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Abstract

Issues of stability of the Tethered Satellite System (TSS) during station-keeping, de-
ployment and retrieval are considered. The basic nonlinear equations of motion of the
TSS are derived using the system Lagrangian. Using the Hopf bifurcation theorem, ten-
sion control laws are established which guarantee the stability of the system during the
station-keeping mode. A constant angle control method is hypothesized for subsatellite
deployment and retrieval. Tt is proved that this control law results in stable deployment
but unstable retrieval. An enhanced control law for deployment is also proposed, which
entails use of the constant angle method followed by a station-keeping control law once
the tether length is sufficiently near the desired value. Simulations are given to illustrate

the conclusions.
I. Introduction

The Tethered Satellite System (TSS) [1]-[8] consists of a satellite and subsatellite
connected by a tether, in orbit around the Earth. Many potential applications of the
TSS have been proposed, including deployment of scientific instruments and study of the
Earth’s magnetic field [1], [12]. Station-keeping, deployment and retrieval of payloads are
the three major modes of operation.

Arnold [2] proposed a constant angle method for deployment and retrieval of subsatel-
lite of the tethered satellite system. In [2], the satellite and subsatellite are modeled as
point masses and the tether is assumed massless and of length small compared with the ra-
dius of the satellite’s orbit. Based on these assumptions, Arnold obtained an approximate
model of the TSS by applying the gravity-gradient method and argued that this constant

angle scheme would result in stable deployment and unstable retrieval.



One goal of this paper is'to give a.pvroof of thé validity of these éonclﬁsiéns. First, how-
ever, general dynamic equations for the TSS are derived by using the system Lagrangian.
The applied tension control -force is assumed to be the only external foréé actihg on the
TSS. Next we consider stabilization of the TSS during the station-keeping mode, in which
the tether’s length is regulated to remain nearly fixed. We observe fromr linear analysis
at the system equilibria the presence of two pairs of pure»imagina£y eigenvalues in the
absence of feedback. This suggests the possibility of librations superimposed upon the
orbital motion. It is found that nonlinear stability analysis is needed to study stability
and stabilization of the T'SS during station-keeping. The program of [15], which considers
Hopf bifurcation control algorithms, is employed to derive stabilizing control laws. Both
linear and nonlinear feedback controls are achieved which guarantee asymptotic stability.

Viewing the tether length as an input variable for deployment and retrieval of the
TSS, a constant in-plane angle control scheme is considered next. Within this setting,
we prove stability of constant-angle deployment and instability of constant-angle retrieval.
This is achieved through the construction of appropriate Liapunov-like functions and by
appealing to the finite-time stability theory. A new control strategy for deployment of
the subsatellite is also proposed. This control law consists of the constant angle scheme
followed by the stabilizing station-keeping control.

Finally, simulation results are given to demonstrate the analytical conclusions of the
paper.

Notation

E - Earth

S - Satellite

m - Subsatellite and its mass

G - Gravitational constant

M, mg - Mass of the Earth, mass of the satellite

(w;,z,yn,, zm) - Barth-based rotating Cartesian coordinates of subsatellite, with zp, in the
local outgoing vertical direction, and z,, in the direction of motion of the satellite

in its orbit (see Figure 1)



(£m,Tm,2m) - Inertial coordinates of subsatellite

(£5,Us, 2s) - Inertial coordinates of the satellite

V_Q - Constant angular velocity of the satellite in circular orbit

8, ¢ - In-plane angle and out-of-plane angle of >-suBsra,tellite relative to local vertical
we 1= é, wg := 6, £ - Tether length, v := ¢ | |

ro, Tm - Radius of the satellite orbit, radius of subsatellite orbit

(-)* - Evaluation at equilil;rium

T¢, T¢ - Lorques in directions 6, ¢

Fy - Force along tether (i.e., the applied tension force)

F .= 75%’3—(#)9 + ZE"—’q{; + Fgé, where a hat indicates a unit vector in the given direction

II. System Dynamic Equations

The coordinate system of a typical tethered satellite system is depicted in Figure 1.
Referring to this coordinate system, we make the following simplifying assumptions: The
satellite and the subsatellite are point masses. Their masses are related as m, > m, and
hence the center of mass of the T'SS may be taken to coincide with the satellite. The
tether is massless and rigid, and the gravitational attraction between the subsatellite and
the satellite is r;eglecfed. Finally, the TSS experiences no aerodynamic drag forces, and

the satellite is in a circular orbit around the Earth.

subsatellite(m)
| z
/ B
¢ — — —

LT

satellite(m;,)
E(earth)

* Figure 1. Coordinate System of the TSS
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It is obvious from Figure 1 that we have following relationships (see the notation list

in Section I).
Ty = .€cosqr53iIA1§9‘
Ym = £sin ¢
2m = 1o+ Lcos pcos b

r2 =1l + 02 + 2rglcos ¢ cosd

m =

The inertial coordinates of the subsatellite and the satellite are given as

Tm cosft 0 sinfd Tm
Um | = 0 1 0 Ym |,
Zm —sinfdt 0 cos§it Zm
T cost 0 sint 0
s | = 0 1 0 0],
Zs —sin)t 0 cosfit 70

where an implicit choice of time reference is understood.

The kinetic energy of the TSS is

1 : ; ; 1 . . .
KE = smu(&, + 5, +2,) + 5m(Ep + i + 51n).

Using Eq. (5), this may be rewritten as

1. . .
KE = —21—mSQ2r(2) + Em{ez + 0287 + £2 cos® $(6 + Q)% + Q%2

+ 2Qrof cos ¢ sin @ — 2Qrolsin ¢ sin B¢ + 20l cos ¢ cos 9(9 +2)}.

The potential energy of the TSS is due to gravity and is given by
GM mg GMm

PE =

ro m

The satellite is in a circular orbit, implying that it is in a zero-g orbit. Hence

GMm,

2
5— = ms{d°ro,
Ty

- (@)

(2)
3)
(4)

(5a)

(55)

(6)

(7)

(8)

(9)



i.e., we can take GM = 927'3.‘
By Wi‘iting the system Lagrangian [ = KE — PE and invoking the-Lagrangian for-

- mulation of the system’s dynamics, the equations of motion of the TSS are obtained as

9 = mé? cos® ${f + 2%(9 + Q) —2tan¢(8 + Q)¢ -

Q?%rgsind rd ‘
+ Lcos ¢ (1- 7“_?,:)} (10)

o = ml{$ + 2%415 + cos ¢ sin ¢(8 + 0)?

927'0 . 7‘3
7 cos §sin ¢(1 — T—O)} : (11)

3
m

F, = m{ﬁ — E(q:’>)2 — £cos? 45(9 + Q)?

-+

02,30 3
+ -Tg— — Q%rg cos ¢ cos (1 — —:31)} (12)

For the case ro > £, we have r,, ~ ro. Moreover, in this case Eq. (4) implies

ro V4
1——773~z3cos¢cosea. (13)

Hence, the approximate equation of motion for the system for the case ro > £ is obtained

as
F = ml{f — 0% — £cos® (8 + Q)% + £9? — 302%L cos® ¢ cos® 6}
+ mB{6Lcos ¢ + 2(6 + Q)(£ cos ¢ — £¢ sin @) + 3£ cos § cos ¢ sin 6}
+ mp{d + 26¢ + £ cos sin #(8 + ) + 3£Q% cos®  cos P sin ¢}.

This agrees with a result of Arnold [2]. Note, however, that we do not require ro > ¢
below.
I11. Stabilization of System During Station-Keeping Mode

To facilitate design of stabilizing control laws for the TSS, we first rewrite the system of
second order equations (10)-(12) in state space form. This is possible under the assumption

cos ¢ # 0 (ie., ¢ # =Z). In addition, we assume that the only external force acting on the
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TSS is the applied tension Fp.- Setﬁng To = T =0in (16)—(12) and denoting T' := F}, the

equations of motion in state space form are found to be_

S o w
2 ? o
Wy = _7”0_;4, - = s1n(2¢)(wg + Q)? — "0 cosBsin é(1 — :TO) (15)
9 = we ' (16)
) 2 ) 02 0
we = ——éi(we + Q) + 2tan ¢(ws + Qwy — grlzl;l (1- ::? (17)
i= (18)
) , Q%r3e
0 = Ewﬁ + £ cos? p(we + 02)? — 7'3
0 rg T
+ Q%rg cos 6 cos (1 — ;'—31:) +— (19)

With the tether length held constant (£ = £*), this system has precisely two equilibrium
points (0,0,0,0,£*,0) and (0,0,7,0,*,0). Moreover, the linearized system of Eqs. (14)-(17)

at such an equilibrium is found to have two pairs of pure imaginary eigenvalues, given by

3
Ao = :hz'Q\/l + = ) (20)

m,0

7.3
— 5, (21)

mO

Az,q = 30 E*(
where rpm 0 = To +£* at § =0and rmo =To —¢* at § = x. The pairs A1 2 and A3 4 of eigen-
values are associated with the out-of-plane and in-plane dynamics, respectively, suggesting
that the TSS may undergo librations with two different frequencies superimposed upon
the orbital motion, near either of the equilibria. In addition [9], the set ¢ = 0,wy = 0is an
invariant manifold for Eqs. (14)-(19), regardless of the tension control force T'. Although
this implies the uncontrollability of the system, a tension control law still can be designed
to guarantee asymptotic stability.

Stabilizability will first be studied at the equilibrium point zo = (0,0,0,0,¢*,0)T. Apply
a linear tension control law T' = —m(U + k16 + kowep + ksl + k4v), where k;,¢ = 1,---,6
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are constant-control gains, :=¢—¢* and

U (37‘%6* + 3rol*? + £*3)Q2?
_ T (7’0 + E*)z

(22)

The characteristic equation of the linearized closed-loop model of system (14)-(19) is found,

after some manipulation, to be

’ (/\2'1"03) ()\4 +k4/\3+b1)\2+b2/\+bg)=0, (23)

where
_ 4rd + 6r20* 4 drol*? 4 £*3 .
a1 = ( o O ) °, ‘ (24)
(27'03*2 + 6*3)92 29[62 2
= ko — —
by = ks Iy 4, (25)
k 3 3 3 23* E*Z QZ 2Qk
bz E— 4( "o + "o +ro ) _ 1 : (26)
(i}
(7- +£*)3 0*
(3r +3r20* + ro2)Q% (373 + 3r3e* + 3rgl*? 4 £3)02
b3 = k 27
3 = (ro + £%)3 (~F3 — (ro + ) )- (27)

By applying the Routh-Hurwitz test to Eq. (23), we obtain the following preliminary
result. ’
Lemma 1. If the tension control force is given as T = m(~U — k10 — kawp — ksl — kqv),
then the linearized closed-loop system of Eqgs. (14)-(19) at the equilibrium point z, has a
pair of pure imaginary eigenvalues and four eigenvalues with negative real parts, provided
that the gains k;,7 = 1,...,4 satisfy the following two conditions:
(i) b1, b2, b3, ks >0
(ii) kabiby — b3 — k3b3 >0
Here, the b;,7 = 1,2,3 are as given in (25)-(27).

Note that, by Eq. (23), the system (14)-(19) has an uncontrollable pair of pure
imaginary eigenvalues +:a,, ﬁnaffected by linear state feedback. It is easily checked that

this holds even with feedback of states ¢ and wg. The stability of the closed-loop system

cannot, therefore, be determined from the linearized model. That is, this is an example of
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a criticaﬂ case in Iklonli-near stability. Stabili’;y results for Hopf bifurcation of one—barameter
families of nonlinear éystems can be employed in studying the stability of critical systems
with a single pair of pure imagiharyéi»gerivalues. For a discussion, see [15]. Two typés
of stabilizing tension control laws are giveniin the next two theorems for the station-
keeping application. Theorern 1 involves the use of linear state feedbacks and Theorem 2
accounts for a ciass of nonlinear feedbacks. Details, proofs and simpler results in the form

of corollaries can be found in [13].

Theorem 1. If a linear state feedback controller T' of the type specified in Lemma 1 is
applied, with
*a3 ¢

a * 1 '
(—§4~ + -—2——~ — -Z(k;; — ag))dl - §k4a1€*d2 < 0,

then the equilibrium point ¢ is rendered asymptotically stable for the system (14)-(19),

where a1 is as given in (24), and where

£*ky

20 (az + 40’%)7 (28)

dy =k +

Z*(az + 4&%)

d2 = 2a1(k2 24 Q) + 4a1§2 (as + 40,1 kg), (29)
v — (3r3 4 3rie* + ref*)Q? (30)
2 (ro +4£*)3 ’
3 2 p* *2 *3 2
a5 = (3rg + 3rsl* + 3rol*? 4 £*°)Q2 , (31)
(ro +£*)3
(8rof* + 14r30*2 4 1675 0*% + 9ro** 4 2£*5)Q)2
ay = — . (32)
2(7‘0 + E*)4

Theorem 2. If the applied tension control force is given as T = m(—=U — k16 — kawg —
ksl — kyv — q1 % — ¢2 Pwe — Q3w(2p) with k;, 2 = 1, ..., 4 satisfying the conditions of Lemma
1, then the system (14)-(19) is rendered asymptotically stable if the condition

£ +q3
2

—q1 +as
(

£* a "
5 )a? - (kg — ag)z‘)dl + —2'1"(—Q2 — £ k‘4)d2 <0

+(

holds. Here, d;, dy and ai,z = 1,...,4 are as defined above.
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* Similar results can also be obtained for stabilizing the system at the equilibrium péint

(0,0, 7,0,€*,0) [16]. The details are omitted. 7
1V. Constant In-Plane Angle Control

In this section, we consider deployment and retrieval of the subsatellite in the tethered
satellite system. Viewing £ as an external control input, the state equations (10)-(12) of

the system are

b=wp (33)

) 20 O?%rosinf rd

Wy = —7(w9 + Q) + 2 tan ¢(wg + Q)wy — m( - a) (34)
¢ =wy (35)
, 20 1 O2ry o

(g = —=rwy = = sin(2¢)(we + Q)° — © cos Gsin (1 — r— (36)

At an equilibrium point (67w} ¢Twy) of (33)-(36), if one exists, we have wj = w} = 0, and
£ is given (from Eq. (34)) by

— TO 3 * — 3
2 cos ¢* sin 67(1 (r¥, (E))3 EXOR (37)
and ¢* must satisfy either
sin¢* =0, or (38a)
0s¢* = —2(1 — — 2 __Ycos6”, (38b)
cos ¢* = —— 08
LA (3))3
where
r¥ (£) := (r% + €% + 2rof cos 6* cos ¢*)1/2. (39)

Remark 1. In fact, only the case sin ¢* = 0 is realistic. To see this, consider momentarily

the possibility (38b), which, using (33), would imply that at equilibrium ¢ obeys

b= %-E tan 8*. (40)
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Sincer—g < ¢* < %, we have cos ¢* > 0 (see Figure 1). Considering the possibilities -
0<¢*< Jand -5 < ¢* <0 sgparately, and referring to Figure 1 for the relative
magnitudes of r},(£) and ro, we find that-the left and right sides of (38b) are then of
opposite sign unless they both vanish. Hencé, we obtain ¢* = 6* = +7, implying ¢ of (40)

would be infinite,.

ja]

In the light of Remark 1, we let ¢* = 0. Eq. (37) now implies that at equilibrium £

satisfies
. Qro r3
b=—-—"—(1- —2 )sinb*
5 ( CXO)E )sin 9%, (41)
where
#5.(8) == (ra + £% + 2oL cos 6*)1/2. (42)

This control law, which is referred to as the constant in-plane angle control method, results
in the existence of an equilibrium point of (33)-(36). Moreover, the associated equilibrium
point of system (33)-(36) will then be (6*, 0,0,0), where 6* is the desired in-plane angle.
V. Stability Analysis of the TSS During Retrieval
Suppose for simplicity that £ < 0 throughout retrieval. From Eq. (41) we have

3
QT’O To

5 1 Grop

£<0 — — )sin 8% < 0.

Denote by £; the initial (pre-retrieval) tether length. Then the condition for £ < 0 is that

* satisfies either 0 < 8* < T or —7 < 8* < 8; (see Figure 2), where 6; = 61(£;) is such

that

4;
cos 6, =50 —r < 6 <~—%. (43)
0
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"

6,

Figure 2. Retrieval Regions for §* with ¢* =0

From the discussion above, we have £ < 0 and £ > 0 during retrieval by constraints.
In addition, £ = 0 occurs only at £ = 0. Hence, £ will approach 0 asymptotically.
Denoting 6 := 9 — 6*, the linearized system state equations at the equilibrium point

(6*,0,0,0) are found to be

6 = we (44)
] ¢ * 3927'8 . 2 kN F Y,
Wy = (2QZ cot 6" + W sin® 6*)8 — 2Zw9 (45)
$ = wy (46)
. ) 2N ;
w¢ = (“—Q + QQZ cot 9 )(;5 — QZW¢ (47)

The linearized model of the system (33)-(36) is therefore seen to decouple into the subsys-
tems (44)-(45) and (46)-(47). It follows from Lemma 2 and Theorem 3 below that these
two decoupled subsystems are unstable for constant angle retrieval for any potential value

of 6* (see Figure 2), and that the original system (33)-(36) is then also unstable.
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Lemma 2. If there is a constant § > 0 such that b(t) > 6 for all t > o, then the origin is

unstable for the system

Ii'z = a(t):nl + b(t)(l:z . (49)
Proof: By the Abel-Jacobi-Liouville theorem (e.g., [10]), we have

det(®(t,t0)) = exp( t b(s)ds),

to

where ®(t,%9) is the state transition matrix of the linear system (48)-(49). From the
hypothesis, it now follows that det ®(t,%9) approaches oo ast — oo. Hence, the origin is

unstable.

o
Theorem 3. If ro > £;, then the origin is unstable for the linearized system (44)-(47)
during constant in-plane angle retrieval, and (6*,0,0,0) is an unstable equilibrium point of
the original nonlinear system (33)-(36).
Proof: First, we show that there is a constant € > 0 such that —Té > eforallt > t;. By

the discussion above, the tether length ¢ approaches 0 asymptotically. In addition, ¢ =0
when £ = 0. Applying L’Hépital’s Rule to (41)-(42), we obtain

6 o0 3 R
}E?)Z_}%EZ——-Q—QCOSG sin8* # 0,

for any admissible 8* (see Figure 2). Moreover, it is obvious that —% > 0, for all t > 1,
during retrieval. Thus, —Té is bounded and € exists.
Next, we check the signs of the coefficients multiplying wg and w4 in Egs. (45) and

(47), respectively. Since 0 < € < —7—} for all ¢ > ¢y, Lemma 2 implies the origin is unstable
for the two subsystems (44)-(45) and (46)-(47). This implies instability of the equilibrium
point (6*,0,0,0) of system (33)-(36) during constant in-plane angle retrieval.
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VI. Stability Analysis of the TSS During Deployment

In this section, we consider application of the constant ih—plan"g: angle strategy of
- Section IV to subsateﬂité deployment. For simplicity, suppose that £ > 0 for all ¢ > to.r 7
Sinceré is always positive in this consideration, one might expect that the tether length
¢ increases without bound. In reality, only a finite final tether 1eng£h is meaningful for
deployment. Stability of the TSS is hence only considered in a finite time interval, where
Liapunov stability criteria cannot be employed. Results from finite-time stability shall be
applied to study the behavior of this system.

Basic definitions and conditions for finite-time stability are given in Section VI.1. Then
these finite-time stability criteria, especially the contractive stability criteria, are used to
study the stability of the TSS during constant in-plane angle deployment. In addition
to the proof of stability of deployment, a switching type control law combining constant
angle deployment and station-keeping control is proposed to achieve asymptotic stability.

Details of this are given in Section VI.2.
VI.1. Results on Finite-Time Stability

Consider a system given by

z = f(t,z), (50)

where f: T'x R® — R" and I := [to,to + T') for some to € R, T > 0. Let z¢ denote the
initial condition of (50) at t9, and let ¢(t;t0, o) be the solution of (50) at time ¢ satisfying
the initial condition. Then we have the following definitions [14].

Definition 1. System (50) is finite-time stable with respect to («, 8,1, 1| - |]), @ < B, if for
every trajectory ¢(t;to,zo) with ||zo}| < «, we have ||¢(t;t0,20)]] < B,V €T

Definition 2. System (50) is uniformly finite-time stable with respect to (o, 8,1, || - |]),
" < B, if for any trajectory #(t;s,z) with ||z|| < a, V s € T', we have ||¢(t;s,2)|| < B,V
tel.

Definition 3. System (50) is quasi-contractively stable with respect to (e, v, T, ||-]]), v < a,
if for any trajectory ¢(t;to, zo) with ||zo|| < @, there exists t1 € T' so that ||¢(¢; 0, zo)|| < 7,
Vtelt,to+T).
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Definition 4. System (50) is contractively stable with respect to (&, 557, T, 1), vy < e <8,
if it is finite-time stable with respect to (o, 3,1, || - ||) and quasi-contractively stable with
respect to (a, 7, T, || - |1)- » -

For given a, 8,T, and || - ||; a necessary and sufficient condition for uniform finite-time
stability can be stated as follows. ‘

Lemma 3 [14]. System (50) is uniformly finite-time stable with respect to (e, B, 1,11 - 1D)s

a < B, if and only if there exists a continuous function V(¢,z) such that

V(t,z) <0, VY z€B(f), teT, (51)
Vlel(tl) < Vn‘g(tz), A 1ty > tl, V § < o, _tl,tg € P, (52)

where
B(B) = {z : ||zl < B}, (53)

|| - || denotes any norm on R™, B() denotes the closure of B(3), and

Vi (t) = ||S1|1|I—) V(t, z), (54)
Ve(t) == ”ai;rlliaV(t,x). (55)

Here, V(t,x) is the time derivative of V(t,z) along trajectories of system (50).

Stability properties of a system may be investigated without reference to the specific
bounds on the states (i.e. , # and ). In the following lemma and theorem, two sufficient
conditions are introduced for this type of stability. These provide a means for finding the
associated bounds a, 3,7. Lemma 4 gives a sufficient condition for uniform finite-time
stability. Theorem 4 then gives a relationship among T, «, 8 and v providing a sufficient
condition for contractive stability.

Lemma 4. System (50) is uniformly finite-time stable with respect to («, 8,1, || - |]) for

any given o and 8 with

%
0<a<py/r <A (56)

2
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if there exist r > 0 and a continuously differentiable function V(¢,z) with

V(t,z) <0, ]
kalla|l? < V(t,2) < kallel?, ' (57)
forall z € B(r), ¢ € T Here, 0 < ky < k3 and the norm used is the Euclidean norm.
Proof. The result follows directly from condition (52) of Lemma, 3.
o

In the next theorem, we introduce a condition on (50) and a relationship among T, , 8
and v guaranteeing finite-time contractive stability.
Theorem 4. System (50) is contractively stable with respect to (a,8,7,T, || - ||) for any
triple «, 8,y with

k k
a\/ﬁ-exp(——iT)§7<a<\/—iﬁ<ﬂ§r (58)
kl k2 kz

if there exist r > 0 and a continuously differentiable function V(¢,z) satisfying the condi-
tions
kullell* S V(¢ 2) < sl (59)
Ballal* < =V (2,2), (60)

for all z € B(r), t € I". Here, k; > 0,¢ =1, 2, 3, ||z|| is the Euclidean norm, and the time

interval length T is such that

k‘z kz
—£ . ln =%,
T> ks n x (61)

Proof: Condition (60) implies that
V(t,2) <0, V z € B(B), t € I.

Hence, it is implied by Lemma 4 that (50) is uniformly finite-time stable with respect
to (a, B, T, || - ||) for any «, B satisfying condition (58). Next, we prove quasi-contractive

stability of the system. From conditions (59) and (60), we have
: ks —
Vit,z) < —E——V(t,m), Vze B(r), t € I.
2
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“Hence, V
- 7 ks ' - 4 —
V(t; ¢(t;to, o)) < V(to,xo)exp(—k—(t—-to)), Vzo€ B(r), t € I.
2
Then it follows from (59) that
2 k2 2 ks BN
[[6(t;t0, zo)||” < -,;;Hﬂfoll exp(~=(t—t0)), Vazo€ B(r), teT.
2

Thus, there exists a t; € I' so that ||¢(¢; 20, z0)|] <,V t € [t1,9 +T) when conditions (58)
and (61) hold. Then according to Definition 3, system (50) is quasi-contractively stable
with respect to («,v,T, || - |]) for any «,~ satisfying (58).

VI1.2. Application to Deployment

In the following discussion, we consider the deployment of the subsatellite of the
tethered satellite system. For simplicity, let £ > 0 throughout deployment. By Eq. (41),

we have
QTO (1 - rf‘,
2 (7 ()

£>0 &= — )3)sin9*>0

From the discussion above and Eq. (42), the condition on 6* for £ > 0 is that either

62(Lf) < 6* < m,or —F < 6* <0 (see Figure 3), where 8,(£) solves

£
cos 8, :——2—:—, 0<b < (62)
0

and £y is the desired post-deployment tether length.
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0,

Figure 3. Deployment Regions for §* with ¢* =0

Two strategies for deployment are considered here. The first consists of the constant
in-plane angle control law for deployment, and the second involves following the constant
in-plane angle control law followed by a stabilizing station-keeping control once the desired

in-plane angle is close enough to 0 radians or 7 radians.
Strategy 1. Constant Angle Control Only

We now consider application of the constant in-plane angle control law discussed above
to subsatellite deployment. In the following, £; denotes the desired final tether length and
¢; denotes the initial tether length supported by a boom.

From (41), we have

{' _ Qrg sin 0* (1- 70 )
L 20 (7%, (£))3
__§sinf* 1o (P (6))° — 1§
2 e (0P + (Fr(0)?]
> —Qsind* cosd* >0 (63)

for any 6* € Sgand 4; < £ < -2131”0, where

Sq:={6*| — 0.68 radians < 6* <0, or 2.5 radians < 6* < 7 radians}.
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7 Hence,- % is bounded below for all £; < £ < £; and 6* € S, and similarly for £. Thus, for
any £5 > £;, £ will increase past {5 at some T' > 0. Theorem 5 below asserts that the system

will be ﬁmte time contractively stable during deployment over the interval [to,to+T'), near.
the equilibrium point (6*,0,0,0) with 6* € S,.

Theorem 5. Suppose & < 1, £y < strg, and I' := [tg,to + T) There is an r > 0 such
that system (33)-(36) is finite-time contractively stable with respect to (a, 3,7,T,]| - ||) at
the equilibrium point (6*,0,0,0) for any «, 8, v and T satisfying (58) and (61), if either
of following two conditions on the desired in-plane angle 6* holds:

(i) —0.68 radians < §* < 0

(ii) 2.5 radians < 6* < 7 radians

Proof: Let m := §sin26*, then it is clear from (63) that

—%ﬁgm<0, V tel,

if either of conditions (i) and (ii) holds and 5579 < £y < £. Invoking the finite-time stability
criteria given in Section VL1, the stablhty of the TSS during constant angle deployment
can be proved as follows.

Using a general construction [18] for a class of systems of the form (48)-(49), we
prove the finte-time contractive stability of (33)-(36) during deployment by employing the

Liapunov-like function

~ 2 () oz 1,
V(t>07w97¢7w¢)-—(€ + m )9 +29w9 mw9

20 my(t). 1,
+(7+ ~ )¢ +,2¢w¢~m.u¢, (64)
where
t 2Q£ t6* + ——— 3Q%rg sin? 6* ' (65)
mt) =20 ot Gy
2 ﬂ *
na(t) := —Q +2Q—écot0 : (66)
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Then corresponding to the original system (33)-(36), we have

V(t?é, wo, $,we) = n3(t)8% + ny(t)d? .-I— 2(1 + —i—i) (wh + wé)
+206 - 2D A 26— Z2) fa(8), ECOR
where
10 =~ 220 4 2tan d(ws + Qg — LreSHEHE) (s g

§4 £cos ¢

(P ()3
f2(8) = —% sin(2¢){we + 9)2 — —QE cos(0* + 9) sin ¢(1 — G (2))3) na(t)é, (69)

and
() = 2m(0) + L2y 4 L. dmlt) (70)
na(®) = 2na) + 2y o L. dnalt) (71)

First, consider the case in which §* satisfies condition (i). After some calculations

using (64)-(66), we find that there exist k1,1, k1,2 > 0 (given in the Appendix) such that

kullz|? < V(t,8,we, ¢,w4) < k1plle])?, VEET, (72)
where = = (8,wy, d,ws)T and the norm indicated is the Euclidean norm. Moreover, by
choosing ky 3 1= 0.132Q2 and

mk; 3||17H mki 3H$||

r=suplllell ¢ 1Al< 5T and 1Rl < 52 (73)

we have

—V(t,0,ws, $,wy) > k1 3llz||%, Vt T, ze€ B(r). (74)

Thus, conditions (59)-(60) are satisfied and the conclusion follows from Theorem 4.

Similarly, for the case in which 6* satisfies condition (ii), we have
kaallzll® < V(t,0,00, d,w4) < kapllel®, VEET, (75)
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where ks 1, k2,2 > 0 are also specified in the Appendix. By choosing k3 3 := 0.0442Q? and

‘mk, 3|l I mks,3|z|
sl Il « Al S GG wd 161 2ER, (9
we guarantee that A
V(t,6,00, $w5) = kaallal®, VEET, =e B). (77)

The conclusion again follows from Theorem 4.

[m]

The finite-time contractive stable regions of the desired in-plane angle 8* for constant
in-plane angle deployment are given in Theorem 5. In addition, a relationship between the
time-interval T', the bound of initial disturbances and the final contracted region is set up
in Theorem 4. Furthermore, the simulation results given in Section VIL.2 shows that the

criteria given in Theorem 5 are not vacuous.
Strategy 2. Station-Keeping Control Included

A tension control law has been designed in Section III to regulate the tether length
at the point where the out-of-plane angle ¢ = 0 and the in-plane angle § = 0 or (§ = ).
Provided by Theorem 5 and the control strategies given in Theorems 1 and 2 (which design
tension control law with linear state feedbacks and nonlinear state feedbacks from the Hopf

bifurcation theorem), a switching control law for deployment can be set up as follows:

Step 1. Apply the constant angle control law (41) for the first step subsatellite
deployment, in which the desired in-plane angle 8* satisfies the

conditions of Theorem 5 and closes to 0 radians (or 7 radians).

Step 2. Apply the tension control law given in Theorem 1 (or Theorem 2)

once the tether length is sufﬁciéntly néar the desired length £5. -

It is supported by Theorem 5 that the initial disturbance states of the TSS cén be
contracted. Especially, with the desired in-plane angle is su{ﬁciently near 0 or 7 radians,
the system states of the TSS are expected to be contracted within the domain of attraction
of the station-keeping control mode, after first step constant angle deployment. Hence, the

tether length should be regulated to the desired length after switching to the stabilization
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control proposed in Section IIT and [13} when the difference of the tether iength with respect
to the desired value is small enough. Thus, the TSS is concluded to be asymptotically stable
for deployment by using this switching control law. Simulation results of a typical system

given in Section VIL.2 illustrate this conclusion.
VII. Simulation Results

Many simulation examples for tethered satellite systems in the station-keeping mode
have been presented in [13] In this section, we present simulation results only for deploy-
ment and retrieval.

A typical TSS with following characteristics is considered :

¢ Orbital radius ro = 6598 km,
e Subsatellite mass m = 170 kg,
e Orbital angular Vel(;city Q = 0.0011781 radian/second.

In the following discussions, § = 6 — 6* denotes the differential of the in-plane angle,
£; denotes the desired final tether length, £ = £ — £; denotes the differential of the tether

length and F}y denotes the applied tension control force.
VIIL.1. Retrieval

As discussed in Section V, the set of candidate in-plane angles for constant angle
retrieval is given by

™

.S‘r::{9|0<9<2

or —mw<0<0:(4)},

where 6,(¢;) is defined in (43). Let the initial disturbances of the system be ¢ = 0.01
radians, § = —0.01 radians, and wy = wg = 0. The initial tether length ¢; is assumed to
be 10 km. It is observed from Figures 4 and 5 that the equilibrium point (6*,0,0,0) is
unstable during retrieval with the desired in-plane angle 8* = —3.0 radians and 6* = —-1.6
radians, respectively. As mentioned in [13], in reality, since the tether is not feally rigid,
the applied tension control force can not be positive to rule out compression. However,
Figure 5 (d) shows that a positive tension control force F occurs in some time interval.
Thus, if a constant angle control law is applied during retrieval, then not only will the

system be unstable, but also tether compression may occur.
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It is also found that whenever the desired in-plane angle §* € $; := {—2.1 radians

< 6" < 6,(4;)} for constant angle retrieval, the applied tension control force Fy can have

. positive value in some time-interval, i.e.,-compression may occur. The system response of

§* = —2.1 radians for constant retrieval is depicted in Figure 6, where Fy is found (see
Figure 6 (d)) to be very close to 0 at some time instant but never greater than 0.

r

5 for constant angle

Similar simulation results are found for the region 0 < 6* <
retrieval. The equilibrium point (6*,0,0,0) is found unstable during retrieval and the
compression of the tether may occur in case 1.0 < 8* < 7. The system responses are not

shown.
VII.2. Deployment

According to Theorem 5, the set of candidate 6* for stable deployment is
Sq={0] — 0.68 radians <8 <0, or 2.5radians < 6 < 7 radians}.

Let the initial disturbances of the system be ¢ = 0.01 radians, § = —0.01 radians, and
wg = wg = 0. The initial tether length is assumed to be £; = 10 m, which is provided by
a boom. First, the system response during deployment (applying constant in-plane angle
control only) are depicted in Figures 7 and 8, with 6* = —0.68 radians, and 6* = 2.5
radians, respectively. It is observed from the system responses that, for example, the
differential of the in-plane angle 8 and the out-of-plane angle 4, decay during deployment.

The switching control strategy, which involves both constant angle control and station-
keeping control, is applied to deploy a subsatellite from the satellite with the desired final
tether length £; = 10 km. The first example considers to deploy the subsatellite upward
(i.e., away from the Earth) by applying constant angle control with §* = —0.015 for first
260,500 seconds, and applying the station-keeping control thereafter. The applied tension

control force for station-keeping is governed by

Fy = —m(U + hql + hyf), (78)

where U = 0.041019, h; = 3.1Q% and he = 0.0034. The responses of the system during

constant angle deployment are shown in Figure 9. At time ¢ = 260,500 seconds, we have

e the out-of-plane angle ¢ = —7.01636 x 10~°¢ radians and
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¢ = 1.70633 x 108 radian/second , ‘ 7
e the in-plane angle 9 = —0.0150051 radians and 6 = 5.61812 x 10~1° radian/second
o the actual tether length £ = 9.97617 km and £ = 2.63603 x 10~ km/second.

With these values, the applied tension control law is switched to the sta,tion—keeping
control and governed by Eq. (78) The system responses governed by (78) are depicted in
Figure 10.

Another example for deploying subsatellite downward (i.e., toward the Earth) is im-
plemented by applying constant angle control for the first 235,300 seconds with 8* = 3.125
radians, then switched to the station-keeping control governed by Eq. (78). At time
t = 235,300 seconds, we have

e the out-of-plane angle ¢ = —2.01378 x 10~¢ radians and

¢ = —2.35517 x 1078 radian/second
o the in-plane angle 6 = 3.1250 radians and § = 8.96566 x 10~ radian/second
e the actual tether length £ = 9.88531 km and £ = 2.90670 x 104 km /second.

The system responses are shown in Figures 11 and 12.
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Appendix:

The values of ki,J'-, ¢t =1,2 and y = 1,2 are as given below.

0.295575407 csc? 26*
k1,2 ’

)

1 L+l +/(i+13)?+4
1,2 — 9 ’

ki =

)

0.498328311 csc? 26*
kg = . ,
2,2
L+l ++/(la+16)2 +4
k2,2 = 2 9

where

I = — 30 cos 8* sin 8* — 0.5 sin 6%,
%(3cos? * + 0.5cos6*) + 1

f2 = Q sin 26* ’
o = Q%(3cos? * +0.5cos6*) — 1
T (sin 26~ ’

Iy = —3.68961 cos 0™ sin 6",

3.689606102 cos? * + 1
Q sin 20* ’

3.68960612 cos? §* — 1
) sin 26* )

Is =

s =
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Figure 4. Simulation Results for Constant Angle Retrieval

with 8* = —3.0 radians
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