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ABSTRACT

Title of Dissertation: Performance evaluation and optimization

of parallel systems with synchronization

Levent Giin, Doctor of Philosophy, 1989

Dissertation directed by: Armand M. Makowski
Associate Professor

Electrical Engineering Department

This thesis considers synchronization issues such as resequencing and fork/join
in parallel architectures. The discussion is carried out in the context of K parallel
single server queues with general servers where jobs are subject to resequencing.
Both performance evaluation and optimal routing problems are addressed for such
systems.

In the first part, Poisson arrivals are assumed to be randomly allocated to
different queues according to a Bernoulli switch. The distributions of the various
delays in the system are obtained by sample path arguments. The problem of
choosing the switching probabilities that minimize the average end-to-end delay
is considered. In addition to obtaining exact results in some cases, simple but
accurate approximations are provided when the service time distributions are ex-
ponential. The simple form of these approximations is then utilized to solve the
optimization problem in the case when the service parameters are unknown, and
a simple stochastic approximation algorithm is proposed. When the servers are all
identical, several useful asymptotic results are obtained as I increases to infinity.
Various stochastic monotonicity and convexity results are also provided for this

parallel system.



In the second part, the dynamic optimization of the same model is investigated
under more general assumptions for the arrival process. The resequencing problem
is combined with a fork/join problem, where the incoming packets are broken into
smaller subpackets for processing at different queues. The problem of finding the
optimal allocation policy that minimizes the average discounted and the long-run
average costs is formulated as a Markov Decision problem, where the cost-per-
stage is taken as the end-to-end delay of each packet. In both cases, the optimal
policy is identified as the one that drives the workload in each queue to a balanced

configuration as quickly as feasible.
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CHAPTER I

INTRODUCTION AND SUMMARY

Recent advances in computer and communications technology have led to
the proliferation of complex parallel and distributed system architectures. On one
hand, these new systems offer many advantages over the conventional systems such
as resource sharing, reliability and fault tolerance. On the other hand, the parallel
and distributed nature of these systems pose fundamental problems related to
the interactions between different parts of the system. For instance, the ordering
of the packets is of great importance in almost every application where data is
transmitted over several communication links. This is also the case in distributed
databases or in computing systems where computations have to be executed in
a prespecified sequence. In a parallel system different portions (tasks) of a job
can follow different paths and overtake one another due to the random nature of
delays in various parts of the system. Therefore, some of these tasks have to wait
at the destination for those tasks that have entered the system earlier. This type
of synchronization delay is called the resequencing delay and may crucially affect
the performance of the system. It is therefore essential to understand the effects
of various system parameters on this synchronization primitive.

The main concern of this thesis is to provide an analytical basis for a better
understanding of the resequencing constraint, i.e., the requirement that jobs have
to leave the system in their order of arrival (see (1.1.1)). This synchronization
constraint is a basic problem of interest in many parallel and distributed computer,
communication and manufacturing systems. Its analysis cannot be handled by the
theory of product-form queueing networks, and its study therefore provides new
theoretical and experimental challenges.

1.1. MOTIVATION

In order to provide concrete examples, applications from areas as diverse as

packet switching, distributed databases and parallel processing are briefly con-

sidered next. The reader is referred to the recent survey paper of Baccelli and
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Makowski [BaM] and to the M.S. Thesis of Varma [Var.a] for additional exam-

ples where resequencing and other forms of synchronization constraints naturally

occur.

(i)

(iii)

In packet switching networks such as IBM’s System Network Architecture
(SNA) [GMN] and the French PTT’s public network TRANSPAC [Dan], mes-
sages are formatted into packets and are transmitted over an interconnected
network. In order to increase the network utilization, packets belonging to
the same message are routed over different paths to reach their destination,
and these packets may arrive out of sequence at the destination node. Rea-
sons for this include (i) the random nature of the delays in different parts
of the network due to different link speeds, random path lengths and vary-
ing message sizes, and (ii) the retransmission of erroneous packets such as
in Selective-Repeat Automatic Repeat Request protocols [Sch]. In order to
achieve message integrity, many communication protocols such as SNA re-
quire First-In First-Out delivery. Consequently, the out of sequence packets
are stored at the receiver and await the arrival of the packets that have been
transmitted before them.

In distributed databases, different storage sites may contain portions or com-
plete replications of a piece of data. For reasons of reliability, centr;lized
control is not allowed in these systems, and concurrency control mechanisms
have been developed to preserve consistency [Ell, LeL]. Due to random com-
munication delays, update requests such as read, write or delete originated
from different access sites may arrive out-of-order to each storage site. If the
original order of the write and delete requests are not preserved in process-
ing these updates, data in distinct storage sites will no longer be replicas of
each other. Therefore, to ensure consistency, the update requests must be
resequenced at each storage site before processing,.

In parallel processing machines, different parts of a program are executed
on different processors. However, data often needs to be exchanged between

the processors, i.e., after completing the execution of a part of a program a
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processor may have to wait for the outcome of some other process in order to
continue executing the rest of the program. Consequently, the processor may

have to wait idle until the necessary synchronization is achieved.

In all three examples, the underlying generic structure is the one given in
Figure .1, i.e., a distributed (disordering) system (DS) followed by a resequencing
buffer (RB). In this figure, the IR..-valued sequences {An, n =0,1,...}, {Th, n=
0,1,...}, {Dn, n=0,1,...} and {S,, n =0,1,...} have the interpretation that
foralln=0,1,...,

A,: Arrival epoch of the n?* job into the DS, with 4y = 0;

T,: Delay of the nt* job in the DS;

D,.: Departure epoch of the n** job from the RB; .

Sn: The system time (or end-to-end delay) of the nt? job, i.e., Sp = D, — A,.

P — DS > RB >
{4.} {An + T} {Dn}
Arriving Jobs Out of Sequence Jobs Resequenced Jobs

Figure I.1.

The Generic Structure

The n** job arrives into the DS at time A, and experiences a delay of T;, in
the system. However, due to the distributed nature of the system, the departure
times {An + T, 7 = 0,1,...} of jobs are not in the same order as their arrival
times {A,, n = 0,1,...}. The nt* job, upon leaving the DS, enters the RB to
await all the jobs that have entered the system earlier. Only after all the jobs
which have arrived to the system before it leave the DS, does the nt* job leave the

RB, i.e., D, is defined by the condition

= . ; =0,1,... . 1.1.1
D, i ﬁlja,sxAn{A,+T,} , n=20,1, ( )
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Throughout this thesis, condition (1.1.1) will be referred to as the resequencing
constraint. Under this constraint, the system time sequence {S,, n = 0,1,...}

satisfies the recursion [BGP]
Sp =max{Ty , Sn—1— An + An-1}, n=12,... (1.1.2)
with Sp = Tp, and the resequencing delay R, of the n'* job is thus

Rn=Sp—Th, n=0,1,... . (1.1.3)

1.2. LITERATURE SURVEY

This section provides a brief account of the literature on resequencing systems.
The recent tutorial paper of Baccelli and Makowski [BaM] contains a more detailed
discussion of some of the references givenwhere. Other forms of synchronization
constraints are also discussed in [BaM], where some recent developments in the
literature are summarized. In all the models, unless otherwise specified, the arrival

process is Poisson.

I.2.1. Infinite Server Models

The earliest paper on resequencing systems is due to Kamoun, Kleinrock and
Muntz [KKM)] who studied the effects of resequencing in an M/M/co queue, i.e.,
when the DS is composed of an infinite number of identical exponential servers.
They obtained the steady state statistics of the system time S, and of the number
of jobs in the RB, as well as the bulk size distribution of the output process from
the RB. The results of [KKM)] were extended to the M/GI/co case by Harrus and
Plateau [HaP] by means of a similar 'a:ma,lysis. Subsequently, Baccelli, Gelenbe and
Plateau [BGP)] considered the situation where the RB is followed by a single server
queue with a general service time distribution. The DS is again implemented by the
M/GI /oo queue. These authors gave recursive formulas of the type (1.1.2) for the

end-to-end delay (including the delay in the single server queue), which are then
used to derive integral equations for its distribution. The analysis is carried out

via factorization methods when the delay distributions in the DS are exponential,
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i.e., when DS is the M/M /oo system. Recently, Gelenbe and Stafylopatis [GeS]
considered the model of [HaP] under three partial ordering/resequencing disciplines

which reflect the random association or locality in the precedence constraints.

1.2.2. Finite Server Models
In the infinite server models of Section 1.2.1, the disordering ﬂdelays {Tn, n=
0,1,...} form an independent and identically distributed (i.i.d.) sequence of ran-
dom variables ( RVs) which is also independent from the arrival time sequence
{A,, n = 0,1,...}. When the number of servers is finite, these independence
properties are no longer available, and the corresponding results are few in the
literature and limited to very special cases. All models assume Poisson arrivals
and exponential service time distributions. Two classes of models are considered
for the DS, namely (i} models where there is a common buffer attended by parallel
servers, (ii) models with parallel single server queues.
(i) Common Buffer Models: The models in this class all lead to a Marko-
vian analysis. However, the lack of independence causes a rapid explosion
in the size of the state space with the number of servers. The M/M/K
model with identical servers is studied by Bharat-Kumar and Kermani {BKK]
who derived an expression for the mean resequencing delay. Agrawal and
Ramaswamy [AgR] also considered the model in [BKK] but focused on the
distributional aspects of the resequencing delay. Yum and Ngai [YuN] consid-
ered the more general M /M /K /B model with heterogeneous servers when the
common buffer size B is finite. In the case of heterogeneous servers, it is com-
monly assumed in the literature that when more than one server is available,
jobs are scheduled to the fastestavailable server. Yum and Ngai obtained the
resequencing delay distribution through a numerical algorithm. However, due
to the high dimensionality of the state-space, they reported their method to
be limited to K < 5. Lien [Lie] considered the resequencing delay due to the
M/M/2 queue and obtained the average resequencing delay by a simple yet
clever argument. Later on, Varma [Var.a] showed that the Markovian state

representation of Lien naturally leads to a matrix-geometric representation for
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the steady state buffer occupation probabilities when the M/M/2 queue has a
finite buffer. However, this approach does not extend to the case K > 2. The
M/M/2/B model is also considered in the Ph.D. Thesis of Iliadis [Ili] where
the distribution of the resequencing delay is obtained under various threshold
type scheduling policies (see also [IL.a] and [IL.b)).

(ii) Parallel Buffer Models: The work on this class of models is very re-
cent. Jean-Marie [JeM.b] considered the case of two M/M/1 queues in parallel
with identical servers when two different Poisson streams of incoming jobs are
routed randomly to the queues by two Bernoulli switches. He obtained the
distribution of the resequencing delay by a sample path argument. Iliadis and
Lien [IL.c] considered two parallel heterogeneous M/M/1 queues with two
types of traffic, namely (i) jobs allocated to the queues by a Bernoulli switch
which are subject to resequencing, and (ii) interfering local tra;fﬁc to each
queue which are not subject to resequencing and leave the system as soon as
they are serviced. All arrival processes are assumed to be Poisson and mutu-
ally independent. A recursive method is proposed for obtaining the average
resequencing time for the jobs allocated by the Bernoulli switch. Their solu-
tion method extends to the situation where there are several arrival processes
to the Bernoulli switch from various sources when resequencing operates class
by class, i.e., when jobs from a given source need to wait only for the jobs

that arrive to the DS from that source.

1.2.3. Structural Results

Bounding methodologies based on convex and strong stochastic ordering ar-

guments are used in the M.S. Thesis of Varma [Var.a). He provides monotonicity

results for DSs in (i) and (ii) above under more general assumptions on the service

and arrival distributions. Multistage DSs in tandem are also considered in [Var.a]

where it is shown that for infinite server DSs resequencing the jobs only after the

last stage yields a lower end-to-end delay than when jobs are resequenced after

every DS. When the DSs are GI/GI/K queues and the jobs are resequenced after

every stage, Varma also showed that a decrease in service times in one of the stages
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implies a decrease in the end-to-end delay.

1.2.4. Optimization of Resequencing Systems

Results on the optimal design of resequencing systems are again very few
and recent. The static optimization problem of choosing the optimum switching
probabilities in the multiple queue model of Section 1.2.2(ii) is considered by Jean-
Marie [JeM.b] when K = 2 with identical exponential servers. Two Poisson input
processes are randomly allocated to the queues by two Bernoulli switches when
the resequencing operates class by class. Mean queueing and resequencing times
are obtained, and the optimal switching probabilities are characterized through
the unique solution of a fifth order polynomial.

Varma [Var.b] considefred the dynamic allocation of jobs to servers in the
M/M/2 queue with heterégeneous servers so as to minimize the system time.
Using dynamic programming arguments he showed that the faster server should
always be kept busy, while the optimal policy that assigns jobs to the slower server
is of threshold type in the number of jobs in the common buffer, and is independent
of the number of jobs in the RB.

In addition to the papers annotated above, the effect of resequencing on more
general systems are considered in [Bac] and [JeM.a]. While [JeM.a] studies the
effect of the resequencing delay in Omega networks, [Bac] considers synchronization

issues in distributed databases and provides computable bounds for various delays.

1.3. SUMMARY OF THE THESIS

In this thesis we consider the performance evaluation and the optimal routing
of jobs in the resequencing system of the type given in Figure I.1. Attention is
given here to DSs composed of K parallel single server queues with infinite capacity
buffers. The material in Chapters II and IV is joint work with Dr. A. Jean-Marie
and is also included in the manuscripts [GIM] and [JMG], respectively.

In Chapter II, jobs arrive according to a Poisson process and are randomly
allocated to the queues by a Bernoulli switch. Each queue is attended by a sin-

gle server with a general service time distribution. The service times at different
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queues are assumed independent with possibly different distributions, i.e., the DS
1s composed of K parallel M/GI/1 queues. We first express the resequencing and
system times in terms of the waiting and response times in each one of the parallel
M/GI/1 queues. This is done by means of a sample path argument which focuses
directly on the system time rather than on the resequencing delay. The distribu-
tions and first moments of the reééquencing and system times are then obtained
using these expressions. The problem of choosing the switching probabilities in
order to minimize the average end-to-end delay is then addressed for the following
two special cases: (i) when the service time distributions are identical, and (ii)
when K = 2 and the service times are exponential. In the first case, it is shown
that. the equal load allocation is optimal, and that at this optimum configuration
the average system time decreases with K. The second case differs from the model
in [JeM] mentioned in Section 1.2.2(ii) in that now there is only one arrival pro-
cess and the servers have different rates. The optimal routing probability is again
characterized by the unique root of a fifth order polynomial for certain values of
the system parameters, whereas it is best to route all the traffic to the faster server
for other values. The equations that define these regions in the parameter space

are identified.

The results obtained in the special case (ii) lead to an asymptotically exact
approzimation for K (> 2) heterogeneous exponential servers. This approximation
has a very simple form and provides insights into the variation of the optimal
switching probabilities with the system parameters. Furthermore, for wide range
of system parameters it yields a relative error of at most 1% for the mean system
time. g

The computation of the optimal routing probabilities for the same system
without resequencing is also recalled and improved. The solutions to both prob-
lems are compared throughout Chapter II. Strong stochastic convexity (see Defi-
nition A.IL.1 of Appendix II) of the stationary disordering delay in the switching
probability vector is also established. In the homogeneous case, equal load alloca-

tion is shown to stochastically minimize the disordering delay. Furthermore, at this
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optimum configuration, stochastic monotonicity and integer convexity properties
in K are established for the disordering delay.

Chapter III considers the model of Chapter IT when the service times are expo-
nentially distributed, but when both the service and the arrival rates are unknown.
The simple form of the approximations given in Chapter II is used in a stochastic
approzimation algorithm for computing the approzimate optimal switching prob-
ability vector. The algorithm starts with an initial switching vector and estimates
the system parameters by making idle time measurements. The switching vector
is then updated using these measurements. The algorithm proceeds by taking new
measurements when the system is driven with this new switching vector, and then
updates the switching vector again.

Chapter IV studies the asymptotic behavior of.various delays in the model of
Chapter II when the service time distributions are identical and the load is equally
(optimally) allocated to the queues. Asymptotic expressions for the distributions
of the resequencing and system times are provided as K increases to infinity. Two
cases are considered depending on whether the arrival rate into the system is held
constant or grows linearly with K.

In the first case, it is proved that the statistics of the system tend to those of
the M/GI /oo system with resequencing. While asymptotic stochastic monotonic-
ity and convexity results (in the sense defined in Chapter IV) are stated for the
system time RV, the resequencing delay exhibits different structural characteris-
tics depending on the arrival rate into the system. For example, when the service
times are exponential it is (asymptotically) stochastically increasing and concave
in K for smaller loads on the systemi, while for larger loads it is (asymptotically)
stochastically decreasing and convex.

The situation is different in the second case. Indeed the expected system and
resequencing times both grow as log K while the average response time is constant
for all K. Therefore, although the response time of a job in the queue dominates the
resequencing time in the first case, the resequencing delay dominates the response

time and has a major impact on the system time in the second case.
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In Chapter V, it is assumed that the jobs arrive according to a renewal se-
quence. The workloads of the jobs are ¢.i.d. and independent from the interarrival
times. Upon arrival, instead of the Bernoulli allocation as in the previous chap-
ters, each job is broken into smaller tasks for processing at different queues. These
tasks are later assembled in the RB, and a job leaves the system only after all of
its tasks are serviced and all the other jobs that arrived into the system before it
are also assembled and have left the system. The dynamic optimization problem
of allocating each job into the parallel queues is considered when the processing
rates in different queues are identical and constant, i.e., the service time of a task is
proportional to its workload and tasks with equal workloads require equal amounts
of service time at different queues. The average finite horizon, long-run average
and average discounted costs are all shown to be minimized by the same allocation
policy when the cost-per-stage is taken to be the system time of a job. At each
arrival epoch, given the workload in each queue and the workload of the arriving
job, this optimal policy allocates the workload of the job to the queues so as to
derive the workload in each queue into a balanced position as fast as feasible. A
simple algorithm that computes this optimal allocation vector is also provided.
Under this optimal policy, the steady state system time of a job is obtained as the
response time in a GI/GI/1 queue.

The case where the jobs are not allowed to be broken into smaller tasks is also
briefly considered when K = 2. Optimality of joining the queue with the smallest
workload is established in this case.

Notation

The following notation and defmitions are used throughout this thesis: The
(resp. positive) real line is denoted by (resp. IRy) R. The k** component of a
column vector z in R¥ is denoted by zx, while the k** component of the vector
[z]* is defined as [z;]t := max{0,z+}, 1 < k < K. The transpose of z is denoted
by zT. The column vector of ones with appropriate dimensions is denoted by
e. The notation Pg(z) denotes the projection of = onto a set E C R¥. The
distribution function of a RV X will be denoted by the same letter, e.g., X(z) =
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P(X < z). Whenever it is necessary to explicitly indicate the dependence of X(z)
on a parameter §, the notation X (6,z) and X (6) will be substituted for X(z) and
X, respectively. The distinction between the distribution function X(z) and the

RV X(0) will always be clear from the context. Finally, T = 1 — z for every z in
[0,2].
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CHAPTER II

RESEQUENCING IN PARALLEL QUEUES
WITH BERNOULLI LOADING

II.1. INTRODUCTION

A system with K parallel queues each with an infinite capacity buffer is con-
sidered when the jobs are subject to resequencing. Jobs arrive according to a
Poisson process and are allocated to the queues by a Bernoulli switch. The service
times at different queues are assumed independent with possibly different distri-
butions. After completing service, a job moves to the RB and awaits the service
completion of the jobs which have arrived into the system before it. The model is
made precise in Section 2.

In Section 3, the distributions of the resequencing and system times are com-
puted in terms of the distribution functions of the waiting and response times in
the parallel M/GI/1 queues. Expressions for their first moments are then easily
derived.

The problem of choosing the allocation probabilities to minimize the average
sy%féin time is addressed in Section 4 in two special cases, namely an arbitrary
number of identical servers and two queues with exponential servers. Section
5 contains simple approximations to the optimal switching vector when the K
parallel servers are exponential.

The solution to the problem without the resequencing constraint is briefly
recalled [BuC] in order to provide a comparison to the resequencing problem. An
algorithm to compute the optimal p}obabilities is available for the general case in

[BuC]. Simplifications to this algorithm are provided in Appendix I.

-12 -



11.2. THE MODEL

The model consists of K queues in parallel where each queue k, 1<k <K,
has an infinite capacity buffer and is attended by a single server whose service time
distribution Bi(-) has finite mean 1/u: and variance 02. The service times are
assumed mutually independent. Jobs arrive into the system according to a Poisson

process with parameter A, and join the k** queue with probability Pr, 1<k<K,

4+— T« —»
<+ Wi-p4B>

T
v
A4

Figure II.1.
The Model
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where Zf___l pr = 1. The service discipline at each queue is first come first served
(FCFS), and upon service completion, a job joins the RB to await for the service
completion of all the jobs that have entered the system before it.

Throughout this chapter, the system is considered in statistical equilibrium.

For each queue k, 1 < k < K, set

By: the service time of a job in server k;
Wi: the waiting time of a job in queue k;

Ti: the sojourn time of a job in queue k (i.e., Ty = Wy + By),
and for the system, define

T: the response time of a job (i.e., the time needed to complete its service);
R: the resequencing time of a job (i.e., the time it spends in the RB);
S: the system time of a job (i.e., S=R+T).

Since the thinning of a Poisson process by a Bernoulli process results in a
set of independent Poisson processes, the system behaves like a collection of K
independent M/GI/1 systems with arrival rates Apy,...,Apk, and with a global
ordering/resequencing mechanism. In particular, the RVs W} and Ty are inde-
pendent of the RVs W and T; for 1 < k # | < K. Since the arrival process to
each queue is Poisson, the RV W} is the workload of queue k at a random instant
[Kle.a], i.e, Wi is the virtual wasting time in queue k.

The presence of resequencing does not affect the stability condition of the
system [BGP]. Therefore, the system is stable if and only if each queue is stable,

which reads

0<p <2 1<k<K. (2.2.1)

The utilization of queue k is denoted by pr = Api/ur, while the system capacity is
p= Ei;l pr. Note that the stability condition (2.2.1) implies A < p. Conversely,
if this condition is satisfied, then the convex subset D of IR¥ defined by

K
D= {pe(0,1¥: ) pr=1 and dpe <, 1<k <K}
k=1

~-14 —



is nonempty.

II.3. RESPONSE AND SYSTEM TIME ANALYSIS

In this section, expressions for the RVs T, R and S are provided in terms of
the RVs Ty and Wi, 1 < k < K. These expressions then lead to the computation
of their distribution functions and first moments.

On an underlying common probability space, definea RV U : @ — {1,..., K}
such that P(U = k) = px, 1 < k < K. The RV U is assumed independent of all
the RVs introduced so far.

Theorem I1.3.1. The RVs T, R and S are given respectively by

T = Ty, (2.3.1a)
R = W*-Ty]" (2.3.1b)
and
S = max{W*, Ty}, (2.3.1¢)
where
W* :=max{W;; 1<k<K, k£U}. (2.3.1d)

Although a transient version of (2.3.1) also holds for each job n, n = 0,1,...,
only the steady state equalities are given here in order to keep the notation to a

minimum.

Proof. The expression for T is plain and expresses the Bernoulli allocation of
the jobs.

In order to compute R, assume that a “tagged job” C arrives to the Bernouilli
switch at time t = 0. Let C be the last job in the FCFS queue k at time ¢ = 0% so
that C is Cy. Then, with the notation introduced in Section 2, the job Ci,k # U,

completes service at time Wi, so that W* is the time when the last of the Ci’s,

k # U, completes service. The tagged job C completes service at time Ty. If

- 15—



Ty < W*, then at least one of the Ci, 1 < k # U < K, has not yet completed
service and C has to wait until W*, i.e., W* — Ty is his resequencing time. On
the other hand, if Ty > W™, then C experiences no resequencing delay. Therefore,
R=[W* - Ty]t.

The expression for S now follows immediately.

a

The following lemma presents an equivalent form of Takécs’ integro-
differential equation for the M/GI/1 system [Kle.a, p. 230] and will prove useful

in computing the distribution of S. The term Apj is the arrival rate into the k**

queue.
Lemma I1.3.2. The equality

1 dWi
Ti(z) = Wi(z) — pr dz

(z), 1<k<K (2.3.2)

holds for every x > 0 where Wi(z) 1s differentiable.
The central result of this section is the following theorem.

Theorem 11.3.3. The distribution functions T(-), R(-) and S(-) are given by

K
T(z) = » peTi(), (2.3.30)
k=1
K o K
R(z) = Y px / I Wiz + H)dTe(#) (2.3.3b)
k=1 0
and :
K 14 (K
S(:l:) = H Wk(:l:) s XE; (H Wk(m)) (2.3.36)
k=1 k=1
for every x > 0 where Wi(z), 1 < k < K, are all differentiable. Their means are
given by
ET = i(: 2 — pu(1 — o) (2.3.40)
=t TP "
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ER = ES-ET  (2.3.4b)

and

o K 1 K
ES = / (1= J] Wi(2))dz + $(- TTa=pw) - (2.3.4¢)
0 k=1 k=1

Proof. Conditioning (2.3.1a) on the value of U gives (2.3.3a), from which
(2.3.4a) follows by a simple application of the Pollaczek-Khinchin mean value for-
mula [Kle.a, p. 190].

Equation (2.3.3b) follows from (2.3.1b) by conditioning on U, and noting that

P([Al*<z)=PA<z), z>0,

and (2.3.4b) obvious since S =T + R.

To obtain the distribution of S, note that the RVs in the right-hand side in
(2.3.1c) are conditionally mutually independent given U. The computation, which
makes use of Lemma 11.3.2, proceeds as follows: For all £ > 0 where the functions

Wi, 1 <k < K, are all differentiable, it is plain that

S(z)

K K
> peTi(z) [[ Wie)
k=1

1k

K
= S n(W(e) - o "’W’“(w»HWz(m)
k=1

l#k

K
[I7e) - 5 Z D () H Wi(z)
k=1

I;ék

and this rewrites as (2.3.3¢). Equation (2.3.4c) then follows by routine integration
since ES = [[°(1 — $(z))dx and Wi(0) =1—p, 1 <k < K.
O

Comparison of the formulas for T(z) and S(z), or for ET and ES, quickly

reveals how the resequencing requirement complicates the analysis. In particular,
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whereas ET is expressed in terms of the first two moments of the service times,
the distributions of the waiting times are needed to compute ES. This point is
made more apparent when considering the expressions of ET and ES when the

service times are all exponentially distributed.

Remark I1.3.1. Assume the servers to all have exponential service distributions.

In that case

Tk(m) =1- e_(ﬂk—)\Pk)Z a'nd Wk(x) =1-— .%pie_(ﬂk'"APk)x , 1 S k S I(,
k

for all z > 0, and equations (2.3.4a, c) become

K

Pk

ET = \or 2.3.5a
,Z:l pk — Apk ( )

ES = l—H 1 — 258 o= (ke —Apk dr + ~ 1_H(1___

0 k=1 Hi A k=1 Kk
(2.3.5b)

= Z( 1)k+1 EH(/\Pz) 1 4 l l—ﬁ(l__/\ﬁ}
IeT, i€l seI(l‘i — Api) A et 733 ’
(2.3.5¢)
where

= {Ic{1,....,K} : |I|=k} .

Formula (2.3.5¢) is better suited for computations for values of K less than ap-
proximately 15. For larger values of K, numerical integration of (2.3.5b) appears

to be more economical and accurate.

Remark I1.3.2. Comparison of the formulas (2.3.3b) and (2.3.3¢c) shows that
the system time has more pleasing properties than the resequencing delay. This
appears to be a general phenomenon in the study of resequencing systems (see

[BGP] and [Var.a]). For instance, in contrast to (2.3.3c), it was not possible to
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eliminate the T:’s in (2.3.3b) by using Lemma I1.3.2. Similarly, the easiest way to
obtain ER is through equation (2.3.45).

Remark I1.3.3. The probability of being a star job, i.e., of not being rese-

quenced, is

K oo K
PO =RO = p [ [[Wiimo),
k=1 0 I=1

I1#k

and has no simple expression in general although special cases are given in Chapter

Iv.

Remark 11.3.4. If
W = max{Wi,..., Wk},

then (2.3.3¢) and (234c) can be rewritten as

S(z) = W(z) — ;%(w), 220,

whenever W is differentiable, and

ES = EW + % P(system not empty) .

Thus, the equation for S(-) is similar to (2.3.2) and seems to suggest that the
system admits an equivalent M/GI/1 representation, in the sense that S = W+ B
for some RV B independent of W. Unfortunately, such a representation does not

seem possible.

Remark I1.3.5. The expressions for T, R and S depend only on the waiting
and response time distributions of the parallel M/GI/1 queueing systems, which
are well known at least by their Laplace transforms. If the distributions Bg(-)
are of phase type (PH-type), then so are the distributions Wi(:) and Tk(-) (see
Appendix II). Since the maximum of independent PH-type distributions is again
of PH-type [Neu.b], the distributions of T, R and S will also be of PH-type, in
view of Theorem II.3.1. Although, the dimensionality problem in obtaining the

maximum of PH-type RVs limits such computations to small values of K, Theorem
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I1.3.1 may serve to guide approximations in obtaining the performance measures

of interest for larger values of K.

11.4. OPTIMIZATION OF THE SYSTEM

The problem of finding the optimal vector of switching probabilities that min-
imizes the expected response and system times is studied in subsections I1.4.1 and
I1.4.2, respectively. Comparison of both optimization problems provides a better

comprehension of the effects of resequencing.
I1.4.1. Minimizing the Response Time

The nonlinear program

(o, i p BT (P15 oK)
has already been addressed in various forms in the literature, e.g., the Capacity
Assignment problem in [Kle.b] or [Kel, Ch.4]. In the present context, it has been
solved by Buzen and Chen [BuC]. Nevertheless, it is briefly discussed here in order
to compare its solution to the corresponding minimization problem for ES.
The following theorem states that the RV T is stochastically convex with
respect to the load allocation vector in the strong st sense defined in Appendix

II, thus providing a rationale to the intuitive arguments given for the algorithm in

[BuCl.

Theorem I1.4.1. For all z > 0, the mapping p — T(p,z) is (strictly) concave on
D, i.e., {T(p), p € D} € SCX(st). .

Proof. It suffices to show that for every ¢ > 0, the Hessian matrix of the mapping
p— T(p,z) = Ef:l Pk Tk (pk, ) is negative definite on {p € [0, 1]%; Apx < px, 1 <
k < K} D D. Note that this Hessian is diagonal. Furthermore, the diagonal
elements are strictly negative since by Theorem A.IL.4 each one of the mappings
pr — Tk(pr,z), 1 £k < K, is concave and decreasing for all z > 0, and the result

thus follows.
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The following corollary is now immediate by Definition A.II1.

Corollary I1.4.2. If A < p, the constrained optimization problem min,ep ET(p)

has a unique solution.

Denote this optimum by p* = (p},...,p}), and let y be the unique root of

the nonincreasing function

K
fk 14 o03u3
flz)=1 — —[1- ,
) ; A 2upz — 1402

defined for £ > maxi<k<k[(1—oip?)/2uk]t. It is an easy exercise to show that if
y > 1/pg for all 1 € k < K, then a straightforward Lagrange analysis shows that
p* is given by

. _ Mk 1+ o}pi
= B 1 . 1<k<K, 2.4.1
P A[ \/2Nky~1+0§ﬁfi ks (241

and that it lies in the set D.

On the other hand, if 1/ux < y, then p} given in (2.4.1) is negative, and by
Theorem I1.4.1 the minimum is located on the boundary of D, i.e., at least one
of the pi’s is 0. The dimension of the problem is thus reduced by at least one
and this leads to the algorithm given in Appendix I to compute the vector p*.
Several monotonicity results that yield considerable computational savings in this

algorithm are also presented in Appendix I.

Remark I1.4.1. When the service time distributions are exponential, oppr = 1

and (2.4.1) reduces to

Apr = Pk — VPBE —p——, 1<k<K. (2.4.2)
Sima

This dramatically simplifies the computation of p* as indicated in Appendix I.
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Remark I1.4.2. Another simplification occurs when all the servers are identical

(but otherwise general), in which case

1 .

so that sharing the load equally among the servers is optimal.
The following theorem generalizes this last remark.

Theorem 11.4.3. When the service time distributions are all identical, the prob-
ability vector p* = (1/K,...,1/K) stochastically minimizes the RV T(p), i.e.,
T(p*) <st T(p) for every p in D.

Proof. Since the service distributions are all identical, the distribution functions
Tx(-) differ only by the input rate Apy, i.e.: Ti(pk,z) = Ti(pr,z), 1 < k < K.
Therefore, for all z > 0,

K K K
1 .
T(p,(l:) = Zkal(phm) < T](Z]Di,m) < T1(Z 'R-—f,x) = T(p ,m) .
k=1 k=1 k=1 :

The first inequality follows from the concavity of the mapping p — Ti(p,z) for

every z > 0, while the second inequality is a consequence of the fact that
K 1 1
: § : 2
a‘rgmln{k_lpk; p E D} = (K,. ) K)

since the IRy — IR+ mapping p — Ti(p, z) is monotone decreasing by Lemma

AIL4. g

I1.4.2. Minimizing the System Time

The complexity of the expression (2.3.4c) makes the solution to the problem

min ES .oy PK
(Plr-'-’PK)eD (pl, P )
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much more difficult. Even in the exponential case, the problem is too complicated
to be solved “by hand” except for the case K = 2. In this case, a solution is
presented in the form of the root of a 5" order polynomial. However, the numerical
results obtained from the solution of this special case lead to the idea of a simple
asymptotic approximation which generalizes to the case K > 2. This is discussed
in Section IL.5.

Another case where the optimization problem can be solved is when all the
servers are identical, but otherwise general. For this configuration, it is shown that

equal routing probabilities still achieve the minimal average system time.
I1.4.2a. The Case of Two Exponential Servers

In the rest of this chapter, when K = 2, py > p2 is assumed without loss
of generality, and the notation p = p; and p = 1 — p; = ps is used. The set D
can then be parametrized by the scalar p so that the statement “p € D” is now
equivalent to “(p,p) € D".

With this notation, the average system time given in (2.3.5¢) takes the form

+ — .
p1—~Ap  pe—Xp  p2 1 pape(pn 4 pz —A)

ES(p) = — : P _P__ApPUntp) (2.4.3)

Differentiating (2.4.3) leads after some simplifications to the relation

d _N)
P = By
with
D(p) = papa(p1 — Ap)*(pg — AP)*(p1 + p2 — A)
and

N(p) = (1 — Ap)*(p2 — AP)? a(p) + A p2(pa + p2 — X)? b(p) ,

where the linear increasing functions a(p) and b(p) are given respectively by
a(p) = (1 + p2 — A)(p2 — p1) — M1 = 2p)(p1 + p2)

and
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b(p) = pa—p1 — M1 —2p) .

Note that D(p) > 0 under the stability assumptions (2.2.1).

The scalars ap and by given by

K1 — H2

o — 1" F2 H— M2
2(p1 + p2)

and by = %-{- 3

Qg

are the unique roots of the equations a(p) = 0 and b(p) = 0, respectively. Since

p1 > pe and A < py + po, it is easy to check that % <ap < by < pi/A

Lemma I1.4.4. The fifth order numerator polynomial N(p) has a unique root

ro in the interval T = (1 — 52, 8). Furthermore this root lies in the interval

AT A
[max{ao,1 — B2}, bo].

Proof. First, the following observations are made:
(1) For all p < ao, a(p) < 0 and b(p) < 0, so that N(p) < 0, while for all p > b,
N(p) > 0 by the same arguments, with N(p) = 0 if and only if p = ao = bo.

(i1) For p < by, (1 — 52,bo] C Z, since bo < p1 /A

(ii) The derivative N'(p) is given by

N'(p) = =2A(p1 — Ap)(p2 — AP)a(p)b(p) + ' (p)(p1 — Ap)* (12 — AP)?

+ b (p)Apapa(p1 + p2 — A)*

Two cases have to be studied:

If 1 — £ < ay, then [ag,b] C T from (ii). According to (iii), N'(p) > 0 for
every p in (ag,bo), since there a(p)Etp) < 0 and the last two terms of N'(p) are
always positive. The result then follows from (i) since N(p) is monotone increasing
in [ag, bo].

On the other hand, if 1 — 82 > ao, then N'(p) > 0 for every p in [1 — 42, bo]
by a similar reasoning. Therefore, since N(1 — 52) < 0 and N(p) > 0 for p > bo
by invoking (i), it is plain that N(p) has a unique root ro in (1 — 52, 5] C Z.

The result thus follows by combining these two cases.

—924 —



Corollary I1.4.5. If u > A, the optimization problem

min ES(p,,
(p1,p2)€D (pl p2)

has a unique solution (p!,pl), where

pl = min{l,re} and p} = 1-p.

Proof. If r; > 1, then N(p) < 0 for all p in D. Therefore, ES(p) decreases
monotonically in D, and is minimal when p=1.

On the other hand, if ro < 1, then ES(p) is minimal at p = ry.

Remark I1.4.3. When K = 2 with exponential servers, the average resequencing
time takes the form

_ _ o
ERp)=—L 2 P P _ PP(p1 + p2)

p1—Ap  p2— AP pz op1 pape(pa Fpz—A)

Although the form of ER(p) is very similar to that of ES(p) given in (2.4.3), the
optimization problem for FR(p) is quite different. For instance, when u; = po,
elementary arguments show that p = 1/2 is a local minimum (resp. maximum) for
ER when p > v/2—1 (resp. p < v/2£1). Furthermore, for p > 1/2, p = 1/2 is the
only solution of the equation d ER(p)/dp = 0, whence it is the global minimum.
On the other hand, it is plain that for p < 1/2, p =1 in D is the global minimum,
since 0 = ER(1) < ER(1/2). Therefore,

1, ifp<1/2,

argmin ER(p) =
PED 1/2, ifp>1/2.
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Remark I1.4.4. When pu; = 2, ag = by = 1/2 = p! so that ET(p) and ES(p)
are both minimized when the load is equally allocated between the servers. This

was not evident a priori, since ER(p) may be maximum in this configuration, e.g.,

as would be the case when p < /2 —1 (see also [JeM.b] and [IL.c]).
11.4.2b. Optimal Routing in the Homogeneous Case

In this subsection, the system is studied when all the servers have identically
distributed service times. It has been noted in Remark II.4.1 that making all
routing probabilities equal minimize the average response time ET for the ho-
mogeneous system. The following theorem states that this result still holds for
ES and generalizes the observation made in Remark II.4.4. This shows that the

response time dominates the resequencing time.

Theorem 11.4.6. When the service time distributions are all identical, the

probability vector p* = (1/K,...,1/K) minimizes the function ES(p).

Proof. As noted in the proof of Theorem I1.4.3, the distribution functions Wi(-)
differ only by the input rate Apk, so that Wi(pk,:) = Wi(ps,), 1 < k < K.

Equation (2.3.4¢) can be rewritten as

() K 1 K
Bs() = [ (- [[Watpnode + 0= T[0-pope)) . (249
0 k=1 k=1

It is shown now that both terms in the right-hand side of (2.4.4) are minimum at
p*, so that their sum is therefore minimal at this point.

Strict convexity of the function z + log(l — poz) and Lemma A.IIL1 of
Appendix III imply that the function log(HkK___l(l — popk)), whence the product
H,I;l(l — popt), is maximum at p*. The second term is therefore minimum at this
point.

On the other hand, it is easy to show by Lemma A.II.4 of Appendix II that for
every = > 0, the positive function p — log Wi(p, z) is strictly concave. Therefore,
by the same argument, the point p* maximizes the product Hf:{:l Wi(pk, z) for all

z > 0, and minimizes the integral in the first term.
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Remark I1.4.5. Since p* = (5,..., ) maximizes the product H£\=1 Wi(pk, )
for all z > 0, the RV max{W}; 1 < k < K} is stochastically smallest at this point,
1.e., when the RVs Wy, 1 <k < K, are i.1.d. This observation and (2.3.3¢) suggest
that a stronger (stochastic) optimality result as in Theorem I1.4.3 also holds for

the RV S(p). This is currently under investigation.

11.4.3. Examples and Comparisons: K = 2

This section aims at a better understanding of the variation of the optimum
switching probabilities with the system parameters. For the case K = 2 with
exponential servers, the notation p*(, u1, u2) and pf(, u1, p2) is used for p* and
p! given in (2.4.2) and Corollary I1.4.5, respectively, in order to explicitly indicate

their dependence on the system parameters. Figure I1.1 displays the sets

Tp = {(t1,p2) | Ap < p1, M1 —p) < p2 and pi(A, pa, pi2) =p }

and

Cp = {(p1, 42) | Ap < p1, M1 —p) < p2 and pl(\, p1,p2) =p },

for 0 < p <1 in the (p1, u2) plane when A = 1.

Only the sets T', and C), for p ranging from 0.5 to 1 with increments of 0.05,
are drawn in Figures II.1a and II.1b, respectively. The sets for values of p smaller
than 0.5 follow from symmetry by interchanging p; and po. The dashed curves are
the lines py + pg = A (the stability limit), g3 = p2 (Tos and Co.5), g1 = g2 — 2A
(the asymptote for the boundary curve of I';) and p3 = pa — A (the asymptote for
the boundary curve of Cy).

An important observation in Figures II.1a and IL.1b is that the sets I', and
Cp, 0 < p < 1, are smooth curves. These curves start 'from the point (Ap, A(1-p)),
since the set D shrinks to the point (p1,p2) = (p1/p, p2/p) as p tends to A (high
utilization). This provides a trivial approximation for a heavily loaded system.

The points located under the lowest curve in Figures II.1a and II.1b are points
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of the sets I'y and Cj, respectively, and correspond to systems where the slower
server 1s not used at all, i.e., pf =1 or pI =1

Figure I1.2 (resp. IL.3) provide the same comparison for a DS where an
M/M/1 queue is in parallel with an M/D/1 (resp. M/Geo/1) queue. The abbre-
viation “Geo” denotes a geometric distribution, defined by P(B = kA) = ¢*(1—¢),
where A is a time constant and ¢ a fixed probability. For this distribution
p = (1 —q)/Aq and p?0? = (1 + Ap). The parameter A is taken to be 1/A
in Figure I1.3. These families of distributions are chosen for their simple relation-
ships between o and p.

The sets I'p and C), for p ranging from 0 to 1 with increments of 0.1 are drawn
in Figures I1.2 and II.3. As in Figure II.1, points located under the lowest curve
are points of I'; (or C;) and correspond to systems for which the second server is
not used. By symmetry, the curve on the top is the boundary of the region I'y (or
Co), and all points located above it correspond to systems where the first server
is not used at the optimum.

The points of I, are obtained by solving (2.4.15) numerically. The curves Cp
are obtained as follows: Since the first server has exponentially distributed service
times, W/:l() is as given in Remark II1.3.1. Therefore, after some simplifications
and using Athe notation of Section 11.4.2a, ES reduces to

p_ P Wi~ Ap)

p
ES(p) = ED(p)+ 2= - £ -
(») 2(p) M1 M2 Papz 1 g1 — AP

’

where W (-) is the Laplace transform of W(-). The curves C} are obtained by
solving the equation d ES(p)/dp = 0 numerically.

The comparison of the curves I, and Cp in Figures II.1-IL.3 reveals that

Pt < pI for all values of the system parameters, i.e., the presence of resequencing

always decreases the optimal utilization of the slower server.
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Figure IL.1a
The curves I, for p = 0.5,0.55,...,0.95,1.0
M/M/1 in parallel with M/M/1
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Figure I1L.1b
The curves C, for p = 0.5,0.55,...,0.95,1.0
M/M/1 in parallel with M/M/1
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Figure I1.2a
The curves T, for p=0,0.1,...,0.9,1.0
M/M/1 in parallel with M/D/1
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Figure IL.2b
The curves C, for p= 0,0.1,...,0.9,1.0
M/M/1 in parallel with M/D/1
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Figure I1.3a
The curves I, for p=0,0.1,...,0.9,1.0
M/M/1 in parallel with M/Geo/1
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Figure I1.3b

The curves C, for p=0,0.1,...,0.9,1.0
M/M/1 in parallel with M/Geo/1



11.5. APPROXIMATIONS FOR EXPONENTIAL SERVERS

This section develops approximations for the optimal allocation probabilities
p' and p* when all the service times are exponentially distributed. The approxi-
mations are motivated from Figures II.1a and II.1b, where the level curves T, and
Cp, 0 £ p <1, have asymptotes that are parallel to the line u; = uo. More impor-
tantly, both the curves C, and their asymptotes remain close to one another for all
values of the system parameters. Therefore, the idea behind the approximations
is to replace the curves C, by their asymptotes.

The approximations for the case K = 2 are obtained as a natural extension
to the discussion in Section I1.4.2 and are illustrated separately as they provide a
better understanding of the key ideas. Extensions to the case of K > 2 parallel
servers are then provided through the asymptotic expansion of the formula (2.3.5¢).
Although a simple algorithm is available in Appendix I for computing the vector
p*, a similar approximation is also derived in order to see the effect of resequencing
more clearly. The accuracy of these approximations is validated for a wide range

of system parameters.
I1.5.1. The Case K =2

In this subsection, the notation and definitions given in Section I1.4.2a are
again adopted. The asymptotes to the curves Cp in Figure I.1a can be obtained

directly by noting that

a(p) = (1 + p2)b(p) — Mp2 — 1)

and rewritting the equation defining C), as

»

N(p) [ H2 AvaBz Ao Ape o opr A
2 _o=bp) |0+ -p R E s+ S 2 2
] (») |( ux)( pm)(ﬂ1 pm) ulm( o M)

B2 Mg M2 _A
~ME -1 -p 22—~
(M1 X pyl)( p

2
Hi #1) )

Letting 1 go to +oo with ua/p1 going to some constant a, it follows that a = 1,
so that the line
b(p) = pz —p1 — A1 —2p) =0
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is the asymptote to the curve C,. As observed from Figure II.1a, the asymptote
b(p) = 0 is parallel to the p; = p3 line and passes through the point (Ap, A(1 — P))-
Since the curve C) also passes through this point, C, approaches b(p) under both
heavy and light loads, explaining why the approximations are good for all values
of the system parameters as indicated in Table II.1.

A similar argument shows that the line pg—p1 —2A(1—2p) = 0 is the asymptote

to the curve I',. The approximations ﬁI and pj to p} and p} are therefore given

by

_%._{_1‘_}_:#_2 if,ul-—pg<)\,

At A

P = (2.5.1a)
1 otherwise,

and

1 - .
7 B i p - pe <2),

Pt = { 2o (2.5.1b)
1 otherwise.

Remark I1.5.1. When p; = ﬁi, both queues are stable, so that this approxima-
tion may be used for all values of py and po satisfying the condition A < p. On

the other hand, the approximation pj is valid only if 2\ < p; + 3.

Remark I1.5.2. Note that ﬁI = by, whence by Lemma I11.4.4 this is always

greater than p!. On the other hand, p* can be shown to be smaller than p*.

Remark I1.5.3. The approximations are exact when p; = 2 and get better as

the service rates get closer to each other.

In order to quantify the accurac'}:r of the approximations, numerical examples
are collected in Table II.1 by setting A = 1. ET(p') is also displayed to see the

effect of resequencing on the performance measure.
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(11, 42) P! Pl %e | ES(pY) | ESGY | %e | ET(pY)
(1,0.25) 0.8693 0.875 0.66 10.15 10.19 0.34 7.77
(1,0.50) 0.7425 0.750 1.00 5.12 5.13 0.15 3.95
(1,0.75) 0.6196 0.625 0.87 3.39 3.40 0.35 2.606
(1,1) 0.5000 0.500 0.00 2.50 2.50 0.00 2.00
(2.5,1.5) 0.9532 1.000 491 0.665 0.667 0.31 0.648
(2.5,1.75) 0.8405 0.875 4.10 0.647 0.648 0.14 0.607
(2.5,2) 0.7273 0.750 3.12 0.619 0.620 0.05 0.568
(2.5,2.25) 0.6138 0.625 1.83 0.586 0.586 0.01 0.532
(2.5,2.5) 0.5000 0.500 0.00 0.550 0.550 0.00 0.500
(10,9.00) | 0.9787 | 1.000 | 2.18 | 0.1111 | 0.1111 | 6.0e-3 | 0.1110
(10,9.25) 0.8592 0.875 1.84 0.1108 0.1108 3.0e-3 | 0.1095
(10,9.50) 0.7396 0.750 1.41 0.1102 0.1102 1.0e-3 | 0.1081
(10,9.75) 0.6198 0.625 0.83 0.1092 0.1092 3.0e-4 | 0.1067
(10,10.0) 0.5000 0.500 0.00 0.1079 0.1079 0.0e-0 | 0.1053

Table II1.1.

Asymptotic Approximations for K = 2

The approximation 131 yields a relative error of less than 5%. Moreover, the

relative errors in ES are much smaller than 1%. For p}, this approximation is

not as good for small values of y; and pg, for which the curves I', and their

asymptote are far apart. However; the curves in Figures I1.1-3 indicate that

such approximations for p} get better as the service time distributions become

less variable. Of course, the easily computable closed form expression given by

equation (2.4.2) can always be used. Comparison of ES(p') and ET(p') shows

that resequencing degrades the system performance considerably for p > 0.5.

11.5.2. The Case K > 2
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For A fixed, the optimization problems

;%1151 ET(p) and 2116111)1 ES(p)

are considered in this section when each uy goes to infinity.
It is an easy exercise [Lue] to show that the optimal probability vector

p*(p1,. .., k) (similarly p*(uy,..., ux)) satisfies the Lagrange equations

3
—ET(p) ~ 7V -4 = <k<K
B (P)~7" =% =0, 1<k<K

and
Z v{Ppi =

where the constant 7( ) >0, 1<k<LK.

Let I* := {k: p} > 0}. Then, v ( ) = 0 for every k in I*, so that p* satisfies

the equations

ao; ET(p) = a—ET(p) (2.5.2)

for every k and [ in I*.

Using (2.3.5), the partial derivatives in (2.5.2) are given by

5} K
—FET(p) = ——m—, 1<k<K. 2.5.3
apk (p) (If'k _ )\pk)z ( )
For p*(u1,...,4x) = p, equations in (2.5.2) define surfaces in the
(#1,...,px)-space. As in the previous subsection, the idea is to approximate these

surfaces by their asymptotes to provide asymptotically exact approximations to

p*. For the purpose of obtaining these approximations, let
1
pk = agpy + o + 0(;71),

for some constants aj and 6 with 0 < o <1, 1 < k < K, and a; = 1 and

81 = 0. Also assume, without any loss of generality, that 1 > pe > ... 2 pk,
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so that p{ > 0, since px > p implies py > p; by (2.4.2). The equations for the
asymptotes can now be obtained as the first order term in y; in the asymptotic

expansion of (2.5.2) as g1 — oco. Using (2.5.3) in (2.5.2), it is readily seen that

1 1 -
Apy —pi) = 5#1(0% —ay) + '2'(5k &) + o(1), k lin I* .
Summing this equation over all [ in I'* leads to

Apt = ., — el T o — el 7 1 kin I*
Pk |I*I+2 k 2|I*| +2:u1 Ok lI*| +0( ), mn )
after further rearrangements, where |I*| is the cardinality of I*. It is clear from
this equation that unless ax = ) ;c;. ot/|I*|, p; cannot be in D as u; goes to
infinity. Therefore, the p}’s are all in D if and only if all the ax’s for k in I* are

equal to each other. Since a3 = 1, oy = 1 for all k in I*.
When ap =1, 6k = pr — p1 + O(1/p1) and an easy analysis then leads to
P 2\ — pre

App = -+

_ kin I* 254
) 2|I*‘ + 0(1) ) in s ( )

where pre = ) ;cre k. Therefore, the following asymptotic approximation is .
proposed for p*

b g DBpe o
b -
i 22 (2.5.5)

0 kgl
where I* := {k: p} > 0}.

Since the set I* is in turn deterr’;lined by p*, the approximation (2.5.5) defines
an implicit equation for p*. However, p* can be obtained through the following
simple algorithm with ¢ = 2. Algoritm II.1 makes use of the relations p} > ... >
pj by (2.5.5) under the assumed order on pug, 1 <k < K.

Algorithm II.1.
(i) Setl — K
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(i) Compute

(iii) If (a) p; > 0: Stop, and set

~

P =

i i
{%Jr%u_z,.:lg-) k=1,...,1
0

k=1+1,... K.

(b) pr < 0: Set 5y =0and I — 1 — [, and go to (ii).

Note that the inequality

HI* —2)

>
"Lk lI*l ]

(2.5.6)
necessarily holds for all k in I*. As in the case K = 2, (2.5.6) does not guarantee
stability of the system and the approximation (2.5.5) for p* may not be used if the

additional condition

3 < B S in )

is not satisfied.

For the resequencing problem,

K Ap
ES(p) = ——II(I— ") (2.5.7a)

o

K
Apj | A Api + 20 (ki — Ap;
F 3y S ([T | S et
=1

S Vi i m (Cjersi — Aps)

ier J#i
1 1
HEk itk Kk By
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Therefore, pt satisfies the relations

———)\Z p, + (-—— = ———)\z +o(

ik Prki il Pt

which rewrites as

1
Aol =p}) = pr—m+A) P—',(uk — 1) +o(1),
i£k,

for every k and I in It := {k: p;rc > 0}.

By an argument similar to the one given above, p;'c areallin Donly if ap =1

for all k£ in I, and the asymptotic expa,nsiox; of pf is then

A -
Ml = e + II*};I? +o(l), kinI'. (2.5.8)

The condition for p}‘c to be in It now reads as

—-A
usz-”—l*m——, 1<k<K. (2.5.9)
This region has the same shape as the one defined by (2.5.6), but is “twice nar-
rower”, due to the factor 2 in (2.5.6). This is a direct generalization of what has
been obtained for the case K = 2. The constraint (2.5.9) is sufficient for the vector
p! given in (2.5.8) to be in D and the implicit equations defining the approximation

»

p' can be given by

A~p
pe 4 2TR1t et
pt = A (2.5.10)

0 keIt
where It := {k : pt > 0}. The approximation p! can again be obtained by
Algorithm II.1 with ¢ = 1.
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Equations (2.5.6) and (2.5.9) indicate that p} and p,t obtained from (2.5.4) and
(2.5.8), respectively, are strictly positive only if the corresponding i, is “large enough”.
In other words, p} (resp. pL) is set to zero, if ;. does not satisfy (2.5.6) (resp. (2.5.9)),
and (2.5.4) (resp. (2.5.8)) has to be applied to the reduced set of queues. Intuitively, this
procedure reflects the fact that, when the load is sufficiently low, it is more advantageous
to process all the jobs on a few faster servers. Comparison of (2.5.6) and (2.5.10) also
shows that the resequencing requirement tends to further decrease the number of slower

servers used.

The randomly selected numerical examples in Table II.2 indicate the accuracy of
this asymptotic approximation for K = 3 and A = 1. The exact solution is obtained
by solving the corresponding nonlinear programming problem numerically. As in the
case K = 2, the approximation ES(p') seems to be an upper bound to ES(pt), with a

maximum relative error of only about 1%.

(K1, p2, p3) p! pt ES(p") | ES(BY) | %e

(1.0,0.8,0.5) | (0.549,0.360,0.001) | (0.567,0.367,0.067) | 3.027 | 3.039 | 0.40
(1.0,0.5,0.1) | (0.743,0.257,0.000) | (0.750,0.250,0.000) | 5.118 | 5.125 | 0.14
(1.0,0.2,0.2) | (0.855,0.073,0.073) | (0.867,0.067,0.067) | 10.01 | 10.10 [ 0.90
(1.0,0.1,0.1) (0.926,0.037,0.037) (0.933,0.033,0.033) 19.77 19.99 1.11
(0.7,0.4,0.3) | (0.562,0.267,0.171) | (0.567,0.267,0.167) | 11.85 | 11.86 | 0.08
(0.7,0.3,0.2) | (0.631,0.233,0.135) | (0.633,0.233,0.133) | 24.86 | 24.89 | 0.12
(0.7,25,.15) | (0.666,0.217,0.117) | (0.667,0.217,0.117) | 51.70 | 51.72 | 0.04
(1.2,1.0,0.3) (0.594,0.406,0.000) (0.600,0.400,0.000) 2.032 2.033 0.05
(2.0,1.0,1.0) | (0.938,0.031,0.031) | (1.000,0.000,0.000) | 0.992 | 1.000 | 0.81
(2.0,2.0,1.0) | (0.500,0.500,0.000) | (0.500,0.500,0.000) | 0.750 | 0.750 | 0.00

Table I1.2.

Asymptotic Approximations for K =3
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CHAPTER III

QUASI-STATIC LOAD ALLOCATION IN
PARALLEL QUEUES WITH RESEQUENCING

II1.1. INTRODUCTION

The model of Chapter II is again considered when the service times are ex-
ponentially distributed with rate pi in queue k, 1 < k € K. The Poisson arrival
rate is still denoted by A and the notation bx = pr/A, 1 < k < K, is used.

In this chapter, the system parameters by, 1 < k£ < K, are all assumed
unknown. The approzimate optimal probability vector p! of the Bernoulli switch
that minimizes the average system delay is given in Section II.5 as the projection

p F, € o

onto the probability simplex D, where b = (by,...,bk). The simple form of (3.1.1)
is utilized here in a stochastic approximation (SA) algorithm for computing the
vector pf.

The next section provides a brief introduction to SAs and a framework for the
proposed algorithm. In Section 3, an idle time measurement model is described to
estimate the system parameters (see also [Bok]). The proposed SA algorithm is
given in Section 4 and several numerical examples are collected in Section 5. All

the RVs in this chapter are defined on a probability space (2, F,P).

»
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III.2 BACKGROUND ON STOCHASTIC APPROXIMATIONS
Let h be a function from IR¥ — IR¥, and consider the problem of finding the

unique vector p* such that

h(p*)=0.

There are various iterative methods for determining p*, such as the Newton’s
method or its variants. These methods require the evaluation of the function A(-)
and its derivatives. In many situations, unfortunately one can only observe h(p)
corrupted with error or noise, i.e., only h(p) + £ is available for some RV ¢.
Robbins and Monro [RoM] suggested the following SA procedure for the so-
lution of this problem: Given an arbitrary initial point py(*) and a decreasing

sequence of positive numbers {a, n =0,1,...} such that

o0 o0
Z a2 < oo and Zan =00, (3.2.1)
n=0 n=0

set

DPn41 = Pn — Qp2n , (322)

where z,, is the outcome of the measurement at the nt? iterate given by
Zn = h(pn) +&n , n=20,1,..., (3.2.3)

where {{,, n = 0,1,...} is a sequence of conditionally independent zero-mean
RVs. Robbins and Monro proved that the sequence {p,, n = 0,1,...} obtained
from this procedure converge to p* under the conditions given in (3.2.1). The first
condition in (3.2.1) guarantees that.the jumps p,+1 — p, are damped to achieve
convergence, while the second condition ensures that the magnitude of the jumps
does not decrease too rapidly to allow recovery from a poor choice of py.

Since {RoM], SA algorithms became increasingly popular in applications due

to their ease of implementation and to the availability of a comprehensive theory

() In this chapter, the subscript n represents the iteration number, so that the

kt* component of a vector z, in IR¥ is denoted by zkn, 1<k < K.
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concerning their asymptotic behavior. The reader in referred to [KuC], [HaN] and
the references therein.

In some cases, such as the one considered here, the iterates p, have to lie in
some constraint set . A modified version of the basic Robbins-Monro algorithm

is given by Kushner and Clark [KuC] when E is closed and bounded: The (n+1)**

iterate is obtained by projecting the vector p,, — anz, onto the set E, i.e.,

Pn+1 = PE(pn - anzn) . (324)

Sufficient conditions for almost sure (a.s.) convergence of this modified procedure

to p* are also established in [KuC].

I11.3. THE MEASUREMENT MODEL

In this section, a simple procedure for estimating bx, 1 < k < K, from idle
time measurements in the k' M/M/1 queue is described. These estimates provide
the aforementioned sequence {z,, n = 0,1,...}. This measurement technique
is used by Kumar [Kum] and Bonomi and Kumar [BoK] for similar quasi-static
optimization problems.

Consider a stable M/M /1 queue with utilization p. Assume that this queue is
sampled at the points of a Poisson process with rate v, independent of the arrival
and service processes in the queue. If N, is the number of samples in the interval
[0, 7], and 1, is the number of times the queue is sampled idle in this interval, then

the a.s. relations

lim 2 = lim 2= = —p (3.3.1)

hold (see Appendix IV). ’
With the RV y, defined by

N \—1
ro=(1—— 3.3.2
yri= (1= 20)7 (33.2)
it is plain from (3.3.1) that
lim y, =p~?, a.s.
T—00
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Therefore, y, can be written in the form
yr =p ' +w; (3.3.3)
for some RV w,, where
wr -0 as. as T-500. (3.3.4)

For the parallel system, assume that each server is sampled independently
by a Poisson process with rate v. After every measurement interval the central
scheduler (Bernoulli switch) receives the number of times each server was found
idle by the Poisson sampling process. Let ngn, 1 < k < K and n = 0,1,...,

th measurement interval of length

denote this number for the k* server in the n
Tn. The choice of the deterministic sequence {r,, n = 0,1,...} is crucial for the
convergence of the proposed SA algorithm (see Remark I11.4.3). The queue length
at the end of the n** measurement interval is used as the initial queue length for
the n+1°% interval. The switching probability vector p, is held constant during the
nt* measurement interval and is updated upon receipt of the new measurements.

The arrival rate into queue k¥ during the n*” interval is therefore Apy . Define

P 1<k<K, n=0,1,.... (3.3.5)

Yk, = '1' —fkn 0
VTy

When v, is not chosen to be an integer, the denominator is non-zero and yi » is
always well defined.
In view of (3.3.2) and (3.3.3), the following model for the measurement vector

Yn With components yr n, 1 < k < K, is proposed:
Y =br+wWkn, 15kSK, n=0,1,..., (3.3.6)
where the noise sequence {w,, n =0,1,...} has the property

wp — 0 a.s. as Tp — 00 . (3.3.7)

III.4. STOCHASTIC APPROXIMATION ALGORITHM
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Let the function h : IR¥ — IR¥ be defined by

K
h(p):=p—b— %(1 ~S b, (3.4.1)
k=1

and define the sequence of vectors {z,, n =0,1,...} by

K
1
Zn :=pn—yn—-E(1—Zykm)e, n=20,1,... . (3.4.2)
k=1

It is plain from (3.3.7) and (3.4.1) that

znzh(Pn)+€n n=20,1,...

where

K
1
€n = —wn + V74 (; wk,n) e, n=0,1,... . (3.4.3)

If h(p*) = 0, then pt = Pp(p*), i.e., p is the projection of the root of the
continuous function h onto D. However, since the vector b is not known and only
yn can be measured, only z, = h(ps) + &n is available. This setup naturally calls
for the SA algorithm outlined in Section 2. Since the vector p, needs to be a
probability vector in order to obtain the measurements for the (n + 1)** interval,
a projection algorithm of the type given in (3.2.4) is needed.

To summarize, the following SA algorithm is proposed where the positive

sequence {an, n =0,1,...} satisfies the conditions in (3.2.1):
Algorithm III.1. g

(i) Start with a probability vector pp, and set n = 0.
(ii) Obtain the idle time measurements Nk,n, 1 < k < K, during an interval of
length 7.
(iii) Compute
Pkn 1<k<K.

Yk, = 1— Nk,n ?
vTy
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(iv) Compute
1 K
Zn = Ppn — Yn — f(l —;yk’n) e.

(v) Compute pnt1 = Pu(pn — anzn).
(vi) Set n « n+1, and go to (ii).

Remark II1.4.1. Since the set D is unknown, in step (v) the projection is done

onto the probability simplex U := {p € [0,1)¥ : 211;1 pr =1}

Remark III.4.2. Note from (3.4.2) that

K
~ 1 ,\
n— Unip = Up —=(1 - n
Pn — Gp2 b +K( kE=1bk, )e

where

i)n = (1 - an)pn + anYn .

Therefore, in step (v) of the Algorithm IIL.1, p,4; is obtained by replacing b with

~

b, in Algorithm II.1.

Remark IT1.4.3. A convergence proof for the Algorithm III.1 is currently under
investigation. Numerical observations in Section 5 indicate that the algorithm
converges within a neighborhood of ' even when 7, =7, n =0,1,.... The choice
of 7 is also important for the accuracy and the robustness of the algorithm. Clearly,
for large values of 7 the measurements and the control algorithm derived from it
will be more accurate, but the control will be updated less frequently. The reader

is referred to [BoK] for a discussion én choosing 7.

The sequence {a,, n =0,1,...} is typically taken to be

a
n+1l’

an—

n=20,1,... (3.4.4)

for some a > 0. In this case, the asymptotic normality of the normalized error term

v/1(pn — P!) has been established in the literature under various assumptions. The
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reader may find an account of the relevant references in [NeH]. Generally speaking,
if {an, n=0,1,...} is of the form (3.4.4), then limn—co /7 (Pn — $') is normally
distributed with zero mean and covariance matrix C. The matrix C in general
depends on the parameter a and the gradient VA(p*), and a is chosen so that C is
minimal. The interested reader is referred to [NeH, p. 169] for the general form of
the C matrix. For the function h given in (3.4.1), Vh(p*) is the identity matrix,

and the matrix C is given, after some elementary computations, by

a?

C=(2a—1) Ce

where C¢ is the covariance matrix of the RV £,,. Therefore, C is minimal when

a = 1, and the sequence, {a,, n =0,1,...} is thus taken as

, n=0,1,...,

in the following examples.

III.5. NUMERICAL EXAMPLES

In this section the results of a few experiments obtained from a simulation
program that implements the SA Algorithm IIL.1 with 7, = 7, n = 0,1,..., is
presented. The numerical examples are picked among the ones given in Table 11.2
of Chapter II, i.e., K = 3 and A = 1. The service rates ur, k¥ = 1,2,3, and the

corresponding pf vector (from Table I1.2) are given in Table II1.1 for each example.

Example p | (p1,p2,ps) pt

1111 0.25 [(2.0,1.0,1.0)| (1.000,0.000,0.000)
T11.2 0.63 |(1.0,0.5,0.1)| (0.750,0.250,0.000)
IIL3 0.91 |(0.7,25,.15)| (0.667,0.217,0.117)

Table III.1
Test Examples for the SA Algorithm
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In all three examples 7 = 1000 * max{u;1 : k = 1,2,3} while v is such that
v = 1000 (see [BoK]). In all cases py = (0.33,0.33,0.34). The curves marked
1, 2 and 3 in Figures III.1-II1.3 present the evolution of the optimal switching
probabilities p1,n, P2,n and ps ., for the first 10, 25 and 35 iterates, respectively.
Although the convergence of the proposed algorithm is not established, the iterates

converged to within 5% of the-limiting values in a few iterations.
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Figure III.1.
Pny n=0,1,...,10 for Example IIL.1.
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0 -x- 350 -y- 1

Figure II1.2.
pa, n=0,1,...,25 for Example II1.2.
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CHAPTER IV

ASYMPTOTIC RESULTS FOR PARALLEL
QUEUES WITH RESEQUENCING

IV.1. INTRODUCTION

The model of Chapter II is again considered when the load is equally allo-
cated to K parallel queues with identical service time distributions. The common
service time distribution is denoted by B(-) with finite mean 1/u so that the sys-
tem capacity is now Ku. When the load is equally allocated to the queues, the
distributions of the waiting and response times are identical for all queues, and are
denoted by W{¥)(.) and T(¥)(.), respectively. Note in this case that the RV T(¥)
is also the disordering delay. The system time S and the resequencing delay R are
also represented by S(X) and R(X), respectively, to indicate their dependence on
K.

Attention is given here to the variation of the RVs T(¥) R(X) and $(¥) with
K. In Section 2, it is shown that the RV T(¥) is stochastically integer convex
and decreasing in K, while ES(K) is decreasing in K when the arrival rate to
the system remains constant. Asymptotic expressions in K are also provided for
TE) (), RE)(.) and SH)(-) in Section 2 to establish (i) convergence of these
distribution functions to the corresponding distributions in the M/GI/co system
with resequencing and (ii) asymptotic monotonicity and integer convexity results
for these RVs. It is shown that, while the behavior of R(X) in general depends on
the load of the system, T¢X) and S(X) always have similar structural characteris-
tics. For instance, ES() is also (asymptotically) integer convex and decreasing
in K.

In Section 3, the arrival rate to the system is increased linearly with' K. A
totally different limiting behavior is now observed in this case: R(X) dominates

T as both ER) and ES¥) grow as log K, while ET(X) remains constant.

— 54—



IV.2. ASYMPTOTIC RESULTS FOR CONSTANT LOAD

In this section, the limiting behavior of the totally homogeneous system is
studied when the arrival rate A to the system is held constant, and the number K
of queues is increased. The RVs W(K) and T(¥) correspond to the waiting and
response time distributions in a M/GI/1 system with arrival rate A\/K and service
time distribution B(:), respectively. The notation py = A/u is used throughout
this chapter. y

The following result follows directly from the convexity result in Appendix II

and extends the monotonicity result of [Sto, p. 82].

Corollary IV.2.1. In the homogeneous system with equal load allocation,
the response time T5) is stochastically integer convez and decreasing in K, i.e.

{T®)] K € IN} € SDCX(st).

Remark IV.2.1. For the system time S(¥), only asymptotic results are currently

available (see Corollaries IV.2.5 and IV.2.6).

For this totally homogeneous system, equations (2.3.3b) and (2.3.3¢) in Chap-

ter I can be rewritten as
R (z) = / (W (4 1)K -1dT (1) (4.2.1a)
0

and

S9(@) = WO — oW () (4.2.18)

for all £ > 0.

As I goes to infinity, the load in each queue goes to zero, and the distributions
of the RVs W) and TWX) tend to the unit step function and to B(-), respectively.
The expansions of these distributions as p — 0 is the subject of the following
lemma. For the purpose of the analysis to come, the expansion of the waiting time
distribution is given up to the second order term, while a first order expansion

suffices for the response time distribution.
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Lemma IV.2.2. Let W,(:) and T,(-) be the distributions of the waiting and
response times in ¢ M/GI/1 queue with utilization p = \/p, where X is the arrival

rate and 1/ is the mean of the service time distribution B(-). Then, as p — 0,

Wi(e) = 1 — p(1-Vi(e)) + PA(Va(e) ~Va()) + ofs?) (42.20)
and

Ty(z) = B(z) ~ p(B(z) - Va(a)) + olp) (4.2.28)

for all x > 0, where

i@ =p [ A-B@) Vi@ =s [ V-0 - B

and

Va(z) = p /0 “ Bz —t)(1 - B(t))dt . (4.2.2¢)

Proof. Note that V;(-) is the distribution function of the residual service time Vj,
and that, V() = V3 *V4(-) with * denoting the convolution. Equation (4.2.2a) thus
easily follows by inverting the first two terms in the expansion of the Pollaczek-

Khinchin transform formula [Kle.a, p. 200]
o0
Wi(s)=(1—-p) Y p*[Vi(s)*,
k=0

and by rearranging the terms.
Equation (4.2.2b) is plain since T,(-) = B * W,(-) and V3(-) = Vi * B(-).

a

Remark IV.2.2. Note that in a M/GI/1 queue in statistical equilibrium a
job will arrive to an empty system with probability 1 — p, and that there will be
exactly one job in the system with probability p + o(p). This can be proved using
the Pollaczek-Khinchin formula for the queue length distribution. Therefore, the
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asymptotic expansion of the response time T, can also be obtained by observing

that

B with probability 1 — p,
T, =

Vs with probability p + o(p) .

The following asymptotic expansions for the distribution functions and means

of the RVs TK), R(K) and SK) constitute the main result of this section.

Theorem IV.2.3. Consider the system of K homogeneous -/GI/1 queues in
parallel with Poisson arrivals and balanced Bernoulli loading under the resequenc-
ing constraint. As K goes to infinity, the asymptotic expansions of the response,

resequencing and system time distributions are given by

T()(2) = B(z) + 22(Vs(2) - B(@)) + o(~ (4.2.30)

K)

R¥)(z) = / 6“’°V“”+‘>dB<t)+% / e=PoViEH(F(z 4 t) — po)dB(t)
0 0

+ % " VA g (1) 4 of K) (4.2.3b)
and
S (z) = Ba)e T 4 Lm0 [(B(z) — po)Bla) + poVa(@)] + ol )
(4.2.3¢)
where
F(z) = A(Va() ~ Va(@) + poVa(0) - BT %()  (423d)
for all 3 > 0. Their means are given by
ET™) = p £1-i2"—21’é—)ﬂ + o(%(:) (4.2.4a)
ERUO _/ (1 - e=# V1) B(g)dz + LL p? [e‘” — (14 0%p?) e, +O(_1_)
7 X K
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(4.2.4b)

and
1 —¢ePo e - 2 Te—ro 1
E'S’(K) - - / 1~ —poVi(z) d ﬂ_ el
) + ; (1-e ) :c+2K X +G +0(K) (4.2.4¢)
where

G = /0 - (Vf(z) +2(Vi(z) - 1/2(:,;))) e=PoV1(@) gy

Proof. Since T(K) denotes the response time in a M/GI/1 system with arrival
rate A/K and service time distribution B(-), replacing p with po/K in (4.2.2b)
gives (4.2.3a). Equation (4.2.4a) then follows by simple integration.

Equations (4.2.3b,¢) are derived from (4.2.1a,b) and (4.2.3a), replacing
W () by its expans:l‘on (4.2.2a), with X replaced by A/ K, and noting that as K

goes to infinity

]_+_u_+._v_+ (_}_ K_ u 1+2_v_:£2_+ (_1_ (425
K TK? T8 = ¢ s TAE%)) - -2.5)

Rather than using (4.2.3¢) to obtain ES (K) by integration, it is much simpler

to start from the relation
> 1
(K) _ _ i (K) (1K 2(1-(1-Po0K
ES = /0 (1 (W™ ()] )dw + X (1 (1 K) >

derived from (2.4.4), and to replace W{)(z) by its expansion (4.2.3a). Equation
(4.2.4c) then follows from (4.2.5) by routine manipulations. Finally, ERU is
again computed as ESU) — ETUO,

a

Remark IV.2.3. The terms indicated with the shorthand notation“o(1/K)” in
(4.2.3) are functions of z. By tedious yet straightforward calculations it can be
shown that the integrals involving these functions in Theorem IV.2.3 exist and are

still of the order o(1/I), so that the expansions given in the theorem are valid.
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Corollary IV.2.4. For the system of K homogeneous -/GI/1 queues in parallel
with Poisson arrivals and balanced Bernoulli loading under the resequencing con-
straint, the limiting distributions of the response, resequencing and system times
as K goes to infinity exist and coincide with the corresponding distributions of the

M/GI[/oo system with resequencing, namely

T*°(z) = B(z) (4.2.6a)

R*®(z) = /:Poe"”V‘(”t)dB(t) (4.2.60)
and

§%°(z) = B(z)ePoVi(®) (4.2.6¢)

for all z > 0. Their means are given by

ET* = 1 (4.2.7a)
p
ER>® = /0 Tl = e PVi®)B(o)ds = ES® — ET™  (4.2.75)
and
ES>™ = 1—_;‘6;2 + /(;oo(l - e_”°V‘(’))da: . (4.2.7¢)

Proof. Equations (4.2.6) and (4.2.7) easily follow by letting K — oo in (4.2.3)
and (4.2.4), respectively. The fact that these distributions coincide with the cor-
responding quantities in the M/GI/oo system with resequencing can be verified
from the results of [HaP)].

O

Remark IV.2.4. In the M/M/1 case, the asymptotic expansions (4.2.2a — b)

are immediate since
T(z) =1~ e HI=PT — 1 _eTH _ puze ™ + op)
and
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Wo(z) =1— pe #1=P%7 = 1 pe™#* — pPuze™* + o(p)

for all > 0. Therefore, (4.2.4a — ¢) simplify as

1
ETE) — 00 Po_ —
ET* + Ku + o(K) , (4.2.8a)
1 Po _ e—t 1
(K) o E o0 e — p— PO __ -
ER R>™ + 2[(;1,(1 e 2po+2po/0 ; dt) + o(K)
(4.2.8b)
and
1 Po 1 —et 1
ESU) = ES® 4+ ——(1—e™* / =) . (4.2
S + 2Kﬂ( e "0+ 2pg A : dt) + O(K) (4.2.8¢)

When the service times are deterministic, (4.2.4a — c) take the form

1 1
TE) - — 4 2 — 2.

E p + 5Ka + o(K), (4.2.9a)

ER™ = oy + o(i) (4.2.9b)
6K u K

and
1 (3 + po)po 1
(Ky — — o W Tr0R =
ES p + 6K 1 + O(K) . (4.2.9¢)

By studying the sign of the coefficient functions of 1/K in the asymptotic ex-
pansions of Theorem IV.2.3, it is now possible to give asymptotic integer convexity
and monotonicity results. Additional comments are also made in Remark IV.2.5

without the tedious details in calculations.

Corollary IV.2.5. In the resequencing system of K homogeneous -/GI/1 queues

in parallel with Poisson arrivals and balanced Bernoulli loading, the mapping K

ES(K) is qsymptotically integer convezr and decreasing.

Proof. The mean ES() is asymptotically integer convex and decreasing if the

term in square brackets in (4.2.4c) is strictly positive. By the definitions of the

- 60 —



functions Vi(-), ¢ = 1,2, given in (4.2.2c), it is plain that
Va(e) = [ Vile - 0dh() < V) < M)
0

for all z > 0, and the constant G is thus positive. The result now follows easily
since e™”/A+ G > 0.

|

o

Remark IV.2.5. The situation for R(*) is more complex as should be apparent
from (4.2.3b). When the service times are deterministic, it is plain from (4.2.9b)
that ERUS decrease to 0 at least asymptotically. In the exponential case however,
the study of the term in parenthesis in (4.2.8b) shows that asymptotically ER(K)

increases (resp. decreases)to ER™ for py < pg (resp. po > pg) with p§ ~ 0.783652.

Although the integer convexity and monotonicity of ES(K) is given only
asymptotically in Corollary IV.2.5, the monotonicity of ES(¥) in K follows from
Theorem 11.4.6 for all K.

Corollary IV.2.6. In the totally homogeneous system, the expected system time
ESY) decreases with K.

Proof. The system with K — 1 queues can be obtained from the system with K
queues by setting pr = 1/(K —1) for 1 < k < K and px = 0. The result therefore

follows from Theorem I1.4.6 since

,0) = ESK-—I 3

1 1
<
BSx < BSx(g—p o k=1

with an obvious meaning to the notation.

a

Asymptotic expansions in (4.2.3) also provide the following weak asymptotic

stochastic convexity and monotonicity result for the RV S,

Corollary IV.2.7. If S is the end-to-end delay in the resequencing system

of K homogeneous -/GI]1 queues in parallel with Poisson arrivals and balanced
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Bernoulli loading, then for allx > 0, there ezists a finite integer K(x) such that the
mapping (K(z),00) — [0,1] : K + P[SU) > g] is integer convez and decreasing.

Note that the constant K(z) depends on z since the term o(1/K) in (4.2.3c) also
depend on z as indicated in Remark IV.2.3.

Proof. The result follows if the term in the square brackets in (4.2.3¢) is strictly
negative for all z > 0, i.e., if for all z > 0, K + S(¥)(2) is increasing and concave
for K > K(z). By using the definition (4.2.3d) of F(-), this term can be rewritten

as

(F(@) = po) Bo) + potae) =at (Vaw) - 242 - 1) B

+po(Va(z) — Ba)Va()) . (4.2.10)

It was shown in the proof of Coroltary IV.2.5 that Vo(z) < V{¥(z). Indeed, it
is a simple exercise to show that Vz(z) < V{*(z), unless B(:) is the unit step
function. Therefore, the first term in (4.2.10) is strictly negative for all x > 0 since
Vi2(z) < 1. Similarly,

Va(z) = /0 " B(z —t)dVi(t) < Vi(@)B(z)

and the second term in (4.2.10) is also negative for all z > 0. Therefore, the
coefficient function of 1/K in (4.2.3c) is strictly negative for all z > 0, and the
result follows.

|

Remark IV.2.6. The stronger asymptotic result, namely, that there exits a
finite integer K* such that the mapping (K*,00) — [0,1] : K — P[SU) > 2] is
integer convex and decreasing for all z > 0, is currently under investigation. Note

that this is equivalent to the RVs {S)| K > K*} being SDCX(st).

To conclude this section, asymptotic expansions of the probability of being a

star job are given in some special cases. In the totally homogeneous system, the
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formula (4.2.1a) takes the form
RUO(0) = P (4) = / (W) ()] K-1a7() (),
0
In the exponential case, tedious yet elementary computations show that
1 Po
PB ()= —N1-1-2HK,
(0= o= (=5
and the asymptotic result
e~ Po poe—Po

1- 1
PE) (4) = —
==+ 3x "%

thus follows from (4.2.5). Note that P>®(x) = (1 — e~?°)/po can also be derived
from the results of [KKM].
In the deterministic case, the asymptotic result

1

PO =1- 2 4o %)
K

2K

can be shown to hold. Note that P>°(%) = 1 as expected.

IV.3. ASYMPTOTICS FOR INCREASING LOAD

In this section, it is assumed that the input rate Ag into the homogeneous
system with I queues is Ajr = K for some fixed A. Thus, the load of each queue
remains fixed at pg = A/u as K varies. Therefore, the common distributions of

the 7.7.d. RVs Wy and T, 1 < k < K, are independent of K and are now denoted
by W(-) and T'(-), respectively. Equation (2.3.4c) now reads as

-

1—(1—po)¥

3.1
KX (4:3.1)

ESE) — E( max W) +
1<k<K

The asymptotic method used in [BMS] for the Fork-Join queue applies, and leads

to the following theorem.
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Theorem IV.3.1. If the Laplace transform of B(-) is rational, then
ES® = ylogK(1+0(1)) = ER®O + ET, K->

where the constant v depends on the distribution B(-).

Proof. Note that the second term in (4.3.1) decreases to zero with rate 1/K.
Under the enforced assumption, the distribution function W(-) also has a rational

Laplace transform and the well-known asymptotic result
W(z) = 1-Ce (14 0(1)), T — 00 (4.3.2)

thus holds for some positive constants C and g¢; see [Bor, p. 129] for a similar
proof for the response time distribution. Theorem 7.4 of [BMS] therefore applies
to yield

E( max W) = log K

max, (1 o(D)

and the theorem follows for ESK) with v =1/q.
The second equality trivially holds. Note that since ET is constant, ER)

also grow as log K.

O

Remark IV.3.1. This limiting behavior of the resequencing system is similar
to the one observed in a Fork-Join system [BMS]. In the corresponding Fork-Join
system, a job arriving into the system is forked into K tasks and each task is
processed in one of the K parallel queues. As soon as all the tasks of a job have
been serviced, the job is immediately assembled (i.e., tasks are joined) and leaves
the system. When the service times are :.:.d. with a rational Laplace transform
and when the arrival process is a renewal process, the moments of the system time

in this Fork-Join system have been shown to grow logarithmically in K [BMS].

Remark IV.3.2. When the service times are of PH-type with representation
(a, A), the waiting time distribution is again PH-type with representation (pom, L),
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where m = —paA™! and L = A+ poA°w [Neuw.b]. In that case, —q in (4.3.2) is the
eigenvalue with largest real part of the matrix L [Neu.b, p. 63].
In the exponential case, L = A\g — y, so that v =1/(u — A\¢), and

(o). (4.3.3)

Remark IV.3.3.  When the load in each queue is held fixed, the limiting
behavior of the system with parallel buffers as K goes to infinity differs from that
of the M/GI/oo queue with resequencing, i.e., the limiting behavior of the case
when there is a common buffer. To illustrate this, let ES$ be the average system
time when the DS is the M/M /oo queue with arrival rate AK and service rate p.
Replacing po by Kpg in (4.2.7c) then yields

ES® = /oo (1-e-’<f’°e'“‘) dz + o(1)
0

Kpo 1 _ —u
= J‘—/ 1-¢ du + o(1)
0

7 u
1 o Kpo g—u

=7 (/0 - du + log(Kpe) — /1 " du) + o(1)

= loi K (14 0(1)) (4.3.4)

where the last equality follows since f1°° e */u du < oo so that
K -t

lm _fl__m_e_u__gti —
K—o0 log Po K

Comparison of (4.3.3) and (4.3.4) shows that although both ES) and ES grow

logarithmically in I, the average end-to-end delay has a smaller growth when there

is a common buffer.

Remark IV.3.4. At increasing load, in the exponential case, the probability of

being a star job is given by

. 1 1 1
PU () = I_(};;[l —(1=po)"] = Koo (%) -
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In conclusion, when the arrival rate into the system is also increased so as
to keep a fix load to each queue, the delay due to resequencing grows in log K
while the disordering delay does not change with K. This result indicates that the
resequencing delay will have a major impact on the end-to-end delay for highly
parallel systems with reasonable load in each queue. This is illustrated in Table
IV.1 when the service time distributions are exponential. Table IV.1 presents the
ratio ESU) /ET for various values of K and py. As apparent from this table, the
resequencing delay is much larger than the disordering delay, especially for large

values of K and po.

po\K | 10 | 30 | 50 | 70 ET
0.1 140 | 1.99 | 2.38 | 267 1.11
0.2 1.96 | 2.87 | 3.34 | 3.66 1.43
0.5 2.34 | 3.34 | 3.83 | 4.15 2.00
0.7 2.62 | 3.65 | 4.15 | 4.48 3.33
0.9 2.83 | 3.89 | 4.40 | 5.24 10.0

Table IV.1.

The ratio ESx/ET for exponential servers
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CHAPTER V

DYNAMIC LOAD ALLOCATION IN PARALLEL
QUEUES WITH SYNCHRONIZATION

V.1. INTRODUCTION

In packet switching networks, long messages are broken into several shorter
packets which are simultaneously transmitted from source to destination over vir-
tual circuits (parallel channels). Since the transmission time of a message over
a channel is proportional to its length, this “pipelining” effect can considerably
reduce the transmission time of a message over that of transmitting the message
as a single packet. At the destination node the messages are first reassembled and
then resequenced.

This chapter considers such a communication system when the parallel chan-
nels are :dentical. The DS is again modeled as a system of K parallel single server
queues (channels). The assembly and resequencing operations of jobs (messages)
are both performed in the RB. The problem of dynamically allocating the work-
load (message length) of each job to the parallel queues is considered when the
interarrival times and workloads of jobs form two mutually independent sequences
of z.1.d. RVsj Specifically, for each job arriving to the system, the problem of op-
timally partitioning its workload into L < K tasks (packets) for transmission over
the parallel queues is studied when the cost-per-stage is taken to be the system
time of a job.

The problem is formally defined in Section 2. The dynamic programming
methodology is used in Sections 3 and 4 to obtain the optimal allocation policy
which minimizes the average discounted cost. It is shown that the optimal policy
is Markov stationary and steers the workload in each queue to a balanced position
as fast as feasible. In Section 5, the optimal policy for the discounted cost is
shown to also minimize the corresponding average finite horizon and the long-run

average costs. Section 6 considers the case K = 2 and illustrates how the solution
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methodology of Sections 3-5 can be used to obtain the optimal scheduling policy
when the messages are transmitted as a single packet. Optimality of joining the
queue with the smaller workload is established for the discounted, finite horizon

and the long-run average costs.

Denote the largest component of any vector z in R¥ by ||z||, i.e., ||z| :=
max{zx; 1 < k < K}. A function f : RX — R is said to be monotone in-
creasing if z < y implies f(z) < f(y), where the inequality # < y is understood

componentwise as zx < yx, 1 <k < K.
V.2. THE MODEL AND THE PROBLEM FORMULATION

The model considered here is defined on some probability space (2, JF, P)
that carries all the RVs of interest. Jobs arrive to a system of K parallel identical
queues each with an infinite capacity buffer. The time between the n** and (n—1)**
arrivals is denoted by 7(n), n = 1,2,... . The workload of the n** job to arrive to
the system is represented by the R4 -valued RV o(n), n = 0,1,... , with ¢(0) = X.
It is assumed that the 0** job arrives to the system at time ¢ = 0 and finds the
initial workload in the system to be the ]R,f -valued RV W, i.e., W} is the workload
of queue k at ¢t = 0, not including the workload of the 0t* job.

Upon arrival, a job is partitioned into smaller tasks which are allocated to the

Te = 1} represent

parallel queues. Let the vector u(n) in U := {u € [0,1]K : u
the allocation of the n** job to the queues, i.e., o(n)ur(n) is the workload of the
kth task of the nt® job, 1 < k < K. It is assumed that the service rate (channel
capacity) in each queue is fixed and thus equal to 1 without loss of generality.
Therefore, o(n)ui(n) is also the service time of the k** task of the n** job. After
service completion, the tasks move to the RB to await service completion of the
other tasks that belong to the same job. After all the tasks of a job complete their
service, the job is reassembled. A reassembled job further awaits in the RB for all
the jobs that have arrived to the system earlier to be reassembled.

The following assumptions are made:

(A1) The RVs ¥ and W, and the sequences of RVs {7(n), n = 1,2,...} and
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{o(n), n=0,1,...} are all mutually independent.
(A2) The RVs {r(n), n = 1,2,...} and {o(n), n = 0,1,...} each form a
sequence of i.2.d. RVs with common distribution functions A(-) and B(-),

respectively, with the properties EA < oo and EB < oo.

An admissible control policy 7 is any collection 7 = {r,, n = 0,1,...} of
mappings

7rn:]R+xR_Ifx(UxR_Ifx]R+)"—>Ll. n=0,1,...

The collection of all such admissible control policies is denoted in the sequel by
II. For every = in II, the ]Rf-valued RVs {W"(n), n=0,1,...} and the U-valued
RVs {U™(n), n=0,1,...} are recursively defined by

W (n+1)=[W™(n) + o(n)U™(n) — 1(n +1)e |* (5.2.1a)
and

Ut(n+1) =1 (B, WU (r), W™ (r + 1),0(r +1), 0<r <n) , (5.2.10)
with initial conditions
WT™0)=W  and U™(0)=m(W,X). (5.2.1¢)

For 1<k < Kandn =0,1,... , the RV W[ (n) represents the workload of the
k™ queue at the n** arrival epoch, while the RV UF(n) represents the fraction of
the n?* job allocated to the kt* queue, when the policy 7 is enforced.

If the control policy = is used, then the sojourn time of the k** task of the
ntt job is WZ(n) 4+ UF(n)o(n), 1 < k £ K, and the system time S™(n) of the nt*
job is thus given by

S™(n) = |W™(n) + c(n)U"(n)|| - (5.2.2)

Note that the maximum is taken over all queues, even if some of the components

of U™(n) are zero, so as to ensure that the jobs leave the system in sequence.
Therefore the synchronization delay in S™(n) is due to both the reassembly and

resequencing operations.
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For every 8, 0 < f < 1, the §-discounted cost associated with a policy = in
IT is defined by

Jg(m):=E [i ,B”S"(n)] , (5.2.3)

n=0

and the minimization problem (Pg) of interest is then
(Pg): Minimize Jg(x) over II .

Let A and B be two independent R -valued RVs defined on  with probability
distribution functions A(:) and B(:), respectively. By simple conditioning, the

relation

PWn+1)<w, o(n+1)<o| IF;} (5.2.4)
= P{B < o}P {[W"(n) + o(n)U"(n) — Ae]* < w}

where

Fy =o{W,Z}Vo{c(®),W"(:),U"(:—-1), i=1,...n}

is seen to hold under the assumptions (A1) and (A2), for every admissible policy
7 in II. Therefore, the joint distribution of the pair (W™(n + 1),0(n + 1)) given
IF} depends only on (W™(n),o(n)) and U™(n). This suggests that the problem
(Pg) can be viewed as a Markov decision problem with augmented state process
(W™(n),o(n)). To that effect, for every value B, 0 < B < 1, the discounted
cost-to-go J§ associated with an arbitrary policy 7 in II is defined by

Jg(w,0)=E Z B W™(n) +o(n)U™(n)|]] | W=w, £= o} (5.2.5)

n=0

for all w in ]R_If and o in R4. The corresponding value function Vs is then given
by
Va(w,0) = ;gg Ji(w,0) .
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V.3. STRUCTURE OF THE VALUE FUNCTION
For any mapping f : ]R_If X R4 — R4, introduce Tgf, winU, and Ty f as

the mappings IR_If X IRy — R4 defined respectively by

T f(w,0) := |lw+ ou|| + BE [f ([w + ou — Ae]t, B)] (5.3.1)
and
Taf(w,0) = f‘IIGIII} T f(w, 0) (5.3.2)

for all w in R¥ and ¢ in Ry. The expectation in (5.3.1) is taken over the joint
distribution of A and B.

Theorem V.3.1. If the mapping (w,0) — f(w,o) is monotone increasing, and

the mapping w — f(w,0) is convez for every o in Ry, then so is Tgf.

Proof.

Monotonicity: Let w' and w? be two vectors in RX, and o! and o2 be two
scalars in Ry. If w! < w? and ¢! < 02, then w! + 0'u < w? + o%u for every u in

U, and the inequalities
Nlw' + oty € w4+ o%ul| and [w!+olu—7e]t < [w?40%u—Te]t (5.3.3)

readily follow for every 7 in R4. By the monotonicity of f, the second inequality
in (5.3.3) implies

f([w' +o'u —7e]*,0") < f([w® + o®u — 7e] T, 0") (5.3.4)

for every (r,0') in R4 x R4, and the monotonicity of T f(w, o) now follows from

the first inequality in (5.3.3), i.e.,
Ty(w',0') < T (w?,0?) (5.3.5)

holds for every u in Y. The monotonicity of Tgf is now immediate from (5.3.5).
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Convexity: Let o be a scalar in [0,1]. First the mapping (w,u) — T§ f(w, o) will
be shown to be convex for every o in Ry. Fix o in Ry, and let u! and u? (resp.

w! and w?) be two vectors in U (resp. ]Rf) The relations
lo(au! +au?) + aw' + aw?|| = ||la(ou’ +w') + @(ov® + w?)||

< aflout + | + @lov® + w?||  (5.3.6)

and
[aw! + @w? + o(ou® + au?) — re]t Z [o(w! + out — re) + a(w? + ou® — re))t
< afw! + ou! — re]t +@w? + ou? —relt

(5.3.7)

hold for every 7 in R, owing to the convexity of the mappings x + |[|z]| and

z > [z]*. Therefore,

f(aw® + @w? + o(au! +a@u?) — re]t,o")

< f(a[w! + oul — re]t + @w? + ou® — 7elt,0’)

< af([w + oul —7e]t,o') + @f([w? + ou® —rel*, o) (5.3.8)
hold for every (r,0') in R4 xR The first inequality in (5.3.8) follows from (5.3.7)

and the monotonicity of f, while the second inequality expresses the assumed

convexity of f.
The convexity of T4 f in the variable (w,u) thus follows from (5.3.6) and

(5.3.8), i.e., for every o in R4,
T[,’”‘l'*'a"zf(aw1 +aw?,0) < ozT[;‘lf(w1 ,0) + ETﬁzf(uP,a) , (5.3.9)
and the convexity of Tgf in w now follows from Lemma A.IIL.2 of Appendix III.
O
The key optimality result for problem (Pg) is now discussed.

Theorem V.3.2. The value function Vs satisfies the Dynamic Programming equa-
tion

Vs =T Vs (5.3.10)
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and is monotone increasing, while the mapping w +— Vg(w,a) is convez for every
oinRy.

Proof. Let {V,, n = —1,0,1,...} be a sequence of mappings ]R_If xRy — Ry
defined recursively by
Vn+]_=Tﬂ Vn, n=—1,0,1,...

where V_; is defined as the zero mapping on ]Rf x R4+. Owing to the non-
negativity of the cost function for every 7 in II, the sequence {V;,, n = —1,0,1,...}

is monotone increasing, and the convergence

Veo(w, o) := lim V,(w,0) (5.3.11)

thus takes place for all w in ]R_If and ¢ in IR;. Note from the continuity of the
mapping u ~ TgV,(w,o) that the level sets {u € U : T Vp(w,0) < A} are
compact for every w in ]Rf, o in Ry and A in R. Therefore, it follows from
the recursive definition of {V,, n = —1,0,1,...} and the Monotone Convergence
Theorem that Voo = Tp V. Proposition 13 of [Ber, pp. 264-266] thus implies
Vs = Voo and (5.3.10) is obtained. The second part of the proposition is now an
immediate consequence of the fact that monotonicity and convexity are preserved

under the limiting operation in (5.3.11).

O

The following properties of the value function is an immediate consequence of

Theorem V.3.2.

Corollary V.3.3. The value function V3 ezhibits the properties

1 Vg(w, o) = V3(0,0) , 5.3.12a
(w,a)renli% - s(w,0) = V;(0,0) ( )
min Vg(w,0) =V3(0,0), for every o in Ry, (5.3.12b)
wGR+
and
Iélli:{n Va(w, o) = Va(w,0), for every win REY . (5.3.12¢)
oER 4
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With a slight abuse of notation, let 7* be any Markov stationary policy in II,

induced by the mapping 7* : ]Rf X R4 — U, which satisfies the relation
Va(w,0) = (T3 Vs) (w,0)  (5.3.13)

for all w in ]R_If and ¢ in R;. Owing to the compactness of the control set U,

there always exists such a policy 7*, and as well known [Ber, Prop.13, p. 264], it

o

is optimal for problem (Pg).
The following property of the value function will be crucial in identifying the

form of the optimal control.

Lemma V.3.4. For each k, 1 < k < K, define the mappings Ry : R — R¥ by

(Wrkt1y+ o WKy W1,...,wg) 1<k< K
Ri(w) = (5.3.14)
w k=K .

With this notation, the value function Vg has the property
Vs(w, o) = Vg(Ri(w),0) , 1<k<K, (5.3.15)

for every (w,o) in ]Rf x Ry.

In fact the property (5.3.15) holds for any permutation of w. However, the cyclic
rotations Rg(w), 1 < k < K, suffice for our purposes.

Proof. For any policy 7 = {m,, n = 0,1,...}, define the policies Ry, 1 <k < K,
by Rim = {Ri(m), n =0,1,...}. Let II, be the set of Markov stationary policies
in II. Since the queues are homogeneous and ||w|| = |Re(w)|, 1 < k < K, it is

plain that the relations
J5(w,0) = J{*"(Re(w),0) , 1<k<K, (5.3.16)

hold for every 7 in IIs, w in ]Ri{ and ¢ in R4. The property (5.3.15) thus follows
by noting that RgIl, := {Rym, 7 € II,} = Il,.
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V.4. THE FORM OF THE OPTIMAL CONTROL

In order to provide an explicit form for the optimal policy 7* given by

W*(w,a) = argftneill}T; Va(w,0) ,

for all w in R and ¢ in Ry, consider first the vectors u*(w, o) which satisfy

u*(w,0) = arg l{réll‘q Tg Va(w,0) (5.4.1)

where Y’ := {u € R¥ : uTe = 1}. The following Lemma can be proved by

arguments very similar to the ones given in Theorems V.3.1 and V.3.2.

Theorem V.4.1. For all w in ]Rf and o in Ry, the Ry-valued function

u — T*Vg(w, o) is convez on the convex set U'.

The optimal policy n*(w,0) can be obtained from u*(w, o) by projecting it
onto U, owing to the convexity result of Theorem V.4.1. The following Lemma

will prove useful in establishing Theorem V.4.3.

Lemma V.4.2. If the mapping ¢ : RX R is convez and has the property that
PY(w) = P(Rr(w)) for all1 <k L K, then

min _$(w) = (< ¢)

{weRK: wTe=c}

for every ¢ in R.

Proof. For every vector a in ¢/ and all w in R¥, the inequality

K K
Y (Z akRk(w)) < Z arp(Ri(w)) = (w) (5.4.2)
k=1 k=1

follows from the assumptions enforced on . The result is now obtained by choosing

a = IlT e in (5.4.2) since —11‘7 E,If___l Ri(w) = Il—((wTe) e for every w in RY.
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|

Theorem V.4.3. For every o in Ry and w in ]Rf, u*(w, o) in (5.4.1) is given

by

w*(w,0) = [(-‘#) e—w] .  (543)

o

In words, u*(w, o) steers the workload vector to a balanced configuration, i.e.,
u*(w,0) is such that ou* + w has e§ual components. Note that this is always

possible since u*(w, o) is in R¥.

Proof. Define the mapping ¢ : RY — Ry by
Y(z) = |lz|| + BE [Vp ([z — A €], B)] . (5.4.4)

"By Lemma V.3.4, the equalities
¥(Ri(z)) = |Re(2)|| + BE [Vp ([R(z) — A ], B)]
= |lzll + BE [Vs (Re([z — 4 €]T), B)]
= 9P(z)

hold for every 1 < k < K. Furthermore, z — 1(z) is convex owing to the convexity
of the functions z ~ ||z||, [z]* and Vj(z,-). Therefore, 1 satisfies the assumptions

of Lemma V .4.2.
For every w in ]Rf and o in Ry, set z(u) = w + ou. Then, equation (5.4.1)

can be rewritten as

u*(w,0) = argmin ¢ (z(u)) .

Since, for every v in U, z(u)Te = o + wTe, i.e., z(u)Te does not depend on u, it

follows from Lemma V.4.2 that u*(w, o) is given by
+ ou™( a)—l(a+wT6)e
w+ou(w,0) = - ,

and (5.4.3) thus follows.
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O
The following result provides a necessary and sufficient condition for u*(w, o)

given in (5.4.3) to be in U.

Lemma V.4.4. If
K
A=) (ol —we)
k=1
then u*(w, o) given by (5.4.3) is in the set U if and only if A < o.
Proof. Note from (5.4.3) that u*(w, o) lies in the set I{ if and only if

< (o +wT e)

0< T — lw] (5.4.5)

since u*(w,0)Te = 1. It is plain from the definition of A that

K
z7+ 0T ) = ol = g0 = S (lwl - we) = 2=2

and the result holds.

O
In general, when u*(w, o) is not in U, the convexity result in Lemma V.4.1.

yields the following result.
Corollary V.4.5.  For every o in R4 and w in ]Rf, the optimal policy for
problem (Pg) is given by

™(w,0) = Pu(u*(w, o)) (5.4.6)

where u*(w, o) 13 given in (5.4.3).

In words, the optimum allocation strategy n* steers the system into a balanced
configuration as quickly as feasible.

The following corollary is now immediate and states that, if the workloads of
all the queues are the same, then the optimum allocation strategy n* keeps the

system in this balanced configuration.
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Corollary V.4.6. For every o in Ry and w in ]R_If such that w = ¢ e for some

c in Ry, the optimal policy is given by m*(w,0) = % e.

Finally, for a given w in ]Rf and ¢ in R4, an algorithm is provided for
computing the vector 7*(w, o). As mentioned before, if u*(w, o) is not in U, then
owing to the convexity of the mapping U’ — Ry : u — TgVs(w,0), m*(w,0)
is on the boundary of U, i.e., if uf(w,0) < 0 for some I, then n}(w,o) = 0.
After setting a component of 7* to zero, the problem reduces to allocating the
workload to a reduced set of queues so that the remaining components of =*
should be recalculated from (5.4.3) and (5.4.6). The following result states that if
several components of u*(w, o) are negative, then the corresponding components

in 7*(w, o) can all be set to zero at once, thus facilitating the computations.
Lemma V.4.7.  For every non-empty subset E of {1,...,K} with cardinality
|E| define the vector u(E) in RIEl by

O+ iep Wi

v (5.4.7)

urp(E) := g—(C(E) —wg), k€eE with ¢(F) =

Let | and k be different elements of E. If ui(E) < 0, then ur(E) < 0 implies that
ur(E\ {1}) <0.

Proof. The result follows from the following routine calculations

o+ Y icp Wi wy O+ icgWi O+ ;cpWi
BN =55 T E-T < -1 BB =D

where the first and second inequalities follow from c¢(F) < w; and ¢(E) < wy,

respectively.

Lemma V.4.7 leads to the following algorithm
Algorithm V.1.
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(i) Set. E~{1,2,...,K}.
(i) Compute the vector u(E) from (5.4.7).
(iii.a) If uxg(E) > 0 for all k in E, then STOP. The optimum allocation vector is
given by

N up(E) kin E
Wk(w’a)'_“{()k( ) kiz{l,...,K}\E-

(iii.b) Else, for every k in E such that ux(E) < 0, set E « E \ {k} and go to step
(ii). d
V.5. THE FINITE HORIZON AND LONG-RUN AVERAGE COSTS

In this section, the finite horizon and the long-run average cost problems are
briefly discussed. It is shown that in both cases the optimal policy is the one given

for the discounted cost problem.

V.5.1. The Finite Horizon Problem
For any policy rinIl andn = 0,1,.. ., the n-stage total and average expected

costs are defined respectively by

J™(w,0) :=E Z W (@) + o()UG)|| |W=w, T= a] (5.5.1)

and

~ 1 .
J,’{(w,a) :=n—_—*_'-i-J::(w,0) (552)

for all w in ]R_,If and o in R,.. The corresponding value functions are given respec-
tively by
Va(w,0) = inf J;(w,0)

and

~ oA 1
Va(w,0) =11I€1% Ji(w,0) = mVn(w,o) .

For the total expected cost the dynamic programming equation is given by

Vo(w,0) = mellr} lw + oul| (5.5.3)
Vim(w, o) = melzrxl{”w 4+ oul| + E [Vimoy ([w +ou — Ae]*, B)]}. m=1,...,n
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Let 7}, be the vector in { which minimizes the right hand side of the mt*
equation in (§.5.3) for m = 0,1,...,n, and let #* = {z%, m = 0,1,...,n} be
the corresponding optimum policy. The following lemma shows that the functions
w +— Vp(w,0), m =0,1,...,n all enjoy the structural properties of the function
Vs(w, o). Consequently, an argument similar to the one given in Section V.4 shows
that 7*(w, o) given in (5.4.6) is optimum for the (total expected cost) finite horizon
problem as well. To that end, let Rw be any permutation of the vector w in R¥,

and let R™! be the inverse of R, i.e., R™!(Rw) = R(R™'w) = w.

Lemma V.5.1. For every o in R4, the mappings w — Vi (w,0), m=0,1,...,n

are convez and have the property Vi (w, o) = Vin(Rw, o).

The following Lemma will be useful in proving Lemma V.5.1, and follows from

Lemma A.IIL.2 of Appendix III by observing that R(U) = U.

Lemma V.5.2.  If the mapping ¢ : Ry x U = Ry is jointly convez and
has the property Y(Rw,Ru) = ¥(w,u) for all permutation R, then the mapping
¢: ]Rf —~ Ry given by

$(w) i= minp(w, u)

is also convez and has the property ¢(w) = $(Rw).

Proof of Lemma V.5.1. Theresult follox;vs by induction. The function (w,u) +
Yo(w,u) = ||w + oul| clearly satisfies the assumptions of Lemma V.5.2. The result
is therefore true for the function w — Vy(w, o) for every o in Ry.

Form=1,2,..., write

Vin(w,0) = {Lnexalgbm(w + ou)

where

Ym(z) = ||z|| + E [Vm_l ([a: — Ae]+,B)] .

For every o in Ry, if the function V,,_1(-,0) is convex and has the property

Vin—1(R -,0) = Vpu_1(- ,0), then the function ¢m(w,u) := tm(w + ou) clearly
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satisfies the conditions of Lemma V.5.2. The function w — V,,(w, o) therefore has

the desired properties, thus completing the induction argument.

il
Since the optimal policy 7* for the total expected cost is independent of n, it
is also optimum for the average finite horizon problem. This can also be seen by
writing the corresponding dynamic programming equation for V, and repeating

the arguments presented above.

o

V.5.2. The Long-run Average Cost Problem

The long-run average cost for any policy = in I is given by

J™(w,0) = If{gof;(w,a) (5.5.4)

for all w in ]Rf and o in R4. Since j,’{(w,a) is minimized-by 7* for each n,

the long-run average cost is therefore also minimized by #n*. In this section the

optimum cost J* (w, o) is obtained under the stability condition EB < K EA.
Let the subset B of IR_If be defined by

B:={weREK: w=cefor some c>0}.

Also define, with a slight abuse of notation, the work process {W™(t), t > 0} for
every w in II, where W[(¢) is the workload in queue k:'ﬂat time ¢t under the policy
7, 1 < k < K. Note that with this definition, if ¢, is the n** arrival epoch, then
W™(t,) = W™(n) forn=0,1,....

If the RV T™ is defined by

T :=inf{t >0: W"(t) € B},

then
T <W  as. (5.5.5)

Note that T™ is the first time the work process reaches a balanced configuration

under the policy 7 in II. To see (5.5.5), let TT be a realization of T™ for w =

- 81—



(w,0(0),7(1),0(1),...) in Q. If JJw|| < 7(1), then then the system will be empty
at time ||lw||, and T = ||w||. On the other hand, since 7* steers the system to a
balanced position, arrivals into the system will only result the system to reach to
a balanced position earlier.

Let || denote the integer part of a real number. The sequence of RVs {f,, n =
0,1,...} defined by

,
f,,::n_;l_l ;S (7) n=0,1,...

is uniformly bounded by Z}Z," S™ (%) by virtue of (5.5.5) and converge to 0 a.s.

as n — oo. It is plain that the RV ZLWJ S™ (4) has finite conditional mean given

=0

W . Therefore, for some ¢ and o' in R, the relation
lim J™ (w,0) = lim JT (ce,o') (5.5.6)
n—000 n—co

holds by the Bounded Convergence Theorem [Bil, p. 180] for every w in Rff and
oin Ry.

Under the assumed stability condition EB < K EA, the right hand side
of (5.5.6) converges to the average response time in the GI/GI/1 queue with
interarrival distribution A(z) and the service time distribution B(Kz) by Corollary

V.4.6. The following theorem summarizes this argument.

Theorem V.5.3. The policy ©* given in (5.4.6) is also optimal for the long-run
average problem. Furthermore, if EB < K EA, then the corresponding long-run
average cost i3 equal to the average response time in the GI/GI[1 queue with

interarrival time distribution A(-) and the service time distribution B(K ).

V.6. OPTIMAL SCHEDULING WITH NO PIPELINING: K = 2

This section considers the problem formulated in Section 2 when K = 2 and
when the control set i = {u € {0,1}? : u; +uz = 1}, i.e., when the incoming jobs
are not allowed to be broken into smaller tasks and are scheduled to the parallel
servers in one piece. It is plain that the structural results of Section 3 still hold in

this case and that the optimal policy 7* satisfying (5.3.13) is Markov stationary.
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First it is shown that the vector u*(w,0) in U' = {u € R?* : u; +up = 1}
given by (5.4.3) can also be used to characterize the optimal scheduling policy in
this case. For every € in Ry, let u} and u? be the two vectors in Y’ which are at

a distance v/2 € from u*(w, o), i.e.,

ul =u*(w,0) + ¢ (_11) (5.6.1a)

and

u? =u*(w,0) +¢ (_11> - ' (5.6.10)

The following result states that the function #’' — Ry : u — T*Vg(w,0) is

symmetric around u*(w,0) for every w in R and o in R.

Lemma V.6.1. If the vectors ul and u? are as given in (5.6.1), then
T2, v
5 Va(w,0) = TgVg(w,0)

for every € and o in R4 and w in IR?*,.

Proof. Since w + ou*(w, o) = c e where ¢ = (0 + w; + w3)/2, the relations

w+au}5=ce+ae(_11)

and
tmeeree(T)
w+ou;, =ce+ o€ 1
easily follow from (5.6.1). Therefore, the relation

Ry(w + oul) = Ry(w + ou?)

holds for the permutation R; defined in (5.3.14). The result now follows from
Lemma V.3.4. and the definition of the function T§ Vs in (5.3.1).
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It is clear from Lemma V.6.1 that it is optimal to schedule the arriving job to

the first (resp. second) queue if u*(w, o) is closer to ( (1)) (resp. ( (1))) than ((1))

(resp. ((1))) The following result is therefore obvious given the form of u*(w, o)
in (5.4.3).

Theorem V.6.2. For every o in R4 and w in ]R?,_, the optimal policy ©* is given

((1)) if wy < wo
((1)) if wy > wa .

In words, it is optimum to join the queue with the smaller workload.

by

™ (w,0) =

The natural extension of this result to the case of K (> 2) queues is currently

under investigation.
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CONCLUSIONS AND FUTURE RESEARCH

In this thesis, issues of performance evaluation and optimal routing in a system
with K parallel queues were studied under the resequencing constraint. In Chap-
ters II-1V, jobs arrive according to a Poisson process and are allocated randomly
to the parallel queues by a Bernoulli switch.

In Chapter II, the service time distributions at different queues are assumed to
be independent with general and possibly different distributions. The system under
the resequencing constraint is compared to the system without the resequencing
requirement. It is established that the presence of resequencing severely compli-
cates the analysis and considerably degrades system performance. In contrast to
the simple expressions for the response time T, the expressions for the distribu-
tions of the resequencing and system delays are very complicated. In particular,
the static optimization problem of choosing the Bernoulli switching probabilities
to minimize the average system time ES can not be carried out by hand for the
general case. On the other hand, the RV T is shown to be stochastically con-
vex in the load allocation vector in the st sense defined in Appendix II, and the
minimization of the average response time ET is carried out for the general case.

In the presence of resequencing, two special cases are considered for the op-
timization problem: (i) Identical servers and (ii) Exponential servers. When the
service time distributions at different queues are identical, ES is minimized at
equal load allocation, and at this optimal configuration, ES is decreasing in K.
Stronger results are obtained for the RV T. Indeed, equal load allocation stochas-
tically minimize T, and at this optimum configuration, T is integer convex and
decreasing in K in the st sense. The weaker result, namely, the asymptotic convex-
ity of ES in K is established in Chapter IV. Monotonicity and convexity results
in the st sense for the RV S are currently under investigation for an arbitrary K.
A weaker asymptotic result in that direction is included in Chapter IV.

For the exponential service time distributions, with even K = 2, the optimum

switching probability vector does not admit a closed form expression and is char-

— 85 —



acterized by the unique root of a fifth order polynomial. Nevertheless, the study
of the optimization problem for the case K = 2 lead to simple but very accurate
approximations for K > 2. The asymptotic approximations are not limited to
exponential servers and can be applied to any family of distributions with one
parameter. For instance, approximations for the optimal probabilities displayed
in Figures I1.2 and I1.3 may be obtained by the same technique. Since the curves
Cp displayed in these figures are closer to their asymptotes then the ones drawn
in Figure II.1, the asymptotic approximations are believed to be even better for
parallel systems with less variable service time distributions.

Both the approximate and the exact (when applicable) expressions for the op-
timum switching probabilities indicate that the faster servers have to carry more
traffic both with and without the resequencing constraint, but that the resequenc-
ing requirement tends to further decrease the amount of the traffic switched to the
slower servers.

In Chapter III, the simple form of the approximate formula is used in a
stochastic approximation algorithm when the system parameters are unknown.
The algorithm makes use of some system measurements to update the switching
vector. The choice of the lengths of the measurement intervals crucially affects the
rate of convergence and the robustness of the algorithm. This is left as a future
research topic.

In Chapter IV, the asymptotic behavior of various system delays in K is
studied when the load is equally allocated to the homogeneous servers. When
the Poisson arrival rate is held fixed, asymptotic expansions are provided for the
distribution functions and the first moments of the RVs T, R and S. These asymp-
totic expressions are used to prove convergence of the system statistics to those
of the M/GI /oo system with resequencing, as K goes to infinity. The asymptotic
expansions are also used to establish asymptotic stochastic monotonicity and con-
vexity of the RV § in K, while the RV R asymptotically may increase or decrease
depending on the arrival rate. Therefore, despite the different behavior of R, the

RVs T and S have (asymptotically) similar structural characteristics.
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In the case when the arrival rate into the system is also increased so as to
keep a fixed load to each queue, the resequencing delay dominates the queueing
delay; while ET remains the same, ER grows to infinity in log K.

In Chapter V, the parallel system is considered under a different set of assump-
tions on the arrival and service processes. In this chapter, jobs arrive according
to a renewal sequence and are broken into smaller tasks for processing at different
queues. The servers are assumed identical with fixed capacities. The optimum,
dynamic load allocation problem is considered when the workloads of the jobs are
i.i.d. and independent from the arrival time sequence. The cost associated for allo-
cating each job is chosen to be its end-to-end delay, including the synchronization
delays due to the reassembly and resequencing operations. The optimal allocation
policy that minimizes both the long run average and the discounted costs is shown
to be the one that derives the workloads in the queues to a balanced position as
fast as feasible. The same optimization problem when the queues have different
processing capacities is currently under investigation.

The solution to the optimization problem considered in Chapter V also sheds
light into the characterization of the optimum scheduling policy when the jobs are
not allowed to be broken into smaller tasks. For the case of two parallel queues,
scheduling the incoming jobs to the queue with the smaller workload is shown to
be optimal. The optimality of this policy for the case of K > 2 parallel queues is

also under investigation.
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APPENDIX I
COMPUTATION OF THE OPTIMAL PROBABILITY VECTOR p*

In this Appendix an algorithm for computing the optimal probability vector
p* of Section I1.4.1 is given. A simplified version of this algorithm is also provided
when the service time distributions are exponential.

As noted in Section II.4.1, if the numbers p}, 1 < k < K, obtained from
(2.4.1) are all non-negative, then they lie in the set D and constitute the solution
to the optimization problem min{ET(p) : p € D}. On the other hand, if one or
more of them are negative, from Theorem II.4.1, the solution is on the boundary
of D, i.e., at least one of the p}’s is zero and equation (2.4.1) is applied to the
reduced system. The following argument provides a computationally efficient way
of computing p* in this case.

Let the functions f;, 1 <1 < K, be defined by

K 2 2
Hk 1+ opui
) =1 — E — |1-
fi(@) —~ ) [ \/;,uk:v—l—i—a,%u%

k#l

for £ > max;<k<k[(1 — o2u2)/2uk]t. The functions f and fi, 1 <1 < K, are all
decreasing and have unique zeros, denoted by y and y;, 1 < 1 < K, respectively.
Denote p% in equation (2.4.1a) by pi(y). Note that pi(y) and pj(yi) correspond
to the optimal probabilities over the set of indices E = {1,2,...,K} and E\ {I},
respectively. The following lemma leads to Algorithm A.L1 for computing the
optimal probability vector p*.

Lemma A.L.1. Ifp}(y) <0 for some lin E, then pi(y) < 0 for some k in E\{l}

implies pi(y1) < 0.

Proof. Since the function f; is decreasing and fi(y) = f(y) + pf(y) = pi(y), the
condition p}(y) < O implies y; < y. Therefore pi(y1) < pr(y) < O, since the

functions pj, are all increasing.
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Algorithm A.IL1.

(i) Set E « {1,2,...,K}.

(ii) Compute y as the solution of the equation

Yo L+ ojui =1.
iew A 2ure — 1+ ofu}

(iii) For all k£ in E, compute p} as

p’;‘c — ,’ik_ 1 - 1+0%“i )
A 2ury — 1+ ojpi

Let F C E be such that k is in F if and only if p} < 0.

(iv) If F =0, then STOP.
Else, set E «— E \ F, p} « 0 for every k in F, and go to (ii).

Note that the monotonicity of the functions f; can be used to computational ad-
vantage in step (ii). However, this step is still the most computationally intensive
step of the algorithm, and must be avoided as much as possible. Lemma A.L.1
allows for the index set E to be reduced to E \ F in step (iv) at once, instead of
reducing E one element at a time by stopping when a negative p} is found. This
provides an improvement over the algorithm given in Buzen and Chen [BuC]. Note

that p}(y) > 0 does not imply p}(yi) > 0, and the algorithm needs to go back to
step (ii).

In the exponential case, this algorithm can be improved by using the simplified
formula (2.4.2). Assume, without loss of generality, that g3 > uo > ... > ug. It
is easy to show that if p; > 0, then p;_;, > p;, 1 < k¥ < K. Therefore, if one
of the probabilities is positive, so are the ones with a lower index. In particular,
if p% = 0, then all the p}’s will be probabilities. This simplifies step (iii) of
Algorithm A.L.1 and leads to the following algorithm
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Algorithm A.IL2.
(i) Setn — K
(ii) Compute p};:
p* — Bn (E?:]ﬂi_l) vV Hn
" A A Dim1 Vi
(iii) If p} < 0, then set p% «— 0, n «— n — 1, and go to (ii).
If p;, > 0, then p* = (p§,...,p},0,...,0), where

. Pk D oiq Mi VEE
= — - C -1 , 1<k<n.
pk A ( A )E?=l vV /'l’i - ="
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APPENDIX II

STOCHASTIC CONVEXITY RESULTS FOR THE M/GI/1 QUEUE

In this appendix, a notion of strong stochastic convexity [SS.b] is defined and a
stochastic convexity result is established for the M/GI/1 queue by means of simple
arguments. This convexity result states that the stationary waiting and response
times in the M/GI/1 queue are both stochastically increasing (resp. decreasing)
and convex in the arrival (resp. service) rate. This provides an important step in

establishing some of the convexity and optimality results in Chapters II and IV.
Let © be a convex subset of R¥, and let {X(), 6 € O} be a family of
R -valued RVs.

Definition A.IL.1. {X(8), 0 € O} is stochastically convez (resp. convex and
increasing/decreasing) on © if the RX — R mapping § —» E f(X(8)) is convex

(resp. convex and increasing/decreasing) for every increasing function f : R — R.

This is denoted by {X(6), 8 € O} € SCX(st) (resp. SICX(st)/SDCX(st)).

When 6 is IN-valued the same definition applies with convexity replaced by

integer convexity. It is an easy exercise to show the following result [SS.b].

Lemma A.IL.1. {X(6), 0 € 8} € SCX(st) (resp. SICX(st)/SDCX(st)) if and
only if the complementary distribution function 8 — P(X(0) > z) is convez (resp.

increasing/decreasing convez) for every x > 0.

First, the complementary waiting and response time distributions in the
M/PH/1 queue are shown to be monotone increasing and convex in the system
utilization. Therefore, the waiting and response times in the M/PH/1 queue are
both stochastically increasing and convex in system utilization by Lemma A.IL.1.
The results are then extended to the M/GI/1 queue using the fact that the class
of PH-distributions is dense in the space of probability distributions on [0, 00)
[Neu.c].

In this appendix, I denotes the identity matrix with appropriate dimensions,

while the m x m and the 1 X m row vector with zero entries are denoted by O,
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and 0,,, respectively. Finally, the notation R(s) denotes the real part of a complex

number s.

Waiting and response time distributions for the M/PH/1 queue

Consider an M/PH/1 queue under the FCFS discipline where the Poisson
arrival process has rate A and the PH-type service time distribution of order m
has an irreducible representation (a, A) with mean % The matrix A is invertible
so that absorption into the state m + 1 from any initial state is certain [Neu.b, p.
45]. The corresponding 1 X m column vector of absorption probabilities is denoted
by A°, i.e., Ae = —A°. Tt is assumed that o,,4+1 = 0 and that the queueing system
is stable, i.e., p = % <1

Let W(-) be the stationary waiting time distribution. The following well-

known result was given in [Neu.a, p. 181].

Theorem A.IL.2. The waiting time distribution W(.) is PH-type and has a rep-

resentation (v, L) of order m with
y=pm, Ymt1 =1—p, (A.2.1a)
L=A+pA'7, L°=(1-pA°, (A.2.1b)

where the probability vector m is uniquely determined by the relations

m(A+ A%) =0, and me=1.

In an M/GI/1 queue in statistical equilibrium, the response time T is the sum
of two independent RVs, the waiting time W and the service time B. Therefore, in
view of Theorem A.I1.2 and of closure properties of the PH-distributions [Neu.b,
p. 51), it is an easy exercise to see that the stationary response time distribution

T(-) is also PH-type of order 2m with representation (¢, Z), where

L Loa) . (A.2.2)

£ =(pr,(1 - p)a) and Z = <0m A
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The following theorem shows that a lower order PH-representation with only m

phases is in fact available for T'(+).

Theorem A.IL.3. The response time distribution T(-) is PH-type with represen-
tation (a, L).
Proof. The Laplace-Stieltjes transform r(s) of the PH-distribution ({, Z) is given
by

r(s) = &(sI —2)712°, R(s) = 0.

By making use of equations (A.2.1) and (A.2.2), direct calculations now yield

(sI — L)™' (sI—-L)'L%(sI - A)_l) (0%)

r(s) = (pm, (1 = p)a) (
Om (sI — A)?

AO

= pr(sI — L) Loa(sI — A)™ A% + (1 — p)a(sI — A)"1A°
= pa(sI — A)7 A% (sI — L) 'L° + a(sI — A)7'L°

= a[p(s] — Ay A%n + (sI — A) "N (sI = L)) (sI — L)™' L°
= afsI — L)™'L°, R(s) >0,

thus completing the proof.

O
Remark A.IL.1. The simple M/PH/1 queue provides a building block in the
approximate decomposition/aggregation algorithms for analyzing queueing models
of real life systems [Giin.b]. In such an iterative algorithmic analysis, low order
representations for various distributions in the network are often desirable from a
computational standpoint. Theorem A.IL3 serves this purpose and provides a PH-
representation for T with only half the dimension of (¢, Z). Furthermore, Theorem
A.IL3 shows that the representations of T' and W differ only in the way they are

initialized.
Strong convexity results for the M/GI/1 queue
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Theorems A.I1.2 and A.IL.3 are used to study the variation of the RVs W
and T with the system utilization for the M/PH/1 queue. The results are then
extended to the M/GI/1 queue.

The notation W(p) and T(p) is now used to represent the RVs W and T,
respectively, in order to indicate the dependence of their distributions on p explic-
itly. In particular, monotonicity and convexity of the functions p +— W(p,z) :=
P{W(p) > z} and p — T(p,z) := P{T(p) > z} are established in Theorem A.II.4
for all z > 0.

Theorem A.IL.4. All the partial derivatives of W(p,z) and T(p,z) with respect
to p exists and are positive for all z > 0. In particular, the mappings p — W (p, z)

and p — T(p, ) are both monotone increasing and convez for all z > 0.
Equivalently, {W(p), p € [0,1)} and {T(p), p € [0,1)} are both SICX(st).

Proof. By Theorems A.I1.2 and A.IL.3, the complementary distribution functions
W(p,z) and T(p, z) are given, respectively, by

(A+pA°1r)xe

W(p,z) = pre and T(p,z) = aeAtrA Ty (A.2.3)

It is a simple exercise to see that if the matrices 9" e(A+pA’ ™z /0p™ have positive
components, then the partial derivatives "W (p,z)/0p™ and 0"T(p,x)/0p™ are
all positive for n > 1.

Since the matrices A and A%m do not commute, the matrices 9" e(A+rA°™) /0p™,

n > 1, do not have a simple closed form expression. Therefore, consider the matrix
E(p) = e(z(A+cI)+pzA°7r) = % e(A+pA°1r):c , x>0

where ¢ := max{—A4;; : 1 <i < m}. Since both F := 2(A + cI) and G := zA’x

are positive matrices,
k
F+oG _ N~ (F +pG)* PG)
E(p)=e""* E ﬁ
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1s a polynomial in p with positive coefficient matrices. The partial derivatives
0" E(p)/8p™ and 0"elA+rA’ ™= [5pn are therefore positive for all n > 1, and the
first part of the theorem thus follows. The monotonicity and convexity of the
mappings p — W(p,z) and p — T(p, ) are now immediate since W (p,z)/dp,
O*W(p,z)/0p%, 0T(p,z)/0p and 8?°T(p,z)/dp? are all positive for z > 0.

ad

The structural result of Theorem A.Il4 is now extended to the M/GI/1

queue.

Corollary A.IL5. If W(p) and T(p) are the waiting and response times in an
M/GI/1 queue with utilization p, then {W(p), p € [0,1)} and {T(p), p € [0,1)}
are both SICX(st).

Proof. The result follows from Proposition 8.2.5a of [Sto, pp. 169-170] using the
fact that the PH-distributions are dense in the space of probability distributions
on [0, 00).

a

Remark A.IL.2. The more general GI/GI/1 queue is considered in [SS.a] using
a sample path approach and sufficient conditions for sample path convexity of the
waiting time in the parameter(s) of the service and interarrival times are given
(see also [ShY]). However, it does not seem possible to establish the stochastic
convexity of the waiting and response times in the arrival rate from the results
in [SS.a] or [ShY]. Moreover, the stochastic convexity considered here is stronger
than the sample path convexity defined in [SS.a] (see [SS.b]). The sample path
approach allowed the consideration of a very general class of problems in [FeG].
However, when specialized to the M/GI/1 queue, only the convexity of the average

waiting time in the arrival rate was established in [FeG].

Remark A.IL3. In [SS.a], it is shown for the GI/GI/1 queue that, if the n'®
service time Sy (u) = Xn/p where {Xn, n =0,1,...} is a sequence of non-negative

i.t.d RVs, then the waiting time of each job is stochastically decreasing and convex
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in p in the sample path sense. This result generalizes a result established in [Web]
again by sample path arguments, namely that the average waiting time for each
job is convex in the service rate. For the M/GI/1 queue, the stationary version of

the convexity result of [SS.a] in the stronger SDC X (st) sense easily follows from
Corollary A.IL5.
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APPENDIX III

This appendix states two technical lemmas. Lemma A.IIL.1. is used in the
proof of Theorem I1.4.6, while Lemma A.IIL.2 is used in proving Theorems V.3.1
and V.5.2.

Lemma A.IIL.1. Let I be a convez subset of IR with % wm I, and let f: I — IR
be a concave function. If F : IX — IR is defined by F(z) = Ef___l f(zr), then

K
max{F(z): z € IX and Zwk =1} = F(
k=1

LI
Lol

Proof. The result follows from the following simple argument

K 4
()= K Y 2 f(a)
k=1

1 K
< Kf(‘j{‘zivk)
k=1

= Kf(%)

]
Lemma A.IIL.2. Let Q; CIR™, i = 1,2, be two convez sets. If the mapping

U0 x Qo — IR is jointly convex, then the mapping ® : Q; — IR defined by

= min ¥ in Q
O(z) Inin (z,y), z in Q4

18 also convexz.

Proof. The convexity result follows directly from Theorem 5.7 of [Roc, p. 38].

O
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APPENDIX IV

A Proof of (3.3.1)

Consider a stable M/M/1 queue with utilization p, and let {T},,, n = 1,2,...}
be the Poisson sampling process with rate v independent of the arrival and the
service processes defining the M /M /1 queue. Let N, be the number of samples in
the interval [0, 7], and let 1, be the times the server is sampled idle in this interval.

If Q(t) is the number of customers in the system at time ¢, then

N = i_o:ll(Tn <7)

and

N,

= UQTa)=0),
n=1
where 1(-) is the indicator function.
Note that {Q(T.), n=0,1,...} with Ty = 0 is a Markov chain with invariant
probability mass 7, i.e., Tk = limp—oo P[Q(T,) = k], k = 0,1,..., and the a.s.

relation

1 ~
nlgréo - E 1{Q(T) =0)=T,
I=1

thus holds by the Ergodic theorem. Therefore,

lim 22 = %, a.s. (A4.1)

lim 2= =1— p  a.s. (A4.2)

now follows from (A.4.1) and the PASTA property [Kle.a].
In order to show the second equation in (3.3.1), divide the interval [0, 7] into

n equal subintervals of length ¢, i.e., nt = 7. Let n; be the number of times the
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server is sampled idle in the interval [(k — 1)t,kt), k =1,...,n, and let N be the
number of measurements in this interval. Note that {Ny, k£ = 1,2,...} is s.1.d.

with E[Ng] = vt, and

Nr = Nnt = Zﬂk and N, = Ny = ZNI: .
k=1 k=1

Therefore,
. Nnt . ﬂnt/n
lim = lm g———+—=1- a.s.
n—00 Npt n—oo Ek:l Nk/n g
by (A.4.2), so that the result
lim 2 = lim = =1-p (A.4.3)

n—oo NVt T—00 TV

holds since

n—oon

1 n
lim = ZNk = vt
k=1

by the Law of Large Numbers.
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