velocity used in these calculations 

assumes a raindrop diameter of approximately 2mm.  If the droplets were 

significantly smaller than this they would be falling more slowly, and therefore take 

longer to reach the ground.   

The purpose of this analysis was to determine whether or not a relationship 

existed between the radar data and the rain gage data.  Because the visual inspection 

discussed above did not provide convincing evidence that a strong relationship 

existed between the two data sets, it was reassuring to see reasonable correlation 

values result from this analysis.  The correlation results found in this analysis indicate 

that some relationship between the radar data and the rain gage data exists, meaning 
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that the two data sets can safely be used to derive Z-R relationships for the Walnut 

Gulch Experimental Watershed. 

Table 5-18: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 1 for the 8-13-06 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
1 0.7715 0.8061 0.7812 0.8641 
2 0.7812 0.8547 0.9215 0.8522 
4 0.6968 0.7002 0.6143 0.6526 
5 0.8185 0.8962 0.9447 0.9185 
8 0.7949 0.7545 0.8114 0.8725 

92 0.7855 0.802 0.8554 0.8809 
 
Table 5-19: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 4 for the 8-13-06 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
31 0.4356 0.5764 0.5133 0.6086 
32 0.2655 0.4274 0.5019 0.0142 
38 0.5228 0.6347 0.6672 0.5522 
39 0.1635 0.2886 0.0525 0.1308 
43 0.5322 0.6639 0.5612 0.4524 
44 0.174 0.2363 0.1628 0.0071 
71 0.2265 0.3735 0.4228 0.0807 
87 0.4638 0.6014 0.6218 0.3682 

 
Table 5-20: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 7 for the 8-13-06 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
69 0.582 0.6088 0.4458 0.3895 
70 0.495 0.6125 0.494 0.3976 

 

Table 5-21: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 10 for the 8-13-06 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
17 0.6069 0.4814 0.3194 0.1285 
24 0.4697 0.4995 0.6041 0.3342 
28 0.6325 0.6777 0.5722 0.3228 
29 0.5714 0.567 0.7052 0.469 
33 0.6668 0.6942 0.5073 0.3318 
34 0.339 0.285 0.2571 0.4816 
81 0.506 0.5223 0.6125 0.4343 

399 0.5383 0.5971 0.5459 0.1448 
 
 

 

 

 



 

 108 
 

Table 5-22: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 16 for the 8-13-06 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
36 0.9359 0.7319 0.6612 0.5416 
37 0.8302 0.7591 0.6664 0.5716 
42 0.8079 0.6601 0.5949 0.5816 
47 0.9503 0.8169 0.7323 0.552 
48 0.91 0.7424 0.7403 0.6367 

100 0.6981 0.7749 0.6512 0.454 
 
Table 5-23: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 1 for the 7-20-07 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
1 0.7272 0.6839 0.646 0.5953 
2 0.7475 0.6865 0.6434 0.6013 
4 0.6369 0.5425 0.4943 0.4429 
5 0.66 0.6483 0.605 0.5609 
8 0.6569 0.6322 0.6426 0.659 

92 0.7176 0.6247 0.5879 0.5485 
 

Table 5-24: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 4 for the 7-20-07 Events 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
31 0.3499 0.3328 0.3846 0.262 
32 0.4879 0.3535 0.3601 0.256 
38 0.216 0.4563 0.4175 0.1471 
43 0.1145 0.5665 0.5214 0.2637 
44 0.1603 0.0092 0.0843 0.2582 
71 0.5749 0.5043 0.4521 0.3164 
87 0.4284 0.3484 0.3629 0.2075 

 
Table 5-25: Cross-Correlation Results of Rain Gages and Radar Scans in Pixel 7 for the 7-20-07 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
69 0.5023 0.5127 0.451 0.4761 
70 0.5041 0.5005 0.4337 0.4146 

 
Table 5-26: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 10 for the 7-20-07 Events 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
17 0.7566 0.7594 0.7545 0.6005 
24 0.743 0.8229 0.7825 0.4855 
28 0.5894 0.714 0.744 0.5667 
29 0.3564 0.4631 0.5685 0.3828 
33 0.5144 0.6423 0.6816 0.4314 
34 0.3645 0.4641 0.5504 0.4085 
81 0.4732 0.542 0.6188 0.5623 

399 0.6742 0.7237 0.6866 0.3995 
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Table 5-27: Cross-Correlation Results for Rain Gages and Radar Scans in Pixel 16 for the 7-20-07 Event 

Gage Scan 2 Scan 3 Scan 4 Scan 5 
36 0.8784 0.5525 0.4607 0.4464 
37 0.9093 0.5582 0.472 0.4441 
42 0.8784 0.5668 0.4662 0.4201 
47 0.8909 0.5753 0.4605 0.4219 
48 0.6421 0.413 0.2575 0.2189 

100 0.8927 0.5609 0.4385 0.404 
 
5.3.6.4. Conclusions 

 Before radar data can be used to provide rainfall data in hydrologic analyses it 

is important to determine that the radar is capable of providing accurate rainfall 

information.  If radar data is going to be transformed into rainfall intensity data, then 

some relationship should exist between the radar data and the corresponding rain gage 

data that measures rainfall data at the ground.  Visual comparison of the two data sets 

did not provide convincing evidence that such a relationship existed; therefore the 

cross-correlation between the two data sets was computed.  While wide variation was 

seen in the correlation values between the radar data sets and each of the rain gage 

data sets located within a given pixel, overall acceptable correlation (at least greater 

than 0.5) was seen the radar data and the rain gage data.  Since reasonable correlation 

was seen in general between the two data sets it was concluded that enough of a 

relationship existed in order to use the radar data for hydrologic analyses.  Therefore, 

equations could be developed to transform the radar data into rainfall intensity data, 

for later use in hydrologic models. 

5.3.7. Calibration of Z-R Equations Using Radar and Rain Gage Data 

5.3.7.1. Introduction 

Once it was established that acceptable correlation between the radar data and 

the rain gage data existed, relationships between the radar reflectance values and the 
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rain gage measurements could be calibrated.  This was done using regression between 

the two data sets.  The National Weather Service, which operates a series of weather 

radar stations across the country, uses one standard equation for most locations.  This 

equation, which has been found to be valid for much of the United States, is:  

1.4300Z R=      (5-12) 

In some locations a second equation is available that is applicable to very specific 

rainfall types.  However, it seems logical that rainfall in an arid or semi-arid region, 

such as Walnut Gulch, Arizona, could be significantly different from rainfall in a 

more humid region, such as Miami, Florida.  Therefore, the possible effects of 

calibrating a relationship between rain gage and radar measurements for a specific 

location were investigated. 

5.3.7.2. Research Objectives 

 In order to develop relationships between rain gage measurements and radar 

measurements specific to the Walnut Gulch area, regression was used.  Because the 

radar measurements would ultimately be used to predict the rainfall rates, the rain 

gage record (criterion variable) was regressed on the radar record (predictor variable).  

Determining the level of variability in coefficients of the Z-R equations developed for 

the Walnut Gulch watershed was one objective of this study.  Therefore, the 

variability in coefficients developed for the same radar pixel and the variability in 

coefficients developed for radar pixels in different portions of the watershed were 

investigated.  These will reflect both within-pixel variation and between-pixel 

variation of the coefficients of the Z-R relationship.  The variability of the 

coefficients for the same rain gage under different storm conditions was also 

considered.  This analysis does make the assumption that the rain gage data are 
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accurate.  In actuality, neither rain gage nor radar data are completely accurate.  If 

measures of the probability density function of rain gage and radar data were 

available, an uncertainty analysis could be conducted to assess the effect of 

inaccuracies in these data sets.  Other objectives included determining the effect that 

accounting for the optimum lag determined by the cross-correlation analysis had on 

the equation coefficients, comparing both the coefficients and the performance of the 

equations developed to those of the standard equation mentioned previously, and 

investigating the sensitivity of rainfall predictions to the coefficient values.     

5.3.7.3. Regression of Z-R Equations 

Regression analyses were performed between the five radar pixels discussed 

in the visual comparison and cross-correlation sections of this analysis and 15 of the 

rain gages located within the boundaries of those pixels.  To investigate the variability 

in coefficients for the same pixel all eight of the rain gages located in pixel 10 and 

both of the rain gages located in pixel 7 were analyzed.  To examine the variability in 

coefficients for different portions of the watershed, in addition to the ten rain gages 

already analyzed, two rain gages from pixel 1, two rain gages from pixel 4, and one 

rain gage from pixel 16 were chosen at random for analysis.  As firm conclusions had 

not been reached as to the radar scan elevations that were most suitable for hydrologic 

analysis over the watershed, the data sets for scans 2, 3, 4, and 5 over each of the five 

pixels were analyzed.  The data sets for scan 1 were not analyzed because they 

consisted almost entirely of zero values, most likely due to radar blockage in the 

mountainous terrain.  The data from the storms occurring on both August 13, 2006, 

and July 20, 2007, were again used.  Data files that contained a radar data set and a 
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rain gage data set from one of the rain gages located within the radar pixel boundaries 

were created for each of the 15 rain gages used in this analysis.   

The data obtained directly from the radar could not be used in these analyses, 

as the radar reports values in decibels of reflectance.  The purpose of this study was to 

determine the relationship between the rain gage data and reflectance (mm6/m3), not 

the rain gage data and decibels of reflectance.  Therefore, the raw radar data measured 

in decibels needed to be transformed into reflectance values measured in mm6/m3 

using the equation:  

/1010dBZZ =      5-13) 

where Z is reflectance and dBZ is decibels of reflectance.  A regression program 

fitted a power model to each data set.  The log-transformed power model (Equation  

5-1) produced biased predictions; therefore the intercept value of each of the 

calibrated Z-R equations had to be adjusted so predictions would be unbiased. 

Ultimately three scenarios were evaluated for each rain gage and radar data set 

combination for both of the storm events.  The first scenario developed regression 

equations based on the data sets in which all zero values had been deleted.  The 

second scenario used the data sets in which a value of 0.001 had been added to each 

data record to eliminate zero values, but the optimum lag found in the cross-

correlation analysis had not been accounted for in order to develop the regression 

equations.  The third scenario used the data sets in which 0.001 had been added to 

every data record to eliminate zero values, and the optimum lag had been accounted 

for in order to develop the regression equations.  After using regression on each of the 
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fifteen rain gages chosen for both storms under all three of the above-mentioned 

scenarios, a large number of Z-R equations had been fitted. 

Several criteria were used to evaluate the Z-R equations that were calibrated.  

The goodness-of-fit statistics, including the standard error ratio and the correlation 

coefficient, were examined for each scenario.  Then the calibrated equations were 

used to make rainfall intensity predictions.  These predictions were compared to the 

rain gage data, which was assumed to contain the true rainfall rates.  By subtracting 

the rain gage measurements from the radar rainfall predictions made by the calibrated 

Z-R equations the error in the predictions could be calculated.  The calibrated 

equations developed for each of the four radar scan elevations were compared to the 

corresponding rain gage record in this manner.   

The next step of this analysis was to determine whether or not calibrating 

location-specific Z-R relationships could improve the accuracy of rainfall predictions 

made for the study area.  To determine this, the calibrated equations were compared 

to the standard equation (5-12) that is used at most of the radar stations in the United 

States.  Rainfall predictions were calculated using the standard equation with the 

various radar data sets instead of the calibrated equations.  The errors in the rainfall 

predictions made by the standard equation were compared with the errors calculated 

using the calibrated equations developed for the study area.   

5.3.7.4. Results of Regression of Z-R Equations 

 The Z-R equations calibrated using the Walnut Gulch data were analyzed in a 

variety of ways.  The goodness-of-fit statistics were compared for the same rain gage 

and radar combinations among the various scenarios.  The rainfall intensity 

predictions calculated by the calibrated Z-R equations were compared to their 
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respective rain gage data records, and the errors in the rainfall intensity predictions 

were compared.  Several statistical tests were performed to evaluate the prediction 

errors.  Statistical tests were used to compare the errors of the four equations derived 

for the four radar scan elevations for one pixel and rain gage combination and to 

compare the prediction errors made using the equations calibrated for a given radar 

scan elevation to prediction errors made using the standard equation.  Finally, 

equations with average coefficients were developed using the Z-R equations 

calibrated for both storms for each pixel and rain gage combination and the goodness-

of-fit statistics and the errors calculated using these average equations were also 

examined. 

5.3.7.4.1. Comparison of Methods to Remove Zeros from Data Sets 

Removing measurements of zero from the radar and rain gage data sets was 

necessary in order to develop power equations to relate the data sets.  Several 

methods were used to remove these zeros values.  The first of these was to simply 

delete any data records including a zero value.  The second was to add a small 

number, insignificant in comparison with the data values, such as 0.001, to all data 

records.   

The best regression results seemed to be obtained when all zero recordings 

were deleted from the data set.  Table 5-28 illustrates this for the storm event 

occurring on August 13, 2006, by comparing the goodness-of-fit statistics for the 

equation derived from rain gage 5 and pixel 1, using the third radar scan elevation.  In 

this instance, deleting the zero values led to a decrease in the standard error ratio of 

40%, and an increase in the coefficient of determination of nearly 60%, as compared 
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to the statistics when 0.001 was added to all data records.  This finding was not 

entirely unexpected.  In deleting the zero values, many of the zero values were 

removed from the data set, while adding 0.001 to every data value retained a lot of 

very small rainfall values in the data sets.  The addition of the low values forced the 

equation fit to the data to take a different form than when the zero values were 

deleted.  When the zero values were not deleted, they were given too much weight in 

the data set, and the resulting equation was forced to fit a number of very low rainfall 

values.  The equations developed when the zero values were censored fit the 

moderate to high rainfall values that were observed, and thus better represent the 

actual rainfall that was observed. 

Table 5-28: Comparison of Goodness-of-Fit Statistics When Zeros Values are Deleted vs. When 0.001 
Added to All Data Values for Storm on 8-13-06 

 Se/Sy R R2 A b 
0.001 Added 1.151 0.000 0.000 0.001 0.865 
Zeros Deleted 0.637 0.786 0.619 0.146 0.350 

5.3.7.4.2. Effect of Accounting for Optimum Lag in Data Sets 

 Because the radar beam measures rainfall while it is in the air and the rain 

gage measures rainfall at the ground surface, a time lag of several minutes may be 

necessary in order to temporally align the radar and rain gage data sets.  The optimum 

time lag for each combination of radar scan elevation and rain gage data was 

identified in the cross-correlation analysis discussed previously.  In order to properly 

account for the lag, a value of 0.001 had to be added to all data records to eliminate 

zero values, rather than deleting those zero values.  To account for the lag, the data 

sets were adjusted in time by the number of time steps indicated by the optimum lag 

value.  So if the optimum lag value for a given combination of data sets was found to 

be two, then the rain gage data was adjusted to be two time steps behind the radar 
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data, as explained in the section describing the cross-correlation analysis.  Two 

scenarios were modeled.  First 0.001 was added to all data values, but the data sets 

were not temporally shifted to reflect the optimum lag as determined by the cross-

correlation analysis.  In the second scenario the data sets were temporally shifted to 

account for the optimum lag as determined by the cross-correlation analysis, after 

0.001 had been added to all the data records.   

The results of this analysis indicated that accounting for the lag improved the 

goodness-of-fit statistics as compared to simply adding 0.001 to all values without 

accounting for lag.  Table 5-29 provides an example of this.  The goodness-of-fit 

statistics calculated using equations derived for the storm on August 13, 2006, at rain 

gage 5 in pixel 1 using radar scan elevation 3 are presented.  Accounting for the lag in 

this instance decreased the standard error ratio by approximately 2%, while increasing 

the coefficient of determination by approximately 4%.  This represents a slight 

improvement in goodness-of-fit statistics, which may not be significant, when 

equations are developed after accounting for the optimum lag.  The purpose of 

determining the optimum lag was to determine whether or not a temporal shift in the 

data sets improved the prediction accuracy between the two.  Therefore, accounting 

for the optimum lag in these situations strengthened the correlation between the radar 

data and rain gage data as expected.  If a stronger relationship between the two data 

sets used to develop a linear regression equation existed, it would have been logical 

that the regression equation should better explain the variance in the data set, and 

therefore should have better goodness-of-fit statistics.   
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Table 5-29: Goodness-of-Fit Statistics When Accounting for Lag vs. Not Accounting for Lag 

 Se/Sy R R2 A b 
No Lag 1.151 0.000 0.000 0.001 0.865 
Lag 0.771 0.658 0.434 8.715*10-5 1.126 
 
5.3.7.5. Evaluation of Rainfall Prediction Errors Made by Calibrated Z-R 

Equations Using Hypothesis Tests 

5.3.7.5.1. Methods 

Several hypothesis tests were used to assess the errors in predictions made by 

the Z-R equations calibrated in this analysis.  First, the errors made by the four 

equations corresponding to the four radar scan elevation levels, as compared to the 

rain gage measurements, were compared using an ANOVA single-factor test.  This 

test compared the mean values of each of the four sets of errors.  Then a two-sample 

t-test assuming equal variances was used to compare the means of the errors of the 

calibrated equation and the standard equation for a given scan elevation level for one 

pixel and rain gage combination.  The final statistical test performed was a two-

sample F-test on variance.  This test was used to compare the standard deviations of 

the errors in rainfall predictions calculated using both the calibrated equation and the 

standard equation for a given radar elevation scan for each pixel and rain gage 

combination.   

The null hypothesis for each of these tests would be that the means or the 

standard deviations of the prediction errors were not different between the equations 

being compared.  If the null hypothesis was accepted for both the t-test and the F-test 

for the same radar scan elevation for a combination of radar and rain gage data sets, 

then this was assumed to indicate that a significant difference between the calibrated 

equation and the standard equation was not detected.  If a statistical difference 
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between the two was not detected, then the calibrated equation does not provide 

improvement over the standard equation, and the effort and time required to calibrate 

specific Z-R relationships for a given location may not be necessary. 

5.3.7.5.2. Results of ANOVA Single-Factor Test 

 The ANOVA Single-Factor test was used to compare the means of all errors 

in rainfall predictions made by the equations calibrated for all four scan elevation 

levels for a given pixel and rain gage combination.  A 5% level of significance was 

chosen for this analysis.  The null hypothesis for the analysis of each set of errors was 

that the means of each of the four sets of errors were equal to each other.  If the null 

hypothesis was accepted and the means were nearly zero, then this would imply that 

the models were either unbiased or equally biased.  Tables 5-30 and 5-31 provide the 

calculated F values and the calculated critical values of F used to make decisions in 

the ANOVA Single-Factor tests for both of the storm events.  In none of the analyses 

was the null hypothesis rejected.  This implies that the means of the errors calculated 

using the predicted equations for the four radar scan elevations were equal.  The 

means of each of the equations were also noted to be very close to zero.  For instance, 

the mean value of the errors calculated for pixel 1 and rain gage 1, using the second 

scan level for the storm event on August 13, 2006, was 7.369*10-7.  This value is not 

significantly different from zero, and thus it can be determined that the errors 

calculated using each of the Z-R equations for pixel 1 and rain gage 1 for the storm 

event on August 13, 2006, are unbiased.  The means of errors for the other pixel and 

rain gage combinations for both storm events are of similar magnitude.  Based on 
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these results, each of the four radar scan elevations produced an unbiased Z-R 

equation. 

Table 5-30: F and Critical F Values for ANOVA Single-Factor Test for 8/13/06 Event 

Pixel Rain Gage Fcritical  F Decision 
1 1 2.732 2.473*10-10 accept H0 

1 5 2.751 3.805*10-11 accept H0 
4 32 2.730 4.555*10-11 accept H0 
4 38 2.766 1.467*10-10 accept H0 
7 69 2.669 3.433*10-11 accept H0 
7 70 2.669 1.913*10-11 accept H0 
10 17 2.708 0.006 accept H0 
10 24 2.690 4.755*10-11 accept H0 
10 28 2.706 9.155*10-12 accept H0 
10 29 2.688 5.168*10-11 accept H0 
10 33 2.713 7.018*10-10 accept H0 
10 34 2.692 2.440 accept H0 
10 81 2.700 6.096*10-13 accept H0 
10 399 2.711 9.357*10-10 accept H0 
16 47 2.715 3.171*10-11 accept H0 
 
Table 5-31: F and Critical F Values for ANOVA Single-Factor Test for 7/20/07 Event 

Pixel Rain Gage Fcritical  F Decision 
1 1 2.651 2.346*10-11 accept H0 
1 5 2.650 2.281*10-6 accept H0 
4 32 2.655 2.048*10-11 accept H0 
4 38 2.652 0.014 accept H0 
7 69 2.644 0.025 accept H0 
7 70 2.642 3.490*10-12 accept H0 
10 17 2.656 3.733*10-10 accept H0 
10 24 2.652 5.250*10-11 accept H0 
10 28 2.648 5.527*10-6 accept H0 
10 29 2.649 1.138*10-10 accept H0 
10 33 2.650 6.048*10-4 accept H0 
10 34 2.650 9.927*10-11 accept H0 
10 81 2.650 4.790*10-11 accept H0 
10 399 2.646 0.530 accept H0 
16 47 2.659 2.955*10-11 accept H0 

5.3.7.5.3. Results of t-Test for Two Samples Assuming Equal Variances 

 A two-sided two-sample t-test that assumes equal variances was used to 

compare the means of the errors calculated using a specific calibrated Z-R equation to 

the means of the prediction errors calculated by the standard equation used by the 
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National Weather Service.  The null hypothesis for these tests was again that the 

means of the two error sets were equal.  If the null hypothesis was accepted based on 

the results of this analysis, the difference between the means of the prediction errors 

of the calibrated and standard equations was not significant.  If this was the case, it 

could indicate that the time and effort that went into calibrating Z-R equations for a 

specific location did not produce a significant improvement in rainfall predictions, 

and therefore were not necessary.  Conversely, if the null hypothesis was rejected, a 

significant difference between the means of the prediction errors made by the 

standard equation and the calibrated equation did exist.  Such a result would provide 

evidence that calibration of Z-R equations is a useful step when using radar data as 

input for hydrologic models.   

Tables 5-32 and 5-33 provide samples of the calculated t values and critical t 

values used for making decisions for the two storm events.  The null hypothesis was 

accepted for at least one radar scan elevation for every single pixel and rain gage 

combination tested.  Which scan levels had the null hypothesis accepted for each rain 

gage in the pixel was seen to be reasonably consistent.  While the same scan levels 

did not necessarily accept the null hypothesis for every single rain gage within a 

pixel, the same scan levels did have the null hypothesis accepted frequently.  

Similarly, reasonable consistency was seen between the two storm events analyzed in 

which scan elevations had the null hypothesis accepted.  In general, it seemed that the 

scan that had the null hypothesis accepted corresponded to the scan that had the best 

goodness-of-fit statistics for the Z-R equation calibrated.  This might suggest that 

poor goodness of fit at any scan level indicate that the measured data does not reflect 
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the physical processes.  The scan elevations that had the best goodness-of-fit statistics 

should provide the most accurate rainfall estimates.  These results may indicate that 

calibration of Z-R equations is not necessary.  If the errors in the rainfall predictions 

calculated by the calibrated Z-R equation with the best goodness-of-fit statistics do 

not significantly differ in means from the errors in rainfall predictions calculated by 

the standard equation, then the calibrated equations may not improve the predictions 

compared to the standard equation.  This may mean that the effort that is necessary to 

calibrate Z-R equations is not necessary.  However, the results of the t-test alone are 

not sufficient to draw conclusions about the usefulness of calibrating Z-R equations 

for specific locations because these results are only relevant to the means of the 

prediction errors.   

Table 5-32: Sample of t and Critical t Values for 8/13/06 Event 

Pixel Rain Gage Scan Level tcritical  t Decision Rejection Probability 
1 1 2 2.064 0.916 accept H0 0.369 
1 1 3 2.021 -2.605 reject H0 0.013 
1 1 4 2.021 -1.979 accept H0 0.055 
1 1 5 2.021 -1.731 accept H0 0.091 
  
Table 5-33: Sample of t and Critical t Values for 7/20/07 Event 

Pixel Rain Gage Scan Level tcritical  t Decision Rejection Probability 
1 1 2 1.989 3.954 reject H0  0.0002 
1 1 3 1.984 1.670 accept H0 0.098 
1 1 4 1.984 -1.779  0.078 
1 1 5 1.983 -3.211 reject H0 0.002 

5.3.7.5.4. Results of Two-Sample F-Test on Variance 

 The standard deviation of a set of errors is the standard error, which is a 

measure of the accuracy of a statistic.  The standard deviations of the errors made in 

calculating rainfall predictions using the calibrated Z-R equations and the prediction 

errors made by the standard equation were compared using a two-sided two-sample 

F-test on variance.  The null hypothesis for these analyses was that the standard 
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deviations of the two sample sets were equal.  Similar to the t-test, if the null 

hypothesis was accepted for a given scan elevation level for a pixel and rain gage 

combination, then the standard deviations of the errors made when using the 

calibrated equation and the standard equation were not significantly different.  If the 

null hypothesis was rejected, then the differences in the standard deviations of the 

errors in rainfall predictions were significant.  This could provide evidence that the 

calibration of Z-R equations for specific locations could be a valuable tool to 

hydrologic analyses using radar data.   

Tables 5-34 and 5-35 provide a sample of the calculated F values and the 

critical F values used to make decisions in this analysis.  With one exception, the 

storm event on August 13, 2006, for rain gage 399 in pixel 10, at least one scan 

elevation level had the null hypothesis accepted for every scenario modeled.  These 

results may indicate that, for these scan elevation levels at least, calibration of Z-R 

equations for specific locations does not significantly improve the rainfall predictions.  

However, the scan elevation levels that had the null hypothesis accepted for the F-test 

were not necessarily the same scans that had the null hypothesis accepted for the t-

test.  They also did not correspond to the scans with the best goodness-of-fit statistics 

for the Z-R equations as well as the results of the t-test did.  In order to draw 

conclusions about the necessity of calibrating Z-R equations, the comparison of the 

results of the t-test and the F-test need to be coordinated for each radar scan elevation 

level for each pixel and rain gage combination. 
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Table 5-34: Sample of F and Critical F values for 8/13/06 Event 

Pixel Rain Gage Scan Level Fcritical  F Decision 
1 1 2 3.277       2.476 accept H0 

1 1 3 2.465   545.356 reject H0 

1 1 4 2.465 4156.837 reject H0 
1 1 5 4.464 4324.728 reject H0 
 
Table 5-35: Sample of F and Critical F Values for 7/20/07 Event 

Pixel Rain Gage Scan Level Fcritical  F Decision 
1 1 2 1.870 1.056 accept H0 
1 1 3 1.770 1.053 accept H0 
1 1 4 1.770 3.648 reject H0 
1 1 5 1.780 4.003 reject H0 

5.3.7.5.5. Conclusions Based on Results of t-Test and F-Test 

 If the null hypothesis was accepted for the t-test and the F-test for the same 

scan elevation for the same pixel and rain gage combination, then neither the means 

nor the standard deviations of the errors in predictions from the calibrated equation 

and the standard equation were significantly different.  This gives a strong indication 

that calibration of Z-R equations does not significantly improve the rainfall 

predictions, which makes a strong argument for simply using the standard equation 

rather than calibrating equations for specific locations.  Unfortunately, when 

comparing the results of these two analyses for all of the scenarios modeled, trends 

were not found to indicate that calibration was unnecessary.  While the null 

hypothesis was accepted for both tests for several scenarios, there were at least an 

equal number of scenarios in which the null hypothesis was rejected for one or both 

of the tests.  This indicates that in many of the modeled scenarios, significant 

differences do exist in either the mean, standard deviation, or both between the errors 

in rainfall prediction made by the calibrated equation versus the standard equation.  

The lack of strong, consistent evidence of a lack of difference is evidence that 

calibration of the Z-R relationships for a specific location could be useful, and 
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possibly even necessary, if using radar data as input to hydrologic models.  In order to 

draw firmer conclusions, the effect that calibration of equations has on the goodness-

of-fit statistics and overall accuracy of the predictions must be examined.   

5.3.7.6. Evaluation of “Averaged Coefficient” Z-R Equations 

5.3.7.6.1. Methods 

Finally, the variation in the Z-R equation coefficients between storm events 

was investigated.   A Z-R equation was calibrated for each radar pixel and rain gage 

combination for two separate storms.  The A and b coefficients from the two 

equations calibrated for the same radar pixel and rain gage combination for two storm 

events were averaged, resulting in a new Z-R equation for each radar pixel and rain 

gage combination.  The goodness-of-fit statistics for rainfall predictions made using 

these equations with average coefficient values were calculated and compared to 

those calculated using the two Z-R equations calibrated for each of the two storm 

events for the given radar pixel and rain gage data set combination.  Rainfall intensity 

predictions were made using the Z-R equations with the average coefficient values as 

described previously.  Then the errors in predictions were calculated for the average 

equations, and these were compared to the errors made using both of the calibrated 

equations as well as the standard equation for the given pixel and rain gage 

combination.  This analysis investigated the sensitivity of the rainfall predictions to 

the coefficients of the Z-R equation. 

5.3.7.6.2. Results of “Averaged Coefficient” Z-R Equations 

 When comparing the Z-R equation coefficients calibrated for a given rain 

gage between the two storm events used in these analyses more similarity in 
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coefficients than expected was observed.  Therefore, to evaluate how sensitive the 

rainfall predictions were to the coefficients of the Z-R equation, the average values of 

the A and b coefficients for the same pixel and rain gage combination were calculated 

based on the calibrated coefficients for both storm events.  Rainfall predictions were 

made for both storms using these Z-R equations with average coefficients, and the 

errors in rainfall rate predictions, as compared to the rain gage measurements, were 

calculated.  The goodness-of-fit statistics for these equations with average 

coefficients were also calculated and compared to those of the calibrated equations 

for each storm.  Then the accuracy of predictions and goodness-of-fit statistics for the 

calibrated equation, standard equation, and average equation for a given radar and 

rain gage combination could be evaluated. 

 The results of this analysis led to several interesting conclusions.  A clear 

trend in the effects of the average coefficients on the goodness-of-fit statistics was not 

observed.  In some cases, when the average coefficients were used to predict rainfall 

the goodness-of-fit statistics were seen to significantly worsen, but in many cases a 

significant change was not observed in the goodness-of-fit statistics with the use of 

average coefficient values.  The means and standard deviations of the standard 

equation prediction errors, the calibrated equation prediction errors, and the average 

equation prediction errors were all calculated and compared.  Wide variation was 

seen in the mean values of the errors; however, significant variation in standard 

deviation values was not always observed.  The observations suggest that only 

calibrated equations typically provide unbiased rainfall predictions; however, the bias 

seen in the standard equation and average equation prediction errors, while sometimes 
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quite significant, does not necessarily significantly influence the accuracy of the 

rainfall estimates.   

5.3.7.7. Conclusions 

 The results observed made it difficult to reach conclusions regarding the 

necessity of location-specific calibration of Z-R equations.  In general, an unbiased 

model is desirable, however the rainfall predictions made using the standard Z-R 

equation tended to be biased while the predictions made using the calibrated 

equations tended no to be biased.  However, the goodness-of-fit statistics calculated 

in this analysis suggest that calibration of a Z-R equation for a location is not 

guaranteed to improve the rainfall estimates calculated as compared to the standard 

equation.  Significant improvements in goodness-of-fit statistics for the rainfall 

predictions made using the standard equation and the calibrated equation were not 

consistently observed.   

The process of calibrating Z-R equations for a given set of radar and rain gage 

data is a fairly time- and labor-intensive task.  Therefore, the decision of whether or 

not to calibrate Z-R equations for a specific location when using radar data in a 

hydrologic model may need to be made on a case-by-case basis.  If corresponding 

radar and rain gage data sets are readily available for the location, then perhaps 

calibration of equations would be wise.  On the other hand, if rain gage and radar data 

that correspond well are not easily available, using the standard Z-R equation should 

suffice for most hydrologic analyses.  The specific analyses to be conducted should 

also be considered.  If, for instance, high accuracy and confidence in the results of an 

analysis are desired calibration of Z-R equations would likely be advisable.  If the 

aim of the analysis is only to determine a general estimate, and high accuracy is not 
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necessarily needed, the standard equation would more than likely provide acceptable 

results. 
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CHAPTER 6  

ANALYSIS OF FACTORS AFFECTING THE 

SEMIVARIOGRAM 

6.1. INTRODUCTION 

Semivariograms are often used in hydrological analysis as they can illustrate 

spatial or temporal variance in sample data.  Semivariograms are easiest to evaluate 

when measurements are made on a grid, where the grid lines are a distance h apart.  

In these experiments a square or rectangular grid was used with synthetic rainfall data 

to model a watershed.  The notation γ(h) is used to represent the semivariogram for a 

separation distance h, and they are often plotted as γ(h) versus h, where h is the 

separation distance between the grid points.  This graph will pass through the origin, 

and then it will gradually increase as the separation distance increases, up until a 

certain point, after which it will not increase further.  It is possible, in some cases, for 

a  γ(h) to decrease as the separation distance increases, but this usually only happens 

when the sample size is small and the separation distance is large.  As far as the shape 

of the semivariogram is concerned, two characteristics are particularly important.  

The separation distance where the semivariogram begins to approach a constant value 

is called the radius of influence.  This value occurs when a semivariogram approaches 

the sample variance.  The second characteristic is known as the sill.  The sill is the 

portion of the semivariogram where γ(h) is approximately the sample variance 

(Hromadka et al., 1993). 
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Semivariograms are a commonly used analysis tool used in hydrological 

modeling.  They serve as an input to the kriging method, which is used to interpolate 

rainfall values in areas where no data exists.  Kriging is often used to predict rainfall 

at points where no rain gage exists or where data is missing for a time period.  

Semivariograms are also used to evaluate the accuracy of gage data.  Therefore a 

semivariogram is an intermediate step to evaluating the spatial variability of rainfall 

based on data from a gage network (Cheng et al., 2007).  Because dense gage 

networks are very rare and many watersheds do not even have one rain gage, another 

method of computing semivariograms in order to predict rainfall would be desirable.  

Radar data may one day be able to fill this gap and provide input to the kriging 

method for the purpose of predicting rainfall at any point on a watershed. 

The objective of these semivariogram studies was to determine the effect that 

various storm characteristics could have on the calculated semivariogram.  

Semivariograms are often used to estimate rainfall when data are not available, so it is 

important to understand how characteristics of the rainfall itself could influence those 

estimates.  The results of this research could then be compared to future studies using 

other methods rainfall data sources, such as radar data. 

6.2. COMPUTER PROGRAMS USED IN ANALYSES 

Several computer programs, referred to as the RADARXX programs, were 

developed for the semivariogram analyses.  Though each program had its own 

specific purpose, they all required the same general input data, and they all gave the 

same general output.  The general input data required by each program included 

information about the study watershed and storm.  In order to construct the 
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watershed, each program needed information about the length and width of the 

watershed, which was assumed to be rectangular in order to relate the results of these 

studies to potential future studies involving radar data, as well as the spacing between 

nodes of the watershed grid, with each node representing a rain gage.  A variety of 

information relating to the size, shape, and movement of the storm was also required 

by each program.  Because each storm was modeled as a series of concentric ellipses, 

the program required information about the length of the major axis of each ellipse 

and the ratio of the major axis to the minor axis, which was assumed to be the 

uniform across the ellipses of each storm.  The program also required the rainfall 

depth that each ellipse boundary represented.  Finally, in order to simulate a moving 

storm, each program required information about the velocity of the storm, the 

direction in which the storm was moving, and the number of time periods for which 

the storm should be simulated.  Each of the programs allowed the user to choose from 

several possible semivariogram models.  The spherical model, which is the most 

commonly used of the semivariogram models, was utilized in these studies.  

6.3. EFFECT OF STORM SHAPE 

6.3.1. Introduction 

Real storms have many different shapes and sizes.  In an attempt to identify 

the effect of storm shape on storm semivariograms, the shape of a storm was 

modified over a variety of modeling runs.  To do this, synthetic elliptical storms were 

created, and then the ratio of the major axis to the minor axis of the ellipse was 

changed so that the storm varied in shape from circular to elliptical.  While most true 

storms are neither perfectly circular nor elliptical, this experiment did provide some 
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insight into how the changing of the shape of a storm could change the 

semivariogram calculated for that storm.  This study was also used to evaluate the 

possibility of assuming storm isotropy, by comparing the East-West, North-South, 

and nondirectional semivariograms. 

6.3.2. Methods and Materials 

To examine the effects of storm shape on the semivariogram the ratio of the 

lengths of the major to minor axes of the storm ellipses was varied.  A program was 

developed to create a storm and a watershed.  The grid, which will be referred to as 

watershed 1 for future use, was 60-km long and 48-km wide, and it had 208 nodes, or 

gages spaced 4-km apart.  The storm that was created, which will be referred to as 

storm 1 for future use, contained five ellipses each representing different rainfall 

values.  The ellipses each had an a-to-b ratio of 1.25, and the major axes were 0-km 

for the center of the storm, then 6-km, 15-km, 27-km, and 38-km.  The inner ellipse 

represented a total rainfall depth of 11 mm, then 9 mm, 7 mm, 4 mm, and finally 2 

mm.  For this particular research objective watershed 1 was used with storm 1; 

however, the ratio of a-to-b was changed in each program run.  A velocity of 5 km/hr 

was chosen for the storm velocity.  This watershed and storm information was input 

into the program multiple times, each time changing the value of the a-to-b ratio.  

Values of 1.0, 1.1, 1.2, 1.25, 1.3, 1.4, and 1.5 were chosen, and the program was run 

using each of these ratios.   

The output file for each of these runs was examined, and it was determined 

due to the level of variation in data that the values of 1.0, 1.25, and 1.5 should be 

further examined.  The trends for the other ratios were very similar.  The output files 
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for each of these ratios contained a semivariogram for each storm movement.  The 

most representative semivariogram values were chosen for each ratio, and then those 

semivariograms were further evaluated.  For each separate storm the relative bias, the 

standard error ratio, the correlation coefficient R, and the final estimates of the sill 

and radius of influence were recorded for comparison. 

6.3.3. Results and Discussion 

The results of this study, shown in Tables 6-1 and 6-2, show that the choice of 

the storm shape has little, if any, influence on the calculated semivariogram.  The 

fitted semivariogram in the East-West direction did not show significant difference in 

values of the sill or radius of influence for the ratios of 1.0, 1.25, or 1.5.  The fitted 

semivariogram in the North-South direction did show some significant change in the 

sill, though a change was not detected in the radius of influence.  It is believed, 

however, that any change seen in the sill values in the North-South direction is due to 

the storm overhanging the edge of the watershed, rather than a direct effect of the 

change in the a-to-b ratio.  The radius of influence of the semivariograms in the 

North-South direction are much smaller than the East-West direction because the 

major axis of the storm was oriented in the East-West direction.  This means that the 

storm was longer than it was wide, and the storm affected a smaller distance in the 

North-South direction than it did in the East-West direction.   

Table 6-1: E-W Semivariograms for Storms of Varying Shapes 

a-to-b 
Ratio 

Sill (mm2) Radius of  
Influence (km) 

Relative 
Bias 

Standard 
Error Ratio  

R 

1.0 5.8 40 0.033 0.256 0.962 
1.25 5.6 40 0.035 0.270 0.967 
1.5 5.7 40 0.028 0.235 0.975 
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Figure 6-1: E-W Semivariograms Where Ratio 1, Ratio 1.25, and Ratio 1.5 Denote Differing Storm Shapes 

Table 6-2: N-S Semivariograms for Storms of Varying Shapes 

a-to-b 
Ratio 

Sill (mm2) Radius of  
Influence (km) 

Relative 
Bias 

Standard 
Error Ratio  

R 

1.0 3.0 28.8 0.034 0.383 0.933 
1.25 4.5 27.0 0.033 0.443 0.910 
1.5 5.8 26.3 0.041 0.036 0.943 
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Figure 6-2: N-S Semivariograms Where Ratio 1, Ratio 1.25, and Ratio 1.5 Denote Differing Storm Shapes 

The possibility of assuming storm anisotropy was also considered during this 

study.  The East-West, North-South, and nondirectional semivariograms output by the 

program were compared for each storm computed.  If the values of the 

semivariograms were similar between the three, and if the general patterns of 

ascending and descending values had been the same, the assumption of isotropy 

would have been declared acceptable.  However, despite the fact that the values of 
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each semivariogram were all of the same magnitude, the variation in the data was 

considered excessive.  Therefore, it was determined that the storms should be treated 

as anisotropic events, rather than as isotropic events. 

6.4. EFFECT OF STORM SIZE COMPARED TO WATERSHED  

6.4.1. Introduction 

The first synthetic storm created to evaluate these questions of interest was a 

spatially large storm in comparison to the watershed.  The variability of the 

semivariogram for the storm discussed in section 6.3 was less than expected.  A 

possible explanation put forth for that result was that, because the storm was larger 

than the watershed, the rain gages were not experiencing the full variability of the 

storm.  In order to evaluate the validity of this hypothesis a second, smaller storm, 

was created and studied. 

6.4.2. Methods and Materials 

To determine that the effect that the storm size had on the semivariogram, two 

different storms were simulated on the same watershed.  Watershed 1 was used with 

both storms.  The first step to providing answers to this question was to simulate 

storm 1 on the watershed.  This served as the first case in which the storm was wider 

than the watershed.  A semivariogram generated for this storm was chosen to be 

edited for further investigation.  The relative bias, the standard error ratio, the 

correlation coefficient R, and the final estimates for the sill and radius of influence of 

the semivariogram were recorded. 
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The next step was to create a smaller storm that would not be wider than the 

watershed itself.  For this storm, which will be referred to as storm 2 for future use, 

the a-to-b ratio of 1.25 was maintained, but smaller values for a were used.  The 

largest value of a used in the storm was 28-km, then the smaller ellipses had values of 

19-km, 12-km, 5-km, and 0-km, with the 0-km being the storm center.  The rainfall 

values were also held constant from the first storm.  Information about this storm was 

input into the program, and then a semivariogram was chosen for further use from the 

output of this program.  All of the information that was recorded in the first storm 

was recorded for this storm.  Comparisons between these values were made in order 

to determine the effect the storm-to-watershed width ratio had on the semivariogram.   

6.4.3. Results and Discussion 

The results of this study, shown in Tables 6-3 to 6-6, indicate that the size of 

the storm in comparison to the size of the watershed can have an effect on the 

semivariogram.  In looking at the East-West semivariograms it is evident that for the 

smaller storm the radius of influence decreases while the sill increases.  This increase 

in sill is due to the fact that the storm ellipses are closer together than those of the 

larger storm, so the watershed experiences a larger variation in rainfall.  The decrease 

in radius of influence is due to the fact that the smaller storm is narrower than the 

larger storm.  Therefore, the ellipses, which represent isohyets, are closer together and 

spatial correlation ends at a closer distance.  Less effect is visible in the North-South 

semivariograms.  This result was expected, and is caused by the storm moving in an 

East-West direction across the watershed.   
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Table 6-3: Storm 1 E-W Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation  
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 32 18.0 159 0.041 0.238 0.975 
5 36 5.5 49 0.040 0.278 0.966 
10 28 32.3 278 0.060 0.248 0.974 
10 32 9.4 82 0.038 0.268 0.969 
10 36 4.6 35 0.046 0.342 0.948 
15 32 19.9 176 0.040 0.238 0.975 
15 36 5.5 45 0.040 0.278 0.967 
20 28 29.8 243 0.057 0.233 0.977 
20 32 27.5 224 0.045 0.196 0.983 
20 36 13.5 111 0.030 0.203 0.982 
20 40 6.1 45 0.036 0.251 0.972 
 
Table 6-4: 2 E-W Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation  
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 24 43.6 206 0.063 0.270 0.970 
5 28 11.0 52 0.041 0.305 0.960 
5 32 6.9 29 0.045 0.399 0.929 
10 24 54.3 251 0.033 0.278 0.969 
10 28 12.7 60 0.041 0.302 0.961 
10 32 7.2 30 0.046 0.392 0.932 
15 24 43.6 206 0.063 0.270 0.970 
15 28 11.0 52 0.041 0.305 0.960 
15 32 6.9 29 0.045 0.399 0.929 
20 20 38.6 187 0.059 0.269 0.972 
20 24 10.4 51 0.034 0.280 0.968 
20 28 6.2 27 0.0396 0.321 0.956 
 
Table 6-5: Storm 1 N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation  
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 24 22.9 154 0.049 0.249 0.975 
5 28 6.5 43 0.037 0.277 0.967 
10 24 25.6 177 0.050 0.245 0.976 
10 28 6.6 44 0.037 0.268 0.970 
10 32 4.9 30 0.039 0.326 0.953 
15 24 24.1 163 0.049 0.248 0.975 
15 28 6.4 42 0.037 0.277 0.968 
20 24 25.1 170 0.050 0.248 0.975 
20 28 6.6 43 0.037 0.275 0.968 
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Table 6-6: Storm 2 N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation  
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 20 34.2 133 0.048 0.271 0.972 
5 24 6.90 24 0.045 0.386 0.939 
10 20 41.6 164 0.050 0.269 0.973 
10 24 6.90 24 0.045 0.383 0.939 
15 20 34.2 133 0.048 0.271 0.972 
15 24 6.90 24 0.045 0.386 0.939 
20 20 46.3 171 0.054 0.270 0.972 
20 24 8.50 30 0.041 0.335 0.954 
 

6.5. EFFECT OF STORM VELOCITY 

6.5.1. Introduction 

Actual rain storms can travel at many different velocities.  The velocity of a 

storm is a function of the storm type and the climate conditions at the time.  It was 

hypothesized that differences in velocity could impact the semivariogram for the 

storm.  To evaluate this hypothesis the same storm was simulated over a watershed 

while moving at several different velocities, and then the computed semivariograms 

were compared. 

6.5.2. Trial 1 

6.5.2.1. Methods and Materials 

In order to determine the effect of storm velocity on the semivariogram, 

watershed 1 and storm 1 were utilized, with a slight modification.  While most of the 

information from storm 1 was utilized, the velocity of the storm was varied in each 

simulation.  This storm information was input to the program four separate times, 

with the velocities of 5 km/hr, 10 km/hr, 15 km/hr, and finally 20 km/hr.  The 

semivariograms output from this program were examined, and then one was selected 
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from each velocity simulation to be further evaluated.  Several statistics of the fitted 

semivariogram were recorded for future comparison and analysis. 

6.5.2.2. Results and Discussion 

The results of this trial, which are shown in Tables 6-7 and 6-8, indicated that 

the velocity of the storm had very little effect on the fitted semivariogram.  The 

values for the sill oscillated between 6.4 mm2 and 6.6 mm2, while the values for the 

radius of influence fluctuated between 41 and 44 km.  It was interesting to note that 

the semivariograms computed by the program for the storms with velocities of 5 

km/hr and 15 km/hr were exactly identical.  This fact, coupled with the lack of 

significant difference between the calculated parameters for each storm velocity led 

to an unexpected conclusion.  Based on these facts it was determined that the velocity 

of the storm was less important than where the storm center landed in relation to the 

rain gages.  A storm traveling at a relatively constant speed over a watershed with 

gages spaced uniformly over the watershed can be responsible for showing that storm 

velocity does not influence semivariogram characteristics.  This indicates that the 

semivariogram would be more impacted by the rain gage density and rain gage 

locations, as well as the storm size than it would by the actual velocity of the storm.  

It is expected that when the storm center lands relatively near a rain gage and the 

storm is sized so that the watershed experiences the full range of rainfall contained by 

the storm a higher variation in the semivariogram will result.  Conversely, if the 

center of the storm lands relatively distant from any gage and the storm is large 

enough that the full variation is not felt by the watershed little variation will show in 

the semivariogram. 
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Table 6-7: E-W Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error Ratio  

R 

5 4.1 32 0.031 0.513 0.872 
10 3.5 28 0.028 0.706 0.740 
15 4.1 32 0.031 0.513 0.872 
20 5.6 40 0.035 0.270 0.967 
 

Table 6-8: N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Sill (mm2) Radius of 
Influence (km) 

Relative 
Bias 

Standard 
Error Ratio  

R 

5 4.1 25 0.029 0.587 0.833 
10 4.2 25 0.029 0.557 0.851 
15 4.1 25 0.028 0.587 0.833 
20 4.2 25 0.029 0.580 0.837 

6.5.3. Trial 2 

6.5.3.1. Methods and Materials 

After examining the results of Trial 1 a potential source of problems in the 

data was discovered.  The large size of the storm could be preventing the watershed 

from experiencing the full variation of the storm.  For this second trial, therefore, 

storm 2, which is smaller than storm 1, was used for the purposes of comparison.     

After information about storm 2 was input to the program four times, with 

velocities of 5 km/hr, 10 km/hr, 15 km/hr, and 20 km/hr, the semivariograms output 

by the program were examined.  A semivariogram was chosen to represent each 

velocity simulation in further investigation.  In order to compare results, the relative 

bias, standard error ratio, correlation coefficient R, and the final estimates of the sill 

and radius of influence were recorded for each velocity. 

6.5.3.2. Results and Discussion 

The results of this study into the effect of storm velocity on the 

semivariogram, shown in Tables 6-9 to 6-12, did not significantly differ from the 

results of the first study examining this particular research question, with one 
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exception.  The final estimates of the sill and radius of influence were significantly 

different for a velocity of 20 km/hr, though not for the other three velocities.  Though 

this difference was significant it is not considered to truly be the effect of the storm 

velocity, because the first three velocity values did not show any significant 

difference in sill or radius of influence.  It is believed instead that this difference in 

sill and radius of influence was due to the storm traveling off the watershed to some 

degree during the course of the simulation.  Despite the anomaly at a velocity of 20 

km/hr, this smaller storm again indicates that it is not the velocity of the storm, but 

where it falls in relation to the rain gages that truly impacts the storm semivariogram. 

Table 6-9: Storm 1 E-W Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 32 18.0 159 0.041 0.238 0.975 
5 36 5.5 45 0.040 0.278 0.966 
10 28 32.3 278 0.060 0.248 0.974 
10 32 9.4 82 0.038 0.267 0.969 
10 36 4.6 35 0.046 0.342 0.948 
15 32 19.9 176 0.040 0.238 0.975 
15 36 5.5 45 0.040 0.278 0.966 
20 28 29.7 243 0.057 0.233 0.977 
20 32 27.5 224 0.045 0.196 0.983 
20 36 13.5 111 0.030 0.203 0.982 
20 40 6.1 45 0.036 0.251 0.971 
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Figure 6-3: E-W Semivariograms for Different Storm Velocities 
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Table 6-10: Storm 2 N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 24 43.6 206 0.063 0.270 0.970 
5 28 11.0 52 0.041 0.305 0.960 
5 32 6.9 29 0.045 0.399 0.929 
10 24 54.3 251 0.066 0.278 0.969 
10 28 12.7 60 0.041 0.302 0.961 
10 32 7.2 30 0.046 0.392 0.932 
15 24 43.6 206 0.063 0.270 0.970 
15 28 11.0 52 0.041 0.305 0.960 
15 32 6.9 29 0.045 0.399 0.929 
20 20 38.6 187 0.059 0.269 0.972 
20 24 10.4 51 0.034 0.280 0.968 
20 28 6.2 27 0.039 0.321 0.956 
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Figure 6-4: N-S Semivariograms for Different Storm Velocities 

Table 6-11: Storm 1 N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 24 22.9 154 0.049 0.249 0.975 
5 28 6.5 43 0.037 0.277 0.967 
10 24 25.6 177 0.050 0.245 0.976 
10 28 6.6 44 0.037 0.268 0.970 
10 32 4.9 30 0.039 0.326 0.953 
15 24 24.1 163 0.049 0.248 0.975 
15 28 6.4 42 0.037 0.277 0.968 
20 24 25.1 170 0.050 0.245 0.975 
20 28 6.6 43 0.037 0.275 0.968 
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Table 6-12: Storm 2 N-S Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 20 34.2 133 0.048 0.271 0.972 
5 24 6.9 24 0.045 0.386 0.939 
10 20 41.6 164 0.050 0.269 0.973 
10 24 6.9 24 0.045 0.383 0.939 
15 20 34.2 133 0.048 0.271 0.972 
15 24 6.9 24 0.045 0.386 0.939 
20 20 46.3 171 0.054 0.270 0.972 
20 24 8.5 30 0.041 0.335 0.954 

6.5.4. Trial 3 

6.5.4.1. Methods and Materials 

A final attempt to identify the effect of storm velocity on the semivariogram 

utilized a new program that calculated cumulative storm semivariograms.  Watershed 

1 was again used; however, a new storm was created to completely fill this watershed.  

The major axes of this storm were 0-km at the center, then 6-km, 13-km, 21-km, and 

30-km.  All other storm parameters, including the storm velocities, were the same as 

those used in storm 2.  Because this program calculates cumulative semivariograms 

the storms were allowed to travel entirely over the watershed.  The storm center was 

started 30-km to the left of the watershed, and it was allowed to travel 120-km, until 

the storm center was 30-km to the right of the watershed.  This allowed the entire 

storm variation to contribute to the semivariogram calculations.   

6.5.4.2. Results and Discussion 

The results of trial 3, which investigated the effects of storm velocity on a 

cumulative storm semivariogram, shown in Tables 6-13 and 6-14, were much 

different from the results of trials 1 and 2.  Less variation was seen in the East-West 

direction than in the North-South direction.  This is due to the fact that the storm is 

moving from West to East across the watershed.  Therefore, each point on the 
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watershed in the East-West direction should ultimately receive approximately the 

same amount of rainfall.  Because of the elliptical nature of the synthetic storms, 

more variation in rainfall was found in the North-South direction.  This was shown by 

the higher semivariogram parameters (e.g. the sill and radius of influence) for the 

North-South direction.  This demonstrates that the direction that the storm travels in 

can have significant impact on semivariograms.  When a cumulative semivariogram 

is computed after a storm has traveled over an entire watershed there will be little 

variation in the semivariogram in the direction that the storm traveled; however, there 

could be a significant amount of variation in the other direction, depending on the 

nature of the storm. 

Table 6-13: E-W Cumulative Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 16 167.3 1 0.000 1.224 0.000 
5 20 166.7 1.5 0.000 1.155 0.000 
5 40 164.7 0 0.000 1.061 0.000 
5 48 164.1 1 0.000 1.049 0.000 
10 16 45.8 4 0.000 1.225 0.000 
10 20 45.5 4 0.000 1.155 0.000 
10 40 44.3 4 0.000 1.061 0.000 
10 48 44.0 4 0.000 1.049 0.000 
15 16 18.7 4 0.000 1.225 0.000 
15 20 18.6 4 0.000 1.155 0.000 
15 40 18.0 4 0.000 1.061 0.000 
15 48 17.7 2 0.000 1.049 0.000 
20 16 12.2 4 0.000 1.225 0.000 
20 20 12.0 4 0.000 1.155 0.000 
20 40 11.3 4 0.000 1.061 0.000 
20 48 11.1 4 0.000 1.488 0.000 
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Table 6-14: N-S Cumulative Semivariogram for Varying Storm Velocities 

Velocity 
(km/hr) 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

5 16 366.8 4.2 0.000 1.170 0.000 
5 20 368.3 4.3 0.000 1.078 0.000 
5 40 374.4 4.6 0.000 0.961 0.434 
5 48 375.4 4.6 0.000 0.942 0.440 
10 16 90.1 4.3 0.000 1.150 0.000 
10 20 91.0 4.5 0.000 1.067 0.000 
10 40 94.6 5.0 0.000 0.955 0.434 
10 48 95.1 5.1 0.000 0.937 0.450 
15 16 42.2 4.4 0.000 1.171 0.000 
15 20 42.8 4.6 0.000 1.078 0.000 
15 40 44.8 5.1 0.000 0.959 0.427 
15 48 45.1 5.2 0.000 0.940 0.443 
20 16 22.0 4.6 0.000 1.130 0.000 
20 20 22.5 4.9 0.000 1.054 0.000 
20 40 24.4 5.7 0.000 0.949 0.447 
20 48 24.7 5.8 0.000 0.930 0.462 
 

The velocity of the storm was found to have some effect on the sill values in 

this trial.  As the storm velocity increased, the sill values of both the East-West and 

the North-South semivariograms decreased.  When a storm is moving with a higher 

velocity the watershed will actually experience less total rainfall.  This is responsible 

for the decreasing sill values as the velocity increased.  The velocity of the storm does 

not seem to have an impact on the radius of influence in either the East-West or the 

North-South direction, however.  There is very little variation in the radius of 

influence as the velocity changes.  The conclusion to be drawn from this is that the 

radius of influence is impacted more by the spacing of the ellipses used to simulate 

the storms than it is by the storm velocities.   

In further examining these semivariograms it was noted that the 

semivariograms changed significantly as the storm progressed across the watershed.  

The increase in rainfall depths can obviously be attributed to the accumulation of 
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rainfall over the course of the storm.  However, several interesting changes in the 

semivariograms were evident.  For instance, for each of the storm velocities 

simulated, the initial semivariograms showed higher values for the East-West 

semivariogram, while the final semivariograms showed higher values for the North-

South semivariogram.  Also, the semivariograms in the East-West direction generally 

started out with increasing values, but in the final semivariograms the values were 

decreasing, while the values in the North-South semivariograms remained in an 

increasing pattern throughout the storm.  This indicates that the point in the storm at 

which a semivariogram is being calculated can have a significant influence on that 

semivariogram.  A semivariogram calculated at the beginning of a storm could be 

quite different from a semivariogram calculated at the end of the same storm.  

6.6. EFFECT OF STORM TYPE 

6.6.1. Introduction 

Another research question for this preliminary study evaluated the effect that 

the type of storm could have on the semivariogram.  A summer thunderstorm, for 

instance, has very different characteristics than a winter rainstorm.  A summer 

thunderstorm is generally very short, very localized, and very intense, whereas a 

winter storm generally has a longer rainfall duration, is less intense and has a more 

spatially uniform rainfall duration, and the storm cell is generally larger.  The purpose 

of this research question was to determine whether or not differences existed in the 

calculated semivariograms when various types of storms were applied to the same 

watershed. 
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6.6.2. Methods and Materials 

In evaluating the effect that storm type has on the calculated semivariogram, 

three different storms were created for use with watershed 1.  The first storm, which 

was fairly uniform in space, was modeled after a winter storm.  The second storm was 

moderately peaked in space, and the third storm was severely peaked in space and 

was modeled after a summer thunderstorm.  Each storm had the same rainfall values, 

ratio of a-to-b, and velocity.  The only difference between the storms was in the a 

values for the ellipses.  The rainfall values used by each storm were 6 mm in the inner 

ellipse, then 5 mm, 4 mm, 2 mm, and finally 1 mm in the outer ellipse.   

The uniform storm used a values of 0-km, 6-km, 14-km, 23-km, and 35-km.  

This storm provided a gradual change in rainfall over the watershed.  The moderately 

peaked storm had a values of 0-km, 4-km, 12-km, 22-km, and 35-km.  In this storm 

more of the rainfall was located toward the intense center of the storm, but it was not 

a severely peaked storm.  The severely peaked storm had a values of 0-km, 2-km, 5-

km, 21-km, and 35-km.  These values led to nearly all of the rain being deposited 

near the center of the storm, with only a very small amount of rain falling in areas far 

from the center of the storm. 

These storms were input to the original program.  From that output a 

semivariogram was chosen to represent each storm.  For each storm semivariogram 

the relative bias, the standard error ratio, and the correlation coefficient R, as well as 

the final estimates for the sill and radius of influence of the semivariogram were 

recorded for comparison. 
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6.6.3. Results and Discussion 

 The results of this experiment are shown in Tables 6-15 and 6-16.  As the 

peakedness of the storm increased, the sill decreased somewhat, and the radius of 

influence also decreased.  Though these decreases are not necessarily significant 

decreases, a steady trend is evident.  These results would imply that, as the 

peakedness of the storm increased, the variation in the rainfall decreased.  This 

decrease can be explained by storm type.  The more peaked storms have smaller inner 

ellipses; however, their outer ellipses are the same size as the uniform storms.  This 

means that the watershed is experiencing more rainfall from the outer ellipses during 

more peaked storms, and therefore is experiencing less variation in rainfall than it 

would if the storm were spatially uniform.  The more peaked storms actually have a 

larger area of low, uniform rainfall than the uniform storms did, and the small peaks 

of the peaked storms had little influence on the storm variance.  The radius of 

influence can similarly be explained by the increasing area of the watershed receiving 

approximately the same rainfall by the peaked storms. 

Table 6-15: E-W Semivariogram for Varying Storm Types 

Storm 
Type 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

Uniform 28 8.5 166 0.051 0.245 0.975 
Uniform 32 2.7 51 0.039 0.274 0.967 
Moderately 
Peaked 

28 6.1 138 0.052 0.256 0.972 

Moderately 
Peaked 

32 2.2 47 0.041 0.291 0.963 

Severely 
Peaked 

28 3.9 159 0.049 0.252 0.973 

Severely 
Peaked 

32 1.1 44 0.040 0.292 0.963 
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Figure 6-5: E-W Semivariograms for Varying Storm Types 

Table 6-16: N-S Semivariogram for Varying Storm Types 

Storm 
Type 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of  
Influence 
(km) 

Relative 
Bias 

Standard  
Error 
Ratio 

R 

Uniform 20 8.7 136 0.060 0.278 0.971 
Uniform 24 3.1 49 0.037 0.284 0.967 
Uniform 28 1.9 26 0.040 0.364 0.943 
Moderately 
Peaked 

20 7.2 128 0.062 0.287 0.969 

Moderately 
Peaked 

24 2.7 49 0.036 0.302 0.963 

Severely 
Peaked 

20 3.5 111 0.060 0.278 0.970 

Severely 
Peaked 

24 1.2 39 0.037 0.315 0.959 
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Figure 6-6: N-S Semivariograms for Varying Storm Types 
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6.7. CONCLUSIONS 

A variety of analyses were performed to evaluate factors that influenced the 

calculation of storm semivariograms.  The factors examined included the shape of the 

storm, the size of the storm compared to the size of the watershed, the velocity of the 

storm, and the type of storm.  Of these factors, the storm shape appeared to have the 

least impact on the calculated semivariogram.  While no significant difference was 

found between semivariograms calculated for storms of different shapes, the 

importance of evaluating storms as anisotropic events, rather than isotropic, was 

identified.  The size of the storm compared to the watershed and the type of storm 

were both found to have some effect on the semivariogram.  Smaller storms were 

observed to result in a smaller radius of influence and a higher sill value; however, 

how the storm moved across the watershed was determined to play some role in these 

results.  Particularly peaked storms were observed to decrease the sill value of the 

semivariogram somewhat, due to the fact that more of the watershed was 

experiencing either light or no rainfall, as compared to a less peaked storm. 

 The analysis of the velocity of the storm produced interesting results.  For 

individual time periods during the storm the velocity of the storm was not seen to 

produce significant differences in the storm semivariogram.  The location of the 

storm in relation to the location of the rain gages at the time of the measurement was 

actually found to be more influential than the velocity itself.  This led to the 

conclusion that the density of rain gages within a watershed was more important than 

the velocity of the storm in determining the characteristics of the storm 

semivariogram.  Cumulative storm semivariograms were also computed, and within 
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these semivariograms significant differences were observed.  The largest differences 

were observed in the direction perpendicular to the storm movement, again providing 

evidence that how the storm moves across the watershed can influence the 

semivariogram calculated.  Differences were also observed in semivariograms 

calculated at the beginning of the storm versus at the end of the storm.  This leads to 

the conclusion when the semivariogram is computed can significantly influence the 

semivariogram parameters.   
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CHAPTER 7  

RAIN GAGE DENSITY ANALYSES 

7.1. INTRODUCTION 

 The accuracy of rainfall measurements for a given watershed will depend on 

the number of rain gages available to measure the rainfall.  Each rain gage only 

measures rainfall at one point, so multiple rain gages are necessary to obtain a 

representative estimate of rainfall.  A variety of potential errors, such as wind drift, 

blockage caused by trees, or mechanical failure, could also influence an individual 

rain gage, resulting in inaccurate measurements.  For these reasons multiple rain 

gages within a watershed are ideal.  Several studies were conducted to investigate the 

effect of rain gage density on hydrologic applications.  First, the effect of rain gage 

density on storm semivariograms was investigated.  Then the effect of rainfall 

averaging methods was investigated.  The Thiessen polygon average and the 

arithmetic average rainfall estimates were compared, to determine which average 

resulted in less smoothing of the observed rainfall.  Then the rainfall averages 

computed using two rain gages were compared to rainfall estimates made using only 

one rain gage, to evaluate the effect of an additional rain gage.     

7.2. SEMIVARIOGRAM ANALYSES 

7.2.1. Introduction 

A standard density of rain gages in gage networks does not exist across the 

country.  A few watersheds, mostly experimental watersheds such as the Walnut 
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Gulch Experimental Watershed in Arizona, are heavily gaged; however, even most 

large watersheds contain only a small number of rain gages.  This is due in part to the 

expense associated with installing, monitoring, and maintaining rain gages.  

Therefore, one aim of this study was to examine the effect of rain gage density on a 

storm semivariogram.  The objectives of this experiment were to determine how the 

accuracy of a semivariogram varies with the rain gage density, and to evaluate the 

effects on the semivariogram if a lower density were used on a watershed.     

7.2.2. Trial 1 

7.2.2.1. Methods and Materials 

In order to determine the effect that gage density had on the semivariogram 

watershed 1 and storm 1 were simulated using a program that allowed the user to 

choose a percentage of rain gages within the grid to be removed from calculations.  

This program was utilized multiple times during a storm, each time removing a 

different percentage of gages.  The first run with this program removed 0% of the 

gages, which served as a baseline for comparison.  On the next simulation 10% of the 

gages were randomly removed, and then 20%, etc.  During the final run with 97% of 

the gages were removed, in order to obtain a realistic number of gages for a 

watershed.  A semivariogram was chosen from the output of each simulation for use 

in further evaluations.  As in all previous experiments the relative bias, the standard 

error ratio, the correlation coefficient R, and the final estimates of the sill and radius 

of influence of the semivariogram were computed and compared. 

7.2.2.2. Results and Discussion 

The results of this study, shown in Tables 7-1 and 7-2, are somewhat 

inconclusive.  It is apparent that at lower gage densities the spread of the data is 
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greater because of random variation and a smaller number of gages.  Despite this fact, 

when 80% of all gages were not recording the estimates of the sill and radius of 

influence were not terribly different from the estimates when all of the gages were 

used in calculations.   However, when only 20% of the gages were removed from 

calculations the sill and radius of influence were quite different from the estimates 

when all gages were used.  As shown in Table 7-1, when all gages were recording 

during the storm the sill was 5.5 mm2 and the radius of influence was 45-km, whereas 

when 20% of the gages were removed the sill was 5.9 mm2 and the radius of 

influence was 54-km.  A measure of caution should be used, however, when 

considering the accuracy of a semivariogram computed with only a few gages, such 

as when 80% or 90% of the gages were removed.  In these cases there are so few 

gages that the semivariograms are based on only a few data points.  Such a small data 

sample must call the accuracy of the resultant semivariogram into question.  Also, at a 

certain point so few data points remain that a semivariogram cannot even be 

computed.  In order to compute a semivariogram at least two data points must be 

available.  This occurred when 97% of the gages were removed in this experiment.  

The semivariograms computed contained only one point in both the East-West and 

the North-South directions, which is not enough to compute the sill and radius of 

influence of the population semivariogram.   

The results of this study indicated that an accurate semivariogram was 

computed when 10%, 30%, 40%, 70%, and 80% of the gages were removed from 

calculations, while accurate semivariograms were not computed when 20%, 50%, 

60%, or 90% of the gages were removed from calculations.  This indicates that a 
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highly dense gage network is not necessarily required to obtain an accurate 

semivariogram; however there does appear to be a great deal of randomness to these 

results, as evidenced by acceptable results when 80% of gages were removed and yet 

unacceptable results when only 20% of gages were removed.  As Table 7-1 shows, 

the sill was 5.5 mm2 when all gages were recording, 5.9 mm2 when 20% of gages 

were not recording, 4.6 mm2 when 30% were removed and 5.3 mm2 when 40% of 

gages were not recording.  Corresponding radius of influence values were 45-km, 54-

km, 42-km, and 55-km.  It is believed that this experiment demonstrates that when a 

low density gage network is used random chance determines whether or not an 

accurate semivariogram is obtained.  This finding points to the potential value of 

supplementing rain gage data with radar data as even though it can be possible to 

obtain an acceptable semivariogram with a low number of gages. 
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Table 7-1: E-W Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 18.0 159 0.040 0.238 0.975 
0 36 5.5 45 0.040 0.278 0.966 
10 32 17.4 153 0.041 0.237 0.976 
10 36 5.5 45 0.040 0.279 0.965 
20 32 22.8 216 0.047 0.216 0.980 
20 36 5.9 54 0.038 0.270 0.968 
30 32 19.0 188 0.045 0.239 0.975 
30 36 4.6 42 0.043 0.325 0.953 
40 28 23.6 246 0.065 0.275 0.968 
40 32 10.4 111 0.041 0.281 0.965 
40 36 5.3 55 0.035 0.278 0.965 
50 20 19.9 226 0.083 0.392 0.940 
50 24 12.3 143 0.052 0.333 0.955 
50 28 20.5 223 0.056 0.297 0.962 
50 32 6.3 69 0.034 0.332 0.952 
60 28 30.0 297 0.075 0.359 0.945 
60 32 8.7 93 0.036 0.451 0.909 
60 36 4.0 36 0.020 0.020 0.891 
70 20 22.3 191 0.076 0.076 0.933 
70 24 5.2 46 0.042 0.042 0.923 
80 28 50.1 361 0.087 0.327 0.954 
80 32 119.0 864 0.061 0.292 0.963 
80 36 5.5 35 0.057 0.492 0.888 
90 28 82.0 431 0.140 0.745 0.733 
90 32 85.4 428 0.117 0.655 0.795 
90 36 8.9 50 0.046 0.853 0.594 
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Table 7-2: N-S Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 24 22.9 154 0.049 0.249 0.975 
0 28 6.5 43 0.037 0.277 0.967 
10 24 22.8 157 0.047 0.241 0.977 
10 28 5.8 338 0.037 0.284 0.967 
20 24 14.0 100 0.037 0.236 0.977 
20 28 4.7 30 0.039 0.304 0.961 
30 20 24.5 166 0.062 0.291 0.967 
30 24 6.7 46 0.038 0.304 0.962 
40 20 27.0 183 0.063 0.289 0.968 
40 24 5.3 35 0.042 0.335 0.954 
50 20 30.1 223 0.070 0.301 0.965 
50 24 7.2 54 0.040 0.316 0.959 
60 20 30.9 213 0.077 0.339 0.956 
60 24 6.1 43 0.044 0.376 0.942 
70 16 33.9 215 0.127 0.624 0.861 
70 20 25.0 156 0.084 0.484 0.908 
80 20 48.0 263 0.161 0.604 0.852 
80 24 35.9 201 0.105 0.524 0.884 
80 28 75.9 341 0.128 0.530 0.875 
80 32 6.9 31 0.082 0.799 0.673 
90 20 71.1 324 0.322 0.943 0.577 
90 28 112.6 460 0.211 0.885 0.590 
 

7.2.3. Trial 2 

7.2.3.1. Methods and Materials 

After examining the results of Trial 1 it was determined that a second trial 

would be necessary to confirm the results.  For this second trial two new storms were 

created.  In evaluating the results of trial 1 it was realized that storm 1 was 

significantly larger than watershed 1, which meant that the full variability of storm 

was not falling on the watershed.  Therefore two new storms were created that would 

be large enough to cover most of the watershed, but not be larger than the watershed.  

Two storms and two watersheds were created to evaluate the case of an elliptical 

storm on a rectangular watershed and the case of a circular storm on a square 
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watershed.  Each storm was evaluated using two distinctly different random number 

seeds.  This considered the question of whether or not the specific gages removed 

from calculations had any effect on the semivariogram.   

The first storm created, referred to as storm A, was an ellipse with an a-to-b 

ratio of 1.25.  The a values of the ellipses were 0-km, 6-km, 15-km, 27-km, and 38-

km. The ellipses represented rainfall depths of 1.1 cm, 0.9 cm, 0.7 cm, 0.4 cm, and 

0.2 cm.  This storm traveled at a velocity of 5 km/hr, it had an orientation of 0o, and 

the storm was allowed to make three storm movements.  The watershed used for this 

storm was 76-km long and 60-km wide, with gages spaced 4-km apart.  This storm 

was simulated using both RADAR06-1 and RADAR06-2 several times.  The first 

simulation included all of the rain gages, and each of the following simulations 

removed a larger percentage of the rain gages.  First 10% of the gages were removed, 

then 20%, 30%, 40%, 50%, 60%, and finally 70% of the gages were removed.  A 

representative semivariogram was chosen for each simulation from each program.  

For purposes of data analysis and comparison the relative bias, the standard error 

ratio, the correlation coefficient, the final estimate of the sill, and the final estimate of 

the radius of influence were computed. 

The second storm, referred to as storm B, was a circular storm.  With the 

exception of the ratio of a-to-b all storm parameters used for storm A were used for 

storm B.  The watershed was assumed to be a square, 76-km by 76-km.  Again the 

gages were 4-km apart.  This storm was simulated with two versions of the program 

for each fraction of removed gages mentioned in storm A, and representative 

semivariograms were chosen from the output.  The second version of the program 
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allowed the user to input a seed which was used to determine which rain gages were 

removed from calculations during each simulation.  The parameters recorded for 

storm A were also recorded for storm B for the purpose of comparison. 

7.2.3.2. Results and Discussion 

This trial considered whether or not the gage network density had any effect 

on the semivariogram, and it also considered whether or not the specific gages 

removed had any effect.  The results of this trial, which are shown in Tables 7-3 

through 7-10, showed a large amount of variability in the data, but without trends.  

Storm A showed a difference in sill and radius of influence in the North-South 

direction as gage density decreased, but a trend in the East-West direction was not 

evident.  Storm B, however, did not show any trend in the sill or radius of influence in 

either semivariogram direction.  For both storms it was noted that the goodness of fit 

statistics consistently decreased as the gage density decreased.   
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Table 7-3: Storm A Seed 1 E-W Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 44.6 329 0.068 0.262 0.970 
0 36 24.8 187 0.047 0.253 0.972 
0 40 6.9 78 0.046 0.319 0.954 
10 32 46.0 311 0.074 0.275 0.967 
10 36 41.6 287 0.053 0.254 0.971 
10 40 7.7 49 0.048 0.344 0.946 
10 44 6.4 39 0.048 0.418 0.918 
20 32 40.4 300 0.065 0.267 0.969 
20 36 14.9 113 0.044 0.276 0.966 
20 40 7.0 49 0.044 0.301 0.959 
20 44 6.1 41 0.044 0.332 0.949 
30 32 35.3 265 0.064 0.262 0.970 
30 36 15.4 118 0.042 0.274 0.967 
30 40 7.2 52 0.042 0.288 0.962 
30 44 6.1 41 0.042 0.321 0.953 
40 32 31.7 246 0.059 0.262 0.970 
40 36 12.1 96 0.038 0.292 0.962 
40 40 6.2 45 0.042 0.317 0.954 
50 32 44.3 298 0.081 0.337 0.950 
50 36 36.6 251 0.059 0.307 0.958 
50 40 9.8 66 0.045 0.350 0.944 
50 44 7.4 47 0.047 0.357 0.941 
50 48 7.0 43 0.043 0.366 0.937 
60 32 47.1 304 0.077 0.353 0.945 
60 36 27.4 184 0.049 0.361 0.941 
60 40 7.2 43 0.052 0.421 0.918 
60 44 7.4 47 0.047 0.357 0.941 
70 36 27.2 168 0.047 0.369 0.939 
70 40 7.1 38 0.054 0.492 0.886 
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Table 7-4: Storm A Seed 2 E-W Semivariogram with Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 44.6 329 0.068 0.262 0.970 
0 36 24.8 187 0.047 0.253 0.971 
0 40 6.9 48 0.046 0.319 0.954 
10 36 27.6 211 0.047 0.226 0.977 
10 40 7.1 50 0.044 0.304 0.958 
10 44 5.9 40 0.044 0.367 0.937 
20 32 36.6 267 0.064 0.250 0.973 
20 36 23.8 177 0.044 0.239 0.975 
20 40 6.1 40 0.051 0.379 0.934 
30 28 42.90 314 0.083 0.306 0.960 
30 32 29.7 220 0.060 0.272 0.968 
30 36 8.2 60 0.045 0.308 0.958 
30 40 5.8 39 0.049 0.357 0.941 
40 28 43. 319 0.094 0.331 0.953 
40 32 32.3 245 0.063 0.303 0.960 
40 36 8.2 61 0.047 0.330 0.951 
40 40 5.8 39 0.051 0.366 0.939 
50 28 44.7 328 0.096 0.349 0.948 
50 32 26.8 203 0.063 0.336 0.951 
50 36 12.7 98 0.044 0.325 0.953 
50 40 6.1 42 0.050 0.361 0.940 
60 28 48.0 306 0.108 0.385 0.936 
60 32 22.8 156 0.063 0.427 0.919 
60 36 18.8 128 0.049 0.377 0.936 
60 40 7.5 47 0.050 0.399 0.927 
60 44 6.3 38 0.049 0.485 0.888 
70 36 48.5 348 0.058 0.239 0.975 
70 40 13.2 96 0.039 0.289 0.962 
70 44 6.3 40 0.047 0.459 0.900 
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Table 7-5: Storm B Seed 1 E-W Semivariogram for Varying Storm Velocities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 42.9 312 0.069 0.265 0.970 
0 36 32.6 242 0.049 0.249 0.972 
0 40 7.4 52 0.045 0.308 0.966 
0 44 6.1 40 0.046 0.371 0.936 
10 36 29.4 204 0.050 0.259 0.970 
10 40 7.3 46 0.049 0.345 0.946 
10 44 6.4 39 0.047 0.401 0.925 
20 36 28.8 205 0.047 0.258 0.970 
20 40 7.2 46 0.048 0.332 0.950 
20 44 6.3 40 0.046 0.378 0.933 
30 36 18.2 137 0.042 0.269 0.968 
30 40 6.8 46 0.045 0.310 0.956 
30 44 6.0 39 0.044 0.355 0.942 
40 32 29.2 219 0.059 0.280 0.967 
40 36 9.8 74 0.042 0.300 0.960 
40 40 6.5 46 0.043 0.305 0.958 
40 44 6.0 41 0.04 0.312 0.955 
50 36 24.0 168 0.048 0.271 0.967 
50 40 8.2 54 0.044 0.303 0.958 
50 44 7.2 46 0.043 0.299 0.959 
50 48 6.8 42 0.040 0.322 0.952 
60 32 38.8 249 0.059 0.300 0.961 
60 36 8.4 52 0.048 0.344 0.947 
60 40 7.7 46 0.042 0.322 0.953 
60 44 7.4 44 0.039 0.309 0.956 
60 48 7.1 42 0.035 0.311 0.955 
70 36 14.0 82 0.041 0.501 0.883 
70 40 7.6 40 0.048 0.524 0.869 
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Table 7-6: Storm B Seed 2 E-W Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 42.9 312 0.069 0.265 0.970 
0 36 32.6 242 0.049 0.249 0.973 
0 40 7.4 52 0.045 0.308 0.957 
0 44 6.1 40 0.046 0.371 0.936 
10 36 32.7 243 0.051 0.237 0.975 
10 40 7.7 54 0.044 0.307 0.957 
10 44 6.2 41 0.046 0.366 0.938 
20 32 45.2 324 0.072 0.278 0.966 
20 36 27.8 206 0.049 0.279 0.965 
20 40 6.1 39 0.054 0.413 0.921 
30 28 45.1 328 0.095 0.347 0.949 
30 32 41.0 298 0.071 0.230 0.961 
30 36 10.2 76 0.048 0.343 0.947 
30 40 5.8 38 0.054 0.419 0.919 
40 28 39.8 282 0.096 0.353 0.947 
40 32 41.4 304 0.072 0.304 0.959 
40 36 7.9 58 0.050 0.385 0.933 
40 40 5.5 37 0.054 0.453 0.904 
50 28 59.3 399 0.100 0.367 0.942 
50 32 44.7 299 0.077 0.315 0.957 
50 36 9.9 68 0.050 0.391 0.961 
50 40 6.0 37 0.056 0.482 0.891 
60 28 59.7 365 0.114 0.421 0.923 
60 32 47.3 297 0.080 0.385 0.934 
60 36 13.2 86 0.052 0.412 0.923 
60 40 6.6 37 0.059 0.450 0.882 
70 28 64.5 381 0.100 0.359 0.945 
70 32 59.9 354 0.076 0.310 0.958 
70 36 8.3 47 0.057 0.423 0.918 
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Table 7-7: Storm A Seed 1 N-S Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 28 32.8 194 0.049 0.253 0.973 
0 32 6.7 36 0.046 0.338 0.950 
10 28 26.5 164 0.047 0.245 0.975 
10 32 6.3 35 0.045 0.336 0.950 
20 32 6.8 44 0.037 0.267 0.969 
20 36 5.7 34 0.037 0.293 0.962 
30 32 6.6 44 0.034 0.272 0.968 
30 36 5.2 32 0.036 0.383 0.933 
40 28 20.8 143 0.043 0.257 0.972 
40 32 5.7 35 0.043 0.331 0.952 
50 28 36.8 239 0.055 0.256 0.972 
50 32 12.1 79 0.036 0.267 0.969 
50 36 6.1 35 0.044 0.340 0.948 
60 32 30.4 189 0.045 0.243 0.974 
60 36 8.2 48 0.040 0.291 0.962 
60 40 6.1 33 0.041 0.543 0.859 
70 32 39.8 257 0.066 0.469 0.901 
70 36 24.5 164 0.042 0.452 0.906 
70 40 6.2 36 0.051 0.624 0.809 
 
Table 7-8: Storm A Seed 2 N-S Semivariogram with Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 28 32.8 194 0.049 0.253 0.973 
0 32 6.7 36.4 0.046 0.338 0.950 
10 28 31.2 185.0 0.050 0.236 0.977 
10 32 6.8 37.4 0.044 0.331 0.951 
20 28 27.3 168 0.047 0.247 0.974 
20 32 6.7 37.7 0.043 0.318 0.956 
30 28 30.4 180.8 0.049 0.244 0.975 
30 32 6.8 37.4 0.023 0.343 0.948 
40 28 42.6 244 0.050 0.309 0.959 
40 32 9.5 53 0.038 0.318 0.956 
40 36 8.2 61 0.047 0.330 0.951 
40 40 5.8 30 0.036 0.61 0.817 
50 28 34.1 193 0.054 0.304 0.961 
50 32 8.8 48 0.041 0.336 0.950 
50 36 6.6 33 0.044 0.390 0.931 
60 28 52.0 259 0.077 0.319 0.957 
60 32 10.0 49 0.052 0.394 0.931 
60 36 7.0 31.8 0.054 0.489 0.889 
70 32 9.2 48.3 0.048 0.348 0.947 
70 36 6.7 32.3 0.050 0.436 .913 
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Table 7-9: Storm B Seed 1 N-S Semivariogram for Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 41.0 298 0.069 0.265 0.970 
0 36 30.5 226 0.049 0.248 0.973 
0 40 7.4 51 0.045 0.312 0.956 
0 44 6.1 40 0.046 0.372 0.936 
10 36 33.4 253 0.055 0.240 0.974 
10 40 7.6 55 0.046 0.322 0.953 
10 44 6.0 40 0.048 0.394 0.928 
20 36 44.7 326 0.065 0.245 0.973 
20 40 8.0 57 0.048 0.369 0.938 
20 44 6.0 39 0.051 0.472 0.894 
30 36 29.5 228 0.054 0.260 0.970 
30 40 6.7 48 0.049 0.358 0.941 
30 44 5.7 39 0.048 0.433 0.912 
40 36 43.4 312 0.064 0.268 0.968 
40 40 7.7 53 0.051 0.372 0.936 
40 44 6.1 40 0.052 0.452 0.903 
50 36 39.8 273 0.072 0.299 0.960 
50 40 26.3 188 0.046 0.320 0.953 
50 44 6.6 41 0.056 0.487 0.887 
50 48 6.0 38 0.048 0.581 0.833 
60 36 61.9 395 0.092 0.344 0.947 
60 40 37.7 253 0.060 0.365 0.939 
60 44 7.3 43 0.063 0.505 0.878 
60 48 6.8 41 0.054 0.553 0.849 
70 40 59.4 376 0.096 0.612 0.817 
70 44 24.1 161 0.061 0.632 0.800 
70 48 7.7 45 0.071 0.699 0.746 
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Table 7-10: B Seed 2 N-S Semivariogram with Varying Gage Network Densities 

% of Gages 
Removed 

Maximum 
Separation 
Distance (km) 

Sill (mm2) Radius of 
Influence  
(km) 

Relative 
Bias 

Standard 
Error 
Ratio 

R 

0 32 41.0 298 0.069 0.265 0.000 
0 36 30.5 226 0.049 0.248 0.000 
0 40 7.4 51 0.045 0.312 0.000 
0 44 6.1 40 0.046 0.372 0.000 
10 36 30.7 228 0.048 0.228 0.000 
10 40 7.3 50 0.044 0.307 0.000 
10 44 5.9 39 0.044 0.424 0.000 
20 36 35.4 267 0.048 0.210 0.000 
20 40 7.2 51 0.043 0.308 0.000 
20 44 6.1 40 0.044 0.355 0.000 
30 36 19.1 145 0.039 0.220 0.000 
30 40 6.2 24 0.044 0.336 0.000 
30 44 5.8 39 0.040 0.358 0.000 
40 36 28.1 214 0.062 0.266 0.000 
40 40 6.1 42 0.041 0.335 0.000 
40 44 5.7 39 0.037 0.352 0.000 
50 36 30.4 235 0.048 0.245 0.000 
50 40 5.8 40 0.049 0.457 0.000 
60 36 35.9 268 0.053 0.292 0.000 
60 40 5.5 37 0.048 0.626 0.000 
70 36 48.6 360 0.071 0.361 0.000 
70 40 5.3 37 0.051 0.753 0.000 

 

The results presented in Tables 7-3 through 7-10 indicated that the rain gage 

network density did not have a significant impact on the semivariogram calculations.  

Based on comparisons between the simulations using different seeds of the random 

number generator it did not appear that which specific gages were removed had an 

effect on the semivariogram.  The trends in the data actually indicate that the most 

important factor influencing the semivariogram parameters is the number of data 

pairs used to form the original semivariogram.  This factor seemed to have much 

more impact on the data variation than either the seed or the gage density. 
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7.2.4.4. Conclusions 

The effect of rain gage density on calculated storm semivariograms was 

evaluated using two studies.  The results of the rain gage density analysis proved 

somewhat inconclusive.  While this was expected to have a very significant effect on 

the semivariogram, this was not always seen to be the case.  In fact, the conclusion 

drawn from this analysis was that a very dense rain gage network is not absolutely 

necessary in order to compute an accurate semivariogram. 

7.3. EFFECT OF AVERAGING METHODS ON RAINFALL 

ESTIMATES 

7.3.1. Introduction 

The accuracy of rainfall estimates for a watershed can be improved by 

increasing the number of rain gages within the pixel, but the level of improvement 

has not been quantified; therefore, it is unknown how significant the density of the 

rain gage network is to the accuracy of rainfall estimates for a watershed.  The 

purpose of this research was to determine whether increasing the number of rain 

gages in a watershed from one to two significantly improved the accuracy of rainfall 

estimates calculated for the watershed.  This is one step in understanding the value of 

spatial estimates of rainfall made from radar measurements.   

When rainfall estimates are calculated for a watershed, some method of 

averaging the rain gage measurements is necessary.  Two possible methods are the 

Thiessen polygon method and the arithmetic averaging method.  The Thiessen 

polygon method takes a weighted average of all of the gages weighted on the portion 

of the watershed area that each gage represents.  To form the polygons each pair of 
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rain gages are connected by a line, and the perpendicular bisectors of these 

connecting lines are drawn.  The perpendicular bisectors are connected to define 

polygons around each gage.  These polygons represent the area of the watershed 

represented by each rain gage.  To calculate the average rainfall for the watershed 

each rain gage measurement is multiplied by the area of its corresponding area, these 

are added together, and the sum is divided by the total area of the watershed.   

The arithmetic averaging method assumes a weighting factor equal to the 

reciprocal of the number of gages, which weights each rain gage equally.  To 

calculate the average rainfall for the watershed using this method the rainfall 

measured by each rain gage is summed, and then the sum is divided by the total 

number of rain gages.  For cases of an inhomogeneous distribution of gages, this 

method can give an estimate that is quite different from the Thiessen method.  

7.3.2. Spatially Distributed Storm Surfaces 

Three storm surfaces were created using quadratic equations.  These surfaces 

modeled different rainfall characteristics, such as rainfall depth and the spatial spread 

of the storm in order to characterize the effects of the storm characteristics.  The 

different storm surfaces represented different levels of uniformity of rainfall intensity.  

To create these rainfall scenarios an intensity-duration-frequency curve was used to 

determine rainfall amounts for a storm of constant duration and various return 

periods.  A multiple regression program was used to fit quadratic polynomials to 

represent rainfall surfaces described by these rainfall amounts.   

To visualize these surfaces and confirm their suitability the three-dimensional 

plotting tools of Matlab were used to produce graphs of each equation.  Figure 7-1 
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provides a three-dimensional plot of the quadratic surface representing rainfall 

scenario 1.  The equation for this surface is: 

2 2

39.45321 7.228134 0.7372159

0.0566769 0.2652926 0.0028013

Z x y

x y xy

= + −

− + −
  (7-1) 

This rainfall surface is fairly linear, and the rainfall values vary from 38.83 mm at the 

lowest point to 133.2 mm at the highest point.  Figure 7-2 illustrates rainfall scenario 

2 with a three-dimensional plot.  The equation describing this surface is: 

2 2

121.0983 5.262119 4.188004

0.204217 1.047001 0.0000004

Z x y

x y xy

= − −

− + +
   (7-2) 

This surface is also fairly linear, but the rainfall amounts clearly vary much more 

widely than in rainfall scenario 1.  The minimum rainfall amount in this scenario is 

33.07 mm and the maximum rainfall amount is 447.8 mm.  In both rainfall scenarios 

1 and 2, the maximum amount of rainfall is near the pixel edges.  Figure 7-3 

illustrates rainfall scenario 3.  The equation describing this surface is: 

2 2

19.82887 41.92591 1.965484

8.509185 0.4913644 0.0000107

Z x y

x y xy

= + +

− − −
   (7-3) 

Unlike rainfall scenarios 1 and 2 this surface peaks near the center of the pixel.  The 

magnitude of the rainfall for this scenario is lower than the other two scenarios, 

ranging from 19.83 mm to 71.61 mm, but the quadratic shape of the surface results in 

a higher degree of variation of rainfall experienced across the synthetic pixel.  The 

maximum rainfall is experienced near the center of the pixel, while the edges of the 

pixel experience less rainfall.  In summary, the following describe the characteristics 

of the three scenarios: 

• Scenario 1: nearly linear, moderate depths, maximum at edge 
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• Scenario 2: nearly linear, high depths, maximum at edge 

• Scenario 3: quadratic, low depths, maximum at center 

The three quadratic surfaces are assumed to represent the rainfall as measured 

by the radar.  The value of the surface at a given location represents the true rainfall, 

as measured by the radar.  It is very rare, though, for radar data and rain gage data to 

correlate perfectly for a variety of reasons.  For example, mountains or buildings 

could partially block the radar beam, resulting in an inaccurate radar measurement for 

a given location, or wind could cause rain drops to drift significantly in the horizontal 

direction between the time that they are measured by the radar in the atmosphere and 

the time that they fall to the ground surface.  To account for this, some amount of 

random variation was added to the rain gage measurements.  The rain gage 

measurements were calculated as a function of the height of the rainfall surface at the 

location of the gage plus or minus some random variation to account for the potential 

lack of correlation between the radar and rain gage measurements.  Several possible 

distribution functions were available to describe this random error.  Z-R relationships 

have shown that such error exists in radar rainfall measurements.  The program to 

calculate the rainfall estimates for the pixel was used three times, using each of the 

storm surfaces once.   

A variety of storm parameters, rain gage parameters, and rainfall 

characteristics were calculated.  The volume of rainfall occurring over the pixel, the 

average depth of rainfall over the pixel, and the variation in reflectance were 

calculated.  The mean and standard deviation of the rain gage measurements were 

calculated for each scenario.  Also, the bias, the relative bias, the standard error, and 
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the relative standard error were calculated for the rainfall estimates.  These statistics 

allowed the accuracy of the estimates to be assessed. 

 
Figure 7-1: Three-Dimensional Quadratic Surface Representing Rainfall Scenario 1 

 
Figure 7-2: Three-Dimensional Quadratic Surface Representing Rainfall Scenario 2 
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Figure 7-3: Three-Dimensional Quadratic Surface Representing Rainfall Scenario 3 

7.3.3. One Rain Gage Randomly Located 

7.3.3.1. Introduction 

A computer program was developed to simulate a spatially varying storm 

depth in three dimensions and to calculate the depth and volume of rain that would 

fall over the pixel from that storm.  The first scenario modeled had one rain gage.  

The program randomly located the rain gage at some point in the watershed for every 

simulation.  Since the rainfall surface was known, the true amount of rain was known 

and could be used as the basis for comparison.  The rainfall estimates calculated from 

that rain gage could then be compared to the true rainfall values to determine the 

accuracy of estimates from one rain gage. 

The first set of results to be calculated were storm characteristics, including 

the volume under the rainfall surface, the average depth of rainfall over the pixel, and 

the standard deviation of the rainfall surface values.  The latter reflects the variation 
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in intensity over the pixel.  These results for each of the three storm surfaces are 

presented in Table 7-11.  These values were constant for all four of the experiments.  

Table 7-11: Storm Characteristics for Each of the Three Rainfall Surfaces 

 Rainfall Scenario 1 Rainfall Scenario 2 Rainfall Scenario 3 
Volume (km2*mm) 856.58 1691.08 953.90 
Average depth (mm)   53.54   105.69   59.62 
Standard Deviation of 
Surface Values 

    8.50       7.53   14.69 

 
7.3.3.2. Methods and Materials 

The program described above was used to simulate rainfall catches at one rain 

gage located randomly in the pixel.  The number of simulations desired, the size of 

the watershed, and the probability density function of the random error associated 

with the rain gage measurements were specified as input to the program.  For these 

models 10,000 simulations were run for each scenario, the pixel was specified to be a 

square, 4-kilometers by 4-kilometers, and a normal probability density function was 

assigned to the quadratic surface value at the location of the rain gage to introduce 

some random error.  The location of the rain gage was chosen randomly for each of 

the 10,000 simulations.  

7.3.3.3. Results and Discussion 

This program randomly located a single rain gage at points within the pixel 

for each simulation in a given scenario.  For each scenario the mean and standard 

deviation of the rain gage measurements for all simulations were calculated.  For 

rainfall scenario 1 the mean rainfall captured at the gage was 55.46 mm with a 

standard deviation of 8.145 mm.  For rainfall scenario 2 the mean rainfall was 107.76 

mm with a standard deviation of 7.207 mm.  Finally, for rainfall scenario 3 the mean 
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rainfall captured at the rain gage was 61.40 mm and the standard deviation was 13.81 

mm. 

 To assess the accuracy of rainfall estimates made using only one rain gage the 

rain gage measurements were compared to the average rainfall surface value from 

simulation at the location corresponding to the location of the rain gage (see Table 7-

11 for the storm characteristics).  The relative bias and relative standard error values 

were noted for comparison with the two-rain gage model that will be discussed.  

These values, along with the bias and standard error values, are presented in Table 7-

12 for each rainfall scenario.  The relative biases ranged from 2% to 4% for the 

different rainfall surfaces, which indicates that the gage measurements for one rain 

gage are fairly free from bias.  The relative standard error, though, ranges from 95% 

to 100%.  In most cases, the relative standard error would be a reflection of the 

accuracy of the measurements.  In the case of one rain gage being randomly located 

around the simulated pixel, the rain gage measurements are reproducing the rainfall 

surface, and any variation seen in the results is due to the random variation added.  

Therefore the relative standard error makes no statement about the accuracy of the 

rainfall estimates.  The results that were observed, relative biases approximately equal 

to zero and relative standard error values close to 1, are the expected results, because 

the rainfall surface is being sampled as the rain gage is randomly located around the 

pixel.  

 

 

 

 



 

 174 
 

Table 7-12: Bias, Relative Bias, Standard Error, and Relative Standard Error for Each Rainfall Scenario 
with One Rain Gage Compared to True Rainfall Surface Values 

 Rainfall Scenario 1 Rainfall Scenario 2 Rainfall Scenario 3 
Bias 1.929 2.068   1.785 
Relative Bias 0.036 0.020   0.030 
Standard Error 8.370 7.500 13.927 
Relative Standard Error 0.985 0.997   0.948 

7.3.4. Two Rain Gages Randomly Located 

7.3.4.1. Introduction 

To determine the effect that gage density had on the rainfall estimates 

calculated for the watershed a second program, which randomly located two rain 

gages around the watershed, was utilized.  This program again simulated rainfall over 

the watershed using the three quadratic surfaces to represent rainfall.  The rainfall 

catch was simulated for both rain gages in each simulation, and then the two 

averaging methods, Thiessen polygon and arithmetic, were used to calculate an 

average rainfall for the watershed.  These calculations could then be compared to the 

known rainfall values to determine the accuracy of rainfall estimates derived from 

two rain gages. 

7.3.4.2. Methods and Materials 

The only difference between this experiment and the previous experiment was 

that two rain gages were randomly located around the pixel for each simulation.  

Again the number of simulations desired, the size of the watershed, and the 

probability density function of the random error used in calculating the rain gage 

measurements were specified.  As was done in the previous experiment, 10,000 

simulations were chosen to model each scenario, the pixel was set to be square, four 

kilometers by four kilometers, and a normal probability density function was chosen 

to introduce variation into the rain gage measurements.  The three rainfall surfaces 
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described above were again used, and the program was run using each rainfall surface 

once.  The same parameters were calculated by this program as by the last.  In this 

case both the Thiessen polygon average and the arithmetic average were calculated 

from the rain gage measurements, then the bias, the relative bias, the standard error, 

and the relative standard error were calculated by comparing them to the reflectance 

estimates. 

7.3.4.3. Results and Discussion 

 When two rain gages were randomly located within the pixel, both the 

Thiessen polygon and the arithmetic averaging methods were used to calculate 

rainfall estimates.  Both averages were then compared to the average rainfall surface 

value for the location corresponding to the rain gage location.  The averages and 

standard deviations of both averaging methods are presented in Table 7-13 for all 

three rainfall scenarios. 

Table 7-13: Averages and Standard Deviations of Thiessen Polygon Averaging Method and Arithmetic 
Averaging Method for Each Rainfall Scenario 

 Rainfall Scenario 
1 

Rainfall Scenario 
2 

Rainfall Scenario 
3 

Thiessen Polygon  
Method Average 

55.28 107.71 62.48 

Arithmetic Method 
Average 

55.47 107.76 61.50 

Thiessen Polygon 
Method 
Standard Deviation 

  5.48     4.88   9.80 

Arithmetic Method 
Standard Deviation 

  5.76     5.12   9.65 

 

In order to assess the accuracy of these estimates, it was necessary to compare 

the estimates to the known values of the rainfall surfaces, which are intended to 

reflect the reflectance rainfall.  The relative bias and relative standard error were 
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again used to assess to accuracy of the rainfall estimates.  For the Thiessen polygon 

averaging method, these values, along with the bias and standard error values, are 

presented in Table 7-14 for each rainfall scenario.  The same values are presented for 

the arithmetic averaging method in Table 7-15.  In examining the relative biases 

presented in these tables, it is evident that the Thiessen polygon averaging method 

provides slightly lower, but not significantly lower, relative biases for rainfall 

scenarios 1 and 2, indicating that this method results in less systematic error in the 

estimates than the arithmetic average in these scenarios.  The same trend can be seen 

in comparing the relative standard errors.  For rainfall scenarios 1 and 2 the Thiessen 

polygon averaging method results in slightly lower, though not significantly lower, 

errors than the arithmetic averaging method.  For these rainfall scenarios at least, it 

would appear that the Thiessen polygon and arithmetic averaging methods provide 

equally good rainfall estimates. 

Table 7-14: Bias, Relative Bias, Standard Error, and Relative Standard Error for Thiessen Polygon 
Averaging Method Compared to True Rainfall Surface Values 

 Rainfall Scenario 
1 

Rainfall Scenario 2 Rainfall Scenario 3 

Bias 1.743 2.020 2.861 
Relative 
Bias 

0.033 0.019 0.048 

Standard 
Error 

5.477 4.882 9.804 

Relative 
Standard 
Error 

0.645 0.649 0.667 

 
Table 7-15: Bias, Relative Bias, Standard Error, and Relative Standard Error for Arithmetic Averaging 
Method Compared to True Rainfall Surface Values  

 Rainfall Scenario 1 Rainfall Scenario 2 Rainfall Scenario 3 
Bias 1.934 2.066 1.881 
Relative Bias 0.036 0.020 0.032 
Standard Error 5.760 5.114 9.652 
Relative Standard Error 0.678 0.680 0.657 
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7.3.5. Comparison of Results of One and Two Randomly Located Rain 

Gages 

 In order to determine whether the addition of a second rain gage improves the 

accuracy of the rainfall estimates calculated for the synthetic pixel the results of the 

one-gage and two-gage programs discussed previously needed to be compared.  

Specifically, the relative bias and relative standard error were compared among the 

modeling scenarios.  The relative bias and relative standard error compare the rainfall 

estimate derived for the pixel from the radar reflectance measurement, which is 

represented by the quadratic rainfall surface, to the rain gage rainfall measurement.  A 

summary of the results of interest in this comparison are presented in Table 7-16, 

which shows that the difference in the relative bias of the rainfall estimates for one 

rain gage versus two rain gages is not significant.  Regardless of the number of rain 

gages, the relative bias of the rain gage estimates is quite low, ranging from about 2% 

to 4%.   

The relative standard error does experience significant decreases when a 

second rain gage is added to the watershed.  When there is only one rain gage the 

relative standard error values are high, between 0.95 and 1.00.  These values indicate 

that rainfall estimates made from only one rain gage are not very accurate.  When the 

rainfall estimates are based on two rain gages, however, the relative standard error 

values range from 0.65 to 0.68.  Adding the second rain gage appears to result in a 

30% decrease in error in the rainfall estimates, which is quite significant.  The rainfall 

estimates calculated from two rain gages under these scenarios can be expected to be 

much more accurate than rainfall estimates based on only one rain gage.  The 

decrease in relative standard error can be attributed to the fact that two points located 
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on a specific surface will better represent the variation of the surface than one point 

on that surface.   

An important conclusion can be drawn from comparing the results of these 

two experiments.  For one instant in time one rain gage will likely give a poor 

estimate of rainfall.  However, over the course of a storm one rain gage may provide 

acceptable results, due to the law of averages.  At some points in time the rain gage 

will under-predict the instantaneous rainfall, while at other points in time it will over-

predict rainfall.  These under-predictions and over-predictions may ultimately provide 

a reasonable average for the entire storm.  For any single point in time, two rain gages 

will more likely represent the true average rainfall than one rain gage could.  This 

illustrates the importance of spatial data in improving hydrologic models. 

Table 7-16: Comparison of Relative Bias and Relative Standard Error for Each Rainfall Scenario for One 
Gage and Two Gage Rainfall Estimates 

 Rainfall 
Scenario 1 

Rainfall 
Scenario 2 

Rainfall 
Scenario 3 

One Gage Relative Bias 0.036 0.020 0.030 
One Gage Relative 
Standard Error 

0.985 0.997 0.948 

Thiessen Average 
Relative Bias 

0.033 0.019 0.048 

Thiessen Average Relative 
Standard Error 

0.645 0.649 0.667 

Arithmetic Average 
Relative Bias 

0.036 0.02 0.032 

Arithmetic Average Relative 
Standard Error 

0.678 0.68 0.657 

7.3.6. One Rain Gage in a Fixed Location 

7.3.6.1. Introduction 

It was believed that randomly locating the rain gages within the pixel with 

every simulation would force the rainfall estimates calculated to be fairly close to the 

mean values for the watershed.  Therefore, the one-gage and two-gage experiments 
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were repeated with computer programs that allowed the user to set the rain gages at a 

fixed location within the pixel for the duration of the modeling scenario.  The first 

program again simulated rainfall over the entire pixel based on a quadratic surface 

representing the rainfall surface.  One rain gage was set in a fixed location, and the 

depth of rainfall caught by the gage in each simulation was calculated.  The amount 

of rainfall caught by the rain gage for each simulation was a function of the value of 

the rainfall surface at the location of the rain gage as well as some amount of random 

error.  As mentioned previously, random error was added to reflect the fact that, for a 

variety of reasons, radar measurements and rain gage measurements are not perfectly 

correlated.  This calculation could then be compared to the known rainfall values for 

the pixel in order to draw conclusions about the accuracy of the rainfall estimates. 

7.3.6.2. Methods and Materials 

As with the one-gage experiment described previously, the number of 

simulations, the size of the watershed, and the probability distribution function of the 

random error in the rain gage measurements were specified as input.  For all of the 

modeling scenarios described here, 10,000 simulations were used, the pixel was a 

square with sides of 4-kilometers, and a normal rainfall probability distribution 

function was chosen to introduce variation in the rain gage measurements.  Despite 

the fact that the rain gage remained stationary throughout the simulations and the 

rainfall surface did not change between simulations, some variation in rainfall 

measurements between each simulation did occur due to the probability distribution 

function used to add random variation to the rainfall measurements to account for the 

typical disagreement between radar data and rain gage data.  Also like the previous 

experiment, three quadratic surfaces were used to represent radar rainfall surfaces 
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over the pixel.  However, this program also allowed the user to specify a location in 

the pixel for the rain gage, and the gage remained at that location for all simulations.  

For each storm surface the program was run seven times, placing the rain gage in 

seven distinct locations across the watershed.  A diagram of the possible rain gage 

locations within the pixel is presented in Figure 7-4, with the coordinate locations of 

the gages presented in Table 7-17.  This allowed the full variability of the storm 

surface to be examined more clearly than the previous experiment with randomly 

located rain gages did.  The same storm, rain gage, and rainfall estimate parameters as 

discussed previously were calculated for these simulations. 

 
Figure 7-4: Possible Locations of Fixed Rain Gages Within Pixel 

Table 7-17: X and Y Coordinates of Possible Locations for Fixed Rain Gages 

Gage ID X Coordinate Y Coordinate 
1 0 3 
2 1 4 
3 1 1 
4 2 2 
5 3 3 
6 3 0 
7 4 1 
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7.3.6.3. Results and Discussion 

The programs holding rain gages in a fixed location for the duration of the 

individual scenarios provide for a much more realistic examination of the rainfall 

estimates calculated based on one rainfall gage versus two rainfall gages.  For each 

modeling scenario, 10,000 rain storms were simulated, and rainfall accumulation at 

the rain gage was measured.  For each modeling scenario the program provided a 

mean rainfall measurement and a standard deviation for the group of simulations.  

When only one rain gage was present, the mean and standard deviations of the 

amount of rainfall caught by the gage varied widely, depending on the position of the 

gages.   

To better evaluate the accuracy of rainfall estimates made using one rain gage 

in a fixed location, the mean amount of rainfall caught by the gage for each modeling 

scenario was examined.  Table 7-18 presents the minimum of the mean rainfall depths 

at the rain gage, the maximum of the mean values, and the average of the mean values 

for each of the three rainfall scenarios.  The relative biases and relative standard error 

values were also examined to assess the accuracy of the rainfall estimates.  For 

rainfall scenario 1, the relative biases ranged from -0.223 to 0.228, and the relative 

standard error values ranged from 0.207 to 1.817.  For rainfall scenario 2, the relative 

biases ranged from -0.1 to 0.121, while the relative standard errors ranged from 0.061 

to 1.696.  For rainfall scenario 3, the relative biases ranged from -0.609 to 0.235, and 

the relative standard errors ranged from 0.199 to 2.479.  In considering the mean 

rainfall depths caught by the rain gage as well as the relative biases and relative 

standard errors, it is apparent that wide variation is possible in rainfall predictions 

when there is only one rain gage within the pixel.  
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Table 7-18: Maximum and Average of Mean Values of Rainfall Caught by the Rain Gage for Each Rainfall 
Scenario 

Rainfall 
Scenario 

Minimum Mean 
(mm) 

Maximum Mean 
(mm) 

Average Mean 
(mm) 

True Value 
(mm) 

1 41.62   68.97   55.61   53.54 
2 95.13 118.45 108.00 105.70 
3 23.31   73.61   58.18   59.62 
 

To determine under what conditions the most accurate rainfall estimates could 

be obtained using one rain gage the gages were classified for each storm as 

experiencing low, moderate, or high rainfall.  The rain gages that had experienced 

low rainfall conditions were compared among themselves, then compared to rain 

gages that had experienced a moderate amount of rainfall, and finally compared to 

rain gages that had experienced a high amount of rainfall.  Similar comparisons were 

made for all rain gages that experienced moderate amounts of rainfall, and all rain 

gages that experienced high amounts of rainfall.  The relative biases and relative 

standard errors for the gages after they had been classified into groups were compared 

to assess the accuracy of predictions.  Both statistics were found to be generally the 

lowest for rain gages experiencing moderate rainfall, regardless of the rainfall 

scenario, and higher for both low and high rainfall.  This leads to the conclusion that, 

when only one rain gage is located in a pixel, the best rainfall estimates can be made 

when that gage experiences moderate rainfall.  This is likely because a moderate 

amount of rainfall is likely close to average rainfall experienced over the watershed, 

unless a particularly peaked storm were to occur.  In the simulated pixel used for this 

experiment, all three storms resulted in a moderate amount of rainfall occurring in the 

area nearest the center of the pixel.  Further conclusions cannot really be drawn as to 

the effect of the location of the rain gage in the watershed without respect to the storm 
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event; however, logic would indicate that, in general, the closer a rain gage is to the 

center of the storm, the more likely it is to experience a rainfall representative of the 

entire watershed.  This further reinforces the conclusion that one rain gage can 

provide misleading results for any one instant in time and that spatially distributed 

rainfall from radar measurements can potentially improve predictions. 

7.3.7. Two Rain Gages in Fixed Locations 

7.3.7.1. Introduction 

Finally, an experiment was devised in which two rain gages were placed in 

fixed locations within the pixel for a series of simulations.  As with all previous 

examples, the number of simulations, the size of the pixel, and the probability 

distribution function for the random error associated with the rain gage measurements 

were specified.  The three storm surfaces were utilized to examine the variability of 

rainfall estimates under different rainfall conditions.  The amount of rainfall measured 

at each rain gage for each simulation was calculated, and two averaging methods, the 

Thiessen polygon method and the arithmetic averaging method, were used to 

calculate rainfall averages for the pixel.  These average values were used to assess the 

accuracy of the rainfall estimates by comparing them to the known rainfall values for 

the pixel. 

7.3.7.2. Methods and Materials 

As with the previous examples the number of simulations, the size of the 

pixel, and the rainfall probability distribution were specified.  Again 10,000 

simulations were chosen, the pixel was set to be a square with sides of four 

kilometers, and a normal probability distribution was selected to provide some 

amount of random variation to the rainfall estimates to account for the common 
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disagreement between radar and rain gage data sets.  The seven possible rain gage 

locations devised for the experiment in which one rain gage was set at a fixed 

location, as shown in Figure 7-4, were again used.  Because using every possible 

combination of two gages at these seven locations would have required a large 

number of modeling scenarios, and a large investment of time to complete, fourteen 

combinations of two rain gages were chosen to give a good amount of variety in gage 

arrangement.  These were chosen in order to examine the effect when the rain gages 

were located close to each other, far away, on the same side of the watershed, an on 

opposite sides of the watershed.  These fourteen gage location combinations were run 

for each of the three rainfall surfaces, with one additional combination run for rainfall 

scenario 2, resulting in a total of 43 modeling scenarios.  The goal of this was to 

clearly assess the effect that variability of the storm had on the rainfall estimates 

calculated for the watershed.  The same parameters as discussed previously were 

calculated by this program.  The Thiessen polygon and arithmetic averages were 

calculated, and then the bias, the relative bias, the standard error, and the relative 

standard error were for the averages were used to assess the accuracy of the rainfall 

estimates. 

7.3.7.3. Results and Discussion 

In examining the results of the 43 scenarios modeled for two rain gages in 

fixed locations, several important, and in some cases surprising, observations were 

made.  When the relative standard errors of the various scenarios were compared, 

very little variation was evident.  Regardless of the rainfall scenario, the averaging 

method used, or the position of the rain gages relative to each other, the relative 

standard error ranged between 0.019 and 0.054.  Clear trends could not be identified 
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in the variation of relative standard error, and the differences were so small that they 

could simply be due to random chance.   

 Despite the lack of variation in the relative standard error values, significant 

variation was seen in the relative biases.  The relative biases were seen to be both 

positive and negative. For rainfall scenario 1 the relative bias ranged from 0.013 to 

0.285 for the Thiessen polygon estimates, and from -0.018 to 0.229 for the arithmetic 

average estimates.  For rainfall scenario 2, the relative biases ranged from -0.002 to 

0.121 for Thiessen polygon estimates and from 0.01 to 0.10 for arithmetic average 

estimates.  Rainfall scenario 3 experienced the most variation in bias, because this 

storm surface was more variable than the other two.  For the Thiessen polygon 

estimates, the relative biases ranged from -0.609 to 0.023, and for the arithmetic 

average estimates the range was from -0.344 to 0.059.   

Several interesting trends with respect to the gages locations relative to each 

other were noted.  First, the closer to two gages were to each other, the more likely 

the mean rainfall depths were to be similar.  For instance, in one scenario gages as 

coordinates (1,4) and (3,0) were used.  The distance between these gages was 4.472 

km.  The mean rainfall depths caught at these rain gages for rainfall scenario 1 were 

49.91 mm and 62.63 mm, respectively.  In comparison, the gages located at 

coordinates (3,3) and (2,2), located a distance of only 1.414 km apart, were also used.  

The rainfall means for rainfall scenario 1 at these gages were 55.25 mm and 62.78 

mm, respectively.  Similar trends were observed in both the Thiessen polygon 

averages and the arithmetic averages.  Generally, it was found that when the two 

gages were farther apart from each other the relative biases and relative standard error 
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values improved, compared to when the two gages were located close to each other.  

For instance, for rainfall scenario 1, rain gages located at (4,1) and (3,0) were used to 

calculate averages.  These gages were located a distance of 1.414 km apart.  The 

relative bias for this rainfall average was 0.285, and the relative standard error was 

0.046.  Similarly, the gages located at coordinates (3,0) and (3,3), with a distance of 3 

km between them, were used to calculate averages.  The relative bias of this estimate 

was 0.172, while the relative standard error was 0.035.  It was also noted that the 

relative bias seemed to generally improve when the two rain gages experienced 

different rainfall amounts.  For rainfall scenarios 1 and 2 this meant that, when the 

rain gages were not located close to each other, the rainfall estimates they provided 

were the most accurate.  Logic does seem to support this finding, as two rain gages 

located in different parts of the watershed would most likely experience rainfall that 

better represents the rain falling over the entire watershed.  From a statistics 

standpoint, gages located near each other are less likely to be independent 

measurements and, thus, the effective sample size is less than the number of gages.  

In general, for all three rainfall scenarios, when one rain gage was experiencing high 

rainfall while the other experienced moderate rainfall the estimates were the least 

biased.  

7.3.8. Comparison of Results of One and Two Rain Gages in Fixed 

Locations 

To determine whether or not an additional rain gage improved the accuracy of 

rainfall estimates for the pixel the relative biases and standard errors of the various 

modeling scenarios were compared.  The rain gages were grouped as being in a 
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position to experience low rainfall, moderate rainfall, or high rainfall.  For the two 

rain gage case, scenarios in which both rain gages experienced similar rainfall and in 

which the rain gages experienced different rainfall were considered.  Specifically, the 

following scenarios were tested: (1) both rain gages experienced low rainfall, (2) one 

rain gage experienced low rainfall and one experienced moderate rainfall, and (3) one 

rain gage experienced low rainfall while the other experienced high rainfall, were 

examined.  Each of these scenarios was compared to the scenario in which one rain 

gage experienced low rainfall.  Corresponding comparisons were made for moderate 

and high rainfall scenarios. 

 The comparison of relative bias and relative standard error for these cases led 

to the general conclusion that two rain gages provided more accurate rainfall 

estimates than one rain gage.  An overall trend of decreasing relative biases and 

relative standard errors between compared scenarios with one and two rain gages 

resulted in this conclusion.  The decrease in relative standard error when a second 

rain gage was added was often quite significant.  For instance, in many cases the 

relative standard error was between 1.0 and 2.0 when only one rain gage was present; 

however, when there were two rain gages, regardless of rainfall scenario, averaging 

method, and gage location, the relative standard error was between 0.02 and 0.06.  

This would indicate that the addition of the second rain gage significantly improves 

the accuracy of the rainfall estimates calculated for the pixel.   

 The change in relative bias when a second rain gage is added was not so 

consistent.  Generally speaking, the addition of a rain gage resulted in some 

improvement in relative bias; however it is evident that the rainfall scenario and 
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locations of the rain gages relative to each other influences the bias.  For low to 

moderate rainfall at the rain gage the relative bias was more likely to be negative, 

indicating that in these situations the rainfall estimates are likely to under predict the 

amount of rainfall.  Under high rainfall conditions the relative bias was most likely to 

be positive, indicating an over prediction in the pixel rainfall.  When one rain gage 

experienced high rainfall while the other experienced low rainfall, the relative bias 

decreased dramatically, compared to a similar scenario with only one rain gage.  This 

general statement is applicable to rainfall scenarios 1 and 2, though it is not 

necessarily true for the more variable rainfall scenario 3.  In considering the rainfall 

scenarios used in these experiments, it is most likely that for two rain gages, with one 

experiencing high and one experiencing low rainfall, that these rain gages would not 

be located close to each other.  Therefore it would be expected that two rain gages in 

this scenario would be able to fairly well represent the average rainfall being 

experienced over the entire watershed.  Also, from a mathematical standpoint, it is 

reasonable to expect that two values, one particularly high and one particularly low, 

would average out to a reasonable representation of the sample as a whole.  The best 

improvement in relative bias most often occurred with rainfall scenario 2.  This 

rainfall surface had the least variation of the three surfaces tested, so this finding is 

expected.  Conversely, the least improvement in relative bias often occurred with 

rainfall scenario 3.  This rainfall surface was highly variable, so again, this finding 

was not unexpected.   
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7.3.9. Conclusions 

 The effects of using an averaging method such as the Thiessen polygon 

method of the arithmetic averaging method on rainfall estimates calculated for a 

watershed were investigated.  This analysis also further investigated the importance 

of rain gage density in a watershed.  The results of this study illustrate that for any 

one time period one rain gage will likely give a poor estimate of rainfall for the entire 

watershed, but due to the law of averages one rain gage may give a reasonably 

accurate rainfall estimate for an entire storm.  Similarly, for any one time period, two 

rain gages are likely to better represent the rainfall surface over the entire watershed 

than one rain gage.  This proves the importance of using spatial data to make rainfall 

estimates.  An overall trend of decreasing relative biases and relative standard errors 

with the addition of a second rain gage within a watershed were observed, proving 

that two rain gages could provide more accurate watershed rainfall averages than one 

rain gage.  However, the location of the two rain gages relative to each other played a 

key role in determining the level of improvement the second rain gage provided.  

Two rain gages located relatively far from each other were found to have better 

relative bias and relative standard error values than two rain gages located close to 

each other. 

 The results of this study indicate that increased spatial data about rainfall can 

improve the accuracy of rainfall predictions.  However, few dense rain gage networks 

currently exist, limiting the amount of improvement in accuracy possible.  Radar data 

may be a suitable substitute for rain gage data, as it provides more detailed spatial 

information about rainfall at a reasonable time step.  The use of radar data as input to 
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hydrologic models and analyses should be investigated with the goal of improving the 

accuracy of the results of those models and analyses. 
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CHAPTER 8  

UNIT HYDROGRAPH ANALYSES: POINT VS. SPATIAL 

RAINFALL INPUT DATA 

8.1. INTRODUCTION 

Unit hydrographs (UHs) are frequently used in hydrologic design.  A UH is a 

system transfer function that is used to transform precipitation excess (PE) into direct 

runoff (DRO).  The exact definition of a UH is a hydrograph that results from exactly 

one inch of precipitation that falls in a uniform manner and at a uniform rate over a 

watershed during a specified time interval.  Several portions of this definition are 

particularly important.  First, a UH must have exactly one inch of PE.  Second, the 

precipitation must have a uniform spatial distribution over the watershed.  Except for 

very small watersheds this condition rarely occurs, so this portion of the definition 

must often be applied loosely in order to use the unit hydrograph procedure.  Third, 

PE must be constant in time.  This is also not a realistic requirement, so it must be 

interpreted loosely in the application of the unit hydrograph process.  Finally, the PE 

must occur over a specific time interval.  In unit hydrograph analyses, this rule is met 

by selecting short duration storms.   

The extent to which these assumptions are met in either analysis or design has 

not received the attention that it deserves, given the extent to which unit hydrographs 

are used, such as in the HEC and USDA programs.  The degree to which failure to 

meet these assumptions influences a design is not known.  In the case of unit 
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hydrograph analysis, the uncertainty of spatial variation of rainfall over the watershed 

on the fitted UH needs to be investigated, as UHs are often fitted using data from a 

single rain gage.  Rainfall characteristics are not constant over time except for very 

small watersheds and short duration, intense storms.  This lack of temporal 

homogeneity also introduces inaccuracy into a fitted UH. The objectives of this 

research were to determine the degree to which spatial characteristics of rainfall 

influenced the fitted UH, and to determine whether UHs could be improved by using 

spatial rainfall data such as radar data. 

 In developing a unit hydrograph, the first step is to obtain rainfall and runoff 

data for a storm in a given watershed.  Then baseflow, which is the flow that would 

occur in a channel when there had been no precipitation, must be separated from the 

DRO.  This is not necessary in arid and semi-arid regions where channels tend to be 

ephemeral.  Next losses, including the initial abstraction, need to be separated from 

the rainfall in order to determine the PE.  Precipitation that infiltrates into the 

subsurface, or is stored in some sort of surface detention would be considered losses.  

These separation analyses are done in order to identify the transfer function, which 

will be used with a synthetic design storm to determine a design runoff hydrograph.  

The process in which the design storm and the transfer function (UH) are combined to 

produce DRO is called convolution.  Convolution, also known as the theory of linear 

superpositioning, is a process that combines multiplication, translation with time, and 

addition.  The ordinates of the design storm are convolved with the ordinates of the 

transfer function to calculate the ordinates of the design runoff hydrograph.  Equation 
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8-1 is used to determine the number of ordinates on the direct runoff hydrograph the 

formula: 

1DRO PE UHn n n= + −      (8-1) 

where n is the number of ordinates.   

8.1.1. UH Derivation 

Two methods by which a unit hydrograph can be derived are the rainfall-

excess reciprocal method and least-squares analysis.  The rainfall-excess reciprocal 

method is a very computationally simple method that can be used for fairly simple 

storm events.  Each ordinate of the DRO hydrograph is multiplied by the reciprocal of 

the depth of the PE (which is equal to the depth of the DRO).  This results in a UH 

with a depth of one inch, as required by the definition of the UH.   

A second option for deriving a unit hydrograph is least squares analysis.  This 

method can be used on more complex storm events.  When using nonlinear least 

squares analysis to determine a UH, the PE is the predictor variable while the DRO is 

the dependent variable.  This is a convenient method for deriving UHs; however, 

some limitations exist.  It will also be necessary to ensure that the UH ordinates sum 

to one area-inch, as the least squares method does not necessarily force this result as 

the rainfall-excess reciprocal method does (McCuen, 2005).   

In the nonlinear least squares (NLLS) procedure used herein, the precipitation 

excess and direct runoff distribution are determined external to the analysis and used 

as input to develop the UH.  A UH model is assumed, with the model being a 

function of parameters (i.e., coefficients) that need to be calibrated (i.e., fitted via 

least squares).  In the analyses reported herein, a Weibull distribution is used as the 
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UH, with the Weibull being a function of two parameters (one shape and one scale).  

Estimates of the two parameters are assumed and used to fit the Weibull function, 

which is then convolved with the rainfall excess to get a computed distribution of 

direct runoff.  The computed and measured direct runoff distributions are compared 

statistically, with the two parameters adjusted until the computed DRO(t) provides the 

best possible fit to the observed DRO(t). 

8.1.2. Transmission Losses 

In arid regions, transmission loss (TL), which is the infiltration of flow into 

the channel bed, can be a significant factor in hydrological modeling.  The result of 

TL is a decrease in both flow volume and peak discharge as the flood wave moves 

downstream (Jordan, 1977).  Normally, the peak discharge is expected to increase as 

the flood wave moves downstream because of local inflow, but where transmission 

losses are significant, they can cause a decrease as the flood moves downstream.    

The hydrographs shown in Figure 8-1 are for gages in the Walnut Gulch Watershed, 

Arizona.  The hydrographs show the flow moving downstream during the storm event 

of July 31, 2007, and demonstrate that transmission losses offset local inflow rates.  

Flow gage 11 is the most upstream flow gage, and it clearly has the highest peak 

discharge (2.899 mm/hr).  The peak flows decrease at flow gages 6 (1.201 mm/hr) 

and 2 (0.980 mm/hr), which are downstream of flow gage 11.  Finally, the flow 

measured at flow gage 1, the watershed outlet, is seen to have the lowest peak flow 

(0.615 mm/hr).  A trend of decreasing area under the hydrograph is also seen as the 

flood wave moves downstream.   
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It is also interesting to note that, as the flood wave travels downstream, the 

rising limb of the hydrograph becomes steeper, to the point that at flow gage 1, the 

outlet, the rising limb is almost an instantaneous rise to the peak flow rate.  

Transmission losses can be responsible for the steep rising limbs of hydrographs that 

are characteristic of arid regions.  This occurs because much of the initial flood 

waters infiltrate into the dry channel bed as the flood wave travels downstream.  The 

rate of streamflow exceeds the transmission loss rate only when the rainfall intensity 

is high.  Thus, runoff appears in the form of a hydrograph with a steep rising limb.  

This phenomenon will be significant in the development of unit hydrographs from 

data influenced by transmission losses.   
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Figure 8-1: Flow Records Measured At Different Flow Gages as Flood Wave Moves Downstream for Storm 
on 7/31/07 

8.1.3. Weibull Distribution as a UH 

Unit hydrographs are often represented with a scaled gamma distribution 

(Dooge, 1973; Nash, 1958).  The gamma distribution is not sufficiently flexible to 

represent the steeply sloped UHs analyzed for Walnut Gulch.  Therefore, the Weibull 

distribution, which is more flexible than the Gamma distribution, was selected as a 
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UH model.  The Weibull distribution is an extreme value type III distribution.  The 

Weibull distribution is defined by the equation: 

( )1( ) ( )
ct

c b
c

c
f t t e

b

−
−

=      (8-2) 

where t must be ≥0, and b and c must be >0.  The b value is the Weibull scale 

parameter, while the c is the Weibull shape parameter.  Several different shapes are 

possible for this distribution, depending on the shape parameter (c).  When c is less 

than 1.0, a reverse-J shape occurs.  When c equals 1.0, an exponential shape occurs.  

When c increases above 1.0, a skewed bell shape curve that starts at f(x=0)=0 occurs 

(Haan, 1977).  This is demonstrated in Figure 8-2, which plots three Weibull 

distributions, where the Weibull b value is set equal to three and the Weibull c value 

is varied.  A typical unit hydrograph would be expected to have a somewhat skewed 

distribution, so when using this distribution to fit unit hydrographs, Weibull c values 

greater than 1.0 would be expected. 
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Figure 8-2: Weibull Distribution for Various c Valu es, While b=3 

 Bhunya et al. (2007) evaluated four probability distribution functions (pdfs) to 

determine which could best be used to develop synthetic unit hydrographs.  The pdfs 

under consideration were the two-parameter Gamma, the three-parameter Beta, the 
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two parameter Weibull, and the one-parameter Chi-square.  The results of that study 

indicate that, because the Beta and Weibull distributions have both positive and 

negative skew, they were more flexible, and thus were better able to fit UHs from 

observed data.  Because of this extra flexibility the Beta and Weibull distributions 

were found to more accurately predict unit hydrographs than the Gamma and Chi-

square distributions (Bhunya et al., 2007).  The Weibull distribution was chosen over 

the Beta distribution for this research because the Weibull distribution has only two 

parameters to be fit, while the Beta distribution has three parameters. 

8.1.4. Applications of UHs 

Unit hydrographs have a variety of uses in hydrologic design.  Currently, peak 

discharge methods are widely used for analyses that involve small watersheds, such 

as highway drainage and urban watershed drainage, to name a few; however, peak 

discharge methods are not considered accurate enough for many other applications.  

Computer models using hydrograph methods are widely considered to be more 

accurate than peak discharge methods and are becoming more popular for many 

applications.  Hydrograph methods are frequently used for moderate to large 

watershed analyses.  They are also used when significant amounts of natural storage 

exist within the watershed being analyzed.  If significant variations exist in either the 

watershed itself or the hydrometeorologic conditions, then hydrograph methods are 

preferred over peak discharge methods.  Also, if subdivision of the watershed will be 

necessary, or if any constraints to the principal flow paths within the watershed exist, 

hydrograph methods should be used.  The following list from McCuen (2005) 

describes the procedure for using unit hydrographs for hydrologic design: 
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1. Choose a design storm and a return period. 

2. If a large watershed is being analyzed make appropriate depth-area 

adjustments. 

3. Calculate the initial abstractions and losses in order to separate the PE 

from the chosen design storm. 

4. Choose a unit hydrograph model and obtain the necessary inputs to put 

it in dimensional form.  Ensure that the unit hydrograph volume is 

equal to one area-inch. 

5. Convolve the PE hyetograph and the unit hydrograph to determine the 

DRO hydrograph. 

6. Add baseflow, if applicable, to the DRO hydrograph to compute the 

total runoff hydrograph. 

7. If necessary, route the total runoff hydrograph through the channel 

system. 

8.1.5. Potential Problems in UH Derivation 

Traditionally, the rainfall record used to determine the PE for the UH 

procedure is obtained from a rain gage located within, or close to, the watershed 

being analyzed.  Two problems immediately arise with this.  First, a rain gage only 

measures point rainfall, which may not be representative of the rain on other portions 

of the watershed either in total storm depth or in intensity over the duration of the 

event.  This is especially true when larger watersheds are being analyzed.  Second, 

not all watersheds have even one rain gage located within the boundaries.  In such 

cases, the rainfall record from the rain gage located nearest to the watershed must be 
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used, but again, this may not be representative of the rainfall experienced on the 

watershed.   

The temporal distribution of rainfall is critical to the development of a 

watershed unit hydrograph.  Several possible methods for obtaining a representative 

rainfall record for the unit hydrograph procedure can be used.  If multiple rain gages 

are located within one watershed, then the rainfall records from these gages may be 

averaged in some way, such as the Thiessen polygon method, to develop one rainfall 

record.  It is rare, however, for a watershed to have more than one rain gage located 

within its boundaries, so this solution is generally not feasible.  An alternative method 

of developing a representative rainfall record is to use radar data.  Radar data 

essentially measure an average rainfall rate for a given radar pixel, which is often a 

square measuring approximately 4-km by 4-km.  Because radar data are available for 

most of the United States, it would eliminate the problem of not having representative 

rainfall data.  If a radar rainfall record were substituted for a rain gage rainfall record, 

it would be expected to provide a unit hydrograph that better accounted for spatial 

variability in rainfall over the radar pixel area.   

8.2. UH DERIVATION PROCESS 

8.2.1. Rainfall and Flow Data Preparation 

Rain gage and flow gage data were obtained from the United States 

Department of Agriculture (USDA) Agricultural Research Service (ARS) 

Southwestern Watershed Research Center’s website for the Walnut Gulch 

Experimental Watershed.  Both datasets included the date of the event, the start time 

for rainfall or runoff for each gage, the number of minutes elapsed from the start time 
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for each individual reading, as well as the rainfall rate and accumulated depth, or the 

runoff rate and accumulated volume.  The information related to the event start time, 

the time elapsed, and the rainfall or runoff rate was extracted for use in the unit 

hydrograph derivation process.  Neither dataset had readings that occurred on a 

constant time interval, which would be required for the unit hydrograph analyses, so 

an interpolation program was used to create records that were on a constant time 

interval of one-minute. 

 Radar data were obtained from an internet service known as Hydro-NEXRAD 

(The University of Iowa, 2008).  This is a service operated and supported primarily 

by researchers at the University of Iowa, along with several other partners, that aims 

to make radar data more accessible for use in hydrologic applications.  It provides an 

easy-to-use method for downloading radar data for a particular watershed or radar 

station.  Radar data for the desired storm events were obtained for the San Pedro 

River Basin, which is the larger watershed that contains the Walnut Gulch 

Experimental Watershed.  Data could be obtained either as files that were viewable in 

ArcGIS, or as text files.  Using a file visualized in ArcGIS, along with a shapefile 

showing the boundaries of Walnut Gulch the radar pixels that covered the watershed 

of interest were identified.  Then the necessary radar data could be extracted from the 

downloaded files.  The radar data files are not recorded on a constant time interval, so 

they too needed to be interpolated.  Due to the slightly different format of the data 

files as compared to the rain and flow gage data files, a separate interpolation 

program was created for use with these files.  The result of this interpolation was 

radar hyetographs on a one-minute time increment.  Figure 8-3 shows the Walnut 
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Gulch Experimental Watershed, along with the locations of rain gages.  The squares 

of varying colors also shown in this figure are the radar pixels that correspond to the 

Walnut Gulch area. 

 
Figure 8-3: Walnut Gulch Map with Corresponding Rain Gage (black squares), Flow Gage (black 
triangles), and Radar Data (large, gray-scale squares) 
(http://www.tucson.ars.ag.gov/dap/images/WalnutGulch_map.jpg) 

8.2.2. Separation of Losses 

Once acceptable rainfall and runoff data files had been developed, the first 

step was to create precipitation excess hyetographs (PE) and direct runoff 

hydrographs (DRO).  Because Walnut Gulch is located in an arid region and the 

streams are ephemeral, it was assumed that baseflow did not exist.  Therefore, all of 

the runoff measured by the flow gages was considered DRO.   

The next step was to separate losses from the rainfall hyetograph to determine 

the PE hyetograph.  The first assumption made in this process was that all rainfall 

prior to the start of runoff was lost as initial abstraction.  The initial abstraction is 

rainfall that occurs near the beginning of the storm that is not available to runoff, 

normally because it is intercepted by the vegetation or infiltrates into the watershed 

subsurface.  After the initial abstraction was removed from the rainfall data, the 

constant percentage method was used to separate losses from the PE.  In using the 

constant percentage method, losses are assumed to be proportional to the rainfall rate 
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such that the volumes of PE and DRO are equal.  Therefore, some percentage of 

rainfall was removed from every rainfall data record that remained after the initial 

abstraction had been removed, with the remaining rainfall considered to be the PE 

responsible for the DRO.  Using the φ-index method to separate losses would have 

been preferable; however, this method eliminated too many ordinates of the 

hyetograph, thus leaving only a few very intense ordinates.  With so few hyetograph 

ordinates a rational hyetograph, and therefore a rational UH, could not be derived. 

 A program that would delete all rainfall records prior to the start of runoff and 

then use the constant percentage method to separate losses from the PE was 

developed.  This program also used the drainage area of the flow gage to convert the 

runoff from intensity measurements to volume measurements.  As a final step, the 

program confirmed that the volume of PE was equal to the volume of DRO.  The 

output from this program provided the PE hyetograph and DRO hydrograph that 

would be used to determine the optimum UH parameters for that event. 

8.2.3. Nonlinear Least Squares Analysis of UH Parameters 

The PE hyetograph and the DRO hydrograph calculated previously were used 

in a least squares analysis to determine the optimum Weibull UH parameters for each 

storm event.  Based on work done by the Stone et al. (2008), it was known that runoff 

in Walnut Gulch peaked very quickly after the runoff began, and it typically did not 

have a long duration.  It was believed that this could result in UHs that differed 

somewhat in shape from the commonly seen hydrograph shape.  Hydrographs with 

particularly steep rising limbs with shorter than normal recessions have also been 

seen in arid regions by Peebles et al. (1981) and Sen (2007 and 2008).  Peebles et al. 
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(1981) attribute these particular characteristics to transmission losses in the channel.  

The nonlinear least squares analysis determined the best-fit values of the Weibull 

shape (c) and scale (b) parameters.  Then the UH and PE(t) were convolved to 

calculate a predicted DRO hydrograph.  Goodness-of-fit statistics including the 

standard error ratio, the correlation coefficient, and the coefficient of determination 

were evaluated using the calculated and measured DRO hydrographs. 

8.3. ANALYSIS OF UHS 

8.3.1. UHs Derived from Rain Gage Data 

 
 To compare unit hydrographs derived for different rain gages the first step 

was to identify the rain gages located within the boundaries of specific radar pixels.  

This was done for ease in later comparing UHs derived with rain gages to those 

derived with radar rainfall data.  Then the downstream flow gage located nearest to 

this radar pixel was identified.  Unit hydrographs were derived using each individual 

rain gage located within the pixel for four storm events, and the variation between 

these UHs was assessed.  This analysis procedure was then used on two radar pixels 

within the Walnut Gulch watershed.  The results of the two pixels analyzed for the 

same storm event were compared to evaluate the variability of unit hydrographs 

derived for different portions of the watershed.  The goodness-of-fit statistics derived 

using the rain gages in the different pixels were compared to evaluate the accuracies 

of the runoff predictions made from rainfall and flow data for difference portions of 

the watershed.  Then the unit hydrographs derived for the different pixels were 
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plotted and compared to visually detect differences caused by location within the 

watershed. 

8.3.1.1. Comparison of UHs Derived from Rain Gages Within One Pixel 

 Given that unit hydrographs are commonly developed using data from one 

rain gage, it was of interest to assess the potential uncertainty that this limitation 

might have on developing a representative watershed UH.  Therefore, one objective 

was to evaluate the variability of Weibull UHs derived using different rain gages 

located within the boundaries of one radar pixel.  Two pixels were used for this 

analysis for each of four different storm events.  Figure 8-4 provides the unit 

hydrographs derived for seven rain gages located within pixel 12 for the storm event 

on August 13, 2006.  Table 8-1 provides a summary of the Weibull distribution shape 

and scale parameters used to fit the unit hydrographs and the goodness-of-fit statistics 

calculated for the resulting predicted runoff hydrographs.   

In examining both the plot of the UHs (Figure 8-4) and the parameter values 

presented in Table 8-1, it is evident that significant variation in the UHs is possible 

depending on the rain gage used.  The peak ordinates of the UHs vary significantly, 

from a minimum of approximately 10 to a maximum of approximately 40 cms/mm.  

The shapes of the UHs also vary significantly.  The greatest difference is in the UH 

rising limbs.  In some cases there is no rising limb (see RG 61), in which case the 

Weibull shape parameter (c) is less than 1.0 leading to an exponential UH, while in 

other cases a slight rising limb is visible (see RG 58).  Potential explanations for 

exponentially shaped UHs can be provided, from both a modeling and a physical 

standpoint, and will be provided at a later point in this discussion.  The present 
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purpose is only to point out the level of variation that is possible in fitted unit 

hydrographs depending on the rain gage used to provide rainfall information. 
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Figure 8-4: Rain Gage and Thiessen (traditional method) Rainfall UHs Derived for Storm on 8/13/06 Pixel 
12 

Table 8-1: Rain Gage Unit Hydrograph Parameter and Goodness of Fit Statistics for Storm on 8/13/06 Pixel 
12 

 b c Se/Sy R R2 

RG 53 15.5 0.77 0.37 0.93 0.86 
RG 57 22.5 1.05 0.45 0.90 0.80 
RG 58 28.5 1.43 0.44 0.90 0.81 
RG 59 29.3 1.46 0.43 0.90 0.82 
RG 61 3.5 0.33 0.27 0.96 0.93 
RG 63 12.7 0.53 0.42 0.91 0.82 
RG 72 13.1 0.59 0.32 0.95 0.90 
Thiessen (traditional) 19.2 0.85 0.40 0.92 0.84 
 

 This level of variation in unit hydrographs derived using different rain gages 

was not always seen.  Figure 8-5 presents a comparison of unit hydrographs derived 

for the six rain gages located within pixel 1 for the storm event on August 17, 2006.  

Table 8-2 presents the optimum Weibull parameter values determined for these unit 

hydrographs, along with the goodness-of-fit statistics calculated for the predicted 

runoff calculated using these UHs.  From these results (Figure 8-5 and Table 8-2) it is 

evident that the UHs derived for these six rain gages are essentially identical.  These 
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UHs are quite different from those presented in Figure 8-4 in that they have little 

variation between them and in that they have a typical UH shape.  For this particular 

event all of the unit hydrographs were found to have a common UH shape, as 

opposed to the exponential unit hydrographs seen in Figure 8-4.  The likely 

explanation for this will be provided later in the discussion; for now the important 

points are (1) there is a lack of variation in the unit hydrographs derived from these 

particular rain gages, and (2) storm characteristics can vary the degree of variation 

between UHs for the same storm.  For this storm event, the hyetographs obtained 

from the individual rain gages were very similar to each other.  Since the same flow 

record was used to derive each of the UHs and the rainfall hyetographs were similar, 

the UHs (shown in Figure 8-5) also were very similar to each other.    
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Figure 8-5: Comparison of Unit Hydrographs Derived from Different Rain Gages for the Storm on 8/17/06 
Pixel 1 

Table 8-2: Rain Gage Unit Hydrograph Parameter and Goodness of Fit Statistics for Storm on 8/17/06 Pixel 
1 

 b c Se/Sy R R2 

RG 1 110.8 3.13 0.33 0.94 0.89 
RG 2 109.5 3.13 0.33 0.94 0.89 
RG 4 115.5 3.26 0.34 0.94 0.89 
RG 5 111.5 3.20 0.33 0.94 0.89 
RG 8 115.7 3.25 0.34 0.94 0.89 
RG 92 110.8 3.17 0.33 0.94 0.89 
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 The variation, or lack of variation as the case may be, between UHs derived 

from different rain gages within one pixel appears to be related to the length of time 

between the center of mass (CM) of the PE and the CM of the DRO.  This factor 

appears to control the Weibull c values fit to the UHs.  For the storm event on August 

13, 2006, the hyetographs for the individual gages differed and thus produced 

differences in the time of the center of mass of the PE.  Therefore, the centers of 

masses for the PE and DRO were different.  Conversely, the storm occurring over 

pixel 1 on August 17, 2006, was very short at all of the rain gages, but it resulted in a 

very long runoff record.  Therefore, little variation in the timing of the PE CM was 

evident between the rain gages, because the storm was so short, and a long period of 

time was also evident between the PE centers of mass and the DRO center of mass.  

Collectively, these factors likely forced the normal shape of the unit hydrographs for 

these rain gages and resulted in the small amount of variation between them (see 

Figure 8-5).  The shorter difference in centers of mass of the PE and the DRO for the 

storm on August 13, 2006, forced lower Weibull c values, which caused the 

exponential unit hydrographs (see Figure 8-4) seen for some of the rain gages.   

8.3.1.2. Comparison of UHs Derived for Different Subareas 

For many analyses and designs, a watershed is subdivided because of 

differences in land use or storage.  The general practice is to use the same unit 

hydrograph model for the analysis of each subarea, with variation only dependent on 

the area, depth of runoff, and time of concentration.  This practice can be questioned 

if the shape of the unit hydrograph is believed to vary over the subwatersheds. 

 Preliminary indications suggest that transmission losses and variation in 

timing influence the UH shape.  Therefore, it seemed reasonable to study whether or 
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not the UHs for different subareas of the Walnut Gulch watershed were different.  

While UHs are known to vary from storm to storm, within-watershed variation of unit 

hydrographs needed to be investigated. 

Unit hydrographs were derived for all of the rain gages located within the 

boundaries of two different pixels for the same storm event.  Figure 8-3 provides a 

map of the Walnut Gulch Experimental Watershed and the corresponding radar 

pixels.  The pixels used in this evaluation are pixel 1 (first row, left-most cell) and 

pixel 10 (second row, third cell from the left).  The unit hydrographs derived for the 

rain gages located within pixel 1 (see Figure 8-6) are compared to those located 

within pixel 10 (see Figure 8-7) for the storm on July 31, 2007.  Table 8-3 provides 

the UH parameters and the predicted runoff goodness-of-fit statistics for pixel 1.  

Table 8-3 can be compared to Table 8-4, which provides this information for pixel 10.   

The first thing to note in comparing these plots is the differences in scales.  

The maximum unit hydrograph value for pixel 1 is slightly under 250 cms/mm, while 

the maximum value for pixel 10 is approximately 200 cms/mm.  This is a significant 

difference between the two pixels, which is caused by differences in the drainage area 

of the flow gages used to derive the UHs for each rain gage.  The flow gage used to 

derive UHs for pixel 1 drained approximately 14,933 ha, while the flow gage used to 

drive UHs for pixel 10 drained 9510 ha.  The difference in scales is not larger than 

this because significant amounts of flow are lost to the channel bed as the flood wave 

moves downstream, as illustrated in Figure 8-1.  The UH derived for pixel 1 will 

produce a much different direct runoff prediction for a storm event than the UH 

derived for pixel 10 would due to this difference in peak ordinates.  If one of these 
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UHs were to be applied to the entire watershed for the purpose of design work, 

significantly inaccurate runoff predictions could result.  Inaccurate runoff predictions 

will likely result in either an inadequate design for the true hydrologic conditions, or 

an excessive design for the hydrologic conditions, each of which presents its own set 

of problems.   

The differences in shape should also be noted between Figures 8-6 and 8-7.  

None of the UHs in Figure 8-6 have a Weibull scale parameter greater than 1.0; thus, 

they are all exponentially shaped.  Figure 8-7 has six of eight unit hydrographs with 

shape parameters greater than 1.0, producing UHs that are not exponential.  In 

general, the unit hydrographs derived for pixel 1 are steeper than the unit hydrographs 

derived for pixel 10.  One potential explanation for this is the presence of 

transmission losses in arid watersheds.  Pixel 1 is located downstream of pixel 10, so 

transmission losses would be expected to cause the runoff hydrograph associated with 

pixel 1 be to steeper than the hydrograph associated with pixel 10.  The decrease in 

flow volume as the flood wave moves downstream was illustrated for this storm event 

in Figure 8-1.  This steeper runoff hydrograph causes the difference in the steepness 

of the rising limbs of the UHs between the pixels.  This provides evidence that 

transmission losses could be responsible for variation in the UHs derived for different 

areas of a watershed.      

Overall there would appear to be more variation in the unit hydrographs for 

pixel 10 than for pixel 1.  The scale parameters for the unit hydrographs in pixel 10 

ranged from 6.5 to 15.3, while the shape parameters ranged from 1.4*10-6 to 2.17.  If 

data from rain gage 33, which appears to be an outlier, are removed, the scale 
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parameter ranged from 7.7 to 15.6 and the shape parameter ranged from 0.88 to 2.17.  

The results obtained for rain gage 33 were obviously widely different from results 

obtained for the other results in this pixel.  These results were further investigated in 

an attempt to provide some explanation.  The c value was set, and held constant, at 

higher values that were similar to those found for the other rain gages, which had 

been found to improve the results in other scenarios where one of the rain gages 

produced unusual results.  However, in this case absolutely no improvement was seen 

with changes in the parameter values.  The goodness-of-fit statistics did not improve 

at all, leading to the conclusion that a data error must somehow exist to explain the 

poor results. 

For the UHs in pixel 1 the scale parameters ranged from 15.6 to 31.8, which is 

a larger range that what was seen in pixel 10; however, the shape parameters only 

range from 0.36 to 0.68.  This small range in shape parameters forced all the UHs 

derived from rain gages in Pixel 1 to be exponential in shape, and to be very similar, 

though a difference in scales, caused by the variation in the b parameters, is visible.  

The large range in shape parameters for UHs from pixel 10 resulted in much more 

varied UHs.  It is also interesting to note, in regards to pixel 10, that two of the UHs, 

those derived from rain gages 28 and 33, did not result in acceptable goodness-of-fit 

statistics.  If either of these UHs were used to predict runoff for the watershed, it 

would be impossible to have any confidence in the results, due to the poor goodness-

of-fit statistics.     

Generally, UHs are attributed to characteristics of the watershed.  Factors such 

as the land use, including the runoff curve number, drainage area or length, and slope 
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are used to scale a UH.  For the analyses reported herein, it is evident that 

transmission losses are a major factor governing the shape and scale of the UHs.  

Transmission losses are generally associated with the channel (Lane et al., 2007), but 

they are also likely associated with infiltration rates over the entire watershed.  Thus, 

the UHs appear to reflect channel processes as much as watershed processes. 

The results of this analysis indicate that the portion of the watershed in which 

the unit hydrograph was derived should be an important consideration.  The 

conclusion to be reached from this is that if a derived UH is used for design work in 

the future, the location of the rain gage within the watershed could be very important 

to the final result.  If the UH was derived for a portion of the watershed other than 

where the design work was being done, it is possible that the UH will not be accurate, 

which could result in a poor design.  If the differences between the different areas of 

the watershed were severe enough, a poor design based on an inaccurate unit 

hydrograph could result in negative safety and health consequences. 
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Figure 8-6: Comparison of Unit Hydrographs Derived Using Rain Gages in Pixel 1 for the Storm on 7/31/07 
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Figure 8-7: Rain Gages and Thiessen (traditional method) Rainfall UHs in Pixel 10 for the Storm on 7/31/07 

Table 8-3: Rain Gage Unit Hydrograph Parameters and Goodness-of-Fit Statistics for Storm on 7/31/07 
Pixel 1 

 b c Se/Sy R R2 

RG 1 25.7 0.50 0.34 0.94 0.89 
RG 2 15.6 0.45 0.42 0.91 0.82 
RG 4 23.9 0.40 0.40 0.92 0.84 
RG 5 27.7 0.68 0.31 0.95 0.90 
RG 8 28.9 0.43 0.39 0.92 0.85 
RG 92 31.8 0.36 0.55 0.84 0.70 
 
Table 8-4: Rain Gage and Thiessen Rainfall Unit Hydrograph Parameters and Goodness-of-Fit Statistics 
for Storm on 7/31/07 Pixel 10 

 b c Se/Sy R R2 

RG 17 9.3 1.84 0.57 0.82 0.68 
RG 24 7.7 1.08 0.65 0.76 0.58 
RG 28 15.6 1.72 1.03 0.00 0.00 
RG 29 6.5 1.06 0.58 0.81 0.66 
RG 33 8.5 1.41 1.07 0.00 0.00 
RG 34 13.8 0.88 0.41 0.91 0.84 
RG 81 8.6 1.09 0.64 0.77 0.59 
RG 399 13.5 2.17 0.82 0.57 0.33 
Thiessen (traditional) 8.2 0.97 0.50 0.87 0.76 

8.3.2. UHs Derived from the Traditional Thiessen Average Rainfall Data 

Rain gage measurements reflect rainfall over the area local to the gage.  The 

degree to which the rain gage measurements reflect rainfall at a point removed from 

the gage depends partly on the distance between the gage and the point.  The extent to 

which a gage measurement reflects the size of the pixel is in doubt given the variation 
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in UHs in Figures 8-6 and 8-7.  Therefore, it was of interest to assess if the average 

rainfall from the gages within a pixel would provide a realistic assessment of the 

accuracy of UHs derived from radar data.  The Thiessen polygon averaging method 

was used to spatially average rainfall data to derive a UH.  Using this method an 

average rainfall record was calculated based on measurements at the rain gages 

located within the borders of each radar pixel.     

The first step to completing this analysis was to calculate Thiessen weights for 

each rain gage within the pixel using areas obtained with a planimeter.  For pixel 10 

the Thiessen weights were determined to be as follows: for rain gage 17 a weight of 

0.068, for rain gage 24 a weight of 0.070, for rain gage 28 a weight of 0.068, for rain 

gage 29 a weight of 0.117, for rain gage 33 a weight of 0.144, for rain gage 34 a 

weight of 0.234, for rain gage 81 a weight of 0.174, and for rain gage 399 a weight of 

0.125.  For pixel 12 the Thiessen weights were determined to be as follows: for rain 

gage 53 a weight of 0.155, for rain gage 57 a weight of 0.150, for rain gage 58 a 

weight of 0.060, for rain gage 59 a weight of 0.243, for rain gage 61 a weight of 

0.095, for rain gage 63 a weight of 0.104, and for rain gage 72 a weight of 0.193.  

Then an average rainfall hyetograph was created using the Thiessen weights and the 

1-minute rainfall depths.  From this point the standard procedure described previously 

was used to derive the UH and calculate runoff predictions.  The goodness-of-fit 

statistics for the predictions were compared to those calculated using the rain gages.  

The UH was plotted using the optimum parameters identified, and then it too could be 

compared to the UHs derived using the rain gages.  This comparison would indicate 
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whether or not spatially averaged rainfall data could provide any benefit to UH 

analyses.   

8.3.2.1. UH Results Using Traditional Thiessen Calculations 

Figure 8-4 compares the Thiessen average rainfall unit hydrograph to the 

individual rain gage unit hydrographs for pixel 12 for the storm event occurring on 

August 13, 2006.  The rain gage unit hydrograph parameters and goodness-of-fit 

statistics were presented previously in Table 8-1.  Both the b and c values for the 

Thiessen averaged rainfall and the goodness-of-fit statistics fall well into the ranges 

provided by the rain gages, resulting in a UH that compares well to the rain gage 

UHs.     

 Similarly good unit hydrographs derived from Thiessen average rainfall 

datasets for several other storm events.  For instance, Figure 8-7 shows the UHs of 

the rain gages in Pixel 10 as well as the Thiessen average rainfall for the storm event 

on July 31, 2007.  Table 8-4 provides the corresponding unit hydrograph parameters, 

as well as the goodness-of-fit statistics for the predicted runoff calculated using the 

derived unit hydrographs.  In this case, the Thiessen rainfall UH falls approximately 

in the middle of the exponential UHs derived from rain gages.  Because the Thiessen 

rainfall is an average of the rainfall measured by the individual rain gages, this was 

the expected outcome.  The goodness-of-fit statistics for the Thiessen rainfall UH also 

fall into the range of those calculated from the rain gage UHs. 

The goodness-of-fit statistics of the predicted runoff hydrographs indicate that 

the Thiessen average rainfall can be used to derive an acceptable unit hydrograph.  

The purpose of the UH is often to do design work within the watershed, so the main 

objective of the UH is to be able to accurately predict runoff based on rainfall over 
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the watershed.  In comparing the goodness-of-fit statistics for the predicted runoff for 

both of the storm events evaluated here, it is obvious that the Thiessen rainfall UH is 

able to predict runoff at least as accurately as the rain gage UHs.  The Thiessen 

rainfall for pixel 12 for the storm occurring on August 13, 2006, has better goodness-

of-fit statistics than four of the seven rain gages, while the Thiessen rainfall for pixel 

10 for the storm occurring on July 31, 2007, has better goodness-of-fit statistics than 

seven of the eight rain gages.  This provides further evidence that the Thiessen 

average rainfall can produce an accurate unit hydrograph and an accurate prediction 

of runoff. 

 For the storm events occurring on August 13, 2006, and August 17, 2006, 

only slight variation was seen in the individual rain gage hyetographs.  Between the 

rain gages there was high similarity in both hyetograph shape and magnitude.  

Therefore the traditional Thiessen analysis was able to retain the appropriate 

hyetograph shape, and was truly representative of the rainfall experienced on the 

pixel.  The storm event on July 20, 2007, did not have such strong similarities 

between the individual rain gage hyetographs for pixel 12.  High variability was seen 

especially in the shape of the hyetographs, so the traditional Thiessen calculation was 

not able to represent the average rainfall over the pixel.  Therefore the UH derived 

from this average hyetograph did not compare well to the UHs derived for the 

individual rain gages, as seen in Figure 8-8 and Table 8-5.  The lower UH parameters 

determined for the Thiessen UH result in a UH (shown in Figure 8-8) that is steeper 

than any of the individual rain gage UHs, whereas the expected result would be a UH 

falling in the middle of the rain gage UHs, as seen in Figure 8-4. 
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Table 8-5: Rain Gage and Thiessen UH Parameters and Goodness-of-Fit Statistics for Storm Even on 
7/20/07 Pixel 12 

 b c Se/Sy R R2 

RG 53 2.2 0.97 0.57 0.82 0.67 
RG 57 1.8 0.83 0.56 0.83 0.69 
RG 58 2.7 1.10 0.53 0.85 0.72 
RG 59 7.3 1.23 0.55 0.83 0.70 
RG 61 7.2 1.24 0.51 0.86 0.74 
RG 63 4.2 1.06 0.53 0.85 0.72 
RG 72 3.3 1.06 0.49 0.87 0.76 
Thiessen (traditional) 0.9 0.77 0.46 0.89 0.79 
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Figure 8-8: Rain Gage and Thiessen (traditional method) UHs for Storm Event on 7/20/07 Pixel 12 

8.3.3. UHs Derived from the Pattern-Preserving Thiessen Average 

Rainfall Data 

 
The traditional method of calculating a Thiessen average rainfall record 

applies Thiessen weights to each ordinate in each individual rainfall hyetograph.  

Aron et al. (1979) found that this method can result in severe attenuation of the 

hyetograph.  This would result in an average hyetograph that is not actually 

representative of the individual rainfall hyetographs on which it is based.  Aron et al. 

(1979) did find that the traditional Thiessen averaging method could be applied to 

storm totals, just not to individual hyetograph ordinates.  To determine whether this 
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affected the UHs derived based on Thiessen average rainfall a second averaging 

method, the pattern-preserving Thiessen method, was used to derive UHs.   

The pattern-preserving Thiessen method, which uses some of the comments 

identified by Aron et al. (1979), was based on the Thiessen method, but the Thiessen 

weights were not applied to each hyetograph ordinate.  Instead, the average peak 

intensity was calculated based on the Thiessen weights, as were the average time to 

peak and the average hyetograph duration.  The formula used to calculate the average 

peak intensity is: 

1
*

n

pm pj jj
i i w

=
=∑       (8-3) 

Where ipm is the average peak intensity, ipj is the individual hyetograph peak intensity, 

and wj is the Thiessen weighting factor assigned to each hyetograph.  The average 

time to peak was then calculated using: 

1
*

n

pm pj jj
t t w

=
=∑       (8-4) 

where tpm is the average time to peak, and pj is the time to each individual hyetograph 

peak.  Finally the average hyetograph duration was calculated using the equation: 

1
*

n

m j jj
D D w

=
=∑      (8-5) 

where Dm represents the average hyetograph duration, and Dj represents the duration 

of the individual hyetographs.  After the average hyetograph peak and duration were 

calculated the rest of the average hyetograph was filled in to maintain the general 

shape characteristics of the individual hyetographs.  The average hyetograph 

ordinates were determined based on the individual rain gage hyetographs and their 

corresponding Thiessen weights.   
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8.3.3.1. UH Results Using Pattern-Preserving Thiessen Calculations 

Thiessen average rainfall records were calculated using the pattern-preserving 

Thiessen averaging method for the storm events for August 13, 2006, and July 20, 

2007.  As seen in Figure 8-4 and Table 8-1, the agreement between the Thiessen UH 

parameters and the original UH parameters and the goodness-of-fit statistics 

calculated for the Thiessen UHs indicated that the traditional Thiessen averaging 

method was quite successful.  The results seen in Figure 8-4 and Table 8-1 can be 

compared to Figure 8-9 and Table 8-6, which provide the UH results obtained for the 

same storm event (August 13, 2006) and pixel (pixel 12) using the pattern-preserving 

Thiessen rainfall hyetograph.  In this scenario, using the pattern-preserving Thiessen 

method did not provide an improvement in results as compared to the traditional 

Thiessen method.  The individual rain gage hyetographs used to calculate the two 

Thiessen hyetographs did not show significant variation for the storm on August 13, 

2006, so the rain gage hyetographs had similar magnitudes and shapes.  Because the 

individual hyetographs had similar magnitudes and shapes the traditional Thiessen 

averaging method was able to provide a representative average hyetograph.  Both of 

the UHs derived using rainfall from the different Thiessen calculation methods fall 

into the range of values found for the individual rain gage UHs; however, the 

parameters derived using the traditional method seem more representative of the 

individual rain gages than the parameters derived using the pattern-preserving 

Thiessen method.  For instance, the rain gage Weibull b values range from 3.5 to 

29.3, but four of the seven values are less than 20, making the traditional Thiessen b 

value of 19.2 seem like the better average value than the alternative Thiessen b value 

of 25.0.  A similar statement can be made for the Weibull c values.  In Figure 8-9 the 
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shape of the UH derived using the traditional Thiessen method is more similar to the 

individual rain gage UH shapes than the UH derived using the pattern-preserving 

Thiessen approach. 

Table 8-6: Rain Gage, Thiessen (traditional) and Thiessen (pattern-preserving) Rainfall UH Parameters 
and Goodness-of-Fit Statistics for Storm Event on 8/13/06 Pixel 12 

 b c Se/Sy R R2 

RG 53 15.5 0.77 0.37 0.93 0.86 
RG 57 22.5 1.05 0.45 0.90 0.80 
RG 58 28.5 1.43 0.44 0.90 0.81 
RG 59 29.3 1.46 0.43 0.90 0.82 
RG 61 3.5 0.33 0.27 0.96 0.93 
RG 63 12.7 0.53 0.42 0.91 0.82 
RG 72 13.1 0.59 0.32 0.95 0.90 
Thiessen (traditional) 19.2 0.85 0.40 0.92 0.84 
Thiessen (pat. pres.) 25.0 1.31 0.38 0.93 0.86 
 

0

5

10

15

20

25

30

0 10 20 30 40

Time (minutes)

D
is

ch
ar

g
e 

(c
m

s/
m

m
)

RG 53

RG 57

RG 58

RG 59

RG 61

RG 63

RG 72

Thiessen
(trad.)
Thiessen
(pat. pres.)

 
Figure 8-9: Rain Gage, Thiessen (traditional), and Thiessen (pattern preserving) Rainfall UHs for Storm 
Event on 8/13/06 Pixel 12 

 Table 8-6 and Figure 8-9 illustrate an example in which the traditional 

Thiessen method can be used to create a representative average rainfall hyetograph, 

and using the pattern-preserving Thiessen method did not offer any improvement in 

the final UH results.  For the storm event on July 20, 2007, in pixel 12, the traditional 

Thiessen method was shown, in Table 8-5 and Figure 8-8, to be unable to create a 

representative average rainfall hyetograph from the individual rain gage hyetographs.  

In examining Figure 8-8 and Table 8-5 it becomes evident that the UH derived using 
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the Thiessen hyetograph does not agree with the individual rain gage UHs.  Both the 

b and c parameter values for the Thiessen UH are lower than any of the parameters 

for the UHs derived from rain gages.  When using an averaging method, it would be 

expected that the UH parameters would fall within the range of parameters found for 

the individual rain gages.  Because the UH results using the traditional Thiessen 

hyetograph did not seem logical, the pattern-preserving Thiessen method was used to 

compute an average hyetograph for comparison. 

 The UH results using the pattern-preserving Thiessen method, which can be 

compared to Figure   8-8 and Table 8-5, are presented in Figure 8-10 and Table 8-7.  

In comparing the UH parameters derived using the traditional and pattern-preserving 

Thiessen methods a significant difference is observed.  The UH parameters derived 

using the pattern-preserving Thiessen method are within the range of parameters 

derived using the individual rain gage hyetographs.  The pattern-preserving Thiessen 

calculation method is obviously able to produce a representative average rainfall 

hyetograph in this scenario, where the traditional method could not.  In examining 

Figure 8-10, the UH derived using the pattern-preserving Thiessen method to 

calculate the average rainfall is observed to fall in the middle of the rain gage UHs, 

where the UH derived using the traditional Thiessen method falls below all the rain 

gage UHs.  The pattern-preserving Thiessen method results in the UH that was 

expected for an average rainfall hyetograph, a UH that is representative of all of the 

rain gages used in its derivation.  The conclusion to be drawn from this is that, when 

using an averaging method on individual hyetographs, care should be taken to ensure 

that the hyetograph shape and magnitude are maintained.  When significant variation 
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exists in either magnitude or shape between the individual hyetographs, the traditional 

Thiessen averaging method will not be able to produce a representative average 

hyetograph. 

Table 8-7: Rain Gage and Thiessen UH Parameters and Goodness-of-Fit Statistics for Storm Event on 
7/20/07 Pixel 12 

 b c Se/Sy R R2 

RG 53 2.2 0.97 0.57 0.82 0.67 
RG 57 1.8 0.83 0.56 0.83 0.69 
RG 58 2.7 1.10 0.53 0.85 0.72 
RG 59 7.3 1.23 0.55 0.83 0.70 
RG 61 7.2 1.24 0.51 0.86 0.74 
RG 63 4.2 1.06 0.53 0.85 0.72 
RG 72 3.3 1.06 0.49 0.87 0.76 
Thiessen (traditional) 0.9 0.77 0.46 0.89 0.79 
Thiessen (pat. pres.) 2.6 0.91 0.47 0.88 0.78 
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Figure 8-10: Rain Gage, Thiessen (traditional method), and Thiessen (alternate method) Rainfall UHs for 
Storm Event on 7/20/07 Pixel 12 

8.3.4. UHs Derived from Radar Data 

Several objectives were examined when UHs were derived using radar rainfall 

data.  The first objective was to compare the performance of various radar scan 

elevation levels in developing UHs and predicting runoff.  The second objective was 

to evaluate whether using a calibrated Z-R equation to transform raw radar data from 

decibels of reflectance (mm6/m3) to rainfall rate (mm/hr) resulted in more accurate 
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UHs and runoff predictions than using the standard Z-R equation used by the 

National Weather Service (Ulbrich and Miller, 2001):  

1.4300Z R=      (8-6) 

in which Z is reflectance (mm6/m3) and R is rainfall rate (mm/hr).  The final objective 

was to compare the performance of radar data to the performance of another spatially 

averaged rainfall record, the Thiessen polygon average rainfall, in creating UHs and 

predicting runoff.   

 When previous analyses were conducted to determine whether there was any 

benefit to calibrating location- and storm-specific Z-R transformation equations, firm 

conclusions were not reached.  It was difficult to determine whether or not one of the 

five radar scan elevations provided a more accurate picture of the rainfall over 

Walnut Gulch than the other, while analyses comparing the performance of a 

calibrated Z-R equation in predicting rainfall intensities to the performance of the 

standard Z-R equation proved inconclusive.  To determine whether one radar scan 

elevation was a more accurate representation than the other, radar scans 3 and 4, 

which appeared to be the best based on previous studies, were used to derive UHs for 

several pixels.  The goodness-of-fit statistics of the runoff predictions were compared, 

as were the plots of the derived UHs.  To determine whether there was any benefit to 

hydrologic modeling from calibrating location- and storm-specific Z-R 

transformation equations several of the equations calibrated in a previous study 

(presented in section 5.3.7.) were used in transforming raw radar data into rainfall rate 

data prior to the derivation of pixel UHs.  The standard equation (Eq. 8-6) was also 

used to transform the raw radar data to rainfall rate data for these pixels, and then the 
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UHs and runoff predictions were compared as discussed previously.  These analyses 

thoroughly evaluated the ability of radar data to serve as PE input to the UH 

derivation process. 

Unit hydrographs were computed for each rain gage, the Thiessen average 

rainfall, and the radar rainfall data using the procedure outlined previously.  To 

compare UHs and runoff predictions made using radar data to those made using the 

Thiessen average rainfall the goodness-of-fit statistics computed for the Thiessen 

average rainfall based on all of the rain gages located within the boundaries of the 

radar pixel were compared to those computed for the radar data.  The standard error 

ratio, the correlation coefficient, and the coefficient of variation were used to assess 

the accuracy of runoff predictions made using each unit hydrograph.  The UHs that 

were derived for the Thiessen average and the radar rainfall data sets were plotted by 

inserting the optimum shape and scale parameters into the Weibull distribution 

equation.  The UHs were then visually compared.  Ideally the Thiessen average 

rainfall record and the radar rainfall record should represent similar rainfall, since 

both provide an average rainfall for the same area.   

8.3.4.1. Comparison of Radar Scan Elevations 

Radar measurements, or scans, are taken at several different beam 

orientations.  These orientations are determined by the tilt angle of the radar beam.  

The radar data obtained for the Walnut Gulch region were available at five scan 

elevations.  The scan with the lowest elevation angle is referred to as scan 1, while the 

scan with the highest elevation angle is referred to as scan 5.  The scan elevation of 

the radar measurements is important because it dictates the height of the radar above 

the ground when it measures rainfall droplets in the air.  Higher radar scan elevations 
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are less likely to be representative of the rainfall at the ground because factors such as 

wind drift or evaporation can change the rainfall profile between the point in the air at 

which the radar measured it and the point at which it reaches the ground.  Lower 

radar scan elevations may also be inaccurate because they are more likely to be 

blocked by mountains and buildings located between the radar station and the 

watershed. 

 Figure 8-11 includes pixel 10 UHs derived for radar scans 3 and 4 using both 

the standard and calibrated Z-R transformation equations for the August 13, 2006, 

event.  In comparing the UHs for scan 3 and scan 4 using the standard Z-R equation, 

very little difference is seen.  The parameters given in Table 8-8 are very close, and a 

significant difference in goodness-of-fit statistics between the runoff predictions 

made using the two radar scans is not evident.  Similar results are seen in comparing 

the unit hydrographs derived using the calibrated Z-R equations for both scans 3 and 

4, though the change in standard error ratio between the two does indicate a slightly 

significant difference.  The standard error ratio for scan 3 is 0.13, versus 0.16 for scan 

4.  An increase in standard error ratio of 3% (as seen here) is generally considered 

significant, indicating an improvement in accuracy when using scan 3 rather than 

scan 4.     
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Figure 8-11: Comparison of UHs Derived using the Standard (SE) and Calibrated (CE) Z-R Equations for 
Radar Scans 3 and 4 for Storm on 8/13/06 Pixel 10 

Table 8-8: Comparison of Unit Hydrograph Parameters and Goodness-of-Fit Statistics for Radar Scans 3 
and 4 Using the Standard and Calibrated Z-R Transformation Equations for the Storm on 8/13/06 Pixel 10 

 b c Se/Sy R R2 

Scan 3 Standard Equation 44.8 1.27 0.13 0.99 0.98 
Scan 3 Calibrated Equation 39.4 1.11 0.11 0.99 0.99 
Scan 4 Standard Equation 44.5 1.21 0.16 0.99 0.98 
Scan 4 Calibrated Equation 42.6 1.17 0.15 0.99 0.98 
 
 A comparison of UHs derived using different radar scan elevations was also 

conducted using data from the July 20, 2007, storm for pixel 12.  In this case slightly 

higher variation in the UHs was visible, as seen in Figure 8-12 and Table 8-9.  While 

the shapes of the two UHs are similar, a slight difference in scales can be seen when 

comparing the peaks of the unit hydrographs.  Table 8-9 shows that a difference in the 

b values between the two UHs is responsible for this and a comparison of goodness-

of-fit statistics between the two illustrate that the difference in the characteristics of 

the unit hydrographs derived using different radar scans is possibly significant.  

Based on the comparisons of the goodness-of-fit statistics for runoff predictions made 

using the various UHs calculated using radar data for the storms on August 13, 2006, 

and July 20, 2007, the decision to use radar scan elevation 3 was made.  While little 

difference between the two radar scan elevations in terms of the UH analysis was 

generally evident, scan elevation 3 usually provided more accurate goodness-of-fit 
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statistics, and in some of the analyses, the difference between the two was sufficiently 

significant to justify this decision. 

Table 8-9: Unit Hydrograph Parameters and Goodness-of-Fit Statistics for Radar Rainfall Data for the 
7/20/07 Storm Pixel 12 

 b c Se/Sy R R2 

Scan 3 4.2 0.85 0.39 0.92 0.85 
Scan 4 3.0 0.85 0.45 0.89 0.80 
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Figure 8-12: Comparison of Unit Hydrographs for Radar Scans 3 and 4 for the Storm on 7/20/07 Pixel 12 

8.3.4.2. Comparison of Calibrated and Standard Z-R Transformation Equations 

The second analysis determined whether or not using a calibrated Z-R 

transformation equation instead of the standard equation used by the National 

Weather Service provided improved accuracy.  Figure 8-11 and Table 8-8 compare 

the standard and calibrated Z-R equations for radar scans 3 and 4 for the August 13, 

2006, storm for pixel 10.  Based on these results, there would appear to be some 

difference between the unit hydrographs derived after using the standard and the 

calibrated Z-R transformation equations to convert the radar data to rainfall intensity 

data.  The shapes of the UHs derived for the standard and calibrated Z-R equations 

are very similar; however, the hydrograph peaks are somewhat different.  In 

comparing the goodness-of-fit statistics for the runoff predictions made using these 

UHs, slightly better accuracy is seen in the UHs derived using a calibrated equation 
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than the standard equation.  However, for scan 3, as seen in Table 8-8, the decrease in 

standard error ratio is only 2%, and there is no difference in the correlation 

coefficient, so the improvement seen is not statistically significant.  Based on this 

conclusion, the decision to use the standard equation rather than a calibrated equation 

was made.  The procedure to calibrate a Z-R equation for a pixel is a fairly 

complicated, time-intensive procedure, so if it does not provide a significant 

improvement in the unit hydrograph accuracy it does not seem to be worthwhile. 

8.3.4.3. Comparison of Thiessen and Radar Rainfall UHs 

 In most of these analyses, the UHs derived from individual rain gages within a 

pixel area showed considerable variation.  Also, the Thiessen UH generally fell in the 

center of the rain gage generated UHs.  Unit hydrographs derived from radar data 

were compared to UHs derived from Thiessen average rainfall to examine the 

usefulness of spatial data in hydrologic applications.  The purpose of this was to 

compare methods of using spatially averaged rainfall data, rather than point rainfall 

data such as rain gage data, in the UH procedure.  Figure 8-13 compares the UHs 

derived using Thiessen average rainfall to radar rainfall for the storm on August 13, 

2006, for pixel 12, while Table 8-10 provides the corresponding UH parameters and 

goodness-of-fit statistics for those UHs.  Reasonable agreement is observed between 

the Thiessen average and radar UHs, though differences in shape and scale are 

visible.  For instance, the radar rainfall UH is slightly steeper than the Thiessen 

averaged rainfall UH.  Based on the goodness-of-fit statistics, the radar UH appears to 

be slightly more accurate, when compared to the Thiessen UH. 

 As a second example, Figure 8-14 compares the UHs derived using Thiessen 

average and radar rainfall data for the August 17, 2006, storm event for pixel 1.  
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Table 8-10 also contains the parameters and goodness-of-fit statistics for these UHs.  

As seen earlier, the UHs derived for various rain gages within the pixel boundaries 

were very consistent for this storm event.  The gage-to-gage consistency is evident in 

the Thiessen average and radar rainfall UHs.  The Weibull parameters and the 

goodness-of-fit statistics of the runoff predictions made using these UHs are very 

similar for both the radar and the Thiessen average rainfall.  They are also very 

similar to the values determined for the UHs derived using the rain gages in this pixel.  

The explanation for the shape and consistency of the UHs for this storm event 

discussed previously, the long amount of time between the centers of mass of the PE 

and the DRO, as well as the lack of variation in the centers of mass of the PE between 

the gages, are also responsible for the shape and similarity of the Thiessen and radar 

unit hydrographs.  Both precipitation excess records were quite short, as were the rain 

gage PE records, so the PE CM did not vary significantly in time between the 

different PE records for the individual rain gages.  Also, the time base of the DRO for 

this storm event was long, which resulted in a large difference in the time of 

occurrence of the PE CM and the DRO CM.  This reflects considerable watershed 

smoothing of the rainfall hyetograph.  These factors have resulted in Thiessen and 

radar UHs that are very similar to each other and very similar to the UHs derived 

from the rain gages in the pixel.  
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Figure 8-13: Comparison of Thiessen and Radar Unit Hydrographs for the Storm on 8/13/06 Pixel 12 

Table 8-10: Comparison of Thiessen Averaged and Radar Rainfall UH Parameters and Goodness-of-Fit 
Statistics for Storms on 8/13/06 Pixel 12 and 8/17/06 Pixel 1 

  b c Se/Sy R R2 

8/13/06 Thiessen 19.2 0.85 0.40 0.92 0.84 
8/13/06 Radar 12.1 0.57 0.26 0.97 0.93 
8/17/06 Thiessen 112.5 3.20 0.33 0.94 0.89 
8/17/06 Radar 116.3 3.30 0.33 0.94 0.89 
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Figure 8-14: Comparison of Thiessen Average and Radar Rainfall Unit Hydrographs for Storm on 8/17/06 
Pixel 1 

8.3.5. Effect of Transmission Loss 

8.3.5.1. Methods of Analysis 

 Transmission losses are hypothesized to be responsible for the exponential 

UHs that have resulted from these analyses.  The cause of the exponential unit 

hydrographs was previously explained, from a modeling stand point, to be the length 

of time between the CM of the PE and the CM of the DRO.  The differences in timing 
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of the PE CM and the DRO CM have been shown to influence the Weibull shape 

parameter.  From the standpoint of physical processes, however, it would appear that 

transmission losses are responsible for the exponential unit hydrographs.  As already 

mentioned, transmission losses result in much steeper hydrographs.  The steeper 

rising limbs of hydrographs where transmission losses are experienced also result in 

earlier DRO centers of mass.  Therefore, transmission losses serve to decrease the 

length of time between the occurrence of the PE center of mass and the DRO center 

of mass.  An analysis was conducted to attempt to verify these hypotheses. 

To verify the effect of TL on a UH, a flow record was altered in such a way as 

to simulate a higher degree of TL.  To do this several values from the rising limb of 

the hydrograph were moved to the falling limb of the hydrograph.  This steepened the 

rising limb of the hydrograph, but also conserved the flow volume, which was 

necessary to develop UHs that could be compared.  Then UHs were derived using 

data from one rain gage and both the original and the altered flow records.  To 

determine the effect of simulation of additional TL, the final Weibull parameters for 

both UHs were compared, and the UHs were plotted for comparison. 

The difference between the time of occurrence of the PE CM and the DRO 

CM has been hypothesized to have some influence on the Weibull c values.  

Transmission losses would be one factor that influences the time of occurrence of the 

center of mass of the DRO.  Therefore, the difference in CM can be considered to be 

an effect of the physical processes occurring in the watershed.  The relationship 

between the Weibull c value and the differences in centers of mass needed to be 

confirmed to support this hypothesis.  To do this the centers of mass of the PE and the 
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DRO were calculated for every PE dataset and DRO dataset used to calculate unit 

hydrographs.  By examining trends in the difference in time between the centers of 

mass and the c values, it was possible to determine the relationship between the two. 

8.3.5.2. Effect of Transmission Loss on UHs 

The effects of TL on a UH are illustrated in Figure 8-15 and Table 8-11.  

Figure 8-15 provides the UHs derived from this analysis, while Table 8-11 provides 

the Weibull parameters and the goodness-of-fit statistics calculated for each of the 

unit hydrographs.  Figure 8-15 illustrates the differences between the two, including 

the fact that the UH with greater transmission losses is steeper than the UH without 

additional transmission losses.  In Table 8-11 the effect that the additional 

transmission losses had on the c value are particularly of interest, as the exponential 

UHs are caused by a Weibull c values being decreased to a value below 1.0.  In this 

study, the additional transmission losses were found to decrease the Weibull c value 

from 0.77 to 0.67.  This indicates that transmission losses are able to force a decrease 

in the c value, and therefore may be responsible for the c values below 1.0 which 

result in exponential unit hydrographs. 
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Figure 8-15: Comparison of Unit Hydrographs With and Without Additional Transmission Losses for 
Storm on 8/13/06 Rain Gage 53 
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Table 8-11: Comparison of Parameters and Goodness-of-Fit Statistics for Unit Hydrographs With and 
Without Additional Transmission Losses for Storm on 8/13/06 Rain Gage 53 

 b c Se/Sy R R2 

No TL 15.5 0.77 0.37 0.93 0.86 
TL 13.9 0.67 0.46 0.89 0.79 
 

8.3.5.3. Effect of Center of Mass on Weibull Shape Parameter 

The first step to explain the exponential UHs was to examine the relationship 

between the Weibull c values to the difference between the time of occurrence of the 

PE CM and the DRO CM.  Table 8-12 provides the time of the occurrence of the PE 

CM and the DRO CM (in minutes), the difference between the two (in minutes), and 

the Weibull c value calculated for that UH for the rain gages in pixel 1 for the storm 

event on July 31, 2007.  With the exception of the UH derived for rain gage 2, there is 

a clear direct trend, as the difference between the two centers of mass increases, the 

Weibull c value also increases.  The precipitation excess measured at rain gage 2 had 

somewhat different characteristics as the PE measured at the other rain gages within 

pixel 1, which may explain why the unit hydrograph derived for rain gage 2 does not 

follow trend observed in the other unit hydrographs.   

Table 8-12: Comparison of Differences in Time of Occurrence of PE and DRO Centers of Mass and 
Weibull c for Unit Hydrographs Derived from Storm on 7/31/07 Pixel 1  

Rain Gage Time of PE CM Time of DRO CM Difference Weibull c 
92 12 21 9 0.36 
4 10 21 11 0.41 
8 9 21 12 0.43 
2 11 21 10 0.45 
1 8 21 13 0.50 
5 7 21 14 0.68 

8.3.6. Artifacts of the Modeling Technique 

Some of the results alluded to or discussed in previous sections can be 

attributed to the modeling technique used in this analysis.  For instance, in some cases 

differences in the UHs between rain gages, Thiessen average rainfall, and radar 
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rainfall data appeared to be related to the number of PE ordinates in each data set.  A 

very good example of this was evident in comparing the rain gage UHs to the radar 

unit hydrographs for pixel 10 for the storm event on August 13, 2006.  The rain gage 

UHs for this event, shown in Figure 8-16, were seen to have a higher peak value than 

the UHs derived using radar data (shown in Figure 8-17).  Upon examining the PE 

data for the rain gages and radar rainfall, it was seen that the number of PE ordinates 

for the rain gages ranged from 41 to 63, with all but two of three of the rain gage PE 

records having more than 50 ordinates.  The radar data only had 47 PE ordinates.  The 

differences often seen in UH peaks between the rain gage data, Thiessen average 

rainfall data, and the radar data was therefore attributed, at least in part, to the number 

of PE ordinates in each data set.  With fewer PE ordinates, the number of UH 

ordinates increases (see Equation 8-1), which forces the UH to be spread over a 

longer time period.  This forces the c value to be larger. 
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Figure 8-16: Comparison of Rain Gage Unit Hydrographs for Storm on 8/13/06 for Pixel 10 
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Figure 8-17: Radar Rainfall Unit Hydrograph for Storm on 8/13/06 for Pixel 10 

The differences in centers of mass of the PE and the DRO, which appears to 

be strongly linked to the Weibull c values determined for the UH, may also be an 

artifact of the modeling technique used to some extent.  It is true that transmission 

losses result in steeper hydrographs, as mentioned earlier, which has some influence 

on the timing of the DRO center of mass.  Storm movement may also play some role 

in the location of the PE CM, so physical explanations for this phenomenon are 

possible.  However, the modeling assumptions made in separating losses from PE 

also likely influence this.  In separating losses from PE, all rainfall that occurred prior 

to the start of runoff was assumed to be initial abstraction, which is a loss.  This is a 

common assumption; however, this assumption is influencing the results of the 

analyses conducted.  Assuming that all rainfall prior to the beginning of runoff is a 

loss influences the amount of PE that will be used to derive the unit hydrograph, and 

it therefore influences the time when the PE CM occurs.  If a different assumption 

had been used to separate the initial abstraction from the PE the volume of PE and the 

distribution of it in time would have been different.  This would affect the PE CM, the 

difference in centers of mass of the PE and the DRO, and it would affect the final c 

value determined for the unit hydrograph.   
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An example of this can be seen in the storm event occurring on July 31, 2007.  

For rain gage 8, located in pixel 1, there are originally 68 rainfall ordinates, as shown 

in Figure 8-18.  After initial abstraction and losses were separated, the hyetograph 

only included 22 PE ordinates, as shown in Figure 8-19.  The PE CM occurred after 

only 9 minutes, while the DRO CM, seen in Figure 8-20, occurred after 21 minutes. 

The difference of only 12 minutes between the PE and DRO centers of mass resulted 

in a c value of 0.43.  As discussed above, though the assumption that all precipitation 

prior to the start of direct runoff is commonly used in UH analyses, using a different 

assumption to identify initial abstraction may have resulted in a longer PE record, 

which would have resulted in a higher c value.  Transmission losses also play a role 

here, in that they cause DRO to start later, because initial runoff is being lost to 

channel infiltration. 
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Figure 8-18: Rainfall Collected at Rain Gage 8 in Pixel 1 During Storm on 7/31/07 
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Figure 8-19: PE Calculated for Rain Gage 8 in Pixel 1 for Storm on 7/31/07 
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Figure 8-20: DRO Calculated for Flow Gage 1 in Pixel 1 During Storm on 7/31/07 

8.4. IMPLICATIONS OF UH VARIATION ON DESIGN 

In examining the variation in unit hydrographs derived using different rain 

gages, Thiessen average rainfall, and radar rainfall, potentially significant variation 

was evident.  It appears that the rain gage used in deriving a UH could significantly 

impact the result.  This suggests that it could be difficult to obtain a UH that was 

representative of the watershed using just a single rain gage.  Ultimately, the effect of 

this variation on an engineering design is the criterion used to judge the significance 

of the variation.  Because the ultimate goal of the UH procedure is to predict runoff 

from given storm events, in order to properly design storage facilities, conduits, 
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levees, etc., a UH that is not actually representative of the watershed could cause 

significant design error.   

The purpose of this part of the study was to show the potential impact of the 

variations in UHs derived using different rain gages on predicted peak discharge 

rates.  Peak discharge estimates are used in the design of pipe systems and levees.  

Knowledge of these quantities is vital for ensuring that designs for storing and 

controlling runoff are sufficient.  

8.4.1. Methods of Analysis 

The Weibull UH parameters calculated for each of the rain gages located 

within two pixels, the Thiessen average rainfall for each of those pixels, and the radar 

rainfall for each of those pixels, were convolved with a 24-hour Type II design storm 

to obtain a predicted runoff hydrograph.  The NRCS (previously SCS) method was 

used in this process.  Data from Walnut Gulch pixels 10 and 12 for the storm on 

August 13, 2006, were used.  Data from pixel 12 for the storm event on July 20, 2007, 

were also used.  A generic watershed of 64 acres and a curve number of 75 were used 

for this analysis.  The analysis was repeated three times for each unit hydrograph, 

once for a 2-year design storm (3.2 inches of rainfall), once for a 10-year design 

storm (4.8 inches of rainfall), and once for a 100-year design storm (7.2 inches of 

rainfall). 

 To more closely evaluate the differences in peak flows a frequency analysis 

was conducted.  Using logarithms of the discharges, frequency curves were plotted 

for each of the rain gages located within a given radar pixel for each return period, the 

Thiessen average rainfall, and the radar rainfall.  This visualized the variation 
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possible in designs made based on varying UHs.  Ideally, the Thiessen average 

rainfall and the radar rainfall should measure similar rainfall, and therefore should not 

result in significant differences in UHs or in designs.  Thus, the frequency curves for 

the Thiessen average and radar rainfall datasets should be fairly close together, and 

they should fall near the middle of the spread seen between the rain gages.   

8.4.2. Peak Discharge Analysis for August 13, 2006, Storm Event 

For the storm event occurring on August 13, 2006, the UHs derived for pixels 

10 and 12 were used in frequency analyses.  The figures developed from these 

frequency analyses are presented in Figures 8-21 and 8-22.  Tables 8-13 and 8-14 

present calculated peak discharges using the different UHs derived for each pixel.   

8.4.2.1. Peak Discharge Frequency Analysis for Pixel 10 

In pixel 10, a spread of slightly more than 0.3 log cycles, resulting in 

differences in discharges that ranged from 6 cfs for a 2-year storm to 120 cfs for a 

100-year storm, resulted between the peak flows for the lowest and highest rain 

gages.  These differences result in peak flows doubling between the lowest and 

highest rain gages.  For instance, for the 2-year storm event for this group of UHs, the 

lowest possible peak flow is 6.47 cfs and the highest possible peak flow is 12.41 cfs.  

For the 100-year storm event the lowest peak flow is 108 cfs and the highest peak 

flow is 227 cfs.  Table 8-13 presents the peak flows calculated using each UH, as well 

as ratios of the rain gage or radar peak discharge values to the Thiessen peak 

discharge.  Figure 8-21 presents the log frequency curve developed based on these 

analyses.  A pipe system or levee designed using one of the lower rain gage UHs, 

such as the UH for rain gage 34, may not be capable of handling the amount of runoff 
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produced if one of the higher rain gage UHs, such as rain gage 17, were the more 

accurate UH for the watershed, and may result in flooding of the area.  This is an 

especially significant problem for larger return periods, such as the 100-year event, 

where the difference in peak discharges for rain gage 34 and rain gage 17 is nearly 

120 cfs.  Conversely, if a design was based on the larger discharge but in reality the 

lower discharge more accurately reflected rainfall over the watershed, then the larger 

design would be wasting money, with a certain opportunity cost lost, i.e., the money 

that could have been spent on other projects. 

Table 8-13: Peak Discharge Rates (cfs) Calculated for 2 (Q2)-, 10 (Q10)-, and 100 (Q100)-year return periods 
(T) Using UHs Derived for Storm Event 8/13/06 Pixel 10, where Qp is the gage peak discharge, and QpT is 
the Thiessen peak discharge 

  Q2  Qp/QpT Q10 Qp/QpT Q100  Qp/QpT 

RG 17 12.41 1.677 60.26 1.755 226.53 1.781 
RG 24 9.32  1.259 45.41 1.323 172.76 1.358 
RG 28 9.93 1.342 46.93 1.367 176.14 1.385 
RG 29 7.57 1.023 35.31 1.029 131.17 1.031 
RG 33 7.13 0.964 32.78 0.955 120.77 0.950 
RG 34 6.47 0.874 29.48 0.859 108.14 0.850 
RG 81 7.00 0.946 32.44 0.945 120.14 0.945 
RG 399 11.52 1.557 56.23 1.638 212.14 1.668 
Thiessen 7.40 --- 34.33 --- 127.18 --- 
Radar 6.38 0.862 28.95 0.843 105.92 0.833 
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Figure 8-21: Log Frequency Curve of Peak Discharge for Storm on 8/13/06 Pixel 10 based on 2-year (Z=0), 
10-year (Z=1.282) and 100-year (Z=2.327), where Z is the standard normal deviate. 
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 The peak flows calculated for the Thiessen average rainfall for this storm 

event fall roughly in the middle of the peak flows calculated using the individual rain 

gage hyetographs.  This is the expected and desired outcome when using an average 

rainfall hyetograph.  Based on these results combined with the previous results 

comparing UHs derived using the Thiessen average rainfall and individual rain gages, 

it would appear that the Thiessen rainfall hyetograph is representative of the rainfall 

being experienced on the watershed.  If the Thiessen average rainfall is likely to be 

representative of the rainfall being experienced on the watershed, then it is likely to 

result in an adequate engineering design such as a storage or transportation facility.  

Therefore, when multiple rain gages are available and provide wide variation in 

measured rainfall hyetographs, the Thiessen average rainfall should be considered for 

use in design work.  In the absence of enough rain gages to develop a Thiessen UH, 

the closeness of the radar and Thiessen discharges indicates that a radar rainfall 

derived UH would be better than use of a single rain gage.     

Ideally, radar rainfall should be similar to the Thiessen average rainfall, since 

both provide an average rainfall measurement over the watershed.  This should mean 

that the Thiessen rainfall and the radar rainfall should result in similar designs, which 

then means that radar rainfall data could be used rather than Thiessen rainfall data in 

engineering design.  This would be ideal because many watersheds do not have 

enough rain gages within their boundaries to calculate an accurate Thiessen average 

rainfall.  For the storm event on August 13, 2006, over pixel 10 the magnitudes of 

peak flow do not differ greatly (6.4 cfs for radar rainfall vs. 7.4 cfs for Thiessen 

rainfall for the 2-year storm and 106 cfs for radar rainfall vs. 127 cfs for Thiessen 
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rainfall for the 100-year storm).  The frequency analysis indicates that the radar 

rainfall results in a peak discharge approximately equivalent to that calculated for the 

lowest rain gage.  This could be an anomaly, though, and should not automatically be 

considered as evidence that the radar rainfall hyetograph cannot be used in the unit 

hydrograph and design calculation procedures.  Because the rain gage and Thiessen 

rainfall frequency analyses were consistent, the possibility of an error in the radar 

rainfall data should be considered as a possible explanation for the lack of agreement 

between the Thiessen and radar rainfall designs. 

8.4.2.2. Peak Discharge Frequency Analysis for Pixel 12 

The UHs derived for pixel 12 during the August 13, 2006, storm event were 

also used in a peak discharge analysis of predicted storm runoff.  A log frequency 

analysis was conducted using the peak discharges calculated based on each of the rain 

gage UHs, the Thiessen average rainfall UH, and the radar rainfall UH, the results of 

which can be seen in Figure 8-22.  For this storm event the differences between the 

lowest and highest rain gages in the frequency analysis was nearly half a log cycle, 

resulting in differences of nearly 20 cfs for a 2-year storm and 345 cfs for a 100-year 

storm.  The peak discharges and ratios of rain gage or radar peak discharges to the 

Thiessen peak discharge calculated for this pixel are presented in Table 8-14.  For the 

2-year storm event the peak discharges ranged from a low value of 8.1 cfs to a high 

value of 27.8 cfs, while for the 100-year storm event the peak discharges ranged from 

136 cfs to 481 cfs.  An increase in peak discharge of nearly 350 cfs could 

significantly overwhelm a facility designed using one of the lower rain gage UHs.    

Serious flooding could be a problem in a case such as this.  This indicates that the use 
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of a UH that is not representative of the watershed in design work could have 

significant safety and risk consequences.  

Table 8-14: Peak Discharge Rates (cfs) Calculated for 2 (Q2)-, 10 (Q10)-, and 100 (Q100)-year return periods 
(T) Using UHs Derived for Storm Event 8/13/06 Pixel 12, where Qp is the gage peak discharge and QpT is the 
Thiessen peak discharge 

 Q2 Qp/QpT Q10 Qp/QpT Q100 Qp/QpT 
RG 53 14.68 1.258 71.36 1.251 268.11 1.240 
RG 57 9.50 0.814 44.47 0.780 165.53 0.766 
RG 58 8.22 0.704 37.68 0.661 138.31 0.640 
RG 59 8.12 0.696 37.17 0.652 136.16 0.630 
RG 61 27.84 2.386 131.18 2.300 481.48 2.228 
RG 63 19.87 1.703 94.89 1.664 351.85 1.628 
RG 72 18.81 1.612 90.15 1.580 335.11 1.550 
Thiessen 11.67 --- 57.04 --- 216.14 --- 
Radar 19.69 1.687 94.20 1.651 349.65 1.618 
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Figure 8-22: Log Frequency Curve for Storm on 8/13/06 Pixel 12 based on 2-year (Z=0), 10-year (Z=1.282), 
and 100-year (Z=2.327), where Z is the standard normal deviate. 

 The Thiessen rainfall hyetograph calculated for this pixel again appears to be 

fairly representative of the rainfall over the watershed and it results in an accurate 

UH.  The frequency analysis conducted illustrates that the peak discharges calculated 

using the Thiessen average UH fall in the middle of the range of peak discharges 

calculated using the individual rain gages.  Therefore, using the Thiessen average 

rainfall hyetograph rather than one of the individual rain gage hyetographs should 

produce a more adequate runoff storage or transport design.   



 

 243 
 

 The Thiessen average rainfall peak discharge and the radar rainfall (presented 

in Table 8-14) peak discharge were again compared.  Unfortunately, a lack of 

similarity between the two designs was again seen.  Based on differences in the UH 

parameters for each, the radar peak discharge was seen to be 0.2 log cycles above the 

Thiessen average peak discharge.  For the 2-year storm event the peak discharge 

calculated using the Thiessen rainfall was 11.7 cfs vs. 19.7 cfs calculated using the 

radar rainfall.  For the 100-year storm the peak discharges were 216 cfs using the 

Thiessen rainfall vs. 350 cfs using the radar rainfall.  These differences do seem to be 

significant.  Because the Thiessen average rainfall UH and peak discharge calculation 

seem accurate based on the individual rain gage results, this casts some doubt on the 

radar rainfall data.  Compared to the relative similarity seen between the Thiessen and 

radar rainfall designs seen in pixel 10, the differences seen in pixel 12 seem quite 

large.  However, the possibility of an error in the radar data should still be considered 

as a possible explanation, due to the fact that Thiessen rainfall results seem 

appropriate.      

8.4.3. Peak Discharge Analysis for July 20, 2007, Storm Event 

To confirm the findings of the analysis of the storm event on August 13, 2006, 

a peak discharge analysis was also completed for the storm event on July 20, 2007, 

over pixel 12.  The results of this analysis are presented in Table 8-15.  The spread 

seen between the peak flows calculated using the individual rain gage UHs was 

nearly 0.4 log cycles, as seen in Figure 8-23, with a minimum peak flow of 5.5 cfs for 

the 2-year storm and a maximum peak flow of 17.5 cfs.  For the 100-year storm the 

peak flows ranged from 395 cfs to 939 cfs.  The peak discharges and ratios of rain 
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gage or radar peak discharges to Thiessen peak discharges calculated for the storm 

event on July 20, 2007, for pixel 12 are presented in Table 8-15. 

Table 8-15: Peak Discharge Rates (cfs) Calculated for 2 (Q2)-, 10 (Q10)-, and 100 (Q100)-year return periods 
(T) Using UHs Derived for Storm Event 7/20/07 Pixel 12, where Qp is the gage peak discharge and QpT is the 
Thiessen peak discharge 

 Q2  Qp/QpT Q10 Qp/QpT Q100 Qp/QpT 
RG 53 54.76 1.148 255.15 1.140 927.53 1.136 
RG 57 55.63 1.166 258.58 1.156 938.63 1.150 
RG 58 50.32 1.054 235.95 1.055 860.95 1.054 
RG 59 22.45 0.470 106.95 0.478 395.26 0.484 
RG 61 22.76 0.477 108.38 0.484 400.41 0.490 
RG 63 35.08 0.735 167.44 0.748 617.98 0.757 
RG 72 42.59 0.892 201.34 0.900 738.47 0.904 
Thiessen  47.72 --- 223.74 --- 816.53 --- 
Radar 34.37 0.720 163.29 0.730 601.38 0.737 
  

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.5 1 1.5 2 2.5

Z

lo
g

 Q
p

RG 53

RG 57

RG 58

RG 59

RG 61

RG 63

RG 72

Thiessen

Radar

 
Figure 8-23: Frequency Curve Developed for Storm on 7/20/07 Pixel 12 based on 2-year (Z=0), 10-year 
(Z=1.282), and 100-year (Z=2.327), where Z is the standard normal deviate. 

Based on the results presented for the storm event on August 13, 2006, the 

peak flows calculated using the Thiessen average UH were expected to fall within 

this range, which was observed.  The Thiessen peak discharges calculated for the 2-

year storm event was 47.7 cfs and for the 100-year storm the peak flow was 817 cfs.  

These values obviously fall into the range of values calculated using each of the 

individual rain gages.  The Thiessen design calculations are overall comparable to the 

individual rain gage calculations, indicating that the Thiessen average UH could be 
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successful in calculating a reasonable peak discharge for storm runoff in the 

watershed.  The Thiessen hyetograph should be more representative of the rainfall 

being experienced over the watershed than any one of the individual rain gage 

hyetographs, so the facility being designed (e.g. pipe system, levee) should stand a 

better chance of being adequate to manage the storm runoff if designed using the 

Thiessen average UH than one of the individual rainfall UHs.   

The peak discharges calculated using the Thiessen average hyetograph are 

also moderately close to the radar to the peak flows calculated using the radar rainfall 

(34.4 cfs for a 2-year storm event and 601 cfs for a 100-year storm event).  Based on 

the reasonable similarity between the Thiessen peak discharges and the radar rainfall 

peak discharges, it would appear that the radar rainfall hyetograph may ultimately be 

able to provide a reasonably accurate UH that can be safely used in design 

calculations.  This is further reinforced by the fact that the frequency analysis results 

indicate that the radar rainfall provides a better average than the Thiessen average.  In 

this scenario, it is the radar rainfall UH that produces peak flows that fall in the 

middle of the rain gages, more so than it is the Thiessen average hyetograph, as seen 

in previous analyses.  The conclusion to be drawn from this is that radar rainfall may 

provide a viable method of calculating and using unit hydrographs, which is 

encouraging for watersheds without rain gage networks able to provide a spatially 

representative rainfall hyetograph. 

8.5. CONCLUSIONS 

Several conclusions are evident from this examination of the variability in 

UHs derived using different rain gages, different storm events, and from different 
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areas of the watershed; additionally, examining the ability of spatially averaged data 

to yield reliable UH was investigated.  It is generally believed that UHs reflect the 

response of a watershed, not the rainfall.  The results of this research indicate that 

UHs do reflect rainfall, though they are intended to only represent watershed 

processes, and this is why they are averaged over different storm events.  When 

deriving UHs using rainfall records from different rain gages and storm events, 

significant variation was found in both the shape and the scale of the unit 

hydrographs.  This is not to say that significant variation was always found, as under 

certain circumstances, nearly no variation was seen between UH derived using 

measurements from different rain gages.  The majority of this variation was seen in 

the rising limbs of the UHs, and some of the UHs did not even exhibit a rising limb.  

Similarly, significant variation in UH shape and scale was seen to be possible when 

the UHs were derived from rain gages located in different portions of the watershed.  

This provides an understanding that the location of the rain gage can influence the 

UH derived, which is important because it is very unusual for a watershed to have 

multiple rain gages.  The engineer must use the data that are available, but he or she 

must also understand the potential inaccuracy of that data.  Considerable uncertainty 

can be inherent to any UH, and this variation will be transferred to designs based on 

the UH.  Unit hydrographs based on spatially averaged data could be used to limit this 

uncertainty. 

 Unit hydrographs derived from Thiessen average rainfall data were compared 

to both the rain gage UHs and to UHs derived using radar data.  The Thiessen average 

UHs were not always a perfect fit to the rain gage UHs; however, the average rainfall 
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was seen to provide acceptably accurate UHs that were comparable to the rain gage 

UHs.  In fact, under some circumstances the Thiessen average rainfall appeared to 

provide a more accurate UH, based on goodness-of-fit statistics, than the rain gages 

did.   

In deriving UHs using radar data, two preliminary questions first needed to be 

answered.  Little difference between UHs was usually seen when they were derived 

with different radar scans; however, the third scan elevation generally appeared to 

provide the most accurate goodness-of-fit statistics.  This scan elevation is not too 

low that it is blocked by mountains and buildings on the ground, but it is also not so 

high that it is not representative of the rainfall on the ground.  When comparing 

calibrated Z-R transformation equations to the standard equation, the calibrated 

equations were generally seen to perform better in UH derivation; however, the 

improvement was not sufficiently significant to justify the Z-R equation calibration 

procedure.  After these questions had been answered the radar rainfall UHs were 

compared to the Thiessen average rainfall UHs.  They were not usually seen to agree 

perfectly; however, they were usually fairly comparable in shape and scale.  Both 

average rainfall methods were clearly able to provide a reasonable UH that performed 

comparably to the traditional rain gage unit hydrographs, and both seemed able to 

make reasonably accurate runoff predictions.  Since Thiessen UHs are generally not 

available, the agreement indicates that the radar UHs accurately reflect the rainfall 

over a watershed. 

 Transmission losses were shown to be a concern in developing unit 

hydrographs for data from the Walnut Gulch Experimental Watershed, resulting in 
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decreased flow volumes and peak flows as the flood wave moved downstream.  

Transmission losses cut off much of the initial part of the hydrograph, which causes a 

significant difference in time of occurrence of the centers of mass of the PE and the 

DRO.  This difference in CMs of the PE and DRO is evident in the steepening of the 

rising limb of the hydrograph.  This change in the timing of the centers of mass in 

relation to each other was shown to influence the Weibull shape parameter.  

Therefore, it was concluded that transmission losses were likely responsible for the 

exponential UHs that occurred in some cases.  This leads to the interesting conclusion 

that the presence of transmission losses causes the UH to reflect channel properties as 

much as they reflect watershed properties. 

 Several of the results observed can be attributed to the modeling technique 

used in these analyses.  First, the number of PE ordinates may influence the 

peakedness and the steepness of the UHs.  Using Equation 8-1, it can be determined 

that longer PE records result in fewer UH ordinates, thus forcing a steeper, more 

peaked UH.  The length of time between the PE CM and the DRO CM may also be to 

some degree a result of the modeling assumptions made.  The assumption made in 

specifying the initial abstraction controls the amount of PE available for derivation of 

the UH.  Therefore, the assumption used in specifying the initial abstractions 

influences the time of occurrence of the PE CM.  The time of occurrence of the PE 

CM influences the final parameter values; therefore, the modeling assumption used in 

this analysis has influenced the results of the analysis. 

Three conclusions can be drawn from the analysis of the effect of the UH 

variation on design calculations.  First, significant variation in runoff peak flow rate is 
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possible depending on the UH used in calculations.  Unit hydrographs are typically 

derived using only one rain gage hyetograph.  If several rain gages are available for 

use within a watershed, the rain gage used to derive the UH may make a difference in 

ultimate designs.  The variation in UHs resulting from use of different rain gage 

hyetographs is also evident in design calculations made using the different UHs.  

Depending on the level of variation seen in the individual rain gage hyetographs, 

these differences can be quite significant. 

 Second, the Thiessen average UH, which typically is based on a more 

representative rainfall hyetograph than a UH derived from one rain gage, can also 

produce designs more likely to be sufficient to handle the runoff from a storm event.  

The variation in UHs from different rain gages leaves much room for errors in design, 

which can be minimized by using the more representative Thiessen UH.  Third, radar 

rainfall data, while still experiencing many problems, can be used to calculate 

reasonable designs based on peak flow rates.  The radar rainfall UH showed promise 

in producing designs that were similar to the Thiessen average design or otherwise 

representative of the individual rain gage designs.  It has been shown in this study that 

more representative rainfall data, such as Thiessen average rainfall, can improve upon 

the accuracy of the derived UH and the storage and transport designs developed based 

on that UH.  Unfortunately not every watershed has a sufficient number of rain gages 

to calculate a Thiessen average and develop a representative rainfall hyetograph.  

Radar rainfall data could fill that gap in many scenarios, if it is found to be accurate 

and representative.  This research has taken the first step in finding that radar data can 
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be representative of the Thiessen average rainfall and the individual rain gage 

rainfalls, in both derivation of the UH and design work using the rain gage. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

9.1. CONCLUSIONS 

9.1.1. Transmission Loss 

A model, the Spatio-Temporal Transmission Loss (STTL) model, was 

developed herein to estimate transmission losses along a channel.  This model 

estimated transmission losses while routing the floodwave through the channel.  The 

transmission losses themselves were modeled based on Hortonian infiltration.  The 

STTL model is an improvement over existing TL models because it allows for 

estimating transmission losses (TL) based on the hydrograph, rather than the total 

flow volume; therefore, it is more sensitive to changes in depth and storage along the 

channel than other models used for this purpose.  Both storm-to-storm and site-to-site 

variation were examined, in hopes of determining a set of average parameters that 

could be used to predict transmission losses over the watershed.  Due to high 

variability in conditions over the watershed, average parameters were not found to be 

able to accurately predict transmission losses.   However, when appropriate parameter 

values were determined for each storm event and for each stream reach, the model 

was seen to perform well, with acceptable bias and goodness-of-fit statistics in nearly 

all of the test cases.     
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9.1.2. Analyses That Involve Radar Rainfall 

9.1.2.1. Analysis of Spatial Data Problems Using Synthetic Data 

 In this investigation, two rainfall averaging methods, the Thiessen polygon 

and the arithmetic averaging method, were compared.  The ability of each to estimate 

rainfall over a watershed without resulting in excessive smoothing was evaluated.  

The influence of the following four factors on this loss of variation in rainfall 

estimates was also studied: storm variability, amount of the watershed represented by 

each of two rain gages, varying amounts of rainfall, and varying the probability 

distribution functions (pdfs) used to add random variation to the rainfall estimates.  

Overall, average rainfall estimates made using the Thiessen polygon method were 

found to result in lower loss of variation than were arithmetic averages.  This means 

that the Thiessen polygon estimate is a better representation of the rainfall over the 

watershed than is the arithmetic average.  The level of storm variability and the 

amount of the watershed being represented by each rain gage were found to have the 

biggest influence on the loss of rainfall variation in rainfall average estimates, while 

the amount of rainfall and the pdf chosen did not have as significant effects.  This 

conclusion led to using the Thiessen method in averaging unit hydrographs from 

individual rain gages to compare with unit hydrographs based on radar data in a later 

study. 

9.1.2.2. Z-R Transformation Equations 

 When using radar data, an equation, known as a Z-R transformation equation, 

is necessary to convert the radar data (in units of reflectance mm6/m3) to rainfall rate 

(in mm/hr).  Several studies were conducted to determine the effect that using a 

calibrated Z-R equation versus a standard Z-R equation had in hydrologic 
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applications.  First, two studies were conducted to determine the effect of using radar 

data with different Z-R equations rather than rain gage data on the calculation of 

storm semivariograms.  The Z-R equation parameters affected the semivariogram sill 

more than the radius of influence; however, it was determined that in order to 

calculate an accurate storm semivariogram using radar data, the Z-R equation should 

either be calibrated or at least carefully chosen.  Finally, research into the effect of 

calibrating Z-R equations on rainfall predictions was conducted.  Corresponding radar 

and rain gage data were used in this experiment, where log-transformed linear 

regression was used to fit a power model Z-R transformation equation to the data.   

The calibrated and standard Z-R equations were used to predict rainfall rates, 

which were compared to the observed rainfall rates obtained from rain gage data.  In 

some cases, significant improvements in rainfall predictions were achieved when 

using the calibrated equation, but in other cases a significant difference was not 

evident between predictions made with the two equations.  From this research it is 

difficult to recommend the calibration process because it was a time-intensive process 

and did not always result in a significant improvement in prediction accuracy.      

9.1.3. Analysis of Factors Affecting the Semivariogram 

 Several studies were used to evaluate the effect of several factors on the 

calculated storm semivariogram.  The factors of interest were the storm shape (i.e., 

circular vs. elliptical), the storm size, the storm velocity, and the storm type (i.e., 

peaked vs. uniform).  Of these factors, the storm shape was found to have the least 

influence on the semivariogram.  While a significant difference in computed 

semivariograms was not evident based on varying the storm shape, it was determined 
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that storms ought to be analyzed as anisotropic events.  The size of the storm in 

comparison to the size of the watershed and the type of storm were both found to 

have significant effects on the semivariogram.  The results of the storm velocity study 

were not what was expected, but in retrospect they are rational.  The results indicated 

that the storm velocity did not influence the semivariogram as much as the location of 

the storm in comparison to the location of the rain gages.  This indicates that storm 

movement across the watershed is a more important factor than storm velocity on the 

calculated semivariogram.  If the path of the storm across the watershed puts the 

intense center of the storm in close contact with the rain gages the semivariogram will 

be different than if the path across the watershed results in only the low intensity edge 

of the storm contacting the rain gages.  The storm velocity may influence the total 

depth of rainfall at the rain gages, as a storm moving slowly may result in a higher 

depth of rainfall at each gage as it moves over the watershed than a storm having the 

same intensity but a higher velocity, but the effect on the gage-to-gage variability is 

minimal. 

9.1.4. Rain Gage Density 

Several studies were conducted to evaluate the effect of rain gage density on 

estimates of areal averaged rainfall.  The first of these studies considered the effect of 

rain gage density on computed storm semivariograms, while the second study 

compared the potential of one rain gage versus two rain gages to give reasonable 

watershed rainfall averages. 
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9.1.4.1. Semivariogram Analyses 

 Two studies were conducted to evaluate the effect of the density of the rain 

gage network on the calculated storm semivariogram.  These studies calculated 

semivariograms as the density of the rain gage network was decreased.  The results of 

this study indicated that the density of rain gages in a watershed was not a significant 

factor influencing the calculated semivariogram.  Specific trends were not identified 

in the semivariograms as the rain gage density was decreased.  These results were not 

expected, because it was believed that a higher density of rain gages should provide 

more accurate rainfall data, and thus should be able to provide a more accurate 

semivariogram.  The density of the rain gage data did not have a significant effect on 

the variance of the catches. 

9.1.4.2. Effect of Averaging Methods on Rainfall Estimates 

 This study evaluated both the effect of rain gage density and the type of 

rainfall averaging method used when multiple rain gages were present.  When two 

rain gages were present, both the Thiessen polygon and the arithmetic averaging 

methods were used to compute rainfall averages for the watershed.  These estimates 

were compared to rainfall estimates made when only one rain gage was present in the 

watershed.  Based on the results of this study, it was determined that one rain gage 

would not likely provide an accurate estimate of watershed rainfall for any given time 

period; however, due to the law of averages one rain gage could give a reasonable 

rainfall estimate for the entire storm volume.  Two rain gages gave more reasonable 

watershed rainfall estimates for any given time period.  It is important to note; 

however, that this research assumed that rain gages were completely accurate, which 

is not true.  Rainfall estimates made using rain gage data in a real watershed would 
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also be influenced by any rain gage error (e.g. wind effects, poor gage placement, and 

improper calibration of a recording rain gage), which was not accounted for in this 

study.   

The location of the two rain gages in relation to each other proved to be an 

important factor in determining how accurate the rainfall estimates would be.  Two 

rain gages located in the immediate vicinity of each other were not able to capture 

spatial variability in the rainfall as well as two rain gages located in different areas of 

the watershed.  The implication of these results is that spatial data, such as rainfall 

estimates made from multiple rain gages or radar data, could be very useful in 

hydrologic analyses requiring rainfall data as input.  These conclusions are further 

supported by the successful application of radar data in the unit hydrograph 

procedure. 

9.1.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data 

The analyses of unit hydrographs (UHs) resulted in several interesting 

conclusions.  First, unit hydrographs derived from different rain gages, even rain 

gages located physically close to each other, can have very different characteristics.  

When a storm is characterized by considerable spatial variation in depth and timing, 

the individual rain gage hyetographs will differ considerably, which leads to UHs that 

have significantly different shapes.  Similarly, unit hydrographs derived from rain 

gages located within different portions of the watershed can also have significantly 

different characteristics.  Not all of the unit hydrographs will be equally accurate, 

with the accuracy depending on the apparent temporal randomness of the hyetograph.  

Because unit hydrographs are used in design work this is an important point to 
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understand.  The inaccuracy of a UH will likely result in inaccuracy in a final design.  

The analyses and results presented herein show that the design accuracy can be 

substantial.  The true unit hydrograph for a storm in not known, so this study was 

comparing computed UH values to other computed UH values based on different data 

sets.     

Unit hydrographs derived from spatially averaged rainfall data such as 

Thiessen polygons and radar pixels were found to be, generally speaking, at least as 

accurate to potentially more accurate than those UHs derived from individual rain 

gage data.  This indicates that spatial data can be used in deriving unit hydrographs, 

and could even be an improvement over the one-gage method of derivation.   

Many of the unit hydrographs derived in this study had an exponential shape.  

While this is not typical of a unit hydrograph, a potential explanation that involved 

the physical processes of transmission losses was offered.  Transmission losses cause 

a decrease in flow volume, most of which comes at the beginning of the floodwave 

when the dry channel beds of the ephemeral streams characteristic of arid and semi-

arid regions have some infiltration demand.  Then when the intense portion of the 

storm occurs, the channel can not infiltrate the large volume of water, so the runoff 

hydrograph is characterized by a very steep rising limb of a hydrograph.  Fitting this 

steep rising limb of the hydrograph appears to be responsible for the exponential unit 

hydrographs, as greater accuracy results from the exponential UH than from a UH 

with the traditional shape. 
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9.1.6. Effect of Unit Hydrograph Variation on Design 

The implication of unit hydrograph variation on design calculations was also 

investigated.  Unit hydrographs derived using different rainfall inputs were used to 

calculate storm runoff peak discharge rates.  Significant variations in the peak 

discharge rates were seen in this analysis, as illustrated by a frequency analysis.  This 

confirms that the variation seen in unit hydrographs derived from different rain gages 

will affect any design calculations based on them.  Peak discharge rates calculated 

based on the Thiessen average unit hydrograph and the radar rainfall unit hydrograph 

were typically seen to agree fairly well, especially compared to variation in unit 

hydrographs derived from individual rain gages.  This reinforces the conclusion 

reached earlier, that spatially averaged rainfall data should be used in unit hydrograph 

analysis and design.  Because these unit hydrographs were based on a more 

representative rainfall hyetograph, designs based on these unit hydrographs should be 

better able to represent runoff over the watershed from a given storm event. 

9.2. RECOMMENDATIONS 

9.2.1. Transmission Loss 

 There is still much work to be done in the area of transmission losses.  The 

STTL model had the ability to model lateral inflow to the channel; however, a 

method of estimating the appropriate amount of lateral inflow for given conditions is 

currently needed.  A method of estimating lateral inflow would significantly improve 

the usefulness and accuracy of model results.  Similarly, methods to estimate channel 

soil properties such as antecedent moisture condition and porosity would be useful.  
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These properties are vital to determining the ability of water to infiltrate into the 

channel bed, so an estimation method for both would improve prediction accuracy. 

9.2.2. Analyses That Involve Radar Rainfall 

 The various studies conducted to evaluate radar rainfall data leave room for 

future research.  The evaluation of rainfall averaging methods, which compared the 

loss of true rainfall variation when using Thiessen polygon and arithmetic averages to 

estimate watershed rainfall, was conducted entirely with synthetic data.  These studies 

should also be conducted using observed rainfall data to ensure that the conclusions 

reached are applicable to observed data.  The two studies conducted to determine the 

effect of using radar data with different Z-R transformation equations on the 

calculation of storm semivariograms were also done using synthetic data.  It would be 

interesting to conduct similar studies using observed data and verify that the trends 

observed held true in observed data as well.  It could also be interesting to use studies 

like these to identify acceptable Z-R equations for various storm characteristics.   

Firm conclusions as to whether calibration of Z-R transformation equations 

was necessary for hydrologic applications were not reached.  To reach a better 

understanding of this problem more research should be done.  Data should be 

obtained for more storms, preferably with different rainfall characteristics, if possible.  

Equations calibrated based on these datasets should be compared to the standard 

equation, as was done in this study.  More research into this topic could lead to more 

decisive results.  Similar research could also be conducted for other watersheds.  The 

Walnut Gulch Experimental Watershed can not be considered representative of the 

country as a whole because it is located in an arid region and because it is surrounded 
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by mountainous terrain, which may have interfered with the radar beam.  Data from 

other parts of the country may also lead to more decisive results that could be used to 

make a final determination on the importance of calibrated Z-R equations in 

hydrologic applications.   

9.2.3. Analysis of Factors Affecting the Semivariogram 

 The results of the semivariogram analyses leave several questions to be 

answered by future research.  First, the studies that led to inconclusive or unexpected 

results, such as the storm velocity evaluation, could be re-examined.  Further results 

may add weight to the evidence supporting these conclusions, or find some factor that 

explains the surprising results.  Also, based on the results of the storm velocity 

evaluation, perhaps the effect of storm movement needs to be specifically studied.  

Finally, these analyses were conducted using synthetic data.  It would be interesting 

to repeat these exercises with observed data, to confirm the results observed. 

9.2.4. Rain Gage Density 

 In two studies conducted to determine the effect of rain gage density on storm 

semivariograms, the results indicated that this was not an important factor influencing 

semivariogram accuracy.  Because this finding was somewhat surprising, further 

research into this topic is necessary.  Further studies using synthetic data should be 

conducted to attempt to identify trends in the data, though there appeared to be no 

trends based on the results of this research.  Then, the studies could be conducted 

using observed rainfall data rather than synthetic, in order to determine that the 

effects remain the same for observed and synthetic data.   
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The study that evaluated the averaging methods used with multiple rain gages 

found that increasing the rain gage density resulted in rainfall estimates for the 

watershed that were more representative of the actual rainfall experienced.  This 

study was conducted with synthetic data though, so future research could verify these 

findings using observed data.  The next step may then be to calculate rainfall 

estimates with truly spatial data, such as radar data, to compare to the rainfall 

estimates made using rain gages.     

9.2.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data 

 An additional analysis of unit hydrographs derived from spatial data is 

needed.  Further work to explain the differences between the Thiessen rainfall and 

radar rainfall unit hydrographs and the rain gage unit hydrographs is necessary.  Also, 

much more investigation into the exponential unit hydrographs is needed.  This does 

not appear to have been seen before, so verification of the proposed explanation will 

be important.  Further studies into the implications on designs may also be useful.  In 

this research peak discharge calculations were compared among the different unit 

hydrographs; however, there are many other design calculations that could be 

evaluated.  Further examples of the design implications may further quantify the 

degree to which variation in unit hydrograph will effect any design calculations for 

which they are used.   

Another interesting step for future research could be developing watershed 

unit hydrographs using radar data.  The research conducted here only used one radar 

pixel at a time to develop unit hydrographs, which does incorporate more spatial 

information than a rain gage unit hydrograph, but further steps could be taken to 
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provide truly spatial information to the unit hydrograph procedure.  If the unit 

hydrograph is meant to predict the watershed response to a given storm event, it 

seems that calibrating the unit hydrograph with precipitation data from the entire 

watershed could improve those predictions greatly. 
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APPENDIX A: SPATIO-TEMPORAL TRANSMISSION 

LOSS MODEL OUTPUT 

 The following figures compared the observed downstream hydrograph to the 

predicted downstream hydrograph, as calculated by the STTL model, for three storm 

events and gage pairs.  Very good agreement is seen between the observed 

hydrograph and the model results for the August 17, 2007, event.  For the August 6, 

2007, event moderate agreement is seen between the observed hydrograph and the 

model results.  Finally, for the August 4, 2007, event poor agreement is seen between 

the observed hydrograph and the model results. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500

Time (min)

D
is

ch
ar

g
e 

(c
m

s)

Observed

Predicted

 
Figure A-1: Observed Downstream Hydrograph vs. Predicted Downstream Hydrograph for 8/17/07 Storm 
Event Between Upstream Flow Gages 6 and 3 and Downstream Flow Gage 2 
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Figure A-2: Observed Downstream Hydrograph vs. Predicted Downstream Hydrograph for 8/06/07 Storm 
Event Between Upstream Flow Gage 6 and Downstream Flow Gage 2 
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Figure A-3: Observed Downstream Flow Hydrograph vs. Predicted Downstream Hydrograph for 8/04/07 
Storm Event Between Upstream Flow Gages 6 and 3 and Downstream Flow Gage 2 
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APPENDIX B: UNIT HYDROGRAPH PREDICTED 

HYROGRAPHS VS. OBSERVED HYDROGRAPHS 

 The optimum unit hydrographs derived using non-linear least squares analysis 

of the Weibull distribution parameters were used to predict flow hydrographs based 

on rain gage rainfall measurements, then goodness-of-fit statistics were calculated for 

the predicted runoff hydrographs.  The observed and predicted hydrographs are 

compared in the following six figures, where rain gages which resulted in the best and 

worst goodness-of-fit statistics for the storm event were chosen for illustration.     
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Figure B-1: Observed Flow Hydrograph vs. Predicted Hydrograph for 8/13/06 Storm Event Rain Gage 61 
(Best Goodness-of-Fit Statistics for the Event) 
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Figure B-2: Observed Flow Hydrograph vs. Predicted Hydrograph for 8/13/06 Storm Event Rain Gage 57 
(Worst Goodness-of-Fist Statistics for the Event) 
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Figure B-3: Observed Flow Hydrograph vs. Predicted Hydrograph for 7/31/07 Storm Event Rain Gage 5 
(Best Goodness-of-Fit Statistics for the Event) 
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Figure B-4: Observed Flow Hydrograph vs. Predicted Hydrograph for 7/31/07 Storm Event Rain Gage 92 
(Worst Goodness-of-Fist Statistics for the Event) 
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Figure B-5: Observed Flow Hydrograph vs. Predicted Hydrograph for7/20/07 Storm Event Rain Gage 72 
(Best Goodness-of-Fit Statistics for the Event) 
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Figure B-6: Observed Flow Hydrograph vs. Predicted Hydrograph for 7/20/07 Storm Event Rain Gage 53 
(Worst Goodness-of-Fist Statistics for the Event) 
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