

ABSTRACT

Title of Document: A simulation framework for traffic information

dissemination in ubiquitous vehicular ad hoc networks

 Hyoungsoo Kim, Doctor of Philosophy, and 2007

Directed By: Associate Professor David J. Lovell, and

Department of Civil and Environmental Engineering

The ongoing efforts to apply advanced technologies to help solve transportation

problems advanced the growing trend of integrating mobile wireless communications

into transportation systems. In particular, vehicular ad hoc networks (VANETs)

allow vehicles to constitute a decentralized traffic information system on roadways

and to share their own information. This research focused on the development of an

integrated transportation and communication simulation framework to build a more

realistic environment with which to study VANETs, as compared to previous studies.

This research implemented a VANET-based information model into an integrated

transportation and communication simulation framework in which these independent

simulation tools were tightly coupled and finely synchronized. A traffic information

system as a VANET application was built and demonstrated based on the simulation

framework developed in this research. In this system, vehicles record their own

travel time data, share these data via an ad hoc network, and reroute at split sections

based on stored travel time data. Disseminated speeds of traffic information via

broadcast on a real roadway network were obtained. In this research, Traffic

information speeds were approximately between the road speed limit in a low traffic

density - in which case they were mostly delivered by vehicles traveling on the

opposite directions - and half of the transmission range (250/2 meter) per second in a

high traffic density, which means they were delivered by vehicles traveling in the

same direction. Successful dynamic routing based on stored travel time data was

demonstrated with and without an incident in this framework. At the both cases, the

benefits from dynamic routing were shown even in the low market penetration. It is

believed that a wide range of VANET applications can be designed and assessed

using methodologies influenced by and contributed to by the simulation framework

and other methods developed in this dissertation.

A SIMULATION FRAMEWORK FOR TRAFFIC INFORMATION

DISSEMINATION IN UBIQUITOUS VEHICULAR AD HOC NETWORKS

By

Hyoungsoo Kim

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Associate Professor David J. Lovell, Chair
Professor Gang-Len Chang
Associate Professor Richard J. La
Professor Sung W. Lee
Fellow Karl E. Wunderlich, Noblis

© Copyright by
Hyoungsoo Kim

2007

ii

Acknowledgements

Sincere appreciation is extended to my advisor, Professor David J. Lovell for

supervising this dissertation; his time, energy and support were invaluable. He was

my academic advisor and, sometimes, an American friend. His patient guidance and

inspiring advice help me through many difficult moments. Very special thanks to my

dissertation committee members, Dr. Gang-Len Chang, Dr. Richard J. La, Dr. Sung

W. Lee, and Dr. Karl E. Wunderlich, for their invaluable advices and interests in my

work. I also thank Dr. Paul Schonfeld for always supporting students.

I thank Quadstone Paramics for supporting Paramics software and Scalable

Network Technologies for supporting QualNet software for my research. I cannot

imagine how I could finish my dissertation without their supports.

During my entire period to study, I have been able to meet many civil

engineering colleagues from various countries and discuss not only academic issues

but also many other issues with them. It was lucky to me that I met them, and I thank

them for being my friends.

Korean friends in our department are more than friends. When I started my study,

they were with me, and when I finish my study, they are still with me. They are like

brothers and sisters to me. I always feel I am in a big family with them. I thank them

for helping and supporting me to study.

It was a great time that I was in the Kostam (Korean Student Tennis Associate at

the University of Maryland). The Kostam made me healthy mentally as well as

physically. I always waited for the Kostam meeting on Fridays, and I was recharged

at that meeting. I met many wonderful friends through the Kostam, who would be

iii

my fortunes in my life. I thank the Kostam for giving me the chance to meet them,

and I love the Kostamians.

I obtained two friends at the end of my study: Dr. Minho Shin and Dr. Beomseok

Nam. Without them, I could not have finished my dissertation. It was a great time to

discuss and work with them. I thank them for their enthusiastic supports.

Sometimes, I think about “family.” Unfortunately, there is no word in the world

that I can describe family’s love, endless, unconditional, and unchangeable love. Still

not enough to verbalize… This dissertation is dedicated to my family that I always

love.

iv

Table of Contents

Chapter 1: Introduction ... 1

1.1 Background... 1

1.2 Research objectives... 5

1.3 Dissertation organization .. 6

Chapter 2: Related Work .. 8

2.1 Ad hoc networks ... 8
2.1.1 The ALOHA network ... 8
2.1.2 CSMA/CD, IEEE 802.3, and the Ethernet.. 10
2.1.3 CSMA/CA, IEEE 802.11, and Wi-Fi.. 13
2.1.4 Bluetooth (IEEE 802.15.1) ... 18

2.2 Vehicular ad hoc networks.. 19
2.2.1 DOLPHIN... 20
2.2.2 Traffic Safety .. 21
2.2.3 Traffic Information Dissemination ... 24
2.2.4 Vehicle-Infrastructure Integration .. 30

2.3 Traffic information imputation ... 33

2.4 Discussion ... 36

Chapter 3: Traffic Information Characteristics... 38

3.1 Individual travel time characteristics .. 38
3.1.1 Experiment for individual travel time... 39
3.1.2 Reliability of individual travel time information 43
3.1.3 Acceptance probability ... 51

3.2 Travel time information relevance.. 56
3.2.1 Experiment for spatial and temporal relevance .. 58
3.2.2 Spatial and temporal relevance ... 61
3.2.3 Linear model ... 66

3.3 Discussion ... 72

Chapter 4: Simulation Framework.. 74

4.1 Simulation design.. 75
4.1.1 Information model .. 76
4.1.2 Simulation framework design ... 79

v

4.2 Implementation ... 82
4.2.1 Simulation tools .. 82
4.2.2 Mobility management ... 83
4.2.3 Time management... 85
4.2.4 Intervehicle communication.. 88

4.3 Discussion ... 89

Chapter 5: Traffic Information System Application... 91

5.1 Traffic information system configuration... 91

5.2 Simulation model architecture .. 96
5.2.1 Vehicle release and travel time generation ... 97
5.2.2 Data dissemination.. 99
5.2.3 Data interpretation .. 101
5.2.4 Dynamic routing ... 102

Chapter 6: Case Study... 104

6.1 Simulation environment.. 104

6.2 Framework performance... 107

6.3 Traffic information speed ... 111

6.4 Dynamic routing performance .. 113

6.5 Discussion ... 117

Chapter 7: Conclusion... 118

7.1 Summary of Findings.. 118

7.2 Contribution .. 120

Appendix A Paramics API code .. 123

Appendix B QualNet code ... 123

Abbreviations.. 186

References... 189

vi

List of Tables

TABLE 2-1 Near-Range wireless data communication standards 15

TABLE 3-1 General observations for entire individual data set 42

TABLE 3-2 Traffic condition states .. 50

TABLE 3-3 General observations ... 70

TABLE 6-1 Simulation parameters ... 107

vii

List of Figures

FIGURE 1-1 Traffic safety application ... 2

FIGURE 1-2 Traffic information dissemination.. 3

FIGURE 2-1 US DOT’s VII Architecture ... 31

FIGURE 2-2 VII timeline .. 32

FIGURE 3-1 Illustration of a datum set for vehicle i ... 40

FIGURE 3-2 Experiment site... 41

FIGURE 3-3 Entire individual travel time data set ... 44

FIGURE 3-4 Quantity of individual data... 45

FIGURE 3-5 Travel time means .. 45

FIGURE 3-6 Standard deviations of travel time.. 46

FIGURE 3-7 Travel time means vs. number of data ... 47

FIGURE 3-8 Travel time means vs. standard deviation .. 47

FIGURE 3-9 Individual vs. travel time means .. 48

FIGURE 3-10 Individual data vs. standard deviations .. 49

FIGURE 3-11 Statistical minimum sample size.. 53

FIGURE 3-12 Acceptance probability... 54

FIGURE 3-13 Statistical minimum sample size and reversed Acceptance Probability

... 55

FIGURE 3-14 Concept for spatial and temporal relevance of data 57

FIGURE 3-15 Simulation network ... 58

FIGURE 3-16 Speed and density on target link and neighboring links 60

FIGURE 3-17 Two-hour correlation with speed on target link z 62

FIGURE 3-18 Correlation with speed on target link z for 15 minutes and density... 63

FIGURE 3-19 Temporal relevance.. 65

FIGURE 3-20 Spatial relevance example.. 66

FIGURE 3-21 Concept of the excess adjustment .. 68

FIGURE 3-22 A sample of data set ... 69

FIGURE 3-23 Network structure... 70

viii

FIGURE 3-24 Estimated speed and actual speed .. 71

FIGURE 4-1 Information model for VANETs.. 77

FIGURE 4-2 Framework implementation ... 81

FIGURE 4-3 Movement synchronization and expected error 84

FIGURE 4-4 Packet format from Paramics to QualNet .. 85

FIGURE 4-5 Two cases by different simulation time ... 86

FIGURE 4-6 Synchronization of Paramics and QualNet .. 87

FIGURE 4-7 Packet format from QualNet to Paramics .. 89

FIGURE 5-1 Traffic information system based on a VANET 92

FIGURE 5-2 Example of map-based travel time generation..................................... 93

FIGURE 5-3 Example of travel time data exchange ... 94

FIGURE 5-4 Internal configuration of onboard units.. 95

FIGURE 5-5 Traffic information system application.. 96

FIGURE 5-6 Vehicle userdata structure .. 98

FIGURE 5-7 Travel time data packet structure ... 99

FIGURE 6-1 Simulated road network ... 105

FIGURE 6-2 Traffic demand levels... 106

FIGURE 6-3 Computation time... 108

FIGURE 6-4 Computer memory usage ... 108

FIGURE 6-5 Total data exchange between simulators.. 109

FIGURE 6-6 Maximum data exchange between simulators 110

FIGURE 6-7 Broadcast delivery performance .. 111

FIGURE 6-8 Average information dissemination ... 112

FIGURE 6-9 Dynamic routing performance by market penetration 113

FIGURE 6-10 Dynamic routing performance by traffic demand............................ 114

FIGURE 6-11 Incident scenario .. 115

FIGURE 6-12 Dynamic routing performance under incident by market penetration

... 116

FIGURE 6-13 Dynamic routing performance under incident by traffic demand.... 116

 1

Chapter 1: Introduction

This dissertation focuses on a traffic information system based on ad hoc

networks. This chapter introduces ad hoc networks as a novel approach to improve

traffic mobility and safety, and describes the limitations of previous studies as the

background of the dissertation. The objectives of this research and a brief description

of the remaining chapters of the dissertation follow the background.

1.1 Background

Many efforts have been made to mitigate traffic congestion and accidents by

applying advanced technologies to transportation systems. Since the early 1990s, the

U.S. Department of Transportation (US DOT) has conducted the Intelligent

Transportation Systems (ITS) program in order to improve transportation safety,

relieve traffic congestion and enhance infrastructure productivity. Intelligent

Transportation Systems encompass a variety of advanced electronics technologies

such as communications, sensing, and control (US DOT, 2007).

One novel approach to improve transportation systems is to take advantage of

wireless communication technology such as ad hoc networks1. An ad hoc network is

defined as a collection of devices (nodes) that wish to communicate, but that have no

fixed infrastructure available. They have no pre–determined organization of available

links (Ramanathan and Redi, 2002). If this technology is, in particular, advanced into

1 It should be noted that the commonly accepted usage of the phrase “ad hoc network” originates

from the colloquial interpretation of ad hoc as meaning without formal organization. The phrase “ad
hoc” really means “for a specific purpose” which is not the idea captured by ad hoc networks.

 2

the traveling vehicle fleet, vehicles on roadways would create a mobile ad hoc

network which would then enable traveling vehicles to communicate with each other

about surrounding traffic states through inter-vehicle communication; in this context,

the system is called Vehicular Ad hoc Networks (VANETs). Traffic states

(information) shared could be travel time and speed, accident locations, unexpected

weather, obstacle warning, and emergency notification. The recent interest in

VANETs has led to a flurry of application ideas for transportation systems.

One specific application area of VANETs is improving transportation safety.

The general idea of VANET’s safety applications is to extend the range of vehicles’

“awareness” in curve sections or in intersection areas. Under such schemes, vehicles

can learn about dangerous situations ahead of time and slow down to avoid collision.

Figure 1-1 shows simple examples of collision avoidance schemes (FleetNet, 2002).

FIGURE 1-1 Traffic safety application

The composition of collision avoidance system on vehicular ad hoc networks

does not differ significantly among different groups conducting that research. In each

b) Rear-end collision warning a) Intersection collision warning

wireless communication

 3

case, a vehicle’s location from GPS (Global Positioning System) is broadcast on a

shared wireless channel at potential accident areas such as intersections and curved

sections. All vehicles equipped with communication devices in the vicinity or the

original message can then determine the location of the source vehicle (Avila et al.,

2005, Chisalita and Shahmehri, 2002, Dogan et al., 2004, Ueki et al. 2004, Xu et al.,

2004, and Yin et al., 2004).

Figure 1-2 illustrates traffic information dissemination, another application of

VANETs. Vehicles on roadways create a VANET and communicate with each other

about traffic states so that vehicles recognize traffic situations around them. Each

vehicle records its own travel experiences over various links, and transmits its

experiences to other vehicles so that they can develop an overall understanding of the

congestion picture (Chen et al., 2001, Bogenberger and Kosch, 2002, Blum et al.,

2004, Hasegawa et al., 2004, Little and Agarwal, 2005, Liu et al., 2005, Chawathe,

2006, and Leung et al., 2006).

FIGURE 1-2 Traffic information dissemination

Equipped vehicle
Unequipped vehicle

wireless communication
re-route

 4

Because a working system has not been deployed, it is hard to conduct real

experiments for VANET research due to its high cost in time and expenses compared

to computer simulation. Although computer simulation is popular for its low cost in

both time and expenses, it still confronts a major challenge in terms of reliability,

which in this context means the degree to which it replicates the real system it is

intended as a proxy for. Simulation of VANET-based transportation systems requires

realistic microscopic models of both a transportation system and a wireless

communication network.

In order to simulate practical vehicle movements such as car following, lane

changing, and shock waves, numerous microscopic traffic simulators have been

developed and employed (Yang, 2003, Goel et al., 2004, Wischhof et al., 2005, Wu,

2005, Xu and Barth, 2006, and Saito et al., 2007). Corsim (Corsim homepage, 2007),

Paramics (Paramics homepage, 2007), and VISSIM (VISSIM homepage, 2007) are

well-known traffic simulation tools that include the logical models mentioned above.

These transportation-oriented tools replicate various traffic circumstances as vehicles

move on real roadways. In wireless communications simulation, wireless

characteristics such as path loss, fading, interference, and communication collision

should be considered. These are related to the physical layer and the Medium Access

Control (MAC) layer of the Open Systems Interconnection (OSI) reference model

which the International Organization for Standardization (ISO) proposed regarding a

unique set of functions and responsibilities in order to standardize the protocols used

in the various communication network layers.

 5

To date, however, no single simulator alone can simulate a VANET-based

transportation system. Most prior works on VANETs ignored one or the other part of

the simulations (Goel et al., 2004, Wischhof et al., 2005, Yang, 2003) or attempted to

combine two separate simulators, one for transportation and the other for

communication (Saito et al., 2007, Wu, 2005, and Xu and Barth, 2006). Prior

attempts to combine two simulators have critical limitations on the practical

complexity of experiments which can be conducted, particularly in applications such

as dynamic routing, and these problems should be overcome for a viable simulation

experiment. That is one of the practical contributions of this dissertation.

1.2 Research objectives

This research focuses on a VANET-based traffic information system. A major

goal of this research is to develop a simulation framework for VANET-based traffic

information systems in which a transportation simulator and a communication

simulator are tightly coupled and finely synchronized. In order to achieve this goal,

the following objectives will be pursued:

• Review state-of-the-art research related to VANETs. In particular, we focus

more on simulation efforts for VANET-based traffic information systems and

clarify the critical limitations of previous research (Chapter 2).

• Investigate the characteristics of traffic information which vehicles should

treat in VANET-based traffic information systems. Individual and aggregated

 6

traffic information, and temporal and spatial relevance of traffic information

are discussed (Chapter 3).

• Design and implement a simulation framework for transportation systems

based on VANETs. It is designed in accordance with the information model

developed in Chapter 4. It models how information from a transportation

system is collected and shared, and how vehicles might react to the data,

depending on the application in question. Those results are fed back into the

transportation system. In the implementation, a transportation simulator and a

communication simulator are tightly coupled and finely synchronized

(Chapter 4).

• Build and evaluate the simulation framework for a VANET-based traffic

information system. The performance for the framework and the traffic

information system are discussed. Case studies are used both to highlight the

properties of the conjoined simulation modeling tool, as well as to illustrate

certain system aspects of the information that can be collected in this manner.

In particular, we highlight how the new simulation environment produces

superior results for some questions that have been asked and answered

elsewhere in the literature (Chapter 5).

1.3 Dissertation organization

This dissertation is organized as follows. Chapter 2 contains a review of a variety of

results from the literature on ad hoc networks and vehicular ad hoc networks. To

contrast with the goals of this dissertation, particular attention is paid to traffic

 7

information systems based on a simulation framework. Chapter 3 discusses details of

the traffic information which vehicles should collect and share in a traffic information

system based on a VANET. Individual traffic information is compared with

aggregated information as a proxy of a traffic condition, and temporal and spatial

relevance of traffic information are described. In Chapter 4, the simulation

framework is designed and implemented. Based on the simulation framework

designed, a transportation simulator and a communication simulator used in this

research are introduced, and it is described how these simulators are synchronized in

terms of time and mobility. As a case study, Chapter 5 shows the application of the

simulation framework implemented for a traffic information system. Simulation

experiments are designed and evaluated in order to examine the performance for this

simulation framework. Chapter 6 concludes the entire research.

 8

Chapter 2: Related Work

This chapter contains a review of related research, and provides some

background material on networking protocols, particularly those employed for the

latest incarnations of mobile ad hoc networks. The section begins with a review of ad

hoc networks in general, followed by specific applications of ad hoc networks for

vehicular populations. The section concludes with a set of findings from the existing

literature that highlight the context and importance of the studies for this dissertation.

2.1 Ad hoc networks

This section describes some important milestones in the development of ad hoc

networks, and gives some technical details about the protocols involved. In part, this

is intended to be simply informative. It should be noted, however, that the traffic

applications proposed for this research have data characteristics that differ from

traditional information being disseminated in ad hoc networks in very important

ways, and these suggest some modifications to protocols that have the potential to

make vehicular ad hoc networks very efficient and useful for traffic modeling

purposes.

2.1.1 The ALOHA network

It is widely acknowledged that the first wireless ad hoc network was the ALOHA

system developed in the late 1960’s and early 1970’s in Hawaii under the leadership

of Norman Abramson (see for example Abramson, 1985). The purpose at the time

 9

was to connect computers in academic buildings on the various Hawaiian Islands

without using the existing telephone network. Some of the most important arguments

for ad hoc networks in certain situations were developed as part of this project. For

this reason, the ALOHA system is described in the following paragraphs in some

detail.

The ALOHA researchers recognized that networks whose nodes wanted to

communicate only randomly and intermittently would not be well–served by highly

regulated multiple access protocols such as frequency division (FDMA) or time

division (TDMA). The deterministic resource allocation schemes inherent in these

protocols meant that significant communication opportunities would be wasted a lot

of the time, particularly if communication loads were skewed across nodes. Instead,

the ALOHA system pioneered what would eventually become known as “packet

communication” (the popularity of the term is due in part to the dissertation by

Metcalfe, 1973, who went on to be a co–inventor of Ethernet).

With ALOHA, any node with information to transmit breaks it up into packets

and transmits these individually. Each packet concludes with a checksum, so the

receiving node can tell (with very high but not perfect reliability) if the information

has been corrupted. In order for any single node not to monopolize the carrier, rules

must be in place to restrict the length of packets and to enforce a minimum “quiet

time” between packets for any individual node.

 10

2.1.2 CSMA/CD, IEEE 802.3, and the Ethernet

Inherent in the ALOHA scheme is the notion that any station that wishes to

communicate does so when it desires, at the risk of doing so coincidentally with other

stations. If multiple entities try to transmit simultaneously, all of their

communications will be garbled. This can be detected with very high probability at

the receiving end using checksums, but it also wastes time because nodes continue to

transmit, oblivious to the fact that they are being corrupted. An improvement

involves the utilization of a transceiver to “listen” to the channel first to make sure it

isn’t obviously busy, and if not, then try to send its packet – this is called “carrier

sense multiple access” (CSMA). Even with this scheme, however, two nodes that

attempt to begin communicating almost simultaneously (within the small time

window of propagation delay between them) would both perceive an idle network

when they first listened, and as a result would begin transmitting, but their transmitted

packets would “collide,” and be garbled and therefore useless.

Each station must be able to detect these collisions, and then decide if and when

to re–transmit its packet. There are several popular methods of collision detection –

the combination of CSMA with any collision detection scheme is denoted

CSMA/CD. In real time, it is possible to monitor power levels and/or pulse widths

with a receiver, at the same time that transmission is taking place. If a node detects a

significant difference between what it knows it is transmitting itself and what is being

received, then it can conclude that some collision has taken place. This method is

most reliable on wired networks where the confounding effects of other interference

are not present to anywhere near the same degree as in wireless communications, thus

 11

the ability to distinguish power levels is quite high. Another method, which would be

more successful in a wireless environment, is to use “acknowledgement”: a central

hub replies to any successfully received packet with an acknowledgement message, or

in the extreme, a copy of the original packet. If a transmitter receives its own packet

back, then it knows it was transmitted successfully, and it can then begin processing

its next packet. Thus, in the extreme, each successful transmission requires two

nearly identical packet transmissions. There is some chance that the original packet

was transmitted successfully, but the acknowledgement message collided, in which

case the sender would think the original message was unsuccessful.

The question of when and if to re-transmit, in the event of a collision, is very

important. Obviously, this choice should not be made identically across all stations,

since this would almost guarantee indefinite packet collisions. Typically, a node that

detects a collision first terminates transmission immediately, so as not to waste any

time. In some systems, it also broadcasts a brief jamming signal. Since it has

decided that it was collided with, it is safe to assume that anyone else currently

transmitting will also be affected, so it is better to send a jamming signal that makes

that point known very clearly and immediately to all affected nodes. All such nodes

are now in a state called “contention”: they all have packets they would like to

transmit, but they also recognize that other nodes are in the same situation. An

individual node now waits for a random period called the “back-off” time and then

tries again. In some systems, there is a known prioritization scheme, either for the

nodes themselves or for certain message types, and this could influence the relative

urgency of the retrial. In some systems, this process of re-trying packets can continue

 12

a number of times, but the back-off time doubles for each collision, resulting in what

is known as an “exponential back-off” scheme. After some number of failed

attempts, the packet is “dropped.” This is very important in applications such as file

transfer, because arguably each packet is very important. It might contain a chunk of

data or code that is part of a larger file, and thus it is critical for it to be communicated

accurately.

The likelihood of collisions (which increases with the number of stations and the

volume of traffic on each), plus the stochastic nature with which re–transmissions are

made, lends an element of randomness to the delivery of information via such a

protocol, and it should be emphasized that such a system is only appropriate for

applications where this is not problematic. Applications that require very

deterministic behavior tend to use token–based systems instead. The ALOHAnet is

capable of a maximum of 18% efficiency (i.e., only 18% of the time useful packets

are being transmitted) with multiple competing nodes, before the incidence of packet

collisions actually causes the system to degrade.

There is a modified version of ALOHA called slotted ALOHA. In this scheme,

time is treated not as a continuum, but rather as a sequence of discrete intervals, each

long enough for the transmission of a single packet. Nodes only attempt to initiate

transmission at the beginning of one of these intervals. This greatly reduces the

period during which a packet is vulnerable to collision from other nodes, and

therefore increases the probability of a successful transmission. The throughput

efficiency accomplished with slotted ALOHA is about 37 percent, compared to 18

percent for pure ALOHA. This is not the same idea as TDMA, however, since

 13

individual nodes are not assigned to subsets of the slot sequence; any node can use

any slot provided it is free.

Perhaps the most ubiquitous protocol now in service is Ethernet, also known in

the standards literature as IEEE 802.3. This standard includes specifications for the

physical layer, which has details about the kinds of cabling and connections required

(see for example Murthy and Manoj, 2004); and the Medium Access Control (MAC)

sublayer, which defines a CSMA/CD scheme, including such things as packet length

and construction, and protocol details such as back-off times. The IEEE 802.3

includes a minimum frame length, which is helpful because it is longer than what

would ordinarily be transmittable within the vulnerability period of an individual

node. Thus, packets that are terminated early because of collision are easily

distinguishable from full-length, valid packets. Again, these are protocol details that

could be adjusted for a network serving exclusively data of relatively low individual

importance. The IEEE 802.3 standard also requires each packet to include a

destination and source address. This is an important distinction, because there are

arguments that can be applied to the vehicular applications in this dissertation that

such specificity is not beneficial in all situations, in which case some efficiency can

be gained by reducing packet sizes. Ethernet has the built-in ability to send to all

nodes (i.e., to “broadcast”) by setting all destination address bits to one.

2.1.3 CSMA/CA, IEEE 802.11, and Wi-Fi

Within the set of specifically wireless protocols, the most well known is the

IEEE 802.11 family. The purpose of the IEEE 802.11 specification, essentially, is to

 14

translate the success of wired ad hoc protocols such as IEEE 802.3 into the wireless

domain, taking account of the particular issues that arise therein. The standard

recognizes that the nodes are mobile and unpredictable, and that they come and go

with abandon. The IEEE 802.11 physical layer for radio-based networks (there is

also a specification for infrared) includes specification of various spread-spectrum

frequency allocation mechanisms, within various bands, including 5 GHz, 5.9 GHz

(for Dedicated Short Range Communications or DSRC), and the unlicensed 2.4 GHz

ISM (Industrial/Scientific /Medical) band. The latter frequency band is available

worldwide, and hence is very popular for internet applications and other civilian uses.

The 802.11b task group defined the necessary details for the 2.4 GHz band, and this

set of specifications is now colloquially known as Wi-Fi, which stands for “wireless

fidelity.” Table 2-1 shows some details on these characteristics for various members

of the IEEE 802.11 family (Werner, 2005 and Liu et al., 2005), as well as some

closely related protocols not in the 802.11 family.

 15

TABLE 2-1 Near-Range wireless data communication standards

standard Transmission
Rate [Mbps]*

Range
[m]

Frequency
[GHz]

802.15 (Bluetooth) 1 10 2.4-2.497

802.15.4 (ZigBee) 0.25 30 2.4

802.11b (WiFi) 11 100-200 2.40-2.497

802.11a (WiFi) 54 30-200 5.13-5.35
5.72-5.87

802.11g (WiFi) 54 100-300 2.4

802.11n (draft)** 600 600*** 2.4 and 5

802.11p (DSRC) 27 (54)**** 1000 5.85-5.925

* This is the maximum data transfer rate that can be supported by a single node
maximizing the channel utilization, with no packet collisions. Practical data
rates tend to be lower, because collision avoidance, back-off, and packet
collisions have a deleterious effect on transmission rate.

** The 802.11n standard is only draft, but is considered stable enough that
commercial devices based on the standard are even now widely available. The
standard is expected to be ratified in 2007 (Broadcom, 2006).

*** The possible range for 802.11n is colloquially stated as double that of
802.11g.

**** This is the DSRC band. A total of 75 MHz of bandwidth will be divided
into 7 smaller bands of 10 MHz each, which will serve different purposes. One
or two of these bands might be available for any particular purpose, such as
safety (collision avoidance) or traffic information. Each can support a
transmission rate of 27 Mbps.

As mentioned above, collision detection is much more difficult with wireless

networks than with wired networks. Furthermore, the inherent “noisiness” of the

wireless medium causes bit errors much more often than with wired channels (e.g., on

average one bit in every 10,000 is in error in a wireless channel, whereas the rate for

fiber optic cables might be one in every 1 billion bits). These facts conspire to make

collisions much more problematic in wireless channels, to the extent that the design

 16

philosophy is different as they are concerned – rather than simply detect collisions

and re-transmit packets if they occur, the protocol is specifically designed to make

every effort to avoid collisions in the first place. Generically, this task is called

“collision avoidance” (CA) and schemes such as IEEE 802.11 then fall under the

moniker CSMA/CA.

Under IEEE 802.11, time is again discretized into slots. Carrier sensing is

accomplished (functionally) similar to 802.3, although with some differences in

detail. Furthermore, no node can gain immediate access to a channel – each has to

wait at a minimum one DCF inter-frame spacing (DIFS), where DCF stands for

Distributed Coordination Function, which is the primary access method for this

protocol. When DCF is invoked, it is assumed that no fixed access point (AP) is

available to mediate medium contention; thus the nodes have to do it themselves. If

the channel is busy, the back-off process is initiated. Even during the back-off, any

instance of a busy channel causes the back-off counter to be suspended. The back-off

time can be reduced for nodes that have been waiting longer – this gives them,

essentially, a form of priority over more recent service requests.

Because of the essential nature of the data that is assumed for most applications,

it is important that nodes be able to sense if their transmissions were delivered

successfully. This is accomplished via an acknowledgement message, as described

previously. It is possible to experience a problem known as the “hidden terminal

problem,” whereby one node can communicate with two other nodes, but these two

cannot sense each other, presumably because of distance or perhaps line-of-sight

interference. In this case, each of the two nodes might think that they have exclusive

 17

access to the common receiving node, and if they both transmit accordingly, their

messages will collide at the receiver. The mechanism to avoid this is based on the

time-honored request-to-send-clear-to-send (RTS-CTS) mechanism inherent in older

serial communications schemes such as RS-232. In essence, a transmitting node pre-

notifies the recipient of an imminent transmission, using an RTS message. If the

receiver is ready, it signals its readiness to the origin node with a CTS message.

Other nodes, upon hearing this transaction, must remain quiet until an

acknowledgement (ACK) message from the receiver is sent, which takes place after

the packet data have been sent. Thus the sequence of messages is RTS-CTS-DATA-

ACK. The RTS-CTS system is only used for longer frame sizes; smaller packets use

only DATA-ACK, with the understanding that some greater probability of collision is

balanced against the overhead of the RTS-CTS scheme.

When a hard-wired access point (AP) is available, medium contention can be

accomplished via a Point Coordination Function (PCF) instead of DCF. Such a

system can provide guarantees on the maximum access delay and minimum

transmission bandwidth which autonomous nodes operating under DCF cannot offer.

In our applications, this is the kind of service that can be offered when some

infrastructure-based communications resources are available, such as with Vehicle-

Infrastructure Integration (VII). In a completely mobile network, only autonomous

operation is available, through a scheme such as DCF. It is useful to reiterate,

however, that much of the concern with contention management is centered on

crucial data with specific originators and recipients; anonymous broadcast data of

only temporary usefulness may afford much less communications overhead and

 18

simpler protocols. In the applications described in this dissertation, most (if not all)

of the data can be described as non-essential data. This is not to say that data are not

useful – in fact, as much data as possible makes the system work better. Rather, it

only implies that any single piece of data is not so important as to absolutely require

its transmission. A failed packet could easily be supplanted by a successful packet

sent in a similar traffic environment.

2.1.4 Bluetooth (IEEE 802.15.1)

Bluetooth is a wireless communication scheme designed around the needs of

personal devices such as hand-held computers. Bluetooth operates in the ISM (2.4

GHz) band, with frequency-hopping spread spectrum (FHSS), wherein a given

transmitter-receiver pair hops around a collection of 79 narrow-band channels in a

pseudo-random sequence. The receiver and transmitter follow exactly the same

sequence, but it appears random to other nodes, thereby increasing security. The

nominal link range in Bluetooth is limited to 10 meters. In theory, because Bluetooth

uses a code division multiple access (CDMA) scheme over these channels, a very

large number of simultaneous users on each channel is allowed. In practice, however,

empirical performance of CDMA has fallen far short of its theoretical capabilities

(Murthy and Manoj, 2004) and the Bluetooth community has not figured out how to

achieve this performance level either (Tan et al., 2001).

It is clear from the essence of the Bluetooth protocol that it is designed around

human-initiated and irregular communications. Devices that wish to communicate do

so by organizing themselves into “piconets.” The first device initiates the process and

 19

becomes the master, while all other nearby devices either go into standby, or enter

into the piconet as slaves. Only seven slaves are possible for each master.

Communication across piconets is also possible, because a single node can be a

master in at most one piconet, but a slave in multiple piconets. This forms what is

known as a “scatternet.” The common node can only communicate with one piconet

at a time because they use different frequency-hopping schemes. Participation in

multiple piconets is regulated using a TDMA scheme. Slaves are allowed to

communicate only after having been polled by the master. All communications takes

place within a time-slotted band with slots of length 0.625 ms.

The limited range, the limited number (thus far) of channels, the limited size of

piconets, etc., makes Bluetooth reasonable for small numbers of people making

relatively infrequent communications requests. For vehicular applications,

particularly with large market penetration, there is a possibility that this combination

of limited range and limited frequency division cannot provide enough high-quality

data for traffic modeling in real time in congested urban areas.

2.2 Vehicular ad hoc networks

A number of researchers have made specific investigations of the viability of one

or more of the above-mentioned wireless ad hoc network protocols to support

transportation applications. In this case, since it assumed that (most of) the nodes are

located in vehicles, these are called Vehicular Ad hoc Networks (VANETs). Due to

the high mobility of vehicles as mobile nodes, the topology of a vehicular ad hoc

network can rapidly change and can easily break. The purpose of the

 20

communications might also drive certain considerations. Thus, some additional

protocols have been proposed that are specific to vehicular uses. Since this is the

likely outcome of this dissertation, these efforts are reviewed here. This section

includes a description of the DOLPHIN protocol, followed by a review of some

applications in transportation safety and traffic information dissemination.

2.2.1 DOLPHIN

The DOLPHIN (Dedicated Omni–purpose inter–vehicle communication Linkage

Protocol for Highway automation) protocol was proposed by Tokuda et al. (2000).

The main purpose is to support applications such as traffic automation. It is assumed

that market penetration is 100%. Each vehicle transmits a set of data relevant to its

status on a regular transmission interval. Because many vehicles communicate at

once, the data are packetized within that interval, and a CSMA scheme is employed to

resolve conflicts. The paper claims to allow for packet collision detection and it does

not employ any collision avoidance scheme. The collision detection claim is

suspicious, because no details are given, and this is a notoriously difficult problem in

wireless communications, as mentioned above. Because the method is only

demonstrated using simulation, it is likely that the authors overlooked this

fundamental problem. Collided packets are abandoned, which is a potentially useful

device for non-mandatory data, which will be explored further in this dissertation.

With the exception of the allowance for, and abandonment of, collided packets,

the protocol is just a simplified version of IEEE 802.11. There are a number of

suggestions for data content and formatting that are useful in the specific application

 21

of vehicle automation, but these are simply data organization issues that can already

be accommodated within the data portion of the IEEE 802.11 packet. The small but

interesting conceptual contribution of DOLPHIN is the abandonment of collided

packets, but again the lack of consideration of the physics of this problem suggests

that the development of the protocol was limited to simulation investigations, and that

practical problems would prevent it from being used in reality.

2.2.2 Traffic Safety

Dogan et al. (2004) investigated the use of IEEE 802.11 and DOLPHIN

protocols for the purpose of intersection collision warning systems. The analysis

assumes that all vehicles are equipped with the necessary communications equipment,

as well as DGPS (Differential Global Positioning System) hardware and navigation

software that allow for precise positioning. The study was conducted on a custom

simulation platform.

Vehicle traffic arriving to an intersection is simulated via some simplistic models

of driver behavior, stochastic arrival processes, and car-following. It should be noted

that the authors’ presentation of certain aspects of probability theory is flawed,

although the specifics of the arrival distribution are probably not important to the

conclusions of the paper. It is unclear how queuing at the traffic light is handled – the

paper leaves the impression that each approach is empty, even in the presence of a red

light. The particular turning movements that are simulated to generate potential

accidents are quite contrived, and this undermines the relevance of the model. The

propensity of individuals to get in accidents is an extremely complicated behavioral

 22

issue, one that cannot be handled via such simple models. The appropriate way to

test electronic augmentations to the human-machine interface is either via driving

simulator (less expensive and somewhat unrealistic) or field test (expensive and

dangerous but realistic).

The vehicle paths are used to determine the effect of shadowing on path loss in

the wireless signal. Together with other effects, the path loss and fading are

simulated using standard models. A very small number of simulations are run. The

only performance metric is the rate of packet collision, which suggests that the

authors assume that as long as the messages are delivered properly, the intersection

collision can be avoided, which is certainly a stretch of the imagination. Furthermore,

they conclude that packet losses only occur due to physical layer errors. The problem

with this conclusion is that they only modeled a small number of vehicles that might

be in the vicinity of the intersection, and they assumed that transmission would only

take place within 50 meters of the approach to the intersection. With a realistic

number of nearby vehicles (on the road, as well as in parking lots, etc.) with realistic

transmission distances and very likely many other purposes for an in-vehicle ad hoc

network, one can imagine that the rate of data communications would be orders of

magnitude higher than what was simulated in this paper, greatly increasing the

likelihood of MAC layer packet collisions. Particularly troubling is the choice to

include the DOLPHIN protocol, both because of its obvious limitations mentioned

above, as well as the fact that its only real distinction above IEEE 802.11 is its

willingness to discard packets, which seems like a very bad idea for safety-oriented

 23

systems. Of course, at the traffic volumes simulated in this paper, the system was

probably not taxed to the point that these errors would manifest themselves.

Sawant et al. (2004) investigated the use of the Bluetooth protocol for wireless

communication on an ad hoc network formed amongst nearby vehicles for the sharing

of data from on-board sensors. The authors do not seriously test the limitations of the

number of active vehicles, as discussed in Section 2.1.4 of this dissertation. The

authors depict accident scenarios at intersections and recognize that while a very

specific small set of vehicles should form a common piconet to communicate with

each other, the intersection contains many vehicles, none of which know a priori how

this set should be constructed. Even if this problem were to be solved, the paper

assumes that only one such potential conflict can arise, when in fact every vehicle is a

possible actor in a wide range of accident scenarios, each of which would

conceptually require the formation of a piconet.

The claimed benefit of the system is that by sharing sensed information, vehicles

can mutually improve their virtual sensor coverage areas. The problem with this

assumption is that all known on-board sensors are very limited in the observations

they can make and the conclusions that can be drawn from them. For example, a

radar range sensor might be used for obstacle warning and autonomous cruise control

on one particular vehicle. This paper argues that predicted object locations, which

another vehicle might not be able to sense, could be communicated to that vehicle

instead. This is a pleasant thought, but it is fraught with practical problems. For

example, the range data are measured relative to the sensing vehicle, and are used for

limited purposes. They are usually reasonably accurate in the vehicle-object axis, and

 24

likely very imprecise in an orthogonal direction. This makes the location prediction

very unreliable for other vehicles engaged in different and unknown maneuvers with

different and unknown trajectories. The authors also assume that precise relative

positioning between vehicles can be accomplished via signal strength measurements,

which is known to be extremely error-prone.

2.2.3 Traffic Information Dissemination

Ziliaskopoulos and Zhang (2003) propose constructing a distributed traffic

information system using an ad hoc network, which they describe as “a zero public

infrastructure traffic information system,” which simply means that they do not

expect to relay on fixed infrastructure as a communications node. The paper

investigates various important aspects of such a system, including the speed with

which information is disseminated, given different levels of market penetration.

In this paper, however, the underlying modeling is poor. The wireless protocol is

claimed to be IEEE 802.11, but in fact no specific details of either the physical or

MAC layers are simulated. Communications between vehicles is treated as a

deterministic and totally reliable function. Vehicles are assumed only to

communicate with vehicles traveling in the opposite direction of a given link, which

presumably can be arranged by using directional antennae, although the paper does

not specify this. No accounting is made of the possible benefits of sharing data from

a wide range of vehicles in the near vicinity, regardless of their current trajectory.

The problems posed in this thesis allow for the relaying of data between vehicles

without specific knowledge of their trajectories. It would not make sense, in this

 25

case, to rule out vehicles simply because of their direction of travel. On a multi-lane

facility, a vehicle will be adjacent to many vehicles traveling in the opposite

direction, particularly during congested traffic. This paper assumes that

communication between a pair of vehicles must take place within a given window

during which they are adjacent to each other, but does not take the other adjacent

vehicles into account, nor the fact that they cannot be told apart. This greatly

increases the possibility of packet collisions, which severely impacts the performance

of the communications system.

Yang (2003) assessed a traffic information system using vehicle–to–vehicle

communication based on the Autonet concept proposed by the Institute of

Transportation Studies at University of California, Irvine. Vehicles could broadcast

information about themselves, the links they traveled on, or incidents, although the

author does not specify how a vehicle would ascertain such details about incidents

with no human intervention. Of course, no such methods currently exist.

Communications is handled very abstractly – each vehicle has a fixed success rate for

packets, bandwidth constraints are not modeled, and the probability of success for a

packet has nothing to do with the conditions under which it is transmitted; these are

all very problematic assumptions. The majority of the dissertation deals with simple

exercises in information propagation as a function of market penetration for various

idealized roadway geometries. The dissertation focuses on details of the simulation

mechanics, but does not address any issues in a more substantive way than papers

previously described in this review.

 26

Goel et al. (2004) also ask some of the same questions posed in this research.

The paper is concerned with using ad hoc networks for traffic information

dissemination, and seeks to address the questions of spatial information relevance and

required communications bandwidth. The authors used Paramics to simulate a

network of uncongested streets on which a single incident has taken place, creating

congestion on a single link. Equipped vehicles are able to learn about this congestion

from other equipped vehicles, and choose an alternative route. They also ask

important questions about when each vehicle should send an information report, and

what that report should contain. The choices of what information to disseminate are

simple, but very good. In particular, one scheme the authors investigate is to allow

vehicles to transmit only “interesting” information, by which they mean information

that is markedly different from expected conditions on a link, assuming that vehicles

would know such things via their navigation database. This is a very good idea

because it limits the amount of useless information clogging up the communications

channel.

The authors conclude that bandwidth is not a limiting factor, but their simulation

is (incorrectly) constructed to provide this result. First, the paper assumes that a

single report of link speed is sufficient to represent the link as a whole, when in fact

this is a statistical sample size issue. It would be unwise to make routing decisions

based on the (possibly) uncommon experience of a single vehicle. Second, the

analysis assumes a fixed rate of dissemination (one broadcast per minute), and does

not investigate how this rate should change dynamically to maximize usage of the

communications channel with different densities of equipped vehicles. The authors

 27

claim that this is frequent enough because the traffic state does not change with much

more resolution than this. While the second part of the argument is true, the

conclusion is false, because given the sporadic and transient nature of ad hoc clusters,

increasing the rate of dissemination has the effect of reaching a larger sample of

vehicles. The clusters could certainly form and disintegrate on a time scale less than

a minute. Finally, the authors tested only a single congested link in an otherwise

normal network. In most urban areas, during rush hour, all links are congested, and

hence all vehicles would likely be transmitting information about all of their link

experiences. This raises the information quantity exponentially. If forwarding

(relaying) is taken into account (which it should be, given the expected

disconnectedness of the network), a further exponential factor can be applied if

vehicles are not only transmitting their own experiences, but also relaying those of

other vehicles.

Nadeem et al. (2004) address the interesting question of information forwarding:

how much of another vehicle’s experience should a given vehicle broadcast. The

authors assume only a small number of vehicles will be communicating with each

other, and also make the common mistake of endowing these vehicles with more

information than they would have in reality. For example, the paper assumes that a

vehicle can conduct its broadcast within a “broadcast period,” but the ability of all

vehicles to do this depends on the number that desire to communicate, which is

known in their simulation but is not known in reality. The bulk of the paper is

concerned with algorithms for data aggregation and compression, which are both

good ideas but not the concern of this research. It should be pointed out that data

 28

aggregation is problematic without specific understanding of the applications to

which the data will be applied by receiving vehicles. In this paper, the authors choose

aggregation schemes according to the communications constraint, without

consideration of the fact that excessive or improper aggregation will result in useless

data.

Wu et al. (2005) and Wu (2005) test information dissemination on the I-75

corridor in Atlanta, as simulated using Corsim’s Real Time Extension (RTE),

supplemented with the communications simulator QualNet. In their simulation

testbed, they assumed two unrealistic environments. First, they did not allow

equipped vehicles to dynamically reroute based on disseminated traffic information

(presumably the purpose of such a system); equipped vehicles learn about congestion

from other equipped vehicles, and do not choose an alternative route. Second, they

did not consider the MAC layer, which is a very important layer. While they

mentioned that their testbed is “neutralized” on the MAC layer, communication

collision is not simulated on their testbed. They measure the rate of information

propagation for a single message across a network, assuming perfect conditions for

relaying (forwarding) between vehicle clusters, without accounting for the fact that

message traffic will limit this capability. Thus, while the methods they employ are

generally acceptable, the question posed is not a very meaningful one.

Wischhof et al. (2005) proposed methods for scalable information dissemination

in mobile ad hoc networks. They employed the network simulator ns-2, augmented

with a vehicle movement model based on cellular automata. The authors considered

an important MAC level change similar to what is proposed in this research: all data

 29

packets are transmitted in the form of local (single hop) broadcasts. Nodes are never

directly addressed and no routing of data packets in the traditional sense is performed.

Again, the research in this case is not concerned with the value of the information for

various applications, or the rate at which that value diminishes in time and space.

Xu and Barth (2006) proposed travel time estimation techniques for traffic

information systems based on intervehicle communications. As a travel time

estimation technique, they used a decay factor to weight the “freshness” of data and

experimented with the model on a simulation testbed with Paramics and ns-2. In this

paper, they defined a road segment as a stretch of a road between two successive exit

points such as junctions or exits. Their road network model, in which an interchange

is represented by a single node, is too simple to describe realistic congestion

situations. Considering that congestion typically starts from a merging or split area,

road segments and ramps in interchanges should have been dealt with independently.

Saito et al. (2007) proposed an intervehicle information dissemination protocol

called Received Message-Dependent Protocol (RMDP) which autonomously changes

the broadcast interval in order to avoid the “broadcast storm” problem that might

occur when vehicles cannot develop a sense of the amount of competing

communications traffic. The broadcast interval changes depending on the number of

received messages and reception errors. They evaluated their protocol on a

simulation framework in which a transportation simulator, NETSTREEAM, and a

communication simulator, MobiREAL, are combined. In their experiment, a heavy

traffic condition and a light traffic condition were simulated at an intersection and on

 30

an urban road network, respectively. They did not, however, allow vehicles to

dynamically reroute based on disseminated traffic information.

2.2.4 Vehicle-Infrastructure Integration

Most of the reviews related to VANETs have focused on experiments for

vehicle–to–vehicle communication alone. Hybrid systems are also possible, which

might incorporate fixed infrastructure to serve one of several possible functions – as

an access point to connect the ad hoc network to a wired network, as a congestion

mediation device for wireless traffic, and as a consolidation / aggregation point for

traffic data. The fixed nodes could also play the role of patching together otherwise

disconnected vehicle clusters, although this would obviously happen randomly. The

U.S. Department of Transportation announced new major initiatives to aim at

improving transportation safety, relieving congestion and enhancing productivity at

the 2004 ITS America Annual Meeting (US DOT, 2007). Vehicle Infrastructure

Integration (VII), one of these major initiatives, aims to achieve nationwide

deployment of a communications infrastructure on the roadways and in all production

vehicles through vehicle–to–vehicle communication and vehicle–to– infrastructure

communication (US DOT, 2007). Figure 2-1 shows the VII Architecture proposed by

US DOT.

 31

FIGURE 2-1 US DOT’s VII Architecture (Werner, 2004)

The primary thrust of the VII to date has been a vehicle → infrastructure →

vehicle paradigm. Individual vehicles would serve as probes, reporting their findings

back to roadside units (RSU) at opportune times. With enough such data, centralized

applications could generate estimates and perform other applications. Data would

then be transmitted back to vehicles via the RSUs.

The establishment of the VII Architecture by US DOT builds on other research

and operational tests. Of course, vehicle manufacturers would install the technology

in all new vehicles, necessitating some standards. The manufacturers have conducted

a number of experiments to help flesh out what the system parameters should be. The

group involved in discussions on the VII Initiative comprises the VII Coalition, a

cooperative effort between public and private sectors:

• US DOT - FHWA, FMCSA, ITS JPO and NHTSA

 32

• Automotive Manufacturers - BMW, Daimler Chrysler, Ford, General Motors,

Honda, Nissan, Toyota Motor North America, and Volkswagen

• State/Local Agencies - CALTRANS, Florida DOT, Idaho DOT, Indiana DOT,

Maryland State Highway Administration, Metropolitan Transportation

Commission (San Francisco Bay Area), Michigan DOT, Minnesota DOT,

New York State DOT, Utah DOT, Virginia DOT, and Washington State DOT

• Associations - AASHTO, Alliance of Automobile Manufacturers, Association

of International Automobile Manufacturers, IBTTA, ITE, and ITS America

(ITS America , 2005).

FIGURE 2-2 VII timeline

A VII Coalition has been established to determine the feasibility of widespread

deployment and to establish an implementation strategy. As shown in Figure 2-2, a

general timeline has been developed, and balanced works between public and private

sectors have been conducted under the timeline (Werner, 2005).

 33

2.3 Traffic information imputation

For any given traffic model, such as a link speed estimation model or an optimal

route choice model, one could postulate the set and characteristics of a data stream

that would provide the greatest performance. Of course, different models have

different levels of sensitivity to changes in these characteristics. Assuming that all

data come from the ad hoc mobile network (and, possibly, some fixed infrastructure

stations), it is clear that there will be limitations on the quantity and quality of data

that can be delivered. One part of this dissertation will be dedicated to determining

what those data limitations might be, as a function of market penetration and

communications systems constraints. In some cases, it is expected that

recommendations could be made as to protocol design, that would minimize the

deleterious impacts of data shortcomings. In any event, it will be possible to assess

the performance degradation of the application as a function of the data degradation.

To counter this effect, it is proposed that “missing” data be imputed from

surrounding data in time and space. For any particular model, and given the physics

of traffic dynamics, the usefulness of data is expected to decline in both time and

space, although this effect has not been studied systematically. A few very specific

proposals for data imputation have been developed, and they are reviewed in

subsequent paragraphs. It should be noted, however, that none of these efforts was

conducted with the goal of guiding the development of an appropriate wireless data

provision mechanism; in fact, most assume that data are provided by fixed detectors.

Furthermore, in most cases, the methods are proposed in order to maximize the

number of data points that can be extracted and made useful from ITS data archives.

 34

The subject of information relevance in quasi-real-time applications is therefore

relatively untouched, and the results from these papers might only be tangentially

useful to the proposed research effort.

Smith et al. (2003) introduced three types of heuristic techniques for imputing

missing speed, occupancy, and flow data, collected from loop detectors or similar

hardware. The techniques include historical averaging, spatial averaging, and

temporal averaging. The historical average technique substitutes missing data from

historical averages over previous days, weeks, months, etc. Clearly, this method can

misrepresent conditions in congestion or accidents. Also, it is not feasible in a pure

ad hoc network setting, since individual vehicles would not possess network-wide

historical data. This is one function that fixed infrastructure nodes might serve.

The spatial averaging method attempted involved the weighted average of

surrounding detectors with historically based lane distributions. The data from

nearby links would be available to wireless nodes, but again the historical information

would likely not be available. Temporal averaging over recent data is more

appropriate in the wireless setting, because it is possible for a wireless node to have

the necessary data. To make full use of this method, however, would require local

storage of recent data on the appropriate set of links. Short-term changes are not

necessarily fluctuations; they could represent systemic changes in traffic state due to

the passage of shock waves, for example. Such a method would have to realize that

older data might be biased, and some effort should be made to correct for this. The

proposed research on temporal information degradation would be useful to determine

 35

the length of time that specific data should be retained, as well as patterns of bias that

might be expected and countered for.

One of the most troublesome traffic sensors is the inductive loop detector,

because it requires frequent tuning to make sure that inductance thresholds

correspond properly to vehicle passage. Most highway agencies are not able to keep

up with the maintenance requirements, and as a result, there are many loop detectors

delivering inaccurate data. Alarmingly, the loop detector is also the most common

sensor. Chen et al. (2003) and Al-Deek and Chandra (2004) investigated the situation

where data are missing from the middle of a sequence of three detectors. They used

pair–wise regression models to impute missing data from dual–loop detectors, which

assumes a linear (in parameters) and statistical relation between the measurements at

the detectors. In fact, detector measurement differences in closed systems results

entirely from shockwave propagation and differing density and flow conditions along

the link. Newell’s kinematic wave theory (Newell, 1993) addresses this problem

exactly, except for minor statistical fluctuations that might result from counter errors

or lane changes. This latter method, which exploits the physics of traffic dynamics, is

much more explanatory than a statistical model that captures correlations that occur

by happenstance.

Gold et al. (2001) explored a variety of the above methods. They describe

something they call “factor up,” which in fact is temporal averaging over a fixed time

window of moderate length, and “interpolation,” by which they mean averaging over

two temporally adjacent observations, which is clearly a variable-length window.

They also use regression methods. Importantly, they acknowledge the bias induced

 36

by using old data in the presence of systemic traffic state changes, as described

previously in this proposal, and they suggest that some weighted averaging scheme

could be used to correct for this (which is true), but do not pursue the idea any

further.

2.4 Discussion

It is clear from the above review that the general topic of ad hoc wireless

networks for vehicular purposes is of great contemporary interest. Due to the

complexities of traffic and communications, simulation is the most common, and

most appropriate, analysis tool. A few papers offer analytical solutions for grossly

simplified problems that are simply not instructive.

The subject is nowhere close to mature, and there are many ripe opportunities for

important research. The primary goal behind this research is to make strides in an

integrated transportation and communication simulation framework development and

performance assessment that recognize the important nature of traffic-related

information that is broadcast anonymously. The most important findings from the

literature review are as follows:

• Vehicular ad hoc networks dealt with in this study is a novel and promising

approach to transcend the limitations of traditional transportation systems

although there is no case applied to a real transportation system.

• Many studies related to VANETs have been conducted. Although computer

simulation is a popular evaluation method in those studies, it still confronts a

major challenge in terms of “reliability,” the degree to which it replicates a

 37

real system. For reliable demonstration, realistic assumptions for

transportation and communication are required.

• Even though several simulation frameworks for a VANET-based traffic

information system were developed in previous studies, no one showed

practical experiments and evaluation results. In particular, vehicles’ rerouting

based on shared information would be a key output fed back to the

transportation system.

In a traffic information system on which this research focuses, vehicles would

collect, share, and feed back traffic information. Developing a simulation framework,

it is important to define the characteristics of traffic information since a framework

design could be changed according to the definition. The next chapter discusses

about the characteristics of traffic information. Individual data and traffic conditions

corresponding to each single data are described with individual travel times from a

simulation experiment, and then, temporal and spatial relevance on aggregate travel

times from another simulation experiment are observed.

 38

Chapter 3: Traffic Information Characteristics

In a traffic information system based on a VANET, traffic information would be

collected, shared, and used as it cycles. When a simulation framework for such a

system is designed, traffic information such as travel time, speed, vehicle location, etc.

could be accumulated in database, estimated to impute missing data, aggregated to

obtain a representative of a certain situation, and removed if it is too stale to use. It is

important to understand the characteristics of traffic information since traffic

information is processed for various purposes in a simulation framework. This

chapter discusses preliminary researches about the reliability and relevance

degradation of travel time information as its characteristics. Section 3.1 explains the

relation between individual travel time data and aggregated data, and it describes the

quantity for reliable travel time information. Section 3.2 shows temporal and spatial

relevance degradation among travel time data. All travel time data used in this

chapter were obtained from simulation experiments using only a transportation

simulator, and a communication simulator would be dealt in the simulation

framework.

3.1 Individual travel time characteristics

In a VANET-based traffic information system, individual travel time data may be

dealt with, compared to average data (usually 1 minute or 5 minute aggregation

intervals) used in traditional traffic information systems. Taking into account a low

market penetration, the data obtained from vehicular ad hoc networks could be too

sparse to apply as representative of traffic conditions on a certain link. The

 39

conclusion is that sampling errors for travel time information and differences between

individual data and an average of data would exist as implicit weak points, and would

influence the reliability of individual travel time information. In order to investigate

the reliability of individual travel time data, this section shows patterns of individual

travel time in Subsection 3.1.2 (Kim et al., 2007a) and data quantity for reliable travel

time in Subsection 3.1.3 (Kim et al., 2007b) based on the results obtained from a

simulation experiment in subsection 3.1.1.

3.1.1 Experiment for individual travel time

It should be noted that because a simulation environment is used, one can assume

that the data collection process is comprehensive and accurate, which of course is not

true in reality. It is used, therefore, as a “ground truth” of sorts, recognizing the

standard pitfall of simulation models, which is that it represents only the truth of how

the simulation logic attempts to produce realistic driver and vehicle behavior, rather

than the truth associated with real cars and drivers. Since real data collection

mechanisms of this sort do not yet exist, of course simulation is the only way to

produce these data.

If we measure individual travel times of all vehicles passing a certain link using,

for example, a license plate matching technique, we can obtain individual travel time

data and calculate their aggregates. Figure 3-1 illustrates how to pair up individual

travel time data and a vector of aggregate information, assuming we obtain individual

travel times of all vehicles on a certain link.

 40

FIGURE 3-1 Illustration of a datum set for vehicle i

As Figure 3-1 shows, every datum is represented as an ordered triplet of an

individual travel time for a single vehicle, a time stamp, and a vector of aggregate

information for the link and time window occupied by that vehicle at the time the

datum was collected. Aggregate information is used as a proxy for actual information

representative of a traffic condition: the quantity of data, and the mean and standard

deviation of all individual data within a 5-minute window centered on the time instant

in question.

() , , , , a a a
i i i i i id TT t n TT SD⎡ ⎤= ⎣ ⎦ (1)

where

id : datum set for vehicle i,

iTT : individual travel time for vehicle i on a certain link l,

it : time stamp (arrival time) for vehicle i,

ti ti-150 ti+150

TTi

(ni
a, TTi

a, SDi
a)

Travel Time

Time[sec]
5 min

 41

a
in : number of data in the aggregation window for vehicle i,

a
iTT : travel time mean in the aggregation window for vehicle i on link l, and

a
iSD : variance of travel time in the aggregation window for vehicle i.

In order to set up datum sets of Equation (1), it is necessary to obtain an “entire”

set of space-based travel time data for a specific time period. A simulation

experiment was conducted on a real road network for two hours. Paramics 5.2

(Paramics homepage, 2007), a microscopic traffic simulator, was employed. Through

its API (Application Programming Interface), entry times and exit times of all

vehicles which arrive at and leave the target link were recorded respectively.

Individual travel time data were extracted from the difference between the entry time

and the exit time and were matched up with aggregated travel time data. Figure 3-2

shows the experiment site.

FIGURE 3-2 Experiment site

Baltimore

Washington D.C.

MD-100
MD-32

MD-295

US-29

I-70

I-95

I-195 I-695

I-495

Target segment

Simulation
network

 42

In Figure 3-2, the site selected is located on the northbound direction of the

Baltimore-Washington Parkway (MD-295) in the state of Maryland, U.S. Details on

traffic demands and building the road network model were mentioned in Section 6.1.

The northbound target segment (2.24 miles) on the road network was chosen, and

individual travel times from all vehicles passing that segment were measured. Table

3-1 shows general observations measured.

TABLE 3-1 General observations for entire individual data set

Average
 Individual

travel time Travel time # of data Standard
Deviation

Number of data 4,443 4,299 4,299 4,299

Maximum [second] 996 886 302 102

Minimum [second] 111 140 18 9

Median [second] 194 208 230 27

Mean [second] 280 264 218 33

Standard deviation [second] 209 182 46 21

As shown in Table 3-1, individual travel time data were measured from 4,443

vehicles passing the target segment. Of those, only 4,299 data points were far enough

from the simulation begin or end times that they could be situated inside time

windows for which averages could be computed; 144 data points (27 at the beginning

of the simulation and 117 at the end) were excluded to avoid end effects due to

aggregation in the finite time window. Standard deviations were used as a measure of

dispersion instead of variance to be consistent with the units of travel time.

 43

Based on the datum sets consisting of individual data and its aggregates obtained

from the simulation experiment, patterns of individual travel time were explored in

Subsection 3.1.2, and data quantity for reliable travel time information was dealt with

in Subsection 3.1.3.

3.1.2 Reliability of individual travel time information

In order to observe the representative degree of individual travel time data for

traffic conditions, this study paired up individual travel times and 5-minute

aggregates of travel time. Data obtained from the simulation experiment in

Subsection 3.1.1 were used.

Individual travel time data were provided from each vehicle, mimicking what

would have been obtained from an vehicular ad hoc network in place. Surrounding

each of these travel time reports from individual vehicles, the average data calculated

from individual travel times within a 5-minute window containing that single data

point were observed. Figure 3-3 shows the pattern of the entire individual travel time

data obtained from the experiment in Subsection 3.1.1.

 44

0

200

400

600

800

1000

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [second]

T
ra

ve
l
ti
m

e
 [

s
e
c
o
n
d
]

Stable

Jammed

Congested

FIGURE 3-3 Entire individual travel time data set

As shown in Figure 3-3, traffic flow was stable until 4,800 seconds (1 hour 20

minutes) after the simulation started, although a small delay happened around 2,100

seconds due to the temporary presence of a queue on a ramp. During seconds 4,900

to 6,000, travel time increased abruptly and the plotted data were visually

disconnected. At this point, vehicles were totally in the middle of a jam though they

moved intermittently around 6,300 and 6,900 seconds.

As described previously, aggregate travel time data within 5-minute windows

were used to represent the ground truth values of travel time. Figures 3-4, 3-5 and 3-

6 show the quantity of data, travel time means, and standard deviations as aggregate

information of individual data according to simulation time, respectively. In those

figures, all data were classified into three groups according to traffic conditions; those

of Groups 1, 2, and 3 are stable, congested and jammed, respectively.

 45

0

50

100

150

200

250

300

350

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [second]

N
u
m

b
e
r
o
f

D
a
ta

Group 1

Group 2

Group 3

FIGURE 3-4 Quantity of individual data

0

100

200

300

400

500

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [second]

T
ra

ve
l
ti
m

e
 [

s
e
c
o
n
d
]

Group 1

Group 2

Group 3

FIGURE 3-5 Travel time means

 46

0

20

40

60

80

100

120

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [second]

S
ta

n
d
a
rd

 d
e
vi

a
ti
o
n
 [

s
e
c
o
n
d
]

Group 1

Group 2

Group 3

FIGURE 3-6 Standard deviations of travel time

As shown in Figure 3-4, the quantity of data abruptly increased during 5,009

seconds (122 data) to 5,475 seconds (272 data) and decreased from 5,756 seconds

(265 data) to 5,995 seconds (94 data). The description of the traffic situation

experienced by Group 2 is that traffic flow reached the maximum flow rate,

congestion started, and traffic, finally, jammed up. Figure 3-5 also shows a pattern

similar to Group 2 in Figure 3-4. That pattern is clearer in Figure 3-6. In Group 2,

the standard deviation steeply rose and fell before reaching road capacity. Group 3 is

in a severe congestion condition: high travel time but low standard deviation. Figures

3-7 and 3-8 contain the number of data and standard deviations corresponding to each

travel time mean respectively.

 47

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Travel time means [second]

N
u
m

b
e
r
o
f

d
a
ta

Group 1

Group 3

Group 2

FIGURE 3-7 Travel time means vs. number of data

0

20

40

60

80

100

120

0 200 400 600 800 1000

Travel time means [second]

S
ta

n
d
a
rd

 d
e
vi

a
ti
o
n
 [

s
e
c
o
n
d
]

Group 1
Group 3

Group 2

FIGURE 3-8 Travel time means vs. standard deviation

In Figures 3-7 and 3-8, travel time data are clearly classified even though those

are not in time order; these three groups are distributed according to traffic

conditions. Data in Group 1 occupies a small area with the largest number of

 48

samples. On the other hand, the data in Group 2 are on a curve and they follow the

arrows, chronologically.

Less so than aggregate data, individual data would be widely spread because they

are statistically distributed with error. Figure 3-9 plots individual travel time and

correspondent travel time means, and Figure 3-10 shows the relation between

individual travel time and standard deviation.

0

200

400

600

800

1000

0 200 400 600 800 1000 1200

Individual travel time [second]

T
ra

ve
l
ti
m

e
 m

e
a
n
s
 [

s
e
c
o
n
d
]

Group 3

Group 2

Group 1

FIGURE 3-9 Individual vs. travel time means

 49

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Individual travel time [second]

S
ta

n
d
a
rd

 d
e
vi

a
ti
o
n
 [

s
e
c
o
n
d
]

Group 2 / State 1

Group 3
Group 1

Group 2 / State 2

FIGURE 3-10 Individual data vs. standard deviations

As expected, Figure 3-9 shows large variance in Group 2 that would reduce the

accuracy of individual travel time information provided in a vehicular ad hoc

network. In order to reduce the range of the less reliable information, this study

broke up Group 2 into a small-variance group and a large-variance group as shown in

Figure 3-10. Finally, a total of four clusters for individual travel time data, Group 1,

States 1 and 2 in Group 2, and Group 3, were defined. Table 3-2 summarizes

observations of the four clusters based on individual travel times and corresponding

standard deviations.

 50

TABLE 3-2 Traffic condition states

Experiment Result

 Traffic flow characteristics Standard
Deviation Time

stamp
[sec]

Travel
time
[sec]

Group 1
Uncongested traffic condition before
reaching maximum flow. Traffic
flow is stable.

Small 546 -
4,900 111-373

State 1 /
Group 2

Transition period to congestion. It
happens when congestion begins.
Travel time changes very quickly.

Large 4,901 -
5,427 201-522

State 2 /
Group 2

Congested traffic condition. Vehicles
stop and go repeatedly. Small 5,429 -

5,995 380-481

Group 3

Severe congestion condition.
Vehicles are in jam for a majority of
time. Standard deviations are,
however, low because entire vehicles
linger.

Small 6,213 -
7,049 499-996

As Table 3-2 shows, for any standard deviations except State 1 in Group 2 it is

reasonable to use individual travel times (collected via the ad hoc network) as a

surrogate for average travel time, the actual value that drivers presumably want to

know. Individual data included in State 1 in Group 2 occupied a large range of travel

time (201 – 522 second) in spite of the small number of data (293 in this study).

These data occurred only when a traffic condition grew steeply worse (4,901 – 5,427

second). The range of State 1 in Group 2 accounted for a wide time period because

this study dealt with only a single travel time sample. Various approaches with more

samples or different information sources, for example from infrastructure, would be

expected to be able to minimize unreliable data.

 51

Given the simulation used is a reasonable proxy for reality, the results highlight

the simple but important data quality issues that should be considered in the

simulation framework for a VANET-based traffic information system. The next

subsection introduces data quantity for reliable travel time information.

3.1.3 Acceptance probability

The key question in this subsection is how many individual travel time data we

need in order to obtain reliable traffic information for a certain road link in VANETs.

Some studies related to data quantity for traffic information have been conducted

using various statistical sampling methodologies (Srinivasan and Jovanis, 1996 and

Wang et al., 2005). These papers exploit Central Limit Theorem arguments to

develop minimum sample sizes according to the familiar inequality:

2

2
 n Z

dα
σ⎛ ⎞≥ ⋅⎜ ⎟

⎝ ⎠
 (2)

where n is the minimum sample size, Z is the standard normal distribution, α

is significance level, σ is the standard deviation of the population, and d is

maximum allowable error difference.

The statistical precondition for Equation (2) is that population is normally

distributed (not likely in most traffic measurements) or that the sample size is large

enough to benefit from the Central Limit Theorem. By these reasons, Chen and

Chien (2000) obtained the minimum number of probe vehicles through heuristic

 52

methods as well as statistical ones. Of course, individual travel time data are unlikely

to be normally distributed, although some experiments have found this to be a good

distributional fit in uncongested conditions. In congested conditions when this is not

true, rapidly changing conditions affect sample sizes in a way that might invalidate

the Central Limit Theorem. In such cases, we propose the Acceptance Probability

method as a distribution-free alternative.

The fundamental principle of Acceptance Probability is the same as Equation (2)

with the exception of the size of the sample. This describes the probability that an

individual datum is within an allowable error range of the median for all individual

data within a certain time window. What we want to know is how well a single

individual datum represents a traffic condition corresponding to the datum chosen. In

this study, we use the median of all individual data within a time window centered on

the time instant in question as a proxy for actual information (ground truth). The

formulation of Acceptance Probability is defined by Equation (3) as:

()P i t tTT median MAER median− > ⋅ (3)

where TTi is the individual travel time for vehicle i, median t is taken over travel

time data within a certain time window corresponding to time t, and Maximum

Allowable Error Rate (MAER) is the maximum allowable error rate.

Data obtained from the simulation experiment in Subsection 3.1.1 were used to

evaluate the Acceptance Probability. Individual data collected for a short time period

(5 minutes in this study) were aggregated as a proxy for actual information

 53

representing a traffic condition: the median of travel times (TTi) of all individual data

within a 5-minute window centered on the time t. All individual data were matched

up with their corresponding aggregate information. For more continuous changes of

traffic conditions, medians corresponding to each datum are extracted.

Minimum sample sizes for estimating a population mean were obtained through

Equation (2), with significance level, α , set to 0.05 and maximum allowable error

difference, d, was MAER*median. MAER used in both Equations (2) and (3) was

chosen to be 15 %. Those are for data within 5-minute time windows centered on

each individual travel time datum obtained from simulation. Figure 3-11 shows

minimum sample sizes corresponding to each time stamp.

0

5

10

15

20

25

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [sec]

M
in

im
um

 s
am

pl
e

si
ze

FIGURE 3-11 Statistical minimum sample size

As mentioned above, Equation (2) relies on the Central Limit Theorem, which

cannot always be supported. As shown in Figure 3-11, a sample of size 2 can

 54

ostensibly represent population means in stable traffic conditions from 600 to 1,200

seconds and from 3,300 to 4,500 seconds, during which time vehicles drove close to

the speed limit (55 mph). Even in jammed conditions after 6,300 seconds, similar

results were obtained due to small variance. In the case that many samples were

required, e.g. 22 samples around 5,100 seconds, as well, the Central Limit Theorem

is well supported.

In order to estimate data quantity for reliable travel time information regardless

of the data distribution in VANET, Acceptance Probability from Equation (3) was

applied. The probability values obtained from Acceptance Probability imply how

well a single travel time datum represents a traffic condition at the time

corresponding to that datum. Further, high probabilities would be associated with

small sample size and low probabilities correspond to large sample size. Figure 3-12

shows Acceptance Probability for individual travel time data.

0.0

0.2

0.4

0.6

0.8

1.0

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [sec]

Pr
ob

ab
ilit

y

FIGURE 3-12 Acceptance probability

 55

In Figure 3-12, the results for Acceptance Probability show that it is analogous to

the statistical method in both stable traffic conditions (600 – 1,200 seconds and 3,300

– 4,500 seconds) and jammed conditions (above 6,300 seconds), when the

probabilities are over 0.8. The data around 5,100 seconds seem to be less reliable

(under 0.2 probability), which relates to the large sample size required of the

statistical method.

The two approaches can be compared more directly by superimposing the

minimum sample size results from Figure 3-11 with the complements of the

probabilities from Figure 3-12, since we expect that high probabilities would be

associated with small sample sizes and low probabilities with large sample sizes.

Figure 3-13 shows these minimum sample sizes and (complementary) Acceptance

Probabilities for individual travel time data within a 5-minute time window centered

on each datum.

0

5

10

15

20

25

0 900 1800 2700 3600 4500 5400 6300 7200

Arrival time [sec]

Sa
m

pl
e

si
ze

Minimum sample size

Pr
ob

ab
ilit

y

0

0.4

1.0

0.2

0.6

0.8

Acceptance Probability
reversed

FIGURE 3-13 Statistical minimum sample size and reversed Acceptance Probability

 56

In Figure 3-13, these two profiles match quite closely during uncongested

conditions, when the underlying data might be expected to be normally distributed, or

during consistently congested conditions, when the same steady state persists long

enough to generate large sample sizes, so the Central Limit Theorem can be invoked.

During transient (unstable) congested periods, however, the results can differ

significantly, and the safest conclusion to draw here is that minimum sample sizes

should be increased beyond what the standard methods would suggest. The largest

sample size in this experiment was 23 in congested traffic condition.

This study showed an experimental way to obtain the minimum quantity of data

required for reliable travel time measurement over a variety of traffic conditions,

adjusting minimum sample sizes obtained from a traditional statistical equation

through the Acceptance Probability distribution-free method. This idea is expected to

help determine data quantity for reliable travel time information on a congested traffic

condition in a simulation framework design.

3.2 Travel time information relevance

This section discusses spatial and temporal relevance on travel time information.

Travel time data may be located on space and time. Data from nearby links might be

useful, but perhaps less useful as the links grow more distant. Similarly, recent data

are useful, but they become stale in time. This idea relies on the assumption that

traffic data are strongly correlated with each other in terms of space and time. This is

true in various degrees for different network topologies. Figure 3-14 shows a

conceptual representation of this idea.

 57

FIGURE 3-14 Concept for spatial and temporal relevance of data

In general, spatially neighboring data are from upstream and downstream links,

and temporally neighboring data are from recent historic time windows. We expect

these correlations to decline as space-time cells become more “distant,” in either the

dimensions alone or combined. In order to demarcate this mesh of points, the space

dimension will be carved into physically convenient “links.” The time dimension, on

the other hand, is not physically constrained, but an important decision has to be

made. In order to clarify this concept, a simulation experiment for obtaining travel

time data is described in the next subsection. Using travel time data obtained from

this experiment, spatial and temporal relevance of travel time data is examined (Kim

and Lovell, 2006a) and an experimental linear model is introduced (Kim and Lovell,

2006b).

Time

Space

Data position

l: link
t: time

t-5 t-4 t-3 t-1t-2 t

l

l-1

l-2

l-3

l-4

l+1

l+2

l+3

l+4

 58

3.2.1 Experiment for spatial and temporal relevance

This subsection explains a simulation experiment to investigate the spatial and

temporal relevance of travel time information. The experiment was conducted in a

simulation environment in which the transportation simulator, Paramics, was used

same as Section 3.1. Figure 3-15 shows the virtual simulation road network used for

this study.

FIGURE 3-15 Simulation network

In Figure 3-15, the simulation network consists of an 8-lane uninterrupted

highway (4 lanes per direction) with 12 zones which generate demands. All

interchanges are complete cloverleafs without signals. In order to observe spatial and

temporal relevance, we chose a target link and neighboring links whose travel times

were obtained in this study, as indicated in Figure 3-15. The target link z is eastbound

zb

ca

e

ac

bb

aa

bc

ba

ab

f

dc

cb

cc

a

N

1 mile

1 mile

* 1 mile = 1.609 km

 59

and is located in the center area of the network. It is connected to links a, b and c

(upstream) and to links d, e and f (downstream). These are all links that are

topologically adjacent to link z. Additional links that are one step further removed

from the target link are named aa, ab, and ac before link a; ba, bb, and bc before link

b; and ca, cb, and cc before link c.

The simulation experiment was conducted for two hours. In order to study a

worst case, we would like to observe vehicles moving slowly (maximum volume).

However, this is an unstable state that can change rapidly. It was decided that every

zone generates 4,800 vehicles per hour. In this study, one-minute space mean speeds,

the reciprocal of travel time, on links are used as traffic data to observe spatial and

temporal relevance.

It was very important to introduce changes in traffic that prevent accidental

correlation. For example, one could impose a very mild steady state condition on the

network, in which case adjacent links would have strongly correlated travel times

simply because free-flow travel times would dominate. Instead, it was important to

introduce non-stationary changes of sufficient magnitude across a variety of origin-

destination pairs to minimize this risk; thus, correlations that appear in the data are

structural and therefore important. From the results of the simulation experiment for

two hours, 120 one-minute space mean speeds by link were extracted. Figure 3-16

shows traffic variations for a target link and neighboring links.

 60

a) Speed on Upstream Links

0

20

40

60

80

0 30 60 90 120

Time step [minute]

S
p
e
e
d
 [

m
il
e
/h

o
u
r]

link z link a link b link c

b) Density on Upstream Links

0

50

100

150

200

250

0 30 60 90 120

Time step [minute]

D
e
n
s
it
y

[
ve

h
/m

il
e
]

link z link a link b link c

c) Speed on Downstream Links

0

20

40

60

80

0 30 60 90 120

Time s tep [minute]

S
p
e
e
d
 [

m
il
e
/h

o
u
r]

link z link d link e link f

d) Density on Downstream Links

0

50

100

150

200

250

0 30 60 90 120

Time s tep [minute]

D
e
n
s
it
y

[
ve

h
/m

il
e
]

link z link d link e link f

e) Speed on 2nd Upstream Links

0

20

40

60

80

0 30 60 90 120

Time step [minute]

S
p
e
e
d
 [

m
il
e
/h

o
u
r]

link z link aa link ab link ac

g) Speed on 2nd Upstream Links

0

20

40

60

80

0 30 60 90 120

Time s tep [minute]

S
p
e
e
d
 [

m
il
e
/h

o
u
r]

link z link ba link bb link bc

i) Speed on 2nd Upstream Links

0

20

40

60

80

0 30 60 90 120

Time s tep [minute]

S
p
e
e
d
 [

m
il
e
/h

o
u
r]

link z link ca link cb link cc

f) Density on 2nd Upstream Links

0

50

100

150

200

250

0 30 60 90 120

Time s tep [minute]

D
e
n
s
it
y

[
ve

h
/m

il
e
]

link z link aa link ab link ac

h) Density on 2nd Upstream Links

0

50

100

150

200

250

0 30 60 90 120

Time step [minute]

D
e
n
s
it
y

[
ve

h
/m

il
e
]

link z link ba link bb link bc

j) Dens ity on 2nd Upstream Links

0

50

100

150

200

250

0 30 60 90 120

Time step [minute]

D
e
n
s
it
y

[
ve

h
/m

il
e
]

link z link ca link cb link cc

FIGURE 3-16 Speed and density on target link and neighboring links

 61

The non-stationary conditions on all links are exhibited in Figure 3-16. This

includes plots of speeds and densities on various links, each compared with the same

statistic on the target link z. As shown in Figure 3-16, all links but link e are in an

unstable traffic condition. Speeds can be seen to change suddenly. In particular,

many links degraded significantly after time step 70 minutes and were, finally,

jammed up. In the case of link e, congestion caused by spill-back traffic from

interchange areas did not happen because vehicles got out of the network through that

link. Increasing upstream traffic could make downstream traffic increase and cause

traffic congestion. On the other hand, downstream congestion could spill back

upstream and lead to a congested condition. In the absence of an incident, it is most

reasonable that upstream traffic conditions at a given time will have an impact on

downstream conditions at some later time, since many of the same vehicles will be

involved. Thus, those correlations should be high.

3.2.2 Spatial and temporal relevance

This subsection describes spatial and temporal relevance of traffic information

based on the results obtained from the simulation experiment in the previous

subsection. On space mean speeds, 2-hour correlation, 15-minute correlation, and

time correlation are discussed.

In order to analyze spatial relevance, the correlation on speed was used as a

statistic. Figure 3-17 contains correlation coefficients on speed between each

neighboring link and the target link over the whole simulation time (2 hours). In

 62

Figure 3-17 the names of those links associate with each coefficient depicted are in

parentheses.

FIGURE 3-17 Two-hour correlation with speed on target link z

In Figure 3-17, each upstream link a, b and c of the target link z is correlated as

much as -0.34, 0.64, and 0.66 respectively. For downstream results, the coefficients

on links d, e, and f were -0.70, -0.59, and 0.85. These results suggest that speeds on

links b, c and f are more related to that on link z. On several links (a, d, e, ba, bc, and

ca), negative correlations were obtained. In comparing two link speeds, it would be

difficult to conclude from a negative correlation of large magnitude such as link d (-

0.7) that a “direct” causal relation exists between those links. For example, link z

could be “indirectly” related to link d via other links. Certainly, it would be hard to

argue that increasing the speed on any one link causes a decrease in speed on another

link. Even though links aa, ab, and ac are one link farther away, high correlation

2 3 4

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

22 23 24

z0.64(b)

-0.45(ca)

-0.59(e)

0.94(ac)

0.41(bb)

0.93(aa)

-0.38
(bc)

-0.47
(ba)

0.78
(ab)

0.85
(f)

-0.70
(d)0.66

(c)

0.89
(cb)

0.46(cc)

-0.34
(a)

 63

coefficients were obtained: 0.93, 0.78, and 0.94, respectively. However, it is believed

that links aa, ab and ac have indirect relationships with link z in terms of speed

because those links are connected to link z via link a with a negative correlation

coefficient.

The correlations mentioned above attempt to capture the relations between links

for the full 2 hours with one single value at the overall viewpoint. Figure 3-18 shows

the variation of 15-minute correlation between each upstream/downstream link and

the target link with density rate for maximum density (213 vehicles in this

experiment). Each point was obtained through a sequence of 15 one-minute speed

data; the first point was located at the 15th time step.

-1.0

-0.5

0.0

0.5

1.0

0 15 30 45 60

Time [minute]

C
o
rr
e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

link a link b link c

-1.0

-0.5

0.0

0.5

1.0

0 15 30 45 60

Time [minute]

C
o
rr
e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

link d link e link f
0.0

0.2

0.4

0 15 30 45 60 75
Time [minute]

link f

0.0

0.2

0.4

link e

0.0

0.2

0.4

D
en

si
ty

 /

link d

0.0

0.2

0.4

m
ax

im
um

link c

0.0

0.2

0.4

de
ns

ity

link b

0.0

0.2

0.4

link a

0.0

0.2

0.4

link z

FIGURE 3-18 Correlation with speed on target link z for 15 minutes and density

 64

As shown in Figure 3-18, unlike 2-hour correlations, the 15-minute correlation

coefficients fluctuate significantly; no links are stable. For example, link f (0.85) was

highly correlated to link z in 2-hour correlation, but reported negative value by 15

minutes and was not over 0.5 by 68 minutes. Link a was highly correlated to the

target link by the first 10 minutes, link d during 32 to 54 minutes, and links a, b, and f

from 68 minutes. High correlation coefficients (more than 0.4) were drawn with

bigger markers. The right column of the Figure 3-18 shows density rate

(density/maximum density) for each time step.

The temporal relevance of data on links located in the center area of the

simulation network was investigated. Temporal relevance means the relation

between present and past information. Speed data on chosen links were compared

pair-wise, with a sequence of 1-minute time lags from the current time t. Figure 3-19

shows correlation coefficients by 30 time lags on a target link and neighboring links.

 65

0.48

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

t-30 t-25 t-20 t-15 t-10 t-5 t

Time lag [minute]
C

o
rr
e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

link z link a link b link c

0.0

0.2

0.4

0.6

0.8

1.0

t-30 t-25 t-20 t-15 t-10 t-5 t

Time lag [minute]

C
o
rr
e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

link d link e link f

FIGURE 3-19 Temporal relevance

In Figure 3-19, the speed data for link z appeared to be temporally highly

correlated, 0.81 at time t-15. However, links a and e were less correlated with past

data: 0.48 only at four-minute time lag on link a and 0.3 at t-5 on link e. Links b, c

and d showed analogous characteristics to each other; the coefficient curves for the

three links follow a very similar pattern. The correlation coefficients at time lag t-5

were 0.72, 0.75 and 0.68, respectively.

As shown above, temporal relevance on traffic information appears though all

links are not very correlated; correlations on some links were high with thirty-minute

time lag and those on others were low even with five-minute time lag. Temporal

 66

relevance of recent historic data is expected to be used for travel time expiration in

vehicular ad hoc networks.

3.2.3 Linear model

In this subsection, a linear model using spatial relevance of traffic information is

introduced. This model relies on the assumption that traffic data are strongly

correlated with each other in terms of space. This is true in varying degrees for

different network topologies. In general, spatially neighboring data are from

upstream and downstream links. We expect these correlations to decline as space

cells become more distant. Figure 3-20 depicts spatial relevance between a target link

z and neighboring links a, b, c, d, e and f.

z

a

b

f

e

d
c

FIGURE 3-20 Spatial relevance example

In Figure 3-20, suppose that the travel time on Link z was missing. In order to

estimate the missing travel time on Link z, we assume a linear relation with the

neighboring downstream and upstream links, and generate a linear model.

 67

0 z a b c d e
t a t b t c t d t e t f t

fTT TT TT TT TT TT TTα α α α α α α= + + + + + + (4)

where,

z
tTT : Travel time estimate on Link z at time t

α : parameter

a, b and c: downstream links

d, e and f : upstream links

The goal, then, is to find, for this particular target link, the magnitude of the

coefficients that should be used. In some cases, the inclusion of certain independent

variables may not be statistically justified. The values of these coefficients may

change with the particular traffic algorithm in mind.

A problem with unconstrained linear models is that they can provide impossible

values that cannot happen in the real world, such as speeds of 150 mile/hour or

negative speeds. This is more likely when only a small number of observations is

available. Therefore, the results of the linear model should be followed by a process

to adjust unreasonable estimates. The basic idea of the adjustment process in this

study is to smooth estimates that are too high or too low as shown in Figure 3-21.

 68

zTT

z

adjTTzTT

2

zTT
M

M : medium value

FIGURE 3-21 Concept of the excess adjustment

First of all, a medium value, M, assumed to be a neutral line between

overestimates and underestimates, is defined. It would be in the middle of zTT and

2
zTT . In this study, M was chosen as a value two thirds of zTT . Next, all

estimates from the linear model are shrunk (contracted) in the direction of the

medium value. In particular, only the differences between
zTT and M nonlinearly

contract based on a shrinking factor defined as ()zTT M βα − ; 0.012 and 1.2 were

applied for the values of α and β respectively in this paper. Finally, adjusted travel

time is obtained through Equation (5).

() 1

z
z

adj z

TT M
TT M

TT M βα

−
= +

− +
 (5)

If we compose a data structure based on the example in Figure 3-20, we can set

up target link z with 3 downstream links (links a, b and c) and 3 upstream links (links

 69

d, e and f). These are all links that are topologically adjacent to the target links.

Figure 3-22 shows a sample data structure of the target link and the adjacent links.

 z a b c d e f
t-15 56 72 65 67 23 12 58
t-14 43 68 64 68 16 11 62

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Coefficient estimation

t-2 61 45 66 61 34 52 39

t-1 45 51 63 59 49 34 37

t ? 59 64 28 37 43 60 Missing data estimation

FIGURE 3-22 A sample of data set

In Figure 3-22, 15 consecutive data values were used as a unit of data set in order

to estimate missing space mean speed. Coefficients for a linear model were estimated

through those 15 consecutive data values (t-1~15), and the travel time (t) missed on

Link z was estimated with coefficients obtained from previous time lags and data (t)

on neighboring links at the same time window.

In order to evaluate this linear model, simulation results conducted in Subsection

3.2.1 were employed. A total of 120 one-minute observations of aggregated space

mean speed were obtained. Of those, we kept the consecutive 68 pieces of data left

after removing data such as jammed-up conditions (from the 69th time window, a

traffic jam started to appear on some links). Figure 3-23 shows the virtual simulation

road network used for this paper.

 70

FIGURE 3-23 Network structure

We defined a target link and neighboring links on the simulation network, as

indicated in Figure 3-23. The total of four links (links 1, 2, 3 and 4) were selected as

a target. Four target links which are not affected by other characteristics such as no

upstream links or downstream links were chosen.

TABLE 3-3 General observations

 Link 1 Link 2 Link 3 Link 4

of samples 68 68 68 68

Maximum speed [miles/hour] 70.9 73.1 71.6 75.3

Minimum speed [miles/hour] 22.9 23.5 33.9 25.5

Median speed [miles/hour] 65.4 66.9 65.8 66.1

Average speed [miles/hour] 62.2 60.3 62.6 60.6

Standard deviation [miles/hour] 10.7 13.8 8.8 13.4

1 mile 1

m
ile

* 1 mile = 1.609 km

Link 3

Link 1

Link 4

Link 2

Target link
Downstream link
Upstream link

 71

In Table 3-3, general observations for the four target links are summarized. Of

68 consecutive space mean speed data points, a total of 53 speed estimates per target

link were provided because the first estimate needed 15 consecutive data points. The

average space mean speeds for the four target links were more than 60 mile/hour;

these links were not congested for most of the period. The differences between

median and average speeds for links 2 and 4 (around 6 mile/hour) were higher

compared to those for links 1 and 3 (3.2 mile/hour). Similarly, standard deviations

for links 2 and 4 were higher than those from links 1 and 3, indicating a higher

propensity for fluctuation on those links.

FIGURE 3-24 Estimated speed and actual speed

a) Link 1

0

20

40

60

80

0 10 20 30 40 50

Sp
ee

d
[m

ph
]

Estimate
Actual speed

d) Link 4

0

20

40

60

80

0 10 20 30 40 50

Time [minute]

Estimate
Actual speed

b) Link 2

0

20

40

60

80

0 10 20 30 40 50

Estimate
Actual speed

c) Link 3

0

20

40

60

80

0 10 20 30 40 50
Time [minute]

Sp
ee

d
[m

ph
]

Estimate
Actual speed

 72

Figure 3-24 (a) shows that the speeds on Link 1 were the best, of those estimated

through the linear model proposed in this paper. The match is best illustrated by the

agreement between the simulator and predictor during the speed decrease that

happened around the 39th time bin. In Figure 3-24 (b), actual speeds on Link 2 were

estimated well only around time lags when the actual speed decreased, whereas large

errors sometimes appear at high speeds. Figure 3-24 (c) shows good general

agreement for the speeds on Link 3, although some deviations are present. The model

generally performed poorly for Link 4, as shown in Figure 3-24 (d).

A linear model for predicting space mean speed on a target link using

information from neighboring links was employed for imputing missing data. The

results show that traffic conditions on the target link can be associated with those on

neighboring links, and seem to be affected by compound relation of those links.

3.3 Discussion

This chapter discussed the patterns of individual travel times with aggregate

travel times as a proxy of traffic condition and the data quantity for reliable travel

time information based on individual travel time data obtained from a simulation

experiment. Congested traffic conditions between uncongested and jammed

conditions certainly changed and they showed high standard deviations. Large

sample sizes (more than 23 in Figure 3-13) are required for reliable information in a

congested traffic condition.

Section 3.2 showed spatial and temporal relevance amongst one-minute

aggregated space mean speeds, a reciprocal of travel time. While spatial relevance

 73

with neighboring links varied in a squared road network, temporal relevance at the

same link seemed to be associated amongst recent historic data. In some links,

however, it became quickly stale. In temporal relevance degradation of travel time,

correlation coefficients of travel time on many links fell down under 0.5 over a period

of 14 minutes (Figure 3-19). These results for travel time are used to determine the

degradation of travel time information in a framework design.

The next chapter introduces how this study builds a simulation framework for

VANET applications. The simulation framework integrated with transportation and

communication simulators is designed based on an information model in VANET

applications which is defined in this study and implementation techniques are

described.

 74

Chapter 4: Simulation Framework

Research issues related to inter-vehicle communications for transportation

applications are extraordinarily complex, with numerous complicated and

interdependent stochastic inputs. As a result, the only reasonable method to evaluate

ideas for real systems is through simulation. These ideas are far enough ahead of the

curve, however, that no single current commercial package offers the full range of

features required to study these systems. An integral component of the work for this

dissertation, therefore, was the development of an integrated transportation and

communication simulation framework, having as its target a wide range of

applications to VANETs. Transportation and communications are essentially stove-

piped disciplines, so the only way to build an effective simulator for both

simultaneously was to start with the most appropriate simulator within each domain

and then to integrate. The definition of “most appropriate” included both well-known

performance within the domain and an ample Application Programming Interface

(API) with which to override default behavior and build links to external functions in

real time. The most critical areas of interoperability between the two simulators were

time management and mobility management.

This chapter describes the development of the integrated simulation environment.

Section 4.1 begins with a description of the simulation requirements, including the

information model proposed for the dissertation, as well as the desired architecture.

Section 4.2 describes some state-of-the-art simulators in the transportation and

communications domains and shows how the choices of Paramics (transportation)

 75

and Qualnet (communications) were arrived at. This section also shows how the

integrated simulation platform was implemented, including the issues of time and

mobility management mentioned above. The section closes with a specific

description of the inter-vehicle communications mechanisms designed and

implemented in this simulation platform for the purposes of this dissertation.

4.1 Simulation design

One of the most fundamental changes that can be expected from VANETs used

for transportation management purposes is that the nature of the information involved

in the decision-making will change. The existing traffic data paradigms are well-

established, arguably entrenched, and will need to be re-thought completely in order

to best exploit this evolution of technology. Because existing simulation tools were

built while the old paradigms were active, one has to be at least suspicious that they

may not be directly extensible to this new environment. Thus, the first important task

to be conducted as part of this research was to develop an information model that

describes the types, frequencies, etc. of the information packets that are expected to

be used by models supported by VANETs, as well as their collection and distribution

mechanisms.

With this information, it was then possible to design a cooperative architecture

expected of the two domain simulators. Specific details depend on the simulators

chosen, of course, but the general guidelines of the interfaces, data dictionary, etc.,

were determined at this point. The following two subsections describe the

 76

development of the information model and simulation platform architecture in more

detail.

4.1.1 Information model

In order to understand the target system of the proposed simulation framework,

an information model in transportation systems based on VANETs is presented in this

study. In the information model, various traffic events – such as vehicle movements

– are collected as data, in some manner, from the transportation systems and are then

fed back to the transportation system according to some collection of preset logic.

The information model considers traffic events as information (thereby assuming that

the means to collect the information accurately are available) and processes the

information to decide reactions. The model presented here defines procedures by

which information is collected, disseminated, utilized and fed back in a VANET-

based transportation system. Figure 4-1 shows a diagram of the information model

which this study focuses on.

 77

FIGURE 4-1 Information model for VANETs

The proposed information model for VANETs consists of four stages:

generation, dissemination, interpretation and reaction. To support VANETs, the first

stage of the information model is the generation of information which describes

traffic states (conditions) for transportation mobility purposes, and vehicle locations

for transportation safety purposes. Since traffic information is being collected by

individual vehicles, at this point the state information must be that which can be

estimated by a single variable. For example, the travel time of a single vehicle over a

given link can be used as an estimator of the average travel time for many vehicles

over that link (which might be a meaningful macroscopic definition of state for that

link), but a single vehicle cannot characterize the flow on a link.

Traffic events

Dissemination

Transportation Systems
Interpretation

Reaction
- Speed-changing
- Lane-changing
- Rerouting

decision

utilize - Broadcasting
- Multicasting
- Unicasting

Generation

- Info. processing
- Modification
- Estimation

- Traffic conditions
- Vehicle location

Database

update

 78

Vehicles are assumed to be equipped with navigation / location hardware with

sufficient spatial and temporal resolution for the intended applications. Thus, a

vehicle can determine and report its own position. Meaningful information, the

definition of which depends on the intended applications, would be generated by any

events that can be sensed by the vehicle, most notably vehicle’s own movements in

the transportation system. As described in Section 1.1 of Chapter 1, it might be most

efficient for vehicles to have a collective sense of “the norm” for traffic states at any

given point in time and space, and only to report on conditions sufficiently outside of

that norm. Where it is appropriate to assume that no links would be entirely devoid

of communications-equipped vehicles, this structure allows the total absence of data

to also be interpreted as information. Any information generated in the vehicle is

accumulated in internal information bases such as a database inside an Onboard Unit

(OBU).

Information generated is disseminated to appropriate recipients at the second

stage. Depending on the applications, information would be destined either to

specific vehicles (unicasting or multicasting) or to all other vehicles within

transmission range (broadcasting). Since mobility in VANETs is extremely high and

nodes are essentially anonymous, most applications will (or should) aim to deliver

information to all other vehicles within range. An exception to this would be

applications should as mobile web, but this dissertation is focused only on

transportation management applications. The simplest method for every vehicle to

send information to every other vehicle within range would be periodic broadcasting,

although various more complicated broadcasting schemes should be studied for

 79

different applications. For better performance, the broadcasting interval can be

adjusted according to the situation.

When a vehicle receives new information from other vehicles, it would either

discard or assimilate the information, depending on its interpretation. At the stage of

interpretation, procedures for how to understand the new information and what to do

with it are conducted. The interpretation may cause an update or modification to a

vehicle’s own information base with new information.

At the final stage, accumulated information should result in some reactions from

vehicles (or their drivers) such as speed changing, lane changing, or rerouting. The

reaction defines rules for such responses to new information. This reaction usually

feeds back to the transportation system, possibly generating new traffic situations.

This information model can cover most applications of VANETs which base the

individual vehicle’s reaction to the transportation system on collecting, processing,

and disseminating traffic events. The simulation framework is designed according to

the presented model and, therefore, most VANET-based transportation system can be

properly simulated within this framework.

4.1.2 Simulation framework design

This section describes the simulation framework designed to work with the

information model presented in the previous section. The simulation framework was

designed with the notion that a simulator for VANETs should provide: 1) simulation

for the transportation system, 2) simulation for the vehicular ad hoc network, and 3)

application logic for intelligent systems. A transportation simulator models a

 80

transportation system by simulating the behavior of vehicles according to internal

traffic models such as car following, lane changing, shock waves, and queuing. A

communications simulator demonstrates various aspects of wireless ad hoc networks

such as the underlying radio channel and multiple access control. The application

logic for VANETs presents how the system generates, disseminates, and interprets

the information. It also defines each vehicle’s reaction to the information it receives.

To provide a simulation framework for VANETs, the transportation simulator and the

communication simulator are integrated by creating an interface between the two.

The simulation time and vehicle positions must be synchronized in the two simulators

via inter-simulator communication. Figure 4-2 shows the architecture of the

simulation engine, including the transportation and communications components,

together with the communications infrastructure that joins them.

To synchronize the simulation time between both simulators, they exchange

current simulation times at a given precision. Since the communication simulator

does not support vehicles’ movements, the transportation simulator periodically

provides the communication simulator with vehicles’ locations. Upon occurrence of

traffic events, the transportation simulator generates data, decides on the intended

recipients, and lets the communication simulator represent inter-vehicle

communications. In this study, it is assumed that the system disseminates

information by periodic broadcasting (this constraint is intended for the case study

presented in later sections). The framework, however, can accommodate more

intricate communication schemes such as adaptive broadcasting (Wischhof et al.,

2007 and Saito et al., 2007). The communication simulator informs the

 81

transportation simulator about data receptions, and the transportation simulator then

interprets the information, and modifies it and reacts if needed. The transportation

simulator and communication simulator proceed independently (as different

processes), but each with constraints imposed by the other. In particular, each has the

ability, through the API, to suspend execution of the other long enough for the non-

native data to be updated appropriately. When this synchronization scheme is

executed with sufficient resolution, it has the effect of mimicking a combined

simulation environment.

FIGURE 4-2 Framework implementation

PHY

MAC

Network

Transport

Transportation Systems

Date Dissemination Data
Generation

Reaction

Time Management

TRANSPORTATION
SIMULATOR

COMMUNICATION
SIMULATOR

time

vehicle
position

decision

Time Management

modification

Traffic events

Data
Interpretation

Mobility Management

data
reception

- Periodic Broadcasting

data size

PHY

MAC

Network

Transport

 INTERFACE

 82

4.2 Implementation

In this section, the specific modes to implement the simulation framework

designed in the previous section were described. Proper tools for transportation and

communication simulations were chosen, and these two simulators were synchronized

with respect to simulation time and node locations. The last subsection shows data

communications between the simulators with data format from QualNet to Paramics

for updates of traffic data via intervehicle communications.

4.2.1 Simulation tools

In order to simulate vehicles’ mobility in transportation systems and ad hoc

networking among vehicles, simulators oriented to these specific purposes are

employed. For these purposes, the transportation simulator should be a microscopic

simulator capable of describing correlated movements of individual vehicles. The

communication simulator should simulate the 7 layers in the open systems

interconnection (OSI) reference model proposed by the International Organization for

Standardization (ISO), and should be able to handle large communication networks

composed of equipped vehicles.

Corsim (Corsim homepage, 2007), VISSIM (VISSIM homepage, 2007),

AIMSUM (AIMSUM homepage, 2007), and Paramics are well-known microscopic

transportation simulators. Of those simulators, Paramics version 5.2, developed by

Quadstone Paramics, is employed in this study as the transportation simulator.

Paramics is a microscopic traffic simulation tool producing movements and behavior

of each individual vehicle. It can be used to replicate traffic on a wide variety of

 83

transportation networks. Paramics’ primary flexibility is that it allows users to access

its internal mechanisms via a convenient Application Programming Interfaces (API)

(Paramics homepage, 2007).

Most sources in the literature in mobile wireless networks use NS-2 (NS-2

homepage, 2007), OPNET (OPNET homepage, 2007), GloMoSim (GloMoSim

homepage, 2007), or QualNet for evaluation tools. In this study, QualNet version 4

was chosen as the communication simulator. QualNet, developed by Scalable

Networks Technologies Inc., is the commercial successor to GloMoSim. QualNet

can simulate large scale wireless networks as a packet level simulator for wired and

wireless networks. For example, Scalable Networks Technologies describes QualNet

by saying that it can simulate a communication network with thousands of nodes with

reasonable performance due to improvements in design such as parallel execution and

smart memory management. QualNet supports all seven layers from the physical

layer to the application layer in the OSI reference model. On the wireless physical

layer, protocols 802.11 DCF/PCF, 802.11 a/b/g/e and 802.16(e) are supported

(QualNet homepage, 2007).

4.2.2 Mobility management

In this simulation framework, the locations of nodes (vehicles) in QualNet are

synchronized with those of equipped vehicles in Paramics. Paramics was

programmed to periodically send to QualNet the positions of all equipped vehicles

currently active in the system with a timestamp (Paramics can control the time step to

 84

within 10 milliseconds). Figure 4-3 shows how these simulators synchronize

vehicles’ movements and graphically illustrates the expected error from this method.

FIGURE 4-3 Movement synchronization and expected error

As shown in Figure 4-3, QualNet moves vehicle (node) positions along a linear

path with time-stamped vehicle positions. For example, if QualNet received (v, t1, x1,

y1) and (v, t2, x2, y2) at the next period from Paramics, where t2 > t1, then the vehicle v

is assumed to depart from location (x1, y1) at time t1 and arrive at location (x2, y2) at

time t2 and to have done so along the straight line between (x1, y1) to (x2, y2). This

“interpolated mobility” could cause incorrect vehicular positions if the actual vehicle

trajectories are non-linear. This error, however, can be made negligible, since

highways have bounded curvature and the update time for the simulation is quite

small. Figure 4-4 contains the format of the packet transferred from Paramics to

QualNet.

Error

vehicle v

QualNet

Vehicle v

Paramics

Packet

 (t2, x2, y2) (t1, x1, y1)

(t1, x1, y1)
(t2, x2, y2)

 85

FIGURE 4-4 Packet format from Paramics to QualNet

In Figure 4-4, the first data indicates the current time that Paramics sends to

QualNet, and is followed by a total number of vehicles contained in the packet. Now,

data describing locations for each vehicle are attached: vehicle ID, x coordinate, y

coordinate, and data size which each vehicle stores at that time. About data size, it

will be more discussed later.

4.2.3 Time management

QualNet takes the form of Discrete Event Simulation (DES) software, the most

widely used form in communication simulation. In DES, the state of the system is

assumed to change only at discrete epochs; in other words, the simulation time (or

simulation clock) proceeds only when an event happens (e.g., 1, 5, 6, 20, ...) rather

than increasing by constant time units (e.g., seconds 1, 2, 3, 4, …). The former is also

{
float time; // current time in Paramics
int vcnt; // number of vehicles in this packet
{
 int vid // vehicle id
 float x // x coordinate
 float y // y coordinate
 int size // size of data in the vehicle
} // 1
{
 ...
} // 2
 .
 .
 .
{
 ...
} // vcnt

}

 86

called “event driven” and the latter called “time driven.” Since QualNet is an event-

driven simulator and Paramics is a time-driven one, it is not a trivial task to keep the

clocks of these two simulators synchronized. Figure 4-5 shows two different cases

where the simulators have slightly different impressions of the simulation time, and

the ramifications thereof.

FIGURE 4-5 Two cases by different simulation time

As Figure 4-5 a) shows, if QualNet time (tq) is ahead of Paramics time (tp), then

QualNet is performing communications with incorrect (or delayed) vehicular

positions. With high-speed vehicles, even a small delay (tq − tp) can cause large

errors in vehicle positions. Incorrect vehicle positions can cause data losses and

unnecessary data receptions, which should not happen with correct positions. This

study considers this error critical because data losses and unnecessary data receptions

cannot be recovered. If, on the other hand, Paramics time is ahead of QualNet time

(Figure 4-5 b), QualNet is always aware of exact vehicle positions while Paramics is

Time

Space

a) tp < tq :

b) tq < tp :

tp tq

tp tq

tp tq

tp tq

vehicle v1

vehicle v2
v1

v2

transmission range
centered on vehicle location

 87

not aware of some data receptions that happened between tq and tp until QualNet time

reaches tp. Thus, the arrival of data from other vehicles can be delayed by up to | tp −

tq |. Such a delay might impact the vehicle's reaction in response to the data. With a

small value of | tp − tq |, i.e., 1 second, this error minor is considered, if not negligible,

because reception of a few data packets (or delays thereof) is unlikely to cause a

significant change in a vehicle's reaction during such a short period of time. Figure

4-6 shows graphically how to synchronize the simulation time of the simulators in

this study.

FIGURE 4-6 Synchronization of Paramics and QualNet

Given a maximum time error ε as shown in Figure 4-6, the Paramics time is

always kept ahead of QualNet time, by at most ε: 0 < tp − tq ≤ ε. This synchronization

method guarantees that the delay of data delivery can be constrained above by the

parameter ε. Paramics periodically sends the current simulation time tp to QualNet

every ε seconds. QualNet sends an acknowledgement message to Paramics in order

to inform Paramics that QualNet has processed all events happening before the

current Paramics time tp. Since QualNet is a discrete event simulator, QualNet

processes events until tp and stops if the time of the next event to process is later than

time

Paramics

QualNet

tp ACK
message

(1) tp > tq
(2) tp = tq
(3) tp > tq
(4) tp = tq
(5) tp > tq

.

.

. ε
(2) (4)

(3) (5)(1)tp

tq

 88

tp. Assuming there is at least one event in each ε period, the time difference between

these simulators is always less than ε. In the unlikely event that this was to be both

violated and important, one could always synthesize events in Paramics via innocuous

functions in the Paramics API; therefore this performance standard can be guaranteed.

4.2.4 Intervehicle communication

In the simulation environment, synchronized in terms of time and mobility,

equipped vehicles communicate, which means transmitting data. QualNet simulates

the vehicles’ broadcasts of their data via an ad hoc network, and sends Paramics the

results of the broadcasts to update traffic data based on the broadcasting time. Figure

4-7 contains packet format from QualNet to Paramics.

In QualNet, data reception by broadcasting induces events. As shown in Figure

4-7, QualNet notifies Paramics of data reception by sending a list of (rvid, size, svid,

rtime) indicating “a receiving vehicle rvid receives a data packet of size from sending

vehicle svid at time rtime.” In this list of data, QualNet notifies Paramics only of the

size of the data broadcast in QualNet unlike Wu’s (2005) simulation framework in

which the whole data broadcast are sent from a communications simulator to a

transportation simulator. This simplification improves the simulation performance by

decreasing the communications loads between the simulators. The results of data

transmission/reception are attached to periodic time-synchronization packets

mentioned in Section 4.2.2 to reduce the communication overhead.

 89

FIGURE 4-7 Packet format from QualNet to Paramics

4.3 Discussion

This chapter described how to design and implement the simulation framework

which this dissertation develops. In particular, it depicted how to integrate two

different simulators (Paramics and QualNet) in detail; Paramics is time-driven and

QualNet is event-driven. This framework was designed with a variable error

tolerance e, a maximum time error, which would be determined according to

applications: e.g., 1 second for traffic information systems and 0.1 seconds for

{
float time; // current time in QualNet
int vcnt; // number of vehicles in this packet
{
 int rvid; // vehicle receiving data
 int rcnt; // number of data received
 {
 int svid; // vehicle sending data
 float rtime; // received time
 int size; // data size of sending vehicle
 } // 1
 {
 ...
 } // 2
 .
 .
 .
 {
 ...
 } // rcnt
} // 1
{
 ...
} // 2
 .
 .
 .
{
 ...
} // vcnt

}

 90

collision warning systems. While this research focused on a traffic information

system, it could be applied to transportation safety systems as well depending on a

determined error tolerance.

The next chapter contains how the simulation framework implemented in this

chapter is applied to a traffic information system. The first section shows how a

traffic information system based on a VANET is composed and collects travel time

information. The second section describes how the simulation framework works in

detail.

 91

Chapter 5: Traffic Information System Application

In this chapter, the integrated simulation framework developed in this study is

applied to a traffic information system in which vehicles are provided traffic

information through intervehicle communications. The system configuration for a

traffic information system based on a VANET is introduced, and the simulation

model to apply to that system is described specifically.

5.1 Traffic information system configuration

This section introduces a VANET-based traffic information system which this

research envisions in the real environment. The overall system configuration, the

process of generating self-recorded travel times, and the internal processing in an

onboard unit are described.

When a traffic information system based on a VANET is deployed, we

distinguish between vehicles involved in this system and ones not involved. The

involved vehicles possess communications hardware and onboard units, and are

referred to as equipped vehicles. Unequipped vehicles are also present, but are not

able to participate in the data collection or generation. This is a major distinction

from other kinds of sensing technology (e.g., inductive loop detectors) where all

vehicles contribute to the generation of data, but only equipped vehicles can receive

information about those data via wireless communications. It is assumed that each

vehicle equipped with an onboard unit will also have location technology equivalent

to differentially-corrected GPS, as well as a digital map database and supporting

 92

software and database tools. Presumably, communications software would also

reside in the same housing, although this is irrelevant at the conceptual level. Figure

5-1 illustrates the overall system configuration of a traffic information system based

on a VANET.

FIGURE 5-1 Traffic information system based on a VANET

In Figure 5-1, vehicles equipped with an onboard unit travel on the road network

intermingled with unequipped vehicles. Equipped vehicles can recognize their

current locations through location information such as longitudes and latitudes from

satellites. In particular, a reference road map included in an onboard unit allows a

vehicle to learn which link they are on. The reference road map defines start and end

locations for all links with an associated link ID such as L309, L204, etc. Traveling

on the road network, equipped vehicles transmit travel time data packets, which they

store in their database, to other equipped vehicles within transmission range, and they

 L201

 L303 L304 L305 L306 L 308 L 309 L310 L311

 L408 L4109 L410 L411 L403 L404 L405 L406

 L103 L104 L105 L106 L 108 L 109 L110 L111

 L203 L204 L205 L206 L208 L2109 L210 L211

 L101

 L301

 Database

 L413

 L313

 L213

 L113

 L203 L204 L205 L206 L208 L2109 L210 L211 L213

L503

L603

L703

L803

L903

L003
L010

L005 L006 L007 L008

L905 L906 L907 L908
L910

L805 L806 L807 8908
L810

L705 L706 L707 L708
L710

L605 L606 L607 L608
L610

L505 L506 L507 L508
L510

(x, y, z)

Onboard unit with map

 TX range

Equipped vehicle
Unequipped vehicle

 93

receive what other vehicles transmit. Figure 5-2 illustrates how travel time data are

generated.

FIGURE 5-2 Example of map-based travel time generation

In Figure 5-2, when an equipped vehicle v travels on the roadway, the vehicle

recognizes its current location using location information obtained from GPS. Since

it is assumed that all equipped vehicles use the same reference map in their onboard

units, they know link information such as link location, distance, the number of lanes,

etc., and key all of this information to link IDs. Presumably, the onboard maps could

be kept both consistent and up-to-date via communications from map servers located

throughout the network, using the communications equipment already in the equipped

vehicles. Returning to the figure, based on the reference map in the onboard unit, the

vehicle obtains its own travel time of link L204, the difference (57 seconds) between

the exit time (01:22:51) and the entry time (01:21:54), when it leaves the link. In the

same way as Figure 5-2, equipped vehicles record their own travel time data with the

Link L203 exit time
Link L204 entry time

01:21:54

 L203 L204 L205

Link L204 exit time
Link L205 entry time

01:22:51

vehicle ID link ID travel time exit time
 v L203 29 seconds 01:21:54
 v L202 42 seconds 01:21:25
 v L201 35 seconds 01:20:43

vehicle v

vehicle ID link ID travel time exit time
 v L204 57 seconds 01:22:51
 v L203 29 seconds 01:21:54
 v L202 42 seconds 01:21:25
 v L201 35 seconds 01:20:43

 94

vehicle ID, the link ID, and the exit time. Figure 5-3 shows how equipped vehicles

exchange travel time data with each other.

FIGURE 5-3 Example of travel time data exchange

Figure 5-3 shows two cases: data exchanges between equipped vehicles traveling

in the same direction and between vehicles traveling in opposite directions. Equipped

vehicles a and b traveling in the same direction within the transmission range

communicate and exchange travel time data which they each have. Of data obtained

from vehicle b, vehicle a selects and updates only travel time data which its own

database does not have, and vice versa. Equipped vehicles c and d traveling in

opposite directions also communicate and exchange travel time data since they are

within the transmission range of each other. In that case, vehicle d is expected to

convey data from vehicle c as well as its own data to vehicles a and b. Figure 5-4

depicts how an onboard unit works internally.

vehicle a vehicle b

vehicle d

vehicle c

vehicle d’s
DB

data
from c

data
from d

vehicle c’s
DB

vehicle b’s
DB

data
from a

data
from b

vehicle a’s
DB

 TX range

equipped
unequipped

 95

FIGURE 5-4 Internal configuration of onboard units

In Figure 5-4, an onboard unit consists of a reference map, GPS, radio hardware,

database, and processor. Receiving current location information from satellites, GPS

allows vehicles to learn where they are on the reference map. Through the radio

hardware, equipped vehicles transmit and receive travel time data. All of these

internal components are connected with the processor. The processor interprets travel

time data received from other vehicles, and determines whether to store or throw

away the data. For dynamic routing, the processor finds the shortest path based on

travel time stored in database. Finally, equipped vehicles reroute to avoid congestion.

Processor

Database

Radio hardware GPS
current
location

sending
data

receiving
data

Reference map

TTi = axi + byi + ei

 96

5.2 Simulation model architecture

In this section, the simulation model architecture for the traffic information

system described in the previous section is introduced and specific methodologies are

mentioned. Figure 5-5 shows the logic of each stage of the traffic information system

application which this section describes.

FIGURE 5-5 Traffic information system application

As shown in Figure 5-5, the basic logic is same as the real system described in

the previous section. Travel time data are generated by equipped vehicles and stored

in their database. Through broadcasting, vehicles share travel time data which they

Vehicle Mobile node

Dissemination
- Broadcasting
 a second

Generation: Traffic data

Interpretation
- Processing

Reaction
- Rerouting: Dijkstra

PARAMICS QUALNET

Decision

Time / Mobility
Management

Data modified

PHY

MAC

I P

UDP

PHY

MAC

I P

UDP

2.1 4.3 3.8

Traffic
events

TTi = axi + byi + ei

APPLICATION

Up to 30

 97

have in their database. At the Interpretation stage, the delivered travel time data are

processed, which might include assimilation into an existing data set, discarding of

stale data, modification, and calculation. Travel time data in an on-board unit are

used to conduct dynamic routing. Rerouting is conducted as a reaction in this

simulation model, and the results make traffic conditions change. Based on Figure

5-5, the following subsections specifically describe how each stage is simulated.

5.2.1 Vehicle release and travel time generation

In the simulation, vehicles are released from certain ends of links, called “zones.”

When vehicles enter the road network, their origin and destination zones are

determined. The first process in the simulation releases vehicles into the network,

depending on the origin and destination matrix in which the release rates, the number

of vehicles per time period (i.e., 1500 vehicle/hour), are defined. Vehicles are

released according to a release algorithm which uses a number generated from a

uniform random distribution to determine the headway between released vehicles.

In this simulation framework, a vehicle is determined to be equipped or not on

the basis of a Bernoulli random variable sampled for each vehicle upon its entrance to

the network, with a parameter equal to the intended market penetration rate.

Paramics provides the API function “qpx_VHC_release ()” which is called

when a vehicle is released from a zone (see code in Appendix A). By implementing

this function, we can create custom data fields for each vehicle, stored in the user-

definable “userdata” structure provided by Paramics. For this simulation, we defined

six fields in the vehicle userdata structure.

 98

FIGURE 5-6 Vehicle userdata structure

In Figure 5-6, “VHCID,” the first field of the structure, is a unique name

provided for every vehicle, both equipped and unequipped. This ID tag is the means

by which any vehicle’s information can be accessed via the API. The second field,

“equipped,” records whether or not the vehicle participates in the VANET-based

traffic information system, and this field is set as described above. At the same time,

the vehicle’s “ReleaseTime” is filled in according to the current simulation clock. To

calculate link travel time, “EntryTime” is temporarily stored whenever the vehicle

enters a link, as illustrated in Figure 5-2. “VHC_TTDB_s” is a pointer indicating the

vehicle’s database in which travel time data are stored, and the total size of data

stored in the database is updated in “DataSize” whenever the database is updated.

To generate travel time data, the entry time and the exit time of links are used.

The Paramics API function “qpx_VHC_transfer” is called whenever a vehicle

traverses a node. In this function, the entry time of the vehicle is recorded in the

userdata structure, and the travel time is calculated from the difference between the

entry time and the exit time of the link when the vehicle leaves the link (see code in

struct VHC_USERDATA_s

{ int VHCID; // vehicle name

Bool equipped; // equipped or not

float ReleaseTime;

float EntryTime;

struct VHC_TTDB_s *db;

int DataSize; };

 99

Appendix A). Figure 5-7 shows the travel time data packet structure stored in

database.

FIGURE 5-7 Travel time data packet structure

As shown in Figure 5-7, a single travel time data packet consists of 4 fields in

this framework. It can be, however, different depending on an application target. For

example, location data such as a longitude and latitude could be included in the data

packet in VANET applications for transportation safety.

5.2.2 Data dissemination

This research assumes that this traffic information system disseminates travel

time data packets by simple periodic broadcast. More advanced communications

schemes could also be considered, such as adaptive broadcast which changes

broadcast intervals to reduce communication collisions. In particular, such schemes

would be appropriate to optimize communications performance in high density traffic

conditions with a high market penetration rate.

struct TravelTime_s

{ int VHCID; // who measured travel time

int LinkIndex; // where travel time was measured

float TravelTime; // value

float ExitTime; }; // when travel time was measured

 100

In this study, periodic broadcast is implemented in the communications simulator

QualNet. Equipped vehicles broadcast to supply their travel time data packets to the

neighboring equipped vehicles. In this research, the broadcast interval was set to one

second. Each equipped vehicle broadcasts every second, respectively, based on its

own release time into a road network, which was randomly distributed. Thus,

broadcast times are uniformly distributed over a continuous time interval. This is also

how one would want a real system to work, since this minimizes message collisions.

An important design consideration for real systems, however, is this timing. If all on-

board units were time-synchronized to the GPS clock, and they all chose broadcast

times based solely on that clock, then they would all be attempting to communicate at

the same time. Even in the real system, therefore, a random stand-off period would

need to be built in to spread this demand. Fortunately, many wireless protocols

provide for such a mechanism already, including the 802.11 family used in this

research.

Travel time data packets are transmitted through a transport layer, a network

layer, a MAC (Media Access Control) layer and a physical layer. User Datagram

Protocol (UDP) and Internet Protocol (IP) are used for a transport layer and the

network layer, respectively. We do not take into account communication routing

performing in the network layer since we assume that the information are broadcast to

all capable receivers, rather than routed to a specific recipient. For the Medium

Access Control (MAC) layer and physical layer, the 802.11a standard is chosen. As

mentioned before (subsection 2.13), the Carrier Sense Multiple Access / Collision

Avoidance (CSMA/CA) scheme makes communication collisions minimized in the

 101

MAC layer. In the physical layer, communication phenomena such as path loss and

fading are considered.

5.2.3 Data interpretation

The results of successful communications are sent from QualNet to Paramics

every synchronization interval. To synchronize the simulation time between two

simulators, we use the Paramics API function “qpx_NET_timeStep” called once

at the start of each step of simulation time (see code in Appendix A). While users can

directly choose a simulation time step between 10 milliseconds and 0.5 seconds in

Paramics, we used an effective synchronization interval of one second (because of

simulation speed concerns) by invoking this function properly every other 0.5

seconds, and returning without effect on the alternating times. As mentioned in

Subsection 4.2.3, the synchronization interval helps to control errors within the model,

and the acceptable magnitudes of these errors vary depending on the application.

The results of successful communications obtained from QualNet lead receiving

vehicles to update their delivered travel time data packets. The function “transmit”

plays the role of updating (see code in Appendix A). Based on the receiver’s data set

(database), the function “transmit” inserts the sender’s travel time data packet into the

receiver’s data set only if the receiver does not have the data packet. It can be

checked with the vehicle ID and the time stamp of data packet whether it exists in the

data set. The retention of travel time data for each vehicle is limited to up to 30 of the

most recent observations per link. In the preliminary research for individual travel

time reliability (Subsection 3.1.3), the number of samples in the worst case

 102

(congested traffic conditions) obtained from the Acceptance Probability was 23

(Figure 3-13), and it was decided to use 30, including 30 % as a safety rate.

The relevance of individual pieces of travel time data on a current traffic

condition declines as they move away in time. Depending on how fast this “data

relevance” degrades, travel time data packets could become stale and, eventually,

useless. According to some staleness threshold set appropriately, old data should be

discarded. In the preliminary research for temporal relevance degradation of travel

time (Subsection 3.2.3), the correlation coefficients between travel times on many

links fell down under 0.5 over 14 minutes (Figure 3-19). Therefore, travel time data

packets over 15 minutes old are expired in the current simulation framework. A

sender removes data packets more stale than 15 minutes before it transmits. In a real

system, these parameters would come from the system design itself or would need to

be calibrated to optimize system performance. The point of this study is to showcase

the integrated transportation and communications simulation framework, so the

parameter choices are not optimized in any systematic way.

5.2.4 Dynamic routing

In a VANET-based traffic information system, equipped vehicles can choose

another route to avoid traffic congestion based on the disseminated travel time data.

In the simulation framework, the dynamic routing mechanism is the same as it would

be in a real system. Whenever equipped vehicles pass split road segments, which

means a branch including more than two following links, the Paramics API function

“qpo_RTM_decision” is called and makes vehicles choose the shortest path (see

 103

code in Appendix A). To find the shortest path, the Dijkstra algorithm (1959) was

employed, solving the single-source shortest path problem for a directed graph with

non-negative edge weights. The Dijkstra algorithm is used in the function

“ShortestPath” (see code in Appendix A). An average of the travel times

accumulated from up to 30 records is calculated over each link, and the link distance

divided by the speed limit is substituted for links without data in the database. A

more robust travel time estimation routine could be used in place of this process, and

this is recommended as one of the areas of future research later in this dissertation.

This chapter described the system configuration, map-based travel time data

abstraction, and onboard unit configuration for a VANET-based traffic information

system. Based on the system configuration mentioned, it was depicted specifically

how the simulation framework is built. According to the information system logic,

vehicle release, data generation, dissemination, interpretation, and dynamic routing

were explained. The next chapter contains a case study based on a real road network.

As a result, framework performance, information dissemination speed, and dynamic

routing performance are discussed.

 104

Chapter 6: Case Study

This chapter demonstrates an integrated simulation framework of a traffic

information system in which vehicles are provided with traffic information through

intervehicle communications. Through the case study with a real road network, the

framework performance, traffic information dissemination, and dynamic routing

performance are discussed on the simulation framework implemented in this research.

6.1 Simulation environment

It is important to attempt to contrive more realistic simulation environments

although the purpose of the case study is to assess the simulation framework. A real

road network, for example, includes road elements such as road alignment, conflict

areas (merging and splitting), and ramps, which could influence traffic movements.

A real traffic demand might distribute vehicles throughout the road network.

The road network in this simulation experiment denotes real roadways to

compose realistic simulation environment. The roadways include road curvature,

merging and splitting areas, and ramps in road sections and interchanges. Figure 6-1

shows the location of the simulation site and the network structure.

 105

FIGURE 6-1 Simulated road network

The roadway site selected for this simulation is located between Washington,

District of Columbia and Baltimore, Maryland in the United States. This highway

network (a total of 13 miles, equivalent to 22 km) consists of an eight-lane highway

(I-95) and four-lane highways (MD-295, I-195, MD-32, and MD-100), and includes

six interchanges. On the termini of the road network, ten traffic demand zones are

defined to release vehicles into the network.

It would be necessary that the simulation framework is evaluated in a variety of

traffic conditions. Based on 2006 Annual Average Daily Traffic (AADT) data

provided by the Maryland State Highway Administration, various traffic demands are

established. A half of the AADT on the road that each zone is located is assigned as a

traffic demand of the zone since AADT denotes a two-way traffic. We build the ratio

table of origin and destination traffics in which the number of vehicles arriving at a

Baltimore

Washington D.C.

MD-100
MD-32

MD-295

US-29

I-70

I-95

I-195

I-695

I-495
Simulation network

Eight-lane highways
Four-lane highways

 106

zone is same as the traffic demands released from that zone. Using the assigned

traffic demands and the origin-destination ratio table, various traffic demands for

traffic conditions from a low density through a high density are generated. Demand

Level (DL) is denoted in the range of 1 to 7, DL 1 being one percent of the assigned

traffic demands and DL 7 being seven percent of the assigned traffic demands.

Figure 6-2 shows the traffic densities during a period of 40 minutes for each DL.

FIGURE 6-2 Traffic demand levels

In Figure 6-2, the traffic density is measured across the whole road network

including ramps. The simulation results for the first 10 minutes are excluded since it

is regarded as a beginning period. In DLs 1 through 5, the traffic densities are stable

after the beginning period, which means any serious congestion does not happen on

the road network. The densities in DLs 6 and 7, however, continue to increase

because congestions occurred in several interchanges expand. Table 6-1 contains key

simulation parameters in experiments.

0

10

20

30

40

50

0 10 20 30 40
Simulation Time [minute]

D
en

si
ty

 [v
eh

/la
ne

/k
m

]

DL 1 DL 2 DL 3
DL 4 DL 5 DL 6
DL 7

Beginning period

 107

TABLE 6-1 Simulation parameters

Number of lanes 4 lanes on I-95 and
2 lanes on others per direction

Speed limits 65 mph on I-95 and 55 mph on others

Demand level DLs 1, 2, 3, 4, 5, 6 and 7

Market penetration 0.5, 1, 3, 5 and 10 [%]

Broadcasting interval 1 second

Protocol
Transport layer: UDP

Network layer: IP
MAC and Physical layer: 802.11a

Transmission range 250 meters

Simulation time 70 minutes for dynamic routing and
 40 minutes for others

In Table 6-1, traffic demands take account of both uncongested conditions and

congested conditions. Considering the beginning of the system deployment, this

study focuses more on low market penetration. UDP and IP protocols stand for User

Datagram Protocol and Internet Protocol, respectively.

For this experiment, a 32-bits personal computer is used (Core 2 Duo processor /

2.4 GHz clock speed, 4 GB memory and Windows XP). Considering high memory

usage, 4 GB memory, which is the maximum size of memory in a 32-bits personal

computer, is installed. In this computer, Paramics and QualNet run with reciprocal

communication via shared memory.

6.2 Framework performance

The VANET simulation is computationally expensive, partly because it needs

long computation time and a large amount of memory space since thousands of

 108

vehicles can communicate with each other every ε seconds given. The performance

of this simulation framework was measured in terms of ratio of simulation time to

computation time (real time). Figures 6-3 and 6-4 show computation time and

computer memory usage from 40-minute simulations.

FIGURE 6-3 Computation time

FIGURE 6-4 Computer memory usage

 109

Figure 6-3 illustrates that the simulation time slows exponentially as the traffic

becomes heavier. From the demand level 5, simulation works in QualNet certainly

increased simulation time. As the number of vehicles grew, the number of

communications increased exponentially, which eventually made simulation time

slower than real time. The highest ratio of computation time to simulation time was

5.63. In Figure 6-4, the results of memory usage were obtained in 10 % market

penetration rate. Memory usage in Paramics did not change very much, whereas that

in QualNet significantly became higher from the traffic demand level 5. This reflects

that an increase in traffic density considerably boosts communications among

equipped vehicles. When approximately 4,000 vehicles (400 equipped vehicles) in

the demand level 7 were on the road network, the memory spaces needed for

Paramics and QualNet were about 0.7 Gbytes and 1 Gbytes, respectively. Figures 6-5

and 6-6 show the amount of data which Paramics and QualNet exchanged each other

for 40-minute simulations.

FIGURE 6-5 Total data exchange between simulators

 110

FIGURE 6-6 Maximum data exchange between simulators

Data exchange as well as simulation time and memory usage mentioned above

depends on the number of vehicles traveling on the road network. In Figure 6-5, the

total amount of exchanged data increases as traffic demand level increases. Although

they stiffly increased at the demand level 6, the total of exchanged data increased less

at the demand level 7. It appears more conspicuously in Figure 6-6. The maximum

amount of the exchanged data increased 140 Kbps more at the demand level 6,

whereas it increased only 30 Kbps more at the demand level 7. Figure 6-7 shows

broadcast delivery performance from 40-minute simulations.

 111

FIGURE 6-7 Broadcast delivery performance

Computation time, memory usage, and data exchange are substantially associated

with “broadcast delivery factor” defined as the average number of transferred packets

per broadcast from each vehicle. Figure 6-7 shows that the broadcast delivery factor

increases as a traffic demand level increases. Compared to a stiff increase at the

demand level 6, a broadcast delivery factor slightly increased at the demand level 7.

This result explains that more communication collisions occurred in high density

traffic condition.

6.3 Traffic information speed

In this section, disseminated speeds of traffic information via broadcast on a real

roadway network are investigated in order to evaluate a road network performance.

All simulations for traffic information dissemination speed were conducted for 40

minutes. Figure 6-8 show average information speed.

 112

FIGURE 6-8 Average information dissemination

Figure 6-8 was obtained from data throughout the demand levels 1 to 7.

Individual travel time data were traced with time and distance from the time when the

vehicle released into the network. Using traced data, an average of travel time

dissemination speeds was calculated with traffic density every minute. All one-

minute speed-density data were aggregated based on density. As shown in Figure 6-8,

information speed increases according to density over all market penetration rates. In

the low traffic density situations (5 and 10 vehicle/lane.km), information seems to be

disseminated via equipped vehicles in the opposite direction; most information speed

is around the speed limit (65 mile/hour = 29 meter/sec). In the high traffic density

condition (40 vehicle/lane.km), the sufficient availability of equipped vehicles

traveling in the same direction reduces the chance to use vehicles in the opposing

direction even though it is still possible.

 113

6.4 Dynamic routing performance

As a case study, this simulation framework was applied to investigate the

feasibility of dynamic routing mechanism based on traffic information dissemination

through inter-vehicular communication. Dynamic routing was conducted using travel

time data that were limited up to 30 observations per link as mentioned in Subsection

5.2.3. It determined the shortest path at each split section through Dijkstra’s

algorithm.

All results were obtained from simulations for 70 minutes. Figures 6-9 and 6-10

show the average travel times of equipped vehicles and unequipped vehicles by

market penetration and traffic demand level. For the simulation shown in Figure 6-9,

traffic demand level 6 was used, and 10 % market penetration rate was applied in

Figure 6-10.

FIGURE 6-9 Dynamic routing performance by market penetration

 114

FIGURE 6-10 Dynamic routing performance by traffic demand

As shown in Figure 6-9, it is clear that vehicles equipped with intervehicle

communication devices obtain benefits from traffic information dissemination

compared to unequipped vehicles. The results show that, even with 0.5 % market

penetration rate, the equipped vehicles could gather enough information to avoid

traffic congestion. As more equipped vehicles re-route to alternative paths, the

overall traffic pattern seems to get better since the average travel time for all the

vehicles decreases. However, as the market penetration rate increases, the benefit of

re-routing slightly decreases since more vehicles re-route. In this simulation, 3%

market penetration rate was the threshold, but the threshold value could change

depending on simulation assumptions such as the traffic demand level and the

transmission range. As Figure 6-10 indicates, it is clear that re-routing loses its

benefits when no congestion is on the road. An unequipped vehicle follows the

shortest path based on a link’s distance and speed, which means that it always

chooses the real shortest path on uncongested condition. The shortest path by limited

information could provide an equipped vehicle with a wrong direction.

 115

To evaluate the performance of dynamic routing, a scenario with an incident was

simulated. Figure 6-11 shows an incident location and two routes from zone A to

zone B, which are the normal route in an uncongested traffic condition and the

alternative route in the congested traffic condition caused by the incident.

FIGURE 6-11 Incident scenario

In Figure 6-11, the incident which decreases the capacity by 1/3 occurred for 20

minutes (00:30:00 – 00:50:00) during a simulation period of 70 minutes. In an

uncongested traffic condition, all vehicles choose the normal route because it is the

shortest path. After the congestion caused by this incident happens, equipped

vehicles choose the alternative route, whereas equipped vehicles keep following the

normal route. Figure 6-12 shows the results obtained at traffic demand level 5, and

Figure 6-13 contains the results at market penetration 10 %.

Zone B

Zone A

incident
normal
route

alternative
route

 116

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Market Penetration [%]

Av
er

ag
e

Tr
av

el
 T

im
e

[s
ec

]

Equipped
Unequipped

FIGURE 6-12 Dynamic routing performance under incident by market penetration

0

200

400

600

800

1000

1200

1 2 3 4 5

Traff ic Demand Level

Av
er

ag
e

Tr
av

el
 T

im
e

[s
ec

]

Equipped
Unequipped

FIGURE 6-13 Dynamic routing performance under incident by traffic demand

Both Figure 6-12 and Figure 6-13 show conspicuous benefits by dynamic routing.

In Figure 6-12, the incident in this scenario caused the traffic condition heavily

congested. As a result, the difference in travel time between equipped and

unequipped vehicles became large. In Figure 6-13, while the incident did not

influence the traffic conditions at demand levels 1 and 2, it increased the difference in

 117

travel times from demand level 3. In fact, it is not important how many seconds this

traffic information system allow equipped vehicles to save in this incident scenario

since it depends on simulation parameters such as an incident location and incident

time periods. It is, however, important that the equipped vehicles could gather

enough information to avoid traffic congestion even in the low market penetration.

6.5 Discussion

In this chapter, the simulation framework from this dissertation was used to

develop experimental cases. These experiments deployed a VANET-based traffic

information system to evaluate the performance of the framework. They were

conducted based on a real road network and real traffic demands, and the results

demonstrated that this system is capable of providing traffic information even in a

low market penetration. In particular, equipped vehicles conspicuously obtained

benefits to save travel time in comparison with unequipped ones. The road network

used in this research was the simple road network, which provides fewer

opportunities to turn to an alternative route. Clearer results might be expected on a

road network with more alternative routes. The next chapter reviews the entire works

in this dissertation, and shows the contributions to this research.

 118

Chapter 7: Conclusion

The ongoing efforts to apply advanced technologies to help solve transportation

problems advanced the growing trend of integrating mobile wireless communications

into transportation systems. In particular, VANETs based on ad hoc networks allow

vehicles to constitute a decentralized information dissemination system on roadways

and to share their own information.

This dissertation presented some work on information dissemination and spatial

and temporal degradation of information. This is an important issue to understand in

the decentralized, autonomous information system likely to prevail with VANETs.

The first results of the dissertation were developed in a relatively simple simulation

framework, partly to highlight the fact that some general results are possible without

sophisticated tools, but also to show the envelope where this argument loses strength.

The dissertation also included the development of a conjoined transportation and

communication simulation framework to evaluate the decentralized system based on a

VANET, and showed its implementation on a traffic information system. This

chapter summarizes the whole research effort and describes the interpretation of the

results obtained from the experiments. The dissertation is concluded with a summary

of the contributions this work has made to the body of research on VANETs.

7.1 Summary of Findings

As part of this research, we developed an integrated simulation framework for

VANET applications in which the characteristics of transportation and wireless

 119

communications were embedded. For practical vehicle movements such as car

following, lane changing, and shock waves, a transportation simulator (Paramics) was

employed. A communication simulator (QualNet) was chosen for wireless

communications characteristics such as path loss, fading, interference, and

communication collision. For the implementation of this framework, these simulators

were tightly coupled and finely synchronized in terms of simulation time and node

(vehicle) mobility, facilitated by their respective APIs.

The implemented simulation framework was evaluated on a traffic information

system with various traffic demands and market penetration rates based on a real road

network. For framework performance, simulation time (Figure 6-3), memory usage

(Figure 6-4), data exchange (Figures 6-5 and 6-6), and the number of delivered nodes

(Figure 6-7) were investigated. While these performance metrics degraded gradually

in uncongested traffic conditions, they changed much more precipitously in congested

traffic conditions. The slopes of the data exchange and the number of delivered

nodes metrics were, however, less severe in a jammed traffic condition. Since the

metrics depend on vehicle density, normally, an increase in traffic density induces an

exponential increase in the communications among vehicles. Nevertheless, some

metrics show a lower slope in high density conditions, due to the fact that the actual

number of successful communications is reduced beyond a certain density due to an

increase in message collisions. Fortunately, with robust protocols, message collisions

do not take as much time as successful messages to resolve; hence communications

systems tend to treat these congested communications conditions rather gracefully.

 120

For traffic information system performance, information in the low traffic density

situations (5 and 10 vehicle/lane.km) seems to be delivered primarily via equipped

vehicles traveling in the opposite direction, given that most of the recorded

information speeds are less than the speed limit (65 mile/hour = 29 meter/sec). In the

high traffic density condition (40 vehicle/lane.km), the average of information speed

(117 meter/second) in the 10 % market penetration rate scenario seems to be

reasonable compared to the maximum transmission speed (250 meter/second). Based

on these results, traffic information speed in a VANET is sufficiently fast to deliver

reliable information in low density conditions as well as high density conditions.

Dynamic routing conducted based on delivered traffic information was effected in

congested traffic conditions rather than uncongested ones, as would be expected.

7.2 Contribution

This dissertation treated research issues on inter-vehicle communications for

transportation applications. With the spread of wireless communications devices,

many research studies have been conducted for a variety of transportation

applications under the topic of VANETs. While the computer simulation approach is

a popular evaluation method in this field, previous researches have not provided

simulation frameworks fully satisfied both in the transportation and communications

domains. By developing an integrated transportation and communication simulation

framework for VANET applications, this dissertation has contributed to the research

on VANETs as follows.

 121

• State-of-the-art research related to VANETs was reviewed. In particular, the

critical limitations of previous simulation framework results were disclosed.

• Basic studies on information value and the degradation of that value were

offered. These studies offer insights into the ways that these decentralized

and autonomous data sources can provide inputs into algorithms that differ

from how current versions of these algorithms – fed from fixed sensors at

known locations – might operate.

• The system model that was designed through this research can include most

applications in VANETs. It is expected to be used as a base to develop

applications for VANETs.

• This research implemented a VANET-based information model into an

integrated transportation and communication simulation framework in which

these independent simulation tools were tightly coupled and finely

synchronized.

• A traffic information system as a VANET application was built based on the

simulation framework developed in this research. In this system, vehicles

record their own travel time data, share these data via an ad hoc network, and

reroute at split sections based on stored travel time data. The programming

code used to build this application is attached in Appendix. It is expected to

be used for experiments to simulate various traffic situations in a VANET.

• The sensitivity for simulation loads was shown as a function of traffic

demands and market penetration. It is expected to help design a simulation

framework.

 122

• Information speeds on a real roadway network were obtained. In this research,

information speeds were approximately between the road speed limit - in

which case they were mostly delivered by vehicles traveling on the opposite

direction - and half of the transmission range (250/2 meter) per second, which

means they were delivered by vehicles traveling in the same direction.

• Successful dynamic routing based on stored traffic data was demonstrated in

this framework. The benefits from dynamic routing were shown, which

previous studies have not shown.

This chapter described the findings obtained through the entirety of this

dissertation, and summarized the contributions to the research on VANETs,

particularly simulation work. This research focused on the development of an

integrated transportation and communication simulation framework to build a more

realistic environment with which to study VANETs, as compared to previous studies.

It is believed that a wide range of VANET applications can be designed and assessed

using methodologies influenced by and contributed to by the simulation framework

and other methods developed in this dissertation.

 123

Appendix A

Paramics API code

#define _CRT_SECURE_NO_DEPRECATE 0
#define REMOTE_HOST "10.0.0.2"
#define REMOTE_PORT 2000
#define REALLOC_FACTOR 10
#define SKIP_SEC 0

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <float.h>
#include <winsock2.h>
#include <assert.h>
#include "programmer.h"
#include "hash.h"
//#include "queue.h"

#define MAXLINK 686
#define MAX_VCNT 3000
#define MAX_RCNT 2000
#define MAX_NODES 500
#define MAX_Q2P_PKT_SIZE (12+MAX_VCNT*(8+MAX_RCNT*16))
#define SHMBUF_SIZE 2000*1000*16*4 //204800000

int MarketRate = 50; // Market penetration rate [0.1%]
int shortest_path = 1; // 1 yes, 0 no

float CommInterval = 3; // transmission interval of equipped vehicles [sec]
float CommRange = 100.0; // [meter]
int NumOfLinks; // # of links
int NumOfNodes;
int MaxTT = 30; // Maximum number of Travel time structures
int ExpiryTime = 1800; // Expired time difference from current time [sec]
int MaxGTT = 4000; // Maximum # of Global Travel time structures 6000veh/4lane.hr

float QualnetTime = 0; //NEW ALGORITHM

// Global Travel Time structure by linked list
struct TravelTime_s
{ int VHCID; //4
 int LinkIndex; //2 byte
 float TravelTime;//4
 float ExitTime;//
 float x; //infospeed
 float y; //infospeed
};

 124

// Vehicle Travel Time structure by linked list
struct VHC_TravelTime_s
{
 float updated_time;
 struct TravelTime_s* GTT;
};

struct VHC_TTDB_s
{
 struct VHC_TravelTime_s VHC_TT[MAXLINK][30];
};

// Vehicle user data structure
typedef struct VHC_USERDATA_s
{ int VHCID;
 Bool equipped; // Bool = int, yes: 1, no: 0
 float ReleaseTime;
 float EntryTime;
 struct VHC_TTDB_s *db;
 int DataSize;
} VHC_USERDATA;

FILE *outResult, *TTResult, *densityResult, *errout;

int sockfd;

int *GTTIndex; ; // Index array for Global TT array
struct TravelTime_s** GTT; // Global TT structure pointer array

float TotalMile;

// --- Prototypes ----------
void transmit(VEHICLE* source, VEHICLE* target, float updated_time);
int CompareGTT(const void* x, const void* y);
void PrintStatistics();
void got_new_data(struct VHC_TravelTime_s *TT); //infospeed
// --- End of Prototypes ---

// --- qualnet update begins ---

struct QU_trsmt // vehicle receiving packet
{
 int svid;
 int rvid;
 float rtime;
};

typedef struct
{
 int total_size;
 float qualnet_time;
 int trsmt_cnt;
 struct QU_trsmt *trsmt;
}QualnetUpdate;

QualnetUpdate qu;

 125

float ParseQualnetUpdate(char *buff, int size);

int LinkMap[MAXLINK];
void InitLinkMap();
int GetLinkMap(int link);

// shared memory
typedef struct {
 HANDLE shmHandle;
 HANDLE shmMutex;
 LPCTSTR shmBuf;
 int shmSize;
}SHMComm;

SHMComm shmemPQ, shmemQP;

SHMComm SHMCommConnect(char *shmName, int bufSize);
SHMComm SHMCommCreate(char *shmName, int bufSize);
int SHMCommWrite(SHMComm shmComm, char *buf, int bufSize);
int SHMCommRead(SHMComm shmComm, char *buf);
void SHMCommClose(SHMComm shmComm);

int SOCKCommConnect(char *hostname, int port);
int SOCKCommCreate(char *hostname, int port);
int SOCKCommWrite(int fd, char *buf, int bufSize);
int SOCKCommRead(int fd, char *buf);
void SOCKCommClose(int fd);

int ShortestPath(VHC_USERDATA* vudata, int stt, int end);

// we try to avoid calling realloc every time with these
// pre-allocated global communication buffers
char *buffPQ; // communication buffer P->Q
char *buffQP; // communication buffer Q->P
int buffPQSize; // buffer size
int buffQPSize;

typedef struct p2q_vehicle {
 int vid;
 float x;
 float y;
 int pkt_size;
} P2QVehicle;

typedef struct p2q_packet_s {
 float time;
 int vcnt;
 P2QVehicle vhcl[MAX_VCNT];
} P2QPacket;

P2QPacket pkt;

typedef struct all_vehicle_s VehicleLnk;

struct all_vehicle_s {

 126

 VEHICLE *v;
 VHC_USERDATA *vudata;
 int vid;
 VehicleLnk *next;
};

VehicleLnk *empty_lnk;
VehicleLnk *vehicle_lnk;
int vehicle_cnt;
VehicleLnk gvlink_vehicles[MAX_VCNT];

WBHASH *hash;

unsigned int HashFunct(void *nullitem, void *item)
{
 unsigned int val = 0;
 VehicleLnk *pv = (VehicleLnk*) item;

 nullitem = nullitem;

 val = pv->vid;

 WBTrcReturn(WBTRC_HASH,val,("%d",val));
}

int Compare(void *nullitem, char *item1, char *item2)
{
 VehicleLnk *pv1=(VehicleLnk*) item1, *pv2=(VehicleLnk*) item2;
 nullitem = nullitem;

 if(pv1->vid < pv2->vid) return 1;
 else if(pv1->vid > pv2->vid) return -1;
 else return 0;
}

void qpg_VHC_hash_init()
{
 if ((hash = WBHashOpen(NULL,50)) != NULL){
 WBHashHashingF(hash,NULL,HashFunct);
 WBHashCompareF(hash, NULL, (int (*) ()) Compare);
 //WBHashExecuteF(hash, NULL, (int (*) ()) Execute);
 }
}

void qpg_VHC_hash_add(VehicleLnk *pv)
{
 WBHashAdd(hash, pv);
}

VehicleLnk* qpg_VHC_hash_lookup(int vid)
{
 VehicleLnk pv;
 pv.vid = vid;
 return WBHashSearch(hash, &pv);
}

 127

void qpg_VHC_hash_remove(VehicleLnk *pv)
{
 WBHashDelete(hash, pv);
}

void qpg_VHC_hash_close()
{
 WBHashClose(hash);
}

int LinkMap[MAXLINK];
int Junction[MAXLINK];
int NodeMap[MAX_NODES];
float *SPTT[MAX_NODES];

void InitMap()
{
 FILE *fp;
 char line[1024];
 char tmp1[256], tmp2[256];
 int node1, node2;
 char *token;
 int start_node, end_node;
 int i;
 int first_link;
 LINK *link;

 // node map
 for(i=0;i<MAX_NODES;i++)
 NodeMap[i]=i;

 fp = fopen("links", "rt");
 if(fp == NULL) {
 fprintf(errout, "no links file\n");
 return;
 }

 while(!feof(fp)){
 fgets(line, 1024, fp);

 sscanf(line, "%s %s", tmp1, tmp2);
 if(!strcmp(tmp1, "link")){
 node1 = atoi(tmp2);
 }
 if(!strcmp(tmp1, "on-ramp")){
 fgets(line, 1024, fp);
 sscanf(line, "%s %s %d", tmp1, tmp2, &node2);
 NodeMap[node2] = node1;

 }
 }

 fclose(fp);

 // link map
 for(i=0;i<MAXLINK;i++){

 128

 LinkMap[i]=i;
 }

 fp = fopen("MergedLinks.txt", "rt");
 if(fp == NULL) return;

 while(!feof(fp)){
 fgets(line, 1024, fp);

 first_link = -1;

 token = strtok(line, "-");
 end_node = atoi(token);
 while(token)
 {
 start_node = end_node;
 end_node = atoi(token);

 for (i = 1 ; i <= NumOfLinks ; i++)
 {
 link = qpg_NET_linkByIndex(i);
 if(start_node != atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))) continue;
 else if(end_node != atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))) continue;
 else {
 if(first_link < 0) first_link = i;
 LinkMap[i] = first_link;
 break;
 }

 }
 token = strtok(NULL, "-");

 };
 }
 fclose(fp);

 for (i = 0 ; i <= NumOfLinks ; i++) Junction[i] = 0;

 fp = fopen("junctions", "rt");
 if(fp == NULL) {
 fprintf(errout," junctions doesn't exist\n");
 return;
 }

 while(!feof(fp)){
 fgets(line, 1024, fp);

 sscanf(line, "%s %s", tmp1, tmp2);

 if(!strcmp(tmp1, "junction")){
 token = strtok(tmp2, ":");
 start_node = atoi(token);
 token = strtok(NULL, " ");
 end_node = atoi(token);

 for (i = 1 ; i <= NumOfLinks ; i++)

 129

 {
 link = qpg_NET_linkByIndex(i);
 if(start_node != atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))) continue;
 else if(end_node != atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))) continue;
 else {
 Junction[i] = 1;
 break;
 }

 }
 }

 }

 fclose(fp);
}

gvlink_initialize() {
 VehicleLnk *p;
 empty_lnk = gvlink_vehicles;
 for(p = gvlink_vehicles; p < gvlink_vehicles+MAX_VCNT-1; p++)
 p->next = p+1;
 p->next = NULL;

 vehicle_lnk = NULL;
 vehicle_cnt = 0;

 // hash init
 qpg_VHC_hash_init();
}

VehicleLnk *gvlink_first_vehicle() { return vehicle_lnk; }

void gvlink_print(char *s)
{
 VehicleLnk *p;
 VHC_USERDATA *vudata;

 return;

 fprintf(errout, "vehicles: ");
 fprintf(errout, s);

 for(p = vehicle_lnk; p; p = p->next)
 {
 vudata = p->vudata;

 if(vudata)
 fprintf(errout, "(%p:%d:%d:%d:%.2f:%.2f)->", p->v, p->vid, qpg_VHC_uniqueID(p->v), vudata-
>equipped,
 vudata->ReleaseTime, vudata->EntryTime);
 else
 fprintf(errout, "(%p:%d:%d)->", p->v, p->vid, qpg_VHC_uniqueID(p->v));
 }
 fprintf(errout, "\n");

 130

 fflush(errout);
}

gvlink_add_vehicle(VEHICLE *v, VHC_USERDATA* data)
{
 VehicleLnk *nv;

 if(! empty_lnk)
 {
 fprintf(errout, "\nno more memory for vehicle");
 exit(1);
 }
 nv = empty_lnk;
 empty_lnk = empty_lnk->next;

 // safety code
 if(!qpg_VHC_uniqueID(v))
 v = qpg_VHC_original(v);

 nv->v = v;
 nv->next = vehicle_lnk;
 nv->vudata = data;
 vehicle_lnk = nv;
 vehicle_cnt++;

 // hash add
 nv->vid = qpg_VHC_uniqueID(v);

 qpg_VHC_hash_add(nv);

}

struct VHC_USERDATA_s* gvlink_get_userdata(VEHICLE *v)
{
 VehicleLnk *p;

 int vid;

 // for safety
 if(!qpg_VHC_uniqueID(v))
 v = qpg_VHC_original(v);

 for(p = vehicle_lnk; p; p = p->next)
 {
 vid = qpg_VHC_uniqueID(v);
 if(p->vid == vid){
 return p->vudata;
 }
 }

 return NULL;
}

VehicleLnk* gvlink_get_vehicle(int vid)
{

 131

 VehicleLnk *p;

 for(p = vehicle_lnk; p; p = p->next)
 {
 if(p->vid == vid){
 if(qpg_VHC_uniqueID(p->v) != p->vid){
 fprintf(errout, "p->vid (%d) != qpg_VHC_uniqueID(%d)\n", p->vid, qpg_VHC_uniqueID(p->v));
 fflush(errout);
 continue;
 }
 return p;
 }
 }

 return NULL;
}

void gvlink_delete_vehicle(int vid)
{
 VehicleLnk *p, *q, *found, *prev;

 if(! vehicle_lnk)
 {
 fprintf(errout, "\nno more vehicle to delete");
 exit(1);
 }

 // safety code

 if(qpg_VHC_uniqueID(vehicle_lnk->v) == vid)
 {
 prev = NULL;
 found = vehicle_lnk;
 }
 else
 {
 int cnt=0;
 for(p = vehicle_lnk, q = vehicle_lnk->next; q && q->vid != vid; p = q, q = q->next)
 {
 ;
 }

 if(!q)
 {
 fprintf(errout, "\nno such vehicle %d found to delete", vid);
 fflush(errout);
 return;
 }
 prev = p;
 found = q;
 }

 if(!prev)
 vehicle_lnk = found->next;
 else
 prev->next = found->next;

 132

 if(found->vudata->db)
 free(found->vudata->db);
 if(found->vudata)
 free(found->vudata);

 found->next = empty_lnk;
 empty_lnk = found;
 vehicle_cnt--;

 // hash delete
 found->vid = qpg_VHC_uniqueID(found->v);
 qpg_VHC_hash_remove(found);
 found->vid = -1;

}

// ---
// called once when the full network has been read into modeller
// ---
void qpx_NET_postOpen(void)
{
 int i;
 LINK* link;

 char outputname[256];

 errout = fopen("erroutput.txt", "w");

 if(shortest_path)
 sprintf(outputname,"report-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.);
 else
 sprintf(outputname,"report-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.);

 outResult = fopen(outputname, "w");
 fprintf(outResult, "Duration Time = %d\n", qpg_CFG_duration());
 fprintf(outResult, "Market Rate = %.1f\n", (float)MarketRate/10.);
 if(shortest_path) fprintf(outResult, "ShortestPath\n");
 else fprintf(outResult, "NO ShortestPath\n");

 if(shortest_path)
 sprintf(outputname,"TTreport-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.);
 else
 sprintf(outputname,"TTreport-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.);

 TTResult = fopen(outputname, "w");
 fprintf(TTResult, "Duration Time = %d\n", qpg_CFG_duration());
 fprintf(TTResult, "Market Rate = %.1f\n", (float)MarketRate/10.);
 if(shortest_path) fprintf(outResult, "ShortestPath\n");
 else fprintf(outResult, "NO ShortestPath\n");

 if(shortest_path)
 sprintf(outputname,"density-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.);
 else
 sprintf(outputname,"density-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.);

 133

 densityResult = fopen(outputname, "w");
 fprintf(densityResult, "Duration Time = %d\n", qpg_CFG_duration());
 fprintf(densityResult, "Market Rate = %.1f\n", (float)MarketRate/10.);
 if(shortest_path) fprintf(densityResult, "ShortestPath\n");
 else fprintf(densityResult, "NO ShortestPath\n");

// initialize random number generator seed
 srand((unsigned) time(NULL));

 NumOfLinks = qpg_NET_links();
 NumOfNodes = qpg_NET_nodes();

 qps_GUI_printf(" --- Paramics Programmer API: Vehicular Ad hoc Network --- \n");
 qps_GUI_printf(" --- Number of Links: %d --- \n", NumOfLinks);

 fprintf(errout, " --- Paramics Programmer API: Vehicular Ad hoc Network --- \n");
 fprintf(errout, " --- Number of Links: %d --- \n", NumOfLinks);
 fflush(errout);

 GTTIndex = (int*) malloc((NumOfLinks+1)*sizeof(int));
 memset(GTTIndex, 0, (NumOfLinks+1)*sizeof(int));

 GTT = (struct TravelTime_s**) malloc((NumOfLinks+1)*sizeof(struct TravelTime_s*));
 if(GTT == NULL){
 fprintf(errout, "malloc error: %d\n", __LINE__);
 fflush(errout);
 }
 for(i = 0 ; i < (NumOfLinks+1) ; i++) { // Allocate GTT memory
 GTT[i] = (struct TravelTime_s *) malloc(MaxGTT*sizeof(struct TravelTime_s));

 if(GTT[i]==NULL){
 fprintf(errout, "malloc error: %d\n", __LINE__);
 fflush(errout);
 }
 }

 for(i =0; i<MAX_NODES; i++)
 SPTT[i] = (float*) malloc(MAX_NODES*sizeof(float));

 InitMap();

 // qualnet update initialization
 qu.trsmt = malloc(MAX_VCNT*MAX_RCNT*sizeof(struct QU_trsmt));
 if(qu.trsmt==NULL) {
 fprintf(errout, "QualnetUpdate: malloc error\n");
 fflush(errout);
 exit(1);
 }

 gvlink_initialize();

#ifdef HIGHWAY_SHMEMLIB

 shmemPQ = SHMCommCreate("P2Q", SHMBUF_SIZE);
 shmemQP = SHMCommCreate("Q2P", SHMBUF_SIZE);

 134

 fprintf(errout, "\nSHMCommCreate done.\n");
 fflush(errout);

#elif HIGHWAY_SOCKET

 sockfd = SOCKCommConnect(REMOTE_HOST, REMOTE_PORT);

 fprintf(errout, "\nSocket connect success: %s\n", REMOTE_HOST);
 fflush(errout);
#endif

 buffPQ = malloc(MAX_Q2P_PKT_SIZE);
 buffQP = malloc(MAX_Q2P_PKT_SIZE);

 buffPQSize = MAX_Q2P_PKT_SIZE ;
 buffQPSize = MAX_Q2P_PKT_SIZE ;

 //density

 TotalMile = .0;
 for(i=0; i<MAXLINK; i++){

 link = qpg_NET_linkByIndex(i);
 if(link == NULL) continue;
 if(qpg_LNK_barred(link)) continue;

 TotalMile += (float) qpg_LNK_lanes(link) * qpg_LNK_length(link) / 1609.0; // mile
 }
 fprintf(densityResult, "Total Mileage = %f\n", TotalMile);
 fflush(densityResult);
}

Bool qpo_RTM_enable(void)
{
 if(shortest_path) return TRUE;
 else return FALSE;
}

#if 1
int qpo_RTM_decision(LINK *link, VEHICLE *vehicle)
{
 int i;
 int prevpos, curpos;
 int end_candidate[256];
 int next_node;
 int nextlink_end;
 LINK *nextlink;
 ZONE* zone;
 VHC_USERDATA* vudata;

 int nlinks;
 int nexitlinks;

 int link_index = qpg_LNK_index(link);

 135

 if(shortest_path == 0) return 0;

 if(Junction[link_index] == 0) return 0;

 // safety code
 if(!qpg_VHC_uniqueID(vehicle))
 vehicle = qpg_VHC_original(vehicle);

 vudata = gvlink_get_userdata(vehicle);

 if(!vudata) return 0;

 if(!vudata->equipped) {
 return 0;
 }

 // this is not equipped vehicle
 vudata = gvlink_get_userdata(vehicle);

 // nonvalid user data
 if(vudata == NULL){
 fprintf(errout, "warning: vudata is null. vid = %d, RTM_decision is called before the car is released.\n",
qpg_VHC_uniqueID(vehicle));
 fflush(errout);
 return 0;
 }

 prevpos = atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)));
 curpos = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)));

 zone = qpg_NET_zone(qpg_VHC_destination(vehicle));

 nlinks = qpg_ZNE_links(zone);

 for(i=1;i<=nlinks;i++){
 end_candidate[i] = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(qpg_ZNE_link(zone, i))));
 }

 nexitlinks = qpg_LNK_exitLinks(link);

 if(nexitlinks<2) return 0;

 for(i=1;i<=nlinks;i++) {
 next_node = ShortestPath(vudata, curpos, end_candidate[i]);

 if(next_node != 0){
 next_node = NodeMap[next_node];
 break;
 }
 }

 if(prevpos == 358 && curpos == 4 && next_node == 170)
 return 0;

 if(prevpos == 298 && curpos == 269 && next_node == 294)
 return 0;

 136

 for(i=1; i<= nexitlinks ; i++){
 nextlink = qpg_LNK_exit(link, i);

 nextlink_end = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink)));
 nextlink_end = NodeMap[nextlink_end];

 if(next_node == nextlink_end){
 return i;
 }
 }

 fprintf(errout,"check this out\n");

 return 0;
}
#endif

#if 0

void qpo_RTM_nextLink(LINK* link, VEHICLE* vehicle, int nextout, LINK* *nextlink, int *newdestp)
{
 int i;
 int prevpos, curpos;
 int end_candidate[256];
 int next_node;
 int candidatelink_end;
 LINK* candidatelink;
 ZONE* zone;
 VHC_USERDATA* vudata;

 int nlinks;
 int nexitlinks;

 int link_index = qpg_LNK_index(link);

 fprintf(errout," nextout = %d\n", nextout);
 fflush(errout);

 *nextlink = qpg_LNK_exit(link, nextout+1);

 // safety code
 if(!qpg_VHC_uniqueID(vehicle))
 vehicle = qpg_VHC_original(vehicle);

 vudata = gvlink_get_userdata(vehicle);
 if(vudata == NULL) return;

 if(!vudata->equipped) return;

 if(shortest_path == 0) return;

 if(Junction[link_index] == 0) return;

 // nonvalid user data
 if(vudata == NULL){

 137

 fprintf(errout, "vudata is null (%d), vid= %d, exitTime= %d \n", __LINE__, qpg_VHC_uniqueID(vehicle),
qpg_VHC_existTime(vehicle));
 fprintf(errout, "!!! original pointer. vid = %d\n", qpg_VHC_uniqueID(qpg_VHC_original(vehicle)));
 fflush(errout);

 return;
 }

 prevpos = atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)));
 curpos = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)));

 zone = qpg_NET_zone(qpg_VHC_destination(vehicle));

 nlinks = qpg_ZNE_links(zone);

 for(i=1;i<=nlinks;i++){
 end_candidate[i] = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(qpg_ZNE_link(zone, i))));
 }

 nexitlinks = qpg_LNK_exitLinks(link);

 if(nexitlinks>1 && vudata->equipped)
 {
 for(i=1;i<=nlinks;i++) {
 next_node = ShortestPath(vudata, curpos, end_candidate[i]);

 if(next_node != 0){
 next_node = NodeMap[next_node];
 break;
 }
 }

 for(i=1; i<= nexitlinks ; i++){
 candidatelink = qpg_LNK_exit(link, i);
 if(candidatelink == NULL){
 fprintf(errout, "candidatelink is null %d\n", __LINE__);
 fflush(errout);
 }

 candidatelink_end = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(candidatelink)));
 candidatelink_end = NodeMap[candidatelink_end];

 if(next_node == candidatelink_end){

 if(nextout != i){
 }

 *nextlink = candidatelink;
 return;
 }
 }

 fprintf(errout,"check this out\n");

 *nextlink = qpg_LNK_exit(link, nextout+1);
 return;

 138

 }

 *nextlink = qpg_LNK_exit(link, nextout+1);
 return;

}
#endif

// ---
// called once at the start of each time step of simulation time.
// ---
void qpx_NET_timeStep(void)
{
 static int qualnet_running = TRUE;

 float CurrentTime = qpg_CFG_simulationTime();
 int nrecv;

 VHC_USERDATA *vudata;
 struct VHC_TravelTime_s* vttlink = NULL;
 float z, b, g;
 int cnt;
 VehicleLnk *pv;

 static stop = 0;
 static time_t elapsed=0;
 clock_t st, et;

 static float accumulated_density=0;
 static int accumulated_step=0;

 if((int)(CurrentTime*10) % 10 == 5) return;

 if(CurrentTime < SKIP_SEC) return;

 if(CurrentTime > (float) qpg_CFG_duration() - 6.0 && stop == 0) {
 PrintStatistics();
 stop = 1;
 }

 st = clock();

 pkt.time = CurrentTime;

 pv = gvlink_first_vehicle();
 cnt = 0;

 while(pv)
 {
 VehicleLnk *to_delete;

 if(qpg_LNK_index(qpg_VHC_link(pv->v)) < 0)
 {
 to_delete = pv;
 pv = pv->next;

 139

 gvlink_delete_vehicle(to_delete->vid);

 continue;
 }

 vudata = pv->vudata;
 if(vudata == NULL){
 fprintf(errout, ">>>>>>>>vudata == null\n");
 fflush(errout);

 to_delete = pv;
 pv = pv->next;
 gvlink_delete_vehicle(to_delete->vid);
 continue;
 }

 if(pv->vid != vudata->VHCID){
 gvlink_print("invalid_vhcid"); //debug
 fprintf(errout, ">>>>>>>>vudata->VHCID (%d) != pv->vid (%d) real:%d\n", vudata->VHCID, pv-
>vid,qpg_VHC_uniqueID(pv->v));
 fflush(errout);

 to_delete = pv;
 pv = pv->next;
 gvlink_delete_vehicle(to_delete->vid);

 continue;
 }

 pkt.vhcl[cnt].vid = pv->vid;
 qpg_POS_vehicle(pv->v, qpg_VHC_link(pv->v), &pkt.vhcl[cnt].x, &pkt.vhcl[cnt].y, &z, &b, &g);

 pkt.vhcl[cnt].pkt_size = vudata->DataSize * 12; /*sizeof(struct TravelTime_s)*/;

 if(pkt.vhcl[cnt].pkt_size < 0) {
 fprintf(errout, "pkt.vhcl[%d].pkt_size = %d\n", cnt, pkt.vhcl[cnt].pkt_size);
 fflush(errout);

 to_delete = pv;
 pv = pv->next;

 gvlink_delete_vehicle(to_delete->vid);

 pv = pv->next;
 continue;
 }

 if(pkt.vhcl[cnt].pkt_size > 655355){
 fprintf(errout, "pkt.vhcl[%d].pkt_size = %d\n", cnt, pkt.vhcl[cnt].pkt_size);
 fflush(errout);
 pkt.vhcl[cnt].pkt_size = 655355;
 }

 pv = pv->next;
 cnt++;

 140

 }

 pkt.vcnt = cnt;

 accumulated_density += qpg_NET_vehiclesSimulating()/TotalMile;
 accumulated_step++;
 fprintf(densityResult, "Time %f Density= %f EquippedVCNT= %d TotalVCNT= %d\n", CurrentTime,
qpg_NET_vehiclesSimulating()/TotalMile, pkt.vcnt, qpg_NET_vehiclesSimulating());
 fflush(densityResult);

 if(((int)(CurrentTime*10)/10) % 60 == 0){
 fprintf(densityResult, "[***AVG***] Time %f Density= %f \n", CurrentTime,
accumulated_density/accumulated_step);
 fflush(densityResult);
 accumulated_density = .0;
 accumulated_step = 0;
 }

#ifdef HIGHWAY_SHMEMLIB

 if(MAX_Q2P_PKT_SIZE < sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle))
 fprintf(errout, "packet size is too big..[%d]\n", sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle));

 if(SHMCommWrite(shmemPQ, (char *)&pkt, sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle)) < 0)
 {
 fprintf(errout, "\nWrite error\n");
 fflush(errout);
 fclose(errout);
 exit(1);
 }
#elif HIGHWAY_SOCKET
 if(SOCKCommWrite(sockfd, (char *)&pkt, sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle)) < 0)
 {
 fprintf(errout, "\nWrite error\n");
 fflush(errout);
 fclose(errout);
 exit(1);
 }
#endif

 // check if qualnet is running
 if(qualnet_running)
 {

#if defined(HIGHWAY_SHMEMLIB) || defined(HIGHWAY_SOCKET)
 do {

#ifdef HIGHWAY_SHMEMLIB

 nrecv = SHMCommRead(shmemQP, buffQP);

#elif HIGHWAY_SOCKET

 nrecv = SOCKCommRead(sockfd, buffQP);
#endif

 141

 if (nrecv < 0) {
 fprintf(errout, "\nCommRead() Error");
 fprintf(errout, "\nCurrentTime = %.10f\n", CurrentTime);
 fflush(errout);
 break;
 }
 else if (nrecv > 0)
 {
 QualnetTime = ParseQualnetUpdate(buffQP, nrecv);

 if(QualnetTime < 0)
 {
 qualnet_running = FALSE;
 }
 }

 } while(qualnet_running && QualnetTime < CurrentTime);

#endif

 }
 else{
 qpx_NET_close();
 exit(0); // if qualnet is running
 }

 et = clock();
 elapsed += et - st;
}

// ---
// As each vehicle is released into the network create a new lookup
// record for it.
// ---
void qpx_VHC_release(VEHICLE* vehicle)
{
 VHC_USERDATA *data;

 int i,j;
 int vid;

 // check for a bad vehicle
 if(!vehicle)
 return;

 // safety code
 if(qpg_VHC_uniqueID(vehicle))
 vehicle = qpg_VHC_original(vehicle);

 vid = qpg_VHC_uniqueID(vehicle);

 data = calloc(1, sizeof(VHC_USERDATA));

 142

 data->VHCID = qpg_VHC_uniqueID(vehicle);
 data->ReleaseTime = qpg_CFG_simulationTime();
 data->EntryTime = -1;
 data->DataSize = 0; // data size

 if (MarketRate >= (rand() % 1000) + 1)
 {
 data->equipped = TRUE;

 data->db = calloc(1, sizeof(struct VHC_TTDB_s));
 for(i=0;i<MAXLINK;i++) {
 for(j=0; j<MaxTT; j++){
 data->db->VHC_TT[i][j].GTT = NULL;
 data->db->VHC_TT[i][j].updated_time=0.0;
 }
 }

 gvlink_add_vehicle(vehicle, data);

 }
 else
 {
 data->equipped = FALSE;
 data->db = NULL;

 qps_VHC_userdata(vehicle, data);
 }

}

// ---
// store travel time into USERDATA structure whenever vehicles
// pass nodes
// ---
void qpx_VHC_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2)
{
 VHC_USERDATA *vudata;

 int i, j;
 int tt_cnt;
 float z;
 float len, limit;

 // safety code
 if(qpg_VHC_uniqueID(vehicle))
 vehicle = qpg_VHC_original(vehicle);

 vudata = gvlink_get_userdata(vehicle);
 if(!vudata) return;

 if(vudata->db == NULL) return;

 // if entry is -1, this is first transfer and we don't make TT data
 if(vudata->EntryTime < 0)
 {

 143

 vudata->EntryTime = qpg_CFG_simulationTime();
 return;
 }

 // store travel time in Global travel time linked list
 if(LinkMap[qpg_LNK_index(link1)] == LinkMap[qpg_LNK_index(link2)]) return;

 i = LinkMap[qpg_LNK_index(link1)];
 j = GTTIndex[i];
 GTT[i][j].VHCID = vudata->VHCID;
 GTT[i][j].LinkIndex = LinkMap[qpg_LNK_index(link1)];
 GTT[i][j].ExitTime = qpg_CFG_simulationTime();
 GTT[i][j].TravelTime = GTT[i][j].ExitTime - vudata->EntryTime;

 len = qpg_LNK_length(link1);
 limit = qpg_LNK_speedlimit(link1);

 qpg_POS_node(qpg_LNK_nodeEnd(link1), >T[i][j].x, >T[i][j].y, &z); //infospeed
 GTTIndex[i]++;
 if (GTTIndex[i] == MaxGTT){
 fprintf(errout,"GTTIndex == MaxGTT\n");
 GTTIndex[i] = 0;
 }

 vudata->EntryTime = GTT[i][j].ExitTime;

 // store travel time in travel time linked list

 for(tt_cnt=0; tt_cnt<MaxTT; tt_cnt++) {
 if(vudata->db->VHC_TT[i][tt_cnt].GTT == NULL)
 break;
 }

 vudata->db->VHC_TT[i][tt_cnt].GTT = NULL;
 vudata->DataSize++;
 }
 else{
 // replacement
 vudata->db->VHC_TT[i][MaxTT-1].GTT= >T[i][j];
 vudata->db->VHC_TT[i][MaxTT-1].updated_time = GTT[i][j].ExitTime;
 }

 qsort(vudata->db->VHC_TT[i], tt_cnt, sizeof(struct VHC_TravelTime_s), CompareGTT);
}

void qpx_VHC_arrive(VEHICLE* vehicle, LINK* link, ZONE* zone)
{
 VHC_USERDATA *data;

 int dest, org;

 float CurrentTime = qpg_CFG_simulationTime();

 // safety code
 if(qpg_VHC_uniqueID(vehicle)==0)

 144

 vehicle = qpg_VHC_original(vehicle);

 data = gvlink_get_userdata(vehicle);
 if(!data) data = qpg_VHC_userdata(vehicle);

 dest = qpg_ZNE_index(qpg_NET_zone(qpg_VHC_destination(vehicle)));
 org = qpg_ZNE_index(qpg_NET_zone(qpg_VHC_origin(vehicle)));

 // equipped vehicle
 if(data->equipped)
 {
 if (org == 5 && dest == 10)
 {
 fprintf(TTResult,"\n(%d -> %d) \t rel: %f \t tt: %f equipped vhcid: %d", org, dest, data->ReleaseTime,
qpg_CFG_simulationTime()-data->ReleaseTime, data->VHCID);
 fflush(TTResult);
 }

 // free TT DB
 gvlink_delete_vehicle(qpg_VHC_uniqueID(vehicle));

 }
 // nonequipped vehicle
 else {
 fprintf(TTResult,"\n(%d -> %d) \t rel: %f \t tt: %f unequipped vhcid: %d", org, dest, data->ReleaseTime,
qpg_CFG_simulationTime()-data->ReleaseTime, data->VHCID);
 fflush(TTResult);

 free(data);
 }

}

// ---
// called once when the full network has been closed into modeller
// ---
void qpx_NET_close(void)
{
 int i;

 for(i = 0 ; i < (NumOfLinks+1) ; i++) // Allocate GTT memory
 free(GTT[i]);

 free(GTT);
 free(GTTIndex);

 for(i =0; i<MAX_NODES; i++)
 free(SPTT[i]);

 // qualnet update finalization
 free(qu.trsmt);

 free(buffPQ);
 free(buffQP);

 145

#ifdef HIGHWAY_SHMEMLIB

 SHMCommClose(shmemPQ);
 SHMCommClose(shmemQP);

#elif HIGHWAY_SOCKET

 SOCKCommClose(sockfd);

#endif

 fprintf(errout, "\n qpx_NET_close is called \n");

 fclose(errout);
 fclose(outResult);
 fclose(TTResult);
 fclose(densityResult);

}

VEHICLE *global_current_vehicle;
LINK *global_current_link;

//--
// Function name: transmit
// Parameters: VEHICLE *source: host vehicle
// VEHICLE *target: guest vehicle
// Return value: void
// Description: Transmit travel time data of host vehicle to guest vehicle
//--
void transmit(VEHICLE* source, VEHICLE* target, float updated_time)
{
 int i,j;
 int tp, sp;
 int copied;
 int cnt_t;

 struct VHC_TravelTime_s c[30];
 struct VHC_TravelTime_s *s, *t;

 VHC_USERDATA *sourcedata = gvlink_get_userdata(source); // host
 VHC_USERDATA *targetdata = gvlink_get_userdata(target); // guest

 if(sourcedata == NULL){
 fprintf(errout, "sourcedata is null , vid = %d\n", qpg_VHC_uniqueID(source));
 fflush(errout);
 return;
 }
 if(targetdata == NULL){
 fprintf(errout, "targetdata is null, vid = %d\n", qpg_VHC_uniqueID(target));
 fflush(errout);

 gvlink_get_userdata(target);
 return;
 }

 146

 global_current_vehicle = target;
 global_current_link = qpg_VHC_link(target);

 for(i=0;i<MAXLINK;i++){
 s = sourcedata->db->VHC_TT[i];
 t = targetdata->db->VHC_TT[i];

 copied = 0;
 tp=0; sp=0;
 for(j=0;j<30;j++){
 if(t[tp].GTT == s[sp].GTT){
 c[j] = t[tp++];
 sp++;
 }
 else if(CompareGTT(&t[tp], &s[sp]) < 0) {
 c[j] = t[tp];
 tp++;
 }
 else if(CompareGTT(&t[tp], &s[sp]) > 0) {
 c[j] = s[sp];
 c[j].updated_time = updated_time;

 copied++;
 sp++;
 }
 else {
 fprintf(errout,"this shouldn't happen. check this out!, line %d\n", __LINE__);
 fflush(errout);
 }
 if(c[j].GTT == NULL) break;
 }

 if(copied>0){
 for(j=0;j<30;j++){
 if(t[j].GTT==NULL) break;
 }
 cnt_t = j;

 for(j=0;j<30;j++){
 if(c[j].GTT==NULL) break;
 }

 if(cnt_t != j) {
 assert(j > cnt_t);
 targetdata->DataSize += (j-cnt_t);;
 }

 memcpy(t, c, MaxTT*sizeof(struct VHC_TravelTime_s));
 }

 }

 return;
}

 147

// -------------------------- Shared Mem Communication API DEFINITIONS -------------------------//

// create shared memory region
// returns when it accepts a connection
SHMComm SHMCommCreate(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 shmComm.shmHandle = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // default security
 PAGE_READWRITE, // read/write access
 0, // max. object size
 bufSize, // buffer size
 shmName);

 if (shmComm.shmHandle == NULL)
 {
 fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission
 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout,"Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 memset(shmComm.shmBuf, 0, bufSize);

 *((int *)shmComm.shmBuf) = 0;
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0;

 sprintf(name_buf, "%sMutex", shmName);
 // create mutex
 shmComm.shmMutex = CreateMutex(
 NULL, // default security attributes
 FALSE, // initially not owned
 name_buf);

 if (shmComm.shmMutex == NULL)
 {
 fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 shmComm.shmSize = bufSize;

 148

 return shmComm;

}

SHMComm SHMCommConnect(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 // !!! infinite loop to open shared memory
 while(NULL == (shmComm.shmHandle = OpenFileMapping(
 FILE_MAP_ALL_ACCESS, // read/write access
 FALSE, // do not inherit the name
 shmName))) Sleep(1000);

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission
 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout, "Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 sprintf(name_buf, "%sMutex", shmName);
 // !!! another infinite loop to open mutex
 while (NULL == (shmComm.shmMutex = OpenMutex(
 MUTEX_ALL_ACCESS, // request full access
 FALSE, // handle not inheritable
 name_buf))) Sleep(1000);

 shmComm.shmSize = bufSize;

 return shmComm;
}

int SHMCommWrite(SHMComm shmComm, char *buf, int _size) {
 DWORD waitResult;
 int head, rear; // head, rear of circular queue
 char *cq; // circular queue
 int cq_size; // circular queue size
 int first_half, second_half;
 int data_size, block_size;

 if(NULL == buf) {
 fprintf(errout, "ERROR - SHMCommWrite: buf is NULL..\n");
 fflush(errout);
 return -1;
 }

 // if data size is not divided by 4, we append some nulls
 if(0 != _size%4) {
 data_size = _size + (4 - _size%4);
 fprintf(errout, "WARNING - SHMCommWrite: size is not divided by 4. \n");

 149

 fflush(errout);
 }
 else
 data_size = _size;

 block_size = data_size + sizeof(int);

LABEL:
 while(1){
 waitResult = WaitForSingleObject(
 shmComm.shmMutex, // handle to mutex
 5000L); // five-second time-out interval
 if(waitResult == WAIT_OBJECT_0)
 break; // got mutex lock
 }

 // now mutual exclusion block starts from here

 // first 4 byte points to the head of circular queue
 // second 4 byte points to the rear of circular queue where new data should be appended
 head = *((int *)shmComm.shmBuf);
 rear = *((int *)(shmComm.shmBuf + sizeof(int)));
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int));
 cq_size = shmComm.shmSize - 2*sizeof(int);

 if(rear < head) {
 // check whether new rear would exceed head
 if((rear+block_size)>=head) {
 fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n");
 fflush(errout);

 ReleaseMutex(shmComm.shmMutex);
 exit(1);
 }

 memcpy(cq+rear, &data_size, sizeof(int));
 memcpy(cq+rear+sizeof(int), buf, _size);

 rear = (rear + block_size) % cq_size;
 }
 else if((rear+block_size) > cq_size){
 // need to wrap around
 // check whether new rear would exceed head
 if((rear + block_size - cq_size) >= head) {
 fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n");
 fflush(errout);
 ReleaseMutex(shmComm.shmMutex);
 goto LABEL;
 }

 memcpy(cq+rear, &data_size, sizeof(int));

 first_half = cq_size - (rear + sizeof(int));
 second_half = _size - first_half;

 memcpy(cq+rear+sizeof(int), buf, first_half);

 150

 memcpy(cq, buf + first_half, second_half);

 rear = (rear + block_size) % cq_size;
 }
 else {
 // nothing to worry about
 memcpy(cq+rear, &data_size, sizeof(int));
 memcpy(cq+rear+sizeof(int), buf, _size);
 rear = (rear + block_size) % cq_size;

 }

 // mutual exclusion block ends here

 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n0) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;
 }

 return block_size;
}

int SHMCommRead(SHMComm shmComm, char *buf) {
 DWORD waitResult;
 int head, rear; // head, rear of circular queue
 char *cq; // circular queue
 int cq_size; // circular queue size
 int first_half, second_half;
 int size;

 if(NULL == buf) {
 fprintf(errout, "ERROR - SHMCommRead: buf is NULL..\n");
 fflush(errout);
 return -1;
 }

 while(1){
 waitResult = WaitForSingleObject(
 shmComm.shmMutex, // handle to mutex
 5000L); // five-second time-out interval
 if(waitResult== WAIT_OBJECT_0)
 break; // got mutex lock
 }
 // now mutual exclusion block starts from here
 // first 4 byte points to the head of circular queue
 // second 4 byte points to the rear of circular queue where new data should be appended
 head = *((int *)shmComm.shmBuf);
 rear = *((int *)(shmComm.shmBuf + sizeof(int)));
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int));
 cq_size = shmComm.shmSize - 2*sizeof(int);
 if(head == rear) {
 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n2) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;

 151

 }
 // no data ready
 return 0;
 }

 size = *((int *)(cq+head));

 if(size > MAX_Q2P_PKT_SIZE) {
 fprintf(errout, "WARNING!!!: packet is too big :%d bytes\n", __FILE__, __LINE__, size);
 fprintf(errout, "INCREASE MAX_Q2P_PKT_SIZE . \n", size);
 fflush(errout);
 }

 if((head + (int)sizeof(int) + size) > cq_size){
 // wrap around
 first_half = cq_size - head - sizeof(int);
 second_half = size - first_half;

 memcpy(buf, cq + head + sizeof(int), first_half);
 memcpy(buf+first_half, cq, second_half);

 head = (head + size + sizeof(int))% cq_size;
 }
 else {

 // nothing to worry about
 memcpy(buf, cq+head+sizeof(int), size);
 head = (head + size + sizeof(int))% cq_size;
 }

 *((int *)shmComm.shmBuf) = head;

 // mutual exclusion block ends here
 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n1) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;
 }
 return size;
}

void SHMCommClose(SHMComm shmComm){
 // unmap shaered memory
 UnmapViewOfFile(shmComm.shmBuf);

 CloseHandle(shmComm.shmHandle);
 // end of shared memory
}

int SOCKCommCreate(char *hostname, int port)
{
 int fd=0;
 // Qualnet creates socket..

 152

 return fd;
}

int SOCKCommConnect(char *hostname, int port)
{
 int fd;
 struct hostent *server;
 struct sockaddr_in servAddr;
 int errcode;
 u_long arg = 1; int err; // non-blocking socket

 // socket open
 if ((fd = socket(AF_INET, SOCK_STREAM, 0/*IPPROTO_TCP*/)) < 0){
 fprintf(errout, "\nSocket open error\n");
 fflush(errout);
 }

 //setsockopt(sd,SOL_SOCKET,SO_SNDBUF,&soptval,sizeof (soptval));

 server = gethostbyname(hostname);

 memset ((char*) &servAddr, 0, sizeof(servAddr));
 servAddr.sin_family = AF_INET;
 servAddr.sin_port = htons(port);
 memcpy((char *)&servAddr.sin_addr.s_addr, (char *)server->h_addr, server->h_length);

 while (connect(fd, (struct sockaddr *) &servAddr, sizeof(servAddr)) < 0) {
 errcode = WSAGetLastError();
 fprintf(errout, "\nSocket connect error: %s, %d\n", hostname, errcode);
 fflush(errout);
 }

 err = ioctlsocket(fd, FIONBIO, &arg);
 if (err)
 {
 fprintf(errout, "Error setting socket to non-blocking mode, err = \"%s\"",
 WSAGetLastError());
 fflush(errout);
 assert(1);
 }

 return fd;
}

int SOCKCommWrite(int sock, char *buf, int size)
{
 int nsend;
 int remaining_size;
 char *remaining_data;

 remaining_size = size;
 remaining_data = buf;

 while(remaining_size > 0)
 {

 153

 if((nsend = send(sock, (const char*) remaining_data, remaining_size, 0)) < 0) {
 if(nsend == SOCKET_ERROR){
 int err = WSAGetLastError();
 if(err == WSAEWOULDBLOCK) // no data ready for read
 continue;
 fprintf(errout, "\nERROR: SOCKCommWrite()\n");
 fflush(errout);
 exit(1);
 }
 }
 if(nsend <= remaining_size)
 {
 remaining_size -= nsend;
 remaining_data += nsend;
 }

 }

 return size;
}

int SOCKCommRead(int fd, char* buf)
{
 int nrecv;
 int size, remaining_size;
 char* remaining_data = buf;

 // this will take care of the size of qualnet update packet
 nrecv = recv(fd, (char*) &size, sizeof(int), 0);
 if(nrecv<0) return 0;

 fprintf(errout, "data to be read : %dbyte\n", size);
 fflush(errout);

 (int)buf = size;
 remaining_size = size - nrecv;
 remaining_data += nrecv;

 while(remaining_size){
 nrecv = recv(fd, (char*) remaining_data, remaining_size, 0);

 if(nrecv == 0) continue;
 if(nrecv == SOCKET_ERROR)
 {
 int err = WSAGetLastError();
 if(err == WSAEWOULDBLOCK) // no data ready for read
 continue;
 else if(err == WSAECONNRESET) // connection closed
 {
 fprintf(errout, "Socket closed by qualnet\n");
 fflush(errout);
 fclose(errout);
 exit(1);
 }
 else if(err == WSAEMSGSIZE)

 154

 {
 fprintf(errout, "Data too big for buffer");
 fflush(errout);
 fclose(errout);
 exit(1);
 }
 }

 if(nrecv <= remaining_size){
 remaining_size -= nrecv;
 remaining_data += nrecv;
 }
 }

 return size;
}

void SOCKCommClose(int fd)
{
 closesocket(fd);
}

int CompareQUrtime(const void* x, const void* y)
{
 // low to high
 struct QU_trsmt *a= (struct QU_trsmt*) x;
 struct QU_trsmt *b= (struct QU_trsmt*) y;

 if(a->rtime - b->rtime > 0) return 1;
 else if(a->rtime - b->rtime < 0) return -1;
 else return 0;
}

int CompareGTT(struct VHC_TravelTime_s *a, struct VHC_TravelTime_s *b)
{
 // high to low

 if(a->GTT==NULL && b->GTT==NULL) return 0;
 if(a->GTT==NULL) return 1;
 if(b->GTT==NULL) return -1;

 if(a->GTT->ExitTime > b->GTT->ExitTime) return -1;
 else if(a->GTT->ExitTime < b->GTT->ExitTime) return 1;
 else {
 if(a->GTT->VHCID > b->GTT->VHCID) return -1;
 else if(a->GTT->VHCID < b->GTT->VHCID) return 1;
 else return 0;
 }
}

//--
// Update TT according to communication results provided from Qualnet
//--

 155

float ParseQualnetUpdate(char *buff, int size)
{
 VehicleLnk *source, *target;

 int i,j;
 int ptr=0;
 int rvhc_cnt;
 int svhc_cnt;
 int rvid;

 qu.total_size = *(int*)buff;
 ptr += sizeof(int);

 qu.qualnet_time = *(float*)(buff+ptr);

 ptr += sizeof(float);

 rvhc_cnt = *(int*)(buff+ptr);
 ptr += sizeof(int);

 if(rvhc_cnt > MAX_VCNT){
 fprintf(errout, "ERROR - ParseQualnetUpdate: qu.rvhc_cnt > MAX_VCNT\n");
 exit(1);
 }

 qu.trsmt_cnt=0;
 for(i=0; i<rvhc_cnt; i++)
 {
 rvid = *(int*)(buff+ptr);
 ptr += sizeof(int);

 svhc_cnt = *(int*)(buff+ptr);
 ptr += sizeof(int);

 if(svhc_cnt > MAX_RCNT){
 fprintf(errout, "ERROR - ParseQualnetUpdate: svhc_cnt [%d] > MAX_RCNT\n", svhc_cnt);
 exit(1);
 }

 for(j=0; j<svhc_cnt; j++){
 qu.trsmt[qu.trsmt_cnt].rvid = rvid;

 qu.trsmt[qu.trsmt_cnt].rtime = *(float*)(buff+ptr); // update time
 ptr += sizeof(float);

 qu.trsmt_cnt++;
 }
 }

 qsort(qu.trsmt, qu.trsmt_cnt, sizeof(struct QU_trsmt), CompareQUrtime);

 for(i=0; i<qu.trsmt_cnt; i++)
 {
 source = gvlink_get_vehicle(qu.trsmt[i].svid);
 if(!source)
 {

 156

 fprintf(errout, "ParseQualnetUpdate: src vid %d do not exist\n", qu.trsmt[i].svid);
 fflush(errout);
 gvlink_delete_vehicle(qu.trsmt[i].svid);
 }
 target = gvlink_get_vehicle(qu.trsmt[i].rvid);
 if(!target)
 {
 fprintf(errout, "ParseQualnetUpdate: dst vid %d do not exist\n", qu.trsmt[i].rvid);
 fflush(errout);
 gvlink_delete_vehicle(qu.trsmt[i].rvid);
 }

 if(source && target) {
 transmit(source->v, target->v, qu.trsmt[i].rtime);
 }
 }

 return qu.qualnet_time;
}

int ShortestPath(VHC_USERDATA* vudata, int stt, int end)
{
 int previous[MAX_NODES]; // previous node
 int v[MAX_NODES]; // Permanent label array (1: permanent, 0: undefined)
 float ttarr[MAX_NODES]; // Travel time array from stt
 float min; // Temporary smallest cost

 int i, j, k;
 LINK *link, *nextlink;
 int nextlinks;
 int n1, n2, n3, n4;

 float tm;
 int cnt;

 float link_len, speed;
 float speed_limit;
 float angle1, angle2;
 int need_split;

 if(!vudata) return 0;

 // initialize with a large number
 for (i = 0 ; i < MAX_NODES ; i++){
 for(j = 0 ; j < MAX_NODES ; j++) {
 if(i!=j) SPTT[i][j] = FLT_MAX;
 else SPTT[i][j] = .0;
 }
 }

 // adjust with optimal time
 for (k = 1 ; k < MAXLINK ; k++)
 {
 link = qpg_NET_linkByIndex(k);
 if(link == NULL) continue;

 157

 if(qpg_LNK_barred(link)) continue;

 i = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))]; // start node
 j = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))]; // end node

 if(qpg_LNK_speedlimit(link) != 0){
 link_len = qpg_LNK_length(link); // meter
 speed_limit = qpg_LNK_speedlimit(link);
 speed = 1000 * speed_limit* 1.609; // meter/hr
 SPTT[i][j] = 3600 * link_len / speed; // 3600 * hour
 }
 else {
 fprintf(errout,"qpg_LNK_speedlimit(link) is 0.. OTL\n");
 fflush(errout);
 }
 }

 // update with what this vehicle knows of
 for(i=0; i<MAXLINK; i++)
 {
 tm=.0; cnt=0;

 for(j=0; j<MaxTT; j++)
 {
 tm += vudata->db->VHC_TT[i][j].GTT->TravelTime;
 cnt++;
 }

 if(cnt>0 && tm!=0) {
 link = qpg_NET_linkByIndex(i); //vulink->LinkIndex);
 n1 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))]; // start node
 n2 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))]; // end node

 link_len = qpg_LNK_length(link);
 speed_limit = qpg_LNK_speedlimit(link);

 SPTT[n1][n2] = tm/cnt; // average travel time for this link
 }
 }

 // safety code. handle junctions!!!

 for(i=0; i<MAXLINK; i++)
 {
 link = qpg_NET_linkByIndex(i);
 if(link == NULL) continue;
 if(qpg_LNK_barred(link)) continue;

 n1 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))];
 n2 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))];

 angle1 = 2.0*3.14*qpg_LNK_endAngle(link)/360.0;

 need_split = 0;

 nextlinks = qpg_LNK_exitLinks(link);

 158

 if(nextlinks>1){
 for(j=1; j<=nextlinks; j++)
 {
 nextlink = qpg_LNK_exit(link, j);

 angle2 = 2.0*3.14*qpg_LNK_endAngle(nextlink)/360.0;

 n3 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(nextlink)))];
 n4 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink)))];

 if(cos(angle1)*cos(angle2)+sin(angle1)*sin(angle2) < 0 ||
 (n1 == 358 && n3 == 4 && n4 == 170)){

 if(n1 == 162 && n3 == 4 && n4 == 170)
 continue;

 need_split = 1;
 break;
 }
 }

 if(need_split){
 for(j=1; j<=nextlinks; j++)
 {
 nextlink = qpg_LNK_exit(link, j);
 angle2 = 2.0*3.14*qpg_LNK_endAngle(nextlink)/360.0;

 n3 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(nextlink)))];
 n4 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink)))];

 if(cos(angle1)*cos(angle2)+sin(angle1)*sin(angle2) > 0 ||
 (n1 == 162 && n3 == 4 && n4 == 170)){

 if(n1 == 358 && n3 == 4 && n4 == 170)
 continue;

 assert(n2 == n3);

 SPTT[n1][n4] = SPTT[n1][n2] + SPTT[n3][n4];

 }
 }
 SPTT[n1][n2] = FLT_MAX;
 }
 }
 }

 for(i = 0 ; i < MAX_NODES ; i++) // initialize
 { v[i] = 0; // undefined
 ttarr[i] = FLT_MAX; // infinite
 previous[i] = INT_MAX; // undefined
 }

 ttarr[stt] = 0; // set the cost of the start node

 159

 // iterate as such the number of nodes
 for(i = 1, k = INT_MAX ; i < MAX_NODES ; i++)
 {
 // Set the currently minimum cost
 for(j = 1, min = FLT_MAX ; j < MAX_NODES ; j++)
 if((v[j] == 0) && (ttarr[j] < min))
 {
 k = j;
 min = ttarr[j];
 }

 if (k == end) // reach destination
 break;

 v[k] = 1; // set a permanent label

 if(min == FLT_MAX)
 break;

 // Calculate the smallest cost
 for(j = 1 ; j < MAX_NODES ; j++)
 if ((stt != j) && (ttarr[j] > ttarr[k] + SPTT[k][j]))
 {
 ttarr[j] = ttarr[k] + SPTT[k][j];
 previous[j] = k;
 }

 }

 // Find the next node of the start node
 i = end;
 while(previous[i] != stt){
 if(end == 359) {
 }
 i = previous[i];

 if(i==INT_MAX) {
 return 0;
 }
 }
 return i; // i: next node
}

void PrintStatistics()
{
 int i,j;
 float total_time=.0, total_avg=.0, temp=.0, avg_lane=.0;
 float* vehicle_tt;
 int max_vcnt=80000;

 vehicle_tt = (float*) malloc(max_vcnt*sizeof(float));
 if(vehicle_tt == NULL) fprintf(errout, "malloc error %d\n", __LINE__);

 160

 for(i=0;i<max_vcnt;i++)
 vehicle_tt[i]=.0;

 for(i = 0 ; i < (NumOfLinks+1) ; i++) {

 temp = .0;
 for(j=0 ; j< GTTIndex[i] ; j++){
 temp += GTT[i][j].TravelTime;
 vehicle_tt[GTT[i][j].VHCID] += GTT[i][j].TravelTime;
 }

 if(GTTIndex[i] != 0){
 temp /= (float) GTTIndex[i];

 total_time += temp;

 }
 }
 total_avg = total_time / NumOfLinks;

 fprintf(outResult, "\n####avg travel time per lane per vehicle = %f\n\n", total_avg);

 for(i=0;i<MAX_VCNT;i++)
 if(vehicle_tt[i]!=.0)
 fprintf(outResult, "travel time per vehicle [%d] = %f\n", i, vehicle_tt[i]);

 fflush(outResult);

 free(vehicle_tt);
}

void got_new_data(struct VHC_TravelTime_s *TT)
{
 float x,y,z,b,g;
 float dist;
 float CurrentTime = qpg_CFG_simulationTime();
 float time_diff;
 float speed;

 static float accumulated_speed=0;
 static int accumulated_cnt=0;
 static int tag=0;

 if(TT->GTT->VHCID % 100 != 0)
 return;

 // get my position
 qpg_POS_vehicle(global_current_vehicle, global_current_link, &x, &y, &z, &b, &g); //infospped

 // get distance
 dist = sqrt(pow(x-TT->GTT->x,2) + pow(y-TT->GTT->y,2)); // Calculate Eucleadian distance

 // get time difference
 time_diff = CurrentTime - TT->GTT->ExitTime;

 // calculate info speed

 161

 if(time_diff > 0) {
 speed = dist / time_diff;

 accumulated_speed += speed;
 accumulated_cnt++;
 }
 else
 speed = -1;

 // print out info speed
 if(speed > 0)
 {
 fprintf(outResult, "\n%f sender %d receiver %d packet %d dist %f time %f speed %f",
 CurrentTime, TT->GTT->VHCID, qpg_VHC_uniqueID(global_current_vehicle),
 TT->GTT->VHCID*1000000 + TT->GTT->LinkIndex*1000 + ((int)TT->GTT->TravelTime), dist,
time_diff, speed);
 fflush(outResult);
 }

}

 162

Appendix B

QualNet code

#ifdef _WIN32
#include <winsock2.h>
#else /* unix/linux */
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#ifdef sgi
#include <unistd.h>
#endif
#endif

#include <stdio.h>
#include <hash_map>
#include "api.h"
#include "partition.h"
#include "external_util.h"
#include "highway.h"
#include "scheduler.h"
#include "highway_app.h"

#ifdef HIGHWAY_SH
MEMLIB

// shared memory
typedef struct {
 HANDLE shmHandle;
 HANDLE shmMutex;
 LPCTSTR shmBuf;
 int shmSize;
}SHMComm;
SHMComm shmemPQ, shmemQP;

#define SHMBUF_SIZE 2000*1000*16*4

#endif

using namespace stdext;

typedef hash_map<int, Vehicle*> VHASH;

Vehicle *inactive_vehicles = NULL;
Vehicle *active_vehicles = NULL;
Vehicle *neutral_vehicles = NULL;

 163

int vehicle_pool_cnt=0;
Vehicle vehicles[MAX_VCNT];

VHASH vhash1, vhash2;
VHASH &vhash_neutral = vhash1;
VHASH &vhash_active = vhash2;

Q2PPacket *q2p_pkt;

// global global
FILE *logff;
#ifdef HIGHWAY_STAT
FILE *statff;
#endif

clocktype sync_interval;
float paramics_time_float;
float qualnet_time_float_sec;
clocktype skip_time;

//---
// External Interface API Functions
//---

void HighwayInitializeNodes(
 EXTERNAL_Interface *iface,
 NodeInput *nodeInput)
{
 int i, j;
 int channelIndex;
 Node* nextNode = NULL;
 struct sockaddr_in addr;
 int addr_len = sizeof(sockaddr_in);
 HighwayData *data;
 EXTERNAL_SocketErrorType err;

 // Allocate memory for interface-specific data. The allocated memory
 // is verified by MEM_malloc. Set the iface->data variable to the
 // newly allocated data for future use.
 data = (HighwayData*) MEM_malloc(sizeof(HighwayData));
 iface->data = (void*) data;

 q2p_pkt = (Q2PPacket *)malloc(MAX_Q2P_PKT_SIZE);

 logff = fopen("log.txt", "w");

#ifdef HIGHWAY_STAT
 statff = fopen("stat.txt", "w");
#endif

#ifdef STANDALONE
 return;
#endif;

#ifdef HIGHWAY_SHMEMLIB

 164

 {
 SHMComm SHMCommConnect(char *shmName, int bufSize);
 int SHMCommRead(SHMComm shmComm, char *buf);
 int nRead;

 fprintf(stderr, "Waiting for shared memory ready \n");

 shmemQP = SHMCommConnect("Q2P", SHMBUF_SIZE);
 shmemPQ = SHMCommConnect("P2Q", SHMBUF_SIZE);

 printf("Success with shared memory\n");

 }
#endif

#ifdef HIGHWAY_SOCKET

 // Initialize a listening socket and a data socket
 EXTERNAL_SocketInit(&data->listenSocket);
 EXTERNAL_SocketInit(&data->s);

 // Listen for a socket connection on port 5132. The newly opened socket
 // connection will be returned in the data->s socket structure.
 printf("Listening for socket connection on port %d...\n", HIGHWAY_PORT);

 err = EXTERNAL_SocketListen(&data->listenSocket, HIGHWAY_PORT, &data->s);
 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error listening for socket connection");
 }

 if(getsockname(data->s.socketFd, (sockaddr *)&addr, &addr_len))
 {
 printf("\nerror code=%d", WSAGetLastError());
 ERROR_ReportError("Error getting address");
 }

 printf("Connection Accepted from %s \n", inet_ntoa(addr.sin_addr));

#endif

#ifdef HIGHWAY_COMMAND

 // Initialize a listening socket and a data socket
 EXTERNAL_SocketInit(&data->listenSocket);
 EXTERNAL_SocketInit(&data->s);

 // Listen for a socket connection on port 5132. The newly opened socket
 // connection will be returned in the data->s socket structure.
 printf("Listening for socket connection on port %d...\n", HIGHWAY_PORT);

 err = EXTERNAL_SocketListen(&data->listenSocket, HIGHWAY_PORT, &data->s);
 if (err != EXTERNAL_NoSocketError)

 165

 {
 ERROR_ReportError("Error listening for socket connection");
 }

 if(getsockname(data->s.socketFd, (sockaddr *)&addr, &addr_len))
 {
 printf("\nerror code=%d", WSAGetLastError());
 ERROR_ReportError("Error getting address");
 }

 printf("Connection Accepted from %s \n", inet_ntoa(addr.sin_addr));

#endif

 PartitionData* partitionData = iface->partition;

 for (i = 0; i < partitionData->numNodes; i++) {
 HighwaySetInitPosition(iface, i, i*10.0 + 100.0, 1000.0, 0.0);

 }
 HighwaySetInitPosition(iface, 0, -1000.0, -1000.0, 0.0);

}

void HighwayReceive(EXTERNAL_Interface *iface)
{
 EXTERNAL_SocketErrorType err;
 HighwayData *data;
 char error[MAX_STRING_LENGTH];
 unsigned int size;
 char simtimebuf[256], realtimebuf[256], paratimebuf[256], bufnext[256];

 clocktype qualnet_time;
 clocktype next_event_time;
 static clocktype paramics_time = 0;
 static clocktype prev_qualnet_time = -1;
 static clocktype start_realtime = EXTERNAL_QueryRealTime();
 static float sent_qualnet_time_float = -1;

 float qualnet_time_float_old, qualnet_time_float_sec;

 qualnet_time = EXTERNAL_QuerySimulationTime(iface);
 qualnet_time_float_sec = qualnet_time / 1000000000.0;
 next_event_time = GetNextInternalEventTime(iface->partition);

 TIME_PrintClockInSecond(qualnet_time, simtimebuf);
 TIME_PrintClockInSecond(EXTERNAL_QueryRealTime()-start_realtime, realtimebuf);
 TIME_PrintClockInSecond(next_event_time, bufnext);

#ifdef FASTSIM
 //SKIP TIME

 if(qualnet_time_float_sec*SECOND < skip_time)
 {

 166

 fprintf(logff, "\nRecv(): Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec,
realtimebuf);
 printf("\nRecv(): Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf);

 return;
 }

#endif

#ifndef HIGHWAY_COMMAND

 if(next_event_time < paramics_time_float * SECOND
 || sent_qualnet_time_float >= paramics_time_float)
 {
 return;
 }

#ifdef STANDALONE
 printf("\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf);
 fflush(stdout);
 fprintf(logff, "\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf);
 fflush(logff);
 return;
#endif

 // use packet

 HighwayPopulatePkt(q2p_pkt, paramics_time_float, iface);

#endif

#ifdef HIGHWAY_SHMEMLIB
{
 int nrecv;
 int SHMCommWrite(SHMComm shmComm, char *buf, int _size);
 int SHMCommRead(SHMComm shmComm, char *buf);

 //if(SHMCommWrite(shmemQP, (char*)&qualnet_time_float_sec, sizeof(qualnet_time_float_sec)) < 0)
 //if(SHMCommWrite(shmemQP, (char*)&pkt, sizeof(pkt)) < 0)
 if(SHMCommWrite(shmemQP, (char*)q2p_pkt, q2p_pkt->size) < 0)
 {
 ERROR_ReportError("\nWrite error");
 }

 sent_qualnet_time_float = q2p_pkt->time;

 printf("\nSent Qualnet Time = %f ----------- REAL TIME = %s", q2p_pkt->time, realtimebuf);
 fflush(stdout);
 fprintf(logff, "\nSent Qualnet Time = %f ----------- REAL TIME = %s", q2p_pkt->time, realtimebuf);
 fflush(logff);

 // Extract the interface-specific data
 data = (HighwayData*) iface->data;

 if(qualnet_time_float_sec * SECOND > iface->partition->maxSimClock - 5 * SECOND) {

 167

 HighwayFinalize(iface);
 exit(1);
 }

 do
 {
 nrecv = SHMCommRead(shmemPQ, (char *)&p2q_pkt);
 if (nrecv < 0)
 ERROR_ReportError("\nSHMCommRead() Error");

 else if (nrecv == 0)
 {
 continue;
 }
 else if (nrecv > 0)
 {
 paramics_time_float = p2q_pkt.time;

 if(p2q_pkt.vcnt > 0 && paramics_time_float >= qualnet_time_float_sec)
 {
 HighwayUpdateNodeInfo(&p2q_pkt, paramics_time_float*1000000000.0, iface);
 }

 fprintf(logff, "\nQualnet Time=%.10f receive Paramics time=%.10f", qualnet_time_float_sec,
paramics_time_float);
 fflush(logff);
 }

 } while(paramics_time_float <= sent_qualnet_time_float);

}
#endif

#ifdef HIGHWAY_SOCKET

 HighwayForward(iface, (void *) q2p_pkt, q2p_pkt->size);

 printf("\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf);
 fflush(stdout);
 fprintf(logff, "\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf);
 fflush(logff);

 // Extract the interface-specific data
 data = (HighwayData*) iface->data;
 unsigned int size2;

 if(qualnet_time_float_sec * SECOND > iface->partition->maxSimClock - 5 * SECOND) {
 HighwayFinalize(iface);
 exit(1);
 }

 do
 {
 // read header only
 err = EXTERNAL_SocketRecv(

 168

 &data->s,
 (char *) &p2q_pkt,
 sizeof(int)+sizeof(float), //256,
 &size,
 FALSE);

 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error receiving data from socket");
 }

 if(size > 0) {
 paramics_time_float = p2q_pkt.time;
 }

 if(size > 0 && p2q_pkt.vcnt > 0)
 {

 unsigned int to_recv = p2q_pkt.vcnt*sizeof(P2QVehicle);
 unsigned int received = 0;
 char *p = (char *)p2q_pkt.vhcl;

 while(received < to_recv)
 {

 // read data
 err = EXTERNAL_SocketRecv(
 &data->s,
 p + received, // (char *)p2q_pkt.vhcl,
 to_recv-received, //p2q_pkt.vcnt*sizeof(P2QVehicle), //256,
 &size2,
 FALSE);

 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error receiving data from socket");
 }

 if(size2 < 0)
 ERROR_ReportError("Error: negative size?");

 if(size2 > 0)
 received += size2;

 }

 if(received > 0)
 {
 assert(received == p2q_pkt.vcnt*sizeof(P2QVehicle));

 if(p2q_pkt.vcnt > 0 && paramics_time_float >= qualnet_time_float_sec)
 {
 HighwayUpdateNodeInfo(&p2q_pkt, paramics_time_float*1000000000.0, iface);
 }

 169

// printf("\nQualnet Time=%.10f receive Paramis time=%.10f", qualnet_time_float_sec,
paramics_time_float);
 }
 else
 ERROR_ReportError("Error: header arrived but content didn't come yet?");
 }
 } while(paramics_time_float < qualnet_time_float_sec);

#endif

#ifdef HIGHWAY_COMMAND

 char in[256];
 char payload[256];
 char c;
 int x, y, d;
 Node *node;
 NodeAddress srcNodeId;
 NodeAddress destNodeId;
 NodeAddress srcAddr;
 NodeAddress destAddr;

 // Extract the interface-specific data
 data = (HighwayData*) iface->data;

 IdToNodePtrMap *nodeHash = iface->partition->firstNode->partitionData->nodeIdHash;

 do
 {
 // check packet
 err = EXTERNAL_SocketRecv(
 &data->s,
 in,
 256,
 &size,
 FALSE);

 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error receiving data from socket");
 }

 if(size > 0)
 {
 memset(payload, 0, 256);

 sscanf(in, "%c %d %d %d %d", &c, &srcNodeId, &x, &y, &d);

 node = MAPPING_GetNodePtrFromHash(nodeHash, srcNodeId);

 switch(c)
 {
 case 'g':
 printf("\nNode %d is at (%f, %f, %f)", srcNodeId,
 node->mobilityData->current->position.common.c1,
 node->mobilityData->current->position.common.c2,

 170

 node->mobilityData->current->position.common.c3);
 break;
 case 'p':
 printf("\n got command p node %d (%d %d) at %s", srcNodeId, x, y, simtimebuf);
 HighwayMovePosition(node, x, y, qualnet_time);
 break;
 case 'm':
 {
 printf("\n got command p: move node %d to (%d %d) during %d seconds at %s",
 srcNodeId, x, y, d, simtimebuf);
 printf("\nNot Implemented Yet");
 }
 case 's':
 printf("\n got command s at %s", simtimebuf);
 HighwayStartBeacon(node);
 break;
 case 'e':
 printf("\n got command e at %s", simtimebuf);
 HighwayEndBeacon(node);
 break;
 default:
 break;
 }
 // Get node addresses
 srcAddr = MAPPING_GetDefaultInterfaceAddressFromNodeId(
 iface->partition->firstNode,
 srcNodeId);

 // Verify valid pointers
 if (srcAddr == INVALID_MAPPING)
 {
 ERROR_ReportWarning("Invalid address for interfacetutorial");
 continue;
 }

 }
 } while(size > 0);

#endif

}

void HighwayForward(
 EXTERNAL_Interface *iface,
 void *forwardData,
 int forwardSize)
{
 EXTERNAL_SocketErrorType err;
 HighwayData *data;

 // Extract interface-specific data
 data = (HighwayData*) iface->data;

#ifdef HIGHWAY_SOCKET

 // Send forwarded information on the data socket

 171

 err = EXTERNAL_SocketSend(
 &data->s,
 (char*) forwardData,
 forwardSize);
 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error sending data on socket");
 }
#endif
}

void HighwayFinalize(EXTERNAL_Interface *iface)
{
 HighwayData *data;
 EXTERNAL_SocketErrorType err;

 fclose(logff);
#ifdef HIGHWAY_STAT
 fclose(statff);
#endif

 if(q2p_pkt)
 free(q2p_pkt);

 // Extract interface-specific data
 data = (HighwayData*) iface->data;

#ifdef HIGHWAY_SHMEM
 // unmap shaered memory
 UnmapViewOfFile(shmBuf);

 CloseHandle(shmMapFile);
 // end of shared memory
#endif

#ifdef HIGHWAY_SOCKET

 // Close the data socket
 err = EXTERNAL_SocketClose(&data->s);
 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error closing socket");
 }

 // Close the listening socket
 err = EXTERNAL_SocketClose(&data->listenSocket);
 if (err != EXTERNAL_NoSocketError)
 {
 ERROR_ReportError("Error closing socket");
 }
#endif
}

void HighwaySimulationHorizon(EXTERNAL_Interface *iface)
{
#ifdef FASTSIM

 172

 clocktype tempHorizon;

 if(iface->partition->theCurrentTime < skip_time-10*SECOND)
 iface->horizon = skip_time;
 else
 {
 static clocktype starttime = EXTERNAL_QueryRealTime();

 clocktype realhorizon = EXTERNAL_QueryRealTime()-starttime; //iface->lookahead;

 if(iface->horizon < paramics_time_float * SECOND)
 {
 iface->horizon = paramics_time_float * SECOND; // test. follow paramics

 /* debug
 char bufhorizon[256], buftime[256], bufnext[256];
 TIME_PrintClockInSecond(iface->horizon, bufhorizon);
 TIME_PrintClockInSecond(iface->partition->theCurrentTime, buftime);
 TIME_PrintClockInSecond(GetNextInternalEventTime(iface->partition), bufnext);

 if(paramics_time_float > 0)
 fprintf(logff, "\nHorizon=%s paramics_time=%f currenttime=%s, nextevent=%s",
 bufhorizon, paramics_time_float,buftime, bufnext);
 */
 }

 // just in casae it's slower than realtime, follow real time
 if(iface->horizon < realhorizon)
 iface->horizon = realhorizon;

// else
// iface->horizon = iface->partition->theCurrentTime;

 return;
 }

#endif

}

// This works only at initialization
// In the middle of simulation, use HighwayMovePosition()
void HighwaySetInitPosition(EXTERNAL_Interface *iface, int node,
 double c1, double c2, double c3)
{
 iface->partition->nodePositions[node].mobilityData->current->position.common.c1 = c1;
 iface->partition->nodePositions[node].mobilityData->current->position.common.c2 = c2;
 iface->partition->nodePositions[node].mobilityData->current->position.common.c3 = c3;
}

void HighwayMovePosition(Node *node, double x, double y, clocktype time)
{
 Coordinates position;
 Orientation orientation;
 position.common.c1 = x;

 173

 position.common.c2 = y;
 position.common.c3 = 0;
 orientation.azimuth = orientation.elevation = 0;

 MOBILITY_AddANewDestination(
 node->mobilityData,
 time,
 position,
 orientation);

 MobilityData *mobilityData = node->mobilityData;
 MobilityRemainder *remainder = &(node->mobilityData->remainder);

 memcpy(mobilityData->next, &mobilityData->destArray[mobilityData->numDests-1], sizeof(MobilityElement)
);
 mobilityData->sequenceNum++;
 mobilityData->next->sequenceNum = mobilityData->sequenceNum;

 remainder->nextMoveTime = time;
 remainder->nextPosition = mobilityData->next->position;
 remainder->nextOrientation = mobilityData->next->orientation;
 remainder->speed = mobilityData->next->speed;
 remainder->numMovesToNextDest = 0;
 remainder->destCounter = mobilityData->numDests-1;

 MOBILITY_InsertEvent(&(node->partitionData->mobilityHeap), node);
 MOBILITY_ProcessEvent(node);

}

void HighwayStartBeacon(Node *node)
{
 AppDataHighway *appData;
 Message *timerMsg;
 AppTimer *timer;

 appData = AppHighwayGet(node, 100);
 appData->running = true;
 timerMsg = MESSAGE_Alloc(node,
 APP_LAYER,
 APP_HIGHWAY,
 MSG_APP_TimerExpired);

 MESSAGE_InfoAlloc(node, timerMsg, sizeof(AppTimer));

 timer = (AppTimer *)MESSAGE_ReturnInfo(timerMsg);

 timer->sourcePort = appData->srcPort;
 timer->type = APP_TIMER_SEND_PKT;

 MESSAGE_Send(node, timerMsg, 0); // start now
}

void HighwayEndBeacon(Node *node)
{
 AppDataHighway *appData;

 174

 appData = AppHighwayGet(node, 100);
 appData->running = false;
}

void HighwayUpdateNodeInfo(P2QPacket *p, clocktype t, EXTERNAL_Interface *iface)
{
 vehicle_start_update();

 for(int i=0; i < p->vcnt; i++)
 {
 Vehicle *v = vehicle_get(p->vhcl[i].vid); // should have non null node/appData

 assert(v->node);

 HighwayMovePosition(v->node, p->vhcl[i].x, p->vhcl[i].y, t);

 if(p->vhcl[i].pkt_size < 0)
 {
 fprintf(logff, "\nERROR: P->Q sent negative packet size (%d) for vid %d", p->vhcl[i].pkt_size, p-
>vhcl[i].vid);
 p->vhcl[i].pkt_size = 100;
 }
 v->appData->pktSize = p->vhcl[i].pkt_size;
 }

 vehicle_end_update();

 if(0)
 {
 fprintf(logff, "\n[P->Q: time=%f, vcnt=%d]", p->time, p->vcnt);
 for(int i=0; i < p->vcnt; i++)
 {
 fprintf(logff, "\n\t[vid=%d, pkt_size=%d, position=(%f,%f)]", p->vhcl[i].vid, p->vhcl[i].pkt_size, p-
>vhcl[i].x, p->vhcl[i].y);
 }
 }

}

void HighwayPopulatePkt(Q2PPacket *p, float t, EXTERNAL_Interface *iface)
{
 p->time = t;
 p->vcnt = 0;
 p->size = 2*sizeof(int) + sizeof(float);

 // END OF SIMULATION
 if(t * SECOND > iface->partition->maxSimClock - 5 * SECOND) {
 p->time = -1;
 return;
 }

 Q2PVehicle *vp = p->vhcl;

 for(Node *np=iface->partition->firstNode; np; np = np->nextNodeData)

 175

 {
 AppDataHighway *appData = AppHighwayGet(np, HIGHWAY_APP_PORT);

 if(appData && appData->running && appData->q2p_vehicle.rcnt > 0)
 {
 vp->rvid = appData->p_vid; //np->nodeId;
 vp->rcnt = appData->q2p_vehicle.rcnt;
 memcpy(vp->rcv, appData->q2p_vehicle.rcv, vp->rcnt * sizeof(Q2PRecv));
 p->vcnt++;
 p->size += 2*sizeof(int) + vp->rcnt * sizeof(Q2PRecv);
 vp = (Q2PVehicle *)&vp->rcv[vp->rcnt];
 appData->q2p_vehicle.rcnt = 0;
 }
 }

 if(0)
 {
 fprintf(logff, "\n[Q->P: time=%f, vcnt=%d, size=%d]", p->time, p->vcnt, p->size);
 vp = p->vhcl;
 for(int i=0; i < p->vcnt; i++)
 {
 fprintf(logff, "\n\t[rvid=%d, rcnt=%d]", vp->rvid, vp->rcnt);
 for(int j=0; j < vp->rcnt; j++)
 {
 fprintf(logff, "\n\t\t[svid=%d, rtime=%f]", vp->rcv[j].svid, vp->rcv[j].rtime);
 }
 vp = (Q2PVehicle *)&vp->rcv[vp->rcnt];
 }
 }

}

/////////////////////////////////////
// Vehicles functions
/////////////////////////////////////

// add a node to the pool of vehicles
// inactivate
void vehicle_add(Node *node, AppDataHighway *data)
{
 Vehicle *v;

 if(vehicle_pool_cnt >= MAX_VCNT - 1)
 {
 printf("no more memory for vehicle");
 exit(1);
 }

 if(node->nodeId == 1)
 return;

 v = &vehicles[vehicle_pool_cnt++];

 v->node = node;
 v->appData = data;

 176

 // add to inactive_vehicles
 v->next = inactive_vehicles;
 v->prev = NULL;
 if(inactive_vehicles)
 inactive_vehicles->prev = v;
 inactive_vehicles = v;
}

// move one active vehicle
// to inactive vehicle list
void vehicle_inactivate(Vehicle *v)
{
 // remove from active list
 if(v->prev)
 v->prev->next = v->next;
 if(v->next)
 v->next->prev = v->prev;
 if(v == active_vehicles)
 active_vehicles = v->next;

 // add to inactive_vehicles
 v->next = inactive_vehicles;
 v->prev = NULL;
 if(inactive_vehicles)
 inactive_vehicles->prev = v;
 inactive_vehicles = v;
}

// move one inactive vehicle
// to active vehicle list
Vehicle *vehicle_activate()
{
 Vehicle *v;

 if(!inactive_vehicles)
 {
 ERROR_ReportError("no more inactive vehicle to activate");
 }

 // remove from inactive vehicle
 v = inactive_vehicles;
 inactive_vehicles = inactive_vehicles->next;
 inactive_vehicles->prev = NULL;

 // add to active_vehicles
 v->next = active_vehicles;
 v->prev = NULL;
 if(active_vehicles)
 active_vehicles->prev = v;

 return v;
}

Vehicle *vehicle_get(int p_vid)
{
 Vehicle *v;

 177

 hash_map <int, Vehicle *> :: iterator itr;

 // get existing one
 itr = vhash_neutral.find(p_vid);

 // new vehicle arrived
 if(itr == vhash_neutral.end())
 v = vehicle_activate();
 else
 {
 v = itr->second;

 // remove from neutral_vehicles
 if(v->prev)
 v->prev->next = v->next;
 if(v->next)
 v->next->prev = v->prev;
 if(v == neutral_vehicles)
 neutral_vehicles = v->next;

 // remove from vhash_neutral
 vhash_neutral.erase(itr);

 // add to active_vehicles
 v->next = active_vehicles;
 v->prev = NULL;
 if(active_vehicles)
 active_vehicles->prev = v;
 active_vehicles = v;
 }

 // add to vhash_active
 vhash_active[p_vid] = v;

 // this is actually new car released
 if(v->appData->running == false)
 {
 v->appData->running = true;
 v->appData->p_vid = p_vid;

 AppHighwayScheduleNextPkt(v->node, v->appData);
 }
 else
 v->appData->p_vid = p_vid;

 return v;
}

// move all vehicles from active_list to neutral_list
void vehicle_start_update()
{
 neutral_vehicles = active_vehicles;
 active_vehicles = NULL;

 VHASH &temp = vhash_neutral;
 vhash_neutral = vhash_active;

 178

 vhash_active = temp;

 vhash_active.clear();
}

void vehicle_end_update()
{
 // for each vehicle in neutral_list
 for(Vehicle *v=neutral_vehicles; v;)
 {
 Vehicle *t = v->next;

 // add to inactive_vehicles
 v->next = inactive_vehicles;
 v->prev = NULL;
 if(inactive_vehicles)
 inactive_vehicles->prev = v;
 inactive_vehicles = v;
 v->appData->running = false;

 v = t;
 }
 neutral_vehicles=NULL;
}

#ifdef HIGHWAY_SHMEMLIB

// -------------------------- Shared Mem Communication API DEFINITIONS -------------------------//
FILE *errout = stdout;

#if 0
// create shared memory region
// returns when it accepts a connection
SHMComm SHMCommCreate(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 shmComm.shmHandle = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // default security
 PAGE_READWRITE, // read/write access
 0, // max. object size
 bufSize, // buffer size
 shmName);

 if (shmComm.shmHandle == NULL)
 {
 fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission

 179

 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout,"Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 memset((char*)shmComm.shmBuf, 0, bufSize);

 *((int *)shmComm.shmBuf) = 0;
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0;

 sprintf(name_buf, "%sMutex", shmName);
 // create mutex
 shmComm.shmMutex = CreateMutex(
 NULL, // default security attributes
 FALSE, // initially not owned
 name_buf);

 if (shmComm.shmMutex == NULL)
 {
 fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 return shmComm;

}

SHMComm SHMCommConnect(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 // !!! infinite loop to open shared memory
 while(NULL == (shmComm.shmHandle = OpenFileMapping(
 FILE_MAP_ALL_ACCESS, // read/write access
 FALSE, // do not inherit the name
 shmName))) Sleep(1000);

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission
 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout, "Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 // !!! another infinite loop to open mutex

 sprintf(name_buf, "%sMutex", shmName);

 180

 while (NULL == (shmComm.shmMutex = OpenMutex(
 MUTEX_ALL_ACCESS, // request full access
 FALSE, // handle not inheritable
 name_buf))) Sleep(1000);

 shmComm.shmSize = bufSize;

 return shmComm;
}
#endif

// create shared memory region
// returns when it accepts a connection
SHMComm SHMCommCreate(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 shmComm.shmHandle = CreateFileMapping(
 INVALID_HANDLE_VALUE, // use paging file
 NULL, // default security
 PAGE_READWRITE, // read/write access
 0, // max. object size
 bufSize, // buffer size
 shmName);

 if (shmComm.shmHandle == NULL)
 {
 fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission
 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout,"Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 memset((char*)shmComm.shmBuf, 0, bufSize);

 *((int *)shmComm.shmBuf) = 0;
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0;

 sprintf(name_buf, "%sMutex", shmName);
 // create mutex
 shmComm.shmMutex = CreateMutex(
 NULL, // default security attributes
 FALSE, // initially not owned
 name_buf);

 181

 if (shmComm.shmMutex == NULL)
 {
 fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 shmComm.shmSize = bufSize;

 return shmComm;

}

SHMComm SHMCommConnect(char *shmName, int bufSize){
 SHMComm shmComm;
 char name_buf[30];

 // !!! infinite loop to open shared memory
 while(NULL == (shmComm.shmHandle = OpenFileMapping(
 FILE_MAP_ALL_ACCESS, // read/write access
 FALSE, // do not inherit the name
 shmName))) Sleep(1000);

 // get a buf pointer after mapping shm
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle, // handle to map object
 FILE_MAP_ALL_ACCESS, // read/write permission
 0, 0, bufSize);
 if (shmComm.shmBuf == NULL)
 {
 fprintf(errout, "Could not map view of file (%d).\n", GetLastError());
 fflush(errout);
 exit(1);
 }

 sprintf(name_buf, "%sMutex", shmName);
 // !!! another infinite loop to open mutex
 while (NULL == (shmComm.shmMutex = OpenMutex(
 MUTEX_ALL_ACCESS, // request full access
 FALSE, // handle not inheritable
 name_buf))) Sleep(1000);

 shmComm.shmSize = bufSize;

 return shmComm;
}

int SHMCommWrite(SHMComm shmComm, char *buf, int _size) {
 DWORD waitResult;
 int head, rear; // head, rear of circular queue
 char *cq; // circular queue
 int cq_size; // circular queue size
 int first_half, second_half;
 int data_size, block_size;

 182

 if(NULL == buf) {
 fprintf(errout, "ERROR - SHMCommWrite: buf is NULL..\n");
 fflush(errout);
 return -1;
 }

 // if data size is not divided by 4, we append some nulls
 if(0 != _size%4) {
 data_size = _size + (4 - _size%4);
 fprintf(errout, "WARNING - SHMCommWrite: size is not divided by 4. \n");
 fflush(errout);
 }
 else
 data_size = _size;

 block_size = data_size + sizeof(int);

LABEL:
 while(1){
 waitResult = WaitForSingleObject(
 shmComm.shmMutex, // handle to mutex
 5000L); // five-second time-out interval
 if(waitResult == WAIT_OBJECT_0)
 break; // got mutex lock
 }

 // now mutual exclusion block starts from here

 // first 4 byte points to the head of circular queue
 // second 4 byte points to the rear of circular queue where new data should be appended
 head = *((int *)shmComm.shmBuf);
 rear = *((int *)(shmComm.shmBuf + sizeof(int)));
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int));
 cq_size = shmComm.shmSize - 2*sizeof(int);

 if(rear < head) {
 fprintf(errout, "TEST1\n");
 fprintf(errout, "rear = %d < head = %d\n", rear, head);
 fflush(errout);

 // check whether new rear would exceed head
 if((rear+block_size)>=head) {
 fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n");
 fflush(errout);

 ReleaseMutex(shmComm.shmMutex);
 exit(1);
 }

 memcpy(cq+rear, &data_size, sizeof(int));

 rear = (rear+block_size)%cq_size;
 }
 else if((rear+block_size) > cq_size){
 fprintf(errout, "TEST2\n");

 183

 fprintf(errout, "head = %d\n", head);
 fprintf(errout, "rear = %d\n", rear);

 fflush(errout);

 // need to wrap around
 // check whether new rear would exceed head
 if((rear + block_size - cq_size) >= head) {
 fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n");
 fflush(errout);
 ReleaseMutex(shmComm.shmMutex);
 goto LABEL;
 }

 memcpy(cq+rear, &data_size, sizeof(int));

 first_half = cq_size - (rear + sizeof(int));
 second_half = _size - first_half;

 memcpy(cq+rear+sizeof(int), buf, first_half);
 memcpy(cq, buf + first_half, second_half);

 rear = (rear + block_size) % cq_size;
 }
 else {
 // nothing to worry about
 memcpy(cq+rear, &data_size, sizeof(int));
 memcpy(cq+rear+sizeof(int), buf, _size);

 rear = (rear + block_size) % cq_size;
 }
 fprintf(errout, "----\n");

 *((int *)(shmComm.shmBuf + sizeof(int))) = rear;

 // mutual exclusion block ends here

 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n0) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;
 }

 return block_size;
}

int SHMCommRead(SHMComm shmComm, char *buf) {
 DWORD waitResult;
 int head, rear; // head, rear of circular queue
 char *cq; // circular queue
 int cq_size; // circular queue size
 int first_half, second_half;
 int size;

 if(NULL == buf) {

 184

 fprintf(errout, "ERROR - SHMCommRead: buf is NULL..\n");
 fflush(errout);
 return -1;
 }

 while(1){
 waitResult = WaitForSingleObject(
 shmComm.shmMutex, // handle to mutex
 5000L); // five-second time-out interval
 if(waitResult== WAIT_OBJECT_0)
 break; // got mutex lock
 }

 // now mutual exclusion block starts from here

 // first 4 byte points to the head of circular queue
 // second 4 byte points to the rear of circular queue where new data should be appended
 head = *((int *)shmComm.shmBuf);
 rear = *((int *)(shmComm.shmBuf + sizeof(int)));
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int));
 cq_size = shmComm.shmSize - 2*sizeof(int);

 if(head == rear) {
 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n2) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;
 }
 return 0;
 }

 size = *((int *)(cq+head));
 if((head + (int)sizeof(int) + size) > cq_size){
 // wrap around
 first_half = cq_size - head - sizeof(int);
 second_half = size - first_half;

 memcpy(buf, cq + head + sizeof(int), first_half);
 memcpy(buf+first_half, cq, second_half);

 head = (head + size + sizeof(int))% cq_size;
 }
 else {
 // nothing to worry about
 memcpy(buf, cq+head+sizeof(int), size);
 head = (head + size + sizeof(int))% cq_size;
 }

 *((int *)shmComm.shmBuf) = head;

 // mutual exclusion block ends here

 if (! ReleaseMutex(shmComm.shmMutex)) {
 fprintf(errout, "\n1) Error for release (%d)\n", GetLastError());
 fflush(errout);
 return -1;

 185

 }

 return size;
}

void SHMCommClose(SHMComm shmComm){
 // unmap shaered memory
 UnmapViewOfFile(shmComm.shmBuf);

 CloseHandle(shmComm.shmHandle);
 // end of shared memory
}

#endif

 186

Abbreviations

ACK Acknowledgement

AP Access Point

API Application Programming Interface

CDMA Code Division Multiple Access

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

CSMA/CD Carrier Sense Multiple Access / Collision Detect

CTS Clear-To-Send

DARPA Defense Advanced Research Projects Agency

DCF Distributed Coordination Function

DGPS Differential Global Positioning System

DIFS DCF Inter-Frame Spacing

DOLPHIN Dedicated Omni–purpose inter–vehicle communication Linkage

Protocol for Highway automation

DSRC Dedicated Short Range Communications

E2E End–to–End

ECE Electrical and Computer Engineering

FDMA Frequency Division Multiple Access

FHSS Frequency-Hopping Spread Spectrum

FHWA Federal Highway Administration

GPS Global Positioning System

IEEE Institute of Electrical and Electronic Engineering

 187

IP Internet Protocol

ISM Industrial/Scientific/Medical

ISO International Organization for Standardization

ISR Institutes for Systems Research

ITS Intelligent Transportation Systems

IVC Inter–Vehicle Communications

MAC Medium Access Control

MANET Mobile ad hoc network

MOP Measures of Performance

OBU Onboard Unit

OSI Open Systems Interconnection

PCF Point Coordination Function

PDA Personal Digital Assistants

PRNET Packet Radio network

RMDP Received Message-Dependent Protocol

RSU Roadside Unit

RTE Real Time Extension

RTS Request-To-Send

SIG Special Interest Group

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TMC Traffic Monitoring Center

UDP User Datagram Protocol

 188

US DOT U.S. Department of Transportation

VANET Vehicular ad hoc network

VII Vehicle Infrastructure Integration

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Networks

 189

References

1. Abramson, N. (1970). The ALOHA system–Another alternative for computer

communications. Proceedings of the AFIPS Conference, Fall Joint Computer

Conference, 37, pp. 281-285.

2. Abramson, N. (1985). Development of the ALOHANET. IEEE Transactions on

Information Theory, 31(2), pp. 119-123.

3. AIMSUM Homepage. (2007). Transport Simulation Systems, Spain.

www.aimsun.com, accessed October 29, 2007.

4. Al-Deek, H., and Chandra, C. (2004). New algorithms for filtering and imputation

of real-time and archived dual-loop detector data in I-4 data warehouse. In

Transportation Research Record: Journal of the Transportation Research Board,

No. 1867, TRB, National Research Council, Washington, D.C., pp. 116-126.

5. Avila, A., Korkmaz, G., Liu,Y., Teh, H., Ekici, E., Ozguner, F., Ozguner, U.,

Redmill, K., Takeshita, O., Tokuda, K., Hamaguchi, M., Nakabayashi, S., and

Tsutsui, H. (2005). A complete simulator architecture for inter-vehicle

communication based intersection warning system. Proceedings of the 8th IEEE

Conference on ITS, Vienna, Austria, pp. 461–466.

6. Blum, J., Eskandarian, A., and Hoffman, L. (2004). Challenges of intervehicle ad

hoc networks. IEEE Transactions on ITS, 5(4), pp. 347–351.

7. Bogenberger, R., and Kosch, T. (2002). Ad-hoc peer-to-peer communication -

Webs on the street. Proceedings of the 9th World Congress on ITS, Chicago,

Illinois.

 190

8. Broadcom (2006). 802.11n: Next-generation wireless LAN technology. White

paper, Broadcom Corporation, Irvine, CA.

www.broadcom.com/docs/WLAN/802_11n-WP100-R.pdf, accessed October 29,

2007.

9. Chawathe, S. S. (2006). Inter-vehicle data dissemination in sparse equipped traffic.

Proceedings of the 9th IEEE Conference on ITS, Toronto, Canada, pp. 273–280.

10. Chen, C., Kwon, J., Rice, J., Skabardonis, A., and Varaiya, P. (2003). Detecting

errors and imputing missing data for single-loop surveillance systems. In

Transportation Research Record: Journal of the Transportation Research Board,

No. 1855, TRB, National Research Council, Washington, D.C., pp. 160-167.

11. Chen, M., and Chien, S. I. J. (2000). Determinating the number of probe vehicles

for freeway travel time estimation using microscopic simulation. In

Transportation Research Record: Journal of the Transportation Research Board,

No. 1719, TRB, National Research Council, Washington D.C., pp. 61–68.

12. Chen, Z., Kung, H., and Vlah, D. (2001). Ad hoc relay wireless networks over

moving vehicles on highways. Proceedings of the 2nd ACM Symposium on

Mobile Ad Hoc Networking & Computing, Long beach, California, pp. 247-250.

13. Chisalita, L., and Shahmehri, N. (2002). A peer-to-peer approach to vehicular

communication for the support of traffic safety application. Proceedings of the 5th

IEEE Conference on ITS, Singapore, pp. 336-341.

14. Corsim Homepage. (2006). Federal Highway Administration, Washington D. C.

ops.fhwa.dot.gov/trafficanalysistools/corsim.htm, accessed October 29, 2007.

 191

15. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.

Numerische Mathematik, 1, Springer Berlin, Heidelberg, Germany. pp. 269–271.

16. Dogan, A., Korkmaz, G., Liu, Y., Ozguner, F., Ozguner, U., Redmill, K.,

Takeshita, O., and Tokuda, K. (2004). Evaluation of intersection collision

warning system using an inter-vehicle communication simulator. Proceedings of

the 7th IEEE Conference on ITS, Washington, D.C., pp. 1103-1108.

17. FleetNet (2002). FleetNet - Internet on the road. www.et2.tu-

harburg.de/fleetnet/pdf/FleetNet_Flyer.pdf, accessed October 29, 2007.

18. Frodigh, M., Johansson, P., and Larsson, P. (2000). Wireless ad hoc networking:

The art of networking without a network. Ericsson Review, 4, pp. 248-263.

19. GloMoSim Homepage. (2001). University of California at Los Angeles, UCLA

Parallel Computing Laboratory, California. pcl.cs.ucla.edu/projects/glomosim,

accessed October 29, 2007.

20. Goel, S., Imielinski, T., and Ozbay, K. (2004). Ascertaining viability of WiFi

based vehicle-to-vehicle network for traffic information dissemination.

Proceedings of the 7th IEEE Conference on ITS, Washington, D.C., pp. 1086-

1091.

21. Gold, D., Turner, S., Gajewski, B., and Spiegelman, C. (2001). Imputing missing

values in ITS data archives for intervals under 5 minutes. Proceedings of the 80th

TRB Annual Meeting, Washington, D.C.

22. Hasegawa, T., Mizui, K., Fujii, H., and Seki, K. (2004). A concept reference

model for inter-vehicle communications (Report 2). Proceedings of the 7th IEEE

Conference on ITS, Washington, D.C., pp. 810-815.

 192

23. ITS America. (2005). Primer on Vehicle-Infrastructure Integration. VII White

Paper Series, www.itsa.org/itsa/files/pdf/VIIPrimer.pdf, accessed October 29,

2007.

24. Jubin, J., and Tornow, J. D. (1987). The DARPA packet radio network protocol.

Proceedings of the IEEE, 75(1), pp. 21-32.

25. Kim, H., and Lovell, D. (2006a). Determining Spatio-Temporal Limits of Traffic

Information for Imputation in Vehicular Ad Hoc Networks. Proceedings of the

13th World Congress on ITS, London, United Kingdom.

26. Kim, H., and Lovell, D. (2006b). Traffic information imputation using a linear

model in vehicular ad hoc networks. Proceedings of the 8th IEEE Conference on

ITS, Toronto, Canada, pp. 1406-1411.

27. Kim, H., Lovell, D., and Kim, T. (2007a). Reliable Range of Individual Travel

Time Information in Vehicular Ad hoc Networks. Proceedings of the 86th TRB

Annual Meeting, Washington D.C., USA.

28. Kim, H., Lovell, D., Kang, Y., and Kim, W. (2007b). Data Quantity for Travel

Time Estimation in Vehicular Ad Hoc Networks. Proceedings of the 66th IEEE

Conference on Vehicular Technology, Baltimore, USA.

29. Leung, K., K, Y., Dao, T., Clark, C. M., and Huissoon, J. P. (2006). Development

of a microscopic traffic simulator for inter-vehicle communication application

research. Proceedings of the 9th IEEE Conference on ITS, Toronto, Canada, pp.

1286–1291.

 193

30. Little, D. C. T., and Agarwal, A. (2005). An information propagation scheme for

VANETs. Proceedings of the 8th IEEE Conference on ITS, Vienna, Austria, pp.

155–160.

31. Liu, Y., F. Dion, and Biswas, S. (2005). Dedicated Short-range wireless

communications for intelligent transportation system applications – state of the

art. In Transportation Research Record: Journal of the Transportation Research

Board, No. 1910, TRB, National Research Council, Washington, D.C., pp.29–37.

32. Metcalfe, R. (1973). Packet communication. Ph.D. Dissertation, MIT, Cambridge,

Massachusetts.

33. Murthy, C., and Manoj, B (2004). Ad hoc wireless networks: architectures and

protocols. Prentice Hall, New Jersey, USA.

34. Nadeem, T., Dashtinezhad, S., and Liao, C. (2004). Traffic view: A scalable

traffic monitoring system. Proceedings of the IEEE International Conference on

Mobile Data Management, Berkeley, California, pp. 1-14.

35. Newell, G. (1993). A simplified theory of kinematic waves in highway traffic: I

general theory, II queuing at freeway bottlenecks and III multi-destination flows.

Transportation Research B, 27(4), pp. 281-313.

36. NS-2 Homepage. (2007).University of Southern California, Information Sciences

Institute, California. www.isi.edu/nsnam/ns, accessed October 29, 2007.

37. OPNET Homepage. (2007). OPNET Technologies, Inc., Maryland.

www.opnet.com, accessed October 9, 2007.

 194

38. Ott, J., and Kutscher, D. (2004). Drive-thru Internet: IEEE 802.11b for

"automobile" users. Proceedings of the 23rd Annual joint Conference of the IEEE

Computer and Communications Societies, Hong Kong, China.

39. Paramics Homepage. (2007). Quadstone Paramics, United Kingdom. paramics-

online.com, accessed October 29, 2007.

40. QualNet Homepage. (2007). Scalable Network Technologies, California.

www.scalable-networks.com, accessed October 29, 2007.

41. Ramanathan, R., and Redi, J. (2002). A brief overview of ad hoc networks:

challenges and directions. IEEE Communications Magazine, 50th Anniversary

Commemorative Issue, pp. 20-22.

42. Saito, M., Tsukamoto, J., Umedu, T., and Higashino, T. (2007). Design and

Evaluation of Intervehicle Dissemination Protocol for Propagation of Preceding

Traffic Information. IEEE Transactions on ITS, 8(3), pp. 379-390.

43. Sawant, H., Tan, J., Yang, Q., and Wang, Q. (2004). Using Bluetooth and sensor

networks for Intelligent Transportation Systems. Proceedings of the 7th IEEE

Conference on ITS, Washington, D.C., pp. 767-772.

44. Smith, B., Scherer, W., and Conklin, J., (2003). Exploring imputation techniques

for missing data in Transportation Management Systems. In Transportation

Research Record: Journal of the Transportation Research Board, No. 1836, TRB,

National Research Council, Washington, D.C., pp. 132-142.

45. Srinivasan, K. K., and Jovanis, P. P. (1996). Determination of the number of

probe vehicles required for reliable travel time measurement in urban network.

 195

Transportation Research Record 1537, TRB, National Research Council,

Washington D.C., pp. 15–22.

46. Tan, G., Miu, A., Guttag, J., and Balakrishnan, H. (2001). Forming scatternets

from Bluetooth personal area networks. MIT Technical Report, MIT-LCS-TR-

826, Cambridge, Massachusetts.

47. Tokuda, K., Akiyama, M., and Fujii H. (2000). DOLPHIN for inter-vehicle

communications system. Proceedings of the IEEE Intelligent Vehicles

Symposium 2000, Dearborn, Michigan, pp. 504-509.

48. Toppen, A., and Wunderlich, K. (2004). Travel time data collection for

measurement of advanced traveler information systems accuracy. Proceedings of

the14th ITS America Annual Meeting, San Antonio, Texas.

49. Ueki, J., Mori, J., Nakamura, Y., Horii, Y., and Okada, H. (2004). Development

of vehicular-collision avoidance support system by inter-vehicle communications

–VCASS –. Proceedings of the 59th IEEE Conference on Vehicular Technology

Spring, 5, Milan, Italy, pp. 2940–2945.

50. US DOT (2007). ITS joint program office home. www.its.dot.gov, accessed

October 29, 2007.

51. VISSIM Homepage. (2007). Planung Transport Verkehr AG, Germany.

www.english.ptv.de/cgi-bin/traffic/traf_vissim.pl, accessed October 29, 2007.

52. Wang, L., Wang, C., Shen, X., and Fan, Y. (2005). Probe vehicle sampling for

real-time traffic data collection. Proceedings of the 8th IEEE Conference on ITS,

Vienna, Austria, pp. 886-888.

 196

53. Wang, S. (2004). On the intermittence of routing paths in vehicle-formed mobile

ad hoc networks on highways. Proceedings of the 7th IEEE Conference on ITS,

Washington, D.C., pp. 803-809.

54. Werner, J. (2004). More details emerge about the VII effort. Newsletter of the ITS

cooperative deployment network,

www.ntoctalks.com/icdn/vii_details_itsa04.html, accessed October 29, 2007.

55. Werner, J. (2005). Details of the VII initiative’s ‘Work in Progress’ provided at

public meeting. www.ntoctalks.com/icdn/vii_pubmtg_v1.php, accessed October

29, 2007.

56. Wischhof, L., Ebner, A., and Rohling, H. (2005). Information dissemination in

self-organizing intervehicle networks. IEEE Transactions on ITS, 6(1), pp. 90-

101.

57. Wu, H. (2005). Analysis and design of vehiclualr networks. Ph. D. dissertation,

Georgia Institute of Technology, Atlanta, US.

58. Wu, H., Lee, J., Hunter, M., Fujimoto, R., Guensler, R., and Ko, J. (2005).

Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta,

Georgia, I-75 corridor. In Transportation Research Record: Journal of the

Transportation Research Board, No. 1910, TRB, National Research Council,

Washington, D.C., pp.82–89.

59. Xu, H., and Barth, M. (2006).Travel time estimation techniques for traffic

information systems based on intervehicle communications. In Transportation

Research Record: Journal of the Transportation Research Board, No. 1944, TRB,

National Research Council, Washington, D.C., pp.72–81.

60. Xu, Q., Mak, T., Ko, J., and Sengupta, R. (2004). Layer-2 protocol design for

vehicle safety communications in dedicated short range communications

 197

spectrum. Proceedings of the 7th IEEE Conference on ITS, Washington, D.C., pp.

1092-1097.

61. Yang, X. (2003). Assessment a self-organizing distributed traffic information

system: modeling and simulation. Ph. D. dissertation, University of California,

Irvine, US.

62. Yin, J., Elbatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan, H., and Talty, T.

(2004). Performance evaluation of safety applications over DSRC vehicular ad

hoc networks. Proceedings of the 1st ACM Workshop on Vehicular Ad hoc

Networks, Philadelphia, Pennsylvania, pp. 1–9.

63. Ziliaskopoulos, A. and Zhang, J. (2003). A zero public infrastructure vehicle

based traffic information system. Proceedings of the 82nd TRB Annual Meeting,

Washington, D.C.

