remote sensin N
?J & bpy

Technical Note

Development of a Machine Learning-Based
Radiometric Bias Correction for NOAA’s Microwave
Integrated Retrieval System (MiRS)

Yan Zhou * and Christopher Grassotti

Cooperative Institute for Satellite and Earth System Studies, Earth System Science Interdisciplinary Center,
University of Maryland, College Park, MD 20742, USA; christopher.grassotti@noaa.gov
* Correspondence: yanzhou@umd.edu

check for
Received: 28 August 2020; Accepted: 24 September 2020; Published: 26 September 2020 updates

Abstract: We present the development of a dynamic over-ocean radiometric bias correction for the
Microwave Integrated Retrieval System (MiRS) which accounts for spatial, temporal, spectral, and
angular dependence of the systematic differences between observed and forward model-simulated
radiances. The dynamic bias correction, which utilizes a deep neural network approach, is designed to
incorporate dependence on the atmospheric and surface conditions that impact forward model biases.
The approach utilizes collocations of observed Suomi National Polar-orbiting Partnership/Advanced
Technology Microwave Sounder (SNPP/ATMS) radiances and European Centre for Medium-Range
Weather Forecasts (ECMWF) model analyses which are used as input to the Community Radiative
Transfer Model (CRTM) forward model to develop training data of radiometric biases. Analysis
of the neural network performance indicates that in many channels, the dynamic bias is able to
reproduce realistically both the spatial patterns of the original bias and its probability distribution
function. Furthermore, retrieval impact experiments on independent data show that, compared with
the baseline static bias correction, using the dynamic bias correction can improve temperature and
water vapor profile retrievals, particularly in regions with higher Cloud Liquid Water (CLW) amounts.
Ocean surface emissivity retrievals are also improved, for example at 23.8 GHz, showing an increase
in correlation from 0.59 to 0.67 and a reduction of standard deviation from 0.035 to 0.026.
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1. Introduction

1.1. MiRS

The Microwave Integrated Retrieval System (MiRS, https://www.star.nesdis.noaa.gov/mirs) has
been the official operational microwave retrieval algorithm of the National Oceanic and Atmospheric
Administration (NOAA) since 2007. Compared to visible and infrared radiation, microwaves have
a longer wavelength, and thus can penetrate through the atmosphere more effectively. This feature
allows microwave observations under almost all weather conditions, including in cloudy and rainy
atmospheres. MiRS follows a one-dimensional variational (1IDVAR) methodology [1,2]. The inversion
is an iterative physical algorithm in which the fundamental physical attributes affecting the microwave
observations are retrieved physically, including the profiles of atmospheric temperature, water vapor,
non-precipitating cloud, hydrometeors, as well as surface emissivity and skin temperature [3]. The Joint
Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) [4,5] is
used as the forward and Jacobian operator to simulate the radiances at each iteration prior to fitting
the measurements to within the combined instrument and forward model noise level. After the
core parameters of the state vector are retrieved in the 1IDVAR step, an additional post-processing is
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performed to retrieve derived parameters based on inputs from the core 1IDVAR retrieval. The post
processing products include total precipitable water (TPW), snow water equivalent (SWE), snowfall
rate (SFR), surface precipitation rate, etc. [6]

MiRS has also been integrated into the Community Satellite Processing Package (CSPP), developed
at the University of Wisconsin/Space Science and Engineering Center for users in the NOAA Direct
Broadcast/Readout community. MiRS retrieval products are used routinely in operational weather
analyses and forecasts, and also serve as inputs to downstream applications that are also used in
operations. For example, MiRS water vapor profiles and TPW are used to generate the multi-satellite
blended layer precipitable water and blended TPW products [7]. MiRS profiles of temperature and water
vapor are also used as inputs to the tropical cyclone (TC) intensity estimation algorithm, the hurricane
intensity and structure algorithm (HISA), developed at the Colorado State University/Cooperative
Institute for Research in the Atmosphere (CSU/CIRA) [8] which is used operationally at the National
Hurricane Center. Finally, MiRS precipitation rates are used as one of several satellite-based precipitation
inputs to the NOAA Climate Prediction Center (CPC) Morphing Technique Algorithm (CMORPH) [9,10].
A schematic of the MiRS processing components and data flow is shown in Figure 1.
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Figure 1. Schematic of MiRS processing components and data flow showing MiRS core retrieval and

/

post-processing components. Core products are retrieved simultaneously as part of the state vector.
Post-processing products are derived through vertical integration (water vapor, hydrometeors), catalogs
(SIC, SWE), or fast regressions (rain rate). Post-processed hydrometeor retrieval products are Rain Rate,
Graupel Water Path, Rain Water Path and Cloud Liquid Water.

1.2. Radiometric Bias Correction

The mathematical basis for the inversion can be formulated as a minimization of a cost function.
Two important assumptions are made for the minimization process, the local-linearity of the forward
operator and the Gaussian nature of both the geophysical state vector and the simulated radiometric
vector around the measured vector. However, the differences between the simulated radiometric
vectors and the actual measurements can show significant biases, which can come from several
sources. These include deficiencies in the forward model linking the atmospheric state to the radiative
measurements (e.g., due to errors in the physics or spectroscopy), measurement errors (e.g., due to
inadequacies in the characterization of instruments), and biases in the atmospheric state used as
input to the forward model. Here, we assume that atmospheric state biases are small and focus on
quantifying and removing biases due to forward model and measurement errors prior to use in the
physical retrieval process.

Many efforts have been made to develop bias correction schemes for the numerical weather
prediction (NWP) data assimilation (DA) systems and the physical retrieval systems which share



Remote Sens. 2020, 12, 3160 3o0f15

the same bias removal scheme because both the DA and the retrieval systems are based on similar
variational approaches and cost function minimization processes. For example, Auligné et al. and
Zhu et al. [11,12] discussed the adaptive radiance observation bias correction scheme applied in the
National Centers for Environmental Prediction’s (NCEP) Gridpoint Statistical Interpolation (GSI) data
assimilation system, in which the variational air-mass bias component is estimated at the same time as
the analysis control variables. A similar variational bias correction scheme for radiance data has been
implemented and operational since 12 September 2006 at the European Centre for Medium-Range
Weather Forecasts (ECMWF) [13,14].

1.3. Radiometric Bias Correction in MiRS

The current operational bias correction in MiRS is a procedure that applies a histogram adjustment
to the radiative measurements to produce bias corrected radiances ready for inversion using a physical
forward model (in this case, CRTM). This method, as inferred by its name, adjusts the histogram of
the brightness temperature difference between simulated and observed radiances to make it centered
around zero, which can reduce systematic errors in the retrievals related to forward and model and
measurement biases. The histogram adjustment method specifies bias as a function of channel and
scan position for each instrument, which means the bias does not change over time, and is static.
However, in practice, the bias associated with a given instrument and frequency band generally
varies in space and time, and may be air-mass or surface dependent at the time of the observation.
For example, Figure 2 shows the global brightness temperature biases of Suomi National Polar-orbiting
Partnership/Advanced Technology Microwave Sounder (SNPP/ATMS) over ocean, for two days
(9 June 2019 and 1 October 2019) at two different frequencies (31.4 GHz and 183.31 + 7 GHz, i.e., ATMS
channels 2 and 18, respectively), showing variability with spatial, temporal and spectral dependence.
When the same scan-dependent biases are applied regardless of location or air-mass characteristics, the
local variations of systematic errors would not be accounted for, which can then propagate into the
retrieval variables. Therefore, replacement of the static bias correction scheme with a dynamic one that
changes geographically and varies with atmospheric conditions can potentially reduce the errors of
the retrieved parameters.
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Figure 2. Global brightness temperature measurements minus simulations [K] over ocean, for 9 June
2019 at 31.4 GHz and 183.31 + 7 GHz frequencies (a,c), and similarly for 1 October 2019 (b,d).
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1.4. Neural Networks

Neural networks (NNs) have been widely used in the retrieval of geophysical parameters based
on remote sensing data and other atmosphere science fields in recent years [15-20]. He et al. [21]
studied two radiative bias correction methods developed through the correlation analysis between the
microwave humidity and temperature sounder (MWHTS) measurements and air-mass. One method
is linear regression, and the other is the neural network correction representing a nonlinear method.
The authors found that the neural network correction outperformed the linear regression method in
obtaining the desired bias; and by incorporating brightness temperatures corrected using a neural
network approach in a one-dimensional variational system they could obtain higher retrieval accuracies
of atmospheric temperature and humidity profiles. Considering the probable nonlinear nature of the
difference between simulated and measured radiances, we choose neural networks as a new approach
to implement a radiometric bias correction in MiRS system. The basic idea is to use NNs to learn the
bias structure from historical collocations of simulated and measured brightness temperatures, along
with the estimated corresponding atmospheric and surface state. The NN model, once trained, can
then be used in near real time for bias correction during the retrieval process.

The remainder of this paper the contains the following outline: Section 2 contains a discussion of
the datasets and methodology used in the study. The experimental design, including a description of the
neural network and the MiRS algorithm, is contained in Section 3. Experimental results are highlighted
in Section 4, which includes an evaluation of the neural network performance, an assessment of the
impact of the neural network-derived bias corrections on MiRS retrieval performance, and some
assessment of the neural network algorithm stability and robustness. Section 5 contains a summary
and conclusions.

2. Materials and Methods

A Neural Network is a type of machine learning algorithm that is usually used in supervised
learning. In supervised learning, a training dataset is given in which each set of input variables (or
predictors) is corresponding to an already known output. The purpose of the neural network is to find
the relationship between the predictors and the outputs in the training dataset. When a new dataset is
provided (testing dataset), predictions are made by applying the learned relationship on predictors
from the testing dataset. A deep neural network (DNN) is used in this research to simulate and
predict the brightness temperature difference (between simulated radiance and actual measurements,
labeled here as TBbias) for the advanced technology microwave sounder (ATMS) onboard the Suomi
National Polar-orbiting Partnership (SNPP) satellite. A description of the SNPP/ATMS will be provided
in Section 2.1, followed by discussion of how the training and testing datasets were assembled in
Section 2.2, and a description of the validation dataset in Section 2.3.

2.1. Satellite and Sensor

The SNPP/ATMS data quality has been carefully evaluated [22,23], and its impact on the European
Centre for Medium-Range Weather Forecasts (ECMWF) system and the United Kingdom’s Met Office
numerical weather forecast was reported by Bormann et al. [24] and Doherty et al. [25], respectively.
SNPP is the first of a series of the next-generation U.S. polar-orbiting satellites, which was launched in
October 2011 and continues to be operated by NOAA until present. SNPP is the result of a partnership
between NOAA and the National Aeronautics and Space Administration (NASA). It is designed to
collect data on long-term climate change and short-term weather conditions to extend and improve
upon data records established by the NASA’s Earth Observing System. SNPP was designed as a
preparatory mission for the Joint Polar Satellite System (JPSS) series of satellites, all of which will also
fly an ATMS instrument. The first satellite of the JPSS series (NOAA-20) was launched in November
2017 and is currently operational along with SNPP.
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ATMS is a cross-track scanning instrument, with 22 channels at frequencies ranging from 23
to 183 GHz, which allows for profiling the atmospheric temperature/moisture, as well as providing
information on clouds, non-precipitating clouds, and surface characteristics under clear-sky and cloudy
conditions. In precipitating conditions, several channels can also provide information on liquid and
frozen hydrometeors, which is indirectly related to the surface precipitation rate. In clear and cloudy
(non-precipitating) conditions, channels at 23, 31 50, 88, and 165 GHz can provide information on total
column water vapor, surface conditions and cloudiness. Channels between 50 and 60 GHz are used for
atmospheric temperature sounding from the surface to about 1 hPa, while channels around 183 GHz
provide information on the water vapor profile from the surface to about 200 hPa. Channels at 88
and 165 GHz provide significant information on the presence of rain and ice hydrometeors. Table 1
provides channel characteristics of all 22 ATMS channels, including central frequency, polarization,
beam width, noise equivalent differential temperature (NEAT), and the peak weight function (WF).

Table 1. Channel Characteristics of ATMS.

Central Frequenc .. Beam Width NEAT Peak WF
Channel ( GHz‘;l y Polarization (deg) © (hPa)
1 23.8 A% 52 0.9 Window
2 31.4 v 52 0.9 Window
3 50.3 H 22 1.2 Window
4 51.76 H 22 0.75 950
5 52.8 H 22 0.75 850
6 53.596 + 0.115 H 22 0.75 700
7 54.4 H 22 0.75 400
8 54.94 H 22 0.75 250
9 55.5 H 22 0.75 200
10 57.290344 H 22 0.75 100
11 57.290344 + 0.217 H 22 1.2 50
12 57.290344 + 0.322 + 0.048 H 22 1.2 25
13 57.290344 + 0.322 + 0.022 H 22 1.5 10
14 57.290344 + 0.322 + 0.010 H 22 2.4 5
15 57.290344 + 0.322 + 0.0045 H 22 3.6 2
16 88.2 v 22 0.5 Window
17 165.5 H 1.1 0.6 Window
18 18331+ 7.0 H 1.1 0.8 800
19 183.31 £ 4.5 H 1.1 0.8 700
20 183.31 £ 3.0 H 1.1 0.8 500
21 18331+ 1.8 H 1.1 0.8 400
22 183.31 £ 1.0 H 1.1 0.9 300

2.2. NN Training and Testing Datasets

Brightness temperature bias along with the concurrent SNPP/ATMS measured brightness
temperature for 22 channels, satellite viewing angle, latitude, and other geophysical parameters
including cloud liquid water (CLW)), total precipitable water (TPW), and skin temperature (Tskin) have
been used to establish the NN training and testing datasets. All of these parameters are collected
over ocean. A data screening was applied in the training dataset which required that only brightness
temperature biases less than 30K were included in the training set. The reason for the 30K limit is that
such a large difference between observation and simulation indicates likely scattering or precipitation.
In these cases, we do not have confidence that the NWP representation of the rain or ice particles is
accurate enough to provide a reliable input to the CRTM simulation. (As noted in Section 3.2, the MiRS
retrieval approach allows for the determination of highly scattering (precipitating) conditions and
in these cases a bias correction is not applied due to large uncertainties in the forward modeling.)
The training dataset contains 12 days with one-day from each month of either 2018 or 2019 (Table 2).
The CLW, TPW, and Tskin for training were from the ECMWF analyses. Once the NN bias correction
model was trained, the impact assessment was done on an independent day, 1 October 2019 for all
ocean scenes between 55 S to 55N latitude. The purpose of the latitude limit is to avoid sea ice covered
areas where surface emissivity is not well simulated. Since in operational application MiRS does not
use any real-time data from NWP model forecasts or analyses, such as those from ECMWE, in the
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impact assessment testing experiments these three parameters were calculated either by a regression
scheme (CLW) or by neural networks constructed for TPW and Tskin, respectively. The inputs for
calculating them were brightness temperature measurements and geolocation parameters like satellite
viewing angle and latitude. The training and testing data were selected based on the availability of the
SNPP/ATMS measurements and our computational resources. Further details of the NN training and
testing are contained in Sections 3 and 4.

Table 2. Days Used for NN Training.

14-January-2019 15-July-2018
15-February-2019 1-August-2018
25-March-2019 1-September-2019
1-April-2019 20-October-2018
11-May-2019 1-November-2019
4-June-2019 1-December-2019

2.3. MiRS Retrieval Validation Dataset

To evaluate the impact of the new radiometric bias correction scheme, most of the MiRS retrievals,
including atmospheric temperature profiles, water vapor profiles, CLW, TPW, and Tskin were validated
with the ECMWEF analyses. The ECMWEF analyses are originally specified on 90 vertical pressure layers
and at a 0.25-degree horizontal resolution. MiRS interpolates the analyses vertically into the 100 CRTM
layers (from the surface to 0.01 hPa), and horizontally averages to 1 degree for the collocation with
the ATMS measurement locations. Validation for the MiRS surface emissivity over the ocean at all
channels was performed against the fast microwave emissivity model (FASTEM) [26] that takes the
ECMWEF analyses of wind speed, frequency, and observation zenith angle as inputs. In MiRS, ECMWF
and other operational NWP data sets are used only for calibration in the radiance processing and in
the retrieved product monitoring. They are not used in the IDVAR inversion process. As the bias
correction was developed for over-ocean measurements only, this paper evaluates MiRS retrievals
performance of SNPP/ATMS over ocean only. Over other surfaces, the operational static bias correction
scheme remained unchanged, therefore producing no impact on the MiRS retrievals over land, snow,
and sea-ice scenes.

3. Algorithm and Experiment Design

3.1. MiRS Algorithm
The MiRS is an iterative, physically-based retrieval system based on 1IDVAR inversion. The IDVAR

physical principle is to minimize a cost function (Equation (1)). The first item on the right side of
Equation 1 represents the departure of state vector X to be retrieved from background X, weighted
by background error covariance matrix B. The second item represents the departure of simulated
radiance Y from the observed radiance Y™, weighted by instrument and radiative transfer modelling
error E. CRTM is the forward and adjoint operator used to generate simulated radiance Y, as well as
the Jacobians (derivatives) which is the radiance response to a unit perturbation of the state vector.
Minimization of the cost function is an iterative process with convergence reached if chi-squared metric,
%2, is less than or equal to 1 (Equation (2)). The iterative loop is also ended if the chi-squared metric
does not meet the convergence criterion within 7 iterations. In practice, the global convergence rates
approach 95% [27].

J(X) = [3(X= X)X B X (X=X0)| + 50" =Y XETx (V- Y(X)] (@)

NI~

=" =Y(X) xE x (Y" - Y(X)) @
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3.2. Experiment Design

This research chose a 4-layer neural network (with two hidden layers) to predict brightness
temperature biases (22 channels). There are 200 neurons in each hidden layer, with a Rectified Linear
Unit (ReLU) as the activation function, which is the most successful and widely-used activation function
thus far in the deep learning community [28]. This configuration of layers, nodes and activation
function was selected after extensive testing with smaller and larger numbers of layers and nodes,
and with different activation functions such as Sigmoid and Leaky ReLU. The NN design used here
produced the best results in terms of reproducing the observed biases. The optimizer used in this NN is
RMSprop, with the learning rate of 0.001. Another problem with training neural networks is to choose
the number of training epochs. Too many epochs can lead to overfitting, while too few could result in
an underfit model. In the present study, early stopping was the method used to terminate training
before overfitting occurred. This method split the training dataset and used a subset (in this study,
20%) as a validation dataset to monitor performance of the neural network model during training.
An arbitrary large number of training epochs (or maximum number of epochs) was specified, and the
training would be stopped if the loss on the validation dataset did not change over a given number of
epochs (or patience). The maximum number of epochs and the patience used in this study were 1000
and 100, respectively.

The input layer has 27 variables over ocean, which includes SNPP/ATMS measured brightness
temperature (22 channels), satellite viewing angle, latitude, CLW, TPW, and Tskin. Normalization
of the input variables to a standard scale would allow the neural network to more quickly learn the
optimal weights and biases. All of the 27 input variables were normalized by their respective mean
and standard deviation calculated from the training dataset. Data screening was also applied which
required that only observations where brightness temperature biases less than 30K were included in
the training dataset. The output layer has 22 variables, representing brightness temperature biases for
each of the 22 channels. The neural network was applied for all ocean scenes on the testing day. MiRS
has the flexibility to choose the bias correction method for each channel. NN predicted brightness
temperature biases were applied to SNPP/ATMS channels 1-15 plus 17 over ocean. All other channels
used the static bias correction method. This choice of which channels the NN correction was applied to
was based on a large number of sensitivity tests where the impact on retrievals was quantified. Finally,
the MiRS retrieval approach structures the retrieval and state vector based on whether hydrometeor
scattering is determined to be significant. In this study, bias corrections are only applied in conditions
of little to no scattering (i.e., clear and cloudy/light rain scenes), as development of bias corrections for
scenes with significant scattering and/or precipitation is a more challenging task.

4. Results

4.1. Neural Network Performance

The neural network prediction of the brightness temperature bias of SNPP/ATMS was first
validated with the true bias (measurements minus simulations) for one single day, 1 October 2019,
as shown in Figure 3. The bars represent the mean true bias (blue) and NN predicted bias (orange) for
each of the 22 SNPP/ATMS channels, with left y-axis showing their values. The difference between the
mean NN predicted and true biases is presented by the red line with right y-axis showing its value.
Only profiles with biases less than 30 K and located between 55 S and 55 N latitude over ocean are
used in the averaging. Except for Channel 15, the differences between the NN prediction and true
bias are less than 0.38. Channel 15 differences may be larger due to the peak height of its weighting
function, which is approximately 2 hPa (~ 45 km altitude) where both the ECMWF model analyses and
CRTM simulations may be less reliable.

The performance for Channels 1-12 is generally good, with Channels 1, 6, and 7 having the
smallest difference. For example, the averaged difference between NN predicted and true bias is about
0.01 K for Channel 1 (23.8 GHz), and their spatial patterns are very similar (Figure 4a,b). Figure 4
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shows the brightness temperature bias maps of Channel 1 (23.8 GHz) for true values (a), NN prediction
(b), and the difference between NN and true values (c), over ocean for latitudes between 55 S and 55 N.
Quantitatively, the NN prediction matches the true bias special pattern very well. However, the NN
estimates miss some cold features (blue color) in the midlatitudes and show warmer patterns over
the south Pacific Ocean. It also shows slight scan angle dependency over the tropics despite using
scan angle as one of the NN inputs aimed at minimizing this dependency. The histogram of the NN
prediction is compared with that of the true bias (red vs. black in Figure 4d). The NN prediction does
not capture the extreme cold bias less than —10 K and has fewer points between 0 K to —10 K, while it
has more profiles around the peak (about 2 K) and contains a small number of points with a predicted
warm bias higher than 30 K.

Bl True TBbias
W TBbias_NN

TB bias
True TBbias minus TBbias_NN

12345678 91011121314151617 1819202122
Channels

Figure 3. Mean brightness temperature bias [K] of the 22 SNPP/ATMS channels over ocean with

latitude between 555 and 55N for the true values (blue bars), NN prediction (orange bars) and their

difference (red line). 1 October 2019.

Figure 4. Brightness temperature bias [K] maps of SNPP/ATMS 23.8 GHz on 1 October 2019, over
ocean with latitude between 55 S and 55 N, for (a) true value, (b) NN prediction, the difference between
NN and the true value (c), and histograms of the true value and the NN prediction (d).



Remote Sens. 2020, 12, 3160 9 of 15

4.2. MiRS Retrievals

With MiRS using static bias correction as the baseline experiment (named as Static), an assessment
of the impact of the neural network-derived bias corrections on MiRS retrieval performance over ocean
is presented (named as NN). The MiRS retrieval performance of atmospheric temperature profiles for
Static (black) and NN (red) are shown in Figure 5, with solid lines for bias and dashed lines for standard
deviation, verified with ECMWEF analyses between 1000-100 hPa. This verification was stratified by
CLW amount into three scenarios: clear (CLW < 0.05 mm), cloudy (0.05 < CLW < 0.275 mm), and
heavy cloud or light rain (CLW > 0.275 mm), corresponding to Figure 5a—c. The sample sizes for each
experiment under each scenario are given in the legend. In the clear and cloudy scenarios, impact
of NN bias correction was similar, both with slightly reduced bias below 700 hPa and with slightly
increased standard deviation at almost all levels. In the heavy cloud or light rain scenario, NN shows
significantly reduced standard deviation under 300 hPa, with about 0.5 K smaller standard deviation
at 650 hPa. Since the baseline static bias correction is developed using clear sky measurements only,
it is perhaps expected that the largest and most positive impact of the NN bias correction is for scenes
with significant cloudiness and/or light precipitation.

(a) Clear (b) Cloudy
(CLW<=0.05mm) (0.05<CLW<=0.275mm)

Clw<=0.05 MiRS NPP Temp. BIAS STDV, Ocean, 2018-10-01 fwdCloudOn 0.05<clw<=0.275 MiRS NPP Temp, BIAS STDV, Ocean,2019-10-01 fwdCloudOn
100 100 100

(c) Heavy cloud or light rain
(CLW=>0.275mm)

Clw>0,275 MRS NPP Temp. BIAS STDV. Ocean.2019-10-01.fwdCloudOn
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Figure 5. MiRS temperature profiles (K) validated with ECMWEF analyses for SNPP/ATMS over ocean
for (a) clear, (b) cloudy, and (c) heavy cloud or light rain conditions on 1 October 2019. The black lines
are for MiRS using the static bias correction method, and red for the NN bias correction method. Solid
lines are for bias, and dashed lines for standard deviation.

Similar profile plots for water vapor are shown in Figure 6, while the x-axis represents the
percentage changes of bias and standard deviation with respect to ECMWEF analysis at each layer.
In the clear scenario, the NN bias percentage increased in magnitude about 5-10% between 700 hPa
and 400 hPa compared with static experiment, while the standard deviation percentage decreased
about 3% near 500 hPa. In the cloudy scenario, the bias percentage magnitude of the NN experiment
is larger than Static at almost all levels, while the standard deviation is about 5-10% less than static
between 600 hPa and 400 hPa. And in the heavy cloud or light rain scenario, NN water vapor bias
slight decreased between 600 hPa and 350 hPa but increased between 350 hPa and 200 hPa. The most
dramatic change is the NN standard deviation, which reduced from 80% to 60% between 600 hPa and
300 hPa. In summary, the MiRS water vapor retrieval using NN bias correction showed significantly
reduced standard deviation at the middle levels. Similar, to the temperature profile results the largest
positive impacts appear to be for cases with significant cloudiness and/or light rain.
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Figure 6. Similar to Figure 5 but for water vapor profiles. Bias and standard deviation are the percentage
mixing ratio with respect to the mean ECMWF analysis at each layer.

MiRS retrieval performance for two-dimensional variables TPW, Tskin, and surface emissivity is
presented in the following figures and tables. The TPW map of ECMWF analysis collocated with the
SNPP/ATMS ascending node over ocean is shown in Figure 7a. The MiRS TPW bias with ECMWF
analysis from static and NN is shown in Figure 7b,d, and the histograms of ECMWEF (blue), static
(black), and NN (dashed red) are given in Figure 7c. Relative to ECMWE, static has a moist bias, while
a drier bias is observed on the NN bias map, especially over high mid-latitude ocean in the Southern
Hemisphere. In the histogram plot, the NN TPW is drier and closer to ECMWEF analysis, especially
between 0-5, 15-25, and 55-60 mm. The validation statistics of static and NN TPW are shown in the top
left panel of Table 3. TPW from NN experiment shows dramatically smaller bias and a slight increase
in standard deviation.

Table 3. Performance metrics of MiRS retrievals including TPW, Tskin, emissivity (EM) at 23.8 GHz
and 88.2 GHz, validated using ECMWF analyses (and FASTEMS for emissivity) for SNPP/ATMS
1 October 2019 over ocean, ascending node. The numbers inside parentheses are sample sizes. The bias
change percentages refer to their magnitude changes.

TPW Static NN Change EM 23.8 Static NN Change
(mm) (868,412) (875,423) (%) GHz (868,299) (875,351) (%)
Correlation 0.99 0.99 0% Correlation 0.5862 0.6740 +15.0%

Bias 1.52 0.60 —60.5% Bias 0.0071 0.0099 +42.9%
Std. Dev 2.33 2.62 +12.9% Std. Dev 0.0353 0.0255 —25.7%
Tskin Static NN Change EM Static NN Change
(K) (868,299) (875,351) (%) 88.2 GHz (868,299) (875,351) (%)
Correlation 0.96 0.97 +1.0% Correlation 0.7135 0.7229 +1.3%
Bias 0.38 -0.05 —86.8% Bias 0.0022 —0.0004 —80.0%
Std. Dev 3.01 3.02 +0.3% Std. Dev 0.0311 0.0301 -3.2%

The MiRS SNPP/ATMS TPW local zenith angle dependency over ocean is presented in Figure §,
with the local zenith angle within —70 to 70 degrees along the x-axis and the bias between static (black)
or NN (red) and ECMWEF on the y-axis. NN has smaller biases than static at all angles, and it almost
has no scan angle dependency. In contrast, TPW bias from static is larger at and near nadir and quickly
drops from 1.75 mm to 0.75 mm when it reaches the edges of the scan. This significant improvement
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is likely due to the explicit accounting of scan angle and other geophysical variables in the NN bias

correction model.
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Figure 7. Total precipitable water (mm) of SNPP/ATMS on 1 October 2019, ascending node over
ocean for (a) ECMWEF analysis, (b) MiRS retrieval difference with ECMWF using static bias correction,
(d) MiRS retrieval difference with ECMWF using NN bias correction, and (c) histograms of ECMWF

and MiRS retrieval experiments shown in (a), (b), and (d).
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Figure 8. MiRS total precipitable water (mm) local zenith angle dependence of SNPP/ATMS on
1 October 2019 over ocean, ascending node. The black line is the result using a static bias correction
and red line is the result using the NN bias correction.

Table 3 shows the performance metrics of MiRS TPW, Tskin, and emissivity at 23.8 GHz and
88.2 GHz for SNPP/ATMS on 1 October 2019 over ocean, ascending node. The metrics include
correlation, bias, and standard deviation validated against the ECMWF analysis (and FASTEM5
for emissivity), as well as the percentage change of these metrics from NN to Static. The numbers
inside parentheses are sample sizes for each parameter and each experiment. Except for emissivity at
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23.8 GHz, other parameters from NN have 0% or 1% increase in correlation comparing with Static, and
a 60-80% decrease in bias. The standard deviation of TPW from NN is 12.9% greater, while there is a
very small impact on Tskin and emissivity at 88.2 GHz.

Results for performance metrics of descending node are similar to Table 3 except for Tskin, which
has strong diurnal cycle. In Figure 9, MiRS Tskin retrievals are verified with ECMWF analyses and
shown by density scatterplots. Tskin for static (left) and NN (right) are shown for both ascending (top)
and descending (bottom) nodes. In ascending node, the bias from NN decreases from ~0.4 K to ~0.1 K.
However, in descending node, the bias increases from ~—0.2 K to —0.6 K.
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Figure 9. Skin temperature (K) scatterplots of SNPP/ATMS validated with ECMWF on 1 October 2019
over ocean, with ascending (top) and descending (bottom) nodes, using static (left) or NN (right) bias
correction. The x-axis is MiRS skin temperature, and the y-axis represents ECMWF. The scatterplots are
colored by the density of points.

Overall, the impact of applying the NN bias correction has a positive impact on the retrievals of
several key retrieval parameters, depending on the performance statistic, but atmospheric and surface
conditions appear to modulate significantly the magnitude and sign (improvement or degradation) of
the impacts.

5. Conclusions

We report on preliminary results of applying a machine learning approach to estimation of the
radiometric bias correction of passive microwave measurements from the SNPP/ATMS instrument.
The bias correction was based on collocations of ATMS data with ECMWEF operational analyses in
conjunction with the FASTEMS ocean surface emissivity model. A neural network model was used to
estimate the bias corrections, and the model explicitly includes impacts from surface and atmospheric
conditions, as well as scan angle and frequency dependence. Furthermore, the NN bias corrections
were tested in the MiRS retrieval system to assess the impact of the bias corrections relative to retrievals
using the operational static bias corrections. Because of this NN formulation the bias correction model
is dynamic, adjusting the bias prediction with each scene or field of view, in contrast to the static
bias correction.
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The impact study examined retrieval performance of vertical temperature and water vapor profiles,
total precipitable water, skin temperature, and surface emissivity. For temperature, largest positive
impacts of using the NN bias correction appeared focused in scenes with higher amounts of cloud
(>0.275 mm) and/or light precipitation. Lower tropospheric temperature bias was also reduced for
scenes with fewer clouds. For water vapor, the largest positive impacts were on the error standard
deviation concentrated in the 600-300 hPa layer. The impact on the water vapor bias was mixed, with
some layers showing improvement, and other showing higher bias. The impact on the global TPW
bias was significant and positive with a large reduction in the bias and only a small increase in the
error standard deviation. For emissivity, the impact depended on frequency. At 23.8 GHz, correlation
and standard deviation improved significantly, but there was also an increase in the bias. At 88.2 GHz,
a significant reduction in the bias was seen, with only small impacts on the correlation and standard
deviation noted. Impacts on Tskin depended on orbital node with both increases and decreases in the
bias seen.

The experiments conducted clearly demonstrate the sensitivity of the MiRS retrieval system to the
type of radiometric bias correction that is applied. By explicitly accounting for surface and atmospheric
conditions in the formulation of the NN bias correction model, it appears that the largest positive
impacts relative to the static bias formulation are in conditions that deviate significantly from the
assumptions and training data of the static bias (i.e., scenes with clouds and light oceanic precipitation).
Further investigations are underway to refine the approach, for example, using channel predictors
more specific for each individual channel in the bias prediction model, as opposed to using the same
channels as inputs, regardless of the channel bias prediction in question. Using additional independent
days for retrieval experiments will clarify the seasonal dependence of the bias correction impacts.
Finally, the approach is being extended to other satellite measurements, namely, from NOAA-20/ATMS.
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