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1 IntroductionWe present a novel variation on the approach of sorting by regular sampling which leads to a newdeterministic sorting algorithm that achieves optimal computational speedup with very little commu-nication [15]. Our algorithm exchanges the single step of irregular communication used by previousimplementations for two steps of regular communication. In return, our algorithm reduces the problemof poor load balancing because it is able to sustain a high sampling rate at substantially less cost. Inaddition, our algorithm e�ciently accommodates the presence of duplicates without the overhead oftagging each element. And our algorithm achieves predictable, regular communication requirementswhich are essentially invariant with respect to the input distribution. Utilizing regular communicationhas become more important with the advent of message passing standards, such as MPI [17], whichseek to guarantee the availability of very e�cient (often machine speci�c) implementations of certainbasic collective communication routines.Our algorithm was implemented in a high-level language and run on a variety of platforms, in-cluding the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our codeusing a variety of benchmarks that we identi�ed to examine the dependence of our algorithm on theinput distribution. Our experimental results are consistent with the theoretical analysis and illustratethe e�ciency and scalability of our algorithm across di�erent platforms. In fact, the performancecompares closely to that of our random sample sort algorithm, which seems to outperform all similaralgorithms known to the authors on these platforms. Together, their performance is nearly indi�erentto the set of input distributions, unlike previous e�cient algorithms. However, unlike our randomizedsorting algorithm, the performance and memory requirements of our regular sorting algorithm can beguaranteed with probability one.The high-level language used in our studies is Split-C [10], an extension of C for distributedmemory machines. The algorithm makes use of MPI-like communication primitives but does notmake any assumptions as to how these primitives are actually implemented. The basic data transportis a read or write operation. The remote read and write typically have both blocking and non-blocking versions. Also, when reading or writing more than a single element, bulk data transports areprovided with corresponding bulk read and bulk write primitives. Our collective communicationprimitives, described in detail in [6], are similar to those of the MPI [17], the IBM POWERparallel [7],and the Cray MPP systems [9] and, for example, include the following: transpose, bcast, gather,and scatter. Brief descriptions of these are as follows. The transpose primitive is an all-to-allpersonalized communication in which each processor has to send a unique block of data to everyprocessor, and all the blocks are of the same size. The bcast primitive is used to copy a block of datafrom a single source to all the other processors. The primitives gather and scatter are companionprimitives. Scatter divides a single array residing on a processor into equal-sized blocks, each of2



which is distributed to a unique processor, and gather coalesces these blocks back into a single arrayat a particular processor. See [3, 6, 4, 5] for algorithmic details, performance analyses, and empiricalresults for these communication primitives.The organization of this paper is as follows. Section 2 presents our computation model foranalyzing parallel algorithms. Section 3 describes in detail our improved sample sort algorithm.Finally, Section 4 describes our data sets and the experimental performance of our sorting algorithm.2 The Parallel Computation ModelWe use a simple model to analyze the performance of our parallel algorithms. Our model is based onthe fact that current hardware platforms can be viewed as a collection of powerful processors connectedby a communication network that can be modeled as a complete graph on which communication issubject to the restrictions imposed by the latency and the bandwidth properties of the network. Weview a parallel algorithm as a sequence of local computations interleaved with communication steps,where we allow computation and communication to overlap. We account for communication costs asfollows.Assuming no congestion, the transfer of a block consisting of m contiguous words between twoprocessors takes (� + �m) time, where � is the latency of the network and � is the time per word atwhich a processor can inject or receive data from the network. Note that the bandwidth per processoris inversely proportional to �. We assume that the bisection bandwidth is su�ciently high to supportblock permutation routing amongst the p processors at the rate of 1� . In particular, for any subset ofq processors, a block permutation amongst the q processors takes (� + �m) time, where m is the sizeof the largest block.Using this cost model, we can evaluate the communication time Tcomm(n; p) of an algorithm as afunction of the input size n, the number of processors p , and the parameters � and �. The coe�cientof � gives the total number of times collective communication primitives are used, and the coe�cientof � gives the maximum total amount of data exchanged between a processor and the remainingprocessors.This communication model is close to a number of similar models (e.g. [11, 19, 1]) that haverecently appeared in the literature and seems to be well-suited for designing parallel algorithms oncurrent high performance platforms.We de�ne the computation time Tcomp as the maximum time it takes a processor to perform all thelocal computation steps. In general, the overall performance Tcomp+Tcomm involves a tradeo� betweenTcomp and Tcomm. In many cases, it is possible to minimize both Tcomp and Tcomm simultaneously,and sorting is such a case. 3



3 A New Sorting Algorithm by Regular SamplingConsider the problem of sorting n elements equally distributed amongst p processors, where we assumewithout loss of generality that p divides n evenly. The idea behind sorting by regular sampling is to�nd a set of p � 1 splitters to partition the n input elements into p groups indexed from 1 up to psuch that every element in the ith group is less than or equal to each of the elements in the (i+ 1)thgroup, for (1 � i � p � 1). Then the task of sorting each of the p groups can be turned over tothe correspondingly indexed processor, after which the n elements will be arranged in sorted order.The e�ciency of this algorithm obviously depends on how well we divide the input, and this in turndepends on how evenly we choose the splitters. One way to choose the splitters is by regularly samplingthe sorted input elements at each processor - hence the name Sorting by Regular Sampling.A previous version of regular sample sort [18, 16], known as Parallel Sorting by RegularSampling (PSRS) , �rst sorts the np elements at each processor and then selects every � np2�thelement as a sample. These samples are then routed to a single processor, where they are sorted andevery pth sample is selected as a splitter. Each processor then uses these splitters to partition thesorted input values and then routes the resulting subsequences to the appropriate destinations, afterwhich local merging of these subsequences is done to complete the sorting process. The �rst di�cultywith this approach is the load balance. There exist inputs for which at least one processor will be leftwith as many as �2np � np2 � p+ 1� elements at the completion of sorting. This could be reduced bychoosing more samples, but this would also increase the overhead. And no matter how many samplesare chosen, previous studies have shown that the load balance would still deteriorate linearly with thenumber of duplicates [16]. One could, of course, tag each item with a unique value, but this wouldalso double the cost of both memory access and interprocessor communication. The other di�cultyis that no matter how the routing is scheduled, there exist inputs that give rise to large variations inthe number of elements destined for di�erent processors, and this in turn results in an ine�cient useof the communication bandwidth. Moreover, such an irregular communication scheme cannot takeadvantage of the regular communication primitives proposed under the MPI standard [17].In our algorithm, which is parameterized by a sampling ratio s �p � s � np2�, we guarantee that, atthe completion of sorting, each processor will have at most �np + ns � p� elements, while incurring nooverhead in gathering the set of samples used to identify the splitters. This bound holds regardless ofthe number of duplicate elements present in the input. Moreover, we are able to replace the irregularrouting with exactly two calls to our transpose primitive.The pseudocode for our algorithm is as follows:� Step (1): Each processor Pi (1 � i � p) sorts each of its np input values using an appropriatesequential sorting algorithm. For integers we use the radix sort algorithm, whereas for 
oating4



point numbers we use the merge sort algorithm. The sorted data is then \dealt" into p binsso that the kth item in the sorted order is placed into the �jk�1p k+ 1�th position of the (((k �1) mod p) + 1)th bin.� Step (2): Each processor Pi routes the contents of bin j to processor Pj , for (1 � i; j � p),which is equivalent to performing a transpose operation with block size np2 .� Step (3): From each of the p sorted subsequences received in Step (2), processor Pp selectseach �k np2s�th element as a sample, for (1 � k � s) and a given value of s �p � s � np2�.� Step (4): Processor Pp merges the p sorted subsequences of samples and then selects each (ks)thsample as Splitter[k], for (1 � k � p�1). By default, the pth splitter is the largest value allowedby the data type used. Additionally, binary search is used to compute for the set of samples Skwith indices (ks� s+ 1) through (ks) the number of samples Est[k] which share the same valueas Splitter[k].� Step (5): Processor Pp broadcasts the Splitter and Est arrays to the other p� 1 processors.� Step (6): Each processor Pi uses binary search to de�ne for each of the p sorted sequencesreceived in Step (2) and each of the p splitters a subsequence T(j;k). The set of p subsequencesfT(j;1); T(j;2); :::; T(j;p)g associated with Splitter[j] all contain values which are greater than orequal to Splitter[j � 1] and less then or equal to Splitter[j], and collectively include at most�Est[j]� np2s� elements with the same value as Splitter[j].� Step (7): Each processor Pi routes the p subsequences associated with Splitter[j] to processorPj , for (1 � i; j � p). Since no two processors will exchange more than � np2 + nsp� elements, thisis equivalent to performing a transpose operation with block size � np2 + nsp�.� Step (8): Each processor Pi \unshu�es" all those subsequences sharing a common origin inStep (2).� Step (9): Each processor Pi merges the p consolidated subsequences to produce the ith columnof the sorted array.Before establishing the complexity of this algorithm, we need to establish the following theorem.Theorem 1: The number of elements sent by processor Pi to processor Pj in Step (7) is at most� np2 + nsp � p� for i = p and � np2 + nsp� for i < p. Consequently, at the completion of the algorithm,no processor holds more than �np + ns � p� elements, for n � p3 and �p � s � np2�.Proof: Let Sj be the set of samples from the sorted array of samples in Step (4) with indices (js�s+1)through (js), inclusively. Let S(j;i) be the subset of samples in Sj originating from processor Pi, and letc(j;i) be the cardinality of S(j;i). Let Vj = Splitter[j], let c(j;i;1) be the number of samples in S(j;i) with5



value less than Vj, and let c(j;i;2) = (c(j;i)�c(j;i;1)) be the number of samples in S(j;i) with value Vj . LetR(j;i) = f[S(t;i) : 1 � t < (j � 1)g, let b(j;i) = Pj�1t=0 c(t;i) be the cardinality of R(j;i), let b(j;i;1) be thenumber of samples in R(j;i) with value less than Vj , and let b(j;i;2) = (b(j;i) � b(j;i;1)) be the number ofsamples in R(j;i) with value Vj . Obviously, b(j;i;2) will only be nonzero if Splitter[j � 1] = Vj . Finally,for simplicity of discussion but without loss of generality, we assume that n is a constant multiple ofp2s.Clearly, each sample can be mapped in a one-to-one fashion to the sorted input generated duringStep (1) (but before being distributed amongst the bins). For example, the �rst sample in S(j;i)maps to the ��b(j;i) + 1� nps�th element in the sorted input at processor Pi, the second sample in S(j;i)maps to the ��b(j;i) + 2� nps�th element in the sorted input at processor Pi, and so forth up to thecth(j;i) element which maps to the ��b(j;i) + c(j;i)� nps�th element in the sorted input at processor Pi.Hence, it follows that L(j;i) elements in the sorted input of Step (1) at processor Pi will be lessthan Vj , where ��b(j;i;1)+ c(j;i;1)� nps � L(j;i) � ��b(j;i;1) + c(j;i;1) + 1� nps � 1��. It is also true thatat least M(j;i) elements in the sorted input of Step (1) will be less than or equal to Vj, whereM(j;i) = �b(j;i) + c(j;i)� nps .The shu�ing of Step (1) together with the transpose of Step (2) maps the tth element atprocessor Pi into the �j t�1p k+ 1�th position of the ith subarray at processor P(((t�1) mod p)+1), asubarray which we will denote as SA((((t�1) mod p)+1);i). Now, L(j;r;i) elements in SA(r;i) will be lessthan Vj and will unequivocally route to processors P1 through Pj , where:�b(j;i;1) + c(j;i;1)� np2s � L(j;r;i) � �b(j;i;1)+ c(j;i;1)+ 1� np2s if r < p�b(j;i;1) + c(j;i;1)� np2s � L(j;r;i) � ��b(j;i;1)+ c(j;i;1) + 1� np2s � 1� if r = pFurthermore, at least M(j;r;i) elements in SA(r;i) will be less than or equal to Vj, where M(j;r;i) =(b(j;i) + c(j;i)) np2s). This means that the p subarrays at processor Pr collectively have at leastpXt=1M(j;r;t) = pXt=1 �b(j;t) + c(j;t)� np2s= j np2elements which are greater than or equal to Vj . Furthermore,pXt=1 �M(j;r;t) � L(j;r;t)� � pXt=1��b(j;t) + c(j;t)� np2s � �b(j;t;1) + c(j;t;1)� np2s�= pXt=1 �b(j;t;2)+ c(j;t;2)� np2s= (Est�[j] + Est[j])� np2s ;6



where �Est[j]� np2s� is the number of elements equal to Vj which the algorithm in Step (6) willseek to route to processor Pj and �Est�[j]� np2s� is the number of elements equal to Vj which thealgorithm in Step (6) will seek to route to processors P1 through P(j�1). From this it follows thatthe algorithm will always be able to route a minimum of Min(j;r) = Ppt=1M(j;r;t) = j np2 elements toprocessors P1 through Pj . On the other hand, the maximum number of elements that will be routedby this algorithm to these processors is:Max(j;r) =  pXt=1L(j;r;t)!+ (Est�[j] + Est[j])� np2s� 8>>>>><>>>>>: Ppt=1 ��b(j;t;1)+ c(j;t;1)+ 1� np2s + �b(j;t;2)+ c(j;t;2)� np2s� =(js+ p) np2s if r < pPpt=1 ���b(j;t;1)+ c(j;t;1)+ 1� np2s � 1�+ �b(j;t;2)+ c(j;t;2)� np2s� =�(js+ p) np2s � p� if r = pHence, the maximum number of elements send by processor Pr to processor Pj is:Max(j;r) �Min(j�1;r) = 8>>>>><>>>>>: (js+ p) np2s � ((j � 1) s) np2s =� np2 + nps� if r < p�(js+ p) np2s � p�� ((j � 1) s) np2s =� np2 + nps � p� if r = pand Theorem 1 follows.With the results of Theorem 1, the analysis of our algorithm for sorting by regular sampling is asfollows. Steps (3), (4), (6), (8), and (9) require O(sp), O(sp log p), O �p2 log p�, O �np + ns + p2 � p�,and O ��np + ns � p� log p� time, respectively. The cost of sequential sorting in Step (1) depends onthe data type - sorting integers using radix sort requires O �np� time, whereas sorting 
oating pointnumbers using merge sort requires O �np log �np�� time. Steps (2), (5), and (7) call the communica-tion primitives transpose, bcast, and transpose, respectively. The analysis of these primitives in[6] shows that these three steps require Tcomm(n; p) � �� + np2 (p� 1)��, Tcomm(n; p) � (�+2(p�1)�),and Tcomm(n; p) � �� + � np2 + nsp� (p� 1)��, respectively. Hence, with high probability, the overallcomplexity of our sorting algorithm is given (for 
oating point numbers) byT (n; p) = Tcomp(n; p) + Tcomm(n; p)= O�np logn + � + np�� (1)for n � p3 and �p � s � np2�.Clearly, our algorithm is asymptotically optimal with very small coe�cients. But a theoreticalcomparison of our running time with previous sorting algorithms is di�cult, since there is no consensuson how to model the cost of the irregular communication used by the most e�cient algorithms.7



Hence, it is very important to perform an empirical evaluation of an algorithm using a wide varietyof benchmarks, as we will do next.4 Performance EvaluationOur sample sort algorithm was implemented using Split-C [10] and run on a variety of machines andprocessors, including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5.For every platform, we tested our code on nine di�erent benchmarks, each of which had both a 32-bitinteger version (64-bit on the Cray T3D) and a 64-bit double precision 
oating point number (double)version.4.1 Sorting BenchmarksOur nine sorting benchmarks are de�ned as follows, in which n and p are assumed for simplicity butwithout loss of generality to be powers of two and MAXD, the maximum value allowed for doubles,is approximately 1:8� 10308.1. Uniform [U], a uniformly distributed random input, obtained by calling the C library randomnumber generator random(). This function, which returns integers in the range 0 to �231 � 1�, isseeded by each processor Pi with the value (21+1001i). For the double data type, we \normalize"the integer benchmark values by �rst subtracting the value 230 and then scaling the result by�2�30 �MAXD�.2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls torandom() and then dividing the result by four. For the double data type, we normalize theinteger benchmark values in the manner described for [U].3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by setting the �rst np2elements at each processor to be random numbers between 0 and (231p � 1), the second np2elements at each processor to be random numbers between 231p and (232p � 1), and so forth. Forthe double data type, we normalize the integer benchmark values in the manner described for[U].5. g-Group [g-G], an input created by �rst dividing the processors into groups of consecutive pro-cessors of size g, where g can be any integer which partitions p evenly. If we index these groups inconsecutive order from 1 up to pg , then for group j we set the �rst npg elements to be random num-bers between ���(j � 1) g + p2 � 1� mod p�+ 1� 231p and ����(j � 1) g + p2� mod p�+ 1� 231p � 1�,the second npg elements at each processor to be random numbers between8



���(j � 1) g + p2� mod p�+ 1� 231p and ����(j � 1) g + p2 + 1� mod p�+ 1� 231p � 1�, and so forth.For the double data type, we normalize the integer benchmark values in the manner describedfor [U].6. Staggered [S], created as follows: if the processor index i is less than or equal to p2 , thenwe set all np elements at that processor to be random numbers between �(2i� 1) 231p � and�(2i) 231p � 1�. Otherwise, we set all np elements to be random numbers between �(2i� p� 2) 231p �and �(2i� p� 1) 231p � 1�. For the double data type, we normalize the integer benchmark valuesin the manner described for [U].7. Worst-Load Regular [WR] - an input consisting of values between 0 and (231�1) designed toinduce the worst possible load balance at the completion of our regular sorting. Speci�cally, at thecompletion of sorting, the odd-indexed processors will hold (np+ns�p) elements, whereas the even-indexed processors will hold (np� ns+p) elements. The benchmark is de�ned as follows. At proces-sor P1, for odd values of j between 1 and (p�2), the elements with indices �(j � 1) np2 + 1� through�j np2 � 1� are set to random values between �(j � 1)231p + 1� and �j 231p � 1�, the elements withindices �j np2� through �j np2 + nsp � 1� are set to �j 231p �, the elements with indices �j np2 + nsp�through �(j + 1) np2 � 1� are set to random values between �j 231p + 1� and �(j + 1)231p � 1�, andthe element with index �(j + 1)231p � is set to �(j + 1)231p �. At processor P1, for j equal to (p�1),the elements with indices �(j � 1) np2 + 1� through �j np2 � 1� are set to random values between�(j � 1)231p + 1� and �j 231p � 1�, the elements with indices �j np2� through �j np2 + nsp � 1� areset to �j 231p �, and the elements with indices �j np2 + nsp� through �(j + 1) np2� are set to randomvalues between �j 231p + 1� and �(j + 1)231p � 1�. At processor Pi (i > 1), for odd values of jbetween 1 and p, the elements with indices �(j � 1) np2 + 1� through �j np2 + nsp � 1� are set torandom values between �(j � 1)231p + 1� and �j 231p � 1�, the elements with index �j np2 + nsp�is set to �j 231p + i�, and the elements with indices �j np2 + nsp + 1� through �(j + 1) np2� are setto random values between �j 231p + 1 + i� and �(j + 1)231p � 1�. For the double data type, wenormalize the integer benchmark values in the manner described for [U].8. Deterministic Duplicates [DD], an input of duplicates in which we set all np elements at eachof the �rst p2 processors to be logn, all np elements at each of the next p4 processors to be log �n2 �,and so forth. At processor Pp, we set the �rst n2p elements to be log �np�, the next n4p elementsto be log � n2p�, and so forth.9. Randomized Duplicates [RD], an input of duplicates in which each processor �lls an arrayT with some constant number range (range is 32 for our work) of random values between 0 and(range�1) whose sum is S. The �rst T [1]S � np values of the input are then set to a random valuebetween 0 and (range� 1), the next T [2]S � np values of the input are then set to another randomvalue between 0 and (range� 1), and so forth.9



See [14] for a detailed justi�cation of these benchmarks.4.2 Experimental ResultsFor each experiment, the input is evenly distributed amongst the processors. The output consists ofthe elements in non-descending order arranged amongst the processors so that the elements at eachprocessor are in sorted order and no element at processor Pi is greater than any element at processorPj , for all i < j.Two variations were allowed in our experiments. First, radix sort was used to sequentially sortintegers, whereas merge sort was used to sort double precision 
oating point numbers (doubles).Second, di�erent implementations of the communication primitives were allowed for each machine.Wherever possible, we tried to use the vendor supplied implementations. In fact, IBM does provideall of our communication primitives as part of its machine speci�c Collective Communication Library(CCL) [7] and MPI. As one might expect, they were faster than the high level Split-C implementation.Optimal Number of Samples s for Sorting on T3DNumber of Processorsint./proc. 8 16 32 64 12816K 128 128 128 128 12832K 128 128 128 128 12864K 256 256 256 256 128128K 256 256 256 256 256256K 512 512 512 256 512512K 512 512 512 512 5121M 1024 512 512 512 1024Table I: Optimal number of samples s for sorting the [WR] integer benchmark on the Cray T3D, for avariety of processors and input sizes.Optimal Number of Samples s for Sorting on SP2Number of Processorsint./proc. 8 16 32 64 12816K 256 128 128 128 12832K 256 256 256 256 25664K 512 256 256 256 512128K 512 512 512 512 512256K 512 512 512 256 512512K 1024 1024 1024 1024 10241M 1024 1024 1024 1024 1024Table II: Optimal number of samples s for sorting the [WR] integer benchmark on the IBM SP-2-WN, fora variety of processors and input sizes.Tables I and II examine the preliminary question of the optimal number of samples s for sorting on10



the Cray T3D and the IBM SP-2-WN. They show the value of s which achieved the best performanceon the Worst-Load Regular [WR] benchmark, as a function of both the number of processors pand the number of keys per processor np . The results suggest that a good rule for choosing s is to set itto 2b 12 log(n=p)c � qnp , which is what we do for the remainder of this discussion. To compare this choicefor s with the theoretical expectation, we recall that the complexity of Step (3) is O(sp log p), whereasthe complexity of Step (9) is O ��np + ns � p� log p�. Hence, the �rst term is an increasing function ofs, whereas the second term is a decreasing function of s. It is easy to verify that the expression for thesum of these two complexities is minimized for s = O�qnp�, and, hence, the theoretical expectationfor the optimal value of s agrees with what we observe experimentally.Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]256K 0.047 0.046 0.040 0.040 0.046 0.042 0.036 0.051 0.037 0.0421M 0.104 0.102 0.094 0.092 0.103 0.094 0.080 0.113 0.081 0.0894M 0.309 0.305 0.299 0.291 0.310 0.303 0.245 0.325 0.250 0.26116M 1.09 1.08 1.09 1.06 1.10 1.11 0.903 1.13 0.904 0.93064M 4.18 4.11 4.22 4.09 4.15 4.31 3.52 4.21 3.52 3.59Table III: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-nodeCray T3D. Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]256K 0.055 0.055 0.050 0.048 0.051 0.049 0.046 0.056 0.047 0.0501M 0.091 0.094 0.085 0.086 0.089 0.087 0.083 0.099 0.087 0.0894M 0.237 0.236 0.229 0.223 0.224 0.228 0.222 0.253 0.231 0.23916M 0.873 0.878 0.974 0.886 0.868 0.969 0.819 0.904 0.835 0.85164M 3.45 3.46 3.83 3.86 3.38 3.79 3.09 3.45 3.11 3.12Table IV: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-nodeIBM SP-2-WN.Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]256K 0.056 0.056 0.046 0.046 0.055 0.045 0.044 0.060 0.043 0.0501M 0.126 0.126 0.113 0.113 0.131 0.111 0.107 0.136 0.018 0.1154M 0.411 0.411 0.387 0.394 0.416 0.389 0.376 0.435 0.383 0.38416M 1.60 1.59 1.55 1.55 1.58 1.55 1.49 1.60 1.50 1.4964M 6.53 6.57 6.44 6.45 6.55 6.49 6.26 6.61 6.26 6.14Table V: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-nodeCray T3D.Tables III, IV, V, and VI display the performance of our sample sort as a function of inputdistribution for a variety of input sizes. In each case, the performance is essentially independent of theinput distribution. These �gures present results obtained on a 64 node Cray T3D and a 64 node IBM11



Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]256K 0.090 0.087 0.082 0.080 0.084 0.080 0.077 0.093 0.081 0.0841M 0.181 0.184 0.176 0.186 0.176 0.176 0.168 0.198 0.187 0.1884M 0.598 0.590 0.580 0.576 0.578 0.600 0.570 0.614 0.584 0.58916M 2.26 2.25 2.35 2.35 2.26 2.40 2.25 2.34 2.29 2.3364M 9.61 9.61 10.0 10.0 9.57 10.00 9.57 9.74 9.49 9.55Table VI: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-nodeIBM SP-2-WN.SP-2; results obtained from other platforms validate this claim as well. Because of this independence,the remainder of this section will only discuss the performance of our sample sort on theWorst-LoadRegular benchmark [WR].The results in Tables VII andVIII together with their graphs in Figure 1 examine the scalabilityof our sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN, andthe CM-5. Bearing in mind that these graphs are log-log plots, they show that, for a given input sizen, the execution time scales inversely with the number of processors p for (p � 64). While this iscertainly the expectation of our analytical model for doubles, it might at �rst appear to exceed ourprediction of an O �np log p� computational complexity for integers. However, the appearance of aninverse relationship is still quite reasonable when we note that, for values of p between 8 and 64, log pvaries by only a factor of two. Moreover, this O �np log p� complexity is entirely due to the mergingin Step (9), and in practice, Step (9) never accounts for more than 30% of the observed executiontime. Note that the complexity of Step (9) could be reduced to O �np� for integers using radix sort,but the resulting execution time would, in most cases, be slower.Regular Sorting of 8M Integers [WR]Number of ProcessorsMachine 8 16 32 64 128CRAY T3D 3.23 1.73 0.976 0.594 0.496IBM SP2-WN 2.73 1.38 0.761 0.472 0.410TMC CM-5 - 7.83 3.99 2.29 2.55Table VII: Total execution time (in seconds) required to sort 8M integers on a variety of machines andprocessors using the [WR] benchmark. A hyphen indicates that particular platform was unavailable tous. However, the results in Tables VII andVIII together with their graphs in Figure 1 also show thatfor p greater than 64, the inverse relationship between the execution time and the number of processorsbegins to deteriorate. Table IX explains these results with a step by step breakdown of the executiontimes reported for the sorting of integers on the T3D. Step (1) clearly displays the O �np� complexityexpected for radix sort, and it dominates the total execution time for small values of p. The transposeoperation in Step (2) displays the �� + np�� complexity we originally suggested. The dependence12



Regular Sorting of 8M Doubles [WR]Number of ProcessorsMachine 8 16 32 64 128CRAY T3D 5.25 2.65 1.41 0.827 0.619IBM SP2-WN 7.95 4.05 2.09 1.18 0.870TMC CM-5 - - 6.89 4.39 4.24Table VIII: Total execution time (in seconds) required to sort 8M doubles on a variety of machines andprocessors using the [WR] benchmark. A hyphen indicates that particular platform was unavailable tous.

Figure 1: Scalability of sorting integers and doubles with respect to machine size.of � on p simply becomes more pronounced as p increases and np decreases. Step (3) exhibits theO(sp) complexity we anticipated, since for 2b 12 log(n=p)c, s is halved every other time p is doubled.Steps (6) and (9) display the expected O �p2 log p� and O ��np + ns� log p� �� O ��np +pnp� log p�for s � qnp� complexity, respectively. Steps (7) and (8) exhibit the most complicated behavior.The reason for this is that in Step (7), each processor must exchange p subsequences with everyother processor and must include with each subsequence a record consisting of four integer valueswhich will allow the unshu�ing in Step (8) to be performed e�ciently. Hence, the O � np2 + nsp + 4p�transpose block size in the case of 128 processors is nearly half that of the the case of 64 processors(1280 vs. 2816). This, together with the fact that � increases as a function of p, explains why thetime required for Step (7) actually increases for 128 processors. Step (8) would also be expected to13



Step by Step Breakdown of Sorting 8M IntegersNumber of Processors (Number of Samples)Step 8 (1024) 16 (512) 32 (512) 64 (256) 128 (256)1 2.320220 1.172284 0.591670 0.299310 0.1515762 0.132129 0.069106 0.045686 0.029076 0.0196933 0.008468 0.010606 0.026364 0.026372 0.0536864 0.000015 0.000019 0.000028 0.000047 0.0000855 0.000052 0.000078 0.000082 0.000128 0.0002266 0.000390 0.001303 0.004339 0.012499 0.0282257 0.130839 0.070650 0.050185 0.039518 0.0762848 0.148714 0.077050 0.042443 0.034429 0.0591149 0.485934 0.332238 0.215449 0.152325 0.107410Total 3.226760 1.733333 0.976246 0.593705 0.496300Table IX: Time required (in seconds) for each step of sorting 8M integers on the Cray T3D using the[WR] benchmark.exhibit O �np + ns� �� O �np +pnp� for s � qnp� complexity. But the scheme chosen for unshu�ingalso involves an O(p) amount of overhead for each group of p subsequences to assess their relationshipso that they can be e�ciently unshu�ed. For su�ciently large values of p, this overhead begins todominate the complexity. While the data of Table IX was collected for sorting integers on the T3D,the data from the SP-2-WN and the T3D support the same analysis for sorting both integers anddoubles.The graphs in Figure 2 examine the scalability of our regular sample sort as a function of keysper processor �np�, for di�ering numbers of processors. They show that for a �xed number of up to64 processors there is an almost linear dependence between the execution time and np . While thisis certainly the expectation of our analytic model for integers, it might at �rst appear to exceedour prediction of a O �np log n� computational complexity for 
oating point values. However, thisappearance of a linear relationship is still quite reasonable when we consider that for the range ofvalues shown logn di�ers by only a factor of 1:2. For p > 64, the relationship between the executiontime and and np is no longer linear. But based on our discussion of the data in Table IX, for large p andrelatively small n we would expect a sizeable contribution from those steps which exhibit O �p2 log p�,O �np +pnp�, and O ��np +pnp� log p� complexity, which would explain this loss of linearity.Finally, the graphs in Figure 3 examine the relative costs of the nine steps in our regular samplesort algorithm. Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using boththe integer and the double versions of the [WR] benchmark. Notice that for n = 64M integers,the sequential sorting, unshu�ing, and merging performed in Steps (1), (8), and (9) consumeapproximately 85% of the execution time on the T3D and approximately 75% of the execution timeon the SP-2. By contrast, the two transpose operations in Steps (2) and (7) together consume14


