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Abstract

Distributed databases operating over wide-area networks such as the Internet, must deal with the un-
predictable nature of the performance of communication. The response times of accessing remote sources
can vary widely due to network congestion, link failure, and other problems. In such an unpredictable
environment, the traditional iterator-based query execution model performs poorly. We have developed
a class of methods, called query scrambling, for dealing explicitly with the problem of unpredictable
response times. Query scrambling dynamically modifies query execution plans on-the-fly in reaction to
unexpected delays in data access. In this paper we focus on the dynamic scheduling of query operators
in the context of query scrambling. We explore various choices for dynamic scheduling and examine,
through a detailed simulation, the effects of these choices. Our experimental environment considers
pipelined and non-pipelined join processing in a client with multiple remote data sources and delayed or
possibly bursty arrivals of data. Our performance results show that scrambling rescheduling is effective
in hiding the impact of delays on query response time for a number of different delay scenarios.

Keywords: distributed query processing, mediators, iterator execution model, performance analysis,
query scrambling, dynamic query optimization

1 Introduction

The continued dramatic growth in global interconnectivity via the Internet has made around-the-clock, on-
demand access to widely-distributed data a common expectation for many computer users. At present,
such access is typically obtained through non-database facilities such as the World-Wide-Web. Advances
in distributed heterogeneous databases (e.g., [Kim95, SADT95 BE96, TRV96]) and other non-traditional
approaches (e.g., WebSQL [MMMO96]), however, aim to make the Internet a viable and important platform
for distributed database technology.

The Internet environment presents many interesting problems for database systems. In addition to the
issues of data models, resource discovery, and heterogeneity addressed by the work in the areas cited above,
a major challenge that must be addressed for wide-area distributed information systems is that of response-
time unpredictability. Data access over wide-area networks involves a large number of remote data sources,
intermediate sites, and communications links, all of which are vulnerable to congestion and failures. Such
problems can introduce significant and unpredictable delays in the access of information from remote sources.

Current distributed query processing technology performs poorly in the wide-area environment because

unexpected delays encountered during a query execution directly increase the query response time. Query
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execution plans are typically generated statically, based on a set of assumptions about the costs of performing
various operations and the costs of obtaining data. The execution of a statically optimized query plan is
likely to be sub-optimal in the presence of unexpected response time problems that arise during the query
run-time. In the worst case, a query execution may be blocked for an arbitrarily long time if needed data fail
to arrive from remote data sources. The apparent randomness of such delays in the wide-area environment
makes planning for them during query optimization nearly impossible.

To address the issue of unpredictable delays in the wide-area environment, we have developed a dynamic
approach to query execution, called query scrambling. Query scrambling reacts to unexpected delays by on-
the-fly rescheduling the operations of a query during its execution. Query scrambling attempts to hide delays
encountered when obtaining data from remote sources by performing other useful work, such as transferring
other needed data or performing query operations, such as joins, that would normally be scheduled for a
later point in the execution. Query scrambling can be effective at hiding significant amounts of delay; in the
best case, it can hide all of the delay experienced during a query execution. That is, a query can execute in

the presence of certain delays with little or no response time penalty observable to the user.

1.1 Coping With Bursty Arrival

In a previous paper [AFTU96], we identified three types of delay that can arise when requesting data from

remote sources:

Initial Delay There is an unexpected delay in the arrival of the first tuple from a particular remote source.
This type of delay typically appears when there is difficulty connecting to a remote source, due to a

failure or congestion at that source or along the path between the source and the destination.

Slow Delivery Data is arriving at a regular rate, but this rate is much slower than the expected rate. This
problem can result, for example, from network congestion, resource contention at the remote source,

or because a different (slower) communication path is being used (e.g., due to a network link failure).

Bursty Arrival Data is arriving at an unpredictable rate, typically with bursts of data followed by long
periods of no arrivals. This problem can arise from fluctuating resource demands and the lack of a

global scheduling mechanism in the wide-area environment.

The algorithm presented in [AFTU96] focused on the problem of Initial Delay. As such, it was assumed
that once data started to arrive from a remote source, the remaining data from that source would arrive
in an uninterrupted fashion. This assumption facilitated the development and study of an initial approach
but limited the applicability of the resulting algorithm, as wide-area data access seldom fails in such a well-
behaved manner. In this article, we extend the scope of query scrambling by investigating approaches to
dynamically rescheduling query operations in the presence of the additional problem of bursty arrivals.

Bursty arrivals are more difficult to manage than initial delays for several reasons. First, the run-time

system must constantly monitor the arrival of data from remote sources and must be able to react to delays



that arise at any time. Such continuous monitoring of remote sources is not necessary in the initial delay
environment. Second, due to the unpredictable nature of bursty arrivals, care must be taken to avoid
initiating overly-expensive scrambling actions for short, transient delays, while remaining reactive enough
to initiate scrambling without undue hesitation in situations where there is significant delay. Given the
difficulty of predicting the future short-term behavior of remote access, scrambling for a bursty environment

must be implemented such that it can be initiated, halted, and restarted in a lightweight manner.

1.2 A Reactive Approach

Query scrambling shares some common goals with other approaches to dynamic query processing. In general,
methods that attack poor run-time performance for queries fall into two broad categories: proactive and
reactive. Proactive methods (e.g., [ACPS96, CG94, SALT96]) attempt at compile-time to predict the
behavior of query execution and plan ahead for possible contingencies. These approaches use a form of late
binding in order to postpone making certain execution choices until the state of the system can be assessed
at run-time. Typically the binding is done immediately prior to executing the compiled plan, and remains
fixed for the entire execution.

Reactive methods (e.g., [TTCT90, Ant93, ONK'96]) monitor the behavior of the run-time system during
query execution. When a significant event is detected, the run-time system reacts to the event. Query
scrambling is a reactive approach — the query execution is changed on-the-fly in response to run-time
events. While other reactive approaches have been aimed towards adjusting to errors in query optimizer
estimates (e.g., selectivities, cardinalities, etc.), query scrambling is focused on adjusting to the problems that
arise due to the time-varying performance of loosely-coupled data sources in a wide-area network. Related
work 1s discussed in more detail in Section 7.

One basic technique used by query scrambling is to change the scheduling of operators in a query plan
if a delay is detected while accessing data from a remote site. Such rescheduling permits delays from
different remote sources to overlap with each other and to overlap with useful work performed by the
query processor. In order to implement this rescheduling, the run-time system must sometimes introduce
additional materializations of intermediate results and base data into the query execution plan. For this
and other reasons, query scrambling may increase the total cost of query execution in terms of network

contention, memory usage, and/or disk 1/0.

1.3 Overview of the Article

Because operator rescheduling introduces both benefits and costs, it must be regulated in an effective way.
Thus, the key questions for implementing scrambling rescheduling are: 1) when should scrambling start; 2)
what should be rescheduled; and 3) when should scrambling stop. We examine several sets of policies to
control scrambling rescheduling, and we describe the architecture of a run-time scheduler that is capable of
implementing these policies. We then use a detailed simulation of a run-time system based on the iterator

query processing model [Gra93] in order to examine the tradeoffs of the various scrambling policies for both



pipelined and non-pipelined execution.

In this article, we focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],
where data 1s ultimately collected from remote sources and integrated at the query source. This approach
models remote data access and is also typical of mediated database systems that integrate data from dis-
tributed, heterogeneous sources, (e.g., [TRV96]). In this work, the remote sources are treated as black boxes,
regardless of whether they provide raw data or the answers to subqueries. Only the query processing that is
performed at the query source is subject to scrambling. Our results show that scrambling, if done correctly,
can produce dramatic response time savings under a wide range of delay scenarios. It can in some cases,
reduce the slowdown observed due to random delays by a factor proportional to the number of bursty remote
sources. It can also, in some cases completely hide the delay from the user.

In summary, unpredictable behavior of remote sources during query execution is a problem that database
technology must address if it will ever be successful on the Internet. We have investigated initial results for
a new class of methods, query scrambling, that attempts to address this problem. This article describes the

following contributions:
1. An examination of the weaknesses of the iterator model in this environment,
2. An architecture, which extends the iterator model, of a scrambling rescheduling run-time system,
3. Several policies for controlling the key implementation aspects of scrambling rescheduling,
4. Extensive simulation results that document the various performance trade-offs of the policies, and

5. Evidence that scrambling rescheduling is effective for a broad class of workloads in a bursty data arrival

environment.

The article is organized as follows. Section 2 describes the basic trade-offs for query scrambling to
cope with bursty arrivals. Section 3 provides a detailed model and architecture of a run-time scheduler for
implementing scrambling rescheduling. Section 4 describes the policies which control rescheduling. Section b
describes the experimental framework and Section 6 describes the experimental results for the non-pipelined

and pipelined cases. Section 7 describes related work. Section 8 concludes the article.

2 Query Scrambling Overview

In this section we first discuss the behavior of a traditional iterator based run-time system and its behavior
in the bursty environment. We then describe how scrambling can be applied to such a run-time system in
order cope with unexpected delays. Finally, we discuss the basic tradeoffs and design decisions that arise in

the development of a scrambling algorithm.

2.1 Query Scrambling for Iterator-Based Execution Engines

Rather than relying on the operating system, most database systems provide their own execution engine,

which performs scheduling and memory management for the operators of compiled query plans. The iterator



model is one way to structure such an execution engine [Gra93]. In this model, each node of the query tree is
an iterator. Iterators support three different calls: open() to prepare an operator for producing data; nezt()
to produce a single tuple, and close() to perform final housekeeping. To start the execution of a query, the
DBMS initiates an open() call on the root operator of the query tree, and this call iteratively propagates
down the query tree.

A key attribute of the iterator approach is that the scheduling of the query operators is, in some sense,
compiled into the query tree itself. The scheduling of the operators in the tree is determined by the way
in which operators make open(),next(), and close() calls on their children operators. The data flow among
nodes in this model is demand-driven. A child node passes a tuple to its parent node in response to a
next() call from the parent. As such, iterator-based plans allow for a natural form of pipelining. Each time
an operator needs data, it calls its child operator(s) and waits until the requested data is delivered. The
producer-consumer relationship allows the operators to work as co-routines, and avoids the need for storage
of intermediate results, as long as the child operator produces tuples at about the same rate or slower than
they can be consumed by its parent operator. This scheduling dependency can be avoided, however, if the
child operator first materializes its result (e.g., as part of open() processing) either in memory or to disk.
After materialization, the child can then provide tuples to the parent operator in the typical one-at-a-time
fashion in response to nezt() requests. A completely non-pipelined schedule can be constructed by introducing
materialization between each pair of operators in the tree.

This simple, static scheduling approach works well when the response times of operators and data sources
can be predicted with some accuracy. When processing queries with data from remote sources, however,
unpredictable delays in obtaining that data can arise. The effect of such unexpected delays on a precompiled
schedule can be severe. When a remote source blocks, all of its ancestors in the query tree will also block. In
addition to delaying the initiation of operators that are scheduled to execute later in the plan, such blocking
can also block other operators that are already executing. For example, if a binary operator (e.g., a join)
becomes blocked because one of its children blocks, then it will stop requesting tuples from its other child,
thereby inducing blocking on the subtree rooted at that child as well. This blocking can propagate down the
subtree to the leaves of the tree, unless a materialization (which breaks the producer-consumer dependency)
is encountered.! With a static schedule, progress on the query can, in some cases, grind to a halt even if
only a single data source becomes delayed.

In this article, query scrambling applies dynamic scheduling to query execution in order to avoid the
problems caused by unexpected delays. It depends on two basic techniques: rescheduling and materialization.
Simply stated, when a delay in obtaining data from a remote source is detected, scrambling changes the
scheduling of operators in the query tree in order to allow other portions of the plan to execute. To perform
this rescheduling, scrambling introduces any materializations that are required to allow the re-scheduled

operators to run. Materializations can be added to the plan by placing a materialization operator between

INote that this blocking phenomenon arises even if operators are ones that support intra-operator parallelism such the
exchange operator of Volcano [CG94].



the re-scheduled operator and its parent.? A materialization operator is a unary operator, which when
opened, obtains the entire input from its child and places it in storage (typically disk, unless there is
sufficient memory). The materialization operator provides tuples in response to next() requests from its
parent operator when the parent is eventually able to execute.

As stated in the introduction, there are three key policy questions for the implementation of a scrambling
run-time system: (1) when to start scrambling, (2) what to scramble, and (3) when to stop scrambling. In

the following three sections we describe the options and the basic tradeoffs that arise for each of these.

2.2 Initiating Scrambling

A fundamental principle of our approach to Query Scrambling is that the normal scheduling of a query execu-
tion should proceed unperturbed in the absence of unexpected delays. The assumption is that the execution
plan generated by the optimizer is in fact, an efficient plan, and that re-scheduling and materialization can
result in additional memory, disk /O, and other costs. Thus, the original plan should be tampered with
only if an unexpected problem arises during the execution.

In order to determine when a delay has occurred, the system associates a timer with each operator that
directly accesses data from a remote site. This timer is started when the operator begins waiting for a chunk
(i.e., a page or packet) of data to arrive from the remote site, and is reset when the data arrives. If the
timer goes off before the data arrives, then the scrambling mechanism is informed that a significant delay
has occurred.

Given such a timer mechanism, the main policy question is to determine at which point there are sufficient
problems to warrant the initiation of re-scheduling. There is a knob that can be used to fine-tune such a
policy. The timeout-value is the value with which the timer is initialized when an operator enters a waiting
state. The length of this value determines how long the operator waits before a timeout alarm is raised.

The timeout-value limits the degree of response time variance that will be tolerated for any remote source.
This knob allows the sensitivity of the scrambling policy to be adjusted across a range from aggressive (i.e.,
low settings for the knob) to tolerant (i.e., high setting). The tradeoffs between these two extremes are
fairly straightforward: A tolerant policy runs the risk of allowing too much delay to accumulate before
reacting, while an aggressive policy can potentially waste resources in an effort to solve non-existent (or
minor) problems. The decisions covered in the next two sections, however, can help limit the extent of the

damage caused by an overly aggressive approach.

2.3 What to Scramble

Once scrambling has been initiated, the next decision to be made is the extent of the scrambling action to be
performed. As stated previously, scrambling involves the rescheduling of operations in the execution plan.
There are two types of policy decisions that must be made with respect to the extent of scrambling: i) where

in the tree to initiate scrambling; and ii) how many scrambling operations should be initiated.

2This notion of a materialization operator is not related to the operator for path expressions described in [BMG93].



For the first question, we consider two options: i) early initiation of a non-leaf operator in the plan; and
ii) early retrieval of data from a remote source. The first case, initiating a non-leaf operator, requires the
scrambling system to artificially call open() on that operator. The open() has the usual effect of initiating
the sub-tree of the query rooted at that operator. It is relatively simple to execute a non-pipelined operator
out-of-turn (i.e., before its parent operator) because such an operator simply writes its result to a temporary
file (or to an allocated area in memory). On the other hand, rescheduling pipelined operators is more difficult;
it requires the introduction of a materialization operator as a surrogate parent, in order to temporarily store
the result of the operator. A surrogate parent is also needed in the case of early retrieval of data from a
remote source. In that case, a materialization operator is inserted in the tree to pull tuples from the remote
source and store them locally at the query execution site.

The tradeoffs between these two choices are as follows: Starting a non-leaf operator allows the entire
subtree rooted at that operator to be initiated at the cost of at most, a single additional materialization.
The downside of this approach is that sufficient memory must be allocated to allow the subtree to execute.
In contrast, early retrieval from a remote source requires very little memory (e.g., one or two pages, for
staging tuples to disk), however, an additional materialization is required for every remote source opened in
this way.

The second decision that must be made is how many scrambling operations should be initiated. The
fundamental tradeoff here is as follows. The more operations that are initiated, the more remote sources can
be accessed in parallel, and hence, the greater the potential for overlapping the delays that might arise from
those remote sources.> There are, however, significant dangers in starting too many operators. First, if care
is not taken, the data arriving from multiple sources can cause contention in the network or at the query
execution site. On the network, contention can result in the invocation of congestion avoidance mechanisms,
which can force sources to send data at a low rate. At the query execution site, thrashing can arise if the
speed of materializations to disk cannot keep up with the rate at which the remote sources are delivering
data. These problems can be mitigated, to some extent, if the query execution site controls the arrival of
data from remote sources. Such control can be achieved using a page-at-a-time protocol (as opposed to a
streaming protocol) between the query execution site and the remote sources.

Another problem that can arise from initiating too many scrambling operations is the randomization
of disk access. When multiple relations are placed on the disk of the query execution site, access to those
relations may interfere with other disk 1/O performed by the query. For example, in the case of a non-
pipelined join, accessing the input relations from disk may interfere with the writing of the join result to
disk, thereby turning both processes into random rather than sequential 1/O. Such interference can slow
disk access substantially. Note that this latter problem can arise regardless of whether a streaming or

page-at-a-time protocol 1s used to obtain data from remote sources.

3In general, if n remote sources are subject to significant, independent delays, then by accessing those sources in parallel,
scrambling has the potential to improve performance (over not scrambling) by as much as n times.



2.4 Stopping Scrambling

The third key decision for scrambling is that of when to stop scrambled operations once they have been
initiated. There are two basic choices here. One option is to simply suspend all scrambled operations when
the remote source that triggered scrambling resumes sending data. The other option is to ignore the status
of the blocked remote source, and continue scrambling. Perhaps the most intuitive approach is to suspend
scrambling and resume normal processing as soon as a blocked operator becomes unblocked. Since scrambling
is a reaction to an unanticipated event, it makes sense to resume the original plan as soon as possible. In
addition, scrambling has the potential to add costs to the execution of the query, so returning to the original
schedule can help avoid such costs.

In cases where a remote source temporarily experiences delays but then performs smoothly, the approach
of returning to the original plan is likely to work well. In other cases, however, going back too soon can
carry its own costs. Recall that some scrambled operators (e.g., those higher in the query tree) may consume
considerable amounts of memory. If the suspension of scrambling causes the scrambled operators to be
swapped out then it is possible to encounter a thrashing condition if the remote source repeatedly delays and
resumes. On the other hand, not swapping the scrambled operators out could result in a significant waste
of memory and could hurt performance. Thus, for very unreliable remote sources, i1t could be beneficial to
continue scrambling, even if the remote source resumes. A useful option in this case might be to materialize
the delayed source in the background while continuing to complete the scrambling operations. Materializing
an operator that was started normally, however, would require additional mechanism beyond what has been

described above.

2.5 Discussion

The above sections described the main decisions that must be addressed when designing a query scrambling
policy for the bursty environment. These decisions and their possible settings are summarized in Table 1.
The settings allow the scrambling policy to be adjusted between tolerant and aggressive approaches towards
dealing with delays. In general, tolerant policies favor sticking to the original query plan wherever possible,
while aggressive policies are more willing to commit resources in order to hide potential delay. As stated
above, it is possible to implement scrambling in a way that can reduce the potential for problems. For
example, using a page-at-a-time protocol rather than a streaming one for obtaining data from remote sources
can reduce the potential for network and local disk congestion.

In this article, query execution tree shape is fixed during execution, i.e. join ordering is not changed, and
the physical network topology is also fixed. Both of these assumptions impact the performance of scrambling.

Consider the impact of tree shape on scrambling. If the first (left-most) remote source, say A, in the
query execution order, has a long delay, then scrambling will perform very well. The rest of the query will
execute during the time that A is delayed, effectively overlapping the delay of A with all other delays and
work. However, suppose the last remote source, say Z, is delayed. Scrambling will be ineffective, since there

is no work after Z and thus no work to scramble. In general, delays which appear early in query execution



Decision Values
(tolerant) | (aggressive)
Start {imer-value high low
Which Operators remote source non-leaf
How Many Operators few many
Stop suspend tgnore

Table 1: Summary of Scrambling Options

order have much more impact than delays which appear late.”

Consider the impact of physical network topology. If a network delay affects only a single remote source,
scrambling will perform as if the delay was due to the remote source itself. However, if a network delay
affects all remote sources equally (e.g. a delay in the network link between the client and the local Internet
router of the client), scrambling will be ineffective, because all remote sources are equally delayed and thus

no work can be overlapped.

3 Architecture

In this section we describe the architecture of a scrambling run-time system. We first extend the iterator

model with a scheduler. We then describe how materialization operators are inserted into the query tree.

3.1 The Query Scrambling Engine

We extend an iterator run-time system such that each operator has an independent internal process state. A
scheduler dictates the state of each operator. Operators can be suspended, resumed, or terminated just like
operating system threads. An operator can be in five possible states. Among these five states, six transitions

are possible. Operator states and transitions are showed in Figure 1.

2|timed-out

Figure 1: State Diagram for Query Operators

These states are:

e Not Started. State of an operator before being opened.

4Thus, a query optimizer for a run-time system that supports scrambling may favor query execution plans where historically
unreliable remote sources appear early in the plan.



e Active. State of the operators that can be scheduled for execution. The actual order in which Active
operators are scheduled is identical to the one that would normally be produced by the iterator model

under traditional scheduling.
e Suspended. State of an operator explicitly suspended by the query scrambling scheduler.
e Stalled. State of an operator stalled due to the unavailability of the requested data.
e Closed. State of an operator once it has produced all its possible results.

The query scrambling scheduler moves one or more operators from one state to another via a transition

in response to an external event. Three possible external events are defined:

e Time-Out. When the timer embedded in an operator goes-off, the operator informs the scheduler of

the time-out. In turn, the scheduler then knows this operator can not be run.

e Resume. When pending data eventually arrive at the query execution site the scheduler determines
the operator for which the data is intended. The scheduler then knows this operator can potentially

be run again.

e End of Stream. An operator that produced all its possible results tells the scheduler it has reached the

end of stream. Such an operator goes out of the scope of scrambling.

The reactions of the query scrambling scheduler to the occurrence of these events can be easily expressed
in terms of transitions between states for the operators concerned by the events. The transitions between

the states are:

—_

. opened. Every time an operator opens, the scheduler moves this operator from Not Started to Active.

2. timed-out. The scheduler moves an operator from Active to Stalled when the operator times-out
(first external event). The scheduler also forces the ancestors of the stalled operator to go through this

transition as well, indicating that a whole branch of the query tree is blocked and can not run.

3. resumed. When the pending data eventually arrives (second external event) the scheduler moves the
corresponding operator, as well as its ancestors, from Stalled to Suspended indicating that they can

potentially be run again.

4. reactivated. The scheduler moves an operator from Suspended to Active when it decides to reactivate
it. Every time an operator is moved through the transitions timed-out or resumed, the query scrambling
scheduler checks to see if one (or more) suspended operations need to be re-activated. For example, if
no operators are Active because they are all timed-out, then the scheduler will try to reactivate the

scrambling of Suspended operators.
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5. suspended. The scheduler moves Active operators to the Suspended state when it decides to tem-
porarily suspend their execution. This happens, for example, when the regulation mechanism of query
scrambling decides to halt all materializations because the problem that triggered scrambling is re-
solved. Later, suspended materializations can be reactivated, for example in response to the time-out

of one active operator.

6. closed. When an operator completes (end of stream, third external event), it closes and the scheduler

moves it to the Closed state.

3.2 Modifying the Query Tree

After it has chosen an operator to reschedule, the query scrambling scheduler analyses the query tree to
determine if it has to introduce a materialization operator as a surrogate parent to allow this operator to
run. If not, then the scheduler simply starts a thread that opens the operator. In contrast, if a surrogate
parent is required, then the scheduler creates a new materialization operator and inserts it between the
rescheduled operator and its parent. Patching a query tree 1s fairly simple with iterators, since they interact
through well defined, implementation independent, interfaces. As such, neither the parent nor the child
operator needs to be aware of the patch.

Once the surrogate parent is placed in the tree, the scheduler opens it. After calling open() on its child,
the materialization operator continuously calls next() and materializes the received tuples to disk. The child
operator 1s closed when it produces its last tuple. At this point the materialization is complete.

Eventually, the original parent of the rescheduled operator will be scheduled to execute. Due to the
patching of the query tree, when it calls open() on its child, it actually re-opens the materialization operator.
In response to next() calls, the materialization operator returns the tuples that it previously materialized.
If the materialization was complete then its child operator need never be called. On the other hand, if the
materialization was incomplete, then once its supply of materialized tuples is exhausted, it simply passes

any subsequent nezt() calls to its child, and passes each tuple obtained in this manner back to its parent.

4 Policies

We now present the scheduling and rescheduling policies that we study in the subsequent sections. Two of
these policies are static while the two others are reactive. The static policies do not change the scheduling
of operators even when delays are encountered (in fact, they are not aware that a delay has occurred). In
contrast, the reactive policies change the original schedule once a delay is experienced. The two reactive
policies differ by the operators that they are allowed to reschedule. Because of the memory problems that
can arise when rescheduling subtrees, we focus on policies that have very manageable memory requirements.
In particular, one policy only materializes relations obtained directly from remote sources and the other

policy is able to in addition, reschedule a single join operator at a time. The four policies are:
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Normal Iterator Execution (ITR). The first policy, which we use as a baseline, is a static, iterator-
based execution as described in Section 2.1.

Materialize Always (MA). MA is also a static policy, but differs from ITR in that it it immediately
initiates the materialization of all data sources at query startup time. When the query starts its execution,
this policy inserts in the query tree materialization operators for all relations that are to be obtained from
the remote sources. Once those operators have been inserted in the tree, the policy spawns threads to open
them. Materializations continuously pull-over remote data and write this data on the local disk. In parallel
to those materializations, the query continues its execution. When an operator (a join for example) needs
data from a relation that is currently materialized, this join stops this particular materialization (others
remain active), consumes the local data and requests the rest of this relation (if any) from the remote server.
Of course, since MA is a static policy, it made aware of any delays that may be encountered during a query
execution, but rather, the effected operators simply block. MA is used to show the impact of parallel fetching
from remote sources in the absence of a reactive policy.

Reactive Materialize ( RM ). The simplest of the two reactive policies we study is RM . In the absence of
delay, RM behaves identically to the static /TR policy. As soon as the query experiences a delay, it switches
to a mode similar to MA, that is, all data sources are opened and their data materialized in parallel. Any
delay experienced by on-going materializations do not trigger any special action. When the data source that
caused this opening resumes, on-going materializations are suspended and the query returns to standard
execution. If another delay i1s experienced, the suspended materializations are resumed, and they continue
to bring data in parallel. The choice of suspending rescheduled operators was made because materializations
consume little memory.

Reactive Materialize and Join (RMJ). This policy has the same basic behavior as RM, except that
it also is able to reschedule the execution of single join at a time. As a result, this policy assumes that there
is enough memory available to support the execution of this join. Because there is only enough memory for
a single rescheduled join to execute, such a join is not initiated until both of its input relations have been
fully materialized to the local disk; in this way it is known that the rescheduled join will not be blocked
by any delayed data. Joins are elected for execution on a first-come first-served basis. Materialization of
joins can run concurrently with on-going materializations of base relations. As in the previous policy, all
on-going materializations (i.e., of base relations and/or joins) are suspended if delayed data begins to arrive.
We chose to study RMJ because it allows for potentially more work to be done by scrambling rescheduling,

but it also has very manageable memory requirements.

5 Experimental Framework

In this section we first describe the simulation environment used to evaluate several different policies for

scrambling queries. We then present the workload used to perform these experiments.
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Parameter Value Description

NumSites 9 | number of sites

Mips 30 | CPU speed (10° instr/sec)
NumDisks 1 | number of disks per site
DskPageSize 4096 | size of a disk page (bytes)
RequestSize 40 | size of a data request (bytes)
TransferSize 8192 | size of a data transfer (bytes)
Compare 4 | instr. to apply a predicate

HashlInst 25 | instr. to hash a tuple

Mowe 2 | instr. to copy 4 bytes

Memory 2048 | memory size (in disk pages)

NetBw 0.1, 5, 20 | network bandwidth (Mbits/sec)
Msglnst 20000 | instructions to send or receive a message
PerSizeMT 3 | instructions per byte sent

DiskInst 5000 | instructions to read a page from disk

Table 2: Simulation Parameters and Main Settings

5.1 Simulation Environment

To study the performance of scrambling rescheduling, we implemented the scrambling architecture of Sec-
tion 3 and the policies described in Section 4 on top an existing simulator that models a heterogeneous,
peer-to-peer database system such as SHORE [CDF194]. The simulator we used provides a detailed model
of query processing costs in such a system. Here, we briefly describe the simulator, focusing on the as-
pects that are pertinent to our experiments. More detailed descriptions of the simulator can be found
in [FJK96, DFJ*96].

Table 2 shows the main parameters for configuring the simulator, and the settings used for this study.
Every site has a CPU whose speed is specified by the Mips parameter, NumDisks disks, and a main-memory
buffer pool of size Memory. For the current study, the simulator was configured to model a client-server
system consisting of a single client and eight servers. Each site, except the query execution site, stores one
base relation. In all the experiments described in this paper, the servers were not performing any other work
then servicing pages upon request, that is, the load on servers is minimum.

The CPU at each site is modeled as a FIFO queue and the simulator charges for all the functions
performed by query operators like hashing, comparing, and moving tuples in memory, as well as for system
costs such as disk I/O processing and network protocol overhead as described below.

Disks are modeled using a detailed characterization and settings adapted from the ZetaSim model [Bro92].
The disk model includes costs for random and sequential physical accesses and also charges for software
operations implementing I/Os. The unit of disk I/O for the database is pages of size DskPageSize. The disks
prefetch pages when reads are performed. In the current version of the simulator, 4 pages are obtained for
each read access request made to the disk. In addition to the disk costs,; there is always a charge of Diskinst
instructions for each disk access. In our experiments, disks were seen to deliver data at an average rate of
approximately 10 Mbits/sec with sequential 1/Os, and a rate of approximately 3 Mbits/sec with random
I/0s.

In this study, the disk at the query execution site (i.e., client) is used only to temporarily store interme-
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diate results and base relations that are materialized during a query execution. The actual base relations
are stored on disk at the servers (one relation per server, in this case). Although servers are configured with
memory, the workload used in the experiments here is performed such that the server memory is not useful
(i.e., there is no caching across queries and relations are accessed once per query) . Thus, in the experiments
that follow, base relations are always read (sequentially) from the servers’ disks for each query execution.

The network is modeled simply as a FIFO queue with a bandwidth dictated by the NeiBw parameter;
All processing sites share this single communication link. Three different bandwidth settings are used in
the experiments that follow: slow (0.1 Mbit/sec), medium (5 Mbit/sec), and fast (20 Mbit/sec) in order
to study cases where the system is network-bound, roughly balanced, and disk-bound at the query site
respectively. The details of a particular technology (Ethernet, ATM) are not modeled. The cost of sending
messages, however, is modeled as follows: the simulator charges for the time-on-the-wire (depending on the
message size and the network bandwidth) as well as CPU instructions for networking protocol operations
which consist of a fixed cost per message (Msglnst) and a per-byte cost based on the size of the message
(PerSizeMI). The CPU costs for messages are paid both at the sender and the receiver.

The query execution model uses a synchronous (i.e., non-streaming) approach to remote data access.
That is, when an operator running at the query site needs data from a remote source, it sends a request
(of RequestSize bytes) to that source and waits for the reply (of course, other operators can run during this
period). A source responds with with a block of TransferSize bytes of data. After the operator has consumed
this data, it issues another request to the source.

Finally, we modeled a bursty environment by adding to each remote server a small piece of software.
Every time a message is about to be sent by a site, the software checks to see if the message must be delayed.
The duration of the delay as well as the moment when the delay is effectively enforced are fully configurable,
and can range from a fixed duration enforced every time a given number of messages have been exchanged
to a random duration and a random occurrence of delays using several probability distributions.

For all the experiments, we have set the value of the timer that actives the scheduler as a multiple
of the expected round-trip time for requesting and obtaining a data page from an unloaded source in an
unloaded network. In our experiments (except where noted) the timer is set to ten times the duration of

this round-trip.

5.2 Workload

The workload used for all the experiments described in Section 6 consists of two versions of the query
tree shown in Figure 2. The basic query is an 8-way join structured as a balanced bushy tree. As stated
in Section 5.1, each base relation (A through H) is stored on a separate remote site, and scans of the base
relations are executed at the remote servers. All other operators, i.e., joins (represented by circles in the
figure), are executed at the query execution site. In the experiments we focus our study on hash-based joins.

The tuples of all base relations are 100 bytes each. As shown in Figure 2, there are two parameters

for setting the (possibly different) cardinalities of the base relations. These parameters are indicated by the
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Figure 2: Query Tree Used for the Experiments

letters n and m in the figure. These same parameters are also used to set the cardinalities of the intermediate
results produced by the various joins.

The two versions of the tree that are used in the study are called uniform and non-uniform; they differ
in the settings of the cardinality parameters. For the uniform tree, n and m are set to be equal so that all
base relations have the same size and all joins return a result that is the size of a single base relation. In
this case, we set n=m=10,000, so that all base relations and join results consist of IMB (250 disk pages)
each. With this setting, all hash joins can be performed without partitioning.

For the non-uniform tree, m is set to be an order of magnitude greater than n (n=10,000 and m=100,000).
In this case we have base relations and intermediate results of either IMB (250 pages) or 10MB (2,500 pages).
The order of magnitude difference between n and m has two major consequences in our study. First, the
hash join of relations C and D requires partitioning in this case, because neither of the relations can fit in
memory. Second, the query execution makes better use of pipelining here than in the uniform query tree,
as the right-hand sides of many of the joins are large. Recall that given sufficient memory, right-deep hash
joins can be executed in a pipelined fashion, thereby avoiding materialization of the right-hand input (i.e.,
the probe relation). Thus, although many of the right-hand sides are relatively large in this query, they do
not need to be staged to and from disk when the query executes normally.

These particular queries were chosen for the following reasons. First, an 8-way join query is complex
enough to provide sufficient latitude for the scrambling policies and it allows us to investigate the differences
and similarities among them. Second, the use of a bushy tree, which is more general than a left- or right-deep
tree (i.e., it contains both left- and right-deep components), allows us to investigate scrambling behavior for
both left- and right-deep plans. In addition, a bushy tree provides additional options for scrambling beyond
those that arise with the more restrictive plans. Finally, we study both the uniform and non-uniform cases
in order to compare scrambling in a situation where changes to the execution schedule are likely to have
small effects on performance (i.e., the uniform case) and in a situation where it could conceivably have a
large, negative impact on performance (i.e., the non-uniform case). Thus, these two queries, plus the ability
to vary key system parameters such as the network speed, provide sufficient flexibility to allow us to cover
a large area of the performance space for dynamic scheduling.

We also describe (in Section 6.2.4) a set of experiments designed to study the potential impact of scram-
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bling rescheduling on an application environment. In this section we use in a simplified version of a query

of the TPC-D benchmark.

6 Experiments and Results

In this section we present experiments that analyze the trade-offs raised by scrambling rescheduling. We
first investigate the impact of parallel materializations in the absence of delays. We then introduce delays
in the execution of the queries to explore the potential benefits of overlapping delays with other work for

various delays and network bandwidths.

6.1 Parallel Materializations and Network Speed

As stated in the introduction, the key technique that Query Scrambling rescheduling uses is the introduction
of parallelism into the execution of a query in response to unexpected delays. Such parallelism is intended to
hide delays by overlapping them with other useful work performed while waiting for missing data to arrive.
Before investigating the performance of scrambling rescheduling policies in the presence of delays, however,
we first examine the impact of parallelism in the absence of delays. By doing so, we are able to i1solate the
potential benefits and consequences of such parallelism on the normal execution of queries.

Figure 3 shows the response times of the Uniform query executed with the ITR and MA policies as the
network bandwidth (NetBw) is increased from 2 Mbits/sec to 20 Mbits/sec.® As expected, the response
time for both policies improves dramatically as the bandwidth is increased up to a point and then levels out.
With very slow networks, the cost of query execution is dominated by the network costs and the policies
have similar performance. As the network speed is increased (up to 5 Mbits/sec), the performance of the
policies begins to diverge and ITR shows better performance than MA.

The performance of ITR is quite simple to explain. The main components of performance in this system

5Results for bandwidths lower than 2 Mbits/sec are not shown here. The response-time in this range is nearly totally
dependent on the network speed, and thus, it increases proportionally with the slowdown of the network.
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are the local (i.e. query site) processing and I/O, the remote (server) processing and I1/0, and the network.
With the I'TR policy, very little of this work is overlapped. At low bandwidths, the portion of the response
time that is due to network time-on-the wire costs is significant (e.g., 75% of the total at 2Mbit/sec). As
the network speed is increased, the portion of the response time that is due to time-on-the-wire decreases
and has smaller impact on the overall performance of ITR. Thus, as can be seen in Figure 3, improving the
bandwidth for /TR beyond a certain point provides increasingly smaller gains.

In contrast to ITR, MA has a high degree of parallelism, so the explanation behind its performance here
is slightly more subtle. At low bandwidths, the network can become a bottleneck when data are requested
from multiple sources in parallel. When the network is the bottleneck, the performance of MA is almost
completely dependent on it.® As the network bandwidth is increased, it no longer is the bottleneck, but
the local disk (at the query site) soon becomes a bottleneck. Recall that MA obtains its high degree of
parallelism by materializing data on the local disk. This materialization costs disk writes when the data is
brought in, as well as disk reads when the data is eventually accessed by query processing.

Once the disk bottleneck is reached by MA, it actually has worse performance than ITR. This is because
the ITR policy does no local I/O for the Uniform query. With a fast network, its performance is dictated
by the local query processing and the (relatively fast) sequential I/Os done at the remote servers. The same
general performance behavior, with larger response times, is observed for the two policies when using the
Non-Uniform query.

The important lesson here is that materializing base relations in parallel with the query execution does
not improve performance in the absence of delays. For slower networks, the performance of ITR and MA

were roughly equivalent, and for faster networks, MA actually performed worse than ITR.

6.2 Rescheduling With Delays

We examined the performance of ITR and MA in the absence of delays across a range of network speeds, in
order to gain an understanding of the performance tradeoffs of parallel materialization. In this section, we
examine ITR and MA policies as well as two reactive ones (RM and RMJ) in the presence of various delays
for slow (0.1 Mbits/sec), medium (5 Mbits/sec) and fast (20 Mbits/sec) network speeds. The slow network
setting is intended to model speeds that are on the order of what could be obtained at a decently connected
site with today’s Internet technology. As shown in the previous section, with a slow network, little care needs
to be taken when using the local resources at the query execution site, as they contributed at most a small
portion to the total response time. The medium network speed was chosen so that the system would be
roughly balanced between network bandwidth and local disk rates (under mixed random/sequential access)
and the fast network is used to examine the performance of the policies when the local resources are the
crucial factor in performance.

In the following, we examine the performance of the policies under different delay scenarios (e.g., bursty

and initial delay) for the two query trees presented in Section 5.2. We first present the results for the Uniform

8Once all data has been downloaded by MA, there is a relatively small amount of additional work that must be performed
at the query site in order to complete the query. The cost of this work is not impacted by the network bottleneck.
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query and then for the Non-Uniform one.

6.2.1 Uniform Query Tree: Bursty Environment

We first examine the performance of the policies when all of the base relations are subject to random delays
throughout the entire execution of a query. Delay is applied in the following way: Each remote source flips
a weighted coin before sending a page of tuples to the query execution site. The outcome of the coin toss
determines if the source should transmit the page normally, or if it should stall for a specified period before
sending its page.” In all experiments, the timer used by the reactive policies to detect problems with a
remote source is set to 10 times the expected round-trip delay time for a data request between the query
site and a source (thus, the timer is different for each NetBw setting). In this experiment, the delay period
(for each random delay) is set to three times the value of this timer. Because of the fixed value for the delay
and timer, 1t i1s known that the query processor will ttmeout on a source each time that source delays. In
this case, the timeout will be detected one-third of the way through the delay.

In the remainder of the performance section, all graphs show the percentage slowdown of the query
(compared to the non-delayed case) as the probability of delay for each page transmission is increased along
the x-axis. Figure 4 shows the slowdown for Uniform query under the various policies, using the slow network
(0.1 Mbits/sec).® In this case, the duration of the delay is 10.52 sec (the is timer set to 3.5 seconds, here).
Slowdown is computed by subtracting the normal response time for the query (in this case, 678.4 seconds)
in the absence of delays, from the observed response time in the delayed case, and dividing by the normal
response time.

As can be seen in the figure, the slowdown for all policies shown increases linearly with the delay proba-

"In those cases where random delays are used we ran each experiment 12 times and then averaged the results to get the final
results presented here.

8 Although we measured slowdowns for delay probabilities as high as 90%, we only show probabilities upto 25%, here, as
lines remain linear beyond this point.
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bility, but there are dramatic differences in the slopes of the lines. The ITR policy is the most sensitive to
delay here. Since ITR accesses the base relations sequentially it incurs the full cost of every delay on every
source. In this experiment, at 10% delay probability the query runs 3.1 times slower than when there are no
delays. At 25% delay probability (not shown) the query runs 7.75 times slower.

This result 1s to be expected. The static, sequential scheduler is unable to overlap any delays, so query
execution time is increased by the sum of the delays experienced by all of the remote sources. At 10%
delay probability, there are 200 delays of 10.52 seconds each, so the total delay is 2104 seconds, compared
to a normal query execution time of only 678.4 seconds. In this case, the slowdown for the standard
query execution at 10% delay probability is (2782.4 — 678.4)/678.4 = 3.1. At 25% delay probability, there
are 500 delays of 10.52 seconds each, so the total delay i1s 5260 seconds. The corresponding slowdown is
(5938.4 — 678.4)/678.4 = 7.75.

Turning to the non-sequential policies, it can be seen that they too incur a linear slowdown as the delay
probability is increased. The slopes of the increases, however, are much lower than for the sequential policy.
By requesting data from multiple sources, the three policies can tolerate delays of a subset of those sources
by overlapping them with other work.

The best policy for coping with delay in this experiment is MA. This policy is the most aggressive one,
since it immediately initiates parallel materializations and continuously materializes data regardless of the
potential delays. At 256% delay probability, MA executes in 905.45 seconds, that is, it is slowed by a factor
of 33% with respect to the execution time of the query with no delays. Since the total delay in this case
1s 5260 seconds, this policy is able to hide 4354 seconds of delay by overlapping it with other useful work
(e.g., the retrieval of other base relations) and other delays. Thus, while in the no-delay case with the slow
network, MA and ITR displayed similar performance, in the presence of multiple delays (as may arise in a
bursty environment), MA has a tremendous advantage over ITR.

The two reactive policies, RM and RMJ are also very beneficial here, but their performance is slightly
worse than MA. The performance difference arises because the reactive policies must wait until the timer
expires before resuming materializations when the left-most (i.e., non-scrambled) data source experiences a
new delay. In contrast, MA does not rely on any timer mechanism. The performance difference seen in the
figure, thus, is the sum of all the timer waits encountered by the reactive policies. In this scenario, with
bursty delays on all relations, even a low probability of delay results in significant burstiness, so an aggressive
policy will work well here.

Figure 5 shows the performance of the policies when the fast network speed (20 Mbits/sec) is used.’
Here, even with a very fast network, the policies that hide delays using parallel materializations do well, and
the more aggressive MA policy performs best here. This result is in contrast to the no delay case (Figure 3)
where the performance of MA was worse than ITR for faster networks. The reason for this difference is that
in this experiment, the large amount of delay overwhelms the cost of local processing, so even though MA

performs much local T/O here; that 1/O is more than paid for by the overlapping of delays.

9 The results for the balanced network are similar, so are not shown here.
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6.2.2 Uniform Query Tree: Initial Delay

One lesson from preceding experiments is that if multiple sources are likely to have multiple delays, even
the most simple forms of parallelism offer a good opportunity to hide delays and that an aggressive policy
can do well. In this section, we examine the potential negative impact of scrambling too aggressively by
investigating a case where there is much less delay than in the previous cases. To accomplish this, we vary
the length of a single, initial delay on the left-most relation of the query tree (i.e., relation A). As stated
in Section 1, under the initial delay model, sources experience a single delay before transmitting their first
tuple, but perform reliably after that. The x-axis on the graphs shows the magnitude of this initial delay
as a percentage of the time required to execute the query in the absence of any delay. The y-axis shows, as

before, the percent slowdown compared to normal execution.

Slowdown (relative to 678.4 sec)
Slowdown (relative to 23.7 sec)

o 20 40 60 80 100 120 o 20 40 60 80 100 120
Delay % (relative to 678.4 sec) Delay % (relative to 23.7 sec)
Figure 6: Slowdown, Initial Delay on A Figure 7: Slowdown, Initial Delay on A
Net: 0.1 Mbps, Delay % of 678.4 sec, Uniform Tree Net: 5 Mbps, Delay % of 23.7 sec, Uniform Tree

Figure 6 shows the performance of the policies for the slow network. In this case, the execution time
of the ITR policy is 678.4 seconds, and is completely dominated by the network cost. The result of this
imbalance is that the use of local resources at the query processing site is effectively free, so all scrambling
policies can hide virtually all of the delay up to 80%, after which they run out of work to perform and the
slowdown increases linearly with the delay.

Figure 7 shows the performance of the policies with the balanced network. With this setting, the query
execution time with no delays is 23.7 seconds and the overhead of materializations can have a somewhat
larger impact. In this figure, all three parallel policies are able to hide most of the delay up to 70%, after
which they increase linearly with the delay. Beyond 70%, RMJ, the reactive policy that can instigate join
processing in addition to materializing base relations has a slight advantage over the other parallel policies
because it performs some additional work (i.e., joins) whereas the other policies block after all base relations
have been materialized if the tuples of A are still missing. As such, once the tuples of A have been received,
the work that must be done by RMJ to complete the query is small and the query finishes relatively quickly.
Although it is not shown in the graph, with higher delays (e.g., beyond 130%) RMJ eventually performs all
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the join processing it can without A (i.e. C X D, and E X F X G X H) at which point its response time
curve becomes parallel to the others.

If a slow network makes local disk I/O virtually free, then a faster network makes local I/O relatively
more expensive. Figure 8 shows the performance of the polices when the fast network is used. In this
case, MA, the most aggressive policy, performs relatively poorly. MA always materializes all base relations
concurrently with the normal query execution, so in the presence of short delays, MA, which 1s a static
policy, commits to reading most of its data from the local disk using random I/O (3 Mbit/sec). In contrast,
ITR is able to access its data over the high speed network in this case. (It is important to note, however,
that even though the network bandwidth is 20 Mbits/sec here, ITR accesses remote sources one-at-a-time,

and so is limited by the speed at which a remote source can provide data, i.e., 10 Mbits/sec.)

e

12} ITR <— ? 1
RMJ ——
o RM -
2 1.0 t MA X [ ,
o 0.8 - 1
()
2 P
© L 4
s 0.6 @‘
c OOV T
SOK .

§ 0.4 [POOOO : ]
E
o
[

0.2 | T 1

O L L L L L L L L

.
0 20 40 60 80 100 120 140 160 180 200
Delay % (relative to 15.58 sec)

Figure 8: Slowdown, Initial Delay on A
Net: 20 Mbps, Delay % of 15.58 sec, Uniform Tree

The net effect is that in this case, the extra cost of the random, local /O that MA performs in order to
materialize and read base relations outweighs the benefit gained by hiding delay. Therefore, MA performs
worse than ITR up until a delay of about 45%. RM and RM.J avoid the problems of MA, because both are
able to stop the materialization of base relations when the delay of A 1s over. Because of this, the reactive
policies are able to read their materialized data sequentially and thus, unlike MA, can obtain materialized
data at the same speed (i.e., 10 Mbits/sec) that ITR can obtain data from the network. As a result, the
reactive policies, unlike the static ones, are able to effectively hide delay by materializing base relations and
then reading that materialized data for no penalty (compared to ITR) after the delay is over. As the delay
Is increased, the penalty that MA pays is erased, and at a delay of 95% and beyond, it performs similarly to
RM . Finally, it should be noted that as seen in the balanced network case (Figure 7) RMJ performs slightly
better than RM and MA at higher delays because it 1s able to overlap somewhat more delay by executing

joins.

21



3.0

2.00
ITR <—
RMJ - ITR ©— i
o 25 | RM -F3- 4 1.75 RMJ e
3 MA X o RM [}
o 8 1s0p MA X P
e 20f i 2 &/,
il R
o S 1
[} - T
> 15 - 4 ) -
g 2 100 A
® o =
< =¥ = =
S F Iz . 0.75 - g
3 10 - s o0 A
B < SO :
3 g ) S os0 PO |
» 05 s X : a
B X :
i X 0.25 t 1
0 N2 X X >\< I I I I
0 0.02 0.06 0.1 0.14 0.18 022 025 0 : : : : : : :
Delay Probability 0 25 50 75 100 125 150 175 200

Delay % (relative to 140.5 sec)

Figure 9: Slowdown, Bursty Delay on All Relations
Net: 0.1 Mbps, Delay: 10.52 sec (3x Timer),

Non-Uniform Tree

Figure 10: Slowdown, Initial Delay on A
Net: 20 Mbps, Delay % of 140.5 sec, Non-Uniform Tree

6.2.3 Non Uniform Query Tree

In this section, we briefly describe the performance of the policies with the non-uniform query tree as
described in Section 5.2. This tree contains a mix of large and small relations, as well as high- and low-
selectivity joins, and allows us to examine the performance of the policies in a situation where changes to
the execution plan chosen by the optimizer could conceivably have a large, negative impact on performance.
Recall that one impact of the non-uniform query is that one of its joins requires the hash join algorithm to
use partitioning. We first investigate the performance of the policies in the bursty environment and then in
the case of a single initial delay.

For the bursty delay cases, the results for the non-uniform query show the same behavior as was seen
for the uniform query. That is, for all three network speeds, the parallel policies dramatically improve the
performance of the query when it experiences many delays. Such a result is to be expected, since using local
resources to support overlapping delay is virtually free compared to the amount of experienced delays. For
the balanced and fast networks (not shown) the results are essentially the same as those for the Uniform
query in Section 6.2.1. For the slow network (Figure 9), the results are also very similar to the Uniform case,
except that with the mixed relation sizes of this tree, the parallel policies are slightly less effective in hiding
delay than with the Uniform query tree.

Figure 10 shows the performance of the policies in the initial delay case for the fast network. As was seen
for the uniform query (Figure 8). The performance here also quite similar to what was seen for the uniform
query except for one aspect: At 125% delay, RMJ initiates the partitioning of the materialized base relation
in order to perform the join of C and D. Between 1256% and 175%), therefore, its curve is flat because this
corresponds to the time required to partition the two relations before doing the join. This work is entirely
beneficial to the query and does not incur any additional overhead because these two relations have to be

partitioned anyway, either by the policy or by the query once the delay is over. Beyond 175%, RMJ has
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performed all the possible work and its performance increases linearly with the delay.

6.2.4 Impact of Rescheduling

In this section we describe a set of experiments to study the potential impact of scrambling rescheduling for
a more application-oriented query than the uniform and non-uniform cases shown so far. The experiments
use a simplification of the query Q2 of the TPC-D benchmark [Tra95]. We chose this query because it is
relatively simple, yet processes a five-way join. The cardinalities of the relations involved in this query are
as follows: PART: 200,00 tuples of 164 bytes, SUPPLIER (S): 10,000 tuples of 197 bytes, PARTSUPP (PS):

800,000 tuples of 219 bytes, NATION (N): 25 tuples of 185 bytes and REGION (R) 5 tuples of 181 bytes.
The query 1s:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM PART, SUPPLIER, PARTSUPP, NATION, REGION

WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND P_TYPE LIKE ‘BRASS’
AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = ‘EUROPE’

In this experiment, each base relation resides on a separate data source. Selects are performed at the
data sources and the query execution site receives only the selected tuples. Figure 11 shows the query tree

run at the query source site and the resulting cardinalities of the input relations and joins.

Result Card. | Size |4k pages

(1) 1 4 1
25 8 1

(4) 10 4 1

10,000 197 500
5,000 193 239

100 29 1
®R) (N 800000| 8| 1585
10000 29| 72

H#B'UNUJOOZ:U

10,000 222 556

Figure 11: TPC-D Query Tree and Relation Sizes at Execution Site

We ran this query under various conditions of delays and network speed (network speed of 0.1, 5, and
100 Mbit/s). Here, we illustrate only the cases where initial delays are applied to the query. We delay one
source per experiment and reschedule the query using the RM policy. The response times of the query in the
absence of delays are: 724.8 seconds with a 0.1Mbit/s network, 28.02 seconds for 5Mbit/s and 17.3 seconds
for 100Mbit/s. Three delay values were tried: 50%, 90%, and 150% of the execution time of the query in
the non-delayed case. This totals to 45 experiments, plus 9 experiments with no delay. For each experiment,
both the scrambling and non-scrambling versions were executed, and the relative performance improvement
calculated. Several broad statements can be made about the behavior of scrambling for this query.

In all experiments, scrambling either improved performance significantly, or had negligible (under 0.01%)
effect. The maximum performance improvement was 46.36% for an initial delay on the R relation of 90%
the time required for the non-delayed query with a network speed of 0.1 Mbit/s using the MA policy. When

the delayed relation is PS, the scrambling performance improvement is less than 0.03% for all policies. Since

23



Delay  No Scrambling  Scrambling %

no delay 28.02
on R 53.24 38.00 28.62
on N 53.24 38.17  28.29
on S 53.24 41.60 21.86
on P 53.24 41.66  21.74
on PS 53.24 53.23 0.01

Table 3: Response Times (sec), 5 Mbits/s, 90% initial delay (25.22 sec)

% Improvement  Total

0.00 3

0.01 to 10.00 6
10.01 to 20.00 11
20.01 to 30.00 10
30.01 to 40.00 12
> 40.00 3

Table 4: Histogram of Observed Improvements (RM Policy)

PS is the last relation to be processed, all other work has been performed and scrambling cannot overlap
unfinished work with the delays in PS. Generally, as would be expected, performance improvement declines
as the delay appears in relations later in the plan. Also, generally, performance improvement declines as
the network speed increases. Table 3 shows a typical experimental result. We see that the performance
improvement is above 20% for delays on all relations except for the delay of PS, as noted above. This is
typical for scrambling in the initial delay environment. The general performance improvement is indicated
by the delay on R, and performance declines (slightly) as the delay appears later into the tree, until a sharp
drop at the delay of the last relation. Finally, we also categorized all 45 experiments for the RM policy by

the size of improvement. This classification i1s given in Table 4.

6.2.5 Discussion

The experiments of this section showed that simple reactive polices such as RM and RMJ are fairly robust,
even when some of the relations and intermediate results are scaled up by an order of magnitude. The
main reason for this robustness is that these policies constantly monitor the execution of delays and enforce
parallelism only when delays are experienced. As such, they are able to hide the delays with useful work
without incurring a high additional cost. Even when base relations are big, as is the case for the non-uniform
query tree, these policies bring a substantial improvement. One reason that materializing large relations
does not hurt performance for these policies is that they suspend the rescheduled operations when delays
are short so that extra work 1s not performed in the absence of delays. The overhead of materializations
becomes significant only if most or all of the relations can be materialized and this can only happen when
the delay is large. For the same reason, the joins materialized by RMJ do not typically hurt performance.

Another case that we studied (but do not present here) is for Cartesian products and joins whose results
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are significantly larger than the sum of their inputs. In such a case it conceivable that materializing such a
result could hurt performance, but we did not see dramatic differences in our studies (for the reasons outlined
above). Furthermore, query optimizers typically try to avoid such costly operations, making the occurrence
of these cases less likely. Interestingly, it 1s fairly easy to protect query scrambling against such pathological
cases. For example, we extended the policies to materialize only joins having a small ratio between the size
of their result and the size of their input. This policy was able to avoid problems in the few cases where

they arose.

7 Related Work

As stated in the introduction, techniques that try to adapt a query to a changing environment broadly fall
in the proactive and reactive categories.

In the proactive category, the techniques gather as much information as possible to predict the state of the
run-time system during query execution and use this information to construct the best query execution plan.
Volcano [CG94, Gra93] introduces at optimization time choose-plan operators in the query tree that enable
the selection of a particular query execution plan at runtime once enough information has been gathered.
HERMES [ACPS96] records the costs of remote accesses into an history used to better estimate the costs of
future accesses. Mariposa [SALT96] builds query plans after having negotiated a price-performance trade-off
with data providers. All these approaches ultimately decide at query start-up time the execution plan of a
query, which however remains fixed for the whole duration of the query execution.

In contrast to the proactive category, techniques in reactive category monitor the progress of queries and
modify query execution after execution has started. (Note that techniques in the proactive and reactive
categories are generally complementary.) Monitoring determines if execution should deviate from the plan
for some unforeseen reason. Reasons include inaccurate estimates for intermediate result sizes and direct
considerations of problems with response times from remote sources are not accounted for.

[BRJ89] proposes a reactive technique in which the execution of a distributed query proceeds through
three phases: (i) a monitoring phase observing the progress of the execution of the query; (ii) a decision
making phase during which a new strategy for executing the query is computed; and (iii) a corrective phase
in which the current execution is aborted and a new execution is initiated. A similar approach is used in
Rdb/VMS [Ant93].

Both InterViso [TTCT90] and MOOD [ONK*'96] are heterogeneous distributed databases that perform
query optimization while the query is executing. Heterogeneous distributed database divide a query into
a collection of subqueries and a composition query. There 1s one subquery for each remote source and a
composition query than combines the results of the subqueries. These systems use a reactive technique that
interleaves the execution of subqueries with the execution of the composition query by monitoring the arrival
of the answer to subqueries and dynamically executing the composition query.

A technique similar in spirit to scrambling rescheduling is used to improve the access time to tertiary

storage in [SS96]. This work divides queries into parts that can be executed independently in arbitrary order.
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The order in which the parts are executed is dynamically chosen depending on the data each part needs to
fetch, the state of the disk cache and the state of the the tertiary memory (i.e., the platter currently loaded).
The scheduler’s objective is to maximize the overall system throughput.

As stated in Section 1, the work described here builds on our initial definition of Query Scrambling [AFTU96].

Additional experimental results are also available in reference [AFT96, pages 11-21].

8 Conclusions

Query scrambling is a reactive technique for coping with unpredictable delays for wide-area remote data
access. Query scrambling, in its most general sense, monitors query execution and reacts to delays by on-
the-fly rescheduling query operators and possibly synthesizing new operators to run. This article, we focused
on the tradeoffs that arise for the rescheduling portion of the query scrambling technique.

We first described the performance problems that arise from the iterator model, 1.e., when executing a
static query plan in the presence of unexpected delays. We then discussed alternatives for rescheduling and
the tradeoffs among them. In particular, we focused on the way that memory management issues influence
the feasibility of different rescheduling options. In general, memory management issues lead to rescheduling
techniques that use minimal amounts of memory. Such techniques allow operators to be run “out-of-turn”
by materializing their results to the local disk of the query execution site.

We studied two reactive policies: RM ; which initiates the materialization of data from all remote sources
when a delay is detected during normal query processing; and RMJ, which works similarly to RM, but in
addition, has the ability to reschedule (and materialize) individual join operators, one-at-a-time. RM.J uses
more memory to be reserved for rescheduling than RM but it has a greater opportunity to perform useful
work when delays arise. The memory requirements for RMJ are much less than for a more general policy that
would allow entire subtrees to be rescheduled at once. More importantly, RMJ avoids the potential problems
that a more general policy would encounter if the rescheduled operations themselves became delayed.

The two reactive policies were compared to two static ones: /TR and MA. Policy ITR is an iterator-based
execution policy, while MA augments such a policy by opening scans on all remote sources in parallel. Policy
MA was used to investigate the impact of parallelism outside of a reactive policy. The polices were compared
using a uniform and a non-uniform query tree. In addition, results using a simplified TPC-D query were also
presented. The experiments were run using three network settings: one where the network was the dominant
cost, one where the network and local disk were balanced, and one where the system was disk-bound at the
query execution site. The slow setting is of the same order of what many current wide-area environments
experience (even if the actual wires are somewhat faster). The balanced and fast networks show how the
policies will change as deployed network technology continues to improve.

The performance studies showed that in the absence of delay, parallel materializations had little impact on
performance for slow networks and were detrimental for fast networks. When delays were present, however,
such parallelism provided substantial benefits; in a situation where all data sources are subject to delays, the

performance improvement due to parallel materializations is a factor of the number of sites involved in the
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query. With the slow network, parallel materializations where seen to be always beneficial, and the reactive
techniques were hurt slightly by their delay in initiating and resuming materializations. With the faster
network, and less delay, however, the blind use of materializations as used by MA was seen to significantly
hurt performance, while the reactive approaches were able to successfully hide delay in many cases. In terms
of the reactive approaches, they were seen to have similar performance in most cases, but the ability to
execute joins was seen to benefit RMJ in certain cases with long initial delays. Finally, using a query based
on Q2 of TPC-D, we observed that the RM policy was effective at hiding delay across a range of delay

scenarios.
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