
On Minimizing Training Corpus for Parser Acquisition �Rebecca HwaInstitute for Advanced Computer Studies,University of MarylandCollege Park, MD 20742 USAhwa@umiacs.umd.eduAbstractMany corpus-based natural lan-guage processing systems rely onusing large quantities of annotatedtext as their training examples.Building this kind of resource isan expensive and labor-intensiveproject. To minimize e�ort spenton annotating examples that are nothelpful the training process, recentresearch e�orts have begun to ap-ply active learning techniques to se-lectively choose data to be anno-tated. In this work, we consider se-lecting training examples with thetree-entropy metric. Our goal is toassess how well this selection tech-nique can be applied for training dif-ferent types of parsers. We �nd thattree-entropy can signi�cantly reducethe amount of training annotationfor both a history-based parser andan EM-based parser. Moreover, theexamples selected for the history-based parser are also good for train-ing the EM-based parser, suggestingthat the technique is parser indepen-dent.1 IntroductionIn recent years, large collections of text inmachine readable format have become readily�This material is based upon work supported bythe National Science Foundation under Grant No. IRI9712068 and DARPA contract N6600197C8540. Wethank Michael Collins for the use of his parser; and RicCrabbe and the anonymous reviewers for their com-ments on the paper.

available. These ought be valuable resourcesfor training natural language processing sys-tem. Unfortunately, most systems cannottake advantage of the data in their raw textform; typically, the data must be annotatedby a human to become e�ective training ex-amples. For instance, consider the task of in-ducing a grammar to parse English sentences.Studies have shown that a grammar trainedon sentences annotated with their constituenttrees produces much better parses than onetrained on just the sentences alone (Pereiraand Schabes, 1992). Recent state-of-the-art parsers developed by Collins (1997) andCharniak (1999) are all trained from hand-annotated corpora such as those from thePenn Treebank Project (Marcus et al., 1993).However, building an annotated corpus is ahuman labor-intensive project; therefore, it isimportant to �nd ways to minimize the sizeof the corpus.Out of a large pool of raw text, what sub-set should be annotated and added to thetraining set? Recent studies have begun toaddress this question using sample selection,in which training process is seen as interac-tive session between the learning system andthe human annotator (Lewis and Gale, 1994),(Engelson and Dagan, 1996), (Fujii et al.,1998), (Thompson et al., 1999), and (Ngaiand Yarowsky, 2000). The system activelyinuences its learning progress by evaluatingpotential candidates from the pool of raw textand selecting those with high Training UtilityValues (TUV) for humans to annotate. As thelearning process continues, the system shouldbecome better at identifying good trainingcandidates so that the annotators would not



need to waste time on processing uninforma-tive examples.This work considers the problem of apply-ing sample selection techniques to the task oftraining statistical parsers. Our primary chal-lenge is in designing a function that can accu-rately estimate an unlabeled candidate's po-tential utility for training a parser. In a previ-ous study (Hwa, 2000b), we have applied sam-ple selection to an induction algorithm basedon the expectation-maximization (EM) prin-ciple that induces Probabilistic LexicalizedTree Insertion Grammars (PLTIGs). In thatwork, we proposed an uncertainty-based eval-uation function to estimate the TUV of unla-beled candidates called tree entropy. We haveempirically shown that sample selection withtree entropy can reduce the size of the trainingcorpus signi�cantly. However, because onlyan EM-based learner was used, it is unknownwhether the evaluation function would be gen-eral enough to be applicable to other types oflearners. The goal of this work is to assessthe robustness of the tree-entropy evaluationfunction. We have performed experiments toevaluate how well the metric selects trainingexamples for di�erent types of parsers andto determine whether examples selected forone type of parser might be good for traininga di�erent type of parser. Our experimen-tal results show that the tree-entropy metriccan reduce the amount of training annotationby 23% for a history-based lexical statisti-cal parser, the Model 2 parser described byCollins (1997). Moreover, we found that thedata selected for training the Collins Parseralso make good training examples for induc-ing the EM-based PLTIG parser, suggestingthat the tree-entropy evaluation function isparser independent.2 The Learning FrameworkThere are two types of sample selection al-gorithms: committee based or single learner.A committee-based selection algorithm workswith multiple learners, each maintaining a dif-ferent hypothesis (perhaps pertaining to dif-ferent aspects of the problem). The candidateexamples that lead to the most disagreements

U is a set of unlabeled candidates.L is a set of labeled training examples.M is the current model.Initialize:M  Train(L).RepeatN  Select(n; U;M; f).U  U �N .L L [ Label(N).M  Train(L).Until (M �Mtrue) or(U = ;) or (human stops).Figure 1: The pseudo-code for the sample se-lection learning algorithmamong the di�erent learners are considered tohave the highest TUV. (Cohn et al., 1994; Fre-und et al., 1997). For computationally inten-sive problems, keeping multiple learners maybe impractical. In this work, we focus on sam-ple selection algorithms that use only a singlelearner that keeps just one working hypoth-esis. Without access to multiple hypotheses,the selection algorithm can nonetheless esti-mate the TUV of an example. We categorizesome possible ranking criteria into the follow-ing three classes:Problem-space: Knowledge about theproblem-space may help to locategood training canidates. For example,knowing the distribution of the pool,we might select the most frequentlyoccuring instances.Performance of the hypothesis: Testingthe candidates on the current hypothesismay show the type of data on which thehypothesis performs weakly (Lewis andCatlett, 1994).Parameters of the hypothesis:Estimating the potential impact ofthe candidates will have on the param-eters of the current working hypothesislocates those examples that will changethe current hypothesis the most.



Figure 1 outlines the single-learner sampleselection training loop in pseudo-code. Ini-tially, the training set, L, consists of a smallnumber of labeled examples. The learner usesL to train an initial model M . Also avail-able to the learner is a large pool of unlabeledtraining candidates, U . In each iteration, theselection algorithm, Select(n; U;M; f), usesan evaluation function f to compute the ex-pected TUV of each candidate in U and re-turns the n candidates with the highest val-ues. The set of the n chosen candidates arethen labeled by human experts and added tothe existing training set. Training on the up-dated set L, the system modi�es the modelso that it is consistent with all the examplesseen thus far. The loop continues until one ofthe stopping conditions is met: the model isconsidered to be good enough, all candidatesare labeled, or all human resources are usedup.2.1 The Evaluation FunctionAt the heart of the sample selection algorithmis the evaluation function that predicts eachunlabeled candidate's training utility. Ourproposed function ranks candidates based onthe \performance of hypothesis." In otherwords, we wish to �nd the set of sentencesthat the current parsing model is the mostuncertain about. One way to measure theparser's uncertainty is to compute the treeentropy over the distribution of parsing prob-abilities of the set of trees produced by theparser. More speci�cally, the tree entropy fora sentence u is:TE(u;M) = �Xt2T Pr(tju;M) log2 Pr(tju;M);where T is the set of possible trees that Mgenerated for u. Details of computing treeentropy have been discussed previously (Hwa,2000b). Our proposed function evaluates eachcandidate by measuring the similarity be-tween the tree entropy of the candidate andthe uniform distribution for the same numberof trees. That is,fte(u;M) = TE(u;M)log2 jT j

2.2 Parsing ModelsTo test the robustness of the tree-entropyevaluation function, we use it to select train-ing examples for the Collins Parser and thePLTIG parser. Although both are lexical-ized and statistical parsers, their learning al-gorithms are di�erent. The Collins Parser isa fully-supervised, history-based learner thatmodels the parameters of the parser by tak-ing statistics directly from the training data.In contrast, PLTIG's EM-based induction al-gorithm (Hwa, 2000a) is partially-supervised;the model's parameters are estimated indi-rectly from the training data. Our goal forthis study is to determine whether the suc-cess of the tree-entropy metric is learner de-pendent.3 Experimental Setup and ResultsTwo experiments are performed. The �rstexperiment assesses whether the tree-entropyevaluation function can select good examplesfor a history-based learner. The second exper-iment is a preliminary study on whether theexamples selected for a history-based learnerare also good training examples for a EM-based learner.3.1 Experiment 1We use the Collins Parser as the basic learningmodel M in the sample selection frameworkdescribed in Figure 1. To simulate the in-teractive process, we create a large unlabeledcandidate pool U by stripping all annotatedinformation from sections 02 through 21 of theWall Street Journal corpus. Initially, L, theset of labeled training data, consists of 500parsed sentences. In each iteration, n = 1000new sentences are picked from U to be addedto L. Then, a new parser is trained from theupdated L and tested on section 00 to chartthe learning progress.We compare the learning rate of the parsertrained on examples selected by the tree en-tropy evaluation function, fte with a baselinein which the model was trained with exam-ples sequentially selected. The experimen-tal results are graphed in Figure 2(a). The
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(a) (b)Figure 2: (a) A graph comparing the learning rates of the Collins Parser under two trainingconditions: \baseline" shows the progress of sequential training and \tree entropy" shows theprogress of sample selection training. (b) A graph showing the relative amounts of annotatedtraining data used to achieve the same performance level by the two evaluation functions.parsing performance on the test sentences (us-ing the combined labeled precision and labelrecall score1 as the metric (Van Rijsbergen,1979)) is graphed as a function of the numberof labeled constituents in the training data.We use the number of constituents rather thanthe number of sentences because it is a bet-ter indicator of the e�ort spent by the humanannotator. Longer sentences tend to requiremore annotation than short ones, and thustake more time to analyze.Our results suggest that the parser learnsfaster when trained from examples selected byfte. The learning rates of the parser under thetwo training conditions are plotted in Figure2(a). The graph shows that, for a compara-ble amount of annotated constituents in thetraining data, the parser trained on examplesselected by fte typically performs better onunseen test data than the baseline. Anotherway of interpreting the results is to say thatthe same parsing performance can be achievedusing fewer annotated training examples. Fig-ure 2(b) graphs the amount of reduction inannotated training constituents that fte o�ersfrom the baseline given comparable parsingperformances. For the �nal parsing perfor-mance of 88.7%, the parser requires a base-1F�=1 = 2�LR�LPLR+LP , where LR is the labeled recallscore and LP is the labeled precision score.

line training set of 36,500 sentences annotatedwith about 675,000 constituents. In contrast,the same performance can be achieved usinga training set of 520,000 constituents in the23,500 sentences selected by fte, reducing thenumber of annotated constituents by 23%.3.2 Experiment 2To determine the suitability of the selectedtraining examples across di�erent learners,we now use PLTIG as the basic learningmodel and compare the parsing performancesof three PLTIGs induced from di�erent setsof training sentences: those selected by thetree-entropy evaluation function for a PLTIGmodel, fte(u;MPLTIG), those selected for theCollins Parser in the previous experiment,fte(u;MCollins), and the baseline of sequen-tial selection. Some modi�cations to the ex-perimental setup of the previous experimentsare necessary to accommodate the EM-basedinduction algorithm for PLTIG. Because EM-based grammar induction is computationallyexpensive, this experiment is limited to us-ing an unlabeled pool of 3600 sentences, andthe grammars are lexicalized to part-of-speechtags rather than words. Moreover, becausethe algorithm induces grammars that gener-ate binary branching trees, we evaluate theparsing accuracy of the test sentences with the
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(a) (b)Figure 3: (a) A graph comparing the learning rates of three PLTIGs induced from di�erentsets of training examples. (b) A graph showing the relative amounts of annotated training dataused to induce the PLTIGs.consistent bracketing metric (i.e., the percent-age of constituents in the proposed parse notcrossing constituents of the true parse) ratherthan the average precision and recall metric2.Currently, one trial of this experiment hasbeen completed. While a more comprehensiveanalysis is required, our initial results sug-gest that the examples selected by the tree-entropy metric are informative independentof the underlying learning model. Compar-ing the learning rates of the three PLTIGsgraphed in Figure 3(a), we see that althoughlearning rate of the grammar trained on exam-ples selected speci�cally for the PLTIG modelis faster than the one trained on examples se-lected for the Collins Parser, both are betterthan the baseline. The bar graph in Figure3(b) shows the relative amounts of annota-tion used to train each grammar. To achievea parsing level comparable to the baseline'sbest performance, the grammar trained on ex-amples selected for the Collins Parser neededabout 15% less annotation than the baseline,and the grammar trained on examples se-lected for itself needed about 33%3 less anno-2The number of proposed constituents in a binarybranching tree is always one fewer than the length ofthe sentence. The WSJ corpus, on the other hand, fa-vors a more attened tree structure with considerablyfewer brackets per sentence. The consistent bracket-ing metric does not unfairly penalize a proposed parsetree for being binary branching.3The �gure reported in our previous study of 36%

tation than the baseline. Both induced gram-mars achieved slightly higher parsing accu-racy than the baseline when trained on allexamples.4 Conclusion and Future WorkIn this paper, we have assessed the robustnessof the tree-entropy evaluation function as ametric of training utility values for di�erenttypes of parsers. We have empirically shownthat tree-entropy can select informative train-ing examples and reduce the amount oftraining annotation for both a history-basedlearner and an EM-based learner. Moreover,we have found that the training examples se-lected for the history-based parser are also in-formative for training the EM-based parser.In addition to the tree-entropy evalua-tion function, which uses the performance ofthe hypothesis as the ranking criterion, weare exploring alternative evaluation functionsthat use problem-space based and parameter-con�dence based ranking criteria.ReferencesEugene Charniak. 1999. A maximum-entropyinspired parser. Technical Report CS-99-12,Brown University.was the average of 10 trials.
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