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ABSTRACT

Title of Dissertation: A THREE-COMPONENT IMAGE MODEL BASED
ON HUMAN VISUAL PERCEPTION AND ITS
APPLICATIONS IN IMAGE CODING
AND PROCESSING

Xiaonong Ran, Doctor of Philosophy, 1992

Dissertation directed by: Associate Professor Nariman Farvardin
Department of Electrical Engineering

In this work, results of psychovisual studies of the human visual system are
discussed and interpreted in a mathematical framework. The formation of the
perception is described by appropriate minimization problems and the edge in-
formation is found to be of primary importance in the visual perception. Having
introduced the concept of edge strength, it is demonstrated that strong edges
are of higher perceptual importance than weaker edges (textures). We have also
found that smooth areas of an image influence the human visual perception to-
gether with the edge information, and that this influence can be mathematically
described via a minimization problem. Based on this study, we have proposed
to decompose the image into three components: (i) primary, (ii) smooth and

(iii) texture, which contain, respectively, the strong edges, the background and



the textures. An algorithm is developed to generate the three-component image
model.

Then, the use of this perceptually-motivated image model in the context of
image compression is investigated. The primary component is encoded sepa-
rately by encoding the intensity and geometric information of the strong edge
brim contours. Two alternatives for coding the smooth and texture components
are studied: Entropy-coded adaptive DCT and entropy-coded subband coding.
It is shown via extensive simulations that the proposed schemes, which can be
thought of as a hybrid of waveform coding and feature-based coding techniques,
result in both subjective and objective performance improvements over several
other image coding schemes and, in particular, over the JPEG continuous-tone
image compression standard. These improvements are especially noticeable at
low bit rates. Furthermore, it is shown that a perceptual tuning based on the
contrast-sensitivity of the human visual system can be used in the DCT-based
scheme, which in conjunction with the three-component model, leads to addi-
tional subjective performance improvements.

Finally, a scheme for structurally representing planar curves is developed
based on the ideas for the three-component image model. This scheme does not

have the ambiguity problem associated with the scale-space-based schemes.
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Chapter 1

Introduction

1.1 Motivation and Approach

The growing interest and need to store and/or transmit digital imagery and video
and the practical limitations on the storage and transmission capacity, have led
to a significant amount of research activity in image compression (also called
image coding) over the past two decades. In any image compression system the
goal is that of producing a good replica of the original image with as small a
number of bits as possible.

In this dissertation, we limit ourselves to the compression of continuous-tone
still images.! The major thrust in still image compression can be divided into the
following two categories: (i) waveform coding techniques and (ii) feature-based
or second-generation coding techniques.

Waveform coding techniques revolve around information-theoretic principles

!Continuous-tone still image compression can be applied directly to the compression of
components of color images, and to the compression of I-frames (Intrapictures) of motion

video signals [1] - [3].



in which upon selecting a distortion criterion (in most cases squared-error) and
certain probabilistic assumptions on the image data, the goal becomes that of
minimizing the average distortion between the original image and its reconstruc-
tion under an average bit rate constraint. In these techniques, the human visual
system (HVS) and its sensitivity to the coding error generally do not play a
central role in system design. Waveform coding techniques, which by and large
constitute the bulk of the research in image coding, have led to a plethora of
different coding techniques. Among these, the most noteworthy are: (i) various
adaptive forms of two-dimensional (2-D) discrete cosine transform (DCT) cod-
ing techniques, (ii) 2-D subband and wavelet image coding techniques and (iii)
various forms of vector quantization of images. Several versions of transform-
based methods have been proposed in the past two decades, [4] - [7]. The work in
DCT coding has recently led to an international still image compression standard
known by the acronym JPEG (Joint Photographic Experts Group) [2]. Subband
image coding was first introduced by Woods and O’Neil [8] in 1986 and since
then has been the subject of much research [9] - [12]. More recently, similar
multi-resolution methods using wavelet transforms have received some attention
in the context of image coding [13]. Since the pioneering work of Linde, Buzo and
Gray [14], vector quantization has been widely studied for image coding both in
the spatial domain and in the frequency domain in conjunction with transform
or subband coding. A survey of vector quantization methods in image coding
can be found in [15]. Additional details on these waveform coding techniques
and various combinations thereof can be found in [16], [17].

Generally speaking, waveform coding techniques provide good-to-excellent

quality results at compression ratios of 20:1 - 10:1 (bit rates of 0.4 - 0.8 bits/pixel,



assuming 8 bits/pixel for the original). With such compression ratios, the av-
erage distortion is typically small and hence the corresponding reconstructed
image is of high perceptual quality. At lower bit rates however, waveform cod-
ing produces specific types of artifacts such as blockiness, ringing and blurring
around the edges, etc. In contrast with waveform coding, feature-based image
coding methods are closely tied to the HVS and its separate sensitivities to the
strong edge and texture information. Instead of considering the image as a wave-
form, these methods attempt to describe the image by a collection of physically
significant entities such as regions or contours; this leads to a more compact
representation of the image and hence significantly higher compression ratios,
albeit at the cost of a different type of distortion [18], [19].

Instead of abandoning the concepts of either one of the above two categories
of image compression, in this dissertation, the ideas of the two categories are
combined. The objective is to achieve high compression ratios (higher than
20 : 1) with better objective and subjective performances than that of waveform
coding techniques and without introducing the distortions of feature-based image
coding methods.

The approach used iﬁ this work is to determine what special properties of
the image signal are responsible for the formation of the perception in the HVS,
to mathematically characterize these properties, to decompose the image signal
in accordance with these properties and to develop separate coding schemes,
based on information-theoretic principles, for the resultant image components
to achieve performances as close to the optimums (in the rate-distortion sense)
as possible. This approach can be summerized in Fig. 1.1.

With this approach, the properties of the HVS are incorporated into the
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Figure 1.1: Block diagram of the image communication system based on the

approach of this work.

design of the image coding system through the special decomposition of the image
signal without introducing any distortion, while the quantization and coding
of each components are performed based on information-theoretic principles to

achieve the minimum coding rates.



1.2 Outline

This dissertation is organized into five chapters. Chapter 1 contains the mo-
tivation and approach for the work, this outline and a section on the main
contributions of the work.

In Chapter 2, the special properties of the image signal which are significant
to the perception of the HVS are investigated and mathematically interpreted.
Based on these properties and their mathematical interpretation, a decomposi-
tion scheme of the image signal is developed. Experimental results and compar-
isons are provided.

In Chapter 3, the coding schemes for the image components are developed.
Several coding systems are then constructed and compared with the international
standard JPEG and with other state-of-the-art image coding systems.

In Chapter 4, a planar curve representation scheme is developed. The idea of
this scheme is motivated by the concepts developed in Chapter 2. Simulations
and a comparison are provided.

Chapter 5 contains a summary of this dissertation and a discussion on the

possible directions for the continuation of this work.

1.3 Contributions

The major contribution of this work is the development of a component-based
image coding scheme where the decomposition is based on the perceptual prop-
erties of the HVS, and the coding of the image components are performed based
on information-theoretic principles. Various implementations of this scheme of-

fer significant improvements both in subjective and objective performances over



other state-of-the-art image coding systems and, in particular, over the JPEG
continuous-tone still image compression standard.

More specifically, the binocular nature of the HVS is used in the discovery
of a constrained variation energy minimization problem which provides an iﬁ-
sight to the mechanism for the formation of the visual perception. The effects of
strong edges and their interactions with textures or smooth areas on the visual
perception are described in terms of constrained minimization problems. The
constraining condition, or the strong edge information, of these constrained min-
imization problems are characterized; the characterization leads to the develop-
ment of a scheme for the extraction of the strong edge information. The extrac-
tion is achieved in two stages: In the first stage, the strong edge information and
the information of the background slow-intensity variations are extracted; in the
second stage, the strong edge information is extracted from the result of the first
stage. Having expressed the strong edge information in an image form by solving
a constrained energy minimization problem, this extraction scheme gives rise to
a three-way decomposition of the image signal, namely, the primary, smooth,
and texture components. The edge extraction part of the three-component im-
age model provides superior representations of the strong edge information as
compared with the conventional Laplacian-Gaussian operator scheme.

To encode the primary component, special quantization rules are used for the
intensity values and the geometrical locations of the edge brim contours. Various
criteria on the intensity values for the formation of the contours are considered
in order to obtain the most efficient coding results. Predictive encoding followed
by arithmetic coding is used to code the geometric information of the contours.

The smooth and the texture components are encoded using two types of



image coding techniques, adaptive 2D DCT coding and 2D subband coding.
The block classification scheme developed uses the frequency properties of the
smooth and texture components and results in PSNR improvements. A study
is conducted to determine the approximate distributions of the 2D DCT coefhi-
cients of the different classes among the generalized Gaussian distributions. Bit
allocation is made efficiently based on the rate-distortion performances of the
uniform-threshold quantizer and Huffman code pairs. An estimation scheme for
the variances of the transform coefficients is developed using the Shannon lower
bounds of rate-distortion functions. This variance estimation scheme gives rise
to significant savings in the resulting encoding rates. Arithmetic coding is also
incorporated in the systems and results in reduced encoding rates.

Various image coding systems are designed based on the developed coding
schemes for the image components. Extensive simulations are conducted for
these systems on different real-world images. The adaptive 2D DCT coding
with the three-component image model offers the best performances both objec-
 tively and subjectively; the contributions of the constituent functional factors in
this system to the overall performance are investigated through different com-
binations of these factors. The analytical PSNR performances of the coding
systems are also studied.

A frequency-weighted distortion criterion is developed; this criterion uses
the concept of contrast sensitivity of the HVS. In conjunction with the three-
component model, this perceptual tuning provides further subjective perfor-
mance improvements.

The concepts in the three-component image model are also useful for the

problems in the areas of image processing and computer vision. One of such



problems is that of representing planar curves, which is important since for many
applications in image processing and computer vision the information to be pro-
cessed and/or extracted is expressed in the form of curves. An efficient way to
represent a planar curve is to locate the so-called feature points along the curve
and to use these feature points as the bases for a structural representation of the
curve. Most of the existing schemes for locating the feature points transform the
problem into the orientation domain and apply the Laplacian-Gaussian operator
to locate the significant changes in orientation along the curve. The performance
of Laplacian-Gaussian operator is limited due to the difficulty associated with the
uncertainty principle of the operator. To obtain better performance, people have
used scale-space approach in which multiple Laplacian-Gaussian operators are
applied. However, the scale-space approach leads to an ambiguity problem in the
process of coarse-to-fine tracking across the scale-space. This ambiguity is anni-
hilated to an extent by a primitive-based scheme at the cost of some additional
complexity. However, since the coarse-to-fine tracking in this primitive-based
scheme is guided by the behavior of several idealized instances of the primitives
of curve segments, the types of the feature points to be detected are limited a
priori. In this dissertation, a new scheme for locating curve feature points is
developed; this scheme is not based on Laplacian-Gaussian operator, thus does
not have the difficulties related to the uncertainty principle of the operator. The
new scheme is basically a complex-valued 1-D variant of the strong edge extract-
ing scheme for the three-component model. Experimental results show that the
new scheme offers efficient extraction of the curve feature points at a reduced

complexity as compared to the primitive-based scheme.



Chapter 2

A Perceptually Motivated

Three-Component Image Model

2.1 Introduction

In this chapter, we develop a model for real-world imagery based on those fea-
tures of the image signal that are of distinct significance to human perception.
Specifically, we formalize some previous psychovisual studies [20] [21] to charac-
terize the properties of the image signal that are responsible for the formation
of the perception in the human visual system. In particular, some interesting
evidences on the binocular nature of the human vision in [20] are used to formu-
late the formation of the perception as a minimization of the intensity variation
energy; this has led to the notion of “strong edges” which apparently plays a
significant role in the perception. Additionally, we use the psychovisual obser-
vations in [21] to mathematically formulate the interaction between the strong

edges and the areas of smooth intensity variations. To characterize the strong



edges, we introduce the concept of the “stressed image” and define the strong
edges as the high curvature energy pixels of the stressed image. This stressed im-
age, which has an interesting analogy to the stable configuration of a mechanical
structure, is generated by a space-variant low-pass filtering of the original image.
The above formalism has led to a three-component image model consisting of (i)
the strong edge component, (ii) the smooth intensity variation component and
(iii) the texture component.

The three-component model developed here is quite general and might prove
useful in various image processing algorithms (ref. Chapter 4). However, it was
primarily developed for an image coding situation where the different features of
the image signal can be classified (according to the role they play in the formation
of human perception), extracted and treated separately for subsequent encoding.
This idea is similar to the sketch-based image coding scheme of [22] [23] which
consists of two components: one is similar to the strong edge component of the
three-component model developed here, and the other is simply the residual
between the original image and an image obtained merely from the strong edge
information. In the sketch-based scheme, the strong edges are extracted by
the Laplacian-Gaussian Operator (LGO) followed by a gradient operator. This
edge extraction scheme suffers from certain drawbacks which will be discussed
in detail. In addition, a careful comparison between the LGO-based method and
the edge extraction scheme associated with the three-component model will be
presented. The applications of the three-component image model in defining a
perceptual distortion criterion for specific image coding schemes are presented
in the next chapter.

This chapter is organized as follows. In Section 2.2, certain psychovisual

10



evidences of the human perception are presented and discussed. The evidences
lead to the characterization of the strong edge information in Section 2.3, followed
by an algorithm for the extraction of strong edges along with the development of
the three-component image model in Section 2.4. In Section 2.5, an example of
the three-component image model is provided and certain comparisons against
the LGO-based edge extraction scheme are presented. Summary and conclusions

are provided in Section 2.6.

2.2 Observations on Psychovisual Aspects of
Human Visual System

In the next three subsections, we describe some observations on psychovisual
aspects of the HVS. The objective is to extract and discriminate different prop-
erties of image signals which are of significance to the human visual perception.
Interpretations in the context of image coding are also provided, and will form
the motivation and basis for the work described later. In the first two sub-
sections, the binocular nature of the HVS is used to explain the relationship

between the image signals and the human visual perception.

2.2.1 Edge Information of Image Signals

As described in [20], in natural binocular vision, when two views are presented
with two forms which are different (in the sense that they do not admit of
being combined into the image of a single object), the images of both forms will
generally be seen at the same time superposed on one another in the field of

view. Usually, in some locations of -the field of view, one image dominates the
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other, and vice versa in other parts of the field. For the situation where broad
black-and-white figures are displayed to both views, the general rule is that the
dominating image along an edge and in its vicinity will be the one which owns
the edge. As an example, let us consider Fig. 2.1, in which we have two bars,
one vertical and one horizontal. When the vertical bar is seen by the left eye
and the horizontal bar by the right eye, without devoting exclusive attention to
any of the two, the total effect will be an image similar to Fig. 2.2. As shown
in Fig. 2.2, the perception will be a cross which is black over the center square;
the background appears white. The four arms of the cross are perfectly black at
their ends and almost entirely white near the center square, with transitions in
‘ between.

Based on this phenomenon, we may conclude that the collection of the in-
dividual pixel intensity values without any interaction between them (the most
primitive property of the image) is not what produces the visual perception. For
otherwise, the image in the field of view should be formed at each pixel with
an intensity produced only by the two corresponding pixel intensities of the two
images according to a certain law, and thus the perception should be a uniform
combination of the two pictures. Obviously, the image shown in Fig. 2.2 cannot
be constructed by a uniform combination of the two images in Fig. 2.1.

Based on this observation, we conjecture that here it is the edge property
(or information), to be defined next, of the image signal that arouses our visual
perception. For the images in Fig. 2.1, the edge information is described by
(1) the locations of variations of intensity values and (ii) the related intensity
values at these locations. For example, in Fig. 2.1 (a), the locations of the

intensity variations are along the border of the vertical black bar, and the related
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Figure 2.1: (a) Vertical bar for the left eye; (b) horizontal bar for the right eye.

Figure 2.2: Binocular perception of the two images in Fig. 2.1.
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intensity values are those intensity values immediately inside and outside the
border. The above actually describes what we generally refer to as an edge.
This edge basically has two related intensity values, zero (255) corresponding to
black (white), representing the intensity variation. We call the contour formed
by the lower intensity value the lower brim of the edge (or lower edge brim),
and the contour formed by the higher intensity value the upper brim of the edge
(or upper edge brim). For example, in Fig. 2.1 (a), the rectangular contour of
the lower edge brim is just inside the border, while the one for the upper edge
brim is just outside. The locations and intensity values of the lower and upper
edge brims completely define the corresponding edge, and, therefore, we may
define an edge through the concept of edge brims which will be characterized
mathematically later in this chapter.

We now go back to our conjecture that the edge information is responsible for
the formation of the visual perception. Remarkably, this conjecture is justified
in this case by actually producing Fig. 2.2 only from the knowledge of lower and
upper edge brims of the two images in Fig. 2.1 by minimizing the variation inA
intensity values as described below.

Let a generic digital image of size M x M be denoted by an array of real
numbers {z;;}, i,7 = 0,1,..., M — 1, where z;; is the intensity value of the
pixel (¢,7) at the ith row and the jth column. Note that an image {z;;},
i,7 = 0,1,...,M — 1, can be deﬁned as a set X of triples: X = {(7, 4, 2:,),
i,j = 0,1,...,M — 1} C R> Then the lower and upper edge brims of an
image X are a subset of X'. Let the subsets of lower and upper edge brims of
the images (a) and (b) in Fig. 2.1 be denoted by B, and B;, respectively. We

combine the information in B, and B, by forming a set B from B, U B, in the
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following way. We first define two projection functions, f; : R* — R? where
f1((5,7,2)) = (4,7), and f;: R®> — R where f,((7,7,2)) = . We denote by
fx(A) the image of a set A under fi, k =1,2. For a set A C R?, we also define
AG9) = {s:5€ Aand fi(s) = (i,7)}. Then the set B is defined as,

B={(t,4,%i;): (4,4) € f1(BaUBy)}, (2.1)

where Z; ; is the average value of the elements of the set f; ((Ba U Bb)(i’j)). In
other words, the set B is a “linear” combination of B, and B, in the above sense.

Before describing how the image shown in Fig. 2.2, denoted by A, can be
obtained from the edge information contained in B, we make the following defi-

nition. The variation energy of intensity values of an image &’ is defined as:
M-2M-2
Vy = ; ,Z-% (23— 2ij41)” + (@i = zip1,3)°)- (2.2)
As indicated above, our objective is to generate an image X, as shown in
Fig. 2.2, solely from the information contained in B. In other words, we seek to
find an image X, having minimum information while containing the information
in B. We call this concept the minimum information principle !. We quantify

the information content of an image X" by its variation energy Vy, and define

X. = {(,7,2¢;)} to be the solution of the minimization problem:

min Vy, subject to X N B = B, (2.3)

.’E,,J
where X = {(¢, 7, 2;;)}. For example, an image with uniform intensity values has

zero variation energy, and thus contains the smallest amount of information by

the above definition. Because of the quadratic nature of the objective function

1The term “minimum information principle” is motivated by a concept, referred to as “no

news is good news,” introduced in [24].
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Vy, we may write it in matrix notation: x* Lyx+x* Hxg +x£DxB, where X is a
vector in RM* =!8l containing elements zij, (1,7) & f1(B) in a certain order, xp is
a vector in RIP! with elements z; ;, (i,7) € fi(B), the matrix Ly is a non-negative
definite (positive definite when B # ) matrix, and the superscript 7 indicates
vector transpose. Then, when B # (), the unique solution of problem (2.3) is
given by the vector x. = —Lj;* Hxg/2. For the given example, the resulting im-
age X, is shown in Fig. 2.2; this image, oBtained from our minimization problem,
is very similar to the corresponding illustration shown in Fig. 73 of [20].

Therefore, in an image information system for which the human visual system
is the final receiver, the necessary and sufficient information to be transmitted
and/or stored for the images in Fig. 2.1 is the edge information.

To summarize, we explain the phenomenon in Fig. 2.2 with a conjecture
that the visual perception is derived from the edge information of the image.
Furthermore, the perception can be illustrated by an image which is the solution
of a minimization problem similar to (2.3). In this sense, we may take the
mechanism governed by this minimization problem as the one which forms our
perception.

We now question whether all edges are of the same importance in forming the
visual perception. In the next subsectioﬂ, we describe a binocular phenomenon

in an effort to answer this question in the context of image coding.

2.2.2 Strong Edges and Textures

Similar to Fig. 2.1, shown in Fig. 2.3 are two images, (a) and (b), separately
presented to the two eyes. In Fig. 2.3, image (a), examined by the left eye, is

a black cross, while image (b) for the right eye is a network of slanted black
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Figure 2.4: Binocular perception of the two images in Fig. 2.3.
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lines over a white background. Without any special attention to either image,
the usual binocular perception would be similar to the image shown in Fig. 2.4.
That is, the image of the cross prevails along its edges; it is only at the center of
the cross and away from its edges that the pattern of the network texture may
be visible [20].

In view of this phenomenon, the two images in Fig. 2.3 do not have edge
information of the same importance, for otherwise in the vicinity of the edge
of the cross the network texture should not be invisible. Thus, in this case, we
cannot combine the edge information “linearly” as in (2.1). We speculate that
an edge has a strength property associated with it. Edges of relatively high (low)
strength have stronger (weaker) influence on our perception, and may be called
stronger (weaker) edges. Weaker edges commonly correspond to teztures in the
usual sense, and thus are referred to as textures. As compared with textures, we
may simply refer to stronger edges as strong edges.

Apparently, edges with larger intensity variations and shorter widths (dis-
tance between the corresponding edge brims) are relatively more significant to
the visual perception, and are generally called sharp edges. However, edges do
not individually influence the visual perception; rather, they interact with other
neighboring edges. For example, a thin black line in the network of Fig. 2.3 (b)
actually consists of two edges of the same intensity variation and width as for
the edge of the cross, but it has less perceptual significance when compared with
the edge of the cross. Based on this observation, we conjecture that every edge
has an original strength which is proportional to (i) the intensity variation be-
tween its two edge brims and (ii) its width. Neighboring edges interact with each

other in an inhibitive way. The more closely two edges stand, the more severely
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their strengths are weakened. When two edges of equal original strength stand
side by side, as in the case of a thin black line on a white background, their
strengths vanish. The resulting strength of an edge after it interacts with the
neighboring edges will be called the strength of the edge. Thus stronger edges are
those edges of higher intensity variation and shorter width which are relatively
isolated, while weaker edges are those of lower intensity variation and longer
width, being relativeiy crowded with other edges.

We now use this qualitative notion of edge strength to explain the phe-
nomenon of Fig. 2.4. Similar to Subsection 2.2.1, we denote the subsets of
lower and upper edge brims of images (a) and (b) in Fig. 2.3 by B, and B,
respectively. We combine the iﬁformation in B, and By based on the concept of
edge strength in the following way. When stronger edges meet weaker ones, the
stronger ones dominate. This domination of the stronger edge will be extended
to its neighborhood and the influence will diminish gradually as a function of the
distance from the stronger edge. After a certain distance from the stronger edge,
weaker edges will begin to show their effects which will eventually dominate at
distances far enough from the stronger edge.

Our experiments indicate that this phenomenon for Figs. 2.3 and 2.4 can be
explained as follows. In the close neighborhood of the edges represented by B,,
the image for the perception is formed by solving a problem similar to (2.3) with
B, as the fixed-point set; we call this image X'4. For distances sufficiently far from
the edge in B,, where the influence of the strong edge diminishes, the image of the
perception is formed by solving a problem like (2.3) with B, as the fixed-point set;
we call this image X's. In between these two extreme cases, the influence of the

strong edge in B, decreases, and the perception is formed by linearly combining
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X4 and Xp (AX4 + (1 — A\)XB) where A decreases quadratically from 1 to 0
as the distance from the strong edge gets large. Our results indicate that this
linear combination with the chosen weighting factor results in an image which
agrees with our perception as well as the description given in [20, pp. 496-497].
Again as in Subsection 2.2.1, we tested our explanation by actually constructing
Fig. 2.4 according to the process described above.

We conclude that stronger edges are of higher importance to the visual per-
ception. Therefore, to design an image information transmission system, one
should treat edges in accordance with their strengths to achieve high efficiency.
This concept is especially important for image transmission systems at low bit

rates.

2.2.3 Smooth Areas of Image Signals

We now investigate the influence of smooth areas of an image on the visual
perception. In the smooth areas of an image, intensity values change slowly.
For example, in Fig. 2.1 (a), the areas inside and outside of the black bar are
smooth areas where intensity values are actually constant. The smooth areas
of constant intensity values are of little interest here, since we have indicated in
Subsection 2.2.1 that they have no influence on the perception. Instead we will
consider the case of smooth areas with non-constant intensity values.

Let us examine the patterns in Fig. 2.5 which are also considered in [21] [24].
In Fig. 2.5 (a) we have two concentric disks with their intensity values along
the diameter as illustrated in Fig. 2.5 (b). While the perception of the image in
Fig. 2.5 (a) varies from person to person, generally, one feels that it is a small

dark disk in the middle of a larger and brighter one. In the extreme case, the
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Pigure 2.5: (a) Two concentric disk image; (b) intensity values along the diameter

of the disks.

inner disk is perceived as having constant intensity values. However, as shown
in Fig. 2.5 (b), in the regions near the center of the disks and the border of the
bigger disk the intensity values are, in fact, identical.

We now describe this phenomenon quantitatively. We denote the set of lower
and upper‘ edge brims by B representing the two circular edges of the inner and
outer disks in Fig. 2.5 (a). We denote the image in Fig. 2.5 (a) by X and the
image of the visual perception by &, = {(¢,j,2};)}. Then we conjecture that X,
is the solution of the following minimization problem:

o M-1M-1 \
gllg/\ ; ]Z“_% (yij — @ig)* + Vy, (2.4)
subject to Y N B = B, where A > 0 is a weighting factor on the squared errors
between X' and Y in the objective function, Y = {(3,7,v:;)}, and B # §. Notice

that when A = 0, &, would be an image of two disks with constant intensity
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values for the inner disk and a linear transition of intensity values on the outer
disk, which corresponds to the extreme case mentioned before. When A gets
larger, X, would be closer to X' in the Euclidean sense, and would have larger
variation energy than the case with A = 0.

We summarize the psychovisual results described in the above three subsec-
tions by stating that basically the edge information in an image is responsible
for the visual perception, stronger edges are of higher importance to the visual
perception and the smooth areas influence the visual perception together with
the edge information.

In the next two sections, we will introduce a three-component image model

based on these observations.

2.3 Characterization of Strong Edge Informa-
tion and Generation of the Stressed Image

As pointed out in Section 2.2, for the human visual perception, the strong edge
information of an image plays a more important role as compared with textures
and smooth areas. Therefore, in designing image coding systems, strong edges
need special attention. To do this, we may first characterize and then extract
this strong edge information so that it can be treated separately. In what follows,
we will consider the characterization of strong edge information which leads to

the concept of a stressed image.
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2.3.1 Characterization of Strong Edge Information

In this subsection, we first provide a mathematical description of edges, strong
or weak, and then develop a scheme for the discrimination of strong edges.

In what follows, we explain briefly a traditional way of describing edges [22]
[23] [25]. For an image X = {(%,4,%:;), ¢, = 0,1,...,M — 1}, we define the

directional variations v]; and v{; at pixel (3, j),

V] 5= L5 — T4, (2.5)
fort=0,1,...,M—1,and y =0,1,..., M — 2,

V§ ;= Tij — Tipljs (2.6)

for: =0,1,...,M — 2, and j = 0,1,...,M — 1. We define the locations of
edges to be those points where v!; and/or vf; assume lafge absolute values.?
More precisely, we say that there is an edge point at (4,7 4 0.5) if [v] ;| > T,
and an edge point at (¢ + 0.5,7) if |vf;| > T,, for a positive threshold 7,. We
then describe the corresponding edge at location (¢,7 + 0.5) or (¢ + 0.5,5) by
the intensity values of neighboring pixels, x;; and ;;41, or, x;; and z;41,
respectively.

This scheme works well for edges which are one-pixel wide, but not for edges
of multi-pixel width as illustrated by the following example. In Fig. 2.6 (a), we
have an image with an edge which has an intensity jump from 20 to 220, and a
variable-width: one pixel wide at the top and ten pixels wide at the bottom. The

intensity values associated with the 256th scanline (center row) in Fig. 2.6 (a)

2The actual schemes introduced in [22] [23] [25] are further extensions of the concépt here;
they are combined with techniques of Gaussian filtering and gradient operator, and will be

briefly described in Section 2.5.
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Figure 2.6: (a) An edge of variant width; (b) lower and upper edge brims; (c

image (a) superposed with image (b).
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Figure 2.7: (a) Scanline #256 of image (a) in Fig. 2.6; (b) with indications of

edge brims.
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is shown in Fig. 2.7 (a). On this scanline, the edge is 6 pixels wide: from pixel
(256, 255) to (256,261), where the intensity values change linearly from 20 to
220. Notice that [zos6; — ¥256,i41] = (220 — 20)/6 for 255 < j < 260. Therefore,
for T, > 200/6, no point on this scanline will be identified as an edge point. On
the other hand, for T, < 200/6, the points (256,5 + 0.5), 255 < ;7 < 260 will all
be taken as edge points. While a complete description of the edge on the scanline
is provided by these six detected edge points, this description is redundant, since
the two intensity values at locations (256, 255) and (256,261) completely define
the edge here. These two pixels, (256,255, 20) and (256,261, 220), are referred
to as edge brim points in Section 2.2.

We now develop a new way of describing edges in the following. We define

the second-order directional variations D} ; and Df; for X at pixel (3, j),

Dy = zijo1 — 2255 + @i gy, (2.7)
fore=0,1,..., M—landj=1,...,M -2,

Di; = i1 — 2355 + Tiga 4, (2.8)

fori=1,...,M —2 and j = 0,1,...,M — 1. We then use these second-order
directional variations to describe the edge brim points and then the corresponding
edges. More specifically, we define the pizel row-curvature energy C7; and the

pizel column-curvature energy Cf; by

(D;;)? fori=0,1,...,M~1landj=1,...,M -2,

Cri = (2.9)

0 otherwise,

and,
(D§;)? fori=1,...,M—2and j=0,1,...,M — 1,

Ci; = ’ (2.10)
0 otherwise,
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respectively, and will refer to them collectively as pizel curvature energies. We

then define the set Br(X) of edge brim points of X" as follows,
Br(X) = {(5,4,2:5): Cl;>T or C¢; > T}, (2.11)

where T' > 0. We apply this characterization of edge brim points to the image in
Fig. 2.6 (a) with a threshold 7' = 32; the detected edge brim points are indicated
by bright points in Fig. 2.6 (b). We superimpose the image (b) on image (a),
and show the result in image (c) where dark points are used for the upper edge
brim points. These detected edge brim points are exactly at the places where
the edge starts and ends. To demonstrate this, we repeat Fig. 2.7 (a) along with
two vertical lines indicating the edge brim points in Fig. 2.7 (b). For the case
of Fig. 2.6, the set Br(X') completely defines the edge; in fact, we can recover
the image in Fig. 2.6 (a) merely from the information in By (X) by solving the
minimization problem (2.3).

We note that definition (2.11) gives a set of edge brim points regardless
of whether they correspond to strong edges. To circumvent this problem, we
introduce the concept of a stressed image: X° = {(i,7,2{;)} associated with
the image X'. We first state here the properties which the stressed image X’*
is required to possess, and then, in the next subsection, develop a scheme to
generate the stressed image. We require that, at strong edges, the stressed
image X° closely approximate the original image X, i.e., the squared-errors,
(i —x};)?, are small at these pixels; the pixel curvature energies of X'* of these
pixels have no additional constraint other than that imposed by the squared-
errors constraint. In other areas such as smooth and texture areas, we require
the pixel curvature energies of X'* to be small while placing a loose constraint on

the squared-error (z;; —z$.)%. Thus Br(X?), as compared with Br(X'), will only

4
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contain the edge brim points corresponding to strong edges because large pixel
curvature energies occur only at the strong edges. Note that this stressed image
is generally smooth, except at strong edges where it usually assumes large pixel
curvature energies, and thus is “stressed”. Note also that in the edge extraction
schemes introduced in [22] [23] [25], the textures are suppressed by uniformly
smoothing the image. While here we also smooth the image to suppress the
textures, we do the smoothing non-uniformly. The term “stressed image” is

used to indicate this non-uniformity of smoothing.

2.3.2 Generation of the Stressed Image

In this subsection, we consider the generation of a stressed image X'® from an
original image X'. Since the main property of the stressed image X'* is described
in terms of (i) the squared-errors (z; ; — £ ;)? and (ii) the pixel curvature energies
of X'*, we consider the following quantity at pixel (7, 7), which is a combination

of the above two quantities,
E ( 2,39 z]’ 1,])_ (wi,j z]) +A?]CT +)‘3 Clc]’ (212)

where parameters Aj;, A7, A?; are three non-negative real numbers. We define

the summation of these E; ; as

M-1M-1
E(X°, X, \) = Z Z E;;(A ”, z’],/\f’]) (2.13)
1=0 ;=0

where A represents the collection of the parameters A} ;, A7, and A} ;.

We then consider the following minimization problem for a given parameter

set A
min E(Y, X, A), (2.14)

{vi,;
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where Y = {(¢,7,4:,;)}. Note that the objective function E(Y, X', A) is convex as
a function of ), since each E;;(A};, A?;,A?;) is a convex function of {y:;} [26].

Therefore, {y¥;} is a solution of this minimization problem if and only if it is a

solution of the following system of linear equations,
V{?/i,j}E(anaA) = Oa (215)

where V. 1E(Y, &, A) denotes the gradient of E(Y, X', A) with respect to {y;;}.

We may write the objective function in problem (2.14) in matrix notation:
(il Llys i) — 200 el lyas] + el ), (2.16)

where vectors [y; ;] € RM” and [Azig) € RM’ contain elements y; ; and Aj i g,
respectively, in a certain order (one-to-one function) r: {0,1,...,M — 1} X
{0,1,...,M-1} — {0,1,...,M?—1},i.e., the (r(%0, jo))th element in the vectors

1. % o, respectively. The matrix L = [€,,] is a

[:,5] and [A];z; ;] are y;, j, and A}, .

non-negative definite matrix, where £, , is the coefficient of the term y,-1(u)y,-1(u)
when u = v, and half of the coefficient of the term y,-1(,)y,~1(;) When u # v, in

E(Y,X,A). With this matrix notation, (2.15) simplifies to the following:
Ly ) = [Xi i), (2.17)

We now show the existence and uniqueness of the solution for the minimization

problem (2.14) when A}; > 0 for all (¢, 7).
Lemma 2.3.1 The matriz I, is positive definite if A} ; > 0 for all (1, 7).

Proof: Setting z; ; = 0 for all (7, 5) in the objective function (2.16), we have

E(y’Z7A) = [yi,j]TL[yi,j]a (2'18)
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where Z = {(7,7,0)}. While
M-1M-1
E(Y,Z,A) = ZO ]z_; Miyig)? + 00+ NG5, (2.19)
~we have that [y;;]TL[y:;] = 0 if and only if y;; = 0 for all (4, ), when A}, > 0
for all (4,7) (under the assumption that A7, A}, are non-negative). QED.

From now on, we assume that the parameter set A is such that all A} ; are
greater than zero, and therefore we will talk about the solution of problem (2.14),
which is L7'[A};z;;]. The problem (2.14) is solved iteratively using the Gauss-
Seidel iteration and with the Multi-Grid technique to speed up the convergence.
The Gauss-Seidel iteration and the Multi-Grid technique are well known [27].
Nevertheless, the details of the implementation of these two techniques are in-
cluded in Appendix A.

We now consider the influences of the choices of A};,AZ; and A?; on the
solution, Y* = {(¢,7,4{;)}, of problem (2.14). A close examination of (2.12)
indicates that if A} ; is large compared with A?; and A}, (2:; — y7;)® would be
small, and the constraint on the pixel curvature energies of Y* would be loose; on

the other hand, if A?; and A}; are large as compared to A} ;, the pixel curvature

0,50
energies of V* would be small, and the constraint imposed on the squared-error
(zi,;—y7;)* would be relaxed. To make this observation more precise, we consider
the relationship between the original image X and the solution * governed
by the minimization problem (2.14) as a filtering operation with input X and
output V*. In Appendix C, we investigate the frequency response of this filter
(in its continuous form for simplicity) and show that it is a low-pass filter with
and

cutoff frequencies at (4, ) controlled by the parameters A! /\12 and A3,

z]’ z]7

thus is space-variant. The relationship between the cutoff frequencies and the

parameters given in Appendix C can be described as follows: Larger values of
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Figure 2.8: Mechanical structure of EMM at pixel (M —1,0).

Al; give higher cutoff frequencies in both directions, while larger values of A?;
and /\2 ; lead to lower cutoff frequencies in row-direction and column-direction,
respectively. It is important to note that it is not the absolute values of /\},j, A,

and A}, but rather the ratios A?,;/A}; and A?;/A; ; which influence the solution
Y.

The minimization problem (2.14) actually has an interesting interpretation in
that the solution Y* can be thought of as the stable configuration of a mechanical
structure, a part of which is depicted in Fig. 2.8. In this structure, at each pixel

location (z,j) we have a vertical spring with both ends fixed on a floor (height
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= 0) and a ceiling (height = 255), and a cylinder fixed on it at height z, ;.
This cylinder is constrained to move only in the vertical direction. For each
row and column we have a flexible bar of the shape shown in Fig. 2.8 with a
slot in the middle. The cylinders associated with each (z, 7) are fitted inside the
corresponding column bars, and the column bars, in turn, are fitted inside row
bars. Shown in Fig. 2.8 is the structure at pixel (M — 1,0). We now suppose
that this mechanical structure assumes a configuration described by the heights
y:; of the cylinders. Then the potential energy of this configuration {y;;} is
approximated by E(Y,X,A) defined in (2.13), where Aj;(zi; — i;)%, A},CF;
and )\?,ij,j approximate the potential energies of the spring, the row bar and
the column bar at pixel (7,7), respectively. The parameters A};, A?; and A},

17]” Z!J

control the rigidness of the spring, the row bar, and the column bar at pixel
(5,1 (28],

To visualize the formation of the stable configuration for this mechanical
structure, we note that if all the bars are taken out, the cylinders on the vertical
springs for each pixel (¢,7) will assume their stable positions at z;;, i.e., this
configuration represents the original image X'. After we slide in all the row and
column bars whose rigidness (or flexibility) are determined by the parameters,
{A\?;} and {A};}, the configuration of the structure will change, and will reach
the final stable configuration {y;‘]} which has the minimum potential energy,
i.e., Y* is the solution of problem (2.14). Due to this analogy to the mechanical
system, we refer to (2.14) as an Energy Minimization Model (EMM) problem.

To obtain the stressed image X'* from the original image X', it suffices to
solve the EMM problem with a proper parameter set A, namely, small ratios

2 /)1 3 /)1 : :
AZ;/Ai; and A/} at locations of strong edges and larger ratios at other places.

32



However, we can not specify the parameter set A a priori, since this requires the
knowledge of the locations of strong edges - the very purpose of generating the
stressed image.

We now proceed to explain qualitatively an approach for solving this problem
with the help of the above mechanical structure. We assume that in the pro-
cess of forming the stressed image A'®, the bars and springs first have uniform
rigidness, and the stable configuration reached by the structure is a uniformly
smoothed version, denoted by V' = {(4,,y;,)}, of the original image X'. Then
we allow the bars to have more flexibility at locations corresponding to large
pixel curvature energies (where the bars are most severely bent), and let the
structure stabilize to a new configuration, denoted by V* = {(i,4,y7,)}. Then
again we measure the pixel curvature energies of this new configuration }?, and
allow higher flexibility of the bars at places of large pixel curvature energies. We
continue the process by repeating the above procedure. Notice that the textures
are suppressed in the first configuration Y!, and will continue to be suppressed
in later configurations, while the strong edges which correspond to locations of
large pixel curvature energies will be gradually approximated in the later con-
figurations since we change the flexibilities of the bars to accentuate the strong
edges.

To express the above videa mathematically, we start with a uniform parameter
set A, i.e., parameter /\f,j = ¥ for all (4,5), k = 1,2, 3, and solve problem (2.14)
to get J'. We then update the parameter set A by changing the ratios, A?;/\} ;
and A};/\};, according to C7; and C7; of Y'. The updating strategy should
be such that large values of C7; and Cf; give rise to small ratios, A?;/)j, and

A?; /AL ;» respectively. In the algorithm proposed here, we set A7 ; /Al and A?;/A};

1,77
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to be inversely proportional to C7; and Cf;, i.e.,
NI = B/CT; and X); /N = BCE; (2.20)

where f is a constant. Then we solve problem (2.14) again with the new param-
eter set to obtain Y2, We repeat the above iteration until the relative variation
of the objective function in (2.14) for the two consecutive iterations is smaller
than a given threshold. The final solution X, where K is the total number of

iterations, will be called a stressed image (denoted by X'* before) of the image

X.

2.4 Extraction of Strong Edge Information and
a Three-Component Image Model

As indicated before, the strong edge information can be extracted by identifying
pixels of large pixel curvature energies in a stressed image X'°, and is represented
by Br(X?) in (2.11). While generating Br(X'*) based on (2.11) is straightforward,
the choice of the threshold T is crucial and fine-tuning of 7" is computationally
extensive. To circumvent these difficulties, further selection of the pixels in
Br(X?) is made by identifying pixels of large local mazimum pixel curvature
energies as the resulting edge brim points. More specifically, the definition of

edge brim points in (2.11) is modified as follows:

(4,4,27;) € Br(X®)

if Dy, ,Di;<0,DiDi, <0, and C; > T

1,j-1"1,5 = t,7+1
orif Di;, Di.>0,D].D; ., <0, and C; > max{C],; ;,T};

orif DI, ,D];<0,D] D, >0, and C7; > max{C; . ,,T};
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orif  Di; yDi;>0,D;;Di;i, >0, and C7; > max{C];_;,C; 41, T};

orif  Di, Df; <0, Df DE <0, and CF; > T

orif  Di,.D;;>0,D{;Di; <0, and C{; > max{C{_, ;, T}

orif  Di,.Di;<0,Di;Di,,; >0, and Cf; > max{C{, ;, T}

orif  DEy DS, >0, DE;DE,y ;> 0, and CF; > max{CE_y ;, Cey 5, T},
(2.21)

Therefore, the set Br(X?®) contains pixels not only of high pixel curvature ener-
gies, but alse of curvature energies larger than those of the neighboring pixels
with the same sign of the second-order variations.

To complete the process of the extraction of the strong edge information,
we will consider the generation of the contours of edge brims from Br(X?) in
the next subsection. The formation of these contours is also important for the

coding of strong edge information (ref. Chapter 3).

2.4.1 Generation of Edge Brim Contours

We now consider the problem of generating contours from the set Br(X*®) de-

scribed in (2.21). We define a contour as a sequence of triples:
b= {75 a3 0)), (2.22)
k=0,1,...,m —1, such that
it =ik <1, 1R - R <, (2.23)

and (51, 5%-1) £ (3%, j%), for k = 1,...,m — 1, and the mazimum-variation of
intensity values

s _
or = max i o4 — x| <T, 2.24
b k=01, m=1 | =T, . ( )
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where T, > 0, 7 is the average of the pixel intensity values on b, and m is called
the length of the contour. This definition is different from previous contour
definitions [29] - [31] in condition (2.24); condition (2.24) is introduced to prevent
a mixing of the upper and lower edge brims into one contour. In the following,
we will describe the details of the contour extraction procedure used here.

Let us first consider the so-called contour tracing problem [29] - [31], which
ignores condition (2.24). This problem is solved by a local search algorithm. To
describe this algorithm, consider Fig. 2.9 where a generic pixel (7, ) is circled,
and its neighboring pixels are labeled by indices 0,1,...,7. Starting from a
pixel (22, 5°) € fi(Br(X?)), the tracing algorithm searches among its neighboring
pixels (starting from 0 in the clockwise direction) for one in Br(X'*). As soon as
the algorithm finds a pixel (¢}, ;1) € fi(Br(X*)) in these neighboring pixels, it
moves the search center to (!, j!), and repeats the search again until the search
fails. The resulting sequence of pixels, (io,jo,a:fo,jo), (il,jl,xfl’jl), ..., defines
the contour extracted.

Suppose that we have a contour (i°, j°, &% o), (¢, 5", 24 o), -, (771,577,
Tim-1 jm-1) satisfying the geometric condition (2.23). We now impose the con-
straint (2.24) on this contour. While the whole contour may not satisfy this
constraint for a given threshold 7., short segments of the contour are likely to
satisfy this condition. Thus this added constraint essentially breaks the con-
tour into segments, which leads to a problem similar to the straight-line-fitting
problem in [32], with the exception that the straight-line-segments in [32] are
replaced by constant-intensity curve-segments here.

The contour extraction algorithm actually implemented is a combination of

the above techniques and works as follows. Starting from a pixel (i, 7%, 2} ;o) €
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Figure 2.9: The eight neighboring pixels.

Br(X®), in its eight neighboring pixels we search for pixelsrin Br(X?), among
which we choose a pixel that gives the minimum maximum-variation; if this
maximum-variation is also lower than T,, we take this pixel as the next pixel
(¢',5%, ¢} ;1) on the contour. Then we move the search center to (i', ', 2% 1),
delete (i% j° 2% ;o) from Br(X*), and repeat the above procedure again. The
process stops when we cannot locate a pixel in Br(X'?) having maximum-varia-
tion lower than T, among the neighboring pixels of the current search center.
This is the basic form of the algorithm. In the following, we discuss two other
considerations in the actual algorithm implemented, namely, back-tracing and
prediction.

Note that when we take an arbitrary pixel in Br(X*®) to begin a contour
tracing, we might start in the middle of an actual contour, and would only get a
portion of this contour using our basic algorithm. We circumvent this problem

by introducing a flag such that when in the first search step we have more than
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one neighboring pixel in Br(X*) giving maximum-variations lower than T, this
flag is set to “1”, and otherwise, it is set to “0”. When this flag is “1”, we first
trace to one end of the contour, and then trace back to the other end of the
contour.

Due to the iterative nature of the algorithm for generating the stressed image,
it is possible that we lose a few pixels on some edge brim contours for a given
threshold 7.. Some of the missing pixels may be recovered by a predictive process
based the information of the generated contours. The details of the prediction
is included in Appendix D.

Having determined all contours with the above algorithm, we eliminate those
contours of small length, namely, those with length smaller than a certain thresh-
old T;. Since strong edges are represented by two contours, namely, lower and
upper edge brims, we may use this pairing property to further reduce spurious
contours. More precisely, let us define a d-neighborhood of a pixel (¢, 7, {;) as

follows,
N(da (ikajk,mfk,jk)) = {(zv.ﬁ ) : max{li - ikl’ |.7 - ]kl} < d}7 (225)

where d > 0. We say that a pixel in Br(X'®) is paired in distance d if and only if
the d-neighborhood of this pixel contains pixels on another contour of By(X*);
and that a contour in Br(X*) is paired in distance d if and only if it has at least
Te pixels being paired in distance d. Having checked all contours in By (X'?), we
eliminate those contours not paired in distance d.

We will denote the final collection of the pixels on the remaining contours by
B7(X?) again, and we will refer to this set as the collection of extracted strong

edge brim contours.
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2.4.2 A Three-Component Image Model

We now proceed to generate an image P = {(¢,7,pi;)}, ¢,5 = 0,1,.... M — 1,
solely from Br(X*), such that the difference image X © P = {(4,,z:; — pij)}
has no strong edges represented by Br(X?). We generate the image P based
on the minimum information principle introduced in Section 2.2 (ref. eq. (2.3)).
The detailed algorithm is included in Appendix B. We will call the image P
the primary image (or primary component) of the original image X, since the
strong edge information contained in image P is most important to human visual
system.

Notice that, the stressed image X'*, from which the set Br(X®) is derived,
can be considered as the output of a space-variant filter for the input &X'. This
filter is basically low-pass except at locations of strong edges. Thus the stressed
image X'* contains the low-frequency component, or smooth component, and
the strong edge information of the image &X'. Therefore, the difference image
X © X consists of the high-frequency component, but without the strong edge
information. We define 7 = X © &* = {(4,4,ti;)} = {(4,7,%:; — z{;)} and
S=X0P ={(,5,8;)} = {(4,5,2¢; — pi;)} corresponding to the texture and

the smooth component, respectively. Thus, the image X’ can be expressed as
X=ToSOP={(iJti;+si;+pij)} (2.26)

In the sequel, this model will be referred to as the three-component image model.
The block diagram for generating these three components is provided in the next
chapter, Fig. 3.1, where the quantization of Br(X?) is considered.

In the next section, we present an experiment for this three-component image

model and a comparison with the LGO.

39



Figure 2.10: Test image.

2.5 Experimental Results and Comparisons

Consider the test image shown in Fig. 2.10. This 256 x 256 image has a circular
strong edge in the middle and textures or smooth areas in the rest of the image. A
scanline (row 128) of the test image is plotted in Fig. 2.11. Note that around the
center of the scanline we have a convex curve with the shape of a sine wave from
0 to 7, then two strong edges, and up-down waveforms with linearly increasing
frequency and amplitudes.

To get a picture of the edge location of the edge, we draw a grid in Fig. 2.12
with the intersections of vertical and horizontal lines indicating the pixel lo-
cations; the upper and lower edge brims are indicated by small square-dots
(Fig. 2.12 is only the center portion of the image). Two typical edge segments
are shown in Fig. 2.13. Note that the width of the edge is not limited to one

pixel in contrast with the restriction in [22] [23] (see Subsection 2.5.2).
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Figure 2.11: Scanline #128 of the test image.

2.5.1 An Example of the Three-Component Image
Model

The stressed image is generated with the scheme developed in Section 2.3. For
simplicity, we assumed that \?; = A\2; = X;;, for all (¢,7). Thus Ai;/A}; is
the only independent parameter. Therefore, instead of updating two parameters
AZ;, A}, we may simply update )} ; by the formula: A}, = 4(C}; + Cf;), (v is a
constant), which is similar reciprocally to (2.20).

The stressed image is shown in Fig. 2.14 (a), which is clearly stressed only at
the strong edge of the test image. The computer time used on a SPARCstation-
1 is about 1400 seconds. Edge brim points and the corresponding contours are
extracted by the scheme introduced in Section 2.4, with T' = 512, T, = 32,
T, = 16 and d = 3 (the number of iterations used to solve Equation (2.15) is 40).
The resulting two contours are shown in Fig. 2.14 (b). An enlarged picture of

these contours is shown in Fig. 2.15. These two contours correspond to the lower

and upper edge brims. In Fig. 2.16, we superimpose Fig. 2.15 and Fig. 2.12 to
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Figure 2.12: Enlarged picture of the edge-brim locations in the test image.

Figure 2.13: Typical segments of the edge in the test image.
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(a) The stressed image (b) The picture of edge brim contours

Figure 2.14: The stressed image and the picture of edge brim contours extracted

for the test image.

demonstrate the effectiveness of our scheme in locating the strong edge.

To better understand the behavior of the stressed image, we have plotted
scanline 128 for the test image (solid curve) and for the stressed image (dotted
curve) in Fig. 2.17 (a), and with vertical lines indicating the locations of edge
brim contours on this scanline in Fig. 2.17 (b). Note that the scanline associated
with the stressed image is smooth except at the strong edge locations where it
matches the edge, and that the locations of edge brim contours coincide with
the upper and lower edge brims of the strong edge.

The primary image associated with the extracted strong edge is shown in
Fig. 2.18. The other two components, namely, the smooth and texture compo-
nents, are derived as in Subsection 2.4.2. Notice that the smooth and texture
components are differences of two images, and thus may have negative intensity
values. We have added constants to these two components in order to bring
their intensity values in the displayable range, namely, [0,255]. The resulting

images of these two components are shown in Fig. 2.19. Note that the primary

43



Ending Point /Starting Point

Figure 2.15: Enlarged picture of the contours extracted from the stressed image

shown in Fig. 2.14 (a).

image contains the strong edge information, the smooth component provides the
background slow intensity variations and the texture component contains all the
textures.

Note that there are some traces of brighter pixels at around the location
of the circular edge in the texture image. The reason for this phenomenon is
basically the orientation anisotropy of the EMM problem since there are only two
directions for the bars and the discrete structure of the problem (ref. Section 2.3).

This orientation anisotropy can be most clearly seen for edge segments with an
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Figure 2.16: The superimposition of Fig. 2.15 and Fig. 2.12.

orientation slightly tilted away from the vertical or the horizontal directions.
However, since the primary image gives a perceptually good copy of the edge,
these traces of brighter pixels can be treated as textures.

Some other examples of the three-component image model for real-world
images are provided in the next chapter where the image coding issues are in-
vestigated.

In what follows, we compare the performance of the strong edge extraction

of the three-component image model with that of the LGO scheme.
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Figure 2.17: Scanline #128 of the test image and the stressed image.
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(a) Smooth component (b) Texture component

Figure 2.19: The smooth and texture components.
2.5.2 The Laplacian-Gaussian Operator

The LGO scheme refers to an edge extraction scheme which is introduced by
Marr and Hildreth [25]. In the following, we provide a brief description of the
LGO and discuss some of its applications in the context of image coding [22],
[23]. Then some limitations of the LGO are illustrated by an example.

For simplicity, let us consider a real-valued function () of a real variable ¢.
We define the edge locations of z(t) by the zero-crossing locations of the second

derivative of z(t). To suppress weak edges, a Gaussian filter is used to smoothen
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z(t) before second derivative zero-crossings are located. More precisely, a 1-D

Gaussian kernel ¢,(t) of standard deviation ¢ is convolved with z(t):

0t =a8 50 = [ s en-Ca, o

and the points at which y)/(t) = 0 are defined as the edge locations. Note that
the standard deviation o of the Gaussian kernel controls the strengths of the
extracted edges, i.e., larger values of o correspond to higher edge strengths [25].

In the 2-D case, we consider a function z(t,s) of two variables ¢ and s.
The edges with strengths above a threshold are defined as the points where
the Laplacian of y,(t,s), V2y,(t,s) = 8%,/0t* + 0%y, /ds?, vanishs, where
Yo(t,s) is the convolution of z(¢,s) and a 2-D Gaussian kernel: G,(r,8) =
exp(—r%/(20?))/(270?), where (r,0) denotes the polar coordinates, with r €

[0,00), 6 € [0,27). Note that

V2y,(t,8) = V3(z(t,8) ® G,(r,0)) = 2(t,5) @ (V3G (r,0)), (2.28)
and
0°G 108G 1 r? r?
2 _ : _ _ L
VG, (r,0) = £ + . 7ra4(202 1) exp( 202). (2.29)

To apply the LGO to digital images, the 2-D kernel V?G,(r,8) is discretized
and convolved with the image {z;;}. We denote the result of this convolution
by {y:;} and locate its zero-crossings in the horizontal and vertical directions.
For example, we say that there is a zero-crossing at (¢, 7 +0.5) if y; ;v j+1 < 0. As
in [22], we apply a gradient operator across each zero-crossing; if the absolute
value of the output of the gradient operator is above a certain threshold, the
zero-crossing is taken as an edge location. The resulting edge locations are
transmitted along with the intensity values of their neighboring pixels for a

complete description of the corresponding edges.
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Figure 2.20: An example for the locational accuracy of LGO, o = 3.

As indicated above, the standard deviation o of the Gaussian filter controls
the strengths of the extracted edges. Additionally, o influences another im-
portant property of the resulting zero-crossings, namely, the accuracy of their
locations with respect to the actual edges. Smaller values of o give better ac-
curacy, and larger values of o result in poor accuracy [33]. We illustrate this
situation with the following example.

Consider the 1-D signal z(i) shown by the solid curve in Fig. 2.20 with
an edge at i = 179.5. More specifically, z(¢) = 105 for ¢ < 180, z(180) =
—105 and z(z) linearly increases afterward. The dashed curve in Fig. 2.20 is a
normalized version of —y”(2) (ref. eq. (2.27)) for o = 3. Notice that —y”(¢) has an
isolated zero-crossing at ¢ = 179.5. Thus, in this case the LGO locates the edge
accurately; the intensity values of the left and right pixels of this zero-crossing
are £(179) = 105 and z(180) = —105. These intensity values plus the location
of the zero-crossing provide a complete description of the edge. Fig. 2.21 shows
—y2(2) for ¢ = 11. In this case, the zero-crossing point is ¢ = 177.5 which is

clearly an inaccurate result.
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Figﬁré72.21: An example for the locational 7a<7:c;1ra;<;y of LGb, o=11.

Thus, on the one hand, small values of o are needed to ensure accurate
detection of the edge location and, on the other hand, large values of o should
be used for detection of “strong” edges. These requirements are conflicting and
constitute a drawback of the LGO edge-detection scheme. In addition, the LGO
scheme implicitly assumes the edge is one sample wide. This is in contrast with
real-world situations (especially for images) where edges are typically several
pixels wide.

In what follows we proceed to use the LGO scheme to detect the strong edge

of the test image presented in Fig. 2.10.

2.5.3 An Example of Locating Strong Edges with the
LGO

We now present the results of the LGO-based edge detection for the test image
with five different values of ¢ namely, 1,2,3,4 and 5 pixel-widths. In each case,
the threshold for the output of the gradient operator is determined empirically

as the largest possible to keep the zero-crossings for the strong edge and to
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o = 3 pixel-width (345 s) o = 4 pixel-width (603 s)

o = 5 pixel-width (1019 s)

Figure 2.22: Zero-crossing results with the LGO scheme for the test image.
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Figure 2.23: Enlarged picture of the zero-crossings for ¢ = 5 pixel-widths.

suppress, as much as possible, the zero-crossings corresponding to the textures.
The results are summarized in Fig. 2.22 in the form of images where a bright
point at pixel (4, j) indicates a zero-crossing at (¢, j+0.5) and/or (:+0.5,7). The
computer times, in seconds (s), used on a SPARCstation-1 to do the convolution
(vef. (2.28)) are also included.

As shown in Fig. 2.22, the result for ¢ = 5 pixel-widths detects the strong
edge only, while all the other results contain zero-crossings corresponding to the
textures, as well. The enlarged picture of the zero-crossing points for ¢ = 5

pixel-widths is shown in Fig. 2.23 (compared with the actual edge location in
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Figure 2.24: The superimposition of Fig. 2.23 and Fig. 2.12.

Fig. 2.24), where the positions of the zero-crossings are one half pixel-width to
the right or below the square-dots (ref. Subsection 2.5.2). Thus, the set of the
edge brim points consists of the pixels on two circles. One circle is shown in
Fig. 2.23, and the other one (not shown) is one pixel away to the right and
below of the first one. The primary image of these edge brim points is generated
and shown in Fig. 2.25. Notice that simply there is no edge in Fig. 2.25, as
compared with Fig. 2.18 obtained using the three-component image model.
Therefore, the representation of the edge in the test image generated with

the LGO gives location error, and, more seriously, fails to provide the intensity
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Figure 2.25: The primary image of the neighboring pixels of zero-crossings shown

in Fig. 2.23.

variation of the edge, while the strong edge extraction scheme associated with the

three-component image model provides a superior edge extraction performance.

2.6 Summary and Conclusions

We have studied several psychovisual evidences of the HVS and attempted to
describe them mathematically. In particular, the strong edges and the areas
of smooth intensity variations are carefully studied and their effect as well as
their interaction in formation of the perception are described in terms of simple
minimization problems. An algorithm, based on a space-variant low-pass filtering
operation, for the generation of the stressed image is developed from which
the strong edges can be easily extracted. This has led to introducing a three-
component image model based on the (i) strong edges, (ii) areas of smooth
intensity variations and (iii) textures - the three components which apparently
play different roles in the formation of the perception.

In a specific comparison, we have shown the superiority of the strong edge

extraction scheme developed here over the LGO-based edge extraction method.
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The three-component model was motivated b)hr the need for subjective-based
criteria for the design of low bit-rate image coding systems (such as adaptive
DCT and subband coding) in which the three components of the model are
treated based on their relative perceptual importance. The design of such image

coding systems is the topic of the next chapter.
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Chapter 3

Low Bit-Rate Image Coding
Using the Three-Component

Image Model

3.1 Introduction

In this chapter,we develop image coding systems based on an amalgamation of
feature-based and waveform coding techniques. Specifically, to take into account
the properties of the HVS, the image signal is first decomposed into components
of distinctive significance to the human perception, namely, the strong edge, tex-
ture and smooth components. This is accomplished by a scheme developed in the
last chapter. The geometric and intensity information of the strong edges (also
called the primary component) is encoded separately. The texture and smooth
components are encoded using waveform coding methods. Both entropy-coded

adaptive DCT and entropy-coded subband coding are considered. Within this
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framework, we demonstrate the advantages of the proposed approach in terms
of objective and subjective performance improvements. Furthermore, this study
has enabled us to make meaningful comparisons between two rival schemes,
namely, adaptive DCT and subband coding, under similar modeling assump-
tions. In addition, we develop a modification of our DCT-based scheme in which
the well-known contrast sensitivity of the HVS [1], [34], [35], is used for percep-
tual tuning of the parameters of the coder. It is shown that the combination
of this perceptual tuning and the three-component based approach further im-
proves the subjective performance of the coder, especially at low bit rates.

The rest of the chapter is organized as follows. In Section 3.2, a brief de-
scription of the three-component image model along with some decomposition
examples are provided. The encoding of the primary component is described in
Section 3.3 followed by the description of two encoding schemes for the smooth
and texture components in Section 3.4. Section 3.5 includes the description of
the overall encoding schemes as well as extensive simulation results and compar-
isons. Section 3.6 is devoted to the contrast sensitivity of the HVS and how it is
used for perceptual tuning of the encoding system. Finally, Section 3.7 contains

a summary and conclusions.

3.2 Three-Component Image Model

In this section, we briefly review the three-component image model of the chap-
ter 2, put it into the perspective of image coding, and provide several examples
of the real-world images.

The block diagram of the system used for generating the three components,
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Figure 3.1: Generation of three-component image model.

namely, the primary, smooth and texture components, from the original 1mage is
illustrated in Fig. 3.1. The original image is first processed by a space-variant
filter whose output is what we call the stressed image. The stressed image is
essentially a low-pass version of the original image except near the “strong edges”
where the filter acts as an all-pass filter to preserve the sharpness of these edges.
The stressed image, therefore, contains the smooth intensity variations and the
strong edge information of the original image (ref. Appendix C). The space-
variant filter is implemented using an iterative procedure described by a flow
chart in Fig. 3.2; {z,;} is the original M x M image, v is the iteration index
and N, is the number of iterations before updating of the weighting factors.
The strong edge information is subsequently extracted from the stressed im-
age by identifying pixels of local maximum curvature energy, and is used to

generate the primary component of the original image (ref. Appendix B) follow-
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Start: xj--xJ i,j=0,...,M-1;

v=0.
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xisj= weighted sum of x, jand

- neighboring pixels in {xs} «

i,j=0,...,M-1.
V=vi+1,
Stressed
Image
' Yes

Update the weighting factors
according to the pixel curvature

energies of x> set v=0.

i’

Figure 3.2: Flow chart describing the generation of the stressed image.
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(a) (b)

Figure 3.3: (a) Lenna image,. (b) the stressed image associated with A-configu-

ration.

ing quantization of the intensity values (and possibly the geometric information)
of the strong edge brim contours. The primary component is similar, in concept,
to thé sketch image of [22]. The quantization and encoding procedure of the
strong edge information is described in the next section.

Two examples of the three-component image model, referred to as the A-
and B-configuration, are provided in the following for the 512 x 512 Lenna. The
parameters for generating these two examples are N, = 20, T' = 64, T, = 32,
T, = 8 and d = 3 for the A-configuration and N, = 10, T" = 64, T, = 32,
T, = 4 and d = 3 for the B-configuration. In Figs. 3.3 and 3.6,! the original

image Lenna, the stressed images, the strong edge brim contours and the re-

1Since the smooth and texture components can have negative values, for display purposes,

we have added a constant to these components to render all pixel values non-negative.
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Figure 3.4: (a) the strong edge brim contours, (b) the primary component (1-ring

coding), (c) the smooth component and (d) the texture component associated

with A-configuration.
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Figure 3.5: (a) Lenna image, (b) the stressed image associated with B-configu-

ration.

sulting three components for the two configurations are shown. In both cases,
the primary component is obtained from the quantized strong edge information
(see Section 3.3), and the corresponding quantization distortion is included in the
smooth component, which can be discarded by smoothing the smooth compo-
nents since the primary components provide good replicas of the corresponding
strong edges. These distortions can be noticed near the strong edges in Figs. 3.4
(c) and 3.6 (c). Note that the A-configuration results in more strong edges than
the B-configuration due to its larger N,. Generally, smaller values of N, lead to
extracting a smaller number of strong edges, since, for smaller N,, the iterative
solutions of the EMM problem have rather larger deviation from the solution of
the problem; the pixel curvature energies of the iterative solutions are significant

only at the locations of very strong edges. Then after the updating of the param-
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Figure 3.6: (a) the strong edge brim contours, (b) the primary component (1-ring

coding), (c) the smooth component and (d) the texture component associated

with B-configuration.
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eter set, the rigidness of the bars will be reduced significantly only at these very
strong edges; therefore the whole iteration procedure will be accentuated to a
small number of very strong edges. Some other examples of the three-component

model are provided in Appendix E.

3.3 Coding of Primary Component

The primary component of the image is specified by the collection of strong edge
brim contours. These contours are defined by their pixel locations and intensity
values. More specifically, a strong edge brim contour, denoted by b, is defined

as a sequence of triples:

b= {(" 5 e ) Yo (3.1)

where m is the length of the contour, (i¥, 7*) specifies the location of the kth pixel
on the contour and z;x ;» is the intensity value at (¢%, 7*); the consecutive pixels
on the contour are connected and distinct, i.e., [sF71 — %] < 1, |75~ — 7% < 1

and (¢¥-1, 5571) #£ (5, 7%), k = 1,...,m — 1, and the variation of the intensity

values on the contour is constrained by

1 m-—1
pooax |2k 55 — ~ Zzz(:) x| < T, (3.2)

where T, > 0.

Our objective is to code the contours (location and intensity) with little or
no perceptual distortion in reconstructing the primary component. To this end,
the sequence of contour pixel locations, ¢ = {(:°j°), (:*,7%),..., (™1, 7™ )},
is encoded using chain coding [29], [31], [36]. When the well-known Freeman

code [31] (also known as the 1-ring code [36]) is used, the sequence is losslessly
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Figure 3.7: Example of 2-ring coding.

encoded. To achieve lower bit rates, the N-ring code with N > 1 can be used.
This procedure results in lossy coding of the contour locations. An example of
the 2-ring code is given below.

Consider the sequence € of length m = 7 shown in Fig. 3.7, where the pixel
locations are marked with solid dots. The 2-ring coding starts at (z°,5°). The
first intersection of the 2-ring centered at (:° j°) (boundary of the shaded re-
gion) with € is identified. The intersection point, (¢%,53), is encoded with the
corresponding index s! on the ring (in this case s* = 2, as indicated in Fig. 3.7)
and the center of the 2-ring is moved to (z°,53). Following the same proce-
dure, a new intersection is identified at (z°,7%) which is encoded with index
s? = 15. Then the 2-ring is shifted to pixel (z°,5%), but no intersection point
is identified; this terminates the encoding operation. The resulting encoded
message is {(i°,j°),2,15}. The decoding is straightforward. Those points on

¢ that correspond to intersection points are correctly reconstructed; the inter-
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mediate points are reconstructed by interpolation. For this example, the re-
constructed sequence can be either {(:°,7°),(:%,52),(:3,73), (s%, 7%), (s°,7%)} or
{(%59), (4%,7%), (3, 33), (* + 1,5%), (2%, 7°)}. One of the two possibilities is se-
lected according to a prescribed decoding rule.

Let {s!,s?,s% ...} denote the sequence of indices on the N-ring obtained
in successive steps of the chain coding operation. Because the contours are
generally smooth, it is more efficient to code the differences between the neigh-
boring indices than to code them directly. Therefore, upon defining r* = (s —
s mod 8N, i = 2,3,..., a code sequence {(:°,j°),s!,r%,r%,...}, is generated
where (2, j°) is called the starting location, s! the first direction, and r?, 7,
the relative directions.

To encode the contour intensity values, sequence {0 o,z j1,..., Zim-1 jm-1}
is quantized to a constant sequence {Z,7,...,Z}, where T = [m™! .70" 2e ;]
and [z] denotes the integer closest to z. Simulation results show that this quan-
tization gives rise to little perceptual degradation on edges (for the choices of T.
considered in this work) as compared with the case where the intensity values
are losslessly coded.

The sequence {T,m, (:°,5°),sl,r%,r% ...} is used to represent each strong
edge brim contour. While Z,m and (io, 7°) are encoded by a fixed number of
bits, s* and {r'} are encoded separately by means of arithmetic coding [37], [38].

The average rate, denoted by r, bits/pixel, for encoding the primary compo-
nent is tabulated in Table 3.1 for the 512x512 Lenna using the two configurations
considered in Section 3.2. The corresponding primary components are shown in
Figs. 3.4 (b) and 3.6 (b) for the 1-ring code; the results for 2- and 3-ring codes

are perceptually indistinguishable and are therefore omitted.
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Configuration | 1-ring | 2-ring | 3-ring

A 0.048 | 0.038 | 0.032

B 0.017 | 0.013 | 0.011

Table 3.1: Bit rate (bits/pixel) for encoding the primary component for two

different parameter sets.

Remark

It is worth noting that the constraint (3.2) may be changed to a more general
one:

1 n—1
I.'L'z'k,jk - E .'Eik—l’jk—e' <T, (3.3)
£=0

for k =0,1,...,m —1, and T/ > 0, where n = min{k + 1,n;} and ny > 1 is -
a finite window size. With this new constraint, some of the contours obtained
from (3.2) will be connected and thus the coding rate may be decreased due to
the reduced number of starting locations to be encoded. However, we need to
specify more than one intensity value for some contours with this new constraint.
The trade-off between the above two factors is controlled by the threshold TV
and the window size n;. After extensive studies of these trade-offs, we have
concluded that the reduction in the bit rate is negligibly small. Hence, the

simpler constraint (3.2) is used for the rest of the work.
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3.4 Coding of Smooth and Texture Compo-
nents

In this section, we consider the coding of the smooth and texture components.
The basic approach is to encode the sum of these components using waveform
coding techniques. Two different entropy-coded image coding techniques, adap-

tive (2-D) DCT coding and 2-D subband coding, are used in this work.

3.4.1 Adaptive DCT Coding

Let the smooth and texture components of the original image X = {z;;} be de-
noted by S = {s;;} and T = {;,}, respectively, where z,5 = 0,1,..., M —1. Let
S and T be segmented into L x L blocks sy, ,, and tp n, m,n =0,1,...,(M/L)-1,
respectively, and denote the block of 2-D DCT coefficients of s, , and t,,, by
S and b, respectively.

The structure of the adaptive DCT coding scheme used here is similar to
that in [5]. After computing the 2-D DCT of umn = (Smn + tmn), the blocks
U = (Smmn + tmn) are classified into one of a finite number of classes. In [5],
the classification is done based on the ac energies of the blocks. As indicated in
[39], the classification scheme in [5] neglects the frequency distribution of the ac
energy which should be considered for a more efficient coding. In our case, due
to the three component model, the low and high frequency energies of a block
are already separated and are contained in §,,, and t.,,, respectively. Thus,
a more efficient classification is possible by using the ac energies of §,,, and
tmn. The classification procedure used here consists of two stages. In the first

stage, the transform blocks are classified into one of K; classes by comparing
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the ac energies of §,,,, against T}, k = 0,1,...,K; — 2; the thresholds {T}} are
chosen such that each of the resulting Ky classes contains the same number of
blocks. In the second stage, each resulting class of the first stage, say k&, is further
divided into K classes by comparing the ac energieé of £, against another set
of thresholds, T,?yl, ¢ =0,1,...,Ky — 2. These thresholds are also chosen such
that the resulting K = K; K, classes have the same number of blocks in them.?

We have conducted a study, similar to that of [40], to determine the ap-
proximate distribution of the 2-D DCT coeflicients of the different classes by
comparing their empirical distributions against the so-called generalized Gaus-
sian distﬁbution [41] using the Kolmogorov-Smirnov test [40]. This is done using
a database consisting of a large number of different images. Based on this study,
we have concluded that the (0,0)th, (0,1)th and (1,0)th coefficients have an
almost Gaussian distribution; all other coefficients (except those that have very
small variances and hence are subsequently assigned very small bit rates) are
best approximated by a Laplacian distribution. This observation holds for the
coeflicients in all classes in the case where K = 4. From now on, we will use
these assumptions for the design of the overall system.

The 2-D DCT coefficients are quantized with uniform-threshold quantizers
(UTQs) [41] and subsequently encoded using Huffman codes (HCs). This leads
to performance close to that of optimal entropy-constrained scalar quantization
[11]. We denote the variance-normalized mean squared error (MSE) associated

with the UTQ-HC pair operating at rate r bits/sample for the Gaussian and

2The constraint that each class should contain the same number of blocks is not a re-
quirement; it just makes the system simpler to implement. Better performance results can be

expected if this constraint is removed.
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Laplacian distributions by dg(r) and dp(r), respectively. If the variance and the
coding rate associated with the (u,v)th coefficient in the kth class are denoted,
respectively, by o2(u,v) and r* , the overall MSE is given by 3

u,v?

1 1 K-1
D= 23{02(0,0)‘10(7“0,0) t > [02(0,1)dg(rs,) + o7(1,0)da(rf o)

k=0
ap(u,v)dr(ry )]}, (3.4)
(u,v)#(0,0),(0,1),(1,0)

where 0%(0,0) and rq g are the variance and the coding rate, respectively, for the
dc coefficient which is encoded in the same manner regardless of the class it be-
longs to. The average bit rate for encoding the smooth and texture components,

Tst, 1 given by

1 1 5=
rst = To+ 5 {roo+ = Y rﬁ’v}, bits/pixel, (3.5)
L K = u,v#(0,0)

where r, is the bit rate for coding the overhead information. We will elaborate
on r, later.

At this point, it remains to determine the optimal allocation of bit rates
among the 2-D DCT coeflicients of the different classes. This bit allocation
which is the solution of the following constrained minimization problem,

min D, (3.6)

{roro,0,7 o }: Tst<ra
where ry is the design average bit rate, can be obtained efficiently using the
steepest descent algorithm described in [42]. To reduce the overhead information
for the bit allocation maps and to have a simple system, we have limited ro¢

and {r*_ 1 to be an integer multiple of 0.1 bits; they are also constrained to be
U, g P ) Yy

3Throughout this paper, the 2-D DCT used is as defined in [16]. ‘This transformation is

unitary and hence the MSE in the spatial domain is the same as that in the transform domain.
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less than 5.0 bits for the Laplacian distribution and 8.0 bits for the Gaussian
distribution.

To reconstruct the 2-D DCT coefficients at the receiver side, estimates of
{o}(u,v)} are required (¢2(0,0) is transmitted directly). If the variances of
quantization errors of the DCT coefficients, denoted by €2(u,v), are known, then

{o}(u,v)} can be estimated from the allocated bit rates {rk }. This is because,

for (u,v) # (0,0), we have

o2 (u,v)dg(rE ), (u,v) =(0,1) or (1,0),
(. v) = (u,v)da(ry,), (u,v) =(0,1) or (1,0) (3.7)

o7 (u,v)dp(rk ), otherwise.

As mentioned before, the performance of the UTQ-HC pairs is very close to that
of optimal entropy-constrained scalar quantizers. These quantizers, in turn, have
a performance which for high bit rates is about 0.255 bits/sample above the rate-
distortion function [41], [43]. Approximating the rate-distortion function by the

Shannon Lower Bound [44] and using this observation, we have

2
dg(r) ~ %2—‘”, di(r) ~ %2‘”. (3.8)

Substituting (3.8) into (3.4) to solve (3.6), one can easily show that when the
bit rates are optimally chosen, the resulting quantization error of the DCT co-
efficients have the same variances. The details are included in Appendix F. In
the ideal case if the distribution of the coeflicients is exactly what we have as-
sumed, the knowledge of this common quantization error variance, called the
normalization factor and denoted by c, at the receiver, can be used to compute
the variances {oZ(u,v)} using the bit maps (see eq. (3.7)). In the system actu-

ally implemented, the average of those €;(u,v) corresponding to coefficients with

rk >0, (u,v) # (0,0) is used as the value of c.

71



Before closing this subsection, we should mention that the overhead informa-
tion that needs to be sent consists of the classification information (log, K bits
per block), the mean and variance of the dc coefficient (32 bits for each), the
normalization factor ¢ (32 bits) and the bit maps * (2K [log, L] + [log, B](1 +
TR H(urvr—1))). For an M x M image, this amounts to r, = (log, K )/L?+(96+
2K [log, L] + [log, B](14+ =K (ugvr —1)))/M?, bits/pixel. For example, for en-
coding the 512 x 512 Lenna at 0.5 bits/pixel with L = 16, r, = 0.017 bits/pixel,
r, = 0.048 bits/pixel with 1-ring coding and the A-configuration leaving 0.435

bits/pixel for rg;.

3.4.2 Subband Coding

The entropy-coded 2-D subband coding (SBC) system used here for encoding
the sum of the smooth and texture components (hereafter called the smooth-
texture component) is identical to that of [11]. The smooth-texture component
is analyzed into several narrow-band (or subband) images which are then en-
coded separately. In the decoder, a replica of the smooth-texture component is
synthesized from the decoded subband images. The analysis and synthesis are
performed using 2-D separable quadrature mirror filter (QMF') banks. The in-
put image is split into 16 subbands. The reader is referred to [8] for details. All

subbands except the lowest frequency subband (LFS) are encoded by means of

“The integers uj and vy are defined to be the smallest integers such that u > uy or v > vy,
implies rf , = 0. Thus, for the kth class, we need to transmit 2[log, L] bits for u; and
vy, and [log, B](ugvr — 1) bits to specify r¥,, u < ug, v < v, (u,v) # (0,0), where [z]
denotes the smallest integer larger than z and B is the number of possible different values

of rfj’v. Since 1 is the same for all classes, the overall number of bits for the bitmaps is

2K [log, L] + Nlogy BI(1 + 5=y (urvk — 1)).
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appropriately designed UTQ-HC pairs; the LFS is encoded by means of a non-
adaptive 2-D DCT encoding systerﬁ in which the DCT coefficients are encoded
also by UTQ-HC pairs. The overall system design, the bit allocation procedure
and the performance results are reported in [11].

Perhaps we should mention that in the context of SBC, it suffices to have a
2-component model which separates the primary component from the smooth-
texture component. This is because in a SBC system, the input image is sepa-
rated into subband images based on their frequency contents and therefore the
system has the ability to extract the smooth and texture components from the

smooth-texture input.

3.5 Simulation Results and Comparisons

In this section we describe the overall structure of the different image coding
systems developed based on the three-component model. We also present sim-
ulation results and perform appropriate comparisons. The two main encoding

schemes are described next.

3.5.1 Description of systems

The ADCT-based scheme

The block diagram of the ADCT-based scheme is illustrated in Fig. 3.8. The
primary component is encoded using the contour coding scheme of Section 3.3.
The sum of the smooth and texture components is encoded using the ADCT
coding scheme of Subsection IV.A. We will refer to this scheme as the 3C-ADCT-

HC scheme (3C for the three-component model and HC for Huffman coding of
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Figure 3.8: Block diagram of the ADCT-based image coding scheme using the

three-component model.

the quantized DCT coefficients).

The SBC-based scheme

The block diagram of the SBC-based scheme is illustrated in Fig. 3.9. The
only difference with 3C-ADCT-HC is in the coding of the smooth and texture
components which in this case are encoded using the SBC coding scheme of

Subsection IV.B. This scheme will be denoted by 3C-SBC-HC.

Other related schemes

For comparison purposes, we will also study the performance of an ADCT-
based scheme like that of Subsection IV.A which operates on the original image

directly and hence does not utilize the three-component model; in this scheme
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Figure 3.9: Block diagram of the SBC-based image coding scheme using the

three-component model.

the classification method is exactly like that of [5]. This scheme, referred to
as 1C-ADCT-HC, is essentially ® an entropy-coded version of the system in [5].
Also, we consider the SBC-based coding scheme of [11] (called System B in [11])
directly applied to the image (thus ignoring the three-component model) and
refer to it as 1C-SBC-HC. Finally, we refer to the Huffman coded version of
JPEG as JPEG-HC. All JPEG simulation results are obtained using a software

package described in [45].

5The other differences between 1C-ADCT-HC and the scheme in [5] are the bit assignment
algorithm, the assumption on the distribution of the transform coefficients, and the estimation

of {oZ(u,v)} at the receiver side.
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3.5.2 Simulation results

We have simulated the performance of the above mentioned schemes on the
512 X 512 Lenna. The reconstructed images at aifferent bit rates are illustrated
in Figs. 3.10-3.15. For these simulations, in the 1C-ADCT-HC and 3C-ADCT-
HC schemes the blocksize used is 16 x 16; JPEG-HC uses an 8 x 8 blocksize. In
1C-SBC-HC and 3C-SBC-HC, the lowest frequency subband is encoded using
a nonadaptive DCT encoder with blocksize 4 X 4 as in [11]. In the 3C-ADCT-
HC schemes, Ky = K, = 2; in the 1C-ADCT-HC schemes, K = 4. In these
figures, for all three-component based systems, the A-configuration described in
Section 3.2 is used as the choice of parameters; 1-ring code is used, but 2- and 3-
ring codes are also tried. In some cases, 2- or 3- ring codes yielded slightly better
PSNRs. However, in no case did we observe a noticeable perceptual difference.

The peak signal-to-noise-ratio (PSNR) associated with these schemes as well
as other schemes to be discussed shortly are summarized in Table 3.2. In this
table, the PSNR results associated with the three-component model are the best
ones obtained among the choices of A- and B- configurations and the 1-, 2- and

3-ring codes.

3.5.3 Discussion

The simulation results of Figs. 3.10-3.15 and their cbrresponding PSNRs tabu-
lated in Table 3.2 deserve some discussion. Perhaps the most important obser-
vation to be made is that the 3C-ADCT-HC and 1C-ADCT-HC schemes provide
the best results. The performance difference between these schemes and JPEG-

HC is quite dramatic at low bit rates.
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Figure 3.10: (a) Original, (b) JPEG-HC, (¢) 1C-ADCT-HC, (d) 3C-ADCT-HG;

design bit rate 0.5 bpp; actual bit rates in Table 2.
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Figure 3.11: (a) Original, (b) JPEG-HC, (c) 1C-ADCT-HC, (d) 3C-ADCT-HC;

design bit rate 0.25 bpp; actual bit rates in Table 2.
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Figure 3.12: (a) Original, (b) JPEG-HC, (c) 1C-ADCT-HC, (d) 3C-ADCT-HC;

design bit rate 0.125 bpp; actual bit rates in Table 2.
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Figure 3.13: (a) 1C-SBC-HC, (b) 3C-SBC-HC; design bit rate 0.5 bpp; actual
bit rates in Table 2.

Figure 3.14: (a) 1C-SBC-HC, (b) 3C-SBC-HC; design bit rate 0.25 bpp; actual
bit rates in Table 2.
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(a) (b)

Figure 3.15: (a) 1C-SBC-HC, (b) 3C-SBC-HC; design bit rate 0.125 bpp; actual

bit rates in Table 2.

In compaﬁng the subjective performances of 1C-ADCT-HC and 3C-ADCT-
HC, it becomes evident that 3C-ADCT-HC performs better near the strong
edges; the difference is quite visible at low bit rates. An additional very interest-
ing observation is that even though 3C-ADCT-HC is designed to provide good
perceptual quality and not to maximize PSNR, it, in fact, results in a PSNR
larger than that of 1C-ADCT-HC - a system designed to maximize the PSNR.
We will provide some explanation for this behavior later.

The important note to be made in comparing 1C-SBC-HC against 3C-SBC-
HC is the significant reduction of “ringing” near the strong edges in 3C-SBC-HC;
these ringing effects, which are well-known in subband coding systems, are quite
visible in the 1C-SBC-HC scheme especially at low bit rates. While this superior

perceptual performance is quite noticeable, the PSNR improvement of 3C-SBC-
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Encoding Design Bit Rate (bpp)

Scheme 0.125 0.25 0.5 0.75

JPEG-HC || 24.91 (0.148) | 31.25 (0.283) | 34.69 (0.513) | 36.43 (0.748

1C-ADCT-HC || 30.10 (0.126) | 32.92 (0.247) | 35.91 (0.485) | 37.91 (0.747

1C-SBC-HC || 29.77 (0.125) | 32.55 0 37.73 (0.748

32.67 0.494) | 37.63

) (

) (
3C-ADCT-HC || 30.20 (0.126) | 33.29 (0.250

) (

) ( 0.750

w
@
l\’)
(&3
~_~ | —_—~ |~ |
O
B~
©
[3™]

) (0.748)
) (0.747)
) | 38.03 (0.747)
) (0.748)
) (0.750)

3C-SBC-HC | 29.67 (0.125

JPEG-AC || 28.45 (0.128) | 32.08 (0.265) | 34.95 (0.491) | 36.72 (0.755)

1C-ADCT-AC || 30.10 (0.123) | 32.92 (0.241) | 35.91 (0.471) | 37.91 (0.732)

)
)
)
0.250)
0.251) | 35.73
)
)
)

3C-ADCT-AC | 30.20 (0.123) | 33.29 (0.243) | 36.25 (0.479) | 38.03 (0.731)

Table 3.2: PSNR (in dB) performance of various encoding schemes for 512 x 512

Lenna at different design bit rates. Numbers in parantheses are actual bit rates.

HC over 1C-SBC-HC is almost negligible.

In spite of the fact that 3C-ADCT-HC and JPEG-HC schemes are both DCT-
based systems, the former system exhibits a significantly better performance
than the latter. This improvement can be attributed to a combination of the
following factors: (i) the method of block classification and DCT coefficient

quantization used in 3C-ADCT-HC, (ii) the separate encoding of the primary
component in 3C-ADCT-HC and (iii) the larger blocksize used in 3C-ADCT-HC.

To study the importance of these factors separately, we have provided, in
Fig. 3.16, a plot of PSNR vs. bit rate for JPEG-HC with blocksize 8 x 8 as well
as 1C-ADCT-HC and 3C-ADCT-HC with blocksizes 8 x 8 and 16 x 16. The
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Figure 3.16: PSNR (in dB) vs. bit rate for JPEG-HC with blocksize 8 x 8 as
well as 1C-ADCT-HC and 3C-ADCT-HC with blocksizes 8 x 8 and 16 x 16.
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important conclusions are as follows. The significance of the larger blocksize is
noticeable at low bit rates; at higher bit rates the improvement due to the larger
blocksize is vanishingly small. The specific method of block classification and
DCT coeflicient encoding used in 3C-ADCT-HC is responsible for a significant
portion of the PSNR improvement. Additional studies have revealed that the
PSNR performance improvement of 3C-ADCT-HC over 1C-ADCT-HC (for the
same blocksize) are primarily due to the more efficient 2-stage block classification
used in 3C-ADCT-HC and not because of the separate encoding of the primary
component. We verified this by simulating a modified version of 3C-ADCT-HC in
which the 2-stage classification was replaced by a 1-stage classification similar to
that of 1C-ADCT-HC; the PSNR performance of this modified scheme was even
inferior to that of 1C-ADCT-HC. Finally, we should mention that the separate
encoding of the primary component is responsible for the improved perceptual
quality of 3C-ADCT-HC near the strong edges.

As an alternative to Huffman coding, we have also considered arithmetic
coding of the quantized DCT coefficients in all DCT-based schemes considered.
The arithmetic coded counterpart of JPEG-HC, 1C-ADCT-HC and 3C-ADCT-
HC are denoted, respectively, JPEG-AC, 1C-ADCT-AC and 3C-ADCT-AC. For
the theory behind arithmetic coding, its operation and advantages the reader
is referred to [37], [38]. The PSNR of the arithmetic coded schemes are also
tabulated in Table 3.2. Clearly, in all cases arithmetic coding performs better
than Huffman coding in terms of reduced encoding rate.

In addition to comparisons with JPEG, we make comparisons against a num-
ber of other entropy-coded schemes which have been reported in the literature

recently. Specifically, we consider the constant block distortion ADCT (CBD-
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Encoding Design Bit Rate (bpp)

Scheme 0.125 0.25 0.5 0.75

JPEG-HC || 23.27 (0.214) | 25.95 (0.296) | 29.17 (0.488) | 31.62 (0.762)
1C-ADCT-HC || 25.42 (0.129) | 28.02 (0.256) | 31.27 (0.503) | 33.75 (0.746)
3C-ADCT-HC | 25.61 (0.128) | 28.41 (0.256) | 31.62 (0.505) | 33.83 (0.749)
1C-SBC-HC | 25.55 (0.125) | 27.98 (0.250) | 31.07 (0.503) | 33.36 (0.750)
3C-SBC-HC || 25.50 (0.125) | 28.15 (0.251) | 31.18 (0.503) | 33.36 (0.752)

JPEG-AC | 23.27 (0.124) | 27.49 (0.291) | 30.21 (0.516) | 32.18 (0.762)
1C-ADCT-AC || 25.42 (0.120) | 28.02 (0.238) | 31.27 (0.492) | 33.75 (0.728)
3C-ADCT-AC || 25.61 (0.120) | 28.41 (0.240) | 31.62 (0.474) | 33.80 (0.707)

Table 3.3: PSNR (in dB) performance of various encoding schemes for 256 x 256
Lenna at different design bit rates. Numbers in parantheses indicate actual bit

rates.

ADCT) of [7], the 2-D adaptive entropy coded SBC (2-D ECSBC) of [12] (System
C with arithmetic coding in [12]), the embedded wavelet hierarchical image coder
(EWHIC) of [46] and the variable-rate residual vector quantizer (VR-RVQ) of
[47]. Since the PSNRs of these schemes are not all reported at the bit rates
considered in Table 3.2, we have plotted the PSNR vs. bit rate performance of
all these schemes in Fig. 3.17. We shall leave the comparisons to the reader.
For the sake of completion, we have repeated our simulations for the 256 x 256
version of Lenna and generated a similar PSNR vs. bit rate plot in Fig. 3.18.

Where available, the PSNR of other schemes is also included. These PSNR
results are also tabulated in Table 3.3, where for 1C-ADCT-HC and 1C-ADCT-

86



PSNR ( dB )

T I T T 7 T T T l—[ T T 1 TI T 1T T T 171 I [ T T 71 [
. |
32 |— 1C—ADCT-HC —
B ‘ i
30 - 3C-ADCT—AC Ve S —
— d __.‘
[ -
- 1C—SBC-HC -
28 | -
JPEG—HC
L JPEG—AC -
| ,/' _
/ « 3C—SBC-HC
26 |— ! —
N ; s EWHIC -
- / —
/ !
24 |— / / _
/ /
; ;
N / _
_l [ I L1 11 | 1 11 I 1ot l 1 111 | | | | 11 1 [
1 2 3 4 5 6 i

Bit Rate (.bits/pix.el )

Figure 3.18: PSNR (in dB) vs. bit rate for various encoding schemes; 256 X 256

Lenna.

87



AC at design bit-rates 0.5 and 0.75 bits/pixel and for 3C-ADCT-HC at 0.75
bits/pixel, block size 8 is used.® An important observation here is the noticeable
gain obtained by arithmetic coding over Huffman coding obtained in the 256 x 256
case.

To close this section, we provide analytical PSNR results based on the average
distortion formula in (3.4). These analytical results (in terms of PSNR) are
‘computed and plotted in Fig. 3.19 for both 1C-ADCT-HC and 3C-ADCT-HC
schemes. For the 1C-ADCT-HC scheme, the overall rate is ry (see Eq. (3.5))
while for 3C-ADCT-HC, it is given by ry + r,. For comparison purposes, we
have also plotted the actual simulation results in Fig. 3.19. The closeness of the
analytical and simulation results, especially for the 3C-ADCT-HC case, is quite

striking.

3.6 Perceptual Weighting of Distortions

In this section, we will continue the effort to achieve high perceptual quality for
the reconstructed images at low bit rates by adopting an approach based on the
contrast sensitivity [1], [34], [35] of the human visual system (HVS). We apply
the contrast sensitivity approach to the ADCT-based schemes only; similar ideas
have been used in a subband éoding framework in [48].

We briefly describe the concept of contrast sensitivity and refer the reader

6Experimental results show that for the ADCT-based schemes block-size 8 generally offers
better (worse) PSNR performances at high (low) bit rates than block-size 16 does, and that
the cross-points of the PSNR-rate-curves for block-size 8 and 16 are above 0.75 bits/pixel for
encoding 512 x 512 Lenna, and are between 0.5 bits/pixel and 0.75 bits/pixel for encoding
256 x 256 Lenna.
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to [1], [34] for details. To determine the contrast sensitivity of the HVS, a test
stimulus of the form of a grating pattern is presented to an observer. The grating
pattern consists of vertical bars with sinusoidal-intensity scanlines [34]. The sine
wave has mean 7, amplitude a and frequency f, defined as the reciprocal of the
angle, subtended at the observer’s eye, of one complete cycle, in cycles/degree
(c/deg). The visibility threshold [1] of the pattern is measured for different
choices of 7, @ and f. It is shown that for a given spatial frequency f, the
visibility threshold of the pattern depends' primarily on a/77, and not separately
on a and M. Upon defining a/ as the contrast of the grating, the threshold
contrast is defined as the contrast below which the grating pattern is barely
detectable. The reciprocal of the threshold contrast at frequency f is called the
contrast sensitivity at f and denoted by m(f). The contrast sensitivity curve
is measured and presented in [34]. We have reproduced their curve (by reading
the coordinates off the graph) and presented it in Fig. 3.20 (a). The important
result is that the contrast sensitivity is very much frequency dependent; it peaks
around 2 ~ 4 c¢/deg and then rapidly falls off with increasing frequency.

To get a closed-form approximation of the contrast sensitivity samples shown
in Fig. 3.20 (a), we assume that log(m(f)) is quadratic in log(f), which implies

that m(f) is of the form:
m(f) = a x bUes(E)*, (3.9)

for some constants a,b,c and d. The optimum (in the sense of minimizing the
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squared fitting error for f > 2 c/deg ) values of these constants are determined
using CONSOLE, an optimization-based design tool [49]. These values are:
a = 621.31, b = 0.14, ¢ = 1.73 and d = 1.83. The original data points along
with their least-squares fit are shown in Fig. 3.20 (b). In the sequel, we make
a slight abuse of notation and use m(f) to denote the least-squares fit to the
empirical contrast sensitivity curve.

Next we describe how the contrast sensitivity of the HVS can be used for
perceptual tuning of the ADCT-based image coding scheme. Consider a generic
block of 2-D DCT coefficients, {d(u,v); u,v = 0,1,...,L — 1}. Let the error in
quantizing d(u,v) be denoted by e(u,v). Then the resulting error in the spatial

domain is given by [16]

2 mu(2i + 1) cos 7v(25 + 1)

-I-_J-a(u)a('l))e(U, v) cos 21, 2L

where a(0) = 1/v/2 and o(u) =1, u #0.
Now consider the simplified case where d(u,v) = 0, for all (u, v) # (0,0), and
e(u,v) = 0, for all (u,v) # (0,v;), where v; # 0. Then the corresponding block

in the spatial domain is given by

LAa\C ) N T Y (3.11)

1 .
"I‘;(d(oao) + \/56(0,'1)1) cos 2L )’ ’

which is exactly of the form of the sinusoidal-intensity grating used as the test

stimulus for determining the contrast sensitivities in [34]. By the definition of

7On the monitor used to view images in this study, a 16 x 16 block is of size 4 mm by
4 mm. Setting the viewing distance to be 570 mm as in [34], the angle subtended at the
observer’s eye of a 16 x 16 block is 0.4 degree. Thus, for L = 16, the (0, 1)th and (1,0)th 2-D
DCT coeflicients have a spatial frequency of 2.5 c¢/deg; other coefficients have higher spatial

frequencies. Therefore, in studying m(f), the range f > 2 c/deg is adequate for this work.
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the contrast sensitivity, the error e(0,v;) will be essentially undetectable by a

human observer if &

e v d(0,0) + ClL
Ov) < )

where f(v1) is the spatial frequency of the waveform cos M;Ljﬁl measured in

(3.12)

c/deg, and the constant ¢; is the luminance measurement of the block when
d(u,v) = 0 for all (u,v).

The above scenario represents an over-simplified case. In practice, d(u,v)
are not necessarily all zero for (u,v) # (0,0), and e(u,v) are generally non-
zero. A complete investigation of the perceptual effects of the quantization
errors for such general cases, requires a study of the superposition of sinusoidal-
intensity gratings in both horizontal and vertical directions displayed on non-
uniform backgrounds.® Such an investigation is more of a psychovisual flavor
and is beyond the scope of this paper.

However, the above over-simplified case can be used to provide a guideline
for incorporating the contrast sensitivity of the HVS into our ADCT-based im-
age coding system. Specifically, we argue that for good perceptual quality the
quantization error e(u,v) should be proportional to (d(0,0) + ¢; L)/m(f(u,v)),
for (u,v) # (0,0), where f(u,v) is the spatial frequency in c/deg of the waveform
associated with the (u,v)th DCT coefficient. Obviously, such a condition neces-

sitates a different quantization rule for each block. To circumvent this problem,

SNote that according to the definition of 2-D DCT in [16], d(0,0)/L is the mean intensity
of the block.

9The findings in [34] suggest the existence, within the nervous system, of linearly operating
independent mechanisms selectively sensitive to limited ranges of spatial frequencies. This
observation justifies, to a certain extent, the independent treatment of the quantization error

effects of each of the 2-D DCT coeflicients.
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we require, instead, that

(i) e(u,v) be proportional to J(O, 0)+ ¢, L, where J(O, 0) is the quantized
version of d(0,0), and

(ii) the variance of e(u,v) be inversely proportional to m?*(f(u,v)).

In the following, we describe a scheme designed to achieve these two require-
ments.
Denote the (m, n)th block of 2-D DCT 1° coefficients by dy, n, m,n = 0,1,...,
(M/L)—1, where dy,, , = {dpn(u,v); w,v=0,1,...,L—1}. We assume that the
classification is perforfned as described in Subsection 3.4.1. The dc coefficients
dmn(0,0) are quantized independently of the classification and the perceptual
weighting described below; their quantized versions are denoted by a?m,n((),O).
To account for the perceptual role of the block luminance, the other 2-D DCT
coeflicients, d,, ,(u,v), (u,v) # (0,0), are modified as follows,

& 0) = —mn(0) m,n=0,1,...,(M/L) - 1. (3.13)
dpn(0,0) + 1 L

The variances of these modified 2-D DCT coefficients are denoted by o';(u,v),

(u,v) # (0,0), where k = 0,1,..., K — 1, is the classification index. A weighted
version of these variances is used for the bit allocation described below. The
quantization is performed on d'y n(u,v); the quantized version of dp, ,(u,v)
is obtained from that of d'y, n(u,v) by multiplying back by the scale factor,

(dmn(0,0)+c1 L). We denote the quantization errors for &', ,, (u, v) and dy, , (u, v)

by € mn(u,v) and e, »(u,v), respectively. Obviously,

emm(ty0) = (dmn(0,0) + c1 L)€ mn(u,v). (3.14)

10The 2-D DCT could be performed either on the image itself or on its smooth-texture

component.
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To ensure that the quantization error variance for the (u,v)th coefficient
is inversely proportional to m?(f(u,v)), we introduce, the weighted variances
o'y(u,v) m¥(f(u,v)), k = 0,1,..., K —1, (u,v) # (0,0). These weighted
variances are subsequently used for bit allocation among all 2-D DCT coefficients
of the K classes except the dc coefficient; the number of bits used for the dc
coefficient is as given before the perceptual weighting. The rationale behind this
weighting of the variances is as follows.

Let us use €2(u,v) to denote the variance of €, .(u,v) when the (m,n)th
block is in class k. Then, using arguments based on the Shannon Lower Bound
similar to those given in Subsection IV.A, we have the following approximate
relationship:

m?(f(u,v))€s(u,v) = const., (3.15)

which implies that €3(u,v) is inversely proportional to m2(f(u,v)) — exactly
what we had set out to achieve.

‘We have modified the ADCT coding part of both the 1C-ADCT-HC and 3C-
ADCT-HC schemes according to the above mentioned perceptual weighting and
obtained simulations at different bit rates. The reconstructed images are shown
in Figs. 3.21 and 3.22; Figs. 3.21 (a), (c) and Fig. 3.22(a) illustrate the results for
the 3C-ADCT-HC scheme while Figs. 3.21 (b), (d) and Fig. 3.22(b) are for the
1C-ADCT-HC system. In these simulations, we have used f(u,v) = 2.5/u? + v?
11 and ¢; = 512. The choice of ¢; is determined by experimentation.

Comparing the 3C-ADCT-HC results in Figs. 3.10-3.12 against those in

11As mentioned before, the (0,1)th and (1,0)th 2-D DCT coefficients have a spatial fre-
quency of 2.5 ¢/deg. The choice of fi(u,v) = 2.5v/u? + v? guarantees consistency with this

observation.
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Figure 3.21: (a), (¢) 3C-ADCT-HC with perceptual weighting at design bit rates

0.5, 0.25 bpp, respectively; (b), (d) 1C-ADCT-HC with perceptual weighting at
design bit rates 0.5, 0.25 bpp, respectively.
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(a) (b)

Figure 3.22: (a) 3C-ADCT-HC with perceptual weighting at design bit rates
0.125 bpp; (b) 1C-ADCT-HC with perceptual weighting at design bit rates 0.125

bpp.

Figs. 3.21 and 3.22, it is clearly seen that the perceptually-weighted scheme
offers a better subjective performance; the improvement is quite visible at low
bit rates. However, for the 1C-ADCT-HC results the reverse conclusion holds.
Specifically, the perceptuallj—weighted 1C-ADCT-HC scheme suffers from a vis-
ible degradation near the strong edges. This phenomenon can be explained as
follows. As compared with the straight 1C-ADCT-HC scheme, its perceptually-
weighted version results in allocating more bits to the low frequency coefficients
and fewer bits to the high frequency coefficients. Therefore, for texture regions,
the quantization error generally increases but this has little perceptual effect. In
smooth regions, the image is better reproduced and in particular the blockiness

is reduced due to the extra bits received for low frequency coefficients. How-
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ever, in those blocks dominated by strong edges, the perceptual weighting has a
detrimental effect: The high frequency components (which are generally strong
due to the sharp transitions of the strong edges) are more coarsely quantized
and the resulting quantization errors are spread over the entire block in the
spatial domain resulting in visible degradation of the uniform regions on both
sides of the strong edge. In contrast with the 1C-ADCT-HC scheme, in the
3C-ADCT-HC scheme the strong edges are extracted and encoded separately;
the perceptual weighting can thus be applied solely to the smooth and texture

components without damaging the integrity of the strong edges.

3.7 Summary and Conclusions

We have developed a framework for image coding in which a combination of
waveform coding and feature-based coding techniques is used to achieve high
perceptual quality at low bit rates. The coding schemes revolve around a per-
ceptually motivated three-component model by means of which the image is
decomposed into three components. The primary component, which contains
the strong edge information is encoded separately with little or no perceptual
distortion. The remaining two components (smooth and texture) are encoded
by entropy-coded ADCT or entropy-coded SBC. While the novelty of the pro-
posed schemes reside primarily in the use of the three-component model and the
separate encoding of its constituent components, there are some new elements
in the adaptive DCT coding scheme, such as the classification procedure and the
estimation of coefficient variances in the receiver, that have contributed to its

good objective performance.
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Based on extensive simulations and comparisons, we can make the following

conclusions:

(i) The proposed encoding schemes based on the three-component model
perform very well at all bit rates with the ADCT-based scheme con-
sistently giving the best results. In all cases, the PSNR of the pro-

posed schemes are significantly better than that of JPEG.

(ii) The main advantage of the three-component model is a more faithful
reconstruction of the strong edge information; the difference is signif-
icant at low rates. In the SBC-based schemes, the three-component
model results in a significant reduction of ringing around the strong

edges.

(iii) The use of arithmetic coding in both ADCT- and SBC-based schemes

results in performance improvements in terms of reduced bit rate; the

improvements are more substantial for the 256 x 256 version.

We have also shown that the well-understood, contrast sensitivity of the HVS
can be used for perceptual tuning of the ADCT-based encoding scheme. We
have developed a method for weighting the 2-D DCT coefficients based on the
contrast sensitivity. When this perceptual tuning is used in conjunction with the
three-component model, the subjective performance of the ADCT-based scheme
is even further improved. Use of the perceptual weighting without the three-
component model leads to a visible degradation of the strong edges and hence
is not desirable.

We should note that both in the ADCT- and SBC-based schemes a very sim-

ple and low complexity quantization scheme is used for the DCT coefficients or
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the subbands. Undoubtedly, use of more powerful quantization methods on the
DCT coeflicients or the subbands can result in performance improvements, of
course, at the cost of some additional complexity. Specifically, it is well-known
that the gap between the performance of entropy-coded quantizers used in this
paper and the source rate-distortion function is about 1.53 dB. Therefore, other
quantization methods that reduce this gap can be used to improve the overall
performance. The entropy-constrained trellis coded quantization of Fischer and
Wang [50] and the trellis-based scalar-vector quantization of Laroia and Far-
vardin [51] are two possible candidates. Work on these extensions is currently

underway.
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Chapter 4

Planar Curve Representation

4.1 Introduction

In image processing and computer vision, representation of curves or contours is
an important problem, since the information to be processed and/or extracted
is commonly expressed in the form of curves [52] - [64]. For example, an object
can be recognized based on the bounding contour of the object [54], [56], [57],
and a Landsat satellite image can be registered to a map using the coastal lines
contained in the Landsat image [62].

The simplest way to represent a planar curve is to specify every sample points
on the curve, which apparently is not the most efficient way. For example, con-
sidering a rectangular contour, the four corner-points are the most important
points on the contour, since the locations of the four corners uniquely specify
the rectangular contour. Notice that the four corners of the rectangular contour
assume large curvatures along the contour. The importance of such significant
curvature points is also recognized in a tachistoscopic study of visual percep-

tion [58]; eignificant curvature points are suggested to be high in information
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content. In addition to simplifying and rendering structures to the representa- -
tions of planar curves, the significant curvature points can be used as the feature
points for the next level of processing, e.g., contour approximation and computer
recognition of objects [54] - [57], [59].

To extract the significant curvature points, people have used Laplacian-
Gaussian operator (LGO) based schemes [52] (and the references therein); in
these LGO-based schemes, the problem is transformed into the domain of orien-
tation along the curve, and the LGO is applied to detect the significant changes
in orientation. Multiple LGOs are used in these schemes in order to overcome
the poor detecting-accuracy problem of the LGO in the presence of noise. How-
ever, the usage of multiple LGOs leads to additional difficulties which will be
discussed in detail later 6n.

In this chapter, we develop a non-LGO-based scheme for locating significant
curvature points. The idea for this new scheme is similar to those used for gener-
ating the stressed image and for extracting strong edges presented in Chapter 2.
More specifically, this new scheme is a complex-valued 1-D variant of the strong
edge extraction scheme fdr the three-component image model. Since the LGO
is not used, the difficulties of the LGO-based schemes do not present in the new
scheme. A comparison between the new scheme and a LGO-based scheme will
be provided after the development of the new scheme. |

The rest of this chapter is organized as follows. In Section 4.2, the new scheme
is developed. Then a comparison with the curvature primal sketch scheme of [52]
is provided in Section 4.3. A number of applications are described in Section 4.4.

Section 4.5 contains a summary and conclusions.
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4.2 Generation of the Stressed Curve and Ex-
traction of Significant Curvature Points

Let us consider a planar curve specified by a finite set of samples on the curve:
C = {(z:,y:)}%5", where m is the length of the sampled curve. The curve C
can be open or closed; in the latter case, sample (zo,yo) is the continuation of
(Tm=1,Ym—1). We now define a new curve: C* = {(zf, y#)} 5", referred to as the
stressed curve associated with C. The stressed curve C*, which is analogous to
the stressed image X° of an image X" (ref. Chapter 2), is related to C through
the following two types of quantities: (i) the sample squared-error distances to
C,

Di(C°C) = (zi — ) + (yi —yf)?, i=0,1,...,m—1 (4.1)

and (ii) the sample curvature energies of C®,

(zf_y — 227 + xfﬂ)? +(y2, — 2y + yf+1)2 t=1,...,m—2,
(w8, _y — 228 + 23)? + (yo1 — 298 + y5)? ¢ =0 and

when C is closed,

Hi(Cs) =
(z

2 — 2z, + 5”3)2 + (Ypoo — 2u5 1 + y3)2 t=m—1and

§M

when C 1s closed,

0 otherwise.

(4.2)
Similar to the generation of the stressed image, the stressed curve C* is generated

by recursively solving the following minimization problem,

in F(C°C,A), 4.3
{(i?fy?)} (€,C,A) (4.3)
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Figure 4.1: Mechanical structure for F(C° C,A).

where C° = {(2¢,y?)}5", F(C°C,A) is defined by
m—1
F(C°C,A) =Y ADi(C°,C) + Hyi(C), (4.4)
i=0
where A = {);} is the given parameter set.

The quantity F'(C°C, A) is similar to E(X*, X, A) defined in Equation (2.13)
and has an interpretation of the potential energy of a mechanical structure. A
portion of this mechanical structure is shown in Fig. 4.1. In this structure,
at each point along the curve C, we have a spring with one end fixed at that
point and the other end attaching a ball which is fitted inside the slot of a
flexible bar; the ball can move inside the slot without friction and always assumes
a position closest to the corresponding point of C for any given shape of the
flexible bar. The positions of the balls are (z2,y¢), ¢ = 0,1,...,m — 1, which
specify the corresponding configuration of the structure. Shown in Fig. 4.1 is
the portion of the structure for the first three points of the curve C. If the

curve is closed, the end of bar near (xo,¥0) is connected with the other end
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of the bar near (¢,—1,Ym—-1). The potential energies of the springs for a given
configuration {(z?¢,y7)} are approximated by \; D;(C°,C); the potential energy of
the entire bar is approximated by Y"73! H;(C°). The parameters {)\;} controls
the rigidness of the springs [28]. For a given parameter set A, the structure will
reach to the final stable configuration which assumes the minimum potential
energy. More specifically, let us denote the stable configuration by {(z¥,y¥)}.
Then C* = {(z},y})} is the solution of the minimization problem (4.3). Note
that when ); is very large, the corresponding spring would be very strong and
(zF,yf) would be very close to (z;,y;); on the other hand, when J; is relatively
small, the spring would be weak and the flexible bar would be less bended around
that location.

The procedure for generating the stressed curve C° can be described intu-
itively using this mechanical structure interpretation. Initially, all the springs
are of the same rigidness, i.e., \; = a constant for all 2. Then the structure reachs
the stable configuration; the balls in this stable configuration form a curve which
is a uniformly smoothed version of the contour C. In the next step, the curvature
energies along the bar are examined; for the places of high curvature energies,
the springs are made stronger, i.e., A;s at those locations are increased. Then
again, the structure is let to reach the new stable configuration, and the above
procédure is repeated. This process is described more specifically in the rest of
the chapter. Some of the details are omitted since they are similar to the corre-
sponding procedures in Chapter 2. Additionally, the processes for generating C*
and for extracting significant curvature points on C* are combined since C* will
not be used explicitly here. When the need for C* arises, the following procedure

can be modified accordingly.
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The minimization problem (4.3) is solved via the following system of linear

equations,

Viewen F(C°C, A) =0, (4.5)

where Vo ,0)1 F(C°,C,A) denotes the gradient of F(C° C,A) with respect to
{z?} and {y¢}. This system of linear equations has a unique solution when
A; > 0 for all ¢ (ref. Subsection 2.3.2). This solution is obtained iteratively using
the Gauss-Seidal iteration. One step of the Gauss-Seidal iteration for generating
the (k + 1)th intermediate solution C¥!' = {(z¥*!,y5*1)} from C* is described

in the following conventional pseudo-code:

For (: =0 tom — 1)

For (¢ =0tom —1)
{g;I.H'l = ;L'k,
yitt =gk }
where f;(x*) is defined as follows, (f;(y*) is defined similarly),

1
fi(xk) = m(/\ifﬂi + 437?—1 + 45Ui'c+1 - 5”?—2 - $f+2)7 (4'6)

fori=2,...,m—3. For the rest of the samples, the formula for f;(x*) is different

for open and closed curves:

fo(xF) /\01+1 (Aozo + 22§ — ) open curve,
0 =
,\014_6(/\05”0 +4zk | +42F — 2k — 2k) close curve.
f( k) ,\11+5()‘1331 + 235’5 + 439’5 - iElgf) open curve,
11X )=

os(Mz + 4zl + 42k — 2F_ — 2F) close curve.
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1 k k k
g5 (Am—2Tmz + 225, + 42k 5 — ¥ _,) open curve,

k
fm—2(x") = \
—"Am_2+6()‘m—2wm—2 + 4z _ 4+ 42k |~ zk _, —zk) close curve.

SN m:lm(/\m-—lxm—l + 22k _, —ak ) open curve,
fmo1(x%) =
ﬁ(/\m-lxmq +4zk _, +4zk — 2k o —2F) close curve.
The convergence of the above Gauss-Seidel iteration is guaranteed by an argu-
ment similar to that in Subsection 2.3.2.

The parameter set A is updated according to the sample curvature energies

H;(CF) (ref. Subsection 2.3.2). The updating scheme, which is similar to the one

for generating stressed images (Equation (2.20)), is given by
A = aH;(CY), i=0,1,...,m— L. (4.7)

The significant curvature points of C* are located by identifying points of
large local maximum sample curvature energies. More specifically, we define the

set of significant curvature points on C*, denoted by Qr(C*), as follows,

Qr(C*) = {(zi,y:) € CF; Hi(C*) > Hi_1(C*), Hy(C*) > Hip1(CF), Hi(C*) > T},
(4.8)
where T' > 0 and 0 < ¢ < m — 1; for closed curve C, 7 can be 0 and m — 1, and
H_{(C*) = H,—1(C¥), H,(CF) = Hy(C*) in the above definition.

Now we summarize the entire iterative procedure for locating the significant
curvature points of Cs’ in Fig. 4.2. The procedure starts with C°® = C, generates
cNv using N, Gauss-Seidel iterations with a uniform initial parameter set A,
and extracts Q7(C™). Then the stopping criterion is checked; if the answer is
no, the procedure updates the parameter set A and returns to the Gauss-Seidel
iteration to generate C?™v. This process is repeated until the stopping criterion

is satisfied, namely, (i) the number of extracted significant curvature points is
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Start: C%=C:

V=0;k=0.
Generate C**! by
Gauss-Seidel iteration;
Update A.
V=V+I;k=k+], Y
No
] Q. .(C°)
No K; @ Stopping\ "
N~ Criterion
v Yes A Yes

Extract Q_(C*).

Figure 4.2: Flow chart describing the generation of the significant curvature

point set Q7(C?).

unchanged:

1or(C™™)| = |Qr(ctDM), (4.9)

for £ > 1, and (ii) the Euclidean distance between the points of the current and

the previous significant curvature point sets is small enough:

=1 _ ,0\2 0~1 _ ,0\2
(zt—1,yt-l)eQT(c(er—rll)a?\:I).(,);(mc’ye)eQT(CIN,,) \/(1" T ) + (y y ) < Ty, (4.10)

where Ty > 0. (When £ = 1, the stopping criterion is never satisfied.) The final

output of the procedure is the significant curvature point set Q7(C*).
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Figure 4.3: Warrington hammer test curve.

In the next section, we provide simulation results of the above procedure and

a comparison with the curvature primal sketch scheme of [52].

4.3 Simulation Results and a Comparison

Consider a test curve shown in Fig. 4.3. This closed curve resembles an outline
of a Warrington hammer. The significant curvature point set of this Warrington
hammer test curve is generated with the scheme introduced in the last section.
The parameters used are: N, = 100, a = 1.5, m = 970, T = 103, T, = 0.1,
and initial parameter \; = 107° for all ;. The iterative procedure stops after
once updating the parameter set. The resulting significant curvature point set
is shown in Fig. 4.4; there are a total of seven significant curvature points which
are marked by small crosses. The intermediate result, denoted by Q7(C™),

is shown in Fig. 4.5; these intermediate significant curvature points gradually
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approximate the final Qr(C®) = Q7 (C*¥). The computational complexity of
this case is given in the following in terms of numbers of multiplications (M),
additions (A) and bit-wise left shifts (S) per points: M = 204, A = 805, and
S = 802.

The curvature primal sketch scheme of [52] uses the points at which the ori-
entation of the curve changes significantly as the features to represent the curve.
More specifically, the problem of locating these feature-points is transformed to
orientation domain: The orientation is estimated at each point on the curve C,
and is denoted by G(s), where s denotes arc length along the contour. Then the
orientation G(s) is convolved with ¢ (t) and g, (), where g,(t) is the Gaussian
kernel with standard deviation ¢. The locations of local extrema of ¢/ @ G(s)
and zero crossings of ¢ ® G(s) are extracted. These extracted locations indicate
the possible existences of feature points and approximate the actual positions of
the corresponding feature points.

Because of the uncertainty principle between the detectability of an event
and its accurate localization in the presence of noise for the operators g/ and g/
[25], [52], (ref. Chapter 2), several values of ¢ have to be used to obtain feature
points on multiple scales. Although, in principle, this multi-scale representa-
tion allows coarse-to-fine tracking [53] of feature points, the discretization of the
scales generally results in some ambiguity in tracking across scales [52]. To an-
nihilate such ambiguity, the curvature primal sketch scheme uses a set of curve
segments as primitives; the behavior of the filtered response with ¢/ and g of
these primitives over a range of scales are analyzed; the resulting descriptions are
used in an interpretation process of the multi-scale representation of the feature

points. In contrast to this primitive-based scheme, the technique developed in

111



Figure 4.6: Zero-crossings of the filtered response with g7,.

the previous subsection does not rely on the scale-space representation of the
feature points, and, therefore, avoid entirely the difficulties associated with the
ambiguity of scale-space tracking.

To demonstrate the behavior of the curvature primal sketch scheme, we apply
the filter g/’ to the Warrington hammer test curve of Fig. 4.2. Several results with
o = 10,20, 30 are shown in Figs. 4.6 and 4.7, where the crosses mark the positions
of the zero-crossings. Notice that, for ¢ = 10, the seven meaningful points
extracted by our scheme (shown in Fig. 4.4) are all detected with fair accuracy,
but a lot of spurious points are also located. For ¢ = 20,30, the number éf
spurious points are gradually reduced, but those true detections have increasingly
large locational deviations and some of them are even merged together, e.g.,
the two points for the end of the handle are combined into one point in the

case of ¢ = 30. Therefore, from any one of the above three cases alone, the
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right detection of the seven points can not be achieved; this necessitates the
usage of multiple values of o and a tracking procedure [52]. The computation
complexity for the filtering operation alone is summarized as follows. For ¢ = 10,
M=87,A=286,5=0;forc =20, M =177, A =176, S = 0; for ¢ = 30,
M =267, A= 266, S =0. As demonstrated in [52], six scales are used to obtain
satisfactory results. We assume that for the other three scales, the minimum
computational complexities of the above three cases are incurred. Then, the
total computational complexity for filtering operations is M = 792, A = 786
and S = 0 which is higher than that for generating Qr(C*) with our scheme
(since the multiplication operation is much more time consuming than the shift
is, e.g., one multiplication of two 8 bits integers uses at least 8 times of the time
for one shift.) The above total computational complexity does not include the
operations for the filtering with ¢/ and for the tracking process required by the
curvature primal sketch scheme.

Based on the above comparisén, we may conclude that the new scheme ex-
tracts efficiently the significant curvature points at a reduced computational

complexity as compared with the curvature primal sketch scheme.

4.4 Applications

Applications of using the significant curvature points as the features to represent
planar curves are abundant. To name a few of these applications, the feature-
points can be used as the knot points in a spline approximation to the contour
[54] - [59], to generate a semantic network representation of the shape [60], [61],

and to register a Landsat satellite image of an area to a map [62]. In this
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Figure 4.8: Fighter airplane contour.

subsection, we provide two examples related to the other two applications of the
significant curvature points, namely, computer recognition of objects and sonar
ranging of mobile robots.

Using the bounding contour of an object to recognize the object is a common
practice in computer vision [52], [54] - [56], since the bounding contours are high
in information content. For example, consider the contour shown in Fig. 4.8. Tt
is rather simple for a person to recognize this contour as a bounding contour of a
fighter airplane. To have a computer perform this recognition task, the following
procedure can be followed. The significant curvature points are identified using
the scheme developed here; they are shown in Fig. 4.9. These feature points
are then used for the recognition which is a simple matching process: The set of
the extracted feature points is matched to several previously generated feature

point sets which correspond to different models of airplanes. The result of this
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Figure 4.9: Fighter airplane contour and the extracted significant curvature

points.

Figure 4.10: Sonar range contour.
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Figure 4.11: Sonar range contour and the extracted significant curvature points.

automated recognition process is the best matched model or the list of models
registered in the order of closeness of matching. The operations, such as shift,
rotation, enlargement and reduction, required in the matching process can be
conducted easily due to the relatively small number of the feature points.

Now we consider the contour shown in Fig. 4.10 which is of the shape of
indoor sonar range data taken from a mobile robot [63], [64]. In Fig. 4.10, the
dotted contour is for the sonar range data, the solid lines are for the outline
of the room which has two doors opening to the north and the east, and the
cross mark indicates the position of the mobile robot. For the robot to perform
autonomous navigation, the significant curvature points, which are extracted
with our scheme and are shown in Fig. 4.11, of the range data are sufficient,
since from these feature points the outline of the room and the sizes and the

locations of the doorways can be determined.
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4.5 Summary and Conclusions

In this chapter, we developed a new scheme to extract significant curvature
points on a planar curve. The idea for this new scheme is similar to those
used for generating the three-component image model. We have introduced the
concept of the stressed curve whic}; is analogous to the stressed image. The
stressed curve is generated by solving a minimization problem recursively; the
extraction of the significant curvature points is combined with the generation of
the stressed curve to simplify the algorithm. The minimization problem has an
interesting interpretation in which the objective function is the total potential
energy of a mechanical structure; this interpretation motivates the development
of the updating strategy of the parameter set. The minimization problem is
solved by using Gauss-Seidel iteration; the resulting algorithm is rather simple
and is local since the iteration for each point of the curve uses at most four of
its nearest neighbors.

Examples and some of the applications of our scheme are described along
with a comparison with the curvature primal sketch scheme. In this comparison,
our scheme offers efficient and accurate extraction of significant curvature points.
For the curvature primal sketch scheme, we have demonstrated the behavior of
LGO and the necessity of multiple LGOs and a coarse-to-fine tracking procedure.
We have also investigated the computational complexities incurred in this case
by our scheme and the curvature primal sketch scheme; our scheme gives rise to
much less complexity.

The concept of the scheme developed in this chapter can be also applied to
1-D signals such as LPC (or LSP) parameters of speech signals to extract the

significant changes of the parameters in the presence of noise. Such extraction
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of the parameter changes may lead to performance improvement for low bit rate

speech coders [70], [71].
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Chapter 5

Summary and Future Work

5.1 Summary and Conclusions

In this dissertation, we have introduced an approach for image coding based on
the ideas of two categories of image compression techniques, namely, waveform
coding and feature-based coding techniques. This approach takes the properties
of the HVS into the consideration by decomposing the image signal into compo-
nents; these components are significant for the formation of the visual percep-
tion. No distortion is introduced in the decomposition process. The quantization
and coding of the image components are performed based on the information-
theoretic principles such that the distortions are incurred at the minimum level
for a given design bit rate. The advantages of this approach are demonstrated
by the superior subjective and objective performances of the various image cod-
ing systems designed following this approach. The above basically summarizes
the essence of this dissertation. We have also summarized every portions of this
dissertation at the ends of the previous chapters. Nevertheless, a number of

observations are appropriate to be presented here in the following.
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(i)

(iii)

The binocular nature of the HVS provides us with an important
apparatus for the understanding of the relationship of the properties

of image signals and the corresponding visual perception.

To specify an edge in the image coding situations, we need the loca-
tion of the edge plus the intensity variation across the edge; this is in
contrast to the practice in computer vision where only the location
of the edge is normally required. Therefore, some of the traditional
edge extraction scheme (like LGO) can not directly applied in the

image coding practice.

Although the ADCT coding schemes in this dissertation are devel-
oped primarily for the coding of the smooth and texture components
and for the constructions of the corresponding overall coding systems,
these schemes (1C-ADCT-HC and -AC) can be applied directly to
images and offer comparable and higher PSNR performances at much
less complexity than that of several state-of-the-art image coding sys-

tems.

For image coding, the three-component decomposition not only leads
to subjective performance improvement, but also provides us with a
better image model in an objective sense, since the analytical and
simulation PSNRs match more closely for 3C-ADCT-HC than for
1C-ADCT-HC.

The concept of the stressed image and the corresponding minimiza-
tion problem and mechanical structure is quite important in its own

right. This concept is proved to be useful in other image processing
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applications by the development of the new planar curve representa-
tion scheme. The generation of the stressed image (or the stressed

curve) is basically a non-uniform smoothing process.

5.2 Future Work

Since the algorithms for generating the stressed image and the primary image
are local at each pixel of the image and the generation of the resultant three-
components are pixel-wise subtractions, the procedure for the three-component
image model can be made very fast through parallel computations; this will be
a direction for the future work. The quantization method used for 2D DCT
coefficients and subbands are scalar and very low in complexity. At the cost
of some additional complexity, performance improvements can be obtained by
using more powerful quantization methods. Work is currently underway to use
the entropy-coded trellis-coded quantization method for transform coefficients;
this quantization method is developed based on the entropy-constrained trellis-

coded quantization of [50].
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Appendix A

An Algorithm For Solving
EMM Problem

In this appendix, we develop an algorithm solving the EMM problem (2.14) or
equivalently (2.15). A typical equation in (2.15) is

0
Oy ;

E(Y,X,A) =0, (A.1)
which is

(N 45 AN + ALy + X A+ A
“2()‘?,1' + )‘?,j—l)yi,j—-l - 2(’\?,3' + )‘z?,j+1 )yz‘,j+1 (A-Q)
_2()‘?,]' + )\?-1,]')%-1,1' - 2(/‘\?,;‘ + )‘?+1,j)yi+1,j
+/\?,j..1yi,j—-2 + )\?,j+1yi,j+2 + )\?_Ljyi—z,j + )\?+1,jyi+2,j = A} ;i
Equations in (2.15) related to boundary pixels are of forms different from the

above one, since C7; and C; may assume zeros on boundary pixels (ref. (2.9),

(2.10)). We will consider iterative way of solving (2.15) for the relatively simple
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structure of iterative algorithms and the applicability of Multi-Grid method,
which gives fast convergence rate.

The most convenient iteration method to solve systems of linear equations is
Gauss-Seidel iteration which is often very effective [27]. We explain Gauss-Seidel
iteration briefly in the following. Let us denote the coefficient of y; ; in equation

(A.1) as £; ;. Then, one step of Gauss-Seidel iteration is given by

d s .
Yij = {li¥i; — rE(X X, A}, (A.3)

1,J

where the sign “="

means “is replaced by”, and index (%, j) assumes each value
once in the set {0,1,...,M —1} x{0,1,..., M —1} according to a certain order.
Note that ¢; ; is greater than zero for our assumption that )\},j > 0, for all (¢,))
(ref. (A.2)). The above iteration is consistent with (2.15), since that {y; ;} is the
solution of (2.15) if and only if {y;;} is a fixed point of the iteration. Moreover,
if Gauss-Seidel iteration generates a sequence {y?,},{y{,},... which converges
to {y5,}, then {y7,} is the solution of (2.15). To show that this Gauss-Seidel
iteration is convergent, we only need that the matrix, L, one typical row of
which is expressed in (A.2), is positive definite based on Ostrowski’s theorem
[27, p. 125] [65, p. 109]. Thus, by Lemma 2.3.1, the above Gauss-Seidel iteration
converges to the solution of (2.15) or (2.14).

We now describe the basic concept of Multi-Grid method [27], and then give

the algorithm of the above Gauss-Seidel iteration in Multi-Grid structure. Let

us write the systems of linear equations (2.15) using matrix L:
Llyij) = [Nz, (A4)

which is also Equation (2.17). We denote the solution of this systems of linear

equations by [y};], and the result after kth Gauss-Seidel iteration by [y{fj] We
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then define the error after kth Gauss-Seidel iteration:
[ef,j] = [?/zkj] - [yzj], (A.5)
and the defect after kth Gauss-Seidel iteration:
[d:'c,j] = L[yﬁj] - [}‘},jwi,j] = L[yf,j] - L[y;,j] = L[ef,j . (A.6)

Note that error [ef;] is the solution of a linear system similar to (A.4) with
the right-hand-side changed to [d}], and then is the solution of the following
problem,

miri E(E,D,A), (A.7)

ei,j
where £ = {(i,7,e:;)} and D = {(i,7,dF;/A\};)}. Thus, instead of continuing
Gauss-Seidel iterations after kth to reduce the magnitude of error vectors, we
may solve the problem (A.6) for error [ef’ ;], and then obtain the solution [y} ]

by subtracting [ef;] from [y ;]:
* 1 _ [..k k ‘
[yi,j] = [yi,j] - [ei,j]' (A-S)

This is the basic idea of Multi-Grid method, which is based on the obser-
vation that the high-frequency component of {eﬁ ;} dies away rather fast in
the early iterations, i.e., error {eﬁj} are effectively smoothed by iterations,
and the convergence is prolonged basically by the low-frequency component of
{ef.} [27). Now we suppose that k is large enough such that {ef,} is rela-
tively smooth, and thus we can subsample {ef,j} without loss of information,
i.e., we can solve the system of linear equations (A.6) on a coarse grid, e.g.,
(2¢,25) for ¢,j = 0,1,...,(M/2) — 1 as compared with the original (7,j) for
1,7 = 0,1,...,M — 1. This process of subsampling is called restriction. We

denote the error on a coarse grid, say, (2¢,25) for 7,5 = 0,1,...,(M/2) — 1, by
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{&5;4;}, and the corresponding defect by {ngj}' We then solve the following

system of linear equations, which is of smaller size than before,
L,[égi,zj] = [dlfi,zj], (A.9)

where L' is same as L except of smaller size. To get {ef,} from {&}; ,;} is an in-
terpolation process which is inverse to the restriction, and is called prolongation.
Notice that we can apply the above process: Gauss-Seidel iterations, restric-
tion, solving a linear system of smaller size, and prolongation, again to solve
(A.9). Actually, this process can be repeated hierarchically, and the resulting
hierarchical process is called a Multi-Grid process of Gauss-Seidel iteration.
We summarize this subsection by outlining the algorithm of this Multi-Grid

process of Gauss-Seidel iteration for solving (2.14) as follows.

Multi-Grid iteration for Ly, ;] = [)\},J’wi,j]i
Start: [ygj];
Gauss-Seidel iteration k times: [yf, il;
Compute defect [df;] = Llyf;] — [M ;i j];
Restriction: [Jf],
Multi-Grid iteration for L’ [éf,j] = [Jf j] J times: [Ei'c,j]é
Prolongation: [ef];
Updating: [y; ;] = [y,kJ] - [eﬁj];
Gauss-Seidel iteration additional £ times on [y; ;|;

End.
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Appendix B

An Algorithm For Generating

Primary Images

We generate the primary image P based on the observations on the HVS. More
precisely, we use the mechanism described by (2.3) to do the formation of P from
Br(X?*), i.e., we define image P to be the solution of the following minimization
problem,

miri Vy, subject to X N Br(X?) = Br(X?), (B.1)

l',‘]
with some modifications described later. Similarly as in Appendix A and in
Subsection 2.3.2, we can conclude that there is a unique solution of (B.1) which

is also the unique solution of the system of linear equations,
Vi3V =0, (B.2)

where the partial derivations are taken only with respect to those z; ; such that
(2,7, 2i) & Br(X?), for Br(X*) # 0. A typical equation in the above linear

system is

—Vy =0, (B.3)
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where (¢, j, ¢ j) € Br(X*), and thus the generic form for one step of Gauss-Seidel
iteration is

Tij = Z(xi,j—l + Tijy1 + Tic1; + Tig), (B.4)

which is simply the average of four neighboring pixels’ intensity values. It is
straightforward to derive the formulas for boundary pixels, which are slightly
different from the above one. This Gauss-Seidel iteration is convergent, and
converges to the solution of (B.1) (ref. Appendix A).

The Multi-Grid method is also applied to speed up the convergence, while the
Multi-Grid method used here is different from the one described in Appendix A
where we solve for error (ref. (A.5), (A.6)). We can not apply here the structure
of the Multi-Grid method in Appendix A simply because that the form of the
linear system (B.2) is image-dependent, and thus it is very difficult to determine
the forms of linear systems at every level of grid, or equivalently, to determine
the forms of L' (ref. (A.9)). Instead of solving for error, we solve the system (B.2)
at every level of grid. Note that the formula of Gauss-Seidel iteration for each
pixel’s intensity value is the average of four neighboring pixels’ intensity values
as pointed out above, and the intensity values of the pixels in By (X*) are fixed
in all iterations. This algorithm can be easily implemented at each level of grid.
Let us consider a coarser grid (2:,2j), for ¢,j = 0,1,...,(M/2) — 1 on the grid
(¢,5),foré,5 =0,1,..., M — 1, a portion of which is shown in Figure B.1, where
the pixels of the coarser grid are indicated by small circles. The initial intensity
values, z; 5, on the coarser grid are the weighted average of the intensity value
at the same location and the intensity values of all the neighboring pixels on the

denser grid. The typical formula for this weighted average at (2:,25) is

1
!
Toi0; = E(‘lwzi,zj + 239951 + 22 2541 + 2T2i—1,2) + 2T2i11,2;
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Figure B.1: Multi-Grid method.
+22i-1,2j-1 + T2i-1,2j+1 + T2i+1,2j-1 + L2i41,2j+1)- (B.5)

We then define the set of fixed pixels at the coarser grid by

Br(X®) = {(2, 25, 2%;) : (24,2,.)

or one of its eight neighboring pixels € Br(X*)}. (B.6)

For example, in Figure 12, the eight neighboring pixels of one pixel on the coarser
grid are marked out with crosses. If one of these neighboring pixels or the pixel
itself is in Br(X'®), then this pixel is in By(X®)". On the coarser grid we do
similar averaging (B.4) with the new fixed pixel set Br(X*)'. The above process
can be applied to even coarser grids in the same fashion as above. To recover
the intensity values on a denser grid from a coarse grid is straightforward. Using
the above notation, g 9; = x4 ,;, for ¢,5 = 0,1,...,(M/2) — 1; while for the
other pixels not in Br(X*), their intensity values are equal to the average of the

intensity values on their neighboring pixels on coarse grid.
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The algorithm starts from an initial image which has constant intensity values
for all pixels. This constant intensity value is equal to the average value of the
intensity values of the original image. After several times of averaging (B.4), we
go to the coarser grid as above, and do averaging on this coarser grid. We repeat
this process again until all the pixels in the current grid are fixed ones. We then
do recovery all the way back to the original grid. After every recovering from
a coarser grid to a denser grid, we also apply the averaging several times. This
whole cycle, from the original grid to a very coarse grid and then back, can be
repeated until we obtain satisfactory result.

Note that we are not required to solve the problem (B.1) accurately for

generating primary image P as long as that P contains strong edges represented

by Br(X?), and § = A* 6 P is smooth.
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Appendix C

EMM — a Space-Variant Filter

In this Appendix, we show that the EMM problem can be described as a space-
variant filtering process. The input-output relation of this filter is determined
by the minimization problem (2.14), and will be discussed in the following.

For simplicity, we consider the continuous form of (2.14). Let z(u,v) be a
continuous function of two variables u,v defined on a simply-connected closed
domain [66] G C IR? with a piecewise smooth boundary C. We want to solve

the following minimization problem,

min Jo(y) = [ [ {ha(u,0)a(,0) = (e, o) + Ko, 0) oul, o)

+)\3(u,v)[yw(u,v)]2} dudv, (C])

where A;(u,v) > 0, ¢ = 1,2,3, are functions of u,v on G having continuous
second-order partial derivatives, y(u,v) is an admissible function defined on G
having continuous fourth-order partial derivatives with y, dy/du, dy/dv van-
ishing on the boundary C and yu.(u,v) and y,,(u,v) are second-order partial
derivatives of y with respect to u and v, respectively. In (C.1), J,(y) is used

to denote the objective function. All admissible functions form a linear space,
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denoted by D(G) endowed by a norm ||y|| defined as

Iyl = max ly(u,v)|+ max [yu(u,v)|+ max fyu(u, ) (C.2)

Thus D(G) becomes a normed linear space [66].
We say J,; has a minimum at y* € D(G) if and only if J(y)— J(y*) > 0 for all
y € D(G). Then, the necessary and sufficient condition for y* to be a minimum

of J, is that [66]

/ / (" = @b+ Dyl + Ao dudv =0, (C.3)

for all A € D(G). By the Green’s theorem [67], (C.3) reduces to [66]
Au(w, )y (u, ) + (A2yiu)ua(w, v) + (Asyl, oo (u, v) = Ai(u, v)z(u, v),, (C.4)

for (u,v) € G. Equation (C.4) is known as an Fuler’s equation [66].

Now we show that at all (u,v) € G satisfying A1(u,v) > 0, the solution of
the Euler’s equation is unique. Let y; and y; be two solutions of the Euler’s
equation, then y; — yo is a solution of the Euler’s equation with z = 0, and
thus y; — y2 is a minimum point of Jo. Then y;(u,v) — ya(u,v) = 0, for every
(u,v) such that A(u,v) > 0, for otherwise Jo(e(y1 — y2)) < Jo(y1 — y2) for any
0<e<l.

Now we investigate the frequency domain behavior of the input-output rela-
tion governed by the above Euler’s equation. Let (uy,v;) be an interior point in
G, and A be an open neighborhood containing the point (uy,v;). To further sim-
plify the problem, we assume that the parameter functions, A\; > 0, Ay, A3, are
constants on A (certainly when A is a small neighborhood, this is a reasonable

assumption). Then the above Euler’s equation becomes

A1 (1, v1)y* (U, v) + Mg (U1, V1) Y5y (U, ©) + As(t1, V1) Yy, (4, v) = A (ug, v1)z(u, v)
(C.5)
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Figure C.1: Relationship of the subdomains Gy C G, C G5 C G.

on A. Equation (C.5) is a linear partial differential equation which describes the
input-output relationship of a linear system with input z(u,v), output y*(u,v)
and frequency response H(w,,w,) given by

1

Aofwam) 4 4 Aa(wa,un), 4
1+ /\1(u1,v1)°u“ + Ap(u,01)

which clearly describes a 2-D low-pass filtering operation. The cutoff frequencies

H(wy,w,) =

(C.6)

of H(wy,w,) are controlled by the ratios :\\322123 and ijggizig Larger values of

A1(u1,v1) give rise to higher cutoff frequencies in u and v, while larger values of
A2(uq,v1) and As(uq,v;) lead to lower cutoff frequencies in u and v directions,
respectively.

Note that we have assumed that all admissible functions and their first-order
partial derivatives vanish on the boundary C, while in the original case (2.14)
we do not have any such constraint. This difficulty can be avoided by solving a
slightly modified problem in which the boundary constraints are removed. Let
us consider some subdomains of G: Gy C Gy C G353 C G. We illustrate the
relations of these submains and G in Fig. C.1.

Let A%2 > 0,152 > 0,152 > 0 be functions having continuous second order
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partial derivatives defined on G;. We derive parameter functions A}, i = 1,2, 3,

on G from A%, i = 1,2, 3, such that
A (u,v) = A2 (u,v), for (u,v) € Gy
A (u,v) =0, for (u,v) € G\G,. (C.7)
This can be done by using a so-called bump function f [68], which has the
following property: |

1. All mixed partial derivatives, of all orders, of f exist and are contin-

uous at every interior point of G.
2.0 f<1lond@.
3. f=1o0nGh.
4. f =0 on G\G,.

Then the functions A} = A2 4 =1,2,3, on Ga; A = 0 on G\G,, satisfy the
requirements in (C.7).

Similarly, we define a function z* on G, such that z*(u,v) = 22(u,v) on Gy,
and z*(u,v) = 0 on G\Gsq, where &2 is a given data function on Gj.

We consider the following two problems similar to (C.1) with the above pa-

rameter functions A¥, ¢ = 1,2, 3, and the data function z*. The first one is on

G:

min J. // {X[y = 21 + A3 [yuul® + N5[ywo)*} dudv
- //GQ{)‘I y — @7 + M[yuu]® + Ailyen]’} dudv, (C.8)

with the set of admissible functions as before, i.e., D(G); the other one on Gj:

minJ2(y) = [ / (N[y = 2 + Nlyual? + Nolyon]?} dudy

134



= / / Gz{Ai[y — 2" 4 A3 [Wuu)® + A3[ywn)?} dudv, (C.9)

with the set of admissible functions being D(Gs3), except that no constraint on
the boundary.

We claim that if y* € D(G) is a minimum function of J2., then there is no

function in D(Gs) not identical with y* on the set: G, = {(u,v) : Aj(u,v) > 0}
and giving smaller or equal value of the functional J2 than J2(y" | G3), where

y* | G denotes the restriction of y* on G5. (Note that G} C G5 C Gs.) Indeed,

for otherwise we have a function y; on D(G3), and y; # y* on G, such that
J_,zt(y]_) S JZ*(y* ' G3). (0.10)

We construct a function y; € D(G) such that y; = y; on G; and y2 = 0 on G\G3
by using a proper bump function. More specifically, let f be a bump function:
f=1o0nG,, and f =0 on G\Gs, and y; = fy; on Gs, y; = 0 on G\Gs. Then
Y2, Oya/Ou, dya2/dv, vanish on the boundary of G, and thus y, € D(G). We now
have

Jae(y2) = Ja(y1) < JA(y" | Gs) = JL(¥"), (C.11)

i.e. JL(y2)—Jh(y*) <0, acontradiction. Therefore, in the above sense, problem

(C.8) can be substituted by problem (C.9).
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Appendix D

Contour Prediction

The first-order prediction works in the following way. After the basic algorithm
(with back-tracing) stops, we locate an additional pixel in the neighborhood of
the end-pixel of the traced contour in the direction determined by the last two
pixels. More precisely, for the traced contour, (i%j° 2% ), (¢',5% 24 1), ..,

(ie‘l,je"l,x;_],ﬂ_l), the additional pixel, (&, j¢, &3 ;.), is defined as:
il — if-—l + (z‘l—l _ if—Z); jé — jl—l n (jé—l = j£—2)- (D])

If this new contour, (i',5%, %4 j1), ... (il.,jf,:cfe’jl), satisfies condition (2.24),
and by the above basic search procedure we can locate in the neighborhood
of (il,je,wf[’jz) a pixel other than (ie“l,jf"l,mfe_l,j,_l) in Br(X?), we move the
search center to this new pixel in Br(&X'*); otherwise, the contour terminates at

4-1). The first-order prediction is illustrated in Fig. D.1, where

41 0-1 _.s
(Z 3 J > wil—l,]

the end pixel and its previous pixel are indicated by a circle and a cross, respec-
tively, and the predicted pixel is indicated by a square box.
If the first-order prediction fails, a second-order prediction can be used. Using

the same notation as before, we define pixels (5%, 4¢, mfe,jc) and (5411 5441 @iers jers )
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Figure D.1: The first-order prediction.

such that

=T @) = T G ),

Z'£+1 — if + (il—l _ Z'Z—2); jf—{—l — jZ + (jl-l _ jl——2). (D2)

If this extended contour does not satisfy condition (2.24), we stop and end the

4

contour at pixel (¢¢71, 541, 25, jl-—l); otherwise, we continue as follows. If pixel
*

(i“l,j“l,m;‘?z“’ﬂ“) is in Br(X®), we move the search center to this pixel and

continue; if not, we perform the basic search step at (:¢+1, j4+1

,a:fe“’j,_«“), and if
we successfully locate a pixel in Br(X*), we then move the search center to this
new pixel and continue. We illustrate the second-order prediction in Fig. D.2

with a similar legend as in Fig. D.1. This procedure can be extended to higher

order predictions in a similar manner.
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Figure D.2: The second-order prediction.
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Appendix E

Examples of the

three-component image model

Several examples of the three-component image model are included in this Ap-

pendix. The parameters for these examples are tabulated in the following.

Image name | N, T|T.|T,|d

Sailboat | 50 | 16 {32 |16 | 3

Peppers | 50 | 256 132 | 8|3

House | 50| 64 |32 | 8|3

Airplane | 50 | 128 |32 |16 | 3

Swanmaster | 50 | 128 {32 | 8| 3

Kingfisher | 50 | 32 (32| 8|3

Bison | 50 | 16 |64 | 8|3

Table E.1: Parameters for the three-component image model examples.
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Figure E.1: (a) The original, (b) the primary component, (¢) the smooth com-

ponent and (d) the texture component associated with image Sailboat.
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Figure E.4: (a) The original, (b) the primary component, (c) the smooth com-

ponent and (d) the texture component associated with image Airplane.
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Figure E.5: (a) The original, (b) the primary component, (c) the smooth com-

ponent and (d) the texture component associated with image Swanmaster.

144



Figure E.6: (a) The original, (b) the primary component, (c) the smooth com-

ponent and (d) the texture component associated with image Kingfisher.
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Figure E.7: (a) The original, (b) the primary component, (c) the smooth com-

ponent and (d) the texture component associated with image Bison.
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Appendix F

Constant Variances of

Quantization Errors

Consider the following function of bit rates r,, rop and 7% &k =0,1,--- K —1,

(u,v) # (0,0),

F(r) = D(r) + AR(r), (F.1)
where D(r) is defined as D in (3.4) with dg(r) and dp(r) substituted by the
approximations given in (3.8), R(r) is defined as in (3.5), A is the Lagrange
multiplier introduced, r denotes the bit rates: rqo and rﬁyu, k=0,1,---,K -1,
(u,v) # (0,0), collectively, and r, is assumed to be a constant. Denote the
optimal bit rates for problem (F.1) by r*: rgp* and rﬁ’v*, k=01, K —

1, (u,v) # (0,0). Then by the first-order necessary condition [26], we have
V.F(r*)=0;  R(*)=R", (F.2)

where V. F(r*) is the gradient of F' with respect to r at r*. The above conditions

give a total of K(L?— 1)+ 2 equations in K(L?— 1) + 2 variables comprising r*
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and A; by solving these equations, we have

1 weén?aﬂ(o’o).

T00 = g N T
" 1 1reln202(u u)
k — 3 E\% _ )
T =g e (W)= (0,1),(1,0);
1 eln202(u u)
Eo* _ 3 kA%
Two = 519 In T ,  (u,v) #(0,0),(0,1),(1,0),

1 weln2

* L p* 2
A =exp{2In2(—r}, + 1, + SToo? {In( 3 (0,0)) +
1 = In2
7 [21n(”3“ 10, 1)o(1,0)) +
k=0
eln?2

(S5 =02 (w, o)D),

(u,v)#£(0,0),(0,1),(1,0)

and

/\*
CZ(U,U) = 21n 2’

(F.4)

(F.5)

for k = 0,1,---, K — 1,u,v = 0,1,---, L — 1, where r% is the design rate for

smooth and texture components.
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