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A piecewise linear-linear latent growth mixture model (LGMM) combines 

features of a piecewise linear-linear latent growth curve (LGC) model with the ideas of 

latent class methods all within a structural equation modeling (SEM) context. A 

piecewise linear-linear LGMM is an appropriate framework for analyzing longitudinal 

data that come from a mixture of two or more subpopulations (i.e., latent classes) where 

each latent class incorporates a separate growth trajectory corresponding to multiple 

growth phases from which repeated measurements arise. The benefit of the model is that 

it allows the specification of each growth phase to conform to a particular form of overall 

change process within each latent class thereby making these models flexible and useful 

for substantive researchers.  

There are two main objectives of this current study. The first objective is to 

demonstrate how the parameters of a piecewise linear-linear LGMM, including the 

unknown knot, can be estimated using standard SEM software. A series of Monte Carlo 

simulations empirically investigated the ability of piecewise linear-linear LGMMs to 



 
 

recover true (known) growth parameters of distinct populations. Specifically, the current 

research compared the performance of the piecewise linear-linear LGMM under different 

manipulated conditions of 1) sample size, 2) class mixing proportions, 3) class separation 

of location of knot, 4) the mean of the slope growth factor of the second phase, 5) the 

variance of the slope growth factor of the second phase, and 6) residual variance of the 

observed variables.  

The second objective is to address the issue of model mis-specification. It is 

important to analyze this issue because applied researchers have to make model selection 

decisions. Therefore, the current research examined the possibility of extracting spurious 

latent classes. To achieve this objective 1-, 2-, and 3-class piecewise linear-linear 

LGMMs were fit to data sets generated under different manipulated conditions using a 2-

class piecewise linear-linear LGMM as a population model. The number of times the 

correct model (i.e., 2-class piecewise linear-linear LGMM) was preferred over incorrect 

models (i.e., 1- and 3-class piecewise linear-linear LGMMs) using the Bayesian 

Information Criterion (BIC) was examined.  

Results suggested that the recovery of model parameters, specifically, the 

variances of growth factors were generally poor. In addition, none of the manipulated 

conditions were systematically related to the outcome measures, parameter bias and 

variability index of parameter bias. Furthermore, among all the manipulated conditions, 

the residual variance of observed variable had the strongest statistically significant effect 

on both the model convergence rate and the model selection rate. Other manipulated 

conditions that had an impact on the model convergence rate and/or the model selection 

rate were the growth factor mean of slope of the second phase, the growth factor variance 



 
 

of slope of the second phase, and the class mixing proportion. The manipulated 

conditions whose levels had no influence on either the model convergence rate or the 

model selection rate were sample size and the class separation of location of knot. 
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CHAPTER 1: INTRODUCTION 

 

A common challenge for researchers and practitioners across different research 

domains is to understand how individuals change and develop on certain variables over 

time. For instance, when new skills are acquired, or when attitudes and interests develop, 

people change. Measuring change over time requires a longitudinal perspective, where 

repeated measurements are gathered for a sample of individual subjects. Several 

statistical methods have been developed in the past three decades to analyze longitudinal 

data of this type, including mixed effects models (Laird & Ware, 1982), multilevel 

models (Goldstein, 2003), and latent growth curve models (Meredith & Tisak, 1990).  

Mixed effects models for longitudinal data, including both linear and nonlinear 

mixed effects models, can be viewed as a generalization of the conventional multiple 

regression models. At its core, linear mixed effects models are used when individual 

growth trajectories show straight-line patterns of change. The model characterizes the 

change process by a function common to all subjects, but whose parameterization is 

allowed to vary among individual subjects, thereby allowing for between-subject 

variability. When the response pattern is, however, distinctly nonlinear one option is to 

extend the linear mixed effects models by incorporating higher-order polynomial terms to 

account for the curvilinear time-response pattern. Another option is to characterize the 

nonlinear change process with an intrinsically nonlinear function (i.e., the response 

function has at least one parameter that enters nonlinearly).  

The linear mixed effects model is a subject-specific model, and as such, the main 

focus of analyses using this model is on change at the individual-subject level, rather than 
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average change aggregated across individuals. Longitudinal models stemming from a 

factor analytic tradition, the latent growth curve (LGC) model is based on the idea that 

the process of change over time in repeated measures data is described by an underlying 

latent process. The LGC model is defined for each individual subject; however, the main 

focus of the analysis is on the change at the population level, that is, average growth 

trajectory in the population rather than change at the individual-subject level (Cudeck & 

Harring, 2007). Moreover, because LGC models reside in the SEM family, the LGC 

approach has the advantage of providing measures of model fit statistics that enable 

researchers to conduct hypothesis testing (e.g., Chou, Bentler, & Pentz, 1998). In 

contrast, in the mixed effects modeling approach, there is no single inferential test of the 

overall goodness-of-fit of a specific hypothesized mixed effects model (Curran, 2003). 

On the other hand, an advantage of using mixed effects modeling approach is that it is 

very flexible and efficient analytic framework (e.g., Chou et al., 1998; Curran, 2003). The 

mixed effects modeling of nested or hierarchical data structure involves the simultaneous 

disaggregation of the level-1 and level-2 covariance structures, where the disaggregated 

effects can be estimated by including predictors in either level-1 or level-2 parts of the 

model. In contrast, the estimation of LGC models is based on a single aggregate 

covariance matrix that allows for covariance structure only at a single level of analysis; 

the covariance structure within any other level of nesting is assumed to be null (Curran, 

2003). There is a great deal of overlap between these two modeling frameworks, though. 

As Curran (2003) stated, “Indeed, the boundaries between these two modeling strategies 

are becoming increasingly porous as is evidenced in that fully random regressions can be 

http://www.eric.ed.gov/ERICWebPortal/search/simpleSearch.jsp?_pageLabel=ERICSearchResult&_urlType=action&newSearch=true&ERICExtSearch_SearchType_0=au&ERICExtSearch_SearchValue_0=%22Pentz+Mary+Ann%22
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estimated in the SEM and latent variable measurement models can be estimated in the 

multilevel model framework” (p. 565). 

 For the purpose of this study, the derivations, implementation, and subsequent 

discussions, as well as the extensions pertaining to the statistical method for analyzing 

longitudinal data will be done in a SEM framework (i.e., the LGC model and its 

extensions). One reason that an SEM framework may be preferable is that maximum 

likelihood (ML) estimation used in SEM programs which focuses on minimization of a 

discrepancy function between observed and model-implied covariance matrices, often 

quickly converges to a solution. Another compelling reason is that SEM programs, for 

many applied and methodological researchers, are the analytic tools of choice for most 

purposes. Thus, staying within a familiar software environment is not only convenient, 

but it also avoids the inefficiencies involved in setting up a specific model correctly using 

an unfamiliar syntax language. The estimation of LGC models within a SEM framework 

is discussed in detail in Chapter 2.  

The LGC model is a popular and relatively simple technique for modeling change 

at both the individual and population level. The model consists of continuous latent 

growth factors, which correspond to the average growth trajectory characteristics in the 

population. The LGC model also allows the variability of the repeated measures to be 

partitioned into within-subject and between-subject components. In LGC models, it is 

typically assumed that the functional form describing the overall change process in the 

repeated measures data is smooth and continuous. However, assuming that a single 

uninterrupted functional form underlying the overall change process may be unrealistic 

for applications where data are comprised of different growth phases.  
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 The piecewise latent growth curve model, an extension of the LGC model, allows 

the specification of each growth phase to conform to a particular functional form of the 

overall change process (Chou, Yang, Pentz, & Hser, 2004; Cudeck & Harring, 2010). An 

interesting feature of a piecewise LGC model is the location of the knot(s) (or 

changepoint). The location of the knot in a two-phase change process is the value of the 

predictor at which the function shifts from one phase to the other (Cudeck, 1996; Cudeck 

& Klebe, 2002), and its location can be known a priori or estimated. The estimation of 

the knot in piecewise LGC models is also discussed in detail in Chapter 2.  

An assumption inherent to the LGC model is that all individuals are drawn from 

the same population, and thus share the same functional form of growth. This 

assumption, which applies to the piecewise LGC model as well, is not practical in 

situations where the data come from a mixture of two or more unobserved subpopulations 

(i.e., latent classes). The analysis of this type of mixture data requires the expansion of 

the LGC model to include a categorical latent class variable (Muthén, 2001; Muthén & 

Muthén, 2000; Muthén & Shedden, 1999). In contrast to a LGC model, latent growth 

mixture modeling (LGMM) allows the identification of qualitatively distinct growth 

trajectories of two or more latent classes (Bauer & Curran, 2003), and estimates the 

probability of membership into each latent class. It is typically assumed in LGMM that 

the functional form describing the overall change process in each latent class has no 

disjuncture. This assumption may become unrealistic for applications where repeated 

measures mixture data incorporates class-specific piecewise growth trajectory.  

This leads to a need for expanding the LGMM to incorporate piecewise functions 

within each latent class. The objective of this study is to develop a piecewise linear-linear 
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LGMM, where the location of the knot is unknown in each latent class. This kind of 

model can be very useful for substantive researchers to address key questions such as in 

developmental and behavioral studies (e.g., substance abuse trajectories) or in studies 

seeking to measure the effect of some treatment or intervention (e.g., when individuals 

may need to seek professional services at the timing when mental ability decreases). The 

parameters of a piecewise linear-linear LGMM, including the knot, are estimated with 

ML via the expectation-maximization (EM) algorithm using existing statistical software. 

Estimation of piecewise linear-linear LGMM is carried out in Mplus 6.1 (Muthén & 

Muthén, 1998-2010), a popular SEM program. 

The remainder of this document is organized as follows. Chapter 2 provides a 

review of the literature on LGC models, piecewise LGC models, and finite mixture 

models, including LGMMs. Chapter 3 describes the design of the proposed research, 

including methods of estimation and analysis. Chapter 4 provides the results, while 

Chapter 5 discusses the results and provides recommendations. 
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CHAPTER 2: REVIEW OF LITERATURE 

 

This chapter reviews the literature on latent growth curve models, piecewise latent 

growth curve models, finite mixture models, and latent growth mixture models. It is 

important to review research on these models as all of these contribute significantly to the 

current body of knowledge about piecewise linear-linear latent growth mixture models 

where the estimation of the knot for each latent class is of primary interest. 

 

2.1 Latent Growth Curve Models 

 The LGC model was developed to analyze repeated measures data (Meredith & 

Tisak, 1990) where the form of the trajectory could be specified a priori or left as a 

partially parameterized model whose components could be estimated. The LGC model 

allows to disentangle the correlational structure of the repeated measures into intra-

individual (within-person) variability as well as inter-individual (between-person) 

variability in individual subjects‟ growth characteristics across time (Preacher, Wichman, 

MacCallum, & Briggs, 2008). A typical application of LGC models specifies a function 

describing a linear change process often composed of two latent growth factors: (a) an 

intercept which describes initial level or status at some temporal reference point, and (b) 

a linear slope of growth which summarizes change over time. These two latent growth 

factors can be characterized by the mean value of intercept and slope and individual 

random variation and covariation around these two latent growth components (Duncan, 

Duncan, & Strycker, 2006).  
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For a fully specified model, the loadings from the intercept factor to each of the 

repeated measures are fixed to values of 1.0. That is, the intercept factor equally 

contributes to all repeated measures across all the waves of assessment. For the slope 

factor, the loadings are either fixed to describe linear change when theory specifies a 

linear form of growth or, alternatively, a LGC model with unspecified trajectory can be 

specified when theory dictates a single functional form of individual‟s growth but the 

functional form is not known a priori (Hancock & Lawrence, 2006; Meredith & Tisak, 

1990). In this case, the pattern of loadings can be estimated as long as some of the 

loadings are fixed for model identification purposes and to set the per unit scale for 

growth. It is also possible to incorporate other functions in a LGC model that describe 

both linear and nonlinear change processes and a particular model may be chosen on 

theoretical grounds or via empirical exploration of the data. Furthermore, nonlinear 

models, including both higher-degree polynomials and intrinsically nonlinear functions, 

can be specified to capture important curvature in the response variable.   

 An LGC model that examines change across time in repeated measurements of an 

observed variable is termed a “first-order” LGC model. A path diagram of a conventional 

first-order linear LGC model with 4 equally spaced timepoints is provided in Figure 1.  
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Figure 1: A conventional first-order linear LGC model with linear trajectory and mean 

factor.  

 

 

The basic formulation of a first-order LGC model includes two components: (1) a 

measurement model that connects the observed indicators with the corresponding latent 

growth factors across time, and (2) a structural model that describes the means and 

variances of latent growth factors.  

Consider a set of repeated measures of a random variable Y for individual i, where 

the vector                 
   is a set of    responses for individual i on Y. It is 

assumed that the distribution of    is multivariate normal. The responses are observed on 

a set of repeated measurement occasions              , where    is the total number of 

observations for individual i. The subscript i on    suggest that times of measurement 
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may vary from one person to another, which is very often seen in longitudinal data as a 

result of dropout, attrition, or by design of the longitudinal study. The general expression 

of measurement model for    is (see, e.g., Blozis, 2004): 

                        (2.11) 

where     is a matrix of factor loadings reflecting the hypothesized underlying growth 

pattern: 

   

[
 
 
 
       
       
   

    

   

   

 
     

    
       ]

 
 
 

. 

The number of rows in    is equal to the number of measurement occasions on which 

individual i was observed. The columns of    have elements (e.g.,      that define the 

shape of the growth curve over the observed measurement occasions. For example, in a 

linear LGC model, the factor loading matrix typically contains a column of ones for the 

intercept and a column of fixed values corresponding to increments of time (Willett & 

Sayer, 1994). The columns of    are commonly referred to as “basis” curves and are 

defined as the partial derivative of function f with respect to each of the model 

parameters. Furthermore,                     is a vector of latent growth factors, and 

                
   is a vector of random errors or residuals that are often assumed to 

be normally distributed with mean zero and covariance matrix    (i.e.,           ).  

It is often assumed that the residuals are independent between measurement 

occasions with constant variance across time, once the linear dependence among the 

observed variables is accounted for. That is,  

       (   
     

        
 )
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where the         operator refers to a diagonal matrix, and    
  refers to the variance of 

the residuals. It is, however, possible to specify different kinds of residual structures 

depending on other theoretical considerations or based on the characteristics of the data.  

A residual structure could accommodate the situation in which residuals are assumed to 

be independent between measurement occasions but the variances across time are 

allowed to be heterogeneous (Willett & Sayer, 1994). Of course, other residual 

covariance structures are possible but parameterization should be done as parsimoniously 

as possible.  

The structural model is specified as (see, e.g., Bollen & Curran, 2006): 

                      (2.12) 

where   is a     vector of factor means, and    is an     is a vector of random 

disturbances in the first-order latent factors,   , that are often assumed to be normally 

distributed with mean zero and covariance matrix   (i.e.,          ). The covariance 

matrix   is of the form: 

  

[
 
 
 
 

   
 

     
   

 

   

    

      
     

      
 
]
 
 
 
 

  

 where the diagonal elements are the variances of the growth factors and the off-diagonal 

elements are their covariances. 

 Like standard factor analysis models, the residuals are assumed to be uncorrelated 

with the continuous latent growth factors (i.e., cov(     ) = 0)). The residuals are also 

assumed to be uncorrelated with the random disturbances in the first-order latent factors 

(i.e., cov(     ) = 0)). Furthermore, the residuals are assumed to be uncorrelated over 
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time (i.e., cov(          ) = 0 for m ≠ 0)). Given the preceding assumptions, the 

population mean vector and population covariance matrix of    are (see, e.g., Blozis, 

2004): 

                                           (2.13) 

and 

    cov     =          
            (2.14) 

2.1.1 ML estimation of latent growth curve models 

The parameters of the LGC model can be denoted as  , a     vector, which 

consists of all free parameters in  ,  , and    (i.e.,                        
   ), 

where the         operator creates a column vector of symmetric matrices (   and 

      by stacking successive 

row-wise elements of the lower triangle below one another. The parameters   can be 

estimated via ML. The ML estimator is the most popular method of estimation to use 

with LGC models because it has a number of desirable properties, such as the estimated 

model parameters are consistent, asymptotically unbiased, asymptotically normal, and 

asymptotically efficient (Bollen & Curran, 2006).  

Let       denote the model-implied mean vector and       denote the model-

implied covariance matrix. Both       and       are functions of the parameters of the 

LGC model. Because the population mean vector   and population covariance matrix   

are unavailable, the sample mean vector  ̅  and sample covariance matrix Si are used as 

estimates. The goal is to choose values of the estimated model parameters  ̂ (i.e.,  ̂,  ̂, 

and  ̂ ) such that     ̂  is close to  ̅  and     ̂  is close to    (Bollen & Curran, 2006).  
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In typical ML estimation, the log-likelihood function is maximized with respect to 

model parameters to obtain estimates. That is (see, e.g., Preacher et al., 2008), 

 

 

In a typical SEM framework, however, log L is maximized when the following 

discrepancy function (   ) is minimized (see, e.g., Bollen & Curran, 2006; Preacher et 

al., 2008): 

                   |     |     |  |    [{        }   
     ] 

                              [ ̅       ]   
     [ ̅       ]                                 (2.16)                            

Thus, the idea behind ML estimation is to compute  ̂, given sample based  ̅  and Si, so 

that it produces model-implied     ̂  and     ̂  matrices that minimize    . Note that 

minimization of the discrepancy function     assumes that complete sample data are 

used to obtain  ̅  and Si (Preacher et al., 2008). If the data are incomplete and missing at 

random, full information maximum likelihood (FIML) can be used to obtain ML 

parameter estimates. In this case, FIML estimation allows the LGC model to be fit 

directly to raw incomplete data (see e.g., Enders, 2006). 

 

2.2 Piecewise Latent Growth Curve Models 

It is typically assumed in LGC models that the functional form describing the 

overall change process in the repeated measures data is continuous. However, assuming a 

single uninterrupted functional form underling the overall change process may be 

improbable for applications where data are comprised of different growth phases. Figure 

(2.15)       
 

 
∑{        

 

   

   |     |  [        ]   
     [        ]}  
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2 provides a graphical representation of a generic LGC model that comprises of two 

different linear-linear growth phases.  

Figure 2: A spaghetti plot depicting generic piecewise linear-linear change process. 

 

Piecewise LGC models, an extension of LGC models, are flexible because each 

phase can be specified to conform to a particular functional form of the overall change 

process (Cudeck & Harring, 2010). The term “piecewise” is obtained from the piecewise 

regression model, which is a special case of spline regression model (Marsh & Cormier, 

2001). To make more concrete, consider a linear-linear piecewise process. In this 

situation, the formulated model assumes a simple regression line for the dependent 

variable, but with possibly different parameterizations in different ranges of the predictor 

(Bates & Watts, 1988; see also Seber & Wild, 1989, Ch. 9). Note that the assumptions 
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underlying a piecewise LGC model are similar to the assumptions underlying LGC model 

discussed in the previous section. 

One of the more interesting features of a piecewise model is the knot. The knot is 

the value of the predictor at which the function shifts from the first phase to the other 

(Cudeck, 1996; Cudeck & Klebe, 2002). The value of knot can be either fixed or 

estimated. Consider a two-phase piecewise linear-linear LGC model, for example, with a 

known value of the knot (see, e.g., Chou et al., 2004):  

                                                                   ,                 (2.21) 

where     is the observed response of individual i at time j;     represents the time of 

measurement;     and     are the intercept and slope growth factors of the first phase, 

respectively;     and     are the intercept and slope growth factors of the second phase, 

respectively;     is the random normal error; and    and    are the two dummy-coded 

variables that take the values of either 0 or 1, depending on the phase from which     was 

obtained. That is,      in the first phase and      elsewhere. Similarly,      in 

the second phase and      elsewhere. In Equation 2.21 there are four linear 

coefficients (i.e., growth factors),                      . One of the coefficients, 

however, can be eliminated because it is often assumed in piecewise models that the two 

separate functions join at the knot,  . That is,                  , and thus one 

coefficient is redundant. The decision as to which coefficient to eliminate is arbitrary, 

unless the researcher has a theory for eliminating a specific coefficient. Following the 

above alternative, one may set the intercept of the second phase as: 

                  .  

The expression for      can then be substituted into Equation 2.21 as: 
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                                                               (2.22) 

Note that in Equation 2.22 the value of knot is known a priori, thus there are three freely 

estimable coefficients,                  . Furthermore, the two-phase piecewise linear-

linear LGC model with a known value of the knot fits into the general model of Equation 

2.11 by coding the jth row of the factor loading matrix    according to whether     is 

greater than the knot . That is (see, e.g., Harring et al., 2006), 

                   {

[       ]                                      

[    (     )]                           

                                                         

(2.23) 

where the columns of    are the partial derivative of the function described in Equation 

2.22 with respect to each of the model parameters. A path diagram of a conventional 

piecewise linear-linear LGC model with 9 equally spaced timepoints where the location 

of knot is known is provided in Figure 3.  
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Figure 3: A conventional piecewise linear-linear LGC model where the location of knot 

is known. 

 

Note that in the model depicted in Figure 3,                         and the location 

of the knot is    . Hence, following Equation 2.23 the factor loading matrix    of the 

model shown in Figure 3 is: 

   

[
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Alternatively, instead of assuming the value of the knot to be a fixed known 

value, one can estimate the knot by specifying it as one of the parameters in the model. 

Harring, Cudeck, and du Toit (2006) developed a first-order piecewise LGC model where 

the location of knot was unknown for investigating individual behavior that exhibited 

distinct phases of development in observed variables only. The specification of a two-

phase piecewise linear-linear LGC model, for example, with an unknown value of the 

knot is (see, e.g., Harring et al., 2006):  

        {
                   
              

                  
     
        ,                                         (2.24) 

where     is the observed response of individual i at time j;     represents the time of 

measurement;     and     represent the intercept and slope growth factors for the first 

phase, respectively;     and     represent the intercept and slope growth factors for the 

second phase, respectively; and   represents the knot. In Equation 2.24 there are four 

linear coefficients,                       and one nonlinear knot  . It is often assumed 

in piecewise models that the two separate functions join at the knot; hence, there are 

effectively three free coefficients and one nonlinear knot in the target function, that is, 

                . Note that in Equation 2.24 there is no „i‟ subscript for the knot  . This is 

because in this model it is assumed that the location of unknown knot is fixed, hence, 

there is no variability around the location of unknown knot.  

Furthermore, the parameterization of the model in Equation 2.24 cannot be 

specified directly in a SEM framework in a way that permits the estimation of  . The 

difficulty stems from the inability of the existing SEM software packages to incorporate 

executable programming functions, like if-then statements, in the estimation step. A 

common alternative is to reparameterize the piecewise LGC model so that it fits within 
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the system of SEM software packages. The issues related to the estimation of the 

piecewise LGC models are discussed in more detail in a later section. A path diagram of 

a conventional piecewise linear-linear LGC model with 9 equally spaced timepoints 

where the location of knot is unknown is provided in Figure 4.  

Figure 4: A conventional piecewise linear-linear LGC model where the location of knot 

is unknown. 

 
 

Note that the specification of the factor loading matrix    of the reparameterized 

piecewise linear-linear LGC model depicted in Figure 4 is similar to the specification in 

Harring et al. (2006). That is,  
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Of course, this modeling framework provides sufficient flexibility to summarize 

other functional forms in the different phases with the stipulation that each phase does not 

have to conform to the same function. For example, a two-phase piecewise quadratic-

linear LGC model with unknown knot could be specified when the trajectory in the first 

developmental stage has some curvature and the trajectory in the second developmental 

stage is straight-line. This kind of model can be easily specified by extending the linear-

linear piecewise function (see, e.g., Cudeck & Harring, 2010). For example, 

           {
                 

         
              

       
     
         ,                                              (2.25) 

where the first phase of model corresponds to a quadratic function and the second phase 

of model corresponds to a linear function. Note that two restrictions can be imposed on 

Equation (2.25). The first restriction is:              
          . With this 

restriction in place, a parameter in Equation (2.25) can be eliminated as it is redundant. 

The second restriction that can be imposed on the model is:              , which 

allows the two functions to meet at the knot in a smooth transition. As a result of this 

second restriction, the linear coefficient of the first segment can be expressed in terms of 
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the others. It is thus possible to specify different kinds of piecewise LGC models 

depending on the characteristics underlying the data.  

2.2.1 ML estimation of piecewise linear-linear latent growth curve models with unknown 

knot 

There are three linear coefficients,                  , and one nonlinear 

coefficient,  , in a piecewise linear-linear LGC model. It is, however, not possible to 

specify the parameterization in Equation 2.24 directly in an SEM framework in a way 

that permits treating  , the knot, as an estimated parameter. A common alternative tactic 

is to reparameterize the piecewise LGC model. Reparameterized piecewise LGC models 

have the same number of free parameters as in a linear-linear piecewise LGC model, but 

are fit within the system employed by many SEM software packages. Additionally, 

reparameterization of the model makes it convenient for estimation to be carried out by 

ML estimation in a typical SEM framework (Harring et al., 2006). Upon convergence, 

the estimated parameters of the reparameterized model are then transformed back to the 

original parameters of the piecewise linear-linear LGC model. The only limitation of 

reparameterization is that the fit of the model may be affected by the transformation from 

one version of a model into another form. Harring et al. (2006) mentioned that generally 

the difference in fit is not great, and any slight loss in fit would seem to be offset by the 

ease with which the reparameterized model can be estimated. A detailed description of 

reparameterization procedure is discussed in Appendix A. The procedure of 

transformation of estimated parameters of reparameterized model back to the parameters 

of the original model is discussed in Appendix B.  
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2.3 Finite Mixture Models 

 In many research settings the observed sample can be seen as stemming from 

multiple population distributions with distinct characteristics. A composite of two or 

more subpopulation distributions is called a finite mixture distribution (see, e.g., 

McLachlan & Peel, 2000) and the subpopulations are called mixture components, where 

component membership is unobserved for each observation. It is of interest to build a 

generic model that allows us to combine the distributions from different subpopulations. 

A finite mixture model is a probability model that combines the probability densities 

across all the subpopulations underlying the data. The general form of a finite mixture 

model is given as: 

                                                                    (2.31) 

where      is the composite density function for all k = 1,…,K number of components. A 

single density       is referred as the component density. It is typically assumed that the 

distribution underlying the subpopulations (mixture components) have the same density. 

The parameters   ,…,   are called the mixing proportions. It is assumed that the mixing 

proportions    are non-negative quantities that sum to one. That is, 

∑  

 

   

                

In a finite mixture model each component distribution has its own set of 

parameters denoted as   . Typically,    are unknown parameter values that must be 

estimated from sample data. This is also the case with the number of components. That is, 

we often do not know how many components are in the model, thus we have to infer the 

optimal number of components from the sample data.   

http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Density_estimation
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 There are two main purposes for using finite mixture models. The first purpose is 

to provide a framework to approximate complex distributions with two or more 

component distributions. The second purpose is to use finite mixture models as a model-

based clustering tool that can help to identify more than one unobserved population with 

the intent to infer qualitatively distinct classes of individuals in the population. When 

modeling population heterogeneity using finite mixture models, it is typically assumed 

that data came from a mixture of two or more distributions from the same parametric 

family with parameters that are allowed to differ across components (Frühwirth-

Schnatter, 2006; McLachlan & Peel, 2000). 

2.3.1 Mixtures of univariate distributions 

 The probability density function of a two-class mixture of univariate distributions, 

for example normal, is specified as: 

                                 (2.32) 

where      is the composite density function;       and       are the component 

densities of the two classes; and   and        are the mixing proportions. The 

component densities in this example are defined to be normally distributed so that 

       
 

√    
 
    [ 

          
 

   
 ]  

             

       
 

√    
 
    [ 

          
 

   
 ]    

where   denotes the value of observations on variable Y;   denotes the unity vector; the 

dot ( ) denotes the multiplication sign;    and   
  are the class mean and class variance of 

population 1; and    and   
  are the class mean and class variance of population 2. Note 
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that the density function for each component in Equation 2.32 is described by two 

parameters, the class mean and class variance. To fit the model in Equation 2.32, it is thus 

necessary to estimate the parameters       
       

     . A graphical representation of a 

two-class univariate normal mixture model is shown in Figure 5.  

Figure 5: A two-class univariate normal mixture model.

 

Mixtures of regression models, also known as latent class regression models, are 

used to capture parameter heterogeneity for cross-sectional data (Frühwirth-Schnatter, 

2006). Unlike typical regression analysis, which assumes that the distribution of data is 

governed by one set of parameters, simple linear regression mixture models allow for 

different sets of parameters, each corresponding to an underlying latent class (Gr ̈n & 

Leisch, 2006). Individuals within each latent class share the same regression function. A 

finite mixture of regression models has a class-specific probability density function (pdf). 

    |  
     

   
 

√    
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(      
  )

 
       

   

   
 ]      (2.33) 
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with class-specific residual variance   
 , and vector of class-specific regression 

coefficients   .  

2.3.2 Mixtures of multivariate distributions 

Mixtures of multivariate distributions such as multivariate normal, with a class-

specific probability density function (pdf), are written as 

      |       
 

    
 

 ⁄ |  |
 

 ⁄
   [ 

 

 
       

           ]                    (2.34) 

where    denote a P-dimensional vector containing the scores for individual i on a set of 

P observed continuous random variables,    is a vector of class-specific means, and    is 

a class-specific variance-covariance matrix. A graphical representation of a multivariate 

normal mixture (specifically, bivariate) is shown in Figure 6. 

Figure 6: A multivariate normal mixture model. 

 

 

 

 

 

 

 

 

2.3.3 Latent growth mixture models 

LGMMs are a kind of multivariate normal mixture model. That is, both 

multivariate normal mixture models and latent growth mixture models assume that the 

continuous observed data in   are a mixture of two or more unobserved subpopulation 
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distributions where    is assumed to be multivariate normally distributed. The main 

difference between the two models is that in multivariate normal mixture models the 

mean vector and covariance matrix are unstructured, whereas in LGMMs the mean vector 

and covariance matrix have specific structures related to a hypothesized growth form.  

An alternative explanation of LGMM is that it is a statistical technique that 

combines LGC modeling with the idea of latent classes (Muthén, 2001; 2002; Muthén & 

Muthén, 2000; Muthén & Shedden, 1999). Contrary to the LGC model, which assumes 

that all individuals come from a single population and share the same growth pattern, 

LGMM relaxes the single population assumption by allowing the observed data to come 

from a mixture of two or more unobserved subpopulations (i.e., latent classes). LGMM 

allows the identification of latent classes, if they exist, that follow qualitatively distinct 

growth trajectories (Bauer & Curran, 2003). This is accomplished by using a categorical 

latent variable to represent two or more distinct trajectory classes. The combined use of 

continuous and categorical latent variables allows individuals to vary around the mean 

growth curve for their particular subgroup where each subgroup has its own model 

parameter values (Bauer & Curran, 2003; Muthén, 2001; Muthén & Shedden, 1999).  

 Suppose the observed data come from K subpopulations (k = 1,…, K), with a 

latent categorical variable indicating the latent class membership for individual i, where k 

designates each latent class and indicates that model parameter values may differ across 

classes. Assuming conditional independence, the class-specific measurement portion of 

the model is specified as (see, e.g., Muthén & Shedden, 1999):     

                                                                  (2.35) 

where 
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The specification of Equation 2.35 is similar to that given for conventional LGC model 

specified in Equation 2.11. That is, the vector    is a set of responses for individual i on a 

set of repeated measurement occasions              , where    is the total number of 

observations for the individual i;     is a matrix of factor loadings;    is a vector of 

continuous latent growth factors particular to individual i; and finally,    is a vector of 

residuals.  Note that     is typically assumed to be diagonal,  

        (   
     

        
 )

 
  

where the         operator creates a diagonal matrix; and    
  refers to the variance of 

the measurement residuals. 

 The class-specific structural component of the model is specified as 

                                                                           (2.36) 

where 

                                                                                       

The specification of Equation 2.36 is similar to that given for conventional LGC model 

specified in Equation 2.12. That is     is a vector of factor means and     is a vector of 

random disturbances in the first-order latent factors,   . Note that the subscript k in 

Equations 2.35 and 2.36 indicates a separate model for each latent class k, thus allowing 

for heterogeneity within the population. A path diagram of a conventional two class 

linear LGMM with four equally spaced timepoints is provided in Figure 7. 
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Figure 7: A conventional two-class linear LGMM. 

 

 Just like in finite mixture modeling, where it is assumed that group membership is 

unobserved and must be estimated along with the other parameters of the model, in 

LGMM it is assumed that the proportion    of cases falling in latent class k = 1,…, K is 

unknown and must be estimated. Thus, proportions    are parameters to be estimated in 

addition to those parameters found in the standard LGC model. Additionally, proportions 

   are non-negative quantities that sum to one, hence the number of these free 

parameters is K-1. That is, 

∑  

 

   

                

2.3.4 ML estimation of latent growth mixture models via the EM Algorithm 
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The parameters of a LGMM,      
 
     

               can be estimated 

by using ML estimation via the EM algorithm (Muthén & Shedden, 1999). Note that 

when estimating parameters in LGMM, the parameters related to the LGC model, along 

with the class proportions   , are estimated. The log-likelihood function of observed data 

   is given as (see, e.g., Muthén & Shedden, 1999; Tolvanen, 2008): 

 

 

where density function f  is mixed from K density functions 

                      . 

The density function for class k is 

                        

where 

                                 

                                           
          

In typical ML estimation, the log-likelihood is maximized with respect to model 

parameters to obtain estimates. However, because LGMMs contain latent variable values 

and latent class memberships that are both unobserved, there is no closed-form solution 

for the parameter estimates (e.g., Mann, 2009). Thus, the EM algorithm is needed to 

obtain the model parameter estimates.  

 The EM algorithm obtains ML parameter estimates in the presence of missing 

data. In the context of LGMM, the missing part is denoted as the class information vector 

               , where       if    was produced by the kth component, otherwise 

         ∏   ∑      

 

   

 

   

∑     

 

   

  

 

(2.37) 
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     . The complete-data log-likelihood (i.e., if complete data vector      
    

    was 

observed) is  

 

 

In the E-step of the EM algorithm, the conditional expectation of the probability 

of class membership is computed given the observed data    and the current parameter 

estimate  ̂  (the initial starting value for   on the first iteration) and the values from M-

step in further iterations. The posterior probabilities (from Bayes‟ theorem) for 

observation i belonging to class k is calculated in the E step using formula:             

   
        

     
                         

These posterior probabilities are then used in M-step when maximizing expected 

values in Equation 2.38: 

 

 

 

 

 

resulting in the    parameters in the Equation 2.38 and to maximize 

 

∑∑              

 

   

 

   

 

 

resulting in        in Equation 2.38 with the estimates of    ,   ,   , and    .  

After the M-step, the algorithm returns to the E-step to calculate new posterior 

probabilities and then again to the M-step. This iteration continues until the convergence 

criterion related to the complete-data log-likelihood is met. Note that Mplus 6 (Muthén & 

Muthén, 1998-2010) uses ML estimation via the EM algorithm; a description of the 

(2.38)            ∑[∑               
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estimation in general for latent variable mixture modeling is provided in the Mplus 6 

technical appendices (Muthén & Muthén, 1998-2010).   

 

2.4 Research Goals 

There are two main objectives of this dissertation research. The first objective is 

to extend the framework of LGMM to a two-class piecewise linear-linear LGMM where 

the location of the knot in each latent class is unknown. The basic idea is to combine the 

piecewise linear-linear LGC model with latent classes. That is, each latent class has its 

own qualitatively distinct piecewise growth trajectory. To accomplish this objective, a 

series of Monte Carlo simulations empirically investigate the ability of two-class 

piecewise linear-linear LGMMs to recover true (known) growth parameters of distinct 

populations under different manipulated conditions. Specifically, the current research 

compares the performance of the two-class piecewise linear-linear LGMM under 

different manipulated conditions of 1) sample size, 2) class mixing proportions, 3) class 

separation of location of knot, 4) the mean of the slope growth factor of the second phase, 

5) the variance of the slope growth factor of the second phase, and 6) residual variance of 

the observed variable.  

The second objective is to address the issue of model mis-specification. It is 

important to analyze this issue because applied researchers have to make model selection 

decisions. Therefore, the current research examines the possibility of extracting spurious 

latent classes. To achieve this objective a 1-, 2-, and 3-class piecewise LGMMs are fit to 

the data sets generated under different manipulated conditions using a two class 

piecewise linear-linear LGMM as a population model. The number of times the correct 
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model (i.e., 2-class piecewise linear-linear LGMM) is preferred over incorrect models 

(i.e., 1- and 3- class piecewise linear-linear LGMMs) using the Bayesian Information 

Criterion (BIC) (Schwarz, 1978) is examined. Detailed information on the simulation 

design, model estimation, and parameter recovery are provided in Chapter 3. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Research Design 

To develop a two-class piecewise linear-linear LGMM, and to investigate the 

extent to which the performance of a two-class piecewise linear-linear LGMM is 

influenced by different population characteristics, a Monte Carlo simulation approach is 

used. Conditions that are hypothesized to impact the estimation of the knot, along with 

other model parameters, include: sample size, class mixing proportions, location of the 

knot, the mean and the variance of the slope growth factor of the second phase, and the 

residual variance of the observed variable. To evaluate parameter recovery, the proposed 

model is fit to data generated from a population model with true (known) parameters, and 

parameter estimates are then compared with their true values. Additionally, the effect of 

manipulated conditions on the percentage of properly converged replications is analyzed 

(where a properly converged replication is a replication for which the solution converges 

with no parameter estimates outside the possible range for that parameter).  

Furthermore, to investigate the issue of model mis-specification, 1-, 2-, and 3-

class piecewise linear-linear LGMMs are fit to the data sets generated under different 

manipulated conditions using a 2-class piecewise linear-linear LGMM as a population 

model. The process of determining the number of latent classes involves the comparison 

of the BIC indices across the three models. That is, a lower value of the BIC reflects an 

improvement in fit, hence, a k-class model is selected when the value of the index 

associated with the k-class model is lower than that of the k-1 and k+1 class models. The 

influence of manipulated conditions on the number of times the correct model (i.e., 2-
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class piecewise linear-linear LGMM) is preferred over incorrect models (i.e., 1- and 3-

class piecewise linear-linear LGMMs) using the BIC criteria is analyzed in Chapter 4.  

The BIC is chosen as the model selection index because it is known to pick the 

correct model most consistently in the framework of finite mixture structure equation 

models (Jedidi, Jagpal, and DeSarbo, 1997), hence, it has been recommended to be used 

in the framework of finite mixture modeling (Haughton, 1997; Leroux, 1992). It is based 

on the loglikelihood (  ) of the postulated model, the number of parameters ( ), and 

sample size ( ) as follows: 

                                                    (3.1) 

Another reason for choosing the BIC as a criterion for model selection is that it 

includes a penalty function for the number of parameters and sample size. That is, BIC 

gives information about whether a more complicated model fits better than a simpler 

model over and above their difference in complexity. It is a useful feature because it 

selects a model that not only fits the data better, but also needs fewer parameters. Other 

information criterions, such as Akaike‟s Information Criterion (AIC; Akaike, 1987), also 

includes a penalty function, but compared to BIC the AIC penalizes models with larger 

numbers of parameters less, leading to the choice of more mixture components. In other 

words, the AIC‟s penalty function is more relaxed as compared to the penalty function of 

BIC (McLachlan & Peel, 2000). Hence, the AIC tends to overestimate the correct number 

of mixture components (Celeux & Soromenho, 1996; Soromenho, 1993), whereas the 

BIC has been reported to perform well (Roeder & Wasserman, 

1997). BIC, thus, is the preferred criterion for model comparison because of the 

advantages that it offers. 
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The remainder of this chapter describes the data generation procedure, simulation 

design, including details on the fixed and manipulated conditions, model estimation, and 

parameter recovery. 

 

3.2 Data Generation Model 

A two-class piecewise linear-linear LGMM is used as a population model to 

generate repeated measures data conforming to 9 equally spaced timepoints (coded 0 to 

8) that follow a multivariate normal distribution. The R program (R Development Core 

Team, 2009) is the statistical package employed to generate the data sets. The choice of 

two-latent classes for simulation purposes is made so as to keep the scope of the study 

manageable. It is often seen in both methodological and substantive research of piecewise 

growth models that the number of timepoints is six or more (see, e.g., Cudeck, 1996; 

Cudeck & Klebe, 2002; Harring et al., 2006), hence, the choice of 9 timepoints seems to 

be reasonable. Furthermore, according to research conducted by Lubke and Muthén 

(2007), additional timepoints do not generally influence model performance or class 

assignment in the context of linear LGMMs. 

Assuming conditional independence, the class-specific population measurement 

model for the ith individual in the present simulation study is specified as:  

                   {
              

                     
             

     

     
                      (3.2) 

where 

                                          

The specification of Equation 3.2 is similar to that given for piecewise LGC model 

specified in Equation 2.24. That is,     is a set of responses of individual i on a set of 
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repeated measurement occasions                        ;    and    represent the 

intercept and slope growth factors for the first phase, respectively;     represents the 

slope growth factor for the second phase;    represents the knot; and    is the residual 

variance. Note that there is no i subscript for any of the model parameters because the 

data generated will be a balanced and complete data for the individual subjects in the 

study. Additionally, note that the parameters that do not have k subscript in Equation 

(3.2) denote population conditions/characteristics that are constrained to be equal across 

classes for the data generation purposes. The parameters that do have k subscript in 

Equation (3.2) denote the population conditions that are allowed to vary across classes. 

Furthermore, it is assumed in this model that the residuals are independent between 

measurement occasions with constant variance across time. That is,                                             

         
    

       
     

where the         operator refers to a diagonal matrix, and   
  refers to the variance of 

the measurement residuals.  

The class-specific structural component of the model for the ith individual is 

specified as: 

                                (

  

  

    

)      (

  

  

    

)     (
  
  
   

)                                          (3.3) 

where   is a vector of factor means and    is a vector of residuals assumed to be normally 

distributed with mean zero and covariance matrix  . That is,  
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where 

                                             [

   
 

    
 

     
 

]  

 and    
 ,    

 , and    
  are the variances of the intercept growth factor of the first phase, 

the slope growth factor of the first phase, and the slope growth factor of the second phase, 

respectively. Note that the parameters that do not have k subscript in Equation (3.3) 

denote population conditions that are constrained to be equal across classes for the data 

generation purposes. The parameters that do have k subscript in Equation (3.3) denote the 

population conditions that are allowed to vary across classes. Furthermore, for the 

purpose of this study, it is assumed that the intercept and slope growth factors are 

uncorrelated, thereby simplifying the data generation model. This assumption is 

consistent with previous studies (see, e.g., Hamilton, 2009). 

 

3.3 Simulation Design 

 In the data generation process, some population characteristics/conditions (i.e., 

mean and variance) are held equal across classes, while others are allowed to vary across 

classes. To elaborate, 

Population conditions equal across classes: 

1. The mean of the intercept      and slope growth factors of the first phase      

2. The variances of the intercept (   
 ) and slope growth factors of the first phase 

(   
 ), and the variance of the slope growth factor of the second phase (   

 ) 

3. The residual variance of the observed variable    
  .  

Population conditions not equal across classes: 
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1. The location of the knot (  ) 

2. The mean of the slope growth factor of the second phase      . 

Note that the decision to keep the population condition for    
 ,    

 ,    
 , and   

  equal 

across both the classes is based on the suggestion made by Muthén (2001) that mixture 

models with large differences in the factor variances and covariances between classes are 

particularly sensitive to local maxima.  

Furthermore, some conditions are fixed throughout all simulations, while other 

conditions are manipulated. The fixed and manipulated conditions are described in the 

following sections. 

3.2.1 Fixed conditions 

The focal point of this research is to estimate the location of the knot across 

classes in different manipulated conditions, thus the conditions that were not directly 

relevant to the study of the knots were fixed across all simulations. The fixed conditions 

are: 

1. Population mean of the intercept growth factor of the first phase      

2. Population variance of the intercept growth factor of the first phase (   
 ) 

3. Population mean of the slope growth factor of the first phase      

4. Population variance of the slope growth factor of the first phase (   
 ) 

5. The factor covariances are fixed to zero. 

The population mean trajectory within each class is parameterized so that, on 

average, scores will not increase over time until        (i.e.,     ). Additionally, the 

population values of   ,    
 , and    

  are chosen so that they are similar to what is 
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commonly found in previous simulation studies in the area of LGMM. The population 

values for the fixed conditions are provided in Table 1.  

Table 1. 

 Population values for fixed conditions. 

Conditions 
Population  

Values 

Growth Factor Means 

 Intercept 1      2.0 

 Slope 1      0.0 

 

Growth Factor Variances 

 Intercept 1     
   1.0 

 Slope 1     
   0.2 

 

Growth Factor Covariances 

 Intercepts and slopes 0.0 

 

The population value of         is similar to the value used by Nylund, Asparouhov, 

and Muthén (2007). The population values of    
 and    

  are selected so that they are in 

the ratio of 5:1 (i.e.,
   
 

   
  

 

    
 

 

 
). This ratio is consistent with the ratio used in previous 

LGMM simulation studies (see, e.g., Bauer & Curran, 2003; Hamilton, 2009).   

3.2.1 Manipulated conditions 

The manipulated conditions are summarized in Table 2 before being described more fully 

in the following sections. 
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Table 2. 

 

Manipulated conditions. 

 

Conditions Number of Levels 

 Sample Size 3 

 Class Mixing Proportions (    2 

 Class Separation of Location of 

Knot (  ) 

5 

 Growth Factor Mean of Slope 

of Second Phase (   ) 

3 

 Growth Factor Variance of 

Slope of Second Phase (    
 ) 

2 

 Residual Variance of Observed 

Variables    
    

2 

 

1. Sample size, n  

The three levels of sample size chosen are: 400, 700, and 1000. These three levels 

are chosen based on the results obtained from a pilot study conducted to 

determine the three best levels of sample size out of a total of five different 

sample sizes (i.e., 200, 400, 700, 1000, and 2000). The detailed discussion on the 

results obtained from the pilot work is presented in a subsequent section.   

2. Class mixing proportion (     

The two levels of mixing proportion chosen are: (50/50 and 75/25) based on 

Nylund et al. (2007). 

3. Class separation of location of knot (  ) 

 

There are 9 equally spaced timepoints in the generated data sets. The range in 

which the population values of the knot for the two classes are chosen is between 

timepoint 2 and timepoint 6. This is so because before timepoint 2 and after 

timepoint 6 there is too little information available to estimate the mean and the 

variance of the slope of the first phase and of the slope of the second phase, 
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0 1 3 4 2 5 6 7 8 

Class 1 

Class 1 

Class 1 

Class 1 

Class1 Class 2 

Class 2 

Class 2 

Class 2 

Class 2 

respectively. The levels of the location of knot condition are determined in the 

following way: 

                         Class 1 Knot Location 

 

 

Class 2 Knot 

Location 

 2 3 4 

+1 2, 3 3, 4 4, 5 

+2 2, 4 3, 5 4, 6 

+3 2, 5 3, 6 4, 7 

 

Out of these nine cells, only those cells are chosen as levels of the class separation 

condition that do not create mirror images. Hence, based on this criterion five 

cells are chosen as levels of this condition; that is, (2, 3); (2, 4); (2, 5); (3, 4); and 

(3, 5). The conditions can also be illustrated in the following way:                                            

 

 

 

 

 

 

 

4. The population mean of the slope growth factor of the second phase (   ) 

The three levels of this condition are:  

a) low     in both classes 1 and 2  

b) low     in class 1, and high     in class 2 

c) high     in both classes 1 and 2. 

The population mean values of     corresponding to the above stated three 

conditions, respectively, are: (0.25, 0.25); (0.25, 1.25); and (1.25, 1.25). The 

rationale behind the choice of this condition is that the degree of bend between the 
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two slopes (i.e.,     and    ) could affect the estimation of location of knot, and 

hence the ability to distinguish between classes having different knots. 

5. The variance of the slope growth factor of the second phase (   
 ) 

The two levels of this condition are: low variance (   
  = 0.20) and high variance 

(   
 = 1.0) relative to the variance of the slope growth factor of the first phase 

(i.e.,    
  = 0.20). Note that it has been stated above that the variances of the slope 

growth factor of the second phase are held equal across classes in the data 

generation process.  

6. Residual variance of the observed variable (  
 )  

The two levels of this condition are: low variance (i.e.,   
      ) and high 

variance (i.e.,   
     ). This condition is selected based on the common 

knowledge that the amount of residual variance in the observed variable can affect 

the fitting of the model, thereby affecting the estimation of the model parameters, 

including location of the knot. In other words, when the amount of residual 

variance in observed variable is small, it should be relatively easy to fit the 

function, thereby making it possible to estimate the location of the knot in the 

fitted function. But when the amount of variance is large, it may be difficult to fit 

the function, thereby making it relatively difficult to estimate the location of the 

knot. Hence, this condition is relevant in the context of estimation of knot 

location. Furthermore, the population values for the low and high condition is 

selected keeping in mind the range of intraclass correlation commonly found in 

practice (i.e.,     ). The intraclass correlation coefficient represents the 
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proportion of variance in an outcome variable explained by between subject 

variability, that is, 

     [
                           

                                                      
] 

which translates to, 

     [
                                               

                                                                 
]  

Also note, it has been stated earlier that the residual variance of the observed variables is 

held equal across classes in the data generation process.  

The combination of manipulated conditions               results in a 

Monte Carlo simulation with 360 cells. For each of the cells, 100 replications are 

generated to assess the results obtained. Table 3 reports the population values for fixed 

and manipulated conditions that are used to generate two-class piecewise linear-linear 

LGMMs. 
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Table 3. 

 

Fixed and manipulated parameter values. 

 

  Class 1 Class 2 

F
ix

ed
 

C
o
n
d
it

io
n
s 

Growth Factor Means of Intercept and Slope of First 

Phase 

  

 Intercept 1       2.0  2.0 

 Slope 1       0.0  0.0 

 

Growth Factor Variances of Intercept and Slope of First 

Phase 

  

 Intercept 1     
    1.0  1.0 

 Slope 1     
    0.2  0.2 

 

Growth Factor Covariances   

 Intercepts and slopes  0.0  0.0 

M
an

ip
u
la

te
d

 

C
o
n
d
it

io
n
s 

 

Class Separation of Location of Knot (  ) 

  

 Level 1  2  3 

 Level 2  2  4 

 Level 3  2  5 

 Level 4  3  4 

 Level 5 

 

 3  5 

Growth Factor Mean of Slope of Second Phase         

 Level 1: Low-Low  0.25  0.25 

 Level 2: Low-High  0.25  1.25 

 Level 3: High-High  1.25  1.25 

 

Growth Factor Variance of Slope of Second Phase     
   

  

 Level 1: Low-Low  0.2  0.2 

 Level 2: High-High  1.0  1.0 

 

Residual Variance of Observed Variables (  
 )   

 Level 1: Low-Low  1.0  1.0 

 Level 2: High-High  5.0  5.0 
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3.4 Pilot Analysis 

3.4.1 Selection of Levels of Sample Size Condition 

There was no previous study on piecewise linear-linear LGMM, hence, as a first 

step a small pilot simulation was conducted to determine the three levels of sample size 

on the basis of convergence criterion, and whether there were important differences in 

results from different sample sizes, say, 1000 to 2000. The critical range of sample size 

is: 200, 400, 700, 1000, and 2000.  

Data were generated using a two-class piecewise linear-linear LGMM with 9 

equally spaced timepoints (coded 0 to 8) for each of the sample size in the critical range 

under six manipulated conditions. The manipulated conditions included, only three levels 

of class separation of location of knot [i.e., (2, 3), (3, 5), and (2, 5)], and only two levels 

of population mean of the slope growth factor of the second phase (i.e., low     in both 

classes 1 and 2, and low     in class 1, and high     in class 2). The values used for low 

    in both classes 1 and 2, and low     in class 1, and high     in class 2 are those 

described in Table 3. The remaining conditions were fixed: class mixing proportion 

(75/25), growth factor variance of slope of second phase (   
     ), and residual 

variance of observed variables (  
     ). The fixed parameter values that were used are 

those described in Table 1. The combination of manipulated conditions and the five 

levels of sample size resulted in a Monte Carlo simulation with 30 cells. For each of the 

cells, 100 replications were generated to assess the results obtained. The models were 

estimated using Mplus 6.1 (Muthén & Muthén, 1998-2010) where population values 

were provided as start values for the parameters to be estimated. The default estimator for 

mixture analysis using Mplus is ML via the EM algorithm. 
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An examination of Tables C1 through C6 in Appendix C yields the following key 

observations: 

 For sample size n = 200, the proportion of converged replications in each cell was 

lowest when compared with other sample sizes in the range. 

 There were no important differences in outcome measures (i.e., average parameter 

bias and standard deviation around average parameter bias) from sample sizes n = 

1000 and  

n = 2000. 

 Overall, the model seemed to perform well when sample size n = 400, 700, 1000, 

and 2000 in terms of the measured outcomes and convergence rate. 

Thus, the three levels of sample size selected were n = 400, 700, and 1000. 

3.4.2 Asymptotic Behavior of Model Parameters for a 2-Class Piecewise Linear-Linear 

LGMM  

 A small pilot study was conducted to analyze the asymptotic behavior of model 

parameters for a two-class piecewise linear-linear LGMM using ML estimation via the 

EM algorithm. Given a very large sample size, it is expected that ML estimation via the 

EM algorithm will produce model parameter estimates that are close to the known (true) 

population values. Data for this pilot study were generated using a two class piecewise 

linear-linear LGMM with 9 equally spaced timepoints for sample size, n = 100,000. The 

population values for the data generation of the piecewise linear-linear LGMM are 

provided in Table C7 in Appendix C. The model was estimated using Mplus 6.1 where 

population values were provided as start values for the parameters to be estimated.  
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As seen in Table C8 in Appendix C, the estimated original model parameters of a 

two-class piecewise linear-linear LGMM are almost same as the known (true) population 

values. Thus, it can be concluded that ML estimation via the EM algorithm does a 

reasonable of estimating model parameters. 

 

3.5 Model Estimation  

The parameters of two-class piecewise linear-linear LGMM are estimated using 

Mplus 6.1. The default estimator for mixture analyses using Mplus is ML via the EM 

algorithm. According to the research conducted by Lubke and Muthén (2007), the 

complexity of the model with respect to the factor structure, or the number of observed 

variables within class, do not influence model performance. However, when estimating 

mixture models, in general, using ML estimation via EM algorithm, failure to converge to 

a stable solution within a given number of iterations or converging to a local maximum of 

the likelihood are common problems (Bauer & Curran, 2003; Muthén, 2001).  

Muthén and Muthén (2000) suggested that researchers provide starting values of 

the parameters to be estimated that reflects their beliefs about the population as it helps 

the modeling algorithm to converge. As this study was not intended to focus on 

convergence issues, the population values of the parameters are used as the starting 

values in Mplus 6.1. The decision of choosing population values as starting values is 

consistent with previous studies (see, e.g., Hamilton, 2009; Paxton, Curran, Bollen, 

Kirby, & Chen, 2001). In addition, the number of default starting values in Mplus 6.1 

(i.e., ten sets of random starting values are used with two iterations for each set) are 
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increased to fifty sets of random starting values with five iterations for each set in order 

to investigate local solutions more thoroughly.  

While estimating piecewise linear-linear LGMMs under different manipulated 

conditions in Mplus 6.1, only the residual variance of observed variable is constrained to 

be equal across classes. Rest all the other model parameters are allowed to be freely 

estimated across classes. That is, the mean and the variance of the intercept growth factor 

of the first phase, the mean and the variance of the slope growth factor of the first phase, 

the mean and the variance of the slope growth factor of the second phase, the growth 

factor covariances (intercepts and slopes) and the location of the knot are estimated for 

each class. Once the models have been estimated in Mplus 6.1, the parameter estimates of 

interest are imported into the R program (R Development Core Team, 2009) for further 

analyses as described in the next section. 

 

3.6 Outcome Measures 

Upon convergence, the estimated parameters of the reparameterized models are 

transformed back to the original parameters of the two-class piecewise linear-linear 

LGMMs using the procedure shown in Appendix B. The transformation is carried out in 

the R program. To evaluate the performance of two-class piecewise linear-linear LGMMs 

under different manipulated conditions, the following outcome measures are used: 

parameter bias, and variability index for parameter bias. Parameter bias is defined as the 

difference between the estimated parameter value and the corresponding population true 

value, that is, 

      [ ̂       ]. 
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Note that Bias is computed for only successful replications (i.e., a replication for which 

the solution converged with no parameter estimates outside the possible range for the 

parameter) in each cell. Additionally, variability index for parameter bias corresponding 

to each of the estimated parameters for each replication in each cell is computed as: 

                   [ ̂   ̂ ]
 

  

To evaluate the accuracy of the parameter estimates, percent bias for each of the 

estimated model parameters in each cell is computed. A percent bias is defined as: 

              [
                                 

                                      
]        

Note that median bias was used in the above equation instead of mean bias because it is 

more resistant to a outliers. Positive values for percent bias occur for estimates that are 

above the population value by the percent magnitude listed, whereas negative values for 

percent bias occur for estimates that are below the population value by the percent 

magnitude listed. Parameter estimates that contained 10% bias or more in either direction 

are considered definitely biased (Gagné, 2004) and are reported in Chapter 4. 

Furthermore, to quantify bias as a function of the manipulated conditions, analysis 

of variance (ANOVA) with a 6-way [3 (sample size) × 2 (class mixing proportion) × 5 

(class separation of location of knot) × 3 (growth factor mean of slope of second phase) × 

2 (growth factor variance of slope of second phase) × 2 (residual variance in observed 

variables)] is performed. Partial eta squared,    , corresponding to each manipulated 

factor and the interaction terms, are reported for practical significance. Partial    for a 

manipulated factor is defined as the proportion of total variation attributable to the factor, 
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partialling out (excluding) other factors from the total nonerror variation (Pierce, Block, 

& Aguinis, 2004, p. 918).  

The criterion used for characterizing     values is the same as that for 

characterizing    values. Using the same criterion is legitimate because with large 

samples, the distinction between    and     tends to be small as    involves division by 

total sample size (Sapp, 2006). Partial    involves division by sample size minus number 

of groups (Sapp, 2006). Since the sample size for the ANOVA analyses in the context of 

this study is large, it is reasonable to use the criterion for characterizing    values as the 

criterion for characterizing     values.    values are characterized as small, medium, or 

large, where .01 constitutes small, .06 medium , and 0.14 large  (see Cohen, 1988, p. 

283). Note that the main effects of the manipulated factors and the interaction terms are 

reported and interpreted only when both statistical significance (p    ) and practical 

significance (        ) are achieved. 

The following chapter presents results related to the first and the second research 

objectives of the current study. Results are presented regarding the influence of 

manipulated conditions on the properly converged replications for the two-class 

piecewise linear-linear LGMMs, and on the model selection rate. Results are also 

presented related to the accuracy of estimated parameters from the two-class piecewise 

linear-linear LGMM with data generated under known study conditions. 
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CHAPTER 4 – RESULTS 

 

 In this chapter, results of the simulation study are organized and presented in 

order to address the first and the second research objectives of this study. Results related 

to the influence of manipulated conditions on the properly converged replications for the 

two-class piecewise linear-linear LGMM are presented in section 4.1; results related to 

the parameter bias and the variability index of parameter bias from estimating parameters 

from the two-class piecewise linear-linear LGMM with data generated under known 

study conditions are presented in section 4.2; results from model mis-specification are 

presented in section 4.3; and a summary of main findings is presented in section 4.4.  

 

4.1 Model Convergence Rate 

  The rate of converged replications for two-class piecewise linear-linear LGMMs 

across all the cells (total number of cells were 360) was found to be between 58% and 

99%, where 166 cells out of 360 had a 90% or higher rate of convergence to the global 

solution, 100 cells out of 360 had a 70% to 89% rate of convergence to the global 

solution, and 94 cells out of 360 had a 69% or lower rate of convergence to the global 

solution. The proportion of properly converged replications for two-class piecewise 

linear-linear LGMMs are shown in Table 4. Note that the Table 4 has been arranged from 

ascending to descending order using proportions of properly converged replications as 

the sorting variable. 
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Table 4. 

 

Proportion of properly converged replications for two-class piecewise linear-linear 

LGMMs. 

 

Cell Prop. Cell Prop. Cell Prop. Cell Prop. Cell Prop. Cell Prop. 

1 .58 39 .63 77 .67 115 .75 153 .82 191 .89 

2 .58 40 .63 78 .67 116 .75 154 .82 192 .89 

3 .58 41 .63 79 .67 117 .75 155 .82 193 .89 

4 .59 42 .63 80 .67 118 .75 156 .82 194 .89 

5 .59 43 .63 81 .67 119 .76 157 .83 195 .90 

6 .59 44 .63 82 .67 120 .76 158 .83 196 .90 

7 .59 45 .63 83 .67 121 .76 159 .83 197 .90 

8 .59 46 .63 84 .67 122 .76 160 .83 198 .90 

9 .60 47 .63 85 .67 123 .76 161 .84 199 .90 

10 .60 48 .63 86 .68 124 .76 162 .84 200 .90 

11 .60 49 .63 87 .68 125 .77 163 .84 201 .90 

12 .60 50 .64 88 .68 126 .77 164 .84 202 .90 

13 .60 51 .64 89 .68 127 .77 165 .84 203 .90 

14 .60 52 .64 90 .68 128 .77 166 .84 204 .90 

15 .60 53 .64 91 .69 129 .77 167 .84 205 .91 

16 .60 54 .64 92 .69 130 .78 168 .85 206 .91 

17 .61 55 .64 93 .69 131 .78 169 .85 207 .91 

18 .61 56 .64 94 .69 132 .78 170 .86 208 .91 

19 .61 57 .64 95 .70 133 .78 171 .86 209 .91 

20 .61 58 .64 96 .70 134 .78 172 .86 210 .91 

21 .61 59 .64 97 .70 135 .79 173 .86 211 .91 

22 .61 60 .64 98 .70 136 .79 174 .87 212 .91 

23 .61 61 .65 99 .71 137 .79 175 .87 213 .91 

24 .62 62 .65 100 .71 138 .79 176 .87 214 .91 

25 .62 63 .65 101 .71 139 .79 177 .87 215 .91 

26 .62 64 .65 102 .72 140 .79 178 .87 216 .91 

27 .62 65 .65 103 .72 141 .79 179 .88 217 .91 

28 .62 66 .65 104 .72 142 .79 180 .88 218 .91 

29 .62 67 .65 105 .73 143 .79 181 .88 219 .91 

30 .62 68 .65 106 .73 144 .79 182 .88 220 .91 

31 .62 69 .65 107 .73 145 .80 183 .88 221 .91 

32 .63 70 .65 108 .73 146 .80 184 .88 222 .92 

33 .63 71 .66 109 .73 147 .80 185 .89 223 .92 

34 .63 72 .66 110 .73 148 .81 186 .89 224 .92 

35 .63 73 .66 111 .73 149 .81 187 .89 225 .92 

36 .63 74 .66 112 .73 150 .82 188 .89 226 .92 

37 .63 75 .66 113 .74 151 .82 189 .89 227 .92 

38 .63 76 .66 114 .74 152 .82 190 .89 228 .92 
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Table 4 (contd.) 

 

Proportion of properly converged replications for two-class piecewise linear-linear 

LGMMs. 

 

Cell Prop. Cell Prop. Cell Prop. Cell Prop. 

229 .92 267 .94 305 .95 343 .97 

230 .92 268 .94 306 .95 344 .97 

231 .92 269 .94 307 .95 345 .97 

232 .92 270 .94 308 .95 346 .97 

233 .92 271 .94 309 .95 347 .97 

234 .92 272 .94 310 .95 348 .97 

235 .92 273 .94 311 .96 349 .97 

236 .92 274 .94 312 .96 350 .97 

237 .92 275 .94 313 .96 351 .97 

238 .92 276 .94 314 .96 352 .97 

239 .92 277 .94 315 .96 353 .97 

240 .92 278 .94 316 .96 354 .97 

241 .92 279 .94 317 .96 355 .98 

242 .92 280 .94 318 .96 356 .98 

243 .92 281 .94 319 .96 357 .98 

244 .93 282 .94 320 .96 358 .98 

245 .93 283 .94 321 .96 359 .98 

246 .93 284 .94 322 .96 360 .99 

247 .93 285 .95 323 .96   

248 .93 286 .95 324 .96   

249 .93 287 .95 325 .96   

250 .93 288 .95 326 .96   

251 .93 289 .95 327 .96   

252 .93 290 .95 328 .96   

253 .93 291 .95 329 .96   

254 .93 292 .95 330 .96   

255 .93 293 .95 331 .96   

256 .93 294 .95 332 .96   

257 .93 295 .95 333 .96   

258 .93 296 .95 334 .96   

259 .93 297 .95 335 .96   

260 .93 298 .95 336 .96   

261 .93 299 .95 337 .96   

262 .93 300 .95 338 .96   

263 .93 301 .95 339 .96   

264 .94 302 .95 340 .96   

265 .94 303 .95 341 .96   

266 .94 304 .95 342 .97   
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The percentage of properly converged replications was examined to see if it 

appeared to be a function of the manipulated conditions. The classification tree in Figure 

8 graphically depicts the effect of the manipulated conditions on the model convergence 

rate before being fully described later. The method used for creating classification tree 

was Chi-squared Automatic Interaction Detection (CHAID). CHAID is an exploratory 

data analysis method used to study the relations between a dependent variable (i.e., model 

convergence rate) and independent variables (i.e., manipulated conditions). At each step 

in the tree creation, CHAID chooses the independent variable that has the strongest 

statistically significant relation with the dependent variable. The procedure automatically 

excludes any variables that do not make a significant contribution to the final model. 

Note that before creating the classification tree, the dependent variable (model 

convergence rate expressed in proportions) was transformed using an arcsine 

transformation (units expressed in radians) (Sokal & Rohlf, 1995). This was done 

because data that are in percents or proportions are generally not normally distributed. To 

make percent/proportion data closer to normal, an arcsine transformation of data is 

useful, that is 

         √  

where   denotes data that are proportions. 
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Figure 8: Classification Tree: The effect of manipulated conditions on the percentage of 

properly converged replications.
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As observed in Figure 8, the most influential predictor of model convergence rate 

was the manipulated condition of residual variance in observed variables (  
 ). In other 

words, residual variance in observed variables had the strongest statistically significant 

relation with model convergence rate. There were different levels of model convergence 

rate for the two nodes, Node 1 (low residual variance,   
      ) and Node 2 (high 

residual variance,   
     ), formed on the basis of different conditions of residual 

variance. Node 2 seemed to favor a slightly better model convergence rate as compared 

to Node 1 (i.e.,   ̅               ̅            ). This implies that the model 

convergence rates for the two-class piecewise linear-linear LGMMs were fairly high 

when the value of residual variance in observed variable was large.  

For low residual variance category (Node 1), the next best predictor was the 

manipulated condition of growth factor mean of the slope of the second phase (   ). 

Node 1 was statistically significantly split into two nodes, Node 3 (includes level 1 - low-

low: 0.25, 0.25 and level 3 - high-high: 1.25, 1.25) and Node 4 (level 2 - low-high: 0.25, 

1.25), on the basis of different conditions of growth factor mean of the slope of the 

second phase. Node 4 seemed to favor a relatively higher model convergence rate as 

compared to Node 3 (i.e.,  ̅               ̅            ). This implies that the cells 

that combined low value of residual variance and a low-high condition for the growth 

factor mean of the slope of the second phase favored a relatively higher model 

convergence rate as compared to the cells that combined low value of residual variance 

with the low-low or high-high conditions of the growth factor mean of the slope of the 

second phase. 
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Furthermore, for Node 3, the next best predictor was the manipulated condition of 

class mixing proportion condition (   . Node 3 was statistically significantly split into 

two nodes, Node 7 (level 1 - 50/50) and Node 8 (level 2 - 75/25), on the basis of different 

conditions of class mixing proportion. Node 8 seemed to favor a relatively higher model 

convergence rate as compared to Node 7 (i.e.,  ̅               ̅            ). This 

implies that the cells that combined low residual variance, the low-low or high-high 

conditions of the growth factor mean of the slope of the second phase, and 75/25 class 

mixing proportion favored a relatively higher model convergence rate as compared to the 

cells that combined low residual variance, the low-low or high-high conditions of the 

growth factor mean of the slope of the second phase, and 50/50 class mixing proportion. 

For high residual variance category (Node 2), the next best predictor was the 

manipulated condition of growth factor variance of the slope of the second phase (    
 ). 

Node 2 was statistically significantly split into two nodes, Node 5 (low slope2 variance, 

   
  = 0.20) and Node 6 (high slope2 variance,    

 = 1.0), on the basis of different 

conditions of growth factor variance of the slope of the second phase. Node 5 seemed to 

favor a relatively higher model convergence rate as compared to Node 6 (i.e.,  ̅       

        ̅            ). This implies that the cells that had a combination of high value 

of residual variance and low slope2 variance favored a relatively higher model 

convergence rate as compared to the cells that had a combination of high value of 

residual variance and high slope2 variance. Overall, the cells with high value of residual 

variance and low slope2 variance had the best model convergence rate. 

The result at the end of this tree building process is that we have a series of Nodes 

defined by the manipulated conditions:  residual variance in observed variable (  
 ), 
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growth factor mean of the slope of the second phase (   ), growth factor variance of the 

slope of the second phase (    
 ), and class mixing proportion (    that are maximally 

different from one another on the model convergence rate. The manipulated conditions 

that did not make a significant contribution to the final model were sample size (n) and 

class separation of location of knot (  ). 

 

4.2 Parameter Bias  

Parameter estimates within 10% of the population value were considered 

acceptable. Using this criterion, none of the parameter estimates for growth factor mean 

of the intercept of the first phase, and the residual variance in observed variable for class 

1 and 2, respectively, across all 360 cells were considered unacceptable. The percentage 

of cells that had unacceptable values of the parameter estimates for growth factor mean of 

the slope of the second phase for class 1 and 2 were 32.50% and 25%, respectively. 

Additionally, nearly 30% of the cells had unacceptable values of the parameter estimates 

for location of the knot for class 1 and 2.  

Furthermore, the parameter estimates for variances of the growth factors 

(intercept of the first phase, slope of the first phase, and slope of the second phase) were 

generally poor for both the classes. The percentage of cells that had unacceptable values 

of parameter estimates for variances of growth factors ranged between 61.11% and 100% 

for class 1 and 2, respectively. The percentage of cells with 10% or more bias in either 

direction is summarized in Table 5.  
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Table 5. 

 Percentage of cells with 10% or more bias in either direction. 

  % of Cells with %Bias ≥ 10 

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 1

) 
Bias_    0.00 

 

Bias_    N/A 

 

Bias_    32.50 

 

Bias_   29.44 

 

Bias_    
  100.00 

 

Bias_    
  61.11 

 

Bias_    
  61.94 

 

Bias_   
  0.00 

   

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 2

) 

Bias_    0.00 

 

Bias_    N/A 

 

Bias_    25.00 

 

Bias_   28.33 

 

Bias_    
  100.00 

 

Bias_    
  61.94 

 

Bias_    
  65.83 

 

 Bias_   
  0.00 

 

Note: that the population value of the growth factor mean of slope of the first phase is 0 

for both the classes across all the cells. Thus, it is not possible to compute the %bias for 

this particular parameter. 

 

To quantify bias as a function of the manipulated conditions a 6-way analysis of 

variance (ANOVA) [3 (sample size) × 2 (class mixing proportion) × 5 (class separation 
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of location of knot) × 3 (growth factor mean of slope of second phase) × 2 (growth factor 

variance of slope of second phase) × 2 (residual variance in observed variable)] was 

performed on the outcome measures: parameter bias and variability index of parameter 

bias. The main effects of the manipulated conditions and the interaction terms were 

reported and interpreted only when both statistical significance (p    ) and practical 

significance (        ) were achieved.  

In all the ANOVA tables there were no main effects or interaction terms that 

satisfied both the statistical and the practical significance criteria. Thus, it can be 

concluded that the parameter bias and the variability index of parameter bias are not 

systematically related to any of the manipulated conditions in the study. A summary of 

results obtained from the ANOVA tables are presented in Tables D1 and D2 in Appendix 

D. 

 

4.3. Model Mis-specification 

The 3-class piecewise linear-linear LGMM failed to converge for all the 

replications across all the cells, so it was not possible to obtain the BIC indices from 

these replications. This is not too surprising given that, unlike the 2‐class piecewise 

linear-linear LGMM, starting values for this model could not be provided in Mplus 6.1. 

Furthermore, the review of the literature indicates that typically over-extracted latent 

class models have serious convergence problems (Nylund et al., 2007; Tofighi & Enders, 

2008). Thus, the failed replications of 3-class piecewise linear-linear LGMM were simply 

discarded and the analyses were based on the replications that produced a converged 

solution for the 1- and 2-class piecewise linear-linear LGMM.  
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4.3.1. Model selection rate 

 Model selection rates across all the cells (total number of cells were 360) were 

found to be between .00 and 1.00, where 139 cells out of 360 had a 80% or higher rate of 

model selection, 50 cells out of 360 had a 21% to 79% rate, and 171 cells out of 360 had 

a 20% or lower rate of model selection. The number of times the correct model (i.e., 2-

class piecewise linear-linear LGMM) was preferred over the incorrect model (i.e., 1-class 

piecewise linear-linear LGMM) was examined to see if it appeared to be a function of the 

manipulated conditions. The classification tree in Figure 9 graphically depicts the effect 

of the manipulated conditions on the model selection rate before being fully described 

later. The method used for creating the classification tree was Chi-squared Automatic 

Interaction Detection (CHAID). Note that before creating the classification tree, the 

dependent variable (model selection rate expressed in proportions) was transformed using 

an arcsine transformation (units expressed in radians). This transformation was done so 

as to make the distribution of model selection rate data more normal. 
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Figure 9: Classification Tree: The effect of manipulated conditions on the selection rate. 

 

As seen in Figure 9, the most influential predictor of model convergence rate was 

the manipulated condition of residual variance in observed variables (  
 ).  In other 

words, residual variance in observed variables had the strongest statistically significant 

relation with model selection rate. There were different levels of model selection rate for 

Node 1 (low residual variance,   
      ) and Node 2 (high residual variance,   

     ) 
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formed on the basis of different conditions of residual variance in observed variable. 

Node 1 seemed to favor a much higher model selection rate as compared to Node 2 (i.e., 

 ̅               ̅            ). This implies that the model selection rates for the 

two-class piecewise linear-linear LGMMs were high when the value of residual variance 

in observed variable was small.  

For low residual variance category (Node 1), the next best predictor was the 

manipulated condition of growth factor mean of the slope of the second phase (   ). 

Node 1 was statistically significantly split into two nodes, Node 3 (includes level 1 - low-

low: 0.25, 0.25 and level 3 - high-high: 1.25, 1.25) and Node 4 (level 2 - low-high: 0.25, 

1.25), on the basis of the growth factor mean of the slope of the second phase. Node 3 

seemed to favor a higher model selection rate as compared to Node 4 (i.e.,  ̅       

     ;  ̅            ). This, basically, implies that the cells that combined the low-

low or high-high conditions of the growth factor mean of the slope of the second phase 

and low value of residual variance favored a higher model selection rate as compared to 

the cells that had a combination of low value of residual variance and the low-high 

condition of the growth factor mean of the slope of the second phase. Overall, the cells 

with low value of residual variance and the low-low or high-high conditions of the 

growth factor mean of the slope of the second phase had the best model selection rate. 

For high residual variance category (Node 2), the next best predictor was the 

manipulated condition of class mixing proportion (   . Node 2 was statistically 

significantly split into two nodes, Node 5 (level 1 - 50/50) and Node 6 (level 2 - 75/25), 

on the basis of class mixing proportion. Node 5 seemed to favor a higher model selection 

rate as compared to Node 6 (i.e.,  ̅            ;  ̅            ). This implies that 
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the cells that had high value of residual variance and 50/50 class mixing proportion 

favored a relatively higher model selection rate as compared to the cells that had a 

combination of high residual variance and 75/25 class mixing proportion. 

The result at the end of this tree building process is that we have a series Nodes 

defined by the manipulated conditions of residual variance of observed variable (  
 ), 

growth factor mean of the slope of the second phase (   ), and class mixing proportion 

(    that are maximally different from one another on the model selection rate. The 

manipulated conditions that didn‟t make a significant contribution to the final model were 

sample size (n), class separation of location of knot (  ), and growth factor variance of 

the slope of the second phase (   
 ). 

4.3.2. Parameter bias and variability index of parameter bias for filtered replications 

As a post hoc analysis, a 6-way analysis of variance (ANOVA) [3 (sample size) × 

2 (class mixing proportion) × 5 (class separation of location of knot) × 3 (growth factor 

mean of slope of second phase) × 2 (growth factor variance of slope of second phase) × 2 

(residual variance in observed variables)] was performed on only those replications that 

favored the correct model, the 2-class piecewise linear-linear LGMM, over the incorrect 

model, the 1-class piecewise linear-linear LGMM.  The main effects of the manipulated 

factors and the interaction terms were reported and interpreted only when both the 

statistical significance (p    ) and the practical significance (        ) were achieved.  

In all the ANOVA tables there were no main effects or interaction terms that 

satisfied both the statistical and the practical significance criteria. Thus, it can be 

concluded that the parameter bias and the variability index of parameter bias 

corresponding to only filtered replications are not systematically related to any of the 
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manipulated factors in the study. A summary of results obtained from the ANOVA tables 

are shown in Tables D3 and D4 in Appendix D. 

 

4.4. Summary of Main Findings 

 The following are the main findings from the current study: 

 For all the 360 cells, the parameter estimates for the intercept factor mean of the 

first phase, and the residual variance in observed variable were considered 

acceptable.  

 For roughly 70% of the cells, the parameter estimates for slope factor mean of the 

second phase, and location of the knot were considered acceptable. 

 For less than or equal to 39% of the cells, the parameter estimates for the 

variances of intercept and slope factors of the first phase, and slope factor of the 

second phase, were considered acceptable. 

 The outcome measures, parameter bias and variability index of parameter bias, 

were not systematically related to any of the manipulated conditions in the design 

of the study. 

 Among all the manipulated conditions, the condition of residual variance in 

observed variable had the strongest influence on both the model convergence rate 

and the model selection rate.  Higher residual variance was associated with higher 

model convergence rate, and lower model selection rate. Lower residual variance 

was associated with lower model convergence rate, and higher model selection 

rate. 
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 Other manipulated conditions that influenced the model convergence rate and/or 

the model selection rate were growth factor mean of the slope of the second 

phase, growth factor variance of the slope of the second phase, and the class 

mixing proportion.  

 The manipulated conditions that had no impact on either the model convergence 

rate or the model selection rate were sample size and class separation of location 

of the knot. 
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CHAPTER 5 – DISCUSSION 

 

In the current study, a two-class piecewise linear-linear LGMM was developed, 

where the location of the knot is unknown. The model combines features of a piecewise 

linear-linear LGC model (where the location of the knot is unknown) with the ideas of 

latent class methods within the framework of SEM. The current research provided an in-

depth analysis of accuracy of estimated model parameters when fitting a two-class 

piecewise linear-linear LGMM to data generated under different experimental conditions. 

Specifically, the performance of the two-class piecewise linear-linear LGMM was 

assessed under the manipulated conditions of sample size, class mixing proportion, class 

separation of location of knot, the mean of slope growth factor of the second phase, the 

variance of slope growth factor of the second phase, and residual variance of the 

observed variable. The outcome measures, parameter bias and variability index for 

parameter bias, were examined to see if they appeared to be a function of the manipulated 

conditions. Additionally, the effect of manipulated conditions on the percentage of 

properly converged replications for two-class piecewise linear-linear LGMMS across all 

the cells (i.e., 360) was analyzed. 

Furthermore, the current study also addressed the issue of model mis-

specification. An analysis was conducted on model selection rate when fitting 1-, 2-, and 

3-class piecewise linear-linear LGMMs to the data sets generated under different 

manipulated conditions using the 2-class piecewise linear-linear LGMM as the 

population model. The following sections include a summary of results, limitations of 

study, and methodological extensions.  
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5.1 Summary of Results 

5.1.1 Model convergence rate 

When fitting a two-class piecewise linear-linear LGMM under different 

manipulated conditions, the convergence rates to proper solutions seem to be most 

affected by the different levels of residual variance in observed variable condition. The 

large value of residual variance (  
      ) was associated with higher model 

convergence rate for the two-class piecewise linear-linear LGMM. This finding is not 

surprising because for convergence to be achieved, it is necessary to attain stationarity 

with respect to the estimation of parameters (i.e., the estimate for a parameter does not 

get any significantly better in subsequent iterations). The probability of finding a tenable 

value for a parameter perhaps increases with increase in observed variable variability, 

whether arising by residual or factor variance, because, spatially, the values that are 

sustainable take a larger range. 

Other manipulated conditions that affected model convergence rate were the 

conditions of growth factor mean of slope of the second phase, growth factor variance of 

slope of the second phase, and class mixing proportion, when combined with different 

levels of residual variance condition. The conditions that had the highest model 

convergence rate had a combination of large value of residual variance (  
      ) and 

small value of slope2 variance (    
     ). The conditions that had the worst model 

convergence rates had a combination of small value of residual variance (  
      ), 

either level 1 (i.e., low-low: 0.25, 0.25) or level 3 (i.e., high-high: 1.25, 1.25) of growth 

factor mean of slope of the second phase, and 50/50 class mixing proportion. The only 
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two manipulated conditions that did not have an effect on the model convergence rate 

were the conditions of sample size and class separation of location of the knot. 

5.1.2 Parameter bias  

The results related to the accuracy of parameter estimates suggest that the 

estimated variances of the growth factors, intercept and slope of the first phase, and slope 

of the second phase, were unsatisfactory. The percentage of cells with unacceptable 

values of the parameter estimates for the growth factor variances were more than 61%. 

The percentage of cells with unacceptable values of parameter estimates for the growth 

factor mean of the slope of the second phase 32.50% or less. The percentage of cells with 

unacceptable values for parameter estimates of the knot was nearly 30%. For the growth 

factor mean of the intercept of the first phase, and the residual variance in observed 

variable, none of the parameter estimates were considered unacceptable. 

This finding is not that odd because the estimation of piecewise model, a type of 

partially nonlinear model, is known to be computationally intensive (piecewise model is a 

partially nonlinear model because the knot is a nonlinear parameter that does not have a 

random effect) (Cudeck & Klebe, 2002). Moreover, variances/covariances of the growth 

factors (random effects), especially the nonlinear, are notoriously problematic. The same 

explanation also applies to the estimation of location of the knot, where knot is a 

nonlinear parameter.  

The results from 6-way ANOVA revealed that none of the manipulated conditions 

were systematically related to the outcome measures, parameter bias and variability index 

of parameter bias. Overall, the two-class piecewise linear-linear LGMM is a very 
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complex model and poor estimation of parameters reflect on the challenge with this 

model.  

5.1.3 Model selection rate 

The current research also investigated the possibility of extracting spurious latent 

classes. The effect of different manipulated conditions on the number of times the correct 

model (i.e., 2-class piecewise linear-linear LGMM) was preferred over incorrect models 

(i.e., 1- and 3- class piecewise linear-linear LGMMs) was analyzed. The manipulated 

condition of residual variance of observed variable had the strongest statistically 

significant effect on the model selection rate. The large value of residual variance 

(  
      ) was associated with lower model selection rate for the two-class piecewise 

linear-linear LGMM. This finding makes some sense because when fitting a model to 

data that has large value of residual variance, the sustainable parameter estimates could 

take on a wide range of values. This means the range could satisfy a wider variety of 

models, including both correctly and incorrectly specified models. Thus, a large value of 

residual variance may lead to lower selection rate.  

The model selection rate was also affected by other manipulated conditions, such 

as growth factor mean of slope of the second phase, and class mixing proportion, when 

combined with different levels of residual variance condition. The conditions that had the 

best model convergence rates had a combination of small value of residual variance 

(  
      ), and either level 1 (i.e., low-low: 0.25, 0.25) or level 3 (i.e., high-high: 1.25, 

1.25) of growth factor mean of slope of the second phase. The conditions that had the 

worst model convergence rate had a combination of large value of residual variance 

(  
      ) and 75/25 class mixing proportion. The only manipulated conditions that did 
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not have an effect on the model selection rate were the conditions of sample size, growth 

factor variance of slope of the second phase, and class separation of location of the knot.  

 

5.2 Limitations of Study 

The research design of the current study allowed for inferences about the 

performance of two-class piecewise linear-linear LGMM under a variety of manipulated 

conditions that were thought to be important to applied researchers. Nonetheless, as with 

any simulation study, there are an infinite number of combinations of manipulated 

conditions that could have been analyzed. For example, this research did not incorporate 

observed variables with non-normal distributions, or different types of residual 

covariance structures, such as first-order auto-regressive covariance structure or Toeplitz 

covariance structure.  

Another limitation of the study is that it did not incorporate any observed or latent 

covariates. Inclusion of covariates in a growth mixture model may help in improving 

model convergence and latent class membership (Lubke & Muthén, 2007). 

Furthermore, the results were based on only those replications that converged to a 

proper solution, which means that the results should be considered the upper bounds. The 

replications that did not converge to a proper solution were discarded. Hence, the 

generalizability of the findings for the cells with relatively low convergence rate are 

necessarily impacted (Hamilton, 2009).   

Lastly, the current study was limited to one type of model selection index. While 

BIC is a popular index of model selection in applied research, there are conflicting results 

about its effectiveness when sample size is large. That is, Tolvanen (2008) recommended 
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using BIC with small sample sizes and aBIC (adjusted BIC) with large sample sizes. The 

borderline between small and large sample size was suggested to be about 500.  

 

5.3 Recommendations for Applied Researchers 

In applied settings it may not be obvious for researchers to know which model to 

pick that not only fits the data best, but also makes sense substantively. A couple of 

informed steps can help applied researchers to select and fit the right model to data. 

Below is the general guideline that a researcher may follow: 

First, it is important for a researcher to visually see the data via graphs, such as 

spaghetti plots, to get a good sense of the functional form of individual‟s growth over 

time, unless he or she has a theory that dictates the functional form of individual‟s 

growth. Furthermore, the visual inspection of the graphs will also give an idea about 

whether or not the overall functional form appears to be made up of different segments. 

That is, whether or not there is a piecewise change in the individual‟s trajectory over 

time. Additionally, there are tests for determining empirically whether the within-subject 

functional form truly is piecewise rather than some other smooth function. The 

parameterization allows testing the homogeneity of slopes of segment 1 and 2. If the test 

is found to be statistically significant, it would imply that the two slopes are not equal. 

This result would indicate the existence of within-subject piecewise function. 

Second, a piecewise LGMM can be considered to fit data if a researcher believes 

the observed sample is made up of multiple population distributions with distinct 

characteristics and that the functional form in each latent class has a disjuncture. It may 

not, however, be advisable to straight away fit a piecewise LGMM without thinking 
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about the issues related with LGMMs. That is, LGMMs, in general, have a hard time to 

converge to a stable solution. Moreover, LGMMs also have the problem of converging to 

a local maximum of the likelihood. Ideally, it is recommended that population values 

should be provided as starting values of the parameters to be estimated to minimize 

convergence problems.  

In applied settings the population values are not known, however. A useful way 

for applied researchers to minimize convergence problems is to use previous research to 

estimate appropriate starting values. Another way to minimize convergence related issues 

is to estimate the model parts separately to obtain appropriate starting values for the full 

model. For example, a 1-class piecewise LGC model can be fit to data and then later, the 

estimated values of model parameters can be used as starting values of the LGMM‟s 

parameters to be estimated. Another alternative step can be to fit a latent class growth 

model in which individuals within a class are treated as homogeneous with respect to 

their development, that is, the within-class between-subject variability is suppressed. The 

estimated parameter values corresponding to the mean structure and residual variance 

will give some indication for the starting values of the mean structure and residual 

variance for the LGMM. 

Furthermore, if posterior class membership probability is of interest to applied 

researchers, a potential way of improving it is to add class-predicting covariates to the 

model (Lubke & Muthén, 2007). There is a caveat here, however. The class-predicting 

covariates would make the model more complex, and so convergence problems may 

result. 
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5.4 Methodological Extensions 

The current study provided a preliminary evaluation of the viability of two-class 

piecewise linear-linear LGMM, where the location of knot is unknown and fixed for all 

individual cases. The issues related to the estimation of model parameters needs to be 

investigated more. It may be worthwhile exploring in future studies how the model fits 

when using MCMC estimation method and compare the results obtained from ML 

estimation via EM algorithm. Once the issues related with the estimation of two-class 

piecewise linear-linear LGMM are resolved some interesting extensions can be 

considered, such as the following: 

It will be very interesting to extend this model to include a random effect for knot, 

i.e., each individual case is allowed to have its own location of knot, and analyze 

problems with respect to the estimation procedure. Another interesting extension can be 

to incorporate observed and latent covariates to predict the location of knot.  

In this study it was assumed that both the classes have the same functional form 

of piecewise change process, i.e., linear-linear. It will be interesting to incorporate 

different functional form of piecewise change process for each latent class, for example 

one class has a linear-linear piecewise change process and the other class has linear-

exponential piecewise change process. 

In sum, the research reported here seem to indicate that a two-class piecewise 

linear-linear LGMM is a very complex model and that there are issues related to the 

estimation of model parameters. At the same time, it also seems to be a useful and 

flexible model in the area of educational research where most often the interest of 

researchers is centered on student academic progress or changes in attitude and affect, for 
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example researchers may be interested in studying the effectiveness of treatment/ 

intervention on students‟ academic progress where the population of students is 

composed of two or more latent groups. The utility of two-class piecewise linear-linear 

LGMM is that it allows researchers to specify each developmental phase to conform to a 

particular form of the overall change process within each latent class.  
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APPENDIX – A 

 

The Procedure of Reparameterization: 

Based on Harring et al. (2006) paper, the three combinations of the slopes and 

intercepts is given as: 

   
 

 
               

 

 
               

 

 
                     (1) 

When the mean of slope of second phase,   , is greater than the mean of slope of first 

phase,   , (i.e.,      ), the reparameterized model can be written as the maximum of 

the two segments (Harring et al., 2006). That is, 

                                                                                   

A convenient form of the max function can be written as: 

                                                         
 

 
     √                                       (2) 

Substituting the segments       and       into the above equation gives: 

              

    
 

 
       √           

    
 

 
{                      √[                         ] } 

    
 

 
{                       √[                      ] } 

Because the segments join at the knot (i.e., when      ,                   ), 

therefore 

                  . Consequently,  

   
 

 
{                       √[                       ] } 

      
 

 
{                       √[                ] } 
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{                                 √        } 

Using the terms in Equation (1) gives the reparameterized piecewise linear-linear LGC 

model with unknown knot location as: 

               √                              (3) 

The model in Equation (3) is the one that will be fit using standard SEM software. The 

coefficients of the original model in Equation (2.24) can be reconstructed from  ̂ ,  ̂ , 

 ̂  and  ̂ as: 

 ̂    ̂   ̂  ̂                               ̂    ̂   ̂                                    ̂    ̂   ̂  
 

Note that when the mean of slope of second phase,   , is less than the mean of slope of 

first phase,   , (i.e.,      ), the model in Equation (2.24) can be rewritten as the 

minimum of the two segments (Harring et al., 2006). That is, 

                                                                                   

The only change in procedure is that (3) is replaced by                                   

             √            
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APPENDIX – B 

 

The Multivariate Delta Method of Transformation:  

The delta method transforms the estimated variances of   ,   , and    (i.e.,  ̂  
 , 

 ̂  
  and  ̂  

 ) back to the respective variances of    ,    , and     (i.e.,  ̂   

 ,  ̂   

  and  ̂   

 ) 

in the following way:  

  ̂    ̂   ̂  ̂        
 

 ̂    ̂   ̂        
 

                                                     ̂    ̂   ̂        
 

1)    ( ̂   

 )      , where   is the matrix of partial derivatives of    with 

respect to   ,   , and   .  
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APPENDIX – C 

 

 

Results from the Pilot Study for Sample Size Selection: 

 

Table C1. 

 

Proportion of successful replications.  

 
 N = 200 N = 400 N = 700 N = 1000 N = 2000 

Cell 1 0.85 0.91 0.95 0.98 1.00 

Cell 2 0.83 0.89 0.91 0.91 0.95 

Cell 3 0.88 0.89 0.91 0.95 0.99 

Cell 4 0.93 0.97 0.97 0.99 1.00 

Cell 5 0.89 0.91 0.87 0.92 0.90 

Cell 6 0.88 0.94 0.96 0.95 0.97 
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Table C2. 

 

Average parameter bias and variance around the average parameter bias for n = 200. 

 
 

 

 

 

 

 

 

 

Class 1 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

Intercept 1 -0.04 

(0.322) 

-0.072 

(0.131) 

-0.007 

(0.258) 

-0.067 

(0.18) 

0.002 

(0.099) 

-0.046 

(0.172) 

Slope 1 -0.067 

(0.248) 

-0.04 

(0.076) 

-0.104 

(0.166) 

0.054 

(0.14) 

0.059 

(0.063) 

0.025 

(0.21) 

Slope 2 0.126 

(0.557) 

11.559 

(10719.29) 

-10.162 

(9184.315) 

0.246 

(0.646) 

0.106 

(0.818) 

0.241 

(0.735) 

Var(Intercept 1) 0.242 

(0.327) 

0.185 

(0.276) 

0.030 

(0.238) 

0.389 

(0.460) 

0.112 

(0.312) 

0.218 

(2.578) 

Var(Slope 1) 0.248 

(0.008) 

0.082 

(0.005) 

0.227 

(0.007) 

0.266 

(0.009) 

0.063 

(0.004) 

0.191 

(0.008) 

Var(Slope 2) -0.552 

(0.008) 

-0.718 

(0.005) 

-0.573 

(0.007) 

-0.534 

(0.009) 

-0.737 

(0.004) 

-0.609 

(0.008) 

Knot -0.093 

(0.642) 

0.116 

(1.066) 

0.048 

(1.257) 

-0.099 

(0.422) 

0.268 

(0.980) 

0.621 

(2.001) 

 

 

 

 

 

 

 

 

Class 2 

Intercept 1 0.048 

(0.259) 

0.032 

(0.161) 

-0.047 

(0.434) 

0.002 

(0.269) 

-0.053 

(0.116) 

0.015 

(0.282) 

Slope 1 0.029 

(0.124) 

0.034 

(0.117) 

0.528 

(25.566) 

-0.078 

(0.149) 

0.107 

(0.113) 

0.093 

(0.106) 

Slope 2 -0.068 

(0.571) 

-0.129 

(0.755) 

-15.356 

(20842.76) 

-0.591 

(0.765) 

10.693 

(6171.148) 

-12.828 

(12342.42) 

Var(Intercept 1) 0.260 

(0.317) 

0.137 

(0.263) 

0.121 

(0.286) 

0.497 

(0.530) 

0.103 

(0.306) 

0.280 

(3.307) 

Var(Slope 1) 0.248 

(0.008) 

0.082 

(0.005) 

0.227 

(0.007) 

0.266 

(0.009) 

0.063 

(0.004) 

0.191 

(0.008) 

Var(Slope 2) -0.552 

(0.008) 

-0.718 

(0.005) 

-0.573 

(0.007) 

-0.534 

(0.009) 

-0.737 

(0.004) 

-0.609 

(0.008) 

Knot -1.110 

(0.227) 

-2.029 

(0.538) 

-2.899 

(1.378) 

-0.954 

(0.426) 

-1.656 

(1.335) 

-2.347 

(1.862) 
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Table C3. 

 

Average parameter bias and variance around the average parameter bias for n=400. 

 
 

 

 

 

 

 

 

Class 1 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

Intercept 1 -0.029 

(0.217) 

0.02 

(0.092) 

0.000 

(0.293) 

-0.008 

(0.232) 

-0.036 

(0.082) 

0.034 

(0.195) 

Slope 1 -0.072 

(0.094) 

-0.006 

(0.058) 

-0.034 

(0.082) 

-0.023 

(0.047) 

0.017 

(0.052) 

0.000 

(0.064) 

Slope 2 0.091 

(0.45) 

-0.023 

(0.469) 

0.006 

(0.365) 

0.272 

(0.627) 

0.251 

(0.68) 

0.081 

(0.512) 

Var(Intercept 1) 0.237 

(0.089) 

0.177 

(0.123) 

0.091 

(0.086) 

0.483 

(0.281) 

0.192 

(0.221) 

0.141 

(1.036) 

Var(Slope 1) 0.262 

(0.004) 

0.089 

(0.003) 

0.254 

(0.004) 

0.279 

(0.004) 

0.067 

(0.003) 

0.204 

(0.006) 

Var(Slope 2) -0.538 

(0.004) 

-0.711 

(0.003) 

-0.546 

(0.004) 

-0.521 

(0.004) 

-0.733 

(0.003) 

-0.596 

(0.006) 

Knot -0.174 

(0.116) 

-0.064 

(0.445) 

-0.141 

(0.208) 

-0.096 

(0.231) 

0.208 

(0.523) 

0.396 

(0.895) 

 

 

 

 

 

 

 

Class 2 

Intercept 1 0.016 

(0.289) 

-0.049 

(0.147) 

-0.014 

(0.314) 

-0.051 

(0.204) 

0.025 

(0.071) 

-0.045 

(0.255) 

Slope 1 0.049 

(0.06) 

-0.016 

(0.05) 

-0.018 

(0.131) 

-0.003 

(0.043) 

0.059 

(0.046) 

0.094 

(0.076) 

Slope 2 -0.03 

(0.527) 

0.095 

(0.629) 

0.014 

(0.465) 

-0.587 

(0.689) 

-0.976 

(0.74) 

-6.708 

(3291.963) 

Var(Intercept 1) 0.296 

(0.113) 

0.242 

(0.147) 

0.073 

(0.104) 

0.616 

(0.311) 

0.157 

(0.156) 

0.344 

(1.892) 

Var(Slope 1) 0.262 

(0.004) 

0.089 

(0.003) 

0.254 

(0.004) 

0.279 

(0.004) 

0.067 

(0.003) 

0.204 

(0.006) 

Var(Slope 2) -0.538 

(0.004) 

-0.711 

(0.003) 

-0.546 

(0.004) 

-0.521 

(0.004) 

-0.733 

(0.003) 

-0.596 

(0.006) 

Knot -1.101 

(0.121) 

-2.008 

(0.226) 

-3.178 

(0.179) 

-0.978 

(0.222) 

-1.817 

(0.521) 

-2.442 

(1.568) 
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Table C4. 

 

Average parameter bias and variance around the average parameter bias for n=700. 

 
 

 

 

 

 

 

 

 

Class 1 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

Intercept 1 -0.013 

(0.196) 

0.014 

(0.06) 

-0.003 

(0.244) 

-0.022 

(0.174) 

-0.034 

(0.055) 

0.037 

(0.171) 

Slope 1 -0.026 

(0.075) 

0.029 

(0.049) 

-0.037 

(0.075) 

0.007 

(0.037) 

0.024 

(0.04) 

0.023 

(0.056) 

Slope 2 0.044 

(0.447) 

-0.1 

(0.491) 

-0.022 

(0.295) 

0.299 

(0.63) 

0.23 

(0.622) 

0.039 

(0.466) 

Var(Intercept 1) 0.286 

(0.045)) 

0.218 

(0.076) 

0.087 

(0.051) 

0.537 

(0.243) 

0.169 

(0.105) 

0.111 

(0.146) 

Var(Slope 1) 0.259 

(0.002) 

0.085 

(0.002) 

0.259 

(0.002) 

0.284 

(0.002) 

0.067 

(0.002) 

0.205 

(0.003) 

Var(Slope 2) -0.541 

(0.002) 

-0.715 

(0.002) 

-0.541 

(0.002) 

-0.516 

(0.002) 

-0.733 

(0.002) 

-0.595 

(0.003) 

Knot -0.176 

(0.070) 

-0.1 

(0.177) 

-0.252 

(0.068) 

-0.091 

(0.237) 

0.187 

(0.460) 

0.224 

(0.542) 

        

 

 

 

 

 

 

 

Class 2 

Intercept 1 -0.011 

(0.212) 

-0.057 

(0.088) 

-0.03 

(0.276) 

-0.082 

(0.182) 

0.02 

(0.61) 

-0.024 

(0.191) 

Slope 1 -0.021 

(0.079) 

-0.051 

(0.057) 

-0.059 

(0.094) 

-0.034 

(0.041) 

0.047 

(0.039) 

0.061 

(0.069) 

Slope 2 0.019 

(0.49) 

0.195 

(0.515) 

0.06 

(0.405) 

-0.567 

(0.63) 

-0.942 

(0.708) 

-0.847 

(0.554) 

Var(Intercept 1) 0.310 

(0.092) 

0.229 

(0.083) 

0.141 

(0.073) 

0.620 

(0.299) 

0.178 

(0.114) 

0.098 

(0.129) 

Var(Slope 1) 0.259 

(0.002) 

0.085 

(0.002) 

0.259 

(0.002) 

0.284 

(0.002) 

0.067 

(0.002) 

0.205 

(0.003) 

Var(Slope 2) -0.541 

(0.002) 

-0.715 

(0.002) 

-0.541 

(0.002) 

-0.516 

(0.002) 

-0.733 

(0.002) 

-0.595 

(0.003) 

Knot -1.163 

(0.072) 

-2.064 

(0.207) 

-3.185 

(0.072) 

-1.030 

(0.201) 

-1.801 

(0.359) 

-2.658 

(0.856) 
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Table C5. 

 

Average parameter bias and variance around the average parameter bias for n=1000. 

 
 

 

 

 

 

 

 

 

Class 1 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

Intercept 1 -0.002 

(0.192) 

-0.018 

(0.071) 

-0.046 

(0.23) 

0.029 

(0.145) 

-0.034 

(0.044) 

0.051 

(0.121) 

Slope 1 -0.024 

(0.07) 

0.009 

(0.051) 

-0.065 

(0.081) 

0.023 

(0.033) 

0.005 

(0.039) 

0.014 

(0.064) 

Slope 2 0.025 

(0.453) 

-0.04 

(0.482) 

0.053 

(0.329) 

0.193 

(0.548) 

0.248 

(0.628) 

0.037 

(0.403) 

Var(Intercept 1) 0.299 

(0.045) 

0.261 

(0.069) 

0.130 

(0.053) 

0.462 

(0.214) 

0.241 

(0.091) 

0.108 

(0.101) 

Var(Slope 1) 0.262 

(0.002) 

0.092 

(0.001) 

0.262 

(0.002) 

0.279 

(0.001) 

0.068 

(0.001) 

0.211 

(0.002) 

Var(Slope 2) -0.538 

(0.002) 

-0.708 

(0.001) 

-0.538 

(0.002) 

-0.521 

(0.001) 

-0.732 

(0.001) 

-0.589 

(0.002) 

Knot -0.184 

(0.051) 

-0.134 

(0.158) 

-0.257 

(0.045) 

-0.161 

(0.187) 

0.165 

(0.331) 

0.035 

(0.365) 

        

 

 

 

 

 

 

 

Class 2 

Intercept 1 -0.005 

(0.2) 

-1.314 

(9.012) 

-0.027 

(0.07) 

-0.121 

(0.174) 

0.019 

(0.049) 

0.001 

(0.186) 

Slope 1 -0.025 

(0.065) 

0.369 

(0.522) 

-0.025 

(0.048) 

-0.039 

(0.038) 

0.069 

(0.036) 

0.038 

(0.055) 

Slope 2 0.01 

(0.471) 

-0.275 

(0.048) 

0.119 

(0.522) 

-0.499 

(0.648) 

-0.984 

(0.667) 

-0.88 

(0.563) 

Var(Intercept 1) 0.340 

(0.065) 

0.290 

(0.065) 

0.152 

(0.042) 

0.684 

(0.204) 

0.204 

(0.076) 

0.234 

(0.127) 

Var(Slope 1) 0.262 

(0.002) 

0.092 

(0.001) 

0.262 

(0.002) 

0.279 

(0.001) 

0.068 

(0.001) 

0.211 

(0.002) 

Var(Slope 2) -0.538 

(0.002) 

-0.708 

(0.001) 

-0.538 

(0.002) 

-0.521 

(0.001) 

-0.732 

(0.001) 

-0.589 

(0.002) 

Knot -1.143 

(0.049) 

-2.066 

(0.088) 

-3.224 

(0.040) 

-0.944 

(0.174) 

-1.876 

(0.301) 

-2.721 

(0.554) 
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Table C6. 

 

Average parameter bias and variance around the average parameter bias for n=2000. 

 
 

 

 

 

 

 

 

Class 1 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

Intercept 1 0.009 

(0.179) 

-0.019 

(0.059) 

0.109 

(0.241) 

0.012 

(0.148) 

-0.023 

(0.035) 

0.128 

(0.107) 

Slope 1 -0.014 

(0.066) 

0.007 

(0.048) 

0.017 

(0.058) 

0.033 

(0.032) 

0.005 

(0.038) 

0.064 

(0.047) 

Slope 2 -0.017 

(0.445) 

0.03 

(0.51) 

-0.142 

(0.296) 

0.211 

(0.596) 

0.255 

(0.621) 

-0.065 

(0.419) 

Var(Intercept 1) 0.305 

(0.024) 

0.303 

(0.028) 

0.130 

(0.018) 

0.507 

(0.208) 

0.283 

(0.054) 

0.112 

(0.065) 

Var(Slope 1) 0.262 

(0.001) 

0.092 

(0.001) 

0.262 

(0.001) 

0.282 

(0.001) 

0.072 

(0.000) 

0.209 

(0.001) 

Var(Slope 2) -0.538 

(0.001) 

-0.708 

(0.001) 

-0.538 

(0.001) 

-0.518 

(0.001) 

-0.728 

(0.000) 

-0.591 

(0.001) 

Knot -0.176 

(0.031) 

-0.066 

(0.070) 

-0.239 

(0.025) 

-0.106 

(0.188) 

0.177 

(0.168) 

0.088 

(0.276) 

        

 

 

 

 

 

 

Class 2 

Intercept 1 -0.012 

(0.183) 

-0.02 

(0.056) 

-0.128 

(0.215) 

-0.104 

(0.155) 

0.025 

(0.033) 

-0.085 

(0.141) 

Slope 1 -0.026 

(0.063) 

-0.016 

(0.048) 

-0.118 

(0.071) 

-0.038 

(0.031) 

0.063 

(0.038) 

0.013 

(0.048) 

Slope 2 0.043 

(0.453 

0.036 

(0.486) 

0.145 

 (0.322) 

-0.517 

(0.602) 

-0.999 

(0.614) 

-0.782 

(0.475) 

Var(Intercept 1) 0.333 

(0.029) 

0.288 

(0.025) 

0.156 

(0.020) 

0.660 

(0.182) 

0.230 

(0.047) 

0.250 

(0.090) 

Var(Slope 1) 0.262 

(0.001) 

0.092 

(0.001) 

0.262 

(0.001) 

0.282 

(0.001) 

0.072 

(0.000) 

0.209 

(0.001) 

Var(Slope 2) -0.538 

(0.001) 

-0.708 

(0.001) 

-0.538 

(0.001) 

-0.518 

(0.001) 

-0.728 

(0.000) 

-0.591 

(0.001) 

Knot -1.142 

(0.042) 

-2.113 

(0.064) 

-3.200 

(0.032) 

-0.956 

(0.169) 

-1.968 

(0.216) 

-2.715 

(0.349) 
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Results from the Pilot Study for Asymptotic Behavior of Model Parameters for a 2-

Class Piecewise Linear-Linear LGMM:  

Table C7. 

Population values for the data generation of the 2-class piecewise linear-linear LGMM. 

 Class 1 Class 2 

Growth Factor Means of Intercept and Slope of First Phase   

 Intercept 1        2.0  2.0 

 Slope 1        0.0  0.0 

 

Growth Factor Mean of Slope of Second Phase        0.25  1.25 

 

Growth Factor Variances of Intercept and Slope of First Phase   

 Intercept 1 (    
 )  1.0   1.0 

 Slope 1 (    
 )  0.2   0.2 

 

Growth Factor Variance of Slope of Second Phase (    
 )  0.2   0.2 

 

Growth Factor Covariances   

 Intercepts and slopes  0.0   0.0 

 

Class Separation of Location of Knot (  )  2.0   4.0 

 

Residual Variance of Observed Variables (  
 )  1.0   1.0 
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Table C8. 

Estimated original model parameters of the 2-class piecewise linear-linear LGMM. 

 Class 1 Class 2 

Growth Factor Means of Intercept and Slope of First Phase   

 Intercept 1        1.998  2.004 

 Slope 1        0.004  -0.01 

 

Growth Factor Mean of Slope of Second Phase        0.25  1.256 

 

Growth Factor Variances of Intercept and Slope of First Phase   

 Intercept 1 (    
 )  1.026  1.003 

 Slope 1 (    
 )  0.205  0.2 

Growth Factor Variance of Slope of Second Phase (    
 )  0.201 0.2 

 

Class Separation of Location of Knot (  )  2.008 4.001 

 

Residual Variance of Observed Variables (  
 )  0.998 0.994 
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APPENDIX – D 

 

Table D1. 

Tests of between-subject effects on parameter bias. 

 

 

Statistical  

and 

Practical 

Significance 

Manipulated Factors 

   Sample 

Size, n 

Class 

Mixing 

Proportion, 

   

Class 

Separation 

Location of 

Knot,    

Mean of 

Slope of 

Second 

Phase,     

Variance of 

Slope of 

Second 

Phase,     
  

Residual 

Variance,

   
  

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 1

) 

Bias_    p-value =  

partial    =  

0.439 

0.000 

0.329 

0.000 

0.326 

0.000 

0.448 

0.000 

0.491 

0.000 

0.150 

0.000 

Bias_    p-value =  

partial    = 

0.957 

0.000 

0.183 

0.000 

0.577 

0.000 

0.274 

0.000 

0.961 

0.000 

0.354 

0.000 

Bias_    p-value =  

partial    = 

0.519 

0.000 

0.299 

0.000 

0.427 

0.000 

0.179 

0.000 

0.796 

0.000 

0.363 

0.000 

Bias_   p-value =  

partial    = 

0.027 

0.000 

0.000 

0.001 

0.000 

0.019 

0.000 

0.001 

0.000 

0.002 

0.000 

0.004 

Bias_    
  p-value =  

partial    = 

0.020 

0.000 

0.019 

0.000 

0.037 

0.000 

0.000 

0.001 

0.000 

0.003 

0.000 

0.002 

Bias_    
  p-value =  

partial    = 

0.003 

0.000 

0.415 

0.000 

0.467 

0.000 

0.000 

0.002 

0.000 

0.003 

0.000 

0.001 

Bias_    
  p-value =  

partial    = 

0.000 

0.001 

0.011 

0.000 

0.007 

0.000 

0.000 

0.003 

0.000 

0.02 

0.000 

0.003 

Bias_   
  p-value =  

partial    = 

0.220 

0.000 

0.423 

0.000 

0.002 

0.001 

0.084 

0.000 

0.000 

0.001 

0.000 

0.002 

         

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 2

) 

Bias_    p-value =  

partial    = 

0.281 

0.000 

0.056 

0.000 

0.006 

0.000 

0.450 

0.000 

0.375 

0.000 

0.000 

0.001 

Bias_    p-value =  

partial    = 

0.262 

0.000 

0.711 

0.000 

0.255 

0.000 

0.251 

0.000 

0.832 

0.000 

0.409 

0.000 

Bias_    p-value =  

partial    = 

0.360 

0.000 

0.241 

0.000 

0.925 

0.000 

0.031 

0.000 

0.469 

0.000 

0.737 

0.000 

Bias_   p-value =  

partial    = 

0.036 

0.000 

0.000 

0.002 

0.000 

0.03 

0.000 

0.004 

0.021 

0.000 

0.000 

0.004 

Bias_    
  p-value =  

partial    = 

0.532 

0.000 

0.918 

0.000 

0.001 

0.001 

0.000 

0.002 

0.000 

0.004 

0.000 

0.001 

Bias_    
  p-value =  

partial    = 

0.113 

0.000 

0.131 

0.000 

0.845 

0.000 

0.045 

0.000 

0.000 

0.000 

0.038 

0.000 

Bias_    
  p-value =  

partial    = 

0.158 

0.000 

0.265 

0.000 

0.654 

0.000 

0.000 

0.001 

0.000 

0.007 

0.000 

0.001 

Bias_   
  p-value =  

partial    = 

0.085 

0.000 

0.377 

0.000 

0.000 

0.001 

0.169 

0.000 

0.051 

0.000 

0.000 

0.001 
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Table D2. 

Tests of between-subject effects on variability index for parameter bias. 

 

 

Statistical  

and 

Practical 

Significance 

Manipulated Factors 

   Sample 

Size, n 

Class 

Mixing 

Proportion, 

   

Class 

Separation 

Location of 

Knot,    

Mean of 

Slope of 

Second 

Phase,     

Variance of 

Slope of 

Second 

Phase,     
  

Residual 

Variance,

   
  

V
ar

ia
b
il

it
y
 I

n
d
ex

 (
C

la
ss

 1
) 

Bias_    p-value =  

partial    =  

0.469 

0.000 

0.329 

0.000 

0.383 

0.000 

0.523 

0.000 

0.477 

0.000 

0.384 

0.000 

Bias_    p-value =  

partial    = 

0.556 

0.000 

0.374 

0.000 

0.752 

0.000 

0.598 

0.000 

0.884 

0.000 

0.131 

0.000 

Bias_    p-value =  

partial    = 

0.468 

0.000 

0.364 

0.000 

0.551 

0.000 

0.518 

0.000 

0.353 

0.000 

0.352 

0.000 

Bias_   p-value =  

partial    = 

0.001 

0.000 

0.002 

0.000 

0.000 

0.003 

0.000 

0.002 

0.000 

0.003 

0.000 

0.005 

Bias_    
  p-value =  

partial    = 

0.668 

0.000 

0.042 

0.000 

0.382 

0.000 

0.206 

0.000 

0.551 

0.000 

0.000 

0.000 

Bias_    
  p-value =  

partial    = 

0.414 

0.000 

0.783 

0.000 

0.829 

0.000 

0.088 

0.000 

0.752 

0.000 

0.063 

0.000 

Bias_    
  p-value =  

partial    = 

0.618 

0.000 

0.097 

0.000 

0.387 

0.000 

0.050 

0.000 

0.736 

0.000 

0.000 

0.001 

Bias_   
  p-value =  

partial    = 

0.000 

0.002 

0.000 

0.002 

0.000 

0.004 

0.001 

0.000 

0.000 

0.000 

0.000 

0.039 

         

V
ar

ia
b

il
it

y
 I

n
d

ex
 (

C
la

ss
 2

) 

Bias_    p-value =  

partial    = 

0.491 

0.000 

0.318 

0.000 

0.497 

0.000 

0.534 

0.000 

0.467 

0.000 

0.240 

0.000 

Bias_    p-value =  

partial    = 

0.378 

0.000 

0.488 

0.000 

0.388 

0.000 

0.546 

0.000 

0.486 

0.000 

0.321 

0.000 

Bias_    p-value =  

partial    = 

0.570 

0.000 

0.480 

0.000 

0.428 

0.000 

0.523 

0.000 

0.262 

0.000 

0.541 

0.000 

Bias_   p-value =  

partial    = 

0.001 

0.000 

0.005 

0.002 

0.000 

0.002 

0.000 

0.002 

0.000 

0.001 

0.000 

0.004 

Bias_    
  p-value =  

partial    = 

0.583 

0.000 

0.669 

0.000 

0.867 

0.000 

0.160 

0.000 

0.215 

0.000 

0.018 

0.000 

Bias_    
  p-value =  

partial    = 

0.150 

0.000 

0.168 

0.000 

0.670 

0.000 

0.183 

0.000 

0.219 

0.000 

0.164 

0.000 

Bias_    
  p-value =  

partial    = 

0.177 

0.000 

0.176 

0.000 

0.688 

0.000 

0.102 

0.000 

0.327 

0.000 

0.085 

0.000 

Bias_   
  p-value =  

partial    = 

0.000 

0.001 

0.000 

0.002 

0.000 

0.005 

0.000 

0.004 

0.000 

0.001 

0.000 

0.037 
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NOTE that in the tests of between-subject effects on parameter bias and variability index 

for parameter bias, none of the interaction term had both the statistical significance and 

the practical significance. 
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Table D3. 

Tests of between-subject effects on parameter bias computed for only filtered converged 

replications of the 2-class piecewise linear-linear LGMM. 

 
 

 

Statistical  

and 

Practical 

Significance 

Manipulated Factors 

   Sample 

Size, n 

Class 

Mixing 

Proportion, 

   

Class 

Separation 

Location of 

Knot,    

Mean of 

Slope of 

Second 

Phase,     

Variance of 

Slope of 

Second 

Phase,     
  

Residual 

Variance,

   
  

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 1

) 

Bias_    p-value =  

partial    =  

0.000 

0.005 

0.010 

0.001 

0.000 

0.009 

0.000 

0.012 

0.000 

0.004 

0.000 

0.002 

Bias_    p-value =  

partial    = 

0.000 

0.004 

0.044 

0.000 

0.000 

0.005 

0.000 

0.012 

0.002 

0.001 

0.035 

0.001 

Bias_    p-value =  

partial    = 

0.173 

0.000 

0.000 

0.001 

0.003 

0.000 

0.179 

0.000 

0.796 

0.000 

0.363 

0.000 

Bias_   p-value =  

partial    = 

0.208 

0.000 

0.347 

0.000 

0.000 

0.002 

0.267 

0.000 

0.710 

0.000 

0.336 

0.000 

Bias_    
  p-value =  

partial    = 

0.564 

0.000 

0.002 

0.001 

0.000 

0.002 

0.021 

0.001 

0.000 

0.029 

0.028 

0.000 

Bias_    
  p-value =  

partial    = 

0.032 

0.001 

0.013 

0.001 

0.498 

0.000 

0.011 

0.001 

0.000 

0.040 

0.017 

0.000 

Bias_    
  p-value =  

partial    = 

0.029 

0.001 

0.002 

0.001 

0.335 

0.000 

0.000 

0.002 

0.000 

0.041 

0.292 

0.000 

Bias_   
  p-value =  

partial    = 

0.000 

0.010 

0.090 

0.000 

0.000 

0.007 

0.000 

0.003 

0.000 

0.006 

0.000 

0.016 

         

P
ar

am
et

er
 B

ia
s 

(C
la

ss
 2

) 

Bias_    p-value =  

partial    = 

0.000 

0.010 

0.024 

0.000 

0.000 

0.003 

0.000 

0.006 

0.000 

0.007 

0.000 

0.009 

Bias_    p-value =  

partial    = 

0.002 

0.000 

0.696 

0.000 

0.113 

0.001 

0.000 

0.002 

0.000 

0.002 

0.005 

0.001 

Bias_    p-value =  

partial    = 

0.002 

0.001 

0.527 

0.000 

0.014 

0.001 

0.000 

0.014 

0.000 

0.001 

0.014 

0.001 

Bias_   p-value =  

partial    = 

0.067 

0.000 

0.695 

0.000 

0.000 

0.002 

0.119 

0.000 

0.483 

0.000 

0.594 

0.000 

Bias_    
  p-value =  

partial    = 

0.024 

0.001 

0.002 

0.001 

0.000 

0.002 

0.091 

0.000 

0.000 

0.035 

0.033 

0.000 

Bias_    
  p-value =  

partial    = 

0.952 

0.000 

0.478 

0.000 

0.978 

0.000 

0.880 

0.000 

0.000 

0.007 

0.309 

0.000 

Bias_    
  p-value =  

partial    = 

0.002 

0.001 

0.081 

0.000 

0.566 

0.000 

0.000 

0.001 

0.000 

0.046 

0.006 

0.001 

Bias_   
  p-value =  

partial    = 

0.000 

0.002 

0.000 

0.002 

0.002 

0.001 

0.000 

0.001 

0.003 

0.000 

0.000 

0.038 
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Table D4. 

Tests of between-subject effects on variability index for parameter bias for only filtered 

converged replications of the 2-class piecewise linear-linear LGMM. 

 
 

 

Statistical  

and 

Practical 

Significance 

Manipulated Factors 

   Sample 

Size, n 

Class 

Mixing 

Proportion, 

   

Class 

Separation 

Location of 

Knot,    

Mean of 

Slope of 

Second 

Phase,     

Variance of 

Slope of 

Second 

Phase,     
  

Residual 

Variance,

   
  

V
ar

ia
b
il

it
y
 I

n
d
ex

 (
C

la
ss

 1
) 

Bias_    p-value =  

partial    =  

0.258 

0.000 

0.607 

0.000 

0.008 

0.001 

0.026 

0.001 

0.055 

0.000 

0.378 

0.000 

Bias_    p-value =  

partial    = 

0.923 

0.000 

0.285 

0.000 

0.180 

0.001 

0.382 

0.000 

0.907 

0.000 

0.932 

0.000 

Bias_    p-value =  

partial    = 

0.012 

0.001 

0.003 

0.001 

0.535 

0.000 

0.000 

0.003 

0.417 

0.000 

0.023 

0.000 

Bias_   p-value =  

partial    = 

0.001 

0.001 

0.119 

0.000 

0.000 

0.002 

0.014 

0.001 

0.121 

0.000 

0.710 

0.000 

Bias_    
  p-value =  

partial    = 

0.221 

0.000 

0.569 

0.000 

0.028 

0.001 

0.594 

0.000 

0.288 

0.000 

0.906 

0.000 

Bias_    
  p-value =  

partial    = 

0.269 

0.000 

0.929 

0.000 

0.331 

0.000 

0.621 

0.000 

0.568 

0.000 

0.491 

0.000 

Bias_    
  p-value =  

partial    = 

0.503 

0.000 

0.583 

0.000 

0.439 

0.000 

0.605 

0.000 

0.441 

0.000 

0.561 

0.001 

Bias_   
  p-value =  

partial    = 

0.000 

0.002 

0.041 

0.000 

0.000 

0.007 

0.028 

0.001 

0.410 

0.000 

0.754 

0.000 

         

V
ar

ia
b

il
it

y
 I

n
d

ex
 (

C
la

ss
 2

) 

Bias_    p-value =  

partial    = 

0.063 

0.000 

0.732 

0.000 

0.002 

0.001 

0.159 

0.000 

0.387 

0.000 

0.094 

0.000 

Bias_    p-value =  

partial    = 

0.923 

0.000 

0.285 

0.000 

0.180 

0.001 

0.382 

0.000 

0.907 

0.000 

0.932 

0.000 

Bias_    p-value =  

partial    = 

0.205 

0.000 

0.013 

0.001 

0.000 

0.002 

0.000 

0.004 

0.861 

0.000 

0.024 

0.000 

Bias_   p-value =  

partial    = 

0.000 

0.002 

0.974 

0.000 

0.000 

0.002 

0.002 

0.001 

0.036 

0.000 

0.471 

0.000 

Bias_    
  p-value =  

partial    = 

0.189 

0.000 

0.370 

0.000 

0.220 

0.000 

0.998 

0.000 

0.319 

0.000 

0.451 

0.000 

Bias_    
  p-value =  

partial    = 

0.991 

0.000 

0.338 

0.000 

0.465 

0.000 

0.590 

0.000 

0.473 

0.000 

0.505 

0.000 

Bias_    
  p-value =  

partial    = 

0.855 

0.000 

0.196 

0.000 

0.716 

0.000 

0.557 

0.000 

0.454 

0.000 

0.410 

0.000 

Bias_   
  p-value =  

partial    = 

0.009 

0.001 

0.037 

0.000 

0.000 

0.005 

0.252 

0.000 

0.540 

0.000 

0.442 

0.000 
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NOTE that in the tests of between-subject effects on parameter bias and variability index 

for parameter bias computed for only filtered converged replications of the 2-class 

piecewise linear-linear LGMM, none of the interaction term had both the statistical 

significance and the practical significance. 
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