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Chapter 1

Introduction

1.1 Overview

Recent advancements in small scale surveillance equipment, including minia-

turized cameras, has prompted interest in the development of stable, maneuverable

micro air vehicles (MAVs) on which to put them. One MAV model mimics the

flapping kinematics of insects and small birds capable of hovering. Although these

animals are capable of sustained hovering, recover quickly from large gust loads,

and are extremely maneuverable, the underlying aerodynamics of these motions are

poorly understood.

1.2 MAV Concepts

Other MAV concepts have included fixed wing aircraft and rotorcraft designs,

as shown in Figure 1.1. The left image (a) shows the Aerovironment fixed wing Black

Widow [1], measuring 6 in across, while the right image (b) shows a shrouded rotor

concept known as TiShrov-2 developed at the University of Maryland [2]. However,

both of these concepts have significant disadvantages. While fixed wing aircraft have

high endurance and efficiency, they are not capable of hovering. Rotorcraft-based

MAVs, however and are relatively efficient when compared to insect wing flapping,
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(a) Black widow [2] (b) TiShrov-2 shrouded rotor [1]

Figure 1.1: MAV concepts.

but are not capable of quick and stable recovery from gust loading. Insects are

both capable of hovering and able to recover from very high gust loads in just a few

wingbeats. Ideally, MAV models based on insect flapping would have these same

characteristics.

1.3 Flapping Kinematics

The basic kinematics of insect wing flapping can be broken down into four

phases, which are illustrated in Figure 1.2. The first phase, the downstroke, occurs

when the insect rotates its wings about a body-fixed axis from behind its body to-

wards the front. This rotation occurs at a relatively constant angle of attack and

angular velocity [3]. At the end of the downstroke, the wing rotation slows and

the wings pitch up rapidly; this phase is known as supination. In the upstroke,

the wings rotate from the front of the body toward the back, in a manner similar

to the downstroke. At the end of the upstroke, in the phase known as pronation,

2



Figure 1.2: Drosophila melanogaster wingtip trajectory [6].

the wing rotation again slows and the wing pitches up in preparation for the next

downstroke [4]. One parameter for describing the kinematics of a wingstroke is the

stroke plane angle. The stroke plane is defined as the plane that best fits the path

traced out by the wingtip of the insect over the duration of one wingstroke. A break-

down of the stroke plane angle for a variety of insects can be found in Ref. [4], and

includes insects with horizontal, inclined, and vertical stroke planes, corresponding

to stroke plane angles of 0 deg, between 0 deg and 90 deg, and 90 deg, respectively.

An insect wing stroke can be further parameterized by noting a deviation from the

stroke plane as a function of time, which describes the angle of inclination above or

below the average stroke plane at a given point in the wingstroke [5].

The four phases of a flapping wingstroke are illustrated in Figure 1.3 by stills

taken from a video [7] of a live hovering hawkmoth (Manduca sexta), with a stroke

plane angle of approximately 23 deg. As seen in this figure, especially during prona-

tion and supination, wing kinematics of live animals are complicated by wing flexi-
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Figure 1.3: Wingstroke phases of Manduca sexta [7].

bility.

The complex kinematics of an insect wingstoke have been simplified in various

ways for experimentation. In many cases, wing flexibility is ignored and a horizontal

stroke plane is assumed for a model of hover. Another common assumption is that

the wing tip path is always coincident with the stroke plane. This reduces the flap-

ping kinematics to a combination of rotation and pitching, or the two-dimensional

case of translation and pitching. Pure pitching motions have been used to study vor-

tex shedding during pronation and supination [8], while rotating motions [9, 10, 11]
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and translating motions [12, 13, 14] have been used to study the downstroke. Com-

bined pitching and plunging [15], pitching and translating [16], and pitching and

rotating [17] wings have also been used to simulate flapping kinematics. Experi-

ments on these motions and combinations of motions, have produced a large body

of work relevant to low Reynolds number flapping flight.

1.4 Quasi-Steady Analysis

In an attempt to quantify the lift and drag produced by a flapping wing,

early investigations employed a quasi-steady assumption: the aerodynamic forces

generated by a wing at any point in time are assumed to be equal to the steady

state forces generated by the wing at the same velocity and angle of attack. Blade

element analysis can be used in conjuction with the quasi-steady assumption to

predict forces on a rotating wing. To employ a blade element analysis, each wing is

broken down into thin chordwise sections of width dr along the wingspan, as shown

in Figure 1.4. For each section, the lift, L′ and profile drag D′pro for each section are

determined by the equations

L′ =
1

2
ρcU2

rCL, (1.1)

D′pro =
1

2
ρcU2

rCD,pro. (1.2)

Under the quasi-steady assumption, given the geometry of the wing section, the lift

and drag coefficients are functions only of the angle of attack and the local Reynolds

number [18]. The total lift and drag generated by a wing is then calculated by

summing the contribution to lift and drag from each chordwise slice. For the quasi-

5



steady assumption stated previously to be valid, the component of the quasi-steady

vertical force averaged over one wing stroke must equal the weight of the insect,

while the quasi-steady average horizontal force must be zero [19].

In 1972 Weis Fogh determined that for fruit flies and humming birds, both of

which have a horizontal stroke plane, the theoretical lift calculated using a quasi-

steady analysis was sufficient to maintain hovering flight. Based on this finding,

he concluded that “[t]here is therefore no reason to believe that non-steady aero-

dynamics is involved to any significant extent” [19]. However, in 1984, Ellington,

after a reanalysis of historical data, reached the opposite conclusion, that unsteady

phenomena were in fact, integral to generating enough lift to keep insects and birds

with a horizontal stroke plane aloft in hovering flight [4, 18].

Ellington argued that if the mean lift coefficient satisfying the net force balance

(where lift equals weight and thrust equals zero), CL, is greater than the maximum

lift coefficient derived from the quasi-steady analysis, CL,max, then the quasi-steady

assumption must be invalid. Based on a limited knowledge of CL,max, only two of

the insects with horizontal stroke planes Ellington examined, Encarsia and Aeschna,

met this criteria. However, if the values of CL and CL,max are close, it does not

prove that the quasi-steady assumption is valid, only that it cannot be ignored.

This is because unsteady lift mechanisms, which use changes in wing geometry

or configuration to enhance lift above what would be seen in steady flow, could

be contributing to the lift and yielding forces that are similar to the quasi-steady

forces. Citing the large errors in CL,max calculated independently by Weis-Fogh and

Nachtigall, and that unsteady lift coefficients seen in flapping flight may be lower

6



Figure 1.4: Blade element analysis of model flapping wing [4].

than quasi-steady estimates because of the Wagner effect, Ellington concluded that

unsteady mechanisms are likely important for most insects and birds with horizontal

stroke planes [4]. The invalidity of the quasi-steady assumption was later confirmed

by other researchers [20, 21].

Thus, insects and hovering birds do not remain aloft using traditional aerody-

namic lift generation mechanisms. Flying at low Reynolds numbers and high angles

of attack with relatively short wingstrokes, they must employ unsteady methods of

7



lift generation. Since the quasi-steady model was discounted, many researchers have

begun to investigate the aerodynamics of such mechanisms and their applications

to flapping flight [22, 15].

1.5 Unsteady Lift Mechanisms

1.5.1 Wagner Effect

One of the earliest well understood and experimentally confirmed unsteady lift

mechanism is the Wagner effect. Assuming pre-stall angles of attack and attached

flow, the Wagner effect postulates that in cases where the steady state bound cir-

culation around a wing changes instantaneously, there will be a delayed growth in

circulation and lift. Examples of such instances are an impulsive translational mo-

tion or an impulsive change in angle of attack. In 1925, Wagner showed that the

starting vortex shed from the trailing edge of an impulsively started airfoil induces

a downwash on the wing [23]. This downwash lowers the effective angle of attack

seen by the airfoil and hence, decreases the lift. As the starting vortex is convected

away from the wing, its influence decreases and the lift rises. After six chord-lengths

traveled, the lift is approximately 90% of its steady state value. The Wagner func-

tion, while known exactly, is not in an analytical form convenient for analysis, and

is therefore often approximated. Two common approximations were an exponential

model developed by R.T. Jones in 1938 [24] and an algebraic model developed by

Garrick in 1938 [25]. The exact Wagner function, representing the ratio of the in-

stantaneous bound circulation to the steady state bound circulation, and these two

8



Figure 1.5: Wagner’s function [26].

approximations are plotted in Figure 1.5. Because the typical insect wing stroke is

short, only two to four chord-lengths traveled at the wing tip [20], the Wagner effect

is important, although it acts to diminish lift instead of enhance it.

1.5.2 Delayed/Dynamic Stall

In 1933, Francis and Cohen repeated experiments done by Walker confirming

the Wagner effect, except at post stall angles of attack, where the assumptions

underlying the Wagner effect are violated [27]. They found that for the first three

chord-lengths of travel, the bound circulation of the wing grew at a rate similar to

that predicted by the Wagner equation. After three chord-lengths, the circulation

stopped growing, an indication of stall. This result is notable because instead of

stalling immediately after the wing began moving, the circulation initially grew
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to values higher than the stalled circulation value. This phenomenon is know as

delayed, or dynamic, stall, in which an airfoil can achieve lift coefficients above

steady state value for the first several chord-lengths traveled.

Dynamic stall has also been studied in depth more recently by several re-

searchers. In a 2009 paper by Ol [15], he studied the forces and flow features

associated with 2D flat plates in pure plunge and pitch/plunge motions with re-

duced frequencies (the ratio of wingstroke to freestream velocity) similar to flapping

flight cruise for birds. He found that Theodorsen’s formula was able to reasonably

predict lift coefficients, even in cases of deep stall, where the formula’s assumptions

of fully attached flow and a planar wake are clearly violated. He also found that

below stall, Reynolds numbers ranging from 10,000 to 60,000 affected the size of the

laminar separation bubble, but post stall, Reynolds number effects were negligible.

Dynamic stall is characterized by the formation, development and shedding of

a leading edge vortex (LEV). As the vortex forms, and after it sheds but is still above

the wing surface, the vortex causes a significantly different pressure distribution

along the airfoil surface than would be seen in steady flow. The increased low

pressure on the top surface of the wing leads to higher lift [28, 15]. As with the

Wagner effect, because insects have short stroke amplitudes and start and stop

so frequently, delayed stall plays an important role in the development of forces

produced by flapping wings.
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Figure 1.6: Leading edge vortices on a delta wing.[29]

1.5.3 Vortex Lift

The ability of vortices to enhance lift has been studied for applications in

delta wing aircraft, including the Concorde [20]. The swept, sharp leading edges of

a delta wing at subsonic speeds cause flow separation resulting in a pair of spiraling

vortices on the swept leading edges of the top surface of the wing, as seen in the

flow visualizations from above (left) and behind (right) a delta wing in Figure 1.6.

These vortices reduce the static pressure near the leading edge on the top surface

of the wing, significantly enhancing the lifting capability of the aircraft.

Although insect flapping occurs at much lower Reynolds numbers than those

in delta wing flight, large vortices were seen in early modeling of insect flight that

resulted in similarly enhanced lift. In 1979, Maxworthy used dye flow visualization

to capture the large vortices created during the clap and fling mechanism, where

the two wings of an insect begin the downstoke clapped together behind the body

and peel apart from each other as they rotate toward the front of the body. One of

his dye visualizations is shown in Figure 1.7.

Early studies modeling insect flapping found that flow separating over the
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Figure 1.7: Dye flow visualization of LEVs during clap and fling [22].

leading edge of a wing at a high enough angle of attack resulted in the formation of

large leading edge vortices, which were fed by vorticity produced at the leading edge

of the wing [28, 5]. Because these vortices only enhance lift while they are attached

or while they are above the surface of the wing, much effort has been spent on

determining how to stabilize them, examples of which are discussed in the following

section. In a study of translating plates accelerating from rest, Dickinson observed

the presence of an LEV that remained attached for two chord-lengths of travel and

was then shed. The corresponding lift data showed that the presence of this vortex

resulted in an 80% increase in lift compared to 5 chord-lengths of travel later, after

vortex shedding [20]. Subsequently, a study by the same author on rotating plates

found that rotating wings are capable of maintaining a stable leading edge vortex

for up to 5 chord-lengths of travel, longer than the typical insect wing stroke of 2

to 4 chord-lengths. He postulated that the spanwise flow along the wing helped to

stabilize the LEV [30]. If stability can be achieved for only a few chord-lengths of
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travel, the stroke-averaged lift coefficient can be significantly increased, due to the

relatively short stoke-to-chord ratios of typical insect flight.

1.6 Recent Experiments on Models of Flapping Wings

1.6.1 Summary

Many different models and types of wing kinematics have been used to simu-

late flapping wing flight, including translating or rotating at fixed angles of attack

to model the downstroke. Examples of these types of experiments, in addition to

kinematics for modeling other phases of the flapping wingstroke, are given in Sec-

tion 1.3.

1.6.2 Translating Wings

As mentioned previously, early studies of translating wings as models for the

insect downstroke include the work of Dickinson and Götz [20]. They analyzed two-

dimensional flat plates rapidly accelerating from rest at fixed angles of attack. They

found that for angles of attack above 13.5 deg, a leading edge vortex formed and

remained attached to the wing for two chord-lengths of travel. This LEV contributed

to an 80% rise in lift when compared to the performance of the same wing 5 chord-

lengths later. They also found that the presence of the LEV was accompanied by

a trailing edge vortex, which acted to decrease lift production. Dickinson claimed

that because fly wings typically travel only 2-4 chord-lengths during one half-stroke,

the dynamics of an impulsively started wing better approximate the flow than do
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steady wing motions.

Studies on translating wings also included work by Ringuette, who found that

the three-dimensional effects introduced by the presence of a tip vortex acted to in-

crease the lift coefficient of a translating wing. Suppressing the tip vortex formation

resulted in a decrease in lift. He also found that the drag coefficient was higher at

lower aspect ratios [12].

Potential flow models of impulsively started translating flat plate wings have

also been developed. Pitt Ford and Babinsky [31] fitted a potential flow model to

experimental data from a translating wing and found that the model most closely

approximated the experimental results in the absence of bound circulation. This led

to the conclusion that post-stall, lift on wings translating at low Reynolds numbers

is produced by LEV development and non-circulatory forces as opposed to bound

circulation, in support of Dickinson’s conclusions 9 years prior.

1.6.3 Rotating Wings

In early rotating wing experiments, Dickinson found that rotating wings are

capable of maintaining a stable leading edge vortex for up to 5 chord-lengths of

travel, as compared to 2 chord-lengths for translating wings. He postulated that the

spanwise flow along the wing helped to stabilize the LEV [30] .

More recent rotating wing experiments include those of Jones and Babinsky [9,

32]. They used particle image velocimetry (PIV) and force measurements to analyze

rotating wings at a Reynolds number of 60,000. They found that the presence of
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a leading edge vortex caused a peak in lift approximately 1.5 times greater than

the quasi-steady state value occurring after 2.4 chord lengths traveled at the three-

quarter chord, when subsequent LEVs continue to form and shed.

1.6.4 Limitations of Previous Experiments

Despite the large existing body of research modeling flapping flight, very few

rotating wing experiments have examined the flow at rotation past 90 degrees. One

example, however, is the work of Kolluru and Jones [33], which examined the flow

field and force history of wings rotating up to two revolutions through flow visual-

ization and force measurements. They found that in the second revolution of travel,

both lift and drag dropped significantly as compared to the first revolution. However,

no comparison was made to the translating data of a similar wing. Additionally, few

comparisons have been made between the forces generated by geometrically similar

rotating and translating wings. The study by Jones and Babinsky [9] noted above

does provide a comparison of force data between rotating and translating wings, but,

as this study had a maximum rotation angle of 90 degrees, a comparison at higher

rotation angles is still needed. DeVoria and Ringuette have also studied rotating flat

plate wings [10], performing dye flow visualization and PIV on trapezoidal wings

at a 90 deg angle of attack. They examined the shedding of the initial ring-shaped

vortex and the formation of a new vortex attached to the wing. This phenomena,

where the vortex has absorbed all of the vorticity from the flow that it can and then

separates, is known as vortex saturation. Maximum rotation angles studied in this
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experiment were 120 deg, but no force data was collected.

1.6.5 Experiments in Tanks

Many flapping wing experiments have been been performed underwater, in

oil, or in glycerin, which have the advantage of slower wing motions for larger wings

than experiments in air for Reynolds characteristic of flapping flight. However,

due to size restrictions on the tanks used for experimentation, it is necessary to be

aware of the maximum size wing that can be tested in a given tank without loss of

data accuracy from wall effects. Recent flapping wing experiments involving three-

dimensional wing kinematics in enclosed tanks include those by DeVoria et al. [10],

Ozen and Rockwell [34], Kolluru and Jones [17], Jones and Babinsky [9], Lentink

and Dickinson [11], Kim and Gharib [35], and Wojcik and Buchholtz [36].

DeVoria et al. examined low aspect ratio trapezoidal wings rotating at a fixed

angle of attack of 90 degrees for up to 120 degrees of revolution. These experiments

were performed for Reynolds numbers O(103) in a water tank with dimensions of

210 cm× 91 cm× 71 cm. The wing models used had a maximum spanwise length of

9 cm and a chord length of 9 cm. If placed in the middle of the tank, this yields a

minimum distance from the wing tip to a tank wall of 4.1 chord-lengths [10].

Ozen and Rockwell studied flat plate wings at fixed angles of attack between

30 and 75 degrees for Reynolds numbers ranging from 3,600 to 14,500 and rotation

angles up to 270 degrees. Their experiments were performed in a free-surface water

channel with dimensions of 4,877 mm× 927 mm× 610 mm, using wing models with a
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chord of 73.9 mm, span of 73.9 mm, and distance from the rotational axis to the wing

root of 38.1 mm. These dimensions result in a minimum wing tip-to-wall distance

of 4.6 chord-lengths [34].

Kolluru and Jones studied rectangular flat plate wings rotating at fixed and

variable angles of attack. Experiments were performed at a Reynolds number of

5,000. The wing used was an aspect ratio 2 plate with a chord length of 3 inches

and a distance from the axis of rotation to wing root of 0.65 chord-lengths. This

water tank had dimensions of 4 ft× 4 ft× 4 ft. Therefore, the minimum distance

from the wing tip to the side wall of the tank was 5.4 chord-lengths [17].

The minimum wingtip-to-wall distance in the experiments by Jones and Babin-

sky was 2.4 chord-lengths at a Reynolds number of 60,000 for a maximum rotation

angle of 85 degrees [9].

Lentink and Dickinson performed experiments on a pair of Drosophila wings

traveling through a maximum rotation angle of 140 degrees in a reciprocating motion

for up to six cycles. The minimum wall distance in this investigation was 1.8 chord-

lengths at a Reynolds number of 14,000 [11].

Kim and Gharib examined rotating flat plates at Re = 60 and 8, 800 with a

maximum rotational angle of 112.5 degrees. The tip clearance on their experiments

was 1.1 chord-lengths [35].

Wojcik and Buchholtz also performed experiments on rotating wings using

Reynolds numbers between 4,000 and 16,000 for stroke angles up to 320 degrees and

had a tip clearance of 9.7 chord-lengths [36].

A summary of the important experimental parameters and the tip clearance
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Table 1.1: Summary of tip clearances for recent experiments.

Researchers Year Reynolds Maximum Tip
number rotation clearance

angle

Devoria et al. [10] 2011 O(103) 120 deg 4.1c

Ozen and Reockwell [34] 2011 3,600-14,500 270 deg 4.6c

Kolluru and Jones [17] 2012 5,000 720 deg 5.4c

Jones and Babinsky [9] 2010 60,000 85 deg 2.4c

Lentink and Dickinson [11] 2009 14,000 140 deg 1.8c
reciprocating

6 cycles

Kim and Gharib [35] 2010 60 and 8,800 112.5 deg 1.1c

Wojcik and Buchholtz [36] 2012 4,000 - 16,000 320 deg 9.7c

for each of these experiments is presented in Table 1.1.

As these examples show, typical tank tests on rotating wings are currently

being performed in tanks with a wide range of tip clearance between 1.1 and 9.7

chord-lengths. Testing in air is much less restrictive, since hovering requires no

free-stream velocity component and experiments can be performed in a large room

instead of a confined space like a wind tunnel or water tank. However, the current

trend is to perform experiments in fluids with higher densities and viscosities, e.g.,

glycerin and glycerin/water mixtures, to better resolve the low aerodynamic forces

produced by small-scale flapping wings. Given the difficulty of constructing and

maintaining large experimental tanks, it is desirable to increase the size of the

wing relative to the tank. Additionally, recent experiments have also attempted to

characterize the flow after the initial transient of the wing stroke, requiring multiple
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wing strokes that are more likely to induce a secondary flow in a relatively small

tank.

1.7 Thesis Summary

1.7.1 Objectives

Many researchers have attempted recently to understand the aerodynamics of

low Reynolds number flapping wing flight for applications in MAV development.

However, the complicated unsteady lift mechanisms involved are still not fully un-

derstood. Previous studies have offered many models of flapping flight to address

these issues, but have not been able to fully explain how unsteady lift mechanisms

contribute to insect flight.

This study aims to fill some of the gaps left by previous research. The ef-

fects of certain parameters on the forces generated by an aspect ratio 2 flat plate

inclined at a 45 degree angle of attack in pure rotation were studied. These pa-

rameters include maximum rotation angle, acceleration distance, and distance from

the axis of rotation to the wing root. Because both rotating and translating wings

have been used to study LEV formation, development, and shedding, it would be

convenient to have a basis on which to compare the forces produced by such wings.

However, it is unclear how rotating wing forces should be normalized for comparison

with translating wings. Therefore, two methods of reference plane determination

and force non-dimensionalization are examined, the axis-relative method and the

root-relative method. Where relevant, the rotating cases studied were compared
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to a geometrically similar translating wing in an attempt to establish a basis for

comparison of the forces generated.

Additionally, the current work aims to determine whether a 5-chord wing tip-

to-wall clearance boundary condition is sufficient to approximate tests performed in

infinitely large volumes of fluid, what the minimum required distance is, and how

the presence of solid tank walls affects the flow field and forces produced by a wing

rotating through two revolutions.

1.7.2 Outline

Chapter 1 has presented an overview of unsteady lift mechanisms inherent

to low Reynolds number flapping wing flight. Additionally, a detailed account of

previous experiments and their conclusions were given. Chapter 2 will provide an

overview of the methods used to examine some of the parameters affecting the forces

and flowfields of low Reynolds number rotating wings. An overview of the setup for

a computational analysis, flow visuaization, and experimental force data collection is

provided. Chapter 3 details the results of the boundary condition analysis conducted

computationally and through flow visualization. Chapter 4 discusses the results of

the parameter study investigating how maximum rotation angle, acceleration profile,

and root cutout effect the aerodynamic forces produced by rotating wings. Also,

two methods for reference plane determination and force non-dimensionalization

are compared. Force coefficients are also compared to data collected at AFRL for

rotating and translating wings. Chapter 5 provides the conclusions of this study,
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and discusses avenues for further research.
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Chapter 2

Methodology

2.1 Overview

Both computational and experimental techniques were used to evaluate the

flow field and forces produced by a rotating wing. Numerical simulations were used

to determine the minimum possible size of a tank containing a rotating wing such

that the effects of the tank walls on the flow features and forces of the wing are

negligible. Numerical simulations also provided an understanding of the flow fea-

tures (leading edge vortices, wing wake, etc.) inherent to a wing rotating at a low

Reynolds number and high angle of attack. With the proper wing/tank sizing de-

termined through numerical simulations, experiments were designed to measure the

forces produced by rotating wings as a function of parameters including maximum

rotation angle, acceleration profile, and root cutout.

2.2 Boundary Study

2.2.1 Computational Model

Wall effects have long been a concern for low Reynolds number rotating wing

experiments, but this can not be addressed experimentally because the baseline case,

where no wall boundaries are present, cannot be established experimentally. This

22



is due to the fact that low Reynolds number experiments such as these are usually

performed in water or some other exotic fluid (e.g. glycerin or mineral oil), which

must be contained inside a tank. A more viscous fluid allows for the use of larger

wings which produce forces that are bigger, and hence, easier to measure, while still

maintaining a low Reynolds number. Once the wall effects have been quantified

computationally and are well understood, this information can be applied to the

design of experiments.

Computational studies were performed using the Immersed Boundary Implicit

Navier-Stokes (IBINS) solver developed at the University of Maryland [37]. IBINS

performs a direct numerical simulation of the Navier-Stokes equations, advancing

in time using a Crank-Nicolson scheme on the viscous terms and a second-order

explicit Adams-Bashforth method on the inviscid terms. This solver has been op-

timized for flapping wing kinematics with Reynolds numbers ranging from 102 to

104. Additionally, IBINS was validated by Bush et al. both experimentally [38] and

through comparison with published results for Reynolds numbers ranging from 101

and 104. The immersed boundary framework involves a modification to the gov-

erning Navier-Stokes equations which takes into account the boundary conditions

imposed on the flow by the wing surface: zero penetration of flow into the wing, no

slip, and zero pressure gradient normal to the wing surface.

An immersed boundary framework is convenient for flapping wing problems

because it uses a cartesian mesh that does not necessarily conform to the wing

shape. As the wing moves, the mesh remains fixed. The solver determines which

mesh nodes are inside of and outside of the space occupied by the wing and solves the
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Figure 2.1: Computational wing and fluid mesh.
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governing equations accordingly. This eliminates the need to regenerate a new mesh

when the wing moves at every time step. A grid resolution study was performed

to ensure that the mesh spacing was small enough to provide accurate results, and

that decreasing the mesh spacing further would not increase the accuracy. The mesh

produced as a result of the grid resolution study has small node spacing, 0.015c in

the x and y directions and 0.020c in the z direction, in the region close to the

wing. The region of small node spacing extended 0.8c above the leading edge and

below the trailing edge of the wing, and 0.5c past the wing tip. The mesh was

hyperbolically stretched far away from the wing, as shown in Figure 2.1. While the

mesh varies in size for the different boundary conditions tested, the part of the fluid

mesh that is not hyperbolically stretched remains fixed, and only the hyperbolically

stretched region is adjusted depending on the boundary conditions. This allows for

good resolution of small-scale flow features close to the wing surface (such as the

leading edge vortex) while decreasing the total number of nodes needed (and hence

computation time) by decreasing flow resolution far away from the wing, where only

larger scale flow structures are expected.

Computations were set up to model experiments, as shown in Figure 2.2, which

depicts a view from above of the wing rotating in a tank with a square cross section.

In this configuration, the wing begins with its midchord aligned with the x-axis. The

aspect ratio 2 wing is placed at a 45 deg angle of attack relative to the xy-plane, and

rotates counterclockwise about the z-axis. A wing mount connecting the wing root

at the midchord to the rotation axis is shown for clarity, although it is not modeled

in the simulations. The distance between the wing root and the axis of rotation,
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Figure 2.2: Schematic of rotating wing geometry and wall boundaries.

rr, is fixed at 0.5c. The boundary conditions on the sides of the mesh parallel

to the yz- and xz-planes are set such that they represent solid walls; boundary

conditions of no slip, no penetration, and zero pressure gradient are enforced. The

variable db, representing the tip clearance, or the distance from the wing tip to the

wall boundary, is varied from 0.5c to 5.0c. The infinite case, simulating a wing

rotating in an infinitely large volume of fluid, uses boundary conditions of zero

pressure gradient and zero velocity gradient at the mesh boundaries. The top and

bottom surfaces of the mesh, parallel to the wing rotation plane, are held constant

at a distance of 12.5c away from the wing rotation plane, regardless of the case.

These boundaries, where zero pressure and velocity gradients are enforced, simulate

infinite boundaries, where the fluid extends forever above and below the rotation

plane of the wing. Thus, the mesh simulates an infinitely tall cylinder of fluid
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Table 2.1: Boundary conditions for computational mesh.

Case X and Y Directions Z Direction

Domain Pressure Velocity Domain Pressure Velocity
boundary boundary boundary boundary
condition condition condition

db =∞ 25c ∆p = 0 ∆v = 0 25c ∆p = 0 ∆v = 0

db = 5.0c 15c ∆p = 0 v = 0 25c ∆p = 0 ∆v = 0

db = 3.0c 11c ∆p = 0 v = 0 25c ∆p = 0 ∆v = 0

db = 0.5c 6c ∆p = 0 v = 0 25c ∆p = 0 ∆v = 0

with a square cross-section. The assumption that 12.5c above and below the wing

leading edge is far enough away to simulate infinite boundaries for at least two

revolutions (the maximum rotation angle examined in this study) is supported by

experimental flow visualization discussed in Chapter 3. The boundary conditions

used for computations are summarized in Table 2.1. In this table, mesh size refers

to the distance in chord lengths, from one side of the mesh to the other in the given

direction, with the axis of rotation in the middle of the xy-plane.

2.2.2 Wing Kinematics

In all of the numerical simulations performed for this work, the wing was

accelerated over a distance of 0.17c traveled at the wing tip, or 0.13c at the three-

quarter span (i.e., 75% of the distance from wing root to wing tip), as shown in

Figure 2.2. A modified Eldredge smoothing function [8] was used to create a velocity

profile where the wing begins at rest, accelerates constantly over a given distance

to a set maximum angular velocity, and then maintains a constant velocity. The
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Figure 2.3: Normalized wing velocity profile for computational analysis.

angular velocity profile takes the form

Ω(t) =
k

a
log

(
cosh(a(t− t1))

cosh(a(t− t2))

)
+

Ωmax

2
. (2.1)

In this equation, Ωmax, the maximum angular velocity, is set to maintain a local

Reynolds number of 120 at the wing tip. This equation results in a velocity profile

that is smoothed at the beginning and end of wing acceleration such that there are no

discontinuities in the acceleration profile. Although not important for computational

testing, smoothing minimizes wing vibration due to fast changes in acceleration in

experiments. Because this computational study is intended to model experiments,

a velocity profile that would be used for experimental testing was used here, and

hence, velocity profile smoothing was included. The amount of smoothing present

is controlled by the variable a, which can range from 1 to 100. A small a value

corresponds to a minimal amount of smoothing, and a high value of a results in a
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heavily smoothed velocity profile. A value of a = 20 was used for all computational

models. The time constants in this equation, t1 and t2 correspond to the instant

in time where wing acceleration would begin and end if the velocity profile was

unsmoothed. Smoothing results in a non-zero acceleration before t1 and after t2.

The variable k is the maximum angular acceleration, given by k = Ωmax

2(t2−t1)
. All cases

were run for a maximum rotation angle of 720 deg, at which point the simulation

was terminated without bringing the wing to rest. A sample velocity profile is shown

in Figure 2.3.

2.2.3 Flow Visualization

Flow visualization was performed using a double-pulsed Nd:YLF laser (Litron

LDY304, 30 mJ/pulse,10 kHz max) to illuminate 12 micron silver coated glass mi-

crospheres in an 18 in x 18 in x 18 in tank. A schematic of the setup is shown in

Figure 2.4. The wing was mounted at the midchord and inclined at a 45 degree

angle of attack. Vertical slices (parallel to the xz-plane) of the entire tank were

visualized, and illuminated by the laser from the side. All images shown were taken

when the wing was positioned as shown in the figure, at whole revolutions. The

laser sheet was oriented such that it illuminated the tank cross-section just behind

the trailing edge of the wing when the wing mid-span was aligned with the x-axis.

Three rectangular, carbon fiber, aspect ratio 2 wings with chords of 1.2 in,

1.64 in, and 3.00 in were used to achieve tip clearances of 5.0c, 3.0c, and 0.5c respec-

tively. All cases had a 0.5c root cutout and were performed at a tip Reynolds number
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(a) Three dimensional view (b) Top view

Figure 2.4: Flow visualization setup.

of 120. To achieve such a low Reynolds number, the tank was filled with glycerin

having a kinematic viscosity of ν = 600 mm2/s and a density of ρ = 1.26 kg/m3.

The same velocity profile as the computational investigation was used, except the

wings were allowed to rotate for 45 revolutions before stopping. A Nikon camera

was used to take video of the rotating wing at 30 frames per second, and stills were

extracted from the video for analysis.

2.3 Aerodynamic Forces Study

2.3.1 Rotating Wing Setup

All rotating wing experiments were performed in an 18 in x 18 in x 18 in tank

at the University of Maryland, shown in Figure 2.5. The tank, simpler than a

water tunnel, is ideal for simulating hovering kinematics and can be filled with
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Figure 2.5: 18 in water tank at University of Maryland.

either water or a more viscous fluid such as glycerin, depending on the desired

Reynolds number. The wing was rotated about a vertical 0.5 in diameter stainless

steel driveshaft rotating in a bearing affixed to the center of the floor of the tank.

The shaft was driven by a gear and belt system with a 6:1 gear ratio attached to

an Omega OMHT stepper motor and controlled by an Omega STR4 motor driver.

The driver takes as input a digital pulse train to drive the motor. Every rising

edge, or switch from a zero to a one, is translated into one pulse, rotating the motor

a fraction of a degree. The resolution of the motor was set to 12,800 pulses per

revolution. The angular velocity of the motor is proportional to the speed at which

ones and zeros are fed to the motor driver.

The wing was attached to a mount aligned with the leading edge of the wing

and passing through the rotational shaft. The mount was secured to one end of
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Figure 2.6: Rotating wing geometry.

a vertical strut, which was attached at the other end to an ATI Nano-25 IP68

submersible force/torque sensor. This setup, seen in Figures 2.5 and 2.6, has several

distinct advantages. By placing the force balance on the opposite side of the rotation

axis from the wing, very small root cutouts, where the wing root comes very close

to the rotation axis, can be examined. Additionally, in this configuration, the force

balance is three chord-lengths below the rotation plane of the wing, so the wake

created by the force balance does not affect the flow field seen by the wing. All wings

used were aspect ratio 2 flat plate rectangular wings machined out of aluminum with

a 4.0% thickness-to-chord ratio. Each wing had a chord of 1.74 in and sharp edges

and corners.
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2.3.2 Reynolds Number Calculation and Force Normalization

Because velocity varies along the wing span for rotating wings and geome-

try varies widely between setups, it is not obvious how to best non-dimensionalize

forces over a range of setups, and especially to compare rotational motions to rec-

tilinear ones. The spanwise velocity gradient seen by a rotating wing necessitates

the definition of a reference plane for determining a reference Reynolds number and

non-dimensionalizing lift and drag forces. Here, two such methods will be exam-

ined. The equations defining the reference plane for each method are included in

Figure 2.6. The first method, referred to as the axis-relative method, defines the

reference plane as 75% of the distance from the axis of rotation to the wing tip, ra75.

The second method, the root-relative method, defines the reference plane as 75% of

the distance from the wing root to the wing tip, , rr75. These two different methods

for determining the location of the reference plane will yield the same result if the

root cutout, rr, is zero. However, as root cutout is increased, the root-relative ref-

erence plane will remain at a fixed spanwise location y/b (where b is the wing span

and y is the distance from the root of the wing), whereas the axis-relative reference

plane will move inboard along the wing as rr increases. Having defined a reference

plane, a reference Reynolds number is defined as

Re =
Vref,maxc

ν
, (2.2)

where

Vref,max =


Ωmaxr

a
75, axis-relative method

Ωmaxr
r
75, root-relative method.
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In these equations, c is the wing chord length, ν is the kinematic viscosity, and

Vref,max is the maximum angular velocity at the reference plane.

These two methods also take different approaches for normalizing the aero-

dynamic forces produced by a rotating wing. The axis-relative method defines the

force coefficients CF = {CL, CD} as

CF =
F

1
2
ρV 2

ref,maxcb
. (2.3)

This is the standard definition for lift and drag coefficients of translating wings,

where the reference velocity is the freestream velocity seen by the wing. Instead of

using the velocity at the reference plane for force normalization, the root-relative

method assumes constant sectional force coefficients along the wing span. Under

this assumption, equations for the force coefficients can be found by integrating the

forces along the wing span, i.e.

F =

∫ rt

rr

1

2
ρ cCf (Ωmaxr)

2 dr. (2.4)

When the integration is carried out, this yields

CF =
6F

ρΩ2
maxc (r3

t − r3
r )

. (2.5)

The rotating kinematics were defined such that the axis-relative Reynolds number

was maintained at 10,000 for all root cutouts. The spanwise velocity distribution

along the wing span for two of the root cutouts tested, 0.5c and 2.5c, is illustrated

in Figure 2.7. Here, the local velocity along the wing span for a root cutout of 0.50

chords and 2.50 chords is compared, and the location of the reference plane according

to the axis-relative (solid black line) and root-relative (dashed gray line) methods
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is given. Because the wing kinematics were defined according to the axis-relative

method, the velocity at this reference plane is the same regardless of root cutout.

However, the local velocity at the root-relative reference plane is larger for larger

root cutouts. For example, for the 0.50c root-cutout case, the local velocity at the

root is 0.060 m/s, at the axis-relative reference plane is 0.226 m/s, at the root-relative

reference plane is 0.241 m/s, and at the tip is 0.302 m/s. When the root cutout is

increased to 2.50c, the local velocity at the tip and the axis-relative reference plane

remain the same, but the root velocity is 0.168 m/s, an increase of 180% from the

0.5c case, and the local velocity at the root-relative reference plane is 0.268 m/s, an

increase of 11% from the 0.5c case. As a result, reference Reynolds number varies

with root cutout when using the root-relative method, but the variations are small

(on the order of 1,000).

The local Reynolds number distribution along the span can also be examined,

and is shown in Figure 2.8. In this figure, a normalized span location of 0 corresponds

to the wing root, and a normalized span location of 1 corresponds to the wing tip.

The colored lines represent the local Reynolds number distribution along the span

for the range of root cutouts investigated. The vertical dotted black lines show

the location of the reference plane for each root cutout. The intersection of each

vertical dotted black line and the corresponding colored line indicates the reference

Reynolds number, marked by a horizontal dotted black line. Figure 2.8(a) shows

that although the reference plane moves towards the wing root as the root cutout

increases, the reference Reynolds number remains 10,000. The velocity profiles were

defined such that this was the case. When the same Reynolds number distributions
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Figure 2.7: Comparison of spanwise local velocity for root cutouts of
0.50c and 2.50c.

are examined from a root-relative perspective, as in Figure 2.8(b), it is evident that

although the reference plane remains at a fixed distance along the span, the reference

Reynolds number varies slightly, from a minimum of 10,370 at a root cutout of 0.25c

to a maximum of 11,852 at a root cutout of 2.50c. Despite the small variation in

Reynolds number when defined using the root-relative reference plane, Reynolds

number effects in this range are small, and the force coefficients are expected to be

very similar [15].

2.3.3 Wing Kinematics

As in the numerical simulations, a modified Eldredge function [8] was used

to create the angular velocity profiles for the rotating wing experiments. These
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Figure 2.8: Local Reynolds number along the wing span for rr = 0.25c,
0.50c, 1.00c, 1.50c, 2.00c, and 2.50c.
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Figure 2.9: Sample velocity profile.

equations take the form

Ω(t) =


Ωmax

2a(t2−t1)
log
(

cosh(a(t−t1))
cosh(a(t−t2))

)
+ Ωmax

2
, 0 ≤ t ≤ (t2+t3)

2

−Ωmax

2a(t4−t3)
log
(

cosh(a(t−t3))
cosh(a(t−t4))

)
+ Ωmax

2
, (t2+t3)

2
< t.

(2.6)

This angular velocity profile corresponds to a wing that starts at rest, accelerates

constantly over a specified azimuthal angle, and maintains a constant velocity there-

after. When the wing approaches the end of rotation, it decelerates over a specified

rotation angle. The times corresponding to the beginning and end of wing accel-

eration are given by the parameters t1 and t2, and the times corresponding to the

beginning and end of wing deceleration are given by t3 and t4. In the angular ve-

locity profile equations, the beginning and end of acceleration and deceleration are

smoothed using the smoothing parameter a (see Section 2.2.2). A sample angular

velocity profile with respect to time is given in Figure 2.9, with a smoothing param-

eter of a = 50. This value for the smoothing parameter was used for all velocity
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profiles for the aerodynamic force analysis. Although the boundary analysis was

performed with a smoothing parameter of a = 20, it was increased to a = 50 for the

aerodynamic forces analysis to further decrease the effects of rig vibration on the

resultant forces.

2.3.4 Parameter Space

Several parameters, including root cutout, acceleration distance, and maxi-

mum rotation angle, were varied to examine their effects on the lift and drag gen-

erated by a wing rotating at an axis-relative reference Reynolds number of 10,000.

Table 2.2 shows which combinations of root cutout and angular acceleration were

tested, all for a maximum rotation angle of 540 deg. Additionally, the baseline case,

with a root cutout of 0.50c and accelerating over 1.00c was examined for maxi-

mum rotation angles of 90, 180, 270, 360, 540, and 720 deg. All of these tests were

performed in water.

Although insects are not capable of wing rotations greater than 180 degrees,

examining rotation angles up to two revolutions allows for examination of wing-wake

interaction, a feature inherent to flapping wing flight, with very simple wing motion

of rotation in a single direction. In this manner, pitch and modification of rotation

direction are avoided.
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Table 2.2: Parameter space for maximum rotation angle of 540 deg.

Acceleration Distance (chords)

Root Cutout (chords) 0.25 0.50 1.00 2.00 6.00

0.25 X
0.50 X X X X X
1.00 X
1.50 X
2.00 X
2.50 X

2.3.5 Data Analysis

To ensure repeatability, 18 runs were performed for each case. The voltage

output from the force balance was converted into three forces and three moments

in the direction of the axes of a reference frame centered at the connection between

the force balance and the vertical strut. This reference frame was oriented such that

the z-axis was aligned with the spanwise direction of the wing and the lift and drag

were related to the x and y directions by the equations

L = Fx cos(30◦) + Fy sin(30◦)D = Fx sin(30◦) + Fy cos(30◦)

where Fx and Fy are the forces in the x and y directions. These transformations

from forces in the x- and y-directions to lift and drag are necessary because the

force balance reference frame is rotated 30 degrees with respect to the aerodynamic

forces reference frame.

The force balance was calibrated by ATI and voltage outputs were converted

to forces via a calibration matrix. These forces were transposed into forces in the

lift and drag directions. A 4th order lowpass Butterworth filter was applied to
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eliminate electrical noise and other sources of high frequency noise above 50 Hz.

The natural frequency for each wing configuration was determined by tapping the

wing and performing a frequency analysis on the resulting force history while the

wing vibrated in response to the tap. 20 Hz bands surrounding the natural frequency

of the wing and its higher harmonics were filtered out using 4th order Butterworth

bandstop filters, and a 0.08 second moving average, corresponding to ∆θ = 12.5 deg

(s/c = 0.44 for rr = 0.50) was applied to each run to further smooth the lift and

drag histories.

Vibration in the rig created an additional force in the drag direction, which was

eliminated by repeating the 18 runs in water with the wing detached. These runs

were averaged and subtracted from the averaged and filtered runs in water with the

wing attached. To separate the inertial forces from the aerodynamic forces, 18 runs

for each case were also performed in air. Each of these runs was filtered similarly to

the runs in water and the 18 runs were averaged together. Runs were also performed

in air with the wing detached, and were subtracted for the runs in air with the wing

attached. The averaged data taken in air was then subtracted from the averaged

data taken in water.

The data at each stage of processing is shown in Figure 2.10. Figure 2.10(a)

shows sample lift data taken in water in its raw state, after the 50 Hz lowpass

filter was applied, and after the natural frequency bandstop filter was applied. Fig-

ure 2.10(b) shows sample lift data after the natural frequency bandstop filter was

applied, after the moving average was applied, and after the 20 runs were averaged

and inertial forces were removed. Error bars were computed by determining a range
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above and below the final lift and drag data into which 95% of the data points from

each individual run fell.

2.4 Summary

Computational analysis, flow visualization, and force collection on rotating

wings were performed. A computational analysis using IBINS, an immersed bound-

ary implicit Navier-Stokes solver developed at the University of Maryland by Bush [38]

was conducted to analyze the effects of wall boundaries on the flowfield and aero-

dynamic forces of a rotating wing. For this analysis, a rotating wing with a tip

Reynolds number of 120 was used. Particle/laser flow visualization was also per-

formed to visualize large scale flow structures in a tank containing a rotating wing,

and to establish the effect of the top and bottom surfaces of the tank on the flowfield.

The effects of parameters including maximum rotation angle, acceleration distance,

and root cutout on the lift and drag produced by a rotating wing were analyzed

experimentally at a Reynolds number of 10,000 at the axis-relative reference plane.

Two methods for reference plane determination and force non-dimensionalization

(the axis-relative and root-relative methods) were examined.
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Chapter 3

Boundary Study Analysis

3.1 Overview

A computational analysis was performed to compare the flow structures of a

wing rotating in an enclosed space, and the forces produced by such a wing. Four

different tip clearances, db, as illustrated in Figure 2.2, were analyzed: db =0.5c,

3.0c, 5.0c, and the case where db approaches ∞, for a tip Reynolds number of 120.

This study was performed to provide an idea of the extent to which the tank walls

can influence experimental results.

3.2 Data Collection and Visualization

IBINS used the Navier-Stokes equations to calculate the pressure and velocity

in all three coordinate directions at every mesh point at every time step. However,

the pressure and velocity vectors at every grid point were only recorded approxi-

mately every 10 degrees of rotation, or 150 time steps, due to constraints on the

space available for data storage. The velocity data stored was also used to calculate

Q, a vortex detection parameter, at every mesh point. In order to clearly visual-

ize the flow features, slices of data were taken through the three dimensional mesh

space. Flow field slices were taken in both the chordwise and spanwise directions.
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Figure 3.1: Schematic of data plane locations.

Each spanwise cut shown was taken at the quarter chord location, looking from the

trailing edge toward the leading edge, with the wing root on the left of the image

and the wing tip on the right. Chordwise slices were located at the half span, look-

ing from the wing tip toward the wing root, with the leading edge on the upper

right and the trailing edge on the lower left. The locations of spanwise and chord-

wise slices are illustrated in in Figure 3.1. Some horizontal slices directly above the

leading edge of the wing were also taken, with the wing rotating counterclockwise

about the rotation axis in the center of each figure. Lift and drag forces integrated

over the wing surface and computed from the pressure field were recorded at every

time step, or approximately every 0.10 deg.

45



3.3 Flow Structure

Previous studies of rotating wings with Reynolds numbers O(102 − 104) have

indicated the presence of several dominant flow features. Most notable are the

presence of a stable leading edge vortex and spanwise flow from wing root to wing

tip [39, 40, 10, 17]. Also present are a strong tip vortex [40, 10, 17] and a starting

vortex shed from the trailing edge [10]. These are the flow features expected to be

seen in this computational study.

In order to examine the dominant flow structures, chordwise slices were taken

of the Q vortex detection parameter at five rotational angles in the first two revo-

lutions, as illustrated in Figure 3.2 . The Q-criterion is a method of vortex deter-

mination, and is defined in tensor notation as

Q =
1

2
(u2

i,j − ui,juj,i) = −1

2
ui,juj,i =

1

2
(||Ω||2 − ||S||2) > 0, (3.1)

where u is the velocity vector, Ω is the vorticity tensor, and S is the strain rate

tensor. Thus, if the Q-criterion holds at a given point (if Q > 0), the norm of the

vorticity tensor is greater than that of the strain rate tensor, and the point is part

of a vortex [41]. Anywhere that Q ≤ 0 is not part of a vortex. In Figure 3.2, the

left column corresponds to the five chord boundary case (the case where db = 5.0c)

and the right column corresponds to the half chord boundary case (the case where

db = 0.5c). In each image, the wing is represented by a solid black line, with the

leading edge in the top right of the figure and the trailing edge in the bottom left.

The wing is moving from left to right.

After 30 deg of rotation, two large distinct regions satisfying the Q-criterion
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and several small regions satisfying the Q-criterion are present for both boundary

cases. Near the leading edge on the upper surface of the wing, a large vortex (in

red) is present. This region is know as the leading edge vortex (LEV) and is fed by

vorticity produced at the leading edge of the wing as it rotates. This LEV remains

attached to the leading edge of the wing at all rotation angles shown, although

a slight decrease in size is noticeable between 180 deg and 420 deg. An attached

LEV that decreases in size between 180 deg and 420 deg is evident for both the 5.0c

and 0.5c boundary cases shown, as well as for the 3.0c and infinite boundary cases,

which are not shown here. The second distinct region of high vorticity noticeable

after 30 deg of rotation is the clockwise oriented vorticity (in red) located just below

and behind the trailing edge of the wing. This is the trailing edge vortex (TEV),

which is produced when the wing begins to move and shed soon thereafter. By

90 deg of rotation, the TEV has convected out of the frame of the image for both

boundary cases and no new TEVs are visible throughout the first two revolutions.

The patten of small vortices along the top and bottom surfaces of the wing evident

after 30 deg of rotation is non-physical, and is an artifact of the immersed boundary

framework. Because the fluid mesh does not conform to the surface of the wing as it

rotates, mesh points near the surface of the wing are adjacent to mesh points that are

inside the wing and have a non-physical fluid velocity. When the vorticity at a point

near the wing surface is calculated, the velocity from the adjacent points inside the

wing are considered, yielding false vorticity values for those points. These artificial

vortices are present throughout the two revolutions shown and for both boundary

conditions, although the exact size and pattern of the small vortices varies as the
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wing rotates.

In order to understand how the flow changes from one span location to

another, Q contours along a spanwise cut through the wing quarter chord were

taken. Figure 3.3 shows these slices for the 5.0c and 0.5c cases at five rotation angles

in the first two revolutions. In this figure the wing, shown in black, is rotating into

the page. The wing root is on the left and the wing tip is on the right.

Three distinct vortices are present for all four boundary conditions, including

the 3.0c and infinite cases, which are not shown, and at all rotation angles. Along the

top surface of the wing, the LEV is visible. After 30 deg of rotation, the LEV covers

the outboard 3/4 of the wing span. As the wing continues to rotate, the LEV moves

away from the wing tip and toward the wing root. Additionally, as in Figure 3.3,

a decrease in the size of the LEV is noticeable between 180 deg and 420 deg. The

second vortex is concentrated above the wing tip, on the right side of each image. For

both boundary cases shown, after 30 deg of travel, the tip vortex appears connected

to the LEV. By 90 deg, the tip vortex and the LEV have separated, as the LEV

has moved inboard. The third vortex noticeable in these images is the root vortex,

on the left side of each image. By 30 deg, the root vortex has reached a size and

location that remains constant throughout the two revolutions shown. As seen in

the chordwise cuts of Figure 3.3, the pattern of small vortices is visible along the top

and bottom surfaces of the wing. As stated previously, this patten is non-physical

and an artifact of the immersed boundary framework.

Both Figure 3.2 and Figure 3.3 show a distinct decrease in the size of the

LEV between the first revolution and the second revolution, due to downwash from
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(a) θ = 30◦, db = 5c (b) θ = 30◦, db = 0.5c

(c) θ = 90◦, db = 5c (d) θ = 90◦, db = 0.5c

(e) θ = 180◦, db = 5c (f) θ = 180◦, db = 0.5c

(g) θ = 420◦, db = 5c (h) θ = 420◦,db = 0.5c

(i) θ ≈ 634◦, db = 5c (j) θ ≈ 634◦, db = 0.5c

Figure 3.2: Chordwise views of Q at half-span for the 5.0c (left)
and 0.5c (right) boundary conditions.
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(a) θ = 30◦, db = 5c (b) θ = 30◦, db = 0.5c

(c) θ = 90◦, db = 5c (d) θ = 90◦, db = 0.5c

(e) θ = 180◦, db = 5c (f) θ = 180◦, db = 0.5c

(g) θ = 420◦, db = 5c (h) θ = 420◦, db = 0.5c

(i) θ ≈ 634◦, db = 5c (j) θ ≈ 634◦, db = 0.5c

Figure 3.3: Spanwise views of Q-criterion, at quarter-chord for
the 5.0c (left) and 0.5c (right) boundary conditions.
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trailed vorticity. This is true for both the 0.5c and 5.0c boundary cases shown, as

well as the 3.0c and infinite boundary cases, which are not shown. However, it is

very hard to distinguish any significant differences among the boundary cases for a

given rotation angle. The size, strength, and location of all important flow features,

including the LEV, root vortex, and tip vortex, are very similar despite the variation

in tip clearance among the cases.

However, when contours of vorticity, instead of Q-criterion, are plotted near

the wing tip for infinite and half chord boundary cases, some differences can be seen

in the size and shape of the tip vortex between the boundary cases, as shown in

Figure 3.4. In this figure, the wing is again rotating into the page, with the midspan

of the wing on the left of the figure and the wing tip on the right, such that only

the outboard half of the wing is shown. In the first revolution, the size and shape of

the tip vortex look very similar for the 0.5c and infinite boundary cases. However,

in the second revolution, the tip vortex for the 0.5c case appears slightly elongated

(taller and thinner) when compared to the infinite case.

A similar observation can be made when contours of the spanwise velocity are

plotted, as shown in Figure 3.5. Here, blue contours show flow toward the root (left)

and red/yellow contours indicate flow toward the wing tip (right). Even after 94 deg

(Figure 3.5(a)-(b)) some differences in the spanwise velocity contours are evident

between the 0.5c case and the infinite case. Both cases show a region of fluid flow

from the wing root to the tip on the top surface of the wing, which coincides with

the location of the LEV. However, the infinite case appears to have a slightly higher

flow velocity over the midspan of the wing. Additionally, there is a region of fluid
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(a) θ ≈ 94◦, db =∞ (b) θ ≈ 94◦, db = 0.5c

(c) θ ≈ 634◦, db =∞ (d) θ ≈ 634◦, db = 0.5c

Figure 3.4: Quarter-chord slices of vor-
ticity (s−1) near the wing tip for the infi-
nite boundary condition (left) and half-
chord boundary condition (right).

(a) θ ≈ 94◦, db =∞ (b) θ ≈ 94◦, db = 0.5c

(c) θ ≈ 634◦, db =∞ (d) θ ≈ 634◦, db = 0.5c

Figure 3.5: Quarter-chord slices of hori-
zontal velocity, shown as a percentage of
the tip velocity, for the infinite bound-
ary condition (left) and 0.5c boundary
condition (right).

flow toward the root located near the wing tip, which coincides with the location

of the tip vortex. Some differences are also noticeable in the second revolution, in

Figure 3.5(c)-(d). The 0.5c case, on the right, shows an increased region of flow

toward the tip on the top surface of the wing near the wing root and over the wing

midspan. Additionally, the 0.5c case has more flow toward the root on the bottom

surface of the wing.
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3.4 Aerodynamic Forces

The aerodynamic forces on the wing were found by using the pressure and

velocity at every grid node on the surface of the wing to calculate normal and

tangential force components, where the normal force is due to a pressure differential

on opposing wing surfaces, and the tangential force is a result of the shearing of

the fluid over the wing surface. These forces were decomposed into vertical lift

and horizontal drag forces. The unsteady force coefficients were then determined

by normalizing the lift and drag. This was accomplished by assuming the force

coefficients, Cf = {Cl, Cd}, are constant along the wing span, in which case the force,

F , can be determined by integrating the force coefficients from the wing root to the

wing tip, F =
∫ rt
rr

1
2
ρ cCf U(r)2 dr . Integrating and solving for the force coefficients

yields CF = 6F/ [ρΩ2
maxc (r3

t − r3
r )] . This method for force normalization is the

root-relative method described in Chapter 2.

Figure 3.6 shows the lift and drag coefficients produced throughout two revo-

lutions for all four boundary conditions. The data shown here was filtered using a

fourth order lowpass Butterworth filter with a cutoff frequency of 10 Hz to eliminate

effects of grid noise. Because the fluid mesh does not conform to the surface of the

wing, points that were inside the wing surface on one time step and are outside the

wing surface on the next time step can artificially affect the pressure at those points,

leading to fluctuations in the forces as the wing moves. Furthermore, non-physical

peaks in the forces were observed every 90 deg of rotation, when the spanwise axis of

the wing is aligned with the x- or y-axis. To mitigate this, a 0.2 second moving aver-
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age was applied to the data, smoothing the lift and drag curves over approximately

5.5 deg of rotation at the maximum angular velocity.

Both the lift and drag coefficients show a large initial spike, a result of the

added mass effect caused by initial acceleration of fluid in front of the wing. This

spike occurs at 3.0 deg for both the lift and drag coefficients, corresponding to the

time the wing acceleration ends and the wing begins rotating at a constant velocity.

After decreasing from the local maximum at the end of wing acceleration, the forces

reach a local minimum around 20 deg. After recovering from this minimum, the

forces reach a plateau and maintain a relatively constant value for the remainder

of the first revolution. When starting the second revolution, the lift and drag coef-

ficients decrease as a result of wake encounter, and level off after 540 deg. For the

0.5c boundary case, the lift coefficient levels off much sooner than the other three

cases, resulting in a smaller overall decrease in lift coefficient.

In order to further study the decrease in force coefficients in the second revolu-

tion, average forces during the middle of the first revolution, between 90 and 270 deg,

and during the second half of the second revolution, between 540 and 720 deg were

calculated. This data is presented in Table 3.1 along with the percent change in lift

and drag coefficients between the first and second revolutions for each case.

As seen in Figure 3.6, the lift and drag coefficients for the 0.5c, 3.0c and 5.0c

cases depart from the force coefficients in the infinite case after the recovery from

the non-circulatory peak. This means that the averaged lift coefficient for the the

0.5c, 3.0c and 5.0c cases are 0.2 higher (8% higher) than the averaged lift coefficient

for the infinite case. Similarly, with the drag coefficient, in the first revolution the
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Figure 3.6: Force coefficients as a function of wing stroke angle for db =

0.5c, 3.0c, 5.0c, and ∞.
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Table 3.1: Average lift and drag coefficients in the first and second rev-
olution of the wing stroke.

Boundary Lift Drag
Condition Coefficient Coefficient

First Second Percent First Second Percent
Revolution Revolution Change Revolution Revolution Change

0.5c 2.8 2.4 -13% 3.1 2.5 -19%
3.0c 2.8 2.0 -29% 3.2 2.5 -22%
5.0c 2.8 2.0 -29% 3.2 2.4 -25%

Infinite 2.6 1.8 -32% 2.9 2.1 -28%

5.0c and 3.0c cases have a drag coefficient that is 0.3 higher (18% higher) than the

infinite case, and the 0.5c drag coefficient is 0.2 higher (14% higher). When the wing

enters the second revolution, the lift and drag coefficients drop for all cases. The lift

coefficient for the infinite case drops from an average of 2.6 in the first revolution to

1.8 in the second revolution, which is a decrease of 32%. The drag coefficient for the

infinite case drops 28% from the first revolution to the second revolution. The drop

in lift and drag coefficients from the first to the second revolution for the 5.0c case

are 29% and 25%, respectively, which are very close to the decline percentages for

the infinite case. However, the force coefficients for the 0.5c case drop significantly

less, only 13% for lift and 19% for drag.

The 0.5c case approximates the infinite case as well as the 5.0c case does in

the first revolution. But, by the second revolution, the force coefficients between the

0.5c case and the infinite case are very different, while the difference between the

force coefficients for the 5.0c and infinite cases are the same in the second revolution

as they are in the first.
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This suggests that sizing the wing such that the tank walls are 5.0c from the

wing tip will yield similar force trends to the case where no walls are present, but the

lift and drag coefficients will be slightly elevated. The difference in force coefficients

between the 0.5c case and the infinite case in the first revolution are quite small,

0.2 for both lift and drag, but much larger in the second revolution, 0.6 for lift, and

0.4 for drag, indicating that for rotation angles less than 360 deg, a tip clearance of

0.5c is large enough to approximate the case with no walls, but for two revolutions,

the influence of the walls on the force history is too large for the wall effects to be

considered negligible.

3.5 Vortex Circulation

To calculate the effects of the tank walls on the size and strength of the

LEV throughout wing rotation, the γ function developed by Graftieaux et al. was

used [42]. This function defines the quantity γ as a weighted average of the sine

of the angle between the vectors extending from the point where γ is defined to a

neighboring point and the in-plane velocity vector at that point. Thus, if the flow

around a given point creates circular streamlines, then it has a value of γ = 1 or

−1. γ is explicitly calculated through the formula

γ(P ) =
1

S

∫
M∈S

(
−−→
PM ×

−→
UM −

−→
UP ) · ẑ∥∥∥−−→PM∥∥∥ · ∥∥∥−→UM −
−→
UP

∥∥∥ dS =
1

S

∫
S

sin(θM)dS, (3.2)

which is calculated at every point P in the flow field. Any point where |γ(P )| is

greater than a certain threshold value, usually 0.6, is considered part of a vortex. For

every boundary case, chordwise slices at the midspan for every rotation angle where
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a velocity field was produced (approximately every 10 deg) were used to calculate

γ fields. The LEV was defined as the largest continuous region of discrete points

where |γ| exceeded a certain value, and the center of the LEV was defined as the

point inside the LEV that had the highest γ value. The total circulation inside

the LEV was then calculated by summing the vorticity of each element inside the

|γ| ≥ γcutoff contour multiplied by the size of the local grid element area:

ΓLEV =
n∑

i=1

(~∇× ~vi)dxidyi,

where ΓLEV is the in-plane circulation contained in the LEV slice taken at half

span, n is the number of grid elements inside the LEV, ~∇ is the two dimensional del

operator, ~v is the planar velocity vector, and dx and dy are the width and height of

each fluid element.

Figure 3.7(a) shows the circulation of the LEV as a function of rotation angle

assuming a variety of γ values as the cutoff for what is considered a vortex. Thus,

a point where γ = 0.61 would be considered inside the LEV for a cutoff value of

γ ≥ 0.6 but outside the LEV for a cutoff value of γ ≥ 0.7. As long as the γ

cutoff value is less than 0.9, all cutoff values result in similar trends for the growth

of circulation within the LEV. The circulation of the LEV rises quickly from zero

when the wing is at rest until 60 deg, after which the growth of circulation slows

significantly. The strength of the LEV then remains relatively constant throughout

the remainder of the first revolution, and drops steadily for the first half of the

second revolution. After that, the circulation of the LEV again remains relatively

constant for the remainder of the second revolution. There is a fair amount of noise
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present in this data that can be attributed to one main cause. The boundary of

the leading edge vortex is calculated independently for each time step, which may

have led to varying LEV boundaries from one time step to the next. Thus, certain

clumps of circulation, especially the non-physical circulation on the surface of the

wing, are defined as in the leading edge vortex at one time and out of the leading

edge vortex a time δt later.

In Figure 3.7(b), the γ threshold value is plotted against the circulation of the

LEV at one rotation angle, 186 deg (see vertical dotted line in Figure 3.7(a)) for γ

cutoff values ranging from 0.35 to 0.95 in increments of 0.5. This figure illustrates

that there is a linear relationship between γ threshold value and circulation between

γ = 0.35 and γ = 0.7, as illustrated by the best fit line for these data points shown

in red. At cutoff values greater than 0.7, the circulation of the LEV drops sharply

until no grid elements have a high enough γ value to be considered part of the LEV

(around γ = 0.9). Based on this information, a γ cutoff value of 0.7 was chosen to

define the LEV.

The circulation was then plotted versus rotation angle for each boundary case,

as shown in Figure 3.8. The vertical dotted lines labeled A-E in this figure corre-

spond to the rotation angles shown in the Q-criterion plots of Figure 3.2. For all of

the cases, the circulation follows the trends described previously for the 5.0c case

at γ values greater than 0.9. Additionally, the evolution of circulation appears to

closely follow many of the trends associated with the lift coefficient history, includ-

ing a steep rise early in the wingstroke and a drop at the beginning of the second

revolution. Similar to with the lift coefficient, the infinite boundary case has an
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(b) LEV circulation at θ = 186◦ versus γ threshold value

Figure 3.7: Circulation of the LEV at half-span and db = 5.0c as defined

by a range of γ values.
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average circulation in the first revolution that is slightly lower than the other three.

Also, at the end of the second revolution, the circulation of the LEV for the 0.5c

case is higher than for the other three cases, as is true with the lift coefficient.

3.6 Wake Effects

Regardless of how far tank walls are placed from the wing tip, a noticeable

decline in both forces (Figure 3.6) and LEV circulation (Figure 3.8) was observed at

the beginning of the second revolution. A reasonable hypothesis for explaining this

phenomenon is that the wake the wing creates on the first revolution interacts with

the wing when it begins its second revolution. If the wake results in downwash on

the wing, the reduced effective angle of attack in the second revolution could cause

a decline in forces and vorticity strength. In order to examine the validity of this

hypothesis, a more in-depth analysis of wake effects was performed.

Figure 3.9 shows chordwise slices of vertical velocity at the midspan for all four

boundary conditions at 94 deg and 634 deg. Red contours indicate a large upward

velocity, while blue contours indicate a large downward velocity. The wings shown

are moving from left to right, so the right side of the figure shows the velocity field

of the fluid that the wing is about to encounter. In front of the wing, after 94 deg

of rotation (a-d), there is quiescent fluid (yellow), except for near the leading edge,

where the fluid has a slight upward velocity as it prepares to flow up and around the

leading edge of the wing. This is true for all boundary conditions. After 634 deg of

rotation (e-h), we can see some variations in the vertical velocity fields as a result
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(a) db = 0.5c, θ ≈ 94◦ (b) db = 3c, θ ≈ 94◦ (c) db = 5c, θ ≈ 94◦ (d) db =∞, θ ≈ 94◦

(e) db = 0.5c, θ ≈ 634◦ (f) db = 3c, θ ≈ 634◦ (g) db = 5c, θ ≈ 634◦ (h) db =∞, θ ≈ 634◦

Figure 3.9: Contours of vertical velocity at mid-span for db = 0.5c, 3.0c,
5.0c and ∞ in the first (θ ≈ 94◦, top) and second (θ ≈ 634◦, bottom)
revolutions.
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of the boundary conditions. For the infinite case (h), a large region of downward

velocity in front of and below the wing is present. This region looks very similar for

the 5.0c and 3.0c boundary cases. However, this region of downwash is much smaller

for the 0.5c case. This suggests that walls close to the wingtip suppress some of the

downwash created by the wake.

The relative strength of the downwash can also be visulalized by plotting

the magnitude of the vertical velocity along a vertical line one chord ahead of the

midspan of the wing, shown by the vertical black lines in Figure 3.9. This is shown

in Figure 3.10. In this figure, the y-axis shows the vertical position (in chords

above/below the wing mid-chord) along the black lines shown in Figure 3.9. The

x-axis shows the magnitude of the vertical velocity along that line, where upwash

is to the right and downwash is to the left. After 94 deg of rotation, the velocity

one chord-length in front of the midspan of the wing is identical for the infinite,

five chord, and three chord boundary condition cases. Although the half chord case

deviates slightly, it still exhibits the same trends as the other three cases: The

vertical velocity is zero far above and below the wing, and at the wing midchord,

there is a slight upward velocity, equal to 3.1% of the half span velocity for the

infinite, five, and three chord cases and 4.1% of the half span velocity for the half

chord case. In the second revolution, a significantly different vertical velocity profile

in front of the wing is observed. While all four cases have zero vertical velocity

far above and below the wing, the infinite, five and three chord cases have a strong

downwash slightly below the wing midchord, and the half chord case has a very small

upwash above the wing midchord and a small downwash slightly below midchord.
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Figure 3.10: Vertical velocity one chord-length in front of wing, θ ≈ 94◦, 634◦.

The maximum upwash velocities in the first revolution and maximum downwash

velocities as in the second revolution are summarized in Table 3.2. Velocities in this

table are given as a percentage of the wing midspan velocity. It is evident that

in the first revolution, after 94 deg, even the half chord case deviates only slightly

from the case with no wall boundaries, whereas by the second revolution, only the

3.0c and 5.0c cases closely resemble the infinite case.

Another way to visualize the wake created by the wing as it rotates is to

examine horizontal slices of the vertical velocity. The location of this slice plane

is shown in Figure 3.11. In this figure, the wing is rotating counterclockwise when

viewed from above about the z-axis, and the leading edge is highlighted in red. The

grey surface, parallel to the xy-plane, shows the location of the horizontal slice, just
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Boundary Maximum upwash Maximum downwash
Condition in first revolution in second revolution

Half-Chord 4.6% 9%
3-Chord 3.1% 23%
5-Chord 3.1% 25%
Infinite 3.1% 25%

Table 3.2: Maximum vertical velocity one chord-length in front of wing midspan.

Figure 3.11: Location of horizontal slice plane and line through plane.

66



(a) db = 0.5c (b) db =∞

Figure 3.12: Contours of vertical velocity, θ ≈ 94◦.

above the leading edge of the wing.

Figure 3.12 shows horizontal slices taken in this location after 94 deg of rotation

for the half chord and infinite cases. The contours in this figure are of the velocity

component normal to the slice, in the lift direction. A full cross-section of the

0.5c “tank” is shown. For the infinite case, a portion of the mesh equal in size to

the cross section of the 0.5c mesh is shown. In these figures, the wing is rotating

counterclockwise and red contours correspond to velocity up (out of the page), while

blue corresponds to velocity down (into the page). No discernible differences can be

observed between the two vertical velocity fields. The two cases not shown (the five

and three chord cases) also look very similar.

Figure 3.13 shows the same horizontal slices of vertical velocity for all four cases

after 634 deg of rotation. A full cross section of the half chord “tank” is shown. For

the 3.0c, 5.0c, and infinite cases, a region equal in size to a cross-section of the 3c

tank (larger than the 0.5c region) is shown, so that the whole wake structure can
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(a) db = 0.5c (b) db = 3c (c) db = 5c (d) db =∞

Figure 3.13: Contours of vertical velocity above the wing at θ ≈ 634◦

for db = 0.5c, 3.0c, 5.0c and ∞.

be visualized. For all four cases, the wake of the wing, shown in green, is the area

swept out by the wing as it rotates. For the infinite and five chord cases, a region of

fluid with zero vertical velocity (orange) surrounds the wake of the wing. Inside the

wake, a small region of strong downwash exists just above the wing, while a weaker

downward flow is seen in the entire region swept out by the wing. Also noticeable for

the infinite, 5.0c, and 3.0c cases (b-d) is a thin region of flow just outside the path

swept out by the wing tip with a upward velocity (red). This region is presumably

part of the tip vortex that has shed from the wing. This region is more pronounced

for the 3.0c case (b). The 0.5c case (a) has a constricted region of downwash inside

the wake due to upwash near the wing root (in red), which is not present for the

other cases. Outside the area swept out by the wing tip, a region of upwash (in red)

is also present, and extends to the tank walls.

The vertical velocity through the middle of the tank and just above the wing

tip is taken along the black lines shown after 634 deg of rotation, and plotted in
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Figure 3.14. The location of this line is also illustrated by the dotted black line in

Figure 3.11. In Figure 3.14, the vertical velocity, given as a percentage of the wing

tip velocity, is plotted against the x-coordinate along the line, normalized by the

wing chord length (x/c). In this figure, two regions are marked, indicating where the

wing passed after 360 deg and after 540 deg. The area inside these regions coincides

with the area inside the circle swept out by the wing root, and the two areas outside

these regions correspond to the area outside of the circle swept out by the wing

tip. The infinite, 5.0c, and 3.0c cases, which are nearly identical, show an almost

constant zero vertical velocity to the right of x = 2.5c and to the left of x = −2.5c.

The 3.0c case has a slightly higher velocity outside the wing wake than the 5.0c

and infinite cases, however. A strong downwash is seen where the wing was after

540 deg, whereas the downwash in the region where the wing was after 360 deg is

weaker due to dissipation and a longer time since the wing passed. The 0.5c case

exhibits markedly different trends. A larger maximum downwash is observed in the

wing wake, but inside the wing root path and outside the wing tip path, a strong

upwash is present. Thus, after a long rotation time, at small tip clearances, the

flow features of the rotating wing no longer resemble those of a wing rotating in an

infinite volume of fluid.

3.7 Laser/Particle Flow Visualization

While this computational analysis was meant to address the effects of side

walls on a wing rotating at low Reynolds numbers, most experimental setups have
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further restrictions in the flow, including a tank bottom and either a solid wall at

the top of the tank or a free surface. In order to examine the effects of the top and

bottom surfaces on the flowfield produced by a rotating wing, particle imaging flow

visualization was performed. As shown in Figure 2.4, the laser sheet was aligned

to capture the entire tank cross section. All images shown are taken after a certain

number of compete revolutions, when the midchord of the wing was aligned with

the x-axis.

Figure 3.15 shows the 5c case after 1 (a), 2 (b), 6 (c), and 16 (d) revolutions.

In the first image, the size and location of the wing are represented by a black

rectangle, which is the same for all images. The major flow features are highlighted

by white arrows. After one revolution, the flowfield consists of a vortex ring with

a radius of approximately 2.5c, which coincides with the location swept out by

the wing tip. After 2 revolutions, this vortex ring has grown in size. This trend

continues until the wing has completed 6 revolutions, and the vortex ring has grown

so large that it touches the tank walls. After 6 revolutions, the flowfield remains

very similar until 16 revolutions, when a counter rotating vortex ring develops below

the primary vortex ring. The secondary ring extends from just below the bottom

of the primary ring to the bottom of the tank. This flowfield remains as shown

through 45 revolutions, when the wing rotation ended.

Because the computational study examined wing rotation up to two revolu-

tions, it is convenient to compare the flowfield for the 5.0c, 3.0c, and 0.5c cases

side by side, as shown in Figure 3.16. Different sized wings (c =1.2 in for the 5.0c

case, 1.64 in for the 3.0c case, and 3.0 in for the 0.5c case) were used to achieve the
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(a) 1 revolution (b) 2 revolutions

(c) 6 revolutions (d) 16 revolutions

Figure 3.15: Flow visualization of tank cross-section for rotating wing
with 5c tip clearance up to 16 revolutions.
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(a) db = 0.5c (b) db = 3c (c) db = 5c

Figure 3.16: Flow visualization of tank cross-section for rotating wing
with varying tip clearance after two revolutions.

varying tip clearances, so the wing in all three cases has been represented by a black

rectangle. The maximum velocity for each case was set to maintain a tip Reynolds

number of 120. After two revolutions, the flowfield for the 5.0c case (a) consists of

a single vortex ring that is smaller in diameter than the tank width. This is the

same image as shown in Figure 3.15, except with wing shown. For the 3.0c case (b)

a single vortex ring also exists. While this vortex ring is larger than for the 5.0c

case, it is approximately the same size in terms of wing chord lengths in diameter.

For the 0.5c case, a counter-rotating vortex ring is visible in addition to the primary

vortex ring, which has already impacted the tank wall. However, the secondary

vortex ring has not extended down to the bottom of the tank, as in the 5.0c case

after 16 revolutions. It is therefore reasonable to assume that even for the 0.5c case,

where the bottom of the tank is located 3.0c below the wing midchord, that the

bottom does not have a strong influence on the flowfield of or forces generated by

the rotating wing for up to two revolutions.
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3.8 Summary

This chapter presented results from a computational study analyzing the effect

of tip clearance on a wing rotating in a square tank, as well as laser/particle flow

visualization examining the flowfield in a cross section of the tank for varying tip

clearances. In the computational study, tip clearances of db = 0.5c, 3.0c, 5.0c, and

∞ were examined, while the flow visualization examined tip clearances of db = 0.5c,

3.0c, and 5.0c. Looking at chordwise and spanwise slices of Q-criterion, a measure

of vorticity, very few differences were noticeable at a given rotation angle among

any of the tip clearances studied.

An analysis of the lift and drag produced in the computational study showed

that even walls placed 5.0c from the wing tip increased the lift and drag coefficients

by approximately 8% over the infinite case, beginning after the recovery from the

non-circulatory peak. However, the shape of the force coefficient curves and the

flow features for the 5.0c case were very similar to the infinite case for up to two

revolutions. The 0.5c case matched the infinite case well in the first revolution, but

both the force coefficients and the flow structures diverged quickly from the infinite

case beginning in the second revolution. The 3.0c case also showed divergence

from the infinite case toward the end of the second revolution in the flow features.

Therefore, for examining flows up to two revolutions, a minimum tip clearance of

5.0c is necessary for approximating the case where no wall boundaries are present.

The laser/particle flow visualization showed that the primary flow feature as-

sociated with a rotating wing is the production of a ring-like vortex near the path
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swept out by the wing tip, presumably the trailing tip vortex. This vortex grows

as the wing travels for greater numbers of revolutions, and eventually, the ring-like

vortex impinges on the tank walls. After that, a secondary, counterrotating ring-like

vortex is formed below the primary vortex, and eventually impinges on the bottom

of the tank. Visualization of the 0.5c, 3.0c, and 5.0c cases shows that the bottom

surface of the tank has a minimal influence on the flowfield after two revolutions,

the maximum rotation studied in both the computational analysis of this chapter

and the force measurement analysis presented in Chapter 4.
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Chapter 4

Aerodynamic Force Analysis

4.1 Overview

A parameter study was performed to analyze the influence of maximum rota-

tion angle, acceleration profile, and root cutout on the aerodynamic forces generated

by a fixed-pitch rotating wing. Force data was acquired using a six degree-of-freedom

force/torque sensor. Lift and drag coefficient histories were computed from the raw

data using both the axis-relative and root-relative methods described in Chapter 2,

and compared to forces produced by both translating and rotating wings at the Air

Force Research Lab (AFRL) Horizontal Free-Surface Water Tunnel facility.

4.2 Variation in Maximum Rotation Angle

Figure 4.1 shows the force coefficients for a wing with 0.5c root cutout accel-

erating over one chord-length at the axis-relative reference plane. The maximum

angular velocity for each case was chosen such that the axis-relative Reynolds num-

ber was 10,000. Maximum rotation angles of 90, 180, 270, 360, 540, and 720 degrees

were tested. In this figure, the left-most vertical dotted line indicates the point at

which the wing would have reached a constant velocity if the velocity profile was un-

smoothed. This is the same for all cases. The remainder of the dotted vertical black
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lines indicate the points at which the wing would begin to decelerate if the velocity

profile was unsmoothed, corresponding to 7.6 deg before the maximum rotation an-

gle, or 0.25c traveled at the axis-relative reference plane. Although it appears that

the force coefficients begin to drop steeply just before the start of wing deceleration,

indicated by the vertical black lines, the smoothing present in the velocity profile

means that the wing has actually started to decelerate at a position slightly before

the vertical dotted black lines in the figure.

The lift and drag coefficients for all cases look very similar prior to wing

deceleration. The force coefficients for all cases rise from zero to a local maximum at

s/c = 1.0, where the wing reaches a constant velocity. This peak is the result of non-

circulatory, or added mass, effects. While the wing is accelerating, the fluid in front

of the wing must also be accelerated, resulting in a force peak when the wing stops

accelerating. After a slight decline in force coefficients following the non-circulatory

peak, the coefficients begin to rise toward a second, larger local maximum occurring

at s/c = 3.5c (107 deg of rotation). After this second local maximum, the force

coefficients begin to decline and level out at s/c = 4.9c (150 deg of rotation). After

this point, the lift and drag remain relatively constant throughout the remainder of

the first revolution. At the beginning of the second revolution, the force coefficients

begin to drop. This decline is likely the result of the wing entering the wake created

in the first revolution, as discussed in Section 3.6. After 540 degrees of rotation, the

lift and drag forces level out to a relatively constant value for the second half of the

second revolution.

Figure 4.1 demonstrates that the force coefficients on the rotating wing are
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(a) Lift coefficient.
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(b) Drag coefficient.

Figure 4.1: Force coefficients for maximum rotation angles of 90◦ (red),
180◦ (green), 270◦ (blue), 360◦ (black), 540◦ (magenta), and 720◦ (cyan).
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independent of maximum rotation angle. This result is expected because the velocity

profiles for the range of maximum rotation angles tested are identical prior to the

start of wing deceleration. Also of note is that after 90 deg of rotation, which

is the mechanical limit of many rotating wing rigs, the force coefficients are still

rising toward the second local maximum. This suggests that the flow field is not

fully developed at the maximum range of motion of past experiments. The force

coefficient histories and the flow features associated with them are quite interesting

and worth studying using a rig capable of much higher rotation angles, such as the

one used for these experiments.

It is evident from Figure 4.1 that the lift and drag coefficient histories for

a given maximum rotation angle are extremely similar. This occurs because the

force normal to the wing is approximately one order of magnitude greater than

the shear force along the surface of the wing. The lift and drag are related to the

wing shear and normal forces through the equations L = FN cos(α) +FS sin(α) and

D = FN sin(α) + FS cos(α), where L is lift, D is drag, FN is the force normal to

the surface of the wing, FS is the force parallel to the wing surface. Thus, when α,

the wing angle of attack, is 45 deg, as for these experiments, the resulting lift and

drag forces are almost identical. The same trend of nearly identical lift and drag

coefficients for a wing at a 45 deg angle of attack was seen by Dickinson and Gotz,

when performing an angle of attack parameter sweep on a translating, aspect ratio

3 wing at Re=192 [20] and others [33].
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4.3 Variation in Acceleration Profile

For the baseline case of a wing with a root cutout of 0.5c rotated to a maxi-

mum of 540 deg, a variety of acceleration distances ranging from 0.25c to 6.00c were

studied. The force coefficients generated by all of these cases are shown in Fig-

ure 4.2. The acceleration distance, sa/c, is defined as the length of the arc traversed

by the point on the leading edge of the wing located at the reference plane when

the wing reaches a constant velocity, normalized by the wing chord length. The

right-most vertical dotted black line in Figure 4.2 indicates the wing deceleration

for all cases. The remainder of the vertical dotted black lines correspond to the

end of wing acceleration for each of the acceleration profiles tested. Regardless of

the acceleration distance, throughout wing acceleration, the force coefficients rise

at a near constant rate to a local maximum at the end of wing acceleration. The

magnitude of this non-circulatory peak is greater for shorter acceleration distances.

Because the maximum velocity for all cases is the same, a shorter acceleration dis-

tance corresponds to a greater acceleration, and a larger non-circulatory peak. For

cases where sa/c ≥ 2.00c, the non-circulatory effects are small enough that this

local maximum in force coefficients is indistinguishable after data processing and

smoothing.

After the lift and drag coefficients recover from the first local maximum at the

end of wing acceleration, the force coefficients are nearly identical regardless of the

acceleration profile. The only significant difference is that, while the location of the

second local maximum in the force coefficients is the same for acceleration distances
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(a) Lift coefficient.
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Figure 4.2: Force coefficients for acceleration distances of 0.25c (red),
0.50c (green), 1.00c (blue), 2.00c (black), and 6.00c (magenta).
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between 0.25c and 2.00c, the magnitude of this peak is slightly higher for shorter

acceleration distances. For the 6.00c case, the wing is still accelerating after 3.5c

traveled, where the second local maximum occurs for the other cases. No deviation

from the linear increase in lift and drag coefficients is seen for this case at 3.5c.

This suggests that the flow features associated with the second local maximum in

force coefficients are suppressed or not present if the wing is still accelerating, and

only result in a local maximum in forces if the wing has already reached a constant

velocity.

4.4 Variation in Root Cutout

For the baseline case of a wing accelerating over one chord length and rotating

to a maximum of 540 deg, root cutouts ranging from 0.25c to 2.50c were examined.

The axis-relative Reynlods number was held constant at 10,000 regardless of the

root cutout, as illustrated by Figure 2.8(a), which shows the Reynolds number

distribution along the wing span for each root cutout tested. Figure 4.4 shows the

lift and drag coefficients for all cases in this parameter sweep, with the reference

plane defined using the axis-relative method (three quarters of the distance from

the axis of rotation to the wing tip). The leftmost vertical dotted line indicates

where the wing reached a constant velocity for all cases, and the remainder of the

vertical dotted black lines indicate the beginning of wing deceleration for each case.

Because the location of the axis-relative reference plane varies among the cases,

there is not a constant relationship between s/c and rotation angle. As the root
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cutout is increased, the axis-relative reference plane remains at 75% of the distance

from the axis of rotation to the wing tip. However, this means that the spanwise

location of the axis-relative reference plane moves toward the wing root as the root

cutout is increased. For this reason, only s/c is plotted on the x-axis.

As evident from Figure 4.4, the force coefficients vary widely among the cases.

For both lift and drag coefficients, the magnitude of the inertial peak is larger for

larger root cutouts, as is the magnitude of the second local maximum. This is due to

the fact that the spanwise velocity gradient seen by a rotating wing results in larger

average velocity along the wingspan for larger root cutouts, where the root velocity

is significantly higher. This is illustrated by Figure 4.3, reproduced from Section

2.3.2, which compares the local velocity along the wingspan for the 0.50c and 2.50c

root-cutout cases. The velocity at the axis-relative reference plane remains constant

among all root-cutout cases, and because the reference plane velocity is always 75%

of the tip velocity, the tip velocity remains constant as well. However, when the root

cutout is larger, the local velocity at the wing root is also larger. When converting

dimensional forces into non-dimensional lift and drag coefficients, the axis-relative

method normalizes forces using the velocity at the axis-relative reference plane.

Thus, because the 2.50c root-cutout case has the largest local velocity at the wing

root, and hence, the largest average velocity along the wing span, even when forces

are non-dimensionalized, lift and drag coefficients for that case are larger than cases

with smaller root cutouts. Despite the initial variation in force coefficients among

the cases, for root cutouts of 1.50c, 2.00c, and 2.50c after approximately 5 chord-

lengths traveled, the lift and drag coefficients collapse, but the smaller root cutouts
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Figure 4.3: Comparison of spanwise local velocity for root cutouts of
0.50c and 2.50c.

maintain smaller force coefficients throughout the 1.5 revolutions studied.

Because most insect wing stokes are limited to a maximum rotation angle

of 180 deg, it is useful to examine more closely the lift and drag coefficients for

0◦ ≤ θ ≤ 180◦ in more detail. Figure 4.5 shows the lift and drag coefficients

from the start of wing rotation to a maximum stroke-to-chord ratio of 8.0, which

corresponds to a rotation angle of 283 deg for a root cutout of 0.25c, and 136 deg for

a root cutout of 2.50c. This figure more clearly shows that the local maximum that

occurs at the end of wing acceleration, is larger for larger root cutouts. Figure 4.5

also shows that the difference in force coefficients among the cases grows smaller as

s/c increases. By s/c = 8.0, the difference in the lift coefficient between rr = 0.25c

and rr = 2.50c is 0.33, whereas the difference at s/c = 1.0 is 0.61.
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Figure 4.4: Axis-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan).
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Figure 4.5: Axis-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan).
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Table 4.1: Root cutout vs. tip clearance.

Root Cutout 0.25c 0.50c 1.00c 1.50c 2.00c 2.50c
Tip Clearance 3.0c 2.7c 2.2c 1.7c 1.2c 0.7c

The acceleration and final rotation angle parameter sweeps resulted in a local

maximum in force coefficients near θ = 90 deg (see Figures 4.1 and 4.2), where the

wingtip comes closest to the tank wall. Because the computational analysis showed

that proximity to tank walls can artificially elevate lift and drag coefficients, one

might suspect that the second local maximum was a result of wall effects, and not

an inherent quality of the force coefficient histories. The root cutout parameter

sweep provides a convenient way to determine if the second local maximum is in

fact a result of wing proximity to the wall. From Figure 4.6, which plots the lift

and drag coefficients vs. rotation angle, instead of s/c, it is evident that for smaller

root cutouts, where the tip clearance is large, the second local maximum occurs at

approximately 100 deg. However, for large root cutouts, the second local maximum

occurs much earlier, around 50 deg. The exact values of root cutout and minimum

tip clearance are given in Table 4.1. If wall effects were present, they would likely

affect the forces around 90 deg or soon after, when the wing tip passes closest to

a wall of the square tank. However, for a root cutout of 2.50c, the second local

maximum in the force coefficients occurs after just 50 deg, where the wing tip is

furthest from a tank wall. This suggests that the second local maximum is not

affected by the tank walls, and would occur even in an infinitely large tank.

The root-relative method of force normalization eliminates the effects of vari-
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Figure 4.6: Axis-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan) vs. rotation angle.
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ations in average local velocity along the wing span by normalizing lift and drag

by the integral of the local velocity, as described previously in Section 2.3.2. The

lift and drag coefficients found by non-dimensionalizing in this manner are shown

in Figure 4.7. In this figure, the non-circulatory peaks no longer align with s/c = 1,

as they did when normalizing using the axis-relative method. This is because the

velocity profiles were created such that the wing would accelerate over 1.00c mea-

sured at the reference plane defined according to the axis-relative method. Since

the reference plane is at a different spanwise location for the root-relative method,

the end of acceleration occurs at 1.02c for a root cutout of 0.25c, and at 1.19c for a

root cutout of 2.5c.

Up to about 2.5c traveled, non-dimensionalizing lift and drag by this method

collapses the lift and drag coefficient curves, eliminating the effects of variation in

average local velocity along the wing span. However, for s/c ≥ 2.5c, the force

coefficient curves begin to diverge. Normalizing forces based on the integral of the

velocity along the wingspan assumes a quasi-two dimensional flow, in which the lift

produced by a given spanwise slice depends only on the the local flow velocity seen

by that slice. This quasi-two-dimensional flow is a good approximation of the flow

field early in the wing stroke, before the root and tip vortices develop. However, once

these vortices develop, they will influence the lift produced by the wing, and the flow

becomes highly three-dimensional. The divergence of the lift and drag coefficient

curves around 2.5c, as seen in Figure 4.7, suggests that this is point where the root

and tip vortices have developed enough to affect the force coefficients. Additionally,

the fact that the second local maximum (near s/c = 3.3 for a root cutout of 0.25c)
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Figure 4.7: Root-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan).
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occurs after the force coefficient curves begin to diverge suggests that the root and

tip vortices are responsible for the local increase in forces. Because the tip velocity is

maintained at a constant value regardless of root cutout, it is reasonable to assume

that the size and strength of the tip vortex is also similar despite variations in root

cutout. Thus, the main difference in the three dimensionality of the flow arises from

the strength of the root vortex. In cases where the root cutout, and as a result,

the local velocity seen at the wing root, are large, the lift and drag coefficients are

smaller between stroke-to-chord ratios of 2.5 and 8. This suggests that a stronger

root vortex results in lower force coefficients.

4.5 Comparison with AFRL Data

In order to gain a better understanding of how to compare translating and

rotating models of flapping flight, and to provide validation for the force data col-

lected, correlated experiments were preformed in the Horizontal Free-Surface Water

Tunnel at the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force

Base. The AFRL facility consists of a water tunnel with a test section that is

18 in wide and 24 in tall. No freestream was used for these experiments, so the

water tunnel acted as a towing tank filled with quiescent water. The wing motion

was controlled by three linear motors and a Galil DMC4040 4-channel card with

variable proportional-integral-derivative (PID) constants for each channel. Two of

the motors are mounted vertically. Their combined motion is capable of producing

independent pitching and plunging motions for translating wing setups, and rota-
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tion about any desired pivot point for the rotating wing setup. The third motor is

mounted horizontally to produce a translational forward and backward motion. A

more detailed description of the water tunnel facility can be found in Ref. [16].

4.5.1 Translating Wing Data

Because the insect wing stroke has been modeled by both rotating and trans-

lating wing experiments, it is essential to develop a basis on which to compare the

results of such experiments. For this reason, rotating wing lift and drag coefficient

histories for root cutouts ranging from 0.25c to 2.50c, collected at UMD and analyzed

using the root-relative method were compared to translating wing data acquired at

AFRL.

The translating wing AFRL setup consists of an aspect ratio 2 flat plate wing

at a fixed α = 45◦ mounted on the plunge rods at mid-span of the pressure side of

the plate. The Reynolds number for this experiment was 10,000 so as to match the

rotating wing cases. Force measurements were taken using an ATI Nano17 IP-68

six degree-of-freedom load cell with the cylindrical axis of the load cell aligned with

the spanwise direction of the wing.

Figure 4.8 shows a comparison of the lift and drag coefficients for the UMD

root cutout parameter sweep and for the AFRL translating wing [43]. The rotating

wing data was non-dimensionalized using the root-relative method. As the root

cutout of a rotating wing becomes large, the velocity at the wing root increases. In

the theoretical case of an infinitely large root cutout, the local velocity at the wing
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root would equal that at the wing tip. This is identical to the case of a translating

wing. Therefore, the force coefficients of the translating wing should most closely

follow the case with the largest root cutout, especially once the three-dimensional

effects introduced by the root and tip vortices become significant. The data shown

in Figure 4.8 supports this hypothesis. From the beginning of wing motion until

2.5c traveled, the translating wing data is close to all of the rotating wing cases.

After that point, the translating wing lift and drag coefficients are lower than those

for all rotating wing cases, but are closest to the 2.5c root cutout case. Larger root

cutouts would need to be examined to determine wether the observed trend of larger

root cutouts yielding force coefficient curves that approach those of the translating

wing.

4.5.2 Rotating Wing Data

In order to ensure that the data collected for this study is reliable, it is use-

ful to compare results with those acquired in another facility. Rotating wing ex-

periments were performed at AFRL that mimic the kinematics, aspect ratio, root

cutout, Reynolds number, and other experimental parameters of the UMD 0.50c

root cutout case. The AFRL rig was limited to a maximum of 90 deg of rotation

due to mechanical constraints.

Figure 4.9 compares lift and drag coefficients for the UMD root cutout pa-

rameter sweep to lift and drag coefficients of the AFRL 0.5c root cutout rotating

wing [44]. Aerodynamic forces from both datasets were non-dimensionalized using
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Figure 4.8: Root-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan) with comparison to AFRL translating wing data (black,
dotted line).
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the axis-relative method. For the lift coefficient, the 0.50c root cutout case studied

at UMD is very close to the rotating wing data collected at AFRL, which also has

a root cutout of 0.5c. However, the drag coefficient for the AFRL rotating wing

is about 0.22 higher than the drag coefficient for the UMD 0.50c root cutout case.

This could be due to a lack of taring out the inertial forces for the AFRL data.

4.6 Summary

Force data was acquired for rotating, fixed pitch wings in order to determine

the effects of maximum rotation angle, acceleration profile, and root cutout on the

lift and drag coefficient profiles. All force coefficient histories contained two local

maxima in both lift and drag. The first, occurring at the end of wing acceleration,

was a result of non-circulatory, or added mass, effects. The second local maximum,

occurring at s/c = 3.5 (θ = 107◦) for a root cutout of 0.50c, is thought to be

associated with the development of the root and tip vortices.

Maximum rotation angle was found to have no effect on the force coefficient

histories prior to the start of wing deceleration. Varying the distance over which a

wing accelerated had resulted in larger non-circulatory peaks for shorter acceleration

distances, which correspond to higher accelerations. However, after the wing reached

a constant velocity, acceleration profile had no effect on the lift and drag coefficients.

Varying the root cutout affected both the magnitude and location of the sec-

ond local maximum. Non-dimensionalizing forces by the root-relative method, as

opposed to the axis-relative method, resulted in lift and drag coefficient histories
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Figure 4.9: Axis-relative lift and drag coefficients for root cutouts of
0.25c (red), 0.50c (green), 1.00c (blue), 1.50c (black), 2.00c (magenta),
and 2.50c (cyan) with comparison to AFRL 0.5c root cutout rotating
wing data (black, dotted line).
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that were independent of root cutout up to approximately s/c = 2.5. For s/c > 2.5,

the force coefficient histories diverged. Comparing rotating wing lift and drag coeffi-

cients to data collected for a translating wing at AFRL showed that the translating

wing force coefficients most closely aligned with force coefficients for the case with

the largest root cutout. For more analysis of the effect of root cutout on the force

coefficients of rotating wings see Ref. [45].
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Chapter 5

Concluding Remarks

5.1 Overview

The focus of this study was to examine a variety of parameters affecting the

flowfield and aerodynamic forces of wings rotating at low Reynolds numbers, includ-

ing the effects of solid wall boundaries. This was approached computationally, so

that the case where no wall boundaries are present could be simulated in addition

to several discrete values of tip clearance. Particle/laser flow visualization was also

performed to study the development of the large scale structures produced in an

enclosed tank by a rotating wing. The flow visualization also aided in assessing the

influence of the top and bottom walls of a tank on the flowfield of the rotating wing.

The effects of maximum rotation angle, acceleration distance, and root cutout on

the aerodynamic forces of a rotating wing were studied experimentally. Two dif-

ferent methods for determining Reynolds number and non-dimensionalizing lift and

drag were compared, the root-relative method and the axis-relative method. Data

collected at UMD was compared to rotating and translating wing data collected at

AFRL.
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5.2 Conclusions of the Study

5.2.1 Boundary Study Ananlysis

1. Several major flow features associated with a rotating wing were evident from

chordwise and spanwise slices of Q-criterion taken at a variety of rotation

angles. These include a large leading edge vortex, extending along the whole

span of the wing. Also present were tip and root vortices, and a starting vortex

shed from the trailing edge soon after the start of rotation. For all boundary

cases, the size of the leading edge vortex decreased between the first and the

second revolution. When comparing images of Q-criterion contours at a given

rotation angle, it was difficult to discern any significant differences between

the flowfields produced under various boundary conditions.

2. There were notable differences among the various boundary condition cases in

the lift and drag coefficient histories. Both lift and drag coefficients for the 5.0c

boundary case were approximately 7% higher than in the infinite case. In the

first revolution, the 3.0c and 0.5c cases also had lift and drag coefficients that

were 7% higher than for the infinite case, although the difference increased in

the second revolution. When the wing entered the second revolution, all lift

and drag coefficients dropped due to the wing encountering the wake produced

in the first revolution. However, the force coefficients for the 0.5c case dropped

significantly less than for the other three cases, resulting in an artificially

elevated lift and drag coefficients throughout the second revolution.
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3. The magnitude of the circulation contained in the LEV through a slice at half

span was plotted as a function of rotation angle for all cases. In general, the

trends observed in the LEV growth history were the same as those for the lift

coefficient history. In the first revolution, the LEV circulation for the infinite

case was slightly less than for the other three cases, which were all very similar.

In the beginning of the second revolution the LEV circulation dropped for all

cases, but dropped significantly less for the 0.5c case than for the other three

cases.

4. The downwash created by the wake of the wing was quantified by plotting the

vertical velocity one chord-length in front of the wing midspan. After 94 deg,

the 0.5c boundary case had a higher downwash ( 4.6% of the tip velocity)

than the other three cases ( 3.1% of the tip velocity). After 634 degrees, the

maximum downwash for the 0.5c case was less than that of the other cases (9%

of the tip velocity for 0.5c case, 25% for 5.0c and infinite cases). This suggests

that downwash created by the wake lowers the effective angle of attack of the

wing and decreases lift, and that this effect is suppressed by walls close to the

wing tip.

5. Flow visualization of the tank cross-section showed that a rotating wing pro-

duces a ring-like vortex that coincides with the path swept out by the wing tip.

This vortex grows larger as the wing travels for greater numbers of revolutions,

until it impinges on the tank walls. Subsequently, a second, counter-rotating

ring vortex is formed under the first, which eventually grows to occupy the
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space between the primary ring vortex and the bottom of the tank. After two

revolutions, none of the major flow structures for any of the three tip clear-

ances studied (db =0.5c, 3.0c, and 5.0c) had yet impinged on the bottom of

the tank.

6. For maximum rotation angles of less than one revolution, even a very small

tip clearance of 0.5c is sufficient for preserving the trends in force histories and

the flow features associated with a wing rotating in an infinitely large volume

of fluid. However, for maximum rotation angle of two revolutions, a minimum

tip clearance of 5.0c is necessary to preserve the characteristics of the infinite

boundary condition case.

5.2.2 Force Measurement Analysis

1. Two local maxima were observed in the lift and drag coefficients for all cases.

The first, occurring at the end of wing acceleration, is the result of non-

circulatory, or added mass effects. The second local maximum occurs after

3.5c for a root cutout of 0.5c, and is likely due to the development of the root

and tip vortices.

2. Varying the maximum rotation angle had no effect on the lift and drag co-

efficients of a rotating wing prior to wing deceleration. This is because the

velocity profile for different maximum rotation angles is identical before the

wing begins to decelerate.

3. Acceleration distance did not affect the force coefficients after the wing reached
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a constant velocity. For the wing accelerating over 6.00c, the second local

maximum in forces was not observed. The wing was still accelerating when

this peak would have otherwise occurred, which suggests that the flow features

associated with the peak in lift are not present during wing acceleration, but

only after the wing has reached a constant velocity.

4. Varying root cutout was found to have a significant effect on the location of

the second local maximum in force coefficients. For a root cutout of 0.25c,

the peak was located at s/c = 3.1 (θ = 106◦), and for a root cutout of 2.5c,

the peak was located at s/c = 2.5 (θ = 43◦). The main difference between

the flow over a wing with a small root cutout and a large root cutout for a

given Reynolds number is the velocity at the wing root. Presumably, in cases

where the root cutout is large, the root vortex develops sooner, and this is

responsible for an earlier peak in forces.

5. When non-dimensionalizing aerodynamic forces using the axis-relative method,

a variation in average velocity along the wing span among various cases re-

sulted in significantly larger lift and drag coefficients for larger root cutouts.

Non-dimensionalizing forces using the root-relative method took into account

this variation and collapsed both lift and drag coefficients for s/c ≤ 2.0. There-

fore, the root-relative method of force normalization is better for comparing

cases with varying root cutouts. At larger values of s/c, increased three di-

mensional effects resulted in a divergence of the root-relative lift and drag

coefficients from each other.
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6. Lift and drag coefficients normalized using the root-relative method for root

cutouts ranging from 0.25c to 2.50c were plotted with force coefficients of a

translating wing. The translating wing data most closely aligned with the 2.50c

case. As the root cutout became large, the difference between the tip velocity

and the root velocity got smaller, making the spanwise velocity distribution

of the rotating wing more similar to a translating wing.

5.3 Remarks for Future Work

There are several avenues for further study that would be interesting to pusue

given the results of this investigation. One other boundary case should be modeled

computationally, with a finite tip clearance greater than 5.0c. Although the flow fea-

tures for the 5.0c case and the infinite case are very similar for up to two revolutions,

the lift and drag coefficients for these cases are not identical. The boundary study

performed computationally should be repeated experimentally for tip clearances of

0.5c, 3.0c, and 5.0c in order to confirm the computational results. Additionally, be-

cause Reynolds numbers seen in insect flight range from 100 to tens-of-thousands, it

would also be useful to perform a Reynolds number parameter sweep to determine

the effects of Reynolds number on force coefficients and flowfields of rotating wings.

This will also help to determine wether the boundary study performed at a Reynolds

number of 120 is applicable to higher Reynolds number cases.

The root cutout parameter sweep performed in water should be repeated in a

glycerin water mixture. The increased kinematic viscosity of the fluid will amplify
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the aerodynamic forces and potentially increase the signal to noise ratio of the data.

Although the signal to noise ratio in the data presented here yielded relatively small

error ranges, it would be interesting to see if this could be improved. Also, running

these experiments in a fluid with a different viscosity will aid in proving that as

long as Reynolds number is maintained, the results of these experiments can be

replicated through proper scaling of wing size and rotational velocity.

Although hypothesized that the development of the root and tip vortices is

responsible for the second local maximum in the force coefficients, this claim has

yet to be validated. Particle image velocimetry and flow visualization would aid in

determining the flow features associated with this peak.
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