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ABSTRACT

We consider a two—dimensional stochastic approximations scheme of the Robbins—Monro type which naturally
arises in the study of steering policies for Markov decision processes [6,7]. Making use of a decoupling change
of variable, we establish almost sure convergence by ad—hoc arguments that combine standard results on one—
dimensional stochastic approximations with a version of the law of large number for martingale differences. Coming
full circle, this direct analysis gives clues on how to select the test function which appears in standard convergence
results for multi-dimensional schemes. Furthermore, a blind application of the ODE method is not possible here
as solutions to the limiting ODE cannot be defined in an elementary way, but the aforementionned change of

variasble paves the way for an interpretation of the behavior of solutions to the limiting ODE.
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1. INTRODUCTION

In [8] we introduced a two—dimensional stochastic approximation scheme of the
Robbins—Monro type for the purpose of mvestigating the performance of steering poli-
cies in Markov decision processes with a recurrence structure [6,7]. We thought then that
the a.s. convergence properties of this scheme were not covered by standard convergence
results available in the literature, and we proceeded to analyze it by ad-hoc arguments.
In fact, it turns out that conditions due to Blum [1] could have been used to yield the a.s.
convergence of the scheme of interest. However, the main difficulty with Blum’s approach
lies in finding a suitable test function that meets all the requisite conditions, some of them
quite stringent. Although we shall eventually exhibit such a test function, it will arise as
an easy byproduct of a direct convergence analysis, a situation somewhat similar to that
encountered in studying the stability of ODEs by Lyapounov methods. This is perhaps
not too surprising in view of the fact that the convergence of stochastic approximations
is often investigated by means of an associated ODE, a viewpoint discussed later in this
paper.

In this short note, we provide direct convergence arguments which constitute a re-
finement of those given in [8]. We do so by using an invertible linear change of variables
which decouples the original scheme into two one—dimensional stochastic approximations.
Their a.s. convergence readily follows from classical results for one—dimensional stochastic
approximations [2,10] and from the Stability Theorem for martingale differences [5]. This
approach provides a straightforward proof of the a.s. convergence for the original scheme
under conditions weaker than those required by [1,10]. It is also of independent interest in
that it helps illustrate the interplay between probabilistic and analytic viewpoints in the
study of stochastic approximations. First of all, the change of variables provides clues as
to how a test function should be selected in order to meet Blum’s conditions. Next, the
convergence analysis paves the way for a natural interpretation of solutions to the limiting
ODE. Indeed, the ODE method cannot be used here (at least in its standard form) [4,9];
this is due to the lack of requisite regularity properties which prevent the limiting ODE to

be defined in an elementary way.

The paper is organized as follows: In Section 2, we introduce the two—dimensional
stochastic approximation of interest, and give a direct analysis of its convergence properties
in Section 3. In Section 4, we discuss the behavior of solutions to the ODE limit, and display

the test function that meets Blum’s conditions [1].

A word on the notation: The indicator function of any set E is simply denoted by

1[E], and unless otherwise stated, lim,, is taken with n going to infinity.
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2. THE STOCHASTIC APPROXIMATION SCHEME

Consider a probability triple (2, F, P), equipped with a filtration {Hy, £ =0,1,...}.
which carries an Hy—adapted sequence of IR?-valued rvs {(((k),7(k)), k = 1,2,...}.
The two—dimensional stochastic approximation scheme of interest here has output values
{(Z(k), T(k)), k=1,2,...} which are recursively generated by

Z(k+1)| | Z(k) 1 [¢(k+1)—2Z(k) o ‘
[T(k{—l)} - [T(k)] +k——|—1 |:T(k+1)—T(k) E=1,2,...(2.1)

with initial condition (Z(1),T(1)) = (¢(1),7(1)). Throughout the discussion we enforce
conditions (H1)—(H3) which are now presented:

(H1) There exist a scalar V and a pair of probability distributions F and F on IR

such that

PIC(k+1) <z, 7(k + 1) < t[Hy
=1[Z(k) S VT(E) F(z,t) + 1[Z(k) > VT (k) F(z,t), (z,t) € IR

forall k=1,2,..;

(H2) The probability distributions F' and F on IR* are square-integrable.
It will be convenient to denote by F any one of the probability distributions F and F, with
a similar convention for quantities derived from these distributions. With this convention

in mind, (H2) reads

[N]
[N]

(2% +t3)dF(z,t) < oo. (2.
RZ

We also define the first moments m(¢) and m(7) by
m(¢) = / 2dF(z,t) and m(r):= / tdF(z,t). (2.3)
R? R2

(H3) These quantities, which are well defined and finite by virtue of (H2), satisfy the
inequalities

m(¢) — Vm(r) <0 <m(() - Vm(r). (2.4)

Under the assumptions (H1)—(H3) the recursive scheme (2.1) is a stochastic ap-
proximation of the Robbins—Monro type [4], and we are interested in establishing its a.s.
convergence. Standard a.s. convergence results [1,10] for multi—dimensional schemes rely
on selecting a test or Lyapounov function which satisfies a set of sometimes stringent con-

ditions. Later on, in Section 4, we shall exhibit such a test function. It is perhaps amusing
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to note that its discovery passed through a direct proof of the a.s. convergence of the

scheme (2.1), the very fact it was supposed to help establish.

3. A CONVERGENCE PROOF

The basis for our arguments is a simple one—to-one change of variables which maps
(2.1) into a two—dimensional stochastic approximation scheme which can analyzed by stan-
dard techniques: With scalars ¢ and b still to be determined, we define the IR*—valued rvs
{(U(k),V(k)), k=1,2,...} by the linear transformation

[UEIZH - [(11 _bv] [5’%;” k=1,2,...(3.1)

<

These rvs also obey recursions similar to (2.1), namely

U =u(1), Uk+1)=U) + b+ ) -UM] k=12,..(32)
V() =¢el), V(k+1)=V(k)+ i Jlr 1[5(k +1) = V(k)] k=1,2,...(3.3)

where the IR?-valued rvs {(v(k),s(k)), k = 1,2,...} are given by

v(k):=C(k)—Vr(k) and e(k):=al(k)+ br(k). k=1,2,...(3.4)
Let G denote the probability distribution on IR? induced from F by the transformation
(z,t) = (= — Vt,az + bt) appearing in (3.1). We readily check from (H2) that

Plv(k+1) <wu,e(k+ 1) < w|Hy]

=1[U(k) < 0] G(u,v) + 1[U(k) > 0] G(u,v), (u,v) € IR? (3.5)

for all k = 1,2,..., and the combined recursion (3.2)—(3.3) is thus also a stochastic approx-
imation of the Robbins—Monro type (since the rvs v(k) and (k) are both Hji—measurable

for all k =1,2,...). We find it convenient to introduce the notation

m(v) = /1{{2 udG(u,v) =m(¢) — Vm(r) (3.6)

and

m(e) = / vdG(u,v) = am(C) 4+ bm(7). (3.7)
R2
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We first show the a.s. convergence of (3.2): Inspection of (3.2) and (3.5) reveals that
the recursion (3.2) by itself is a stochastic approximation scheme of the Robbins—Monro

type such that
Elv(k 4+ 1)|Hi] = m(v) + 1[{U(k) < 0]Am(v) k=1,2,...(3.8)

with Am(v) = 7i(r) — m(v). Combining (3.8) with (2.4), a condition equivalent to
m(r) < 0 <m(r), we can now invoke standard convergence results [2, Theorem 1, p. 275]

[9] to get the following.

Lemma 3.1. Under (H1)—(H3), the convergence limy U(k) = 0 takes place a.s.
The a.s. convergence properties of (3.3) are considered next:

Lemma 3.2. Assume (H1)—(H3). For any pair of scalars a and b such that

m(e) = T(e), (3.9)

the convergence limy, V(k) = ¢ takes place a.s. with ¢ denoting the common valuc in (3.9).

Proof. First we note that there always exists a pair a and b such that (3.9) holds. Next,

for such a pair, we observe from (3.5) and (3.7) that
Ele(k + 1)|[Hi] = 1[U(k) < 0]m(e) + L[U(k) > 0] m(e) = ¢, k=1,2,...(3.10)

and the Hy—adapted rvs {e(k)—c¢, k = 1,2,...} thus form a zero-mean (P, Hj )-martingale
difference sequence with bounded second moments; in fact, we have sup, Blje(k)—¢|?] < 0o
as a result of (H1)—(H2). Invoking the Stability Theorem for martingale difference [5],

we get
L E
limy, T i:E 1 (e(i)—c)=0 a.s. (3.11)

and the conclusion follows from the fact that the output to (3.3) can also be expressed as

k
Vk) :(:+%Z(s(i) — o). =1,2,...(3.12)
=1

We are now ready to state and give a proof of the main convergence result of this

note. To simplhify the notation, we write

Am(¢) :=m(() —m(¢) and Am(r):=m(r)— m(r). (3.13)

(@3



Theorem 3.3. Under (H1)—(H3), we have the a.s. convergence results

limg Z(k) = m(C) + r*Am(() (3.14)
and
limy T(k) = m(7)+ r*Am(r) (3.15)
with
m(v)
Am(v) (3.16)

Proof. By Lemmas 3.1 and 3.2, we already know that the rvs {(U(k),V(k)), k =1,2,...}
converge a.s. to the vector (0,¢). The a.s. convergence of the sequence {(Z(k),T(k)), k =
1,2, ...} would then follow if we could select the scalars @ and b so that the linear transfor-
mation (z,t) — (z — Vit,az + bt) is invertible and the moment condition (3.9) holds. The
first requirement is equivalent to the determinant condition b + aV # 0, while the second

reduces to

aAm(() = —bAm(T). (3.17)
If Am(7)# 0, we choose « =1 and b = —%%:—E%, with the determinant condition satisfied

by virtue of (2.4). If Am(7) = 0, then Am(() # 0 owing to (2.4), whence a = 0 by (3.17)
and the determinant condition reduces to b # 0; the choice @ = 0 and b = 1 does the
job! The limiting values in (3.14)-(3.16) are now readily obtained by solving (in (z,?)) the

system of linear equations z — Vit = 0 and az + bt = c. |

Combining Lemma 3.1 and the convergence results (3.14)-(3.16), we get the equality
m(C) +r*Am(¢) =V (m(7r) + r*Am(r)) (3.18)

which was found useful in [§]. Moreover, inspection of the proof of Theorem 3.3 reveals that
this convergence result actually holds under slightly weaker conditions than the square—
integrability condition (H2) used here. In fact, the entire analysis can still be carried out

under the conditions
/ (x = Vt)*dF(z,t) < oo and (az + b)Y TPdF(2,t) < oo (3.19)
R? R2

for some p > 0. The first condition is sufficient for obtaining Lemma 3.1 while the Stability

Theorem for martingale difference in the form (3.11) will hold under the second part of

(3.19) [3].



4. THE ODE LIMIT AND BLUM’S CONDITIONS

We complete the discussion of the convergence of the scheme (2.1) by considering its

ODE limit [4,9]: We see that, were it to exist, the limiting ODE should be of the formn

2(t) = =Z(t) + 1{Z(t) < VT m(C) + 1[Z(t) > VT(#)]m(C)

1(8) = ~T(1) + 1120 < VI (r) 4 120 > VIO m(r)
with given initial condition (Z(0),7(0)). The right handside of (4.1) is not Lipschitz
continuous on all of IR? since discontinuous on the one—dimensional manifold M = {(z,t) €
IR? : z = Vt}, and therefore a global solution to (4.1) cannot be guaranteed by elementary
results on the existence and uniqueness of solutions to ODEs. However, here we expect
the following scenario to unfold: Any solution to (4.1) with initial condition not in M will
eventually hit M in finite time, and thereafter the trajectory will chatter along M while

drifting alongside M towards an equilibrium point on it.

Some care clearly needs to be exercised in formally defining a solution to (4.1), with
the net result that it does not seem possible to use the ODE method in its standard
form [4,9]. We now show that the transformation (3.1), with (3.9), does provide a natural
way for indirectly apprehending the definition of a solution to (4.1), and its asymptotic
behavior. Indeed, the ODE limit for the scheme (3.2)—(3.3) should have the form

U(t) = —U() + 1{U(t) < 0)m(v) + 1{U(t) > 0] m(v) (4.2a)
V(t)= V(i) +c (4.20)

with given initial condition (U(0),V(0)). Note that (4.2) could also be interpreted as the
ODE formally obtained from (4.1) by the change of variables (u,v) = (¢ — Vt,az + bt)
appearing in the proof of Theorem 3.3. The structure of solutions to (4.2) is now much
more transparent because this linear transformation yields a decoupled system composed
of two independent one—dimensional ODEs; this decoupling was already apparent in the
probabilistic analysis of Section 3. For every initial condition (U(0), V(0)) with U(0) # 0,
we can readily construct a solution for (4.2): First, the solution to (4.2b) is simply V(t) =
c+ (V(0) — c)e™t, t > 0; it is defined for all times with lim; V/(#) = ¢. On the other hand,
care 1s still required when defining a solution trajectory to (4.2a) since the right handside
of this ODE exhibits a discontinuity at the origin. This single point of discontinuity should
however be contrasted against the one—dimensional discontinuity manifold M associated

with (4.1), so that we should now expect a simpler description of the trajectory’s behavior.
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We see, at least initially, that

m(v) + (U0) —m(v))e™ i U0) <0
Ut) = (4.3)

(V) + (U(0) — m(v))e~" i U(0) >0
until hitting the origin, an event which occurs in finite time. Thereafter, the solution will
dance around in a vanishingly small neighborhood of the origin for the rest of times. This
description leads to (0, ¢) as the asymptotically stable point of the ODE (4.2), in agreement

of course with the earlier probabilistic analysis.

The behavior near the origin of solution trajectories to (4.2a) is perhaps best under-
stood through the corresponding local time process {R(k), k = 1,2,...} associated with

the recursion (3.2), where we define

k
R(k)::%ZlU(z)<0 E=1,2,...(4.4)

=1
In [8] we combined Lemma 3.1 with the Stability Theorem for martingale differences in

order to get the following result on the behavior of (3.2) near the origin.

Theorem 4.1. Under assumptions (H1)—(H3), we have lim; R(k) = r* a.s., with »*
given by (3.16).

In a sense this result provides an indication of the long—term frequency of finding the

solution trajectory in either half-lines (—o0,0) or (0, c0).

Finally, coming full circle, it is worth pointing out that the underlying linear transfor-
mation (z,t) — (z—Vt,az+bt) also provides the clue for choosing the Lyapounov function
behind Blum’s conditions [1]. in doing so, there is no loss of generality in assuming ¢ = 0;

this is already apparent in the proof of Lemma 3.2. Here, in the notation of [1], we have

M(z,t) = — M +1[z < V4] [ "(C)] +1[z > V] [m(g‘)] . (zt) e R (4.5)

m(r) m(T)
Motivated by the discussion given above, we choose the test function f : IR? — IR to be
1 5 1 9 )
f(z,1) :—2—(z—Vt) +;(az+bt) , (z,t) € IR". (4.6)

It is easy to see with this choice that all of Blum’s conditions, except for his condition
(A3), are trivially satisfied. To show that condition (A3) of Blum also holds, we note

that the gradient function D of f is given by
D(z,t) = (2 = Vt+alaz + bt), =V (z — Vi) + blaz + bt)), (z,t) € IR (4.7)
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so that after some uninteresting calculations, we get

U(z,t) =< D(z,t), M(2,t) >
2,8 + (U < VAT + 1z > VA mO) (-~ V) (48)

for all (z,t) in IR%. In view of (2.4) we can conclude that

U(z,t) < =2(z — Vi) = 2(az + bt)*, (z,t) € IR? (4.9)

whence for every € > 0,

sup{U(z,t): 2° +t*° >e*} <0 (4.10)

with the stricy inequality following from the invertibility of the linear transformation
(z,t) = (= — Vit,az + bt), and condition (A3) is satisfied.
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