A New Deterministic Parallel Sorting Algorithm
With an Experimental Evaluation

David R. Helman Joseph JaJa* David A. Bader!

Institute for Advanced Computer Studies &
Department of Electrical Engineering,

University of Maryland, College Park, MD 20742
{helman, joseph, dbader}@umiacs.umd.edu

August 15, 1996

Abstract

We introduce a new deterministic parallel sorting algorithm based on the regular sampling ap-
proach. The algorithm uses only two rounds of regular all-to-all personalized communication in a
scheme that yields very good load balancing with virtually no overhead. Moreover, unlike previous
variations, our algorithm efficiently handles the presence of duplicate values without the overhead of
tagging each element with a unique identifier. This algorithm was implemented in SPLIT-C and run
on a variety of platforms, including the Thinking Machines CM-5, the IBM SP-2-WN, and the Cray
Research T3D. We ran our code using widely different benchmarks to examine the dependence of
our algorithm on the input distribution. Our experimental results illustrate the efficiency and scala-
bility of our algorithm across different platforms. In fact, the performance compares closely to that
of our random sample sort algorithm, which seems to outperform all similar algorithms known to
the authors on these platforms. Together, their performance is nearly invariant over the set of input
distributions, unlike previous eflicient algorithms. However, unlike our randomized sorting algorithm,
the performance and memory requirements of our regular sorting algorithm can be deterministically
guaranteed.

Keywords: Parallel Algorithms, Generalized Sorting, Integer Sorting, Sorting by Regular Sam-
pling, Parallel Performance.

*Supported in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant No. BIR-9318183.
TThe support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is gratefully acknowledged.

1 Introduction

We present a novel variation on the approach of sorting by regular sampling which leads to a new
deterministic sorting algorithm that achieves optimal computational speedup with very little commu-
nication [15]. Our algorithm exchanges the single step of irregular communication used by previous
implementations for two steps of regular communication. In return, our algorithm reduces the problem
of poor load balancing because it is able to sustain a high sampling rate at substantially less cost. In
addition, our algorithm efficiently accommodates the presence of duplicates without the overhead of
tagging each element. And our algorithm achieves predictable, regular communication requirements
which are essentially invariant with respect to the input distribution. Utilizing regular communication
has become more important with the advent of message passing standards, such as MPI [17], which
seek to guarantee the availability of very efficient (often machine specific) implementations of certain
basic collective communication routines.

Our algorithm was implemented in a high-level language and run on a variety of platforms, in-
cluding the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code
using a variety of benchmarks that we identified to examine the dependence of our algorithm on the
input distribution. Our experimental results are consistent with the theoretical analysis and illustrate
the efficiency and scalability of our algorithm across different platforms. In fact, the performance
compares closely to that of our random sample sort algorithm, which seems to outperform all similar
algorithms known to the authors on these platforms. Together, their performance is nearly indifferent
to the set of input distributions, unlike previous efficient algorithms. However, unlike our randomized
sorting algorithm, the performance and memory requirements of our regular sorting algorithm can be
guaranteed with probability one.

The high-level language used in our studies is SPLIT-C [10], an extension of C' for distributed
memory machines. The algorithm makes use of MPI-like communication primitives but does not
make any assumptions as to how these primitives are actually implemented. The basic data transport
is a read or write operation. The remote read and write typically have both blocking and non-
blocking versions. Also, when reading or writing more than a single element, bulk data transports are
provided with corresponding bulk_read and bulk_write primitives. Our collective communication
primitives, described in detail in [6], are similar to those of the MPI [17], the IBM POWERparallel [7],
and the Cray MPP systems [9] and, for example, include the following: transpose, beast, gather,
and scatter. Brief descriptions of these are as follows. The transpose primitive is an all-to-all
personalized communication in which each processor has to send a unique block of data to every
processor, and all the blocks are of the same size. The bcast primitive is used to copy a block of data
from a single source to all the other processors. The primitives gather and scatter are companion

primitives. Scatter divides a single array residing on a processor into equal-sized blocks, each of

which is distributed to a unique processor, and gather coalesces these blocks back into a single array
at a particular processor. See [3, 6, 4, 5] for algorithmic details, performance analyses, and empirical
results for these communication primitives.

The organization of this paper is as follows. Section 2 presents our computation model for
analyzing parallel algorithms. Section 3 describes in detail our improved sample sort algorithm.

Finally, Section 4 describes our data sets and the experimental performance of our sorting algorithm.

2 The Parallel Computation Model

We use a simple model to analyze the performance of our parallel algorithms. Our model is based on
the fact that current hardware platforms can be viewed as a collection of powerful processors connected
by a communication network that can be modeled as a complete graph on which communication is
subject to the restrictions imposed by the latency and the bandwidth properties of the network. We
view a parallel algorithm as a sequence of local computations interleaved with communication steps,
where we allow computation and communication to overlap. We account for communication costs as
follows.

Assuming no congestion, the transfer of a block consisting of m contiguous words between two
processors takes (7 + om) time, where 7 is the latency of the network and o is the time per word at
which a processor can inject or receive data from the network. Note that the bandwidth per processor
is inversely proportional to ¢. We assume that the bisection bandwidth is sufficiently high to support
block permutation routing amongst the p processors at the rate of % In particular, for any subset of
q processors, a block permutation amongst the ¢ processors takes (7 + om) time, where m is the size
of the largest block.

Using this cost model, we can evaluate the communication time T'pppm(n, p) of an algorithm as a
function of the input size n, the number of processors p , and the parameters 7 and o. The coefficient
of 7 gives the total number of times collective communication primitives are used, and the coefficient
of ¢ gives the maximum total amount of data exchanged between a processor and the remaining
processors.

This communication model is close to a number of similar models (e.g. [11, 19, 1]) that have
recently appeared in the literature and seems to be well-suited for designing parallel algorithms on
current high performance platforms.

We define the computation time 7’,,,, as the maximum time it takes a processor to perform all the
local computation steps. In general, the overall performance Tep,p +7Tcomm involves a tradeoff between
Teomp and Teoppm. In many cases, it is possible to minimize both Tip,, and Teopy simultaneously,

and sorting is such a case.

3 A New Sorting Algorithm by Regular Sampling

Consider the problem of sorting n elements equally distributed amongst p processors, where we assume
without loss of generality that p divides n evenly. The idea behind sorting by regular sampling is to
find a set of p — 1 splitters to partition the n input elements into p groups indexed from 1 up to p
such that every element in the 7*" group is less than or equal to each of the elements in the (i + 1)
group, for (1 < ¢ < p—1). Then the task of sorting each of the p groups can be turned over to
the correspondingly indexed processor, after which the n elements will be arranged in sorted order.
The efficiency of this algorithm obviously depends on how well we divide the input, and this in turn
depends on how evenly we choose the splitters. One way to choose the splittersis by regularly sampling
the sorted input elements at each processor - hence the name Sorting by Regular Sampling.

A previous version of regular sample sort [18, 16], known as Parallel Sorting by Regular
Sampling (PSRS) , first sorts the % elements at each processor and then selects every (Z%)th
element as a sample. These samples are then routed to a single processor, where they are sorted and
every pt" sample is selected as a splitter. Each processor then uses these splitters to partition the
sorted input values and then routes the resulting subsequences to the appropriate destinations, after
which local merging of these subsequences is done to complete the sorting process. The first difficulty
with this approach is the load balance. There exist inputs for which at least one processor will be left
with as many as (% — z% —p+ 1) elements at the completion of sorting. This could be reduced by
choosing more samples, but this would also increase the overhead. And no matter how many samples
are chosen, previous studies have shown that the load balance would still deteriorate linearly with the
number of duplicates [16]. One could, of course, tag each item with a unique value, but this would
also double the cost of both memory access and interprocessor communication. The other difficulty
is that no matter how the routing is scheduled, there exist inputs that give rise to large variations in
the number of elements destined for different processors, and this in turn results in an inefficient use
of the communication bandwidth. Moreover, such an irregular communication scheme cannot take
advantage of the regular communication primitives proposed under the MPI standard [17].

In our algorithm, which is parameterized by a sampling ratio s (p <s <]%), we guarantee that, at
the completion of sorting, each processor will have at most (% + 2 - p) elements, while incurring no
overhead in gathering the set of samples used to identify the splitters. This bound holds regardless of
the number of duplicate elements present in the input. Moreover, we are able to replace the irregular
routing with exactly two calls to our transpose primitive.

The pseudocode for our algorithm is as follows:

e Step (1): Each processor P; (1 < i < p) sorts each of its * input values using an appropriate

sequential sorting algorithm. For integers we use the radix sort algorithm, whereas for floating

point numbers we use the merge sort algorithm. The sorted data is then “dealt” into p bins
th

so that the &% item in the sorted order is placed into the Q%J + 1) position of the (((k —

1) mod p) + 1)** bin.

Step (2): Each processor P; routes the contents of bin j to processor P;, for (1 < 4,5 < p),

which is equivalent to performing a transpose operation with block size z%'

Step (3): From each of the p sorted subsequences received in Step (2), processor P, selects

th
each (k%) element as a sample, for (1 < k < s) and a given value of s (p <s<]%)

Step (4): Processor P, merges the p sorted subsequences of samples and then selects each (ks)th
sample as Splitter[k], for (1 < k < p—1). By default, the p'* splitter is the largest value allowed
by the data type used. Additionally, binary search is used to compute for the set of samples 5}
with indices (ks — s+ 1) through (ks) the number of samples Est[k] which share the same value
as Splitter[k].

Step (5): Processor P, broadcasts the Splitter and Est arrays to the other p — 1 processors.

Step (6): Each processor P; uses binary search to define for each of the p sorted sequences

received in Step (2) and each of the p splitters a subsequence Ty The set of p subsequences

TG0y, T52)5 -+ T(j,p)} associated with Splitter[j] all contain values which are greater than or

equal to Splitter[j — 1] and less then or equal to Splitter[;], and collectively include at most
n

(Est[j] X E) elements with the same value as Splitter[j].

Step (7): Each processor P; routes the p subsequences associated with Splitter[j] to processor
n

P;, for (1 < 14,7 < p). Since no two processors will exchange more than (? + %) elements, this

is equivalent to performing a transpose operation with block size (z% + %)

Step (8): Each processor P; “unshuffles” all those subsequences sharing a common origin in

Step (2).

Step (9): Each processor P; merges the p consolidated subsequences to produce the " column

of the sorted array.

Before establishing the complexity of this algorithm, we need to establish the following theorem.

Theorem 1: The number of elements sent by processor P; to processor P; in Step (7) is at most

(z% + % — p) for ¢+ = p and (z% + %) for + < p. Consequently, at the completion of the algorithm,

no processor holds more than (% + 2 - p) elements, for n > p° and (p <s <]%)

Proof: Let 5 be the set of samples from the sorted array of samples in Step (4) with indices (js—s+1)

through (js), inclusively. Let S(;.i) be the subset of samples in §; originating from processor P;, and let

¢(ji) be the cardinality of 5(; ;. Let V; = Splitter[7], let ¢(ji,1) be the number of samples in .5

value less than Vj, and let ¢(;; 9y = (C(m) —C(]‘7i71)) be the number of samples in 5(; ;) with value Vj. Let

) = AUS@y 1<t < (=)}, let by = iC 0 ¢(1,i) be the cardinality of R(;, let b(;;) be the
number of samples in R(;; with value less than V;, and let b(;; 9y = (b(j,i) — b(j7i71)) be the number of
samples in R(; ;) with value V;. Obviously, b(;; 2y will only be nonzero if Splitter[j — 1] = V;. Finally,
for simplicity of discussion but without loss of generality, we assume that n is a constant multiple of
p?s.

Clearly, each sample can be mapped in a one-to-one fashion to the sorted input generated during
Step (1) (but before being distributed amongst the bins). For example, the first sample in 5; ;)
maps to the ((b(j,i) + 1) Z%)th element in the sorted input at processor P;, the second sample in 5; ;)
maps to the ((b(j,i) + 2) Z%)th element in the sorted input at processor P;, and so forth up to the

th
€(j,0)

Hence, it follows that L(;; elements in the sorted input of Step (1) at processor P; will be less
than V;, where ((b(]ﬂ’l) + C(]ﬂ’l)) o < Lo < ((b(]Z 1yt G+ 1) & 1)) It is also true that
at least M(; ;) elements in the sorted input of Step (1) will be less than or equal to V;, where
My = (buo + i) 2

The shuffling of Step (1) together with the transpose of Step (2) maps the ¢ element at

th
element which maps to the ((b(j,i) + C(m))]%) element in the sorted input at processor P;.

th
processor P; into the ({%J + 1) position of the i*" subarray at processor P(((t_l) mod p)1)> @

subarray which we will denote as SA((((t_l) mod p)+1),i)° Now, L(; ;) elements in SA(, ;y will be less

than V; and will unequivocally route to processors P; through P;, where:

n

n .
(b + €Gimy) == < Ly < (bainy + cgiiny + 1) s r<p

p*s
(i) + <iim)

n . ‘
s < Ly < ((b(j,m) +ciny 1) PP 1) ifr=p

S

Furthermore, at least M elements in SA(, ;) will be less than or equal to V;, where M; ;) =

Ji7y7)

(b(o+ e, 2)) -). This means that the p subarrays at processor P, collectively have at least

p p
n
> My = Z()+) 7
=1 =1
n
=]—
p?
elements which are greater than or equal to V;. Furthermore,
p p n n
; (Mijry = L) < ; ((bu,t) + (i) s (b + €Giam) st)
p
n
= ; (bu,t,z) + C(j,t,z)) s
n
= (Est™[j] + Est[j —
(Bst"[j] + Bst) x

where (Est[j] X]%) is the number of elements equal to V; which the algorithm in Step (6) will

seek to route to processor P; and (Est*[j] X %) is the number of elements equal to V; which the
p2s

algorithm in Step (6) will seek to route to processors P, through P(j—1y. From this it follows that

the algorithm will always be able to route a minimum of Min(;,y = S Moy = j}% elements to

processors Py through P;. On the other hand, the maximum number of elements that will be routed

by this algorithm to these processors is:

P
. , n
Max(;,) = (Z L(jmt)) + (Est™[j] + Est[j]) x —-
t=1

pes

L (e +ean +1) 35+ (bgan + C(msg)) %) =

IN

o (e + ean + 1) 5 = 1)+ (b + i))
(Gs+p) & -p) ifr=p

Max(;,) — Ming_q ;) =

and Theorem 1 follows.

With the results of Theorem 1, the analysis of our algorithm for sorting by regular sampling is as
follows. Steps (3), (4), (6), (8), and (9) require O(sp), O(splogp), O (p*logp), O (% + 2+ p? — p),
and O ((% + 2 - p) log p) time, respectively. The cost of sequential sorting in Step (1) depends on
the data type - sorting integers using radix sort requires O (%) time, whereas sorting floating point
numbers using merge sort requires O (%log (%)) time. Steps (2), (5), and (7) call the communica-
tion primitives transpose, bcast, and transpose, respectively. The analysis of these primitives in
[6] shows that these three steps require Tyopmm (1, p) < (T + 25(p - 1)0), Teomm(n,p) < (t+2(p—1)0),
and Teomm(n,p) < (T + (z% + %) (p— 1)0), respectively. Hence, with high probability, the overall
complexity of our sorting algorithm is given (for floating point numbers) by

T(n7p) = TCOmp(nvp) —I' Tcomm(nap)
= O(zlogn—l—r—l—za) (1)
p p

for n > p® and (p§5§ z%)
Clearly, our algorithm is asymptotically optimal with very small coefficients. But a theoretical
comparison of our running time with previous sorting algorithms is difficult, since there is no consensus

on how to model the cost of the irregular communication used by the most efficient algorithms.

Hence, it is very important to perform an empirical evaluation of an algorithm using a wide variety

of benchmarks, as we will do next.

4 Performance Evaluation

Our sample sort algorithm was implemented using SPLIT-C [10] and run on a variety of machines and
processors, including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5.
For every platform, we tested our code on nine different benchmarks, each of which had both a 32-bit
integer version (64-bit on the Cray T3D) and a 64-bit double precision floating point number (double)

version.

4.1 Sorting Benchmarks

Our nine sorting benchmarks are defined as follows, in which n and p are assumed for simplicity but
without loss of generality to be powers of two and MAXyy), the maximum value allowed for doubles,

is approximately 1.8 x 103%.

1. Uniform [U], a uniformly distributed random input, obtained by calling the C library random
number generator random(). This function, which returns integers in the range 0 to (2*! — 1), is
seeded by each processor P; with the value (2141001¢). For the double data type, we “normalize”
the integer benchmark values by first subtracting the value 2°0 and then scaling the result by

(2_30 X MAXD) .

2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls to
random() and then dividing the result by four. For the double data type, we normalize the

integer benchmark values in the manner described for [U].
3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.

4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by setting the first z%

elements at each processor to be random numbers between 0 and (2% — 1), the second 2
elements at each processor to be random numbers between % and (% — 1), and so forth. For
the double data type, we normalize the integer benchmark values in the manner described for

[U].

5. g-Group [¢g-G], an input created by first dividing the processors into groups of consecutive pro-
cessors of size g, where ¢ can be any integer which partitions p evenly. If we index these groups in

consecutive order from 1 up to g, then for group j we set the first % elements to be random num-

bers between ((((j = 1)g+ 4 — 1) mod p) + 1) £~ and ((((j - 1) g+ 5) mod p) + 1) 2~ 1),

-
the second % elements at each processor to be random numbers between

((j—1)g+5) modp)+1) % and (((((] —1)g+5+1) mod p) +1) % - 1), and so forth.
For the double data type, we normalize the integer benchmark values in the manner described

for [U].

. Staggered [S], created as follows: if the processor index i is less than or equal to £, then

we set all = elements at that processor to be random numbers between ((22'— 1) ﬁ) and

((22) % — 1). Otherwise, we set all 2 elements to be random numbers between ((22 p—2) 231)
and ((22 —p— 1) 2) For the double data type, we normalize the integer benchmark values

in the manner descrlbed for [U].

. Worst-Load Regular [WR] - an input consisting of values between 0 and (23! — 1) designed to
induce the worst possible load balance at the completion of our regular sorting. Specifically, at the
completion of sorting, the odd-indexed processors will hold (%—I— % —p) elements, whereas the even-
indexed processors will hold (%— 2+p) elements. The benchmark is defined as follows. At proces-
sor Pp, for odd values of j between 1 and (p—2), the elements with indices ((] -1+ 1) through
(j% — 1) are set to random values between ((] — 1) . 1) and (]% — 1), the elements with

p
indices (]2%) through (]2% + % — 1) are set to (j%), the elements with indices (]2% + %)
through ((] +1)5 - 1) are set to random values between (]% + 1) and ((] + 1)% —), and
the element with index ((] + 1)ﬁ) is set to ((] + 1)ﬂ) At processor Py, for j equal to (p—1),
the elements with indices ((] - 1) + 1) through (Iy — 1) are set to random values between
((] - 1)2% + 1) and (]% - 1), the elements with indices (]2%) through (]2% + 1) are
set to (j%), and the elements with indices (]z% + %) through ((] + 1)2%) are set to random
values between (]% + 1) and ((] + 1)2% - 1). At processor P; (1 > 1), for odd values of j
between 1 and p, the elements with indices ((] — 1)2% + 1) through (]z% + % — 1) are set to
random values between ((] — 1) -4 1) and (]% — 1), the elements with index (]2% + %)
is set to (]% + i), and the elements with indices (]z% + % + 1) through ((] + 1)2%) are set
to random values between (]% +1+ 2) and ((] + 1)% — 1). For the double data type, we

normalize the integer benchmark values in the manner described for [U].

. Deterministic Duplicates [DD], an input of duplicates in which we set all @ elements at each
of the first £ processors to be logn, all elements at each of the next £ processors to be log (%),
and so forth. At processor P,, we set the first 2”—p elements to be log () the next - elements

to be log (zn—p), and so forth.

. Randomized Duplicates [RD], an input of duplicates in which each processor fills an array
T with some constant number range (range is 32 for our work) of random values between 0 and

[]

(range — 1) whose sum is 5. The first x & values of the input are then set to a random value
between 0 and (range — 1), the next % X 5 Values of the input are then set to another random

value between 0 and (range — 1), and so forth.

See [14] for a detailed justification of these benchmarks.

4.2 Experimental Results

For each experiment, the input is evenly distributed amongst the processors. The output consists of
the elements in non-descending order arranged amongst the processors so that the elements at each
processor are in sorted order and no element at processor P; is greater than any element at processor
P;, for all @ < j.

Two variations were allowed in our experiments. First, radix sort was used to sequentially sort
integers, whereas merge sort was used to sort double precision floating point numbers (doubles).
Second, different implementations of the communication primitives were allowed for each machine.
Wherever possible, we tried to use the vendor supplied implementations. In fact, IBM does provide
all of our communication primitives as part of its machine specific Collective Communication Library

(CCL) [7] and MPI. As one might expect, they were faster than the high level SPLIT-C implementation.

Optimal Number of Samples s for Sorting on T3D
Number of Processors

int./proc. 8 | 16 | 32 | 64 | 128

16K 128 128 128 128 128

32K 128 128 128 128 128

64K 256 256 256 256 128

128K 256 256 256 256 256

256K 512 512 512 256 512

512K 512 512 512 512 512

1M 1024 512 512 512 1024

Table I: Optimal number of samples s for sorting the [WR] integer benchmark on the Cray T3D, for a
variety of processors and input sizes.

Optimal Number of Samples s for Sorting on SP2
Number of Processors

int./proc. 8 | 16 | 32 | 64 | 128

16K 256 128 128 128 128

32K 256 256 256 256 256

64K 512 256 256 256 512

128K 512 512 512 512 512

256K 512 512 512 256 512

512K 1024 | 1024 1024 1024 1024

1M 1024 | 1024 1024 1024 1024

Table II: Optimal number of samples s for sorting the [WR] integer benchmark on the IBM SP-2-WN, for

a variety of processors and input sizes.
Tables I and IT examine the preliminary question of the optimal number of samples s for sorting on

10

the Cray T3D and the IBM SP-2-WN. They show the value of s which achieved the best performance
on the Worst-Load Regular [WR] benchmark, as a function of both the number of processors p
and the number of keys per processor %. The results suggest that a good rule for choosing s is to set it
to 2l los(n/p)] o \/%, which is what we do for the remainder of this discussion. To compare this choice
for s with the theoretical expectation, we recall that the complexity of Step (3) is O(splogp), whereas
the complexity of Step (9) is O ((% + 2 - p) log p). Hence, the first term is an increasing function of
s, whereas the second term is a decreasing function of s. It is easy to verify that the expression for the
sum of these two complexities is minimized for s = O (ﬁ), and, hence, the theoretical expectation

for the optimal value of s agrees with what we observe experimentally.

[Size [[U] | [G] [[2-GI[[4-GI] [B] | [S] | [2] | [WR]] [DD]] [RD]]
256K | 0.047 | 0.046 | 0.040 | 0.040 | 0.046 | 0.042 | 0.036 | 0.051 | 0.037 | 0.042
1M 0.104 | 0.102 | 0.094 | 0.092 | 0.103 | 0.094 | 0.080 | 0.113 | 0.081 | 0.089
4M 0.309 | 0.305 | 0.299 | 0.291 | 0.310 | 0.303 | 0.245 | 0.325 | 0.250 | 0.261
16M 1.09 1.08 1.09 1.06 1.10 1.11 | 0.903 1.13 0.904 | 0.930
64M 4.18 4.11 4.22 4.09 4.15 4.31 3.52 4.21 3.52 3.59

Table I1I: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node

Cray T3D.

[Size [[U] | [G] [[2-G]|[4-GI| [B] | [S] | [2] | [WR] | [DD]] [RD]]
256K | 0.055 | 0.055 | 0.050 | 0.048 | 0.051 | 0.049 | 0.046 | 0.056 | 0.047 | 0.050
1M 0.091 | 0.094 | 0.085 | 0.086 | 0.089 | 0.087 | 0.083 | 0.099 | 0.087 | 0.089
4M 0.237 | 0.236 | 0.229 | 0.223 | 0.224 | 0.228 | 0.222 | 0.253 | 0.231 | 0.239
16M | 0.873 | 0.878 | 0.974 | 0.886 | 0.868 | 0.969 | 0.819 | 0.904 | 0.835 | 0.851
64M 3.45 3.46 3.83 3.86 3.38 3.79 3.09 3.45 3.11 3.12

Table IV: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node

IBM SP-2-WN.

[Size [[U] | [G] [[2-G]|[4-GI| [B] | [S] | [2] | [WR]]| [DD] | [RD]]
256K | 0.056 | 0.056 | 0.046 | 0.046 | 0.055 | 0.045 | 0.044 | 0.060 | 0.043 | 0.050
1M 0.126 | 0.126 | 0.113 | 0.113 | 0.131 | 0.111 | 0.107 | 0.136 | 0.018 | 0.115
4M 0.411 | 0.411 | 0.387 | 0.394 | 0.416 | 0.389 | 0.376 | 0.435 | 0.383 | 0.384
16M 1.60 1.59 1.55 1.55 1.58 1.55 1.49 1.60 1.50 1.49
64M 6.53 6.57 6.44 6.45 6.55 6.49 6.26 6.61 6.26 6.14

Table V: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node

Cray T3D.

Tables III, IV, V, and VI display the performance of our sample sort as a function of input
distribution for a variety of input sizes. In each case, the performance is essentially independent of the

input distribution. These figures present results obtained on a 64 node Cray T3D and a 64 node IBM

11

[Size | [U] | [G] [[2-G][[4-G][[B] | [S] | [Z] |[[WR][[DD]][RD]]
256K | 0.090 | 0.037 | 0.082 | 0.080 | 0.084 | 0.080 [0.077 | 0.093 | 0.081 | 0.084
1M | 0.181 | 0.184 | 0.176 | 0.186 | 0.176 | 0.176 | 0.168 | 0.198 | 0.187 | 0.188
4M | 0.598 | 0.590 | 0.580 | 0.576 | 0.578 | 0.600 | 0.570 | 0.614 | 0.584 | 0.589
16M | 2.26 | 225 | 2.35 | 2.35 | 2.26 | 2.40 | 2.25 | 2.34 | 2.20 | 2.33
64M | 9.61 | 9.61 | 10.0 | 10.0 | 9.57 | 10.00 | 9.57 | 9.74 | 949 | 9.55

Table VI: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node

IBM SP-2-WN.

SP-2: results obtained from other platforms validate this claim as well. Because of this independence,
the remainder of this section will only discuss the performance of our sample sort on the Worst-Load
Regular benchmark [WR].

The results in Tables VII and VIII together with their graphs in Figure 1 examine the scalability
of our sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN. and
the CM-5. Bearing in mind that these graphs are log-log plots, they show that, for a given input size
n, the execution time scales inversely with the number of processors p for (p < 64). While this is
certainly the expectation of our analytical model for doubles, it might at first appear to exceed our
prediction of an O (%log p) computational complexity for integers. However, the appearance of an
inverse relationship is still quite reasonable when we note that, for values of p between 8 and 64, log p
varies by only a factor of two. Moreover, this O (%log p) complexity is entirely due to the merging
in Step (9), and in practice, Step (9) never accounts for more than 30% of the observed execution
time. Note that the complexity of Step (9) could be reduced to O (%) for integers using radix sort,
but the resulting execution time would, in most cases, be slower.

Regular Sorting of 8M Integers [WR]

Number of Processors
Machine 8 | 16 | 32 | 64 | 128
CRAY T3D | 3.23| 1.73 | 0.976 | 0.594 | 0.496

IBM SP2-WN | 2.73 | 1.38 | 0.761 | 0.472 | 0.410
TMC CM-5 - 7.83 | 3.99 | 2.29 | 2.55

Table VII: Total execution time (in seconds) required to sort 8M integers on a variety of machines and
processors using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to
us.

However, the results in Tables VII and VIII together with their graphs in Figure 1 also show that
for p greater than 64, the inverse relationship between the execution time and the number of processors
begins to deteriorate. Table IX explains these results with a step by step breakdown of the execution
times reported for the sorting of integers on the T3D. Step (1) clearly displays the O (%) complexity
expected for radix sort, and it dominates the total execution time for small values of p. The transpose

operation in Step (2) displays the (T + %O‘) complexity we originally suggested. The dependence

12

Regular Sorting of 8M Doubles [WR]
Number of Processors
Machine 8 | 16 | 32 | 64 | 128
CRAY T3D | 5.25 | 2.65 | 1.41 | 0.827 | 0.619
IBM SP2-WN | 7.95 | 4.05 | 2.09 | 1.18 | 0.870
T™MC CM-5 - - 1689 439 | 4.24

Table VIII: Total execution time (in seconds) required to sort 8M doubles on a variety of machines and
processors using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to

us.
Scalability of Regular Sorting Scalability of Regular Sorting
8M Integers [WR] 8M Doubles [WR]
10 . 10 r
* .
"y — ¢ i See—R
—
“\\ \\l——’—’”' \.\
g ~ g S
Q 1 l\ Q 1 '\\lh______
E E ¥
(= (=
01 01
3 16 32 B4 128 3 16 32 B4 128
Number of Processors Number of Processors
*CM-5 +T3D -+SP-2-WN *CM-5 +T3D -+SP-2-WN

Figure 1: Scalability of sorting integers and doubles with respect to machine size.

of 7 on p simply becomes more pronounced as p increases and 2 decreases. Step (3) exhibits the

O(sp) complexity we anticipated, since for QL%IOg(”/p)J, 5 18 halied every other time p is doubled.
Steps (6) and (9) display the expected O (p?logp) and O ((% + %) logp) (% 0 ((% + \/@) logp)
for s & \/%) complexity, respectively. Steps (7) and (8) exhibit the most complicated behavior.
The reason for this is that in Step (7), each processor must exchange p subsequences with every
other processor and must include with each subsequence a record consisting of four integer values
which will allow the unshuffling in Step (8) to be performed efficiently. Hence, the O (z% + % + 4p)
transpose block size in the case of 128 processors is nearly half that of the the case of 64 processors
(1280 vs. 2816). This, together with the fact that 7 increases as a function of p, explains why the

time required for Step (7) actually increases for 128 processors. Step (8) would also be expected to

13

Step by Step Breakdown of Sorting 8M Integers

Number of Processors (Number of Samples)
Step | 8 (1024) | 16 (512) | 32 (512) | 64 (256) | 128 (256)
1 2.320220 | 1.172284 | 0.591670 | 0.299310 | 0.151576
0.132129 | 0.069106 | 0.045686 | 0.029076 | 0.019693
0.008468 | 0.010606 | 0.026364 | 0.026372 | 0.053686
0.000015 | 0.000019 | 0.000028 | 0.000047 | 0.000085
0.000052 | 0.000078 | 0.000082 | 0.000128 | 0.000226
0.000390 | 0.001303 | 0.004339 | 0.012499 | 0.028225
0.130839 | 0.070650 | 0.050185 | 0.039518 | 0.076284
0.148714 | 0.077050 | 0.042443 | 0.034429 | 0.059114
9 0.485934 | 0.332238 | 0.215449 | 0.152325 | 0.107410

| Total | 3.226760 | 1.733333 | 0.976246 | 0.593705 | 0.496300 |

W S| O x|W|

Table IX: Time required (in seconds) for each step of sorting 8M integers on the Cray T3D using the
[WR] benchmark.

exhibit O (% + %) (% O (% + \/@) for s ~ \/%) complexity. But the scheme chosen for unshuffling
also involves an O(p) amount of overhead for each group of p subsequences to assess their relationship
so that they can be efficiently unshuffled. For sufficiently large values of p, this overhead begins to
dominate the complexity. While the data of Table IX was collected for sorting ¢ntegers on the T3D,
the data from the SP-2-WN and the T3D support the same analysis for sorting both integers and
doubles.

The graphs in Figure 2 examine the scalability of our regular sample sort as a function of keys
per processor (%), for differing numbers of processors. They show that for a fixed number of up to
64 processors there is an almost linear dependence between the execution time and %. While this
is certainly the expectation of our analytic model for integers, it might at first appear to exceed
our prediction of a O (%log n) computational complexity for floating point values. However, this
appearance of a linear relationship is still quite reasonable when we consider that for the range of
values shown log n differs by only a factor of 1.2. For p > 64, the relationship between the execution
time and and % is no longer linear. But based on our discussion of the data in Table IX, for large p and
relatively small n we would expect a sizeable contribution from those steps which exhibit O (p?log p),
0 (% + \/@), and O ((% + \/@) log p) complexity, which would explain this loss of linearity.

Finally, the graphs in Figure 3 examine the relative costs of the nine steps in our regular sample
sort algorithm. Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using both
the integer and the double versions of the [WR] benchmark. Notice that for n = 64M integers,
the sequential sorting, unshuffling, and merging performed in Steps (1), (8), and (9) consume
approximately 85% of the execution time on the T3D and approximately 75% of the execution time

on the SP-2. By contrast, the two transpose operations in Steps (2) and (7) together consume

14

