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1 Introduction

CPU speed has doubled roughly every 18 months, while 
DRAM core speed has increased at a more modest rate of 
roughly 7%. This difference in speed contributes to the 
growing latency of a memory request, in terms of CPU 
cycles. This resulting latency increase has been termed 
the “memory wall” [12]. DRAM chip density has 
increased by roughly 4X-2X every three years and is said 
to effectively track Moore’s law for DRAM. These 
increases in capacity and increasing software complexity 
have fuelled the increases in installed DRAM capacity in 
a server and desk-top systems. 

As memory accesses become slower with 
respect to the processor and consume more power with 
increasing memory size, the focus of memory 
performance and power consumption have become 
increasingly important. Many studies show that memory 
power and access time dominate over 50% of the total 
power and performance for computations with large 
storage requirements[10,11,1]. With the trend to develop 
multi-threaded, multi-core processors, the demands on 
the memory system will continue to scale. 

Memory system performance is sensitive to a 
large number of parameters including DRAM timing 
parameters, memory controller policies, and memory 

system topologies. Each of these parameters take on a 
number of values and interact in fashions that make 
overall trends difficult to discern [9]. Each type of 
DRAM i.e., SDRAM, DDR SDRAM etc., has different 
behaviors and architectures. The DRAM type limits the 
memory system architecture in terms of supportable 
bandwidths and topologies, i.e. number of DIMMs, 
number of channels, which in turn effects performance. 
The choice of address mapping policy is sensitive to both 
the memory controller row buffer management policy 
(open-page vs closed page) and the system topology. The 
efficacy of a memory access reordering policy (FIFO, 
priority based, read centric) is impacted by all the address 
mapping policy, row buffer management policy, and the 
system topology. A comparison of the memory system 
architectures becomes even harder when we add the 
dimensions of power consumption and manufacturing 
cost. 

Although prior research demonstrates the 
performance tuning possible by varying memory system 
parameters, there is a lack of tools in the public-domain 
that support such studies. Some tools implement the 
memory as a constant time and constant energy per 
access. Others implement the memory as banks, but 
simplify the interactions between the memory commands 
and elements. 
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Therefore, we introduce DRAMsim, a detailed 
and highly-configurable C-based memory system 
simulator to fill this gap. DRAMsim implements detailed 
timing models for a variety of existing memories 
including SDRAM, DDR, DDR2, DRDRAM and FB-
DIMM. It also models the power consumption of 
SDRAM and its derivatives. It can be used as a stand-
alone simulator or as a part of a more comprehensive 
system-level model. We have successfully integrated 
DRAMsim into a variety of simulators including 
MASE[15], Sim-alpha[14], BOCHS[2] and GEMS[13]. 

2 Design Goals 

Our goal is to provide a detailed, realistic, highly-
configurable simulator for evaluating the memory 
system, independent of the host platform. The simulator 
provide us the capability of simulating a variety of 
memory types (SDRAM, DDR etc.) and easily vary their 
parameters. It allows us to configure memory controller 
policies and memory controller topologies. Explicit 
moduralization makes it easy for first-time users to 

familiarize themselves with the simulator. The simulator 
comes with a number of default configurations for a 
number of DRAM types. Users can choose to use these 
defaults as is or over-ride the default parameters using 
either configuration files or command-line options. The 
simulator provides a variety of statistics including 
detailed latency stats, resource usage numbers, bank 
conflict and hit history. Besides performace statistics, the 
simulator can also generate detailed breakdown power 
consumption numbers for each rank. All statistics can be 
generated either periodically or at the end of the 
complete run. Finally, the simulator is versatile enough 
that it can easily be integrated into any complete system 
simulator, or be used as a stand-alone simulator. 

3 DRAMsim Overview

Figure 1 shows the system topology of the simulated 
processor-memory system. Three distinct and separate 
entities that interact in the life of a memory transaction 
request are assumed in this framework: processor(s), 
memory controller(s), and DRAM memory system(s). 
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Fig 1: : Abstract Illustration of a Load Instruction in a Processor-Memory System.   
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Each of these entities is assumed to be an independently 
clocked synchronous state machine that operates in 
separate clocking domains. In the general 
implementation of the simulation framework, there are 
only two clocking domains: the CPU clock domain and 
the DRAM memory system clock domain, excluding 
FB-DIMM memory systems. Our simulator models the 
transaction’s life once it leaves the processor core.

3.1 Bus Interface Unit

The memory system can support requests from an in-
order core or an out-of-order execution core, where 
different portions of the processor can all generate 
memory requests. Each request is tagged with a request 
id (rid) to enable the callback function to uniquely 
identify the request generator. The simulator assumes 
that each functional unit can sustain more than one 
memory transaction miss at a given instance in time, and 
the memory transaction may be returned by the memory 
system either out-of-order or in-order. The life of a 
memory transaction request begins when a requesting 
functional unit generates a DRAM memory request. The 
requesting unit begins this process by attempting to place 
the request into a slot in the bus interface unit (BIU), a 
data structure with multiple unordered entries/slots. The 
BIU has the functional equivalence to MSHR’s in this 
simulator If there is a free slot available, then the request 
will be successfully placed into the bus interface unit, 
and the status MEM_UNKNOWN will be returned to the 
requesting functional unit, and the memory system will 
return the latency of the request at a later time. If all of 
the slots have been filled, and no free slot is available, 
then MEM_RETRY will be returned to the requesting 
functional unit, and the functional unit must retry the 
request at a later time to see if a memory slot has become 
available at the later time.

3.2 System Controller

In figure 2, we show a generalized system controller that 
supports multiple processors. The simulation of the 
system controller begins with the selection of a memory 
transaction from the BIU to the transaction queue. The 
transaction queue then takes the memory transaction and 
maps the physical address of the transaction to the 
memory address in terms of channel ID, rank ID, bank 
ID, row ID and column ID via an address mapping 
scheme. Then, depending on the row-buffer management 
policy used by the system, a sequence of DRAM 
commands are generated for each memory transaction. 
The simulated memory system supports multiple 
memory controllers, each of which can independently 
control a logical channel of memory. Each logical 
channel may contain multiple physical channels of 
memory. 

3.3 Transaction Queue and Transaction 
Ordering Policy

After the appropriate BIU entry (slot) has been selected, 
the status of the BIU entry is marked as SCHEDULED, 
then a memory transaction is created in the memory 
transaction queue. The selection of the memory request 
from the BIU into the transaction queue is referred to as 
the transaction ordering policy. Since the transaction 
queue is an in-order queue, where DRAM commands of 
an earlier memory transaction are given higher priority 
than DRAM commands from later transactions, the 
transaction ordering policy is of great importance to 
determine the bandwidth and latency characteristics of 
DRAM memory systems. In this simulation framework, 
four transaction ordering policies are supported: First 
Come First Serve (FCFS), Read or Instruction Fetch 
First (RIFF), Bank Round Robin (BRR), and Command 
Pair Rank Hopping (CPRH). 
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Fig 2: : Transaction Queue and Memory Controller(s) System Architecture.   
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3.4 Row Buffer Management Policy

Modern memory controllers typically deploy one of two 
policies to manage operations of the sense amplifiers. 
Since a DRAM access is essentially a two step process, 
in cases where the memory access sequence has a high 
degree of spatial locality, it would be favorable to direct 
the memory access sequences to the same row of 
memory. The Open Page row buffer management policy 
is designed to favor the case by keeping sense amplifiers 
open and holding an entire row of data for ready access. 
In contrast, the Close Page row buffer management 
policy is designed to favor random accesses to different 
rows of memory. 

3.5 Address Mapping

Before data can be read from or written to a memory 
location, the physical address given by the CPU is 
translated into memory addresses in the form of channel 
ID, rank ID, bank ID, row ID, and column ID. For 
memory controllers that use the open page row buffer 
management policy, the address mapping scheme should 
optimize the temporal and spatial locality of the address 
request stream and direct memory accesses to an open 
DRAM row (bank) and minimize DRAM bank conflicts. 
In a closed-page system, the goal of the address mapping 
scheme is to minimize temporal and spatial locality to 
any given bank and instead distribute memory accesses 
throughout different banks in the memory system. 

Address mapping scheme depends not only on 
the row buffer management policy, but also on the 
configuration of the DRAM memory system as well as 
the expandability/non-expandability of the memory 
system. For example, depending on design, the channel 
ID or rank ID can be mapped to the low order address bit 
to obtain the most bank parallelism, but in memory 
systems that allow end users to flexibly configure the 
memory system by adding more ranks or changing 
channel configurations, the channel ID and rank ID’s are 
typically mapped to the high order address bits. In the 

simulator, the users can choose the address mapping 
scheme from burger_base_map, burger_alt_map, 
intel845g_map, sdram_base_map, sdram_hiperf_map, 
and sdram_close_page_map.

3.6 DRAM Command Chain

Each memory transaction is translated into one or more 
DRAM commands, which are RAS, CAS and 
PRECHARGE. In this simulation framework, this 
sequence of DRAM commands is referred to as the 
DRAM command chain. The sequence of DRAM 
commands in the command chain depends on the row 
buffer management policy as well as on the state of the 
DRAM memory system. In an open page memory 
system, a memory transaction may be translated into: a 
single column access command if the row is already 
open, a precharge command, a row access command and 
a column access command if there is a bank conflict, or 
just a row access command and a column access 
command if the bank is currently idle. 

In a close page memory system, all of the 
memory transactions translate to a sequence of three 
DRAM commands that completes a read cycle. Figure 3
illustrates a read cycle in a close-page DDRx SDRAM 
memory system. DRAMsim can be configured to print a 
detailed text-based view of the command and data buses. 

3.7 Power

With continuing emphasis placed on memory system 
performance, DRAM manufacturers are expected to push 
for ever higher data transfer rates in each successive 
generation of DRAM devices. However, just as 
increasing operating frequencies lead to higher activity 
rates and higher power consumption in modern 
processors, increasing data rates for DRAM devices also 
increase the potential for higher activity rates and higher 
power consumptions on DRAM devices. In modern 
DRAM devices, each time a row is activated, thousands 
of bits are discharged, sensed, then recharged in parallel. 
As a result, the row activation command is a relatively 

Fig 3: : A Complete “Read Cycle” in DDRx SDRAM Memory System (@ 1 Gbit).   
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energy intensive operation. Figure 4 shows the current 
profile of a DRAM read cycle. Figure 4 shows that an 
active DRAM device draws a relatively constant current 
level. The DRAM device then draws additional current 
for each activity on the DRAM device. The total current 
draw of the DRAM device is simply the summation of 
the quiescent current draw and the current draw of each 
activity on the DRAM device. 

DRAMsim is incorporated with a power model 
for DDR, DDR2 SDRAM, and fully-buffered DIMMS. 
The model calculates the average power in one 
activation-to-activation cycle, by calculating the power 
in each DRAM state, according to the current drawn, and 
multiplying it with the fraction of time the device spends 
in each state in one activation-to-activation cycle. DDR 
and DDR2 power models are based on the power model 
from Micron [7]. The power model for the fully-buffered 
DIMMS has an additional component, the Advanced 
Memory Buffer (AMB).

The power consumption statistics of the 
memory system are broken down into its various 
components, depending on the power states. These 
statistics can be obtained for individual ranks in the 
system. They can be logged periodically or at the end to 
obtain an over-time view or global view respectively.

4 Interfacing with other simulators

The DRAM simulator can be easily integrated 
with any processor simulator or memory simulation 
frame-work that supports the following features
• Variable Memory Latency The latency of a memory 

request is not a fixed value. It is a function of the 
state of the DRAM, temporally adjacent requests to 
memory and controller policies. For example, in a 
system that uses the open page policy, a request that 
accesses an already open row will have a lower 
latency than one that has a bank conflict.

• Unknown Memory Latency at the point of issue The 
dram simulator is an execution driven simulator. 

Hence the latency of a request is determined only 
after processing the request and not at the time of 
issue. Upon the completion of a request, the DRAM 
simulator calls back the processor simulator using a 
specified function with the timing information. An 
advantage of this approach is that it allows us to 
study memory controller scheduling policies that 
reorder requests.

• Support for Retries As described earlier, requests 
sent to memory are placed in a slot in the bus 
interface unit (BIU) queue. When all available slots 
are occupied, the simulator will refuse to process 
additional requests. The processor simulator should 
handle the inability of the DRAM simulator to 
process requests due to queues filling up and retry 
such requests later. 

4.1 Functional Interface

DRAMsim can be used as part of a larger simulation 
framework. For the purpose of interfacing, several 
functions are provided. These functions are classified 
based on their actions and described in further detail 
below.

Initialization :  is done using the function 
init_dram. The main purpose of this function is to create 
and initialize the simulators data structures in the default 
configuration. By default, the simulator models an 
SDRAM-based memory system. The memory controller 
uses a closed page policy and a FIFO memory access 
ordering policy. Statistics are enabled to be collected and 
written to stdout.

Configuration:  DRAMsim supports the 
configuration of a wide variety of parameters including 
DRAM parameters like row activation time (t_ras), 
column access latencies (t_cas), etc., memory topology 
informations like number of ranks, channels, etc., and 
memory controller policies like row buffer management 
policies, memory access ordering policy, etc. The 
configuration details can be specified using a 

Fig 4: : Current Profile of a DRAM Read Cycle.   
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configuration file, also known as the spd file. Power 
consumption details can be specified using an additional 
file. In order to support a high-degree of configurability, 
DRAMsim also allows the user to over-ride the base 
configuration file parameters. This configuration 
capability is supported in the basic stand-alone version 
via a number of command-line flags. These flags are 
described in detail in the simulator manual [16]. A 
processor simulator can perform this configuration using 
the configure_sim_dram function, which takes as an 
argument a configuration structure (dram_config_info). 
Both the dram_config_info data structure and the 
configuration file specify identical parameters. This 
capability we found was very useful for the purpose of 
automating our simulations for design space 
explorations. 

Request Dispatch:  The processor sends a request 
to the memory sub-system using the function 
dram_access_memory. The processor passes on access 
specific information using a special data structure, 
dram_access_t. The essential elements of this structure 
include unique rid (request id), a memory address, and a 
callback function, which is to be called by the DRAM 
simulator upon the completion of a memory request. 
Besides these the structure also has optional elements 
which are used to simulate particular memory controller 
policies. These include priority i.e. processor-specified 
priority which can be used by priority-based memory 
access reordering schemes and a thread id which is useful 
in multi-threaded or multi-processor contexts. 

Periodic Update Manager:  The function 
dram_update_system serves as the heart-beat of the 
simulator. This function should be called every cycle that 
the dram sub-system is busy processing a request. In 
order to interface with simulators that use event 
managers it returns information whether the dram 
simulator has active requests or not. 

Request Return:  The periodic update manager, 
dram_update_system, checks for the completion of 
memory requests. While taking such requests off its 
queue, the dram simulator invokes the specified callback 
function. The actual callback is performed in the 
function, invoke_callback_fn. 

Statistics:  The simulator allows for the collection of 
a variety of statistics including latency distributions, BIU 
occupancy, bank hit and bank conflict information. The 
interface supports the initialization of this statistic 
gathering via the function dram_stats_init and its logging 
via the file, dram_print_stats_common, statistics are 
logged to a common file and dram_print_stats_general, 
for statistics to be logged onto individual files or stdout. 

4.2 Existing Simulator Ports

SYSim - full system simulator . SYSim is a model 
of the entire memory hierarchy for a uni-processor 
system that includes performance and energy models for 
caches, DRAM, and disk. The main purpose of the 
project is to investigate the systemic behaviors of the 
entire memory hierarchy in virtual memory, with 
extremely detailed simulation. The SYSim project is 
incorporated with several simulators for each component 
of the system. 

Bochs[2], a Pentium emulator, is used as the 
CPU model that generates the memory accesses and I/O 
interrupts. The cache model comes from Wattch[8] and 
Cacti [3]. DRAMsim is integrated into the system to give 
the timing behavior and also the power consumption of 
the memory system. Since the Disk model in Bochs takes 
the responsibility only to read and write data from/to the 
disk image, a modified DiskSim[4] simulator is 
integrated as described in the DRPM paper[5] into the 
system. The DRPM version of DiskSim is used for only 
timing and power consumption statistics collection.

The challenges of integration were to reflect the 
multiple memory and I/O requests on the fly while 
maintaining the correct interaction between the disk, 
caches, and DRAM communication via DMA. Memory 
management is another issue as careless allocation of the 
simulator memory, could cause the host system to crash.

GEMS . This is a multi-processor simulation 
framework developed at the University of Wisconsin 
Madison [13]. This simulator ships with several cache 
coherence protocols for both SMP and CMP machines. 
Our simulator currently does not support the concept of 
multiple BIUs and memory sub-systems, hence we 
ported our simulator to the CMP based protocols. This 
involved modifying the protocol definition files and 
insert calls to the memory system at the appropriate 
points. The challenges were in introducing the concept of 
retries due to resource shortages in the memory system. 
This was fairly trivial in the case of READ transactions. 
In the case of WRITE transactions the protocols by 
default evicted cachelines that were written back to 
memory. By postponing these evictions to only when the 
memory system indicated the completion of the write 
transaction, we discovered several state transitions that 
were not previously handled by the protocol. 

Traditional uniprocessor simulators - MASE/
Sim-alpha . The DRAM simulator has been 
successfully integrated into sim-alpha[14], a detailed 
execution-drive simulator of the Alpha 21264, and into 
SIM-MASE[15], SimpleScalar 4.0. 
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5 Problems and Limitations 

The development of sim-DRAM was started by David 
Wang while working on his Ph.D. research roughly three 
years ago[6]. The code since then has been worked on by 
a number of students and has expanded to support a wide 
variety of DRAM systems, provide different statistics 
and interface with several different processor simulators. 
The simulator comes with some limitations that we hope 
to fix in future releases. 
• C-Based Implementation The simulator is entirely 

written in C. Many of the scalability issues that we 
face currently stem from the choice of 
programming language. 

• Simulation of Distributed Memory The simulator 
data-structures by default assume the existence of a 
single memory system. Thus, there is no current 
support in the memory system for distributed 
physical memory. 

• Lack of Event Queue There is no built-in event 
queue in the simulator. The absence of such a queue 
requires the simulator to be polled every cycle 
while a transaction is active. 

• Clock Domains The simulation framework 
currently implements only two clocking domains: 
the CPU domain and the memory system domain 
(FBDIMM excepted). The DRAM memory system 
and the memory controller are operated in the 
DRAM memory system clock domain, and the CPU 
is operated in the CPU clock domain. This is true 
for legacy systems with separate memory 
controllers, while newer systems where the memory 
controllers is integrated into the CPU core the 
assumption may be reversed. A more generalized 
model would operate the CPU, memory controller 
and dram system in three independent clock 
domains. However, this implementation would be 
unnecessarily complex, and decrease simulation 
speed for minimal increase in the system simulation 
model flexibility and accuracy.

6 Conclusion 

The focus of memory performance and power 
consumption have become increasingly important due to 
the memory wall, increase in memory size, and 
complexity of applications. The memory system 
performance is sensitive to a large number of parameters 
interacting in unexpected fashions. The memory system 
design decision becomes even harder when we add the 
dimensions of power consumption and manufacturing 
cost. Due to a lack of tools in the public-domain that 
support such detailed studies, we introduce DRAMsim, a 
detailed and highly-configurable C-based memory 

system simulator. DRAMsim implements detailed timing 
models for a variety of existing memories, including 
SDRAM, DDR, DDR2, DRDRAM and FB-DIMM, with 
the capability to easily vary their parameters. It also 
models the power consumption of SDRAM and its 
derivatives. It can be used as a stand-alone simulator or 
as a part of a more comprehensive system-level model. 
We have successfully integrated into a variety of 
simulators including MASE[15], Sim-alpha[14], 
BOCHS[2] and GEMS[13]. The simulator can be 
downloaded from www.ece.umd.edu/dramsim.
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