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execution plans are typically generated statically, based on a set of assumptions about the costs of performingvarious operations and the costs of obtaining data. The execution of a statically optimized query plan islikely to be sub-optimal in the presence of unexpected response time problems that arise during the queryrun-time. In the worst case, a query execution may be blocked for an arbitrarily long time if needed data failto arrive from remote data sources. The apparent randomness of such delays in the wide-area environmentmakes planning for them during query optimization nearly impossible.To address the issue of unpredictable delays in the wide-area environment, we have developed a dynamicapproach to query execution, called query scrambling. Query scrambling reacts to unexpected delays by on-the-y rescheduling the operations of a query during its execution. Query scrambling attempts to hide delaysencountered when obtaining data from remote sources by performing other useful work, such as transferringother needed data or performing query operations, such as joins, that would normally be scheduled for alater point in the execution. Query scrambling can be e�ective at hiding signi�cant amounts of delay; in thebest case, it can hide all of the delay experienced during a query execution. That is, a query can execute inthe presence of certain delays with little or no response time penalty observable to the user.1.1 Coping With Bursty ArrivalIn a previous paper [AFTU96], we identi�ed three types of delay that can arise when requesting data fromremote sources:Initial Delay There is an unexpected delay in the arrival of the �rst tuple from a particular remote source.This type of delay typically appears when there is di�culty connecting to a remote source, due to afailure or congestion at that source or along the path between the source and the destination.Slow Delivery Data is arriving at a regular rate, but this rate is much slower than the expected rate. Thisproblem can result, for example, from network congestion, resource contention at the remote source,or because a di�erent (slower) communication path is being used (e.g., due to a network link failure).Bursty Arrival Data is arriving at an unpredictable rate, typically with bursts of data followed by longperiods of no arrivals. This problem can arise from uctuating resource demands and the lack of aglobal scheduling mechanism in the wide-area environment.The algorithm presented in [AFTU96] focused on the problem of Initial Delay. As such, it was assumedthat once data started to arrive from a remote source, the remaining data from that source would arrivein an uninterrupted fashion. This assumption facilitated the development and study of an initial approachbut limited the applicability of the resulting algorithm, as wide-area data access seldom fails in such a well-behaved manner. In this article, we extend the scope of query scrambling by investigating approaches todynamically rescheduling query operations in the presence of the additional problem of bursty arrivals.Bursty arrivals are more di�cult to manage than initial delays for several reasons. First, the run-timesystem must constantly monitor the arrival of data from remote sources and must be able to react to delays2



that arise at any time. Such continuous monitoring of remote sources is not necessary in the initial delayenvironment. Second, due to the unpredictable nature of bursty arrivals, care must be taken to avoidinitiating overly-expensive scrambling actions for short, transient delays, while remaining reactive enoughto initiate scrambling without undue hesitation in situations where there is signi�cant delay. Given thedi�culty of predicting the future short-term behavior of remote access, scrambling for a bursty environmentmust be implemented such that it can be initiated, halted, and restarted in a lightweight manner.1.2 A Reactive ApproachQuery scrambling shares some common goals with other approaches to dynamic query processing. In general,methods that attack poor run-time performance for queries fall into two broad categories: proactive andreactive. Proactive methods (e.g., [ACPS96, CG94, SAL+96]) attempt at compile-time to predict thebehavior of query execution and plan ahead for possible contingencies. These approaches use a form of latebinding in order to postpone making certain execution choices until the state of the system can be assessedat run-time. Typically the binding is done immediately prior to executing the compiled plan, and remains�xed for the entire execution.Reactive methods (e.g., [TTC+90, Ant93, ONK+96]) monitor the behavior of the run-time system duringquery execution. When a signi�cant event is detected, the run-time system reacts to the event. Queryscrambling is a reactive approach | the query execution is changed on-the-y in response to run-timeevents. While other reactive approaches have been aimed towards adjusting to errors in query optimizerestimates (e.g., selectivities, cardinalities, etc.), query scrambling is focused on adjusting to the problems thatarise due to the time-varying performance of loosely-coupled data sources in a wide-area network. Relatedwork is discussed in more detail in Section 7.One basic technique used by query scrambling is to change the scheduling of operators in a query planif a delay is detected while accessing data from a remote site. Such rescheduling permits delays fromdi�erent remote sources to overlap with each other and to overlap with useful work performed by thequery processor. In order to implement this rescheduling, the run-time system must sometimes introduceadditional materializations of intermediate results and base data into the query execution plan. For thisand other reasons, query scrambling may increase the total cost of query execution in terms of networkcontention, memory usage, and/or disk I/O.1.3 Overview of the ArticleBecause operator rescheduling introduces both bene�ts and costs, it must be regulated in an e�ective way.Thus, the key questions for implementing scrambling rescheduling are: 1) when should scrambling start; 2)what should be rescheduled; and 3) when should scrambling stop. We examine several sets of policies tocontrol scrambling rescheduling, and we describe the architecture of a run-time scheduler that is capable ofimplementing these policies. We then use a detailed simulation of a run-time system based on the iteratorquery processing model [Gra93] in order to examine the tradeo�s of the various scrambling policies for both3



pipelined and non-pipelined execution.In this article, we focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],where data is ultimately collected from remote sources and integrated at the query source. This approachmodels remote data access and is also typical of mediated database systems that integrate data from dis-tributed, heterogeneous sources, (e.g., [TRV96]). In this work, the remote sources are treated as black boxes,regardless of whether they provide raw data or the answers to subqueries. Only the query processing that isperformed at the query source is subject to scrambling. Our results show that scrambling, if done correctly,can produce dramatic response time savings under a wide range of delay scenarios. It can in some cases,reduce the slowdown observed due to random delays by a factor proportional to the number of bursty remotesources. It can also, in some cases completely hide the delay from the user.In summary, unpredictable behavior of remote sources during query execution is a problem that databasetechnology must address if it will ever be successful on the Internet. We have investigated initial results fora new class of methods, query scrambling, that attempts to address this problem. This article describes thefollowing contributions:1. An examination of the weaknesses of the iterator model in this environment,2. An architecture, which extends the iterator model, of a scrambling rescheduling run-time system,3. Several policies for controlling the key implementation aspects of scrambling rescheduling,4. Extensive simulation results that document the various performance trade-o�s of the policies, and5. Evidence that scrambling rescheduling is e�ective for a broad class of workloads in a bursty data arrivalenvironment.The article is organized as follows. Section 2 describes the basic trade-o�s for query scrambling tocope with bursty arrivals. Section 3 provides a detailed model and architecture of a run-time scheduler forimplementing scrambling rescheduling. Section 4 describes the policies which control rescheduling. Section 5describes the experimental framework and Section 6 describes the experimental results for the non-pipelinedand pipelined cases. Section 7 describes related work. Section 8 concludes the article.2 Query Scrambling OverviewIn this section we �rst discuss the behavior of a traditional iterator based run-time system and its behaviorin the bursty environment. We then describe how scrambling can be applied to such a run-time system inorder cope with unexpected delays. Finally, we discuss the basic tradeo�s and design decisions that arise inthe development of a scrambling algorithm.2.1 Query Scrambling for Iterator-Based Execution EnginesRather than relying on the operating system, most database systems provide their own execution engine,which performs scheduling and memory management for the operators of compiled query plans. The iterator4



model is one way to structure such an execution engine [Gra93]. In this model, each node of the query tree isan iterator. Iterators support three di�erent calls: open() to prepare an operator for producing data; next()to produce a single tuple, and close() to perform �nal housekeeping. To start the execution of a query, theDBMS initiates an open() call on the root operator of the query tree, and this call iteratively propagatesdown the query tree.A key attribute of the iterator approach is that the scheduling of the query operators is, in some sense,compiled into the query tree itself. The scheduling of the operators in the tree is determined by the wayin which operators make open(),next(), and close() calls on their children operators. The data ow amongnodes in this model is demand-driven. A child node passes a tuple to its parent node in response to anext() call from the parent. As such, iterator-based plans allow for a natural form of pipelining. Each timean operator needs data, it calls its child operator(s) and waits until the requested data is delivered. Theproducer-consumer relationship allows the operators to work as co-routines, and avoids the need for storageof intermediate results, as long as the child operator produces tuples at about the same rate or slower thanthey can be consumed by its parent operator. This scheduling dependency can be avoided, however, if thechild operator �rst materializes its result (e.g., as part of open() processing) either in memory or to disk.After materialization, the child can then provide tuples to the parent operator in the typical one-at-a-timefashion in response to next() requests. A completely non-pipelined schedule can be constructed by introducingmaterialization between each pair of operators in the tree.This simple, static scheduling approach works well when the response times of operators and data sourcescan be predicted with some accuracy. When processing queries with data from remote sources, however,unpredictable delays in obtaining that data can arise. The e�ect of such unexpected delays on a precompiledschedule can be severe. When a remote source blocks, all of its ancestors in the query tree will also block. Inaddition to delaying the initiation of operators that are scheduled to execute later in the plan, such blockingcan also block other operators that are already executing. For example, if a binary operator (e.g., a join)becomes blocked because one of its children blocks, then it will stop requesting tuples from its other child,thereby inducing blocking on the subtree rooted at that child as well. This blocking can propagate down thesubtree to the leaves of the tree, unless a materialization (which breaks the producer-consumer dependency)is encountered.1 With a static schedule, progress on the query can, in some cases, grind to a halt even ifonly a single data source becomes delayed.In this article, query scrambling applies dynamic scheduling to query execution in order to avoid theproblems caused by unexpected delays. It depends on two basic techniques: rescheduling andmaterialization.Simply stated, when a delay in obtaining data from a remote source is detected, scrambling changes thescheduling of operators in the query tree in order to allow other portions of the plan to execute. To performthis rescheduling, scrambling introduces any materializations that are required to allow the re-scheduledoperators to run. Materializations can be added to the plan by placing a materialization operator between1Note that this blocking phenomenon arises even if operators are ones that support intra-operator parallelism such theexchange operator of Volcano [CG94]. 5



the re-scheduled operator and its parent.2 A materialization operator is a unary operator, which whenopened, obtains the entire input from its child and places it in storage (typically disk, unless there issu�cient memory). The materialization operator provides tuples in response to next() requests from itsparent operator when the parent is eventually able to execute.As stated in the introduction, there are three key policy questions for the implementation of a scramblingrun-time system: (1) when to start scrambling, (2) what to scramble, and (3) when to stop scrambling. Inthe following three sections we describe the options and the basic tradeo�s that arise for each of these.2.2 Initiating ScramblingA fundamental principle of our approach to Query Scrambling is that the normal scheduling of a query execu-tion should proceed unperturbed in the absence of unexpected delays. The assumption is that the executionplan generated by the optimizer is in fact, an e�cient plan, and that re-scheduling and materialization canresult in additional memory, disk I/O, and other costs. Thus, the original plan should be tampered withonly if an unexpected problem arises during the execution.In order to determine when a delay has occurred, the system associates a timer with each operator thatdirectly accesses data from a remote site. This timer is started when the operator begins waiting for a chunk(i.e., a page or packet) of data to arrive from the remote site, and is reset when the data arrives. If thetimer goes o� before the data arrives, then the scrambling mechanism is informed that a signi�cant delayhas occurred.Given such a timer mechanism, the main policy question is to determine at which point there are su�cientproblems to warrant the initiation of re-scheduling. There is a knob that can be used to �ne-tune such apolicy. The timeout-value is the value with which the timer is initialized when an operator enters a waitingstate. The length of this value determines how long the operator waits before a timeout alarm is raised.The timeout-value limits the degree of response time variance that will be tolerated for any remote source.This knob allows the sensitivity of the scrambling policy to be adjusted across a range from aggressive (i.e.,low settings for the knob) to tolerant (i.e., high setting). The tradeo�s between these two extremes arefairly straightforward: A tolerant policy runs the risk of allowing too much delay to accumulate beforereacting, while an aggressive policy can potentially waste resources in an e�ort to solve non-existent (orminor) problems. The decisions covered in the next two sections, however, can help limit the extent of thedamage caused by an overly aggressive approach.2.3 What to ScrambleOnce scrambling has been initiated, the next decision to be made is the extent of the scrambling action to beperformed. As stated previously, scrambling involves the rescheduling of operations in the execution plan.There are two types of policy decisions that must be made with respect to the extent of scrambling: i) wherein the tree to initiate scrambling; and ii) how many scrambling operations should be initiated.2This notion of a materialization operator is not related to the operator for path expressions described in [BMG93].6



For the �rst question, we consider two options: i) early initiation of a non-leaf operator in the plan; andii) early retrieval of data from a remote source. The �rst case, initiating a non-leaf operator, requires thescrambling system to arti�cially call open() on that operator. The open() has the usual e�ect of initiatingthe sub-tree of the query rooted at that operator. It is relatively simple to execute a non-pipelined operatorout-of-turn (i.e., before its parent operator) because such an operator simply writes its result to a temporary�le (or to an allocated area in memory). On the other hand, rescheduling pipelined operators is more di�cult;it requires the introduction of a materialization operator as a surrogate parent, in order to temporarily storethe result of the operator. A surrogate parent is also needed in the case of early retrieval of data from aremote source. In that case, a materialization operator is inserted in the tree to pull tuples from the remotesource and store them locally at the query execution site.The tradeo�s between these two choices are as follows: Starting a non-leaf operator allows the entiresubtree rooted at that operator to be initiated at the cost of at most, a single additional materialization.The downside of this approach is that su�cient memory must be allocated to allow the subtree to execute.In contrast, early retrieval from a remote source requires very little memory (e.g., one or two pages, forstaging tuples to disk), however, an additional materialization is required for every remote source opened inthis way.The second decision that must be made is how many scrambling operations should be initiated. Thefundamental tradeo� here is as follows. The more operations that are initiated, the more remote sources canbe accessed in parallel, and hence, the greater the potential for overlapping the delays that might arise fromthose remote sources.3 There are, however, signi�cant dangers in starting too many operators. First, if careis not taken, the data arriving from multiple sources can cause contention in the network or at the queryexecution site. On the network, contention can result in the invocation of congestion avoidance mechanisms,which can force sources to send data at a low rate. At the query execution site, thrashing can arise if thespeed of materializations to disk cannot keep up with the rate at which the remote sources are deliveringdata. These problems can be mitigated, to some extent, if the query execution site controls the arrival ofdata from remote sources. Such control can be achieved using a page-at-a-time protocol (as opposed to astreaming protocol) between the query execution site and the remote sources.Another problem that can arise from initiating too many scrambling operations is the randomizationof disk access. When multiple relations are placed on the disk of the query execution site, access to thoserelations may interfere with other disk I/O performed by the query. For example, in the case of a non-pipelined join, accessing the input relations from disk may interfere with the writing of the join result todisk, thereby turning both processes into random rather than sequential I/O. Such interference can slowdisk access substantially. Note that this latter problem can arise regardless of whether a streaming orpage-at-a-time protocol is used to obtain data from remote sources.3In general, if n remote sources are subject to signi�cant, independent delays, then by accessing those sources in parallel,scrambling has the potential to improve performance (over not scrambling) by as much as n times.7



2.4 Stopping ScramblingThe third key decision for scrambling is that of when to stop scrambled operations once they have beeninitiated. There are two basic choices here. One option is to simply suspend all scrambled operations whenthe remote source that triggered scrambling resumes sending data. The other option is to ignore the statusof the blocked remote source, and continue scrambling. Perhaps the most intuitive approach is to suspendscrambling and resume normal processing as soon as a blocked operator becomes unblocked. Since scramblingis a reaction to an unanticipated event, it makes sense to resume the original plan as soon as possible. Inaddition, scrambling has the potential to add costs to the execution of the query, so returning to the originalschedule can help avoid such costs.In cases where a remote source temporarily experiences delays but then performs smoothly, the approachof returning to the original plan is likely to work well. In other cases, however, going back too soon cancarry its own costs. Recall that some scrambled operators (e.g., those higher in the query tree) may consumeconsiderable amounts of memory. If the suspension of scrambling causes the scrambled operators to beswapped out then it is possible to encounter a thrashing condition if the remote source repeatedly delays andresumes. On the other hand, not swapping the scrambled operators out could result in a signi�cant wasteof memory and could hurt performance. Thus, for very unreliable remote sources, it could be bene�cial tocontinue scrambling, even if the remote source resumes. A useful option in this case might be to materializethe delayed source in the background while continuing to complete the scrambling operations. Materializingan operator that was started normally, however, would require additional mechanism beyond what has beendescribed above.2.5 DiscussionThe above sections described the main decisions that must be addressed when designing a query scramblingpolicy for the bursty environment. These decisions and their possible settings are summarized in Table 1.The settings allow the scrambling policy to be adjusted between tolerant and aggressive approaches towardsdealing with delays. In general, tolerant policies favor sticking to the original query plan wherever possible,while aggressive policies are more willing to commit resources in order to hide potential delay. As statedabove, it is possible to implement scrambling in a way that can reduce the potential for problems. Forexample, using a page-at-a-time protocol rather than a streaming one for obtaining data from remote sourcescan reduce the potential for network and local disk congestion.In this article, query execution tree shape is �xed during execution, i.e. join ordering is not changed, andthe physical network topology is also �xed. Both of these assumptions impact the performance of scrambling.Consider the impact of tree shape on scrambling. If the �rst (left-most) remote source, say A, in thequery execution order, has a long delay, then scrambling will perform very well. The rest of the query willexecute during the time that A is delayed, e�ectively overlapping the delay of A with all other delays andwork. However, suppose the last remote source, say Z, is delayed. Scrambling will be ine�ective, since thereis no work after Z and thus no work to scramble. In general, delays which appear early in query execution8



Decision Values(tolerant) (aggressive)Start timer-value high lowWhich Operators remote source non-leafHow Many Operators few manyStop suspend ignoreTable 1: Summary of Scrambling Optionsorder have much more impact than delays which appear late.4Consider the impact of physical network topology. If a network delay a�ects only a single remote source,scrambling will perform as if the delay was due to the remote source itself. However, if a network delaya�ects all remote sources equally (e.g. a delay in the network link between the client and the local Internetrouter of the client), scrambling will be ine�ective, because all remote sources are equally delayed and thusno work can be overlapped.3 ArchitectureIn this section we describe the architecture of a scrambling run-time system. We �rst extend the iteratormodel with a scheduler. We then describe how materialization operators are inserted into the query tree.3.1 The Query Scrambling EngineWe extend an iterator run-time system such that each operator has an independent internal process state. Ascheduler dictates the state of each operator. Operators can be suspended, resumed, or terminated just likeoperating system threads. An operator can be in �ve possible states. Among these �ve states, six transitionsare possible. Operator states and transitions are showed in Figure 1.
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5 suspendedFigure 1: State Diagram for Query OperatorsThese states are:� Not Started. State of an operator before being opened.4Thus, a query optimizer for a run-time system that supports scrambling may favor query execution plans where historicallyunreliable remote sources appear early in the plan. 9



� Active. State of the operators that can be scheduled for execution. The actual order in which Activeoperators are scheduled is identical to the one that would normally be produced by the iterator modelunder traditional scheduling.� Suspended. State of an operator explicitly suspended by the query scrambling scheduler.� Stalled. State of an operator stalled due to the unavailability of the requested data.� Closed. State of an operator once it has produced all its possible results.The query scrambling scheduler moves one or more operators from one state to another via a transitionin response to an external event. Three possible external events are de�ned:� Time-Out. When the timer embedded in an operator goes-o�, the operator informs the scheduler ofthe time-out. In turn, the scheduler then knows this operator can not be run.� Resume. When pending data eventually arrive at the query execution site the scheduler determinesthe operator for which the data is intended. The scheduler then knows this operator can potentiallybe run again.� End of Stream. An operator that produced all its possible results tells the scheduler it has reached theend of stream. Such an operator goes out of the scope of scrambling.The reactions of the query scrambling scheduler to the occurrence of these events can be easily expressedin terms of transitions between states for the operators concerned by the events. The transitions betweenthe states are:1. opened. Every time an operator opens, the scheduler moves this operator fromNot Started toActive.2. timed-out. The scheduler moves an operator from Active to Stalled when the operator times-out(�rst external event). The scheduler also forces the ancestors of the stalled operator to go through thistransition as well, indicating that a whole branch of the query tree is blocked and can not run.3. resumed. When the pending data eventually arrives (second external event) the scheduler moves thecorresponding operator, as well as its ancestors, from Stalled to Suspended indicating that they canpotentially be run again.4. reactivated. The scheduler moves an operator from Suspended toActivewhen it decides to reactivateit. Every time an operator is moved through the transitions timed-out or resumed, the query scramblingscheduler checks to see if one (or more) suspended operations need to be re-activated. For example, ifno operators are Active because they are all timed-out, then the scheduler will try to reactivate thescrambling of Suspended operators. 10



5. suspended. The scheduler moves Active operators to the Suspended state when it decides to tem-porarily suspend their execution. This happens, for example, when the regulation mechanism of queryscrambling decides to halt all materializations because the problem that triggered scrambling is re-solved. Later, suspended materializations can be reactivated, for example in response to the time-outof one active operator.6. closed. When an operator completes (end of stream, third external event), it closes and the schedulermoves it to the Closed state.3.2 Modifying the Query TreeAfter it has chosen an operator to reschedule, the query scrambling scheduler analyses the query tree todetermine if it has to introduce a materialization operator as a surrogate parent to allow this operator torun. If not, then the scheduler simply starts a thread that opens the operator. In contrast, if a surrogateparent is required, then the scheduler creates a new materialization operator and inserts it between therescheduled operator and its parent. Patching a query tree is fairly simple with iterators, since they interactthrough well de�ned, implementation independent, interfaces. As such, neither the parent nor the childoperator needs to be aware of the patch.Once the surrogate parent is placed in the tree, the scheduler opens it. After calling open() on its child,the materialization operator continuously calls next() and materializes the received tuples to disk. The childoperator is closed when it produces its last tuple. At this point the materialization is complete.Eventually, the original parent of the rescheduled operator will be scheduled to execute. Due to thepatching of the query tree, when it calls open() on its child, it actually re-opens the materialization operator.In response to next() calls, the materialization operator returns the tuples that it previously materialized.If the materialization was complete then its child operator need never be called. On the other hand, if thematerialization was incomplete, then once its supply of materialized tuples is exhausted, it simply passesany subsequent next() calls to its child, and passes each tuple obtained in this manner back to its parent.4 PoliciesWe now present the scheduling and rescheduling policies that we study in the subsequent sections. Two ofthese policies are static while the two others are reactive. The static policies do not change the schedulingof operators even when delays are encountered (in fact, they are not aware that a delay has occurred). Incontrast, the reactive policies change the original schedule once a delay is experienced. The two reactivepolicies di�er by the operators that they are allowed to reschedule. Because of the memory problems thatcan arise when rescheduling subtrees, we focus on policies that have very manageable memory requirements.In particular, one policy only materializes relations obtained directly from remote sources and the otherpolicy is able to in addition, reschedule a single join operator at a time. The four policies are:11



Normal Iterator Execution (ITR). The �rst policy, which we use as a baseline, is a static, iterator-based execution as described in Section 2.1.Materialize Always (MA). MA is also a static policy, but di�ers from ITR in that it it immediatelyinitiates the materialization of all data sources at query startup time. When the query starts its execution,this policy inserts in the query tree materialization operators for all relations that are to be obtained fromthe remote sources. Once those operators have been inserted in the tree, the policy spawns threads to openthem. Materializations continuously pull-over remote data and write this data on the local disk. In parallelto those materializations, the query continues its execution. When an operator (a join for example) needsdata from a relation that is currently materialized, this join stops this particular materialization (othersremain active), consumes the local data and requests the rest of this relation (if any) from the remote server.Of course, since MA is a static policy, it made aware of any delays that may be encountered during a queryexecution, but rather, the e�ected operators simply block. MA is used to show the impact of parallel fetchingfrom remote sources in the absence of a reactive policy.Reactive Materialize (RM ). The simplest of the two reactive policies we study is RM . In the absence ofdelay, RM behaves identically to the static ITR policy. As soon as the query experiences a delay, it switchesto a mode similar to MA, that is, all data sources are opened and their data materialized in parallel. Anydelay experienced by on-going materializations do not trigger any special action. When the data source thatcaused this opening resumes, on-going materializations are suspended and the query returns to standardexecution. If another delay is experienced, the suspended materializations are resumed, and they continueto bring data in parallel. The choice of suspending rescheduled operators was made because materializationsconsume little memory.Reactive Materialize and Join (RMJ ). This policy has the same basic behavior as RM , except thatit also is able to reschedule the execution of single join at a time. As a result, this policy assumes that thereis enough memory available to support the execution of this join. Because there is only enough memory fora single rescheduled join to execute, such a join is not initiated until both of its input relations have beenfully materialized to the local disk; in this way it is known that the rescheduled join will not be blockedby any delayed data. Joins are elected for execution on a �rst-come �rst-served basis. Materialization ofjoins can run concurrently with on-going materializations of base relations. As in the previous policy, allon-going materializations (i.e., of base relations and/or joins) are suspended if delayed data begins to arrive.We chose to study RMJ because it allows for potentially more work to be done by scrambling rescheduling,but it also has very manageable memory requirements.5 Experimental FrameworkIn this section we �rst describe the simulation environment used to evaluate several di�erent policies forscrambling queries. We then present the workload used to perform these experiments.12



Parameter Value DescriptionNumSites 9 number of sitesMips 30 CPU speed (106 instr/sec)NumDisks 1 number of disks per siteDskPageSize 4096 size of a disk page (bytes)RequestSize 40 size of a data request (bytes)TransferSize 8192 size of a data transfer (bytes)Compare 4 instr. to apply a predicateHashInst 25 instr. to hash a tupleMove 2 instr. to copy 4 bytesMemory 2048 memory size (in disk pages)NetBw 0.1, 5, 20 network bandwidth (Mbits/sec)MsgInst 20000 instructions to send or receive a messagePerSizeMI 3 instructions per byte sentDiskInst 5000 instructions to read a page from diskTable 2: Simulation Parameters and Main Settings5.1 Simulation EnvironmentTo study the performance of scrambling rescheduling, we implemented the scrambling architecture of Sec-tion 3 and the policies described in Section 4 on top an existing simulator that models a heterogeneous,peer-to-peer database system such as SHORE [CDF+94]. The simulator we used provides a detailed modelof query processing costs in such a system. Here, we briey describe the simulator, focusing on the as-pects that are pertinent to our experiments. More detailed descriptions of the simulator can be foundin [FJK96, DFJ+96].Table 2 shows the main parameters for con�guring the simulator, and the settings used for this study.Every site has a CPU whose speed is speci�ed by the Mips parameter, NumDisks disks, and a main-memorybu�er pool of size Memory. For the current study, the simulator was con�gured to model a client-serversystem consisting of a single client and eight servers. Each site, except the query execution site, stores onebase relation. In all the experiments described in this paper, the servers were not performing any other workthen servicing pages upon request, that is, the load on servers is minimum.The CPU at each site is modeled as a FIFO queue and the simulator charges for all the functionsperformed by query operators like hashing, comparing, and moving tuples in memory, as well as for systemcosts such as disk I/O processing and network protocol overhead as described below.Disks are modeled using a detailed characterization and settings adapted from the ZetaSimmodel [Bro92].The disk model includes costs for random and sequential physical accesses and also charges for softwareoperations implementing I/Os. The unit of disk I/O for the database is pages of size DskPageSize. The disksprefetch pages when reads are performed. In the current version of the simulator, 4 pages are obtained foreach read access request made to the disk. In addition to the disk costs, there is always a charge of DiskInstinstructions for each disk access. In our experiments, disks were seen to deliver data at an average rate ofapproximately 10 Mbits/sec with sequential I/Os, and a rate of approximately 3 Mbits/sec with randomI/Os.In this study, the disk at the query execution site (i.e., client) is used only to temporarily store interme-13



diate results and base relations that are materialized during a query execution. The actual base relationsare stored on disk at the servers (one relation per server, in this case). Although servers are con�gured withmemory, the workload used in the experiments here is performed such that the server memory is not useful(i.e., there is no caching across queries and relations are accessed once per query) . Thus, in the experimentsthat follow, base relations are always read (sequentially) from the servers' disks for each query execution.The network is modeled simply as a FIFO queue with a bandwidth dictated by the NetBw parameter;All processing sites share this single communication link. Three di�erent bandwidth settings are used inthe experiments that follow: slow (0.1 Mbit/sec), medium (5 Mbit/sec), and fast (20 Mbit/sec) in orderto study cases where the system is network-bound, roughly balanced, and disk-bound at the query siterespectively. The details of a particular technology (Ethernet, ATM) are not modeled. The cost of sendingmessages, however, is modeled as follows: the simulator charges for the time-on-the-wire (depending on themessage size and the network bandwidth) as well as CPU instructions for networking protocol operationswhich consist of a �xed cost per message (MsgInst) and a per-byte cost based on the size of the message(PerSizeMI ). The CPU costs for messages are paid both at the sender and the receiver.The query execution model uses a synchronous (i.e., non-streaming) approach to remote data access.That is, when an operator running at the query site needs data from a remote source, it sends a request(of RequestSize bytes) to that source and waits for the reply (of course, other operators can run during thisperiod). A source responds with with a block of TransferSize bytes of data. After the operator has consumedthis data, it issues another request to the source.Finally, we modeled a bursty environment by adding to each remote server a small piece of software.Every time a message is about to be sent by a site, the software checks to see if the message must be delayed.The duration of the delay as well as the moment when the delay is e�ectively enforced are fully con�gurable,and can range from a �xed duration enforced every time a given number of messages have been exchangedto a random duration and a random occurrence of delays using several probability distributions.For all the experiments, we have set the value of the timer that actives the scheduler as a multipleof the expected round-trip time for requesting and obtaining a data page from an unloaded source in anunloaded network. In our experiments (except where noted) the timer is set to ten times the duration ofthis round-trip.5.2 WorkloadThe workload used for all the experiments described in Section 6 consists of two versions of the querytree shown in Figure 2. The basic query is an 8-way join structured as a balanced bushy tree. As statedin Section 5.1, each base relation (A through H) is stored on a separate remote site, and scans of the baserelations are executed at the remote servers. All other operators, i.e., joins (represented by circles in the�gure), are executed at the query execution site. In the experiments we focus our study on hash-based joins.The tuples of all base relations are 100 bytes each. As shown in Figure 2, there are two parametersfor setting the (possibly di�erent) cardinalities of the base relations. These parameters are indicated by the14
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Figure 2: Query Tree Used for the Experimentsletters n andm in the �gure. These same parameters are also used to set the cardinalities of the intermediateresults produced by the various joins.The two versions of the tree that are used in the study are called uniform and non-uniform; they di�erin the settings of the cardinality parameters. For the uniform tree, n and m are set to be equal so that allbase relations have the same size and all joins return a result that is the size of a single base relation. Inthis case, we set n=m=10,000, so that all base relations and join results consist of 1MB (250 disk pages)each. With this setting, all hash joins can be performed without partitioning.For the non-uniform tree,m is set to be an order of magnitude greater than n (n=10,000 andm=100,000).In this case we have base relations and intermediate results of either 1MB (250 pages) or 10MB (2,500 pages).The order of magnitude di�erence between n and m has two major consequences in our study. First, thehash join of relations C and D requires partitioning in this case, because neither of the relations can �t inmemory. Second, the query execution makes better use of pipelining here than in the uniform query tree,as the right-hand sides of many of the joins are large. Recall that given su�cient memory, right-deep hashjoins can be executed in a pipelined fashion, thereby avoiding materialization of the right-hand input (i.e.,the probe relation). Thus, although many of the right-hand sides are relatively large in this query, they donot need to be staged to and from disk when the query executes normally.These particular queries were chosen for the following reasons. First, an 8-way join query is complexenough to provide su�cient latitude for the scrambling policies and it allows us to investigate the di�erencesand similarities among them. Second, the use of a bushy tree, which is more general than a left- or right-deeptree (i.e., it contains both left- and right-deep components), allows us to investigate scrambling behavior forboth left- and right-deep plans. In addition, a bushy tree provides additional options for scrambling beyondthose that arise with the more restrictive plans. Finally, we study both the uniform and non-uniform casesin order to compare scrambling in a situation where changes to the execution schedule are likely to havesmall e�ects on performance (i.e., the uniform case) and in a situation where it could conceivably have alarge, negative impact on performance (i.e., the non-uniform case). Thus, these two queries, plus the abilityto vary key system parameters such as the network speed, provide su�cient exibility to allow us to covera large area of the performance space for dynamic scheduling.We also describe (in Section 6.2.4) a set of experiments designed to study the potential impact of scram-15
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Figure 3: Response time, Uniform Treebling rescheduling on an application environment. In this section we use in a simpli�ed version of a queryof the TPC-D benchmark.6 Experiments and ResultsIn this section we present experiments that analyze the trade-o�s raised by scrambling rescheduling. We�rst investigate the impact of parallel materializations in the absence of delays. We then introduce delaysin the execution of the queries to explore the potential bene�ts of overlapping delays with other work forvarious delays and network bandwidths.6.1 Parallel Materializations and Network SpeedAs stated in the introduction, the key technique that Query Scrambling rescheduling uses is the introductionof parallelism into the execution of a query in response to unexpected delays. Such parallelism is intended tohide delays by overlapping them with other useful work performed while waiting for missing data to arrive.Before investigating the performance of scrambling rescheduling policies in the presence of delays, however,we �rst examine the impact of parallelism in the absence of delays. By doing so, we are able to isolate thepotential bene�ts and consequences of such parallelism on the normal execution of queries.Figure 3 shows the response times of the Uniform query executed with the ITR and MA policies as thenetwork bandwidth (NetBw) is increased from 2 Mbits/sec to 20 Mbits/sec.5 As expected, the responsetime for both policies improves dramatically as the bandwidth is increased up to a point and then levels out.With very slow networks, the cost of query execution is dominated by the network costs and the policieshave similar performance. As the network speed is increased (up to 5 Mbits/sec), the performance of thepolicies begins to diverge and ITR shows better performance than MA.The performance of ITR is quite simple to explain. The main components of performance in this system5Results for bandwidths lower than 2 Mbits/sec are not shown here. The response-time in this range is nearly totallydependent on the network speed, and thus, it increases proportionally with the slowdown of the network.16



are the local (i.e. query site) processing and I/O, the remote (server) processing and I/O, and the network.With the ITR policy, very little of this work is overlapped. At low bandwidths, the portion of the responsetime that is due to network time-on-the wire costs is signi�cant (e.g., 75% of the total at 2Mbit/sec). Asthe network speed is increased, the portion of the response time that is due to time-on-the-wire decreasesand has smaller impact on the overall performance of ITR. Thus, as can be seen in Figure 3, improving thebandwidth for ITR beyond a certain point provides increasingly smaller gains.In contrast to ITR, MA has a high degree of parallelism, so the explanation behind its performance hereis slightly more subtle. At low bandwidths, the network can become a bottleneck when data are requestedfrom multiple sources in parallel. When the network is the bottleneck, the performance of MA is almostcompletely dependent on it.6 As the network bandwidth is increased, it no longer is the bottleneck, butthe local disk (at the query site) soon becomes a bottleneck. Recall that MA obtains its high degree ofparallelism by materializing data on the local disk. This materialization costs disk writes when the data isbrought in, as well as disk reads when the data is eventually accessed by query processing.Once the disk bottleneck is reached by MA, it actually has worse performance than ITR. This is becausethe ITR policy does no local I/O for the Uniform query. With a fast network, its performance is dictatedby the local query processing and the (relatively fast) sequential I/Os done at the remote servers. The samegeneral performance behavior, with larger response times, is observed for the two policies when using theNon-Uniform query.The important lesson here is that materializing base relations in parallel with the query execution doesnot improve performance in the absence of delays. For slower networks, the performance of ITR and MAwere roughly equivalent, and for faster networks, MA actually performed worse than ITR.6.2 Rescheduling With DelaysWe examined the performance of ITR and MA in the absence of delays across a range of network speeds, inorder to gain an understanding of the performance tradeo�s of parallel materialization. In this section, weexamine ITR and MA policies as well as two reactive ones (RM and RMJ ) in the presence of various delaysfor slow (0.1 Mbits/sec), medium (5 Mbits/sec) and fast (20 Mbits/sec) network speeds. The slow networksetting is intended to model speeds that are on the order of what could be obtained at a decently connectedsite with today's Internet technology. As shown in the previous section, with a slow network, little care needsto be taken when using the local resources at the query execution site, as they contributed at most a smallportion to the total response time. The medium network speed was chosen so that the system would beroughly balanced between network bandwidth and local disk rates (under mixed random/sequential access)and the fast network is used to examine the performance of the policies when the local resources are thecrucial factor in performance.In the following, we examine the performance of the policies under di�erent delay scenarios (e.g., burstyand initial delay) for the two query trees presented in Section 5.2. We �rst present the results for the Uniform6Once all data has been downloaded by MA, there is a relatively small amount of additional work that must be performedat the query site in order to complete the query. The cost of this work is not impacted by the network bottleneck.17
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Figure 4: Slowdown - Bursty Delay, All RelationsNet: 0.1 Mbps, Delay: 10.52 sec (3x Timer), UniformTree 0
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Figure 5: Slowdown- Bursty Delay, All RelationsNet: 20 Mbps, Delay: 0.63 sec (3x Timer), Uniform Treequery and then for the Non-Uniform one.6.2.1 Uniform Query Tree: Bursty EnvironmentWe �rst examine the performance of the policies when all of the base relations are subject to random delaysthroughout the entire execution of a query. Delay is applied in the following way: Each remote source ipsa weighted coin before sending a page of tuples to the query execution site. The outcome of the coin tossdetermines if the source should transmit the page normally, or if it should stall for a speci�ed period beforesending its page.7 In all experiments, the timer used by the reactive policies to detect problems with aremote source is set to 10 times the expected round-trip delay time for a data request between the querysite and a source (thus, the timer is di�erent for each NetBw setting). In this experiment, the delay period(for each random delay) is set to three times the value of this timer. Because of the �xed value for the delayand timer, it is known that the query processor will timeout on a source each time that source delays. Inthis case, the timeout will be detected one-third of the way through the delay.In the remainder of the performance section, all graphs show the percentage slowdown of the query(compared to the non-delayed case) as the probability of delay for each page transmission is increased alongthe x-axis. Figure 4 shows the slowdown for Uniform query under the various policies, using the slow network(0.1 Mbits/sec).8 In this case, the duration of the delay is 10.52 sec (the is timer set to 3.5 seconds, here).Slowdown is computed by subtracting the normal response time for the query (in this case, 678.4 seconds)in the absence of delays, from the observed response time in the delayed case, and dividing by the normalresponse time.As can be seen in the �gure, the slowdown for all policies shown increases linearly with the delay proba-7In those cases where random delays are used we ran each experiment 12 times and then averaged the results to get the �nalresults presented here.8Although we measured slowdowns for delay probabilities as high as 90%, we only show probabilities upto 25%, here, aslines remain linear beyond this point. 18



bility, but there are dramatic di�erences in the slopes of the lines. The ITR policy is the most sensitive todelay here. Since ITR accesses the base relations sequentially it incurs the full cost of every delay on everysource. In this experiment, at 10% delay probability the query runs 3.1 times slower than when there are nodelays. At 25% delay probability (not shown) the query runs 7.75 times slower.This result is to be expected. The static, sequential scheduler is unable to overlap any delays, so queryexecution time is increased by the sum of the delays experienced by all of the remote sources. At 10%delay probability, there are 200 delays of 10.52 seconds each, so the total delay is 2104 seconds, comparedto a normal query execution time of only 678.4 seconds. In this case, the slowdown for the standardquery execution at 10% delay probability is (2782:4� 678:4)=678:4 = 3:1. At 25% delay probability, thereare 500 delays of 10.52 seconds each, so the total delay is 5260 seconds. The corresponding slowdown is(5938:4� 678:4)=678:4 = 7:75.Turning to the non-sequential policies, it can be seen that they too incur a linear slowdown as the delayprobability is increased. The slopes of the increases, however, are much lower than for the sequential policy.By requesting data from multiple sources, the three policies can tolerate delays of a subset of those sourcesby overlapping them with other work.The best policy for coping with delay in this experiment is MA. This policy is the most aggressive one,since it immediately initiates parallel materializations and continuously materializes data regardless of thepotential delays. At 25% delay probability, MA executes in 905.45 seconds, that is, it is slowed by a factorof 33% with respect to the execution time of the query with no delays. Since the total delay in this caseis 5260 seconds, this policy is able to hide 4354 seconds of delay by overlapping it with other useful work(e.g., the retrieval of other base relations) and other delays. Thus, while in the no-delay case with the slownetwork, MA and ITR displayed similar performance, in the presence of multiple delays (as may arise in abursty environment), MA has a tremendous advantage over ITR.The two reactive policies, RM and RMJ are also very bene�cial here, but their performance is slightlyworse than MA. The performance di�erence arises because the reactive policies must wait until the timerexpires before resuming materializations when the left-most (i.e., non-scrambled) data source experiences anew delay. In contrast, MA does not rely on any timer mechanism. The performance di�erence seen in the�gure, thus, is the sum of all the timer waits encountered by the reactive policies. In this scenario, withbursty delays on all relations, even a low probability of delay results in signi�cant burstiness, so an aggressivepolicy will work well here.Figure 5 shows the performance of the policies when the fast network speed (20 Mbits/sec) is used.9Here, even with a very fast network, the policies that hide delays using parallel materializations do well, andthe more aggressive MA policy performs best here. This result is in contrast to the no delay case (Figure 3)where the performance of MA was worse than ITR for faster networks. The reason for this di�erence is thatin this experiment, the large amount of delay overwhelms the cost of local processing, so even though MAperforms much local I/O here, that I/O is more than paid for by the overlapping of delays.9The results for the balanced network are similar, so are not shown here.19



6.2.2 Uniform Query Tree: Initial DelayOne lesson from preceding experiments is that if multiple sources are likely to have multiple delays, eventhe most simple forms of parallelism o�er a good opportunity to hide delays and that an aggressive policycan do well. In this section, we examine the potential negative impact of scrambling too aggressively byinvestigating a case where there is much less delay than in the previous cases. To accomplish this, we varythe length of a single, initial delay on the left-most relation of the query tree (i.e., relation A). As statedin Section 1, under the initial delay model, sources experience a single delay before transmitting their �rsttuple, but perform reliably after that. The x-axis on the graphs shows the magnitude of this initial delayas a percentage of the time required to execute the query in the absence of any delay. The y-axis shows, asbefore, the percent slowdown compared to normal execution.
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Figure 6: Slowdown, Initial Delay on ANet: 0.1 Mbps, Delay % of 678.4 sec, Uniform Tree 0
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Figure 7: Slowdown, Initial Delay on ANet: 5 Mbps, Delay % of 23.7 sec, Uniform TreeFigure 6 shows the performance of the policies for the slow network. In this case, the execution timeof the ITR policy is 678.4 seconds, and is completely dominated by the network cost. The result of thisimbalance is that the use of local resources at the query processing site is e�ectively free, so all scramblingpolicies can hide virtually all of the delay up to 80%, after which they run out of work to perform and theslowdown increases linearly with the delay.Figure 7 shows the performance of the policies with the balanced network. With this setting, the queryexecution time with no delays is 23.7 seconds and the overhead of materializations can have a somewhatlarger impact. In this �gure, all three parallel policies are able to hide most of the delay up to 70%, afterwhich they increase linearly with the delay. Beyond 70%, RMJ , the reactive policy that can instigate joinprocessing in addition to materializing base relations has a slight advantage over the other parallel policiesbecause it performs some additional work (i.e., joins) whereas the other policies block after all base relationshave been materialized if the tuples of A are still missing. As such, once the tuples of A have been received,the work that must be done by RMJ to complete the query is small and the query �nishes relatively quickly.Although it is not shown in the graph, with higher delays (e.g., beyond 130%) RMJ eventually performs all20



the join processing it can without A (i.e. C 1 D, and E 1 F 1 G 1 H) at which point its response timecurve becomes parallel to the others.If a slow network makes local disk I/O virtually free, then a faster network makes local I/O relativelymore expensive. Figure 8 shows the performance of the polices when the fast network is used. In thiscase, MA, the most aggressive policy, performs relatively poorly. MA always materializes all base relationsconcurrently with the normal query execution, so in the presence of short delays, MA, which is a staticpolicy, commits to reading most of its data from the local disk using random I/O (3 Mbit/sec). In contrast,ITR is able to access its data over the high speed network in this case. (It is important to note, however,that even though the network bandwidth is 20 Mbits/sec here, ITR accesses remote sources one-at-a-time,and so is limited by the speed at which a remote source can provide data, i.e., 10 Mbits/sec.)
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Figure 8: Slowdown, Initial Delay on ANet: 20 Mbps, Delay % of 15.58 sec, Uniform TreeThe net e�ect is that in this case, the extra cost of the random, local I/O that MA performs in order tomaterialize and read base relations outweighs the bene�t gained by hiding delay. Therefore, MA performsworse than ITR up until a delay of about 45%. RM and RMJ avoid the problems of MA, because both areable to stop the materialization of base relations when the delay of A is over. Because of this, the reactivepolicies are able to read their materialized data sequentially and thus, unlike MA, can obtain materializeddata at the same speed (i.e., 10 Mbits/sec) that ITR can obtain data from the network. As a result, thereactive policies, unlike the static ones, are able to e�ectively hide delay by materializing base relations andthen reading that materialized data for no penalty (compared to ITR) after the delay is over. As the delayis increased, the penalty that MA pays is erased, and at a delay of 95% and beyond, it performs similarly toRM . Finally, it should be noted that as seen in the balanced network case (Figure 7) RMJ performs slightlybetter than RM and MA at higher delays because it is able to overlap somewhat more delay by executingjoins. 21
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Figure 9: Slowdown, Bursty Delay on All RelationsNet: 0.1 Mbps, Delay: 10.52 sec (3x Timer),Non-Uniform Tree 0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175 200

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 1
40

.5
 s

ec
)

Delay % (relative to 140.5 sec)

ITR
RMJ
RM
MA

Figure 10: Slowdown, Initial Delay on ANet: 20 Mbps, Delay % of 140.5 sec, Non-Uniform Tree6.2.3 Non Uniform Query TreeIn this section, we briey describe the performance of the policies with the non-uniform query tree asdescribed in Section 5.2. This tree contains a mix of large and small relations, as well as high- and low-selectivity joins, and allows us to examine the performance of the policies in a situation where changes tothe execution plan chosen by the optimizer could conceivably have a large, negative impact on performance.Recall that one impact of the non-uniform query is that one of its joins requires the hash join algorithm touse partitioning. We �rst investigate the performance of the policies in the bursty environment and then inthe case of a single initial delay.For the bursty delay cases, the results for the non-uniform query show the same behavior as was seenfor the uniform query. That is, for all three network speeds, the parallel policies dramatically improve theperformance of the query when it experiences many delays. Such a result is to be expected, since using localresources to support overlapping delay is virtually free compared to the amount of experienced delays. Forthe balanced and fast networks (not shown) the results are essentially the same as those for the Uniformquery in Section 6.2.1. For the slow network (Figure 9), the results are also very similar to the Uniform case,except that with the mixed relation sizes of this tree, the parallel policies are slightly less e�ective in hidingdelay than with the Uniform query tree.Figure 10 shows the performance of the policies in the initial delay case for the fast network. As was seenfor the uniform query (Figure 8). The performance here also quite similar to what was seen for the uniformquery except for one aspect: At 125% delay, RMJ initiates the partitioning of the materialized base relationin order to perform the join of C and D. Between 125% and 175%, therefore, its curve is at because thiscorresponds to the time required to partition the two relations before doing the join. This work is entirelybene�cial to the query and does not incur any additional overhead because these two relations have to bepartitioned anyway, either by the policy or by the query once the delay is over. Beyond 175%, RMJ has22



performed all the possible work and its performance increases linearly with the delay.6.2.4 Impact of ReschedulingIn this section we describe a set of experiments to study the potential impact of scrambling rescheduling fora more application-oriented query than the uniform and non-uniform cases shown so far. The experimentsuse a simpli�cation of the query Q2 of the TPC-D benchmark [Tra95]. We chose this query because it isrelatively simple, yet processes a �ve-way join. The cardinalities of the relations involved in this query areas follows: PART: 200,00 tuples of 164 bytes, SUPPLIER (S): 10,000 tuples of 197 bytes, PARTSUPP (PS):800,000 tuples of 219 bytes, NATION (N): 25 tuples of 185 bytes and REGION (R) 5 tuples of 181 bytes.The query is:SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE, S_COMMENTFROM PART, SUPPLIER, PARTSUPP, NATION, REGIONWHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND P_TYPE LIKE `BRASS'AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = `EUROPE'In this experiment, each base relation resides on a separate data source. Selects are performed at thedata sources and the query execution site receives only the selected tuples. Figure 11 shows the query treerun at the query source site and the resulting cardinalities of the input relations and joins.
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Delay No Scrambling Scrambling %no delay 28.02on R 53.24 38.00 28.62on N 53.24 38.17 28.29on S 53.24 41.60 21.86on P 53.24 41.66 21.74on PS 53.24 53.23 0.01Table 3: Response Times (sec), 5 Mbits/s, 90% initial delay (25.22 sec)% Improvement Total0.00 30.01 to 10.00 610.01 to 20.00 1120.01 to 30.00 1030.01 to 40.00 12> 40.00 3Table 4: Histogram of Observed Improvements (RM Policy)PS is the last relation to be processed, all other work has been performed and scrambling cannot overlapun�nished work with the delays in PS. Generally, as would be expected, performance improvement declinesas the delay appears in relations later in the plan. Also, generally, performance improvement declines asthe network speed increases. Table 3 shows a typical experimental result. We see that the performanceimprovement is above 20% for delays on all relations except for the delay of PS, as noted above. This istypical for scrambling in the initial delay environment. The general performance improvement is indicatedby the delay on R, and performance declines (slightly) as the delay appears later into the tree, until a sharpdrop at the delay of the last relation. Finally, we also categorized all 45 experiments for the RM policy bythe size of improvement. This classi�cation is given in Table 4.6.2.5 DiscussionThe experiments of this section showed that simple reactive polices such as RM and RMJ are fairly robust,even when some of the relations and intermediate results are scaled up by an order of magnitude. Themain reason for this robustness is that these policies constantly monitor the execution of delays and enforceparallelism only when delays are experienced. As such, they are able to hide the delays with useful workwithout incurring a high additional cost. Even when base relations are big, as is the case for the non-uniformquery tree, these policies bring a substantial improvement. One reason that materializing large relationsdoes not hurt performance for these policies is that they suspend the rescheduled operations when delaysare short so that extra work is not performed in the absence of delays. The overhead of materializationsbecomes signi�cant only if most or all of the relations can be materialized and this can only happen whenthe delay is large. For the same reason, the joins materialized by RMJ do not typically hurt performance.Another case that we studied (but do not present here) is for Cartesian products and joins whose results24



are signi�cantly larger than the sum of their inputs. In such a case it conceivable that materializing such aresult could hurt performance, but we did not see dramatic di�erences in our studies (for the reasons outlinedabove). Furthermore, query optimizers typically try to avoid such costly operations, making the occurrenceof these cases less likely. Interestingly, it is fairly easy to protect query scrambling against such pathologicalcases. For example, we extended the policies to materialize only joins having a small ratio between the sizeof their result and the size of their input. This policy was able to avoid problems in the few cases wherethey arose.7 Related WorkAs stated in the introduction, techniques that try to adapt a query to a changing environment broadly fallin the proactive and reactive categories.In the proactive category, the techniques gather as much information as possible to predict the state of therun-time system during query execution and use this information to construct the best query execution plan.Volcano [CG94, Gra93] introduces at optimization time choose-plan operators in the query tree that enablethe selection of a particular query execution plan at runtime once enough information has been gathered.HERMES [ACPS96] records the costs of remote accesses into an history used to better estimate the costs offuture accesses. Mariposa [SAL+96] builds query plans after having negotiated a price-performance trade-o�with data providers. All these approaches ultimately decide at query start-up time the execution plan of aquery, which however remains �xed for the whole duration of the query execution.In contrast to the proactive category, techniques in reactive category monitor the progress of queries andmodify query execution after execution has started. (Note that techniques in the proactive and reactivecategories are generally complementary.) Monitoring determines if execution should deviate from the planfor some unforeseen reason. Reasons include inaccurate estimates for intermediate result sizes and directconsiderations of problems with response times from remote sources are not accounted for.[BRJ89] proposes a reactive technique in which the execution of a distributed query proceeds throughthree phases: (i) a monitoring phase observing the progress of the execution of the query; (ii) a decisionmaking phase during which a new strategy for executing the query is computed; and (iii) a corrective phasein which the current execution is aborted and a new execution is initiated. A similar approach is used inRdb/VMS [Ant93].Both InterViso [TTC+90] and MOOD [ONK+96] are heterogeneous distributed databases that performquery optimization while the query is executing. Heterogeneous distributed database divide a query intoa collection of subqueries and a composition query. There is one subquery for each remote source and acomposition query than combines the results of the subqueries. These systems use a reactive technique thatinterleaves the execution of subqueries with the execution of the composition query by monitoring the arrivalof the answer to subqueries and dynamically executing the composition query.A technique similar in spirit to scrambling rescheduling is used to improve the access time to tertiarystorage in [SS96]. This work divides queries into parts that can be executed independently in arbitrary order.25



The order in which the parts are executed is dynamically chosen depending on the data each part needs tofetch, the state of the disk cache and the state of the the tertiary memory (i.e., the platter currently loaded).The scheduler's objective is to maximize the overall system throughput.As stated in Section 1, the work described here builds on our initial de�nition of Query Scrambling [AFTU96].Additional experimental results are also available in reference [AFT96, pages 11{21].8 ConclusionsQuery scrambling is a reactive technique for coping with unpredictable delays for wide-area remote dataaccess. Query scrambling, in its most general sense, monitors query execution and reacts to delays by on-the-y rescheduling query operators and possibly synthesizing new operators to run. This article, we focusedon the tradeo�s that arise for the rescheduling portion of the query scrambling technique.We �rst described the performance problems that arise from the iterator model, i.e., when executing astatic query plan in the presence of unexpected delays. We then discussed alternatives for rescheduling andthe tradeo�s among them. In particular, we focused on the way that memory management issues inuencethe feasibility of di�erent rescheduling options. In general, memory management issues lead to reschedulingtechniques that use minimal amounts of memory. Such techniques allow operators to be run \out-of-turn"by materializing their results to the local disk of the query execution site.We studied two reactive policies: RM , which initiates the materialization of data from all remote sourceswhen a delay is detected during normal query processing; and RMJ , which works similarly to RM , but inaddition, has the ability to reschedule (and materialize) individual join operators, one-at-a-time. RMJ usesmore memory to be reserved for rescheduling than RM but it has a greater opportunity to perform usefulwork when delays arise. The memory requirements for RMJ are much less than for a more general policy thatwould allow entire subtrees to be rescheduled at once. More importantly,RMJ avoids the potential problemsthat a more general policy would encounter if the rescheduled operations themselves became delayed.The two reactive policies were compared to two static ones: ITR andMA. Policy ITR is an iterator-basedexecution policy, whileMA augments such a policy by opening scans on all remote sources in parallel. PolicyMA was used to investigate the impact of parallelism outside of a reactive policy. The polices were comparedusing a uniform and a non-uniform query tree. In addition, results using a simpli�ed TPC-D query were alsopresented. The experiments were run using three network settings: one where the network was the dominantcost, one where the network and local disk were balanced, and one where the system was disk-bound at thequery execution site. The slow setting is of the same order of what many current wide-area environmentsexperience (even if the actual wires are somewhat faster). The balanced and fast networks show how thepolicies will change as deployed network technology continues to improve.The performance studies showed that in the absence of delay, parallel materializations had little impact onperformance for slow networks and were detrimental for fast networks. When delays were present, however,such parallelism provided substantial bene�ts; in a situation where all data sources are subject to delays, theperformance improvement due to parallel materializations is a factor of the number of sites involved in the26
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