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Chapter 1 Introduction 

In a wide variety of empirical studies in behavioral science and education, collateral 

information is collected about individuals in addition to the variables of primary interest to the 

researchers. This type of collateral information, also referred to as concomitant variables, 

auxiliary variables, or simply, covariates in the literature, usually contains individual background 

characteristics such as gender, ethnicity and years of education. Although these types of “outside 

variables” are sometimes ignored in statistical modeling, it is believed that they may potentially 

have important relations with the modeled variables of primary interest. The present study is an 

investigation of the potential benefits and limitations of including such covariate information in 

mixture item response theory (IRT) modeling, in complete and incomplete data scenarios. 

1.1 Statement of the Problem 

Mixture IRT models, which combine IRT and latent class analysis (LCA), have been 

increasingly used in psychometric research for analyzing item response data that may violate 

basic underlying assumptions of either modeling approach. Whereas IRT models assume the 

latent variable, a person’s latent trait, to be continuous in nature, models in the LCA framework 

categorize respondents into qualitatively different latent groups based on their observed item 

responses. As a combination of the two modeling approaches, mixture IRT models estimate both 

the examinees’ continuous latent trait and latent class membership of examinees simultaneously. 

In recent years, the mixture IRT modeling approach has been applied to tackle a variety 

of important psychometric issues in test development, including the identification of latent 

differential item functioning (DIF) (Cohen & Bolt, 2005; De Ayala, Kim, Stapleton, & Dayton, 

2002; Kelderman & Macready, 1990; Lu & Jiao, 2009; Samuelsen, 2005), the detection of 
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testing speededness (Bolt, Cohen, & Wollack, 2002; Boughton & Yamamoto, 2007; Meyer, 

2010; Yamamoto, 1989; Yamamoto & Everson, 1997) and the classification of test-takers with 

alternative cognitive attributes or strategies (e.g., Mislevy, & Verhelst 1990; Rijmen & De Boeck, 

2003; Rost & von Davier, 1993).  Further, this approach has also been applied to many practical 

situations. For instance, in psychopathological testing (e.g., Finch & Pierson, 2011; Maij-de Meij, 

Kelderman, & van der Flier, 2008), it is of great concern for researchers and clinicians to assign 

subjects to their most likely type of behavior disorders. In such scenarios, mixture IRT models 

can be used for diagnostic purposes from which an intervention program may be implemented. 

Among all the applications of mixture IRT models, the identification of latent DIF is an 

important one related to test development. DIF refers to a phenomenon in which individuals with 

the same ability but from different subgroups do not have the same probability of a correct 

response to an item on a test. The presence of DIF does not indicate that the test is unfair, but it 

could be used as a warning flag, signifying potential threats which may jeopardize test fairness.  

This phenomenon could be attributed to the unintentional introduction of a nuisance dimension 

to the test items in addition to the dimension which is intended to be measured (Ackerman, 1992). 

Current DIF analysis is typically conducted based on manifest grouping variables, such as gender 

and ethnic groups. Potential DIF may be overlooked if it is caused by manifest grouping 

variables that are not included in the analysis or the interactions among multiple manifest 

grouping variables (Chen & Jiao, 2014; Jiao & Chen, 2014). Using mixture IRT models for 

latent DIF detection helps to deal with such issues (e.g., Cohen & Bolt, 2005; Jiao & Chen, 

2014). 

In practice, small sample sizes, short test lengths and small separations among latent 

classes often pose challenges for mixture IRT model estimation, especially in identifying latent 
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group membership and obtaining accurate model parameter estimates (e.g., Smit, Kelderman, & 

Flier, 1999). The literature (e.g., Dai, 2009; Smit et al., 1999; Smit, Kelderman, & Flier, 2000) 

indicates that incorporating potentially important covariate information (e.g., demographic data) 

may yield desirable psychometric properties in the estimation of mixture IRT models, such as 

reducing standard errors in model estimation and improving the accuracy of latent class 

membership identification. Thus, an inclusion of effective covariates may be of theoretical and 

practical importance for the applications of mixture IRT models. 

1.2 The Purpose of the Study 

The purpose of the present study is to investigate different approaches to adding 

covariates into the mixture Rasch model (MRM), and the corresponding impact in model 

parameter estimation with both complete and incomplete response data. A Monte Carlo 

simulation is conducted in which data generated according to a two-class MRM with both 

dichotomous and continuous covariates are fitted to several misspecified MRMs with and 

without covariates.  

As demonstrated by previous simulation studies and empirical research (Dai, 2009; Smit 

et al., 1999, 2000), incorporating potentially effective covariates in mixture IRT models may 

help relieve the rigid requirement of large sample size and large separations among latent classes 

in model parameter estimation, and obtain more accurate model parameter estimates and latent 

class assignment. However, certain important areas still remain unexplored in this line of 

research. First, previous studies in the mixture IRT modeling framework have exclusively 

focused on dichotomous covariates related to the latent class membership. No research includes 

continuous covariates. Second, the possibilities of relating dichotomous covariates with other 

model parameters have not been explored and no information is available about different 
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potential approaches to including both dichotomous and continuous covariates in the model. 

Third, none of previous studies provide information about model fit and model selection with 

respect to covariate inclusion. Fourth, all previous studies are based on complete item response 

data sets. The manner in which dichotomous as well as continuous covariates enter a model and 

the impact of different approaches to covariate inclusion on model still have not been thoroughly 

explored in the mixture IRT modeling framework. Therefore, this study proposes to examine the 

impact of different approaches to incorporating dichotomous and continuous covariates in 

mixture IRT models on model performance, based on complete and incomplete item response 

data sets.  

Both dichotomous and continuous covariates are included in the present study as 

predictors for the latent class membership and the person ability parameters. The impact of 

covariate specification is compared and analyzed in terms of model parameter recovery, latent 

class identification, and the relative overall model fit among competing models. Finally, an 

illustration of applying covariate inclusion approaches is demonstrated using the Programme for 

International Student Assessment (PISA) 2009 U.S. reading assessment data. 

1.3 Significance of the Study 

Three major advantages gained from the covariate inclusion approaches investigated in 

the present study can be summarized as follows. First, the present study uses one-step estimation 

of the conditional model, in which the model parameters and the relations between covariates 

(i.e., dichotomous and continuous) and model parameters are estimated simultaneously. Having 

covariates enter the model as predictors of the latent class membership could be used for 

simultaneous detection of latent DIF and explanation of latent DIF through the relations between 

manifest and latent groups. Previous mixture IRT modeling approaches for latent DIF detection 
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usually involve two steps: identifying latent DIF and then probing the relations between latent 

classes and manifest groups (Chen & Jiao, 2014; Cohen & Bolt, 2005). However, as shown in a 

simulation study on a non-mixture Rasch model with covariates (Adams, Wilson, & Wu, 1997), 

two-step estimation tends to result in larger error variance for the item parameter estimation, 

larger mean squared error for the person parameter and underestimation of the regression 

coefficients for the covariates, especially when the test is short and the relation between the 

covariates and model parameters is strong. Thus, it is suggested that simultaneous estimation 

may potentially result in better model parameter estimates and more accurately capture the 

relation between manifest grouping variables and latent groups. As such, the cause of DIF may 

be more easily interpreted.  

The second advantage is that the use of covariates, especially continuous covariates as 

predictors of the person parameter, may potentially relieve the rigid requirements of large sample 

size and latent class separation in mixture IRT model estimation, according to the literature in 

both non-mixture and mixture IRT framework (Adams et al., 1997; Mislevy, 1987; Mislevy & 

Sheehan, 1989a, 1989b). As such, more accurate parameter estimates and latent class assignment 

may be obtained. 

Third, the impact of covariate inclusion on model performance may be more pronounced 

when missing data are present. In educational and psychological tests, covariates and 

demographic data have been found to account for as much as one third of the population variance 

and can increase the precision of model parameter estimation in the same amount as adding 2 to 

6 items (Mislevy, 1987). This gain could be substantial in educational assessments/surveys or 

adaptive testing scenarios where only a small number of items (i.e., 5 to 15) are administered to 

each respondent (Mislevy & Sheehan, 1989a). The present study simulates different types and 
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amounts of missing data that approximate those observed in large-scale assessment scenarios, so 

that the importance of covariate inclusion in mixture IRT models could be potentially revealed 

with regard to practical settings. 

1.4 Overview of the Chapters 

In the following chapters, the rationale of incorporating covariates in mixture IRT models 

and the different approaches to covariate inclusion are detailed after an introduction to the latent 

variable modeling framework. 

In Chapter 2, IRT models, latent class models, mixture IRT models and how these 

modeling approaches are interrelated and integrated in the GDM framework are discussed in 

details. Further, the rationale of including covariates in latent class models, non-mixture IRT 

models and mixture IRT models is also elaborated. Covariate inclusion was first proposed in 

LCA as concomitant-variable latent-class model by Dayton and Macready (1988, 1989). This 

research area also emerged in non-mixture IRT framework as an explanatory modeling approach 

(e.g., Mislevy, 1987; Mislevy & Sheehan, 1989a, 1989b; Verhelst & Eggen, 1989). Later, this 

line of research has been extended to the mixture IRT modeling and other mixture modeling 

framework (e.g., growth mixture modeling). This chapter focuses on why covariate inclusion is 

promising for different types of latent variable models, how covariates enter a model and what 

desirable psychometric properties covariate inclusion may bring to mixture IRT models. Similar 

approaches from different perspectives (e.g., hierarchical GDM) are also briefly discussed. Since 

the present study intends to use one-step estimation of the conditional model, estimation will be 

carried out within a Bayesian framework vis-à-vis Markov chain Monte Carlo (MCMC) 

algorithms. An introduction to Bayesian inference, major sampling methods and relevant 

convergence diagnostic criteria are presented in the last part of this chapter. 
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Chapter 3 describes the technical issues regarding the model specification and model 

estimation implementation of the current study. The data generating model and five MRMs with 

misspecified covariates are illustrated. The second part of this chapter focuses on the 

implementation of model estimation in WinBUGS. The third part describes the simulation design 

with the purpose of investigating the impact of different approaches to covariate inclusion on 

fitting MRMs in complete and incomplete item response data scenarios. The evaluation criteria 

for model performance are also presented. Following the simulation study, an empirical example 

using the publicly available PISA 2009 reading assessment data is provided to demonstrate the 

impact of different covariate inclusion approaches in an MRM in real applications. 

The results obtained from the simulation study are presented in Chapter 4. The influences 

of manipulated factors on latent class identification, model parameter recovery, and overall 

model fit are summarized. In addition, different approaches to covariate inclusion are compared 

based on the results from the 2009 PISA reading assessment data. 

The last chapter discusses the findings, and points out potential limitation and future 

directions for this line of research. The implications of covariate inclusion in mixture IRT 

models to practical large-scale assessment settings are also provided in this chapter. 
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Chapter 2 Literature Review 

In the 1960s, Rasch introduced a new statistical approach, item response theory, in his 

seminal paper (1960) and this model-based measurement theory has gained in popularity and 

prominence partially through its promotion in a textbook by Lord and Novick (1968). More 

recently, item response theory has gradually become the mainstay of modern measurement 

theories, and serves as the psychometric underpinning for much of large-scale testing today. 

With the advantage of population invariance and the ability of scaling persons and items on the 

same metric as compared with classical test theory, IRT models have increased attractiveness to 

many measurement practitioners. A substantial body of research has investigated the theoretical 

importance and practical applications of IRT, with the recent extensions of using more 

complicated IRT models to analyze item response data from more complex item and person 

populations. 

The different approaches to covariate inclusion that are investigated in the present study 

are situated in the mixture IRT modeling framework. The mixture IRT modeling approach, as a 

combination of IRT and LCA, has been increasingly used in recent years for analyzing item 

response data that may violate underlying assumptions of either modeling approach. Mixture 

IRT models incorporate qualitative latent variables, which specify classes to which examinees 

belong, as well as quantitative variables which characterize latent trait within each class. 

Examples of mixture IRT models include the mixture Rasch model (Rost, 1990), the model 

presented by Mislevy and Verhelst (1990), which is a discrete mixture of a linear logistic test 

model (LLTM) identifying different latent trait variables across latent classes, and the loglinear 

modeling framework proposed by Kelderman and Macready (1990), which aims at detecting DIF 
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through differences in item parameters or error rates across levels of manifest or latent grouping 

variables.  

In this chapter, a review of IRT models and latent class models is presented first, 

followed by a summary based on the relation between these two modeling approaches and a 

unifying perspective of general diagnostic model (GDM). The mixture IRT modeling approach is 

also reviewed as a special case of the mixture distribution GDM. In the second section of 

Chapter 2, the rationale of including covariates in different lines of latent variable modeling 

research is discussed with a focus on the desirable psychometric properties resulted from 

covariate inclusion. The last section of this chapter focuses on the estimation method used in the 

present study. The Bayesian inference, major sampling methods and convergence diagnosis are 

described in this section. 

2.1 Latent Variable Modeling Framework 

In statistics, latent variables are defined as hypothetical constructs that are not directly 

observed but may be inferred from variables that are observed or directly measured. Latent 

variables could be categorical, ordinal or continuous in nature, and a latent structure model is a 

statistical model that relates a set of manifest variables to latent variables. When a latent variable 

is categorical, nominal latent classes are obtained; when a latent variable is continuous, a latent 

trait on a psychological continuum is assumed. Moreover, an example of ordinal latent variable 

is the use of ordered latent classes (Croon, 1990, 1991), such as classifying the scholastic 

aptitude of students into one of several levels of education. 

The latent variable modeling framework embraces most commonly-used psychometric 

models with latent structure of different scale types, among which IRT models, latent class 

models and mixture IRT models are the focus of the present study. In the following sections, a 
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brief review of the three types of models is provided with a discussion of the relations among 

these models. The rationale of including covariates in each modeling approach is detailed in later 

sections. 

2.1.1 Item response theory (IRT) and latent class analysis (LCA). 

 Item response theory. Modern item response theory includes a variety of probability 

models (e.g., Birnbaum, 1968; Rasch, 1960), which characterize a nonlinear regression of item 

responses on a latent variable. Item responses are usually modeled in the form of the probability 

of a correct response from an examinee to a particular test item and the latent trait could be a 

single ability on a psychological continuum that an assessment instrument intends to measure. 

The individual performance differences on the instrument are attributed to different levels of 

underlying latent abilities of examinees.  

There are three important assumptions underlying unidimensional IRT models: 

unidimensionality, monotonicity and local independence. The assumption of unidimensionality 

requires that the person parameter of an IRT model is restricted to only one latent dimension. 

Basically, a sufficient condition for this assumption is that only one common factor can be 

extracted from the matrix of tetrachoric item correlations (Lord & Novick, 1968). When this 

assumption is met, the conditional distributions for subpopulations are identical (Hambleton & 

Swaminathan, 1985). 

Along with the assumption of unidimensionality, most IRT models also assume that the 

probability of correctly responding to a dichotomously scored item increases as individual latent 

ability increases (Reckase, 2009). This assumption is termed the monotonicity assumption; yet in 

real data, this assumption might hold with some small deviations (Sijtsma & Junker, 2006). As 

monotonicity is required for all items in an assessment instrument, this assumption is indeed a 
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strong assumption, but sometimes it can be replaced by an alternative, weak monotonicity 

assumption (Stout, 1987; 1990), which assumes that the mean of item response functions is 

monotonically increasing as individual latent ability increases. The weak monotonicity 

assumption guarantees that there is enough information for the latent trait estimation (Sijtsma & 

Junker, 2006). 

The last assumption, local independence, comprises two parts – item independence and 

person independence, which formulate the mathematical expression of the joint probability of 

examinees’ responses to items (Mokken, 1996). Under this assumption, responses to all items 

across examines at a specified latent ability level are independent of each other. The first part, 

item independence or conditional independence, is the independence of responses within persons. 

This condition requires that for any single examinee at a given latent trait level, his or her 

response to any item on the test does not affect that person’s responses to any other items on the 

test (Reckase, 2009). That is, all systematic variations in the responses are completely due to the 

variations of examinees over their latent trait levels (Mokken, 1996). On the other hand, the 

person independence, also called sampling independence, implies that the response of any 

examinee to a single item is not related to the responses to that item provided by any other 

examinee (Mokken, 1996). Taken together, the local independence assumption requires that the 

response of any examinee to any item on an exam only depends on the person’s level on the 

latent trait and the item parameters which define the item response function (Reckase, 2009).  

However, in practical testing situations, the unidimensionality and local independence 

assumptions are quite strong and may rarely be met. The major threat to the unidimensionality 

assumption is the possibility that the cognitive underpinning of an assessment instrument may 
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include more than one dimension. In this situation, multidimensional IRT models can be used 

(Reckase, 1972, 1997, 2009).  

On the other hand, the major challenge to the local person independence assumption is 

the nested data structure (e.g., Jiao, Kamata, Wang, & Jin, 2012). One example is the 

hierarchical data structure which is often observed in achievement test, with students nested in 

teachers and teachers nested in schools. In this situation, multilevel IRT models are used to deal 

with the person local dependence issue. The other special case of nested data structure pertains to 

heterogeneity of the population in which qualitative difference exists between latent subgroups 

of examinees. As such, examinees are conceived as nesting in latent classes. In this scenario, a 

standard IRT model cannot accurately predict the response patterns of all examinees (Kelderman 

& Macready, 1990; Mislevy & Verhelst, 1990; Rost, 1990), because there are qualitative inter-

individual differences that are not captured by the model. This issue has given rise to the mixture 

IRT modeling approach which empirically identifies homogeneous latent clustering of 

examinees from a heterogeneous population based on response data. The following sections will 

discuss latent class analysis in relation to mixture IRT models in more details. 

Latent class analysis. Before a detailed discussion of mixture IRT models, latent class 

analysis (LCA; Lazarsfeld & Henry, 1968), which provides the theoretical and empirical 

background for mixture distribution IRT models, is reviewed. All mixture IRT models described 

in later sections have their origins in latent class models. As a statistical method closely related 

to factor analysis and discrete mixture models, the simplest form of LCA can be considered 

either as a factor analytic model or a mixture of product-multinomial distributions (Dayton & 

Macready, 2007; Goodman, 1974a, 1974b; Haberman, 1979). 

A basic assumption of latent class models is local independence, which requires that the 
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probability of a response vector given a latent class is the product of class specific marginal 

response probabilities: 
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where xi denotes the item response for item i  as defined in the previous section, and g represents 

the unobserved categorical latent grouping variable. Thus, the joint probability of a response 

vector is given by: 

∏∑
==

=
I

i
igi

G

g
gI xpxxP

11
1 )(),...,( p ,                                         (2.2) 

where p(g) indicates the mixing proportion with the restriction 1
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Another common assumption of latent class models is that all the individuals within a 

latent class have the same item response probability. Under this assumption, the generalized 

form of the unrestricted latent class model can be formulated as follows (Dayton & Macready, 

2007): 
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where λgiy indicates the probability of a response y to item i conditional on the gth class 

membership with the restriction 
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in which y takes mutually exclusive and exhaustive values from 1 to mi for the ith item. mi may 

take any value, depending on the number of response categories for item i. For example, for a 

dichotomous items, mi =2. As such, Equation 2.3 and 2.4 could be generalized to mixed-format 

test (i.e., with dichotomous and polytomous items with different numbers of response categories). 

Additionally, xij denotes the score examinee j attains on item i. When xij equals y, δijy takes the 

value of 1; otherwise, δijy takes the value of 0. 

In order to determine the classification of examinees, each individual is assigned to the 

class which yields the highest conditional probability given the response vector (Rost & 

Langeheine, 1997). For example, the posterior probability of a class membership by applying 

Bayes’ rule is 

∑
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Compared with IRT models, LCA is less restrictive in terms of person-homogeneity 

because different classes of individuals can be described by totally different set of item 

parameters; however, LCA is more restrictive than IRT models in that all individual differences 

are explained by a limited number of classes (Rost & Langeheine, 1997). In IRT models, each 

person is assumed to have a distinct position on the latent psychological continuum; however, in 

LCA all persons within a latent class are treated as identical in terms of the probability of a 

specific response to an item (i.e., λgiy). Statistically, the conditional probability of a response to 

an item given a latent class is restricted to be the same for all members of that specified latent 
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class, but the item response probability is allowed to vary across different latent classes (Rost & 

Langeheine, 1997). 

2.1.2 General diagnostic model (GDM). 

In spite of the differences between IRT and LCA, both these two types of models fall 

under a flexible framework of general diagnostic models (GDM; von Davier & Yamamoto, 2004; 

von Davier, 2005a, 2008a) which incorporate a variety of latent structure models that describe 

the probability of observed responses in terms of conditional probabilities given one or more 

latent variables (von Davier, 2009). 

In the GDM, the conditional probability of a response xi from a person with attribute 

pattern a to item i is defined as  

( )
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In this definition, a is a K-dimensional latent variable with a = (a1,…,aK); X is the observed 

response variable with realizations xi ∈ {0,…,mi} and i ∈ {1,…,I}; and qik denotes the vector of 

Q-matrix entries for item i in dimension k ∈ {1,…,K}, which indicates the set of required person 

attributes. In addition, ηix is a real valued difficulty parameter and γikx is a K-dimensional slope 

parameter for each non-zero response category (von Davier, 2005a, 2008a, 2010). Thus, when 

there are mi +1 categories in the response data, mi × k slope parameters are specified for item i. 

In this generalized model, a could be a vector of latent abilities on the psychological continuum 

or a vector of dichotomous person attributes indicating whether a person has mastered a specific 

set of skills, and the response variable could be either dichotomous or polytomous (von Davier, 

2005b). 
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In this sense, the GDM framework covers a variety of latent structure models for 

dichotomous and polytomous data, depending on the latent structure assumed (von Davier, 

2005b). If a is a one-dimensional continuous variable, a dichotomous or polytomous IRT model 

is obtained; if a is multidimensional continuous, a multidimensional IRT model is obtained. 

Further, if a is binary with one single dimension, the generalized model conceptually reduces to 

a latent class model. In addition, if a is multidimensional with multiple binary components, a 

diagnostic classification model (DCM) is obtained. Thus, both IRT models and latent class 

models reviewed in this section are special cases of the GDM, depending on the dimension and 

the scale type of the latent variable. 

As an extension of the GDM, the mixture distribution GDM (MGDM; von Davier, 2008b) 

was introduced to accommodate potential qualitative differences between subpopulations or 

clusters of observations when the data structure is complex.  In the MGDM, the conditional 

probability of a response xi given attribute pattern a and class g is specified as  
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The ηixg, and γikxg are class-specific item difficulty and slope parameter respectively (von Davier, 

2010). g ∈ {1,…,G} is the group index which could be manifest, latent or partially observed. For 

the mixture distribution model that no g is observed, a mixture GDM such as a mixture IRT 

model is derived; whereas for models with all g known a priori, a multiple-group GDM is 

obtained (e.g., multiple-group IRT). There is also possibility to build up a mixture GDM with 

group membership partially observed (von Davier & Yamamoto, 2004). The concept of partially 

observed mixtures is an attempt to combine multi-group and mixture IRT models (von Davier & 

Yamamoto, 2004). It is assumed that there is missing grouping information for some, but not all, 
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observations in the population (von Davier & Yamamoto, 2004). This type of model is proposed 

to help recover such missing grouping information for those examinees (von Davier & 

Yamamoto, 2004). In the next section, the mixture IRT modeling approach, which is a special 

case of the mixture distribution GDM and the focus of the present study, is discussed in details. 

2.1.3 Mixture IRT models. 

One major weakness of LCA is the restrictive assumption that all examinees in a given 

latent class have the same response probability. This property of latent class models gives rise to 

several lines of research, one of which is the development of latent trait models within the latent 

class modeling framework (Rost & Langeheine, 1997). In the early 1990s, there were three 

cutting-edge articles which contributed to the early development of mixture IRT models. These 

articles were from Kelderman and Macready (1990), Mislevy and Verhelst (1990) and Rost 

(1990), and they proposed the idea of combining latent trait models with latent class models from 

different perspectives. Additionally, the HYBRID model proposed by Yamamoto (1987, 1989) is 

also considered an early development of mixture IRT modeling approach which is a mixture of 

latent groups of respondents who can be characterized by either an IRT model or a deterministic 

model with fixed response probability. 

Mixture Rasch models (MRM). The basic idea of the MRM is to incorporate the Rasch 

model in a discrete mixture of latent subgroups (i.e., latent classes), with the Rasch model 

applied to each class but with different item parameters across latent classes (Rost, 1990). The 

MRM enables a partition of the examinees, which maximizes the qualitative difference between 

subpopulations (Rost, 1990). By using the MRM, the qualitative difference between examinees 

is taken into consideration, and simultaneously the individual abilities are quantified on a 

continuum. 
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Mathematically, the probability of a correct response for person j on item i conditional 

upon the class-specific item difficulty, person’s latent ability and person’s latent class 

membership in the MRM is specified as 

)](exp[1
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where big is the difficulty parameter of item i conditional on latent class g ∈ {1,…,G}, and θjg is 

the person ability parameter which is estimated conditional on the categorical latent class 

membership. Correspondingly, the unconditional probability of a correct response for person j on 

item i is specified as 

∑ −−+
==

g igjg
gigjgij b

bXP
)](exp[1

1),|1(
θ

pθ ,                              (2.9) 

where pg denotes the mixing proportion and sums to 1 (i.e., 1=∑
g

gπ ). 

For each person, the latent group membership is assigned by comparing the posterior 

probability of that person belonging to each latent class if maximum likelihood estimation is 

used. That person will be assigned to the latent class with the largest posterior probability, 

or the posterior probability weighted by utility or loss values. On the other hand, in 

Bayesian estimation, the latent class membership is considered as a parameter, the estimated 

value of which is drawn from a posterior multinomial distribution. As such, the latent class 

membership estimate is the mode of the posterior distribution. 
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Additionally, given that the Rasch model is assumed within each latent class in the 

MRM, the sum of the item difficulty parameters within each class could be constrained to 

be zero (i.e., 0=∑
I

i
igb ) for model identification purpose.  

A mixture extension of LLTM. Another important perspective of mixture distribution 

IRT models was introduced by Mislevy and Verhelst (1990) with respect to students’ strategy-

use in problem-solving. This is also an extension of LLTM in which individuals are assigned to 

different strategy classes with the item difficulty defined as a linear function of item features or 

cognitive operations involved in the problem-solving process. This approach concerns situations 

in which different groups of examinees tend to choose different strategies. The distinct nature of 

this approach is that different latent traits are assumed under different strategies (Mislevy & 

Verhelst, 1990). This is in contrast with the assumption of Rost’s (1990) model where the same 

latent trait is assumed for all latent groups. Thus, according to Mislevy and Verhelst (1990), a 

comparison between persons within the same strategy class is meaningful, while a cross-class 

comparison of proficiency levels of all examinees is not valid because essentially two different 

latent traits are measured across latent classes. The strategy class under this approach is also not 

observable but can be inferred from response patterns and prior beliefs. 

A loglinear modeling framework for DIF. Another perspective of mixture IRT models 

was proposed by Kelderman and Macready (1990) with respect to detecting DIF across manifest 

and latent examinee groups. As discussed in the previous chapter, DIF pertains to the 

phenomenon that items do not function in the same way for examinees in different 

subpopulations. The major difference between manifest DIF detection analysis and latent DIF 

based on mixture IRT models lies in the fact that the invariance of model parameters for a 

specified IRT model is usually compared across manifest subpopulations in traditional DIF 
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analysis, whereas unobservable groupings of examinees are detected via qualitative differences 

implied by response patterns in mixture IRT models (Cohen & Bolt, 2005) and subsequently 

item parameter invariance is compared among the latent groups. This is a major advantage of 

mixture IRT models as compared with manifest DIF analysis as a detection method, as pointed 

out by Kelderman and Macready (1990). The general loglinear modeling framework they 

proposed enables the detection of differences in item parameters or error rates across levels of 

grouping variables, which may be manifest, latent or both, for models with either categorical or 

continuous attribute of interest (Kelderman & Macready, 1990). They further showed that this 

framework is flexible in that it is possible to incorporate additional interaction effects between 

item parameters and observed or unobserved grouping variables (Kelderman & Macready, 1990). 

The HYBRID model. Different from the mixture distribution IRT models presented 

above, Yamamoto (1987, 1989) proposed the HYBRID model which allows different models in 

different components of the mixture distribution. For example, this model may incorporate two 

latent groups: one consists of random guessers for whom the independence of responses holds 

(i.e., this is simply a latent class grouping with a single set of conditional probabilities that define 

member likelihoods of item responses), while the other group’s probabilities for item responses 

are characterized by an IRT model (Yamamoto, 1989). The implication of the HYBRID model is 

that it is more appropriate to model the guessing behavior on the person level rather than the item 

level (von Davier & Rost, 2006). The HYBRID model can also be extended to strategy switching, 

which means that an IRT model is appropriate for a subset of responses of an examinee, and a 

latent class model is suitable for the rest of the responses (e.g., guessing) of that person 

(Yamamoto & Everson, 1997).  

 In summary, the above mentioned research work has greatly contributed to the 
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development of mixture IRT models and they serve as the theoretical building blocks for the 

present study. First, the MRM proposed by Rost (1990) lays the ground for the current study 

which investigates a two-class MRM with correctly-specified and misspecified covariates. 

Second, the present study employs a one-step estimation of the conditional model which allows 

the identification of latent DIF and the explanation of latent DIF using manifest grouping 

variables simultaneously. This perspective was built upon the work by Kelderman and Macready 

(1990) which promotes the use of mixture IRT models as a DIF modeling approach. Third, the 

present study incorporates both dichotomous and continuous covariates as predictors of model 

parameters (i.e., the latent class membership and the person parameter) and this approach is 

related to the perspective of Mislevy and Verhelst (1990). Although not directly discussed, the 

mixture extension of LLTM proposed by Mislevy and Verhelst (1990) is statistically an 

approach to include covariates as predictors of the item parameter, with the empirical meaning 

that the item parameter may be defined as a linear combination of prespecified cognitive 

operations. The current study, on the other hand, targets at covariate inclusion with respect to the 

person parameter and the latent class membership of the MRM, without considering item 

features. 

2.2 The Rationale of Including Covariates 

As a member of the mixture model family, the MRM shares many similarities with 

other types of mixture models (e.g., growth/factor mixture models; Muthén, 2001; Lubke & 

Muthén, 2005). The accurate identification of latent group membership and estimation of 

model parameters related to each latent class are critically important to all types of mixture 

models. However, small sample sizes, separations between latent classes and the interaction 

between the two may pose challenges for model parameter estimation and latent class 
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identification in both growth mixture and mixture IRT models (e.g., Kohli, Harring, & 

Hancock, 2013; Li, Harring, & Macready, 2014; Lubke & Muthén, 2007; Smit et al., 1999). 

Thus, the inclusion of covariates has been proposed in both the mixture IRT and other 

mixture modeling framework in order to help relieve the rigid requirement of sample size 

and latent class structure in model estimation and to achieve different purposes, such as 

obtaining more accurate model parameter estimates (e.g., Dai, 2009, 2013; Smit et al., 1999, 

2000), latent class assignment (e.g., Li & Hser, 2011), and enumeration of latent classes 

(e.g., Lubke & Muthén, 2007; Muthén, 2004).  

The general approaches to covariate inclusion have been proposed in different lines 

of mixture modeling research. In the factor/growth mixture modeling framework, covariates 

may be included as predictors of the latent factor, the latent group membership, some distal 

outcomes or even observed variables (Li & Hser, 2011; Lubke & Muthén, 2005; Petras & 

Masyn, 2010). Similarly, in the IRT literature, both continuous and categorical covariates 

have been proposed to be incorporated in the models as predictors of the person and/or the 

item parameter, as well as predictors of the latent class membership in the case of mixture 

IRT models (Smit et al., 1999, 2000; Wilson & De Boeck, 2004). It has been suggested by 

previous research that the model estimation (e.g., enumeration of latent classes) may 

potentially benefit from the inclusion of observable covariates as predictors of the latent 

class membership and latent factors (e.g., Muthén, 2004). However, based on limited 

research in this area, it is still unclear whether and how different approaches to covariate 

inclusion would have beneficial or detrimental effects on model estimation.  

Since the present study is on the MRM, which is a combination of IRT models and 

LCA, the following sections will provide a detailed discussion about the rationale of 
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including covariates and the development of covariate inclusion approaches in latent class 

models, non-mixture IRT models as well as mixture IRT models. 

2.2.1 Covariate inclusion in LCA. 

The possibility of covariate inclusion was first introduced in the latent class modeling 

framework as concomitant-variable latent-class models (Dayton & Macready, 1988, 1989). As 

an extension of the simultaneous LCA (i.e., the application of LCA to multiway contingency 

tables simultaneously), concomitant-variable latent-class models allow the probability of latent 

class membership to be functionally related to covariates with known distribution (Dayton & 

Macready, 1988, 1989).  The explanatory variables may be categorical, indicating manifest 

group membership (e.g., gender), or continuous such that the values may be different for each 

observation (Dayton & Macready, 1988, 1989). Further, the function linking covariates and the 

probability of latent class membership could be in any appropriate form such as logistic or 

exponential (Dayton & Macready, 1988, 1989). 

Let w denote a vector of covariates. Then, a G-latent class concomitant-variable model 

can be specified as 
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with the functional relation between the mixing proportion and covariates defined as 

);(| pwg wf υp = ,                                                   (2.11) 

in which υp = {υ0,…, υP} indicates coefficients for P concomitant variables (Dayton & 

Macready, 1988, 1989). In Equation 2.10, the conditional probability πg|w is subject to the 
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restriction that 1
1

| =∑
=

G

g
wgπ for all unique w. As shown in Equation 2.11, there is a conditional 

relation between the covariates w and the mixing proportion πg based on parameters υp within 

the latent class model. The relation as expressed in Equation 2.11 can take a variety of 

mathematical forms (Dayton & Macready, 1988, 1989). 

Later, this approach was extended by Hagenaars (1990) by relating more than one 

categorical covariate to the latent class parameter and restricting the probabilities by loglinear 

models. Van der Heijden, Mooijaart and de Leeuw (1992) also took up this line of research by 

including categorical and grouped continuous covariates using multinomial logit models. 

Formann (1992) further proposed a generalization of the above mentioned approaches by 

restricting both latent class probabilities and conditional probabilities by multinomial logit 

models. In terms of estimation, van der Heijden, Dressens, and Bockenholt (1996) proposed a 

simultaneous estimation of the model parameters and the relation between covariates and the 

latent class parameters using the EM algorithm. Further, Bolck, Croon, and Hagenaars (2004) 

demonstrated that separate estimation is also plausible, and the underestimation of the relation 

between covariates and class membership resulted from separate estimation can be adjusted by a 

specific correction method. More recently, Vermunt (2010) proposed a new maximum likelihood 

based correction method and it makes the separate estimation as efficient as the simultaneous 

estimation. 

The covariate inclusion approach in LCA has been proved to be promising in that it 

potentially reduces the classification error for latent class models (Hagenaars, 1993). It also has 

the added advantage that it is more parsimonious than the multiple group latent class models 

which sometimes have zero degrees of freedom (Dayton & Macready, 1988, 1989). This 
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covariate inclusion approach may result in a positive number of degrees of freedom, depending 

on the number of concomitant variables. 

More importantly, the idea of relating covariates to the latent class parameter has also 

been brought to mixture IRT and other mixture modeling framework. Thus, it has provided 

theoretical foundations and empirical implications for the covariate inclusion approaches in the 

MRM under investigation in the present study.  

2.2.2 Covariate inclusion in non-mixture IRT models. 

Reasons for covariate inclusion. The incorporation of covariates in non-mixture IRT 

models was first introduced by Mislevy (1987) as an approach to increase the precision of item 

parameter estimates. In educational assessment and adaptive testing scenarios, each examinee 

usually responds to only a few items either because of the assessment design or the nature of 

adaptive testing. Thus, the sparse information provided by the observed item responses may pose 

challenge to an accurate recovery of item parameters. This research has found that covariates 

may increase the precision of model parameter estimation in the same amount as adding 2 to 6 

items and covariates, such as demographic data, could account for as much as one third of the 

population variance in educational and psychological tests (Mislevy, 1987). This proportional 

gain that results from the use of covariate information is substantial for short tests where only a 

small number of items (i.e., 5 to 15) are administered to each respondent or missing data are 

present and the effects tend to become less impressive when test length increases, such as in 

individual achievement test scenarios (Mislevy, 1987). 

As an extension of this seminal research work, Mislevy and Sheehan (1989a, 1989b) 

furthered this line of research by providing an important argument and mathematical proof about 

when such inclusion of covariate information is appropriate for measurement models. In the case 
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that covariate information is used in neither the examinee sampling nor the test administration 

(i.e., no stratified sampling/targeted test administration), or the case that covariate information is 

only used for examinee sampling (e.g., stratified sampling of examinees), it is not necessary to 

include covariates in the estimation of the measurement model (Mislevy & Sheehan, 1989b). The 

parameter estimates of the measurement model remain consistent in these two scenarios if 

covariate information is not used. However, the inclusion of covariate information would 

improve model parameter estimation, and the benefit tends to be greater when the covariate 

information is more strongly related to the latent variable and less information is obtained from 

observed item responses (Mislevy & Sheehan, 1989b). On the other hand, if covariate 

information is used in both the examinee sampling and the test administration (e.g., stratified 

sampling and targeted test administration), the corresponding covariate information must be 

taken into account in the measurement model; otherwise, the item parameter estimates would be 

inconsistent (Mislevy & Sheehan, 1989b). 

Moreover, whether to include covariates in IRT models is a theoretical debate involving 

the validity of the inference drawn about the population. Considering the test fairness issue, the 

estimation of individual ability should be independent of any variables beyond the response data 

per se. It may be desirable to use covariates to improve the precision of model parameter 

estimation, but it is less desirable to draw inference based on the conditional model, especially 

when high-stake decisions are made for individuals in competitive tests (Mislevy & Sheehan, 

1989a). This is a separate issue. However, purely in the perspective of model parameter 

estimation, covariate inclusion is promising for IRT models with the potential benefit of 

improving the estimation of both the item and the person parameters by reducing standard errors.  
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Thus, based on this perspective, the present study aims at investigating different 

approaches to covariate inclusion and the corresponding impacts on model parameter estimation 

in the MRM. In the following section, the approaches to including covariates in non-mixture IRT 

models are detailed. 

Approaches to covariate inclusion. Based upon the initial proposal of covariate inclusion 

in IRT models (Mislevy, 1987), an explanatory modeling approach in item response theory has 

been gradually developed (Adams et al., 1997; Verhelst & Eggen, 1989; Wilson & De Boeck, 

2004; Zwinderman, 1997). Covariates are included in a variety of standard IRT models for 

different purposes such as explaining estimated effects or improving model parameter estimation 

(e.g., Adams et al., 1997; Wilson & De Boeck, 2004).  

Within this explanatory perspective, three types of explanatory IRT models, which are 

the person explanatory, the item explanatory and the doubly explanatory Rasch models, have 

been proposed as extensions of the Rasch model as summarized in Table 2.1 (Wilson & De 

Boeck, 2004). The graphical representations of person explanatory, item explanatory and doubly 

explanatory, adapted from Wilson and De Boeck (2004) and the Mplus manual (Muthén & 

Muthén, 1998-2012), are also presented. 

Table 2.1. Explanatory Rasch models. 

Item covariates Person covariates 
Absence of covariates Inclusion of covariates 

Absence of covariates Doubly descriptive Person explanatory 
Inclusion of covariates Item explanatory Doubly explanatory 

In the person explanatory model (i.e., the latent regression Rasch model), the person 

parameter θj is regressed on external person properties as predictors (Adams et al., 1997) 

∑
=

++=
−−+

==
P

p
jjppj

ij
ijij w

b
bXP

1
0with 

)](exp[1
1),|1( eυυθ
θ

θ ,                (2.12) 

27 



 

where wjp is the value of person j on the pth person property (p ∈ {1,…,P}), υp is the regression 

coefficient related to person property p and υ0 is the intercept. εj is the random person effect after 

the fixed effects of person properties are accounted for with the distributional assumption that εj 

~ N(0, σε
2) (Wilson & De Boeck, 2004). There could also be interaction terms among person 

properties in the model. When person properties are included as covariates, the error term is 

usually specified in the model in consideration of the individual variation. In this model, wjp is 

the observed person attribute. The regression function may also be built upon latent variables 

underlying the observed person-level properties (Fox & Glas, 2003). A graphical representation 

of the latent regression Rasch model is shown in Figure 2.1. 

Figure 2.1. The person explanatory model. 

In the item explanatory model (i.e., the LLTM), the item parameter (e.g., item difficulty) 

is specified as a linear combination of item properties (Fischer, 1973):  
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where each of the P item properties has a weight of υp. It is also possible to include interactions 

among item properties in the model. The early development of the LLTM conceives item 

difficulty as a linear combination of cognitive operations involved in the problem solving 

process. The cognitive features of each item and individuals’ probability of response are assumed 

to be connected: each of the P features has a weight of υp, and it denotes the basic parameter of 

the model-the contribution of each operation to the item difficulty. As shown in Equation 2.11, 

an error term is specified in the regression function with εi ~ N(0, σε
2). This is a random-effect 

version of the LLTM (Janssen, Schepers, & Peres, 2004). Moreover, in certain situations, the 

error term is not specified in the model, indicating that the item difficulty is perfectly predicted 

by the item properties (Wilson & De Boeck, 2004). This assumption is so strong that it makes 

the applications of this type of LLTM quite restrictive. A graphical representation of the LLTM 

is given in Figure 2.2. The dotted arrows indicate the possibility of modeling the item 

discrimination parameter as a function of covariates in the case of a two parameter logistic (2-PL) 

IRT model. In the Rasch-based LLTM, the dotted arrows do not exist. 

Figure 2.2. The item explanatory model. 
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Further, a doubly explanatory model is proposed as a combination of the two approaches 

presented above (i.e., the latent regression LLTM; Zwinderman, 1997). Figure 2.3 gives a 

graphical representation of this model. 

Figure 2.3. The doubly explanatory model. 

The models presented above are the commonly used covariate inclusion approaches for 

non-mixture IRT models. As demonstrated by Adams et al. (1997), the use of covariate 

information as predictors of the person parameter substantially decreases the mean squared error 

of the person parameter estimates but has negligible effects on the accuracy of item parameter 

estimates in the Rasch model. The effects are more pronounced when the covariates are more 

strongly related to the person ability and the test length is short. Based on the findings, the 

present study incorporates only the person explanatory approach in the MRM, in addition to the 

approach to model latent class membership as illustrated in the concomitant-variable latent class 

models discussed above. 

2.2.3 Covariate inclusion in mixture IRT models.  

In mixture IRT models, covariates have been added to achieve similar goals as those in 

non-mixture IRT models. For example, Smit et al. (1999, 2000) explored the use of covariates in 
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the mixture Rasch and 2-PL models by manipulating the association between latent classes and a 

dichotomous covariate in terms of bivariate probabilities. Their findings showed that the 

standard errors and the accuracy of latent class membership assignment could benefit from 

incorporating a covariate with a moderate to strong relation with the latent class variable. 

Samuelsen (2005) further explored the impact of covariates in the context of DIF. In her study, a 

dichotomous covariate was included in the MRM as an indicator of a manifest group 

membership and the level of overlapping between the manifest group and the latent group was 

under manipulation. Results showed that the power of detecting DIF decreases as the level of 

overlapping between the manifest and the latent group decreases, thus indicating that using the 

MRM to identify latent DIF may be a better approach than the current manifest DIF analysis.  

More recently, latent class membership in the MRM was modeled using logistic 

regression with a dichotomous covariate as the sole predictor of latent class membership (Dai, 

2009, 2013). Results indicated that the inclusion of dichotomous covariate in the MRM has 

positive effects on the correct recovery of latent structure (Dai, 2009, 2013). The strength of the 

relation between the covariate and the latent class membership also tends to impact the root 

mean squared error (RMSE) of the regression coefficients (Dai, 2009, 2013). Further, it was 

found that the DIF effect size has significant effects on both the identification of the latent 

structure and the accuracy of model parameter estimates (Dai, 2009, 2013). The most recent 

research work in this line was done by Tay and his colleagues (2011) in which they conducted a 

real data analysis exploring the mixture 2-PL IRT model in the context of DIF with both 

continuous and dichotomous covariates as predictors of the latent class membership. 

2.2.4 Other relevant modeling approaches 

Besides the covariate inclusion approaches, there are some other latent structure 
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modeling approaches which can accommodate the complex data structure and heterogeneity of 

the population, and allow the inclusion of covariates at different levels. Such modeling 

approaches include multilevel LCA (e.g., Vermunt, 2003), multilevel IRT models (e.g., Kamata, 

2001), all of which are special cases of the hierarchical GDM (HGDM; von Davier, 2007, 2010). 

In the next section, the possible parameter estimation methods for mixture IRT models 

and the technical details of the Bayesian estimation used in the present study are described in 

details. 

2.3 Model Estimation 

There are two major model parameter estimation frameworks in statistics, the frequentist 

inference and the Bayesian inference. To a frequentist, model parameters are considered as fixed 

and unknown truth, and they are estimable by replications of data from experiments. In the 

frequentist point of view, data are repeatable random samples and underlying model parameters 

remain fixed in the repeatable process. On the other hand, the Bayesian perspective assumes that 

data are fixed from the realized sample, but model parameters are random and thus have 

distributions. 

Maximum likelihood (ML), as a frequentist approach, has been used for a long time for 

the estimation of the models described above, including IRT models, latent class models as well 

as mixture IRT models. In ML estimation, parameter estimates are obtained by searching for 

values that maximize the likelihood function. ML is a consistent approach and it has been widely 

used for a variety of statistical models given the desirable mathematical properties offered by 

ML methods. Specifically, the ML estimators are asymptotically unbiased with minimum 

variance, and they approximate normal distributions and have sample variances which produce 

confidence intervals and enable hypothesis testing. Further, maximum likelihood estimation 
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methods are computationally efficient. However, there are certain drawbacks for the ML 

estimation methods, such as the possibility of multiple local maxima, unbounded likelihood 

function and the difficulty to choose staring values; and these downsides are more pronounced 

for the estimation of complex models, such as the mixture IRT models. 

On the other hand, there has been a surge in recent year to estimate complex 

psychometric model using Bayesian estimation methods. Compared with the ML estimation, the 

Bayesian inference has the following advantages. First, it allows the inclusion of prior 

information (i.e., prior knowledge or beliefs) into the current model parameter estimation. As 

more information is used, the Bayesian confidence intervals are supposed to be narrower than 

those produced by ML estimation. Second, the Bayesian inference via MCMC is unbiased with 

respect to sample size. Different from the ML estimation for which the desirable mathematical 

properties are asymptotic in nature, the Bayesian estimation can accommodate any sample sizes. 

Additionally, the Bayesian inference enables a better estimation of complex statistical model for 

which the ML estimation is sometimes problematic. For example, when the likelihood function 

is complicated across the parameter space, it may have several local maxima. It is very likely for 

the ML algorithms to arrive at the local maxima instead of the global maxima, resulting in the 

convergence issue. On the other hand, rather than searching for maxima, the Bayesian inference 

aims at exploring target distributions with the information from data and prior distributions. As 

such, the local maxima issue does not occur in Bayesian estimation of complex models. However, 

Bayesian estimation also has some disadvantages. For example, the selection of the prior 

distribution is sometimes arbitrary. If a highly informative prior is used, the posterior distribution 

may be heavily influenced by the prior if the sample size is small; on the other hand, if a flat 

prior is used, unreasonable values may be obtained for the parameter estimates. Further, the most 
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serious drawback of Bayesian estimation is the large amount of time required. Therefore, it is 

often used for small data sets or in situations that ML estimation is less desirable. 

Regarding the estimation of the MRM, several popular software packages based on ML 

algorithms may be used, such as Mplus (Muthén & Muthén, 1998-2012), mdltm (von Davier, 

2005b) and Latent GOLD (Vermunt & Magidson, 2000-2013), which are based on marginal 

maximum likelihood, and WINMIRA (von Davier, 2001), which is based on conditional 

maximum likelihood.  

In the present study, there are certain trade-offs between ML and Bayesian estimation. 

On one hand, ML estimation is much more computationally efficient and less time-consuming 

than the Bayesian estimation, and this property makes ML estimation a desirable option. On the 

other hand, the present study aims at a one-step estimation of the MRMs with dichotomous and 

continuous covariates. Although, LCA literature has suggested that results from separate 

estimation may be as accurate as those from simultaneous estimation with the use of certain 

correction methods, IRT literature has found that two-step estimation tends to result in larger 

error variance for the item parameters, larger mean squared error for the person parameters, and 

underestimation of the regression coefficients for the covariates, especially when the test is short 

and the relation between the covariates and model parameters is strong (Adams et al., 1990). 

Given these drawbacks of two-step estimation, simultaneous estimation of the conditional model 

is implemented in the present study. As the model with covariates is even more complicated than 

the MRM, different types of convergence issues that are specific to the ML estimation (i.e., 

singularity of the information matrix, local maxima) are likely to occur. Thus, the use of 

Bayesian estimation may avoid these problems. Additionally, although the estimation of the 

MRM may be easily implemented in the above mentioned software packages, they have limited 
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capacity of carrying out one-step estimation of the conditional model investigated in the present 

study. Given these issues and the trade-offs, the Bayesian approach is finally selected. The 

estimation of the current study is implemented in WinBUGS (Spiegelhalter, Thomas, Best, & 

Lunn, 2003), which is elaborated in Chapter 3. In the following sections, the major sampling 

methods in Bayesian estimation and the convergence diagnosis are discussed in details. 

2.3.1 Introduction to Bayesian inference. 

Recall that the Bayes rule is expressed as 


priorikelihoodposterior

|| ΩΩXXΩ PPP
l

×∝ ,                                            (2.14) 

where Ω denotes the parameters to be estimated for a model. P(data| Ω), the sampling density 

for the data, defines the likelihood function of a statistical model. P(Ω) denotes the prior 

distribution regarding the model parameters. Thus, the posterior distribution of Ω, given the 

observed data, is proportional to the likelihood function multiplied by the prior distribution of the 

model parameters. 

Markov chain Monte Carlo (MCMC). In simple statistical models, it is easy to draw 

values from the posterior distribution, especially when conjugate priors are assumed. When 

multiple parameters are present, it is also possible to integrate out the parameter of interest from 

the joint posterior distribution. For posterior distributions in non-closed form with low-

dimensional parameter space, either non-sampling methods or direct sampling methods (e.g., 

rejection sampling, importance sampling) can be used. However, for complex models with high-

dimensional parameter space, in non-closed or closed form, such as the model in the present 

study, MCMC is usually used given that it provides a flexible way to draw values from the 
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posterior distribution. It allows draws from low-dimensional distributions even when thousands 

of parameters are present.  

MCMC is a general type of computing technique based on drawing values ω from 

approximate distributions and then improving these draws to better approximate the target 

posterior distribution P(Ω|X) (Gelman, Carlin, Stern, & Rubin, 2003). It is an important 

innovation in statistical computing in recent year such that it has made Bayesian inference more 

widely applied in a variety of disciplines. The key to MCMC is to create a Markov chain which 

is a stochastic process with the Markov property on a finite state space and with a stationary 

distribution approximately equivalent to the target posterior distribution P(Ω|X). The state space 

equals the parameter space, the states are draws of the parameter and the Markov property is that 

the next state in the process only depends on the current state with all previous states irrelevant.  

MCMC methods are all based on this same general idea and the difference among 

methods is how the transitions between states in a Markov chain are created. There are three 

major categories of MCMC sampling methods: the Gibbs sampler, the Metropolis-Hastings 

algorithm and the Metropolis algorithm. The Gibbs sampler is the simplest MCMC algorithm 

and it is the primary choice for conditionally conjugate models, whereas the Metropolis 

algorithm can be used for models that are not conditionally conjugate (Gelman et al., 2003). The 

Metropolis-Hastings algorithm is a generalization of the Metropolis algorithm.  

The Gibbs sampler is also called alternating conditional sampling which constructs 

Markov chains by cycling through all full conditional distributions (i.e., the distribution 

conditional on all other parameters and the data) and is supposed to reach the joint stationary 

distribution that approximates the joint posterior distribution P(Ω|X). Suppose that Ω = 
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(ω1,ω2,ω3) and the joint posterior distribution is P(Ω|X). The steps of sampling unknown 

parameters using the Gibbs sampler are as follows: 

(1) Identify the full conditional distributions.  

p(ω1|ω2,ω3,X), p(ω2|ω1,ω3,X), p(ω3|ω1,ω2,X)  

(2) Provide starting values ( 0
1ω , 0

2ω , 0
3ω ). 

(3) Draw 1
1ω  from ),,|( 0

33
0
221 Xωωωωω ==p , 1

2ω from ),,|( 0
33

1
112 Xωωωωω ==p and 

1
3ω  from ),,|( 1

11
1
223 Xωωωωω ==p . 

(4) Repeat step (3) until the chains are convergent. 

(5) The draws after chain convergence are a sample from the stationary distribution. 

The five steps presented above constitute the Gibbs sampler algorithm and they are based on the 

prerequisite that the full conditional distributions from which values are drawn are all 

distributions in closed forms. 

However, when one or more of the full conditional distributions is not a closed form, a 

more general MCMC sampling algorithm is needed, such as the Metropolis-Hastings (M-H) 

algorithm. The M-H algorithm has been around for years as the Gibbs sampler, and the 

difference between the two is that the M-H algorithm uses a proposal distribution for drawing 

values rather than sequentially drawing values from the full conditional distributions as the 

Gibbs sampler does. The steps of sampling using the M-H algorithm are as follows (Gelman et 

al., 2003): 

(1) Given a draw 1−tω in iteration t-1, a proposal draw *ω is sampled from a proposal 

distribution )|( 1* −tJ ωω . 

(2) This draw is accepted with probability 
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(3) This draw is accepted with the probability min(r, 1) (i.e., *ωω =t ) and is rejected 

with the probability max(0, 1-r) (i.e., 1−= tt ωω ). 

In the M-H algorithm, the proposal distribution can have any form and the posterior distribution 

is not required to have a closed form.  

Additionally, as a special case of the M-H algorithm, the Metropolis algorithm assumes 

the proposal distribution to be symmetric (Gelman et al., 2003), that is, 

)|()|( abtbat JJ ωωωω =                                                   (2.16) 

tba ,,ωω∀ . 

This simplifies the probability r to be the ratio of p(ω*|X) to p(ωt-1|X). However, the M-H 

algorithm is usually more efficient than the Metropolis algorithm because the use of 

asymmetrical proposal distribution increases the speed of convergence to a stationary posterior 

distribution (Gelman et al., 2003). 

2.3.2 Convergence diagnosis. 

The key to a successful Bayesian estimation is that the Markov chains have converged to 

the target posterior distribution. If the chains do not converge, the inference about parameters 

based on the sampled iterations after burn-in would be invalid. Thus, it is important to diagnose 

convergence of Markov chains before making inferences. Chain convergence may be evaluated 

by several diagnostic criteria, such as time-series plots, autocorrelation plots, density plots and 

the Gelman-Rubin statistic R (Brooks & Roberts, 1998; Cowles & Carlin, 1996). 
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Previous literature has suggested a serious problem, label switching, to the convergence 

of Markov chains in Bayesian estimation of mixture IRT models (Cho & Cohen, 2010; Cho, 

Cohen, & Kim, 2006; Dai, 2009; Li, Cohen, Kim & Cho, 2009). The first type of label switching 

is between-chain label switching in which the order of latent classes switches across replications 

or for different initial values (Cho et al., 2006). This type of label switching is frequently 

reported in previous simulation studies and is also observed in the present study. It is not 

considered as non-convergence. Previous literature has suggested a variety of solutions to this 

problem, including artificial identification constraints (e.g., Diebolt & Robert, 1994), label 

invariant loss functions (e.g., Celeux, Hurn, & Robert, 2000), relabeling using a k-means type 

clustering (Celeux, 1998) and random permutation samplers (Fruhwirth-Schnatter, 2001). 

However, as these solutions are computationally intensive and may cause ambiguous 

explanations of parameter estimates, they are not commonly used. There are two other simple 

solutions to this problem. One is to fix the class memberships of a small number of individuals in 

the sample (Chung, Loken, & Schafer, 2004), and the other is simply to compare the parameter 

estimates with the generating parameters (i.e., item or mixing proportion parameters for mixture 

IRT models) to determine the label of each latent class if a simulation study is carried out (Cho 

& Cohen, 2010). The present study adopts the latter approach because the former one may affect 

the calculation of the accuracy of latent class identification, which is an evaluation criterion of 

the model performance in the current study. 

A second type of label switching is within-chain label switching in which the estimated 

value of a model parameter switches within a Markov chain (Cho & Cohen, 2007; see Figure 

2.4). Sometimes this type of label switching is accompanied with non-systematical fluctuations 

in different chains, which may result in poor mixing cases. Label switching of this type occurs 
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when the log-posterior is invariant to different permutations of model parameters, and it could be 

detected by checking the density plot that the parameter has multiple modes. This type of 

problem could be taken as an indication that the model may not provide a good fit to the data. 

 

Figure 2.4. An example of within-chain label-switching. 

Another type of non-convergence which is often observed in the estimation of complex 

models is that no mixing is observed between Markov chains.  Figure 2.5 provides an example. It 

indicates that the likehood and the prior distributions do not offer enough information for model 

estimation.  

 

Figure 2.5. An example of no mixting between chains. 

This issue is taken into consideration when the present study is designed. The amount of 

missingness simulated in response data is carefully selected so as to avoid this type of model 

non-convergence. The details of the factors of the simulation design and their corresponding 

levels are discussed in the next chapter. Figure 2.6 gives an example of converged Markov 

chains. 
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Figure 2.6. An example of converged Markov chains. 

2.4 Summary 

Given the fundamental relations among IRT, LCA and mixture IRT models, and the 

different approaches to covariate inclusion in each modeling approach, the present study takes 

the explanatory perspective and focuses on the impact of including dichotomous and continuous 

covariates on the estimation of the mixture Rasch model parameters. The estimation is carried 

out within a Bayesian framework. 

Although previous simulation studies and empirical research have demonstrated that the 

inclusion of potentially important covariates may yield desirable psychometric properties in 

mixture IRT models. Certain areas remain unexplored in this line of research and thus give rise 

to the research questions that are of interest to the present study. Specifically, the research 

questions are presented as follows: 

(1) What is the impact of including both a dichotomous covariate as predictor of the 

latent class membership and a continuous covariate as a predictor of the latent ability on the 

estimation of an MRM? 

(2) What is the effect of misspecified covariates (e.g., mismatching covariates with 

model parameters) on fitting an MRM? 

(3) What is the effect of covariate inclusion on overall model fit based on 

information-based model fit indices? 

P.tot[2] chains 1:2

iteration
1201 2000 4000 6000

   0.46
   0.48
    0.5
   0.52
   0.54
   0.56
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(4) What is the relative effect of covariate inclusion on the estimation of the MRM in 

complete versus incomplete data scenarios? 

In the present study, both dichotomous and continuous covariates are included in the 

MRM as predictors for the latent class membership and the person parameter. Both complete and 

incomplete response data sets which approximate different types of missingness commonly 

observed in large-scale assessments are simulated. The impact of covariate specification is 

compared and analyzed in terms of model parameter recovery, latent class identification, and the 

relative overall model fit among alternative models. Finally, an illustration of applying the 

covariate inclusion approaches is demonstrated using the PISA 2009 reading assessment data. 

In Chapter 3, a detailed description of the simulation design and the real data application 

is provided. Before the introduction of the simulation study and the real data example, the data 

generating model and five MRMs with misspecified covariates are detailed. Technical issues 

regarding the implementation of model estimation in WinBUGS are also discussed in this 

chapter.  
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Chapter 3 Methodology 

The first chapter introduced the motivation of including dichotomous and continuous 

covariates as predictors of model parameters for the MRM and the potential contributions of 

covariate information. The second chapter reviewed the theoretical foundations of mixture IRT 

models as well as different covariate inclusion approaches in relevant modeling frameworks. 

This chapter focuses on four methodological issues of the MRM with covariates: the approaches 

to covariate inclusion under investigation in the present study, the implementation of model 

estimation in WinBUGS, the design of the simulation study and the analysis plan for the real 

data example. 

3.1 Different Approaches to Covariate Inclusion in MRM 

The MRM (Kelderman & Macready, 1990; Mislevy & Verhelst, 1990; Rost, 1990) 

assumes different latent classes and the Rasch model with different item parameters (i.e., item 

difficulties) holds within each class. In the MRM, the unconditional probability of a correct 

response from person j to item i is specified as 

∑ −−+
==

g igjg
gigjgij b

bXP
)](exp[1

1),|1(
θ

pθ ,                                  (3.1) 

where pg denotes the mixing proportion corresponding to the percentage of persons in each 

latent group g, θjg is a person’s latent ability, and big is the item difficulty for latent group g.  

Figure 3.1 shows the graphical representation of a MRM without covariates. The arrows from the 

latent group variable g to the items show that the item difficulty parameters are different for 

latent classes. If no difference is assumed among the latent groups with regard to the distribution 

of the latent ability, the arrow is not needed from the latent class variable g to the latent ability θ, 
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as shown in the Mplus manual (Muthén & Muthén, 1998-2012). On the other hand, if a mean 

difference in the person ability is assumed among the latent groups, there is an arrow from the 

latent class variable g to the latent ability θ (Tay et al., 2011). In the present study, the latter 

expression is adopted. 

Figure 3.1. The mixture Rasch model. 

In the present study, the covariates enter the MRM either as predictors of pjg, the 

probability of a person belonging to a latent class (i.e.,∑ =
g

jg 1π ), or as predictors of the latent 

trait θjg. In the true model for data generation, a dichotomous covariate enters the model as a 

predictor of pjg through a logistic function: 

∑
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where Dj indicates the dichotomous covariate, such as gender, and β0g and β1g are corresponding 

regression coefficients in the logistic function. For model identification purpose, both β01 and β11 

are fixed as 0.  

Item 1 Item 2 … Item I 

θ g 
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Also, a continuous covariate enters the MRM as a predictor of the latent trait through a 

linear regression function: 

jgjggjg eC ++= 10 ααθ                                                   (3.3) 

where Cj indicates the continuous covariate (e.g., intelligence or motivation), α0g and α1g 

indicate the intercept and the slope of the latent regression model corresponding to latent group g, 

and ejg is the error term with the distributional assumption that ejg ~ N(0, 2
egσ ).  

Figure 3.2. The data generating model. 

In the present simulation study, two latent classes are assumed (G =2). Figure 3.2 

provides the graphical representation of the data generating model. Equation 3.4 gives the 

mathematical expression of the expanded version of the data generating model. 

θ g 

Item 1 Item 2 … Item I 

Continuous 

Covariate 

Dichotomous 

Covariate 

45 



 

∑ ∑
∑












−++−+


















+

+
==

=

g igjgjggJ
G

g
jgg

jgg
Jigjgij beCD

D
bXP

]})[(exp{1
1

)exp(

)exp(
),|1(

10

1
10

101

ααbb

bb
θ  (3.4) 

 Six alternative models are used in the present study to fit the simulated data: the true 

model, an overspecified model that relates both covariates to both model parameters (i.e., pjg and 

θjg), three underspecified models that are three constrained cases of the true model, and a model 

with mismatching covariates. In the model with mismatching covariates, Cj enters the model as a 

predictor of pjg in a logistic function and Dj as a predictor of θjg in a linear function. Although 

covariates, in practical settings, are usually correlated, the continuous covariate and the 

dichotomous covariate explored in the present study are assumed to be independent. In the 

present study, the linear function and the logistic function are respectively used to link the 

continuous and dichotomous covariates and the model parameters because these two linking 

functions are typical in relevant studies (e.g., Adams et al., 1997; Dai, 2009, 2013). However, the 

functional form is not limited to these two types. Theoretically, any appropriate regression 

functions, such as polynomial regression or nonlinear regression, could be used to link covariates 

with model parameters, and interactions among covariates may be allowed. Different variable 

selection methods used in regression analysis could also potentially be used for the selection of 

the covariates in the measurement model. Future research may incorporate and compare different 

functions which link covariates and model parameters. Table 3.1 presents the mathematical 

functions of the six models under investigation in the current study. 
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Table 3.1. True data-generating model and alternative models. 
Model Type Model Specification 
True model (TM) the MRM with 

∑
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and jgjggjg eC ++= 10 ααθ  
where β01 = β11 = 0 

Overspecified model (OM) the MRM with 
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Model with mismatch covariates (MISM) the MRM with 
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where β01 = β11 = 0 

Underspecified models (UNM)  
1. UNM-N the MRM without covariates 

2. UNM-D the MRM with  

∑
=

+

+
= G

g
jgg

jgg
jg

D

D

1
10

10

)exp(

)exp(

ββ

ββ
p  

where β01 = β11 = 0 
3. UNM-C the MRM with jgjggjg eC ++= 10 ααθ  

3.2 WinBUGS Implementation of Model Parameter Estimation 

In this study, R (version 2.15.2) is used to generate data sets based on the hypothesized 

distributions (i.e., the distributions for the person parameters, the item difficulty parameters and 

the covariates of interest) and the details about the design for data generation are provided in 

later sections. R2WinBUGS package in R is employed to interface with WinBUGS to carry out 
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the Bayesian estimation of the item and person parameters, mixing proportions, respondents’ 

latent group membership and the relations between covariates and model parameters.  

Based on the Bayesian perspective of mixture IRT models provided by Mislevy, Levy, 

Kroopnick and Wise (2006), the data generating model in the present study may be expressed in 

the Bayesian framework as follows: 

)()()()|(),|(),|(),,|(),,|,,,,( βαφφbDβφαCθφbθXDCXαβφbθ PPPPPPPP ∝ .          (3.5) 

In this expression, P(X|θ,b,φ) is the likelihood function of the measurement model, which 

denotes the probability of item responses conditional on individual latent class, person 

parameters, and item parameters. It is thus defined as:  
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θ and b are the vectors of person parameters and item parameters, respectively. φ is a design 

matrix indicating latent class membership with 
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where φjg takes the value of 1 if person j belongs to latent class g, and 0 otherwise. For example, 

if there are two latent classes (i.e., G=2) and two persons (i.e., J=2), with the first person 

belonging to LC1 and the second person belonging to LC2, the φ matrix is specified as









=

10
01

φ . Equation 3.5 is based on conditionally independent item responses given item 

parameters, person parameters and latent class membership. Further, P(θ|C,α) in Equation 3.4 
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provides the distribution of the person parameter conditional on the continuous covariate data 

matrix C and the linear regression parameters α, and P(φ|β,D) is the distribution of latent class 

membership conditional on the dichotomous covariate data matrix D and the logistic regression 

parameters β. Additionally, P(b|φ) is the distribution for the item parameter conditional on latent 

class membership, and P(φ) is the prior distribution for mixing proportion. P(α) and P(β) are the 

prior distributions for the regression coefficients. Possible hyper-parameters may be defined in 

the model if necessary. Finally, the joint posterior distribution P(θ,b,φ,α,β|X,C,D)  is obtained in 

the left part of Equation 3.4. 

Chapter 2 has provided a discussion of the major MCMC sampling methods in Bayesian 

estimation. In WinBUGS, the primary method that is used is the Gibbs sampler. The sampling 

method employed by WinBUGS corresponds to a hierarchy such that a method is only used if no 

previous method is appropriate (Spiegelhalter et al., 2003). Table 3.2 presents the sampling 

hierarchy used by WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000; Spiegelhalter et al., 

2003).  

Table 3.2. The hierarchy of sampling methods used by WinBUGS. 
Target distribution Sampling method 
Discrete Finite upper bound Inversion of cumulative distribution function 

Shifted Poisson Direct sampling using standard algorithms 
Continuous Conjugate Direct sampling using standard algorithms 

Log-concave Derivative-free adaptive rejection sampling 
Restricted range Slice sampling  
Unrestricted range the M-H algorithms 

As the MRM has both discrete and continuous latent variables, a combination of three 

sampling methods, the inversion method, the direct sampling and the derivative-free adaptive 

rejection sampling, are used (Cho & Cohen, 2010). The derivative-free adaptive rejection 

sampling is a type of the Gibbs sampler (Gilks, 1992).  
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In Bayesian estimation, starting values are required for each parameter being sampled to 

define the first state of each Markov chain (Gelman et al., 2003). In the present study, the 

starting values for all model parameters are randomly generated by the WinBUGS software.  

Since the initial sampled states in the Bayesian estimation are influenced by the starting values, a 

number of initial states (i.e., burn-in iterations) need to be discarded, and the estimates of item 

and person parameters are the means over the sampled iterations starting from the next iteration 

after the burn-in period (Kim & Bolt, 2007). For the latent class membership, the estimates are 

the modes of the sampled iterations after burn-in. To derive the posterior distributions for each 

model parameter, the following prior distributions are used for the estimation of the data 

generating model: 
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where G=2. For the person parameter θjg, it is not directly estimated in the true model. It is 

decomposed by the linear regression function as shown in Equation 3.3, and the intercept 

parameter, slope parameter and variance of the error term are estimated instead. τg indicates the 

precision of the error term with 2)Var()Var( egjgjg e σθ ==  and 21 egg στ = . For the MRM 

without covariates, additional prior distributions are used. 
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These prior distributions are not highly informative. They are selected based on relevant mixture 

IRT research (e.g., Cho & Cohen) and the distributions for data generation used in the present 

study. Further, in the estimation, the sum of the item difficulty parameters within each latent 

class is constrained to be zero (i.e., 0=∑
I

i
igb ) for model identification purpose. 

Two chains of 31000 iterations are run, and the burn-in cycle for each chain is 6000. To 

reduce serial dependencies across iterations, a thinning of 5 is used. Thus, the final posterior 

sample size is 10000 (5000 iterations in each chain) on which model estimates are based. The 

number of iterations and the burn-in cycle are determined based on relevant research (e.g., Li et 

al., 2009) in this area and the results from the preliminary study. Each simulation run took up to 

12 hours on a standard desktop PC with an Intel Core i7 3.40GHz processor. In the present study, 

no convergence problems discussed in Section 2.3.2 have been observed in any replications and 

the all of the results are based on converged estimation runs. Between-chain label switching has 

been observed for some replications, and this problem is handled by comparing the parameter 

estimates with the generating parameters to determine the correct latent class label. 

3.3  Simulation Design 

The present simulation study intends to explore the impact of different approaches to 

covariate inclusion on model parameter recovery, latent class assignment, and the overall model 

fit in the MRM context. Both complete and incomplete response data scenarios are considered. 

3.3.1 Fixed factors. 

To keep the simulation study manageable, certain factors are held constant in the 

simulation design, including the number of classes, the test length, the total number of subjects, 
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the distribution of subjects’ latent ability, and the distribution of covariates. Table 3.3 provides 

the factors that are fixed at a single level in the present study. 

Table 3.3. Factors that are fixed at a single level in the simulation. 
Factor Fixed Value 
The number of latent classes 2 
The test length 30 
The total number of subjects 2000 
The distribution of subjects’ latent ability LC1: N(0,1); LC2: N(1,1)  

The distribution of the covariate dichotomous: 30%:70%  
continuous: LC1: N(0,1); LC2: N(0,1) 

In the present study, the number of latent classes is set at two according to previous 

simulations in this line of research (e.g., Dai, 2009; Samuelsen, 2005; Smit et al., 1999, 2000). 

However, the exploration on covariates inclusion can be extended to more than two latent class 

scenarios using multinomial logistic functions as illustrated in concomitant-variable latent-class 

models (Dayton & Macready, 1988, 1989). The present simulation focuses on two latent classes 

as the first stage of investigation. 

A total sample of 2,000 respondents responding to 30 dichotomously-scored items are 

simulated. It is a reasonable test length that is often seen in large-scale educational assessments. 

Also, the number of respondents is fixed at 2,000 to ensure that the model parameters could be 

accurately estimated so that the analysis of model performance would not be affected by the 

imprecision in model parameter estimates. The person parameters are drawn from a standard 

normal distribution Normal(0, 1) for one latent group and a normal distribution Normal(1, 1) for 

the other. The person parameters may be drawn from the same distributions or different 

distributions, as suggested by previous mixture IRT literature (e.g., Dai, 2009, 2013). In the 

present study, a mean difference of 1 is set for the person parameters of the two latent classes so 

that the estimation of the MRM can converge more easily. Some previous studies have 

manipulated test length and the number of respondents. However, because the present study 
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focuses on different approaches to covariate inclusion and their corresponding impacts, these two 

factors are fixed to make the current simulation study manageable.  

Additionally, the proportions of the dichotomous covariate are set to be .30 and .70 based 

on a previous study (Dai, 2009). In other words, 30% of the respondents are assigned a value of 

0 on the covariate and 70% of the respondents are assigned a value of 1. The values of the 

continuous covariate are drawn from a normal distribution Normal(0, 1) respectively for the two 

latent classes. 

3.3.2 Manipulated factors. 

Other factors, including the distribution of latent classes, the average DIF effect size, the 

strength of relations between covariates and model parameters, the response data (i.e., complete 

response data and incomplete response data with different types of missingness), and the types of 

models for comparison purpose, are manipulated as shown in Table 3.4.  

Table 3.4. Manipulated factors in the simulation. 
Factor Corresponding Values 

model type (6 models) 

true model 
over-specified model 
underspecified models (3) 
a model with mismatching covariates 

mixing proportion (LC1% ; LC2%) (50%; 50%) 
(30%; 70%) 

strength of the relation between Dj and pjg 
strong (odds ratio = 10) 
weak (odd ratio=1) 

strength of the relation between Cj and θjg 
LC1: α11 = .2; LC2: α12 = .2 
LC1: α11 = .8; LC2: α12 = .8 

average DIF(i.e., the mean of |bi1-bi2|) 1.5 
1.0 

response data completeness (3 types) 

complete data 
incomplete data with booklet design 
incomplete data with conditional omitted 
response 
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As for the mixing proportion, two levels (i.e., LC1%:LC2% = 50%:50% or 30%:70%) 

are considered. Extremely unequal mixes of latent classes are not included in the present study so 

as to ensure that the parameters could be accurately recovered for each latent group.  

For the strength of relations between covariates and model parameters, odds ratios are 

used to indicate the magnitude of association between the dichotomous covariate and the latent 

class membership (Dai, 2009, 2013). In the DIF context, the odds ratio indexes the strength of 

the relation between manifest grouping variables and latent classes:  
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Specifically, when the odds ratio equals 1, the covariate has no effect on the latent class 

membership; when the odds ratio equals 10, the relation between the covariate and the latent 

class membership is fairly strong. The details of using OR to generate the latent class 

membership and the values of the dichotomous covariate are presented in Appendix A. 

Regarding the relation between the continuous covariate and the latent trait in Equation 3.3, α1g 

denotes the magnitude of the correlation. The strength of the correlation is also manipulated at 

two level as either weak (i.e., α11=.2; α12=.2), or strong (i.e., α11=.8; α12=.8). 

 The item parameters are drawn respectively from the distribution Normal(0,1) and then 

reordered to create two levels of average DIF effect sizes (i.e., the mean of |bi1-bi2|). When the 

average DIF effect size equals 1.5, 80% of the items have a difference in item difficulty greater 

than 1.0 between the two latent classes; when the average DIF effect size equals 1.0, 40% of the 

items have a difference in item difficulty greater than 1.0. These two relatively large DIF effect 

size levels are chosen based on the preliminary study in consideration of both the complete and 

incomplete response data scenarios. Both DIF size levels in the present simulation are quite large 

to ensure that the latent structure and parameters could be accurately recovered. The generated 

54 



 

item parameters represent a wide range of parameter values that are observed in operational tests. 

The two sets of item difficulty values used to generate the item response data are both presented 

in Table 1 in Appendix A.  

As shown in the table, the item parameters are specified for the corresponding simulation 

conditions as opposed to a random generation of different sets of item parameters based the 

distributions assumed. Given that the generation of item response data based on specified model 

parameter is in itself a random process, allowing the generation of item parameters to be random 

may bring more sampling error into the data generation. Thus, the specified item parameters with 

desired average DIF effect sizes are used in the current simulation to remove the potential 

sampling error in the data generation process. 

Additionally, in the present study, both complete response data and incomplete response 

data with different types of missingness are considered because missing data scenarios are 

prevalent in practical assessments settings. The reasons for missing responses may generally be 

classified into two major categories: missingness by test design such as with matrix-sampled 

booklets, and nonresponses such as with omitted and not-reached items (Ludlow & O’Leary, 

1999). Not-reached items usually occur when examinees fail to complete a test within a given 

time, whereas omitted items are associated with examinees’ low ability levels or lack of 

motivation in low-stake assessments (e.g., De Ayala, Plake, & Impara, 2001). In this study, two 

general types of missing data are of primary interest: the missingness by design through balanced 

incomplete block spiraling (BIB) which is implemented in many large-scale assessments, such as 

the National Assessment of Educational Progress (NAEP) and the Programme for International 

Student Assessment (PISA), and the missingness by omitted items with low-ability individuals 

omitting difficult items which are essentially conditional missing. The not-reached item scenario 
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is not considered in the present study, because it is suggested that not-reached items are not used 

in item calibration or scaling in practical settings (Lord, 1980). The missingness by test design is 

considered as missing completely at random, whereas the nonresponse by omitted items is 

considered missing not at random (Finch, 2008).  

For the missingness due to booklet design, one condition is simulated based on a previous 

study (von Davier, Gonzalez, & Mislevy, 2009) and practical test settings (i.e. NAEP; NCES, 

2009): items are randomly assigned to one of three blocks named A, B, and C, and each person 

responds to two of these blocks (i.e., a total of 20 items out of 30 items) such that the booklets 

are organized as (AB)(BC)(CA), to which are responded by 667, 667, and 666 examinees, 

respectively. The total proportion of missing data in this condition is .33. 

Regarding the other type of missingness, omitted responses, previous literature indicates 

that this type of missingness usually affects 10% to 50% of the items in a test (e.g., Chen & Jiao, 

2012; Finch, 2011). Thus, the omitted responses are simulated according to the upper bound: a 

total of 400 respondents omit 50% of the items (i.e., 15 items). The total proportion of missing 

data in this condition is .10. In both types of missingness, missing data only occur in the item 

responses but not in the covariate information. 

In summary, all the levels of the manipulated factors are carefully chosen based on both 

the previous literature in this line of research and the preliminary simulation runs. Certain 

extreme levels, such as a large amount of missing data (i.e., 60%), extremely unequal latent 

classes (i.e., 15%:85%) and small DIF size (i.e., 0.5), are excluded from the present design 

because they have been found to result in serious convergence issues (i.e., non-mixing or within 

chain label switching) in the preliminary study.  
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The present study includes 2×2×2×2×3=48 simulation conditions. With 25 data sets for 

each condition, there are 1200 data sets generated. For each data set, 6 models are used to fit the 

data. Thus, there are a total of 6×48=288 simulation cells with 25×288=7200 replications. Table 

2 in Appendix A presents a complete list of the simulation conditions for data generation in the 

present study. In the preliminary study, 100 replications are conducted in one condition for the 

data-generating model. Figure 3.3 and 3.4 present the standard errors of the item parameters for 

the two latent classes as a function of the number of replications. Three items, including an easy, 

a medium and a difficult item, are selected from each latent class. Although the average standard 

errors show different decreasing or increasing patterns when the replication number ranges 

between 2 to 15, they tend to be stable when the replication number reaches 20.  

 

Figure 3.3. The standard errors for the item parameters by the number of replications (LC1). 
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Figure 3.4. The standard errors for the item parameters by the number of replications (LC2). 

Figure 3.5 displays the standard errors of the person parameters for a low-ability, a 

middle-ability, and a high-ability person. The patterns of the average standard errors for the 

person parameters are similar to those for the item parameters. Figure 3.6 shows the bias for the 

same three persons, and the average bias also tends to be stable when the replication number is 

around 20. 

 

Figure 3.5. The standard errors for the person parameters by the number of replications. 
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Figure 3.6. The bias for the person parameters by the number of replications. 

Additionally, the average standard errors for the mixing proportion by the number of 

replications are presented in Figure 3.7. There is little fluctuation after the number of replications 

exceeds 15. Given all the plots displayed above and suggestions from previous literature on 

Bayesian estimation of IRT models (e.g., Jiao et al., 2012), 25 replications per cell are adopted 

by the present study considering the large amount of time required for the Bayesian estimation. 

 

Figure 3.7. The standard errors for the mixing proportion by the number of replications. 
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3.3.3 Evaluation criteria. 

The estimation effectiveness are analyzed in three outcomes: a) the accuracy of latent 

group classification, b) the accuracy of parameter recovery, and c) the overall model fit as 

indicated by the proportion of correct model selections.  

Latent group classification. The accuracy of the latent group classification is assessed 

using the proportion of subjects that are assigned to their true latent class based on their 

estimated latent class membership. 

Parameter recovery. The recovery of model parameters is evaluated with respect to four 

properties of the parameter estimates: a) the proportion of replications for which the 95% 

confidence interval around the item and person parameter estimates covered the true value for 

each simulation cell, b) the bias for the item, person and regression coefficient parameter 

estimates, if applicable, c) the standard error (SE) of the item, person parameter and regression 

coefficient estimates (i.e., precision), if applicable and d) the root mean squared error (RMSE) of 

the item, person parameter and regression coefficient estimates, if applicable. The mathematical 

equations for bias, SE and RMSE are provided in Equation 3.9 to 3.11 as follows: 
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where R is the number of replications in each simulation cell, ω̂  is the posterior estimate of a 

model parameter and ω̂  is the mean of a model parameter estimates across replications. 

Different from the conventional way of computing SE in simulation studies, (R-1) is used in the 

present study as the denominator for the calculation of SE, as a correction for the degree of 

freedom when the replication number is small; otherwise, there would be a downward bias in the 

SE. 

The SE represents random error in the estimation, whereas the bias represents systematic 

error. Asymptotically, the mean squared error (i.e., the squared RMSE) for each person or item 

may be decomposed into the variance (i.e., the squared standard error) and the squared bias. For 

unbiased estimator, the mean squared error equals the variance. However, for marginal statistics 

(i.e., RMSE, SE and bias averaged across persons or items), this relation does not hold. Although 

RMSE is considered as a combination of SE and bias, it has been suggested in IRT literature 

(e.g., Jiao et al., 2012) that RMSE have the potential of selecting the better fitting model (i.e., 

true model). In this regard, the RMSE may provide additional information above and beyond the 

bias and SE, and it is thus included in the present study. In the present, the average bias for the 

item parameter is supposed to be 0 because the item parameter is used for scale identification. 

Overall model fit indices. The following fit statistics are also obtained for each model 

under different simulation conditions: Akaike’s information criterion (AIC; Akaike, 1987), 

Bayesian Information Criterion (BIC; Schwartz, 1978), a correction of AIC based on sample size 

and the number of parameters (AICc; Burnham & Anderson, 2002), the consistent AIC (CAIC; 

Bozdogan, 1993), the sample-size adjusted BIC (SABIC; Sclove, 1987) and deviance 

information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linden, 2002). These fit 

indices are the most commonly used indices for model selection purpose in mixture IRT, as well 
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as in growth/factor mixture modeling literature. Among these information-based model fit 

indices, AIC only penalizes for the number of parameters and it tends to be negatively biased as 

the ratio of the number of parameters to sample size increases. BIC, AICc, CAIC and SABIC 

penalize for sample size and the number and parameters in different ways. AICc corrects for 

small samples and is preferred to be used when the ratio of sample size to the number of 

parameters is less than 40 (Burnham & Anderson, 2002). CAIC has a larger penalty for over-

parameterization than AIC does and it is an asymptotically unbiased criterion (Bozdogan, 1993). 

DIC is a model fit index designed for Bayesian posterior estimates of model parameters. Some 

research (e.g., Li et al., 2009; Magidson & Vermunt, 2004) has recommended the use of BIC for 

mixture distribution model selection, because it outperforms other indices in terms of 

consistency; yet the choice of different model fit indices is still inconclusive because their 

relative performance of information indices is sometimes model and design specific. In the 

present study, 6 indices are included in order to provide a comprehensive overview of the model 

fit with regard to different approaches to covariate inclusion. 
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where )(ωD  is the posterior mean of the deviance between the data and a model in Bayesian 

estimation, p is the number of parameters, N is the sample size and pD denotes the difference 

between )(ωD  and )ˆ(ωD . As model fit indices are not provided in the WinBUGS output, they 

are calculated in R (version 2.15.2) for the present study to select the best fitting model. 

3.4 Real Data Examples 

The real data analyses are based on the PISA 2009 U.S. data from students’ reading 

assessment. This data set is selected because the Rasch model is used for the calibration of PISA 

dichotomous items (OECD, 2009). No specific inferences about items or respondents are drawn 

based on the real data examples in the present study and they are only used to illustrate different 

approaches to covariate inclusion in the MRM applications.  

The first sample consisting of complete response data from 1,525 15-year-old students to 

16 dichotomously-scored reading items is extracted from this data set. The items are obtained 

from booklet 2, 4, 5 and 7. As the first step of investigation, ESCS (i.e., a weighted likelihood 

estimate of student’s economic, social and cultural status) is used as the continuous covariate. As 

for the dichotomous covariate, the preliminary study has explored a number of categorical 

variables, including gender (i.e., male or female), immigrant status (i.e., native, first-generation, 

second-generation), language at home (i.e., language at test or not), school type (public or private) 

and reading enjoyment time. Finally, reading enjoyment time is chosen as a moderately 

informative covariate. The variable reading enjoyment time is a five-category variable (i.e., 1=I 

don’t read for enjoyment; 2=30 minutes or less a day; 3=between 30 and 60 minutes; 4=1 to 2 

hours a day; 5=more than 2 hours a day) and is thus dichotomized for use in the present study 

(0=30 minutes or less; 1=more than 30 minutes). No missing data (i.e., missing by nonresponse 

or booklet design) are included in this sample.  
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The second sample is based on the dichotomous item response data with missingness by 

booklet design (i.e., 7=not administered) included, and the three covariates mentioned above. A 

subject is deleted either if any of the covariates has a missing value or any item response is 

missing as a non-reached item (i.e., 8=unreached). This sample includes a total of 4,892 students 

responding to 123 dichotomous items. 

Ten models are fitted to the two samples and estimates of all the model parameters are 

obtained. The ten models include: 1) the Rasch model (RASCH); 2) the Rasch model with ESCS 

as the predictor of the person parameter (RASCH-C); 3) the Rasch model with reading 

enjoyment time as the predictor of the person parameter(RASCH-D); 4) the Rasch model with 

both reading enjoyment time and ESCS as predictors of the person parameter (RASCH-CD); 5) 

the two-class MRM without covariates (UNM-N); 6) the two-class MRM with ESCS as the 

predictor of the person parameter (UNM-C); 7) the two-class MRM with reading enjoyment time 

as the predictor of the latent class membership (UNM-D); 8) the two-class MRM with ESCS as 

the predictor of the person parameter and reading enjoyment time as the predictor of the latent 

class membership (TM); 9) the two-class MRM with both reading enjoyment time and ESCS as 

predictors of both the person parameter and the latent class membership (OM); and 10) the two-

class MRM with reading enjoyment time as the predictor of the person parameter and ESCS as 

the predictor of the latent class membership (MISM). The preliminary study has found non-

convergence issues when fitting the data using the MRM with covariates and more than two 

latent classes. Considering sample size, percentage of missing data, and model complexity, the 

mixture Rasch models with more than two latent classes are not further explored in the real data 

applications. 
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Chapter 4 Results 

Covariate inclusion in IRT models is not a new topic, yet the exploration of different 

approaches to including covariates in mixture IRT models still needs further research. The 

present study focuses on an investigation of different approaches to adding dichotomous and 

continuous covariates into the mixture Rasch model, with both complete and incomplete 

response data. The simulation study described in Chapter 3 explored the impact of six 

manipulated factors on the model performance as indexed by three categories of evaluation 

criteria, including latent group classification, parameter recovery and overall model fit. Two 

empirical data analyses were conducted to illustrate the impact of different specifications of 

covariate effects for an MRM in real applications. 

4.1 Results of the Simulation Study 

For a clear presentation of the results, abbreviations of manipulated factors and model 

names were used in the tables and figures presented in the following sections. Table 4.1 listed all 

the abbreviations and their corresponding explanations. 

Table 4.1. Variable and model name abbreviations. 
Abbreviations Explanation 
Manipulated factors:  
Model Model type 
Prop Mixing proportion 
OR Strength of the relation between Dj and pjg 
Corr Strength of the relation between Cj and θjg 
DIF Average DIF(i.e., the mean of |bi1-bi2|) 
Data Response data completeness 
Model names (see Table 3.1 for details): 
TM Data-generating model 
UMN-N The MRM without covariates 
UMN-C The MRM with the continuous covariate only 
UMN-D The MRM with the dichotomous covariate only 
OM The over specified model 
MISM The MRM with mismatching covariates 
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For all the outcome measures, descriptive statistics were provided in the following 

sections. In order to identify statistically significant effects of the manipulated factors on the 

model performance evaluation criteria (except overall model fit), several repeated measures 

analyses of variance (ANOVA) were performed in SPSS (version 19.0). The manipulated factors, 

including mixing proportion, strength of the relation between Dj and pjg, strength of the relation 

between Cj and θjg, DIF and response data completeness, were used as between-replication 

variables. Model was used as a within-replication variable because each generated data set was 

fitted by six models repeatedly. The sphericity assumption was checked for repeated measures 

ANOVA, and the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

The correction does not change the value of the F-statistic, but changes the degrees of freedom 

of the F-distribution. The smaller degrees of freedom in both the numerator and the denominator 

result in larger critical values, so that the inflation of Type I error due to the violation of the 

sphericity assumption can be adjusted. 

Additionally, although repeated measures ANOVA assumes that the dependent variable 

is normally distributed for each level of the with-replication variable, it is also known that 

ANOVA is robust to moderate violation of the normality assumption (Glass, Peckham, & 

Sanders, 1972; Harwell, Rubinstein, Hayes, & Olds, 1992; Lix, Keselman, & Keselman, 1996). 

Considering that the sample size with respect to the repeated variable (i.e., model) was relatively 

large in the current simulation, the normality assumption was not a big concern for the present 

study. However, arcsine transformation was still implemented in the preliminary analyses of the 

simulation results and the repeated ANOVA findings were compared with those obtained from 

the original data, and no much difference was found in terms of the statistically significant 
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effects. In order to make the interpretation more meaningful, the results based on the original 

data were reported in later sections.   

For all the main effects and interactions, effect sizes as indicated by Cohen’s f were 

calculated according to Equation 4.1: 

2

2

1 η
η
−

=f ,                                                             (4.1) 

where η2 describes the ratio of variance explained in the dependent variable by a manipulated 

factor (i.e., η2=SSfactor/SStotal). 

Only those statistically significant effects with at least an f value of .1 (i.e., small effect 

size) were reported. The effect size cutting values are negligible (f<.1), small (.1≤f<.25), 

moderate (.25≤f<.4), and large (f≥.4) in the ANOVA (Cohen, 1988). Nonsignificant or 

significant results with negligible effect sizes were not presented in the ANOVA tables in the 

present study. The effect sizes of all four-way and five-way interactions were negligible in the 

current study, thus none of them were presented.  Effect sizes were reported in the following 

sections both in the table and inside the parenthesis when interpreting the effects of studied 

factors. 

4.1.1 Latent group classification. 

The accuracy of latent group classification was evaluated using the correct classification 

rate, which is the proportion of subjects in the sample that are assigned to their true latent class 

based on their estimated latent class membership. 

Table 4.2 presented the descriptive statistics of correct classification rate by six 

manipulated factors. Overall, the average correct classification rate was very high and usually 

67 



 

above .900, with the exception of the booklet design condition. This may be due to the large DIF 

size and separations between latent classes simulated in the present study. As expected, the true 

model with both dichotomous and continuous covariates correctly specified resulted in in the 

most accurate latent class assignment, although the difference between the true model and the 

overspecified model was almost negligible. Also, when either of the covariates was correctly 

specified in the model (i.e., UNM-C and UNM-D), the accuracy of latent group classification 

was better than the conditions in which no covariates were included (i.e., UNM-N).  The 

underspecified model with only the dichotomous covariate included resulted in slightly higher 

correct classification rate than that with only the continuous covariate included. The MRM with 

mismatching covariates resulted in the worst correct classification rate, and it was even worse 

than not including any covariates.  

Table 4.2. The descriptive statistics of correct classification rate by manipulated factors. 
Factors Levels M SD 
Model TM 0.936 0.031 
 UMN-N 0.923 0.037 
 UMN-C 0.929 0.033 
 UMN-D 0.931 0.034 
 OM 0.935 0.031 
 MISM 0.907 0.068 
    
Prop .5/.5 0.932 0.033 
 .3/.7 0.921 0.049 
    
OR 1 0.923 0.043 
 10 0.930 0.041 
    
Corr .2;.2 0.926 0.037 
 .8;.8 0.928 0.047 
    
DIF 1 0.912 0.049 
 1.5 0.941 0.027 
    
Data Complete 0.960 0.014 
 Booklet Design 0.893 0.053 
 Omitted Response 0.927 0.011 
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In addition, equal mixing proportion resulted in better latent group classification, and 

larger DIF size also helped assign subjects to their correct latent class. Regarding odds ratio and 

correlation which indexed the strength of relations between the covariates and the model 

parameters, the stronger the relations were, the higher the correct classification rate. The average 

correct latent group classification rates for all the simulation cells were fully presented in Table 3 

in Appendix A. 

 

  

Notes: TM: the data-generating model; UNM-N: the MRM without covariates; UNM-C: the 
MRM with the continuous covariate only; UNM-D: the MRM with the dichotomous covariate 
only; OM: the over specified model; MISM: the MRM with mismatching covariates. 
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Table 4.3. ANOVA results of manipulated factors on the correct classification rate. 
Source F value p value η2 Cohen’s f 
Within(Huynh-Feldt Correction):     
Model 1584.284 <.001 0.054 0.239 
Model* Data Completeness 579.142 <.001 0.039 0.203 
Model*OR 302.962 <.001 0.010 0.102 
Model*Corr 656.639 <.001 0.022 0.151 
Model*DIF 418.804 <.001 0.014 0.120 
Data*Model*Corr 314.765 <.001 0.021 0.148 
Data*Model*DIF 287.232 <.001 0.020 0.141 
     
Between:     
Data Completeness 8019.088 <.001 0.421 0.853 
Prop 639.619 <.001 0.016 0.131 
DIF 4440.138 <.001 0.117 0.363 
Data Completeness*Prop 582.768 <.001 0.031 0.178 
Data Completeness*DIF 1730.391 <.001 0.091 0.316 

 

 

 

Figure 4.1a. Statistically significant two-way interactions among between-replication variables 
on the correct classification rate. 
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Figure 4.1b. Statistically significant two-way interactions between Model and other between-
replication variables on the correct classification rate. 
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Figure 4.1c. Statistically significant three-way interactions among between-replication variables on the correct classification rate. 
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The ANOVA results presented in Table 4.3 indicated that estimation model, data 

completeness, mixing proportion, and DIF size had significant effects on the correct 

classification rate. The effect sizes were large for data completeness (f=0.853), moderate for DIF 

(f=0.363) and small for model (f=0.239) and mixing proportion (f=0.131). The complete data 

scenario resulted in the most accurate latent class assignment, and booklet design led to the worst 

latent group classification. Besides, larger DIF and equal mixing proportion tended to result in 

higher correct classification rate. Post-hoc pairwise comparison showed that all pairwise 

differences were statistically significant, thus they were not reported in details here. 

In addition to the main effects, the interaction terms of model by data completeness 

(f=0.203), odds ratio (f=0.102), correlation (f=0.151) and DIF (f=0.120), and the interactions of 

data completeness by mixing proportion (f=0.178) and DIF (f=0.316) were also found to be 

significantly related to the accuracy of latent class assignment. Further, three-way interactions 

among data completeness, model and correlation (f=0.148), and among data completeness, 

model and DIF (f=0.141) were also found to be statistically significant. The two-way interactions 

were depicted in Figure 4.1a and 4.1b, and the three-way interactions were presented in Figure 

4.1c. As shown in Figure 4.1a, the effect of data completeness tended to be stronger when the 

mixing proportion was unequal, with the booklet design resulted in remarkably worse latent class 

assignment. Similarly, the booklet design also resulted in dramatically low correct classification 

rate in the case of smaller DIF. However, the latent class assignment in the omitted response 

conditions seemed largely unaffected by DIF or mixing proportion.  

In Figure 4.1b, it was shown that the correct classification rate was much higher for the 

true model, the MRM with only the dichotomous covariate and the overspecified model when 

the relation between the dichotomous covariate and the latent class membership was stronger; 
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and similarly, the correct classification rate was higher for the true model, the MRM with only 

the continuous covariate and the overspecified model when the relation between the continuous 

covariate and the person parameter was stronger. The latent class assignment of the MRM 

without covariates remained unaffected by odds ratio or correlation, whereas the classification 

for the MRM with mismatching covariates was worse when the relations between the covariates 

and the model parameters were stronger. Moreover, the two plots at the bottom of Figure 4.1b 

indicated that the effect of model on the correct classification rate was more pronounced when 

DIF was smaller or the booklet design was present, with the MRM without covariates and the 

MRM with mismatching covariates performing even worse in terms of latent class assignment in 

these two situations. 

With regard to the three-way interactions, the plots at the upper part of the panel in 

Figure 4.3c showed that there was merely an interaction between model and correlation in the 

complete data scenario, and even the main effects of correlation and model on the latent class 

assignment were negligible in this situation. However, in the omitted response situation, the 

correct classification rate was higher for the true model, the MRM with only the continuous 

covariate and the overspecified model when the correlation was stronger, whereas the latent class 

assignment of the MRM without covariates, the MRM with only the dichotomous covariate and 

the MRM with mismatching covariates remained unaffected by the correlation. In the booklet 

design scenario, the interaction between model and correlation was even more pronounced, with 

the correct classification rate much higher for the true model, the MRM with only the continuous 

covariate and the overspecified model and dramatically lower for the MRM with mismatching 

covariates when the correlation was stronger, as compared with the weaker correlation situations. 

Finally, the bottom part of the panel indicated that the interaction between model and DIF was 
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almost negligible when omitted responses were present. Moreover, the main effects of DIF and 

model were also minimal in this situation. In the complete data scenario, the effect of DIF was 

consistent regardless of model types. The interaction between model and DIF was not observed 

in this situation. However, in the booklet design, the interaction was much more pronounced, 

with the MRM without covariates and the MRM with mismatching covariates performing much 

worse in the latent class assignment than the other models when DIF size was smaller. The 

importance of covariate inclusion on latent group classification and its relations with other 

factors are discussed in more details in Chapter 5. 

In the following sections, the ANOVA results of manipulated factors on the evaluation 

criteria of model parameter recovery, including item parameter recovery, person parameter 

recovery and regression parameter recovery, are respectively presented. 

4.1.2 Model parameter recovery. 

In the present simulation, the recovery of item, person and regression parameters was 

evaluated separately in order to investigate the effects of manipulated factors on different aspects 

of model parameter recovery. Item parameters were examined in terms of SE, RMSE, and the 

proportion of replications for which the 95% confidence interval around the parameter estimates 

covered the true value (i.e., 95% coverage). As the item parameters were used for scale 

identification purpose, on average there was no bias involved in the item parameter estimates. 

For person parameters, they were similarly evaluated with respect to bias, SE, RMSE and 95% 

coverage. As presented in Equation 3.8 to 3.10, bias quantifies the systematic error in the 

estimation, and SE represents the random error, whereas RMSE combines the information of 

bias and SE to reflect overall item or person parameter recovery. For the 95% coverage, it is 

expected that the coverage rate approximates the nominal level (i.e., 0.950) if the model is 
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correctly specified. The discrepancy between the coverage rate and the nominal coverage 

probability may indicate model misspecification or deviations from normality for the estimator 

distribution. 

Additionally, the regression parameters which linked the covariates with the model 

parameters were also evaluated in terms of bias, SE and RMSE. It was of interest that whether 

the regression parameters were underestimated or overestimated in the one-step estimation of the 

conditional model used in the present study. 

Item parameter recovery. Table 4.4 presented the summary statistics of item parameter 

recovery evaluation criteria by six manipulated factors, and the average item parameter SE, 

RMSE and 95% coverage were completely displayed in Table 4a through 4c in Appendix A. 

Across all the other factors, the true model resulted in the smallest SE and RMSE, and the 

highest 95% coverage rate, followed by the overspecified model with negligible difference. Also, 

when either of the covariates was correctly specified in the model (i.e., UNM-C or UNM-D), the 

item parameter recovery was better than the MRM with no covariates included. The MRM with 

only the continuous covariate resulted in slightly better recovery than the MRM with only the 

dichotomous covariate. Similar to the performance of the MRM with mismatching covariates on 

the latent class assignment, this model also resulted in the worst item parameter recovery, and it 

was even worse than the MRM without covariates. 

Moreover, equal mixing proportion or stronger relations between the covariates and the 

model parameters tended to result in better item parameter recovery. It was within expectation 

because a sample size of 1,000 per class was more adequate than unequal sample sizes for the 

item parameter estimation of the mixture Rasch model. Also, smaller DIF size helped recover 

item parameters. As expected, in the booklet design condition which was accompanied by the 
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largest amount of missing data, the item parameter recovery was the worst, whereas the complete 

data scenario led to the best recovery of item parameters. 

 

Table 4.4. The descriptive statistics of item parameter by manipulated factors. 

Factors Levels 
Item Parameter 

SE 
Item Parameter 

RMSE 95% Coverage 

M SD M SD M SD 
Model TM 0.089 0.024 0.136 0.103 0.868 0.103 
 UMN-N 0.091 0.024 0.144 0.115 0.849 0.116 
 UMN-C 0.089 0.023 0.140 0.107 0.860 0.109 
 UMN-D 0.092 0.029 0.142 0.110 0.859 0.112 
 OM 0.089 0.024 0.136 0.103 0.867 0.104 
 MISM 0.094 0.029 0.158 0.132 0.823 0.145 
        
Prop .5/.5 0.085 0.020 0.100 0.032 0.892 0.055 
 .3/.7 0.097 0.029 0.185 0.142 0.816 0.145 
        
OR 1 0.091 0.026 0.144 0.112 0.850 0.118 
 10 0.090 0.025 0.141 0.110 0.859 0.114 
        
Corr .2;.2 0.091 0.025 0.143 0.113 0.852 0.115 
 .8;.8 0.091 0.026 0.142 0.110 0.856 0.117 
        
DIF 1 0.083 0.017 0.121 0.074 0.864 0.088 
 1.5 0.098 0.030 0.164 0.136 0.844 0.138 
        
Data Complete 0.072 0.004 0.073 0.005 0.953 0.005 
 Booklet Design 0.119 0.025 0.250 0.137 0.749 0.138 
 Omitted Response 0.082 0.007 0.104 0.020 0.861 0.022 
Notes: TM: the data-generating model; UNM-N: the MRM without covariates; UNM-C: the 
MRM with the continuous covariate only; UNM-D: the MRM with the dichotomous covariate 
only; OM: the over specified model; MISM: the MRM with mismatching covariates. 
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Table 4.5a. Statistically significant ANOVA results of manipulated factors on the SE of item 
parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2832=407.610 <.001 0.189 0.483 
Prop F1, 2832=69.398 <.001 0.016 0.128 
DIF F1, 2832=118.199 <.001 0.034 0.187 
Data*DIF F2, 2832=25.578 <.001 0.015 0.122 
 

 

 

Figure 4.2a. Statistically significant two-way interactions among between-replication variables 
on the SE of item parameters. 
  

0.
00

0.
05

0.
10

0.
15

0.
20

Data Completeness

S
E

DIF=1
DIF=1.5

Complete Booklet Design Omitted Re

78 



 

Table 4.5b. Statistically significant ANOVA results of manipulated factors on the RMSE of item 
parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2832=173.949 <.001 0.097 0.327 
Prop F1, 2832=103.804 <.001 0.029 0.172 
Data*DIF F2, 2832=75.260 <.001 0.042 0.209 
 

 

Figure 4.2b. Statistically significant two-way interactions among between-replication variables 
on the RMSE of item parameters. 
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Table 4.5c. Statistically significant ANOVA results of manipulated factors on the 95% coverage 
of item parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2832=292.612 <.001 0.140 0.403 
Prop F1, 2832=123.318 <.001 0.029 0.174 
Data*Prop F1, 2832=100.812 <.001 0.048 0.225 
Data*DIF*Prop F2, 2832=31.418 <.001 0.015 0.123 
 

 

Figure 4.2c. Statistically significant two-way interactions among between-replication variables 
on the 95% coverage of item parameters. 
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Figure 4.2d. Statistically significant three-way interactions among between-replication variables on the 95% coverage of item 
parameters. 
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The ANOVA results presented in Table 4.5a to 4.5c indicated that data completeness, 

mixing proportion, and DIF had statistically significant impacts on the SE of item parameters. 

Among them, data completeness had a large effect size (f=0.483), and mixing proportion 

(f=0.128) and DIF (f=0.187) respectively had a small effect size. In addition, data completeness 

interacted significantly with DIF with a small effect size (f=0.122). As shown in Figure 4.2a, the 

effect of data completeness on the SE of item parameters was more pronounced when DIF was 

larger, with the booklet design scenario resulting in much larger item parameter SE than the 

complete data and omitted response conditions. 

Regarding the RMSE of item parameters, data completeness and mixing proportion had 

statistically significant effects, respectively with a moderate (f=0.327) and a small effect size 

(f=0.172). The interaction term of data completeness by mixing proportion was also statistically 

significant with a small effect size (f=0.172). Figure 4.2b indicated that the effect of data 

completeness was remarkably large in unequal mixing proportion conditions, with the booklet 

design resulting in very large RMSE of item parameters. 

Similar to the results of RMSE, data completeness, mixing proportion and their 

interactions also had statistically significant effects on the 95% coverage of item parameters. The 

interaction among data completeness, mixing proportion and DIF was also statistically 

significant. The effect size was large for data completeness (f=0.403), and small for mixing 

proportion (f=0.174), the two-way interaction (f=0.225) and the three-way interaction (f=0.123). 

Figure 4.2c indicated that the effect of data completeness on the 95% coverage of item 

parameters was large in unequal mixing proportion conditions, with the booklet design leading to 

a very low coverage rate of around 0.650. However, the 95% coverage in the complete data and 

omitted response conditions remained largely unaffected by mixing proportion. Further, as 
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shown in Figure 4.2d, there seemed not to be any effects of DIF, mixing proportion or their 

interaction in the complete data and omitted response scenarios. Nevertheless, in the booklet 

design condition, it was interesting to find that larger DIF resulted in slightly higher 95% 

coverage rate for item parameters when the mixing proportion was equal; whereas larger DIF 

resulted in dramatically lower 95% coverage rate when the mixing proportion was unequal. 

Although the descriptive statistics showed some differences in the item parameter 

evaluation criteria with respect to model, in the repeated measures ANOVA, the effect size of 

model was not large enough to claim a practical significance. 

Person parameter recovery. Table 4.6 presented the descriptive statistics of person 

parameter recovery evaluation criteria by six manipulated factors. The average person parameter 

bias, SE, RMSE and 95% coverage rate were completely displayed in Table 5a to 5d in 

Appendix A. Overall, there tended to be a positive bias in the person parameter estimates, 

indicating an overestimation of the person parameters. However, the marginal bias for the 

booklet design condition across other manipulated factors was negative, suggesting an 

underestimation in this condition. For the SE of person parameters, there were negligible 

differences among the true model, the MRM with only the continuous covariate and the 

overspecified model, and they resulted in smaller SE than the other three model. It indicated that 

the inclusion of the continuous covariate, rather than the dichotomous covariate, may potentially 

lead to a reduction in the SE of person parameter estimates. With regard to the RMSE which 

indicated the overall recovery of person parameters, it was found that the true model and the 

overspecified model resulted in the best person parameter recovery, followed by the MRM with 

only the continuous covariate with negligible difference. The MRM with mismatching covariates 

again performed worse than the MRM without covariates in terms of person parameter recovery. 
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For other manipulated factors, unequal mixing proportion, stronger relations between covariates 

and model parameters or smaller DIF resulted in better recovery of person parameters. As with 

other evaluation criteria, the person parameter recovery was the best for the complete data 

scenario, followed by the omitted response condition, and the booklet design was the worst. The 

95% coverage seemed not to differ much according to different levels of manipulated factors. 

Additionally, it was also interesting to find that the omitted response condition led to the largest 

magnitude of bias and the lowest 95% coverage rate as compares with the other two data 

completeness conditions, suggesting that the conditional missing data mechanism may have an 

impact on the recovery of person parameters but not item parameters.
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Table 4.6. The descriptive statistics of person parameter by manipulated factors. 

Factors Levels 
Person Parameter 

Bias 
Person Parameter 

SE 
Person Parameter 

RMSE 95% Coverage 

M SD M SD M SD M SD 
Model TM 0.025 0.061 0.144 0.040 0.184 0.056 0.948 0.011 
 UMN-N 0.022 0.075 0.162 0.042 0.202 0.065 0.946 0.012 
 UMN-C 0.031 0.065 0.143 0.042 0.185 0.059 0.947 0.012 
 UMN-D 0.022 0.071 0.163 0.047 0.198 0.066 0.946 0.011 
 OM 0.024 0.063 0.145 0.041 0.184 0.058 0.948 0.011 
 MISM 0.027 0.080 0.163 0.043 0.207 0.070 0.942 0.014 
          
Prop .5/.5 0.043 0.035 0.179 0.029 0.217 0.048 0.948 0.010 
 .3/.7 0.007 0.087 0.128 0.040 0.170 0.067 0.944 0.013 
          
OR 1 0.026 0.071 0.154 0.044 0.195 0.064 0.946 0.012 
 10 0.025 0.067 0.153 0.042 0.191 0.062 0.946 0.011 
          
Corr .2;.2 0.022 0.072 0.161 0.042 0.199 0.065 0.945 0.012 
 .8;.8 0.028 0.065 0.146 0.041 0.188 0.060 0.946 0.012 
          
DIF 1 0.029 0.023 0.135 0.032 0.158 0.035 0.948 0.008 
 1.5 0.022 0.095 0.172 0.046 0.229 0.064 0.944 0.014 
          
Data Complete 0.010 0.003 0.134 0.033 0.146 0.035 0.955 0.001 
 Booklet Design -0.016 0.091 0.181 0.046 0.234 0.067 0.950 0.007 
 Omitted Response 0.082 0.029 0.145 0.034 0.200 0.046 0.933 0.009 
Notes: TM: the data-generating model; UNM-N: the MRM without covariates; UNM-C: the MRM with the continuous covariate only; 
UNM-D: the MRM with the dichotomous covariate only; OM: the over specified model; MISM: the MRM with mismatching 
covariates. 
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Table 4.7a. Statistically significant ANOVA results of manipulated factors on the bias of person 
parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,95952=2833.373 <.001 0.048 0.223 
Data*Prop F2, 95952=1422.504 <.001 0.024 0.156 
Data*DIF F2, 95952=1176.261 <.001 0.020 0.142 
Data*Prop*DIF F2, 95952=977.362 <.001 0.016 0.129 
 

  

Figure 4.3a. Statistically significant two-way interactions among between-replication variables 
on the bias of person parameters. 
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Figure 4.3b. Statistically significant three-way interactions among between-replication variables on the bias of person parameters. 
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Table 4.7b. Statistically significant ANOVA results of manipulated factors on the SE of person 
parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,95952=707.581 <.001 0.014 0.118 
Prop F1,95952=2181.871 <.001 0.021 0.147 
DIF F1,95952=1151.505 <.001 0.011 0.106 
 

 

 

Table 4.7c. Statistically significant ANOVA results of manipulated factors on the RMSE of 
person parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,95952=1367.923 <.001 0.026 0.163 
Prop F1,95952=1133.556 <.001 0.011 0.104 
DIF F1,95952=264.484 <.001 0.025 0.159 
 

 

 

Table 4.7d. Statistically significant ANOVA results of manipulated factors on the 95% Coverage 
of person parameters. 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,95952=873.849 <.001 0.015 0.122 
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The ANOVA results presented in Table 4.7a to 4.7d showed that data completeness had a 

statistically significant effect on the bias of person parameters with a moderate effect size 

(f=0.223). In addition, data completeness interacted significantly with mixing proportion 

(f=0.156) and DIF (f=0.142) with respect to the bias of person parameters. The three-way 

interaction term of data by mixing proportion and DIF were also found to be statistically 

significant with a small effect size (f=0.129). The two-way interactions were displayed in Figure 

4.3a. With equal mixing proportion, the effect of data completeness was small, and the booklet 

design resulted in slight positive bias in the person parameter estimates. However, when the 

mixing proportion was unequal, there tended to be a larger negative bias in the person parameter 

estimates. For the complete data and omitted response conditions, the bias of person parameters 

was largely unaffected by mixing proportion. Additionally, when DIF size was smaller, there 

was consistently a small positive bias in the person parameter estimates regardless of data 

completeness; whereas when DIF was larger, the booklet design led to a negative bias in the 

parameter estimates, and the omitted response condition resulted in a larger positive bias, but the 

bias in the complete data scenario remained unchanged. Further, the three-way interaction plot in 

Figure 4.3b indicated that the interaction between mixing proportion and DIF was stronger in the 

booklet design condition, with unequal mixing proportion resulting in larger negative bias in the 

person parameter estimates when DIF was larger. However, in the other DIF, mixing proportion 

and data completeness level combinations, the bias of person parameters was positive and 

relatively small. 

Regarding the SE and RMSE of person parameters, data completeness (f=0.118; f=0.163), 

mixing proportion (f=0.147; f=0.104) and DIF (f=0.106; f=0.159) were found to have significant 

effects on these two measures with small effect sizes. No significant interaction terms were 
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observed. For the 95% coverage, only data completeness was found to be statistically significant 

with a small effect size (f=0.122). 

Similar to the results of item parameter recovery, the effect size of model on person 

parameter evaluation criteria did not exceed 0.100, and thus was not practically significant. 

However, some meaningful differences were still observed in the descriptive statistics with 

regard to covariate inclusion as presented in Table 4.6. 

Regression parameter recovery. The evaluation of regression parameter recovery 

included two parts: 1) the linear regression parameters which linked the continuous covariate 

with the person parameter, and 2) the logistic regression parameters which linked the 

dichotomous covariate with the latent class membership. For part 1, the true model, the MRM 

with the continuous covariate only and the overspecified model were under investigation; and for 

part 2, the true model, the MRM with the dichotomous covariate only and the overspecified 

model were evaluated.  The MRM without covariates and the MRM with mismatching covariates 

were not included in the evaluation because no regression parameters were involved in the 

former one and the regression parameters corresponded to wrong covariates in the latter one. 

Table 4.8 presented the descriptive statistics of the linear regression parameter measures. 

Overall, there was a positive bias in the intercept and slope parameters of the linear regression, 

suggesting a tendency of overestimation of these parameters. The only exception was the omitted 

response condition in which the marginal bias across the other manipulated factors was negative. 

With regard to model, the true model and the MRM with only the continuous covariate resulted 

in the smallest bias in the intercept, whereas the overspecified model had the smallest bias in the 

slope parameter estimates. In addition, unequal mixing proportion was associated with a smaller 

bias in both parameters. A smaller odds ratio or a larger DIF size would also result in smaller 
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bias in the intercept and slope parameter estimates. Regarding the overall recovery of the linear 

regression parameters as indicated by the RMSE, the true model recovered the intercept 

parameter the best and the overspecified model recovered the slope parameter the best. Also, 

better recovery of linear regression parameters may be obtained when the mixing proportion was 

unequal, the odds ratio was small or the correlation was large. Large DIF size tended to result in 

better recovery of the intercept parameter but worse recovery of the slope parameter. Finally, the 

booklet design condition led to the worst linear regression parameter recovery as expected. 
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Table 4.8. The descriptive statistics of linear regression parameter (linking Cj with θjg) by manipulated factors. 

Factors Levels 
⋅0α (intercept) ⋅1α (slope) 

Bias SE RMSE Bias SE RMSE 
M SD M SD M SD M SD M SD M SD 

Model TM 0.030 0.072 0.028 0.008 0.073 0.051 0.014 0.027 0.021 0.005 0.035 0.013 
 UMN-C 0.030 0.077 0.028 0.008 0.077 0.056 0.013 0.028 0.021 0.005 0.037 0.014 
 OM 0.060 0.073 0.043 0.011 0.098 0.055 0.010 0.024 0.021 0.005 0.033 0.011 
              
Prop .5/.5 0.045 0.085 0.036 0.012 0.096 0.058 0.025 0.014 0.022 0.005 0.036 0.012 
 .3/.7 0.035 0.063 0.030 0.010 0.069 0.049 0.000 0.030 0.021 0.005 0.034 0.014 
              
OR 1 0.004 0.044 0.033 0.012 0.058 0.024 0.003 0.021 0.017 0.002 0.027 0.010 
 10 0.076 0.083 0.033 0.011 0.108 0.065 0.022 0.028 0.025 0.004 0.043 0.010 
              
Corr .2;.2 0.046 0.081 0.033 0.011 0.086 0.061 0.012 0.027 0.022 0.005 0.036 0.013 
 .8;.8 0.034 0.068 0.034 0.013 0.080 0.049 0.013 0.025 0.020 0.004 0.034 0.012 
              
DIF 1 0.059 0.078 0.037 0.011 0.087 0.062 0.016 0.022 0.021 0.004 0.034 0.010 
 1.5 0.021 0.067 0.030 0.011 0.079 0.079 0.009 0.030 0.021 0.006 0.036 0.015 
              
Data Complete 0.015 0.028 0.027 0.008 0.046 0.022 0.023 0.014 0.018 0.003 0.031 0.013 
 Booklet Design 0.029 0.108 0.042 0.012 0.115 0.063 0.026 0.013 0.024 0.005 0.037 0.013 
 Omitted Response 0.076 0.050 0.031 0.009 0.087 0.047 -0.012 0.028 0.021 0.004 0.037 0.011 
Notes: TM: the data-generating model; UNM-C: the MRM with the continuous covariate only; OM: the over specified model. 
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Table 4.9a. Statistically significant ANOVA results of manipulated factors on the bias of ⋅0α . 
Source F value p value η2 Cohen’s f 
Within(Huynh-Feldt Correction):     
Model F1.2,2750.9=668.607 <.001 0.019 0.138 
     
Between:     
Data F2,2352=171.804 <.001 0.062 0.257 
Prop F1,2352=642.007 <.001 0.116 0.362 
DIF F1,2352=176.427 <.001 0.032 0.181 
Data*Prop F2,2352=67.887 <.001 0.025 0.159 
Data*DIF F2,2352=349.649 <.001 0.126 0.380 
Prop*DIF F1,2352=74.724 <.001 0.013 0.117 
Data*Prop*DIF F2,2352=160.567 <.001 0.058 0.248 
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Figure 4.4a. Statistically significant two-way interactions among between-replication variables on the bias of ⋅0α . 

 
Figure 4.4b. Statistically significant three-way interactions among between-replication variables on the bias of ⋅0α .
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Table 4.9b. Statistically significant ANOVA results of manipulated factors on the SE of ⋅0α . 
Source F value p value η2 Cohen’s f 
Within(Sphericity Assumed):     
Model F2,4=1659.536 <.001 0.368 0.764 
     
Between:     
Data F2,2=934.644 <.01 0.316 0.679 
Corr F1,2=376.889 <.01 0.053 0.236 
DIF F1,2=582.156 <.01 0.105 0.343 
 

 

Table 4.9c. Statistically significant ANOVA results of manipulated factors on the RMSE of ⋅0α . 
Source F value p value η2 Cohen’s f 
Within(Sphericity Assumed):     
Model F2,4=275.516 <.001 0.040 0.203 
     
Between:     
Data F2,2=706.655 <.01 0.270 0.608 
Corr F1,2=322.303 <.01 0.060 0.254 
Prop F1,2=1099.124 <.01 0.209 0.514 
Data*Prop F2,2=391.266 <.01 0.149 0.418 
Data*DIF F2,2=246.889 <.01 0.095 0.325 
Data*Prop*DIF F2,2=143.679 <.01 0.056 0.243 
 

 

Figure 4.4c. Statistically significant two-way interactions among between-replication variables 
on the RMSE of ⋅0α .
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Figure 4.4d. Statistically significant three-way interactions among between-replication variables on the RMSE of ⋅0α . 
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Table 4.10a. Statistically significant ANOVA results of manipulated factors on the bias of ⋅1α . 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2352=510.398 <.001 0.218 0.528 
Corr F1,2352=497.665 <.001 0.106 0.345 
Prop F1,2352=311.178 <.001 0.066 0.267 
Data*Corr F2,2352=128.036 <.001 0.055 0.241 
 

 

Table 4.10b. Statistically significant ANOVA results of manipulated factors on the SE of ⋅1α . 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2=874.827 <.01 0.333 0.707 
Prop F1,2=5265.557 <.001 0.667 1.414 
 

 

Figure 4.5a. Statistically significant two-way interactions among between-replication variables 
on the bias of ⋅1α . 
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Table 4.10c. Statistically significant ANOVA results of manipulated factors on the RMSE of ⋅1α . 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2=441.984 <.01 0.043 0.213 
Prop F1,2=7177.970 <.001 0.391 0.802 
Data*Corr F2,2=1728.281 <.01 0.217 0.527 
Data*Prop F2,2=1251.440 <.01 0.130 0.387 
Data*DIF F2,2=437.524 <.01 0.043 0.213 
Corr*DIF F1,2=466.685 <.01 0.043 0.213 
 

 

 

Figure 4.5b. Statistically significant two-way interactions among between-replication variables 
on the RMSE of ⋅1α . 
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Table 4.9a to 4.9c presented the ANOVA results of the manipulated factors on the 

evaluation criteria of the intercept parameter. The main effects of model, data completeness, 

mixing proportion and DIF on the bias of the intercept parameter were statistically significant. 

Data completeness (f=0.257) and mixing proportion (f=0.362) had moderate effect sizes, and the 

effect sizes for model (f=0.138) and DIF (f=0.181) were small. In addition, the interactions of 

data completeness by mixing proportion (f=0.159) and DIF (f=0.380), and the interaction 

between mixing proportion and DIF (f=0.117) were significantly related to the bias of the 

intercept. The three-way interaction among data completeness, mixing proportion and DIF was 

also found to be significant with a small effect size (f=0.248). Figure 4.4a showed that the effects 

of mixing proportion and DIF were more pronounced in the booklet design condition. In equal 

mixing proportion or large DIF conditions, the intercept parameter tended to be underestimated, 

whereas unequal mixing proportion or smaller DIF led to an overestimation of the intercept. For 

the three-way interaction, it was observed in Figure 4.4b that the interaction between mixing 

proportion and DIF was more pronounced in the omitted response condition. There was a 

relatively large overestimation of the intercept parameter when unequal mixing proportion was 

paired with smaller DIF. With respect to the SE of the intercept parameter, the ANOVA results 

indicated that only main effects of model (f=0.764), data completeness (f=0.679), correlation 

(f=0.236) and DIF (f=0.343) were statistically significant. In addition, the manipulated factors 

that significantly affected the bias of the intercept similarly impacted the RMSE of the intercept 

parameter, with the exception that correlation, instead of DIF, was found to be statistically 

significant for the RMSE. The interaction effects were graphically displayed in Figure 4.4c and 

4.4d. 
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As for the recovery of the slope parameter, Table 4.10a to 4.10c separately presented the 

effects of manipulated factors on the bias, SE and RMSE of the slope parameter. Data 

completeness, correlation and mixing proportion had statistically significant effects on the bias 

of the slope parameter, respectively with large (f=0.528) and moderate (f=0.345; f=0.267) effect 

sizes. The interaction term of data completeness by correlation was also statistically significant, 

with the effect of correlation on the bias more pronounced in the omitted response condition, as 

shown in Figure 4.5a. Regarding the SE of the slope parameter, only data completeness (f=0.707) 

and mixing proportion (f>1) were found to be statistically significant. Finally, for the RMSE of 

the slope parameter, data completeness (f=0.213) and mixing proportion (f=0.802) tended to have 

significant impacts. Moreover, the interaction terms of data completeness by correlation 

(f=0.527), mixing proportion (f=0.387) and DIF (f=0.213), and the interaction between 

correlation and DIF (f=0.213) also significantly impacted the RMSE of the slope parameter as 

shown in Figure 4.5b. 

The next part of this section presented the evaluation of the logistic regression parameters. 

The descriptive statistics of bias, SE and RMSE of the intercept and slope parameters were 

included in Table 4.11. Different from the linear regression parameters which were mostly 

overestimated, the marginal bias values for most manipulated factors were negative for both the 

intercept and the slope parameter in the logistic regression, indicating a tendency of 

underestimation. However, when the mixing proportion was equal, the odds ratio was large, or 

the missing data were either not present or caused by omitted responses, the average bias across 

other manipulated parameters was positive for the intercept parameter. With regard to model, the 

MRM with only the dichotomous covariate resulted in the least biased estimates of the intercept 

and the overspecified model had the least biased estimates of the slope parameter. However, for 
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overall recovery of the regression parameters as indicated by RMSE, the true model was the best 

in terms of both the intercept and the slope parameter. Similar to other model parameters, the 

recovery of logistic regression parameters was the worst in the booklet design condition.
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Table 4.11. The descriptive statistics of logistic regression parameter by manipulated factors. 

Factors Levels 
02β (intercept) 12β (slope) 

Bias SE RMSE Bias SE RMSE 
M SD M SD M SD M SD M SD M SD 

Model TM -0.025 0.196 0.062 0.030 0.147 0.148 -0.045 0.087 0.063 0.023 0.101 0.059 
 UMN-D -0.023 0.201 0.068 0.031 0.151 0.151 -0.055 0.072 0.068 0.023 0.104 0.050 
 OM -0.033 0.203 0.066 0.033 0.153 0.154 -0.029 0.092 0.070 0.027 0.105 0.060 
              
Prop .5/.5 0.060 0.076 0.068 0.029 0.104 0.061 -0.033 0.080 0.069 0.023 0.100 0.045 
 .3/.7 -.114 0.241 0.063 0.033 0.196 0.194 -0.053 0.088 0.065 0.026 0.106 0.066 
              
OR 1 -0.064 0.212 0.060 0.029 0.145 0.178 0.000 0.066 0.059 0.021 0.080 0.041 
 10 0.010 0.178 0.071 0.032 0.155 0.116 -0.086 0.078 0.075 0.025 0.126 0.060 
              
Corr .2;.2 -0.037 0.207 0.067 0.034 0.150 0.164 -0.046 0.080 0.070 0.027 0.104 0.055 
 .8;.8 -0.017 0.191 0.064 0.028 0.151 0.136 -0.040 0.089 0.065 0.022 0.102 0.058 
              
DIF 1 -0.051 0.212 0.077 0.034 0.156 0.173 -0.081 0.073 0.074 0.023 0.116 0.064 
 1.5 -0.003 0.183 0.054 0.023 0.145 0.124 -0.005 0.077 0.060 0.024 0.090 0.044 
              
Data Complete 0.017 0.025 0.042 0.014 0.049 0.019 -0.027 0.032 0.046 0.013 0.059 0.021 
 Booklet Design -0.194 0.258 0.099 0.028 0.281 0.187 -0.050 0.123 0.091 0.020 0.149 0.058 
 Omitted Response 0.096 0.083 0.056 0.013 0.121 0.068 -0.072 0.072 0.064 0.013 0.101 0.041 
Notes: TM: the data-generating model; UNM-D: the MRM with the dichotomous covariate only; OM: the over specified model. 
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Table 4.12a. Statistically significant ANOVA results of manipulated factors on the bias of 02β . 
Source F value p value η2 Cohen’s f 
Within(Sphericity Assumed):     
Model F12,2304=150.201 <.001 0.010 0.100 
     
Between:     
Data F2,1152=18.244 <.001 0.011 0.103 
OR F1,1152=544.643 <.001 0.158 0.433 
DIF F1,1152=414.510 <.001 0.120 0.369 
Data*OR F2,1152=19.556 <.001 0.011 0.107 
Data*Prop F2,1152=82.955 <.001 0.048 0.225 
Data*DIF F2,1152=217.724 <.001 0.126 0.380 
Data*Prop*OR F2,1152=54.674 <.001 0.032 0.181 
Data*Prop*DIF F2,1152=19.739 <.001 0.011 0.108 

  
Figure 4.6a. Statistically significant two-way interactions among between-replication variables on the bias of 02β . 
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Figure 4.6b. Statistically significant three-way interactions among between-replication variables on the bias of 02β . 
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Table 4.12b. Statistically significant ANOVA results of manipulated factors on the SE of 02β . 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2=1022.075 <.001 0.609 1.247 
OR F1,2=122.398 <.01 0.036 0.194 
DIF F1,2=492.393 <.01 0.145 0.412 
Data*Prop F2,2=22.923 <.05 0.014 0.121 
Data*DIF F2,2=77.299 <.001 0.043 0.213 
OR*Prop F1,2=72.071 <.05 0.022 0.149 

   

Figure 4.6c. Statistically significant two-way interactions among between-replication variables on the SE of 02β .
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Table 4.12c. Statistically significant ANOVA results of manipulated factors on the RMSE of 02β . 
Source F value p value η2 Cohen’s f 
Between:     
Data F2,2=12889.293 <.001 0.417 0.846 
Data*OR F2,2=1125.760 <.01 0.037 0.195 
Data*Prop F2,2=9549.635 <.001 0.309 0.669 
Data*DIF F2,2=1992.927 <.01 0.065 0.263 
OR*Prop F1,2=1274.609 <.01 0.021 0.146 
Data*OR*Prop F2,2=342.579 <.01 0.011 0.106 

 

Figure 4.6d. Statistically significant two-way interactions among between-replication variables 
on the RMSE of 02β .
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Figure 4.6e. Statistically significant three-way interactions among between-replication variables on the RMSE of 02β .
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Table 4.13a. Statistically significant ANOVA results of manipulated factors on the bias of 12β . 
Source F value p value η2 Cohen’s f 
Between:     
OR F1,1152=544.643 <.001 0.043 0.211 
DIF F1,1152=414.510 <.001 0.032 0.183 
Data*Prop F2,1152=82.955 <.001 0.013 0.115 
Data*DIF F2,1152=217.724 <.001 0.034 0.188 
 

  

Figure 4.7a. Statistically significant two-way interactions among between-replication variables 
on the bias of 12β .  
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Table 4.13b. Statistically significant ANOVA results of manipulated factors on the SE of 12β . 
Source F value p value η2 Cohen’s f 
Within(Huynh-Feldt Correction):     
Model F2,4=202.035 <.001 0.012 0.109 
Model*Data F4,4=41.718 <.01 0.012 0.109 
Model*DIF F2,4=101.770 <.001 0.012 0.109 
     
Between:     
Data F2,2=279.782 <.01 0.588 1.195 
OR F1,2=106.226 <.01 0.106 0.344 
DIF F1,2=75.667 <.05 0.082 0.300 
 

 

Figure 4.7b. Statistically significant two-way interactions between model and between-
replication variables on the SE of 12β .  
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Table 4.13c. Statistically significant ANOVA results of manipulated factors on the RMSE of 12β . 
Source F value p value η2 Cohen’s f 
Within(Sphericity Assumed):     
Model*Data F2,4=45.015 <.01 0.013 0.116 
     
Between:     
Data F2,2=1681.218 <.01 0.433 0.874 
OR F1,2=1297.059 <.01 0.167 0.448 
DIF F1,2=429.121 <.01 0.055 0.241 
Data*OR F2,2=40.777 <.05 0.011 0.105 
Data* Corr F2,2=53.736 <.05 0.013 0.116 
Data* Prop F2,2=91.546 <.05 0.024 0.157 
Data*DIF F2,2=110.125 <.01 0.029 0.171 
 

 

Figure 4.7c. Statistically significant two-way interactions between model and data completeness 
on the RMSE of 12β . 
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Figure 4.7d. Statistically significant two-way interactions between model and between-
replication variables on the RMSE of 12β . 

 

 

 

  

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Data Completeness

R
M

S
E

OR=1
OR=10

Complete Booklet Design Omitted Re

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Data Completeness

R
M

S
E

Corr=(.2;.2)
Corr=(.8;.8)

Complete Booklet Design Omitted Re

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Data Completeness

R
M

S
E

Prop=.5/.5
Prop=.3/.7

Complete Booklet Design Omitted Re

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Data Completeness

R
M

S
E

DIF=1
DIF=1.5

Complete Booklet Design Omitted Re

111 



 

As with the other model parameters, repeated measures ANOVA were used to identify 

significant effects with regard to the evaluation criteria of the logistic regression parameters. 

Table 4.12a to 4.12c presented the results for the intercept parameter. The effects of model 

(f=0.100), data completeness (f=0.103), odds ratio (f=0.433) and DIF (f=0.369) on the bias of the 

intercept parameter were statistically significant. In addition, the interaction terms of data 

completeness by odds ratio (f=0.107), mixing proportion (f=0.225) and DIF (f=0.380), and the 

three-way interactions among data completeness, mixing proportion and odds ratio (f=0.181) and 

among data completeness, mixing proportion and DIF (f=0.108) were significantly related to the 

bias of the intercept. The interaction effects were displayed in Figure 4.6a and 4.6b. It was 

interesting to find that the intercept bias was slightly positive when the mixing proportion was 

equal in the booklet design condition. However, when the mixing proportion was unequal, there 

was a negative bias of around 0.400 in the intercept parameter. In addition, the two-way 

interactions of mixing proportion by odds ratio and DIF were also more pronounced in the 

booklet design condition.  

Regarding the SE, data completeness had a statistically significant effect with a very 

large effect size (f>1). The effects of odds ratio and DIF were also significant, respectively with a 

small (f=0.194) and a large effect size. Moreover, data completeness significantly interacted with 

mixing proportion (f=0.121) and DIF (f=0.213), and odds ratio significantly interacted with 

mixing proportion (f=0.149) on the SE of the intercept parameter with small effect sizes (see 

Figure 4.6c).  

Further, for the RMSE of the intercept parameter, the two-way interaction terms of data 

completeness by odds ratio (f=0.195), mixing proportion (f=0.669) and DIF (f=0.263), and the 

interaction between odds ratio and mixing proportion (f=0.146) were found to be statistically 
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significant. The three-way interactions among data completeness, mixing proportion and odds 

ratio (f=0.106) was also statistically significant. In addition, data completeness itself was 

significant with a large effect size (f=0.846). The interaction effects were shown in Figure 4.6d 

and 4.6e. 

As for the slope parameter in the logistic regression function, odds ratio (f=0.211) and 

DIF (f=0.183) tended to have significant main effects on its bias with small effect sizes. 

Moreover, data completeness had significant interactions with mixing proportion (f=0.115) and 

DIF (f=0.188) in impacting the bias. As shown in Figure 4.7a, the slope bias was slightly positive 

when the mixing proportion was equal or when DIF was larger in the booklet design condition. 

However, when the mixing proportion was unequal or the DIF was smaller, there was a negative 

bias of around 0.100 in the slope parameter. 

Regarding the SE of the slope parameter, the effects of model (f=0.109), data 

completeness (f>1), odds ratio (f=0.344) and DIF (f=0.300) were statistically significant. The 

interactions of model by data completeness (f=0.109) and DIF (f=0.109) were also significant 

with small effect sizes, so that they were barely observable in Figure 4.7b. 

Finally, for the RMSE of the slope parameter, the effects of data completeness (f=0.874), 

odds ratio (f=0.448) and DIF (f=0.241) were statistically significant, among which the effect 

sizes of data completeness and odds ratio were large. Also, data completeness interacted 

significantly with odds ratio (f=0.105), correlation (f=0.116), mixing proportion (f=0.157) and 

DIF (f=0.171) in impacting the RMSE of the slope parameter. The interaction between model 

and data completeness (f=0.116) was also statistically significant, yet its effect size was quite 

small so that it was not obvious in Figure 4.7c. Additionally, Figure 4.7d showed an interesting 
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pattern that the effects of odds ratio, correlation, mixing proportion and DIF were all more 

pronounced in the booklet design condition. 

In summary, regarding the recovery of item and person parameters, data completeness, 

mixing proportion, DIF and certain interactions among these manipulated factors tended to have 

great impacts. The effect size of model was not large enough to claim a practical significance of 

covariate inclusion on item and person parameter recovery, yet the marginal descriptive statistics 

indicated a tendency of better recovery if covariates were correctly specified in the MRM. These 

results were largely in line with the findings of previous research (Adams et al., 1997; Mislevy & 

Sheehan, 1989a, 1989b; Smit et al., 1999, 2000) that the incorporation of important covariates 

could reduce the mean squared error of person parameter estimates and the standard error of item 

parameter estimates. In the current simulation, the MRM with only the continuous covariate 

tended to perform better than the MRM with only the dichotomous covariate in both item and 

person parameter recovery. Not surprisingly, the MRM with mismatching covariates performed 

the worst in parameter recovery as it did in latent class assignment. 

With regard to the recovery of regression parameters, it was interesting to find a tendency 

of overestimation of the linear regression parameters as well as a tendency of underestimation of 

the logistic regression parameters. Another important finding was that the quality of regression 

parameter recovery was very sensitive to the manipulated factors, especially DIF and mixing 

proportion, in the booklet design condition. Last but not least, the model with only one covariate 

correctly specified in the model tended to result in the least biased intercept parameter estimates 

in both the linear regression and the logistic regression functions, while the overspecified model 

had the least biased slope parameter estimates in both functions. Further, the true model 

performed the best in recovering the intercept parameters in both functions, and the slope 
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parameter in the logistic function. Possible explanations to these finding would be detailed in 

Chapter 5. 

4.1.3 Overall model fit indices. 

The frequency of each model being selected as the best-fitting model with respect to the 

six overall model selection indices, including AIC, BIC, AICc, CAIC, SABIC and DIC, were 

summarized in Table 4.14b. The selection decision for each simulation condition, the marginal 

totals by data completeness and the totals were provided in Table 4.14b.  

In addition, Figure 4.8a graphically displayed the overall selection decision in terms of 

percentage. The reason to provide a percentage figure was to give a clear presentation of the 

performance of different overall model fit indices under a variety of simulation conditions. 

Frequency results may be easily obtained by multiplying the percentage by the number of 

replications, which was 25 in the present study.
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Table 4.14a. Model selection frequency for simulation cells. 
     Model Selection Indices 
 
Data 

 
DIF 

 
OR 

 
Corr 

 
Prop 

AIC BIC AICc CAIC SABIC DIC 
TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 

Complete 1.5 10 .2;.2 .5;.5 2 12 0 11 0 0 0 19 0 6 0 0 1 13 0 11 0 0 0 19 0 6 0 0 0 13 0 12 0 0 15 0 0 0 10 0 
    .3;.7 4 10 3 8 0 0 0 16 0 9 0 0 3 9 3 10 0 0 0 17 0 8 0 0 0 14 0 11 0 0 15 0 3 0 7 0 
   .8;.8 .5;.5 4 5 10 6 0 0 0 13 7 5 0 0 4 6 9 6 0 0 0 14 6 5 0 0 3 7 9 6 0 0 17 0 1 0 7 0 
    .3;.7 18 2 5 0 0 0 5 6 8 6 0 0 18 2 5 0 0 0 4 8 6 7 0 0 13 2 7 3 0 0 13 0 2 0 10 0 
  1 .2;.2 .5;.5 1 20 3 1 0 0 0 25 0 0 0 0 1 21 2 1 0 0 0 25 0 0 0 0 0 25 0 0 0 0 7 0 12 0 6 0 
    .3;.7 1 21 3 0 0 0 0 25 0 0 0 0 1 21 3 0 0 0 0 25 0 0 0 0 0 25 0 0 0 0 12 0 3 0 10 0 
   .8;.8 .5;.5 0 11 14 0 0 0 0 16 9 0 0 0 0 12 13 0 0 0 0 19 6 0 0 0 0 13 12 0 0 0 6 0 10 0 9 0 
    .3;.7 16 1 8 0 0 0 0 13 12 0 0 0 16 1 8 0 0 0 0 16 9 0 0 0 8 8 9 0 0 0 13 0 3 0 9 0 
 1 10 .2;.2 .5;.5 1 7 0 17 0 0 0 10 0 15 0 0 1 7 0 17 0 0 0 11 0 14 0 0 0 9 0 16 0 0 17 0 0 1 7 0 
    .3;.7 10 3 3 8 0 1 0 11 0 14 0 0 10 3 3 8 0 1 0 12 0 13 0 0 2 7 2 14 0 0 14 0 0 2 9 0 
   .8;.8 .5;.5 9 2 3 11 0 0 1 6 2 16 0 0 9 2 3 11 0 0 1 7 1 16 0 0 7 2 3 13 0 0 17 0 0 0 8 0 
    .3;.7 16 1 8 0 0 0 6 4 11 4 0 0 15 1 9 0 0 0 6 5 10 4 0 0 9 3 11 2 0 0 16 0 0 0 9 0 
  1 .2;.2 .5;.5 0 23 1 1 0 0 0 25 0 0 0 0 0 23 1 1 0 0 0 25 0 0 0 0 0 25 0 0 0 0 12 1 1 0 11 0 
    .3;.7 1 14 6 4 0 0 0 25 0 0 0 0 0 14 7 4 0 0 0 25 0 0 0 0 0 22 2 1 0 0 3 0 13 0 9 0 
   .8;.8 .5;.5 14 8 1 2 0 0 1 23 1 0 0 0 13 9 1 2 0 0 0 24 1 0 0 0 8 16 1 0 0 0 17 0 1 0 7 0 
    .3;.7 7 3 15 0 0 0 0 9 16 0 0 0 6 4 15 0 0 0 0 10 15 0 0 0 0 6 19 0 0 0 4 0 11 0 10 0 
                                       
Booklet  1.5 10 .2;.2 .5;.5 0 0 23 2 0 0 0 12 10 3 0 0 0 0 23 2 0 0 0 18 5 2 0 0 0 4 19 2 0 0 11 0 0 0 14 0 
Design    .3;.7 0 9 4 4 0 8 0 21 1 3 0 0 0 9 4 4 0 8 0 22 1 2 0 0 0 17 2 3 0 3 6 0 0 1 18 0 
   .8;.8 .5;.5 0 2 23 0 0 0 0 4 21 0 0 0 0 2 23 0 0 0 0 4 21 0 0 0 0 4 21 0 0 0 1 0 11 0 13 0 
    .3;.7 3 9 5 2 6 0 1 12 6 6 0 0 3 9 5 2 6 0 1 12 6 6 0 0 3 9 7 4 2 0 4 0 1 0 20 0 
  1 .2;.2 .5;.5 0 0 17 8 0 0 0 3 6 16 0 0 0 0 17 8 0 0 0 12 3 10 0 0 0 0 16 9 0 0 0 0 18 1 6 0 
    .3;.7 0 0 1 24 0 0 0 6 0 19 0 0 0 0 1 24 0 0 0 7 0 18 0 0 0 1 1 23 0 0 0 0 3 1 21 0 
   .8;.8 .5;.5 0 0 21 4 0 0 0 1 20 4 0 0 0 0 21 4 0 0 0 1 20 4 0 0 0 0 21 4 0 0 0 0 18 0 7 0 
    .3;.7 1 0 10 14 0 0 0 1 7 17 0 0 1 0 10 14 0 0 0 4 7 14 0 0 0 0 10 15 0 0 7 0 4 0 14 0 
 1 10 .2;.2 .5;.5 10 0 0 15 0 0 0 0 0 25 0 0 9 0 0 16 0 0 0 0 0 25 0 0 1 0 0 24 0 0 22 0 0 1 2 0 
    .3;.7 2 3 1 1 0 18 0 14 0 2 0 9 2 4 1 1 0 17 0 16 0 1 0 8 1 7 1 3 0 13 12 0 2 0 11 0 
   .8;.8 .5;.5 24 0 0 1 0 0 17 0 0 8 0 0 24 0 0 1 0 0 17 0 0 8 0 0 23 0 0 2 0 0 17 0 1 0 7 0 
    .3;.7 3 12 7 1 2 0 1 18 3 3 0 0 3 12 7 1 2 0 1 18 3 3 0 0 3 14 6 1 1 0 12 0 2 0 11 0 
  1 .2;.2 .5;.5 2 12 8 3 0 0 0 25 0 0 0 0 0 15 7 3 0 0 0 25 0 0 0 0 0 20 3 2 0 0 4 0 21 0 0 0 
    .3;.7 2 18 4 1 0 0 0 25 0 0 0 0 2 18 4 1 0 0 0 25 0 0 0 0 0 21 4 0 0 0 7 0 13 3 2 0 
   .8;.8 .5;.5 0 1 24 0 0 0 0 3 22 0 0 0 0 1 24 0 0 0 0 5 20 0 0 0 0 2 22 1 0 0 4 0 21 0 0 0 
    .3;.7 3 13 8 1 0 0 0 21 4 0 0 0 3 13 8 1 0 0 0 22 3 0 0 0 0 15 8 2 0 0 11 0 14 0 0 0 
                                        
Omitted  1.5 10 .2;.2 .5;.5 1 0 0 24 0 0 0 0 0 25 0 0 1 0 0 24 0 0 0 0 0 25 0 0 0 0 0 25 0 0 14 0 0 0 11 0 
Responses    .3;.7 2 0 0 20 3 0 0 0 0 25 0 0 2 0 0 20 3 0 0 0 0 25 0 0 1 0 0 24 0 0 11 0 0 0 14 0 
   .8;.8 .5;.5 13 0 12 0 0 0 8 0 17 0 0 0 13 0 12 0 0 0 8 0 17 0 0 0 12 0 13 0 0 0 16 0 0 0 9 0 
    .3;.7 20 0 1 0 4 0 24 0 1 0 0 0 20 0 1 0 4 0 24 0 1 0 0 0 24 0 1 0 0 0 10 0 0 0 15 0 
  1 .2;.2 .5;.5 0 2 20 3 0 0 0 23 0 2 0 0 0 2 20 3 0 0 0 23 0 2 0 0 0 15 4 6 0 0 0 0 13 0 12 0 
    .3;.7 0 11 4 9 0 1 0 24 0 1 0 0 0 12 2 10 0 1 0 25 0 0 0 0 0 20 0 5 0 0 2 0 8 0 15 0 
   .8;.8 .5;.5 0 0 25 0 0 0 0 0 25 0 0 0 0 0 25 0 0 0 0 0 25 0 0 0 0 0 25 0 0 0 3 0 22 0 0 0 
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    .3;.7 4 0 21 0 0 0 0 0 25 0 0 0 3 0 22 0 0 0 0 0 25 0 0 0 0 0 25 0 0 0 5 0 9 0 11 0 
 1 10 .2;.2 .5;.5 6 3 3 12 0 1 0 9 0 16 0 0 6 3 4 12 0 0 0 10 0 15 0 0 0 5 1 19 0 0 17 0 0 0 8 0 
    .3;.7 9 2 2 10 1 1 0 5 0 20 0 0 9 3 2 10 1 0 0 5 0 20 0 0 4 4 1 16 0 0 9 0 1 2 13 0 
   .8;.8 .5;.5 16 0 9 0 0 0 11 0 14 0 0 0 16 0 9 0 0 0 11 0 14 0 0 0 12 0 13 0 0 0 18 0 0 0 7 0 
    .3;.7 17 0 8 0 0 0 11 0 14 0 0 0 17 0 8 0 0 0 11 0 14 0 0 0 15 0 10 0 0 0 10 0 0 0 15 0 
  1 .2;.2 .5;.5 1 15 8 1 0 0 0 25 0 0 0 0 1 15 7 2 0 0 0 25 0 0 0 0 0 23 2 0 0 0 11 0 9 0 4 1 
    .3;.7 3 9 12 1 0 0 0 25 0 0 0 0 3 11 10 1 0 0 0 25 0 0 0 0 0 22 3 0 0 0 8 0 10 0 7 0 
   .8;.8 .5;.5 10 0 15 0 0 0 1 0 24 0 0 0 10 0 15 0 0 0 0 0 25 0 0 0 3 0 22 0 0 0 7 0 10 0 8 0 
    .3;.7 13 0 12 0 0 0 1 0 24 0 0 0 12 0 13 0 0 0 0 0 25 0 0 0 3 0 22 0 0 0 10 0 7 0 8 0 
Notes: TM: the data-generating model; M2: the MRM without covariates; M3: the MRM with the continuous covariate only; M4: the MRM with the dichotomous covariate only; M5: the over specified model; M6: the MRM with 
mismatching covariates. 
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Table 4.14b. Model selection decision by simulation condition and its frequency. 
     Model Selection Indices 
 
Data 

 
DIF 

 
OR 

 
Corr 

 
Prop 

AIC BIC AICc CAIC SABIC DIC 
TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 TM M2 M3 M4 M5 M6 

Complete 1.5 10 .2;.2 .5;.5  X      X      X      X      X     X      
    .3;.7  X      X        X    X      X     X      
   .8;.8 .5;.5   X     X       X     X       X    X      
    .3;.7 X        X    X       X     X      X      
  1 .2;.2 .5;.5  X      X      X      X      X       X    
    .3;.7  X      X      X      X      X     X      
   .8;.8 .5;.5   X     X       X     X      X       X    
    .3;.7 X       X     X       X       X    X      
 1 10 .2;.2 .5;.5    X      X      X      X      X   X      
    .3;.7 X         X   X         X      X   X      
   .8;.8 .5;.5    X      X      X      X      X   X      
    .3;.7 X        X    X        X      X    X      
  1 .2;.2 .5;.5  X      X      X      X      X     X      
    .3;.7  X      X      X      X      X       X    
   .8;.8 .5;.5 X       X     X       X      X     X      
    .3;.7   X      X      X      X      X      X    
Marginal Totals   5 6 3 2 0 0 0 10 3 3 0 0 5 5 3 3 0 0 0 11 2 3 0 0 1 8 4 3 0 0 12 0 4 0 0 0 
Booklet  1.5 10 .2;.2 .5;.5   X     X       X     X       X        X  
Design    .3;.7  X      X      X      X      X         X  
   .8;.8 .5;.5   X      X      X      X      X        X  
    .3;.7  X      X      X      X      X         X  
  1 .2;.2 .5;.5   X       X     X     X       X      X    
    .3;.7    X      X      X      X      X       X  
   .8;.8 .5;.5   X      X      X      X      X      X    
    .3;.7    X      X      X      X      X       X  
 1 10 .2;.2 .5;.5    X      X      X      X      X   X      
    .3;.7      X  X          X  X          X X      
   .8;.8 .5;.5 X      X      X      X      X      X      
    .3;.7  X      X      X      X      X     X      
  1 .2;.2 .5;.5  X      X      X      X      X       X    
    .3;.7  X      X      X      X      X       X    
   .8;.8 .5;.5   X      X      X      X      X      X    
    .3;.7  X      X      X      X      X       X    
Marginal Totals    1 6 5 3 0 1 1 8 3 4 0 0 1 6 5 3 0 1 1 9 3 3 0 0 1 6 5 3 0 1 4 0 6 0 6 0 
Omitted  1.5 10 .2;.2 .5;.5    X      X      X      X      X   X      
Responses    .3;.7    X      X      X      X      X       X  
   .8;.8 .5;.5 X        X    X        X      X    X      
    .3;.7 X      X      X      X      X          X  
  1 .2;.2 .5;.5   X     X       X     X      X       X    
    .3;.7  X      X      X      X      X         X  
   .8;.8 .5;.5   X      X      X      X      X      X    
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    .3;.7   X      X      X      X      X        X  
 1 10 .2;.2 .5;.5    X      X      X      X      X   X      
    .3;.7    X      X      X      X      X       X  
   .8;.8 .5;.5 X        X    X        X      X    X      
    .3;.7 X        X    X        X    X          X  
  1 .2;.2 .5;.5  X      X      X      X      X     X      
    .3;.7   X     X      X      X      X       X    
   .8;.8 .5;.5   X      X      X      X      X      X    
    .3;.7 X        X      X      X      X    X      
Marginal Totals    5 2 5 4 0 0 1 4 7 4 0 0 4 3 5 4 0 0 1 4 7 4 0 0 2 4 6 4 0 0 6 0 4 0 6 0 
Total    11 14 13 9 0 1 2 22 13 11 0 0 10 14 13 10 0 1 2 24 12 10 0 0 4 18 15 20 0 1 22 0 14 0 12 0 
Notes: TM: the data-generating model; M2: the MRM without covariates; M3: the MRM with the continuous covariate only; M4: the MRM with the dichotomous covariate only; M5: the over specified model; M6: the MRM with 
mismatching covariates. 
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Figure 4.8a. Overall model selection percentage across simulation conditions. 

Overall, AIC, BIC, AICc, CAIC and SABIC did not perform very well in identifying the 

data-generating model. Among them, AIC and AICc performed the worst as they had difficulty 

differentiating among the true model, the MRM without covariates, the MRM with only the 

continuous covariate and the MRM with only the dichotomous covariate. They did not have a 

strong tendency of selecting any of the models. On the other hand, BIC, CAIC and SABIC 

performed similarly and they all tended to choose the most parsimonious model, the MRM 

without covariates. The only model fit index that performed well in identifying the MRM with 

correctly specified covariates was DIC, a Bayesian measure of fit. However, a closer 

examination of Table 4.14b showed that the performance of model fit indices was different 

depending on certain levels of manipulated factors. Thus, the selection decisions were analyzed 

with respect to data completeness, correlation and odds ratio. It was assumed that the missing 

data and the strength of relations between covariates and model parameters may impact the 

selection performance of these overall fit indices. 
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Figure 4.8b. Model selection percentage by data completeness across other manipulated factors. 

As shown in Figure 4.8b, the ability of differentiating models was stronger for the six 

indices when the data was complete. In this scenario, BIC, CAIC and SABIC had a strong 
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tendency of selecting the most parsimonious model; whereas AIC and AICc also had a weak 

tendency of choosing the MRM without covariates, yet they both had difficulty differentiating 

between the true model and the MRM without covariates. With regard to DIC, it was highly 

effective in selecting the data-generating model. As for the few cases that DIC chose the MRM 

with only the continuous covariate, they all occurred when the odds ratio was weak, so it was 

reasonable for DIC to select a more parsimonious model without the dichotomous covariate in 

those cases. 

In the booklet design condition, BIC, CAIC and SABIC still tended to choose the MRM 

without covariates, yet the tendency was relatively weak. AIC and AICc in this condition both 

had difficulty differentiating between the MRM with only the continuous covariate and the 

MRM without covariates. Moreover, DIC was no longer effective when the book design was 

present. It could not make a decision between the overspecified model and the MRM with only 

the continuous covariate, and its selection percentages of these two models were only slightly 

higher than that of the true model.  

In addition, for the omitted response condition, none of the indices had high percentages 

of selecting any models. BIC, CAIC and SABIC no longer chose the most parsimonious model; 

instead, they had a weak tendency of selecting the MRM with only the continuous covariate. 

AIC and AICc in this condition had difficulty choosing between the true model and the MRM 

with only the continuous covariate. As for DIC, it had the same selection percentage for the true 

model and the overspecified model, and its second choice was the MRM with only the 

continuous covariate. 
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Figure 4.8c. Model selection percentage by the strength of relation between the dichotomous 
covariate and the latent class membership across other manipulated factors. 

Further, Figure 4.8c presented the percentage of selection decision by odds ratio. When 

the odds ratio was weak, BIC, CAIC and SABIC most frequently selected the MRM without 

covariates, whereas AIC and AICc again had difficulty differentiating between the MRM with 

only the continuous covariate and the MRM without covariates. DIC predominantly identified 

the MRM with only the continuous covariate as the best-fitting model, which was a reasonable 

choice in consideration of model parsimony when OR=1. However, as the odds ratio was strong, 

the decisions were made most often between MRM with only the dichotomous covariate and the 

MRM without covariates for BIC, CAIC and SABIC. AIC and AICc similarly had difficulty 
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discriminating between the true model and the MRM with only the dichotomous covariate. 

Again, DIC successfully identified the MRM with correct covariate specification with the 

highest selection percentage. 

 

 

Figure 4.8d. Model selection percentage by the strength of relation between the continuous 
covariate and the person parameter across other manipulated factors. 

Finally, with respect to the correlation between the continuous covariate and the person 

parameter, Figure 4.8d displayed the selection percentage. When the correlation was as weak as 

0.200, AIC, BIC, AICc, CAIC and SABIC all favored the most parsimonious model, the MRM 

without covariates, and all of their second choices were the MRM with only the dichotomous 

covariate. Meanwhile, DIC correctly identified the true model as the best-fitting model. However, 
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when the correlation was as strong as 0.800, BIC, CAIC and SABIC most frequently selected the 

MRM with only the continuous covariate, whereas AIC and AICc had difficulty choosing 

between the true model and the MRM with only the continuous covariate. Still, DIC 

predominantly made the correct model selection decision. 

In sum, the above results suggested that DIC was the most successful index in selecting 

the MRM with correct covariate inclusion in the present study. The performances of BIC, CAIC 

and SABIC were quite similar and they had a consistent tendency of favoring model parsimony; 

whereas AIC and AICc often reached converging results and their decisions appeared to be 

highly sensitive to the strength of relations between the covariates and the model parameters. 

Another important finding about overall model fit indices was that their ability to differentiate 

among models tended to be strongly compromised when missing data were present. Also, the 

tendency of selecting the overspecified model occurred in particular for DIC in both the booklet 

design and omitted response conditions. 

4.2 Empirical Examples: PISA 2009 U.S. Reading 

The performance of different covariate inclusion approaches in the MRM was further 

demonstrated in real data applications. Two samples were extracted from the PISA 2009 U.S. 

students’ reading assessment. There were a total of 131 reading items in the test, distributed in 13 

booklets. Among those items, 8 were polytomously scored, and were thus excluded from the 

current analyses. Sample 1 consisted of 1,525 students responding to 16 dichotomous items from 

booklet 2, 4, 5 and 7. No missing data were included in this sample. On the other hand, Sample 2 

included 4,892 students responding to 123 dichotomous items. Missing data by booklet design 

were kept in Sample 2. The total percentage of missingness was 76.780%. In both samples, no 
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missing data were present in the covariates. Section 3.4 has described sample information and 

covariate selection in details. 

4.2.1 Sample 1 

The results of the analyses based on Sample 1 were summarized in Table 4.15 and 4.16. 

Given the limited sample size and the number of items, the two-class MRM with both reading 

enjoyment time and ESCS as predictors of both the person parameter and the latent class 

membership and the two-class MRM with reading enjoyment time as the predictor of the person 

parameter and ESCS as the predictor of the latent class membership did not converge and thus 

were not presented here. Since the true values of model parameters were unknown, the accuracy 

of latent group classification and model parameter recovery could not be investigated as in the 

simulation study. Additionally, given that no good absolute model fit indices could be used in 

this context to quantify the discrepancy between the model and the data, only those overall 

relative model fit indices were provided in Table 4.15 to compare the relative fit of the non-

mixture Rasch model and the two-class MRM with different approaches to covariate inclusion. 

Further, Table 4.16 presented the characteristics of the sample based on the parameter estimates 

from the two-class MRM with ESCS as the predictor of the person parameter and reading 

enjoyment time as the predictor of the latent class membership.  
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Table 4.15. Model fit indices based on Sample 1. 
Model AIC BIC AICc CAIC SABIC DIC 
RASCH 22556 22652 22557 22670 22595 23794 
RASCH-C 22559 22660 22559 22679 22599 23757 
RASCH-D 22558 22659 22558 22678 22599 23777 
RASCH-CD 22562 22669 22563 22689 22605 23743 
UNM-N 21906 22092 21907 22127 21981 23217 
UNM-C 21854 22051 21856 22088 21934 23130 
UNM-D 21996 22188 21998 22224 22074 23285 
TM 21946 22149 21948 22187 22028 23217 
Notes: Rasch: the Rasch model; Rasch-C: the Rasch model with ESCS as the predictor of the 
person parameter; Rasch-D: the Rasch model with reading enjoyment time as the predictor of the 
person parameter; Rasch-CD: the Rasch model with both reading enjoyment time and ESCS as 
predictors of the person parameter; UNM-N: the two-class MRM without covariates; UNM-C: 
the two-class MRM with ESCS as the predictor of the person parameter (UNM-C); UNM-D: the 
two-class MRM with reading enjoyment time as the predictor of the latent class membership; 
TM: the two-class MRM with ESCS as the predictor of the person parameter and reading 
enjoyment time as the predictor of the latent class membership. 

 

 

Table 4.16. Sample 1 characteristics based on parameter estimates. 
Sample Characteristics Values 
LC1 Mean=0.035; Variance=.963 
  
LC2 Mean=2.208; Variance=.606 
  
Prop LC1: 0.775; LC2: 0.225 
  
OR Reading Enjoyment Time: OR=3.190 
  
Corr α11=0.482; α12=0.468 
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First, as shown in Table 4.15, all of the model fit indices supported two-class mixture 

model, rather than non-mixture model, in the sample. Also, all six model fit indices unanimously 

identified the two-class MRM with ESCS as the predictor of the person parameter, as the best-

fitting model. It was surprising because these fit indices did not provide consistent result in the 

simulation study. However, as indicated by the simulation results, the model selection decision 

of AIC, BIC, AICc, CAIC and SABIC could be easily affected by the relative strength of the 

relations between the covariates and the model parameters. Moreover, DIC was proved in the 

simulation study to be the best index and frequently select the correct model in the complete data 

situation. Thus, for Sample1, it could be concluded that the two-class MRM with ESCS as the 

predictor of the person parameter was the best-fitting model based on the consistent results 

obtained from all six model fit indices. 

Further, a closer examination of Sample 1was taken and the summary statistics were 

provided in Table 4.16. Based on the regression coefficient estimates from the two-class MRM 

with ESCS as the predictor of the person parameter and reading enjoyment time as the predictor 

of the latent class membership, it was found that ESCS had a moderate relation with the person 

parameter. The odds of being in latent class 1 for students whose reading enjoyment time was 

less than 30 minutes per day was 3.190 times that for students whose reading enjoyment time 

was more than 30 minutes per day, indicating a moderate relation between reading enjoyment 

time and latent class membership. Considering that the average latent reading ability was 0.035 

for LC1 and 2.208 for LC2, the relations between the covariates and the model parameters were 

reasonable. Also, as reading enjoyment time was only a moderately informative dichotomous 

covariate, its odds ratio was not strong enough to make the dichotomous covariate necessary in 
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the MRM. Thus, it is reasonable that the model with only ESCS as the predictor of the person 

parameter performed better than other models in terms of the overall fit. 

4.2.2 Sample 2 

The model selection results for Sample 2 were presented in Table 4.17. Similar to Sample 

1, the two-class MRM with both reading enjoyment time and ESCS as predictors of both the 

person parameter and the latent class membership and the two-class MRM with reading 

enjoyment time as the predictor of the person parameter and ESCS as the predictor of the latent 

class membership again did not converge in Sample 2 and were not presented. Table 4.18 

presented the characteristics of this sample based on the parameter estimates from the two-class 

MRM with ESCS as the predictor of the person parameter and reading enjoyment time as the 

predictor of the latent class membership. 
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Table 4.17. Model fit indices based on Sample 2. 
Model AIC BIC AICc CAIC SABIC DIC 
RASCH 130887 131699 130894 131824 131302 134972 
RASCH-C 130857 131675 130864 131801 131275 134629 
RASCH-D 130852 131670 130859 131796 131270 134608 
RASCH-CD 130863 131688 130870 131815 131284 134730 
UNM-N 128907 130524 128934 130773 129733 133054 
UNM-C 129116 130746 129143 130997 129949 133917 
UNM-D 128986 130610 129013 130860 129815 132639 
TM 129104 130741 129131 130993 129940 132631 
Notes: Rasch: the Rasch model; Rasch-C: the Rasch model with ESCS as the predictor of the 
person parameter; Rasch-D: the Rasch model with reading enjoyment time as the predictor of the 
person parameter; Rasch-CD: the Rasch model with both reading enjoyment time and ESCS as 
predictors of the person parameter; UNM-N: the two-class MRM without covariates; UNM-C: 
the two-class MRM with ESCS as the predictor of the person parameter (UNM-C); UNM-D: the 
two-class MRM with reading enjoyment time as the predictor of the latent class membership; 
TM: the two-class MRM with ESCS as the predictor of the person parameter and reading 
enjoyment time as the predictor of the latent class membership. 

 

 

Table 4.18. Sample 2 characteristics based on parameter estimates. 
Sample Characteristics Values 
LC1 Mean=-0.683; Variance=0.416 
  
LC2 Mean=1.216; Variance=0.814 
  
Prop. LC1: 0.281; LC2: 0.709 
  
OR Reading Enjoyment Time: OR=3.040 
  
Corr. α11=0.293; α12=0.496 
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As shown in Table 4.17, all six model fit indices favored two-class mixture Rasch model 

rather than non-mixture Rasch model in the sample. In this sample, AIC, BIC, AICc, CAIC and 

SABIC unanimously identified the two-class MRM without covariates, as the best-fitting model, 

whereas DIC favored the two-class MRM with reading enjoyment time and ESCS included as 

covariates. These selection decisions were consistent with what has been observed in the 

simulation with the booklet design present; namely, DIC tended to choose the most complicated 

model whereas the other five indices selected the most parsimonious model. Thus, as with the 

simulation results, no conclusion could be reached for this sample with regard to the best-fitting 

model simply based on the overall model fit indices. 

Further, the summary statistics of Sample 2 were provided in Table 4.18. The relations 

between the covariates and the model parameters did not differ much between the results based 

on Sample 1 and Sample 2. The average reading ability difference for the two latent classes was 

approximately 2 based on the estimates from both samples. Nonetheless, the only major 

difference between the two samples was the proportion of latent classes. In Sample 1, students 

who were proficient in reading accounted for about 0.225 of the sample; whereas in Sample 2, 

proficient students accounted for the majority (i.e., 0.709) of the sample.  
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Chapter 5 Discussion 

Given the potentials of covariate inclusion in IRT models as suggested by literature, the 

present study explored different approaches to adding covariates into the MRM and the 

corresponding impacts on model estimation. In the simulation study, the relations between the 

covariates and the model parameters, DIF and mixing proportion were under manipulation. In 

addition, three types of data completeness, including complete data, booklet design and missing 

data by omitted responses, were simulated to approximate practical assessment settings. The 

effects of covariate inclusion approaches, as well as other manipulated factors, were compared 

and analyzed in terms of the accuracy of latent group classification, model parameter recovery, 

and overall model fit. The findings from the current study may shed light on future research and 

practices, and these findings are summarized and relevant implications are addressed in details in 

this chapter. 

5.1 Discussion of the Simulation Results 

In Chapter 4, results were summarized with respect to the accuracy of latent class 

assignment as indicated by correct classification rate, the recovery of item, person and regression 

coefficient parameters, and the model selection decisions based on AIC, BIC, AICc, CAIC, 

SABIC and DIC. In the discussion section, results will be discussed in three perspectives: 1) the 

impact of different approaches to covariate inclusion, which is the focus of the present study, 2) 

the effects of other manipulated factors, which are the add-on information about the estimation 

of mixture IRT models obtained from the current simulation, and 3) the implications regarding 

the effectiveness of different model selection indices.  
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5.1.1 Different approaches to covariate inclusion 

The data generating model, with both the dichotomous and continuous covariates 

correctly specified, has the best performance in terms of the accuracy of latent class assignment, 

as compared with other models. It also has, on average, the smallest SE and RMSE in item 

parameter recovery, the smallest RMSE in person parameter recovery, the smallest RMSE in 

regression coefficient parameter recovery (except the slope parameter in the linear regression) 

and the highest 95% coverage rate for both item and person parameter recovery, although the 

effect size of model on these parameter recovery measures is not large enough to claim a 

practical significance.  

Previous literature (Smit et al., 1999; 2000) suggested that the latent class assignment 

may substantially benefit from incorporating dichotomous covariates that are moderately or 

strongly associated with the latent class variable. In line with their results, the current study also 

witnesses a substantial increase in the correct classification rate if both dichotomous and 

continuous covariates are correctly specified in the MRM. Moreover, if only one covariate, 

dichotomous or continuous, is correctly specified in the MRM (i.e., UNM-D or UNM-C), there 

is also an improvement in the correct classification rate, but the MRM with only the dichotomous 

covariate performs slightly better than the MRM with only the continuous covariate. The reason 

might be that the dichotomous covariate enters the model directly as a predictor of the latent 

class membership in the UNM-D. 

As for the parameter recovery, Mislevy and Sheehan (1989a; 1989b) suggested that the 

incorporation of covariates associated with the latent trait could compensate for the sparse 

information in the response data and hence reduce the mean squared error of person parameter 

estimates and the standard error of item parameter estimates in maximum likelihood estimation. 
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Later, Smit et al. (1999; 2000) in their study confirmed the results by showing a reduction of SE 

in the item parameter estimates, and Adams et al. (1997) showed a substantial reduction of mean 

squared error in the ability estimation. Similarly, in the present study, it appears that the correct 

covariate inclusion may lead to a reduction in the item parameter SE and RMSE, person 

parameter RMSE and an increase in the 95% coverage rate for both item and person parameter 

estimates. Although this pattern has been observed in the descriptive statistics, the model effect 

is not of practical significance for item or person parameter recovery, as shown in the repeated 

measures ANOVA results. A plausible explanation for the small effect size is the test length used 

in the current simulation. Previous studies all used very short tests with no more than 10 items 

(Mislevy & Sheehan, 1989a; 1989b; Smit et al., 1999; 2000) and indicated that the effects of 

covariate information on parameter recovery could diminish as test length increases. However, in 

the present study, in order to guarantee the convergence rate in the missing data scenarios, the 

sample size is set to be 2000 and the test length to be 30. This combination might be too ideal for 

the model parameter estimation of the MRM so that no additional information from covariates is 

necessary. This could be the major reason why the effect of model is not pronounced for 

parameter recovery in the ANOVA. Additionally, there is an interesting finding that the 

improvement in person parameter recovery may be exclusively due to the inclusion of the 

continuous covariate as a predictor of the person parameter, because the MRM with only the 

dichotomous covariate does not perform any better than the MRM without covariates in terms of 

the SE and RMSE of person parameter recovery. Thus, it is possible that the covariate 

information may function differentially in the model estimation and the benefits brought to the 

MRM may depend on the approach to covariate inclusion. 

134 



 

Further, regarding the regression coefficient parameters, the MRMs with only one 

covariate correctly specified (i.e., UNM-C and UNM-D) result in the least biased intercept 

estimates in each corresponding regression function, and the overspecified model leads to the 

least biased slope estimates in both the logistic and the linear functions. However, in term of the 

overall quality of regression parameter recovery as indicated by RMSE, the true model still 

performs better than the other models. 

In summary, for the different approaches to covariate inclusion, the results in the present 

study show that the correct specification of both covariates in the MRM could potentially benefit 

the model performance in terms of the accuracy of latent group classification and the parameter 

estimation. Moreover, if only one of the covariates is correctly specified in the MRM, the model 

performance could still be improved to some extent, and the continuous covariate tends to 

influence both the latent group classification and the item and person parameter recovery 

whereas the dichotomous covariate could only improve the latent class identification. Further, 

based on all the model performance criteria mentioned above, it is found that the true model and 

the overspecified model are almost indistinguishable from each other, indicating that including 

redundant covariate information may not necessarily worsen the model performance as long as 

all the necessary covariates are correctly specified in the model. However, the MRM with 

mismatching covariates results in the worst model performance in terms of most of the criteria 

considered in the present study, implying that the mismatch between covariates and model 

parameters may lead to even worse results than not including any covariates in the model. 

5.1.2 Effects of the other manipulated factors 

Among the other manipulated factors, DIF, mixing proportion, data completeness, and 

their interactions tend to strongly impact the accuracy of latent class assignment, as well as item 
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and person parameter recovery. As mixing proportion and DIF have been extensively studied in 

mixture IRT literature, they are not discussed in details here. Regarding data completeness, the 

booklet design tends to lead to the worst result in terms of most of the evaluation criteria used in 

the present study, with the exception that the omitted response condition results in the largest 

bias and the lowest 95% coverage for the person parameter estimates. The poor performance of 

booklet design is within expectation, considering the largest amount of missing data involved; 

however, the even worse performance of omitted response in two person parameter outcome 

measures is surprising, and one possible reason for that could be the conditional missing data 

mechanism involved in the omitted response. 

 Further, as shown in Chapter 4, data completeness tends to frequently interact with other 

factors in impacting the outcome measures, and the key to the interactions is the booklet design. 

The effects of model, mixing proportion or DIF, and certain interaction effects, tend to be much 

stronger particularly in the booklet design. For example, in terms of latent class assignment, the 

model effect is more pronounced in the booklet design, with the MRM without covariates and 

the MRM with mismatching covariates performing even worse in this situation. Another 

example is the bias for person parameter estimates. When the mixing proportion is equal or the 

DIF size is small, there is on average a slight positive bias in the person parameter estimates; 

whereas when the mixing proportion is unequal or the DIF size is large, there tends to be a larger 

negative bias in the person parameter estimates. However, for the complete data and omitted 

response conditions, the bias is largely unaffected by those factors. Similar results regarding 

other measures are also found with the booklet design as presented in Chapter 4. These results 

herein imply that the quality of mixture IRT model estimation may be easily influenced by 

different factors if booklet design is implemented in the assessment instrument. It may be worth 
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considering further simulation study to fully reveal the impact of different types and amounts of 

missing data, especially booklet design, on the estimation of mixture IRT models. 

5.1.3 Model selection 

One aspect of the present study is to provide information about model fit and model 

selection with respect to covariate inclusion, which has not been discussed by other studies in 

this line of research. Previous research regarding model fit in the mixture IRT modeling context 

without covariates (Li et al., 2009) recommended the use of BIC because of its outstanding 

performance and consistency in detecting latent class enumeration. It was suggested that both 

AIC and DIC had a tendency to select the most complex model (Li et al., 2009). However, 

different from the previous study, the current simulation provides unique information about the 

effectiveness of overall model fit indices in the mixture IRT modeling context with covariate 

inclusion. 

In general, among the six indices reported in the study, DIC is the most effective one in 

identifying the correct covariate inclusion in the MRM. Moreover, it is also very sensitive to the 

relation between the dichotomous covariate and the latent class membership. It could identify the 

more parsimonious option when the dichotomous covariate is not necessary in the model. 

Regarding the other five indices, they are not found to be useful in the current study, yet it 

interesting to find that AIC and AICc are highly consistent with each other, and BIC, CAIC and 

SABIC tend to provide very similar results. This pattern has also been observed in a previous 

study (Zhu, 2013). In the current simulation, BIC, CAIC and SABIC have a very strong tendency 

to select the most parsimonious model, whereas AIC and AICc have great difficulty 

differentiating among models. Thus, different from the message provided by previous research 

that AIC tends to select more complex model, the current simulation indicates that AIC and 
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AICc are highly inconsistent in the MRM context when covariates are involved. These two 

indices may not be good choices for practitioners when mixture IRT models are used. 

Furthermore, although BIC is proved to be successful in selecting the best latent structure and 

choosing among 1-, 2- and 3-parameter logistic IRT models, this index may not be sensitive to 

the fit of covariate inclusion in the mixture IRT models. The reason could be that including 

covariates and having more complex latent structure respectively complicate the model in 

different perspectives. Thus, the use of BIC should be implemented with caution as it works well 

in some contexts but not the others. 

However, in most commonly-used commercial software programs for mixture IRT model 

parameter estimation, the use of AIC and BIC is prevalent, and other model fit indices are 

usually not provided. For example, in Mplus, only AIC, BIC and SABIC are available for 

mixture IRT model estimation. DIC is only implemented in the Bayesian module for two-level 

models in the most recent version of Mplus (i.e., version 7.3), and it is not applied in the 

estimation of mixture models. The overemphasis of BIC in the literature and the ignorance of 

other model fit indices in the commercial software programs may lead to misfitting models being 

selected as better-fitting models for practitioners. Thus, it is suggested that the calculation of 

more model fit indices may be implemented in software programs and DIC could also be 

included if a Bayesian module exists, so that researchers may choose which index to use, 

depending on the purpose of the study, the data structure and the effect size of model parameters. 

In addition, the present study is based on Bayesian estimation and DIC is a model fit index 

specifically designed for Bayesian posterior estimates of model parameters. Thus, the use of DIC 

in the current simulation may not be directly applied to maximum likelihood estimation context.  
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Another important finding in the present study regarding model selection is that the 

effectiveness of all six indices is highly sensitive to the missing data. Even for DIC, its 

performance is greatly compromised when missing data are present.  To be specific, DIC shows 

a tendency of selecting the most complicated model no matter the missing data come from 

omitted responses or booklet design. The other indices also have great difficulty in 

differentiating the true model and the three underspecified models in missing data conditions. 

The results of real data applications also confirm the findings in the simulations. Therefore, one 

important suggestion to come out of this study for practitioners is to be extremely cautious about 

model selection indices when using them with missing data present. As the effectiveness of 

model fit indices is sometimes model and design specific and sometimes compromised by 

missing data, it is recommended that researchers should evaluate the data set and the models 

from different perspectives, rather than solely relying on information-based fit indices to choose 

among models. 

5.2 Applications of Covariate Inclusion 

As for the applications of covariate inclusion approaches, it is hoped that the mixture IRT 

model with covariates correctly specified may help identify latent DIF, explain latent DIF using 

manifest grouping variables (e.g., dichotomous covariate), and improve model parameter 

estimation simultaneously. Previously, covariate inclusion was proved useful in non-mixture IRT 

models for the purpose of explaining estimated effects (e.g., Wilson & De Boeck, 2004) or 

improving model parameter estimation (e.g., Adams et al., 1997). The current study incorporates 

covariates into the MRM via different approaches, and extends the use of covariate information 

to a broader scenario. 
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Purely in the perspective of model estimation, covariate inclusion is promising for 

mixture IRT models with the potential benefit of improving the latent group classification and 

the estimation of model parameters. However, regarding the real data applications, there exists a 

theoretical debate with respect to the validity of inference drawn about the population if 

covariate information is used, because covariate inclusion violates the fundamental of equitable 

measurement and test fairness; namely, the parameter estimation should be independent of any 

variables beyond the response data per se (Adams et al., 1997). Thus, as mentioned earlier, it is 

desirable to use covariates to improve the precision of model parameter estimation, yet it is less 

desirable to draw inference based on the conditional model, especially when high-stake decisions 

are involved (Mislevy & Sheehan, 1989a).  

Additionally, one important methodology, which is closely related to the covariate 

inclusion approach and also commonly used in large-scale assessment, is the plausible value 

imputation method.  Plausible values are imputed values drawn from an empirically derived 

distribution of latent achievement scores that are conditional on the observed values of items 

responses and respondents’ background variables (i.e., covariates). For an in-depth description of 

the plausible value imputation method, one can review some recent research work by Mislevy 

(1991; 1993), Rubin (1987), von Davier et al. (2009) and Wu (2005). As mentioned in Adams et 

al. (1997), to draw plausible values, NAEP uses an approach very similar to two-step estimation 

with covariates. Item parameters are estimated first without the covariates and the item 

parameters are fixed in the second phase for the generation of plausible values to better 

approximate population parameters (Adams et al., 1997). This methodology could be taken as an 

important extension and practical application based on covariate inclusion approaches. 
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5.3 Limitations and Future Direction 

As with all other studies, certain limitations remain in the present study. First, 

considering the amount of time required for the model estimation under the Bayesian framework, 

a number of factors are fixed in the simulation design, so the results are limited to the 

manipulated factors under investigation. Future research is necessary to further the findings by 

adding more simulation factors or including more levels based on the current factors, especially 

for test length, sample size and data completeness. As discussed in the previous section, the test 

length may be the major reason why the model effect on the parameter recovery is not of 

practical significance. Also, growth mixture literature (Kohli et al., 2013; Li et al., 2014) 

suggested that sample size, separations between latent classes and the interaction between the 

two may affect model parameter estimation and latent class identification. As sample size is not 

manipulated in the present study, it is not known whether this finding also holds in mixture IRT 

context. Simulations that simultaneously consider test length, sample size and separation 

between latent classes could be conducted to further this line of research. Additionally, as for the 

data completeness, the current study implies that both the amount and the mechanism of missing 

data (i.e., random or conditional) may impact the parameter recovery and the performance of 

model fit indices. However, with only one level for each type of missing data, the effects of 

missing data amount and mechanism are confounded. This is also an issue that is worth further 

investigation. Second, for the regression parameters, the current study using one-step estimation 

shows that the linear regression parameters tend to be slightly overestimated and the logistic 

regression parameters underestimated. Previous research suggested that one-step estimation is 

favored than two-step estimation due to the fact that the latter one would greatly underestimate 

the regression parameters (Adam et al., 1997). However, without a direct comparison of one-step 
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versus two-step estimation in the present study, it is not clear that how much one-step estimation 

is better than two-step estimation in terms of recovering the relations between covariates and 

model parameters in the MRM context. This issue may be explored in future research. Finally, 

although Bayesian estimation allows much flexibility in model specification, it requires 

substantial computing time so that the scope of the simulation and the number of replications per 

cell are limited in the present study. To better understand the impact of covariate inclusion on 

mixture IRT models, future research may consider including more replications and broadening 

the scope of the current simulation by using maximum likelihood method to achieve greater 

estimation efficiency.  

In summary, despite the limitations, the findings from this study definitely add to the 

literature about different covariate inclusion approaches in mixture IRT modeling. With an ever-

increasing use of complicated models in psychometrics, a proper use of covariate information is 

of theoretical and practical importance for researchers to achieve more accurate model estimation. 

With a simulation study followed by real data examples, the current study provides important 

evidence about the impact of covariate inclusion on the accuracy of latent group classification, 

model parameter recovery, and overall model fit. Empirical information based on real data about 

the appropriateness of covariate inclusion in practical assessment settings is also included. It 

complements similar previous studies and lays a good foundation for future explorations. 
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Appendix A 
 
Table 1 
Two Sets of Generating Item Difficulty Parameters bi1 and bi2. 

Item 
Average DIF=1.5 Average DIF=1.0 

bi1 bi2 |bi1-bi2| bi1 bi2 |bi1-bi2| 
1 0.384 -1.838 2.221 0.933 0.396 0.538 
2 1.367 -0.154 1.521 -0.525 0.077 0.602 
3 -0.345 0.980 1.325 1.814 2.400 0.586 
4 1.349 0.403 0.946 0.083 -0.894 0.977 
5 0.303 -0.926 1.229 0.396 0.766 0.370 
6 0.521 -0.624 1.145 -2.194 1.559 3.753 
7 1.143 -0.257 1.401 -0.360 1.132 1.493 
8 0.216 -1.367 1.583 0.143 -0.251 0.394 
9 1.130 -1.887 3.018 -0.204 -1.107 0.903 
10 -0.600 0.342 0.942 0.446 1.185 0.739 
11 -0.146 0.685 0.830 -0.322 -1.728 1.406 
12 1.420 -0.412 1.832 0.478 0.159 0.320 
13 -0.523 0.690 1.213 0.196 -0.669 0.865 
14 0.314 -0.327 0.641 0.715 0.973 0.258 
15 0.924 -0.586 1.510 -0.960 -1.231 0.270 
16 0.580 2.479 1.899 0.671 0.730 0.060 
17 -0.655 1.036 1.690 1.655 -0.391 2.046 
18 -0.254 -1.392 1.138 1.243 -0.811 2.053 
19 0.124 -1.560 1.684 -1.562 -0.481 1.080 
20 0.308 1.507 1.199 1.182 1.524 0.342 
21 -1.883 0.119 2.002 0.570 -0.663 1.233 
22 -0.409 1.285 1.694 1.141 0.729 0.412 
23 0.463 -0.764 1.227 -1.241 0.943 2.184 
24 -0.879 0.584 1.463 0.684 0.361 0.323 
25 -1.619 0.180 1.799 -0.523 1.060 1.583 
26 0.042 0.709 0.667 0.362 0.740 0.377 
27 0.797 -0.485 1.283 -1.840 -3.606 1.766 
28 0.088 0.584 0.496 0.562 0.869 0.307 
29 -1.011 0.433 1.444 0.891 -1.315 2.206 
30 -3.148 0.565 3.713 -4.436 -2.456 1.979 
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Table 2. Simulation conditions in the present study. 
Condition Data Completeness OR Corr. Prop. DIF 
1 complete 10 .2;.2 .5;.5 1.5 
2 complete 10 .2;.2 .3;.7 1.5 
3 complete 10 .8;.8 .5;.5 1.5 
4 complete 10 .8;.8 .3;.7 1.5 
5 complete 1 .2;.2 .5;.5 1.5 
6 complete 1 .2;.2 .3;.7 1.5 
7 complete 1 .8;.8 .5;.5 1.5 
8 complete 1 .8;.8 .3;.7 1.5 
9 complete 10 .2;.2 .5;.5 1 
10 complete 10 .2;.2 .3;.7 1 
11 complete 10 .8;.8 .5;.5 1 
12 complete 10 .8;.8 .3;.7 1 
13 complete 1 .2;.2 .5;.5 1 
14 complete 1 .2;.2 .3;.7 1 
15 complete 1 .8;.8 .5;.5 1 
16 complete 1 .8;.8 .3;.7 1 
17 booklet design 10 .2;.2 .5;.5 1.5 
18 booklet design 10 .2;.2 .3;.7 1.5 
19 booklet design 10 .8;.8 .5;.5 1.5 
20 booklet design 10 .8;.8 .3;.7 1.5 
21 booklet design 1 .2;.2 .5;.5 1.5 
22 booklet design 1 .2;.2 .3;.7 1.5 
23 booklet design 1 .8;.8 .5;.5 1.5 
24 booklet design 1 .8;.8 .3;.7 1.5 
25 booklet design 10 .2;.2 .5;.5 1 
26 booklet design 10 .2;.2 .3;.7 1 
27 booklet design 10 .8;.8 .5;.5 1 
28 booklet design 10 .8;.8 .3;.7 1 
29 booklet design 1 .2;.2 .5;.5 1 
30 booklet design 1 .2;.2 .3;.7 1 
31 booklet design 1 .8;.8 .5;.5 1 
32 booklet design 1 .8;.8 .3;.7 1 
33 omitted responses 10 .2;.2 .5;.5 1.5 
34 omitted responses 10 .2;.2 .3;.7 1.5 
35 omitted responses 10 .8;.8 .5;.5 1.5 
36 omitted responses 10 .8;.8 .3;.7 1.5 
37 omitted responses 1 .2;.2 .5;.5 1.5 
38 omitted responses 1 .2;.2 .3;.7 1.5 
39 omitted responses 1 .8;.8 .5;.5 1.5 
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40 omitted responses 1 .8;.8 .3;.7 1.5 
41 omitted responses 10 .2;.2 .5;.5 1 
42 omitted responses 10 .2;.2 .3;.7 1 
43 omitted responses 10 .8;.8 .5;.5 1 
44 omitted responses 10 .8;.8 .3;.7 1 
45 omitted responses 1 .2;.2 .5;.5 1 
46 omitted responses 1 .2;.2 .3;.7 1 
47 omitted responses 1 .8;.8 .5;.5 1 
48 omitted responses 1 .8;.8 .3;.7 1 
Note: Data generated in each condition are estimated by 6 models. 
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Table 3. Average correct latent group classification rate. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.974 0.971 0.970 0.974 0.975 0.970 
    .3;.7 0.977 0.973 0.972 0.976 0.976 0.972 
   .8;.8 .5;.5 0.978 0.970 0.974 0.974 0.978 0.969 
    .3;.7 0.980 0.973 0.976 0.977 0.980 0.972 
  1 .2;.2 .5;.5 0.970 0.971 0.970 0.971 0.970 0.970 
    .3;.7 0.972 0.972 0.972 0.972 0.972 0.972 
   .8;.8 .5;.5 0.974 0.970 0.974 0.969 0.974 0.969 
    .3;.7 0.976 0.973 0.976 0.973 0.976 0.972 
 1 10 .2;.2 .5;.5 0.951 0.942 0.942 0.951 0.951 0.941 
    .3;.7 0.955 0.946 0.945 0.955 0.955 0.944 
   .8;.8 .5;.5 0.956 0.940 0.949 0.949 0.956 0.936 
    .3;.7 0.961 0.948 0.953 0.956 0.961 0.942 
  1 .2;.2 .5;.5 0.943 0.942 0.942 0.942 0.942 0.942 
    .3;.7 0.945 0.946 0.945 0.946 0.946 0.945 
   .8;.8 .5;.5 0.949 0.940 0.949 0.941 0.949 0.936 
    .3;.7 0.952 0.948 0.953 0.947 0.953 0.941 
Booklet  1.5 10 .2;.2 .5;.5 0.937 0.929 0.930 0.937 0.936 0.923 
Design    .3;.7 0.929 0.912 0.911 0.928 0.927 0.895 
   .8;.8 .5;.5 0.941 0.927 0.940 0.935 0.942 0.916 
    .3;.7 0.940 0.915 0.929 0.930 0.939 0.877 
  1 .2;.2 .5;.5 0.929 0.929 0.930 0.911 0.930 0.928 
    .3;.7 0.911 0.912 0.911 0.910 0.910 0.912 
   .8;.8 .5;.5 0.939 0.927 0.940 0.928 0.939 0.921 
    .3;.7 0.928 0.915 0.929 0.914 0.928 0.887 
 1 10 .2;.2 .5;.5 0.913 0.888 0.888 0.912 0.913 0.884 
    .3;.7 0.890 0.825 0.836 0.895 0.887 0.797 
   .8;.8 .5;.5 0.923 0.888 0.901 0.911 0.923 0.786 
    .3;.7 0.906 0.832 0.867 0.897 0.905 0.667 
  1 .2;.2 .5;.5 0.887 0.888 0.888 0.886 0.884 0.881 
    .3;.7 0.823 0.825 0.837 0.832 0.824 0.832 
   .8;.8 .5;.5 0.899 0.887 0.901 0.885 0.897 0.766 
    .3;.7 0.858 0.832 0.867 0.837 0.859 0.693 
Omitted  1.5 10 .2;.2 .5;.5 0.938 0.926 0.927 0.938 0.937 0.924 
Responses    .3;.7 0.930 0.914 0.914 0.930 0.930 0.912 
   .8;.8 .5;.5 0.948 0.925 0.938 0.938 0.947 0.922 
    .3;.7 0.943 0.915 0.930 0.933 0.942 0.913 
  1 .2;.2 .5;.5 0.926 0.926 0.927 0.926 0.926 0.926 
    .3;.7 0.914 0.914 0.914 0.914 0.914 0.914 
   .8;.8 .5;.5 0.938 0.925 0.938 0.925 0.935 0.925 
    .3;.7 0.930 0.915 0.930 0.915 0.929 0.915 
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 1 10 .2;.2 .5;.5 0.936 0.922 0.923 0.935 0.935 0.921 
    .3;.7 0.938 0.920 0.920 0.937 0.938 0.917 
   .8;.8 .5;.5 0.945 0.920 0.934 0.932 0.946 0.915 
    .3;.7 0.946 0.923 0.935 0.939 0.947 0.909 
  1 .2;.2 .5;.5 0.923 0.922 0.923 0.922 0.923 0.922 
    .3;.7 0.920 0.920 0.920 0.920 0.920 0.920 
   .8;.8 .5;.5 0.935 0.920 0.934 0.920 0.934 0.915 
    .3;.7 0.935 0.923 0.935 0.923 0.935 0.911 
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Table 4a. Average standard error of item parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.073 0.074 0.074 0.073 0.073 0.074 
    .3;.7 0.076 0.077 0.077 0.076 0.076 0.077 
   .8;.8 .5;.5 0.073 0.074 0.074 0.074 0.073 0.074 
    .3;.7 0.078 0.079 0.079 0.079 0.078 0.079 
  1 .2;.2 .5;.5 0.074 0.074 0.074 0.074 0.074 0.074 
    .3;.7 0.077 0.077 0.077 0.077 0.077 0.077 
   .8;.8 .5;.5 0.074 0.074 0.074 0.074 0.074 0.074 
    .3;.7 0.079 0.079 0.079 0.079 0.079 0.079 
 1 10 .2;.2 .5;.5 0.065 0.066 0.066 0.065 0.065 0.066 
    .3;.7 0.070 0.071 0.072 0.070 0.070 0.071 
   .8;.8 .5;.5 0.065 0.066 0.065 0.066 0.065 0.066 
    .3;.7 0.070 0.071 0.071 0.070 0.070 0.071 
  1 .2;.2 .5;.5 0.066 0.066 0.066 0.066 0.066 0.066 
    .3;.7 0.072 0.071 0.072 0.071 0.072 0.071 
   .8;.8 .5;.5 0.066 0.066 0.065 0.065 0.066 0.066 
    .3;.7 0.071 0.071 0.071 0.071 0.071 0.071 
Booklet  1.5 10 .2;.2 .5;.5 0.106 0.107 0.107 0.106 0.106 0.110 
Design    .3;.7 0.160 0.155 0.154 0.160 0.158 0.152 
   .8;.8 .5;.5 0.105 0.109 0.104 0.108 0.106 0.113 
    .3;.7 0.158 0.160 0.151 0.166 0.158 0.159 
  1 .2;.2 .5;.5 0.107 0.107 0.107 0.193 0.107 0.108 
    .3;.7 0.154 0.155 0.154 0.155 0.155 0.156 
   .8;.8 .5;.5 0.104 0.109 0.104 0.109 0.105 0.111 
    .3;.7 0.151 0.160 0.151 0.160 0.150 0.162 
 1 10 .2;.2 .5;.5 0.099 0.101 0.102 0.099 0.099 0.102 
    .3;.7 0.102 0.101 0.100 0.104 0.102 0.102 
   .8;.8 .5;.5 0.095 0.105 0.098 0.105 0.098 0.160 
    .3;.7 0.101 0.099 0.098 0.104 0.103 0.111 
  1 .2;.2 .5;.5 0.101 0.101 0.102 0.103 0.104 0.105 
    .3;.7 0.101 0.101 0.100 0.101 0.101 0.102 
   .8;.8 .5;.5 0.099 0.105 0.097 0.108 0.102 0.166 
    .3;.7 0.095 0.099 0.098 0.100 0.096 0.109 
Omitted  1.5 10 .2;.2 .5;.5 0.080 0.080 0.080 0.080 0.080 0.080 
Responses    .3;.7 0.090 0.091 0.092 0.089 0.090 0.092 
   .8;.8 .5;.5 0.079 0.081 0.079 0.080 0.079 0.081 
    .3;.7 0.091 0.095 0.093 0.092 0.090 0.096 
  1 .2;.2 .5;.5 0.080 0.080 0.080 0.080 0.080 0.080 
    .3;.7 0.092 0.091 0.092 0.091 0.091 0.091 
   .8;.8 .5;.5 0.080 0.081 0.079 0.081 0.080 0.081 
    .3;.7 0.093 0.095 0.093 0.094 0.093 0.096 
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 1 10 .2;.2 .5;.5 0.072 0.073 0.073 0.072 0.072 0.074 
    .3;.7 0.082 0.084 0.083 0.082 0.082 0.083 
   .8;.8 .5;.5 0.070 0.073 0.071 0.072 0.070 0.074 
    .3;.7 0.079 0.081 0.080 0.080 0.079 0.084 
  1 .2;.2 .5;.5 0.074 0.073 0.073 0.073 0.074 0.074 
    .3;.7 0.084 0.084 0.083 0.084 0.084 0.083 
   .8;.8 .5;.5 0.071 0.073 0.071 0.073 0.072 0.074 
    .3;.7 0.080 0.081 0.080 0.081 0.080 0.083 
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Table 4b. Average RMSE of item parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.074 0.075 0.075 0.074 0.074 0.075 
    .3;.7 0.077 0.078 0.078 0.077 0.077 0.078 
   .8;.8 .5;.5 0.074 0.075 0.074 0.074 0.074 0.075 
    .3;.7 0.079 0.080 0.080 0.079 0.079 0.080 
  1 .2;.2 .5;.5 0.075 0.075 0.075 0.075 0.075 0.075 
    .3;.7 0.078 0.078 0.078 0.078 0.078 0.078 
   .8;.8 .5;.5 0.074 0.075 0.074 0.075 0.074 0.075 
    .3;.7 0.080 0.080 0.080 0.080 0.079 0.080 
 1 10 .2;.2 .5;.5 0.066 0.066 0.067 0.066 0.066 0.066 
    .3;.7 0.071 0.072 0.073 0.071 0.071 0.073 
   .8;.8 .5;.5 0.065 0.066 0.066 0.065 0.065 0.066 
    .3;.7 0.071 0.071 0.072 0.070 0.070 0.073 
  1 .2;.2 .5;.5 0.066 0.066 0.067 0.067 0.067 0.066 
    .3;.7 0.072 0.072 0.073 0.072 0.072 0.072 
   .8;.8 .5;.5 0.066 0.066 0.066 0.066 0.066 0.066 
    .3;.7 0.071 0.071 0.072 0.071 0.071 0.073 
Booklet  1.5 10 .2;.2 .5;.5 0.119 0.128 0.126 0.120 0.120 0.136 
Design    .3;.7 0.447 0.480 0.479 0.446 0.446 0.509 
   .8;.8 .5;.5 0.119 0.131 0.117 0.124 0.119 0.146 
    .3;.7 0.389 0.481 0.402 0.446 0.390 0.552 
  1 .2;.2 .5;.5 0.127 0.128 0.126 0.205 0.126 0.128 
    .3;.7 0.477 0.480 0.479 0.477 0.473 0.483 
   .8;.8 .5;.5 0.118 0.131 0.117 0.131 0.118 0.139 
    .3;.7 0.402 0.481 0.402 0.478 0.402 0.534 
 1 10 .2;.2 .5;.5 0.124 0.137 0.138 0.123 0.124 0.137 
    .3;.7 0.247 0.266 0.270 0.247 0.248 0.272 
   .8;.8 .5;.5 0.117 0.138 0.130 0.128 0.121 0.233 
    .3;.7 0.247 0.263 0.270 0.246 0.247 0.377 
  1 .2;.2 .5;.5 0.138 0.137 0.138 0.139 0.148 0.149 
    .3;.7 0.266 0.266 0.271 0.265 0.266 0.264 
   .8;.8 .5;.5 0.134 0.138 0.130 0.140 0.143 0.258 
    .3;.7 0.261 0.263 0.270 0.263 0.262 0.352 
Omitted  1.5 10 .2;.2 .5;.5 0.103 0.110 0.110 0.104 0.104 0.112 
Responses    .3;.7 0.125 0.138 0.139 0.125 0.125 0.139 
   .8;.8 .5;.5 0.097 0.110 0.103 0.103 0.098 0.112 
    .3;.7 0.120 0.142 0.132 0.128 0.120 0.142 
  1 .2;.2 .5;.5 0.110 0.110 0.110 0.110 0.110 0.110 
    .3;.7 0.139 0.138 0.139 0.138 0.137 0.137 
   .8;.8 .5;.5 0.103 0.110 0.103 0.110 0.104 0.110 
    .3;.7 0.133 0.142 0.132 0.142 0.133 0.140 
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 1 10 .2;.2 .5;.5 0.081 0.083 0.085 0.081 0.081 0.084 
    .3;.7 0.094 0.098 0.099 0.094 0.094 0.098 
   .8;.8 .5;.5 0.076 0.082 0.079 0.080 0.076 0.083 
    .3;.7 0.088 0.095 0.092 0.093 0.087 0.098 
  1 .2;.2 .5;.5 0.083 0.083 0.085 0.083 0.083 0.083 
    .3;.7 0.098 0.098 0.099 0.098 0.098 0.097 
   .8;.8 .5;.5 0.078 0.082 0.079 0.082 0.078 0.082 
    .3;.7 0.090 0.095 0.092 0.095 0.089 0.097 
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Table 4c. Average 95% coverage rate of item parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.952 0.953 0.954 0.953 0.951 0.954 
    .3;.7 0.963 0.965 0.961 0.962 0.961 0.964 
   .8;.8 .5;.5 0.953 0.952 0.951 0.955 0.951 0.953 
    .3;.7 0.956 0.954 0.953 0.956 0.957 0.955 
  1 .2;.2 .5;.5 0.952 0.953 0.954 0.951 0.951 0.951 
    .3;.7 0.964 0.965 0.961 0.963 0.965 0.965 
   .8;.8 .5;.5 0.953 0.952 0.951 0.951 0.950 0.951 
    .3;.7 0.955 0.954 0.953 0.955 0.957 0.955 
 1 10 .2;.2 .5;.5 0.947 0.944 0.945 0.949 0.947 0.947 
    .3;.7 0.949 0.949 0.953 0.950 0.951 0.945 
   .8;.8 .5;.5 0.954 0.952 0.952 0.957 0.955 0.953 
    .3;.7 0.953 0.954 0.953 0.951 0.957 0.947 
  1 .2;.2 .5;.5 0.946 0.944 0.945 0.944 0.945 0.948 
    .3;.7 0.947 0.949 0.953 0.948 0.950 0.949 
   .8;.8 .5;.5 0.953 0.952 0.952 0.951 0.951 0.951 
    .3;.7 0.953 0.954 0.953 0.953 0.953 0.948 
Booklet  1.5 10 .2;.2 .5;.5 0.921 0.871 0.887 0.918 0.915 0.849 
Design    .3;.7 0.561 0.527 0.527 0.563 0.557 0.493 
   .8;.8 .5;.5 0.907 0.865 0.914 0.901 0.915 0.822 
    .3;.7 0.665 0.535 0.624 0.553 0.660 0.499 
  1 .2;.2 .5;.5 0.877 0.871 0.887 0.890 0.892 0.872 
    .3;.7 0.528 0.527 0.527 0.524 0.529 0.525 
   .8;.8 .5;.5 0.911 0.865 0.914 0.877 0.915 0.842 
    .3;.7 0.627 0.535 0.624 0.529 0.619 0.511 
 1 10 .2;.2 .5;.5 0.884 0.839 0.831 0.885 0.882 0.837 
    .3;.7 0.794 0.732 0.750 0.807 0.795 0.712 
   .8;.8 .5;.5 0.879 0.842 0.836 0.867 0.873 0.659 
    .3;.7 0.771 0.741 0.712 0.811 0.779 0.477 
  1 .2;.2 .5;.5 0.835 0.839 0.831 0.833 0.801 0.794 
    .3;.7 0.733 0.732 0.751 0.739 0.728 0.740 
   .8;.8 .5;.5 0.837 0.845 0.843 0.835 0.808 0.591 
    .3;.7 0.721 0.741 0.712 0.750 0.721 0.519 
Omitted  1.5 10 .2;.2 .5;.5 0.865 0.849 0.851 0.861 0.866 0.845 
Responses    .3;.7 0.853 0.839 0.839 0.851 0.853 0.837 
   .8;.8 .5;.5 0.899 0.866 0.892 0.878 0.903 0.865 
    .3;.7 0.861 0.829 0.856 0.843 0.867 0.829 
  1 .2;.2 .5;.5 0.849 0.849 0.851 0.847 0.848 0.852 
    .3;.7 0.837 0.839 0.839 0.833 0.836 0.838 
   .8;.8 .5;.5 0.888 0.866 0.892 0.871 0.889 0.865 
    .3;.7 0.853 0.829 0.856 0.834 0.855 0.825 
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 1 10 .2;.2 .5;.5 0.870 0.857 0.861 0.869 0.869 0.859 
    .3;.7 0.860 0.847 0.845 0.858 0.857 0.849 
   .8;.8 .5;.5 0.907 0.872 0.904 0.876 0.912 0.849 
    .3;.7 0.900 0.851 0.889 0.863 0.897 0.817 
  1 .2;.2 .5;.5 0.860 0.857 0.861 0.858 0.857 0.858 
    .3;.7 0.848 0.847 0.845 0.847 0.851 0.846 
   .8;.8 .5;.5 0.909 0.872 0.904 0.871 0.907 0.855 
    .3;.7 0.890 0.851 0.889 0.850 0.888 0.825 
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Table 5a. Average bias of person parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.004 0.007 0.007 0.007 0.007 0.006 
    .3;.7 0.007 0.012 0.011 0.010 0.010 0.008 
   .8;.8 .5;.5 0.007 0.007 0.010 0.006 0.009 0.007 
    .3;.7 0.011 0.012 0.014 0.011 0.013 0.010 
  1 .2;.2 .5;.5 0.007 0.007 0.007 0.007 0.007 0.007 
    .3;.7 0.011 0.011 0.011 0.011 0.011 0.011 
   .8;.8 .5;.5 0.010 0.007 0.010 0.007 0.010 0.007 
    .3;.7 0.015 0.012 0.014 0.012 0.015 0.013 
 1 10 .2;.2 .5;.5 0.005 0.005 0.009 0.005 0.005 0.008 
    .3;.7 0.008 0.010 0.018 0.008 0.008 0.012 
   .8;.8 .5;.5 0.010 0.007 0.014 0.007 0.010 0.010 
    .3;.7 0.011 0.008 0.020 0.007 0.011 0.010 
  1 .2;.2 .5;.5 0.005 0.005 0.009 0.014 0.005 0.008 
    .3;.7 0.010 0.010 0.018 0.010 0.010 0.012 
   .8;.8 .5;.5 0.011 0.007 0.014 0.015 0.010 0.010 
    .3;.7 0.013 0.008 0.020 0.008 0.012 0.010 
Booklet  1.5 10 .2;.2 .5;.5 0.041 0.064 0.049 0.052 0.053 0.071 
Design    .3;.7 -0.148 -0.183 -0.183 -0.161 -0.163 -0.216 
   .8;.8 .5;.5 0.060 0.067 0.042 0.054 0.050 0.084 
    .3;.7 -0.090 -0.184 -0.111 -0.161 -0.106 -0.210 
  1 .2;.2 .5;.5 0.062 0.064 0.049 0.066 0.051 0.065 
    .3;.7 -0.183 -0.183 -0.183 -0.196 -0.193 -0.182 
   .8;.8 .5;.5 0.054 0.067 0.042 0.052 0.045 0.077 
    .3;.7 -0.109 -0.184 -0.111 -0.197 -0.122 -0.192 
 1 10 .2;.2 .5;.5 0.019 0.018 0.034 0.031 0.019 0.031 
    .3;.7 -0.004 -0.011 0.025 0.014 -0.006 -0.024 
   .8;.8 .5;.5 0.020 0.018 0.039 0.033 0.026 0.059 
    .3;.7 0.025 -0.012 0.051 0.012 0.023 0.074 
  1 .2;.2 .5;.5 0.018 0.018 0.034 0.027 0.022 0.039 
    .3;.7 -0.010 -0.011 0.028 0.003 -0.010 -0.010 
   .8;.8 .5;.5 0.024 0.018 0.038 0.027 0.030 0.069 
    .3;.7 0.022 -0.012 0.051 0.004 0.022 0.074 
Omitted  1.5 10 .2;.2 .5;.5 0.100 0.112 0.108 0.097 0.096 0.114 
Responses    .3;.7 0.108 0.117 0.118 0.104 0.104 0.117 
   .8;.8 .5;.5 0.092 0.113 0.100 0.097 0.090 0.116 
    .3;.7 0.105 0.121 0.117 0.106 0.102 0.116 
  1 .2;.2 .5;.5 0.112 0.112 0.108 0.108 0.108 0.112 
    .3;.7 0.118 0.117 0.118 0.114 0.113 0.116 
   .8;.8 .5;.5 0.104 0.113 0.100 0.109 0.103 0.112 
    .3;.7 0.117 0.121 0.117 0.118 0.114 0.115 
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 1 10 .2;.2 .5;.5 0.047 0.050 0.058 0.048 0.047 0.049 
    .3;.7 0.055 0.058 0.069 0.055 0.055 0.057 
   .8;.8 .5;.5 0.046 0.051 0.058 0.049 0.045 0.049 
    .3;.7 0.052 0.057 0.066 0.053 0.051 0.050 
  1 .2;.2 .5;.5 0.049 0.050 0.058 0.050 0.049 0.050 
    .3;.7 0.059 0.058 0.069 0.058 0.059 0.058 
   .8;.8 .5;.5 0.049 0.051 0.058 0.052 0.049 0.049 
    .3;.7 0.057 0.057 0.066 0.058 0.056 0.051 
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Table 5b. Average standard error of person parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.185 0.186 0.185 0.185 0.185 0.187 
    .3;.7 0.119 0.118 0.119 0.119 0.119 0.120 
   .8;.8 .5;.5 0.151 0.186 0.151 0.185 0.151 0.187 
    .3;.7 0.097 0.119 0.098 0.118 0.097 0.120 
  1 .2;.2 .5;.5 0.185 0.186 0.185 0.186 0.185 0.186 
    .3;.7 0.119 0.120 0.119 0.120 0.119 0.120 
   .8;.8 .5;.5 0.151 0.186 0.151 0.186 0.151 0.186 
    .3;.7 0.098 0.119 0.098 0.119 0.098 0.119 
 1 10 .2;.2 .5;.5 0.153 0.155 0.154 0.154 0.153 0.155 
    .3;.7 0.098 0.099 0.097 0.098 0.098 0.099 
   .8;.8 .5;.5 0.130 0.158 0.130 0.157 0.130 0.158 
    .3;.7 0.084 0.101 0.084 0.100 0.084 0.102 
  1 .2;.2 .5;.5 0.154 0.155 0.154 0.153 0.154 0.154 
    .3;.7 0.098 0.099 0.097 0.099 0.098 0.099 
   .8;.8 .5;.5 0.132 0.158 0.130 0.155 0.132 0.157 
    .3;.7 0.086 0.101 0.084 0.101 0.086 0.101 
Booklet  1.5 10 .2;.2 .5;.5 0.228 0.231 0.232 0.226 0.225 0.240 
Design    .3;.7 0.215 0.224 0.223 0.221 0.221 0.231 
   .8;.8 .5;.5 0.177 0.231 0.183 0.227 0.181 0.239 
    .3;.7 0.161 0.222 0.170 0.219 0.165 0.225 
  1 .2;.2 .5;.5 0.229 0.231 0.232 0.320 0.231 0.230 
    .3;.7 0.223 0.224 0.223 0.230 0.228 0.224 
   .8;.8 .5;.5 0.181 0.231 0.183 0.235 0.182 0.234 
    .3;.7 0.169 0.222 0.170 0.227 0.173 0.224 
 1 10 .2;.2 .5;.5 0.176 0.185 0.179 0.173 0.177 0.181 
    .3;.7 0.127 0.129 0.115 0.123 0.127 0.130 
   .8;.8 .5;.5 0.145 0.189 0.147 0.176 0.145 0.200 
    .3;.7 0.096 0.127 0.086 0.122 0.096 0.136 
  1 .2;.2 .5;.5 0.185 0.185 0.179 0.184 0.183 0.178 
    .3;.7 0.128 0.129 0.114 0.132 0.128 0.129 
   .8;.8 .5;.5 0.152 0.189 0.147 0.190 0.152 0.196 
    .3;.7 0.096 0.127 0.086 0.129 0.097 0.134 
Omitted  1.5 10 .2;.2 .5;.5 0.196 0.195 0.195 0.198 0.197 0.193 
Responses    .3;.7 0.129 0.126 0.125 0.131 0.130 0.125 
   .8;.8 .5;.5 0.158 0.195 0.158 0.199 0.158 0.193 
    .3;.7 0.103 0.125 0.101 0.131 0.104 0.127 
  1 .2;.2 .5;.5 0.194 0.195 0.195 0.196 0.195 0.195 
    .3;.7 0.125 0.126 0.125 0.127 0.126 0.127 
   .8;.8 .5;.5 0.158 0.195 0.158 0.196 0.158 0.195 
    .3;.7 0.101 0.125 0.101 0.126 0.102 0.129 
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 1 10 .2;.2 .5;.5 0.167 0.170 0.167 0.168 0.167 0.170 
    .3;.7 0.112 0.115 0.111 0.113 0.112 0.116 
   .8;.8 .5;.5 0.136 0.173 0.136 0.171 0.137 0.174 
    .3;.7 0.092 0.118 0.094 0.116 0.092 0.121 
  1 .2;.2 .5;.5 0.169 0.170 0.167 0.170 0.169 0.170 
    .3;.7 0.114 0.115 0.111 0.116 0.114 0.116 
   .8;.8 .5;.5 0.140 0.173 0.136 0.173 0.140 0.174 
    .3;.7 0.095 0.118 0.094 0.118 0.095 0.122 
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Table 5c. Average RMSE of person parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.199 0.199 0.199 0.199 0.199 0.200 
    .3;.7 0.126 0.128 0.128 0.128 0.127 0.127 
   .8;.8 .5;.5 0.176 0.199 0.177 0.199 0.177 0.199 
    .3;.7 0.112 0.129 0.114 0.128 0.114 0.128 
  1 .2;.2 .5;.5 0.199 0.199 0.199 0.199 0.199 0.199 
    .3;.7 0.127 0.128 0.128 0.128 0.128 0.128 
   .8;.8 .5;.5 0.177 0.199 0.177 0.199 0.177 0.200 
    .3;.7 0.114 0.129 0.114 0.129 0.115 0.130 
 1 10 .2;.2 .5;.5 0.164 0.165 0.164 0.164 0.164 0.164 
    .3;.7 0.104 0.104 0.108 0.104 0.104 0.105 
   .8;.8 .5;.5 0.150 0.168 0.150 0.167 0.150 0.168 
    .3;.7 0.096 0.106 0.099 0.106 0.096 0.107 
  1 .2;.2 .5;.5 0.165 0.165 0.164 0.166 0.165 0.164 
    .3;.7 0.104 0.104 0.108 0.104 0.104 0.105 
   .8;.8 .5;.5 0.151 0.168 0.150 0.168 0.151 0.168 
    .3;.7 0.097 0.106 0.099 0.106 0.097 0.107 
Booklet  1.5 10 .2;.2 .5;.5 0.271 0.307 0.292 0.280 0.279 0.326 
Design    .3;.7 0.276 0.312 0.313 0.294 0.297 0.344 
   .8;.8 .5;.5 0.245 0.309 0.237 0.282 0.236 0.345 
    .3;.7 0.220 0.309 0.248 0.290 0.239 0.326 
  1 .2;.2 .5;.5 0.303 0.307 0.292 0.363 0.292 0.307 
    .3;.7 0.313 0.312 0.313 0.332 0.331 0.310 
   .8;.8 .5;.5 0.246 0.309 0.237 0.298 0.238 0.327 
    .3;.7 0.247 0.309 0.248 0.328 0.264 0.316 
 1 10 .2;.2 .5;.5 0.196 0.201 0.206 0.202 0.196 0.206 
    .3;.7 0.149 0.167 0.131 0.132 0.151 0.173 
   .8;.8 .5;.5 0.173 0.204 0.178 0.204 0.172 0.248 
    .3;.7 0.134 0.168 0.119 0.132 0.135 0.177 
  1 .2;.2 .5;.5 0.201 0.201 0.206 0.204 0.201 0.211 
    .3;.7 0.165 0.167 0.129 0.155 0.165 0.164 
   .8;.8 .5;.5 0.180 0.204 0.177 0.208 0.179 0.254 
    .3;.7 0.146 0.168 0.119 0.153 0.147 0.173 
Omitted  1.5 10 .2;.2 .5;.5 0.267 0.276 0.270 0.265 0.263 0.277 
Responses    .3;.7 0.206 0.213 0.213 0.203 0.202 0.213 
   .8;.8 .5;.5 0.236 0.277 0.239 0.265 0.232 0.278 
    .3;.7 0.186 0.217 0.196 0.204 0.183 0.212 
  1 .2;.2 .5;.5 0.275 0.276 0.270 0.272 0.271 0.276 
    .3;.7 0.213 0.213 0.213 0.209 0.208 0.212 
   .8;.8 .5;.5 0.243 0.277 0.239 0.273 0.241 0.276 
    .3;.7 0.197 0.217 0.196 0.212 0.193 0.211 
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 1 10 .2;.2 .5;.5 0.194 0.196 0.202 0.194 0.194 0.196 
    .3;.7 0.140 0.142 0.152 0.140 0.140 0.142 
   .8;.8 .5;.5 0.170 0.199 0.178 0.197 0.170 0.199 
    .3;.7 0.124 0.144 0.136 0.141 0.123 0.141 
  1 .2;.2 .5;.5 0.195 0.196 0.202 0.196 0.195 0.196 
    .3;.7 0.142 0.142 0.152 0.143 0.142 0.142 
   .8;.8 .5;.5 0.173 0.199 0.178 0.199 0.173 0.199 
    .3;.7 0.128 0.144 0.136 0.144 0.127 0.142 
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Table 5d. Average 95% coverage rate of person parameters. 
     Estimation Model 
Data DIF OR Corr. Prop. TM UNM-N UNM-C UNM-D OM MISM 
Complete 1.5 10 .2;.2 .5;.5 0.955 0.955 0.955 0.955 0.955 0.955 
    .3;.7 0.955 0.955 0.955 0.956 0.955 0.956 
   .8;.8 .5;.5 0.956 0.957 0.957 0.956 0.956 0.956 
    .3;.7 0.955 0.955 0.955 0.955 0.955 0.955 
  1 .2;.2 .5;.5 0.955 0.955 0.955 0.955 0.955 0.955 
    .3;.7 0.955 0.955 0.955 0.955 0.955 0.956 
   .8;.8 .5;.5 0.956 0.957 0.957 0.957 0.956 0.956 
    .3;.7 0.955 0.955 0.955 0.955 0.955 0.954 
 1 10 .2;.2 .5;.5 0.955 0.955 0.955 0.955 0.955 0.955 
    .3;.7 0.955 0.954 0.954 0.954 0.954 0.954 
   .8;.8 .5;.5 0.956 0.955 0.955 0.956 0.956 0.955 
    .3;.7 0.955 0.955 0.955 0.955 0.955 0.954 
  1 .2;.2 .5;.5 0.955 0.955 0.955 0.954 0.955 0.955 
    .3;.7 0.954 0.954 0.954 0.954 0.954 0.954 
   .8;.8 .5;.5 0.955 0.955 0.955 0.956 0.956 0.955 
    .3;.7 0.955 0.955 0.955 0.955 0.955 0.954 
Booklet  1.5 10 .2;.2 .5;.5 0.955 0.955 0.955 0.954 0.955 0.954 
Design    .3;.7 0.944 0.943 0.942 0.945 0.945 0.939 
   .8;.8 .5;.5 0.955 0.954 0.957 0.954 0.955 0.953 
    .3;.7 0.953 0.942 0.953 0.945 0.953 0.924 
  1 .2;.2 .5;.5 0.955 0.955 0.955 0.955 0.956 0.955 
    .3;.7 0.943 0.943 0.942 0.944 0.943 0.942 
   .8;.8 .5;.5 0.957 0.954 0.957 0.955 0.957 0.954 
    .3;.7 0.953 0.942 0.953 0.943 0.952 0.927 
 1 10 .2;.2 .5;.5 0.953 0.953 0.951 0.953 0.953 0.951 
    .3;.7 0.956 0.954 0.952 0.955 0.956 0.955 
   .8;.8 .5;.5 0.956 0.954 0.954 0.955 0.955 0.938 
    .3;.7 0.953 0.955 0.946 0.956 0.954 0.928 
  1 .2;.2 .5;.5 0.951 0.953 0.951 0.951 0.948 0.947 
    .3;.7 0.955 0.954 0.953 0.954 0.955 0.955 
   .8;.8 .5;.5 0.954 0.954 0.954 0.953 0.951 0.929 
    .3;.7 0.951 0.955 0.946 0.954 0.951 0.927 
Omitted  1.5 10 .2;.2 .5;.5 0.932 0.928 0.928 0.932 0.932 0.927 
Responses    .3;.7 0.924 0.916 0.916 0.925 0.924 0.916 
   .8;.8 .5;.5 0.940 0.930 0.938 0.934 0.939 0.929 
    .3;.7 0.928 0.917 0.922 0.925 0.928 0.915 
  1 .2;.2 .5;.5 0.928 0.928 0.928 0.928 0.928 0.929 
    .3;.7 0.916 0.916 0.916 0.917 0.917 0.917 
   .8;.8 .5;.5 0.938 0.930 0.938 0.930 0.937 0.930 
    .3;.7 0.921 0.917 0.922 0.918 0.921 0.917 
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 1 10 .2;.2 .5;.5 0.940 0.939 0.939 0.940 0.940 0.939 
    .3;.7 0.939 0.936 0.936 0.939 0.939 0.936 
   .8;.8 .5;.5 0.948 0.940 0.947 0.942 0.948 0.938 
    .3;.7 0.943 0.936 0.942 0.939 0.943 0.932 
  1 .2;.2 .5;.5 0.939 0.939 0.939 0.939 0.939 0.939 
    .3;.7 0.936 0.936 0.936 0.936 0.936 0.936 
   .8;.8 .5;.5 0.947 0.940 0.947 0.940 0.947 0.938 
    .3;.7 0.942 0.936 0.942 0.936 0.942 0.932 
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Appendix B 

Recall that in Equation 3.7: 
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(OR) ratio odds
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Given the two-way table: 

 1=iD  0=iD   

2=g  21p  20p  ⋅2p  

1=g  11p  10p  ⋅1p  

 1⋅p  0⋅p   

 

Then the OR may be expressed as: 
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Given the values of the marginal probabilities 1⋅p and ⋅2p , when OR ≠ 1, 
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When OR = 1, 

1221 ⋅⋅= ppp . 

The other three cell probabilities can be obtained based on the marginal probabilities and 21p . 
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Appendix C 

Sample WinBUGS Code for the Estimation of the Data-generating Model (TM) 

 
Model 
{ 
# For mixing proportion 
for (j in 1:J) { P.tot[j] <- sum(P[,j])/N;} 
 
# Item Parameters 
for (m in 1:M-1) { 
for (j in 1:J) { 
b[m,j] ~ dnorm(0, 1); 
} 
} 
b[M,1] <- -1*sum(b[1:(M-1),1]); 
b[M,2] <- -1*sum(b[1:(M-1),2]); 
 
# Person Parameter and the linear function with covariates 
for (i in 1:N) { G[i]~dcat( P[i,] )} 
for (j in 1:J){a0[j] ~ dnorm(0,1);a1[j] ~ dnorm(0,1);} 
taue[1] ~ dgamma(.5,1) 
taue[2] ~ dgamma(.5,1) 
for (i in 1:N){ 
thhat[i] <- a0[G[i]]+a1[G[i]]*con[i,1] 
theta[i]~dnorm(thhat[i],taue[G[i]]) 
} 
 
# Response model and the logit function with covariates 
for (j in 2:J) { int[j] ~ dnorm(0,1); sl1[j] ~ dnorm(0,1);} 
int[1]<-0; sl1[1] <- 0; 
 
for (i in 1:N) { 
for (j in 1:J) { P[i,j]<- PHI[i,j] / sum(PHI[i,]); 
log(PHI[i,j]) <- int[j] + sl1[j]*dich[i,1]; 
} 
 
for (m in 1:M) { 
logit(p[i,m])<- theta[i]-b[m, G[i]]; 
resp[i,m] ~ dbern(p[i,m]); 
} 
} 
} 
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