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Abstract

We model digital binary image data as realizations of a bounded discrete random set, a mathematical
object which can be directly defined on a finite lattice. We consider the problem of estimating realizations
of discrete random sets distorted by a degradation process which can be described by a union/intersection
model. First we present an important siructural result concerning the probabilistic specification of
discrete random sets defined on a finite lattice. Then we formulate the optimal filtering problem for the
case of discrete random sets. Two distinct filtering approaches are pursued. For images which feature
strong spatial statistical variations we propose a simple family of spatially varying filters, which we call
mask filters, and, for each degradation model, derive explicit formulas for the optimal Mask filter. We
also consider adaptive mask filters, which can be effective in a more general setting. For images which
exhibit a stationary statistical behavior, we consider the class of Morphological filters. First we provide
some theoretical justification for the popularity of certain Morphological filtering schemes. In particular,
we show that if the signal is smooth, then these schemes are optimal (in the sense of providing the MAP
estimate of the signal) under a reasonable worst-case statistical scenario. Then we show that, by using an
appropriate (under a given degradation model) expansion of the optimal filter, we can obtain universal
characterizations of optimality which do not rely on strong assumptions regarding the spatial interaction
of geometrical primitives of the signal and the noise. This approach corresponds to a somewhat counter-
intuitive use of fundamental Morphological operators; however it is exactly this mode of use that enables
us to arrive at characterizations of optimality in terms of the fundamental functionals of random set
theory, namely the generating functionals of the signal and the noise.
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1 Introduction

An important problem in digital image processing and analysis is the development of optimal filtering
procedures which attempt to restore a binary image {“signal”) from its noisy version [22, 6]. Here, the
noise process usually models the combined effect of two distinct types of degradation, namely, irnage object
obscurations because of clutter, and sensor/channel noise. It is typically assumed that the degraded image
can be accurately modeled as the union of the uncorrupted binary image with an independent realization of
the noise process, which is a binary image itself [12]. This degradation model is known as the union noise
model. Other models exist, such as the intersection noise model, and the union/intersection noise model,
which are defined in the obvious fashion. These models are well justified in practice, because, usually, binary
images are obtained by thresholding gray-level images. If the threshold value is set sufficiently low, then
the resulting degraded binary images will be well described by a union noise model. Alternatively, if the
threshold is set sufficiently high, then the intersection noise model will be appropriate. In between these
extreme choices, a union/intersection noise model will be most appropriate. The assumption of independence
is crucial for the theoretical analysis of optimal filters, and it is plausible in many practical situations.

This research has been largely motivated by the works of Haralick/Dougherty/Katz [12], and Schon-
feld/Goutsias [22]. Their approach is model-based, in that they assume specific probabilistic/geometrical
models that govern the behavior of both signal and noise “patterns”, i.e. the elementary geometrical prim-
itives from which the signal and noise images are constructed. Haralick/Dougherty/Katz assume that the
signal and noise patterns are “non-interfering” with one another, meaning that each signal or noise pattern
is disconnected from all remaining signal and noise patterns. Schonfeld/Goutsias make a stronger assump-
tion concerning the separability of noise patterns. These assumptions are reasonable if the image is sparse,
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l.e. the signal and noise patterns are most likely to remain uncluttered. Haralick/Dougherty/Katz adopt
the area of the symmetric set difference between the ideal image and its reconstruction as their choice of
distance metric, and work with a union noise model to derive the optimal (in the sense of minimizing the
expected distance between the signal and its reconstruction) value of a “size” parameter which determines
the optimal filter within a restricted family of Morphological Opening Filters [19, 23, 5]. In their work, the
signal and noise patterns are all assumed to be of the same basic shape, and only their size varies. Schon-
feld/Goutsias consider Morphological Alternating Sequential Filters (ASF’s) [19, 23, 5], and work with the
union/intersection noise model. They adopt an implicit least mean difference “uniform” optimality criterion
(i.e. the best filter, within a family of filters, is defined to be the one which minimizes an average (over the
family) distance metric between the outputs of all the filters in the family, for a given class of inputs). They
derive the “optimal” ASF by means of minimizing an upper bound on their cost function. Related work can
also be found in a series of papers by Dougherty, et al. [6, 8, 7].

This work focuses on a different viewpoint. As it turns out, by restricting our attention to suitable
classes of filtering operations, and Discrete Random Sets (defined below), we can obtain truly optimal
filtering results, under considerably milder assumptions on the signal and noise patterns, i.e. results that are
applicable for all signal and noise models, under the assumption of mutual independence of the signal and the
noise. Specifically, one need not assume that signal and noise patterns are “non-interfering”. Furthermore,
it is possible to obtain simple, closed characterizations of the optimal filter. The resulting formulas are
intuitively appealing, and directly amenable to design and implementation.

The rest of this paper is organized as follows. Section 2 summarizes some Discrete Random Set funda-
mentals. Section 3 formalizes the optimal filtering problem. Sections 4 and 5 contain the core of this work.
Section 4 contains results on optimal mask filtering, while section 5 contains results on optimal Morphological
filtering. A simulation experiment is also included. Finally, section 6 offers some conclusions.

2 Discrete Random Set Fundamentals

Definition 1 Let B be a bounded subset of Z2. Assume that B contains the origin. Let £(Q) denote the
o-algebra on Q. Let £(B) denote the power set (i.e. the set of all subsets) of B, and let £(X(B)) denote the
power set of 5(B). A Discrete Random Set (DRS), X, on B, is a measurable mapping of a probability
space (2, £(Q), P) into the measurable space (X(B), L(X(B))). A DRS X, on B, induces a unique probabilily
measure, Px, on ©(X(B)).

Definition 2 The functional
Tx(K)=Px(XNK#0)

is known as the capacity functional of the DRS X.
Definition 3 The functional

Qx(K)=Px(XNK =0)=1-Tx(K)
is known as the generating functional of the DRS X.

The following Lemma will be useful. Its proof can be found in the appendix. See [1] for basic Mobius
inversion.
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Lemma 1 (Variant of Mobius inversion for Boolean algebras) Let v be a function on X(B). Then v can be
represented as

v(A) = Z u(S)  “external decomposition”
scas

The function u is uniquely determined by v, namely

u(S) =Y (-DlN(s°uC)

ccs
where ¢ denotes complement with respect to B.

The capacity functional, Tx (or, equivalently, the generating functional, @ x) carries all the information
about a DRS X. This is clearly stated in the following theorem.

Theorem 1 Givern Qx(K'), YK' € £(B), Px(A), YA € £(E(B)) is uniquely determined, and, in fact, can
be recovered via the measure reconstruction formaulas

Px(A)= > Px(X =K)

KeA
with , )
Px(X=K)= Y (-DFIQx(K°UK)
K'CK
Proof:

The reconstruction formula for the functional Px(X = K) in terms of the functional Qx is a direct
consequence of Lemma 1 and the fact that Qx can be expressed in terms of Px as

Qx(K)= > Px(X=K))

K'CKe

a

The uniqueness part of this theorem is originally due to Choquet [2], and it has been independently
introduced in the context of continuous-domain random set theory by Kendall [14] and Matheron {18, 19].
Related results can also be found in Ripley [21]. However, the measure reconstruction formulas are essentially
only applicable within a discrete, bounded setting. In the continuous case, the uniqueness result relies heavily
on Kolmogorov’s extension theorem, which is non-constructive. See [24, 10, 11] for some other interesting
results on DRS’s.

The capacity functional plays an important role in the study of statistical inference problems for DRS’s.
This is especially true for a class of DRS models known as germ-grain models, and the Boolean model in
particular, whose capacity functional has a simple, tractable form. We will see that the capacity functional
has an equally fundamental role in the study of optimal filtering.



3 Formulation of the Optimal Filtering Problem

Let X, N,Y be DRS’s on B. X models the “signal”, whereas N models the noise. Let g : £(B)x Z(B) +» £(B)
be a mapping that models the degradation (measurability is automatically satisfied here, since the domain
of g is finite). The observed DRS is Y = g(X, N). Let d : £(B) x £(B) + Z be a distance metric between
subsets of B. In this context, the optimal filtering problem is to find a mapping f : £(B) — X(B) such that
the expected cost (expected error)

E(e) 2 Ed(X,X), X =f(Y)=fg(X,N))

is minimized, over all possible choices of the mapping (“filter”) f. This problem is in general intractable.
The main difficulty is the lack of structure on the search space. The family of all mappings f : ©(B) — Z(B)
is a chaotic search space! It is common practice to impose structure on the search space, i.e. constrain f
to lie in F, a suitably chosen subcollection of admissible mappings (family of filters), and optimize within
this subcollection. The resulting filter is the best among its peers, but it is not guaranteed to be globally
optimal.

We adopt the following distance metric (area of the symmetric set difference)
d(X, X) = |(X\X) U(X\X)|

= [(CO\X)] + [(X\X)]
= (X UX\(X NX)]
= (XU )|~ I(xnX)

where | | stands for set cardinality, \ stands for set difference, ie. X\Y = X NY¢ and ¢ stands for
complementation with respect to the base frame, B. This distance metric is essentially the Hamming
distance [20] when X, X are viewed as vectors in {0, l}IBI. Since the component variables are binary, it can
also be interpreted as the square of the L, distance of vectors in {0, l}lBl, i.e., with some abuse of notation,

d(X,X) = (X - X)T(X - X)

where on the left hand side symbols are interpreted as sets, while on the right hand side symbols are
interpreted as column vectors in {0, l}lBl, and T stands for transpose. In this setting, the sufficiency part

of the Orthogonality Principle (OP) [20] applies. It states that a sufficient condition for the existence of a
f* € F such that

EX-rO)V(X-FO)] <SE[X-FO)(X-fY)], VfeF
1s that
E[(X =) ()= fY)] =0, VieF

However, unlike the case of vectors in R®, where F is a vector space over the field of reals (known as the
space of square iniegrable estimators), here F is not a vector space. The proof of the necessity part of the
OP strongly depends on F having a vector space structure. For certain choices of F it is easy to show that



the necessity part of the OP does not hold. At any rate, it is often easier to write down an expression for
Ed(X,X), and optimize over F by brute force.

This choice of distance has many advantages [22], not the least of which is that it enables the derivation of
explicit optimality conditions. Even though, technically speaking, d(X, X ) can be considered as a quadratic
distance measure when we view X, X as vectors in {0, l}IB!, from a set-theoretic point of view d(X, j{\') is
clearly not a quadratic distance measure, since it penalizes errors in a linear fashion. However, the squared
area of the symmetric set difference (which is a quadratic distance measure in the set-theoretic sense) does
not yield useful optimality conditions. This is partly due to the lack of a meaningful and tractable definition
for the ezpectation of ¢ DRS X. From a quadratic estimation-theoretic point of view, a proper formal
definition of the expectation of a DRS X, would be as follows.

EXx 2 arg minwex(p) E [d(X, w)?
However, there exist several flaws with this formal definition. It can be shown that

arg minwexpy E [d(X, W)]2 =

arg minwesay { |WI* + 2|W| < Z Pr(ze X) - Z Pr(z e X)) —4 Z Z PrizeX ,yeX)

zEWe zEW zeEWeyeW

If we assume that Pr(z € X) = p, Vz € B,and Pr(z € X , y € X) = Pr(z € X)Pr(y € X) =
pY, ¥V z,y si. 2 # y, and p < 0.5, then EX = §, regardless of the specific value of p. If p = 0.5, then any
W € E(B) will do. However, the single most important problem is that, given a specification of the first
and second-order statistics of X, it is not clear how to find an explicit solution to the above minimization
problem. On the other hand, the median of a DRS X, formally defined as

MX £ arg minwcgp) Ed(X, W)

is much easier to deal with. Although the solution to this latter minimization problem is not (in general)
unique, it can be forced to be unique by means of a simple regularization. Let C(z) be a Boolean proposition,
which, for each point 2z € B, is either true, or false. Define the indicator function

af 1 ,if C(z)istrueat z
1(C(2) _{ 0 , otherwise

Let supp 1(C(z)) stand for the support set of the indicator function 1(C(z)), i.e. the subset of B where C(z)
is true. Then it can be shown that

A
MpX = supp 1(1 — Tx({z}) < Tx ({#}))
is the unique minimum cardinality solution to the minimization problem
minwesg) Ed(X, W)

These considerations essentially dictate our choice of distance metric. In terms of the degradation, we assume
that N is independent of X, and that the mapping ¢ 1s given by

g(X,N)= XUN (union noise model)



or,
9(X,N)=X NN (intersection noise model)

Alternatively, we may allow g to be the following measurable mapping from £(B) x $(B) x %(B) to ©(B)
9(X,N1,N2) = (X N N1)U N,y (union/intersection noise model)

where X, N1, N, are assumed to be mutually independent.

4 Optimal Mask Filters

In the case of union noise, a simple yet intuitive class of filters is
) =fw)=YNW=(XUN)NW, for some W € £(B)
Similarly, in the case of intersection noise, we can consider the following class of filters
f)=fYY)=YUW = (XNN)UW, for some W € £(B)
Finally, in the case of union/intersection noise, we can consider
FY) = fd (V) = (Y nWa) U W = (X N N1 ) UN)NWo) U W), for some Wi, W, both in $(B)

We call these filters mask filters. In the simplest case the mask W is fixed; in the adaptive case WV is allowed to
depend on the observation. We will consider both cases. Observe that, under the given degradation models,
unconstrained adaptive mask filtering is the most general filtering structure that we can consider. We will
show that explicit optimization is possible under some restrictions on the adaptation strategy. On the other
hand, simple fixed mask filtering is appropriate when the signal and noise exhibit a highly nonstationary
behavior. In this case, traditional shift-invariant neighborhood filtering operators fail to provide adequate
filtering, and a simple but optimal spatially varying approach can produce better results. We will further
discuss this point later on.

4.1 Optimal fixed-mask filtering
4.1.1 The case of union noise

Here,
g(X,N)=XUN
and
)= )=YNW=(XUN)NW, for some W € £(B)

As before, supp 1(C(z)) stands for the subset of B where C(z) is true, and T'x(-) stands for the capacity
functional of the DRS X. We have the following result.



Proposition 1 Under the expected symmetric set difference measure, the optimal fized intersection mask,
W, for filtering out independent union noise is given by

W = supp I(TN({Z}) [l — TX({Z})] < TX({Z}))

The corresponding minimum ezpected error achieved by such an optimal choice of W is given by

E(e") = Y min(Tx({z}), Tv({z}) [1 - Tx ({z})])

2€B

Proof: In this setting, it is easy to see that E(e) is given by
EIXNWe |+ EINNWN X°|

The crucial observation here is that

EX|=E) 1(z€X)=)Y El(z€X)

Z€B z€B

:ZPr(zEX):ZPT’(Xﬂ{Z}#@)

z2€B z2€B

=) Tx({z})

z2€B
Therefore,
EIXNW| =) Txaw-({z})
z€B
=Y Tx({z}nW) = 1(z € W)Tx({z})
z€EB z€B
and, similarly

EINNWNX®|= Z Tnnwnxe({z})

2€B
=Y Tnax({z} W) = > 1(z € W)Tnnx-({z})
2€B 2€B

Now
Tnnx<({z})=Pr(ze NNX°) = Pr(z € N,z € X°)
=Pr(ze€ N)Pr(z € X°) = Tn({z})[1 - Tx({z})]
The last identity is due to the independence of X, N. Hence,
BINOWN X = Y 1(: € W)Tw({zD [1 - Tx ({2})]
zeB

and

E(e) = Y [l e W)Tx({z) + 1z e W)Tw({z}) [1 - Tx({z})]]

z€B



From which, by inspection, we obtain the claimed optimality results. O

It is interesting to compare the above optimality condition with that of standard Wiener filtering. What
it says is that if the effective union noise “power” at z is less than or equal to the signal “power” at z, then
filtering should retain the input value at point z, otherwise it should reject it. This is intuitively appealing,
and highly reminiscent of a form of binary Wiener filtering. Also notice that all that is required for the design
of the optimal W is just the first-order statistics of the signal and the noise, i.e. Tx({z}) and Ty ({z}) for
all z € B. These can be efficiently and accurately estimated from training samples of X and N respectively.

If the first-order statistics of the signal and the noise are spatially invariant, then, obviously, the optimal
intersection mask is either B (“all pass”), or @ (“reject all”). This case is clearly not interesting. It is exactly
when the signal and/or the noise statistics are highly nonstationary (meaning not even first-order stationary)
that this filtering approach makes sense. Let us illustrate this point by using a (rather simplistic) artificial
example. Consider figure (1). It depicts a realization of a DRS which features a prominent periodic vertical
line structure (throughout the sequence of figures in this work sets are graphically depicted by the subset
of black points in an image). Figure (2) depicts a degraded version of the same image, obtained by taking
the union of the DRS realization of figure (1) (the “signal”) with an independent realization of another DRS
(the “noise”). Figure (3) depicts the restored image, obtained by intersecting the DRS realization of figure
(2), with the “optimal” intersection mask, computed by using the optimality condition of Proposition 1, and
substituting estimates of the pixel hitting probabilities in place of the true probabilities. These estimates
have been obtained by means of simple counting of pixel hitting events over a collection of learning samples
of the signal and the noise. In this setting, shift-invariant filtering would not work well. Also, shape-sensitive
filtering would not do, because the signal and the noise consist of replicas of the same elementary pattern,
namely a square of side 5 pixels. A potentially big gain in quality of restoration rests exactly with proper
exploitation of the non-stationary nature of the signal.

4.1.2 The case of intersection noise

Here,
g X, NYy=XnN
and

) =fYY)=YUW = (XNN)UW, for some W € %(B)

This is the “dual” of the case of union noise. One can simply take the complement of all the sets and
operations involved, and apply the results of the previous section. This is clear, because

d(x, X) = d(x*, (R)?)
and, thus, minimizing Fd(X, ,?) is the same as minimizing Ed(X°, ()?)C), and
(XNNYUW) = (X UN)YNW*
Therefore, employing proposition 1, the optimal f% corresponds to the following choice of W*¢
W¢ = supp 1(Tv+({z}) [1 - Tx-({z}] < Tx-({z}))

and the corresponding minimum expected error achieved by such an optimal choice of W€ is given by

E(e") =) min (Tx<({z}), Tn<({z}) [ = Tx-({z})])

z€B
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Figure 3: Restored image, obtained by filtering the DRS realization of figure (2) using the “optimal” inter-
section mask.
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Noting that, for singletons {z}
Tx-({z}) = 1 - Tx({z})

we obtain the following result.

Proposition 2 Under the ezpected symmetric set difference measure, the optimal fized “fll” mask, W, for
independent inlersection noise is given by

W = supp 1([1 - Tn({zD] Tx ({2}) > 1 = Tx ({2}))
The corresponding minimum expected error achieved by such an optimal choice of W is given by
E(e*) =Y min(l-Tx({z}),[1 - Tn({z)] Tx ({z}))
z€B

Observe that, once more, the result is intuitively appealing.

4.1.3 The composite problem: union/intersection noise

Here,
g(X,N1,N3) = (X NNy) U N,

where X, Ny, Ny are assumed to be mutually independent, and
)= ngV; Y)=(¥nNWa)UW;, =(((XNN1)UN)NWo)UWy), for some Wi, Ws, both in L(B)
We have the following proposition.

Proposition 3 Under the expected symmetric set difference measure, the optimal fized pair of masks,
(W1, W2), is given by

Wy = supp 1 (Tx ({z}) > maz(T1({z}), T2({2})))
Wi = supp 1(Tz({z}) < min(Tx ({2}), T1({z})))
whereas, the associated minimum ezpected cost achieved by such an optimal pair of masks is
E(¢") = Y min(Tx({z}), Ti({z}), To({2}))
2€B
with
Ti({z}) = Tx ({z}) 1 = T, ({2})) (1 = T, ({2})) + (1 = Tx ({<})) Tiv. ({2})
and

T({z}) =Tx({z}) (1 = T;i({z})) + (1 = Tx ({z}))

Proof: Without loss of generality, we may assume that W; C W5, since it makes no sense removing points
from the observation, only to reinstate them at the next filtering step. After some manipulation,

E(e) = Ed(X,X) = E|X N (NfUW$)N[(NS N W)U WE]| + E|(X°N Ny 0 Wa) U (X° N W)

12



Consider the first term

EIXn(NfUWS)N[(NsnW)UW5] = > Pr(z € X N(N;UWs)N[(N5 N W)U Wws))
z€B

(by indep. of X,N1,N2) = > Pr(z € X) Pr(z € N UW5) Pr(z € (N5 N W)U Ws)
zZ€B

= Tx({z) [1(z € W5) + 1(z € W2) (1 — T, ({zD))] [L(= € W) + 1(z € W2)1(z € W) (1 = T, ({2}))]
z€B

Next, consider the second term of the expected error

E|(X°NN2NW2)U(X NW)| =D Pr(z € (X°NN; NWa) U (X°NWY))
z€B

=3 Pr(ze X°N[(N;nW)UWi]) = > Pr(z € X%,z € (Na N W) UW1)

z2€B z€EB
(by independence of X,N») = > Pr(z € X°) Pr(z € (Na N W,) UWh)
Z2€EB
= > (1-Tx({z}) [1(z € W1) + 1(z € W) 1(z € Wo) T, ({})]
z€B

Therefore, the overall expression for the expected cost becomes

E(e) = Ed(X,X) = > {Tx({z}) [I(z € W) + 1(z € W2) (1 = Tw, ({z}))] -
z2€B

[1(z € W5) + 1(z € Wa)1(z € W) (1 — Tv, ({z})] +
(1= Tx({z}) [l(z € W1) + 1(z € Wy)1(z € Wa) T, ({z])]}

Consider the term in curly braces. As we have mentioned before, W) C Wy. Therefore, for each z € B, we
have the following three choices

(1) z€ Wi, z€ W5, or (i) z € W, z € W, or (iit) z € Wy, 2 € W,
In case (i) the term in curly braces is equal to Tx ({z}), in case (i) it is equal to T1({z}), and in case (iit)

it is equal to Ta({z}). The result follows. O

4.2 Optimal adaptive mask filtering

A drawback of the optimal filters which have been derived up to this point is that they are non-adaptive; no
matter what the observation is, the filter is fixed. One would like to improve upon these filters by allowing
for an adaptation of the mask using information extracted from the given input. The trade-off is an increase
in design/implementation complexity. For simplicity, we only consider union noise or intersection noise.

13



4.2.1 The case of union noise

Assume that we are presented with a specific input, K, i.e. we are given that Y = X UN = K. One
adaptation strategy is to incorporate this information into the cost function. This is done by considering the
conditional expectation of d(X, X ), conditioned on the given information. However, this does not lead to a
closed-form solution for the optimal filter. Instead, we can condition on part of the available information. If
we condition on the event XUN C K, ie. (XUN)NK® = B, then we can work out closed-form expressions

for the optimal filter and the associated minimum error. In what follows £ denotes conditional expectation,
conditioned on (X UN)NK°® = 0.

Proposition 4 Given that X UN C K, the opiimal intersection mask, W, for filiering out the noise
component, N, is given by

W =K O supp 1([L = Tx (K° U {z})] [N (K° U {z}) - In(K°)] < [Tx (K° U {z}) — Tx (K°)] {1 - TN (K°)))
The corresponding minimum cost achieved by such an optimal choice of W is given by

1

EE) = AT (R (A = Tw (B

3" min {1 - Tx (K° U {=})] [T (K° U {z}) = Tn (KO, [Tx (K° U {2}) = Tx (K°)] 1 — Tw (K7)])
2€K

Observe that for K = 0 (i.e. K = B, no information available about the input) the formulas above reduce
to the ones for the non-adaptive case, as they should (note that Tz() =0, for all DRS’s Z).

Proof: The cost again breaks down to
EIXNWe |+ EINONWNX€|

Now,

EIXnW|=EY 1(ze XNW°)

2€B
=Y El(zeXnNW9)=)Y Pr(ze XnW* [ (XUN)NK®=0)
Z€EB z€B
=) Pr(z€ XNW* | (XUN)NK®=0)
zeK

E Prze XNW¢(XUN)NK®=10)

e Pr((XUN)NK* = 0)

Observe that
Pr(XUNNK =) =Pr(XNK* =03, NNK°®=0)
(by independence of X,N) = (1 — Tx(K®))(1 - Tn(K*))
also
Prze XNW(XUNNK =0)=Pr(XNW°N{z} #0,XNK* =3, NNK°=0)

14



(by independence of X,N) = Pr(XN(W°N{z}) #0,XNK =) Pr(NNK*=0)
= (Tx(K°U (W N {z})) = Tx(K°)) (1 - Tn(K*))
Therefore, the first term of the expected cost becomes

Tx (KU (We N {z})) — Tx (K°)
> = 1- Tx(K°) -

z€K
For the second term of the expected cost

EINnWNX|=) FEl(ze NOWNX%)=> Pr(ze NAWNX° | (XUN)NK®=0)
2eéB 2€B

=Y Prze NnWnNX®|(XUN)NK®=0)
€K

=3 Pr(ze NNWNX¢ (XUN)NK® =0)

B Pr((XUN)NK° =)

zeK
We have seen that the denominator is equal to
(1 =Tx(K))(1-Tn(K*"))

Whereas the nominator

Prze NNWNX ,(XUNNK*=0)=Pr(({z}nW)NNNX*#0,(XUN)NK®=0)

=Pr(({z}nW)eN,({z}nW)e X XNK* =), NNK*=0)
(by indep. of X,N) = Pr(XNK*=0,({z}NW)e X)YPr(NNK°=0,({z}NnW)eEN)
=Pr(XnK=0,Xn{z}nW)=8Pr(NNK* =0, Nn({z}nW)#0)
=Pr(XnNKU{}nW)=0)Pr(NnK =0, Nn({z} nW) #0)
=1 -Tx(K°U{InNW)[In(K U {2z} nW)) = Tn(K°)]

Therefore, the second term of the expected cost becomes

5 (L= T U () W) T (K°U ()0 W) = Ti()]
= (1= Tx (K9)(1 - Tn (K°))

and the overall expected cost becomes

1
) = Tt RO A = T ()

DAl - Tx (KU ({3 n W) T (K° U ({2} N W)) = T (K°)] +
zeK

[Tx (KU ({} nW*)) = T (K1 = T (K]}

From which the claimed results follow by inspection. O
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4.2.2 The case of intersection noise

If we condition on the event X° U N°® C K¢ ie. (X°UN°)N K = @, we obtain the following result, by
duality.

Proposition 5 Given that X° U N°® C K¢ the optimal union (“fill”) mask, W, for filtering out the inter-
section noise component, N, is specified by

We = K*nsupp 1 ({1 = Txe (K U{z1)] [Tve (K U{2}) = Te(K)] € [Tx=(K U{=}) = T (K} 1 = Ty (K)])
The corresponding minimum cost achieved by such an optimal choice of W is given by

1

B = Tty A =80

Z min {[1 = Tx<(K U{z})][Tn-(KU{z}) = Tne(K)], [Tx<(K U{2}) = Tx(K)][1 — Tn-(K)]}
zeK¢©
Again, for K¢ = B (i.e. K =@, no information available about the input) the formulas above reduce to the
ones for the non-adaptive case, as they should.

Remark: For K # singleton
Tx(K) #1—-Tx(K)

4.3 An example: The Discrete Radial Boolean Random Set (DRBRS)

The Boolean random set is by far the most important random set model to date. Its importance stems from
its power to model many interesting phenomena, and its analytical tractability. This model has received
considerable attention in the literature (see [25] for a review). In a sense, the Boolean random set is a
generalization of white noise for the case of spatial processes. Therefore, it is well suited to model random
noise and obscuration under any of the degradation models which have been adopted so far. Here we develop
a restricted discrete-case analog of the Boolean model, and compute its capacity functional.

Let H be a convex! subset of B', |B'| << |B|, which contains the origin. In the terminology of Math-
ematical Morphology?, H is a convex structuring element. In the discrete case the notion of size can be
formalized via the operation of Minkowski set addition:

AoC =] 4,
zeC

where A; is the translate of A by the vector z. Define

{0}oH®H®---®H, (rtimes) ,r=1,2,...
rH = B
{0} ,r=0

1In digital topology (15, 23, 10}, the convez hull of a bounded set, H C 22 is defined as the intersection of the convex hull
of H in the topology of R?, with 22, A bounded set, H C 22, is convez if it is identical to its convex hull.

2Refer to [23] for a thorough exposure to the principles of Mathematical Morphology, and the beginning of section 5 for
definitions of set dilation/erosion, along with some brief introductory comments.
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Definition 4 Let ¥ be a generalized Bernoulli lattice process on B, constructively defined in the follow-
ing manner: each point z € B is conlained in ¥V with probability A;(2), independently of all others. Let
{G1,G2, -} be a set of nonempty, convez i.i.d. DRS’s on B', each given by G; = R; H, where {Ry, Rz, -}
form an i.i.d. sequence of Z,-valued r.v.’s which is independent of ¥, and each R; is distributed according
to a pmf fr(r), which is compactly supported on {0,1,..., R}. Define

x= {J Giely}

i=1,2,...

where ¥ = {y,y2,---}. Then X will be called a Discrete Radial Boolean Random Set (DRBRS) ,
with parameters (A, H, fr), and will be denoted by (A,, H, fr)-DRBRS. The points {y1, ya, -} will be called
the germs, and the DRS’s {G1,Ga, -} will be called the primary grains of the DRBRS X.

Remark: For brevity, we assume that for the purposes of this subsection the result of a @ operation is
automatically restricted to B. Also, ¢ stands for complement with respect to B. A sample realization of a
DRBRS is given in figure 6.

In order to compute the capacity functional of a (A, H, fr)-DRBRS, let us define

d(z, K) = mingexllz — kllm
where
lz— kllgr = min{n >0 | ({z} ®@ nH) N {k} # 0}

Observe that for z € K, df(z, K) = 0, since H contains the origin. We remark that d(z, K), as defined
above, is a digital uniform step metric, which is a generalization of the digital Housdorff metric. With this
notation in place, and employing some geometric arguments, it can be shown that

Tx(K)=1- J] [(1=X(2)+A(2)Fr(d?(z,K) = 1)]
z€K®RH*

where
Fp(m) = fa(l)
=0

and Fr(—1) = 0, by convention.

If we assume that both the signal, X, and the noise, N, can be modeled as DRBRS’s (possibly with
different structuring elements), then we can simply plug this expression into the formulas of Propositions
1-5, and obtain the optimal filter as a function of the signal and noise parameters.

5 Optimal Morphological Filters

The theory of Mathematical Morphology has been developed mainly by Serra [23, 9], Matheron [19], and
their collaborators, during the 70’s and early 80’s. Since then, Mathematical Morphology and its applications
have become very popular. The theory is concerned with the quantitative analysis of shape with an emphasis
on geometric structure. It is founded on certain elementary set-to-set mappings, namely set dilation /erosion,
which are inherently non-linear. These mappings are defined in terms of a structuring element, a “small”
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primitive shape (set of points) which interacts with the input image to transform it, and, in the process,
extract useful information about its geometrical and topological structure. Let

W e {zez’| —zewW)
The dilation of a set Y C 22 by a structuring element W is defined as®
YoW ={ze€2? | W,nY #0}
whereas the erosion of a set Y C 2?2 by a structuring element W is defined as
YoW' ={ze2®|W,CY}

Erosion and dilation are dual operators, in the sense that Y 6 W* = (Y° @& W*)°, where here ° stands for
complementation with respect to Z2. Two fundamental composite Morphological operators are opening and
closing. The opening, Y o W, of a set Y C Z? by a structuring element W, is defined as

YoWwE(Yew)ew= |J W
2€22 | W.CY

Similarly, the closing, Y ¢ W, of a set Y C Z2% by a structuring element W, is defined as

YeW2(YeW)ow

By duality of erosion/dilation it follows that opening and closing are dual operators. Both can be viewed
as nonlinear smoothing operators. Opening and closing are idempotent (stable) operators in the sense that
YoW)oW=YoW,and (YeW)eW =Y o W. A set Y is said to be (Morphologically) open (closed)
with respect to the structuring element W iff Y oW =Y (Y ¢ W = Y). We shall say that a set ¥ is smooth
with respect to W iff Y can be expressed as a union of shifted replicas of W. Y is open with respect to W,
iff Y is smooth with respect to W. Y is closed with respect to W iff ¥¢ is smooth with respect to W.

5.1 Some results on constrained optimality, or, why Morphology is popular.

Complex Morphological operators can be constructed by composing more elementary mappings. For example,
the family of Alternating Sequential Filters (ASF’s) is constructed by alternating openings and closings with
structuring elements of increasing size. Morphological operators are very flexible, mainly because of the
freedom to choose the structuring element(s), to meet specified criteria. Among other things, Morphological
operators have been widely used to filter out certain kinds of impulsive noise, such as the so-called salt-and-
pepper noise, in both binary and gray scale images [22, 5, 8, 7, 3, 4]. For example, it is widely believed that
opening is suitable under a union noise model, while closing is suitable under an intersection noise model.
ASF’s are deemed appropriate under a combined union/intersection noise model. Indeed, these filters are
used extensively, and they deliver adequate filtering in a variety of noisy environments. The natural question,
then, is whether we can provide some sort of theoretical justification for their use. As it turns out, these

3Here we follow the original definitions of Serra [23]. In his work the symbol @ stands for Minkowski set addition, and the
symbol & stands for Minkowski set subtraction.
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filters are indeed optimal under a reasonable worst-case scenario. In particular, if we assume that the signal,
X, is sufficiently smooth, and the noise is i.i.d., then these operators provide the Maximum A Posteriori
(MAP) estimate of X, on the basis of the observation Y. For the rest of this subsection, we assume that
structuring elements contain the origin. We have the following results.

Theorem 2 Let Ow(B) denote the collection of all W-open subsets of B. Assume that the signal DRS, X,
on B, induces the following probability mass function on £(B):

gy o if K €Ow(B)
Px(X =K) =

0 , otherwise

where | | stands for set cardinality. Furthermore, assume that the observable DRS isY = X UN, where N is
a homogeneous Bernoulli lattice process of intensity r (i.e. each point z € B is included in N with probability

r, independently of all other points), which is independent of X. Then Y o W is the MAP estimate of X on
the basis of Y.

Proof: Let XMAP(Y) denote the MAP estimate of X on the basis of Y. Then, by definition,
X’MAP(Y) = arg maTgecxg(B) {Pr(X =K |Y)}

Using Bayes’ rule, N
Xaap(Y) =arg mazgexpy {Pr(Y | X = K)Px(X = K)}

1 ,
= arg MmaTgeow(B) {PT(Y | X = K)m(—B—)l} = arg mazgco, () {Pr(Y | X = K)}
= arg malgeow(B), KCY {PT(Y I X = [{)} = arg MaTgeow(B), KCY {T‘lyl_lKl(l _ T.)|B|—1Y|}

= arg MATKeow(B), KCY {VlKl} = arg mazTgcoy(B), kcvy 11K}
So )?MAP(Y) is the largest W-open subset of Y, which is by definition the opening of Y by W, i..

Xuap(¥Y)=YoW

and the proof is complete. O

A little reflection on the above result is in order. The suppositions of the theorem indeed correspond to
a worst-case statistical scenario: if all that is known about the signal is that it is almost surely (a.s.) smooth
(open) with respect to W, then it is reasonable to model this knowledge using a uniform distribution over
the set of all W-open subsets of B, to reflect the fact that the signal exhibits no other (known) probabilistic
structure. Also, i.i.d. noise is the worst kind of noise, in the sense of maximizing the Shannon entropy of
the noise DRS N. Both these suppositions are plausible in practice, and this explains why the opening filter
is successful under a union noise model. Similarly, we have the following theorem.
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Theorem 3 Let Cw(B) denote the collection of all W-closed subsets of B. Assume that the signal DRS,
X, on B, induces the following probability mass function on £(B):

T(TVL(FSI' , if K € Cw(B)
Px(X =K)=

0

, otherwise

Furthermore, assume that the observable DRS is Y = X N N, where N is a homogeneous Bernoulli lattice
process of intensity v, which is independent of X. Then Y ¢ W is the MAP estimate of X on the basis of Y.

Proof: By definition,

}?MAP(Y) =arg margexp) {Pr(X =K | Y)} = arg mazgegy {Pr(Y | X = K)Px (X = K)}

= arg MaTKeCw(B) {Pr(Y | X =K) } = arg mazgecy(B) {PT(Y | X = K)}

1
|ICw(B)|

= arg 7’7’l(lil?}'{€c'w(13)y KDY {PT‘(Y | X = I()} = arg maxKecW(B), KDY {T‘Iyl(l - r)|KI"|Y|}

= arg MaATKeCw(B), KIY {(1 - r)lK‘} = arg mingecw(B), K2Y {IK|}
So X'MAP(Y) is the smallest W-closed superset of Y, which is by definition the closing of Y by W, i.e.
)?MAP(Y) =Y oW

and the proof is complete. O

The following two theorems are straightforward extensions of the above theorems. We state them here
without proof.

Theorem 4 Let Ow,,..w,,(B) denote the collection of all subsets K of B which can be expressed as

K= |J Ki Ki€Ow,(B),i=1,-- M
=1, M

Assume that the signal DRS, X, on B, induces the following probability mass function on X(B):
{ Owl,...‘le(B , if K € Ow,,...wp(B)

0 , otherwise

Furthermore, assume that the observable DRS is Y = X U N, where N is a homogeneous Bernoulli lattice
process of intensity r, which is independent of X. Then

}?MAP(Y): U YoW;
i=1, M

20



Theorem 5 Let Cyw, ...w,,(B) denote the collection of all subsets K of B which can be expressed as

K= ﬂ Ki;, Kie€eCw/(B), i=1---M
=1, M

Assume that the signal DRS, X, on B, induces the following probability mass function on L(B):

oy i K € Cwypwi(B)
PX(X = K) =

0 , otherwise

Furthermore, assume that the observable DRS is Y = X NN, where N is a homogeneous Bernoulli lattice
process of intensity r, which is independent of X. Then

)?MAP(Y): ﬂ YeW;
i=1,-- M

In general, if we assume that X satisfies some arbitrary (not necessarily Morphological) smoothness condi-
tions, 1.e. X € S, a class of smooth subsets of B, and that X is uniformly distributed over S, then under an
i.1.d. symmetric (Binary Symmetric Channel, BSC) noise model of pixel inversion probability r < 0.5, it is
easy to see that

,?MAP(Y) = arg mingesd(Y, K)

where d(Y, K) is the area of the symmetric set difference distance between Y and K. In other words,
}?MAP(Y) is the “projection” of the data Y onto §. However, it is not clear how to compute this projection
under general smoothness conditions. Furthermore, quite often the noise is not i.i.d., and the signal is
nonsmooth, or only approximately smooth. The lack of a rigorous DRS-theoretic optimization approach
for this general case has been evident in the literature. Our programme is to develop such an approach.
Specifically, for each degradation model, we will construct a suitable class of Morphological operators, argue
about its merits, and derive results which explicitly characterize the optimal choice of structuring element(s)
in terms of the fundamental functionals of random set theory, namely the generating functional of the signal,
and the generating functional of the noise.

5.2 Optimizing a single structuring element
In the case of union noise we constrain the mapping f to be

f)=fw@) =Y oW )NY =[(XUN)eW’IN(XUN), for some structuring element, W
Similarly, in the case of intersection noise we constrain the mapping f to be

=Y = ew)uY =[(XNnN)e W U(XNN), for some structuring element, W

Some motivation is necessary at this point. Let us first consider the case of intersection noise. Intuitively,
since the noise removes points from the signal, we should use some sort of “fill-in” operation to cancel the
effect of noise. By definition,

YeW' ={zeB|W,CY}
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Figure 4: Some structuring elements that can be used in a “gap-filling” mode.

If the structuring element, W, is appropriately chosen (in particular it must not contain the origin), then
the erosion operation is a fill-in operation, i.e. 1t fills gaps in the “body” of the observation. However, it
also introduces new gaps, which is an undesired side effect. Nevertheless, we can easily get rid of these
“spurious” new gaps, by simply taking the union of the resulting eroded set with the input set (i.e. the
observation, Y) itself. Some structuring elements that can be used in this mode are depicted in figure (4)
(a cross indicates the location of the origin). An example is given in figure (5). Figure (5a) depicts a test
image, while figure (5b) depicts a degraded version of the test image, obtained by intersecting it with the
set of points which make up a realization of a Bernoulli random field, of intensity 0.9. Figure (5¢) depicts
the estimate, X = [(X N N)© W*] U (X N N) where X is the original test image depicted in (5a), N is
the set of points of the Bernoulli field, X N N is the observation depicted in (5b), and W is the leftmost
of the structuring elements which appear in figure (4). For this example, the structuring element was not
optimized.

In loose terms, if a structuring element does not contain a neighborhood of the origin, then it can be used
in a gap-filling mode. The larger this neighborhood, the wider the gaps that can be (partially) filled by an
erosion with the given structuring element.

Similarly, by duality, if the structuring element is appropriately chosen (again, it must not contain the
origin), dilation can remove points from the observation, and, therefore, it can be appropriate under a union
noise model. After performing a dilation with a suitably chosen structuring element, we take the intersection
of the resulting set with the input {observation) set, to eliminate points that have been introduced by the
dilation operation.

This mode of use of the two basic Morphological operations may seem strange at first, since, for example,
and partially because of its name, most people think of erosion as a shrink-type operation. However, one
should keep in mind that this is only true if the erosion structuring element contains the origin. In fact,
most people would consider using the operations in a reverse fashion: dilation for the case of intersection
noise*, and erosion for the case of union noise. The reason for our “unconventional” approach is that this
way we can take advantage of certain distributivity properties, and obtain closed-form characterizations of

4See [13] for an account of such an approach, when the intersection mask, N, is a deterministic, regularly spaced grid, which
undersamples the observation.
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Figure 5: (a) Original image, (b) Intersection of the image in (a) with a Bernoulli random field, (¢) Restored
image.

the optimal filters.

5.2.1 The case of intersection noise
Here5,
gX,Ny=XnN

and
X=fY)= YY) =(YeW)UY = (X NN)e W?JU(XNN), for some structuring element, W € W

where W is the collection of structuring elements over which we intend to optimize. We need to make a
small modification to our fidelity criterion, in order to account for incomplete data close to the border of B.

Towards this end, define
B\0B = Bn ( N BeW‘)

wew
B\JB is exactly the set of points z € B with the property that W, C B, YW € W. Then we only consider
the total expected error restricted to B\0B. We also assume that estimates of X are only valid ‘within

B\3B. For brevity, we use the same symbol to denote a DRS and its restriction to B\GB. The meaning is
clear from context. We have the following Proposition.

5This operation can be viewed as random sampling the DRS X. In this context, our results characterize the optimal {within
a class) Morphological reconstruction filter, for DRS’s that have undergone random sampling.
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Proposition 6 Under the assumption of mutual independence of the signal and noise DRS’s, X, N, the
value of the expected error, E(e) = Ed(X,X), incurred when X is estimated by X = [(X N N)© W*]u(Xn
N), is given by

Ee)= Y, {@x<({zD(1-Qn-({z}))

2€B\dB
+QN(W:) (Q@x<(W:) — Qx<({z} UW:)) + Qx-({z} U W) (Qn-({z} UW,) — Qn=(W.))}
Proof: Observe that, by distributivity of erosion over intersection
(XNnN)yeW =(XeW?’)n(N o W?)

This property is crucial for the proof.
During the course of the proof, we will need the following elementary result. Define the functional

Txn(Ko; Ky, Kn) 2 Pr(XNKo=0, XNK, #0,---, XN K, # 0)

By definition, I'x o(K) = Q@x(K). Using Baye’s rule, one can easily show that this functional satisfies the
following recursion, known as the inclusion - ezclusion principle.

Txn(Ko; K1,y Kp) = Uxne1(Kos Ky, -+, K1) = Tx a1 (Ko U Ky Ky - -, Wpmy)
We are now ready to proceed with the proof of the Proposition. The total expected error is
E(e) = E|X\X| + E|X\X]
Let us first consider the second term.
EIX\X| = EIXnX°|= E|([(X N N)e W*]U(X N N))N X°|

=E|[(XNN)e W INnX)U(XNNNX)| =E|[(XNN)eW]nX°|

Now, since

(XNN)eW* = (XeW*)n(N e W)

The last expression is equal to
El(XeW )Nn(NsW?’)n X°

=E ) lzeXeW)N(NeW )nX)= Y ElzeXeW )nNeWw’)nx)
2€B\dB 2€B\6B

= Y Prze(XoW )Nn(WNeW )nX)= ) Prze(XeW)NX),zeNoW’)
zeB\oB 2€B\oB

(by independence of X,N) = Z Prze(XeW )NX)Pr(ze NoW?*)
z€B\8B

= Y PrW.CX,zeX)Pr(W.CN)= Y Pr(X'nW.=0, XN{z}#£0)Pr(N°NW, =0)
2€B\0B z€B\dB
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The first term of the total expected error

EIX\X|=EIXn(X)°]|= EIXN([(X " N)eW*]u(X nN))*|

=EXN(XNN)eW 'n(XNN)|=E|[[XnN(XNNIN[(XNN)o W]
= E|XNXUN)INXNN)eW P I=E(XNXHU(XNNHN{(XNN)e W]
= EIXNNN(XNN)eW! ] |=EIXNN°N[(XoW?*)N(Ne W)
=EIXNNN[XoWHUNoW)Y=E|(XNNN(XeW)VU(XNN NN W)

=EIXNNN(XoW) |+ E|IXNNN(NoW* |- E|XNNN(X oW ) n(Ne W)
Now,

EIXNN°A(XoW*)| = E|(XN(XeW*))NN|

= Y Pr(z€X,~(W.CX)Pr(zeN)= > Pr(X°n{z}=0, X°NW, £B)Pr(N°N{z} # 0
2€B\8B 2€B\8B

where — denotes logical negation. Also,

EIXnN°n(NeW*)|= Y. Pr(z€X)Pr(ze N°, =(W. C N))
2€B\8B

= > Pr(X°n{z}=0)Pr(N°N{z} #£0, N°NW, #0)

2€B\8B
And
EIXNNNXeW ) N(NoW )| =E|(XN(XoW*))N(N° N(N o W?)%)|
= > Pr(zeX, ~(W.CX)Pr(z€ N°, =(W, C N))

2€B\0B

= Y Pr(x°n{z}=0, XnW, #0)Pr(N°N{z}#£0, N°NW, #£0)

2€B\8B

Therefore, putting everything together,
E(e) = EIX\X| + E|X\X]|

= Y {Pr(X°n{z}=0, X°NW, #0)Pr(N°N{z} #0)

2€B\oB
+Pr(X°n{z} =0)Pr(N°N{z}#0, N°NW, #0)
—Pr(X°N{z}=0, XNW, #OPr(N°N{z}#0, N°NW, #0)
+Pr(X°NW, =0, X°N{z} Z0)Pr(N°NW, = 0)}
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= Y {Txes({zhWe) (1 = Qn-({z}))
2€B\0B
+Qx({z})Tne2(8; {2}, W2)
—Ixe1({z}; Wo)Tne 2(0; {2}, W)
+Txe1(Ws; {2} Qne(W2)}

= Y {@x({z}) - Qx-({z} UW.)) (1 - @w-({z}))

z€B\oB
+Qx({z}) (1 = @n-({z}) — Qne(W:) + @n-({z} U W)
—(@x<({z}) = Qx-({z} UW2)) (1 = @n<({z}) = Qne(W>) + @ne({z} UW2))
+(Qx(W:) — @x-({z} UW2)) Qne(W:)}

From which, after some manipulations, we obtain

Ele)= > {Qx<({z})(1-Qn-({z}))

z2€B\dB

+Qn=(W:) (Qxe(W:) — Qx-({} UW2)) + Qx-({z} UW2) (Qn-({z} UW:) — Qn=(W2))}

a
The structuring element, W, should be chosen to minimize this expression. Observe that the total
expected error is equal to the sum of the probabilities of individual pixel errors. If we make the natural®
assumption that both X, and N, are obtained by sampling stafionary random closed sets (RACS) [19], then
all the functionals in the above sum are independent of the location, {z}, and we obtain the following result.

Corollary 1 Under the condition of mutual independence of the signal and noise DRS’s, X, N, assuming
that X, N, are obtained by sampling stationary RACS, and that X is estimated by X = (X NN)e W’ U
(XN N), the optimal choice of the structuring element W is the one which minimizes the probability of pixel
error

Ppixel error(W) = QXC({G}) (1 - QN"({(_)}))
+Qne(W) (Qx<(W) ~ Qx-({0} UW)) — Qx=({0} U W) (Qn=(W) ~ Qn=({0} UW))

Some remarks are in place. The first term, Qx<({0}) (1 ~ Qn<({0})), of the probability of pixel error,
Ppizel error (W), is exactly the probability of pixel error between the signal X, and the observation X N N
(this can be seen by setting W = {0}, which corresponds to no filtering of the observation). This first term
is independent of W, and, therefore, it is not under our control. The remaining two terms of the sum are
both non-negative functions of W (it can be easily shown that the generating functional of an arbitrary DRS
is constrained to be non-increasing). When considered as a function of W, this sum clearly brings out the
interplay between “signal power” and “noise power”, and how it determines the structuring element that

6Since we are using a shift-invariant filtering operation.
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achieves the optimal trade-off between eliminating gaps introduced by noise, and retaining gaps that are
present in the signal itself.

Some notes on the applicability of this result are in order. If the generating functionals Qx«(-), Qn<(-)
(or, equivalently, the capacity functionals Tx<(+), Tn<(-)), are given, then optimization of W over a relatively
small collection of allowable W's is straightforward. In general, for large collections of candidate structuring
elements, some sort of suboptimal search must be pursued, to avoid a potentially difficult exhaustive search.
See [16] for an “expert” structuring element library design approach. We shall return to this point later on.
At any rate, even if the generating functionals are not available (which is the case in most applications), all
the quantities which are relevant to our optimization problem can be efficiently and accurately estimated from
running (sample) averages, by virtue of stationarity and the law of large numbers. For example, @ x<(W)
can be estimated by “sliding”the structuring element W across a realization of X¢ and counting the number
of times that the two have an empty intersection, and similarly for the others.

5.2.2 The case of union noise

Here,
g(X,N)=XUN

and
X=fYV)=fw®¥) =¥ eW)NY = [(XUN)® W*IN(XUN), for some structuring element, W € W

We can proceed directly, as in the case of intersection noise, to derive the optimality results from scratch.
However, we can also obtain the same results by appealing to duality. In particular, since

(XY =((XUN)e W N(XUN) =[(XUN)® W*]°U(XUN)"

=[(XUNY oW U(X NN =[(X*NN)e W ]U(X°NN°)
and
d(X1, X2) = d(X71, X3)
we can easily reduce this case to the case of the previous subsection, by replacing X, N with their comple-

ments, X¢, N¢. Thus we have the following result.

Proposition 7 Under the assumption of mutual independence of the signal and noise DRS’s, X, N, the
value of the expected error, E(e) = Ed(X, X), incurred when X is estimated by X = (X UN)® W*]N(XU
N), is given by

E()= Y {Qx({=))(1-Qn({z}))

2€B\8B
+QN(W:) (Qx(W:) = Qx({z} UW2)) + Qx ({F U W) (Qn({z} U W) — Qn (W)}

Again, if we make the assumption that both X, and N, are obtained by sampling stationary RACS, then
we obtain the following result.
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Corollary 2 Under the condition of mutual independence of the signal and noise DRS’s, X, N, assuming
that X, N, are obtained by sampling stationary RACS, and that X is estimated by X = [(X UN)® W*]n
(XUN), the optimal choice of the siructuring element W is the one which minimizes the probability of pixel
error

Ppirel error(W) = QX({O}) (1 - QN({O}))
+AN(W) (Qx(W) - Qx ({0} U W) — Qx ({0} U W) (Qn (W) ~ QN ({0} U W)

As in the case of intersection noise, similar remarks hold here regarding the interpretation of the individual
terms of the sum. Again, if the generating functionals Qx(-), Qn(+), are given, then optimization over a
small collection of candidate structuring elements is straightforward. If these functionals are not available,
their values can be estimated from running averages, as before.

Let us now show how one can reduce the complexity of the search for the optimal structuring element,
by making some further assumptions concerning the signal and noise models. We will demonstrate this by
example. Suppose that X, N, are both DRBRS’s, of constant intensity, px = 1 —qx, pxv = 1 —qn, and with
deterministic primary grains, Hx, Hn, respectively, which are both convex and contain the origin. Then it
can be shown that

Qx(K) = ¢F®Hx QK = KA

Let W denote the collection of candidate structuring elements over which we intend to optimize. It can be
shown that under the condition
Hy CW@oHx, YWeWw

the second term of the sum for the probability of pixel error is zero. In loose terms, this condition amounts
to requiring Hyx to be “large enough” relative to the structuring elements in W. Since the signal is usually
associated with the more prominent patterns in the image, this requirement is not very restrictive. For
example, if W is the collection of structuring elements depicted in figure 4, and Hx is a square of side 3
pixels which is centered at the origin, then the above condition is satisfied. Therefore, the optimal W € W
should maximize the third term of the sum, namely
A - -
GW) = Qx({0} UW) (@n(W) — Qn ({0} UW))
which can be written as

G(W) = g/ R ORI (1 _ Jrki-Iinworri)

From this last expression, it is easy to see that
Wy C We = G(W,) < G(W)

Thus, since we seek to maximize G(W), we can eliminate from consideration all structuring elements in W
that properly contain other structuring elements in W, 1.e. it suffices to optimize over the subcollection

W:{WevwW’eWandW’gW‘:»W’:W}

This elimination can translate to a significant decrease of search complexity. For example, if W is the
collection of structuring elements depicted in figure 4, and Hx is a square of side 3 pixels which is centered
at the origin, then it suffices to optimize over the two leftmost structuring elements.
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The same result can be worked out when X, N, are both DRBRS’s of constant intensity and primary
grains of random size. If both px and py are sufficiently small (i.e. both ¢x and gy are sufficiently close to
1), then it can be shown that

~ EIKoRxHS ~ E|K@RNH?:
Qx(K) = ZFOREL (k) = gHIHORN AR

where the expectation is taken with respect to the pmf of Rx, Ry, respectively. In the following we will
assume that these approximations are valid, and that

Pr(Rx =0)=Pr(Ry=0)=0
By virtue of the fact that @ is a commutative, associative and increasing operator, i.e.
AeC=CaqA
Ao (CoD)=(4aC)o D
ACC=A®DCCa®D

it can be shown that if
H:HI@HZ@@Hn

and one of the H;’s satisfies
H CWeoH!, VWeW

then so does H. In particular, it can be shown that if Hx satisfies
HYy CW@HY, YWeW

then so does rHy, r =1,2,..., which in turn implies that the second term of the sum of the probability of
pixel error is zero. Therefore, the optimal W & W should maximize the third term of the sum, which can
be written as

G(W) - q§|W€BRxH;(|qII:JJ]W€BRNH{V[ (1 _ q1};3r|RNH;,l—E]RNHNH(W®RNHN)])

from which it can again be seen that
Wy - Wy = G(Wz) < G(Wl)

Thus, assuming that both ¢x and qx are sufficiently close to 1, it is only necessary to optimize over the
subcollection

W:{Wewlw'GWandW’gW:>W’=W}

5.3 Extensions to optimal filters with multiple structuring elements, and rela-
tion to basis decomposition.

In this section, we discuss important extensions to some of the optimality results which have been obtained
so far. For simplicity, we restrict our attention to the case of intersection noise, although, by duality, similar
extensions hold for the case of union noise.
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5.3.1 Multiple structuring elements.

In certain situations, particularly when the noise level is high, a single erosion followed by a union, even if
optimal, may not suffice to properly reconstruct the signal. In this case, it is beneficial to consider filters
with multiple structuring elements. The structuring elements must be jointly optimized, to eliminate a wider
class of error patterns. Using exactly the same algebraic methods as in the proof of Proposition 6, and with
some patience, we can obtain similar optimality results for the case of multiple structuring elements. For
example, we state the following, without proof.

Proposition 8 Under the assumption of mutual independence of the signal and noise DRS’s, X, N, the
value of the ezpected error, E(e) = Ed(X, X), incurred when X is estimated by

X=[XnNe WY u[(XnN)eW?P|u(XnN)

is given by

Ee)= Y. {Qx-({zH(1-Qn-({})

2€B\9B
+Qx<(W)Qn<(W,) + Qx<(W})Qn<(W?)
+Qx-({z} UW)Qne({z} UW}) + Qx({z} UW})Qne({z} U W)
-2Qx-({z} UW})Qne(W)) — 2Qx<({z} UW)Qn(W])
—Qxe(WUWDQN-(WEUW?) — Qx({z} UWUW)QN-({z} UWLUW?)
+2Qx-({z} UW UWAQn(W} UW2)}

Corollary 3 Under the assumption of muiual independence of the signal and noise DRS’s, X, N, assuming
that X, N, are obtained by sampling stationary RACS, and that X is estimated by

X=[(xnMeW@WY]u[(XnN)eW>|u(XnN)
the optimal pair of structuring elements, W', W2, is the one which minimizes the probability of pixel error
Ppi:cel error(Wlu WZ) = QXC({O}) (1 - QNC({()}))

+Qxo(WHQne (W) + Qx(W)Qne(W?)
+Qx-({0} UWH)Qn-({0} UW") + Qx-({0} UW?*)Qn-({0} U W?)
—2Qx<({0} UWHQn-(W') = 2Qx-({0} UW?)Qn-(W?)
—Qx- (W UWHQN-(W UW?) — Qx-({0} U W' UW?)Qn-({0} U WU W?)
+2Qx- ({0} U W UWH QN (W' UW?)

Obviously, similar results can be obtained for more than two structuring elements.
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5.3.2 Optimal increasing, shift-invariant filters with a basis constraint.

A surprising result, originally due to Matheron [19], and subsequently improved upon, and used by Maragos
[17], and Dougherty et al., and Giardina [5, 6, 8, 7], is that a very large class of (linear and non-linear)
shift-invariant operations can be decomposed into a union of erosions by suitable structuring elements.

Let E = Z?% and let £(E) denote the power set of E. Let ¥ : £(E) — L(E). Recall that ¥ is increasing
iff X; C X, = ¥(X;) C ¥(X3), VX, € E(E), X, € X(E). We now reproduce some key theorems, taken
from [19, 17].

Theorem 6 [19] For any shift-invariant and increasing mapping ¥ : £(E) — L(E), and for all X € T(E),
)= |lJ Xxew
WeKer(¥)

where the kernel of ¥, Ker(¥), is defined as

Ker(¥) £ {W € S(E) | 0 € ¥(W)}
Theorem 7 [17] For any shift-invariant and increasing mapping ¥ : £(E) — E(E), and for all X € L(E),

¥x)y= |J xew:
WeBas(¥)

where the basis of ¥, Bas(¥), is defined as
Bas(¥) 2 {W € Ker(¥) | W € Ker(¥) and W CW =W = W}

As a result of the latter theorem, the number of structuring elements that are needed for the decomposition
is greatly reduced. Dougherty et al. [6, 8, 7], have made extensive use of this result to reduce the complexity
associated with the design and implementation of optimal mean-square Morphological filters. By duality,
there exists an equivalent decomposition of any shift-invariant and increasing mapping as an intersection of
dilations [3].

Strictly speaking, these theorems cannot be used with bounded domains. However, modulo some edge
effects, which are proportional to the size of the largest basis element, they can be used.

In light of these theorems, let us review our results. For example, consider

X=[(XnN)eW)]Uu[(XnN)e(W?)'Ju(XnN)
which can also be written as
X=[(xnNeWyu[(XnN)eWJu[(XnN)e {0}

Therefore, under the usual assumptions for the signal and the degradation, Corollary 3 provides the means
of finding the optimal filter, within the class of shift-invariant and increasing filters, whose basis counsists of
at most three structuring elements, one of which is constrained to be {0}. This last restriction is natural”

"Because it assures that the overall filtering operation is eztensive, i.e. its result contains the input. This property is
obviously desirable under an intersection noise model.
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for the case of intersection noise. With patience, similar results can be developed for larger basis sets.
Relative to the reduced basis search and the switching algorithm of Dougherty et al. [8, 7], our work provides
tractable theoretical formulas for the cost function, thus establishing a more rigorous statistical framework
for the application of optimization algorithms. Our point is that, under an iniersection noise model, contrary
to our intuttion, we should think of the optimal filter as a union of erosions, whereas under a union noise
model we should think of the optimal filter as an intersection of dilations. In both cases, we can work out
theoretical formulas for the cost function. The size of the expansion is usually determined from design and
implementation considerations.

5.4 Experimental Results

In order to corroborate our theoretical results, we have designed a series of simulation experiments. One
such experiment is described in this section.

Let us make the assumptions of Corollary 1. For the purposes of simulation, we need models for the
signal and noise. We assume that the signal, X, is a DRBRS of constant intensity, and that the noise, N,
is given by the set of points of a Bernoulli random field, of constant intensity p = 0.9. These models are
only used to generate realizations of the signal, the noise, and the observation. The entire simulation is data
driven, and all relevant probabilities are estimated using running averages. This approach is honest, and
close to real world problems.

We also have to chose a collection of structuring elements, over which we will optimize. We consider the
collection depicted in figure (4), and label the structuring elements Wy, - - -, Wy, from left to right.

Figure (6) depicts a realization of the signal DRS, X, while figure (7) depicts a realization of the noise
DRS N. These are solely used to estimate the relevant probabilities. The results for the signal and the
noise are tabulated in tables (1) and (2), respectively. The results for the estimated probability of pixel error
are tabulated in table (3). These have been computed using tables (1),(2), and the formula of Corollary 1.
In table (3), the leftmost entry is the estimated probability of pixel error between the signal, X, and the
observation, X N N, i.e. when no filtering takes place (this corresponds to W = {0}). It is given here for
comparison purposes. Clearly, the optimal structuring element is Ws, with W) running a close second (this
is justified by the symmetry in the data). The worst structuring element is Wj.

Figure (8) depicts another (independent) realization of X, while figure (9) depicts a realization of the
observation, Y = X N N, obtained by intersecting the DRS realization of figure (8) with an independent
realization of N. Figure (10) depicts the restored image, X = (Y ©W3)UY, where Y is the DRS realization
of figure (9). This is the best possible restoration within the given family of structuring elements. For
comparison purposes, figure (11) depicts the restored image, X = (Y ©W;)UY, where Y is the DRS
realization of figure (9). This is the worst (non-trivial) restoration within the given family of structuring
elements.

These results are encouraging; they clearly support the theory and satisfy our intuition. Furthermore,
considering the fact that the optimal filter essentially consists of two set translations and two set unions (two
translations and one union are needed to implement the erosion with W3), the quality of restoration seems
good. Even better results can be achieved using multiple structuring elements.



6 Conclusions

In this paper we have described two optimal digital binary image filtering strategies. Mask filtering is a
simple, yet intuitive, approach to the problem of digital binary image restoration, under a union/intersection
degradation model. We have discussed both optimal fixed-mask filtering, and optimal adaptive mask filtering.
Although adaptive mask filtering is clearly superior when compared to fixed-mask filtering, it essentially
requires knowledge of the capacity functionals of the signal and noise. This is the case when both the
signal, X, and the noise, N, can be modeled as DRBRS’s. On the other hand, fixed-mask filtering only
requires knowledge of first-order statistics (pixel hitting probabilities), which can be easily and accurately
estimated from training data. Therefore, it provides a simple and robust alternative, when the signal and
noise processes are not known in detail. Generally speaking, fixed-mask filtering is suitable when the signal
and noise DRS’s are highly non-stationary, in which case optimal filters turn out being spatially varying,
and traditional shift-invariant filters are very hard to optimize, and out of context. Adaptive mask filtering
can be effective in both the stationary and nonstationary case.

In the second part of this work, we have demonstrated that certain popular Morphological filtering
schemes are indeed optimal under some fairly plausible assumptions. We have also described a general
optimal Morphological binary image filtering approach, which is more appropriate when the signal and noise
DRS’s exhibit a stationary behavior. We have demonstrated that by choosing the right expansion of the
optimal filter, namely as a union of erosions (intersection of dilations), under an intersection (union) noise
model, we can obtain universal optimal filtering results, which do not rely on strong assumptions concerning
the nature of the signal and noise, and the mode of their spatial interaction. In particular, they are valid when
the signal and noise patterns are spatially overlapping. This situation contrasts with the optimality results
of Haralick/Dougherty/Katz [12], which are based on the assumption that the signal and noise patterns are
“non-interfering”, and the results of Schonfeld/Goutsias [22], which rely on strong separability of the noise
patterns. In contrast with the aforementioned model-based approaches, we have chosen to avoid restricting
the class of input signals under consideration. Obviously, a model-based approach is superior when the
underlying assumptions are justified in practice. However, if this is not the case, then our approach may
prove safer.

7 Appendix - Proof of Lemma 1

Uniqueness: Assume that the external decomposition formula holds. Look at the right hand side of the

inversion formula.
S (=Dilyscuc)= Y (-0 Y w(D) =

cCS ccs DCsnce
STENEEST wpy =Y Y (—)iluyD) =
ccs DCS\C CCSDCS\C
SN =fludy= D uwd) Y. (-D)I=u(S)
DCS CCS\D DCS CCS\D
Since
{0 ,S#£0
g;&nm-{l sy
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Existence: Assume that the inversion formula holds, and look at the right hand side of the external

decomposition formula.
Sud) = > Y (-1)ily(scuc) =

SCAe SCA°CCS
DS =Dhs\C)r) = Y. D (~)Ih(De) =
SCAcCCS DCAcCCAS\D
ST D) > (-1 = u((4°)°) = v(A)
DCAs CCAS\D

As for the uniqueness part. O
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Figure 6: A realization of the signal DRS, X.

W:{O} W—_—W1 WIWQ W=W3 W=W4

Qx-(W) 0.494698 | 0.438927 | 0.438970 | 0.426667 | 0.383403

Qx-({0} U W) 0.437678 { 0.437682 | 0.426082 | 0.383403
Table 1: Estimated values of the generating functional Qx-(-).

WZ{O} W=W1 W:W2 W:W3 W:W4

Qne(W) 0.900431 | 0.810915 | 0.810519 | 0.657578 | 0.432145

Qn-({0}UW) 0.730154 | 0.729550 | 0.591795 | 0.389004

Table 2: Estimated values of the generating functional Qne(-).
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Figure 7: A realization of the noise DRS, N.

W = {0}

W =W,

W = W1
0.01490

W =Ws;
0.0217

W =W,
0.0328

0.0493

0.01491

Ppia:el error (W)

Table 3: Estimated values of the probability of pixel error.
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Figure 9: The result of intersecting the DRS realization of figure (8) with another (independent) realization
of the noise DRS, N.
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