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CHAPTER 1

INTRODUCTION

1.1 RESEARCH PROBLEMS IN ARIDLANDS HYDROLOGIC
DESIGN

1.1.1. Transmission Losses

Transmission losses are known to be a significant process in arid and semi-
arid regions (Cornish, 1961; Keppel and Renard, 1962; Peztlzlles1981).
Transmission losses can be defined as flow that infiltrates into the chwcheVhich
is thus removed from the surface floodwave. The result of transmission loss can be
significant reductions in flow volume, peak flow, flow velocity, and flow rate
(Jordan, 1977). In some scenarios losses may not even be noticed because the water
lost is replaced by local inflow, or surface runoff from the watershedimgtée
channel between an upstream and a downstream flow gage.

Transmission losses are primarily a concern in arid and semi-arid regions
because these streams tend to be ephemeral, flowing only in response to a rainfall
event. In contrast, streams in more humid climates tend to have some baseflow
constantly. The beds, banks, and floodplains of streams in arid regions are usually
made up of coarse-textured alluvial material. These soils have high iwflitrat
potential, and they tend to have very low moisture content in the time between flow
events, leading to high potential for losses to infiltration (Keppel and Renard, 1962).

Hydrographs for arid and semi-arid regions also tend to have somewhat

different characteristics than those for more humid regions. The typicalgnggh



consists of three stages: a rising limb, a peak, and then a receding limb. In arid
regions, there is typically a delay to the start of runoff due to transmisse®s)dben

a very rapid rise to the peak. The receding limb of a hydrograph in an arid region
also tends to be shorter than usual, which has also been attributed to transmission
losses (Peebles, 1981) that occur when the rainfall intensity drops below the

infiltration capacity of the channel bed.

1.1.2. Analyses That Involve Radar Rainfall

The rain gage is the traditional method for measuring rainfall. These are
placed in various locations around a region, so that rainfall can be measured at these
points. Rain gages are only capable of measuring point rainfall, so varioudiestima
methods must be used in order to derive regional characteristics of thd.rainfal
Unfortunately, only a few rain gages are generally located within amegisulting
in a low density rain gage network. With only a few rain gages, it can be quite
difficult to determine the spatio-temporal variation of a rainfall event over the
watershed area. Because of these challenges, many in the fielda@bgydrave
begun to consider either supplementing or completely replacing rain gageitha
radar data. Radar data are better able to characterize spatiabnafatinfall;
however, these data are not without their own challenges. Using both data sets, the
rain gage data and the radar data, may allow the strengths of each to dberease
weaknesses of the other (Hoblit and Curtis, 2002).

One reason that radar data are not yet commonly used in hydrologic
applications is that the technology is still developing. While radar has been used in

many applications for a long time, the level of accuracy currently seerathaeve



radar could be improved. Common sources of error include blockage of the radar
beam due to ground clutter, atmospheric refraction, wind drift moving the rain drops
horizontally between the time they are registered by the radar behtheatime they

hit the ground, and evaporation of rain drops as they fall through the air. There is
also potential for error in how the raw radar data are interpolated and ahtlyze
derive information about the rainfall intensity. Despite these errors, peopte

believe that radar data has great potential for use in hydrologic appliog@ierstner

and Heinemann, 2008; Shasifal., 2004; Islanet al., 2008).

1.1.1.1. Analysis of Spatial Data Problems Using Synthetic Data
Synthetic data are often useful in the initial examination of researchiaue

Synthetic data can be designed to avoid the uncertainty that observed datayare likel
to include. It can be helpful to use synthetic data in an initial study to obsamds tr

and draw conclusions. Similar studies can then be conducted using observed data to
determine that the trends and conclusions identified remain true for observed data.
Analyses investigating the benefit of spatial data sets are likely tonyelex and the

data themselves are likely to be complicated. Using synthetic data witinedlyin
addressing these questions will eliminate some of the complexity and allow
preliminary conclusions to be drawn. Based on the outcome of the preliminary
studies using synthetic data further studies can be conducted using reaisdata se
verify the preliminary findings.

1.1.1.2. Z-R Relationship

A radar beam does not directly measure the rainfall intensity experieneed o
the watershed. Instead, the beam is reflected back off of the rain drops it ergount

in the air and returned to the radar station. This reflectance measuremebémust



related in some way to the rainfall amount in order to compute useful information
such as the rainfall intensity (Gerstner and Heinemann, 2008). Due to many
investigations, a power model equation, known as a reflectance (2)-rainfgR)yate
equation, has been identified as the best method of transforming reflectan@e data
mm°/m°) to a rainfall rate (mm/hr). The standard form of the equation is:

Z=AR (1-1)
where Z is reflectance (nffm®), R is rainfall rate (mm/hr), aniandb are
coefficients.

A single, universal transformation equation has not been identified, so the
choice of which equation to use can result in large errors in rainfall intensity
measurements. This explains why the Z-R transformation equation is often
mentioned as one of the largest sources of error in radar data. Many equations have
already been developed for various climates and rainfall characterizgtiche
National Weather Service has identified the following equation as beihgviediely
applicable (Ulbrich and Miller, 2001):

Z =300R™* (1-2)

It is used for most of the United States and for most rainfall types. Fafispec
rainfall scenarios a few other equations are used by the National W8athie. It
is also possible, if radar and rain gage data are available for the sanun|doat
calibrate a new, location specific Z-R transformation equation, if desireel. T
problem at this point is that the value of calibrating a Z-R relationship tmasion

of interest is not known.



1.1.3. Analysis of Factors Affecting the Semivariogram

Semivariograms are used to illustrate spatial or temporal variancataset
They have been commonly used in hydrologic modeling applications as input to the
kriging method, which is a method that can be used to predict rainfall for areas in
which data are not present (Chasigl., 2007). Semivariograms are represented
using the notatiom(h), where h is a given separation distance, which is related to the
size of the grid used in the calculations. Though using a regular grid is advantageous
in calculating semivariograms, it is not absolutely necessary. The vaj(le of
typically plotted against h, with two characteristics influencing the sbbites plot.
The first characteristic, the radius of influence, is the separation digti@nat which
point the semivariogram plot approaches a constant value. The second chacacteristi
the sill, is the portion of the semivariogram whe(i®) is approximately equal to the
sample variance (Hromadkhal., 1993).

Rain gage data can be used to compute semivariograms; however, rain gages
are rarely found in a grid pattern, and they are rarely found in sufficiegtty hi
densities in a given region to compute accurate values of the sill and radius of
influence. These factors can make calculating semivariograms somewha
challenging, so another method of calculating semivariograms in ordeké ma
rainfall predictions could be desirable. One possible source of input data to be
considered would be radar data. Radar data would provide more accurate spatial
information about rainfall and would not face the problem of a low density of
measurements over a watershed of interest. The objective of this resaarch
determine the effect that various storm characteristics would have on thiateslc

semivariogram.



1.1.4. Rain Gage Density Analyses

Rain gages are the traditional method of measuring rainfall. An individual
rain gage measures rainfall at a specific point, thus the term point renia#d to
describe these measurements. Many possible factors can cause a réon gage
incorrectly measure rainfall, including wind drift, blockage by trees orr othe
structures located near the gage, and mechanical failure, among others. tHaweve
major problem with rain gage measurements is that they often fail tot rikfbe
spatial variability of rainfall. The accuracy of watershed-wide riia&imates
derived from rain gages will depend on both the number of rain gages located within
the watershed and also on their specific locations relative to each otherr Large
numbers of rain gages within a watershed will better indicate spatiatigas in the
rainfall, and they will reduce the effect of inaccurate measurements doe to a
individual rain gage. The location of the rain gages relative to each other is equally
important. A high number of rain gages clustered very close together gea lar
watershed will not provide a good indication of spatial variations in rainfall, abere
a network of gages spaced out across the entire watershed will provide a good

understanding of any spatial characteristics of the rainfall (®teatk 2007).

1.1.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data

Unit hydrographs are frequently used tools in hydrologic analysis and design.
A unit hydrograph can be defined as a hydrograph that results from exacthcbne i
of precipitation excess falling uniformly over a watershed during a spéunie
interval. The ultimate purpose of the unit hydrograph is to transform precipitation

excess into direct runoff. The first step to deriving a unit hydrograph is to separat



losses. Losses needed to be separated from runoff to obtain direct runoff, wihlle ini
abstraction and losses need to be separated from precipitation to obtain pr@tipitati
excess. Two methods are commonly used to derive unit hydrographs. The more
simple method, known as the rainfall-excess reciprocal method, divides each ordinate
of the direct runoff by the reciprocal of the precipitation excess in orderamadbe
ordinates of the unit hydrograph. This ensures that the unit hydrograph ordinates will
sum to one. The second option, known as the least squares analysis, is a regression
analysis that uses the precipitation excess and direct runoff to determinanieopt
values of unit hydrograph parameters. A specific distribution must be atéome

the unit hydrograph in order to use this method (McCuen, 2005).

Unit hydrographs are typically used in design to predict the watershed
response to a given storm event, e.g., the likely runoff that a hydrological design
would need to be able to accommodate. The procedure is to calculate a unit
hydrograph and then convolve that with a particular design storm. Convolution is a
mathematical operation that involves multiplication, translation, and then addition,
resulting in the ordinates of the direct runoff. This provides information about the
runoff that would result from a given storm, which can then be used to properly size a
hydrologic design (McCuen, 2005).

Precipitation information is usually obtained from rain gages in deriving unit
hydrographs. Unfortunately, rain gages can not often provide information about the
spatial characteristics of rainfall due to the fact that dense rain gagerks are rare,
so the ability to provide rainfall information from an alternate source could improve

the unit hydrograph derivation procedure. The ideal choice would be radar data



because most of the United States falls within the coverage area of aatidar and

because it can easily provide more spatial information about rainfall.

1.2. GOALS AND OBJECTIVES

1.2.1. Transmission Losses

Given the potential effect of transmission losses on the characteristics of a
runoff hydrograph, channel characteristics might be a significant fadtoe in
response of an aridlands watershed. As a unit hydrograph is used to reflect a
watershed response, the effect of transmission losses on unit hydrographenigycurr
a need for hydrologic analysis and design in aridlands. One objective of thishesea
was to develop a method to estimate transmission losses along a channel using a
hydrograph method, rather than the typical flow volume reduction method ét.ane
al., 2007). Transmission losses must account for infiltration as a flow hydrograph is

routed downstream.

1.2.2. Analyses Involving Radar Rainfall

The possibility of using radar rainfall data in hydrologic applicationsligst
fairly new idea that has not yet been thoroughly investigated. Synthetietatas
be used to investigate the limitations of point rainfall data. With respect to pleist as
of the research two objectives were addressed. First, the abilities of twgiager
methods, the Thiessen polygon and the arithmetic averaging methods, to make
regional rainfall estimates based on point rainfall data are investigatedndse
regional rainfall estimates derived using these averaging methods basedtaafzoi

will be compared to a known, synthetic rainfall surface. This will illusttia¢



failings of point rainfall data and provide evidence that adapting hydrologic stadel
use spatial rainfall is beneficial.

The most readily available spatial data set that could be used in hydrologic
applications is radar data. After studies using synthetic data have providexdce
that spatial data could be beneficial to hydrologic application, studies matesdi
the potential of radar data to serve as input to hydrologic models should be studied.
Since semivariograms are often used to estimate rainfall when pointlrdatéaare
lacking, the possibility of using radar data as an input should be evaluated. In doing
this, the effect of varying Z-R transformation equations could also be investiga
The objective of this research is to determine whether radar data could be used
instead of rain gage data in calculating storm semivariograms, and to iatethig
effect of varying the coefficients of the Z-R transformation equation. & fin
objective involving radar rainfall data is to assess the potential benefitsboatiag
location-specific Z-R transformation equations. Typically the Natidvedhther
Service’s standard equation is used; however, calibrating equations foifig spec
location or storm type could improve the accuracy of the rainfall predictiodes ma

using the radar data.

1.2.3. Analysis of Factors Affecting the Semivariogram

In order to demonstrate that spatial data are beneficial to hydrologic
applications, it is necessary to address the limitations of point data. As phgvious
mentioned, semivariograms are often used to interpolate rainfall when pointedata a
not available. The objective of this part of the study was to investigate thesfac

that influence the calculation of a storm semivariogram and to determine which of



those factors have the most significant influence. Four factors to be iavedtaye

the shape, size, and velocity of the storm, and the storm type (peaked vs. uniform).

1.2.4. Rain Gage Density Analyses

One of the most serious limitations to rain gage density is the lack of high-
density rain gage networks. Semivariograms are used to predict rainfalpeime
data are not available for an area, but the accuracy of semivariogram®bas®ow-
density rain gage network must be called into question. The objective of this study is
to investigate the effect of varying rain gage network densities on thdataln of a
storm semivariogram.

Semivariograms are not the only hydrologic application that could be
influenced by rain gage density. Rain gage data can be used to make regional
estimates of rainfall amounts using several averaging methods. This study wil
investigate the effect that rain gage density has on the accuracyoofalaginfall

estimates.

1.2.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data

Unit hydrographs are frequently used tools in hydrologic applications, but
they are usually derived from rain gage measurements taken at aginglage. As
the purpose of the unit hydrograph is to predict the watershed response to a given
storm event, it would seem that spatial data could be of great benefit in the unit
hydrograph procedure. Several topics related to the unit hydrograph procedure need
to be investigated. First, the limitations of point data in the unit hydrograph
procedure must be evaluated. The variation of unit hydrographs derived based on

different rain gage hyetographs within the same area of the waterghdd be
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investigated. A similar investigation should evaluate the level of variatesept in

unit hydrographs derived based on rain gages located in different subareas of the

watershed. Second, the ability of radar rainfall data to produce accurate unit

hydrographs should be investigated. Finally, the impact of unit hydrographorariat

based on rainfall input on design calculations using the unit hydrograph should be

assessed. The true level of significance of variations in unit hydrograpéd bn the

rainfall input used in the derivation process depends on the level of variation that

would exist in design calculations based on the unit hydrographs.

1.2.6. Summary of Research Objectives

e The overall goal of this research was to demonstrate the value of radalt rainf

data to hydrologic applications

e The research objectives included:

o

(0]

Develop a channel routing-based transmission loss estimation method
Determine the benefit of calibrated radar-rainfall relationships
Evaluate storm factors influencing the calculated semivariogram
Evaluate the impact of rain gage density on regional rainfall estimates
Determine the benefit of using radar rainfall as input to unit

hydrograph procedure
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CHAPTER 2

LITERATURE REVIEW

2.1. TRANSMISSION LOSSES

2.1.1. Infiltration

Infiltration has been found to be one of the most important hydrological
processes in arid regions. Because many people have chosen to model t@msmissi
losses as infiltration losses the process of infiltration warrants futthey.sMcCuen
et al. (1981) examined possible methods for determining parameters for both the
Green-Ampt infiltration equation and the Brooks-Corey procedure. Both of these
equations are commonly used in determining infiltration losses; however, both
require values for parameters that can be difficult to determine in aheas oil
parameter measurements are not available. The main interest in thisasud
determining whether or not any trend existed in these parameters basddexigei
classes. This study determined that the parameters for these iofiltreddels do
vary across the soil texture classes (McCeteah., 1981).

Hawset al. (2004) also studied infiltration parameters, though this study
focused on determining representative rates for field-scale ratestnideng these
values can be difficult because soil can be extremely variable in the field. To
determine these parameters steady-state infiltration was redaga local scale, a
hillslope scale, and a landscape scale. Data analyzed by geostatistioads

indicated that the sample variance decreased and the spatial correlatidirationfi
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rates increased with depth. This study also showed that the typical infikrommet
method of measuring infiltration may not be sufficient to capture the spatial
variability of infiltration properties (Hawat al., 2004).

Meadowset al. (2005) noted that typical methods of measuring infiltration
properties in the lab tend to destroy the structure of the soil samples, witistttie
ability to truly determine the infiltration properties. Also, most fieldhnds produce
average values, and do not fully capture the spatial variation within the fielddein or
to correct these problems, Meadost/al. developed a procedure that could determine
the unsaturated hydraulic properties of a soil sample. The methods used in the
laboratory under this procedure were then compared to infiltration tests conducted in
the field. The laboratory methods developed were found to agree reasonably well
with the field tests, with some differences possibly due to errors introdudaesl in t
field (Meadowset al., 2005).

Along with the Green-Ampt infiltration equation, Horton'’s infiltration
equation is commonly used to model infiltration. Horton’s equation states that:

f=f+(f—f)e" (2-1)
In equation 2-1 f represents the infiltration capacityepresents the infiltration
capacity of the soil after an extended wetting perigegresents the initial
infiltration capacity, K is a constant related to the decay of infittnatate with time,
which can be related to soil cover, and t represents time. This equation is most often
used to construct infiltration-capacity curves for storm events, whichemeuied to

determine rainfall excesses and losses. The parameters of this equadidumnateon
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of surface texture and cover and both the initial and the ultimate infiltrationitapac
tend to be higher for sandy soils than other soil types (McCuen, 2005).

Horton’s equation as presented above only applies when the rainfall excess is
greater than the infiltration capacity, as the infiltration capacity deereases at
maximum capacity. However, when the rainfall excess is less thanittratioh
capacity, the decrease in capacity occurs at a different rate. Timhet¢his rate the

mass-infiltration method can be used. The equation for this method is:
F= fct+%(l— e’ ) (2-2)

In equation 2-2 F represents the total mass of water infiltrated at, tame the rest of

the parameters were explained with Horton’s equation (2-1). This equation can be
used to generate a mass-infiltration curve. The infiltration capacityn(ea

computed for any value of F from the mass infiltration curve. The infiltrated volume
F, assumed to be equal to the total rainfall volume up to some point in time t, can be
computed when the rainfall volume is less than infiltration capacity, and then the

infiltration capacity itself can be calculated (McCuen, 2005).

2.1.2. Sealing of the Surface Soill

A common problem in arid environments is soil crusting or sealing, in which
the top layer of soil has a greater density and shear strength than the lovesessl
as well as finer pores and lower hydraulic conductivity. This surfaceagahpact
the ability of the soil to infiltrate water, which has already been declareel & major
hydrologic process in these climates. Carmi and Berliner (2008) studiedtibrs fa
that influence the generation of runoff under natural rain conditions. The factors that

were considered in the study were permeability of the crust, the roughnkess of t

14



crust, the soil salt content, and the time between rain events. Two treatments were
evaluated, in the first treatment a crust built up over a long period of time, while the
second treatment involved a complete destruction of any crust prior to the dtart of t
experiment. The effects caused by the differences in treatment wenet@ntefor
the first two rainfall events, and thereafter did not cause differences it runo
generation. Roughness was shown to increase more markedly on plots that initiall
had a crust destroyed than the plots on which a long-term crust had developed. For
most of the plots runoff was found to be similar between the two treatments;
however, a few of the plots that had their crusts destroyed exhibited much higher
runoff than the others. The results of this study indicated that the saturatedibydra
conductivity of the upper soil layer was not related to the generation of rumwif fr
the plot. Results also showed a greater correlation between runoff antl rainfa
intensity as the time between rainfall events decreased (Carmi dimceB&008).
Ben-Hur and Lado (2008) also evaluated the effect of soil surface sealing on
infiltration rates. The interest of this study was in wetting conditiorisatbald be
experienced in the field, while many previous studies had focused on fast (and in
some cases unrealistic) wetting conditions. The effects of various initiadgve
conditions were therefore evaluated, along with interactions between thie initia
wetting condition and the formation of surface seals, infiltration rate, runoff, dnd soi
loss. It was found that increases in soil wetting increased aggregajgrdgsztion,
which increased seal formation, runoff, and soil loss. It was also seen that hagher c

content made soil aggregates stronger and thus led to lower seal formation, runoff,
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and soil loss. Also, the wetting rate was seen to be more influential to soil less tha

to runoff generation (Ben-Hur and Lado, 2008).

2.1.3. Accounting for Transmission Loss by Volume Loss

Much of the research conducted into transmission losses so far has focused on
accounting only for the loss in volume of flow, and in some cases accounting for the
reduction in peak flow. Several of these papers are presented in the discussion below.
Keppel and Renard (1962) measured transmission losses in two streams located in
Walnut Gulch, the experimental watershed located near Tucson, Arizona. They
provided a description of the observations made in the arid climate of Arizona to aid
researchers as they began to understand the importance of transmission losses.
Keppel and Renard found that a shorter rise time was common in the downstream
hydrograph compared to the upstream hydrograph, and that the volume of runoff
measured at the downstream station was often much less than that at the upstream
station (Keppel and Renard, 1962).

Jordan (1977) recognized the importance that a comprehensive understanding
of transmission losses could have to all types of hydrologic modeling, anghtitem
to develop general relations that could be used to estimate transmission losses when
little observed data were available. He calculated the volume of flow a¢apsénd
downstream gaging stations from discharge records when flow was known to be due
mainly to surface flow. Ultimately Jordan was able to develop an equation to
calculate volume loss over the length of a stream section and also an equation to

predict volume loss in the first mile of that stream section. He believedhénhat t
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second equation would be more useful in comparing transmission losses between
different events and streams (Jordan, 1977).

Walters (1990) noted that most of the research into transmission losses had
been applied to arid regions in the United States and developed regression equations
that could be applied to transmission losses in Saudi Arabia. He based his work on
that of Jordan (1977); developing several equations that could be used to estimate
transmission losses, one of which estimated losses only for the first mile of the
stream, allowing for better comparison between different streamslséioak into
account the influence that antecedent moisture could have on the infiltration process
responsible for transmission losses, which had not previously been examined in detail
(Walters, 1990).

The 2007 edition of the National Engineering Handbook included a chapter on
transmission losses. The methods were developed to account for transmission losses
both when measured flow data were and were not available. These methods allow
prediction equations for outflow volume to be developed given a set of observed data,
and they allow prediction equations for peak flow rate to be developed. Stated
disadvantages to this method include a lack of hydrograph routing, no consideration
of attenuation due to storage, and no consideration for the influence of antecedent

moisture condition (Lanet al., 2007).

2.1.4. Accounting for Transmission Loss by Hydrograph Routing

As discussed above, the majority of research into transmission losses has
focused on accounting for transmission losses on a volume basis, rather than

accounting for the losses as the flow is routed through the channel. There have been
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a few studies focusing on accounting for losses through the duration of the routing
procedure. Cornish (1961) acknowledged that classical routing methods could not be
used in arid climates due to the assumption in those methods of constant flow
volume. Cornish studied and reported on the characteristics and properties of flow in
a channel that were revealed by inflow and outflow hydrographs for a ¢isanect
to transmission losses. After studying these characteristics andtgepes was
able to develop a technique for channel routing that could be used for river
forecasting. Two routing methods were studied, a Verdigris-routing method and a
modified Kohler routing method. Both methods were found to give acceptable and
similar results, though the Kohler method was noted to be the faster, simpler method.
Cornish concluded this study by providing an example calculation proving that the
channel bed material was capable of absorbing the volume of water found to have
been lost in the observed flow records (Cornish, 1961).

Moenchet al. (1974) used a convolution integral that was already accepted to
represent the interactions between a stream and groundwater whemfdittigation
about the aquifer itself was available. The convolution integral enables computat
of variations in both transmission losses and base flow in a channel on a continuous
basis, which is much closer to reality than merely calculating volume of Ibgs. T
technique also utilized the unit response method, which is based on the superposition
of individual responses, to route the hydrograph in this example. The results of this
study indicate how necessary it is to account for transmission losses anadWwase fl

when evaluating discrepancies between observed and modeled flow, though in
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general fairly good agreement was found between the observations and the values

predicted by the model (Moenehal., 1974).

2.2. RAIN GAGE MEASUREMENTS

2.2.1. Temporal and Spatial Sampling

Meselheset al. (2009) evaluated the response of a conceptual lumped
hydrologic model (HEC-HMS) and a physically based distributed hydrotogdel
(MIKE SHE) to changes in temporal and spatial rainfall sampling. Theswrels was
conducted in the Goodwin Creek experimental watershed in northern Mississippi,
which has a network of 30 rain gages and 14 flow gages. To evaluate the effects of
temporal rainfall sampling both models were run using rain gage data on a 15 minute
time step, then on a 30 minute time step, a 1 hour time step, 2 hour time step, and a 6
hour time step. To evaluate the effects of spatial rainfall sampling both mzetels
run using all 30 of the available rain gages, then 20 of the rain gages, 10 of the rain
gages, 5 of the rain gages, 2 rain gages, and 1 of the rain gages. Unsurprisingly, the
distributed model (MIKE SHE) was found to perform better, in terms of reproducing
observed hydrographs and fitting peak discharges, than the conceptual lumped model,
and it was also found to be more sensitive to both the temporal and spatial rainfall
sampling schemes. The overall conclusion of this research was that cogpbega
whether it is temporally or spatially coarse, can introduce significesrsan

hydrologic model predictions (Meselbeal., 2009).
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2.3. RADAR RAINFALL

2.3.1. Sources of Error in Radar Data

Many sources of error exist in radar rainfall data. Many studies hame bee
conducted to determine the best methods to correct these errors. Chuehehean
(2006a) determined four main sources of error in radar rainfall measuscameht
attempted to determine the relative importance of these sources. The soerces of
cited in this paper were variability in the vertical profile of refletgiverror in
measuring the radar reflectivity, error in the conversion from reflégtivirainfall
rate, and finally error in using rain gages (points) to represent meahramfall
over a radar pixel during the calibration of radar data with rain gage data.
Chumcheart al. determined that rain gages were not able to represent mean-aerial
rainfall with high accuracy and that radar reflectivity measurenremtsewere due to
radar beam spreading with distance from the radar. Two mean field biasveijus
methods were developed and tested in this study, one involving the estimation of bias
at each time step using sample observations and the other involving a Kalerao filt
estimate bias. It was found that both methods were able to decrease errar in rada
rainfall as levels of error correction were added (Chumcbean 2006a).

Chumcheart al. (2006b) addressed the errors in the measurement of
reflectivity and in the conversion from reflectivity to rainfall ratheTstudy
developed a statistical basis that could be used to correct residual erronsaohathe
data. To do this radar data were compared to rain gage data, and a Kalmaadilter w
used to update the bias and error variance used in the procedure. This study aimed to

determine the number of rain gages necessary for accurate results aedminget
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differences in the bias due to storm types. The research concluded that large
numbers of rain gages led to more representative results, and that biases could not be
corrected using this procedure for convective events; however, for climasdlagt
stratiform events the Kalman filter procedure could be used to correct biakes in t
radar data (Chumcheah al, 2006b).

Islamet al. (2008) acknowledged that radar data were still less accurate than
rain gage data when rainfall values needed to be estimated in a quantitaiiner.ma
The goal of this particular study was, therefore, to evaluate several m#éthbds
could be used to bring radar rainfall data and rain gage data into closer agreement
with each other. The specific objectives included adding a space-time interpola
radar scans, adding a wind-drift correction scheme, and adding an attenuation
correction scheme. It was determined that a 10-minute scan interval niagy not
frequent enough to truly capture the spatio-temporal variation in rairties, thus
leading to the desire for the space-time interpolator. The problem of wihd+aisi
addressed by a Lagrangian-based trajectory algorithm that couldbtalihe
displacement of precipitation between the radar scan height and the ground. Finally,
the attenuation correction algorithm developed previously by Wexler and Altas
(1963) was added to the procedure. These correction schemes were then tested on six

storms occurring in 2000 in the city of Winnipeg (Isleinal., 2008).

2.3.2. Error and Bias Correction of Radar Data

Various sources of error have been cited in the literature to explain the
frequent inaccuracies of radar rainfall estimates. Prior to the work adt &ko

(1999) the focus of error correction was to minimize error variance et&€0
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proposed a procedure that could be used at the National Weather Service (NWS)
River Forecast Center (RFC) and the Weather Forecast Offices (WR@Qjust bias

in radar data based on the operational experience and existing procedures in those
offices. The emphasis was to create a procedure that was unbiased, intuitive, and
parsimonious, rather than just focusing on minimizing the errors. To achieve the
intuitive and parsimonious goals in this procedure a simple Kalman filterirgpdhet
recursive estimation via exponential smoothing, was chosen for use. Radageain ga
pairs were used to determine mean field bias in order to validate the procedure.
Overall this procedure was shown to be unbiased in the long run and it was found to
perform well under a wide variety of conditions related to rain gage networitydens
and radar calibration (Sesbal., 1999).

Jordaret al. (2000) explained that the main resistance to using radar data in
hydrology was due to concern about errors in radar precipitation measurernemt. T
study examined the statistical properties of error related to thereadtall data
sampling strategy. They believed that this would be the first step in the design of
hydrological models that could withstand the significant amount of measurement
noise that existed in radar data. They determined that errors of largatudagn
existed in a five-minute precipitation sampling scheme than in a ten-mamf#isg
scheme. They also concluded that spatial averaging of precipitation estvaate
not an efficient means to reduce errors related to poor temporal samplingeschié
was also determined that a time integration process generally led tdler snean

standard error. A final conclusion drawn from the study was that parameters
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controlling error distributions increased for hourly rainfall accumulationspared
to instantaneous accumulations (Jordaa., 2000).

Sharifet al. (2002) used simulation rather than observed data to examine the
propagation of error in radar rainfall. An atmospheric model was used to simulate a
convective storm and generate radar data. To determine the effect of racaomer
hydrologic predictions they also modeled runoff over the land surface using KHorton’
equation. To compare the radar rainfall estimates to “true” rainfalbunrements the
watershed total rainfall volume ratio, the root-mean-square error imtlodased
hydrograph, the total runoff volume ratio, and the runoff peak discharge ratio were
evaluated. The results of the study indicated that errors related ta&ne ra
measurement range and the orientation of the radar were amplified in the modeled
runoff, and that errors in radar calibration could either reduce or amghifierand
orientation errors. The errors in predicted runoff were found to be relativaly sm
within a range of 70-km from the radar, but they increased steadily beyond this range
From the study Sharé al. (2002) concluded that range and orientation related error
could not be addressed adequately in calculating only storm total volumes and that
orientation errors could be reduced by either decreasing the resolution or rébdacing
width of the radar beam.

Sharifet al. (2004) attempted to understand the effects that the distance
between a radar station and a watershed can have on radar rainfallessfiomttat
watershed. They were particularly interested in the effects on the avanafall
volume for the watershed, the peak discharge in runoff from the storm event, the

runoff volume, and the root-mean-square error of the runoff hydrograph. Again
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Sharifet al. worked with simulated data rather than real data, in this case using a
radar simulator to create radar-rainfall estimates that were ussouaso a
physically-based, infiltration-excess hydrologic model. Statisticalyses were
performed to determine relationships between rainfall volume errors, runoff volume
errors, peak discharge errors, and their range effect. From the studyeSilari
determined that the relationship between peak discharge errors and the runoéf volum
errors were not dependent on the radar range or the magnitude of rainfall error
however, errors in the rainfall volume were found to be amplified during the
transformation between radar reflectivity and rainfall estimates. Tdeg a

concluded that errors began to increase significantly beyond a range of 80-km (Sharif
et al., 2004).

Woodet al. (2000) further investigated the accuracy of radar rainfall estimates
calibrated with rain gage data. The method of calibrating the radandata case
involved combining a single rain gage with a radar estimate, allowinglibeation
factor to vary in time. The study assessed the ability of a single rgenagal a radar
station to estimate rainfall at several important spatial scales. yhaenit
calibration factor described above was compared to a static calibration, whath is
allowed to vary in time, and a hybrid calibration factor. At short distances from the
radar the hybrid calibration factor was allowed to vary in time and at largjandes
the hybrid calibration factor more closely resembled a static cadibristctor. The
results of this study showed that the hybrid calibration factor performed thetter
rain gages, uncalibrated radar estimates, and statically calibadtmdastimates for

most of the rain gages in the study watershed. These results can be used to draw
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conclusions as to the rain gage network density required in combination with a radar
station to improve the ability to accurately predict flood events (V¢bal, 2000).
Borgaet al. (2002) identified three categories of radar errors: miscalibration
of radar system and lack of electronic stability of the radar, the radatioietec
environment, and fluctuations in the atmosphere. They investigated possible
processing scenarios that could correct for systematic and range-depaddent r
errors. The focus in range dependent errors was within 30 to 70-km from the radar
station, which is within the range that Shatiél. (2002 and 2004) reported to lead to
acceptable accuracy. The results of the study, however, indicated that ameatige
than 70-km can affect the accuracy of radar rainfall estimates. The cadmbine
adjustment technique using rain gage-based radar adjustments utilized wasosshown t
reduce the overall error in rainfall estimates over the study watkrshglying that
homogeneity in the accuracy of radar rainfall estimates with regpeaige and
scanning elevation is necessary in order to apply gage-based adjustment cditeadar d

(Borgaet al., 2002).

2.3.3. Rain Gage-Adjusted Radar Rainfall Measurements

Many people believe that combining radar data and rain gage data could help
eliminate many of the errors and biases in radar data discussed above, and that
merging the two datasets could reduce the limitations of both. Thereumléy e
many potential sources of error in rain gage data as there are in radaSostiet
al. (2007) evaluated several sources or rain gage error, focusing on rain gage locati
rain gage calibration, and correction for wind effects. The purpose of this tesearc

was to illustrate the difficulties that could be encountered in obtaining abbgpt

25



accurate rain gage data, and to prevent future users from blindly acceptigggei
data without considering the potential inaccuracies. The research was edrduct
the Goodwin Creek experimental watershed in Mississippi, which had a network of
43 rain gages. They examined rainfall data for two storms, and between those events
they found a total of eight rain gages reporting suspicious or inaccurate data. Rai
gages located above the ground surface were compared to rain gages located in pits
the ground surface. The above-ground rain gages were found to catch leds rainfal
than the in-ground rain gages, which is likely a direct result of wind effects.

In evaluating the necessity of calibration of rain gages Sdealk determined
that type of rain gage (such as tipping bucket or weighing rain gage) influéeced t
necessity of calibration, and that accuracy of rainfall measurementsevedafter
calibration was completed was dependent on the rainfall intensity. Wind forces
raindrops to fall at an angle, which will be some function of the speed of the wind and
the diameter of the raindrop), so wind tends to cause above-ground rain gages to
catch less rainfall than rain gages at the ground surface. In this study bppkeg
rain gages were seen to have an undercatch of 2 to 6% compared to in-ground rain
gages, while weighing bucket rain gages were found to have an undercatch of 1.5 to
3.5%. Sieclet al. (2007) concluded that properly installing and maintaining rain
gages, as well as frequently calibrating them, is necessary for &c@iratjage
measurements. Calibration at a variety of rainfall intensities imptbeesffects of
calibration. Location of the rain gage is very important to data accuracy, angpla
several rain gages close together can provide redundancy in data thatsanydoes

quality control. Finally, the wind effect influences the catch of above-groumd rai
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gages; however, it is still difficult to exactly quantify the effectvaid on rain gage
catch (Sieclet al., 2007).

Westcottet al. (2008) compared rain gage data and radar data on a daily and a
monthly time basis over three years in the Midwestern United States. They
determined that radar data and rain gage data tended to agree to within apphpximat
25%. They also found that as actual precipitation totals increased the radar
precipitation estimates tended to be equal to or smaller than the rain gagdess
however, when precipitation totals were lower, the radar estimates terukethtger
than the gage estimates. This study concluded that a multi-sensor (including rada
and rain gage data) improved precipitation estimates on a daily basis over tadar da
alone (Westcottt al., 2008).

Hoblit et al. (2003) attempted to create a seamless radar map over the state of
Florida while using gage-adjusted radar precipitation estimates. The @afibss
was to eliminate discontinuities that occur in radar estimates when twostatians
have overlapping ranges. The rain gage data were used to improve the accuracy of
the radar estimates. A spatial adjustment algorithm was used to adjustdhdata
to the gage data after a uniform radar-rain gage ratio was found to be iestiffici
The spatial adjustment method adjusted each radar pixel based on a weighted average
of ratios from nearby gages and did not actually force the radar data ty exatcth
the gage data at each gage location. This algorithm was found to slightly warp the
gage-adjusted radar data so that rainfall estimates were gemtraéyto the rain
gage estimates without compromising the spatial signature of the radérdbliaet

al., 2003).
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Vieux et al. (2009) compared rain gage rainfall data, raw radar data, and rain
gage corrected radar data as input dataset to the model Vflo. They wer¢adteres
determining how the initial parameter estimates and input datasets ieftLigrec
ability of the model to predict runoff. Rainfall data from two typhoon events and two
heavy convective storm events were used as input to the model. The results of this
research indicate that rain gage-adjusted radar data, which has beeeddorduias,
provides more accurate runoff predictions than either raw rainfall data orgen g
data. Raw radar data was found to underestimate peak discharges, while rain gage

data was found to produce inconsistent results (Veeak, 2009).

2.3.4. Accounting for Spatial Variability of Rainfall

A major advantage to radar data over rain gage data is the ability to better
show the spatial variability of rainfall events. Arnaidl. (2002) studied the
sensitivity of hydrological models to the spatial distribution of rainfall. yere
especially interested in determining how spatial variability infludrilmed
prediction ability. Three models using different methods of predicting runo& wer
evaluated in this study. The three models were applied to four hypothetical
homogeneous watersheds, with the sensitivity of the model being determined by th
differences between the observed peak flow distributions. It was found that
differences in the flows increased the most for larger watersheds bewause t
variability in rainfall increases over the watershed. Based on the restiits sfudy
Arnaudet al. (2002) concluded that the calibration of these hydrologic models can be
severely affected when spatially averaged rainfall is used ratmethtbactual rain

fields.
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Chenget al. (2007) studied the spatial and temporal effects of rainfall in
Taiwan. Ordinary kriging was used to examine the efficiency and the agaifra
rainfall events with particular attention paid to events in which rain gageadse
missing. The accuracy of various weighting procedures was evaluated under
conditions of missing data and complete data sets. Spatial variation of thi rainfa
was described by semivariograms while the kriging, co-kriging, and blodkdrig
methods were used to interpolate the rainfall. When data were missing, bloog krigi
was found to most accurately estimate the rainfall distribution, and overadisiiés
showed the interpolation processes to represent the observed rainfall well. This
implies that the rainfall interpolation process used can be used to creati®-a spa

temporal rainfall input for hydrologic models (Chest@l., 2007).

2.3.5. Runoff Simulations Using Radar Data

Runoff simulation and prediction is one aspect of hydrology that could be
greatly improved by the use of radar rainfall estimates. Peters armh EE396)
believed that improved techniques of predicting runoff could result from the wide
availability of radar data. They developed an adaptation to the Clark runoff model
that could model translation and linear storage attenuation of surface runoff. The
rainfall excess from storm events was lagged to the watershed of the owtkbhas
grid cells and a runoff hydrograph for the event was calculated. The hydrographs
created by this model provided a reasonably good fit to the observed event
hydrographs. Peters and Easton (1996) concluded that, if a storm with large spatial

variability were modeled using this method, large differences betweenadeled
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and observed hydrographs could result because of the grid-based calculktsse®f
and translation of rainfall excess.

Vieux et al. (2005) also evaluated a runoff simulation method, with their
interest lying in predicting runoff more accurately in urban environments. A
distributed model that used the spatial resolution of radar data was developed and led
to the discovery that the spatial resolution influenced the prediction accurhey of t
model. This phenomenon was found to scale with the size of the watershed being
studied. The model developed was a physics-based hydrologic model, the results of
which indicated that fairly accurately provide real-time rainfall-fipcediction was
possible. The data provided could be used to more accurately predict floods for

specific locations (Vieuxt al., 2005).

2.3.6. Effects of Storm Type and Movement

It has long been suspected that the type of storm event can influence radar
rainfall estimates, and movement of a storm has also been found to affeck rainfal
estimates. Marcht al. (1979) developed regression equations that related storm
rainfall depth to both watershed topography and storm type. Equations were
developed for six different storm types, as well as one equation that considlefed al
the storm types. Results of this study showed that equations considering storm type
as a variable did not more accurately predict rainfall, compared to thelrainfal
measured by rain gages, for specific sites than equations that did not cetwsiter
type (Marchet al., 1979).

Lee and Huang (2007) considered storm movement to be one of the more

important factors responsible for spatial and temporal rainfall variabilibhey were
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interested in determining the effect of storm movement on equilibrium discharge.
Two conceptual models were developed representing different watershedrgeomet
and using algorithms based on the kinematic-wave theory to model runoff. The
results of this study indicated that, when storms move downstream across the
watershed, the runoff can reach an equilibrium condition, despite the fact that the
storm length is shorter than the watershed length and the rainfall durationtisaes

the time to equilibrium runoff for a stationary uniform storm. According to Lee and
Huang (2007) this is contradictory to conventional hydrologic design, in which the
storm duration must be equal to the equilibrium time in order to attain the maximum

discharge.

2.3.7. Reflectance-Rainfall (Z-R) Relationship

2.3.7.1. Sensitivity to Z-R Relationship
The relationship between reflectivity Z and rainfall rate R began to be

investigated thoroughly by Marshall and Palmer in the late 1940’s. Researthisnt
relationship has indicated that a power law of the form:

Z=AR (2-3)
where Z is the radar reflectance in decibels of reflectivity, R isdinéail intensity as
measured by a rain gage, and A and b are coefficients, is the correct fainmns for
relationship. Marshaét al. (1947) conducted experiments to verify the theoretical
finding that the power reflected from raindrops was proportional to Z. This
experiment utilized radar data as well as filter papers showing raindrojbakions.

The filter papers determined the value of Z, which corresponded to the measarement
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of the radar, and the rainfall rate used during the experiment was known. This

allowed Marshalkt al. (1947) to determine that the relationship:

Z =190R"" (2-4)

applied to the data used in this experiment.
Marshall and Palmer (1948) continued their work examining the distribution
of raindrops. They again compared the distribution of raindrops on filter paper with
radar readings. Using this data they were able to develop relationshipsrodtoge
diameter and number of drops, the mass or rainwater per unit volume of space and the
reflectivity, and the reflectivity and the rainfall rate. They confulrtiee equation
from their previous paper, that:
Z =190R"™ (2-5)
Since the work of Marshall and Palmer, the National Weather Service (NWS)
has determined a standard relationship between Z and R that can be applied in most
rainfall situations across the country. This relationship is:
Z =300R** (2-6)
Ulbrich and Miller (2001) wished to evaluate the degree to which variations in
the coefficientA andb affects the accuracy of radar measurements. They also
wished to determine if inaccuracies due to the Z-R relationship could explain the
often large discrepancies between radar data and rain gage data for thegiame
Raindrop size distribution was determined using a Joss drop disdrometer, and radar
and rain gage data were obtained for regions in upstate South Carolina. The first
stage of this experiment found that the standard equation stated previously was

adequate, but only when adjustments had been made for calibration errors. They
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found, as many others have, that when adjustments were made to take into account
storm type, accuracy in radar measurements, as compared to the disdrometer
measurements, can be improved. Ultimately Ulbrich and Miller determined that
while adjustingA andb can lead to some improvement in the accuracy of radar
measurements, the improvement is minor compared to errors caused by calibrati
offset of the radar, but when adjustments for this calibration offset have been made,
good agreement was found between radar and rain gage data (Ulbrich and Miller,
2001).

Habibet al. (2008) also examined errors in the Z-R relationship; however,
they considered the errors with respect to the sensitivity of runoff siondatiThey
used a physically based, continuous-mode distributed hydrological model to predict
runoff during rainfall events. They were most interested in the variation in Z-R
relationships at different temporal scales, so they determined approplai@nships
for different temporal scales. The experiment was performed using both disglrome
data and radar data. Halafal. concluded that the method that was used to derive
parameters of the Z-R relationship was largely responsible for the @gnsitirunoff
simulations. When event-specific relationships were used along with bias femova

procedures and minimization of random errors fairly accurate hydrographsdesul

2.3.7.2. Dynamic Z-R Relationship

Gerstner and Heinemann (2008) listed a slightly different set of erraresour
in radar rainfall measurement. This list of errors included attenuation adae r
beam, ground clutter, beam occlusion, and the relationship between reflectivity and

rainfall rate (Z-R relationship) utilized. The purpose of this researchonges/elop a
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statistical objective analysis method to improve the accuracy of rainfallrdarder

that radar data could eventually come to replace rain gage data. In order to conduct
this research, an algorithm was developed to identify different types opitaion
(stratiform versus convective). After this algorithm had identified thaptaton

type, the Z-R relationship was applied to determine the rainfall rates, andlleen a
correction was applied. Once this was done, the modified statistical objective
analysis scheme was applied to adjust the radar data to more closelyhaatah t

gage measurements. The algorithm to determine storm type was deemed rgasonabl
accurate, and the statistical objective analysis was able to reduce @nopsred to

rain gage measurements, in radar rainfall data in 75% of the tested cases.

2.4. UNIT HYDROGRAPHS

2.4.1. History and Evolution of the Unit Hydrograph

Clark developed his unit hydrograph (UH) technique in order to better define
the relationship between unit hydrographs and flood routing and to then use this
relationship to derive more accurate unit hydrographs. dall (1998) detailed the
history of the UH from Clark’s work to ModClark, a program developed by the
Hydrologic Engineering Center (HEC) to integrate data from new techaslogo
the UH procedure. After detailing this history, the authors then provided a
demonstration of the ModClark program in the Salt River Basin, Missouri, in order to
demonstrate the ability of this program to work with the existing HEC-1 method, and
to utilize data from Digital Elevation Models (DEMs) and radar rainfathdas well

as other data sources (Ketlal., 1998).
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Hoblit and Curtis (2002) further demonstrated the use of ModClark and other
HEC programs in their attempt to integrate radar rainfall data and hydrohogiels.

In their study, they used the abilities of ModClark to characterize the variation i
rainfall rates within the watershed and to route runoff through the various sub-
watersheds based on the location of the rainfall within the watershed. This will
increase the ability of the model to place the correct amount of rainfall @brieet
location in the watershed at the correct moment in time, an ability whiotkiadga
when rain gage data are used (Hoblit and Curtis, 2002).

Many watershed do not have rain gages or flow gages that can be used for
deriving unit hydrographs from rainfall and runoff data. In these ungaged netsrs
synthetic unit hydrograph procedures can be used to develop necessary unit
hydrographs. There are many methods available for deriving synthetic unit
hydrographs, including Snyder’'s Method and the NRCS (SCS) Method, but assuming
the form of a probability density function (pdf) for the unit hydrograph has become
popular. Bhunyat al. (2007) evaluated four pdfs for use in deriving synthetic unit
hydrographs. The pdfs evaluated were the two-parameter Gamma, the three-
parameter Beta, the two-parameter Weibull, and the one-parameter Cla-squar
distribution. Analytical and numerical schemes were used to determine \a@ities f
various distribution parameters, and then observed data were used to validate the
synthetic unit hydrographs. The Beta and Weibull distributions were found to be
more flexible than the Gamma and Chi-square distributions, due to the fact that they
can have either positive or negative skew. This allowed them to more accfirately

the observed hydrographs. A disadvantage to using a pdf to develop a unit
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hydrograph is that a unit hydrograph recession limb must have some point where the
flow equals zero. With the exception of the Beta distribution, all of the pdfs
considered approach zero asymptotically. Bhuetyh (2007) concluded that each

of the four pdfs produced more accurate unit hydrographs that the current methods of
computing synthetic unit hydrographs (Snyder’'s method, NRCS (SCS) method, and
Gray’s Method), and that the Beta and Weibull distributions were the most &ccurat
of the pdfs. The Beta distribution has been found to approximate the Gamma
distribution, and the Chi-square distribution is also similar to the Gamma distniputi

so the final conclusion reached was that the three-parameter Beta distribbgos, w
two parameters are non-dimensional shape parameters and the third pasmeter |
scale parameter, would be the best pdf to use in calculating synthetic unit

hydrographs.

2.4.2. Digital Elevation Model and GIS Technology

As mentioned in the discussion of the development of the program ModClark
considerable technology has been developed since the original development of the
UH procedure, much of which could provide very useful hydrologic information.
Noto and La Loggia (2007) attempted to use some of these technological
developments to aid in modeling hydrological processes with a distributed UH
procedure. A Geographic Information System (GIS) provided a digital elevation
model (DEM) of the watershed, which was used to determine the flow paths for
runoff water, as well as watershed morphology and land use. This knowledge of the
watershed enabled the time-area curve to be computed by the program. The

watershed was separated into cells, and the total watershed respondeviatedas
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the sum of the responses from each cell. Cell response was determined bgs proce
of channel flow and linear reservoir routing (Noto and La Loggia, 2007).

Clevelandet al. (2008) also attempted to use watershed topographical
information to develop unit hydrographs. The procedure that they developed
estimated UH parameters by analyzing the distribution of raindrop aimel
Information about the slope of the watershed provided by a DEM was used to
determine flow paths and speeds of the raindrops, and a particle tracking pnagam
used to generate the arrival time distribution. A unit hydrograph was thenhig to t
arrival time distribution. This procedure was evaluated on 126 watersheds in Texas,
and was determined to be a reasonable approach, though it was acknowledged to be

very computationally demanding (Clevelagial., 2008).

2.4.3. Arid Region Unit Hydrograph Procedure

The method for developing unit hydrographs in arid regions must be
somewhat different from that for non-arid regions due to the differences itelim
Sen has conducted multiple studies into the development of UHs for Saudi Arabia.
Sen (2007) noted that infiltration effects were not considered in the UH procedure;
however, infiltration is a major hydrologic process in arid climates. Seefdiner
developed an equation that could be used to produce a UH that would account for the
condition of the soil and sub-soll prior to the wetting event. The method developed

was actually an adaptation of the commonly used Snyder’s method.

Sen (2008) addressed the problem of data scarcity in arid region hydrology
and noted that traditional methods of hydrological modeling would not work in these

regions due to the differences in climate. Sen again modified Snyder’s UH method,
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this time to develop hydrographs for ungaged watersheds. The hydrograph ahlculate
using the method is similar to the Natural Resources Conservation ServicS§YNRC
dimensionless UH; however, for arid regions more values along the reces&ion lim

were deemed necessary (Sen, 2008).
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CHAPTER 3

DATA SOURCES

3.1. WALNUT GULCH EXPERIMENTAL WATERSHED

The Walnut Gulch Experimental Watershed, located near Tucson, Arizona, in
the San Pedro River Basin, was chosen as the study area for this reseaush lies
heavily gaged and because data are readily available through the United State
Department of Agriculture’s Southwest Watershed Research Centeteveld&lnut
Gulch is part of the United States Department of Agriculture (USDA) Aguical
Research Service (ARS) Southwest Watershed Research Center. The GVédh
Experimental Watershed is approximately 149 kmarea, and the watershed
elevation ranges from 1220 m to 1950 m above mean sea level (Gaadiich
2008), with much of the watershed ranging in elevation from 1220 m to 1500 m
above mean sea level. The minimum daily temperatures in Walnut Gulch range from
approximately 0 °C to 15 °C and the maximum daily temperatures range from
approximately 25°C to 45 °C (Keeferal., 2008). The watershed consists of 16
large subwatersheds within the boundaries of the Walnut Gulch Experimental
Watershed, each of which contains a number of rain gages as well as at least/one fl
gage at the outlet (Anon., 2007). Precipitation and flow gages have been in place in
the watershed since 1953. The average annual precipitation between the years of
1956 and 2006 was measured to be approximately 316 mm, more than half of which
occurs during the summer monsoon season (July through September) (Getodrich

al., 2008). The streams located within the watershed are ephemeral, dry
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approximately 99% of the time (Anon., 2007). Runoff is usually in response to
thunderstorm events, and the events are generally fairly short, with peak flow
arriving very quickly (Stonet al., 2008). All data sets, including rain gage and flow
gage data sets, are available on the internet (Southwest WatershediREseder,

2008).

3.1.1. Rain Gage Data

Digitally recording rain gages have been used to monitor precipitation in
Walnut Gulch since 1999. A network of 88 weighing-type recording rain gages
currently operates in the watershed. This gives a gage density of appebxidnét
gages/km, which is among the most dense rain gage networks in the world. The
weighing-type rain gages used were developed by the scientists wdrkieg a
Southwest Watershed Research Center. Using an electronic strain gage, the
weighing-type rain gages convert the weight of rainfall in the bucket toageolt
then a linear relationship between voltage and rainfall depth is used to calwglate t
rainfall depth in a given time period. Rain gage data are available through the
Southwest Watershed Research Center’s website, which was given previbusly
data sets include the rain gage number recording the rainfall, the date ofrtheheve
time the event started, the number of minutes elapsed between the startiofdlie ra
and a given measurement, the cumulative depth of rainfall measured, and thle rainfa
intensity at the time of a given measurement. Rainfall data for a vafistgrm

events were utilized in several portions of this research (Goaslrath 2008).
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3.1.2. Flow Gage Data

The Walnut Gulch Experimental Watershed has a total of 30 flow gages.
Eleven of these are on large (2.27 to 14%)ksubwatersheds, eight are on medium
(0.35 to 1.60 krf) subwatersheds, and eleven are on small (0.0018 to 059 km
subwatersheds. A specific type of flume has been developed in response to the
ephemeral nature of Walnut Gulch streams. Walnut Gulch supercritical fluenes
used to measure flow on the larger watersheds, while Smith supelriticas were
used to measure flow over the smaller watersheds. These special flumes are
necessary because the runoff is very high in sediment. A potentiometer attached t
the stilling well of the flume is used to measure flow depth, and the known geometry
of the flume is used to determine the flow velocity and rate. Flow in mediunh-size
watersheds is measured using a stock pond. The change in water level in the stock
pond is measured, and a stage-volume relationship developed from the pond
topography is used to determine the flow. As with the rain gages, digitadlbave
been in use since 1999. The record of runoff for Walnut Gulch is the longest flow
record for a semiarid watershed in the world. As with rain gage data, flowlgtge
was obtained for the USDA Walnut Gulch Experimental Watershed website ¢tone

al., 2008).

3.2. RADAR DATA

Radar data for the San Pedro River Basin was obtained from the Hydro-
NEXRAD system. This is an internet service, developed by a group of regearche
from the University of lowa, Princeton University, the National Oceanogragrid

Atmospheric Administration, the National Climatic Data Center, and UCAR’s
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Unidata Program Center. The University of lowa is currently providingt wicthe
service support. The goal of this service is to make it easier for hydislageccess
radar data, so that this data can be better utilized in hydrologic applicafibizs
service allows users to request a variety of radar data products f@netigie period
either for a specific radar station or for a specific watershed. Thetevédasihis
service is www.hydronexrad.net.

Radar data can be downloaded from Hydro-NEXRAD in either ASCII or
Arc-ASCII format. This provides a text file of radar readings (inlu&siof
reflectance) for the watershed or radar station chosen by the user. An auefgd be
of the Arc-ASCllI files is that they can be loaded into ArcGIS. This alkowsser to
examine the radar data along with a map of the watershed or area in question. This
method was used to identify radar pixels specifically corresponding to the dhea of
Walnut Gulch watershed. The radar data and a map showing the boundary of Walnut
Gulch Experimental Watershed were viewed in ArcGIS simultaneously. Frem thi
the position of the pixels covering Walnut Gulch could be identified in the text files
that contain radar data. The locations of rain gages and flow gages could also be
added to the map of Walnut Gulch in ArcGIS, which helped determine which rain
and flow gages would be associated with which radar pixels in later portions of the
research. When radar data for the desired storm events were downloaded, it was
important to note that radar data were recorded in Coordinated Universal Time
(UTC), while the rain and flow gage data were recorded in local time. Therdie
radar data were seven hours ahead of the rain and flow gage data, which needed to be

accounted for when choosing the desired radar data.
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CHAPTER 4

TRANSMISSION LOSSES

4.1. INTRODUCTION

Transmission losses (TL) have been proven to be a significant hydrologic
process in arid and semi-arid climates. Jordan (1977) defines transmissisrasse
water that is part of the streamflow at one location, but which has been lost through
channel infiltration prior to reaching some location downstream. This could lead to a
significant reduction in flow volumes, velocities, and rates, depending on the
magnitude of local inflow from the drainage area between the two locationseand t
infiltration characteristics of the channel. The ability to estimates necessary for
applications such as flood routing and forecasting, floodplain delineation, and for
predicting ground-water recharge (Jordan, 1977).

Transmission losses are a key concern in arid and semi-arid regionalgspec
because ephemeral streams, or streams that flow only in response to storm or
snowmelt events, generally predominate in these regions. The beds, banks, and
floodplains of these streams are generally composed of coarse-textuveal all
materials. High intake rates and low moisture contents characterize lsivalmal
and can lead to significant decreases in downstream flow volumes (Keppel and
Renard, 1962). Because ephemeral streams do not contain flow most of the time their
hydrographs have different characteristics than streams with continuous tew. T
hydrograph for an ephemeral stream is often characterized as havingadiol @ty

in the start of flow followed by a very rapid rise to peak flow and a receding limb of

43



short duration, due in part to transmission losses (Pegitdes1981). The relatively
steep rise occurs because the initial part of the runoff is lost to TL so therunikbff
at the downstream section is the result of the peak flow portion of the runoff

hydrograph from the upstream section.

4.2. METHODS AND MATERIALS

4.2.1. Purpose of Research

Much of the research on transmission losses to date has involved reducing the
total volume of flow by some appropriate factor and possibly evaluating the meducti
of the peak flow. Few studies have attempted to account for TL as the streasnflow i
routed along the channel. While it is true that transmission losses do reeluce t
volume and peak flow of a flood event, this approach does not allow the spatio-
temporal variation of TL to be understood. The objective of this research was to
develop a hydrograph routing method that could estimate the volume of TL at each
point along the channel and each time increment of the flow hydrograph. The model
was tested and calibrated using flow gage data from Walnut Gulch Expésim
Watershed, located near Tucson, Arizona. Both storm-to-storm variation and reach

to-reach analyses were made.

4.2.2. Flow Gage Data

Flow gage data were obtained from the United States Department of
Agriculture (USDA) Agricultural Research Service (ARS) Southwedtevghed
Research Center website. Study reaches were identified as lendtiesuof lsetween

an upstream and a downstream flow gage. Six potential reaches were idesttified f
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use in this research, the lengths of which varied from 2400 m to 8100 m. Based on
images from GoogleEarth a rectangular cross-section was assumeedtiaceach.

The watershed area draining into the upstream flow gage was also netcgadary
information. The six drainage areas ranged in size from 227 ha to 12723 ha.
Ultimately flow gage data from eighteen events were determined to beadedpt

use in this study. Data were downloaded as Microsoft Excel files, converted to t
files, filtered of unnecessary information, and then underwent severalqoesping

steps prior to use.

4.2.3. Data Conversion

As mentioned previously, the raw data were obtained from Walnut Gulch
Experimental Watershed. Flow data for selected events were downloadetidrom t
USDA ARS Southwest Watershed Research Center website. The data were not
separated by gage, but were grouped by event, the gages had not been recording on a
constant time interval, and few of the gage flow records for one event began at the
same time. For use in modeling TL the desired data format included pairs of
upstream and downstream flow gages, a constant recording time interval, and the
same start time for each upstream and downstream flow gage pair. Several pre
processing programs were developed to convert the data into the desired format.

The first step, separating the data by gage and converting the data ilesext f
was done by hand. Each flow event was examined, and separate files wede create
for each gage that recorded flow during that event. The number of ordinates in the
flow record was noted, and then the Excel files were converted to text files.

Occasionally two flow events were recorded on the same day; in these flot, eve
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only one event was chosen, based on event duration, magnitude of flow, and the
number of gages recording flow at that time.

After individual text files had been created for each gage registeowgril
each event, the data were converted to a constant time interval. A preprocessing
program was developed that read in the original text files and interpolatedaloas
for any missing data points. The output files from this program had a constant
reporting time interval of one minute, which was chosen because it seemed to be the
dominant reporting interval in the raw data. A simple linear interpolation schame w
used to fill in flow values that were missing from the raw data. A few flayegaad
the ability to report data every fifteen seconds, though even these gages Inagl miss
data that needed to be interpolated. As it was believed that there would be little
change in flow rates over the course of fifteen seconds, the preprocessimgrprogr
also deleted these extra values from the record.

The next step in the data preparation was to combine the individual flow gage
records into upstream and downstream gage pairs and to make sure both the upstream
and downstream gage records started at the same time. First, a map of Walnut Gul
Experimental Watershed including flow gage locations and the stream network was
examined to determine appropriate gage pairings. It was determined sbate
cases multiple upstream gages would feed into the same downstream gage. In
combining two upstream gages, several problems needed to be overcome. First, one
of the flow gage records needed to be adjusted so that both gages had the same flow
start time, and second, the two records needed to be added together. A program was

developed that could input two individual data files, add the appropriate number of
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zeros to the file with the later start time, and then add the two records togEtier
created one upstream flow record.

Once an upstream flow record was obtained, another preprocessing program
was needed to combine the upstream flow record and the downstream flow record
into one text file. This program also needed to be able to account for differences in
the start time of the two files. A second program was developed that could add the
appropriate number of zeros to either the upstream or downstream record, whichever
had the later start time, and then create one file that contained the upstreanm and the
the downstream hydrograph. The output file from this preprocessing program was
then ready to be input into the program that was developed to model transmission

losses, which will be described next.

4.2.4. Spatio-Temporal Transmission Loss Model

The final step was to develop a program that could model transmission losses
in a channel. The purpose of this program was to route the upstream flow, using the
Convex routing method, through the channel reach while infiltrating, using Horton’s
equation and the mass-infiltration equation, the appropriate amount of that flow into
the channel bed. The overall model developed in this study combines lateral inflow
(LI), TL, and channel routing into one algorithm. Figure 4-1 shows a pictorial
representation of the model. The stream (shown as the black rectangulartbox wit
blue lines indicating the water surface) is modeled as having a rectacigusisy
section, with a number of equally sized cells. Each cell has a rectangulardarcd ar
eqgual size (shown as the green rectangles attached to the strearbutingtiateral

inflow to the stream. Transmission losses are modeled as flowing out of the bottom
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of the stream (represented by blue arrows) into a box located below the stream
(brown rectangular box) representing the infiltration capacity.

Runoff enters the stream either as flow from the upstream contribuéagar
LI into the stream section between the upstream and downstream gages. Both the
upstream flow and LI are represented as time-dependent hydrographshathetal
storm volumes. During the first time step LI is introduced to each cell and
streamflow from the watershed that contributes runoff to the upper gage theter
first or uppermost cell. Transmission losses are computed for each cell based on thi
initial amount of water in the storage of each stream cell. Next the ftyeai
routed one time step through the channel. During each subsequent time step both
upstream inflow and LI are added and streamflow is routed to the next downstream
cell. Transmission losses are computed based on the amount of water storalge in eac
cell. The outflow from the most downstream cell for each time step représents

computed downstream hydrograph.

e

o

/

Figure 4-1: Diagram of Transmission Loss Model
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4.2.5. Modeling of Transmission Losses

Transmission losses were modeled using the mass-infiltration method which

uses Horton'’s infiltration equation:
f=f+(f—f)e" (4-1)

where { is the ultimate infiltration capacity (capacity after a long periodeiting),
fo is the initial infiltration capacity (capacity at beginning of storm everngolil is
dry), and K is a constant that describes the decay of the infiltration tayébi
time. Parameters,ff,, and K reflect channel soil properties. Because it is common
in arid and semi-arid regions for the infiltration capacity to be greatettigaamount
of water available in the runoff for infiltration, the mass-infiltratiortimoel was used.
This method can be applied to cases where the water supply is less than the
infiltration capacity, which in this case would mean that not all of the storpgeita
below the channel was filled. When the storage volume in a cell is greater than the
infiltration capacity, the infiltration capacity decreases at the maximate for that
time step, which can be found by Horton’s equation. However, when the runoff
volume is less than the infiltration capacity, the decrease in capacitys @tailower
rate, and therefore must be modeled differently in order to accuratelyaesthe
volume of losses. The mass infiltration method calculates the total mas®of wat

infiltrated using the integral of Equation 4-1:
F=ft +(f°—;f°)(1— e ) (4-2)

in which F is the cumulative mass of water infiltrated at a given time, tthem
beginning of the storm event, andff, and K are defined as in Horton’s equation (4-

1) (McCuen, 2005).
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4.2.6. Streamflow Routing

The routing model with transmission loss included was based on the
continuity of mass, which is the standard form for most hydrologic routing methods:

_ds

4L - -0=—2

(4-3)

in which | is the inflow to the channel either at the upstream section or local i@

is the outflow in the channel at the downstream sectipis the transmission loss
between the two sections, ik lateral inflow, S is the storage within the reach, and t

is time. Transmission losses were estimated using F from equatiaor 4-8ifen

time period. Equation 4-3 was applied through subsections, or cells, of the channel so
that the spatio-temporal distribution of the TL could be computed. The outflow from
each cell was computed numerically by solving for the outflow of Equation 4-4:

O:I+L,—LT—% (4-4)

The inflow and transmission losses are added to and subtracted from the storage and
the outflow from any cell is proportional to the storage:
O0=Cs (4-5)
in which C is the routing coefficient and the outflow is transformed from a flewv rat
to a volume. As the surface storage of water increases in a channel cellfltive out
will increase according to the value of C. However, as the storage in accelises,
the TL also increases, which decreases the amount of storage.
Unless LI, which is the runoff into the stream reach from the land between the
two sections, occurred, TL should decrease as the runoff hydrograph moves

downstream because TL reduce the storage as the flood wave moves downstream.
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Even if transmission losses did not occur, translation and attenuation of the
hydrograph would occur, which spreads the flood hydrograph over time. With less
storage at any point because of transmission losses, the pressure headslecreas
Because TL decrease the volume of surface water stored in each céleahdlew
will have a greater head at upstream sections when compared with dowrtstleam
sections. As the head decreases as the floodwave moves downstream, teenkL les
When lateral inflow is present, the transmission loss hydrograph may or may
not attenuate as the distance downstream increases. The charactetis¢ide of
hydrograph as well as the outflow hydrograph will depend on the volume and timing
of the LI relative to the volume and timing of the upstream hydrograph. If the
volume of LI replaces the lost TL volume, then the downstream hydrograpmotvill
show the attenuation from the TL and routing. Both the TL and downstream
hydrographs may increase because the LI will increase the storagé re#ax the

channel. Thus, the outflow from the stream reach will be difficult to analyze.

4.2.7. Detailed Model Description

In addition to a data file that contains an upstream and downstream flow-gage
pair for a runoff event, physical information about the channel was input to the
Spatio-Temporal Transmission Loss (STTL) Model. This physical infiaoma
includes the number of stream cells, the width of the cells, the length of thermglls, a
the area of the watershed draining into the upstream gage. Information about the
stream segments, including width and length, as well as watershed arearwed
from GIS. Initial estimates fog,ff;, K, and C were also input. A routing time

increment, determined based on the raw flow data, was also necessary input

51



information, and a percentage of lateral inflow to the channel could be specified. In
this program lateral inflow was accounted for as the specified percantdtelied
by the upstream hydrograph as a simplifying assumption.

After the input information was entered, initial step sizes were entered for
each of the infiltration and routing parametegsf(f K, and C). The program then
used a numerical optimization scheme to determine the optimum value for each
parameter. The goal in optimizing these parameters was to determinethalue
provided the lowest possible standard error ratio and bias for the model. As initial
estimates for the infiltration parameters, the means of the values proviéedlieynt
et al. (2008) for various types of sandy soil were usgd §29.5 mm/hr,§=49.75
mm/hr, and K = 17.41 H). The initial routing coefficient was set at 0.2 as large
storage attenuation effects were expected. After the program hadidetethe
optimum parameters for the conditions being modeled, those values were used to
model the infiltration and routing of the runoff, then an output file comparing the
modeled runoff to the observed runoff and detailing the bias and goodness-of-fit

statistics calculated for that model was produced.

4.3. RESULTS AND DISCUSSION

4.3.1. Model Goodness-of-Fit Results

Tables 4-1 and 4-2 present the input information and model results for nine
runoff events between various gage pairs. It is important to note that LI was not
added to every event. Lateral inflow was added on a case-by-case basis, when it
appeared that the addition of LI could improve upon the goodness-of-fit statistics.

The Walnut Gulch data files did not indicate whether or not LI occurred. The ratio of
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the downstream-to-upstream volumes ranged from 12% to 65%. In general, the
relative biases were more negative for low values of the ratio of the downsgtream
upstream volumes of flow. As an example, the model of the flow event of August 4,
2007, which had a volume ratio of 0.1161, had a bias of -40%, a standard error ratio
greater than 0.8, and a correlation coefficient of less than 0.6. To a lesseitleist

was also evident in the event that occurred on June 17, 2000, for which the volume
ratio was 0.2259 and the model had a relative bias of approximately -10%, a standard
error ratio greater than 0.45, and a correlation coefficient of 0.89. In gesethé
volume ratio approached 0.5, the relative biases lessened to less than -10%, the
standard error ratios improved to less than 0.5, and the correlation coefficients
increased to greater than 0.9. In the process of optimizing the model parameters for
these events, improvement in one goodness-of-fit statistic (bias or standayd err
occurred with a simultaneous loss of accuracy in the other statistic (starrdarat e

bias, respectively). To further evaluate the performance of the STTL Moaebs
graphs comparing the observed and predicted downstream flow events werk create

These figures are presented in Appendix A.

Table 4-1: Model Input Information

Date of Event 7/20/07| 8/05/99 8/11/06 8/06/Q7 8004/ 8/17/07| 6/17/00] 8/04/07 7/20/Q7
Gage Pair 6>2 62 62 62 6+3-2 | 6+3-2 | 43 4-3 21
Upstream 1.4041 | 0.4954| 2.3352] 1.582 24977  3.8837  0.1473 856.0| 0.9416
Volume (*1¢

m°)

Downstream 0.6663 | 0.2647 | 1.258 0.7771 0.2901 2.4091  0.0333 560.0| 0.5695
Volume (*1¢

m°)

Downstream 0.4745 | 0.5343| 0.5389| 0.491 0.1161  0.6203  0.2259654@. | 0.6048
Volume/

Upstream

Volume

Channel Length | 5574 5574 5574 5574 5308 5308 2400 240( 8096
(m)

Lateral Inflow 10 0 0 0 0 0 0 10 30

(%)
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Table 4-2: Results of Model

Date of Event 7/20/07| 8/05/99 8/11/06 8/06/07 8@/ 8/17/07| 6/17/07 8/04/0y  7/20/47
Gage Pair 62 6—2 6—2 6—2 6+3-2 | 6+3-2 | 43 4-3 21
Predicted Downstream 0.6305 | 0.2407 1.1606 0.7186 0.1740 2.30p5 0.03020539. | 0.5814
Volume (*1¢ m®)

fo (mm/hr) 425 5834 1500 2674 2064 2747 550 280 494
fc (mm/hr) 69.3 49.3 10.0 9.1 294.0 150.7 522.1 73.9 36.0

folfc 6.13 11.84 150.00] 293.8( 7.02 18.37 1.05] 3.8( 13.7
k (hrh) 0.352 34.370| 1.850 4.447 0.010| 1.574% 0.02[7 4.1824.820

C 0.051 0.076 0.116 0.198 0.098] 0.132 0.099 0.091 .0500
Relative Bias -0.054 -0.091 -0.079 -0.07p -0.400 .048 -0.094 -0.039 0.021
SIS 0.501 0.369 0.425 0.322 0.823 0.194 0.454 0.366 7580.

R 0.866 0.930 0.906 0.947 0.571 0.981 0.8938 0.932 .6550
R? 0.751 0.864 0.820 0.897 0.326 0.962 0.798 0.868 4300.

4.3.2. Analysis of Fitted Parameters

In evaluating the results for both the reach-to-reach and the storm-to-storm
events a large variation in the TL parametgrfand K occurred, while the routing
coefficient varied little, from 0.05 to 0.2. In general, the valueg and C were
positively correlated, as shown in Figure 4-2. If the soils were rdiative, then the
initial infiltration capacity was high and a relatively large value ofds weeded to
ensure that too much transmission loss did not occur. Generally, the routing
coefficient C was lower when lateral inflow was included, i.e. mean values of 0.064
versus 0.120. A smaller routing coefficient tends to reduce the peak outflow because
the water is kept in channel storage for a longer period of time, which has the
additional effect of increasing TL.

The values determined for Horton’s decay coefficient K varied significantl
between events. The K values ranged from 0.01 to 34 3%ith most of the values
falling between 1.5 and 4.8 and a median value of 185 Because K is the rate at
which the transmission loss rate drops from the initial capagitythe ultimate rate
fc, a large value of K would indicate a very rapid decline from the initial to the
ultimate infiltration rate. The value of K will vary with the shape of the upstrea

hydrograph. When calibrating a relatively flat hydrograph with low volumes at the
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start of the storm, the TL capacity does not drop rapidly. Thus, a low K is expected.
For a rapidly rising upstream storm hydrograph, the capacity will drop quigkigh
produces a large value of K. It would not be unexpected to see such a sudden drop
off in infiltration rate in an arid region where a high initial infiltratioreratould lead

to a rapid decrease in infiltration capacity. The flow event which had ai€ o4l

0.01 also had the poorest goodness-of-fit statistics of any of the events. This event
also had very high infiltration rate parameters, which would imply that the channel
experienced high TL during this event. Because the modeled TL would be so large,

the model would predict a very low runoff volume, which led to a large negative bias.

0.16
014 - C = 3E-05*fo + 0.063

' R?=0.6191

0.1 ¢
0.06 —_

4 J
0.04
0.02 1
0 T T T T T
0 500 1000 1500 2000 2500 3000
fo (mm/hr)

Figure 4-2: Relationship Betweenfand C Values Determined by STTL Model

4.3.3. Storm-to-Storm Variation

Variation in the model parameters between storms for the same gagerngair we
examined for two purposes. First, one objective was to determine if one set of
parameters could apply to that region of the watershed under multiple storm
conditions. Second, another objective was to identify the data characterigtics tha
influenced the ability of the model to fit the measured data. For instance, could a
particularly high or low antecedent moisture condition explain a given set of model

results? If this was found to be the case, a set of guidelines could be developed to
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help model users find the correct parameter values for the conditions that theg wis
to model.

The first step was to assess the storm-to-storm variation of the cogfiicie
For the six storm events that occurred at either gage 6 into 2 or gages 6 and 3 into 2
the range of parameter values, the mean parameter values, the standaohdefiat
the parameter values, and the coefficients of variation were computed. Tdie init
infiltration capacity (§) was found to range from 425 mm/hr to 2747 mm/hr. The
mean of this was 1666 mm/hr, and the standard deviation was 1008 mm/hr. This
resulted in a coefficient of variation of 0.61. For the ultimate infiltration @apé;)
the range was 9.1 mm/hr to 294 mm/hr, with a mean of 97 mm/hr and a standard
deviation of 110 mm/hr, which yields a coefficient of variation of 1.13. The decay
coefficient (K) ranged from 0.01 fito 34.37 ht, with a mean of 7.1 Hr and a
standard deviation of 13.45hr The coefficient of variation for K was 1.89. The
routing coefficient (C) ranged from 0.051 to 0.198, with a mean of 0.112 and a
standard deviation of 0.051, resulting in a coefficient of variation of 0.455. The
higher the coefficient of variation the more variable the results ageden
parameter.

In evaluating the storm-to-storm variation it appears that the decaycoerffi
and the ultimate infiltration coefficient have the highest variability. Thakees
could not likely be transferred to another event without causing serious inaesuraci
The variation in initial infiltration capacity is also fairly high, indicafithat these

values should not be transferred to other events. The variation in routing parameter,
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however, may be low enough to apply the mean values to other events without
causing significant inaccuracies.

Without examining the rainfall data for a given time period prior to these
flow events it is difficult to quantify the exact reasons for the variation iltratfon
parameters between storms. The high storm-to-storm variation in the three
parameters of Horton’s equation can likely be explained by differences indaméce
moisture conditions, which would influence the initial infiltration rate during an
event. Itis also possible that differences in rainfall charactergiwds as intensity
and duration could explain some of this variation in infiltration parameters. For
instance, a high intensity storm would likely produce high runoff and little
infiltration, while a low intensity storm would result in high infiltration antddit
runoff. Similarly a long duration storm may completely satisfy thetiafibn
capacity of the channel and cause high runoff towards the end of the storm, while a
short duration storm may never completely satisfy the infiltration demand, in which

case most of the flow could become TL.

4.3.4. Site-to-Site Variation

Site-to-site variation in model parameters was examined to determatbexh
or not one set of parameters could be valid for the entire watershed. In the nine
studies conducted and presented in Tables 1 and 2, three stream sections were
studied. To compare the variation between the sites, average values of each
parameter were determined for the sites where multiple events had beed &tadi
gages 6 into 2 or gages 6 and 3 into 2, and gage 4 into 3). These averages were

assumed to be representative of that particular site. This yielded one set of
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parameters for each of the three sites in question. The initial indiftre&pacities

(fo) ranged from 280 mm/hr to 1666 mm/hr, with a mean of 858 mm/hr and a
standard deviation of 701 mm/hr, which yields a coefficient of variation of 0.82. The
ultimate infiltration capacities {franged from 36 mm/hr to 522 mm/hr, with a mean
of 137 mm/hr, a standard deviation of 137 mm/hr, and a coefficient of variation of 1.
The decay coefficients (K) ranged from 0.027 to 7.101 ht', with a mean of 4.67

hr?, a standard deviation of 2.5 rand a coefficient of variation of 0.54. The

routing coefficients (C) range from 0.05 to 0.132, with a mean of 0.086, a standard
deviation of 0.032, and a coefficient of variation of 0.37. The site-to-site variation
shows that the initial and ultimate infiltration capacities have the highestieay

and therefore should not be transferred to other sites on the watershed. The decay
coefficient also had a fairly high coefficient of variation and is likely tocabée to

be transferred from one location to another. However, the routing coefficient had a
fairly low variability, and could likely be transferred throughout the watershed
without introducing undue error.

The site-to-site variation can likely be explained by variations in soil
properties. A detailed soil map of Walnut Gulch Experimental Watershed shows the
large variation in soil types from one portion of the watershed to the next. The
different soil types will have different infiltration properties, which woelad to
differences in the infiltration parameters determined in the model. Reasonilay s
to that presented for the storm-to-storm variation can also apply to site-to-s
variation. Differences in both antecedent moisture conditions and storm

characteristics are also a possible explanation for site-to-sitgioari Previous
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storms may have affected different portions of the sites in the waterstezdrdiy,
leading to different antecedent moisture conditions in different portions of the
watershed. Also variations in storm characteristics such as intensityatiodu

across the watershed would influence the infiltration parameters aediffecations.

4.3.5. Effects of Lateral Inflow

A significant volume of lateral inflow can mask the effect of transmission
losses. With no LI, the volume and peak of the upstream hydrograph should decrease
as the flood wave moves downstream. However, as the volume of LI increases, the
water volume reduction due to TL will be offset such that a decrease in volume and
peak at the downstream section may not be evident from the measured flow. The
runoff entering the stream as LI may approximately match the wateratéd from
the channel as TL. If the only measurements are the upstream and downstream
hydrographs, the effects of TL and LI may not be evident.

The shape, volume, and peak of the downstream hydrograph depend on the
corresponding characteristics of the upstream hydrograph, the TL chatastef
the channel bed, and the magnitude and timing of any LI to the channel. Lateral
inflow can also have a significant effect on the distribution of TL along the channel
not just the characteristics of the downstream hydrograph. Lateral inflowa int
channel subsection occurs before streamflow from the upper gage is routed to the
cells, thus satisfying a portion of the TL demand of that cell. As the itibitra
demand of a cell decreases, a higher percentage of the streamfloveljtimated to
the cell will remain in surface storage and be routed to the next cell. Thissigrea

both the volume and the peak flow of the downstream hydrograph.
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Figure 4-3 shows the effect that LI has on the distribution of TL along a
channel. The same scenario was modeled four times for the July 20, 2007, event,
with increasing amounts of lateral inflow. The control run, with no LI, demdastra
that, as the flow travels downstream, the volume of TL decrease becaasdlstre
is less and, therefore, from a physical standpoint, the pressure head is lbiger. T
lower head means that storage in the cells along the reach will causeowater t
infiltrate at a lower rate than from the cells upstream. As Ll is added, @darhe
each cell increases such that a higher volume of water infiltrates indowrestream
cells than they could infiltrate when lateral inflow was not present. Asd-&3
shows, as the volume of LI added to the stream increases, the downstreamecells
able to infiltrate larger volumes of water, leading to increasing TL v@duriée total
TL of Figure 4-3 indicate that, when the LI is about 20% of the volume of the
upstream hydrograph, the lateral inflow volume offsets the volume of transmissi
losses such that the measured downstream hydrograph would suggest that TL were
not a factor. Table 4-3 illustrates the effects that LI can have on the dammstre
hydrograph volume, the predicted downstream hydrograph peak, and the
downstream-to-upstream volume ratio for the same modeling scenarios as shown in
Figure 4-3.

The assumption of LI affects both the TL hydrograph and the accuracy of the
model calibration. Measurements of lateral inflow are generally ndabiaiso the
actual volume and distribution of LI is generally not known. However, LI dectaf
the characteristics of the downstream hydrographs, so an incorrect assuiaption c

cause the calibration to yield inaccurate parameter estimates and pooegpotfit.
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The magnitude of LI could be estimated using a standard computer program such as
TR-20 if desired, but again, without the presence of gages along the stream bank,
there is no method of determining LI that is completely accurate.

To better understand the effect that LI has on the results of the STTL model,
including the model parameter estimates and the goodness-of-fit stat&ifsigust
5, 1999, event was modeled three times. First the scenario was modeled with no LI,
to serve as a control, then the scenario was modeled with 10% LI, and finally the
scenario was modeled with 30% LI. Table 4-4 provides a summary of these results.
The final infiltration parameter values showed significant variation with amount of
lateral inflow. With increasing amounts of LI, the initial infiltrationer#t,)
decreased and the ultimate infiltration ratg i(fcreased, to the point that the
difference between the two values is quite small. A clear trend is nonefade¢he
variation in K values in this situation, as K was a less sensitive parammateyer, it
is quite clear that the presence of LI influences the final parametsrsval he
routing coefficient did not change significantly with the addition of LI; howetber
decreasing trend is logical as explained earlier.

In actual situations, the amount of LI is not known, so an assumption must be
made. The amount assumed will influence both the goodness-of-fit statistics and the
model parameters. When LI occurs, less water needs to be removed from storage in
the stream to satisfy the infiltration demand, so the routing coefficientades.e The
goodness-of-fit statistics for the scenario in which 30% lateral inflowadded are
poorer than statistics from the other cases because in this situation 30inithbeva

is too high, and the model is being forced to overpredict the flow. A lower amount of
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LI, such as 15% or 20%, would probably have had somewhat better goodness-of-fit
statistics; however, 30% lateral inflow was chosen in this case to showetietieht

a larger than necessary amount of LI could have on model results.
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Figure 4-3: Effect of Lateral Inflow on Transmissian Loss Distribution

Table 4-3: Effect of Lateral Inflow on Model Resuls

0% LI | 10% LI | 20% LI | 30% LI

Computed Downstream0.4380| 0.4818 | 0.5256| 0.569%
Volume (*10 m’)

Predicted Downstreani 215 250 283 313
Peak Flow (riYs)

Downstream Volume/ | 0.6047| 0.6047 | 0.6048  0.6048
Upstream Volume

Table 4-4: Comparison of One Event with Varying Amaints of Lateral Inflow

0% LI [10% LI | 30% LI
f, 584 200 74

f. 49 59 66

k 3437 | 7.974 | 29.90
C 0.0764 | 0.0697| 0.050Q
Relative Bias| -0.0906| -0.0826 | 0.0819
S/S, 0.3694 | 0.3695| 0.4860
R 0.9296 | 0.9296| 0.8746
R’ 0.8642 | 0.8641| 0.7648

4.3.6. Advantages of Spatio-Temporal Transmission Loss Model

The Spatio-Temporal Transmission Loss (STTL) model, which was
developed to account for TL in arid climates, has several advantages. Firsididle m

is based on physical principles. A channel routing method based on the continuity of
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mass and storage is utilized. Most other methods only account for the total volume of
TL based on the reduction in hydrograph volume and peak flow. Because channel
routing was used and the channel was divided into multiple cells, the model allows
for TL to be evaluated in both time and space. The model uses an established
infiltration method to account for losses into the channel. Therefore, the values
determined for the infiltration parameters and the routing coefficientdabgsical

basis.

Second, the STTL model can allow for the presence of LI. As demonstrated
previously, the presence or absence of LI can have a significant efféet on t
distribution of TL with distance downstream and on the parameters and the accuracy
of the fit. Third, the volume of TL can be determined at any point along the length of
the reach. This can be done by using multiple cells, and then fitting an equation to
the TL distribution provided in the model output. Fitting an equation based on
predictions for each of the cells allows the calculation of transmission lasyg at
point in the stream, as opposed to providing transmission loss estimates only at
certain locations based on the cell size. Fourth, this method could easily leladapt
to allow for variation of the infiltration parameters along the length of tharstre
This would be highly advantageous when studying a long stream reach or a watershe

that had high variability in soil characteristics.

4.3.7. Comparison to Lane’s Model

The NRCS method of Laret al. (2007) is currently the most widely used
method of computing volumes of TL. The STTL method has much in common with

Lane’s method of computing TL for arid environments. Both calculate a volume of
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TL based on upstream and downstream flow records, and both can take into account
the effect that LI can have on the streamflow. Both methods can predict the change
in downstream flow volume and peak that will result from TL. Despite these
similarities, however, a number of differences exist between the methods.

The STTL method and the method developed by Lane rely on different
underlying theories. Lane used a differential equation as the basis for his model
while the STTL method is based on the principles of channel routing and Hortonian
infiltration. As a result of this, the parameters (three infiltration paiershand a
routing coefficient) have a physical meaning. Further, the use of four g@rsnm
this method, as opposed to two parameters used in Lane’s method, increases the
flexibility of this model as compared to Lane’s model.

Another key difference between the models is when and how the models
approach zero. To predict TL along the length of a channel, Lane’s model uses an
exponential decay model that approaches zero as distance down the channel
increases. In contrast, TL in the STTL model approaches zero only w(iea f
ultimate infiltration capacity) is very small. The routing coefficienigd anfluences
the decay in this model. The use of the downstream hydrograph is a third key
difference between the two models. Lane’s model uses end-of-channel vadumes
calibrate its coefficients, while the STTL model uses the hydrograph tegindising
the hydrograph in this model means that the shape of the hydrograph will influence
the parameter values.

In order to calibrate Lane’s model, linear least squares is used between

multiple events. Also, only upstream and downstream volumes of the total
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streamflow are required. The regression parameters determined frometirddiast
squares analysis determine the exponential decay value for the model. @he line
least squares regression model requires that that multiple storm eventl/bedaioa
determine parameter values. The STTL model, on the other hand, is able to
determine parameter values using only one storm event. This is especially
advantageous when data are sparse. However, because more data are used, the
calibration process is more involved than the calibration process for Lan#&sdne

A final important difference between the STTL model and Lane’s model is the
ability to calculate TL at intermediate points. Lane’s model providegrassion
equation that could calculate the TL at any point along the channel. In comparison,
the STTL model can only calculate TL at intermediate locations alondnémnel if
multiple cells are used in the model. Transmission losses would then be calculated
for each cell. Alternatively, if multiple cells are used, an equation could toetfie
points given that define the spatial distribution of the TL. With an equation fitted to
the TL distribution, then TL could be calculated for any point along the channel.

Another program was written and used to compare the STTL method to
Lane’s method. This new program took the same data that was used in testing the
STTL method and computed results based on Lane’s method. Figures 4-4, 4-5, and
4-6 illustrate the varying degrees of agreement in results between then&ffod
and Lane’s method. The flow event occurring on August 17, 2006, gave almost
perfect agreement in calculated downstream volume between the methods. However
the event occurring on August 11, 2006, showed an overprediction in downstream

volume, meaning an underprediction of TL, by Lane’s method. Conversely, the event
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occurring on August 5, 1999, showed an underprediction of downstream volume, and

thus an overprediction of TL, by Lane’s method as compared to the STTL method.

The differences between the results of the two models for the August 5, 1999, event

required further investigation. As reported in Table 4-2, this event had the highest K

value of any event modeled, which was believed to account for the difference

between the model results. The hydrograph for this event was found to have a double

peak and a rapid, steeply sloped rise time, which may have influenced the K value.

Because the STTL model is based on one hydrograph and Lane’s model is based on

regression of five total streamflow volumes, this difference betweeresults of the

two methods for an event with an unusual hydrograph is not unexpected.
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4.4. CONCLUSIONS

A model was developed with the ability to estimate transmission losses along
a channel reach while routing the floodwave through the channel. The three
Hortonian infiltration parametersy(ff;, and K), as well as a routing coefficient (C)
were optimized using the nonlinear least-squares method, and then used to model
streamflow routing and TL into the channel bed material. The model also allows the
addition of LI from the watershed surrounding the stream reach into the channel. The
Walnut Gulch Experimental Watershed located near Tucson, Arizona, was chosen as

the location for this study because it is heavily gaged and because data gpre easil
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available. Flow gage data for several combinations of upstream and downstrea
flow gages were collected and used to calibrate and test this model. Anallgsés of
storm-to-storm variation and site-to-site variation were made, in the fiope o
determining an average parameter set that would apply under many conditions
throughout the watershed. Unfortunately it was seen that the variation in pasameter
was so high that average parameters could not be accurately used to predict TL
However, when the numerical optimization scheme was used to determine
appropriate parameter values for each storm event and for each stream reach, the
model was seen to perform well, with acceptable bias and goodness-ofdfiicstat
nearly all of the test cases.

The STTL model allows for analyses of TL based on flow hydrographs, rather
than just total flow volumes. Thus, the model parameters are sensitive to more than
just the total volume under the hydrograph, with the model parameters reflemting
TL vary with time and along the lengths of the channel. This method is also based on
the physical processes of Hortonian infiltration and channel routing. The model
allows for the input of LI into the channel reach, and TL could fairly easily be
determined for any point along the channel. Also, this model would be fairly easy to
adapt to allow for variation in parameters along the channel.

Further research is still needed in many areas to more accurately pitedic
arid and semi-arid climates. A method for estimating LI when such meamisem
are not readily available would help improve the accuracy of transmission loss
predictions. If information about antecedent soil moisture condition or antecedent

precipitation could be collected it could be related to the infiltration parasrigtér
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and K. Knowledge of the storm event antecedent moisture condition in combination
with knowledge about storm characteristics could aid in explaining the variations
seen in both site-to-site and storm-to-storm analyses. Similarly, reeasisoil

porosity and its variation along a channel reach could help explain variations in the

optimum infiltration parameters determined by the model.
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CHAPTER 5

ANALYSES THAT INVOLVE RADAR RAINFALL

5.1. INTRODUCTION

The traditional method for measuring rainfall is the rain gage. Rain gages,
however, only measure point rainfall, so an estimation method is necessary iworder t
derive spatial rainfall characteristics. According to Chumcleeah (2003), the
accuracy of rain gage data in representing average rainfall over ataeges quite
low. Deriving spatial characteristics of rainfall can be especidfiguali when a low
rain gage density exists in a watershed, as is often the case. Due jrohésms
associated with rain gage data, as well as other potential inaccuracigsgage
data, many hydrologists have begun to consider the idea of either replacing or
supplementing rain gage data with radar measurements. According to iHdblit a
Curtis (2002) merging radar and rain gage data would combine the strengtbis of ea
data set while reducing the weaknesses associated with each of them.deRatias
the ability to provide spatial characteristics of rainfall events much nasiky ¢han
rain gage data; however, the technology is still being improved and sources of err
are still being identified and reduced or eliminated. According to Krajeaveki
Smith (2002) radar-rainfall data has great potential for use in runoff and flood
forecasting models, which should soon be realized in application. A few applications
in which they believe that radar data could be useful include design of flood control

structures, control of urban storm water systems, water supply foreg¢asting
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groundwater recharge assessment, and non-point source pollution assessment

(Krajewski and Smith, 2002).

5.1.1. Errors and Problems Existing in Radar Data

Many sources of error in radar data have been identified. Gerstner and
Heinemann (2008) identified several sources of error related to the radar $sgldm it
and to interpretation of the radar readings. The radar beam itself couldnomizite
by heavy rainfall, ground clutter could interfere with the beam, or beamsiacl|
could occur. Radar data does not provide information about rainfall directly. Rather,
the radar beam is reflected off of raindrops in the air and the scatter of thehlatam t
is reflected back to the radar station is measured. A relationship betwseen thi
reflectance and rainfall rate is used to transform the radar readingsub usef
information about the rainfall. This equation is called the reflectance (@falla
rate (R) relationship. Many Z-R relationships are possible, and the choigeatioa
can influence the amount of rainfall that was measured. Therefore the choiée of Z-
equation is a potential source of error in radar measurements (Gerstner and
Heinemann, 2008). They conclude that, while these errors remain stronglatdar
can not currently take the place of rain gage data in hydrological applications

Sharifet al. (2004) also discussed the relationship between reflectance and
rainfall rate as a source of error in radar data. They state that no wlajienship
exists between the two, making accurate conversion between them difficult. They
also suggest other reasons for inaccuracies in radar measurements, inthkiding
curvature of the earth and atmospheric refraction caused by the height of the rada

beam increasing with distance away from the radar station. This means that, a
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distance between the radar station and the location being measured by the radar
increases, the radar beam is measuring at a higher distance above thesgriaae.
Because of this, for large enough distances away from the radar station itl@nnot
assumed that the radar rainfall readings are representative of th# faliinig at the
ground. Many processes, including wind drift and evaporation, could alter the
rainfall between the location of the radar measurement and the ground surfack. Shari
et al. (2004) cite a study done by Kitchen and Jackson (1993) that claims that the
range effect described above could be one of the major causes of observed
underestimation of rainfall accumulation by radar.

Islamet al. (2008) specifically discussed the errors that wind could cause in
radar rainfall measurements. They state that wind gusts could causk: taiffiét
and be horizontally displaced by up to several kilometers between the point in the air
at which the radar measured the rainfall and the point at which the rainfalienits
ground. If raindrops do not fall directly vertically, but rather drift some distance
horizontally, there will be a mis-match between radar data and corresponding rai
gage data. If rain gage data were being used to calibrate radar datekdioche
accuracy this could cause significant problems. However, klaim(2008)
believed that with the addition of an algorithm to correct for wind drift the agree
between radar and rain gage data could be much improved.

Young (2008) compared radar and rain gage data for an area in Mississippi to
guantify their differences. He examined the long-term bias in radar datal] as we
the correlation between the rain gage and radar data for multiple time pénods.

plotting this data, he observed a high degree of scatter between the rain gage and
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radar data, indicating that good agreement between the two data sets, which should
essentially be measuring the same rainfall, did not exist. In exantiv@rigas
between the two data sets, he found that during the cold season an overall bias of -
39% existed, while during the warm season the overall bias was only -32%. This
finding of under-prediction of rainfall by the radar data has also been found in many
other studies.

Despite the many sources of errors and problems with radar data, there stil
exists great potential for radar data to be utilized in hydrological apipis in the
future. As stated earlier, the radar data can much more easily providé spat
information about rainfall events, saving the expense of a dense rain gage network.
When some of the error sources discussed above, including accounting for wind drift,
beam occlusion, and the use of improper Z-R relationships, have been reduced, radar

data will likely be a valuable tool to hydrologists.

5.2. ANALYSIS OF SPATIAL DATA PROBLEMS USING
SYNTHETIC DATA

5.2.1. Introduction

It is often helpful to set up analyses using synthetic data prior to analyzing
observed data. In this case, synthetic data were analyzed to draw conclusions about
the smoothing effect that various point rainfall averaging methods could have
compared to true spatial rainfall data. Both the arithmetic averaging meithddea
Thiessen polygon method were investigated for averaging point rainfall
measurements. Preliminary conclusions about the effect of pixel sizesacesated

with each rain gage, amount of rainfall, and rainfall pdf on the estimated rainfall

73



averages for a pixel were also made. The conclusions from this preliminary stud
could then be used to guide more detailed investigations into the accuracy of radar
data compared to rain gage data.

The overall goal of this analysis was to assess the interaction of peelrsi
the spatial extent of storm rainfall. This goal is assessed using atgimalaproach
so that relevant variation can be controlled. The specific objectives used tdiseet t
goal were: (1) to show the effect of storm peakedness within a pixel on thecearia
reduction of Thiessen and arithmetic average storm rainfall methods; (Znanex
the effect of storm magnitude on variance reduction with the averaging methods; and
(3) to evaluate the effect of the randomness of rainfall rates on observatd&s ma
from the previous analyses.

A simulation program was developed that could compute the arithmetic and
Thiessen polygon rainfall averages for a given pixel from two rain gages. This
program allowed the user to specify the number of simulations, the minimumlrainfal
depth and the slope of the rainfall depth surface, the distribution of error in the
rainfall, and the fraction of the pixel area assigned to each rain gage. Reasfal
computed as the sum of systematic and nonsystematic components. The systematic
component was a linear model with a user specified slope, including zero. The
nonsystematic variation could be generated from any one of five distribution
functions with user specified parameters. Based on the user specified mean and
slope, the rainfall depth surface was assumed to vary linearly over the pixel. The

program output provided the mean and standard deviation of the rainfall depth
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measured at each gage, as well as the mean and standard deviation of the rainfa

averages computed by both the arithmetic method and the Thiessen polygon method.

5.2.2. Effect of Pixel Size Variation

5.2.2.1. Methods and Materials
Over the spatial extent of a rainfall event, the depth is expected to vary. As

the area increases, the variation in depth should increase. To show spatiahvariat
the rainfall depth, the slope of the rainfall depth surface was changed to simulat
change in the size of the pixel. An increased slope yields greater variatomfa,r
which simulated a larger spatial area, while a decreased slope simutabed a
uniform rainfall that is expected over a smaller pixel. The first analysestigated
whether or not the size of the pixel influenced the amount of smoothing done by the
rainfall depth averaging methods. Four scenarios were set up to evaluate this
analysis, with only the slope of the rainfall depth surface varying betwe®n the
Slopes of 1.5, 3, 4.5, and 6 were evaluated in the study. The minimum depth of
rainfall simulated was 2 mm, and a normal pdf with a mean of 2 and a standard
deviation of 0.4 was used for the random component of the rainfall depth.

5.2.2.2. Results and Discussion

All averaging methods smooth data. For example, moving average filtering is
used to smooth hydrologic time series. The arithmetic average and Thiegggmpol
methods are commonly used for spatial averaging of rainfall data. The smgoaithi
rainfall data reduces the variation, i.e., the standard deviation, while preséeving t
mean. While variance reduction is at times desirable, in other cases it ¢aa mas
relationship with another variable. In the case of radar rainfall data and point ra

gage data, smoothing of the spatial estimates of the point measurements &kuld ma
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the correlation between spatially distributed radar rainfall estezatd areal
estimates based on point measurements.

The results of the simulation analyses were evaluated in terms of loss of
variation between the areal averaged gage-measured rainfall depths ancutlagedal
average rainfall depths. The standard deviations of the rainfall depths at the gages
were considered to reflect the true variation in the rainfall depth, while¢ahdasd
deviations of the arithmetic and Thiessen polygon averaging methods represented the
variation in areal averaged rainfall depth. The standard deviation of rainfall depth
measurements reported for a rain gage was subtracted from the Thiessen polygon
standard deviation and the arithmetic average standard deviation. The rain gage
standard deviations were subtracted from the averaging method standard deviations
so that a negative difference would emphasize the loss in variation due to smoothing
by the averaging method.

The first analysis investigated the effect that cell size has on tregaver
rainfall depth by varying the slope of the rainfall depth surface in thegogA
greater slope yields a more peaked rainfall event which refleceategpixel size.

The results of this study are presented in Table 5-1, and the summary of loss of
variation is presented in Table 5-2. In examining Table 5-2, it is evident that the
Thiessen polygon method has a smaller loss of variation than the arithmeticrayeragi
method. Specifically, the standard deviations for the Thiessen estimatesdre

closer to the gage estimates than are the arithmetic average estivhathss

evident from the smaller differences in Table 5-2. This means that thedrhiess
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polygon method is smoothing the rainfall depth results less than the arithmetic
method when the average rainfall for a pixel is calculated based on two rain gages.

It is interesting to note here that in some cases the Thiessen polygon method
had a standard deviation higher than the standard deviation for one of the rain gages,
resulting in a positive difference between the two. For instance, thesdiéter
between the Thiessen polygon standard deviation and the standard deviation for rain
gage 1 was -0.078 for a rainfall surface slope of 1.5, but the difference was 0.028 for
a rainfall surface slope of 6. This does not imply that the Thiessen method introduces
variation in these scenarios. Instead, it reflects the fact that thallrdebth surface
for one rain gage is greater than the other gage, and thus has a higher standard
deviation. The Thiessen method averages the rainfall depth based on the values at the
two gages, therefore when one gage has a significantly higher standard delvaation t
the other, it is expected that the Thiessen polygon standard deviation will be higher
than the standard deviation of the gage receiving the lower rainfall amount.

It is also interesting to note that while the difference between the Tihiesse
polygon method standard deviations and the rain gage standard deviations become
less negative as the slope of the rainfall surface increases, the défbetneen the
arithmetic method standard deviations and the rain gage standard deviations becomes
more negative as the rainfall surface slope increases. For instancéetieack
between the arithmetic standard deviation and the standard deviation of rainigage
-0.132 for a slope of 1.5, but the difference is -0.279 for a slope of 6. This indicates
that the absolute smoothing of the arithmetic averaging method increakes as t

variability of the rainfall surface increases. However, when computingtios of
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the standard deviations of the arithmetic method to the standard deviations of the rain
gages, it is seen that the ratio is relatively constant. The ratio of therdtanda

deviation of the arithmetic method to the standard deviation of rain gage 1 for a
rainfall surface slope of 1.5 is 0.711 while the ratio is 0.705 for a rainfall surface

slope of 6. This indicates that while the absolute smoothing increases witlsimgrea
storm variability, the relative smoothing remains constant as the storm lgriabi

increases.

Table 5-1: Results of Analysis of Changing Pixel &, where Arith. Means Arithmetic, and Std. Dev. Mans
Standard Deviation

Slope | Gage 1| Gage 1| Gage 2| Gage 2| Thiessen| Thiessen| Arith. | Arith.

Mean | Std. Mean | Std. Mean Std. Mean | Std.

Dev. Dev. Dev. Dev.
15 4.37 0.45 5.12 0.45 4.75 0.37 4.75 0.32
3 4.74 0.58 6.25 0.58 5.50 0.55 5.50 0.42
4.5 5.12 0.76 7.38 0.75 6.25 0.76 6.25 0.54

Table 5-2: Summary of Loss of Variation in Averagig Methods for Changing Pixel Size, where Arith.
Means Arithmetic and Std. Dev. Means Standard Devi&on

Slope| Std. Dev. Std. Dev. Std. Dev. Std. Dev.
Thiessen-Gage 1 Arith.-Gage 1 | Thiessen-Gage 2 Arith.-Gage 2

15 -0.078 -0.132 -0.074 -0.127

3 -0.035 -0.171 -0.030 -0.166

4.5 0.000 -0.222 0.005 -0.217

6 0.028 -0.279 0.034 -0.273

5.2.3. Effect of Rain Gage Area

5.2.3.1. Methods and Materials
Each rain gage within a pixel represents an area within the pixel. A gage near

the boundary of the pixel likely reflects less of the rainfall occurring ovesgghgal
extent of the pixel than would a gage in the center of the pixel. If one of two gages
represents a relatively large area, then taking the arithmetiqgavefréhe two gage
estimates would place too much weight on the less representative gage measure

Therefore, it was believed that the portion of the pixel area representedihygage
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would influence the amount of smoothing seen in the average rainfall depth
calculations. The simulation program allowed the user to specify a fractiba of

pixel in which the first gage was located, with the rest of the area assugtied

second gage. Seven scenarios were modeled in this case, with the fractimedassig
the first gage varying from 0.2 to 0.8. This study was also conducted once with a
rainfall depth surface slope of 0 and a second time with a slope of 3. A slope of O
indicated a uniform storm, while a slope of 3 would have linearly increasing rainfall
between the two gages. Again 2 mm of rainfall were simulated as the minimum
rainfall depth, and a normal pdf with a mean of 2 and a standard deviation of 0.4 was

used to provide the random component of the rainfall depth.

5.2.3.2. Results and Discussion

The second analysis evaluated the effect of varying the amount of pixel area
associated with each rain gage. The results of the analyses with a slope of O ar
presented in Table 5-3, and a summary of loss of variation due to the averaging
methods is presented in Table 5-4. Table 5-5 contains the results of the andlyses
a slope of 3, and Table 5-6 contains the corresponding summary of loss of variation.
From the values in Tables 5-4 and 5-6, it is clear that the Thiessen polygon averaging
method generally loses less variation than the arithmetic averagihgdneteaning
that less smoothing will result from using the Thiessen polygon averaging method
than from using the arithmetic averaging method. The differences betweemthe t
methods are more dramatic when the rainfall depth varies more over the pixel. For
instance, when the rainfall surface was uniform and rain gage 1 had 70% of the pixel

area assigned to it the difference in standard deviations of the Thiessen polygon
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method and rain gage 1 was -0.105, while for the same scenario when there was
variability in the rainfall surface the difference between the stdmdkariations of the
Thiessen method and gage 1 was -0.180. When the gages represent different areas,
taking the average essentially amounts to assigning an incorrect voeggittt gage
estimate. A slope of 0 results in a uniform storm with no difference in rainfall
between the two gages. Thus, differences in the variations are expecteuiiallbe

in this case.

It is again interesting to note that when the rainfall surface variedatheestl
deviations calculated for the Thiessen polygon averaging method were in some case
higher than the standard deviations calculated for one of the two rain gages. For
instance, when the rainfall surface had a slope to it the difference in standar
deviations between the Thiessen method and rain gage 1 was 0.071, while the
difference in standard deviations between the Thiessen method and rain gage 2 was -
0.174. This is again due to one of the rain gages receiving a higher amount of rainfall

than the other because of the sloping rainfall surface.

Table 5-3: Results of Analyses for Varying Fractiorof Area Associated with Each Rain Gage with a Slap
of 0, where Arith. Means Arithmetic, and Std. DevMeans Standard Deviation

Area Gage 1| Gage 1| Gage 2| Gage 2| Thiessen| Thiessen| Arith. | Arith.

Fraction | Mean | Std. Mean | Std. Mean Std. Mean | Std.

Dev. Dev. Dev. Dev.
0.2 4.00 0.399 4.00 0.394 4.00 0.299 4.00 0.280
0.3 4.00 0.399 4.00 0.394 4.00 0.295 4.00 0.280
0.4 4.00 0.399 4.00 0.394 4.00 0.292 4.00 0.280
0.5 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280
0.6 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280
0.7 4.00 0.399 4.00 0.394 4.00 0.293 4.00 0.280
0.8 4.00 0.399 4.00 0.394 4.00 0.297 4.00 0.280
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Table 5-4: Summary of Loss of Variation Due to Aveaging for Varying Areas Associated with Each Rain
Gage with a Slope of 0, where Arith. Means Arithmet, and Std. Dev. Means Standard Deviation

Area Std. Dev. Std. Dev. Std. Dev. Std. Dev.
Fraction | Thiessen-Gage 1 Arith.-Gage 1 | Thiessen-Gage 2 Arith.-Gage 2
0.2 -0.100 -0.119 -0.095 -0.114
0.3 -0.104 -0.119 -0.099 -0.114
0.4 -0.107 -0.119 -0.102 -0.114
0.5 -0.108 -0.119 -0.103 -0.114
0.6 -0.107 -0.119 -0.102 -0.114
0.7 -0.105 -0.119 -0.101 -0.114
0.8 -0.102 -0.119 -0.097 -0.114

Table 5-5: Results of Analyses for Varying Fractio of Area Associated with Each Rain Gage with a Spe

of 3, where Arith. Means Arithmetic, and Std. DevMeans Standard Deviation

Area Gagel| Gagel | Gage 2| Gage 2 | Thiessen | Thiessen | Arith. Arith.
Fraction | Mean | Std. Mean | Std. Mean Std. Mean Std.

Dev. Dev. Dev. Dev.
0.2 4.30 0.433 5.80 0.792 4.92 0.539 5.05 0.454
0.3 4.45 0.474 5.95 0.718 5.11 0.545 5.20 0.433
0.4 4.60 0.526 6.10 0.648 5.31 0.549 5.35 0.420
0.5 4.74 0.586 6.25 0.581 5.50 0.551 5.50 0.415
0.6 4.89 0.653 6.40 0.521 5.69 0.549 5.65 0.420
0.7 5.04 0.723 6.55 0.469 5.88 0.544 5.80 0.433
0.8 5.19 0.798 6.70 0.428 6.07 0.538 5.94 0.455

Table 5-6: Summary of Loss of Variation for Varying Fractions of Pixel Area Associated with Each Rain

Gage with a Slope of 3, where Arith. Means Arithmet, and Std. Dev. Means Standard Deviation

Area Std. Dev. Std. Dev. Std. Dev. Std. Dev.
Fraction | Thiessen-Gage 1 Arith.-Gage 1 | Thiessen-Gage 2 Arith.-Gage 2
0.2 0.106 0.021 -0.253 -0.338

0.3 0.071 -0.041 -0.174 -0.285

0.4 0.024 -0.106 -0.098 -0.228

0.5 -0.035 -0.171 -0.030 -0.166

0.6 -0.104 -0.233 0.028 -0.101

0.7 -0.180 -0.290 0.075 -0.035

0.8 -0.260 -0.343 0.110 0.027

5.2.4. Effect of Varying Amount of Rainfall

5.2.4.1. Methods and Materials

The third analysis investigated the effect that increasing the minimuralrainf

depth had on the average rainfall depths. The minimum rainfall depths used were 1

mm, 2 mm, 5 mm, 10 mm, and 15 mm. This analysis was done twice, first with a
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slope of 0 and then with a slope of 3. A slope of 0 represented a uniform storm with
no systematic variation between the gages, while a slope of 3 had incraasiald
across the pixel. Again a normal pdf was used with a mean of 2 and a standard
deviation of 0.4 to provide the random component of the rainfall depth.

5.2.4.2. Results and Discussion

The third analysis considered the impact that varying amounts of rainfall
could have on the calculated average rainfall depth values. Table 5-7 presauits the f
results of this analysis for a rainfall surface with a slope of 0 and Tableds&nps
the summary of loss of variation associated with each of the averagingdse
Table 5-9 then presents the results of the same analysis for a slope of Flartsl Ta
10 presents the summary of loss of variation for this scenario. The results of this
analysis again suggest that the Thiessen polygon averaging method results in
somewhat less smoothing than the arithmetic averaging method. For example, t
difference in standard deviations between the Thiessen method and rain gage 1 for a
minimum rainfall depth of 5 mm was -0.108, while the difference in standard
deviations between the arithmetic method and rain gage 1 was -0.119 when the
rainfall depth surface had no variability. The difference between these liwes Vs
not significant.

For slopes of both 0 and 3 it would appear that the amount of rainfall does not
have an effect. The loss in variation is essentially constant, with sotmerahglom
variation, regardless of the amount of rainfall. As table 5-10 shows, the diffénence
standard deviations between the Thiessen method and rain gage 1 varied from -0.106

to -0.108 for minimum rainfall depths varying from 1 mm to 15 mm, and the
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differences in standard deviations between the arithmetic method and raih gage

varied from -0.119 to -0.121 for the same depths.

Table 5-7: Results of Analysis of Varying RainfalAmounts with a Slope of 0, where Std. Dev. Means
Standard Deviation, and Arith. Means Arithmetic

Minimum | Gage 1| Gage 1| Gage 2| Gage 2| Thiessen | Thiessen | Arith. | Arith.
Rainfall Mean | Std. Mean | Std. Mean Std. Mean | Std.

Depth Dev. Dev. Dev. Dev.

(mm)

1 3.00 0.399 3.00 0.394 3.00 0.291 3.00 0.280
2 4.00 0.399 4.00 0.394 4.00 0.291 4.00 0.280
5 7.00 0.399 7.00 0.394 7.00 0.291 7.00 0.281
10 12.00 0.399 12.00 0.394 12.00 0.298 12.00 0.280
15 17.00 0.399 17.00 0.396 17.00 0.29p 17.00 0.2[78
Table 5-8: Summary of Loss of Variation of Averagilg Methods for Varying Rainfall Amounts with a Slope
of 0, where Arith. Means Arithmetic, and Std. DevMeans Standard Deviation

Minimum Std. Dev. Std. Dev. | Std. Dev. | Std. Dev.

Rainfall Thiessen- | Arith.- Thiessen- | Arith.-

Depth (mm) | Gage 1 Gage 1 Gage 2 Gage 2
1 -0.108 -0.119 -0.103 -0.113
2 -0.108 -0.119 -0.103 -0.114
5 -0.108 -0.119 -0.103 -0.114
10 -0.106 -0.119 -0.101 -0.114
15 -0.107 -0.121 -0.104 -0.118
Table 5-9: Results of Analysis of Varying RainfalAmounts with a Slope of 3, where Std. Dev. Means
Standard Deviation and Arith. Means Arithmetic
Minimum | Gage 1| Gage 1 | Gage 2| Gage 2| Thiessen | Thiessen | Arith. Arith.
Rainfall Mean | Std. Mean | Std. Mean Std. Mean | Std.
Depth Dev. Dev. Dev. Dev.
(mm)
1 3.74 0.586 5.25 0.581 4.50 0.551 4.50 0.415
2 4,74 0.586 6.25 0.581 5.50 0.551 5.50 0.415
5 7.74 0.586 9.25 0.581 8.50 0.552 8.50 0.456
10 12.74 0.586 14.25 0.580 13.50 0.552 13.50 0.415
15 17.74 0.587 19.25 0.581 18.50 0.552 18.50 0.412
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Table 5-10: Summary of Loss of Variation for Varyirg Rainfall Amounts with a Slope of 3, where Arith.
Means Arithmetic, and Std. Dev. Means Standard Destion

Minimum Std. Dev. Std. Dev. Std. Dev. | Std. Dev.
Rainfall Thiessen- | Arith.- Thiessen- | Arith.-
Depth (mm) | Gage 1 Gage 1 Gage 2 Gage 2
1 -0.035 -0.171 -0.030 -0.166
2 -0.035 -0.171 -0.030 -0.166
5 -0.035 -0.170 -0.029 -0.165
10 -0.034 -0.171 -0.029 -0.165
15 -0.035 -0.175 -0.030 -0.170

5.2.5. Effect of Probability Distribution Function
5.2.5.1. Methods and Materials

The final factor investigated was the effect of the choice of pdf of the random
variation on the computed average rainfall depths for the pixel. The program allowed
the user to choose from a uniform pdf, a normal pdf, an exponential pdf, a gamma
pdf, and an extreme value pdf. Five scenarios were set up, one for each of the above
mentioned pdfs. When using the uniform pdf the parameters to be specified are the
lower bound and the upper bound. Values of 1.5 and 5, respectively, were chosen for
these parameters. In simulations using the normal pdf the mean and standard
deviation were the parameters to be specified. As with the previous analyses) a m
of 2 and a standard deviation of 0.4 were chosen. The exponential pdf required
specification of only one parameter. This parameter was set to 2.5 for thissanalys
The gamma pdf needed both a scale and a shape parameter. Values chosen for these
parameters were 2.5 and 3 respectively. The extreme value pdf also requined that t
parameters, the location parameter and the scale parameter, be spagdied.
values of 2.5 and 3, respectively, were chosen. A minimum rainfall depth of 2 mm
was simulated. While the results of these analyses are not directly edhepar

because of the differences in the pdfs, it was an interesting question to examine
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5.2.5.2. Results and Discussion

The final analysis compared the smoothing effects for several diffaiafelr
pdfs. Table 5-11 presents the results of these analyses, while Table Selispites
summary of loss of variation for each of the averaging methods. Due to difference
in the different pdfs it is difficult to truly compare these results; howeveesom
general conclusions can be reached. In every case the Thiessen polygon averaging
method smoothes the results less than the arithmetic averaging method, as seen in
Table 5-12. For example, for the exponential pdf the difference in standard
deviations between the Thiessen method and rain gage 1 was -0.634, while the
difference in standard deviations between the arithmetic method and rain gage 1 was
0.708. The normal pdf, which was used in all of the previous analyses, has the
smallest difference in loss of variation between the two averaging methtds, w
loss of variation of -0.108 for the Thiessen averaging method and a loss of variation
of -0.119 for the arithmetic averaging method, while the exponential, gamma, and
extreme value pdfs have significantly higher differences between thegawg
methods. If one of these pdfs were to be used further then it would clearly be to the
best advantage to use the Thiessen polygon averaging method rather than the
arithmetic averaging method to maintain as much of the original variation asSl@ossi
However, the differences between the Thiessen polygon and the arithmetgirayera
methods are significantly lower for the normal and uniform pdfs, indicatinghthat t
arithmetic method could be used without excessive loss of variation in an analysis
using either of these pdfs, because the parameters were set to have |l@atienvari

and therefore fewer extreme rainfall values.
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Table 5-11: Results for with Varying PDFs, where $t Dev. Means Standard Deviation and Arith. Means
Arithmetic

PDF Gage 1| Gage 1| Gage 2| Gage 2| Thiessen | Thiessen | Arith. | Arith.
Mean | Std. Mean | Std. Mean Std. Mean | Std.
Dev. Dev. Dev. Dev.
Uniform 5.26 1.011 5.24 1.015 5.25 0.745 5.25 0.717
Normal 4.00 0.399 4.00 0.394| 4.00 0.291 4.0Q 0.280
Exponential | 4.48 2.505 4.53 2.566 4.51 1.871 4.51 1.706
Gamma 9.49 4.347 9.61 4.382 9.56 3.213 9.5% 3.087
Extreme 3.44 2.646 3.39 2.651 3.42 1.947 3.41 1.873
Value

Table 5-12: Summary of Loss of Variation for Varyirg PDFs, where Arith. Means Arithmetic, and Std.
Dev. Means Standard Deviation

PDF Std. Dev. Std. Dev. | Std. Dev. | Std. Dev.
Thiessen- | Arith.- Thiessen- | Arith.-
Gage 1 Gage 1 Gage 2 Gage 2
Uniform -0.266 -0.294 -0.270 -0.298
Normal -0.108 -0.119 -0.103 -0.114
Exponential -0.634 -0.708 -0.695 -0.770
Gamma -1.134 -1.260 -1.169 -1.295
Extreme Value -0.699 -0.772 -0.704 -0.777

5.2.6. Conclusions

Analyses were conducted to determine the influence that several factors ha
on the loss of variation in rainfall estimates caused by using averagihgdae The
averaging methods compared were the Thiessen polygon method and the arithmetic
method. It was acknowledged that any averaging method would lead to smoothing,
or loss of variation, in the rainfall estimates calculated as compared to thaitfa#
values. The impact of four factors on the degree of smoothing was investigated. The
first was the storm variability, as measured by the slope of the storacsuahd then
the amount of watershed area represented by each of two rain gages wsisgait@ck
Next varying the amount of rainfall observed over the watershed was intedtiga

and the final factor was using different probability density functions tosept¢he
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random variation added to the rainfall estimates to represent the lack at perfe
correlation between real data sets.

One consistent trend was discovered in investigating the four factors
described. In all cases the Thiessen averaging method was seen to @esuitaller
amount of smoothing, and therefore less loss of variation as compared to the true
data, than the arithmetic method. In examining the results of the investigation int
the effects of storm variation two conclusions were reached. First, the mtifere
between the variation in the Thiessen averages and the true data decréased as
storm variability increased. The opposite was true for the arithmetic aseesghe
storm variability increased the difference between the variabilityeohverage value
and the true value was observed to increase. The second conclusion reached was that
though the absolute smoothing increased with increasing storm variability, the
relative smoothing remained fairly constant as the storm variabilityasede

The results of the gage area investigation showed that the amount of
watershed represented by each of the rain gages was most important fdy a hig
variable storm, as would be expected. Rain gage measurements would liksky be le
accurate for a highly variable storm, and thus any rainfall estimatesusisggethe
rain gage data would be a less accurate representation of the true raiafgihg\the
amount of rainfall observed over the watershed was not observed to influence the loss
of variation in rainfall estimates made using averaging methods. Finalkgsiiés
of the analysis of varying probability distribution functions were somewhat
inconclusive, as the different functions are difficult to compare to each otheas It w

determined; however, that the differences in variation between the Thiessgonpoly
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averaging method and the arithmetic averaging method were less sevenasivigea
normal or uniform probability distribution function as compared to the exponential,

gamma, and extreme value distributions.

5.3. Z-R RELATIONSHIPS

5.3.1. Introduction

As mentioned previously, radar data does not measure rainfall intensity
directly. Instead, the radar beam is reflected off of raindrops in thedabback to the
radar station to be measured. In order to obtain useful information about the rainfal
intensity a relationship between this reflectance and rainfall ratsets This
relationship transforms the radar readings to rainfall intensity. Thisiequstalled
the reflectance (Z) — rainfall rate (R) relationship. A unique ZiRiomship does not
exist, and the choice of equation used can influence the amount of rainfall that was
measured. This lack of a unique relationship between the radar reflectivity and the
rainfall intensity experienced can result in potentially significarttrerin converting
radar data to rainfall measurements (Gerstner and Heinemann, 2008)-RThe Z
equation is usually of the form:

Z=AR (5-1)
The National Weather Service uses one standard equation for most of the United
States. This equation is applicable to most of the climates and types of rainfall
experienced in the United States. This standard equation (Ulbrich and Miller, 2001)
is:

Z = 300R™ (5-2)
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5.3.2. Effect of Varying Z-R Relationship on Semivariograms — Trial 1
5.3.2.1. Introduction

Semivariograms are used to illustrate spatial variance in data sets.
Semivariograms are easiest to evaluate when measurements are mgde,on a
where the grid lines are a distance h apart. The notgtdms used to represent the
semivariogram for a separation distance h, related to the grid size, anentiey be
plotted agy(h) versus h. To determine the shape of the semivariogram two
characteristics are important. The separation distance where the segnarari
begins to approach a constant value is called the radius of influence. This value
occurs when a semivariogram approaches the sample variance. The second
characteristic is the sill. The sill is the portion of the semivariograerey(h) is
approximately the sample variance (Hromadka, 1993). Semivariograms will be
discussed in more detail in chapter 6. This experiment evaluated the effelot that t
R transformation equation used to convert radar data to rainfall rate data had on the
storm semivariogram.

5.3.2.2. Methods and Materials

The first experiment conducted to determine the effect that the Z-R
transformation equation had on the storm semivariogram used several diffé&tent Z-
relationships to determine the rainfall rate for the same measurectaafte values.
Watershed 1, which was a synthetic 60-km by 48-km with a total of 208 rain gages
was used with a synthetic storm, identified for future use as storm 2. Thish&tdrm
ellipses with major axes of 0-km at the center, 5-km, 12-km, 19-km, and 28-km.
Rather than a rainfall depth, a reflectance value, in decibels of reflectench is a

log scale, was input to the program for each ellipse. The reflectance ushtewere
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55-dBZ at the center, then 45-dBZ, 30-dBZ, 20-dBZ, and 5-dBZ. The program then
converted these values into true reflectance values from the decibel sdaty tise
radar, and calculated a semivariogram for the reflectance values.

After calculating the true reflectance values the program converted those
values into rainfall rate values using the given Z-R relationship. Fimedlpriogram
multiplied each rainfall rate value by a time increment of 5 minutes, whibk is t
standard time interval of radar scans. A semivariogram was then computieel for
rainfall depths. Five different commonly used Z-R relationships (Collier, 1996;

Morin et al., 2006) were compared in this experiment. Those relationships were:

Z =300R** (5-3)
Z = 655R" (5-4)
Z =500R" (5-5)
Z = 250R*® (5-6)
Z = 200R*® (5-7)

As with all of the semivariogram analysis experiments the relative béasiasd error
ratio, correlation coefficient, sill value, and radius of influence were reddoie
comparison.

5.3.2.3. Results and Discussion
The results of trial 1, shown in Tables 5-13 through 5-15, indicate that the

choice of Z-R transformation equation can significantly affect the computatibe of
semivariogram. Table 5-13 shows the results of a semivariogram computed from
reflectance data before a transformation was applied. Obviously the traatbtor

equation did not cause any change to occur in this data as there was change was not
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evident in the semivariogram parameters as the transformation equation véuieed. T
semivariogram was computed in order to compare any trends in the data to trends
found in semivariograms computed from rainfall depth information. In comparing
Table 5-13 to Tables 5-14 and 5-15 it is obvious that the sill values are signjficantl
different when reflectance data is used versus rainfall depth data, but theofadius

influence does not seem to be significantly different between the two data types

Table 5-13: Semivariogram Calculated for Reflectane Data

Z-R Maximum Sill Radius of Relative | Standard | R
Equation | Separation | (*10"° mm2) | Influence (km) | Bias Error

Distance (km) Ratio
Z=300R“ | 28 0.25 29 -0.011 | 0.138 0.992
Z=300R"“ | 32 0.18 18 -0.002 | 0.909 0.990
Z=655R"“ | 28 0.25 29 -0.011 | 0.138 0.992
Z=655R"“ | 32 0.18 18 -0.002 | 0.909 0.990
Z=500R" | 28 0.25 29 -0.011 | 0.138 0.992
Z=500R" | 32 0.18 18 -0.002 | 0.909 0.990
Z=250R* | 28 0.25 29 -0.011 | 0.138 0.992
Z=250R* | 32 0.18 18 -0.002 | 0.909 0.990
Z=200R* | 28 0.25 29 -0.011 | 0.138 0.992
Z=200R* | 32 0.18 18 -0.002 | 0.909 0.990

Table 5-14: E-W Semivariograms of Rainfall Depths @lculated from Reflectance Data Using Varying Z-R
Transformation Equations

Z-R Maximum Sill (mm2) | Radius of Relative | Standard | R
Equation | Separation Influence (km) | Bias Error

Distance (km) Ratio
Z=300R“ | 24 801.7 37 0.004 0.053 0.999
Z=300R“ | 28 629.8 27 0.010 0.157 0.980
Z=300R"“ | 32 490.3 20 0.009 0.818 0.653
Z=655R" | 24 262.6 37 0.003 0.053 0.999
Z=655R"“ | 28 206.4 27 0.010 0.157 0.980
Z=655R"“ | 32 160.8 20 0.009 0.818 0.653
0.500R* | 24 238.8 41 0.006 0.063 0.998
Z=500R" | 28 173.0 27 0.014 0.187 0.985
Z=500R" | 32 136.0 21 0.011 0.801 0.671
Z=250R* | 24 602.7 41 0.006 0.063 0.998
Z=250R* | 28 435.9 27 0.014 0.187 0.985
Z=250R" | 32 342.8 21 0.011 0.801 0.671
Z=200R | 24 519.6 16 0.001 0.938 0.516
Z=200R* | 28 334.2 47 0.008 0.078 0.998
Z=200R* | 32 264.8 27 0.017 0.213 0.981
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Table 5-15: N-S Semivariograms of Rainfall Depths &lculated from Reflectance Data Using Varying Z-R
Transformation Equations

Z-R Maximum Sill (mm2) | Radius of Relative | Standard | R
Equation | Separation Influence (km) | Bias Error

Distance (km) Ratio
Z=300R“ | 20 1145.7 49 0.007 0.076 0.998
Z=300R" | 24 615.4 24 0.017 0.207 0.983
Z=300R"“ | 28 469.1 18 0.013 0.589 0.620
Z=655R“ | 20 355.0 46 0.008 0.075 0.998
Z=655R"“ | 24 201.7 24 0.017 0.207 0.983
Z=655R"“ | 28 153.8 18 0.012 0.859 0.620
Z=500R" | 20 3775 60 0.011 0.094 0.997
Z=500R* | 24 168.5 23 0.020 0.240 0.977
Z=500R* | 28 129.7 18 0.015 0.845 0.637
Z=250R* | 20 1048.5 66 0.010 0.094 0.997
Z=250R" | 24 424.5 23 0.020 0.240 0.977
Z=250R" | 28 326.9 18 0.015 0.845 0.637
Z=200R* | 20 1501.3 125 0.012 0.111 0.905
Z=200R* | 24 324.4 23 0.023 0.267 0.971
Z=200R* | 28 252.0 18 0.017 0.831 0.651

Tables 5-14 and 5-15 show the effect that the Z-R transformation equation has
on both the East-West and the North-South semivariograms. Five commonly used Z-
R relationships were examined in this trial, but they do not vary in any sy&temat
way that allows data trends to be evident. What is evident, however, is that the
choice of transformation equation used can have significant influence on the fliitted si
and radius of influence. This indicates that calibration of a transformationaqguat
for a specific location would be necessary to obtain an accurate semivariogram. |
most weather radar applications, however, calibration of the Z-R relationstap is
done, and one or two standard equations are applied to most of the area of the United

States of America.
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5.3.3. Effect of Varying Z-R Relationship on Semivariograms — Trial 2

5.3.3.1. Introduction
The previous evaluation of the effect of Z-R equation on the storm

semivariogram considered several commonly used Z-R equations. This did not allow
for evaluation of thé\ andb coefficients individually. The purpose of this research

was to determine the effect of each coefficient individually on the calculated s
semivariogram.

5.3.3.2. Methods and Materials

The second experiment used to study the effects of the Z-R relationship on the
semivariogram was designed to consider the effect of each coefficientlirallyi
Therefore four Z-R relationships were used, which may or may not be relationships
commonly accepted, but which spanned the range of commonly used values. The Z-

R relationships used were:

Z = 200R** (5-8)
Z = 200R*® (5-9)
Z = 600R** (5-10)
Z = 600R"® (5-11)

These relationships varied tAeandb values individually and thus were able to
provide insight into the effect each coefficient had on the computed semivariogram
Watershed 1 and storm 2 were used as they were in trial 1, and as alwayditiee rela
bias, standard error ratio, correlation coefficient, sill, and radius of influeaee w

compared among the fitted semivariograms.
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5.3.3.3. Results and Discussion
Because the Z-R relationships examined in trial 1 did not vary in a systemati

way firm conclusions about the effect of the coefficieghtndb individually could

not be drawn. In order to determine the individual effect of the coefficient®adsec
study was conducted. The results of this study are presented in Tables 5-167and 5-
From these tables it is obvious that neither of the coefficients has anycsighifi

effect on the radius of influence. An increase in either of the coefficients, howeve
leads to a decrease in the sill values. This result is expected becauaedhedst

form of the equation calculates reflectance based on rainfall rate, soulatsalc
rainfall rate based on reflectance the equation must be solved for R, and the
reciprocals oA andb must be used. Whekor b increase their reciprocals decrease,
which explains the corresponding decrease in sill. This study again illushates
effect the choice of Z-R relationship can have on the semivariogram, whiabrcemf
the idea that the Z-R relationship must be calibrated in order to obtain an accurate

semivariogram.

Table 5-16: E-W Semivariogram for Varying Z-R Trangformation Equations

Z-R Maximum Sill (mm2) | Radius of Relative | Standard | R
Equation | Separation Influence (km) | Bias Error

Distance (km) Ratio
Z=200R" | 24 1428.9 37 0.004 0.053 0.999
Z=200R"“ | 28 1123.8 27 0.010 0.157 0.990
Z=200R“ | 32 875.0 20 0.009 0.818 0.653
Z=200R* | 24 512.0 46 0.009 0.078 0.998
Z=200R* | 28 334.2 27 0.017 0.213 0.981
Z=200R* | 32 264.8 21 0.013 0.785 0.687
Z=600R" | 24 297.8 37 0.004 0.053 0.999
Z=600R“ | 28 233.9 27 0.010 0.157 0.990
Z=600R“ | 32 182.2 20 0.009 0.818 0.652
Z=600R¢ | 24 128.4 45 0.009 0.078 0.998
Z=600R‘ | 28 84.7 27 0.017 0.213 0.981
Z=600R | 32 67.1 21 0.013 0.785 0.687
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Table 5-17: N-S Semivariogram for Varying Z-R Trandormation Equations

Z-R Maximum Sill (mm2) | Radius of Relative | Standard
Equation | Separation Influence (km) | Bias Error

Distance (km) Ratio
Z=200R“ | 20 1974.6 47 0.008 0.076 0.998
Z=200R" | 24 1098.4 24 0.017 0.207 0.983
Z=200R"“ | 28 837.5 18 0.013 0.859 0.620
Z=200R* | 20 1501.3 125 0.012 0.111 0.906
Z=200R* | 24 324.4 23 0.023 0.267 0.971
Z=200R* | 28 252.0 18 0.017 0.831 0.651
Z=600R"“ | 20 401.5 46 0.008 0.075 0.998
Z=600R"“ | 24 228.6 24 0.017 0.207 0.983
Z=600R“ | 28 174.3 18 0.013 0.859 0.620
Z=600R* | 20 386.9 127 0.012 0.111 0.995
Z=600R | 24 82.1 23 0.023 0.237 0.971
Z=600Rt | 28 63.8 18 0.017 0.831 0.651

5.3.4. Conclusions

Two studies were conducted to examine the effect of using radar reflectance
data rather than rain gage data to compute a semivariogram. To do this rainfall
reflectance was measured, and then a Z-R transformation equation was used to
convert the reflectance data to rainfall intensity, and then rainfall degth dat
unique Z-R equation does not exist, and the choice of equation used was seen to
significantly influence the semivariogram calculated. The sill wauere found to
be much more affected than the radius of influence values when radar reflectance da
rather than rainfall depth data were used. In fact, any increase in eitheorthe
coefficient values was found to decrease the sill value. This finding led to the
conclusion that it would be necessary to calibrate a Z-R equation for a specific

location in order to calculate an accurate semivariogram.
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5.3.5. Visual Comparison Between Radar and Rain Gage Data

5.3.5.1. Introduction
In order to make use of radar and rain gage data for future research into the

relationship between reflectance and rainfall rate, and into the use of dptdials

input to the unit hydrograph procedure, it was important to understand how the radar
data related to the rain gage data. Several methods were used to develop this
understanding, including a visual comparison using plots of both data sets and
calculating the correlation between the radar data and the rain gagdédsatisy the

visual inspection would reveal common patterns or trends to the data sets, such as
rising and peaking at corresponding times. The correlation analysis woallg ide

show a high degree of correlation, indicating a strong relationship between the
various data sets.

5.3.5.2. Methods and Materials

In order to visually compare the radar data and the rain gage data, both data
sets needed to be obtained. The Hydro-NEXRAD database used to obtain radar data
provides five possible radar scan elevations, at 0.5°, 1.5°, 2.5°, 3.5°, and 4.5° tilt
angles. Because which of these elevation scans would provide optimum coverage of
the Walnut Gulch Experimental Watershed was unknown, all five were obtained for
two storm events, occurring on August 13, 2006, and July 20, 2007. The rain gage
data were obtained from the Agricultural Research Services’ websitetfoobthese
storms. Then five of the sixteen radar pixels covering the Walnut Gulch area were
chosen for use in several analyses in an effort to get a thorough sample of the
watershed. The pixels chosen for this comparison were pixels 1, 4, 7, 10, and 16, as

described below as they appear in Figure 5-1. The squares of varyinglgrayace
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the pixels, and the dots within the watershed boundary are the rain gages. The top
left-most pixel, which contains the watershed outlet, is identified as pixel [k thhbi

top right-most pixel, which has only two rain gages within it, is identified as pixe
Pixels 2 through 6 are located between these two pixels. The second row of pixels
can be identified, moving from left to right, as pixels 8 through 13. The pixels in the
bottom row are identified as pixels 14, 15, and 16, again moving from left to right.
The final preparation step was to identify which rain gages were located Wi¢hi

boundaries of the pixels chosen for this study.

Figure 5-1: Map of Walnut Gulch Experimental Watershed Boundaries, Including the Locations of Rain
Gages and the Radar Pixels Associated with the Watsdred

Once all of the data sets had been identified and obtained, they could be
plotted against each other for comparison. The five radar scan elevations were
plotted on one graph in order to assess the degree of variation between the scan
heights. The rain gages were also plotted together, as either one figucefigures,
depending on the number of rain gages. Pixels 1 and 16 had six rain gages each, and
pixels 4 and 10 had eight rain gages each. After plotting six and eight rain gages on
one graph, it was observed that the graphs were cluttered and difficult to read,;

therefore two plots that contained half of the total number of rain gages were made
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for each of the pixels. Pixel 7, on the other hand, only contained two rain gages,
which were plotted on one graph without difficulty. The plot(s) that contained rain
gage data associated with each pixel were then compared to the plot thaecbntali
the radar scan elevation data, to determine what similarities existeeebethe data
sets. Perfect agreement between the radar data and rain gagesdaba exgpected,
as the two do not actually measure exactly the same thing; however thd desire
outcome was to detect general trends shared between the two data sets.

5.3.5.3. Results and Discussion

Figures 5-2, 5-3, and 5-4 and Figures 5-5, 5-6, and 5-7 provide a visual
comparison between the radar data for each of the five possible scan elevations and
the eight rain gages located within the bounds of the pixel for two different storms
The pixel identified as pixel 10 on the map was chosen for demonstration purposes,
because reasonable agreement was seen between the radar and raia gagercat
storm, while less agreement was seen for the other storm. The rain gaige dath
storm are presented on two separate graphs because including data fromreight rai
gages on one plot resulted in a cluttered and difficult to read graph.

In examining the three plots associated with the storm on August 13, 2006,
(Figures 5-2, 5-3, and 5-4) the agreement between the radar data and the rain gage
data appears moderate at best. However, it is important to note that theatadse
presented in decibels of reflectance (dBZ), which is a log scale. ThEpedia
seen in the radar data for scans 2 through 5 (Figure 5-2) is mirrored in thegein ga
data (Figures 5-3 and 5-4) fairly well; however, the rest of the data dgnmeet so
well. For the duration of the storm comparatively little variation in the radar

reflectivity readings is evident, which should indicate little variation irrénfall
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intensities. However, in the rain gage data, a large decrease in raitefadlity is
clearly seen. After this decrease only small variation in the measurealirainf
intensities is evident; however, the radar data seem to imply that thetiatebsing
measured should be higher. Also, a clear nonlinearity to the data is visible in the
radar reflectivity readings, which is not well reflected in the rain gage dgetter
agreement is observed when the radar data are transformed from decibels of
reflectance (dBZ) to reflectance (2), but these graphs show such a laeg®ran

the reflectance values that they are impractical to plot.

The three plots associated with the storm on July 20, 2007, (Figures 5-5, 5-6,
and 5-7) show somewhat better agreement between the radar data (dBZ) amd the rai
gage data. Again the first peak of the storm agrees well between thestiags
and the rain gage readings. Then the radar measurements decrease someskhat, whi
is also seen in the rain gage measurements. The decrease does agaiarseem
severe in the rain gage data than it does in the radar data. The more sevase decre
in magnitude of the rain gage data can be explained by the fact that theatadar
measures decibels of reflectance, rather than reflectance directijpeBeof
reflectance are measured by radar stations rather than reflelbtanaeese variations
over orders of magnitude are possible in reflectance. A conversion equation, which
will be discussed in more detail later, is used to convert the radar meassréorant
decibels of reflectance to reflectance in order to use the radar data fololgycland
meteorological purposes. Therefore, the rainfall measurements in detibels
reflectance mask the true severity of the changes in rainfall interisigctuality,

reasonable agreement does exist between the radar reflectance dataramigage
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data; however, it is not practical to plot this information due to the large variation i
reflectance values.

A final point of comparison between the radar and rain gage data is the
nonlinearity evident in the data sets. Similar to the storm event on August 13, 2006,
the radar reflectivities for the storm event on July 20, 2007, (Figure 5-5) ia@eds
then decrease again in a nonlinear pattern. While the rain gage measurements
(Figures 5-6 and 5-7) remain at a much lower level than that seen at the lgeginnin
the storm, the nonlinearity evident in the data is seen in all of the rain gagdsrec
While the radar measurements do not indicate that there should have been such a
decrease in the intensity of rainfall between the beginning and end of the stisrm a
seen in the rain gage measurements, the rain gages more accurately nietolkshe

of the radar data than was seen in the storm from August 13, 2006.
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Figure 5-2: Radar Reflectivity Readings for Scan Evations for Pixel 10 for 8-13-06 Event

100



—e— Raingage 17
—s— Raingage 24
Raingage 28

(mm’/hr)

—+<— Raingage 29

Rain Gage Rainfall Intensities

10:00 11:12 12:24 13:36

Time

Figure 5-3: Four Rain Gages Located Within Pixel 1@or 8-13-06 Event

50
%]
2 45
g 40
S . 23 —e— Raingage 33
..=<E 5 —a— Raingage 34
EE® Rai 81
T E 9 aingage
xr <
© 15 —— Raingage 399
& 10
c
= 5
@ 0

10:00 11:12 12:24 13:36

Time
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Figure 5-5: Radar Reflectivity Readings for Scan Evations for Pixel 10 for 7-20-07 Event
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Figure 5-6: Four the Rain Gages Located Within Pixel0 for 7-20-07 Event
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Figure 5-7: Four Rain Gages Located Within Pixel 1@or 7-20-07 Event

5.3.6. Cross-Correlation of Radar and Rain Gage Data

5.3.6.1. Introduction

The results of the visible comparison of the radar data and the rain gage data
warranted further investigation. The visual comparison did not provide convincing
evidence that a reasonably strong relationship existed between the twetdata
Therefore, the cross-correlation analyses between the radar and raimgesgetsl
was made for radar scan elevations 2 through 5 and every rain gage in thenfie s

pixels chosen.
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5.3.6.2. Methods and Materials

A cross-correlation program was used to compute the correlation between
each radar scan and each rain gage in the pixel. The correlation was calculated
between the data sets for nine different time lags: -4 (which means thaintigage
data was four time steps ahead of the radar data), -3, -2, -1, 0 (which means that the
radar and rain gage data were on the same time step), 1, 2, 3, and 4 (which means that
the radar data was four time steps ahead of the rain gage data). It wasdadaim
only a positive lag made physical sense because the radar measuresnehéken
while the rain was in the atmosphere, and the rain gage measurementkerere ta
when the rain reached the ground surface. Therefore the radar would have to measure
a given set of raindrops in the air before the rain gage could measure those same
raindrops on the ground. The correlation results for each time lag were conagpared t
determine the optimum time lag for each radar and rain gage combination.

The correlations were computed for two scenarios, described later, which
differed in how zero values were dealt with. First the correlations wearputed for
the raw data sets, in which the radar measurements were taken in decibels of
reflectance. Some alteration was necessary because the radar datd getgain
gage data sets needed to be the same lengths in order to compute the correlations.
Adjustments were also necessary to temporally align the data sets. The rada
measurements were taken at a fairly constant time increment of appeyimaery
four minutes and twelve seconds. The rain gage measurements, however, evere tak
at non-constant intervals depending on the intensity of rainfall. Theredorgyage
measurements could occur as frequently as every minute, or there could be as much

as an hour or more between readings. To calculate the correlations between the data
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sets it was necessary to have one rain gage reading for every oneaeuhay. rét
points when rain gage readings came more frequently than radar readingsage ave
rainfall intensity was calculated for the extra time steps, while teasity of rainfall
was assumed to be constant when the time between rain gage readingstas grea
than the time between radar readings. Once adjusted data sets had been argated us
this procedure, the correlations between the data sets could be calculated.

The final step involved eliminating zero values from the data sets. Because
these data sets were eventually going to be used to calibrate thdafigthsaips
between the radar and rain gage data, which use a power law, zero values could not
be included in the data sets. Two different methods were used to eliminate zero
values in the data sets. For scenario 1, a zero value that was present in ahata reco
for either the radar or the rain gage data record was completely deletibe. second
scenario, zero values were eliminated by adding a small number, insightbcthe
magnitude of the radar and rain gage measurements, to each measurement. A value
of 0.001 was chosen for this purpose. This resulted in any values that had been zero
in the original data set becoming 0.001, which could be logarithmically transforme
for use in the power model.

5.3.6.3. Results and Discussion

The results of the cross-correlation analysis for the storm on August 13, 2006,
are presented in Tables 5-18 through 5-22. Each table presents the crossecorrelat
result for each rain gage and radar scan level for one of the sample pixels used in thi
analysis. For instance, Table 5-18 contains the cross-correlation reselsih of
the four radar scan elevations for each of the six rain gages located witid.pix

Tables 5-23 through 5-27 present the results of the analysis for the storm on July 20,
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2007. Again, each table presents the cross-correlation results for each of the four
radar scan elevations for all of the rain gages located within a specific phe
correlations calculated for the same pixels appear to be relativelgrsionithe

different storms. The highest correlations are seen in the pixels locatest aluge
farthest, pixels 1 and 16, respectively, from the radar station located near Tucson,
Arizona, while the pixels in the middle of the watershed have consistently lower
correlations. While it makes sense that pixel 1 would have high correlation,tsgce i
closest to the actual radar, the reason for the high correlation of pixel 16 compared to
the three pixels in the center of the watershed is unclear. The variationgaioele

of the pixels could be responsible for this.

Wide variation in correlation is seen between the rain gages and radar scans in
the sample pixels, ranging from excellent correlations of up to approximatelya95%
poor correlations as low as 0.7%. However, overall acceptable correlate@mis s
between each radar scan elevation and at least one rain gage. In someioases, at
lag of 1 to 4 time steps, meaning that the rain gage data was between 1 and 4 time
steps ahead of the rain gage data, gave the optimum correlation between seésdata
This indicates that a time delay of several minutes is necessary to p@mggrlthe
radar and rain gage data sets to allow the raindrops measured by the raalein tbe
rain gage at the ground surface.

For this analysis, each lag unit corresponded to a time delay of 5 minutes. A
rough mathematical estimation was done to determine whether or not these lag value
made physical sense. The Walnut Gulch Experimental Watershed is loocated fr

approximately 50 km to approximately 70 km away from the radar station in Tucson,
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Arizona. Therefore, for scan level 2, for which the angle of the radar beam was 1.5°,
the radar beam was measuring the air between 1.31 km and 1.83 km above ground.
Assuming the rain drops were falling at terminal velocity, found to be appateiyn

6.5 m/s (Foote and Du Toit, 1969), it would take between 3.36 minutes and 4.69
minutes for these raindrops to reach the ground surface.

A similar analysis was completed for scan level 5. For scan level 5, for which
the angle of the beam was 4.5°, the radar beam was measuring the air between
approximately 3.94 and 5.51 km above the ground surface. From these heights,
falling at terminal velocity, the raindrops would take approximately 10.1 minutes to
14.13 minutes to reach the ground. Based on these calculations, lags of 1, 2, or 3 time
units do make physical sense. It should also be considered that the raindrops may not
actually be falling at terminal velocity. For instance, updrafts in the atm@sphe
could force the droplets to move in a jerky pattern, periodically being forced in the
upward direction by wind. Also, the terminal velocity used in these calculations
assumes a raindrop diameter of approximately 2mm. If the droplets were
significantly smaller than this they would be falling more slowly, and tberdfke
longer to reach the ground.

The purpose of this analysis was to determine whether or not a relationship
existed between the radar data and the rain gage data. Because the pisc@bims
discussed above did not provide convincing evidence that a strong relationship
existed between the two data sets, it was reassuring to see reasorraldéan
values result from this analysis. The correlation results found in this anialgsiate

that some relationship between the radar data and the rain gage datanedstag
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that the two data sets can safely be used to derive Z-R relationships forlthe Wa

Gulch Experimental Watershed.

Table 5-18: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 1 for the 8-13-06 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

0.7715| 0.8061| 0.7812| 0.8641

0.7812| 0.8547| 0.9215| 0.8522

0.6968| 0.7002| 0.6143| 0.6526

0.8185| 0.8962| 0.9447| 0.9185

0.7949| 0.7545| 0.8114| 0.8725

N[O AIN| -

92| 0.7855| 0.802| 0.8554| 0.8809

Table 5-19: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 4 for the 8-13-06 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

31| 0.4356| 0.5764| 0.5133| 0.6086

32| 0.2655| 0.4274| 0.5019| 0.0142

38| 0.5228| 0.6347| 0.6672| 0.5522

39| 0.1635| 0.2886| 0.0525| 0.1308

431 0.5322| 0.6639| 0.5612| 0.4524

44| 0.174| 0.2363| 0.1628| 0.0071

71] 0.2265| 0.3735| 0.4228| 0.0807

87| 0.4638| 0.6014| 0.6218| 0.3682

Table 5-20: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 7 for the 8-13-06 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

69| 0.582| 0.6088| 0.4458| 0.3895

70| 0.495| 0.6125| 0.494| 0.3976

Table 5-21: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 10 for the 8-13-06 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

17| 0.6069| 0.4814| 0.3194| 0.1285

241 0.4697| 0.4995| 0.6041| 0.3342

28| 0.6325| 0.6777| 0.5722| 0.3228

29| 0.5714]| 0.567| 0.7052| 0.469

33| 0.6668| 0.6942| 0.5073| 0.3318

34| 0.339| 0.285| 0.2571| 0.4816

81| 0.506| 0.5223| 0.6125| 0.4343

399 0.5383] 0.5971| 0.5459| 0.1448
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Table 5-22: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 16 for the 8-13-06 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

36 | 0.9359| 0.7319| 0.6612| 0.5416

37| 0.8302| 0.7591| 0.6664| 0.5716

42| 0.8079] 0.6601| 0.5949| 0.5816

47| 0.9503| 0.8169| 0.7323| 0.552

48 0.91| 0.7424| 0.7403| 0.6367

100| 0.6981| 0.7749| 0.6512]| 0.454

Table 5-23: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 1 for the 7-20-07 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

0.7272| 0.6839| 0.646| 0.5953

0.7475| 0.6865| 0.6434| 0.6013

0.6369| 0.5425| 0.4943| 0.4429

0.66| 0.6483| 0.605| 0.5609

0.6569| 0.6322| 0.6426| 0.659

N[O IN|F-

0.7176| 0.6247| 0.5879| 0.5485

Table 5-24: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 4 for the 7-20-07 Events

Gage| Scan 2| Scan 3| Scan 4| Scan 5

31| 0.3499| 0.3328| 0.3846| 0.262

32| 0.4879| 0.3535| 0.3601| 0.256

38| 0.216| 0.4563| 0.4175| 0.1471

43| 0.1145| 0.5665| 0.5214| 0.2637

441 0.1603| 0.0092| 0.0843| 0.2582

711 0.5749| 0.5043| 0.4521| 0.3164

871 0.4284| 0.3484| 0.3629| 0.2075

Table 5-25: Cross-Correlation Results of Rain Gagesnd Radar Scans in Pixel 7 for the 7-20-07 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

69 | 0.5023| 0.5127] 0.451| 0.4761

70| 0.5041| 0.5005| 0.4337| 0.4146

Table 5-26: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 10 for the 7-20-07 Event

Gage | Scan 2| Scan 3| Scan 4| Scan 5

17| 0.7566| 0.7594| 0.7545| 0.6005

24| 0.743| 0.8229| 0.7825| 0.4855

28| 0.5894| 0.714| 0.744| 0.5667

29| 0.3564| 0.4631| 0.5685| 0.3828

33| 0.5144| 0.6423| 0.6816| 0.4314

34 | 0.3645| 0.4641| 0.5504| 0.4085

81| 0.4732] 0.542| 0.6188| 0.5623

399 | 0.6742| 0.7237| 0.6866| 0.3995
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Table 5-27: Cross-Correlation Results for Rain Gageand Radar Scans in Pixel 16 for the 7-20-07 Event

Gage| Scan 2| Scan 3| Scan 4| Scan 5

36 | 0.8784| 0.5525| 0.4607| 0.4464

371 0.9093] 0.5582] 0.472| 0.4441

42| 0.8784| 0.5668| 0.4662| 0.4201

47| 0.8909| 0.5753| 0.4605| 0.4219

48| 0.6421| 0.413]| 0.2575| 0.2189

100| 0.8927| 0.5609| 0.4385| 0.404

5.3.6.4. Conclusions

Before radar data can be used to provide rainfall data in hydrologic analyses
is important to determine that the radar is capable of providing accursdtdirai
information. If radar data is going to be transformed into rainfall intedaity, then
some relationship should exist between the radar data and the corresponding rain gage
data that measures rainfall data at the ground. Visual comparison of the two data sets
did not provide convincing evidence that such a relationship existed; therefore the
cross-correlation between the two data sets was computed. While wideonasias
seen in the correlation values between the radar data sets and each of thgerain ga
data sets located within a given pixel, overall acceptable correlatic@agitgreater
than 0.5) was seen the radar data and the rain gage data. Since reasonablercorrelati
was seen in general between the two data sets it was concluded that enough of a
relationship existed in order to use the radar data for hydrologic analysesfolde
equations could be developed to transform the radar data into rainfall intenajty dat

for later use in hydrologic models.

5.3.7. Calibration of Z-R Equations Using Radar and Rain Gage Data

5.3.7.1. Introduction
Once it was established that acceptable correlation between the radardlata

the rain gage data existed, relationships between the radar reflecthresand the
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rain gage measurements could be calibrated. This was done using regression between
the two data sets. The National Weather Service, which operates a semeasharw
radar stations across the country, uses one standard equation for most locations. This
equation, which has been found to be valid for much of the United States, is:

Z =300R™* (5-12)
In some locations a second equation is available that is applicable to verycspecifi
rainfall types. However, it seems logical that rainfall in an arid or seichiregion,
such as Walnut Gulch, Arizona, could be significantly different from rainfall in a
more humid region, such as Miami, Florida. Therefore, the possible effects of
calibrating a relationship between rain gage and radar measuremenspémific
location were investigated.

5.3.7.2. Research Objectives

In order to develop relationships between rain gage measurements and radar
measurements specific to the Walnut Gulch area, regression was used. Bexause
radar measurements would ultimately be used to predict the rainfalltreteain
gage record (criterion variable) was regressed on the radar record (prediable).
Determining the level of variability in coefficients of the Z-R equatideseloped for
the Walnut Gulch watershed was one objective of this study. Therefore, the
variability in coefficients developed for the same radar pixel and the \dyiabi
coefficients developed for radar pixels in different portions of the waterséed w
investigated. These will reflect both within-pixel variation and betwmeeel
variation of the coefficients of the Z-R relationship. The variability of the
coefficients for the same rain gage under different storm conditions weas als

considered. This analysis does make the assumption that the rain gage data are
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accurate. In actuality, neither rain gage nor radar data are comptatetgate. If
measures of the probability density function of rain gage and radar data were
available, an uncertainty analysis could be conducted to assess the effect of
inaccuracies in these data sets. Other objectives included determingiffipth¢hat
accounting for the optimum lag determined by the cross-correlation anlafgsion

the equation coefficients, comparing both the coefficients and the performance of the
equations developed to those of the standard equation mentioned previously, and
investigating the sensitivity of rainfall predictions to the coefficieniesl

5.3.7.3. Regression of Z-R Equations
Regression analyses were performed between the five radar pixelsédcus

in the visual comparison and cross-correlation sections of this analysis and 15 of the
rain gages located within the boundaries of those pixels. To investigate theitariabi

in coefficients for the same pixel all eight of the rain gages located in pixeldl0 a

both of the rain gages located in pixel 7 were analyzed. To examine the variability i
coefficients for different portions of the watershed, in addition to the ten rais gage
already analyzed, two rain gages from pixel 1, two rain gages from pixel 4, and one
rain gage from pixel 16 were chosen at random for analysis. As firm conclusions had
not been reached as to the radar scan elevations that were most suitajaeofogic
analysis over the watershed, the data sets for scans 2, 3, 4, and 5 over each of the five
pixels were analyzed. The data sets for scan 1 were not analyzed because they
consisted almost entirely of zero values, most likely due to radar blockage in the
mountainous terrain. The data from the storms occurring on both August 13, 2006,

and July 20, 2007, were again used. Data files that contained a radar data set and a
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rain gage data set from one of the rain gages located within the radar pixel boundaries
were created for each of the 15 rain gages used in this analysis.

The data obtained directly from the radar could not be used in these analyses,
as the radar reports values in decibels of reflectance. The purpose of thisatudy w
determine the relationship between the rain gage data and reflectan¥e{ynnot
the rain gage data and decibels of reflectance. Therefore, thedawdeda measured
in decibels needed to be transformed into reflectance values measurefnm’ mm
using the equation:

Z =10""° 5-13)

where Z is reflectance and dBZ is decibels of reflectance. A regmgasigram
fitted a power model to each data set. The log-transformed power model (Equation
5-1) produced biased predictions; therefore the intercept value of each of the
calibrated Z-R equations had to be adjusted so predictions would be unbiased.

Ultimately three scenarios were evaluated for each rain gagecgarddata set
combination for both of the storm events. The first scenario developed regression
equations based on the data sets in which all zero values had been deleted. The
second scenario used the data sets in which a value of 0.001 had been added to each
data record to eliminate zero values, but the optimum lag found in the cross-
correlation analysis had not been accounted for in order to develop the regression
equations. The third scenario used the data sets in which 0.001 had been added to
every data record to eliminate zero values, and the optimum lag had been accounted

for in order to develop the regression equations. After using regression on each of th
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fifteen rain gages chosen for both storms under all three of the above-mentioned
scenarios, a large number of Z-R equations had been fitted.

Several criteria were used to evaluate the Z-R equations that wérateali
The goodness-of-fit statistics, including the standard error ratio and tle¢éatiorr
coefficient, were examined for each scenario. Then the calibrated equatiens wer
used to make rainfall intensity predictions. These predictions were compalned to t
rain gage data, which was assumed to contain the true rainfall rates. Bytsodptr
the rain gage measurements from the radar rainfall predictions made hjilthegted
Z-R equations the error in the predictions could be calculated. The calibrated
equations developed for each of the four radar scan elevations were compared to the
corresponding rain gage record in this manner.

The next step of this analysis was to determine whether or not calibrating
location-specific Z-R relationships could improve the accuracy of thpredictions
made for the study area. To determine this, the calibrated equations wereetcbmpa
to the standard equation (5-12) that is used at most of the radar stations in the United
States. Rainfall predictions were calculated using the standard equdhidhewi
various radar data sets instead of the calibrated equations. The errorsinfétle r
predictions made by the standard equation were compared with the errors@alculat
using the calibrated equations developed for the study area.

5.3.7.4. Results of Regression of Z-R Equations
The Z-R equations calibrated using the Walnut Gulch data were analyzed in a

variety of ways. The goodness-of-fit statistics were compared for the rsamgage
and radar combinations among the various scenarios. The rainfall intensity

predictions calculated by the calibrated Z-R equations were compared to their
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respective rain gage data records, and the errors in the rainfall peneslictions

were compared. Several statistical tests were performed to evakigtedhiction

errors. Statistical tests were used to compare the errors of the fatioegulerived

for the four radar scan elevations for one pixel and rain gage combination and to
compare the prediction errors made using the equations calibrated fenaayhar

scan elevation to prediction errors made using the standard equation. Finally,
equations with average coefficients were developed using the Z-R equations
calibrated for both storms for each pixel and rain gage combination and the goodness-
of-fit statistics and the errors calculated using these averageatguatre also

examined.

5.3.7.4.1. Comparison of Methods to Remove Zeros from Data Sets

Removing measurements of zero from the radar and rain gage data sets was
necessary in order to develop power equations to relate the data sets. Several
methods were used to remove these zeros values. The first of these was to simply
delete any data records including a zero value. The second was to add a small
number, insignificant in comparison with the data values, such as 0.001, to all data
records.

The best regression results seemed to be obtained when all zero recordings
were deleted from the data set. Table 5-28 illustrates this for the storm event
occurring on August 13, 2006, by comparing the goodness-of-fit statistics for the
equation derived from rain gage 5 and pixel 1, using the third radar scan elevation. In
this instance, deleting the zero values led to a decrease in the standardiembr rat

40%, and an increase in the coefficient of determination of nearly 60%, as compared
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to the statistics when 0.001 was added to all data records. This finding was not
entirely unexpected. In deleting the zero values, many of the zero vates w

removed from the data set, while adding 0.001 to every data value retained a lot of
very small rainfall values in the data sets. The addition of the low values fbeced t
equation fit to the data to take a different form than when the zero values were
deleted. When the zero values were not deleted, they were given too much weight in
the data set, and the resulting equation was forced to fit a number of very low rainfal
values. The equations developed when the zero values were censored fit the
moderate to high rainfall values that were observed, and thus better represent the

actual rainfall that was observed.

Table 5-28: Comparison of Goodness-of-Fit StatisticWhen Zeros Values are Deleted vs. When 0.001
Added to All Data Values for Storm on 8-13-06

Se/Sy| R R° | A b

0.001 Added | 1.151 0.0000.000| 0.001| 0.865

Zeros Deleted 0.637| 0.786 0.619| 0.146| 0.350

5.3.7.4.2. Effect of Accounting for Optimum Lag in Data Sets

Because the radar beam measures rainfall while it is in the air andithe rai
gage measures rainfall at the ground surface, a time lag of seveutéésnnay be
necessary in order to temporally align the radar and rain gage datalsetsptimum
time lag for each combination of radar scan elevation and rain gage data was
identified in the cross-correlation analysis discussed previously. In orgesgerly
account for the lag, a value of 0.001 had to be added to all data records to eliminate
zero values, rather than deleting those zero values. To account for the lag, the data
sets were adjusted in time by the number of time steps indicated by the opagwum |
value. So if the optimum lag value for a given combination of data sets was found to

be two, then the rain gage data was adjusted to be two time steps behind the radar
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data, as explained in the section describing the cross-correlation analysis. T
scenarios were modeled. First 0.001 was added to all data values, but the data sets
were not temporally shifted to reflect the optimum lag as determined byotbee ¢
correlation analysis. In the second scenario the data sets were tempafitaitite
account for the optimum lag as determined by the cross-correlatiofsianafter

0.001 had been added to all the data records.

The results of this analysis indicated that accounting for the lag improved the
goodness-of-fit statistics as compared to simply adding 0.001 to all values without
accounting for lag. Table 5-29 provides an example of this. The goodness-of-fit
statistics calculated using equations derived for the storm on August 13, 2006, at rain
gage 5 in pixel 1 using radar scan elevation 3 are presented. Accounting for the lag in
this instance decreased the standard error ratio by approximately 2&inghglasing
the coefficient of determination by approximately 4%. This representgha sli
improvement in goodness-of-fit statistics, which may not be significant, when
equations are developed after accounting for the optimum lag. The purpose of
determining the optimum lag was to determine whether or not a temporal shift in the
data sets improved the prediction accuracy between the two. Therefore, accounting
for the optimum lag in these situations strengthened the correlation betweadahe
data and rain gage data as expected. If a stronger relationship betweendhtat
sets used to develop a linear regression equation existed, it would have been logical
that the regression equation should better explain the variance in the data set, and

therefore should have better goodness-of-fit statistics.
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Table 5-29: Goodness-of-Fit Statistics When Accoumtg for Lag vs. Not Accounting for Lag

Se/Sy| R R° | A b
No Lag| 1.151| 0.000 0.000| 0.001 0.865
Lag 0.771| 0.658 0.434| 8.715*10° | 1.126

5.3.7.5. Evaluation of Rainfall Prediction Errors Made by Calibrated Z-R
Equations Using Hypothesis Tests

5.3.7.5.1. Methods

Several hypothesis tests were used to assess the errors in predictiony made b
the Z-R equations calibrated in this analysis. First, the errors made by the four
equations corresponding to the four radar scan elevation levels, as compared to the
rain gage measurements, were compared using an ANOVA single-fattol bes
test compared the mean values of each of the four sets of errors. Then a tve-sampl
t-test assuming equal variances was used to compare the means of thef dreors
calibrated equation and the standard equation for a given scan elevation level for one
pixel and rain gage combination. The final statistical test performed twas a
sample F-test on variance. This test was used to compare the standard deviations of
the errors in rainfall predictions calculated using both the calibrated@uaad the
standard equation for a given radar elevation scan for each pixel and rain gage
combination.

The null hypothesis for each of these tests would be that the means or the
standard deviations of the prediction errors were not different between the equations
being compared. If the null hypothesis was accepted for both the t-test ane¢he F-t
for the same radar scan elevation for a combination of radar and rain gagetslata
then this was assumed to indicate that a significant difference betweslitinated

equation and the standard equation was not detected. If a statistical difference
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between the two was not detected, then the calibrated equation does not provide
improvement over the standard equation, and the effort and time required to calibrate

specific Z-R relationships for a given location may not be necessary.

5.3.7.5.2. Results of ANOVA Single-Factor Test

The ANOVA Single-Factor test was used to compare the means of all errors
in rainfall predictions made by the equations calibrated for all four scarieteva
levels for a given pixel and rain gage combination. A 5% level of significance was
chosen for this analysis. The null hypothesis for the analysis of each set ®faexsor
that the means of each of the four sets of errors were equal to each other. [f the nul
hypothesis was accepted and the means were nearly zero, then this would imply tha
the models were either unbiased or equally biased. Tables 5-30 and 5-31 provide the
calculated F values and the calculated critical values of F used to makerderisi
the ANOVA Single-Factor tests for both of the storm events. In none of the analyse
was the null hypothesis rejected. This implies that the means of the ercoitateal
using the predicted equations for the four radar scan elevations were equal. The
means of each of the equations were also noted to be very close to zero. For instance,
the mean value of the errors calculated for pixel 1 and rain gage 1, using the second
scan level for the storm event on August 13, 2006, was 7.389*Ihis value is not
significantly different from zero, and thus it can be determined that the error
calculated using each of the Z-R equations for pixel 1 and rain gage 1 for the storm
event on August 13, 2006, are unbiased. The means of errors for the other pixel and

rain gage combinations for both storm events are of similar magnitude. Based on
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these results, each of the four radar scan elevations produced an unbiased Z-R
equation.

Table 5-30: F and Critical F Values for ANOVA Singke-Factor Test for 8/13/06 Event

Pixel | Rain Gage| Feritical | F Decision
1 1 2.732| 2.473*1¢ | accept H
1 5 2.751| 3.805*18' | accept H
4 32 2.730| 4.555*18 | accept H
4 38 2.766| 1.467*18 | accept H
7 69 2.669| 3.433*1 | accept H
7 70 2.669] 1.913*18 | accept H
10 |17 2.708| 0.006 accept H
10 |24 2.690| 4.755*18 | accept H
10 | 28 2.706| 9.155*18 | accept H
10 | 29 2.688| 5.168*18 | accept H
10 |33 2.713| 7.018*1H | accept H
10 | 34 2.692| 2.440 accept H
10 |81 2.700| 6.096*18 | accept H
10 | 399 2.711] 9.357*18 | accept H
16 | 47 2.715| 3.171*18 | accept H
Table 5-31: F and Critical F Values for ANOVA Singke-Factor Test for 7/20/07 Event
Pixel | Rain Gage| Fitical | F Decision
1 1 2.651| 2.346*18 | accept H
1 5 2.650| 2.281*1® | accept H
4 32 2.655| 2.048*1 | accept H
4 38 2.652| 0.014 accepp H
7 69 2.644] 0.025 accept H
7 70 2.642| 3.490*18 | accept H
10 17 2.656| 3.733*1H | accept H
10 | 24 2.652| 5.250*18 | accept H
10 | 28 2.648| 5.527*10 | accept H
10 | 29 2.649| 1.138*1H | accept H
10 |33 2.650| 6.048*1D | accept H
10 | 34 2.650| 9.927*1H | accept H
10 |81 2.650| 4.790*18 | accept H
10 | 399 2.646] 0.530 accepg H
16 | 47 2.659| 2.955*1H | accept H

5.3.7.5.3. Results of t-Test for Two Samples Assuming Equal Variances

A two-sided two-sample t-test that assumes equal variances was used to
compare the means of the errors calculated using a specific calidr&equation to

the means of the prediction errors calculated by the standard equation used by the

119



National Weather Service. The null hypothesis for these tests was laaaimet
means of the two error sets were equal. If the null hypothesis was adoagpdedon
the results of this analysis, the difference between the means of theipneslicirs

of the calibrated and standard equations was not significant. If this wasd¢hé cas
could indicate that the time and effort that went into calibrating Z-R equatioas for
specific location did not produce a significant improvement in rainfall predictions,
and therefore were not necessary. Conversely, if the null hypothesis wasdregect
significant difference between the means of the prediction errors made by the
standard equation and the calibrated equation did exist. Such a result would provide
evidence that calibration of Z-R equations is a useful step when using radas data
input for hydrologic models.

Tables 5-32 and 5-33 provide samples of the calculated t values and critical t
values used for making decisions for the two storm events. The null hypothesis was
accepted for at least one radar scan elevation for every single pixelragdgai
combination tested. Which scan levels had the null hypothesis accepted folreach ra
gage in the pixel was seen to be reasonably consistent. While the same ssan level
did not necessarily accept the null hypothesis for every single rain gage avithi
pixel, the same scan levels did have the null hypothesis accepted frequently.
Similarly, reasonable consistency was seen between the two stormanedgied in
which scan elevations had the null hypothesis accepted. In general, it seertiesl that
scan that had the null hypothesis accepted corresponded to the scan that had the best
goodness-of-fit statistics for the Z-R equation calibrated. This mighestgat

poor goodness of fit at any scan level indicate that the measured data do#leatot re
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the physical processes. The scan elevations that had the best goodrestatatits
should provide the most accurate rainfall estimates. These results mayeiticitat
calibration of Z-R equations is not necessary. If the errors in the rgrédiictions
calculated by the calibrated Z-R equation with the best goodness-ofifiticsado

not significantly differ in means from the errors in rainfall predictionsutated by

the standard equation, then the calibrated equations may not improve the predictions
compared to the standard equation. This may mean that the effort that is ndoessary
calibrate Z-R equations is not necessary. However, the results of thalbiesare

not sufficient to draw conclusions about the usefulness of calibrating Z-Ratuat

for specific locations because these results are only relevant to the méans of

prediction errors.

Table 5-32: Sample of t and Critical t Values for 8.3/06 Event

Pixel | Rain Gage| Scan Level| teigca | t Decision | Rejection Probability
1 1 2 2.064 0.916 | accept K| 0.369
1 1 3 2.021 -2.605| reject H, | 0.013
1 1 4 2.021 -1.979| accept H | 0.055
1 1 5 2.021 -1.731| accept H | 0.091

Table 5-33: Sample of t and Critical t Values for 720/07 Event

Pixel | Rain Gage| Scan Level| tgitca | t Decision | Rejection Probability
1 1 2 1.989 3.954 | reject 4 | 0.0002

1 1 3 1.984 1.670 | accept K| 0.098

1 1 4 1.984 -1.779 0.078

1 1 5 1.983 -3.211| reject K, | 0.002

5.3.7.5.4. Results of Two-Sample F-Test on Variance

The standard deviation of a set of errors is the standard error, which is a
measure of the accuracy of a statistic. The standard deviations of the exdersam
calculating rainfall predictions using the calibrated Z-R equations anddtetwn
errors made by the standard equation were compared using a two-sided phe-sam

F-test on variance. The null hypothesis for these analyses was thahtedta
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deviations of the two sample sets were equal. Similar to the t-test, if the null
hypothesis was accepted for a given scan elevation level for a pixel andgain g
combination, then the standard deviations of the errors made when using the
calibrated equation and the standard equation were not significantly diffefrém. |
null hypothesis was rejected, then the differences in the standard deviations of the
errors in rainfall predictions were significant. This could provide evidencéhthat
calibration of Z-R equations for specific locations could be a valuable tool to
hydrologic analyses using radar data.

Tables 5-34 and 5-35 provide a sample of the calculated F values and the
critical F values used to make decisions in this analysis. With one exception, the
storm event on August 13, 2006, for rain gage 399 in pixel 10, at least one scan
elevation level had the null hypothesis accepted for every scenario modeled. These
results may indicate that, for these scan elevation levels at ledstatal of Z-R
equations for specific locations does not significantly improve the rainfaligbiens.
However, the scan elevation levels that had the null hypothesis accepted foeshe F-
were not necessarily the same scans that had the null hypothesis acuehied-f
test. They also did not correspond to the scans with the best goodness-of-fitstatisti
for the Z-R equations as well as the results of the t-test did. In order to draw
conclusions about the necessity of calibrating Z-R equations, the comparison of the
results of the t-test and the F-test need to be coordinated for each radalesation

level for each pixel and rain gage combination.
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Table 5-34: Sample of F and Critical F values for 83/06 Event

Pixel | Rain Gage| Scan Level| Fgiica | F Decision
1 1 2 3.277 2.47Baccept H
1 1 3 2.465 545.35preject H
1 1 4 2.465| 4156.83[reject H
1 1 5 4.464| 4324.72Breject b

Table 5-35: Sample of F and Critical F Values for /20/07 Event

Pixel | Rain Gage| Scan Level| Fgigca | F Decision
1 1 2 1.870| 1.056 accept H
1 1 3 1.770| 1.053acceptH
1 1 4 1.770| 3.648reject K
1 1 5 1.780| 4.0038reject K

5.3.7.5.5. Conclusions Based on Results of t-Test and F-Test

If the null hypothesis was accepted for the t-test and the F-test for the sam
scan elevation for the same pixel and rain gage combination, then neither the means
nor the standard deviations of the errors in predictions from the calibrated equation
and the standard equation were significantly different. This gives a stidingtion
that calibration of Z-R equations does not significantly improve the rainfall
predictions, which makes a strong argument for simply using the standard equation
rather than calibrating equations for specific locations. Unfortunatebn wh
comparing the results of these two analyses for all of the scenarios macidd,
were not found to indicate that calibration was unnecessary. While the null
hypothesis was accepted for both tests for several scenarios, theed {gast an
equal number of scenarios in which the null hypothesis was rejected for one or both
of the tests. This indicates that in many of the modeled scenarios, significa
differences do exist in either the mean, standard deviation, or both betweewihe err
in rainfall prediction made by the calibrated equation versus the standarwequat
The lack of strong, consistent evidence of a lack of difference is evidence that

calibration of the Z-R relationships for a specific location could be useful, and
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possibly even necessary, if using radar data as input to hydrologic mivdefsler to
draw firmer conclusions, the effect that calibration of equations has on the goodness-
of-fit statistics and overall accuracy of the predictions must be examined.
5.3.7.6. Evaluation of “Averaged Coefficient” Z-R Equations
5.3.7.6.1. Methods

Finally, the variation in the Z-R equation coefficients between storm events
was investigated. A Z-R equation was calibrated for each radar pixel andgain ga
combination for two separate storms. Pandb coefficients from the two
equations calibrated for the same radar pixel and rain gage combination for two storm
events were averaged, resulting in a new Z-R equation for each radar pixahand r
gage combination. The goodness-of-fit statistics for rainfall predictions mexe us
these equations with average coefficient values were calculated and coropared t
those calculated using the two Z-R equations calibrated for each of the two storm
events for the given radar pixel and rain gage data set combination. Raiefaltint
predictions were made using the Z-R equations with the average coeffaliees as
described previously. Then the errors in predictions were calculated for thgeave
eqguations, and these were compared to the errors made using both of the calibrated
equations as well as the standard equation for the given pixel and rain gage
combination. This analysis investigated the sensitivity of the rainfallqiieat to

the coefficients of the Z-R equation.

5.3.7.6.2. Results of “Averaged Coefficient” Z-R Equations

When comparing the Z-R equation coefficients calibrated for a given rain

gage between the two storm events used in these analyses more similarity i
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coefficients than expected was observed. Therefore, to evaluate how sensitive the
rainfall predictions were to the coefficients of the Z-R equation, the aveahges of
the A andb coefficients for the same pixel and rain gage combination were calculated
based on the calibrated coefficients for both storm events. Rainfall prediceéoms w
made for both storms using these Z-R equations with average coefficients, and the
errors in rainfall rate predictions, as compared to the rain gage meastgawere
calculated. The goodness-of-fit statistics for these equations with averag
coefficients were also calculated and compared to those of the calibratédrequa

for each storm. Then the accuracy of predictions and goodness-of-fit stdtistice
calibrated equation, standard equation, and average equation for a given radar and
rain gage combination could be evaluated.

The results of this analysis led to several interesting conclusions. A clear
trend in the effects of the average coefficients on the goodness-of-fiictatias not
observed. In some cases, when the average coefficients were used to predlict rainf
the goodness-of-fit statistics were seen to significantly worsen, but iy caaes a
significant change was not observed in the goodness-of-fit statisticthe use of
average coefficient values. The means and standard deviations of the standard
equation prediction errors, the calibrated equation prediction errors, and thgeavera
equation prediction errors were all calculated and compared. Wide variation was
seen in the mean values of the errors; however, significant variation in standar
deviation values was not always observed. The observations suggest that only
calibrated equations typically provide unbiased rainfall predictions; howteebias

seen in the standard equation and average equation prediction errors, while sometimes
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quite significant, does not necessarily significantly influence the acgwf the
rainfall estimates.

5.3.7.7. Conclusions
The results observed made it difficult to reach conclusions regarding the

necessity of location-specific calibration of Z-R equations. In generahlaased
model is desirable, however the rainfall predictions made using the standard Z-R
equation tended to be biased while the predictions made using the calibrated
equations tended no to be biased. However, the goodness-of-fit statisticsalculat
in this analysis suggest that calibration of a Z-R equation for a location is not
guaranteed to improve the rainfall estimates calculated as compared et
equation. Significant improvements in goodness-of-fit statistics for thalainf
predictions made using the standard equation and the calibrated equation were not
consistently observed.

The process of calibrating Z-R equations for a given set of radar and gain ga
data is a fairly time- and labor-intensive task. Therefore, the decision dfeviost
not to calibrate Z-R equations for a specific location when using radar data in a
hydrologic model may need to be made on a case-by-case basis. If corresponding
radar and rain gage data sets are readily available for the locationethap$
calibration of equations would be wise. On the other hand, if rain gage and radar data
that correspond well are not easily available, using the standard Z-fecreould
suffice for most hydrologic analyses. The specific analyses to be condhoidd
also be considered. If, for instance, high accuracy and confidence in the reanlts of
analysis are desired calibration of Z-R equations would likely be adviskilhe

aim of the analysis is only to determine a general estimate, and high@cisunot
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necessarily needed, the standard equation would more than likely provide acceptable

results.
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CHAPTER 6

ANALYSIS OF FACTORS AFFECTING THE

SEMIVARIOGRAM

6.1. INTRODUCTION

Semivariograms are often used in hydrological analysis as they caratkus
spatial or temporal variance in sample data. Semivariograms are easiastiatee
when measurements are made on a grid, where the grid lines are a distamte h apa
In these experiments a square or rectangular grid was used withtisyratiméall data
to model a watershed. The notatigh) is used to represent the semivariogram for a
separation distance h, and they are often plottethdsersus h, where h is the
separation distance between the grid points. This graph will pass through the origin,
and then it will gradually increase as the separation distance ingrepsetil a
certain point, after which it will not increase further. It is possible, in szases, for
a y(h) to decrease as the separation distance increases, but this usually oemg happ
when the sample size is small and the separation distance is large. f\thiashape
of the semivariogram is concerned, two characteristics are partycuhgobrtant.
The separation distance where the semivariogram begins to approach atc@hsta
is called the radius of influence. This value occurs when a semivariogram approache
the sample variance. The second characteristic is known as the sill. | Ththsil
portion of the semivariogram wheygh) is approximately the sample variance

(Hromadkeet al., 1993).
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Semivariograms are a commonly used analysis tool used in hydrological
modeling. They serve as an input to the kriging method, which is used to interpolate
rainfall values in areas where no data exists. Kriging is often used to predit ra
at points where no rain gage exists or where data is missing for a time period.
Semivariograms are also used to evaluate the accuracy of gage datdforé&leer
semivariogram is an intermediate step to evaluating the spatial véyiabilainfall
based on data from a gage network (Chetrad., 2007). Because dense gage
networks are very rare and many watersheds do not even have one rain gage, another
method of computing semivariograms in order to predict rainfall would be desirable.
Radar data may one day be able to fill this gap and provide input to the kriging
method for the purpose of predicting rainfall at any point on a watershed.

The objective of these semivariogram studies was to determine the effect tha
various storm characteristics could have on the calculated semivariogram.
Semivariograms are often used to estimate rainfall when data are nabkyab it is
important to understand how characteristics of the rainfall itself could influbose
estimates. The results of this research could then be compared to futureustungies

other methods rainfall data sources, such as radar data.

6.2. COMPUTER PROGRAMS USED IN ANALYSES

Several computer programs, referred to as the RADARXX programs, were
developed for the semivariogram analyses. Though each program had its own
specific purpose, they all required the same general input data, and theydigav
same general output. The general input data required by each program included

information about the study watershed and storm. In order to construct the
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watershed, each program needed information about the length and width of the
watershed, which was assumed to be rectangular in order to relate theofaheise
studies to potential future studies involving radar data, as well as the spaeiegrbe
nodes of the watershed grid, with each node representing a rain gage. A variety of
information relating to the size, shape, and movement of the storm was also required
by each program. Because each storm was modeled as a series of collgesesc e

the program required information about the length of the major axis of each ellipse
and the ratio of the major axis to the minor axis, which was assumed to be the
uniform across the ellipses of each storm. The program also required the rainfall
depth that each ellipse boundary represented. Finally, in order to simulate a moving
storm, each program required information about the velocity of the storm, the
direction in which the storm was moving, and the number of time periods for which
the storm should be simulated. Each of the programs allowed the user to choose from
several possible semivariogram models. The spherical model, which is the most

commonly used of the semivariogram models, was utilized in these studies.

6.3. EFFECT OF STORM SHAPE

6.3.1. Introduction

Real storms have many different shapes and sizes. In an attempt ty identif
the effect of storm shape on storm semivariograms, the shape of a storm was
modified over a variety of modeling runs. To do this, synthetic elliptical stormes we
created, and then the ratio of the major axis to the minor axis of the ellipse was
changed so that the storm varied in shape from circular to elliptical. Whilemmest

storms are neither perfectly circular nor elliptical, this expenirde provide some
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insight into how the changing of the shape of a storm could change the
semivariogram calculated for that storm. This study was also used to eviaduate t
possibility of assuming storm isotropy, by comparing the East-West, North;Sout

and nondirectional semivariograms.

6.3.2. Methods and Materials

To examine the effects of storm shape on the semivariogram the ratio of the
lengths of the major to minor axes of the storm ellipses was varied. A progem wa
developed to create a storm and a watershed. The grid, which will be referred to as
watershed 1 for future use, was 60-km long and 48-km wide, and it had 208 nodes, or
gages spaced 4-km apart. The storm that was created, which will be refexsed t
storm 1 for future use, contained five ellipses each representing differdatlrai
values. The ellipses each hadaato-b ratio of 1.25, and the major axes were 0-km
for the center of the storm, then 6-km, 15-km, 27-km, and 38-km. The inner ellipse
represented a total rainfall depth of 11 mm, then 9 mm, 7 mm, 4 mm, and finally 2
mm. For this particular research objective watershed 1 was used with storm 1;
however, the ratio ad-to-b was changed in each program run. A velocity of 5 km/hr
was chosen for the storm velocity. This watershed and storm information was input
into the program multiple times, each time changing the value eftibv ratio.

Values of 1.0, 1.1, 1.2, 1.25, 1.3, 1.4, and 1.5 were chosen, and the program was run
using each of these ratios.

The output file for each of these runs was examined, and it was determined
due to the level of variation in data that the values of 1.0, 1.25, and 1.5 should be

further examined. The trends for the other ratios were very similar. The &lgput
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for each of these ratios contained a semivariogram for each storm movement. The
most representative semivariogram values were chosen for each ratio, and then thos
semivariograms were further evaluated. For each separate stornative l@hs, the
standard error ratio, the correlation coefficient R, and the final estiiaties sill

and radius of influence were recorded for comparison.

6.3.3. Results and Discussion

The results of this study, shown in Tables 6-1 and 6-2, show that the choice of
the storm shape has little, if any, influence on the calculated semivariog@itaam.
fitted semivariogram in the East-West direction did not show significant elii¢erin
values of the sill or radius of influence for the ratios of 1.0, 1.25, or 1.5. The fitted
semivariogram in the North-South direction did show some significant change in the
sill, though a change was not detected in the radius of influence. It is believed,
however, that any change seen in the sill values in the North-South direction is due to
the storm overhanging the edge of the watershed, rather than a diretcoefie
change in tha-to-b ratio. The radius of influence of the semivariograms in the
North-South direction are much smaller than the East-West direction belcause t
major axis of the storm was oriented in the East-West direction. This meatigethat
storm was longer than it was wide, and the storm affected a smaller distdnee i

North-South direction than it did in the East-West direction.

Table 6-1: E-W Semivariograms for Storms of VaryingShapes

a-to-b | Sill (mm?) | Radius of Relative | Standard R

Ratio Influence (km) | Bias Error Ratio

1.0 5.8 40 0.033 0.256 0.962
1.25 | 5.6 40 0.035 0.270 0.967
1.5 5.7 40 0.028 0.235 0.975
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Figure 6-1: E-W Semivariograms Where Ratio 1, Ratid..25, and Ratio 1.5 Denote Differing Storm Shapes

Table 6-2: N-S Semivariograms for Storms of VaryingShapes

a-to-b | Sill (mm?) | Radius of Relative | Standard R
Ratio Influence (km) | Bias Error Ratio
1.0 3.0 28.8 0.034 0.383 0.983
125 | 45 27.0 0.033 0.443 0.910
15 5.8 26.3 0.041 0.036 0.943
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Figure 6-2: N-S Semivariograms Where Ratio 1, Rati4.25, and Ratio 1.5 Denote Differing Storm Shapes

study. The East-West, North-South, and nondirectional semivariograms output by the

The possibility of assuming storm anisotropy was also considered dusng thi

program were compared for each storm computed. If the values of the

semivariograms were similar between the three, and if the generahpaite

ascending and descending values had been the same, the assumption of isotropy

would have been declared acceptable. However, despite the fact that the values of
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each semivariogram were all of the same magnitude, the variation in the data wa
considered excessive. Therefore, it was determined that the storms shoeéddak t

as anisotropic events, rather than as isotropic events.

6.4. EFFECT OF STORM SIZE COMPARED TO WATERSHED

6.4.1. Introduction

The first synthetic storm created to evaluate these questions of intesest wa
spatially large storm in comparison to the watershed. The variability of the
semivariogram for the storm discussed in section 6.3 was less than expected. A
possible explanation put forth for that result was that, because the storm was larg
than the watershed, the rain gages were not experiencing the full variahitigy of
storm. In order to evaluate the validity of this hypothesis a second, snailfer s

was created and studied.

6.4.2. Methods and Materials

To determine that the effect that the storm size had on the semivariogram, two
different storms were simulated on the same watershed. Watershed 1 waghused wi
both storms. The first step to providing answers to this question was to simulate
storm 1 on the watershed. This served as the first case in which the stornderas wi
than the watershed. A semivariogram generated for this storm was chosen to be
edited for further investigation. The relative bias, the standard etimrthee
correlation coefficient R, and the final estimates for the sill and radius oéndé of

the semivariogram were recorded.
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The next step was to create a smaller storm that would not be wider than the
watershed itself. For this storm, which will be referred to as storm 2 foefusay,
thea-to-b ratio of 1.25 was maintained, but smaller valuesafaere used. The
largest value oh used in the storm was 28-km, then the smaller ellipses had values of
19-km, 12-km, 5-km, and 0-km, with the 0-km being the storm center. The rainfall
values were also held constant from the first storm. Information about thisvgésm
input into the program, and then a semivariogram was chosen for further use from the
output of this program. All of the information that was recorded in the first storm
was recorded for this storm. Comparisons between these values were made in order

to determine the effect the storm-to-watershed width ratio had on the Segnaar.

6.4.3. Results and Discussion

The results of this study, shown in Tables 6-3 to 6-6, indicate that the size of
the storm in comparison to the size of the watershed can have an effect on the
semivariogram. In looking at the East-West semivariograms it is evidenothiaef
smaller storm the radius of influence decreases while the sill insredbés increase
in sill is due to the fact that the storm ellipses are closer together tharmthlbse
larger storm, so the watershed experiences a larger variation in rainfaldectease
in radius of influence is due to the fact that the smaller storm is narrowehthan t
larger storm. Therefore, the ellipses, which represent isohyets, aetolgsther and
spatial correlation ends at a closer distance. Less effect is visibke Notth-South
semivariograms. This result was expected, and is caused by the storm moving in an

East-West direction across the watershed.
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Table 6-3: Storm 1 E-W Semivariogram for Varying Sbrm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 32 18.0 159 0.041 0.238 0.975
5 36 5.5 49 0.040 0.278 0.966
10 28 32.3 278 0.060 0.248 0.974
10 32 9.4 82 0.038 0.268 0.969
10 36 4.6 35 0.046 0.342 0.948
15 32 19.9 176 0.040 0.238 0.9175
15 36 5.5 45 0.040 0.278 0.967
20 28 29.8 243 0.057 0.233 0.9[77
20 32 27.5 224 0.045 0.196 0.983
20 36 13.5 111 0.030 0.203 0.982
20 40 6.1 45 0.036 0.251 0.972
Table 6-4: 2 E-W Semivariogram for Varying Storm Vdocities
Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 24 43.6 206 0.063 0.270 0.970
5 28 11.0 52 0.041 0.305 0.960
5 32 6.9 29 0.045 0.399 0.929
10 24 54.3 251 0.033 0.278 0.969
10 28 12.7 60 0.041 0.302 0.961
10 32 7.2 30 0.046 0.392 0.932
15 24 43.6 206 0.063 0.270 0.910
15 28 11.0 52 0.041 0.305 0.960
15 32 6.9 29 0.045 0.399 0.929
20 20 38.6 187 0.059 0.269 0.9172
20 24 10.4 51 0.034 0.280 0.968
20 28 6.2 27 0.0396| 0.321 0.9p6
Table 6-5: Storm 1 N-S Semivariogram for Varying Sérm Velocities
Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 24 22.9 154 0.049 0.249 0.975
5 28 6.5 43 0.037 0.277 0.967
10 24 25.6 177 0.050 0.245 0.9176
10 28 6.6 44 0.037 0.268 0.970
10 32 4.9 30 0.039 0.326 0.953
15 24 24.1 163 0.049 0.248 0.9175
15 28 6.4 42 0.037 0.277 0.968
20 24 25.1 170 0.050 0.248 0.9f75
20 28 6.6 43 0.037 0.275 0.968
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Table 6-6: Storm 2 N-S Semivariogram for Varying Sérm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard | R
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 20 34.2 133 0.048 0.271 0.972
5 24 6.90 24 0.045 0.386 0.989
10 20 41.6 164 0.050 0.269 0.9[73
10 24 6.90 24 0.045 0.383 0.989
15 20 34.2 133 0.048 0.271 0.9[72
15 24 6.90 24 0.045 0.386 0.989
20 20 46.3 171 0.054 0.270 0.9[72
20 24 8.50 30 0.041 0.335 0.954

6.5. EFFECT OF STORM VELOCITY

6.5.1. Introduction

Actual rain storms can travel at many different velocities. The velotay o
storm is a function of the storm type and the climate conditions at the time. It was
hypothesized that differences in velocity could impact the semivariograimefor t
storm. To evaluate this hypothesis the same storm was simulated overshe&dhte
while moving at several different velocities, and then the computed semizmiegr

were compared.

6.5.2. Trial 1

6.5.2.1. Methods and Materials

In order to determine the effect of storm velocity on the semivariogram,
watershed 1 and storm 1 were utilized, with a slight modification. While most of the
information from storm 1 was utilized, the velocity of the storm was variectn ea
simulation. This storm information was input to the program four separate times
with the velocities of 5 km/hr, 10 km/hr, 15 km/hr, and finally 20 km/hr. The

semivariograms output from this program were examined, and then one was selected
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from each velocity simulation to be further evaluated. Several stab$ties fitted
semivariogram were recorded for future comparison and analysis.

6.5.2.2. Results and Discussion

The results of this trial, which are shown in Tables 6-7 and 6-8, indicated that
the velocity of the storm had very little effect on the fitted semivarograhe
values for the sill oscillated between 6.4 frand 6.6 mrf while the values for the
radius of influence fluctuated between 41 and 44 km. It was interesting to note that
the semivariograms computed by the program for the storms with velatibes
km/hr and 15 km/hr were exactly identical. This fact, coupled with the lack of
significant difference between the calculated parameters for ot \&elocity led
to an unexpected conclusion. Based on these facts it was determined that the velocity
of the storm was less important than where the storm center landed in relatien to t
rain gages. A storm traveling at a relatively constant speed over ahedt@rsh
gages spaced uniformly over the watershed can be responsible for showingitiat stor
velocity does not influence semivariogram characteristics. This ieditdaat the
semivariogram would be more impacted by the rain gage density and rain gage
locations, as well as the storm size than it would by the actual velocity stiotine.
It is expected that when the storm center lands relatively near a garagd the
storm is sized so that the watershed experiences the full range afl montained by
the storm a higher variation in the semivariogram will result. Conversehg if t
center of the storm lands relatively distant from any gage and the st@gds |
enough that the full variation is not felt by the watershed little variatidrsiadw in

the semivariogram.
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Table 6-7: E-W Semivariogram for Varying Storm Velcaities

Velocity | Sill (mm?) | Radius of Relative | Standard R
(km/hr) Influence (km) | Bias Error Ratio

5 4.1 32 0.031 0.513 0.872
10 3.5 28 0.028 0.706 0.740
15 4.1 32 0.031 0.513 0.872
20 5.6 40 0.035 0.270 0.967

Table 6-8: N-S Semivariogram for Varying Storm Vel@ities

Velocity | Sill (mm?) | Radius of Relative | Standard R
(km/hr) Influence (km) | Bias Error Ratio

5 4.1 25 0.029 0.587 0.833
10 4.2 25 0.029 0.557 0.851
15 4.1 25 0.028 0.587 0.833
20 4.2 25 0.029 0.580 0.837
6.5.3. Trial 2

6.5.3.1. Methods and Materials

After examining the results of Trial 1 a potential source of problems in the
data was discovered. The large size of the storm could be preventing trshadter
from experiencing the full variation of the storm. For this second trial, therefor
storm 2, which is smaller than storm 1, was used for the purposes of comparison.

After information about storm 2 was input to the program four times, with
velocities of 5 km/hr, 10 km/hr, 15 km/hr, and 20 km/hr, the semivariograms output
by the program were examined. A semivariogram was chosen to repraesent ea
velocity simulation in further investigation. In order to compare resultsetagve
bias, standard error ratio, correlation coefficient R, and the final estiofates sill
and radius of influence were recorded for each velocity.

6.5.3.2. Results and Discussion

The results of this study into the effect of storm velocity on the
semivariogram, shown in Tables 6-9 to 6-12, did not significantly differ from the

results of the first study examining this particular research questidnpmat
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exception. The final estimates of the sill and radius of influence wereisaniy
different for a velocity of 20 km/hr, though not for the other three velocities. Though
this difference was significant it is not considered to truly be the effébeatorm
velocity, because the first three velocity values did not show any significant
difference in sill or radius of influence. It is believed instead that thisrdiite in

sill and radius of influence was due to the storm traveling off the watershedd¢o som
degree during the course of the simulation. Despite the anomaly at a velocity of 20
km/hr, this smaller storm again indicates that it is not the velocity of the,dbatm

where it falls in relation to the rain gages that truly impacts the semvariogram.

Table 6-9: Storm 1 E-W Semivariogram for Varying Sbrm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard | R
(km/hr) | Separation Influence | Bias Error
Distance (km) (km) Ratio
5 32 18.0 159 0.041 0.238 0.975
5 36 5.5 45 0.040 0.278 0.966
10 28 32.3 278 0.060 0.248 0.974
10 32 9.4 82 0.038 0.267 0.969
10 36 4.6 35 0.046 0.342 0.948
15 32 19.9 176 0.040 0.238 0.9[75
15 36 5.5 45 0.040 0.278 0.966
20 28 29.7 243 0.057 0.233 0.9[77
20 32 27.5 224 0.045 0.196 0.983
20 36 135 111 0.030 0.203 0.982
20 40 6.1 45 0.036 0.251 0.971
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Figure 6-3: E-W Semivariograms for Different StormVelocities
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Table 6-10:

Storm 2 N-S Semivariogram for Varying $rm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard
(km/hr) | Separation Influence | Bias Error
Distance (km) (km) Ratio
5 24 43.6 206 0.063 0.270 0.970
5 28 11.0 52 0.041 0.305 0.960
5 32 6.9 29 0.045 0.399 0.929
10 24 54.3 251 0.066 0.278 0.969
10 28 12.7 60 0.041 0.302 0.961
10 32 7.2 30 0.046 0.392 0.982
15 24 43.6 206 0.063 0.270 0.910
15 28 11.0 52 0.041 0.305 0.960
15 32 6.9 29 0.045 0.399 0.929
20 20 38.6 187 0.059 0.269 0.9172
20 24 10.4 51 0.034 0.280 0.968
20 28 6.2 27 0.039 0.321 0.956
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Figure 6-4: N-S Semivariograms for Different StormVelocities
Table 6-11: Storm 1 N-S Semivariogram for Varying rm Velocities
Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard
(km/hr) | Separation Influence | Bias Error
Distance (km) (km) Ratio

5 24 22.9 154 0.049 0.249 0.975
5 28 6.5 43 0.037 0.277 0.967
10 24 25.6 177 0.050 0.245 0.9176
10 28 6.6 44 0.037 0.268 0.9Y0
10 32 4.9 30 0.039 0.326 0.953
15 24 24.1 163 0.049 0.248 0.9f75
15 28 6.4 42 0.037 0.277 0.968
20 24 25.1 170 0.050 0.245 0.9175
20 28 6.6 43 0.037 0.275 0.968
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Table 6-12: Storm 2 N-S Semivariogram for Varying $rm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard | R
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 20 34.2 133 0.048 0.271 0.972
5 24 6.9 24 0.045 0.386 0.939
10 20 41.6 164 0.050 0.269 0.9[73
10 24 6.9 24 0.045 0.383 0.989
15 20 34.2 133 0.048 0.271 0.9[72
15 24 6.9 24 0.045 0.386 0.989
20 20 46.3 171 0.054 0.270 0.9[72
20 24 8.5 30 0.041 0.335 0.954
6.5.4. Trial 3

6.5.4.1. Methods and Materials

A final attempt to identify the effect of storm velocity on the semivaaiog
utilized a new program that calculated cumulative storm semivariograrateraied
1 was again used; however, a new storm was created to completely fill thishedte
The major axes of this storm were 0-km at the center, then 6-km, 13-km, 21-km, and
30-km. All other storm parameters, including the storm velocities, werertieeasa
those used in storm 2. Because this program calculates cumulative semiwagiogra
the storms were allowed to travel entirely over the watershed. The stoenwast
started 30-km to the left of the watershed, and it was allowed to travel 120-KHm, unt
the storm center was 30-km to the right of the watershed. This allowed the entire
storm variation to contribute to the semivariogram calculations.

6.5.4.2. Results and Discussion

The results of trial 3, which investigated the effects of storm velocity on a
cumulative storm semivariogram, shown in Tables 6-13 and 6-14, were much
different from the results of trials 1 and 2. Less variation was seen in the/Esis
direction than in the North-South direction. This is due to the fact that the storm is

moving from West to East across the watershed. Therefore, each point on the
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watershed in the East-West direction should ultimately receive apprekmtiz

same amount of rainfall. Because of the elliptical nature of the synshetios,

more variation in rainfall was found in the North-South direction. This was shown by
the higher semivariogram parameters (e.g. the sill and radius of infjJientiee
North-South direction. This demonstrates that the direction that the storns iravel

can have significant impact on semivariograms. When a cumulative semivariogra

is computed after a storm has traveled over an entire watershed thewe itk b
variation in the semivariogram in the direction that the storm traveled; howessx
could be a significant amount of variation in the other direction, depending on the

nature of the storm.

Table 6-13: E-W Cumulative Semivariogram for Varying Storm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard | R
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 16 167.3 1 0.000 1.224 0.000
5 20 166.7 15 0.000 1.155 0.000
5 40 164.7 0 0.000 1.061 0.000
5 48 164.1 1 0.000 1.049 0.000
10 16 45.8 4 0.000 1.225 0.000
10 20 45.5 4 0.000 1.155 0.000
10 40 44.3 4 0.000 1.061 0.000
10 48 44.0 4 0.000 1.049 0.000
15 16 18.7 4 0.000 1.225 0.000
15 20 18.6 4 0.000 1.155 0.000
15 40 18.0 4 0.000 1.061 0.000
15 48 17.7 2 0.000 1.049 0.000
20 16 12.2 4 0.000 1.225 0.000
20 20 12.0 4 0.000 1.155 0.000
20 40 11.3 4 0.000 1.061 0.000
20 48 11.1 4 0.000 1.488 0.000
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Table 6-14: N-S Cumulative Semivariogram for Varyirg Storm Velocities

Velocity | Maximum Sill (mm?) | Radius of | Relative | Standard | R
(km/hr) | Separation Influence | Bias Error

Distance (km) (km) Ratio
5 16 366.8 4.2 0.000 1.170 0.0p0
5 20 368.3 4.3 0.000 1.078 0.0p0
5 40 374.4 4.6 0.000 0.961 0.434
5 48 3754 4.6 0.000 0.942 0.440
10 16 90.1 4.3 0.000 1.150 0.0p0
10 20 91.0 4.5 0.000 1.067 0.0p0
10 40 94.6 5.0 0.000 0.955 0.434
10 48 95.1 5.1 0.000 0.937 0.450
15 16 42.2 4.4 0.000 1.171 0.0p0
15 20 42.8 4.6 0.000 1.078 0.0p0
15 40 44.8 5.1 0.000 0.959 0.4p7
15 48 45.1 5.2 0.000 0.940 0.443
20 16 22.0 4.6 0.000 1.130 0.0p0
20 20 225 4.9 0.000 1.054 0.0p0
20 40 24.4 5.7 0.000 0.949 0.447
20 48 24.7 5.8 0.000 0.930 0.462

The velocity of the storm was found to have some effect on the sill values in
this trial. As the storm velocity increased, the sill values of both the Eastavs
the North-South semivariograms decreased. When a storm is moving with a higher
velocity the watershed will actually experience less total rainTdlis is responsible
for the decreasing sill values as the velocity increased. The velocity obtiredkies
not seem to have an impact on the radius of influence in either the East-West or the
North-South direction, however. There is very little variation in the radius of
influence as the velocity changes. The conclusion to be drawn from this is that the
radius of influence is impacted more by the spacing of the ellipses used tatsimul
the storms than it is by the storm velocities.

In further examining these semivariograms it was noted that the
semivariograms changed significantly as the storm progressed acrosdehshed.

The increase in rainfall depths can obviously be attributed to the accumulation of
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rainfall over the course of the storm. However, several interestingehanthe
semivariograms were evident. For instance, for each of the storm velocities
simulated, the initial semivariograms showed higher values for the East-Wes
semivariogram, while the final semivariograms showed higher valuessfdvatth-

South semivariogram. Also, the semivariograms in the East-West directieraljyen
started out with increasing values, but in the final semivariograms the vedues
decreasing, while the values in the North-South semivariograms remained in an
increasing pattern throughout the storm. This indicates that the point in the storm at
which a semivariogram is being calculated can have a significant infuenthat
semivariogram. A semivariogram calculated at the beginning of a storm could be

quite different from a semivariogram calculated at the end of the same storm.

6.6. EFFECT OF STORM TYPE

6.6.1. Introduction

Another research question for this preliminary study evaluated the éfféct t
the type of storm could have on the semivariogram. A summer thunderstorm, for
instance, has very different characteristics than a winter rainstorm. iesum
thunderstorm is generally very short, very localized, and very intense, whereas
winter storm generally has a longer rainfall duration, is less intense and has a mor
spatially uniform rainfall duration, and the storm cell is generally larger.pUilose
of this research question was to determine whether or not differences existed i
calculated semivariograms when various types of storms were applied to the sam

watershed.
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6.6.2. Methods and Materials

In evaluating the effect that storm type has on the calculated semieaniogr
three different storms were created for use with watershed 1. Thedirsat sthich
was fairly uniform in space, was modeled after a winter storm. The secomdveisr
moderately peaked in space, and the third storm was severely peaked in space and
was modeled after a summer thunderstorm. Each storm had the same rainfall values
ratio ofa-to-b, and velocity. The only difference between the storms was i the
values for the ellipses. The rainfall values used by each storm were 6 mm in the inne
ellipse, then 5 mm, 4 mm, 2 mm, and finally 1 mm in the outer ellipse.

The uniform storm used values of 0-km, 6-km, 14-km, 23-km, and 35-km.

This storm provided a gradual change in rainfall over the watershed. The moderately
peaked storm haavalues of 0-km, 4-km, 12-km, 22-km, and 35-km. In this storm
more of the rainfall was located toward the intense center of the storm, butibwvas

a severely peaked storm. The severely peaked storaVades of 0-km, 2-km, 5-

km, 21-km, and 35-km. These values led to nearly all of the rain being deposited
near the center of the storm, with only a very small amount of rain fallingas &ar

from the center of the storm.

These storms were input to the original program. From that output a
semivariogram was chosen to represent each storm. For each storm semmariogra
the relative bias, the standard error ratio, and the correlation coeffigiaatviRell as
the final estimates for the sill and radius of influence of the semivariogeam

recorded for comparison.
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6.6.3. Results and Discussion

The results of this experiment are shown in Tables 6-15 and 6-16. As the
peakedness of the storm increased, the sill decreased somewhat, and the radius of
influence also decreased. Though these decreases are not necessaraigrgignif
decreases, a steady trend is evident. These results would imply that, as the
peakedness of the storm increased, the variation in the rainfall decreased. This
decrease can be explained by storm type. The more peaked storms haversrealler
ellipses; however, their outer ellipses are the same size as the uniforms. siidris
means that the watershed is experiencing more rainfall from the oygeegltiuring
more peaked storms, and therefore is experiencing less variation in thizfeill
would if the storm were spatially uniform. The more peaked storms adhaaiya
larger area of low, uniform rainfall than the uniform storms did, and the small peaks
of the peaked storms had little influence on the storm variance. The radius of
influence can similarly be explained by the increasing area of theslatkereceiving

approximately the same rainfall by the peaked storms.

Table 6-15: E-W Semivariogram for Varying Storm Types

Storm Maximum Sill (mm?) | Radius of | Relative | Standard | R
Type Separation Influence | Bias Error

Distance (km) (km) Ratio
Uniform 28 8.5 166 0.051 0.245 0.9Y5
Uniform 32 2.7 51 0.039 0.274 0.967
Moderately| 28 6.1 138 0.052 0.256 0.972
Peaked
Moderately| 32 2.2 47 0.041 0.291 0.963
Peaked
Severely | 28 3.9 159 0.049 0.252 0.973
Peaked
Severely | 32 1.1 44 0.040 0.292 0.963
Peaked
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Figure 6-5: E-W Semivariograms for Varying Storm Types

Table 6-16: N-S Semivariogram for Varying Storm Types

Storm Maximum Sill (mm?) | Radius of | Relative | Standard
Type Separation Influence | Bias Error
Distance (km) (km) Ratio
Uniform 20 8.7 136 0.060 0.278 0.9Y1
Uniform 24 3.1 49 0.037 0.284 0.967
Uniform 28 1.9 26 0.040 0.364 0.943
Moderately| 20 7.2 128 0.062 0.287 0.969
Peaked
Moderately| 24 2.7 49 0.036 0.302 0.963
Peaked
Severely | 20 35 111 0.060 0.278 0.970
Peaked
Severely |24 1.2 39 0.037 0.315 0.959
Peaked
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Figure 6-6: N-S Semivariograms for Varying Storm Types
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6.7. CONCLUSIONS

A variety of analyses were performed to evaluate factors that influemeed t
calculation of storm semivariograms. The factors examined included the shhpe of
storm, the size of the storm compared to the size of the watershed, the veldwty of t
storm, and the type of storm. Of these factors, the storm shape appeared he have t
least impact on the calculated semivariogram. While no significantehfferwas
found between semivariograms calculated for storms of different shapes, the
importance of evaluating storms as anisotropic events, rather than isotropic, was
identified. The size of the storm compared to the watershed and the type of storm
were both found to have some effect on the semivariogram. Smaller storms were
observed to result in a smaller radius of influence and a higher sill value; however,
how the storm moved across the watershed was determined to play some role in these
results. Particularly peaked storms were observed to decrease theusilbivtide
semivariogram somewhat, due to the fact that more of the watershed was
experiencing either light or no rainfall, as compared to a less peaked storm.

The analysis of the velocity of the storm produced interesting results. For
individual time periods during the storm the velocity of the storm was not seen to
produce significant differences in the storm semivariogram. The location of the
storm in relation to the location of the rain gages at the time of the measureraent wa
actually found to be more influential than the velocity itself. This led to the
conclusion that the density of rain gages within a watershed was more implosia
the velocity of the storm in determining the characteristics of the storm

semivariogram. Cumulative storm semivariograms were also computed, and within
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these semivariograms significant differences were observed. Thstldifferences

were observed in the direction perpendicular to the storm movement, again providing
evidence that how the storm moves across the watershed can influence the
semivariogram calculated. Differences were also observed in semraanog

calculated at the beginning of the storm versus at the end of the storm. This leads t
the conclusion when the semivariogram is computed can significantly influence the

semivariogram parameters.
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CHAPTER 7

RAIN GAGE DENSITY ANALYSES

7.1. INTRODUCTION

The accuracy of rainfall measurements for a given watershed wilhdewe
the number of rain gages available to measure the rainfall. Each rain gage onl
measures rainfall at one point, so multiple rain gages are necessaryr@aobta
representative estimate of rainfall. A variety of potential error$, asavind drift,
blockage caused by trees, or mechanical failure, could also influence an individual
rain gage, resulting in inaccurate measurements. For these reasons naidtiple r
gages within a watershed are ideal. Several studies were conducted toate/éistig
effect of rain gage density on hydrologic applications. First, the effeairofage
density on storm semivariograms was investigated. Then the effect oflrainfal
averaging methods was investigated. The Thiessen polygon average and the
arithmetic average rainfall estimates were compared, to deterrhink average
resulted in less smoothing of the observed rainfall. Then the rainfall averages
computed using two rain gages were compared to rainfall estimates maglenlgi

one rain gage, to evaluate the effect of an additional rain gage.

7.2. SEMIVARIOGRAM ANALYSES

7.2.1. Introduction

A standard density of rain gages in gage networks does not exist across the

country. A few watersheds, mostly experimental watersheds such asiat W
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Gulch Experimental Watershed in Arizona, are heavily gaged; however, even most
large watersheds contain only a small number of rain gages. This is due inipart to t
expense associated with installing, monitoring, and maintaining rain gages.
Therefore, one aim of this study was to examine the effect of rain gagty @ena

storm semivariogram. The objectives of this experiment were to determinééow t
accuracy of a semivariogram varies with the rain gage density, and to evhkiat

effects on the semivariogram if a lower density were used on a watershed.

7.2.2. Trial 1

7.2.2.1. Methods and Materials
In order to determine the effect that gage density had on the semivariogra

watershed 1 and storm 1 were simulated using a program that allowed tte user
choose a percentage of rain gages within the grid to be removed from calculations.
This program was utilized multiple times during a storm, each time removing a
different percentage of gages. The first run with this program removed 0% of the
gages, which served as a baseline for comparison. On the next simulation 10% of the
gages were randomly removed, and then 20%, etc. During the final run with 97% of
the gages were removed, in order to obtain a realistic number of gages for a
watershed. A semivariogram was chosen from the output of each simulation for use
in further evaluations. As in all previous experiments the relative bias atindastl

error ratio, the correlation coefficient R, and the final estimates ofltlandiradius

of influence of the semivariogram were computed and compared.

7.2.2.2. Results and Discussion

The results of this study, shown in Tables 7-1 and 7-2, are somewhat

inconclusive. It is apparent that at lower gage densities the spread of the data i
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greater because of random variation and a smaller number of gages. Desfaite, this
when 80% of all gages were not recording the estimates of the sill and radius of
influence were not terribly different from the estimates when all of thegyaere
used in calculations. However, when only 20% of the gages were removed from
calculations the sill and radius of influence were quite different from theatss
when all gages were used. As shown in Table 7-1, when all gages wedingcor
during the storm the sill was 5.5 riiand the radius of influence was 45-km, whereas
when 20% of the gages were removed the sill was 5.9anththe radius of
influence was 54-km. A measure of caution should be used, however, when
considering the accuracy of a semivariogram computed with only a few, gaghs
as when 80% or 90% of the gages were removed. In these cases there are so few
gages that the semivariograms are based on only a few data points. Such aamall dat
sample must call the accuracy of the resultant semivariogram into questsm.aid
certain point so few data points remain that a semivariogram cannot even be
computed. In order to compute a semivariogram at least two data points must be
available. This occurred when 97% of the gages were removed in this experiment
The semivariograms computed contained only one point in both the East-West and
the North-South directions, which is not enough to compute the sill and radius of
influence of the population semivariogram.

The results of this study indicated that an accurate semivariogram was
computed when 10%, 30%, 40%, 70%, and 80% of the gages were removed from
calculations, while accurate semivariograms were not computed when 20%, 50%,

60%, or 90% of the gages were removed from calculations. This indicates that a
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highly dense gage network is not necessarily required to obtain an accurate
semivariogram; however there does appear to be a great deal of randomness to the
results, as evidenced by acceptable results when 80% of gages were remaloyetd a
unacceptable results when only 20% of gages were removed. As Table 7-1 shows,
the sill was 5.5 mfmwhen all gages were recording, 5.9 fnmhen 20% of gages

were not recording, 4.6 nfrvhen 30% were removed and 5.3 fahen 40% of

gages were not recording. Corresponding radius of influence values were 45-km, 54-
km, 42-km, and 55-km. It is believed that this experiment demonstrates that when a
low density gage network is used random chance determines whether or not an
accurate semivariogram is obtained. This finding points to the potential value of
supplementing rain gage data with radar data as even though it can be possible to

obtain an acceptable semivariogram with a low number of gages.
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Table 7-1: E-W Semivariogram for Varying Gage Netwek Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 18.0 159 0.040 0.238 0.975
0 36 55 45 0.040 0.278 0.966
10 32 17.4 153 0.041 0.237 0.9[76
10 36 5.5 45 0.040 0.279 0.965
20 32 22.8 216 0.047 0.216 0.980
20 36 5.9 54 0.038 0.270 0.968
30 32 19.0 188 0.045 0.239 0.9[75
30 36 4.6 42 0.043 0.325 0.953
40 28 23.6 246 0.065 0.275 0.968
40 32 10.4 111 0.041 0.281 0.965
40 36 5.3 55 0.035 0.278 0.965
50 20 19.9 226 0.083 0.392 0.940
50 24 12.3 143 0.052 0.333 0.9p5
50 28 20.5 223 0.056 0.297 0.962
50 32 6.3 69 0.034 0.332 0.952
60 28 30.0 297 0.075 0.359 0.945
60 32 8.7 93 0.036 0.451 0.909
60 36 4.0 36 0.020 0.020 0.891
70 20 22.3 191 0.076 0.076 0.9B33
70 24 5.2 46 0.042 0.042 0.923
80 28 50.1 361 0.087 0.327 0.9p4
80 32 119.0 864 0.061 0.292 0.963
80 36 5.5 35 0.057 0.492 0.888
90 28 82.0 431 0.140 0.745 0.7B83
90 32 85.4 428 0.117 0.655 0.7P5
90 36 8.9 50 0.046 0.853 0.594
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Table 7-2: N-S Semivariogram for Varying Gage Netwik Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard | R
Removed | Separation Influence | Bias Error

Distance (km) (km) Ratio
0 24 22.9 154 0.049 0.249 0.975
0 28 6.5 43 0.037 0.277 0.967
10 24 22.8 157 0.047 0.241 0.9[77
10 28 5.8 338 0.037 0.284 0.967
20 24 14.0 100 0.037 0.236 0.9[77
20 28 4.7 30 0.039 0.304 0.961
30 20 24.5 166 0.062 0.291 0.967
30 24 6.7 46 0.038 0.304 0.962
40 20 27.0 183 0.063 0.289 0.968
40 24 5.3 35 0.042 0.335 0.954
50 20 30.1 223 0.070 0.301 0.965
50 24 7.2 54 0.040 0.316 0.959
60 20 30.9 213 0.077 0.339 0.9p6
60 24 6.1 43 0.044 0.376 0.942
70 16 33.9 215 0.127 0.624 0.8p1
70 20 25.0 156 0.084 0.484 0.9p8
80 20 48.0 263 0.161 0.604 0.8p2
80 24 35.9 201 0.105 0.524 0.8B4
80 28 75.9 341 0.128 0.530 0.8[75
80 32 6.9 31 0.082 0.799 0.673
90 20 71.1 324 0.322 0.943 0.5[77
90 28 112.6 460 0.211 0.885 0.590
7.2.3. Trial 2

7.2.3.1. Methods and Materials
After examining the results of Trial 1 it was determined that a secohd tria

would be necessary to confirm the results. For this second trial two new stomns wer
created. In evaluating the results of trial 1 it was realized that storas 1 w

significantly larger than watershed 1, which meant that the full vatiabilistorm

was not falling on the watershed. Therefore two new storms were createatihdit

be large enough to cover most of the watershed, but not be larger than the watershed.
Two storms and two watersheds were created to evaluate the case of aalellipti

storm on a rectangular watershed and the case of a circular storm on a square
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watershed. Each storm was evaluated using two distinctly different randomrnumbe
seeds. This considered the question of whether or not the specific gages removed
from calculations had any effect on the semivariogram.

The first storm created, referred to as storm A, was an ellipse wathcan
ratio of 1.25. The values of the ellipses were 0-km, 6-km, 15-km, 27-km, and 38-
km. The ellipses represented rainfall depths of 1.1 cm, 0.9 cm, 0.7 cm, 0.4 cm, and
0.2 cm. This storm traveled at a velocity of 5 km/hr, it had an orientatich afi®
the storm was allowed to make three storm movements. The watershed used for this
storm was 76-km long and 60-km wide, with gages spaced 4-km apart. This storm
was simulated using both RADARO06-1 and RADARO06-2 several times. The first
simulation included all of the rain gages, and each of the following simulations
removed a larger percentage of the rain gages. First 10% of the gagesmered,
then 20%, 30%, 40%, 50%, 60%, and finally 70% of the gages were removed. A
representative semivariogram was chosen for each simulation from ead@dmprogr
For purposes of data analysis and comparison the relative bias, the standard error
ratio, the correlation coefficient, the final estimate of the sill, and thedstanate of
the radius of influence were computed.

The second storm, referred to as storm B, was a circular storm. With the
exception of the ratio d-to-b all storm parameters used for storm A were used for
storm B. The watershed was assumed to be a square, 76-km by 76-km. Again the
gages were 4-km apart. This storm was simulated with two versions of thenprogra
for each fraction of removed gages mentioned in storm A, and representative

semivariograms were chosen from the output. The second version of the program
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allowed the user to input a seed which was used to determine which rain gages w
removed from calculations during each simulation. The parameters recorded for
storm A were also recorded for storm B for the purpose of comparison.

7.2.3.2. Results and Discussion

This trial considered whether or not the gage network density had any effect
on the semivariogram, and it also considered whether or not the specific gages
removed had any effect. The results of this trial, which are shown in Tables 7-3
through 7-10, showed a large amount of variability in the data, but without trends.
Storm A showed a difference in sill and radius of influence in the North-South
direction as gage density decreased, but a trend in the East-West diresioatw
evident. Storm B, however, did not show any trend in the sill or radius of influence in
either semivariogram direction. For both storms it was noted that the goodniss of f

statistics consistently decreased as the gage density decreased.
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Table 7-3: Storm A Seed 1 E-W Semivariogram for Varing Gage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 44.6 329 0.068 0.262 0.970
0 36 24.8 187 0.047 0.253 0.972
0 40 6.9 78 0.046 0.319 0.954
10 32 46.0 311 0.074 0.275 0.967
10 36 41.6 287 0.053 0.254 0.971
10 40 7.7 49 0.048 0.344 0.946
10 44 6.4 39 0.048 0.418 0.918
20 32 40.4 300 0.065 0.267 0.969
20 36 14.9 113 0.044 0.276 0.966
20 40 7.0 49 0.044 0.301 0.959
20 44 6.1 41 0.044 0.332 0.949
30 32 35.3 265 0.064 0.262 0.9[70
30 36 15.4 118 0.042 0.274 0.967
30 40 7.2 52 0.042 0.288 0.962
30 44 6.1 41 0.042 0.321 0.953
40 32 31.7 246 0.059 0.262 0.9[70
40 36 12.1 96 0.038 0.292 0.962
40 40 6.2 45 0.042 0.317 0.954
50 32 44.3 298 0.081 0.337 0.9p0
50 36 36.6 251 0.059 0.307 0.9p8
50 40 9.8 66 0.045 0.350 0.944
50 44 7.4 47 0.047 0.357 0.941
50 48 7.0 43 0.043 0.366 0.987
60 32 47.1 304 0.077 0.353 0.945
60 36 27.4 184 0.049 0.361 0.941
60 40 7.2 43 0.052 0.421 0.918
60 44 7.4 47 0.047 0.357 0.941
70 36 27.2 168 0.047 0.369 0.9B39
70 40 7.1 38 0.054 0.492 0.886
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Table 7-4: Storm A Seed 2 E-W Semivariogram with Vaying Gage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 44.6 329 0.068 0.262 0.970
0 36 24.8 187 0.047 0.253 0.971
0 40 6.9 48 0.046 0.319 0.954
10 36 27.6 211 0.047 0.226 0.9[77
10 40 7.1 50 0.044 0.304 0.958
10 44 5.9 40 0.044 0.367 0.987
20 32 36.6 267 0.064 0.250 0.973
20 36 23.8 177 0.044 0.239 0.9[75
20 40 6.1 40 0.051 0.379 0.984
30 28 42.90 314 0.083 0.306 0.960
30 32 29.7 220 0.060 0.272 0.968
30 36 8.2 60 0.045 0.308 0.958
30 40 5.8 39 0.049 0.357 0.941
40 28 43. 319 0.094 0.331 0.953
40 32 32.3 245 0.063 0.303 0.960
40 36 8.2 61 0.047 0.330 0.951
40 40 5.8 39 0.051 0.366 0.989
50 28 44.7 328 0.096 0.349 0.948
50 32 26.8 203 0.063 0.336 0.9p1
50 36 12.7 98 0.044 0.325 0.953
50 40 6.1 42 0.050 0.361 0.940
60 28 48.0 306 0.108 0.385 0.9[36
60 32 22.8 156 0.063 0.427 0.9119
60 36 18.8 128 0.049 0.377 0.9836
60 40 7.5 47 0.050 0.399 0.927
60 44 6.3 38 0.049 0.485 0.888
70 36 48.5 348 0.058 0.239 0.975
70 40 13.2 96 0.039 0.289 0.962
70 44 6.3 40 0.047 0.459 0.900
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Table 7-5: Storm B Seed 1 E-W Semivariogram for Varing Storm Velocities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 42.9 312 0.069 0.265 0.970
0 36 32.6 242 0.049 0.249 0.972
0 40 7.4 52 0.045 0.308 0.966
0 44 6.1 40 0.046 0.371 0.936
10 36 29.4 204 0.050 0.259 0.9[70
10 40 7.3 46 0.049 0.345 0.946
10 44 6.4 39 0.047 0.401 0.925
20 36 28.8 205 0.047 0.258 0.9[70
20 40 7.2 46 0.048 0.332 0.950
20 44 6.3 40 0.046 0.378 0.983
30 36 18.2 137 0.042 0.269 0.968
30 40 6.8 46 0.045 0.310 0.956
30 44 6.0 39 0.044 0.355 0.942
40 32 29.2 219 0.059 0.280 0.967
40 36 9.8 74 0.042 0.300 0.960
40 40 6.5 46 0.043 0.305 0.958
40 44 6.0 41 0.04 0.312 0.955
50 36 24.0 168 0.048 0.271 0.967
50 40 8.2 54 0.044 0.303 0.958
50 44 7.2 46 0.043 0.299 0.9%59
50 48 6.8 42 0.040 0.322 0.952
60 32 38.8 249 0.059 0.300 0.961
60 36 8.4 52 0.048 0.344 0.947
60 40 7.7 46 0.042 0.322 0.953
60 44 7.4 44 0.039 0.309 0.956
60 48 7.1 42 0.035 0.311 0.955
70 36 14.0 82 0.041 0.501 0.883
70 40 7.6 40 0.048 0.524 0.869
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Table 7-6: Storm B Seed 2 E-W Semivariogram for Varing Gage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 42.9 312 0.069 0.265 0.970
0 36 32.6 242 0.049 0.249 0.973
0 40 7.4 52 0.045 0.308 0.957
0 44 6.1 40 0.046 0.371 0.936
10 36 32.7 243 0.051 0.237 0.9[75
10 40 7.7 54 0.044 0.307 0.957
10 44 6.2 41 0.046 0.366 0.988
20 32 45.2 324 0.072 0.278 0.966
20 36 27.8 206 0.049 0.279 0.965
20 40 6.1 39 0.054 0.413 0.921
30 28 45.1 328 0.095 0.347 0.949
30 32 41.0 298 0.071 0.230 0.961
30 36 10.2 76 0.048 0.343 0.947
30 40 5.8 38 0.054 0.419 0.919
40 28 39.8 282 0.096 0.353 0.947
40 32 41.4 304 0.072 0.304 0.9p9
40 36 7.9 58 0.050 0.385 0.983
40 40 5.5 37 0.054 0.453 0.904
50 28 59.3 399 0.100 0.367 0.942
50 32 44.7 299 0.077 0.315 0.9p7
50 36 9.9 68 0.050 0.391 0.961
50 40 6.0 37 0.056 0.482 0.891
60 28 59.7 365 0.114 0.421 0.9p3
60 32 47.3 297 0.080 0.385 0.934
60 36 13.2 86 0.052 0.412 0.923
60 40 6.6 37 0.059 0.450 0.882
70 28 64.5 381 0.100 0.359 0.945
70 32 59.9 354 0.076 0.310 0.9p8
70 36 8.3 47 0.057 0.423 0.918
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Table 7-7: Storm A Seed 1 N-S Semivariogram for Vging Gage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error

Distance (km) (km) Ratio
0 28 32.8 194 0.049 0.253 0.973
0 32 6.7 36 0.046 0.338 0.950
10 28 26.5 164 0.047 0.245 0.975
10 32 6.3 35 0.045 0.336 0.950
20 32 6.8 44 0.037 0.267 0.969
20 36 5.7 34 0.037 0.293 0.962
30 32 6.6 44 0.034 0.272 0.968
30 36 5.2 32 0.036 0.383 0.983
40 28 20.8 143 0.043 0.257 0.9]72
40 32 5.7 35 0.043 0.331 0.952
50 28 36.8 239 0.055 0.256 0.972
50 32 12.1 79 0.036 0.267 0.969
50 36 6.1 35 0.044 0.340 0.948
60 32 30.4 189 0.045 0.243 0.974
60 36 8.2 48 0.040 0.291 0.962
60 40 6.1 33 0.041 0.543 0.859
70 32 39.8 257 0.066 0.469 0.9p1
70 36 24.5 164 0.042 0.452 0.90p6
70 40 6.2 36 0.051 0.624 0.809
Table 7-8: Storm A Seed 2 N-S Semivariogram with \fgling Gage Network Densities
% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error

Distance (km) (km) Ratio
0 28 32.8 194 0.049 0.253 0.973
0 32 6.7 36.4 0.046 0.338 0.950
10 28 31.2 185.0 0.050 0.236 0.977
10 32 6.8 37.4 0.044 0.331 0.951
20 28 27.3 168 0.047 0.247 0.974
20 32 6.7 37.7 0.043 0.318 0.956
30 28 30.4 180.8 0.049 0.244 0.975
30 32 6.8 37.4 0.023 0.343 0.948
40 28 42.6 244 0.050 0.309 0.9h9
40 32 9.5 53 0.038 0.318 0.956
40 36 8.2 61 0.047 0.330 0.9b1
40 40 5.8 30 0.036 0.61 0.817
50 28 34.1 193 0.054 0.304 0.961
50 32 8.8 48 0.041 0.336 0.950
50 36 6.6 33 0.044 0.390 0.981
60 28 52.0 259 0.077 0.319 0.957
60 32 10.0 49 0.052 0.394 0.981
60 36 7.0 31.8 0.054 0.489 0.889
70 32 9.2 48.3 0.048 0.348 0.947
70 36 6.7 32.3 0.050 0.436 918
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Table 7-9: Storm B Seed 1 N-S Semivariogram for Vging Gage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 41.0 298 0.069 0.265 0.970
0 36 30.5 226 0.049 0.248 0.973
0 40 7.4 51 0.045 0.312 0.956
0 44 6.1 40 0.046 0.372 0.936
10 36 33.4 253 0.055 0.240 0.974
10 40 7.6 55 0.046 0.322 0.953
10 44 6.0 40 0.048 0.394 0.928
20 36 44.7 326 0.065 0.245 0.973
20 40 8.0 57 0.048 0.369 0.988
20 44 6.0 39 0.051 0.472 0.894
30 36 29.5 228 0.054 0.260 0.9[70
30 40 6.7 48 0.049 0.358 0.941
30 44 5.7 39 0.048 0.433 0.912
40 36 43.4 312 0.064 0.268 0.968
40 40 7.7 53 0.051 0.372 0.986
40 44 6.1 40 0.052 0.452 0.903
50 36 39.8 273 0.072 0.299 0.960
50 40 26.3 188 0.046 0.320 0.9p3
50 44 6.6 41 0.056 0.487 0.887
50 48 6.0 38 0.048 0.581 0.883
60 36 61.9 395 0.092 0.344 0.947
60 40 37.7 253 0.060 0.365 0.939
60 44 7.3 43 0.063 0.505 0.878
60 48 6.8 41 0.054 0.553 0.849
70 40 59.4 376 0.096 0.612 0.8[L7
70 44 24.1 161 0.061 0.632 0.8p0
70 48 7.7 45 0.071 0.699 0.746
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Table 7-10: B Seed 2 N-S Semivariogram with Varyinage Network Densities

% of Gages| Maximum Sill (mm?) | Radius of | Relative | Standard | R
Removed | Separation Influence | Bias Error
Distance (km) (km) Ratio

0 32 41.0 298 0.069 0.265 0.0p0
0 36 30.5 226 0.049 0.248 0.0p0
0 40 7.4 51 0.045 0.312 0.000
0 44 6.1 40 0.046 0.372 0.000
10 36 30.7 228 0.048 0.228 0.0p0
10 40 7.3 50 0.044 0.307 0.000
10 44 5.9 39 0.044 0.424 0.000
20 36 35.4 267 0.048 0.210 0.0p0
20 40 7.2 51 0.043 0.308 0.000
20 44 6.1 40 0.044 0.355 0.000
30 36 19.1 145 0.039 0.220 0.0p0
30 40 6.2 24 0.044 0.336 0.000
30 44 5.8 39 0.040 0.358 0.000
40 36 28.1 214 0.062 0.266 0.0p0
40 40 6.1 42 0.041 0.335 0.000
40 44 5.7 39 0.037 0.352 0.000
50 36 30.4 235 0.048 0.245 0.0p0
50 40 5.8 40 0.049 0.457 0.000
60 36 35.9 268 0.053 0.292 0.0p0
60 40 5.5 37 0.048 0.626 0.000
70 36 48.6 360 0.071 0.361 0.0p0
70 40 5.3 37 0.051 0.753 0.000

The results presented in Tables 7-3 through 7-10 indicated that the rain gage
network density did not have a significant impact on the semivariogram calculations
Based on comparisons between the simulations using different seeds of the random
number generator it did not appear that which specific gages were removed had an
effect on the semivariogram. The trends in the data actually indicate tinabs$he
important factor influencing the semivariogram parameters is the numberof dat
pairs used to form the original semivariogram. This factor seemed to have much

more impact on the data variation than either the seed or the gage density.
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7.2.4.4. Conclusions

The effect of rain gage density on calculated storm semivariograms was
evaluated using two studies. The results of the rain gage density analysis proved
somewhat inconclusive. While this was expected to have a very significantoeffec
the semivariogram, this was not always seen to be the case. In fact, theioanc
drawn from this analysis was that a very dense rain gage network is not absolutely

necessary in order to compute an accurate semivariogram.

7.3. EFFECT OF AVERAGING METHODS ON RAINFALL
ESTIMATES

7.3.1. Introduction

The accuracy of rainfall estimates for a watershed can be improved by
increasing the number of rain gages within the pixel, but the level of improvement
has not been quantified; therefore, it is unknown how significant the density of the
rain gage network is to the accuracy of rainfall estimates for a wader3ine
purpose of this research was to determine whether increasing the number of rai
gages in a watershed from one to two significantly improved the accuraanfallr
estimates calculated for the watershed. This is one step in understandirigeld va
spatial estimates of rainfall made from radar measurements.

When rainfall estimates are calculated for a watershed, some method of
averaging the rain gage measurements is necessary. Two possible methioels a
Thiessen polygon method and the arithmetic averaging method. The Thiessen
polygon method takes a weighted average of all of the gages weighted on the portion

of the watershed area that each gage represents. To form the polygons eafch pair
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rain gages are connected by a line, and the perpendicular bisectors of these
connecting lines are drawn. The perpendicular bisectors are connected to define
polygons around each gage. These polygons represent the area of the watershed
represented by each rain gage. To calculate the average rainfall iatérshed
each rain gage measurement is multiplied by the area of its correspareinghese
are added together, and the sum is divided by the total area of the watershed.
The arithmetic averaging method assumes a weighting factor equal to the
reciprocal of the number of gages, which weights each rain gage equally. T
calculate the average rainfall for the watershed using this methodrifadl rai
measured by each rain gage is summed, and then the sum is divided by the total
number of rain gages. For cases of an inhomogeneous distribution of gages, this

method can give an estimate that is quite different from the Thiessendmetho

7.3.2. Spatially Distributed Storm Surfaces

Three storm surfaces were created using quadratic equations. Thesessurfac
modeled different rainfall characteristics, such as rainfall depth ang@akiaelspread
of the storm in order to characterize the effects of the storm characseriBhe
different storm surfaces represented different levels of uniformity miathintensity.
To create these rainfall scenarios an intensity-duration-frequemes was used to
determine rainfall amounts for a storm of constant duration and various return
periods. A multiple regression program was used to fit quadratic polynomials to
represent rainfall surfaces described by these rainfall amounts.

To visualize these surfaces and confirm their suitability the three-dimehsiona

plotting tools of Matlab were used to produce graphs of each equation. Figure 7-1

167



provides a three-dimensional plot of the quadratic surface representing rainfal
scenario 1. The equation for this surface is:

Z =39.4532% 7.228134- 0.73721%9
-0.056676%" + 0.2652936 — 0.002804/

(7-1)
This rainfall surface is fairly linear, and the rainfall values vary from 38.83airtime
lowest point to 133.2 mm at the highest point. Figure 7-2 illustrates rainfall gcenar

2 with a three-dimensional plot. The equation describing this surface is:

Z=121.0983- 5.262119- 4.188094
—-0.20421%* + 1.04700f + 0.000000/

(7-2)
This surface is also fairly linear, but the rainfall amounts clearly vaighrmore

widely than in rainfall scenario 1. The minimum rainfall amount in this scenario is
33.07 mm and the maximum rainfall amount is 447.8 mm. In both rainfall scenarios
1 and 2, the maximum amount of rainfall is near the pixel edges. Figure 7-3

illustrates rainfall scenario 3. The equation describing this surface is:

Z=19.82884 41.925%+ 1.965494
-8.50918%" — 0.4913644 — 0.000019

(7-3)

Unlike rainfall scenarios 1 and 2 this surface peaks near the center oféheTdie
magnitude of the rainfall for this scenario is lower than the other two scenarios
ranging from 19.83 mm to 71.61 mm, but the quadratic shape of the surface results in
a higher degree of variation of rainfall experienced across the synihetic The
maximum rainfall is experienced near the center of the pixel, while the efltjee

pixel experience less rainfall. In summary, the following describe thactkastics

of the three scenarios:

e Scenario 1: nearly linear, moderate depths, maximum at edge
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e Scenario 2: nearly linear, high depths, maximum at edge
e Scenario 3: quadratic, low depths, maximum at center

The three quadratic surfaces are assumed to represent the rainfaltasethea
by the radar. The value of the surface at a given location represents tiantiale
as measured by the radar. It is very rare, though, for radar data andyeaoatgto
correlate perfectly for a variety of reasons. For example, mountains onfgsildi
could patrtially block the radar beam, resulting in an inaccurate radar rewe&suifor
a given location, or wind could cause rain drops to drift significantly in the hoaizont
direction between the time that they are measured by the radar in the atmasphere
the time that they fall to the ground surface. To account for this, some amount of
random variation was added to the rain gage measurements. The rain gage
measurements were calculated as a function of the height of the rairfeadkesairthe
location of the gage plus or minus some random variation to account for the potential
lack of correlation between the radar and rain gage measurements. Pesside
distribution functions were available to describe this random error. Z-korslaips
have shown that such error exists in radar rainfall measurements. The pt@gram
calculate the rainfall estimates for the pixel was used three timeg,agch of the
storm surfaces once.

A variety of storm parameters, rain gage parameters, and rainfall
characteristics were calculated. The volume of rainfall occurring beeixel, the
average depth of rainfall over the pixel, and the variation in reflectance were
calculated. The mean and standard deviation of the rain gage measurements wer

calculated for each scenario. Also, the bias, the relative bias, the standardretr

169



the relative standard error were calculated for the rainfall estend hese statistics

allowed the accuracy of the estimates to be assessed.
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Figure 7-3: Three-Dimensional Quadratic Surface Regesenting Rainfall Scenario 3

7.3.3. One Rain Gage Randomly Located
7.3.3.1. Introduction

A computer program was developed to simulate a spatially varying storm
depth in three dimensions and to calculate the depth and volume of rain that would
fall over the pixel from that storm. The first scenario modeled had one rain gage.
The program randomly located the rain gage at some point in the watershestyor e
simulation. Since the rainfall surface was known, the true amount of rain was known
and could be used as the basis for comparison. The rainfall estimates calcotated f
that rain gage could then be compared to the true rainfall values to determine the
accuracy of estimates from one rain gage.

The first set of results to be calculated were storm characteristittg]ing
the volume under the rainfall surface, the average depth of rainfall over the pikel, a

the standard deviation of the rainfall surface values. The latter reflectarthion
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in intensity over the pixel. These results for each of the three storm suaface

presented in Table 7-11. These values were constant for all four of the expgriment

Table 7-11: Storm Characteristics for Each of the Tiree Rainfall Surfaces

Rainfall Scenario 1| Rainfall Scenario 2| Rainfall Scenario 3
Volume (knf*mm) 856.58 1691.08 953.90
Average depth (mm) 53.54 105.69 59.62
Standard Deviation 8.50 7.53 14.69
Surface Values O‘(

7.3.3.2. Methods and Materials

The program described above was used to simulate rainfall catches ahone rai
gage located randomly in the pixel. The number of simulations desired, the size of
the watershed, and the probability density function of the random error associated
with the rain gage measurements were specified as input to the program. €&or thes
models 10,000 simulations were run for each scenario, the pixel was specifieal to be
square, 4-kilometers by 4-kilometers, and a normal probability density function was
assigned to the quadratic surface value at the location of the rain gage to emtroduc
some random error. The location of the rain gage was chosen randomly for each of
the 10,000 simulations.

7.3.3.3. Results and Discussion

This program randomly located a single rain gage at points within the pixel
for each simulation in a given scenario. For each scenario the mean and standard
deviation of the rain gage measurements for all simulations were cattukabr
rainfall scenario 1 the mean rainfall captured at the gage was 55.46 mm with a
standard deviation of 8.145 mm. For rainfall scenario 2 the mean rainfall was 107.76

mm with a standard deviation of 7.207 mm. Finally, for rainfall scenario 3 the mean
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rainfall captured at the rain gage was 61.40 mm and the standard deviation was 13.81
mm.

To assess the accuracy of rainfall estimates made using only one rathegage
rain gage measurements were compared to the average rainfall suldiadeora
simulation at the location corresponding to the location of the rain gage (see/Tabl
11 for the storm characteristics). The relative bias and relative standardatues
were noted for comparison with the two-rain gage model that will be discussed.
These values, along with the bias and standard error values, are presented in Table 7
12 for each rainfall scenario. The relative biases ranged from 2% to 4% for the
different rainfall surfaces, which indicates that the gage measntefoe one rain
gage are fairly free from bias. The relative standard error, though, faoge35%
to 100%. In most cases, the relative standard error would be a reflection of the
accuracy of the measurements. In the case of one rain gage being raodately
around the simulated pixel, the rain gage measurements are reproducingfétie rai
surface, and any variation seen in the results is due to the random variation added.
Therefore the relative standard error makes no statement about the aottinacy
rainfall estimates. The results that were observed, relative lasipgesximately equal
to zero and relative standard error values close to 1, are the expectedlvesalise
the rainfall surface is being sampled as the rain gage is randomly lacated the

pixel.
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Table 7-12: Bias, Relative Bias, Standard Error, ad Relative Standard Error for Each Rainfall Scenario
with One Rain Gage Compared to True Rainfall Surfae Values

Rainfall Scenario 1| Rainfall Scenario 2| Rainfall Scenario 3
Bias 1.929 2.068 1.785
Relative Bias 0.036 0.020 0.030
Standard Error 8.370 7.500 13.927
Relative Standard Errgr0.985 0.997 0.948

7.3.4. Two Rain Gages Randomly Located

7.3.4.1. Introduction
To determine the effect that gage density had on the rainfall estimates

calculated for the watershed a second program, which randomly located two rain
gages around the watershed, was utilized. This program again simulated saerfal

the watershed using the three quadratic surfaces to represent rainfalaintélé

catch was simulated for both rain gages in each simulation, and then the two
averaging methods, Thiessen polygon and arithmetic, were used to calculate an
average rainfall for the watershed. These calculations could then be compared to the
known rainfall values to determine the accuracy of rainfall estimategeddrom

two rain gages.

7.3.4.2. Methods and Materials

The only difference between this experiment and the previous experiment was
that two rain gages were randomly located around the pixel for each simulation.
Again the number of simulations desired, the size of the watershed, and the
probability density function of the random error used in calculating the rain gage
measurements were specified. As was done in the previous experiment, 10,000
simulations were chosen to model each scenario, the pixel was set to be square, four
kilometers by four kilometers, and a normal probability density function hasea

to introduce variation into the rain gage measurements. The three raintadlesurf
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described above were again used, and the program was run using each rainfall surface
once. The same parameters were calculated by this program as by the kast. Int

case both the Thiessen polygon average and the arithmetic average weatechlc

from the rain gage measurements, then the bias, the relative bias, the standard e

and the relative standard error were calculated by comparing them tde¢bmnee
estimates.

7.3.4.3. Results and Discussion

When two rain gages were randomly located within the pixel, both the
Thiessen polygon and the arithmetic averaging methods were used to calculate
rainfall estimates. Both averages were then compared to the averagk saifdce
value for the location corresponding to the rain gage location. The averages and
standard deviations of both averaging methods are presented in Table 7-13 for all

three rainfall scenarios.

Table 7-13: Averages and Standard Deviations of Tessen Polygon Averaging Method and Arithmetic
Averaging Method for Each Rainfall Scenario

Rainfall Scenario | Rainfall Scenario | Rainfall Scenario
1 2 3
Thiessen Polygon 55.28 107.71 62.48
Method Average
Arithmetic Method 55.47 107.76 61.50
Average
Thiessen Polygon 5.48 4.88 9.80
Method
Standard Deviation
Arithmetic Method 5.76 5.12 9.65
Standard Deviation

In order to assess the accuracy of these estimates, it was necessanpdre
the estimates to the known values of the rainfall surfaces, which are intended to

reflect the reflectance rainfall. The relative bias and relative shedar were
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again used to assess to accuracy of the rainfall estimates. For the Thaggen
averaging method, these values, along with the bias and standard error values, are
presented in Table 7-14 for each rainfall scenario. The same values aresprésent
the arithmetic averaging method in Table 7-15. In examining the relatsesbia
presented in these tables, it is evident that the Thiessen polygon averadiad met
provides slightly lower, but not significantly lower, relative biases forfadli

scenarios 1 and 2, indicating that this method results in less systematia éneor i
estimates than the arithmetic average in these scenarios. The samarirbadeen

in comparing the relative standard errors. For rainfall scenarios 1 and 2 tesehhie
polygon averaging method results in slightly lower, though not significantly Jower
errors than the arithmetic averaging method. For these rainfall sceatleast, it
would appear that the Thiessen polygon and arithmetic averaging methods provide

equally good rainfall estimates.

Table 7-14: Bias, Relative Bias, Standard Error, ad Relative Standard Error for Thiessen Polygon
Averaging Method Compared to True Rainfall SurfaceValues

Rainfall Scenario | Rainfall Scenario 2| Rainfall Scenario 3
1
Bias 1.743 2.020 2.861
Relative 0.033 0.019 0.048
Bias
Standard 5.477 4.882 9.804
Error
Relative 0.645 0.649 0.667
Standard
Error

Table 7-15: Bias, Relative Bias, Standard Error, ad Relative Standard Error for Arithmetic Averaging
Method Compared to True Rainfall Surface Values

Rainfall Scenario 1| Rainfall Scenario 2| Rainfall Scenario 3

Bias 1.934 2.066 1.881
Relative Bias 0.036 0.020 0.032
Standard Error 5.760 5.114 9.652

Relative Standard Errg 0.678 0.680 0.657

=
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7.3.5. Comparison of Results of One and Two Randomly Located Rain
Gages

In order to determine whether the addition of a second rain gage improves the
accuracy of the rainfall estimates calculated for the synthedst {hie results of the
one-gage and two-gage programs discussed previously needed to be compared.
Specifically, the relative bias and relative standard error were gethpaong the
modeling scenarios. The relative bias and relative standard error compaiafide
estimate derived for the pixel from the radar reflectance measurentéct, is/
represented by the quadratic rainfall surface, to the rain gage rainfalireenent. A
summary of the results of interest in this comparison are presented in Table 7-16
which shows that the difference in the relative bias of the rainfall estifoatese
rain gage versus two rain gages is not significant. Regardless of the numioer of ra
gages, the relative bias of the rain gage estimates is quite low, rémgmgbout 2%
to 4%.

The relative standard error does experience significant decreases when a
second rain gage is added to the watershed. When there is only one rain gage the
relative standard error values are high, between 0.95 and 1.00. These values indicate
that rainfall estimates made from only one rain gage are not very accltaen the
rainfall estimates are based on two rain gages, however, the relativardtarrdr
values range from 0.65 to 0.68. Adding the second rain gage appears to result in a
30% decrease in error in the rainfall estimates, which is quite sigrifidde rainfall
estimates calculated from two rain gages under these scenarios cpedtecto be
much more accurate than rainfall estimates based on only one rain gage. The

decrease in relative standard error can be attributed to the fact that twdquated
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on a specific surface will better represent the variation of the suHaoene point
on that surface.

An important conclusion can be drawn from comparing the results of these
two experiments. For one instant in time one rain gage will likely give a poor
estimate of rainfall. However, over the course of a storm one rain gagaovalep
acceptable results, due to the law of averages. At some points in time the rain gage
will under-predict the instantaneous rainfall, while at other points in timél ibver-
predict rainfall. These under-predictions and over-predictions may ultinpatelide
a reasonable average for the entire storm. For any single point in timeintwgagas
will more likely represent the true average rainfall than one rain gage. cohls

illustrates the importance of spatial data in improving hydrologic models.

Table 7-16: Comparison of Relative Bias and RelatevStandard Error for Each Rainfall Scenario for One
Gage and Two Gage Rainfall Estimates

Rainfall Rainfall Rainfall
Scenario 1 Scenario 2 Scenario 3
One Gage Relative Bias 0.086 0.020 0.030
One Gage Relative 0.985 0.997 0.948
Standard Error
Thiessen Average 0.033 0.019 0.048
Relative Bias
Thiessen Average Relative 0.645 0.649 0.667
Standard Error
Arithmetic Average 0.036 0.02 0.032
Relative Bias
Arithmetic Average Relative 0.678 0.68 0.657
Standard Error

7.3.6. One Rain Gage in a Fixed Location

7.3.6.1. Introduction
It was believed that randomly locating the rain gages within the pixel with

every simulation would force the rainfall estimates calculated to bg ¢hose to the

mean values for the watershed. Therefore, the one-gage and two-gage experiment
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were repeated with computer programs that allowed the user to sehthages at a
fixed location within the pixel for the duration of the modeling scenario. The first
program again simulated rainfall over the entire pixel based on a quadratie surfac
representing the rainfall surface. One rain gage was set in a fixedhoeetd the

depth of rainfall caught by the gage in each simulation was calculated.mboata

of rainfall caught by the rain gage for each simulation was a function of theofalue
the rainfall surface at the location of the rain gage as well as some avhcamiom
error. As mentioned previously, random error was added to reflect the fact that, for a
variety of reasons, radar measurements and rain gage measurementpenfe ctot
correlated. This calculation could then be compared to the known rainfall values for
the pixel in order to draw conclusions about the accuracy of the rainfall estimate

7.3.6.2. Methods and Materials
As with the one-gage experiment described previously, the number of

simulations, the size of the watershed, and the probability distribution function of the
random error in the rain gage measurements were specified as input. Fdinell of
modeling scenarios described here, 10,000 simulations were used, the pixel was a
square with sides of 4-kilometers, and a normal rainfall probability distribution
function was chosen to introduce variation in the rain gage measurements. Despite
the fact that the rain gage remained stationary throughout the simulatiomeand t
rainfall surface did not change between simulations, some variation in rainfall
measurements between each simulation did occur due to the probability distribution
function used to add random variation to the rainfall measurements to account for the
typical disagreement between radar data and rain gage data. Also likevtbaspre

experiment, three quadratic surfaces were used to represent raddrgaifdabs
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over the pixel. However, this program also allowed the user to specify a location in
the pixel for the rain gage, and the gage remained at that location for all simailati
For each storm surface the program was run seven times, placing the raim gage
seven distinct locations across the watershed. A diagram of the possible rain gage
locations within the pixel is presented in Figure 7-4, with the coordinate locations of
the gages presented in Table 7-17. This allowed the full variability of the storm
surface to be examined more clearly than the previous experiment with randomly
located rain gages did. The same storm, rain gage, and rainfall estimatetpesas

discussed previously were calculated for these simulations.

2
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Figure 7-4: Possible Locations of Fixed Rain Gag&¥ithin Pixel

Table 7-17: X and Y Coordinates of Possible Locatits for Fixed Rain Gages

Gage ID | X Coordinate | Y Coordinate

~NoO|O A WIN|EF
AIWWIN|FL|IFLO
RPIOIWIN|FP|I~W
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7.3.6.3. Results and Discussion

The programs holding rain gages in a fixed location for the duration of the
individual scenarios provide for a much more realistic examination of the rainfall
estimates calculated based on one rainfall gage versus two rainfall §agesach
modeling scenario, 10,000 rain storms were simulated, and rainfall accumulation at
the rain gage was measured. For each modeling scenario the progrategeovi
mean rainfall measurement and a standard deviation for the group of simulations.
When only one rain gage was present, the mean and standard deviations of the
amount of rainfall caught by the gage varied widely, depending on the position of the
gages.

To better evaluate the accuracy of rainfall estimates made usingimogaga
in a fixed location, the mean amount of rainfall caught by the gage for each modeling
scenario was examined. Table 7-18 presents the minimum of the mean rainfall depths
at the rain gage, the maximum of the mean values, and the average of the mean values
for each of the three rainfall scenarios. The relative biases and retatidersl error
values were also examined to assess the accuracy of the rainfall estifrait
rainfall scenario 1, the relative biases ranged from -0.223 to 0.228, and the relative
standard error values ranged from 0.207 to 1.817. For rainfall scenario 2, the relative
biases ranged from -0.1 to 0.121, while the relative standard errors rangedlG6im
to 1.696. For rainfall scenario 3, the relative biases ranged from -0.609 to 0.235, and
the relative standard errors ranged from 0.199 to 2.479. In considering the mean
rainfall depths caught by the rain gage as well as the relative hiadeslative
standard errors, it is apparent that wide variation is possible in rainfall jpsadic

when there is only one rain gage within the pixel.
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Table 7-18: Maximum and Average of Mean Values of &nfall Caught by the Rain Gage for Each Rainfall

Scenario

Rainfall Minimum Mean | Maximum Mean | Average Mean | True Value
Scenario (mm) (mm) (mm) (mm)

1 41.62 68.97 55.61 53.54
2 95.13 118.45 108.00 105.70
3 23.31 73.61 58.18 59.62

To determine under what conditions the most accurate rainfall estimates could
be obtained using one rain gage the gages were classified for each storm as
experiencing low, moderate, or high rainfall. The rain gages that had expérience
low rainfall conditions were compared among themselves, then compared to rain
gages that had experienced a moderate amount of rainfall, and finally conapared t
rain gages that had experienced a high amount of rainfall. Similar comparigens we
made for all rain gages that experienced moderate amounts of rainfall| eaid
gages that experienced high amounts of rainfall. The relative biases aive relat
standard errors for the gages after they had been classified into groepsovwpared
to assess the accuracy of predictions. Both statistics were found to be geherall
lowest for rain gages experiencing moderate rainfall, regardless afirifiedIr
scenario, and higher for both low and high rainfall. This leads to the conclusion that,
when only one rain gage is located in a pixel, the best rainfall estimates cadde m
when that gage experiences moderate rainfall. This is likely becausdemate
amount of rainfall is likely close to average rainfall experienced over dbershed,
unless a particularly peaked storm were to occur. In the simulated pixel usiad for
experiment, all three storms resulted in a moderate amount of rainfall agaarthe
area nearest the center of the pixel. Further conclusions cannot really be sitawn a

the effect of the location of the rain gage in the watershed without respect torthe st

182



event; however, logic would indicate that, in general, the closer a raingjagthe
center of the storm, the more likely it is to experience a rainfall repias/e of the
entire watershed. This further reinforces the conclusion that one raicajage
provide misleading results for any one instant in time and that spatiallypdistti

rainfall from radar measurements can potentially improve predictions.

7.3.7. Two Rain Gages in Fixed Locations

7.3.7.1. Introduction

Finally, an experiment was devised in which two rain gages were placed in
fixed locations within the pixel for a series of simulations. As with all previous
examples, the number of simulations, the size of the pixel, and the probability
distribution function for the random error associated with the rain gage meastgeme
were specified. The three storm surfaces were utilized to examine idiailitgrof
rainfall estimates under different rainfall conditions. The amount of taméasured
at each rain gage for each simulation was calculated, and two averagimogisnéhe
Thiessen polygon method and the arithmetic averaging method, were used to
calculate rainfall averages for the pixel. These average valueuused to assess the
accuracy of the rainfall estimates by comparing them to the known raiafadls for
the pixel.

7.3.7.2. Methods and Materials

As with the previous examples the number of simulations, the size of the
pixel, and the rainfall probability distribution were specified. Again 10,000
simulations were chosen, the pixel was set to be a square with sides of four
kilometers, and a normal probability distribution was selected to provide some

amount of random variation to the rainfall estimates to account for the common
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disagreement between radar and rain gage data sets. The seven pasgabgerai
locations devised for the experiment in which one rain gage was set at a fixed
location, as shown in Figure 7-4, were again used. Because using every possible
combination of two gages at these seven locations would have required a large
number of modeling scenarios, and a large investment of time to complete, fourteen
combinations of two rain gages were chosen to give a good amount of variety in gage
arrangement. These were chosen in order to examine the effect when theesain gag
were located close to each other, far away, on the same side of the watersimed, a
opposite sides of the watershed. These fourteen gage location combinations were run
for each of the three rainfall surfaces, with one additional combination run foilrainfa
scenario 2, resulting in a total of 43 modeling scenarios. The goal of this was to
clearly assess the effect that variability of the storm had on the rastafiates

calculated for the watershed. The same parameters as discussed presxgogisly
calculated by this program. The Thiessen polygon and arithmetic averages we
calculated, and then the bias, the relative bias, the standard error, anditree relat
standard error were for the averages were used to assess the acctimacgiofall
estimates.

7.3.7.3. Results and Discussion

In examining the results of the 43 scenarios modeled for two rain gages in
fixed locations, several important, and in some cases surprising, observations were
made. When the relative standard errors of the various scenarios were compared,
very little variation was evident. Regardless of the rainfall scenarioyénagng
method used, or the position of the rain gages relative to each other, the relative

standard error ranged between 0.019 and 0.054. Clear trends could not be identified
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in the variation of relative standard error, and the differences were ddisah#hey
could simply be due to random chance.

Despite the lack of variation in the relative standard error values, sagmific
variation was seen in the relative biases. The relative biases were bedoth
positive and negative. For rainfall scenario 1 the relative bias ranged from 0.013 to
0.285 for the Thiessen polygon estimates, and from -0.018 to 0.229 for the arithmetic
average estimates. For rainfall scenario 2, the relative biases ramme® 002 to
0.121 for Thiessen polygon estimates and from 0.01 to 0.10 for arithmetic average
estimates. Rainfall scenario 3 experienced the most variation in bias,éd#uaus
storm surface was more variable than the other two. For the Thiessen polygon
estimates, the relative biases ranged from -0.609 to 0.023, and for the arithmetic
average estimates the range was from -0.344 to 0.059.

Several interesting trends with respect to the gages locations relataehto e
other were noted. First, the closer to two gages were to each other, the more likely
the mean rainfall depths were to be similar. For instance, in one scenasagage
coordinates (1,4) and (3,0) were used. The distance between these gages was 4.472
km. The mean rainfall depths caught at these rain gages for rainfaliscensre
49.91 mm and 62.63 mm, respectively. In comparison, the gages located at
coordinates (3,3) and (2,2), located a distance of only 1.414 km apart, were also used.
The rainfall means for rainfall scenario 1 at these gages were 55.25 mm and 62.78
mm, respectively. Similar trends were observed in both the Thiessen polygon
averages and the arithmetic averages. Generally, it was found that when the two

gages were farther apart from each other the relative biases anct retiatidard error
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values improved, compared to when the two gages were located close to each other.
For instance, for rainfall scenario 1, rain gages located at (4,1) and (3e0)iseel to
calculate averages. These gages were located a distance of 1.414 knfitagart.
relative bias for this rainfall average was 0.285, and the relative standard/as

0.046. Similarly, the gages located at coordinates (3,0) and (3,3), with a distance of 3
km between them, were used to calculate averages. The relative biassfithée

was 0.172, while the relative standard error was 0.035. It was also noted that the
relative bias seemed to generally improve when the two rain gages expgrience
different rainfall amounts. For rainfall scenarios 1 and 2 this meant that, ahen t

rain gages were not located close to each other, the rainfall estimatpsaviegd

were the most accurate. Logic does seem to support this finding, as two ran gage
located in different parts of the watershed would most likely experiandalt that

better represents the rain falling over the entire watershed. Fronsacstat

standpoint, gages located near each other are less likely to be independent
measurements and, thus, the effective sample size is less than the numbes.of gag

In general, for all three rainfall scenarios, when one rain gage wasesqueg high

rainfall while the other experienced moderate rainfall the estimatestiveleast

biased.

7.3.8. Comparison of Results of One and Two Rain Gages in Fixed

Locations

To determine whether or not an additional rain gage improved the accuracy of
rainfall estimates for the pixel the relative biases and standard eftbis various

modeling scenarios were compared. The rain gages were grouped as being in a
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position to experience low rainfall, moderate rainfall, or high rainfall. Fotvibe
rain gage case, scenarios in which both rain gages experienced simikdl aaithfin
which the rain gages experienced different rainfall were considered.fiGgdbgithe
following scenarios were tested: (1) both rain gages experienced lowlrdR)fane
rain gage experienced low rainfall and one experienced moderate rainéa{B) one
rain gage experienced low rainfall while the other experienced high taméaé
examined. Each of these scenarios was compared to the scenario in which one rain
gage experienced low rainfall. Corresponding comparisons were made for moderat
and high rainfall scenarios.

The comparison of relative bias and relative standard error for thesdexhse
to the general conclusion that two rain gages provided more accurate rainfall
estimates than one rain gage. An overall trend of decreasing relative bidses a
relative standard errors between compared scenarios with one and twa@esn ga
resulted in this conclusion. The decrease in relative standard error whemé sec
rain gage was added was often quite significant. For instance, in many cases the
relative standard error was between 1.0 and 2.0 when only one rain gage was present;
however, when there were two rain gages, regardless of rainfall scenarigjrayera
method, and gage location, the relative standard error was between 0.02 and 0.06.
This would indicate that the addition of the second rain gage significantly improves
the accuracy of the rainfall estimates calculated for the pixel.

The change in relative bias when a second rain gage is added was not so
consistent. Generally speaking, the addition of a rain gage resulted in some

improvement in relative bias; however it is evident that the rainfall Soesad
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locations of the rain gages relative to each other influences the bias. For low to
moderate rainfall at the rain gage the relative bias was more likely to atveeg
indicating that in these situations the rainfall estimates are likely terymddict the
amount of rainfall. Under high rainfall conditions the relative bias was moBt tike

be positive, indicating an over prediction in the pixel rainfall. When one rain gage
experienced high rainfall while the other experienced low rainfall, theveslaias
decreased dramatically, compared to a similar scenario with only one gain Ghais
general statement is applicable to rainfall scenarios 1 and 2, though it is not
necessarily true for the more variable rainfall scenario 3. In consydde rainfall
scenarios used in these experiments, it is most likely that for two raas,gaigh one
experiencing high and one experiencing low rainfall, that these rain gagés$ not

be located close to each other. Therefore it would be expected that two rain gages in
this scenario would be able to fairly well represent the average rainfadl be
experienced over the entire watershed. Also, from a mathematical standpoint, it is
reasonable to expect that two values, one particularly high and one particularly low
would average out to a reasonable representation of the sample as a whole. The best
improvement in relative bias most often occurred with rainfall scenario 2. Thi

rainfall surface had the least variation of the three surfaces testéad; fnding is
expected. Conversely, the least improvement in relative bias often occutned wit
rainfall scenario 3. This rainfall surface was highly variable, so adesfjnding

was not unexpected.
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7.3.9. Conclusions

The effects of using an averaging method such as the Thiessen polygon
method of the arithmetic averaging method on rainfall estimates caltditata
watershed were investigated. This analysis also further investigatedpbeance
of rain gage density in a watershed. The results of this study illustraferthay
one time period one rain gage will likely give a poor estimate of rainfath@entire
watershed, but due to the law of averages one rain gage may give a reasonably
accurate rainfall estimate for an entire storm. Similarly, for anyioreegeriod, two
rain gages are likely to better represent the rainfall surface lewentire watershed
than one rain gage. This proves the importance of using spatial data to makke rainfal
estimates. An overall trend of decreasing relative biases and relatidaust errors
with the addition of a second rain gage within a watershed were observed, proving
that two rain gages could provide more accurate watershed rainfall averagesgha
rain gage. However, the location of the two rain gages relative to each otlest play
key role in determining the level of improvement the second rain gage provided.
Two rain gages located relatively far from each other were found to haee bet
relative bias and relative standard error values than two rain gagexllotzge to
each other.

The results of this study indicate that increased spatial data about @Enfal
improve the accuracy of rainfall predictions. However, few dense rain gagerket
currently exist, limiting the amount of improvement in accuracy possible. Radar da
may be a suitable substitute for rain gage data, as it provides more deailaed s

information about rainfall at a reasonable time step. The use of radar data &s input
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hydrologic models and analyses should be investigated with the goal of improving the

accuracy of the results of those models and analyses.
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CHAPTER 8

UNIT HYDROGRAPH ANALYSES: POINT VS. SPATIAL

RAINFALL INPUT DATA

8.1. INTRODUCTION

Unit hydrographs (UHSs) are frequently used in hydrologic design. AUH is a
system transfer function that is used to transform precipitation exdess{® direct
runoff (DRO). The exact definition of a UH is a hydrograph that results fractlgx
one inch of precipitation that falls in a uniform manner and at a uniform rate over a
watershed during a specified time interval. Several portions of this definidon a
particularly important. First, a UH must have exactly one inch of PE. Second, the
precipitation must have a uniform spatial distribution over the watershed. Except for
very small watersheds this condition rarely occurs, so this portion of the definiti
must often be applied loosely in order to use the unit hydrograph procedure. Third,
PE must be constant in time. This is also not a realistic requirement, so it must be
interpreted loosely in the application of the unit hydrograph process. Finallygthe P
must occur over a specific time interval. In unit hydrograph analyses, this mét
by selecting short duration storms.

The extent to which these assumptions are met in either analysis or design has
not received the attention that it deserves, given the extent to which unit hyptiogra
are used, such as in the HEC and USDA programs. The degree to which failure to

meet these assumptions influences a design is not known. In the case of unit
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hydrograph analysis, the uncertainty of spatial variation of rainfall overatersied

on the fitted UH needs to be investigated, as UHs are often fitted using data from
single rain gage. Rainfall characteristics are not constant over tima éxceery

small watersheds and short duration, intense storms. This lack of temporal
homogeneity also introduces inaccuracy into a fitted UH. The objectives of this
research were to determine the degree to which spatial charadeistmnfall
influenced the fitted UH, and to determine whether UHs could be improved by using
spatial rainfall data such as radar data.

In developing a unit hydrograph, the first step is to obtain rainfall and runoff
data for a storm in a given watershed. Then baseflow, which is the flow that would
occur in a channel when there had been no precipitation, must be separated from the
DRO. This is not necessary in arid and semi-arid regions where channels tend to be
ephemeral. Next losses, including the initial abstraction, need to be separated from
the rainfall in order to determine the PE. Precipitation that infiltratesheto t
subsurface, or is stored in some sort of surface detention would be considered losses.
These separation analyses are done in order to identify the transfer funbin, w
will be used with a synthetic design storm to determine a design runoff hydrograph.
The process in which the design storm and the transfer function (UH) are combined to
produce DRO is called convolution. Convolution, also known as the theory of linear
superpositioning, is a process that combines multiplication, translation withatitie
addition. The ordinates of the design storm are convolved with the ordinates of the

transfer function to calculate the ordinates of the design runoff hydrograjpiatidn
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8-1 is used to determine the number of ordinates on the direct runoff hydrograph the
formula:
Moro = Npe + My, —1 (8-1)

where n is the number of ordinates.

8.1.1. UH Derivation

Two methods by which a unit hydrograph can be derived are the rainfall-
excess reciprocal method and least-squares analysis. The rainédsegciprocal
method is a very computationally simple method that can be used for fairly simple
storm events. Each ordinate of the DRO hydrograph is multiplied by the retipiroca
the depth of the PE (which is equal to the depth of the DRO). This results in a UH
with a depth of one inch, as required by the definition of the UH.

A second option for deriving a unit hydrograph is least squares analysis. This
method can be used on more complex storm events. When using nonlinear least
squares analysis to determine a UH, the PE is the predictor variable wHilR @hes
the dependent variable. This is a convenient method for deriving UHs; however,
some limitations exist. It will also be necessary to ensure that the UHh@slisum
to one area-inch, as the least squares method does not necessarily foesalthas
the rainfall-excess reciprocal method does (McCuen, 2005).

In the nonlinear least squares (NLLS) procedure used herein, the precipitation
excess and direct runoff distribution are determined external to the aratgsused
as input to develop the UH. A UH model is assumed, with the model being a
function of parameters (i.e., coefficients) that need to be calibrated tiezl \Via

least squares). In the analyses reported herein, a Weibull distributied iasithe
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UH, with the Weibull being a function of two parameters (one shape and one scale).
Estimates of the two parameters are assumed and used to fit the Weibull function,
which is then convolved with the rainfall excess to get a computed distribution of
direct runoff. The computed and measured direct runoff distributions are compared
statistically, with the two parameters adjusted until the computed DROVYipps the

best possible fit to the observed DRO(t).

8.1.2. Transmission Losses

In arid regions, transmission loss (TL), which is the infiltration of flow into
the channel bed, can be a significant factor in hydrological modeling. Theatkesult
TL is a decrease in both flow volume and peak discharge as the flood wave moves
downstream (Jordan, 1977). Normally, the peak discharge is expected to increase as
the flood wave moves downstream because of local inflow, but where transmission
losses are significant, they can cause a decrease as the flood moves downstre
The hydrographs shown in Figure 8-1 are for gages in the Walnut Gulch Watershed,
Arizona. The hydrographs show the flow moving downstream during the storm event
of July 31, 2007, and demonstrate that transmission losses offset local inflow rates.
Flow gage 11 is the most upstream flow gage, and it clearly has the highest pea
discharge (2.899 mm/hr). The peak flows decrease at flow gages 6 (1.201 mm/hr)
and 2 (0.980 mm/hr), which are downstream of flow gage 11. Finally, the flow
measured at flow gage 1, the watershed outlet, is seen to have the lowektvwpeak f
(0.615 mm/hr). A trend of decreasing area under the hydrograph is also seen as the

flood wave moves downstream.
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It is also interesting to note that, as the flood wave travels downstream, the
rising limb of the hydrograph becomes steeper, to the point that at flow gage 1, the
outlet, the rising limb is almost an instantaneous rise to the peak flow rate.
Transmission losses can be responsible for the steep rising limbs of hydrdagedphs
are characteristic of arid regions. This occurs because much of takfiodd
waters infiltrate into the dry channel bed as the flood wave travels downstidse
rate of streamflow exceeds the transmission loss rate only when thd ratafaity
is high. Thus, runoff appears in the form of a hydrograph with a steep rising limb.
This phenomenon will be significant in the development of unit hydrographs from

data influenced by transmission losses.
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Figure 8-1: Flow Records Measured At Different FlonGages as Flood Wave Moves Downstream for Storm
on 7/31/07

8.1.3. Weibull Distribution as a UH

Unit hydrographs are often represented with a scaled gamma distribution
(Dooge, 1973; Nash, 1958). The gamma distribution is not sufficiently flexible to
represent the steeply sloped UHs analyzed for Walnut Gulch. Therefore, ithdl\We

distribution, which is more flexible than the Gamma distribution, was selected as
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UH model. The Weibull distribution is an extreme value type Il distribution. The

Weibull distribution is defined by the equation:
by
F(t) = é(tc-l)e ) (8-2)

where t must be0, andb andc must be >0. Thb value is the Weibull scale

parameter, while theis the Weibull shape parameter. Several different shapes are
possible for this distribution, depending on the shape parangtéVpenc is less

than 1.0, a reverse-J shape occurs. Whenuals 1.0, an exponential shape occurs.
Whenc increases above 1.0, a skewed bell shape curve that starts at f(x=0)=0 occurs
(Haan, 1977). This is demonstrated in Figure 8-2, which plots three Weibull
distributions, where the Weibullvalue is set equal to three and the Weibwialue

is varied. A typical unit hydrograph would be expected to have a somewhat skewed
distribution, so when using this distribution to fit unit hydrographs, Wetdlues

greater than 1.0 would be expected.
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Figure 8-2: Weibull Distribution for Various ¢ Valu es, While b=3

Bhunyaet al. (2007) evaluated four probability distribution functions (pdfs) to
determine which could best be used to develop synthetic unit hydrographs. The pdfs

under consideration were the two-parameter Gamma, the three-paranaténde
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two parameter Weibull, and the one-parameter Chi-square. The results aidiat st
indicate that, because the Beta and Weibull distributions have both positive and
negative skew, they were more flexible, and thus were better able to fit iHls fr
observed data. Because of this extra flexibility the Beta and Weibulbdisbmns

were found to more accurately predict unit hydrographs than the Gamma and Chi-
square distributions (Bhunyal., 2007). The Weibull distribution was chosen over
the Beta distribution for this research because the Weibull distribution has only tw

parameters to be fit, while the Beta distribution has three parameters.

8.1.4. Applications of UHs

Unit hydrographs have a variety of uses in hydrologic design. Currently, peak
discharge methods are widely used for analyses that involve small wdtrsieh
as highway drainage and urban watershed drainage, to name a few; however, peak
discharge methods are not considered accurate enough for many other applications
Computer models using hydrograph methods are widely considered to be more
accurate than peak discharge methods and are becoming more popular for many
applications. Hydrograph methods are frequently used for moderate to large
watershed analyses. They are also used when significant amounts of natagal stor
exist within the watershed being analyzed. If significant variatiois$ iexeither the
watershed itself or the hydrometeorologic conditions, then hydrograph metkods a
preferred over peak discharge methods. Also, if subdivision of the watershed will be
necessary, or if any constraints to the principal flow paths within the Wwatkexist,
hydrograph methods should be used. The following list from McCuen (2005)

describes the procedure for using unit hydrographs for hydrologic design:
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. Choose a design storm and a return period.

. If a large watershed is being analyzed make appropriate depth-area
adjustments.

. Calculate the initial abstractions and losses in order to separate the PE
from the chosen design storm.

. Choose a unit hydrograph model and obtain the necessary inputs to put
it in dimensional form. Ensure that the unit hydrograph volume is
equal to one area-inch.

. Convolve the PE hyetograph and the unit hydrograph to determine the
DRO hydrograph.

. Add baseflow, if applicable, to the DRO hydrograph to compute the
total runoff hydrograph.

. If necessary, route the total runoff hydrograph through the channel

system.

8.1.5. Potential Problems in UH Derivation

Traditionally, the rainfall record used to determine the PE for the UH

procedure is obtained from a rain gage located within, or close to, the watershed

being analyzed. Two problems immediately arise with this. First, aagmanly

measures point rainfall, which may not be representative of the rain on other portions

of the watershed either in total storm depth or in intensity over the duration of the

event. This is especially true when larger watersheds are beingethalyecond,

not all watersheds have even one rain gage located within the boundaries. In such

cases, the rainfall record from the rain gage located nearest to thehedtensst be
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used, but again, this may not be representative of the rainfall experienced on the
watershed.

The temporal distribution of rainfall is critical to the development of a
watershed unit hydrograph. Several possible methods for obtaining a representat
rainfall record for the unit hydrograph procedure can be used. If multiple rais gage
are located within one watershed, then the rainfall records from these gagbs m
averaged in some way, such as the Thiessen polygon method, to develop one rainfall
record. Itis rare, however, for a watershed to have more than one rain gagg locat
within its boundaries, so this solution is generally not feasible. An alternatith@dne
of developing a representative rainfall record is to use radar data. Radar data
essentially measure an average rainfall rate for a given raddy\phich is often a
square measuring approximately 4-km by 4-km. Because radar dataikziel@ber
most of the United States, it would eliminate the problem of not having represgentati
rainfall data. If a radar rainfall record were substituted for a rain igagfall record,
it would be expected to provide a unit hydrograph that better accounted for spatial

variability in rainfall over the radar pixel area.

8.2. UH DERIVATION PROCESS

8.2.1. Rainfall and Flow Data Preparation

Rain gage and flow gage data were obtained from the United States
Department of Agriculture (USDA) Agricultural Research Service$A
Southwestern Watershed Research Center’s website for the Walnut Gulch
Experimental Watershed. Both datasets included the date of the event, th@estart t

for rainfall or runoff for each gage, the number of minutes elapsed from thenstart t
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for each individual reading, as well as the rainfall rate and accumulated deph, or t
runoff rate and accumulated volume. The information related to the event start time,
the time elapsed, and the rainfall or runoff rate was extracted for use intthe uni
hydrograph derivation process. Neither dataset had readings that occurred on a
constant time interval, which would be required for the unit hydrograph analyses, so
an interpolation program was used to create records that were on a comgtant
interval of one-minute.

Radar data were obtained from an internet service known as Hydro-NEXRAD
(The University of lowa, 2008). This is a service operated and supported primaril
by researchers at the University of lowa, along with several other prtinat aims
to make radar data more accessible for use in hydrologic applications. It pranide
easy-to-use method for downloading radar data for a particular waterslae@or r
station. Radar data for the desired storm events were obtained for the San Pedro
River Basin, which is the larger watershed that contains the Walnut Gulch
Experimental Watershed. Data could be obtained either as files that weableién
ArcGIS, or as text files. Using a file visualized in ArcGIS, along wishapefile
showing the boundaries of Walnut Gulch the radar pixels that covered the watershed
of interest were identified. Then the necessary radar data could be elxtractehe
downloaded files. The radar data files are not recorded on a constant time,isterval
they too needed to be interpolated. Due to the slightly different format of the data
files as compared to the rain and flow gage data files, a separate interpolati
program was created for use with these files. The result of this intéopolats

radar hyetographs on a one-minute time increment. Figure 8-3 shows tha Wal
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Gulch Experimental Watershed, along with the locations of rain gages. Thessquar

of varying colors also shown in this figure are the radar pixels that con@sp the

Walnut Gulch area.

Figure 8-3: Walnut Gulch Map with Corresponding Rain Gage (black squares), Flow Gage (black
triangles), and Radar Data (large, gray-scale squas)
(http://www.tucson.ars.ag.gov/dap/images/WalnutGule_map.jpg)

8.2.2. Separation of Losses

Once acceptable rainfall and runoff data files had been developed, the first
step was to create precipitation excess hyetographs (PE) and direct runoff
hydrographs (DRO). Because Walnut Gulch is located in an arid region and the
streams are ephemeral, it was assumed that baseflow did not exist. Theiefbre, a
the runoff measured by the flow gages was considered DRO.

The next step was to separate losses from the rainfall hyetograph to determi
the PE hyetograph. The first assumption made in this process was thatalll rainf
prior to the start of runoff was lost as initial abstraction. The initial altsmnas
rainfall that occurs near the beginning of the storm that is not available to runoff,
normally because it is intercepted by the vegetation or infiltrates into tleesived
subsurface. After the initial abstraction was removed from the rainfall ihet
constant percentage method was used to separate losses from the PE. In using the

constant percentage method, losses are assumed to be proportional to the rainfall rat
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such that the volumes of PE and DRO are equal. Therefore, some percentage of
rainfall was removed from every rainfall data record that remainedthéenitial
abstraction had been removed, with the remaining rainfall considered to be the PE
responsible for the DRO. Using thandex method to separate losses would have
been preferable; however, this method eliminated too many ordinates of the
hyetograph, thus leaving only a few very intense ordinates. With so few rgptog
ordinates a rational hyetograph, and therefore a rational UH, could not be derived.
A program that would delete all rainfall records prior to the start of rundff a
then use the constant percentage method to separate losses from the PE was
developed. This program also used the drainage area of the flow gage to convert the
runoff from intensity measurements to volume measurements. As a final step, the
program confirmed that the volume of PE was equal to the volume of DRO. The
output from this program provided the PE hyetograph and DRO hydrograph that

would be used to determine the optimum UH parameters for that event.

8.2.3. Nonlinear Least Squares Analysis of UH Parameters

The PE hyetograph and the DRO hydrograph calculated previously were used
in a least squares analysis to determine the optimum Weibull UH paranoeteasth
storm event. Based on work done by the Sebraé (2008), it was known that runoff
in Walnut Gulch peaked very quickly after the runoff began, and it typically did not
have a long duration. It was believed that this could result in UHs that differed
somewhat in shape from the commonly seen hydrograph shape. Hydrographs with
particularly steep rising limbs with shorter than normal recessions havieesn

seen in arid regions by Peeb&tsl. (1981) and Sen (2007 and 2008). Peedilek
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(1981) attribute these particular characteristics to transmission lagbeschannel.
The nonlinear least squares analysis determined the best-fit values ofithdl We
shape ¢) and scalelf) parameters. Then the UH and PE(t) were convolved to
calculate a predicted DRO hydrograph. Goodness-of-fit statistieglinglthe
standard error ratio, the correlation coefficient, and the coefficient ahaatgion

were evaluated using the calculated and measured DRO hydrographs.

8.3. ANALYSIS OF UHS

8.3.1. UHs Derived from Rain Gage Data

To compare unit hydrographs derived for different rain gages the first step
was to identify the rain gages located within the boundaries of specific radbs. pi
This was done for ease in later comparing UHs derived with rain gages to those
derived with radar rainfall data. Then the downstream flow gage locatedtrieares
this radar pixel was identified. Unit hydrographs were derived using eachdunalivi
rain gage located within the pixel for four storm events, and the variation between
these UHs was assessed. This analysis procedure was then used onrtpigeisda
within the Walnut Gulch watershed. The results of the two pixels analyzed for the
same storm event were compared to evaluate the variability of unit hydrographs
derived for different portions of the watershed. The goodness-of-fit statistieged
using the rain gages in the different pixels were compared to evaluate uhacaes
of the runoff predictions made from rainfall and flow data for difference portions of

the watershed. Then the unit hydrographs derived for the different pixels were
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plotted and compared to visually detect differences caused by location within the
watershed.

8.3.1.1. Comparison of UHs Derived from Rain Gages Within One Pixel
Given that unit hydrographs are commonly developed using data from one

rain gage, it was of interest to assess the potential uncertainty thahitagdn

might have on developing a representative watershed UH. Therefore, one objective
was to evaluate the variability of Weibull UHs derived using different ragega

located within the boundaries of one radar pixel. Two pixels were used for this
analysis for each of four different storm events. Figure 8-4 provides the unit
hydrographs derived for seven rain gages located within pixel 12 for the storm event
on August 13, 2006. Table 8-1 provides a summary of the Weibull distribution shape
and scale parameters used to fit the unit hydrographs and the goodnesstftfttsst
calculated for the resulting predicted runoff hydrographs.

In examining both the plot of the UHs (Figure 8-4) and the parameter values
presented in Table 8-1, it is evident that significant variation in the UHs if@ssi
depending on the rain gage used. The peak ordinates of the UHs vary significantly,
from a minimum of approximately 10 to a maximum of approximately 40 cms/mm.
The shapes of the UHs also vary significantly. The greatest differemcthies UH
rising limbs. In some cases there is no rising limb (see RG 61), in whichhease t
Weibull shape parametex)(is less than 1.0 leading to an exponential UH, while in
other cases a slight rising limb is visible (see RG 58). Potential explas&dir
exponentially shaped UHs can be provided, from both a modeling and a physical

standpoint, and will be provided at a later point in this discussion. The present
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purpose is only to point out the level of variation that is possible in fitted unit

hydrographs depending on the rain gage used to provide rainfall information.
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Figure 8-4: Rain Gage and Thiessen (traditional méiod) Rainfall UHs Derived for Storm on 8/13/06 Pixke
12

Table 8-1: Rain Gage Unit Hydrograph Parameter andsoodness of Fit Statistics for Storm on 8/13/06 Rix
12

b c Se/SyyR |R°
RG 53 15.5/0.77| 0.37|0.93| 0.86
RG 57 22.5 1.05| 0.45|0.90| 0.80
RG 58 28.5 1.43| 0.44|0.90| 0.81
RG 59 29.3 1.46| 0.43|0.90| 0.82
RG 61 3.5/ 0.33| 0.27] 0.96| 0.93
RG 63 12.7/ 0.53| 0.42|0.91] 0.82
RG 72 13.1 0.59| 0.32]| 0.95]| 0.90
Thiessen (traditional) 19.2| 0.85| 0.40| 0.92| 0.84

This level of variation in unit hydrographs derived using different rain gages
was not always seen. Figure 8-5 presents a comparison of unit hydrographs derived
for the six rain gages located within pixel 1 for the storm event on August 17, 2006.
Table 8-2 presents the optimum Weibull parameter values determined for these unit
hydrographs, along with the goodness-of-fit statistics calculated fpréioécted
runoff calculated using these UHs. From these results (Figure 8-5 ard3Fapit is

evident that the UHs derived for these six rain gages are essentiallgatieitiese
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UHs are quite different from those presented in Figure 8-4 in that they hae littl
variation between them and in that they have a typical UH shape. For this particula
event all of the unit hydrographs were found to have a common UH shape, as
opposed to the exponential unit hydrographs seen in Figure 8-4. The likely
explanation for this will be provided later in the discussion; for now the important
points are (1) there is a lack of variation in the unit hydrographs derived from these
particular rain gages, and (2) storm characteristics can vary theed#grariation
between UHSs for the same storm. For this storm event, the hyetographs obtained
from the individual rain gages were very similar to each other. Since the same fl
record was used to derive each of the UHs and the rainfall hyetographsmikne s

the UHs (shown in Figure 8-5) also were very similar to each other.
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Figure 8-5: Comparison of Unit Hydrographs Derivedfrom Different Rain Gages for the Storm on 8/17/06
Pixel 1

Table 8-2: Rain Gage Unit Hydrograph Parameter andsoodness of Fit Statistics for Storm on 8/17/06 R
1

b c SelSy R |R?

RG1 | 110.8 3.13| 0.33| 0.94| 0.89

RG2 | 109.5 3.13| 0.33| 0.94| 0.89

RG4 | 115.5 3.26| 0.34| 0.94| 0.89

RG5 | 111.53.20| 0.33] 0.94| 0.89

RG8 | 115.7/ 3.25| 0.34]| 0.94| 0.89

RG 92| 110.8| 3.17] 0.33]| 0.94| 0.89
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The variation, or lack of variation as the case may be, between UHs derived
from different rain gages within one pixel appears to be related to the lertgtieof
between the center of mass (CM) of the PE and the CM of the DRO. This factor
appears to control the Weibullvalues fit to the UHs. For the storm event on August
13, 2006, the hyetographs for the individual gages differed and thus produced
differences in the time of the center of mass of the PE. Therefore, the ofnters
masses for the PE and DRO were different. Conversely, the storm occurring over
pixel 1 on August 17, 2006, was very short at all of the rain gages, but it resulted in a
very long runoff record. Therefore, little variation in the timing of the PE CBI wa
evident between the rain gages, because the storm was so short, and a long period of
time was also evident between the PE centers of mass and the DRO center of mass
Collectively, these factors likely forced the normal shape of the unit hyapogifor
these rain gages and resulted in the small amount of variation between them (see
Figure 8-5). The shorter difference in centers of mass of the PE an&@éobthe
storm on August 13, 2006, forced lower Weibull ¢ values, which caused the
exponential unit hydrographs (see Figure 8-4) seen for some of the rain gages.

8.3.1.2. Comparison of UHs Derived for Different Subareas

For many analyses and designs, a watershed is subdivided because of
differences in land use or storage. The general practice is to use the same unit
hydrograph model for the analysis of each subarea, with variation only dependent on
the area, depth of runoff, and time of concentration. This practice can be questioned
if the shape of the unit hydrograph is believed to vary over the subwatersheds.

Preliminary indications suggest that transmission losses and variation in

timing influence the UH shape. Therefore, it seemed reasonable to stutigmdre
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not the UHSs for different subareas of the Walnut Gulch watershed were miffere
While UHs are known to vary from storm to storm, within-watershed variation of unit
hydrographs needed to be investigated.

Unit hydrographs were derived for all of the rain gages located within the
boundaries of two different pixels for the same storm event. Figure 8-3 provides a
map of the Walnut Gulch Experimental Watershed and the corresponding radar
pixels. The pixels used in this evaluation are pixel 1 (first row, left-mo3tarel|
pixel 10 (second row, third cell from the left). The unit hydrographs derived for the
rain gages located within pixel 1 (see Figure 8-6) are compared to tbhatedlo
within pixel 10 (see Figure 8-7) for the storm on July 31, 2007. Table 8-3 provides
the UH parameters and the predicted runoff goodness-of-fit statistiosé&brl.

Table 8-3 can be compared to Table 8-4, which provides this information for pixel 10.

The first thing to note in comparing these plots is the differences in scales.
The maximum unit hydrograph value for pixel 1 is slightly under 250 cms/mm, while
the maximum value for pixel 10 is approximately 200 cms/mm. This is a sigrifica
difference between the two pixels, which is caused by differences in thagkarea
of the flow gages used to derive the UHs for each rain gage. The flow gage used to
derive UHs for pixel 1 drained approximately 14,933 ha, while the flow gage used to
drive UHs for pixel 10 drained 9510 ha. The difference in scales is not larger than
this because significant amounts of flow are lost to the channel bed as the flood wave
moves downstream, as illustrated in Figure 8-1. The UH derived for pixel 1 will
produce a much different direct runoff prediction for a storm event than the UH

derived for pixel 10 would due to this difference in peak ordinates. If one of these
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UHs were to be applied to the entire watershed for the purpose of design work,
significantly inaccurate runoff predictions could result. Inaccurate rymeffictions
will likely result in either an inadequate design for the true hydrologic dondjtor
an excessive design for the hydrologic conditions, each of which presents itsown se
of problems.

The differences in shape should also be noted between Figures 8-6 and 8-7.
None of the UHs in Figure 8-6 have a Weibull scale parameter greatdr.@hanus,
they are all exponentially shaped. Figure 8-7 has six of eight unit hydrogvaphs
shape parameters greater than 1.0, producing UHs that are not exponential. In
general, the unit hydrographs derived for pixel 1 are steeper than the unit hgtsogra
derived for pixel 10. One potential explanation for this is the presence of
transmission losses in arid watersheds. Pixel 1 is located downstream of pixel 10, s
transmission losses would be expected to cause the runoff hydrograph assathate
pixel 1 be to steeper than the hydrograph associated with pixel 10. The decrease in
flow volume as the flood wave moves downstream was illustrated for this storm event
in Figure 8-1. This steeper runoff hydrograph causes the difference indppese
of the rising limbs of the UHs between the pixels. This provides evidence that
transmission losses could be responsible for variation in the UHs derived foerdiffe
areas of a watershed.

Overall there would appear to be more variation in the unit hydrographs for
pixel 10 than for pixel 1. The scale parameters for the unit hydrographs in pixel 10
ranged from 6.5 to 15.3, while the shape parameters ranged from414*2017. If

data from rain gage 33, which appears to be an outlier, are removed, the scale
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parameter ranged from 7.7 to 15.6 and the shape parameter ranged from 0.88 to 2.17.
The results obtained for rain gage 33 were obviously widely different from results
obtained for the other results in this pixel. These results were further iatedtig
an attempt to provide some explanation. Ghalue was set, and held constant, at
higher values that were similar to those found for the other rain gages, which had
been found to improve the results in other scenarios where one of the rain gages
produced unusual results. However, in this case absolutely no improvement was seen
with changes in the parameter values. The goodness-of-fit statistics dhtpbnove
at all, leading to the conclusion that a data error must somehow exist to explain t
poor results.

For the UHs in pixel 1 the scale parameters ranged from 15.6 to 31.8, which is
a larger range that what was seen in pixel 10; however, the shape paramgters onl
range from 0.36 to 0.68. This small range in shape parameters forced all the UHs
derived from rain gages in Pixel 1 to be exponential in shape, and to be very similar,
though a difference in scales, caused by the variation inpaeameters, is visible.
The large range in shape parameters for UHs from pixel 10 resulted in mueh mor
varied UHs. ltis also interesting to note, in regards to pixel 10, that two of the UH
those derived from rain gages 28 and 33, did not result in acceptable goodness-of-fit
statistics. If either of these UHs were used to predict runoff for the Wwatkrs
would be impossible to have any confidence in the results, due to the poor goodness-
of-fit statistics.

Generally, UHs are attributed to characteristics of the watershetbré&auch

as the land use, including the runoff curve number, drainage area or length, and slope
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are used to scale a UH. For the analyses reported herein, it is evident that
transmission losses are a major factor governing the shape and scalgldsthe
Transmission losses are generally associated with the channek{laan2007), but
they are also likely associated with infiltration rates over theeewttershed. Thus,
the UHs appear to reflect channel processes as much as watershed processes

The results of this analysis indicate that the portion of the watershed in which
the unit hydrograph was derived should be an important consideration. The
conclusion to be reached from this is that if a derived UH is used for design work in
the future, the location of the rain gage within the watershed could be very intporta
to the final result. If the UH was derived for a portion of the watershed other than
where the design work was being done, it is possible that the UH will not be accurate,
which could result in a poor design. If the differences between the differenbéreas
the watershed were severe enough, a poor design based on an inaccurate unit

hydrograph could result in negative safety and health consequences.
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Figure 8-6: Comparison of Unit Hydrographs DerivedUsing Rain Gages in Pixel 1 for the Storm on 7/3170
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Figure 8-7: Rain Gages and Thiessen (traditional mkod) Rainfall UHs in Pixel 10 for the Storm on 7/3/07

Table 8-3: Rain Gage Unit Hydrograph Parameters andsoodness-of-Fit Statistics for Storm on 7/31/07
Pixel 1

b c Se/SyyR |R°

RG1 | 25.7/0.50| 0.34 | 0.94] 0.89

RG2 | 15.6/0.45|0.42 | 0.91 0.82

RG4 | 23.9/0.40| 0.40 | 0.92 0.84

RG5 | 27.7/0.68| 0.31 | 0.95 0.90

RG8 | 28.9/0.43]|0.39 | 0.92 0.85

RG 92| 31.8|/0.36]/ 0.55 | 0.84) 0.70

Table 8-4: Rain Gage and Thiessen Rainfall Unit Hyegraph Parameters and Goodness-of-Fit Statistics
for Storm on 7/31/07 Pixel 10

b c SelSyyR |R®
RG 17 9.3 | 1.840.57 | 0.82 0.68
RG 24 7.7 | 1.08 0.65 | 0.76] 0.58
RG 28 15.6 1.72| 1.03 | 0.00] 0.00
RG 29 6.5 | 1.06 0.58 | 0.81] 0.66
RG 33 85| 1.411.07 | 0.00 0.00
RG 34 13.8/ 0.88{ 0.41 | 0.91] 0.84
RG 81 8.6 | 1.090.64 | 0.77| 0.59
RG 399 13.5 2.17|/0.82 | 0.57| 0.33
Thiessen (traditional) 8.2 | 0.97] 0.50 | 0.87] 0.76

8.3.2. UHs Derived from the Traditional Thiessen Average Rainfall Data

Rain gage measurements reflect rainfall over the area local to the gage. The
degree to which the rain gage measurements reflect rainfall at a point defroowe
the gage depends partly on the distance between the gage and the point. The extent to

which a gage measurement reflects the size of the pixel is in doubt givenithiewar
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in UHs in Figures 8-6 and 8-7. Therefore, it was of interest to assess\vetaga
rainfall from the gages within a pixel would provide a realistic assessohtme
accuracy of UHs derived from radar data. The Thiessen polygon averaghmgimet
was used to spatially average rainfall data to derive a UH. Using ¢timdan
average rainfall record was calculated based on measurements at the rain gages
located within the borders of each radar pixel.

The first step to completing this analysis was to calculate Thiessen sviaght
each rain gage within the pixel using areas obtained with a planimetepix&lot0
the Thiessen weights were determined to be as follows: for rain gage 17 aafeight
0.068, for rain gage 24 a weight of 0.070, for rain gage 28 a weight of 0.068, for rain
gage 29 a weight of 0.117, for rain gage 33 a weight of 0.144, for rain gage 34 a
weight of 0.234, for rain gage 81 a weight of 0.174, and for rain gage 399 a weight of
0.125. For pixel 12 the Thiessen weights were determined to be as follows: for rain
gage 53 a weight of 0.155, for rain gage 57 a weight of 0.150, for rain gage 58 a
weight of 0.060, for rain gage 59 a weight of 0.243, for rain gage 61 a weight of
0.095, for rain gage 63 a weight of 0.104, and for rain gage 72 a weight of 0.193.
Then an average rainfall hyetograph was created using the Thiessats\aeig the
1-minute rainfall depths. From this point the standard procedure described previously
was used to derive the UH and calculate runoff predictions. The goodness-of-fit
statistics for the predictions were compared to those calculated usiragrigages.
The UH was plotted using the optimum parameters identified, and then it too could be

compared to the UHs derived using the rain gages. This comparison would indicate

213



whether or not spatially averaged rainfall data could provide any benefit to UH
analyses.

8.3.2.1. UH Results Using Traditional Thiessen Calculations
Figure 8-4 compares the Thiessen average rainfall unit hydrograph to the

individual rain gage unit hydrographs for pixel 12 for the storm event occurring on
August 13, 2006. The rain gage unit hydrograph parameters and goodness-of-fit
statistics were presented previously in Table 8-1. Botb #relc values for the
Thiessen averaged rainfall and the goodness-of-fit statistics falinteethe ranges
provided by the rain gages, resulting in a UH that compares well to the rain gage
UHs.

Similarly good unit hydrographs derived from Thiessen average rainfall
datasets for several other storm events. For instance, Figure 8-7 showistbk U
the rain gages in Pixel 10 as well as the Thiessen average rainfa# &iotm event
on July 31, 2007. Table 8-4 provides the corresponding unit hydrograph parameters,
as well as the goodness-of-fit statistics for the predicted runofilagdd using the
derived unit hydrographs. In this case, the Thiessen rainfall UH falls apatekym
in the middle of the exponential UHs derived from rain gages. Because theshhiess
rainfall is an average of the rainfall measured by the individual rain gagegasi
the expected outcome. The goodness-of-fit statistics for the Thiessen taihtko
fall into the range of those calculated from the rain gage UHSs.

The goodness-of-fit statistics of the predicted runoff hydrographs ieditait
the Thiessen average rainfall can be used to derive an acceptable unit hydrograph.
The purpose of the UH is often to do design work within the watershed, so the main

objective of the UH is to be able to accurately predict runoff based on rainfall over
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the watershed. In comparing the goodness-of-fit statistics for the pekdictoff for

both of the storm events evaluated here, it is obvious that the Thiessen rainfall UH i
able to predict runoff at least as accurately as the rain gage UHs. Thsehhies

rainfall for pixel 12 for the storm occurring on August 13, 2006, has better goodness-
of-fit statistics than four of the seven rain gages, while the Thiessgallfor pixel

10 for the storm occurring on July 31, 2007, has better goodness-of-fit statigtics tha
seven of the eight rain gages. This provides further evidence that the Thiessen
average rainfall can produce an accurate unit hydrograph and an accuratepredi

of runoff.

For the storm events occurring on August 13, 2006, and August 17, 2006,
only slight variation was seen in the individual rain gage hyetographs. Between the
rain gages there was high similarity in both hyetograph shape and magnitude.
Therefore the traditional Thiessen analysis was able to retain the agigopr
hyetograph shape, and was truly representative of the rainfall exper@mdee
pixel. The storm event on July 20, 2007, did not have such strong similarities
between the individual rain gage hyetographs for pixel 12. High variabilitgees
especially in the shape of the hyetographs, so the traditional Thiessenticalcuées
not able to represent the average rainfall over the pixel. Therefore the Wétider
from this average hyetograph did not compare well to the UHs derived for the
individual rain gages, as seen in Figure 8-8 and Table 8-5. The lower UH parameters
determined for the Thiessen UH result in a UH (shown in Figure 8-8) thatsest
than any of the individual rain gage UHs, whereas the expected result would be a UH

falling in the middle of the rain gage UHSs, as seen in Figure 8-4.
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Table 8-5: Rain Gage and Thiessen UH Parameters ar@@oodness-of-Fit Statistics for Storm Even on
7/20/07 Pixel 12

b |c Se/lSyy R | R?
RG 53 2.2/ 0.97| 0.57|0.82| 0.67
RG 57 1.8/ 0.83] 0.56| 0.83] 0.69
RG 58 2.7/1.10| 0.53]0.85]0.72
RG 59 7.3]1.23| 0.55|0.83|0.70
RG 61 7.2/ 1.24| 0.51|0.86|0.74
RG 63 4.2/ 1.06| 0.53|0.85|0.72
RG 72 3.3/1.06| 0.49|0.87|0.76
Thiessen (traditional) 0.9 ] 0.77| 0.46] 0.89| 0.79
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Figure 8-8: Rain Gage and Thiessen (traditional méiod) UHs for Storm Event on 7/20/07 Pixel 12

8.3.3. UHs Derived from the Pattern-Preserving Thiessen Average

Rainfall Data

The traditional method of calculating a Thiessen average rainfalldrecor
applies Thiessen weights to each ordinate in each individual rainfall hyetograph.
Aron et al. (1979) found that this method can result in severe attenuation of the
hyetograph. This would result in an average hyetograph that is not actually
representative of the individual rainfall hyetographs on which it is based. Aabn e
(1979) did find that the traditional Thiessen averaging method could be applied to

storm totals, just not to individual hyetograph ordinates. To determine whether thi
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affected the UHs derived based on Thiessen average rainfall a seconthgverag
method, the pattern-preserving Thiessen method, was used to derive UHs.

The pattern-preserving Thiessen method, which uses some of the comments
identified by Aronet al. (1979), was based on the Thiessen method, but the Thiessen
weights were not applied to each hyetograph ordinate. Instead, the gveaikge
intensity was calculated based on the Thiessen weights, as were tlye dveeato
peak and the average hyetograph duration. The formula used to calculate tHe avera

peak intensity is:
o = zr;:li o W, (8-3)
Where jm is the average peak intensity,is the individual hyetograph peak intensity,

and w is the Thiessen weighting factor assigned to each hyetograph. The average

time to peak was then calculated using:
Lom = Zj:ltpj W, (8-4)
where pm is the average time to peak, gnt the time to each individual hyetograph

peak. Finally the average hyetograph duration was calculated using thierequa
D,=>..D;*w, (8-5)

where 0, represents the average hyetograph duration, and Dj represents the duration
of the individual hyetographs. After the average hyetograph peak and duration were
calculated the rest of the average hyetograph was filled in to maintajerbeal

shape characteristics of the individual hyetographs. The average hyetograph
ordinates were determined based on the individual rain gage hyetographs and their

corresponding Thiessen weights.
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8.3.3.1. UH Results Using Pattern-Preserving Thiessen Calculations

Thiessen average rainfall records were calculated using the gattserving
Thiessen averaging method for the storm events for August 13, 2006, and July 20,
2007. As seen in Figure 8-4 and Table 8-1, the agreement between the Thiessen UH
parameters and the original UH parameters and the goodness-of-fiicstatis
calculated for the Thiessen UHSs indicated that the traditional Thiessegiagera
method was quite successful. The results seen in Figure 8-4 and Table 8-1 can be
compared to Figure 8-9 and Table 8-6, which provide the UH results obtained for the
same storm event (August 13, 2006) and pixel (pixel 12) using the pattern-preserving
Thiessen rainfall hyetograph. In this scenario, using the pattern-presehvasgdan
method did not provide an improvement in results as compared to the traditional
Thiessen method. The individual rain gage hyetographs used to calculate the two
Thiessen hyetographs did not show significant variation for the storm on August 13,
2006, so the rain gage hyetographs had similar magnitudes and shapes. Because the
individual hyetographs had similar magnitudes and shapes the traditiona€rhies
averaging method was able to provide a representative average hyetograph. Both of
the UHs derived using rainfall from the different Thiessen calculation metalbds
into the range of values found for the individual rain gage UHs; however, the
parameters derived using the traditional method seem more representdteve of t
individual rain gages than the parameters derived using the pattern-preserving
Thiessen method. For instance, the rain gage Wdilmallues range from 3.5 to
29.3, but four of the seven values are less than 20, making the traditional Thiessen
value of 19.2 seem like the better average value than the alternative Thigasen

of 25.0. A similar statement can be made for the Wednallues. In Figure 8-9 the
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shape of the UH derived using the traditional Thiessen method is more similar to the
individual rain gage UH shapes than the UH derived using the pattern-preserving

Thiessen approach.

Table 8-6: Rain Gage, Thiessen (traditional) and Tiessen (pattern-preserving) Rainfall UH Parameters
and Goodness-of-Fit Statistics for Storm Event on/&3/06 Pixel 12

b c SelSyR |R®
RG 53 15.5 0.77| 0.37]0.93| 0.86
RG 57 22.5 1.05| 0.45|0.90] 0.80
RG 58 28.51.43| 0.44|0.90| 0.81
RG 59 29.3 1.46| 0.43]| 0.90| 0.82
RG 61 3.5/ 0.33] 0.27]| 0.96| 0.93
RG 63 12.7, 0.53| 0.42|0.91] 0.82
RG 72 13.1 0.59| 0.32] 0.95] 0.90
Thiessen (traditional) 19.2| 0.85| 0.40| 0.92| 0.84
Thiessen (pat. pres. 25.d.31| 0.38]|0.93]| 0.86
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Figure 8-9: Rain Gage, Thiessen (traditional), and hiessen (pattern preserving) Rainfall UHs for Stom
Event on 8/13/06 Pixel 12

Table 8-6 and Figure 8-9 illustrate an example in which the traditional
Thiessen method can be used to create a representative average ratdgtiaipy,
and using the pattern-preserving Thiessen method did not offer any improvement in
the final UH results. For the storm event on July 20, 2007, in pixel 12, the traditional
Thiessen method was shown, in Table 8-5 and Figure 8-8, to be unable to create a
representative average rainfall hyetograph from the individual rain gagegreyehs.

In examining Figure 8-8 and Table 8-5 it becomes evident that the UH derived using
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the Thiessen hyetograph does not agree with the individual rain gage UHs. Both the
b andc parameter values for the Thiessen UH are lower than any of the parameters
for the UHs derived from rain gages. When using an averaging method, it would be
expected that the UH parameters would fall within the range of paranmiadcsfbr

the individual rain gages. Because the UH results using the traditional Thiesse
hyetograph did not seem logical, the pattern-preserving Thiessen methodedas
compute an average hyetograph for comparison.

The UH results using the pattern-preserving Thiessen method, which can be
compared to Figure 8-8 and Table 8-5, are presented in Figure 8-10 and-Table 8
In comparing the UH parameters derived using the traditional and patteenvprgs
Thiessen methods a significant difference is observed. The UH parameitezd der
using the pattern-preserving Thiessen method are within the range of pasameter
derived using the individual rain gage hyetographs. The pattern-presehvassdn
calculation method is obviously able to produce a representative average rainfall
hyetograph in this scenario, where the traditional method could not. In examining
Figure 8-10, the UH derived using the pattern-preserving Thiessen method to
calculate the average rainfall is observed to fall in the middle of theagie UHs,
where the UH derived using the traditional Thiessen method falls below allrthe rai
gage UHs. The pattern-preserving Thiessen method results in the UH hat wa
expected for an average rainfall hyetograph, a UH that is repregemall of the
rain gages used in its derivation. The conclusion to be drawn from this is that, when
using an averaging method on individual hyetographs, care should be taken to ensure

that the hyetograph shape and magnitude are maintained. When significant variation
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exists in either magnitude or shape between the individual hyetographs, thenahdi
Thiessen averaging method will not be able to produce a representative average
hyetograph.

Table 8-7: Rain Gage and Thiessen UH Parameters ar@@oodness-of-Fit Statistics for Storm Event on
7/20/07 Pixel 12

b |c Se/lSyy R | R?
RG 53 2.2/ 0.97| 0.57|0.82] 0.67
RG 57 1.8/ 0.83] 0.56| 0.83] 0.69
RG 58 2.7/1.10] 0.53|0.85|0.72
RG 59 7.3/ 1.23| 0.55| 0.83] 0.70
RG 61 7.2/ 1.24| 0.51|0.86|0.74
RG 63 4.2/ 1.06| 0.53|0.85|0.72
RG 72 3.3/ 1.06| 0.49|0.87| 0.76
Thiessen (traditional) 0.9 ] 0.77| 0.46| 0.89| 0.79
Thiessen (pat. pres. 2(@.91| 0.47|0.88| 0.78
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Figure 8-10: Rain Gage, Thiessen (traditional methd), and Thiessen (alternate method) Rainfall UHs fo
Storm Event on 7/20/07 Pixel 12

8.3.4. UHs Derived from Radar Data

Several objectives were examined when UHs were derived using raddi rainfa
data. The first objective was to compare the performance of various radar scan
elevation levels in developing UHs and predicting runoff. The second objective was
to evaluate whether using a calibrated Z-R equation to transform randaiez from

decibels of reflectance (nffm®) to rainfall rate (mm/hr) resulted in more accurate
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UHs and runoff predictions than using the standard Z-R equation used by the
National Weather Service (Ulbrich and Miller, 2001):

Z =300R** (8-6)
in which Z is reflectance (mtm®) and R is rainfall rate (mm/hr). The final objective
was to compare the performance of radar data to the performance of anothly spat
averaged rainfall record, the Thiessen polygon average rainfall, in creismgnd
predicting runoff.

When previous analyses were conducted to determine whether there was any
benefit to calibrating location- and storm-specific Z-R transformatioateans, firm
conclusions were not reached. It was difficult to determine whether or not one of the
five radar scan elevations provided a more accurate picture of the rainfall ove
Walnut Gulch than the other, while analyses comparing the performance of a
calibrated Z-R equation in predicting rainfall intensities to the perforenahthe
standard Z-R equation proved inconclusive. To determine whether one radar scan
elevation was a more accurate representation than the other, radar scans 3 and 4,
which appeared to be the best based on previous studies, were used to derive UHs for
several pixels. The goodness-of-fit statistics of the runoff predictiens eompared,
as were the plots of the derived UHs. To determine whether there was anttbenef
hydrologic modeling from calibrating location- and storm-specific Z-R
transformation equations several of the equations calibrated in a previous study
(presented in section 5.3.7.) were used in transforming raw radar data intlh nati@fa
data prior to the derivation of pixel UHs. The standard equation (Eq. 8-6) was also

used to transform the raw radar data to rainfall rate data for these pixktbea the
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UHs and runoff predictions were compared as discussed previously. Thesesanalyse
thoroughly evaluated the ability of radar data to serve as PE input to the UH
derivation process.

Unit hydrographs were computed for each rain gage, the Thiessen average
rainfall, and the radar rainfall data using the procedure outlined previously. To
compare UHs and runoff predictions made using radar data to those made using the
Thiessen average rainfall the goodness-of-fit statistics computed fohigssen
average rainfall based on all of the rain gages located within the boundaries of the
radar pixel were compared to those computed for the radar data. The standard error
ratio, the correlation coefficient, and the coefficient of variation were wsassess
the accuracy of runoff predictions made using each unit hydrograph. The UHs that
were derived for the Thiessen average and the radar rainfall data sefdatted by
inserting the optimum shape and scale parameters into the Weibull distribution
equation. The UHs were then visually compared. Ideally the Thiessen average
rainfall record and the radar rainfall record should represent similaaltasihce
both provide an average rainfall for the same area.

8.3.4.1. Comparison of Radar Scan Elevations

Radar measurements, or scans, are taken at several different beam
orientations. These orientations are determined by the tilt angle of théeaahar
The radar data obtained for the Walnut Gulch region were available at five sca
elevations. The scan with the lowest elevation angle is referred to as scale thevhi
scan with the highest elevation angle is referred to as scan 5. The scaaret#vat
the radar measurements is important because it dictates the height of tizdoxea

the ground when it measures rainfall droplets in the air. Higher radar scatiogle

223



are less likely to be representative of the rainfall at the ground becauss facth as
wind drift or evaporation can change the rainfall profile between the point iir e a
which the radar measured it and the point at which it reaches the ground. Lower
radar scan elevations may also be inaccurate because they are rhote blke
blocked by mountains and buildings located between the radar station and the
watershed.

Figure 8-11 includes pixel 10 UHs derived for radar scans 3 and 4 using both
the standard and calibrated Z-R transformation equations for the August 13, 2006,
event. In comparing the UHs for scan 3 and scan 4 using the standard Z-R equation,
very little difference is seen. The parameters given in Table 8-8 arelosey and a
significant difference in goodness-of-fit statistics between the runedligtions
made using the two radar scans is not evident. Similar results are seen inrepmpar
the unit hydrographs derived using the calibrated Z-R equations for both scans 3 and
4, though the change in standard error ratio between the two does indicate a slightly
significant difference. The standard error ratio for scan 3 is 0.13, versus 0.t&rfor s
4. An increase in standard error ratio of 3% (as seen here) is generally considere
significant, indicating an improvement in accuracy when using scan 3 rather than

scan 4.
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Figure 8-11: Comparison of UHs Derived using the @ndard (SE) and Calibrated (CE) Z-R Equations for
Radar Scans 3 and 4 for Storm on 8/13/06 Pixel 10

Table 8-8: Comparison of Unit Hydrograph Parametersand Goodness-of-Fit Statistics for Radar Scans 3
and 4 Using the Standard and Calibrated Z-R Transfamation Equations for the Storm on 8/13/06 Pixel 10

b c Se/Syy R | R°

Scan 3 Standard Equatior 44.8.27| 0.13] 0.99] 0.98

Scan 3 Calibrated Equatior89.4| 1.11| 0.11| 0.99| 0.99

Scan 4 Standard Equatior 44.%.21| 0.16] 0.99| 0.98

Scan 4 Calibrated Equatio2.6| 1.17| 0.15| 0.99| 0.98

A comparison of UHs derived using different radar scan elevations was also
conducted using data from the July 20, 2007, storm for pixel 12. In this case slightly
higher variation in the UHs was visible, as seen in Figure 8-12 and Table 8- Whil
the shapes of the two UHSs are similar, a slight difference in scales caarbelsen
comparing the peaks of the unit hydrographs. Table 8-9 shows that a difference in the
b values between the two UHs is responsible for this and a comparison of goodness-
of-fit statistics between the two illustrate that the difference irchiagacteristics of
the unit hydrographs derived using different radar scans is possibly significant
Based on the comparisons of the goodness-of-fit statistics for runoff prediatiade
using the various UHSs calculated using radar data for the storms on August 13, 2006,
and July 20, 2007, the decision to use radar scan elevation 3 was made. While little
difference between the two radar scan elevations in terms of the Uysiarvahs

generally evident, scan elevation 3 usually provided more accurate goodfiess-of-
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statistics, and in some of the analyses, the difference between the two veaenshyff
significant to justify this decision.

Table 8-9: Unit Hydrograph Parameters and Goodness{-Fit Statistics for Radar Rainfall Data for the
7/20/07 Storm Pixel 12

b |c SelSyyR |R?

Scan 3 4.2 0.85| 0.39]0.92| 0.85

Scan 4 3.0/ 0.85]| 0.45| 0.89] 0.80
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Figure 8-12: Comparison of Unit Hydrographs for Radar Scans 3 and 4 for the Storm on 7/20/07 Pixel 12

8.3.4.2. Comparison of Calibrated and Standard Z-R Transformation Equations
The second analysis determined whether or not using a calibrated Z-R

transformation equation instead of the standard equation used by the National
Weather Service provided improved accuracy. Figure 8-11 and Table 8-8 compare
the standard and calibrated Z-R equations for radar scans 3 and 4 for the August 13,
2006, storm for pixel 10. Based on these results, there would appear to be some
difference between the unit hydrographs derived after using the staartththe

calibrated Z-R transformation equations to convert the radar data to raitéabity

data. The shapes of the UHs derived for the standard and calibrated Z-R equations
are very similar; however, the hydrograph peaks are somewhat different. In
comparing the goodness-of-fit statistics for the runoff predictions madg thsse

UHs, slightly better accuracy is seen in the UHs derived using aatatibequation
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than the standard equation. However, for scan 3, as seen in Table 8-8, the decrease in
standard error ratio is only 2%, and there is no difference in the correlation

coefficient, so the improvement seen is not statistically significantedBas this

conclusion, the decision to use the standard equation rather than a calibrated equation
was made. The procedure to calibrate a Z-R equation for a pixel is a fairly
complicated, time-intensive procedure, so if it does not provide a significant
improvement in the unit hydrograph accuracy it does not seem to be worthwhile.

8.3.4.3. Comparison of Thiessen and Radar Rainfall UHs
In most of these analyses, the UHs derived from individual rain gages within a

pixel area showed considerable variation. Also, the Thiessen UH gendtaiitte
center of the rain gage generated UHs. Unit hydrographs derived from redar da
were compared to UHs derived from Thiessen average rainfall to examine the
usefulness of spatial data in hydrologic applications. The purpose of this was to
compare methods of using spatially averaged rainfall data, rather than pdait rai
data such as rain gage data, in the UH procedure. Figure 8-13 compares the UHs
derived using Thiessen average rainfall to radar rainfall for the storm arsA18j,
2006, for pixel 12, while Table 8-10 provides the corresponding UH parameters and
goodness-of-fit statistics for those UHs. Reasonable agreement is obseweszhbet
the Thiessen average and radar UHs, though differences in shape and scale are
visible. For instance, the radar rainfall UH is slightly steeper than thes€hies
averaged rainfall UH. Based on the goodness-of-fit statistics, the radapp#drs to
be slightly more accurate, when compared to the Thiessen UH.

As a second example, Figure 8-14 compares the UHs derived using Thiessen

average and radar rainfall data for the August 17, 2006, storm event for pixel 1.
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Table 8-10 also contains the parameters and goodness-of-fit statistiosstiHs.

As seen earlier, the UHs derived for various rain gages within the pixel bowndarie
were very consistent for this storm event. The gage-to-gage consistenaeist in

the Thiessen average and radar rainfall UHs. The Weibull parameters and the
goodness-of-fit statistics of the runoff predictions made using these ghergr

similar for both the radar and the Thiessen average rainfall. They are also very
similar to the values determined for the UHs derived using the rain gagespixéhis

The explanation for the shape and consistency of the UHSs for this storm event
discussed previously, the long amount of time between the centers of mass of the PE
and the DRO, as well as the lack of variation in the centers of mass of the PEhbetwee
the gages, are also responsible for the shape and similarity of the Thizdsada

unit hydrographs. Both precipitation excess records were quite short, afieveaimt

gage PE records, so the PE CM did not vary significantly in time between the
different PE records for the individual rain gages. Also, the time base of thdddRO
this storm event was long, which resulted in a large difference in the time of
occurrence of the PE CM and the DRO CM. This reflects considerable watershed
smoothing of the rainfall hyetograph. These factors have resulted in Thiessen a
radar UHs that are very similar to each other and very similar to the éried

from the rain gages in the pixel.
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Figure 8-13: Comparison of Thiessen and Radar Unitlydrographs for the Storm on 8/13/06 Pixel 12

Table 8-10: Comparison of Thiessen Averaged and RadRainfall UH Parameters and Goodness-of-Fit
Statistics for Storms on 8/13/06 Pixel 12 and 8/108 Pixel 1

b c SelSYyR | R’

8/13/06 Thiessen 19.2| 0.85| 0.40| 0.92| 0.84

8/13/06 Radar 12.10.57| 0.26| 0.97] 0.93

8/17/06 Thiessen112.5| 3.20| 0.33| 0.94| 0.89

8/17/06 Radar 116.33.30| 0.33|0.94] 0.89
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Figure 8-14: Comparison of Thiessen Average and Rad Rainfall Unit Hydrographs for Storm on 8/17/06
Pixel 1

8.3.5. Effect of Transmission Loss

8.3.5.1. Methods of Analysis

Transmission losses are hypothesized to be responsible for the exponential
UHs that have resulted from these analyses. The cause of the exponential unit
hydrographs was previously explained, from a modeling stand point, to be the length

of time between the CM of the PE and the CM of the DRO. The differences in timing

229



of the PE CM and the DRO CM have been shown to influence the Weibull shape
parameter. From the standpoint of physical processes, however, it would appear that
transmission losses are responsible for the exponential unit hydrographseatly al
mentioned, transmission losses result in much steeper hydrographs. The steeper
rising limbs of hydrographs where transmission losses are experisoa@sult in
earlier DRO centers of mass. Therefore, transmission losses serveetisddbe
length of time between the occurrence of the PE center of mass and the D&O cent
of mass. An analysis was conducted to attempt to verify these hypotheses.

To verify the effect of TL on a UH, a flow record was altered in such a way as
to simulate a higher degree of TL. To do this several values from the risimgflim
the hydrograph were moved to the falling limb of the hydrograph. This steepened the
rising limb of the hydrograph, but also conserved the flow volume, which was
necessary to develop UHSs that could be compared. Then UHs were derived using
data from one rain gage and both the original and the altered flow records. To
determine the effect of simulation of additional TL, the final Weibull parais&be
both UHs were compared, and the UHs were plotted for comparison.

The difference between the time of occurrence of the PE CM and the DRO
CM has been hypothesized to have some influence on the Weualiles.
Transmission losses would be one factor that influences the time of occurremee of t
center of mass of the DRO. Therefore, the difference in CM can be considered to be
an effect of the physical processes occurring in the watershed. Tiens#g
between the Weibult value and the differences in centers of mass needed to be

confirmed to support this hypothesis. To do this the centers of mass of the PE and the
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DRO were calculated for every PE dataset and DRO dataset used to calcilate
hydrographs. By examining trends in the difference in time between the acanters
mass and the values, it was possible to determine the relationship between the two.

8.3.5.2. Effect of Transmission Loss on UHs
The effects of TL on a UH are illustrated in Figure 8-15 and Table 8-11.

Figure 8-15 provides the UHs derived from this analysis, while Table 8-11 psovide

the Weibull parameters and the goodness-of-fit statistics calculateddornof the

unit hydrographs. Figure 8-15 illustrates the differences between the two, mgcludi

the fact that the UH with greater transmission losses is steeper tHaH thighout

additional transmission losses. In Table 8-11 the effect that the additional
transmission losses had on thealue are particularly of interest, as the exponential

UHs are caused by a Weibull/alues being decreased to a value below 1.0. In this
study, the additional transmission losses were found to decrease the \Wedué

from 0.77 to 0.67. This indicates that transmission losses are able to force a decrease
in thec value, and therefore may be responsible focth@ues below 1.0 which

result in exponential unit hydrographs.
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Figure 8-15: Comparison of Unit Hydrographs With ard Without Additional Transmission Losses for
Storm on 8/13/06 Rain Gage 53
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Table 8-11: Comparison of Parameters and Goodnes$-Bit Statistics for Unit Hydrographs With and
Without Additional Transmission Losses for Storm on8/13/06 Rain Gage 53

b c SelSYyR |R?

NoTL | 15.5]| 0.77| 0.37| 0.93| 0.86

TL 13.9] 0.67| 0.46]0.89] 0.79

8.3.5.3. Effect of Center of Mass on Weibull Shape Parameter
The first step to explain the exponential UHs was to examine the relationship

between the Weibult values to the difference between the time of occurrence of the
PE CM and the DRO CM. Table 8-12 provides the time of the occurrence of the PE
CM and the DRO CM (in minutes), the difference between the two (in minutes), and
the Weibullc value calculated for that UH for the rain gages in pixel 1 for the storm
event on July 31, 2007. With the exception of the UH derived for rain gage 2, there is
a clear direct trend, as the difference between the two centers of masséscithe

Weibull ¢ value also increases. The precipitation excess measured at rain gage 2 had
somewhat different characteristics as the PE measured at the otlgagesnwithin

pixel 1, which may explain why the unit hydrograph derived for rain gage 2 does not

follow trend observed in the other unit hydrographs.

Table 8-12: Comparison of Differences in Time of Gaurrence of PE and DRO Centers of Mass and
Weibull ¢ for Unit Hydrographs Derived from Storm on 7/31/07 Pixel 1

Rain Gage| Time of PE CM | Time of DRO CM | Difference | Weibull c
92 12 21 9 0.36
4 10 21 11 0.41
8 9 21 12 0.43
2 11 21 10 0.45
1 8 21 13 0.50
5 7 21 14 0.68

8.3.6. Artifacts of the Modeling Technique

Some of the results alluded to or discussed in previous sections can be
attributed to the modeling technique used in this analysis. For instance, in sosne case

differences in the UHs between rain gages, Thiessen average rantfathdar
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rainfall data appeared to be related to the number of PE ordinates in ead.data s
very good example of this was evident in comparing the rain gage UHs to the radar
unit hydrographs for pixel 10 for the storm event on August 13, 2006. The rain gage
UHs for this event, shown in Figure 8-16, were seen to have a higher peak value than
the UHs derived using radar data (shown in Figure 8-17). Upon examining the PE
data for the rain gages and radar rainfall, it was seen that the numbeowhiries

for the rain gages ranged from 41 to 63, with all but two of three of the rain gage PE
records having more than 50 ordinates. The radar data only had 47 PE ordinates. The
differences often seen in UH peaks between the rain gage data, Thiesage ave

rainfall data, and the radar data was therefore attributed, at least, ito paet number

of PE ordinates in each data set. With fewer PE ordinates, the number of UH
ordinates increases (see Equation 8-1), which forces the UH to be spread over a

longer time period. This forces thevalue to be larger.
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Figure 8-16: Comparison of Rain Gage Unit Hydrograps for Storm on 8/13/06 for Pixel 10
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Figure 8-17: Radar Rainfall Unit Hydrograph for Storm on 8/13/06 for Pixel 10

The differences in centers of mass of the PE and the DRO, which appears to
be strongly linked to the Weibulvalues determined for the UH, may also be an
artifact of the modeling technique used to some extent. It is true that tralsmis
losses result in steeper hydrographs, as mentioned earlier, which has someéanflue
on the timing of the DRO center of mass. Storm movement may also play some role
in the location of the PE CM, so physical explanations for this phenomenon are
possible. However, the modeling assumptions made in separating losses from PE
also likely influence this. In separating losses from PE, all raitfadldccurred prior
to the start of runoff was assumed to be initial abstraction, which is a lossis @his
common assumption; however, this assumption is influencing the results of the
analyses conducted. Assuming that all rainfall prior to the beginning of runoff is a
loss influences the amount of PE that will be used to derive the unit hydrograph, and
it therefore influences the time when the PE CM occurs. If a differemings®n
had been used to separate the initial abstraction from the PE the volume of PE and the
distribution of it in time would have been different. This would affect the PE CM, the
difference in centers of mass of the PE and the DRO, and it would affect the final

value determined for the unit hydrograph.
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An example of this can be seen in the storm event occurring on July 31, 2007.
For rain gage 8, located in pixel 1, there are originally 68 rainfall ordinatespas
in Figure 8-18. After initial abstraction and losses were separated, tiogtagh
only included 22 PE ordinates, as shown in Figure 8-19. The PE CM occurred after
only 9 minutes, while the DRO CM, seen in Figure 8-20, occurred after 21 minutes.
The difference of only 12 minutes between the PE and DRO centers of mass resulted
in ac value of 0.43. As discussed above, though the assumption that all precipitation
prior to the start of direct runoff is commonly used in UH analyses, using a different
assumption to identify initial abstraction may have resulted in a longexd@Edy
which would have resulted in a highevalue. Transmission losses also play a role
here, in that they cause DRO to start later, because initial runoff is beitg lost

channel infiltration.
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Figure 8-18: Rainfall Collected at Rain Gage 8 in Rel 1 During Storm on 7/31/07
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Figure 8-19: PE Calculated for Rain Gage 8 in Pixel for Storm on 7/31/07
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Figure 8-20: DRO Calculated for Flow Gage 1 in Pixel During Storm on 7/31/07

8.4. IMPLICATIONS OF UH VARIATION ON DESIGN

In examining the variation in unit hydrographs derived using different rain
gages, Thiessen average rainfall, and radar rainfall, potentially sagifrariation
was evident. It appears that the rain gage used in deriving a UH couldcsigghyfi
impact the result. This suggests that it could be difficult to obtain a UH that was
representative of the watershed using just a single rain gage. Ultintagegffect of
this variation on an engineering design is the criterion used to judge the siggfica
of the variation. Because the ultimate goal of the UH procedure is to predict runoff

from given storm events, in order to properly design storage facilities, cgnduits
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levees, etc., a UH that is not actually representative of the wateahddcause
significant design error.

The purpose of this part of the study was to show the potential impact of the
variations in UHs derived using different rain gages on predicted peak discharge
rates. Peak discharge estimates are used in the design of pipe systkEvwsemnd
Knowledge of these quantities is vital for ensuring that designs for sterihg a

controlling runoff are sufficient.

8.4.1. Methods of Analysis

The Weibull UH parameters calculated for each of the rain gages located
within two pixels, the Thiessen average rainfall for each of those pixeldhamnadar
rainfall for each of those pixels, were convolved with a 24-hour Type Il design stor
to obtain a predicted runoff hydrograph. The NRCS (previously SCS) method was
used in this process. Data from Walnut Gulch pixels 10 and 12 for the storm on
August 13, 2006, were used. Data from pixel 12 for the storm event on July 20, 2007,
were also used. A generic watershed of 64 acres and a curve number of 75 evere use
for this analysis. The analysis was repeated three times for eachdnogtaph,
once for a 2-year design storm (3.2 inches of rainfall), once for a 10-yegm des
storm (4.8 inches of rainfall), and once for a 100-year design storm (7.2 inches of
rainfall).

To more closely evaluate the differences in peak flows a frequency analysi
was conducted. Using logarithms of the discharges, frequency curves we plotte
for each of the rain gages located within a given radar pixel for each retiou, plee

Thiessen average rainfall, and the radar rainfall. This visualized th&omaria
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possible in designs made based on varying UHs. Ideally, the Thiessen average
rainfall and the radar rainfall should measure similar rainfall, and trerehould not
result in significant differences in UHs or in designs. Thus, the frequencysdorve
the Thiessen average and radar rainfall datasets should be fairly cletbetognd

they should fall near the middle of the spread seen between the rain gages.

8.4.2. Peak Discharge Analysis for August 13, 2006, Storm Event

For the storm event occurring on August 13, 2006, the UHs derived for pixels
10 and 12 were used in frequency analyses. The figures developed from these
frequency analyses are presented in Figures 8-21 and 8-22. Tables 8-13 and 8-14
present calculated peak discharges using the different UHs derived fgiesich

8.4.2.1. Peak Discharge Frequency Analysis for Pixel 10
In pixel 10, a spread of slightly more than 0.3 log cycles, resulting in

differences in discharges that ranged from 6 cfs for a 2-year storm toslf20 af

100-year storm, resulted between the peak flows for the lowest and highest rain
gages. These differences result in peak flows doubling between the lowest and
highest rain gages. For instance, for the 2-year storm event for this grous,ahegH
lowest possible peak flow is 6.47 cfs and the highest possible peak flow is 12.41 cfs.
For the 100-year storm event the lowest peak flow is 108 cfs and the highest peak
flow is 227 cfs. Table 8-13 presents the peak flows calculated using each UH, as well
as ratios of the rain gage or radar peak discharge values to the Thiessen peak
discharge. Figure 8-21 presents the log frequency curve developed based on these
analyses. A pipe system or levee designed using one of the lower rain gage UH

such as the UH for rain gage 34, may not be capable of handling the amount of runoff
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produced if one of the higher rain gage UHSs, such as rain gage 17, were the more

accurate UH for the watershed, and may result in flooding of the area. This is an

especially significant problem for larger return periods, such as the 10@wed,

where the difference in peak discharges for rain gage 34 and rain gage 17 is nearly

120 cfs. Conversely, if a design was based on the larger discharge but inlreality t

lower discharge more accurately reflected rainfall over the waterstesdiite larger

design would be wasting money, with a certain opportunity cost lost, i.e., the money

that could have been spent on other projects.

Table 8-13: Peak Discharge Rates (cfs) Calculatedrf2 (Q,)-, 10 (Quo)-, and 100 (Qqg)-year return periods
(T) Using UHs Derived for Storm Event 8/13/06 Pixel0, where Q is the gage peak discharge, and Qis
the Thiessen peak discharge

Qz Qp/QpT Qlo Qp/ QpT Qloc Qp/QpT
RG 17 12.41 1.677| 60.26| 1.755| 226.53| 1.781
RG 24 0.320 1.259| 45.41| 1.323| 172.76] 1.358
RG 28 9.93 1.342| 46.93| 1.367| 176.14| 1.385
RG 29 7.57 1.023| 35.31| 1.029| 131.17| 1.031
RG 33 7.13 0.964| 32.78| 0.955| 120.77| 0.950
RG 34 6.47) 0.874| 29.48| 0.859]| 108.14| 0.850
RG 81 7.00 0.946| 32.44| 0.945| 120.14| 0.945
RG 399 | 11.59 1.557|56.23| 1.638| 212.14| 1.668
Thiessen 7.40 --- | 34.33 --- | 127.18
Radar 6.3§ 0.862| 28.95| 0.843| 105.92| 0.833
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Figure 8-21: Log Frequency Curve of Peak Dischargir Storm on 8/13/06 Pixel 10 based on 2-year (Z=0)
10-year (Z=1.282) and 100-year (Z=2.327), where g ihe standard normal deviate.

239



The peak flows calculated for the Thiessen average rainfall for this storm
event fall roughly in the middle of the peak flows calculated using the individoal ra
gage hyetographs. This is the expected and desired outcome when using an average
rainfall hyetograph. Based on these results combined with the previous results
comparing UHs derived using the Thiessen average rainfall and individual gais, ga
it would appear that the Thiessen rainfall hyetograph is representative aintiad r
being experienced on the watershed. If the Thiessen average rainfallyisolike
representative of the rainfall being experienced on the watershedt ihékaly to
result in an adequate engineering design such as a storage or transpaxtgitipn f
Therefore, when multiple rain gages are available and provide wide @it
measured rainfall hyetographs, the Thiessen average rainfall should lekeceh$or
use in design work. In the absence of enough rain gages to develop a Thiessen UH,
the closeness of the radar and Thiessen discharges indicates that antedar rai
derived UH would be better than use of a single rain gage.

Ideally, radar rainfall should be similar to the Thiessen average tasifale
both provide an average rainfall measurement over the watershed. This should mean
that the Thiessen rainfall and the radar rainfall should result in similgndesvhich
then means that radar rainfall data could be used rather than Thiessen raanfall dat
engineering design. This would be ideal because many watersheds do not have
enough rain gages within their boundaries to calculate an accurate Thiessge ave
rainfall. For the storm event on August 13, 2006, over pixel 10 the magnitudes of
peak flow do not differ greatly (6.4 cfs for radar rainfall vs. 7.4 cfs for Thiessen

rainfall for the 2-year storm and 106 cfs for radar rainfall vs. 127 cfshi@s$en

240



rainfall for the 100-year storm). The frequency analysis indicateshnaadar

rainfall results in a peak discharge approximately equivalent to thatatald for the
lowest rain gage. This could be an anomaly, though, and should not automatically be
considered as evidence that the radar rainfall hyetograph cannot be used in the unit
hydrograph and design calculation procedures. Because the rain gage arehThiess
rainfall frequency analyses were consistent, the possibility of aniertioe radar

rainfall data should be considered as a possible explanation for the lack ofiegree
between the Thiessen and radar rainfall designs.

8.4.2.2. Peak Discharge Frequency Analysis for Pixel 12
The UHs derived for pixel 12 during the August 13, 2006, storm event were

also used in a peak discharge analysis of predicted storm runoff. A log frequency
analysis was conducted using the peak discharges calculated based on eachinof the r
gage UHs, the Thiessen average rainfall UH, and the radar rainfall Utéstiits rof

which can be seen in Figure 8-22. For this storm event the differences between the
lowest and highest rain gages in the frequency analysis was nearly hatfyallg
resulting in differences of nearly 20 cfs for a 2-year storm and 345 cfs foryeaf0
storm. The peak discharges and ratios of rain gage or radar peak dischdrges to t
Thiessen peak discharge calculated for this pixel are presented in TabhleFdr the
2-year storm event the peak discharges ranged from a low value of 8.1 cfs to a high
value of 27.8 cfs, while for the 100-year storm event the peak discharges ranged from
136 cfs to 481 cfs. An increase in peak discharge of nearly 350 cfs could
significantly overwhelm a facility designed using one of the lower rage g#s.

Serious flooding could be a problem in a case such as this. This indicates that the use
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of a UH that is not representative of the watershed in design work could have

significant safety and risk consequences.

Table 8-14: Peak Discharge Rates (cfs) Calculatedrf2 (Q,)-, 10 (Quo)-, and 100 (Qqg)-year return periods
(T) Using UHs Derived for Storm Event 8/13/06 Pixel2, where Q is the gage peak discharge and Qis the
Thiessen peak discharge

Q2 QPIQDT QlO Qp/QpT QlOC Qp/QpT

RG 53 14.68§ 1.258| 71.36| 1.251|268.11| 1.240

RG 57 9.50| 0.814| 44.47| 0.780| 165.53| 0.766

RG 58 8.220 0.704| 37.68| 0.661] 138.31| 0.640

RG 59 8.12 0.696| 37.17| 0.652| 136.16] 0.630

RG 61 27.84 2.386| 131.18] 2.300| 481.48| 2.228

RG 63 19.87 1.703] 94.89| 1.664| 351.85| 1.628

RG 72 18.81 1.612| 90.15| 1.580| 335.11| 1.550

Thiessen 11.67 -- 57.04 --- 1 216.14 --

Radar 19.69 1.687| 94.20| 1.651| 349.65| 1.618
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Figure 8-22: Log Frequency Curve for Storm on 8/13)6 Pixel 12 based on 2-year (Z=0), 10-year (Z=1.282
and 100-year (Z=2.327), where Z is the standard noral deviate.

The Thiessen rainfall hyetograph calculated for this pixel again appdaes t
fairly representative of the rainfall over the watershed and it reaudis accurate
UH. The frequency analysis conducted illustrates that the peak dischdogésted
using the Thiessen average UH fall in the middle of the range of peak discharges
calculated using the individual rain gages. Therefore, using the Thiessegeavera
rainfall hyetograph rather than one of the individual rain gage hyetograpilsi s

produce a more adequate runoff storage or transport design.
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The Thiessen average rainfall peak discharge and the radar rainfedinfeict
in Table 8-14) peak discharge were again compared. Unfortunately, a lack of
similarity between the two designs was again seen. Based on differerfted)id t
parameters for each, the radar peak discharge was seen to be 0.2 logooyedbea
Thiessen average peak discharge. For the 2-year storm event the peakealischarg
calculated using the Thiessen rainfall was 11.7 cfs vs. 19.7 cfs calculated using the
radar rainfall. For the 100-year storm the peak discharges were 216 cfthesing
Thiessen rainfall vs. 350 cfs using the radar rainfall. These differencesndacskbe
significant. Because the Thiessen average rainfall UH and peak dischbmgjation
seem accurate based on the individual rain gage results, this casts some doubt on the
radar rainfall data. Compared to the relative similarity seen betwed@ihigesen and
radar rainfall designs seen in pixel 10, the differences seen in pixel 12 seem quite
large. However, the possibility of an error in the radar data should still be codsidere
as a possible explanation, due to the fact that Thiessen rainfall results seem

appropriate.

8.4.3. Peak Discharge Analysis for July 20, 2007, Storm Event

To confirm the findings of the analysis of the storm event on August 13, 2006,
a peak discharge analysis was also completed for the storm event on July 20, 2007,
over pixel 12. The results of this analysis are presented in Table 8-15. The spread
seen between the peak flows calculated using the individual rain gage UHs was
nearly 0.4 log cycles, as seen in Figure 8-23, with a minimum peak flow of 5.5 cfs for
the 2-year storm and a maximum peak flow of 17.5 cfs. For the 100-year storm the

peak flows ranged from 395 cfs to 939 cfs. The peak discharges and ratios of rain
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gage or radar peak discharges to Thiessen peak discharges calculateddomthe s

event on July 20, 2007, for pixel 12 are presented in Table 8-15.

Table 8-15: Peak Discharge Rates (cfs) Calculatedrf2 (Q,)-, 10 (Quo)-, and 100 (Qqo)-year return periods
(T) Using UHs Derived for Storm Event 7/20/07 Pixel2, where Q is the gage peak discharge and Qis the
Thiessen peak discharge

Q | QJ/Qpr | Quo Qu/Qor | Quoc | QofQpr

RG 53 54.76 1.148| 255.15| 1.140| 927.53| 1.136

RG 57 55.63 1.166| 258.58| 1.156| 938.63| 1.150

RG 58 50.32 1.054| 235.95| 1.055| 860.95| 1.054

RG 59 22.45 0.470| 106.95| 0.478| 395.26| 0.484

RG 61 22.76 0.477]108.38] 0.484| 400.41| 0.490

RG 63 35.08 0.735| 167.44| 0.748| 617.98| 0.757

RG 72 42.59 0.892| 201.34| 0.900| 738.47| 0.904

Thiessen 47.72 --- | 223.74 --- | 816.53 --

Radar 34.37 0.720] 163.29] 0.730| 601.38] 0.737
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Figure 8-23: Frequency Curve Developed for Storm of@/20/07 Pixel 12 based on 2-year (Z=0), 10-year
(Z=1.282), and 100-year (Z=2.327), where Z is théasdard normal deviate.

Based on the results presented for the storm event on August 13, 2006, the
peak flows calculated using the Thiessen average UH were expected tohiiall wit
this range, which was observed. The Thiessen peak discharges calculated for the 2-
year storm event was 47.7 cfs and for the 100-year storm the peak flow was 817 cfs.
These values obviously fall into the range of values calculated using each of the
individual rain gages. The Thiessen design calculations are overall comparable to t

individual rain gage calculations, indicating that the Thiessen average UH could be
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successful in calculating a reasonable peak discharge for storm runoff in the
watershed. The Thiessen hyetograph should be more representative of tHe rainfa
being experienced over the watershed than any one of the individual rain gage
hyetographs, so the facility being designed (e.g. pipe system, levee) stamalch
better chance of being adequate to manage the storm runoff if designed using the
Thiessen average UH than one of the individual rainfall UHs.

The peak discharges calculated using the Thiessen average hyetograph are
also moderately close to the radar to the peak flows calculated using theanafadir r
(34.4 cfs for a 2-year storm event and 601 cfs for a 100-year storm event). Based on
the reasonable similarity between the Thiessen peak discharges and ithainéalh
peak discharges, it would appear that the radar rainfall hyetograph mayelitibe
able to provide a reasonably accurate UH that can be safely used in design
calculations. This is further reinforced by the fact that the frequencysashatsults
indicate that the radar rainfall provides a better average than the Tingessage. In
this scenario, it is the radar rainfall UH that produces peak flows that tag
middle of the rain gages, more so than it is the Thiessen average hyetogssmam as
in previous analyses. The conclusion to be drawn from this is that radar rainfall may
provide a viable method of calculating and using unit hydrographs, which is
encouraging for watersheds without rain gage networks able to provide a spatially

representative rainfall hyetograph.

8.5. CONCLUSIONS

Several conclusions are evident from this examination of the variability in

UHs derived using different rain gages, different storm events, and frorediffer
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areas of the watershed; additionally, examining the ability of spatiedisaged data
to yield reliable UH was investigated. It is generally believetltis reflect the
response of a watershed, not the rainfall. The results of this researckeitiiata
UHs do reflect rainfall, though they are intended to only represent watershed
processes, and this is why they are averaged over different storm ewdres
deriving UHs using rainfall records from different rain gages and stornisve
significant variation was found in both the shape and the scale of the unit
hydrographs. This is not to say that significant variation was always found, as under
certain circumstances, nearly no variation was seen between UH derived using
measurements from different rain gages. The majority of this variatioreeasrs
the rising limbs of the UHs, and some of the UHs did not even exhibit a rising limb.
Similarly, significant variation in UH shape and scale was seen to be possilole whe
the UHs were derived from rain gages located in different portions of thesheder
This provides an understanding that the location of the rain gage can influence the
UH derived, which is important because it is very unusual for a watershed to have
multiple rain gages. The engineer must use the data that are availablepbshée
must also understand the potential inaccuracy of that data. Considerable nitycertai
can be inherent to any UH, and this variation will be transferred to designs based on
the UH. Unit hydrographs based on spatially averaged data could be used todimit t
uncertainty.

Unit hydrographs derived from Thiessen average rainfall data were cmmpa
to both the rain gage UHs and to UHs derived using radar data. The Thiessen average

UHs were not always a perfect fit to the rain gage UHs; however, thegavexinfall
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was seen to provide acceptably accurate UHs that were comparable ta tiegeai
UHs. In fact, under some circumstances the Thiessen average rainfatedpgpea
provide a more accurate UH, based on goodness-of-fit statistics, than thegesn ga
did.

In deriving UHs using radar data, two preliminary questions first needed to be
answered. Little difference between UHs was usually seen when theylaresed
with different radar scans; however, the third scan elevation generallyegpea
provide the most accurate goodness-of-fit statistics. This scan elevaimrita®
low that it is blocked by mountains and buildings on the ground, but it is also not so
high that it is not representative of the rainfall on the ground. When comparing
calibrated Z-R transformation equations to the standard equation, the calibrated
equations were generally seen to perform better in UH derivation; howeser, t
improvement was not sufficiently significant to justify the Z-R equatioibiion
procedure. After these questions had been answered the radar rainfall UHs were
compared to the Thiessen average rainfall UHs. They were not usually seexeto agr
perfectly; however, they were usually fairly comparable in shape aled $8ath
average rainfall methods were clearly able to provide a reasonable Upétftaied
comparably to the traditional rain gage unit hydrographs, and both seemed able to
make reasonably accurate runoff predictions. Since Thiessen UHs ardlgaotra
available, the agreement indicates that the radar UHs accuratebt thé# rainfall
over a watershed.

Transmission losses were shown to be a concern in developing unit

hydrographs for data from the Walnut Gulch Experimental Watershed, resnlting
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decreased flow volumes and peak flows as the flood wave moved downstream.
Transmission losses cut off much of the initial part of the hydrograph, which @auses
significant difference in time of occurrence of the centers of mass of thed?Eea

DRO. This difference in CMs of the PE and DRO is evident in the steepening of the
rising limb of the hydrograph. This change in the timing of the centers of mass in
relation to each other was shown to influence the Weibull shape parameter.
Therefore, it was concluded that transmission losses were likely resiediosithe
exponential UHs that occurred in some cases. This leads to the interestimgiooncl
that the presence of transmission losses causes the UH to reflect channmekprape
much as they reflect watershed properties.

Several of the results observed can be attributed to the modeling technique
used in these analyses. First, the number of PE ordinates may influence the
peakedness and the steepness of the UHs. Using Equation 8-1, it can be determined
that longer PE records result in fewer UH ordinates, thus forcing a steeper
peaked UH. The length of time between the PE CM and the DRO CM may also be to
some degree a result of the modeling assumptions made. The assumption made in
specifying the initial abstraction controls the amount of PE available fmatien of
the UH. Therefore, the assumption used in specifying the initial abstractions
influences the time of occurrence of the PE CM. The time of occurrencefEthe
CM influences the final parameter values; therefore, the modeling assompéd in
this analysis has influenced the results of the analysis.

Three conclusions can be drawn from the analysis of the effect of the UH

variation on design calculations. First, significant variation in runoff peakrébsvis
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possible depending on the UH used in calculations. Unit hydrographs are typically
derived using only one rain gage hyetograph. If several rain gages arblavaila

use within a watershed, the rain gage used to derive the UH may make a diffierence
ultimate designs. The variation in UHs resulting from use of different rain gage
hyetographs is also evident in design calculations made using the different UHs
Depending on the level of variation seen in the individual rain gage hyetographs,
these differences can be quite significant.

Second, the Thiessen average UH, which typically is based on a more
representative rainfall hyetograph than a UH derived from one rain gagésecan a
produce designs more likely to be sufficient to handle the runoff from a storm event.
The variation in UHs from different rain gages leaves much room for enrdessign,
which can be minimized by using the more representative Thiessen UH. abad, r
rainfall data, while still experiencing many problems, can be used to dalcula
reasonable designs based on peak flow rates. The radar rainfall UH showee& promis
in producing designs that were similar to the Thiessen average design olisgherw
representative of the individual rain gage designs. It has been shown in thidatudy t
more representative rainfall data, such as Thiessen average rainfathpcame upon
the accuracy of the derived UH and the storage and transport designs developed based
on that UH. Unfortunately not every watershed has a sufficient number of rain gages
to calculate a Thiessen average and develop a representative ragtfadjragh.

Radar rainfall data could fill that gap in many scenarios, if it is found todugade

and representative. This research has taken the first step in finding thatatadean
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be representative of the Thiessen average rainfall and the individual rain gage

rainfalls, in both derivation of the UH and design work using the rain gage.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1. CONCLUSIONS

9.1.1. Transmission Loss

A model, the Spatio-Temporal Transmission Loss (STTL) model, was
developed herein to estimate transmission losses along a channel. This model
estimated transmission losses while routing the floodwave through the chaheel. T
transmission losses themselves were modeled based on Hortonian infiltration. The
STTL model is an improvement over existing TL models because it allows for
estimating transmission losses (TL) based on the hydrograph, rather thanlthe tota
flow volume; therefore, it is more sensitive to changes in depth and storage along the
channel than other models used for this purpose. Both storm-to-storm and sie-to-sit
variation were examined, in hopes of determining a set of average paraimaters
could be used to predict transmission losses over the watershed. Due to high
variability in conditions over the watershed, average parameters were not found to be
able to accurately predict transmission losses. However, when appropréate e
values were determined for each storm event and for each stream reach, the mode
was seen to perform well, with acceptable bias and goodness-of-fit statistiearly

all of the test cases.
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9.1.2. Analyses That Involve Radar Rainfall

9.1.2.1. Analysis of Spatial Data Problems Using Synthetic Data
In this investigation, two rainfall averaging methods, the Thiessen polygon

and the arithmetic averaging method, were compared. The ability of each @t@stim
rainfall over a watershed without resulting in excessive smoothing wasaeal

The influence of the following four factors on this loss of variation in rainfall

estimates was also studied: storm variability, amount of the watershiedaeted by

each of two rain gages, varying amounts of rainfall, and varying the prapabili
distribution functions (pdfs) used to add random variation to the rainfall estimates.
Overall, average rainfall estimates made using the Thiessen polygon metteod w
found to result in lower loss of variation than were arithmetic averages. This means
that the Thiessen polygon estimate is a better representation of the maiefdhe
watershed than is the arithmetic average. The level of storm varialoititthe

amount of the watershed being represented by each rain gage were found to have the
biggest influence on the loss of rainfall variation in rainfall average esgmahile

the amount of rainfall and the pdf chosen did not have as significant effects. This
conclusion led to using the Thiessen method in averaging unit hydrographs from
individual rain gages to compare with unit hydrographs based on radar data in a later
study.

9.1.2.2. Z-R Transformation Equations

When using radar data, an equation, known as a Z-R transformation equation,
is necessary to convert the radar data (in units of reflectansrto rainfall rate
(in mm/hr). Several studies were conducted to determine the effect thaausing

calibrated Z-R equation versus a standard Z-R equation had in hydrologic
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applications. First, two studies were conducted to determine the effect ofacang
data with different Z-R equations rather than rain gage data on the caltwhti
storm semivariograms. The Z-R equation parameters affected the segnasarsill
more than the radius of influence; however, it was determined that in order to
calculate an accurate storm semivariogram using radar data, the Attenould
either be calibrated or at least carefully chosen. Finally, reseaoctheeffect of
calibrating Z-R equations on rainfall predictions was conducted. Correspondang ra
and rain gage data were used in this experiment, where log-transformed linea
regression was used to fit a power model Z-R transformation equation to the data.
The calibrated and standard Z-R equations were used to predict raiell ra
which were compared to the observed rainfall rates obtained from rain gagendata. |
some cases, significant improvements in rainfall predictions were achiéesd w
using the calibrated equation, but in other cases a significant differencmivas
evident between predictions made with the two equations. From this research it is
difficult to recommend the calibration process because it was a timsirggrocess

and did not always result in a significant improvement in prediction accuracy.

9.1.3. Analysis of Factors Affecting the Semivariogram

Several studies were used to evaluate the effect of several factors on the
calculated storm semivariogram. The factors of interest were the staype (i.e.,
circular vs. elliptical), the storm size, the storm velocity, and the storn{itgpe
peaked vs. uniform). Of these factors, the storm shape was found to have the least
influence on the semivariogram. While a significant difference in computed

semivariograms was not evident based on varying the storm shape, it was determined
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that storms ought to be analyzed as anisotropic events. The size of the storm in
comparison to the size of the watershed and the type of storm were both found to
have significant effects on the semivariogram. The results of the storntystady
were not what was expected, but in retrospect they are rational. The resudtethdic
that the storm velocity did not influence the semivariogram as much as therawfati
the storm in comparison to the location of the rain gages. This indicates that storm
movement across the watershed is a more important factor than storm velocity on the
calculated semivariogram. If the path of the storm across the watershedeut
intense center of the storm in close contact with the rain gages the semaranij

be different than if the path across the watershed results in only the lowtinestgse

of the storm contacting the rain gages. The storm velocity may influenceahe tot
depth of rainfall at the rain gages, as a storm moving slowly may result in a higher
depth of rainfall at each gage as it moves over the watershed than a stormh®ving t
same intensity but a higher velocity, but the effect on the gage-to-gage litgrisibi

minimal.

9.1.4. Rain Gage Density

Several studies were conducted to evaluate the effect of rain gage density on
estimates of areal averaged rainfall. The first of these studies conslueedftett of
rain gage density on computed storm semivariograms, while the second study
compared the potential of one rain gage versus two rain gages to give reasonable

watershed rainfall averages.
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9.1.4.1. Semivariogram Analyses

Two studies were conducted to evaluate the effect of the density of the rain
gage network on the calculated storm semivariogram. These studies cdlculate
semivariograms as the density of the rain gage network was decreasedsultkefe
this study indicated that the density of rain gages in a watershed was gnufieasit
factor influencing the calculated semivariogram. Specific trends na@ridentified
in the semivariograms as the rain gage density was decreased. Fh#sewere not
expected, because it was believed that a higher density of rain gages should provide
more accurate rainfall data, and thus should be able to provide a more accurate
semivariogram. The density of the rain gage data did not have a signifiestosff
the variance of the catches.

9.1.4.2. Effect of Averaging Methods on Rainfall Estimates
This study evaluated both the effect of rain gage density and the type of

rainfall averaging method used when multiple rain gages were present. When two
rain gages were present, both the Thiessen polygon and the arithmetic averaging
methods were used to compute rainfall averages for the watershed. Thede®stima
were compared to rainfall estimates made when only one rain gage wers preébe
watershed. Based on the results of this study, it was determined that ongeain ga
would not likely provide an accurate estimate of watershed rainfall fogigag time
period; however, due to the law of averages one rain gage could give a reasonable
rainfall estimate for the entire storm volume. Two rain gages gave memedde
watershed rainfall estimates for any given time period. It is impdxtamite;

however, that this research assumed that rain gages were completelieaoduch

is not true. Rainfall estimates made using rain gage data in a reediveatevould
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also be influenced by any rain gage error (e.g. wind effects, poor gage @hcand
improper calibration of a recording rain gage), which was not accounted fos in thi
study.

The location of the two rain gages in relation to each other proved to be an
important factor in determining how accurate the rainfall estimates woulde
rain gages located in the immediate vicinity of each other were not able tcecaptur
spatial variability in the rainfall as well as two rain gages located fierdiit areas of
the watershed. The implication of these results is that spatial data, saaifabs r
estimates made from multiple rain gages or radar data, could be very nseful i
hydrologic analyses requiring rainfall data as input. These conclusiohsthey
supported by the successful application of radar data in the unit hydrograph

procedure.

9.1.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data

The analyses of unit hydrographs (UHSs) resulted in several interesting
conclusions. First, unit hydrographs derived from different rain gages, even rain
gages located physically close to each other, can have very differerdtehstias.

When a storm is characterized by considerable spatial variation in deptimarg] ti

the individual rain gage hyetographs will differ considerably, which leads tothid
have significantly different shapes. Similarly, unit hydrographs derivedfagm

gages located within different portions of the watershed can also have sighifica
different characteristics. Not all of the unit hydrographs will be equatiyrate,

with the accuracy depending on the apparent temporal randomness of the pyetogra

Because unit hydrographs are used in design work this is an important point to
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understand. The inaccuracy of a UH will likely result in inaccuracy inah diesign.

The analyses and results presented herein show that the design acautsey ca
substantial. The true unit hydrograph for a storm in not known, so this study was
comparing computed UH values to other computed UH values based on different data
sets.

Unit hydrographs derived from spatially averaged rainfall data such as
Thiessen polygons and radar pixels were found to be, generally speaking, at least as
accurate to potentially more accurate than those UHs derived from individual rain
gage data. This indicates that spatial data can be used in deriving unit hydrographs,
and could even be an improvement over the one-gage method of derivation.

Many of the unit hydrographs derived in this study had an exponential shape.
While this is not typical of a unit hydrograph, a potential explanation that irvolve
the physical processes of transmission losses was offered. Transmissésrchsse
a decrease in flow volume, most of which comes at the beginning of the floodwave
when the dry channel beds of the ephemeral streams characteristic of arichend se
arid regions have some infiltration demand. Then when the intense portion of the
storm occurs, the channel can not infiltrate the large volume of water, so the runoff
hydrograph is characterized by a very steep rising limb of a hydrogragihg this
steep rising limb of the hydrograph appears to be responsible for the exponential unit
hydrographs, as greater accuracy results from the exponential UH thanlfidm a

with the traditional shape.
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9.1.6. Effect of Unit Hydrograph Variation on Design

The implication of unit hydrograph variation on design calculations was also
investigated. Unit hydrographs derived using different rainfall inputs were aised t
calculate storm runoff peak discharge rates. Significant variations in the peak
discharge rates were seen in this analysis, as illustrated by a frequeatysis. This
confirms that the variation seen in unit hydrographs derived from different raia gage
will affect any design calculations based on them. Peak discharge tatésted
based on the Thiessen average unit hydrograph and the radar rainfall unit Ipfdrogra
were typically seen to agree fairly well, especially compared to marigt unit
hydrographs derived from individual rain gages. This reinforces the conclusion
reached earlier, that spatially averaged rainfall data should be used in wograpth
analysis and design. Because these unit hydrographs were based on a more
representative rainfall hyetograph, designs based on these unit hydrographs should be

better able to represent runoff over the watershed from a given storm event.

9.2. RECOMMENDATIONS

9.2.1. Transmission Loss

There is still much work to be done in the area of transmission losses. The
STTL model had the ability to model lateral inflow to the channel; however, a
method of estimating the appropriate amount of lateral inflow for given conglits
currently needed. A method of estimating lateral inflow would significamtjyrove
the usefulness and accuracy of model results. Similarly, methods to estimaanel

soil properties such as antecedent moisture condition and porosity would be useful.
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These properties are vital to determining the ability of water to atfltinto the

channel bed, so an estimation method for both would improve prediction accuracy.

9.2.2. Analyses That Involve Radar Rainfall

The various studies conducted to evaluate radar rainfall data leave room for
future research. The evaluation of rainfall averaging methods, which compared the
loss of true rainfall variation when using Thiessen polygon and arithmetic asd¢mg
estimate watershed rainfall, was conducted entirely with synthetic @atse studies
should also be conducted using observed rainfall data to ensure that the conclusions
reached are applicable to observed data. The two studies conducted to determine the
effect of using radar data with different Z-R transformation equations on the
calculation of storm semivariograms were also done using synthetic datauldtlve
interesting to conduct similar studies using observed data and verify thanife tre
observed held true in observed data as well. It could also be interesting to wese studi
like these to identify acceptable Z-R equations for various storm chastcteri

Firm conclusions as to whether calibration of Z-R transformation equations
was necessary for hydrologic applications were not reached. To reaithra be
understanding of this problem more research should be done. Data should be
obtained for more storms, preferably with different rainfall charaatesjst possible.
Equations calibrated based on these datasets should be compared to the standard
equation, as was done in this study. More research into this topic could lead to more
decisive results. Similar research could also be conducted for other waterSheds
Walnut Gulch Experimental Watershed can not be considered representative of the

country as a whole because it is located in an arid region and because it is surrounded
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by mountainous terrain, which may have interfered with the radar beam. Data from
other parts of the country may also lead to more decisive results that could be use
make a final determination on the importance of calibrated Z-R equations in

hydrologic applications.

9.2.3. Analysis of Factors Affecting the Semivariogram

The results of the semivariogram analyses leave several questions to be
answered by future research. First, the studies that led to inconclusive or tegxpec
results, such as the storm velocity evaluation, could be re-examined. Furthsr resul
may add weight to the evidence supporting these conclusions, or find some factor that
explains the surprising results. Also, based on the results of the storm velocity
evaluation, perhaps the effect of storm movement needs to be specifically studied.
Finally, these analyses were conducted using synthetic data. It wouleiesting

to repeat these exercises with observed data, to confirm the results observed.

9.2.4. Rain Gage Density

In two studies conducted to determine the effect of rain gage density on storm
semivariograms, the results indicated that this was not an important faatenaifig
semivariogram accuracy. Because this finding was somewhat surpristhgr fur
research into this topic is necessary. Further studies using syntheticalatalgh
conducted to attempt to identify trends in the data, though there appeared to be no
trends based on the results of this research. Then, the studies could be conducted
using observed rainfall data rather than synthetic, in order to determinleethat t

effects remain the same for observed and synthetic data.
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The study that evaluated the averaging methods used with multiple rain gages
found that increasing the rain gage density resulted in rainfall estimatbe f
watershed that were more representative of the actual rainfall @xpedi This
study was conducted with synthetic data though, so future research could verify these
findings using observed data. The next step may then be to calculate rainfall
estimates with truly spatial data, such as radar data, to compare totak rai

estimates made using rain gages.

9.2.5. Unit Hydrograph Analyses: Point vs. Spatial Rainfall Input Data

An additional analysis of unit hydrographs derived from spatial data is
needed. Further work to explain the differences between the Thiessen ramfall a
radar rainfall unit hydrographs and the rain gage unit hydrographs is aigceasso,
much more investigation into the exponential unit hydrographs is needed. This does
not appear to have been seen before, so verification of the proposed explanation will
be important. Further studies into the implications on designs may also be useful. In
this research peak discharge calculations were compared among the diffigrent
hydrographs; however, there are many other design calculations that could be
evaluated. Further examples of the design implications may further quéatify t
degree to which variation in unit hydrograph will effect any design calonsator
which they are used.

Another interesting step for future research could be developing watershed
unit hydrographs using radar data. The research conducted here only used one radar
pixel at a time to develop unit hydrographs, which does incorporate more spatial

information than a rain gage unit hydrograph, but further steps could be taken to
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provide truly spatial information to the unit hydrograph procedure. If the unit
hydrograph is meant to predict the watershed response to a given storm event, it
seems that calibrating the unit hydrograph with precipitation data fronmtine e

watershed could improve those predictions greatly.
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APPENDIX A: SPATIO-TEMPORAL TRANSMISSION

LOSS MODEL OUTPUT

The following figures compared the observed downstream hydrograph to the

predicted downstream hydrograph, as calculated by the STTL model, for three stor

events and gage pairs. Very good agreement is seen between the observed

hydrograph and the model results for the August 17, 2007, event. For the August 6,

2007, event moderate agreement is seen between the observed hydrograph and the

model results. Finally, for the August 4, 2007, event poor agreement is seen between

the observed hydrograph and the model results.
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APPENDIX B: UNIT HYDROGRAPH PREDICTED

HYROGRAPHS VS. OBSERVED HYDROGRAPHS

The optimum unit hydrographs derived using non-linear least squares analysis
of the Weibull distribution parameters were used to predict flow hydrograpls base
on rain gage rainfall measurements, then goodness-of-fit statiste<aleulated for
the predicted runoff hydrographs. The observed and predicted hydrographs are
compared in the following six figures, where rain gages which resulted in thanolest

worst goodness-of-fit statistics for the storm event were chosenustration.
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Figure B-1: Observed Flow Hydrograph vs. PredictedHydrograph for 8/13/06 Storm Event Rain Gage 61
(Best Goodness-of-Fit Statistics for the Event)
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Figure B-2: Observed Flow Hydrograph vs. PredictedHydrograph for 8/13/06 Storm Event Rain Gage 57
(Worst Goodness-of-Fist Statistics for the Event)
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