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The ongoing efforts to apply advanced technologies to help solve transportation 

problems advanced the growing trend of integrating mobile wireless communications 

into transportation systems.  In particular, vehicular ad hoc networks (VANETs) 

allow vehicles to constitute a decentralized traffic information system on roadways 

and to share their own information.  This research focused on the development of an 

integrated transportation and communication simulation framework to build a more 

realistic environment with which to study VANETs, as compared to previous studies.  

This research implemented a VANET-based information model into an integrated 

transportation and communication simulation framework in which these independent 

simulation tools were tightly coupled and finely synchronized.  A traffic information 

system as a VANET application was built and demonstrated based on the simulation 

framework developed in this research.  In this system, vehicles record their own 

travel time data, share these data via an ad hoc network, and reroute at split sections 



  

based on stored travel time data.  Disseminated speeds of traffic information via 

broadcast on a real roadway network were obtained.  In this research, Traffic 

information speeds were approximately between the road speed limit in a low traffic 

density - in which case they were mostly delivered by vehicles traveling on the 

opposite directions - and half of the transmission range (250/2 meter) per second in a 

high traffic density, which means they were delivered by vehicles traveling in the 

same direction.  Successful dynamic routing based on stored travel time data was 

demonstrated with and without an incident in this framework.  At the both cases, the 

benefits from dynamic routing were shown even in the low market penetration.  It is 

believed that a wide range of VANET applications can be designed and assessed 

using methodologies influenced by and contributed to by the simulation framework 

and other methods developed in this dissertation.   

 



  

 

 
 
 
 
 

A SIMULATION FRAMEWORK FOR TRAFFIC INFORMATION 

DISSEMINATION IN UBIQUITOUS VEHICULAR AD HOC NETWORKS 

 
 
 

By 
 
 

Hyoungsoo Kim 
 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 

Advisory Committee: 
 

Associate Professor David J. Lovell, Chair 
Professor Gang-Len Chang 
Associate Professor Richard J. La 
Professor Sung W. Lee 
Fellow Karl E. Wunderlich,  Noblis 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Hyoungsoo Kim 

2007 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

ii 
 

Acknowledgements 

Sincere appreciation is extended to my advisor, Professor David J. Lovell for 

supervising this dissertation; his time, energy and support were invaluable.  He was 

my academic advisor and, sometimes, an American friend.  His patient guidance and 

inspiring advice help me through many difficult moments. Very special thanks to my 

dissertation committee members, Dr. Gang-Len Chang, Dr. Richard J. La, Dr. Sung 

W. Lee, and Dr. Karl E. Wunderlich, for their invaluable advices and interests in my 

work.  I also thank Dr. Paul Schonfeld for always supporting students. 

I thank Quadstone Paramics for supporting Paramics software and Scalable 

Network Technologies for supporting QualNet software for my research. I cannot 

imagine how I could finish my dissertation without their supports. 

During my entire period to study, I have been able to meet many civil 

engineering colleagues from various countries and discuss not only academic issues 

but also many other issues with them.  It was lucky to me that I met them, and I thank 

them for being my friends.  

Korean friends in our department are more than friends.  When I started my study, 

they were with me, and when I finish my study, they are still with me.  They are like 

brothers and sisters to me.  I always feel I am in a big family with them.  I thank them 

for helping and supporting me to study.  

It was a great time that I was in the Kostam (Korean Student Tennis Associate at 

the University of Maryland).  The Kostam made me healthy mentally as well as 

physically.  I always waited for the Kostam meeting on Fridays, and I was recharged 

at that meeting.  I met many wonderful friends through the Kostam, who would be 



 

iii 
 

my fortunes in my life.  I thank the Kostam for giving me the chance to meet them, 

and I love the Kostamians. 

I obtained two friends at the end of my study: Dr. Minho Shin and Dr. Beomseok 

Nam.  Without them, I could not have finished my dissertation.  It was a great time to 

discuss and work with them.  I thank them for their enthusiastic supports. 

Sometimes, I think about “family.”  Unfortunately, there is no word in the world 

that I can describe family’s love, endless, unconditional, and unchangeable love.  Still 

not enough to verbalize…  This dissertation is dedicated to my family that I always 

love.



 

iv 
 

Table of Contents 
 
 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Background......................................................................................................... 1 

1.2 Research objectives............................................................................................. 5 

1.3 Dissertation organization .................................................................................... 6 

Chapter 2: Related Work .............................................................................................. 8 

2.1 Ad hoc networks ................................................................................................. 8 
2.1.1  The ALOHA network ................................................................................. 8 
2.1.2  CSMA/CD, IEEE 802.3, and the Ethernet................................................ 10 
2.1.3  CSMA/CA, IEEE 802.11, and Wi-Fi........................................................ 13 
2.1.4  Bluetooth (IEEE 802.15.1) ....................................................................... 18 

2.2 Vehicular ad hoc networks................................................................................ 19 
2.2.1  DOLPHIN................................................................................................. 20 
2.2.2  Traffic Safety ............................................................................................ 21 
2.2.3  Traffic Information Dissemination ........................................................... 24 
2.2.4  Vehicle-Infrastructure Integration ............................................................ 30 

2.3 Traffic information imputation ......................................................................... 33 

2.4 Discussion ......................................................................................................... 36 

Chapter 3: Traffic Information Characteristics........................................................... 38 

3.1 Individual travel time characteristics ................................................................ 38 
3.1.1  Experiment for individual travel time....................................................... 39 
3.1.2  Reliability of individual travel time information ...................................... 43 
3.1.3  Acceptance probability ............................................................................. 51 

3.2 Travel time information relevance.................................................................... 56 
3.2.1  Experiment for spatial and temporal relevance ........................................ 58 
3.2.2  Spatial and temporal relevance ................................................................. 61 
3.2.3  Linear model ............................................................................................. 66 

3.3 Discussion ......................................................................................................... 72 

Chapter 4: Simulation Framework.............................................................................. 74 

4.1 Simulation design.............................................................................................. 75 
4.1.1  Information model .................................................................................... 76 
4.1.2  Simulation framework design ................................................................... 79 



 

v 
 

4.2 Implementation ................................................................................................. 82 
4.2.1  Simulation tools ........................................................................................ 82 
4.2.2  Mobility management ............................................................................... 83 
4.2.3  Time management..................................................................................... 85 
4.2.4  Intervehicle communication...................................................................... 88 

4.3 Discussion ......................................................................................................... 89 

Chapter 5: Traffic Information System Application................................................... 91 

5.1 Traffic information system configuration......................................................... 91 

5.2 Simulation model architecture .......................................................................... 96 
5.2.1  Vehicle release and travel time generation ............................................... 97 
5.2.2  Data dissemination.................................................................................... 99 
5.2.3  Data interpretation .................................................................................. 101 
5.2.4  Dynamic routing ..................................................................................... 102 

Chapter 6: Case Study............................................................................................... 104 

6.1 Simulation environment.................................................................................. 104 

6.2 Framework performance................................................................................. 107 

6.3 Traffic information speed ............................................................................... 111 

6.4 Dynamic routing performance ........................................................................ 113 

6.5 Discussion ....................................................................................................... 117 

Chapter 7: Conclusion............................................................................................... 118 

7.1 Summary of Findings...................................................................................... 118 

7.2 Contribution .................................................................................................... 120 

Appendix A  Paramics API code .............................................................................. 123 

Appendix B  QualNet code ....................................................................................... 123 

Abbreviations............................................................................................................ 186 

References................................................................................................................. 189 

 



 

vi 
 

List of Tables 
 
 
TABLE 2-1  Near-Range wireless data communication standards ............................ 15 

TABLE 3-1  General observations for entire individual data set ............................... 42 

TABLE 3-2  Traffic condition states .......................................................................... 50 

TABLE 3-3  General observations ............................................................................. 70 

TABLE 6-1  Simulation parameters ......................................................................... 107 

 



 

vii 
 

List of Figures 
 
 
FIGURE 1-1  Traffic safety application ....................................................................... 2 

FIGURE 1-2  Traffic information dissemination.......................................................... 3 

FIGURE 2-1  US DOT’s VII Architecture ................................................................. 31 

FIGURE 2-2  VII timeline .......................................................................................... 32 

FIGURE 3-1  Illustration of a datum set  for vehicle i ............................................... 40 

FIGURE 3-2  Experiment site..................................................................................... 41 

FIGURE 3-3  Entire individual travel time data set ................................................... 44 

FIGURE 3-4  Quantity of individual data................................................................... 45 

FIGURE 3-5  Travel time means ................................................................................ 45 

FIGURE 3-6  Standard deviations of travel time........................................................ 46 

FIGURE 3-7  Travel time means vs. number of data ................................................. 47 

FIGURE 3-8  Travel time means vs. standard deviation ............................................ 47 

FIGURE 3-9  Individual vs. travel time means .......................................................... 48 

FIGURE 3-10  Individual data vs. standard deviations .............................................. 49 

FIGURE 3-11  Statistical minimum sample size........................................................ 53 

FIGURE 3-12  Acceptance probability....................................................................... 54 

FIGURE 3-13  Statistical minimum sample size and reversed Acceptance Probability

..................................................................................................................................... 55 

FIGURE 3-14  Concept for spatial and temporal relevance of data ........................... 57 

FIGURE 3-15   Simulation network ........................................................................... 58 

FIGURE 3-16  Speed and density on target link and neighboring links .................... 60 

FIGURE 3-17  Two-hour correlation with speed on target link z .............................. 62 

FIGURE 3-18  Correlation with speed on target link z for 15 minutes and density... 63 

FIGURE 3-19  Temporal relevance............................................................................ 65 

FIGURE 3-20  Spatial relevance example.................................................................. 66 

FIGURE 3-21  Concept of the excess adjustment ...................................................... 68 

FIGURE 3-22  A sample of data set ........................................................................... 69 

FIGURE 3-23  Network structure............................................................................... 70 



 

viii 
 

FIGURE 3-24  Estimated speed and actual speed ...................................................... 71 

FIGURE 4-1  Information model for VANETs.......................................................... 77 

FIGURE 4-2  Framework implementation ................................................................. 81 

FIGURE 4-3  Movement synchronization and expected error ................................... 84 

FIGURE 4-4  Packet format from Paramics to QualNet ............................................ 85 

FIGURE 4-5  Two cases by different simulation time ............................................... 86 

FIGURE 4-6  Synchronization of Paramics and QualNet .......................................... 87 

FIGURE 4-7  Packet format from QualNet to Paramics ............................................ 89 

FIGURE 5-1  Traffic information system based on a VANET .................................. 92 

FIGURE 5-2  Example of map-based travel time generation..................................... 93 

FIGURE 5-3  Example of travel time data exchange ................................................. 94 

FIGURE 5-4  Internal configuration of onboard units................................................ 95 

FIGURE 5-5  Traffic information system application................................................ 96 

FIGURE 5-6  Vehicle userdata structure .................................................................... 98 

FIGURE 5-7  Travel time data packet structure ......................................................... 99 

FIGURE 6-1  Simulated road network ..................................................................... 105 

FIGURE 6-2  Traffic demand levels......................................................................... 106 

FIGURE 6-3  Computation time............................................................................... 108 

FIGURE 6-4  Computer memory usage ................................................................... 108 

FIGURE 6-5  Total data exchange between simulators............................................ 109 

FIGURE 6-6  Maximum data exchange between simulators ................................... 110 

FIGURE 6-7  Broadcast delivery performance ........................................................ 111 

FIGURE 6-8  Average information dissemination ................................................... 112 

FIGURE 6-9  Dynamic routing performance by market penetration ....................... 113 

FIGURE 6-10  Dynamic routing performance by traffic demand............................ 114 

FIGURE 6-11  Incident scenario .............................................................................. 115 

FIGURE 6-12  Dynamic routing performance under incident by market penetration

................................................................................................................................... 116 

FIGURE 6-13  Dynamic routing performance under incident by traffic demand.... 116 

 



 

 1 
 

Chapter 1: Introduction 
 

This dissertation focuses on a traffic information system based on ad hoc 

networks.  This chapter introduces ad hoc networks as a novel approach to improve 

traffic mobility and safety, and describes the limitations of previous studies as the 

background of the dissertation.  The objectives of this research and a brief description 

of the remaining chapters of the dissertation follow the background. 

 

1.1 Background  

Many efforts have been made to mitigate traffic congestion and accidents by 

applying advanced technologies to transportation systems.  Since the early 1990s, the 

U.S. Department of Transportation (US DOT) has conducted the Intelligent 

Transportation Systems (ITS) program in order to improve transportation safety, 

relieve traffic congestion and enhance infrastructure productivity.  Intelligent 

Transportation Systems encompass a variety of advanced electronics technologies 

such as communications, sensing, and control (US DOT, 2007). 

One novel approach to improve transportation systems is to take advantage of 

wireless communication technology such as ad hoc networks1.  An ad hoc network is 

defined as a collection of devices (nodes) that wish to communicate, but that have no 

fixed infrastructure available.  They have no pre–determined organization of available 

links (Ramanathan and Redi, 2002).  If this technology is, in particular, advanced into 

                                                 
1 It should be noted that the commonly accepted usage of the phrase “ad hoc network” originates 

from the colloquial interpretation of ad hoc as meaning without formal organization.  The phrase “ad 
hoc” really means “for a specific purpose” which is not the idea captured by ad hoc networks.   
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the traveling vehicle fleet, vehicles on roadways would create a mobile ad hoc 

network which would then enable traveling vehicles to communicate with each other 

about surrounding traffic states through inter-vehicle communication; in this context, 

the system is called Vehicular Ad hoc Networks (VANETs).  Traffic states 

(information) shared could be travel time and speed, accident locations, unexpected 

weather, obstacle warning, and emergency notification.  The recent interest in 

VANETs has led to a flurry of application ideas for transportation systems. 

One specific application area of VANETs is improving transportation safety.  

The general idea of VANET’s safety applications is to extend the range of vehicles’ 

“awareness” in curve sections or in intersection areas.  Under such schemes, vehicles 

can learn about dangerous situations ahead of time and slow down to avoid collision.  

Figure 1-1 shows simple examples of collision avoidance schemes (FleetNet, 2002). 

 

 

FIGURE 1-1  Traffic safety application 

 

The composition of collision avoidance system on vehicular ad hoc networks 

does not differ significantly among different groups conducting that research.  In each 

b) Rear-end collision warning a) Intersection collision warning

wireless communication 
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case, a vehicle’s location from GPS (Global Positioning System) is broadcast on a 

shared wireless channel at potential accident areas such as intersections and curved 

sections.  All vehicles equipped with communication devices in the vicinity or the 

original message can then determine the location of the source vehicle (Avila et al., 

2005, Chisalita and Shahmehri, 2002, Dogan et al., 2004, Ueki et al. 2004, Xu et al., 

2004, and Yin et al., 2004). 

Figure 1-2 illustrates traffic information dissemination, another application of 

VANETs.  Vehicles on roadways create a VANET and communicate with each other 

about traffic states so that vehicles recognize traffic situations around them.  Each 

vehicle records its own travel experiences over various links, and transmits its 

experiences to other vehicles so that they can develop an overall understanding of the 

congestion picture (Chen et al., 2001, Bogenberger and Kosch, 2002, Blum et al., 

2004, Hasegawa et al., 2004, Little and Agarwal, 2005, Liu et al., 2005, Chawathe, 

2006, and Leung et al., 2006). 

 

FIGURE 1-2  Traffic information dissemination 

 

 

Equipped vehicle 
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Because a working system has not been deployed, it is hard to conduct real 

experiments for VANET research due to its high cost in time and expenses compared 

to computer simulation.  Although computer simulation is popular for its low cost in 

both time and expenses, it still confronts a major challenge in terms of reliability, 

which in this context means the degree to which it replicates the real system it is 

intended as a proxy for.  Simulation of VANET-based transportation systems requires 

realistic microscopic models of both a transportation system and a wireless 

communication network.   

In order to simulate practical vehicle movements such as car following, lane 

changing, and shock waves, numerous microscopic traffic simulators have been 

developed and employed (Yang, 2003, Goel et al., 2004, Wischhof et al., 2005, Wu, 

2005, Xu and Barth, 2006, and Saito et al., 2007).  Corsim (Corsim homepage, 2007), 

Paramics (Paramics homepage, 2007), and VISSIM (VISSIM homepage, 2007) are 

well-known traffic simulation tools that include the logical models mentioned above.  

These transportation-oriented tools replicate various traffic circumstances as vehicles 

move on real roadways.  In wireless communications simulation, wireless 

characteristics such as path loss, fading, interference, and communication collision 

should be considered.  These are related to the physical layer and the Medium Access 

Control (MAC) layer of the Open Systems Interconnection (OSI) reference model 

which the International Organization for Standardization (ISO) proposed regarding a 

unique set of functions and responsibilities in order to standardize the protocols used 

in the various communication network layers. 
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To date, however, no single simulator alone can simulate a VANET-based 

transportation system.  Most prior works on VANETs ignored one or the other part of 

the simulations (Goel et al., 2004, Wischhof et al., 2005, Yang, 2003) or attempted to 

combine two separate simulators, one for transportation and the other for 

communication (Saito et al., 2007, Wu, 2005, and Xu and Barth, 2006).  Prior 

attempts to combine two simulators have critical limitations on the practical 

complexity of experiments which can be conducted, particularly in applications such 

as dynamic routing, and these problems should be overcome for a viable simulation 

experiment.   That is one of the practical contributions of this dissertation. 

 

1.2 Research objectives 

This research focuses on a VANET-based traffic information system.  A major 

goal of this research is to develop a simulation framework for VANET-based traffic 

information systems in which a transportation simulator and a communication 

simulator are tightly coupled and finely synchronized.  In order to achieve this goal, 

the following objectives will be pursued: 

 

• Review state-of-the-art research related to VANETs.  In particular, we focus 

more on simulation efforts for VANET-based traffic information systems and 

clarify the critical limitations of previous research (Chapter 2). 

• Investigate the characteristics of traffic information which vehicles should 

treat in VANET-based traffic information systems.  Individual and aggregated 
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traffic information, and temporal and spatial relevance of traffic information 

are discussed (Chapter 3). 

• Design and implement a simulation framework for transportation systems 

based on VANETs.  It is designed in accordance with the information model 

developed in Chapter 4.  It models how information from a transportation 

system is collected and shared, and how vehicles might react to the data, 

depending on the application in question.  Those results are fed back into the 

transportation system.  In the implementation, a transportation simulator and a 

communication simulator are tightly coupled and finely synchronized 

(Chapter 4). 

• Build and evaluate the simulation framework for a VANET-based traffic 

information system.  The performance for the framework and the traffic 

information system are discussed.  Case studies are used both to highlight the 

properties of the conjoined simulation modeling tool, as well as to illustrate 

certain system aspects of the information that can be collected in this manner.  

In particular, we highlight how the new simulation environment produces 

superior results for some questions that have been asked and answered 

elsewhere in the literature (Chapter 5). 

 

1.3 Dissertation organization 

This dissertation is organized as follows.  Chapter 2 contains a review of a variety of 

results from the literature on ad hoc networks and vehicular ad hoc networks.  To 

contrast with the goals of this dissertation, particular attention is paid to traffic 
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information systems based on a simulation framework.  Chapter 3 discusses details of 

the traffic information which vehicles should collect and share in a traffic information 

system based on a VANET.  Individual traffic information is compared with 

aggregated information as a proxy of a traffic condition, and temporal and spatial 

relevance of traffic information are described.  In Chapter 4, the simulation 

framework is designed and implemented.  Based on the simulation framework 

designed, a transportation simulator and a communication simulator used in this 

research are introduced, and it is described how these simulators are synchronized in 

terms of time and mobility.  As a case study, Chapter 5 shows the application of the 

simulation framework implemented for a traffic information system.  Simulation 

experiments are designed and evaluated in order to examine the performance for this 

simulation framework.  Chapter 6 concludes the entire research. 
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Chapter 2: Related Work 

This chapter contains a review of related research, and provides some 

background material on networking protocols, particularly those employed for the 

latest incarnations of mobile ad hoc networks.  The section begins with a review of ad 

hoc networks in general, followed by specific applications of ad hoc networks for 

vehicular populations.  The section concludes with a set of findings from the existing 

literature that highlight the context and importance of the studies for this dissertation. 

 

2.1 Ad hoc networks  

This section describes some important milestones in the development of ad hoc 

networks, and gives some technical details about the protocols involved.  In part, this 

is intended to be simply informative.  It should be noted, however, that the traffic 

applications proposed for this research have data characteristics that differ from 

traditional information being disseminated in ad hoc networks in very important 

ways, and these suggest some modifications to protocols that have the potential to 

make vehicular ad hoc networks very efficient and useful for traffic modeling 

purposes. 

 

2.1.1  The ALOHA network 

It is widely acknowledged that the first wireless ad hoc network was the ALOHA 

system developed in the late 1960’s and early 1970’s in Hawaii under the leadership 

of Norman Abramson (see for example Abramson, 1985).  The purpose at the time 
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was to connect computers in academic buildings on the various Hawaiian Islands 

without using the existing telephone network.  Some of the most important arguments 

for ad hoc networks in certain situations were developed as part of this project.  For 

this reason, the ALOHA system is described in the following paragraphs in some 

detail. 

The ALOHA researchers recognized that networks whose nodes wanted to 

communicate only randomly and intermittently would not be well–served by highly 

regulated multiple access protocols such as frequency division (FDMA) or time 

division (TDMA).  The deterministic resource allocation schemes inherent in these 

protocols meant that significant communication opportunities would be wasted a lot 

of the time, particularly if communication loads were skewed across nodes.  Instead, 

the ALOHA system pioneered what would eventually become known as “packet 

communication” (the popularity of the term is due in part to the dissertation by 

Metcalfe, 1973, who went on to be a co–inventor of Ethernet). 

With ALOHA, any node with information to transmit breaks it up into packets 

and transmits these individually.  Each packet concludes with a checksum, so the 

receiving node can tell (with very high but not perfect reliability) if the information 

has been corrupted.  In order for any single node not to monopolize the carrier, rules 

must be in place to restrict the length of packets and to enforce a minimum “quiet 

time” between packets for any individual node. 
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2.1.2 CSMA/CD, IEEE 802.3, and the Ethernet 

Inherent in the ALOHA scheme is the notion that any station that wishes to 

communicate does so when it desires, at the risk of doing so coincidentally with other 

stations.  If multiple entities try to transmit simultaneously, all of their 

communications will be garbled.  This can be detected with very high probability at 

the receiving end using checksums, but it also wastes time because nodes continue to 

transmit, oblivious to the fact that they are being corrupted.  An improvement 

involves the utilization of a transceiver to “listen” to the channel first to make sure it 

isn’t obviously busy, and if not, then try to send its packet – this is called “carrier 

sense multiple access”  (CSMA). Even with this scheme, however, two nodes that 

attempt to begin communicating almost simultaneously (within the small time 

window of propagation delay between them) would both perceive an idle network 

when they first listened, and as a result would begin transmitting, but their transmitted 

packets would “collide,” and be garbled and therefore useless. 

Each station must be able to detect these collisions, and then decide if and when 

to re–transmit its packet.  There are several popular methods of collision detection – 

the combination of CSMA with any collision detection scheme is denoted 

CSMA/CD.  In real time, it is possible to monitor power levels and/or pulse widths 

with a receiver, at the same time that transmission is taking place.  If a node detects a 

significant difference between what it knows it is transmitting itself and what is being 

received, then it can conclude that some collision has taken place.  This method is 

most reliable on wired networks where the confounding effects of other interference 

are not present to anywhere near the same degree as in wireless communications, thus 
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the ability to distinguish power levels is quite high.  Another method, which would be 

more successful in a wireless environment, is to use “acknowledgement”: a central 

hub replies to any successfully received packet with an acknowledgement message, or 

in the extreme, a copy of the original packet.  If a transmitter receives its own packet 

back, then it knows it was transmitted successfully, and it can then begin processing 

its next packet.  Thus, in the extreme, each successful transmission requires two 

nearly identical packet transmissions.  There is some chance that the original packet 

was transmitted successfully, but the acknowledgement message collided, in which 

case the sender would think the original message was unsuccessful. 

The question of when and if to re-transmit, in the event of a collision, is very 

important.  Obviously, this choice should not be made identically across all stations, 

since this would almost guarantee indefinite packet collisions.  Typically, a node that 

detects a collision first terminates transmission immediately, so as not to waste any 

time.  In some systems, it also broadcasts a brief jamming signal.  Since it has 

decided that it was collided with, it is safe to assume that anyone else currently 

transmitting will also be affected, so it is better to send a jamming signal that makes 

that point known very clearly and immediately to all affected nodes.  All such nodes 

are now in a state called “contention”: they all have packets they would like to 

transmit, but they also recognize that other nodes are in the same situation.  An 

individual node now waits for a random period called the “back-off” time and then 

tries again.  In some systems, there is a known prioritization scheme, either for the 

nodes themselves or for certain message types, and this could influence the relative 

urgency of the retrial.  In some systems, this process of re-trying packets can continue 
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a number of times, but the back-off time doubles for each collision, resulting in what 

is known as an “exponential back-off” scheme.  After some number of failed 

attempts, the packet is “dropped.”  This is very important in applications such as file 

transfer, because arguably each packet is very important.  It might contain a chunk of 

data or code that is part of a larger file, and thus it is critical for it to be communicated 

accurately. 

The likelihood of collisions (which increases with the number of stations and the 

volume of traffic on each), plus the stochastic nature with which re–transmissions are 

made, lends an element of randomness to the delivery of information via such a 

protocol, and it should be emphasized that such a system is only appropriate for 

applications where this is not problematic.  Applications that require very 

deterministic behavior tend to use token–based systems instead.  The ALOHAnet is 

capable of a maximum of 18% efficiency (i.e., only 18% of the time useful packets 

are being transmitted) with multiple competing nodes, before the incidence of packet 

collisions actually causes the system to degrade. 

There is a modified version of ALOHA called slotted ALOHA.  In this scheme, 

time is treated not as a continuum, but rather as a sequence of discrete intervals, each 

long enough for the transmission of a single packet.  Nodes only attempt to initiate 

transmission at the beginning of one of these intervals.  This greatly reduces the 

period during which a packet is vulnerable to collision from other nodes, and 

therefore increases the probability of a successful transmission.  The throughput 

efficiency accomplished with slotted ALOHA is about 37 percent, compared to 18 

percent for pure ALOHA.  This is not the same idea as TDMA, however, since 
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individual nodes are not assigned to subsets of the slot sequence; any node can use 

any slot provided it is free. 

Perhaps the most ubiquitous protocol now in service is Ethernet, also known in 

the standards literature as IEEE 802.3.  This standard includes specifications for the 

physical layer, which has details about the kinds of cabling and connections required 

(see for example Murthy and Manoj, 2004); and the Medium Access Control (MAC) 

sublayer, which defines a CSMA/CD scheme, including such things as packet length 

and construction, and protocol details such as back-off times.  The IEEE 802.3 

includes a minimum frame length, which is helpful because it is longer than what 

would ordinarily be transmittable within the vulnerability period of an individual 

node.  Thus, packets that are terminated early because of collision are easily 

distinguishable from full-length, valid packets.  Again, these are protocol details that 

could be adjusted for a network serving exclusively data of relatively low individual 

importance. The IEEE 802.3 standard also requires each packet to include a 

destination and source address.  This is an important distinction, because there are 

arguments that can be applied to the vehicular applications in this dissertation that 

such specificity is not beneficial in all situations, in which case some efficiency can 

be gained by reducing packet sizes.  Ethernet has the built-in ability to send to all 

nodes (i.e., to “broadcast”) by setting all destination address bits to one.  

 

2.1.3 CSMA/CA, IEEE 802.11, and Wi-Fi 

Within the set of specifically wireless protocols, the most well known is the 

IEEE 802.11 family.  The purpose of the IEEE 802.11 specification, essentially, is to 
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translate the success of wired ad hoc protocols such as IEEE 802.3 into the wireless 

domain, taking account of the particular issues that arise therein.  The standard 

recognizes that the nodes are mobile and unpredictable, and that they come and go 

with abandon.  The IEEE 802.11 physical layer for radio-based networks (there is 

also a specification for infrared) includes specification of various spread-spectrum 

frequency allocation mechanisms, within various bands, including 5 GHz, 5.9 GHz 

(for Dedicated Short Range Communications or DSRC), and the unlicensed 2.4 GHz 

ISM (Industrial/Scientific /Medical) band.  The latter frequency band is available 

worldwide, and hence is very popular for internet applications and other civilian uses.  

The 802.11b task group defined the necessary details for the 2.4 GHz band, and this 

set of specifications is now colloquially known as Wi-Fi, which stands for “wireless 

fidelity.” Table 2-1 shows some details on these characteristics for various members 

of the IEEE 802.11 family (Werner, 2005 and Liu et al., 2005), as well as some 

closely related protocols not in the 802.11 family. 
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TABLE 2-1  Near-Range wireless data communication standards 

standard Transmission 
Rate [Mbps]* 

Range 
[m] 

Frequency 
[GHz] 

802.15 (Bluetooth) 1 10 2.4-2.497 

802.15.4 (ZigBee) 0.25 30 2.4 

802.11b (WiFi) 11 100-200 2.40-2.497 

802.11a (WiFi) 54   30-200 5.13-5.35 
5.72-5.87 

802.11g (WiFi) 54 100-300 2.4 

802.11n (draft)** 600 600*** 2.4 and 5 

802.11p (DSRC) 27 (54)**** 1000 5.85-5.925 

* This is the maximum data transfer rate that can be supported by a single node 
maximizing the channel utilization, with no packet collisions.  Practical data 
rates tend to be lower, because collision avoidance, back-off, and packet 
collisions have a deleterious effect on transmission rate. 

** The 802.11n standard is only draft, but is considered stable enough that 
commercial devices based on the standard are even now widely available.  The 
standard is expected to be ratified in 2007 (Broadcom, 2006). 

*** The possible range for 802.11n is colloquially stated as double that of 
802.11g. 

**** This is the DSRC band.  A total of 75 MHz of bandwidth will be divided 
into 7 smaller bands of 10 MHz each, which will serve different purposes.  One 
or two of these bands might be available for any particular purpose, such as 
safety (collision avoidance) or traffic information.  Each can support a 
transmission rate of 27 Mbps. 
 

As mentioned above, collision detection is much more difficult with wireless 

networks than with wired networks.  Furthermore, the inherent “noisiness” of the 

wireless medium causes bit errors much more often than with wired channels (e.g., on 

average one bit in every 10,000 is in error in a wireless channel, whereas the rate for 

fiber optic cables might be one in every 1 billion bits).  These facts conspire to make 

collisions much more problematic in wireless channels, to the extent that the design 
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philosophy is different as they are concerned – rather than simply detect collisions 

and re-transmit packets if they occur, the protocol is specifically designed to make 

every effort to avoid collisions in the first place.  Generically, this task is called 

“collision avoidance” (CA) and schemes such as IEEE 802.11 then fall under the 

moniker CSMA/CA. 

Under IEEE 802.11, time is again discretized into slots.  Carrier sensing is 

accomplished (functionally) similar to 802.3, although with some differences in 

detail.  Furthermore, no node can gain immediate access to a channel – each has to 

wait at a minimum one DCF inter-frame spacing (DIFS), where DCF stands for 

Distributed Coordination Function, which is the primary access method for this 

protocol.  When DCF is invoked, it is assumed that no fixed access point (AP) is 

available to mediate medium contention; thus the nodes have to do it themselves.  If 

the channel is busy, the back-off process is initiated.  Even during the back-off, any 

instance of a busy channel causes the back-off counter to be suspended.  The back-off 

time can be reduced for nodes that have been waiting longer – this gives them, 

essentially, a form of priority over more recent service requests. 

Because of the essential nature of the data that is assumed for most applications, 

it is important that nodes be able to sense if their transmissions were delivered 

successfully.  This is accomplished via an acknowledgement message, as described 

previously.  It is possible to experience a problem known as the “hidden terminal 

problem,” whereby one node can communicate with two other nodes, but these two 

cannot sense each other, presumably because of distance or perhaps line-of-sight 

interference.  In this case, each of the two nodes might think that they have exclusive 
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access to the common receiving node, and if they both transmit accordingly, their 

messages will collide at the receiver.  The mechanism to avoid this is based on the 

time-honored request-to-send-clear-to-send (RTS-CTS) mechanism inherent in older 

serial communications schemes such as RS-232.  In essence, a transmitting node pre-

notifies the recipient of an imminent transmission, using an RTS message.  If the 

receiver is ready, it signals its readiness to the origin node with a CTS message.  

Other nodes, upon hearing this transaction, must remain quiet until an 

acknowledgement (ACK) message from the receiver is sent, which takes place after 

the packet data have been sent.  Thus the sequence of messages is RTS-CTS-DATA-

ACK.  The RTS-CTS system is only used for longer frame sizes; smaller packets use 

only DATA-ACK, with the understanding that some greater probability of collision is 

balanced against the overhead of the RTS-CTS scheme. 

When a hard-wired access point (AP) is available, medium contention can be 

accomplished via a Point Coordination Function (PCF) instead of DCF.  Such a 

system can provide guarantees on the maximum access delay and minimum 

transmission bandwidth which autonomous nodes operating under DCF cannot offer.  

In our applications, this is the kind of service that can be offered when some 

infrastructure-based communications resources are available, such as with Vehicle-

Infrastructure Integration (VII).  In a completely mobile network, only autonomous 

operation is available, through a scheme such as DCF.  It is useful to reiterate, 

however, that much of the concern with contention management is centered on 

crucial data with specific originators and recipients; anonymous broadcast data of 

only temporary usefulness may afford much less communications overhead and 
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simpler protocols.  In the applications described in this dissertation, most (if not all) 

of the data can be described as non-essential data.  This is not to say that data are not 

useful – in fact, as much data as possible makes the system work better.  Rather, it 

only implies that any single piece of data is not so important as to absolutely require 

its transmission.  A failed packet could easily be supplanted by a successful packet 

sent in a similar traffic environment. 

 

2.1.4 Bluetooth (IEEE 802.15.1) 

Bluetooth is a wireless communication scheme designed around the needs of 

personal devices such as hand-held computers.  Bluetooth operates in the ISM (2.4 

GHz) band, with frequency-hopping spread spectrum (FHSS), wherein a given 

transmitter-receiver pair hops around a collection of 79 narrow-band channels in a 

pseudo-random sequence.  The receiver and transmitter follow exactly the same 

sequence, but it appears random to other nodes, thereby increasing security.  The 

nominal link range in Bluetooth is limited to 10 meters.  In theory, because Bluetooth 

uses a code division multiple access (CDMA) scheme over these channels, a very 

large number of simultaneous users on each channel is allowed.  In practice, however, 

empirical performance of CDMA has fallen far short of its theoretical capabilities 

(Murthy and Manoj, 2004) and the Bluetooth community has not figured out how to 

achieve this performance level either (Tan et al., 2001). 

It is clear from the essence of the Bluetooth protocol that it is designed around 

human-initiated and irregular communications.  Devices that wish to communicate do 

so by organizing themselves into “piconets.”  The first device initiates the process and 
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becomes the master, while all other nearby devices either go into standby, or enter 

into the piconet as slaves.  Only seven slaves are possible for each master.  

Communication across piconets is also possible, because a single node can be a 

master in at most one piconet, but a slave in multiple piconets.  This forms what is 

known as a “scatternet.”  The common node can only communicate with one piconet 

at a time because they use different frequency-hopping schemes.  Participation in 

multiple piconets is regulated using a TDMA scheme.  Slaves are allowed to 

communicate only after having been polled by the master.  All communications takes 

place within a time-slotted band with slots of length 0.625 ms. 

The limited range, the limited number (thus far) of channels, the limited size of 

piconets, etc., makes Bluetooth reasonable for small numbers of people making 

relatively infrequent communications requests.  For vehicular applications, 

particularly with large market penetration, there is a possibility that this combination 

of limited range and limited frequency division cannot provide enough high-quality 

data for traffic modeling in real time in congested urban areas.  

 

2.2 Vehicular ad hoc networks  

A number of researchers have made specific investigations of the viability of one 

or more of the above-mentioned wireless ad hoc network protocols to support 

transportation applications.  In this case, since it assumed that (most of) the nodes are 

located in vehicles, these are called Vehicular Ad hoc Networks (VANETs).  Due to 

the high mobility of vehicles as mobile nodes, the topology of a vehicular ad hoc 

network can rapidly change and can easily break.  The purpose of the 
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communications might also drive certain considerations.  Thus, some additional 

protocols have been proposed that are specific to vehicular uses.  Since this is the 

likely outcome of this dissertation, these efforts are reviewed here.  This section 

includes a description of the DOLPHIN protocol, followed by a review of some 

applications in transportation safety and traffic information dissemination. 

 

2.2.1 DOLPHIN 

The DOLPHIN (Dedicated Omni–purpose inter–vehicle communication Linkage 

Protocol for Highway automation) protocol was proposed by Tokuda et al. (2000).  

The main purpose is to support applications such as traffic automation.  It is assumed 

that market penetration is 100%.  Each vehicle transmits a set of data relevant to its 

status on a regular transmission interval.  Because many vehicles communicate at 

once, the data are packetized within that interval, and a CSMA scheme is employed to 

resolve conflicts.  The paper claims to allow for packet collision detection and it does 

not employ any collision avoidance scheme.  The collision detection claim is 

suspicious, because no details are given, and this is a notoriously difficult problem in 

wireless communications, as mentioned above.  Because the method is only 

demonstrated using simulation, it is likely that the authors overlooked this 

fundamental problem.  Collided packets are abandoned, which is a potentially useful 

device for non-mandatory data, which will be explored further in this dissertation. 

With the exception of the allowance for, and abandonment of, collided packets, 

the protocol is just a simplified version of IEEE 802.11.  There are a number of 

suggestions for data content and formatting that are useful in the specific application 
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of vehicle automation, but these are simply data organization issues that can already 

be accommodated within the data portion of the IEEE 802.11 packet.  The small but 

interesting conceptual contribution of DOLPHIN is the abandonment of collided 

packets, but again the lack of consideration of the physics of this problem suggests 

that the development of the protocol was limited to simulation investigations, and that 

practical problems would prevent it from being used in reality. 

 

2.2.2 Traffic Safety 

Dogan et al. (2004) investigated the use of IEEE 802.11 and DOLPHIN 

protocols for the purpose of intersection collision warning systems.  The analysis 

assumes that all vehicles are equipped with the necessary communications equipment, 

as well as DGPS (Differential Global Positioning System) hardware and navigation 

software that allow for precise positioning.  The study was conducted on a custom 

simulation platform. 

Vehicle traffic arriving to an intersection is simulated via some simplistic models 

of driver behavior, stochastic arrival processes, and car-following.  It should be noted 

that the authors’ presentation of certain aspects of probability theory is flawed, 

although the specifics of the arrival distribution are probably not important to the 

conclusions of the paper.  It is unclear how queuing at the traffic light is handled – the 

paper leaves the impression that each approach is empty, even in the presence of a red 

light.  The particular turning movements that are simulated to generate potential 

accidents are quite contrived, and this undermines the relevance of the model.  The 

propensity of individuals to get in accidents is an extremely complicated behavioral 
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issue, one that cannot be handled via such simple models.  The appropriate way to 

test electronic augmentations to the human-machine interface is either via driving 

simulator (less expensive and somewhat unrealistic) or field test (expensive and 

dangerous but realistic). 

The vehicle paths are used to determine the effect of shadowing on path loss in 

the wireless signal.  Together with other effects, the path loss and fading are 

simulated using standard models.  A very small number of simulations are run.  The 

only performance metric is the rate of packet collision, which suggests that the 

authors assume that as long as the messages are delivered properly, the intersection 

collision can be avoided, which is certainly a stretch of the imagination.  Furthermore, 

they conclude that packet losses only occur due to physical layer errors.  The problem 

with this conclusion is that they only modeled a small number of vehicles that might 

be in the vicinity of the intersection, and they assumed that transmission would only 

take place within 50 meters of the approach to the intersection.  With a realistic 

number of nearby vehicles (on the road, as well as in parking lots, etc.) with realistic 

transmission distances and very likely many other purposes for an in-vehicle ad hoc 

network, one can imagine that the rate of data communications would be orders of 

magnitude higher than what was simulated in this paper, greatly increasing the 

likelihood of MAC layer packet collisions.  Particularly troubling is the choice to 

include the DOLPHIN protocol, both because of its obvious limitations mentioned 

above, as well as the fact that its only real distinction above IEEE 802.11 is its 

willingness to discard packets, which seems like a very bad idea for safety-oriented 
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systems.  Of course, at the traffic volumes simulated in this paper, the system was 

probably not taxed to the point that these errors would manifest themselves. 

Sawant et al. (2004) investigated the use of the Bluetooth protocol for wireless 

communication on an ad hoc network formed amongst nearby vehicles for the sharing 

of data from on-board sensors.  The authors do not seriously test the limitations of the 

number of active vehicles, as discussed in Section 2.1.4 of this dissertation.  The 

authors depict accident scenarios at intersections and recognize that while a very 

specific small set of vehicles should form a common piconet to communicate with 

each other, the intersection contains many vehicles, none of which know a priori how 

this set should be constructed.  Even if this problem were to be solved, the paper 

assumes that only one such potential conflict can arise, when in fact every vehicle is a 

possible actor in a wide range of accident scenarios, each of which would 

conceptually require the formation of a piconet. 

The claimed benefit of the system is that by sharing sensed information, vehicles 

can mutually improve their virtual sensor coverage areas.  The problem with this 

assumption is that all known on-board sensors are very limited in the observations 

they can make and the conclusions that can be drawn from them.  For example, a 

radar range sensor might be used for obstacle warning and autonomous cruise control 

on one particular vehicle.  This paper argues that predicted object locations, which 

another vehicle might not be able to sense, could be communicated to that vehicle 

instead.  This is a pleasant thought, but it is fraught with practical problems.  For 

example, the range data are measured relative to the sensing vehicle, and are used for 

limited purposes.  They are usually reasonably accurate in the vehicle-object axis, and 
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likely very imprecise in an orthogonal direction.  This makes the location prediction 

very unreliable for other vehicles engaged in different and unknown maneuvers with 

different and unknown trajectories.  The authors also assume that precise relative 

positioning between vehicles can be accomplished via signal strength measurements, 

which is known to be extremely error-prone. 

 

2.2.3 Traffic Information Dissemination 

Ziliaskopoulos and Zhang (2003) propose constructing a distributed traffic 

information system using an ad hoc network, which they describe as “a zero public 

infrastructure traffic information system,” which simply means that they do not 

expect to relay on fixed infrastructure as a communications node.  The paper 

investigates various important aspects of such a system, including the speed with 

which information is disseminated, given different levels of market penetration. 

In this paper, however, the underlying modeling is poor.  The wireless protocol is 

claimed to be IEEE 802.11, but in fact no specific details of either the physical or 

MAC layers are simulated.  Communications between vehicles is treated as a 

deterministic and totally reliable function.  Vehicles are assumed only to 

communicate with vehicles traveling in the opposite direction of a given link, which 

presumably can be arranged by using directional antennae, although the paper does 

not specify this.  No accounting is made of the possible benefits of sharing data from 

a wide range of vehicles in the near vicinity, regardless of their current trajectory.  

The problems posed in this thesis allow for the relaying of data between vehicles 

without specific knowledge of their trajectories.  It would not make sense, in this 
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case, to rule out vehicles simply because of their direction of travel.  On a multi-lane 

facility, a vehicle will be adjacent to many vehicles traveling in the opposite 

direction, particularly during congested traffic.  This paper assumes that 

communication between a pair of vehicles must take place within a given window 

during which they are adjacent to each other, but does not take the other adjacent 

vehicles into account, nor the fact that they cannot be told apart.  This greatly 

increases the possibility of packet collisions, which severely impacts the performance 

of the communications system. 

Yang (2003) assessed a traffic information system using vehicle–to–vehicle 

communication based on the Autonet concept proposed by the Institute of 

Transportation Studies at University of California, Irvine.  Vehicles could broadcast 

information about themselves, the links they traveled on, or incidents, although the 

author does not specify how a vehicle would ascertain such details about incidents 

with no human intervention.  Of course, no such methods currently exist.  

Communications is handled very abstractly – each vehicle has a fixed success rate for 

packets, bandwidth constraints are not modeled, and the probability of success for a 

packet has nothing to do with the conditions under which it is transmitted; these are 

all very problematic assumptions.  The majority of the dissertation deals with simple 

exercises in information propagation as a function of market penetration for various 

idealized roadway geometries.  The dissertation focuses on details of the simulation 

mechanics, but does not address any issues in a more substantive way than papers 

previously described in this review. 
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Goel et al. (2004) also ask some of the same questions posed in this research.  

The paper is concerned with using ad hoc networks for traffic information 

dissemination, and seeks to address the questions of spatial information relevance and 

required communications bandwidth.  The authors used Paramics to simulate a 

network of uncongested streets on which a single incident has taken place, creating 

congestion on a single link.  Equipped vehicles are able to learn about this congestion 

from other equipped vehicles, and choose an alternative route. They also ask 

important questions about when each vehicle should send an information report, and 

what that report should contain. The choices of what information to disseminate are 

simple, but very good.  In particular, one scheme the authors investigate is to allow 

vehicles to transmit only “interesting” information, by which they mean information 

that is markedly different from expected conditions on a link, assuming that vehicles 

would know such things via their navigation database.  This is a very good idea 

because it limits the amount of useless information clogging up the communications 

channel. 

The authors conclude that bandwidth is not a limiting factor, but their simulation 

is (incorrectly) constructed to provide this result.  First, the paper assumes that a 

single report of link speed is sufficient to represent the link as a whole, when in fact 

this is a statistical sample size issue.  It would be unwise to make routing decisions 

based on the (possibly) uncommon experience of a single vehicle. Second, the 

analysis assumes a fixed rate of dissemination (one broadcast per minute), and does 

not investigate how this rate should change dynamically to maximize usage of the 

communications channel with different densities of equipped vehicles.  The authors 
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claim that this is frequent enough because the traffic state does not change with much 

more resolution than this.  While the second part of the argument is true, the 

conclusion is false, because given the sporadic and transient nature of ad hoc clusters, 

increasing the rate of dissemination has the effect of reaching a larger sample of 

vehicles.  The clusters could certainly form and disintegrate on a time scale less than 

a minute.  Finally, the authors tested only a single congested link in an otherwise 

normal network.  In most urban areas, during rush hour, all links are congested, and 

hence all vehicles would likely be transmitting information about all of their link 

experiences.  This raises the information quantity exponentially.  If forwarding 

(relaying) is taken into account (which it should be, given the expected 

disconnectedness of the network), a further exponential factor can be applied if 

vehicles are not only transmitting their own experiences, but also relaying those of 

other vehicles. 

Nadeem et al. (2004) address the interesting question of information forwarding: 

how much of another vehicle’s experience should a given vehicle broadcast. The 

authors assume only a small number of vehicles will be communicating with each 

other, and also make the common mistake of endowing these vehicles with more 

information than they would have in reality.  For example, the paper assumes that a 

vehicle can conduct its broadcast within a “broadcast period,” but the ability of all 

vehicles to do this depends on the number that desire to communicate, which is 

known in their simulation but is not known in reality.  The bulk of the paper is 

concerned with algorithms for data aggregation and compression, which are both 

good ideas but not the concern of this research.  It should be pointed out that data 
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aggregation is problematic without specific understanding of the applications to 

which the data will be applied by receiving vehicles.  In this paper, the authors choose 

aggregation schemes according to the communications constraint, without 

consideration of the fact that excessive or improper aggregation will result in useless 

data. 

Wu et al. (2005) and Wu (2005) test information dissemination on the I-75 

corridor in Atlanta, as simulated using Corsim’s Real Time Extension (RTE), 

supplemented with the communications simulator QualNet. In their simulation 

testbed, they assumed two unrealistic environments. First, they did not allow 

equipped vehicles to dynamically reroute based on disseminated traffic information 

(presumably the purpose of such a system); equipped vehicles learn about congestion 

from other equipped vehicles, and do not choose an alternative route. Second, they 

did not consider the MAC layer, which is a very important layer. While they 

mentioned that their testbed is “neutralized” on the MAC layer, communication 

collision is not simulated on their testbed. They measure the rate of information 

propagation for a single message across a network, assuming perfect conditions for 

relaying (forwarding) between vehicle clusters, without accounting for the fact that 

message traffic will limit this capability. Thus, while the methods they employ are 

generally acceptable, the question posed is not a very meaningful one. 

Wischhof et al. (2005) proposed methods for scalable information dissemination 

in mobile ad hoc networks.  They employed the network simulator ns-2, augmented 

with a vehicle movement model based on cellular automata.  The authors considered 

an important MAC level change similar to what is proposed in this research: all data 



 

 29 
 

packets are transmitted in the form of local (single hop) broadcasts.  Nodes are never 

directly addressed and no routing of data packets in the traditional sense is performed. 

Again, the research in this case is not concerned with the value of the information for 

various applications, or the rate at which that value diminishes in time and space. 

Xu and Barth (2006) proposed travel time estimation techniques for traffic 

information systems based on intervehicle communications. As a travel time 

estimation technique, they used a decay factor to weight the “freshness” of data and 

experimented with the model on a simulation testbed with Paramics and ns-2. In this 

paper, they defined a road segment as a stretch of a road between two successive exit 

points such as junctions or exits. Their road network model, in which an interchange 

is represented by a single node, is too simple to describe realistic congestion 

situations. Considering that congestion typically starts from a merging or split area, 

road segments and ramps in interchanges should have been dealt with independently. 

Saito et al. (2007) proposed an intervehicle information dissemination protocol 

called Received Message-Dependent Protocol (RMDP) which autonomously changes 

the broadcast interval in order to avoid the “broadcast storm” problem that might 

occur when vehicles cannot develop a sense of the amount of competing 

communications traffic.  The broadcast interval changes depending on the number of 

received messages and reception errors.  They evaluated their protocol on a 

simulation framework in which a transportation simulator, NETSTREEAM, and a 

communication simulator, MobiREAL, are combined. In their experiment, a heavy 

traffic condition and a light traffic condition were simulated at an intersection and on 
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an urban road network, respectively. They did not, however, allow vehicles to 

dynamically reroute based on disseminated traffic information. 

 

2.2.4 Vehicle-Infrastructure Integration 

Most of the reviews related to VANETs have focused on experiments for 

vehicle–to–vehicle communication alone.  Hybrid systems are also possible, which 

might incorporate fixed infrastructure to serve one of several possible functions – as 

an access point to connect the ad hoc network to a wired network, as a congestion 

mediation device for wireless traffic, and as a consolidation / aggregation point for 

traffic data.  The fixed nodes could also play the role of patching together otherwise 

disconnected vehicle clusters, although this would obviously happen randomly.  The 

U.S. Department of Transportation announced new major initiatives to aim at 

improving transportation safety, relieving congestion and enhancing productivity at 

the 2004 ITS America Annual Meeting (US DOT, 2007).  Vehicle Infrastructure 

Integration (VII), one of these major initiatives, aims to achieve nationwide 

deployment of a communications infrastructure on the roadways and in all production 

vehicles through vehicle–to–vehicle communication and vehicle–to– infrastructure 

communication (US DOT, 2007).  Figure 2-1 shows the VII Architecture proposed by 

US DOT. 
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FIGURE 2-1  US DOT’s VII Architecture (Werner, 2004) 

 

The primary thrust of the VII to date has been a vehicle → infrastructure → 

vehicle paradigm.  Individual vehicles would serve as probes, reporting their findings 

back to roadside units (RSU) at opportune times.  With enough such data, centralized 

applications could generate estimates and perform other applications.  Data would 

then be transmitted back to vehicles via the RSUs.  

The establishment of the VII Architecture by US DOT builds on other research 

and operational tests. Of course, vehicle manufacturers would install the technology 

in all new vehicles, necessitating some standards. The manufacturers have conducted 

a number of experiments to help flesh out what the system parameters should be. The 

group involved in discussions on the VII Initiative comprises the VII Coalition, a 

cooperative effort between public and private sectors:  

• US DOT - FHWA, FMCSA, ITS JPO and NHTSA 
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• Automotive Manufacturers - BMW, Daimler Chrysler, Ford, General Motors, 

Honda, Nissan, Toyota Motor North America, and Volkswagen 

• State/Local Agencies - CALTRANS, Florida DOT, Idaho DOT, Indiana DOT, 

Maryland State Highway Administration, Metropolitan Transportation 

Commission (San Francisco Bay Area), Michigan DOT, Minnesota DOT, 

New York State DOT, Utah DOT, Virginia DOT, and Washington State DOT 

• Associations - AASHTO, Alliance of Automobile Manufacturers, Association 

of International Automobile Manufacturers, IBTTA, ITE, and ITS America 

(ITS America , 2005). 

 

 

FIGURE 2-2  VII timeline 

  
A VII Coalition has been established to determine the feasibility of widespread 

deployment and to establish an implementation strategy. As shown in Figure 2-2, a 

general timeline has been developed, and balanced works between public and private 

sectors have been conducted under the timeline (Werner, 2005). 
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2.3 Traffic information imputation 

For any given traffic model, such as a link speed estimation model or an optimal 

route choice model, one could postulate the set and characteristics of a data stream 

that would provide the greatest performance.  Of course, different models have 

different levels of sensitivity to changes in these characteristics.  Assuming that all 

data come from the ad hoc mobile network (and, possibly, some fixed infrastructure 

stations), it is clear that there will be limitations on the quantity and quality of data 

that can be delivered.  One part of this dissertation will be dedicated to determining 

what those data limitations might be, as a function of market penetration and 

communications systems constraints.  In some cases, it is expected that 

recommendations could be made as to protocol design, that would minimize the 

deleterious impacts of data shortcomings.  In any event, it will be possible to assess 

the performance degradation of the application as a function of the data degradation. 

To counter this effect, it is proposed that “missing” data be imputed from 

surrounding data in time and space.  For any particular model, and given the physics 

of traffic dynamics, the usefulness of data is expected to decline in both time and 

space, although this effect has not been studied systematically.  A few very specific 

proposals for data imputation have been developed, and they are reviewed in 

subsequent paragraphs.  It should be noted, however, that none of these efforts was 

conducted with the goal of guiding the development of an appropriate wireless data 

provision mechanism; in fact, most assume that data are provided by fixed detectors.  

Furthermore, in most cases, the methods are proposed in order to maximize the 

number of data points that can be extracted and made useful from ITS data archives.  
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The subject of information relevance in quasi-real-time applications is therefore 

relatively untouched, and the results from these papers might only be tangentially 

useful to the proposed research effort. 

Smith et al. (2003) introduced three types of heuristic techniques for imputing 

missing speed, occupancy, and flow data, collected from loop detectors or similar 

hardware.  The techniques include historical averaging, spatial averaging, and 

temporal averaging.  The historical average technique substitutes missing data from 

historical averages over previous days, weeks, months, etc.  Clearly, this method can 

misrepresent conditions in congestion or accidents.   Also, it is not feasible in a pure 

ad hoc network setting, since individual vehicles would not possess network-wide 

historical data.  This is one function that fixed infrastructure nodes might serve. 

The spatial averaging method attempted involved the weighted average of 

surrounding detectors with historically based lane distributions.  The data from 

nearby links would be available to wireless nodes, but again the historical information 

would likely not be available.  Temporal averaging over recent data is more 

appropriate in the wireless setting, because it is possible for a wireless node to have 

the necessary data.  To make full use of this method, however, would require local 

storage of recent data on the appropriate set of links.  Short-term changes are not 

necessarily fluctuations; they could represent systemic changes in traffic state due to 

the passage of shock waves, for example.  Such a method would have to realize that 

older data might be biased, and some effort should be made to correct for this.  The 

proposed research on temporal information degradation would be useful to determine 
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the length of time that specific data should be retained, as well as patterns of bias that 

might be expected and countered for. 

One of the most troublesome traffic sensors is the inductive loop detector, 

because it requires frequent tuning to make sure that inductance thresholds 

correspond properly to vehicle passage.  Most highway agencies are not able to keep 

up with the maintenance requirements, and as a result, there are many loop detectors 

delivering inaccurate data.  Alarmingly, the loop detector is also the most common 

sensor.  Chen et al. (2003) and Al-Deek and Chandra (2004) investigated the situation 

where data are missing from the middle of a sequence of three detectors.  They used 

pair–wise regression models to impute missing data from dual–loop detectors, which 

assumes a linear (in parameters) and statistical relation between the measurements at 

the detectors.  In fact, detector measurement differences in closed systems results 

entirely from shockwave propagation and differing density and flow conditions along 

the link.  Newell’s kinematic wave theory (Newell, 1993) addresses this problem 

exactly, except for minor statistical fluctuations that might result from counter errors 

or lane changes.  This latter method, which exploits the physics of traffic dynamics, is 

much more explanatory than a statistical model that captures correlations that occur 

by happenstance. 

Gold et al. (2001) explored a variety of the above methods.  They describe 

something they call “factor up,” which in fact is temporal averaging over a fixed time 

window of moderate length, and “interpolation,” by which they mean averaging over 

two temporally adjacent observations, which is clearly a variable-length window.  

They also use regression methods.  Importantly, they acknowledge the bias induced 
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by using old data in the presence of systemic traffic state changes, as described 

previously in this proposal, and they suggest that some weighted averaging scheme 

could be used to correct for this (which is true), but do not pursue the idea any 

further. 

  

2.4 Discussion  

It is clear from the above review that the general topic of ad hoc wireless 

networks for vehicular purposes is of great contemporary interest.  Due to the 

complexities of traffic and communications, simulation is the most common, and 

most appropriate, analysis tool.  A few papers offer analytical solutions for grossly 

simplified problems that are simply not instructive. 

The subject is nowhere close to mature, and there are many ripe opportunities for 

important research.  The primary goal behind this research is to make strides in an 

integrated transportation and communication simulation framework development and 

performance assessment that recognize the important nature of traffic-related 

information that is broadcast anonymously.  The most important findings from the 

literature review are as follows: 

• Vehicular ad hoc networks dealt with in this study is a novel and promising 

approach to transcend the limitations of traditional transportation systems 

although there is no case applied to a real transportation system. 

• Many studies related to VANETs have been conducted. Although computer 

simulation is a popular evaluation method in those studies, it still confronts a 

major challenge in terms of “reliability,” the degree to which it replicates a 
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real system. For reliable demonstration, realistic assumptions for 

transportation and communication are required.  

• Even though several simulation frameworks for a VANET-based traffic 

information system were developed in previous studies, no one showed 

practical experiments and evaluation results.  In particular, vehicles’ rerouting 

based on shared information would be a key output fed back to the 

transportation system. 

 

In a traffic information system on which this research focuses, vehicles would 

collect, share, and feed back traffic information.  Developing a simulation framework, 

it is important to define the characteristics of traffic information since a framework 

design could be changed according to the definition.  The next chapter discusses 

about the characteristics of traffic information.  Individual data and traffic conditions 

corresponding to each single data are described with individual travel times from a 

simulation experiment, and then, temporal and spatial relevance on aggregate travel 

times from another simulation experiment are observed. 
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Chapter 3: Traffic Information Characteristics 

In a traffic information system based on a VANET, traffic information would be 

collected, shared, and used as it cycles.  When a simulation framework for such a 

system is designed, traffic information such as travel time, speed, vehicle location, etc. 

could be accumulated in database, estimated to impute missing data, aggregated to 

obtain a representative of a certain situation, and removed if it is too stale to use.  It is 

important to understand the characteristics of traffic information since traffic 

information is processed for various purposes in a simulation framework.  This 

chapter discusses preliminary researches about the reliability and relevance 

degradation of travel time information as its characteristics.  Section 3.1 explains the 

relation between individual travel time data and aggregated data, and it describes the 

quantity for reliable travel time information.  Section 3.2 shows temporal and spatial 

relevance degradation among travel time data.  All travel time data used in this 

chapter were obtained from simulation experiments using only a transportation 

simulator, and a communication simulator would be dealt in the simulation 

framework.  

 

3.1 Individual travel time characteristics 

In a VANET-based traffic information system, individual travel time data may be 

dealt with, compared to average data (usually 1 minute or 5 minute aggregation 

intervals) used in traditional traffic information systems.  Taking into account a low 

market penetration, the data obtained from vehicular ad hoc networks could be too 

sparse to apply as representative of traffic conditions on a certain link.  The 
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conclusion is that sampling errors for travel time information and differences between 

individual data and an average of data would exist as implicit weak points, and would 

influence the reliability of individual travel time information.  In order to investigate 

the reliability of individual travel time data, this section shows patterns of individual 

travel time in Subsection 3.1.2 (Kim et al., 2007a) and data quantity for reliable travel 

time in Subsection 3.1.3 (Kim et al., 2007b) based on the results obtained from a 

simulation experiment in subsection 3.1.1. 

 

3.1.1 Experiment for individual travel time  

It should be noted that because a simulation environment is used, one can assume 

that the data collection process is comprehensive and accurate, which of course is not 

true in reality.  It is used, therefore, as a “ground truth” of sorts, recognizing the 

standard pitfall of simulation models, which is that it represents only the truth of how 

the simulation logic attempts to produce realistic driver and vehicle behavior, rather 

than the truth associated with real cars and drivers.  Since real data collection 

mechanisms of this sort do not yet exist, of course simulation is the only way to 

produce these data. 

If we measure individual travel times of all vehicles passing a certain link using, 

for example, a license plate matching technique, we can obtain individual travel time 

data and calculate their aggregates.  Figure 3-1 illustrates how to pair up individual 

travel time data and a vector of aggregate information, assuming we obtain individual 

travel times of all vehicles on a certain link. 
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FIGURE 3-1  Illustration of a datum set  for vehicle i 

 

As Figure 3-1 shows, every datum is represented as an ordered triplet of an 

individual travel time for a single vehicle, a time stamp, and a vector of aggregate 

information for the link and time window occupied by that vehicle at the time the 

datum was collected.  Aggregate information is used as a proxy for actual information 

representative of a traffic condition: the quantity of data, and the mean and standard 

deviation of all individual data within a 5-minute window centered on the time instant 

in question.   

 

( )   ,  ,  ,  ,   a a a
i i i i i id TT t n TT SD⎡ ⎤= ⎣ ⎦                                                          (1) 

where 

id : datum set for vehicle i, 

iTT : individual travel time for vehicle i on a certain link l, 

it : time stamp (arrival time) for vehicle i, 

ti ti-150 ti+150 

TTi 

(ni
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a) 
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5 min



 

 41 
 

a
in : number of data in the aggregation window for vehicle i, 

a
iTT : travel time mean in the aggregation window for vehicle i on link l, and 

a
iSD : variance of travel time in the aggregation window for vehicle i. 

 

In order to set up datum sets of Equation (1), it is necessary to obtain an “entire” 

set of space-based travel time data for a specific time period.  A simulation 

experiment was conducted on a real road network for two hours.  Paramics 5.2 

(Paramics homepage, 2007), a microscopic traffic simulator, was employed.  Through 

its API (Application Programming Interface), entry times and exit times of all 

vehicles which arrive at and leave the target link were recorded respectively.  

Individual travel time data were extracted from the difference between the entry time 

and the exit time and were matched up with aggregated travel time data.  Figure 3-2 

shows the experiment site. 

 

FIGURE 3-2  Experiment site  
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In Figure 3-2, the site selected is located on the northbound direction of the 

Baltimore-Washington Parkway (MD-295) in the state of Maryland, U.S.  Details on 

traffic demands and building the road network model were mentioned in Section 6.1.  

The northbound target segment (2.24 miles) on the road network was chosen, and 

individual travel times from all vehicles passing that segment were measured.  Table 

3-1 shows general observations measured. 

 

TABLE 3-1  General observations for entire individual data set 

Average 
 Individual 

travel time Travel time # of data Standard  
Deviation 

Number of data 4,443 4,299 4,299 4,299 

Maximum [second] 996 886 302 102 

Minimum [second] 111 140 18 9 

Median [second] 194 208 230 27 

Mean [second] 280 264 218 33 

Standard deviation [second] 209 182 46 21 
 

As shown in Table 3-1, individual travel time data were measured from 4,443 

vehicles passing the target segment.  Of those, only 4,299 data points were far enough 

from the simulation begin or end times that they could be situated inside time 

windows for which averages could be computed; 144 data points (27 at the beginning 

of the simulation and 117 at the end) were excluded to avoid end effects due to 

aggregation in the finite time window.  Standard deviations were used as a measure of 

dispersion instead of variance to be consistent with the units of travel time. 
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Based on the datum sets consisting of individual data and its aggregates obtained 

from the simulation experiment, patterns of individual travel time were explored in 

Subsection 3.1.2, and data quantity for reliable travel time information was dealt with 

in Subsection 3.1.3.   

 

3.1.2 Reliability of individual travel time information 

In order to observe the representative degree of individual travel time data for 

traffic conditions, this study paired up individual travel times and 5-minute 

aggregates of travel time.  Data obtained from the simulation experiment in 

Subsection 3.1.1 were used. 

Individual travel time data were provided from each vehicle, mimicking what 

would have been obtained from an vehicular ad hoc network in place.  Surrounding 

each of these travel time reports from individual vehicles, the average data calculated 

from individual travel times within a 5-minute window containing that single data 

point were observed.  Figure 3-3 shows the pattern of the entire individual travel time 

data obtained from the experiment in Subsection 3.1.1. 
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FIGURE 3-3  Entire individual travel time data set 

 

As shown in Figure 3-3, traffic flow was stable until 4,800 seconds (1 hour 20 

minutes) after the simulation started, although a small delay happened around 2,100 

seconds due to the temporary presence of a queue on a ramp.  During seconds 4,900 

to 6,000, travel time increased abruptly and the plotted data were visually 

disconnected.  At this point, vehicles were totally in the middle of a jam though they 

moved intermittently around 6,300 and 6,900 seconds. 

As described previously, aggregate travel time data within 5-minute windows 

were used to represent the ground truth values of travel time.  Figures 3-4, 3-5 and 3-

6 show the quantity of data, travel time means, and standard deviations as aggregate 

information of individual data according to simulation time, respectively.  In those 

figures, all data were classified into three groups according to traffic conditions; those 

of Groups 1, 2, and 3 are stable, congested and jammed, respectively. 
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FIGURE 3-4  Quantity of individual data 
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FIGURE 3-5  Travel time means 
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FIGURE 3-6  Standard deviations of travel time 

 

As shown in Figure 3-4, the quantity of data abruptly increased during 5,009 

seconds (122 data) to 5,475 seconds (272 data) and decreased from 5,756 seconds 

(265 data) to 5,995 seconds (94 data).  The description of the traffic situation 

experienced by Group 2 is that traffic flow reached the maximum flow rate, 

congestion started, and traffic, finally, jammed up.  Figure 3-5 also shows a pattern 

similar to Group 2 in Figure 3-4.  That pattern is clearer in Figure 3-6.  In Group 2, 

the standard deviation steeply rose and fell before reaching road capacity.  Group 3 is 

in a severe congestion condition: high travel time but low standard deviation.  Figures 

3-7 and 3-8 contain the number of data and standard deviations corresponding to each 

travel time mean respectively. 
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FIGURE 3-7  Travel time means vs. number of data 
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FIGURE 3-8  Travel time means vs. standard deviation 

 

In Figures 3-7 and 3-8, travel time data are clearly classified even though those 

are not in time order; these three groups are distributed according to traffic 

conditions.  Data in Group 1 occupies a small area with the largest number of 
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samples.  On the other hand, the data in Group 2 are on a curve and they follow the 

arrows, chronologically.   

Less so than aggregate data, individual data would be widely spread because they 

are statistically distributed with error.  Figure 3-9 plots individual travel time and 

correspondent travel time means, and Figure 3-10 shows the relation between 

individual travel time and standard deviation. 
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FIGURE 3-9  Individual vs. travel time means 
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FIGURE 3-10  Individual data vs. standard deviations 

 

As expected, Figure 3-9 shows large variance in Group 2 that would reduce the 

accuracy of individual travel time information provided in a vehicular ad hoc 

network.  In order to reduce the range of the less reliable information, this study 

broke up Group 2 into a small-variance group and a large-variance group as shown in 

Figure 3-10.  Finally, a total of four clusters for individual travel time data, Group 1, 

States 1 and 2 in Group 2, and Group 3, were defined.  Table 3-2 summarizes 

observations of the four clusters based on individual travel times and corresponding 

standard deviations. 
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TABLE 3-2  Traffic condition states 

Experiment Result 

 Traffic flow characteristics Standard 
Deviation Time  

stamp 
[sec] 

Travel 
time 
[sec] 

Group 1 
Uncongested traffic condition before 
reaching maximum flow.  Traffic 
flow is stable. 

Small 546 - 
4,900 111-373 

State 1 / 
Group 2 

Transition period to congestion.  It 
happens when congestion begins.  
Travel time changes very quickly.   

Large 4,901 - 
5,427 201-522 

State 2 / 
Group 2 

Congested traffic condition.  Vehicles 
stop and go repeatedly. Small 5,429 - 

5,995 380-481 

Group 3 

Severe congestion condition.  
Vehicles are in jam for a majority of 
time.  Standard deviations are, 
however, low because entire vehicles 
linger. 

Small 6,213 - 
7,049 499-996 

 

 

As Table 3-2 shows, for any standard deviations except State 1 in Group 2 it is 

reasonable to use individual travel times (collected via the ad hoc network) as a 

surrogate for average travel time, the actual value that drivers presumably want to 

know.  Individual data included in State 1 in Group 2 occupied a large range of travel 

time (201 – 522 second) in spite of the small number of data (293 in this study).  

These data occurred only when a traffic condition grew steeply worse (4,901 – 5,427 

second).  The range of State 1 in Group 2 accounted for a wide time period because 

this study dealt with only a single travel time sample.  Various approaches with more 

samples or different information sources, for example from infrastructure, would be 

expected to be able to minimize unreliable data. 
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Given the simulation used is a reasonable proxy for reality, the results highlight 

the simple but important data quality issues that should be considered in the 

simulation framework for a VANET-based traffic information system.  The next 

subsection introduces data quantity for reliable travel time information. 

 

3.1.3 Acceptance probability 

The key question in this subsection is how many individual travel time data we 

need in order to obtain reliable traffic information for a certain road link in VANETs.  

Some studies related to data quantity for traffic information have been conducted 

using various statistical sampling methodologies (Srinivasan and Jovanis, 1996 and 

Wang et al., 2005).  These papers exploit Central Limit Theorem arguments to 

develop minimum sample sizes according to the familiar inequality: 

 

 
2

2
      n Z

dα
σ⎛ ⎞≥ ⋅⎜ ⎟

⎝ ⎠
                                                                       (2) 

 

where n  is the minimum sample size, Z  is the standard normal distribution, α  

is significance level, σ  is the standard deviation of the population, and d  is 

maximum allowable error difference. 

The statistical precondition for Equation (2) is that population is normally 

distributed (not likely in most traffic measurements) or that the sample size is large 

enough to benefit from the Central Limit Theorem.  By these reasons, Chen and 

Chien (2000) obtained the minimum number of probe vehicles through heuristic 
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methods as well as statistical ones.  Of course, individual travel time data are unlikely 

to be normally distributed, although some experiments have found this to be a good 

distributional fit in uncongested conditions.  In congested conditions when this is not 

true, rapidly changing conditions affect sample sizes in a way that might invalidate 

the Central Limit Theorem.  In such cases, we propose the Acceptance Probability 

method as a distribution-free alternative. 

The fundamental principle of Acceptance Probability is the same as Equation (2) 

with the exception of the size of the sample.  This describes the probability that an 

individual datum is within an allowable error range of the median for all individual 

data within a certain time window.  What we want to know is how well a single 

individual datum represents a traffic condition corresponding to the datum chosen.  In 

this study, we use the median of all individual data within a time window centered on 

the time instant in question as a proxy for actual information (ground truth).  The 

formulation of Acceptance Probability is defined by Equation (3) as: 

 

( )P       i t tTT median MAER median− > ⋅                                        (3) 

 

where TTi is the individual travel time for vehicle i, median t is taken over travel 

time data within a certain time window corresponding to time t, and Maximum 

Allowable Error Rate (MAER) is the maximum allowable error rate.   

Data obtained from the simulation experiment in Subsection 3.1.1 were used to 

evaluate the Acceptance Probability.  Individual data collected for a short time period 

(5 minutes in this study) were aggregated as a proxy for actual information 



 

 53 
 

representing a traffic condition: the median of travel times (TTi) of all individual data 

within a 5-minute window centered on the time t.  All individual data were matched 

up with their corresponding aggregate information.  For more continuous changes of 

traffic conditions, medians corresponding to each datum are extracted.   

Minimum sample sizes for estimating a population mean were obtained through 

Equation (2), with significance level, α , set to 0.05 and maximum allowable error 

difference, d, was MAER*median.  MAER used in both Equations (2) and (3) was 

chosen to be 15 %.  Those are for data within 5-minute time windows centered on 

each individual travel time datum obtained from simulation.  Figure 3-11 shows 

minimum sample sizes corresponding to each time stamp. 
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FIGURE 3-11  Statistical minimum sample size 

 

As mentioned above, Equation (2) relies on the Central Limit Theorem, which 

cannot always be supported.  As shown in Figure 3-11, a sample of size 2 can 
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ostensibly represent population means in stable traffic conditions from 600 to 1,200 

seconds and from 3,300 to 4,500 seconds, during which time vehicles drove close to 

the speed limit (55 mph).  Even in jammed conditions after 6,300 seconds, similar 

results were obtained due to small variance.  In the case that many samples were 

required, e.g.  22 samples around 5,100 seconds, as well, the Central Limit Theorem 

is well supported. 

In order to estimate data quantity for reliable travel time information regardless 

of the data distribution in VANET, Acceptance Probability from Equation (3) was 

applied.  The probability values obtained from Acceptance Probability imply how 

well a single travel time datum represents a traffic condition at the time 

corresponding to that datum.  Further, high probabilities would be associated with 

small sample size and low probabilities correspond to large sample size.  Figure 3-12 

shows Acceptance Probability for individual travel time data. 
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FIGURE 3-12  Acceptance probability  
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In Figure 3-12, the results for Acceptance Probability show that it is analogous to 

the statistical method in both stable traffic conditions (600 – 1,200 seconds and 3,300 

– 4,500 seconds) and jammed conditions (above 6,300 seconds), when the 

probabilities are over 0.8.  The data around 5,100 seconds seem to be less reliable 

(under 0.2 probability), which relates to the large sample size required of the 

statistical method.   

The two approaches can be compared more directly by superimposing the 

minimum sample size results from Figure 3-11 with the complements of the 

probabilities from Figure 3-12, since we expect that high probabilities would be 

associated with small sample sizes and low probabilities with large sample sizes.  

Figure 3-13 shows these minimum sample sizes and (complementary) Acceptance 

Probabilities for individual travel time data within a 5-minute time window centered 

on each datum. 
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FIGURE 3-13  Statistical minimum sample size and reversed Acceptance Probability 
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In Figure 3-13, these two profiles match quite closely during uncongested 

conditions, when the underlying data might be expected to be normally distributed, or 

during consistently congested conditions, when the same steady state persists long 

enough to generate large sample sizes, so the Central Limit Theorem can be invoked.  

During transient (unstable) congested periods, however, the results can differ 

significantly, and the safest conclusion to draw here is that minimum sample sizes 

should be increased beyond what the standard methods would suggest.  The largest 

sample size in this experiment was 23 in congested traffic condition. 

This study showed an experimental way to obtain the minimum quantity of data 

required for reliable travel time measurement over a variety of traffic conditions, 

adjusting minimum sample sizes obtained from a traditional statistical equation 

through the Acceptance Probability distribution-free method.  This idea is expected to 

help determine data quantity for reliable travel time information on a congested traffic 

condition in a simulation framework design. 

 

3.2 Travel time information relevance 

This section discusses spatial and temporal relevance on travel time information.  

Travel time data may be located on space and time.  Data from nearby links might be 

useful, but perhaps less useful as the links grow more distant.  Similarly, recent data 

are useful, but they become stale in time.  This idea relies on the assumption that 

traffic data are strongly correlated with each other in terms of space and time.  This is 

true in various degrees for different network topologies.    Figure 3-14 shows a 

conceptual representation of this idea. 
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FIGURE 3-14  Concept for spatial and temporal relevance of data 

 

In general, spatially neighboring data are from upstream and downstream links, 

and temporally neighboring data are from recent historic time windows.  We expect 

these correlations to decline as space-time cells become more “distant,” in either the 

dimensions alone or combined.  In order to demarcate this mesh of points, the space 

dimension will be carved into physically convenient “links.”  The time dimension, on 

the other hand, is not physically constrained, but an important decision has to be 

made.  In order to clarify this concept, a simulation experiment for obtaining travel 

time data is described in the next subsection.  Using travel time data obtained from 

this experiment, spatial and temporal relevance of travel time data is examined (Kim 

and Lovell, 2006a) and an experimental linear model is introduced (Kim and Lovell, 

2006b). 
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3.2.1 Experiment for spatial and temporal relevance 

This subsection explains a simulation experiment to investigate the spatial and 

temporal relevance of travel time information.  The experiment was conducted in a 

simulation environment in which the transportation simulator, Paramics, was used 

same as Section 3.1.  Figure 3-15 shows the virtual simulation road network used for 

this study. 

 

 

FIGURE 3-15   Simulation network 

 

In Figure 3-15, the simulation network consists of an 8-lane uninterrupted 

highway (4 lanes per direction) with 12 zones which generate demands.  All 

interchanges are complete cloverleafs without signals.  In order to observe spatial and 
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and is located in the center area of the network.  It is connected to links a, b and c 

(upstream) and to links d, e and f (downstream).  These are all links that are 

topologically adjacent to link z.  Additional links that are one step further removed 

from the target link are named aa, ab, and ac before link a; ba, bb, and bc before link 

b; and ca, cb, and cc before link c.   

The simulation experiment was conducted for two hours.  In order to study a 

worst case, we would like to observe vehicles moving slowly (maximum volume).  

However, this is an unstable state that can change rapidly.  It was decided that every 

zone generates 4,800 vehicles per hour.  In this study, one-minute space mean speeds, 

the reciprocal of travel time, on links are used as traffic data to observe spatial and 

temporal relevance.   

It was very important to introduce changes in traffic that prevent accidental 

correlation.  For example, one could impose a very mild steady state condition on the 

network, in which case adjacent links would have strongly correlated travel times 

simply because free-flow travel times would dominate.  Instead, it was important to 

introduce non-stationary changes of sufficient magnitude across a variety of origin-

destination pairs to minimize this risk; thus, correlations that appear in the data are 

structural and therefore important.  From the results of the simulation experiment for 

two hours, 120 one-minute space mean speeds by link were extracted.  Figure 3-16 

shows traffic variations for a target link and neighboring links. 
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c) Speed on Downstream Links
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d) Density on Downstream Links
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e) Speed on 2nd Upstream Links
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g) Speed on 2nd Upstream Links
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i) Speed on 2nd Upstream Links
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f) Density on 2nd Upstream Links
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h) Density on 2nd Upstream Links
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j) Dens ity  on 2nd Upstream Links
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FIGURE 3-16  Speed and density on target link and neighboring links 
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The non-stationary conditions on all links are exhibited in Figure 3-16.  This 

includes plots of speeds and densities on various links, each compared with the same 

statistic on the target link z.  As shown in Figure 3-16, all links but link e are in an 

unstable traffic condition.  Speeds can be seen to change suddenly.  In particular, 

many links degraded significantly after time step 70 minutes and were, finally, 

jammed up.  In the case of link e, congestion caused by spill-back traffic from 

interchange areas did not happen because vehicles got out of the network through that 

link.  Increasing upstream traffic could make downstream traffic increase and cause 

traffic congestion.  On the other hand, downstream congestion could spill back 

upstream and lead to a congested condition.  In the absence of an incident, it is most 

reasonable that upstream traffic conditions at a given time will have an impact on 

downstream conditions at some later time, since many of the same vehicles will be 

involved.  Thus, those correlations should be high. 

 

3.2.2 Spatial and temporal relevance 

This subsection describes spatial and temporal relevance of traffic information 

based on the results obtained from the simulation experiment in the previous 

subsection.  On space mean speeds, 2-hour correlation, 15-minute correlation, and 

time correlation are discussed.   

In order to analyze spatial relevance, the correlation on speed was used as a 

statistic.  Figure 3-17 contains correlation coefficients on speed between each 

neighboring link and the target link over the whole simulation time (2 hours).  In 
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Figure 3-17 the names of those links associate with each coefficient depicted are in 

parentheses. 

 

FIGURE 3-17  Two-hour correlation with speed on target link z 

 

In Figure 3-17, each upstream link a, b and c of the target link z is correlated as 

much as -0.34, 0.64, and 0.66 respectively.  For downstream results, the coefficients 

on links d, e, and f were -0.70, -0.59, and 0.85.  These results suggest that speeds on 

links b, c and f are more related to that on link z.  On several links (a, d, e, ba, bc, and 

ca), negative correlations were obtained.  In comparing two link speeds, it would be 

difficult to conclude from a negative correlation of large magnitude such as link d (-

0.7) that a “direct” causal relation exists between those links.  For example, link z 

could be “indirectly” related to link d via other links.  Certainly, it would be hard to 

argue that increasing the speed on any one link causes a decrease in speed on another 

link.  Even though links aa, ab, and ac are one link farther away, high correlation 
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coefficients were obtained: 0.93, 0.78, and 0.94, respectively.  However, it is believed 

that links aa, ab and ac have indirect relationships with link z in terms of speed 

because those links are connected to link z via link a with a negative correlation 

coefficient. 

The correlations mentioned above attempt to capture the relations between links 

for the full 2 hours with one single value at the overall viewpoint.  Figure 3-18 shows 

the variation of 15-minute correlation between each upstream/downstream link and 

the target link with density rate for maximum density (213 vehicles in this 

experiment).  Each point was obtained through a sequence of 15 one-minute speed 

data; the first point was located at the 15th time step.   
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FIGURE 3-18  Correlation with speed on target link z for 15 minutes and density 
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As shown in Figure 3-18, unlike 2-hour correlations, the 15-minute correlation 

coefficients fluctuate significantly; no links are stable.  For example, link f (0.85) was 

highly correlated to link z in 2-hour correlation, but reported negative value by 15 

minutes and was not over 0.5 by 68 minutes.  Link a was highly correlated to the 

target link by the first 10 minutes, link d during 32 to 54 minutes, and links a, b, and f 

from 68 minutes.  High correlation coefficients (more than 0.4) were drawn with 

bigger markers.  The right column of the Figure 3-18 shows density rate 

(density/maximum density) for each time step. 

The temporal relevance of data on links located in the center area of the 

simulation network was investigated.  Temporal relevance means the relation 

between present and past information.  Speed data on chosen links were compared 

pair-wise, with a sequence of 1-minute time lags from the current time t.  Figure 3-19 

shows correlation coefficients by 30 time lags on a target link and neighboring links. 
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FIGURE 3-19  Temporal relevance 

 

In Figure 3-19, the speed data for link z appeared to be temporally highly 

correlated, 0.81 at time t-15.  However, links a and e were less correlated with past 

data: 0.48 only at four-minute time lag on link a and 0.3 at t-5 on link e.  Links b, c 

and d showed analogous characteristics to each other; the coefficient curves for the 

three links follow a very similar pattern.  The correlation coefficients at time lag t-5 

were 0.72, 0.75 and 0.68, respectively.   

As shown above, temporal relevance on traffic information appears though all 

links are not very correlated; correlations on some links were high with thirty-minute 

time lag and those on others were low even with five-minute time lag.  Temporal 
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relevance of recent historic data is expected to be used for travel time expiration in 

vehicular ad hoc networks. 

 

3.2.3 Linear model 

In this subsection, a linear model using spatial relevance of traffic information is 

introduced.  This model relies on the assumption that traffic data are strongly 

correlated with each other in terms of space.  This is true in varying degrees for 

different network topologies.  In general, spatially neighboring data are from 

upstream and downstream links.  We expect these correlations to decline as space 

cells become more distant.  Figure 3-20 depicts spatial relevance between a target link 

z and neighboring links a, b, c, d, e and f.  
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FIGURE 3-20  Spatial relevance example 

 

In Figure 3-20, suppose that the travel time on Link z was missing.  In order to 

estimate the missing travel time on Link z, we assume a linear relation with the 

neighboring downstream and upstream links, and generate a linear model. 
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0  z a b c d e
t a t b t c t d t e t f t

fTT TT TT TT TT TT TTα α α α α α α= + + + + + +          (4) 

 

where, 

z
tTT : Travel time estimate on Link z at time t 

α : parameter 

a, b and c: downstream links 

d, e and f : upstream links 

 

The goal, then, is to find, for this particular target link, the magnitude of the 

coefficients that should be used.  In some cases, the inclusion of certain independent 

variables may not be statistically justified.  The values of these coefficients may 

change with the particular traffic algorithm in mind. 

A problem with unconstrained linear models is that they can provide impossible 

values that cannot happen in the real world, such as speeds of 150 mile/hour or 

negative speeds.  This is more likely when only a small number of observations is 

available.  Therefore, the results of the linear model should be followed by a process 

to adjust unreasonable estimates.  The basic idea of the adjustment process in this 

study is to smooth estimates that are too high or too low as shown in Figure 3-21.   
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adjTTzTT  
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zTT  
M 

M : medium value  

FIGURE 3-21  Concept of the excess adjustment 

 

First of all, a medium value, M, assumed to be a neutral line between 

overestimates and underestimates, is defined.  It would be in the middle of zTT  and 

2
zTT .  In this study, M was chosen as a value two thirds of zTT .  Next, all 

estimates from the linear model are shrunk (contracted) in the direction of the 

medium value.  In particular, only the differences between 
zTT  and M nonlinearly 

contract based on a shrinking factor defined as ( )zTT M βα − ; 0.012 and 1.2 were 

applied for the values of α  and β  respectively in this paper.  Finally, adjusted travel 

time is obtained through Equation (5). 

 

 
      

(  )  1

z
z

adj z

TT M
TT M

TT M βα

−
= +

− +
                                              (5) 

 

If we compose a data structure based on the example in Figure 3-20, we can set 

up target link z with 3 downstream links (links a, b and c) and 3 upstream links (links 
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d, e and f).  These are all links that are topologically adjacent to the target links.  

Figure 3-22 shows a sample data structure of the target link and the adjacent links. 
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FIGURE 3-22  A sample of data set 

 
In Figure 3-22, 15 consecutive data values were used as a unit of data set in order 

to estimate missing space mean speed.  Coefficients for a linear model were estimated 

through those 15 consecutive data values (t-1~15), and the travel time (t) missed on 

Link z was estimated with coefficients obtained from previous time lags and data (t) 

on neighboring links at the same time window. 

In order to evaluate this linear model, simulation results conducted in Subsection 

3.2.1 were employed.  A total of 120 one-minute observations of aggregated space 

mean speed were obtained.  Of those, we kept the consecutive 68 pieces of data left 

after removing data such as jammed-up conditions (from the 69th time window, a 

traffic jam started to appear on some links).  Figure 3-23 shows the virtual simulation 

road network used for this paper. 
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FIGURE 3-23  Network structure 

 

We defined a target link and neighboring links on the simulation network, as 

indicated in Figure 3-23.  The total of four links (links 1, 2, 3 and 4) were selected as 

a target.  Four target links which are not affected by other characteristics such as no 

upstream links or downstream links were chosen.   

 

TABLE 3-3  General observations 

 Link 1 Link 2 Link 3 Link 4 

# of samples 68 68 68 68 

Maximum speed [miles/hour] 70.9 73.1 71.6 75.3 

Minimum speed [miles/hour] 22.9 23.5 33.9 25.5 

Median speed [miles/hour] 65.4 66.9 65.8 66.1 

Average speed [miles/hour] 62.2 60.3 62.6 60.6 

Standard deviation [miles/hour] 10.7 13.8 8.8 13.4 

   

    

     

     

 
1 mile 1 
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* 1 mile = 1.609 km 
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In Table 3-3, general observations for the four target links are summarized.  Of 

68 consecutive space mean speed data points, a total of 53 speed estimates per target 

link were provided because the first estimate needed 15 consecutive data points.  The 

average space mean speeds for the four target links were more than 60 mile/hour; 

these links were not congested for most of the period.  The differences between 

median and average speeds for links 2 and 4 (around 6 mile/hour) were higher 

compared to those for links 1 and 3 (3.2 mile/hour).  Similarly, standard deviations 

for links 2 and 4 were higher than those from links 1 and 3, indicating a higher 

propensity for fluctuation on those links.   

 

 

FIGURE 3-24  Estimated speed and actual speed 
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Figure 3-24 (a) shows that the speeds on Link 1 were the best, of those estimated 

through the linear model proposed in this paper.  The match is best illustrated by the 

agreement between the simulator and predictor during the speed decrease that 

happened around the 39th time bin.  In Figure 3-24 (b), actual speeds on Link 2 were 

estimated well only around time lags when the actual speed decreased, whereas large 

errors sometimes appear at high speeds.  Figure 3-24 (c) shows good general 

agreement for the speeds on Link 3, although some deviations are present.  The model 

generally performed poorly for Link 4, as shown in Figure 3-24 (d).   

A linear model for predicting space mean speed on a target link using 

information from neighboring links was employed for imputing missing data.  The 

results show that traffic conditions on the target link can be associated with those on 

neighboring links, and seem to be affected by compound relation of those links.   

 

3.3 Discussion 

This chapter discussed the patterns of individual travel times with aggregate 

travel times as a proxy of traffic condition and the data quantity for reliable travel 

time information based on individual travel time data obtained from a simulation 

experiment.  Congested traffic conditions between uncongested and jammed 

conditions certainly changed and they showed high standard deviations.  Large 

sample sizes (more than 23 in Figure 3-13) are required for reliable information in a 

congested traffic condition. 

Section 3.2 showed spatial and temporal relevance amongst one-minute 

aggregated space mean speeds, a reciprocal of travel time.  While spatial relevance 
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with neighboring links varied in a squared road network, temporal relevance at the 

same link seemed to be associated amongst recent historic data.  In some links, 

however, it became quickly stale.  In temporal relevance degradation of travel time, 

correlation coefficients of travel time on many links fell down under 0.5 over a period 

of 14 minutes (Figure 3-19).  These results for travel time are used to determine the 

degradation of travel time information in a framework design. 

The next chapter introduces how this study builds a simulation framework for 

VANET applications.  The simulation framework integrated with transportation and 

communication simulators is designed based on an information model in VANET 

applications which is defined in this study and implementation techniques are 

described. 
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Chapter 4: Simulation Framework 
 

Research issues related to inter-vehicle communications for transportation 

applications are extraordinarily complex, with numerous complicated and 

interdependent stochastic inputs.  As a result, the only reasonable method to evaluate 

ideas for real systems is through simulation.  These ideas are far enough ahead of the 

curve, however, that no single current commercial package offers the full range of 

features required to study these systems.  An integral component of the work for this 

dissertation, therefore, was the development of an integrated transportation and 

communication simulation framework, having as its target a wide range of 

applications to VANETs.  Transportation and communications are essentially stove-

piped disciplines, so the only way to build an effective simulator for both 

simultaneously was to start with the most appropriate simulator within each domain 

and then to integrate.  The definition of “most appropriate” included both well-known 

performance within the domain and an ample Application Programming Interface 

(API) with which to override default behavior and build links to external functions in 

real time.  The most critical areas of interoperability between the two simulators were 

time management and mobility management.   

This chapter describes the development of the integrated simulation environment.  

Section 4.1 begins with a description of the simulation requirements, including the 

information model proposed for the dissertation, as well as the desired architecture.  

Section 4.2 describes some state-of-the-art simulators in the transportation and 

communications domains and shows how the choices of Paramics (transportation) 
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and Qualnet (communications) were arrived at.  This section also shows how the 

integrated simulation platform was implemented, including the issues of time and 

mobility management mentioned above.  The section closes with a specific 

description of the inter-vehicle communications mechanisms designed and 

implemented in this simulation platform for the purposes of this dissertation. 

 

4.1 Simulation design 

One of the most fundamental changes that can be expected from VANETs used 

for transportation management purposes is that the nature of the information involved 

in the decision-making will change.  The existing traffic data paradigms are well-

established, arguably entrenched, and will need to be re-thought completely in order 

to best exploit this evolution of technology.  Because existing simulation tools were 

built while the old paradigms were active, one has to be at least suspicious that they 

may not be directly extensible to this new environment.  Thus, the first important task 

to be conducted as part of this research was to develop an information model that 

describes the types, frequencies, etc. of the information packets that are expected to 

be used by models supported by VANETs, as well as their collection and distribution 

mechanisms. 

With this information, it was then possible to design a cooperative architecture 

expected of the two domain simulators.  Specific details depend on the simulators 

chosen, of course, but the general guidelines of the interfaces, data dictionary, etc., 

were determined at this point.  The following two subsections describe the 
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development of the information model and simulation platform architecture in more 

detail. 

 

4.1.1 Information model 

In order to understand the target system of the proposed simulation framework, 

an information model in transportation systems based on VANETs is presented in this 

study.  In the information model, various traffic events – such as vehicle movements 

– are collected as data, in some manner, from the transportation systems and are then 

fed back to the transportation system according to some collection of preset logic.  

The information model considers traffic events as information (thereby assuming that 

the means to collect the information accurately are available) and processes the 

information to decide reactions.  The model presented here defines procedures by 

which information is collected, disseminated, utilized and fed back in a VANET-

based transportation system.  Figure 4-1 shows a diagram of the information model 

which this study focuses on. 
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FIGURE 4-1  Information model for VANETs 

 

The proposed information model for VANETs consists of four stages: 

generation, dissemination, interpretation and reaction.  To support VANETs, the first 

stage of the information model is the generation of information which describes 

traffic states (conditions) for transportation mobility purposes, and vehicle locations 

for transportation safety purposes.  Since traffic information is being collected by 

individual vehicles, at this point the state information must be that which can be 

estimated by a single variable.  For example, the travel time of a single vehicle over a 

given link can be used as an estimator of the average travel time for many vehicles 

over that link (which might be a meaningful macroscopic definition of state for that 

link), but a single vehicle cannot characterize the flow on a link. 
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Vehicles are assumed to be equipped with navigation / location hardware with 

sufficient spatial and temporal resolution for the intended applications.  Thus, a 

vehicle can determine and report its own position.  Meaningful information, the 

definition of which depends on the intended applications, would be generated by any 

events that can be sensed by the vehicle, most notably vehicle’s own movements in 

the transportation system.  As described in Section 1.1 of Chapter 1, it might be most 

efficient for vehicles to have a collective sense of “the norm” for traffic states at any 

given point in time and space, and only to report on conditions sufficiently outside of 

that norm.  Where it is appropriate to assume that no links would be entirely devoid 

of communications-equipped vehicles, this structure allows the total absence of data 

to also be interpreted as information.  Any information generated in the vehicle is 

accumulated in internal information bases such as a database inside an Onboard Unit 

(OBU).   

Information generated is disseminated to appropriate recipients at the second 

stage.  Depending on the applications, information would be destined either to 

specific vehicles (unicasting or multicasting) or to all other vehicles within 

transmission range (broadcasting).  Since mobility in VANETs is extremely high and 

nodes are essentially anonymous, most applications will (or should) aim to deliver 

information to all other vehicles within range.  An exception to this would be 

applications should as mobile web, but this dissertation is focused only on 

transportation management applications.  The simplest method for every vehicle to 

send information to every other vehicle within range would be periodic broadcasting, 

although various more complicated broadcasting schemes should be studied for 
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different applications.  For better performance, the broadcasting interval can be 

adjusted according to the situation. 

When a vehicle receives new information from other vehicles, it would either 

discard or assimilate the information, depending on its interpretation.  At the stage of 

interpretation, procedures for how to understand the new information and what to do 

with it are conducted.  The interpretation may cause an update or modification to a 

vehicle’s own information base with new information. 

At the final stage, accumulated information should result in some reactions from 

vehicles (or their drivers) such as speed changing, lane changing, or rerouting.  The 

reaction defines rules for such responses to new information.  This reaction usually 

feeds back to the transportation system, possibly generating new traffic situations. 

This information model can cover most applications of VANETs which base the 

individual vehicle’s reaction to the transportation system on collecting, processing, 

and disseminating traffic events.  The simulation framework is designed according to 

the presented model and, therefore, most VANET-based transportation system can be 

properly simulated within this framework. 

 

4.1.2 Simulation framework design 

This section describes the simulation framework designed to work with the 

information model presented in the previous section.  The simulation framework was 

designed with the notion that a simulator for VANETs should provide: 1) simulation 

for the transportation system, 2) simulation for the vehicular ad hoc network, and 3) 

application logic for intelligent systems.  A transportation simulator models a 
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transportation system by simulating the behavior of vehicles according to internal 

traffic models such as car following, lane changing, shock waves, and queuing.  A 

communications simulator demonstrates various aspects of wireless ad hoc networks 

such as the underlying radio channel and multiple access control.  The application 

logic for VANETs presents how the system generates, disseminates, and interprets 

the information.  It also defines each vehicle’s reaction to the information it receives.  

To provide a simulation framework for VANETs, the transportation simulator and the 

communication simulator are integrated by creating an interface between the two.  

The simulation time and vehicle positions must be synchronized in the two simulators 

via inter-simulator communication.  Figure 4-2 shows the architecture of the 

simulation engine, including the transportation and communications components, 

together with the communications infrastructure that joins them. 

To synchronize the simulation time between both simulators, they exchange 

current simulation times at a given precision.  Since the communication simulator 

does not support vehicles’ movements, the transportation simulator periodically 

provides the communication simulator with vehicles’ locations.  Upon occurrence of 

traffic events, the transportation simulator generates data, decides on the intended 

recipients, and lets the communication simulator represent inter-vehicle 

communications.  In this study, it is assumed that the system disseminates 

information by periodic broadcasting (this constraint is intended for the case study 

presented in later sections).  The framework, however, can accommodate more 

intricate communication schemes such as adaptive broadcasting (Wischhof et al., 

2007 and Saito et al., 2007).  The communication simulator informs the 
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transportation simulator about data receptions, and the transportation simulator then 

interprets the information, and modifies it and reacts if needed.  The transportation 

simulator and communication simulator proceed independently (as different 

processes), but each with constraints imposed by the other.  In particular, each has the 

ability, through the API, to suspend execution of the other long enough for the non-

native data to be updated appropriately.  When this synchronization scheme is 

executed with sufficient resolution, it has the effect of mimicking a combined 

simulation environment. 

 

FIGURE 4-2  Framework implementation 
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4.2 Implementation  

In this section, the specific modes to implement the simulation framework 

designed in the previous section were described.  Proper tools for transportation and 

communication simulations were chosen, and these two simulators were synchronized 

with respect to simulation time and node locations.  The last subsection shows data 

communications between the simulators with data format from QualNet to Paramics 

for updates of traffic data via intervehicle communications. 

 

4.2.1 Simulation tools 

In order to simulate vehicles’ mobility in transportation systems and ad hoc 

networking among vehicles, simulators oriented to these specific purposes are 

employed.  For these purposes, the transportation simulator should be a microscopic 

simulator capable of describing correlated movements of individual vehicles.  The 

communication simulator should simulate the 7 layers in the open systems 

interconnection (OSI) reference model proposed by the International Organization for 

Standardization (ISO), and should be able to handle large communication networks 

composed of equipped vehicles. 

Corsim (Corsim homepage, 2007), VISSIM (VISSIM homepage, 2007), 

AIMSUM (AIMSUM homepage, 2007), and Paramics are well-known microscopic 

transportation simulators.  Of those simulators, Paramics version 5.2, developed by 

Quadstone Paramics, is employed in this study as the transportation simulator.  

Paramics is a microscopic traffic simulation tool producing movements and behavior 

of each individual vehicle.  It can be used to replicate traffic on a wide variety of 
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transportation networks.  Paramics’ primary flexibility is that it allows users to access 

its internal mechanisms via a convenient Application Programming Interfaces (API) 

(Paramics homepage, 2007).   

Most sources in the literature in mobile wireless networks use NS-2 (NS-2 

homepage, 2007), OPNET (OPNET homepage, 2007), GloMoSim (GloMoSim 

homepage, 2007), or QualNet for evaluation tools.  In this study, QualNet version 4 

was chosen as the communication simulator.  QualNet, developed by Scalable 

Networks Technologies Inc., is the commercial successor to GloMoSim.  QualNet 

can simulate large scale wireless networks as a packet level simulator for wired and 

wireless networks.  For example, Scalable Networks Technologies describes QualNet 

by saying that it can simulate a communication network with thousands of nodes with 

reasonable performance due to improvements in design such as parallel execution and 

smart memory management.  QualNet supports all seven layers from the physical 

layer to the application layer in the OSI reference model.  On the wireless physical 

layer, protocols 802.11 DCF/PCF, 802.11 a/b/g/e and 802.16(e) are supported 

(QualNet homepage, 2007). 

 

4.2.2 Mobility management 

In this simulation framework, the locations of nodes (vehicles) in QualNet are 

synchronized with those of equipped vehicles in Paramics.  Paramics was 

programmed to periodically send to QualNet the positions of all equipped vehicles 

currently active in the system with a timestamp (Paramics can control the time step to 
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within 10 milliseconds).  Figure 4-3 shows how these simulators synchronize 

vehicles’ movements and graphically illustrates the expected error from this method. 

 

 

FIGURE 4-3  Movement synchronization and expected error 

 

As shown in Figure 4-3, QualNet moves vehicle (node) positions along a linear 

path with time-stamped vehicle positions.  For example, if QualNet received (v, t1, x1, 

y1) and (v, t2, x2, y2) at the next period from Paramics, where t2 > t1, then the vehicle v 

is assumed to depart from location (x1, y1) at time t1 and arrive at location (x2, y2) at 

time t2 and to have done so along the straight line between (x1, y1) to (x2, y2).  This 

“interpolated mobility” could cause incorrect vehicular positions if the actual vehicle 

trajectories are non-linear.  This error, however, can be made negligible, since 

highways have bounded curvature and the update time for the simulation is quite 

small.  Figure 4-4 contains the format of the packet transferred from Paramics to 

QualNet. 
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FIGURE 4-4  Packet format from Paramics to QualNet 

 

In Figure 4-4, the first data indicates the current time that Paramics sends to 

QualNet, and is followed by a total number of vehicles contained in the packet.  Now, 

data describing locations for each vehicle are attached: vehicle ID, x coordinate, y 

coordinate, and data size which each vehicle stores at that time.  About data size, it 

will be more discussed later. 

 

4.2.3 Time management 

QualNet takes the form of Discrete Event Simulation (DES) software, the most 

widely used form in communication simulation.  In DES, the state of the system is 

assumed to change only at discrete epochs; in other words, the simulation time (or 

simulation clock) proceeds only when an event happens (e.g., 1, 5, 6, 20, ...) rather 

than increasing by constant time units (e.g., seconds 1, 2, 3, 4, …).  The former is also 

{ 
float   time;        // current time in Paramics  
int      vcnt;        // number of vehicles in this packet  
{  
        int     vid    // vehicle id  
        float     x    // x coordinate 
        float     y    // y coordinate 
        int    size   // size of data in the vehicle  
}  // 1  
{  
     ...   
}  // 2  
      .   
      .   
      .   
{  
     ...   
}  // vcnt        

} 



 

 86 
 

called “event driven” and the latter called “time driven.”  Since QualNet is an event-

driven simulator and Paramics is a time-driven one, it is not a trivial task to keep the 

clocks of these two simulators synchronized.  Figure 4-5 shows two different cases 

where the simulators have slightly different impressions of the simulation time, and 

the ramifications thereof. 

 

 

FIGURE 4-5  Two cases by different simulation time 

 

As Figure 4-5 a) shows, if QualNet time (tq) is ahead of Paramics time (tp), then 

QualNet is performing communications with incorrect (or delayed) vehicular 

positions.  With high-speed vehicles, even a small delay (tq − tp) can cause large 

errors in vehicle positions.  Incorrect vehicle positions can cause data losses and 

unnecessary data receptions, which should not happen with correct positions.  This 

study considers this error critical because data losses and unnecessary data receptions 

cannot be recovered.  If, on the other hand, Paramics time is ahead of QualNet time 

(Figure 4-5 b), QualNet is always aware of exact vehicle positions while Paramics is 
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not aware of some data receptions that happened between tq and tp until QualNet time 

reaches tp.  Thus, the arrival of data from other vehicles can be delayed by up to | tp − 

tq |.  Such a delay might impact the vehicle's reaction in response to the data.  With a 

small value of | tp − tq |, i.e., 1 second, this error minor is considered, if not negligible, 

because reception of a few data packets (or delays thereof) is unlikely to cause a 

significant change in a vehicle's reaction during such a short period of time.  Figure 

4-6 shows graphically how to synchronize the simulation time of the simulators in 

this study. 

 

 

FIGURE 4-6  Synchronization of Paramics and QualNet 

 

Given a maximum time error ε as shown in Figure 4-6, the Paramics time is 

always kept ahead of QualNet time, by at most ε: 0 < tp − tq ≤ ε.  This synchronization 

method guarantees that the delay of data delivery can be constrained above by the 

parameter ε.  Paramics periodically sends the current simulation time tp to QualNet 

every ε seconds.  QualNet sends an acknowledgement message to Paramics in order 

to inform Paramics that QualNet has processed all events happening before the 

current Paramics time tp.  Since QualNet is a discrete event simulator, QualNet 

processes events until tp and stops if the time of the next event to process is later than 
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tp.  Assuming there is at least one event in each ε period, the time difference between 

these simulators is always less than ε.  In the unlikely event that this was to be both 

violated and important, one could always synthesize events in Paramics via innocuous 

functions in the Paramics API; therefore this performance standard can be guaranteed. 

 

4.2.4 Intervehicle communication 

In the simulation environment, synchronized in terms of time and mobility, 

equipped vehicles communicate, which means transmitting data.  QualNet simulates 

the vehicles’ broadcasts of their data via an ad hoc network, and sends Paramics the 

results of the broadcasts to update traffic data based on the broadcasting time.  Figure 

4-7 contains packet format from QualNet to Paramics. 

In QualNet, data reception by broadcasting induces events.  As shown in Figure 

4-7, QualNet notifies Paramics of data reception by sending a list of (rvid, size, svid, 

rtime) indicating “a receiving vehicle rvid receives a data packet of size from sending 

vehicle svid at time rtime.”  In this list of data, QualNet notifies Paramics only of the 

size of the data broadcast in QualNet unlike Wu’s (2005) simulation framework in 

which the whole data broadcast are sent from a communications simulator to a 

transportation simulator.  This simplification improves the simulation performance by 

decreasing the communications loads between the simulators.  The results of data 

transmission/reception are attached to periodic time-synchronization packets 

mentioned in Section 4.2.2 to reduce the communication overhead. 
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FIGURE 4-7  Packet format from QualNet to Paramics  

 

4.3 Discussion 

This chapter described how to design and implement the simulation framework 

which this dissertation develops.  In particular, it depicted how to integrate two 

different simulators (Paramics and QualNet) in detail; Paramics is time-driven and 

QualNet is event-driven.  This framework was designed with a variable error 

tolerance e, a maximum time error, which would be determined according to 

applications: e.g., 1 second for traffic information systems and 0.1 seconds for 

{         
float   time;        // current time in QualNet 
int      vcnt;        // number of vehicles in this packet  
{  
        int  rvid;     // vehicle receiving data  
        int  rcnt;     // number of data received  
        {  
                int       svid;     // vehicle sending data 
                float   rtime;    // received time  
                int       size;     // data size of sending vehicle 
        }  // 1  
        {  
             ...   
        }  // 2  
             .   
             .   
             .   
        {  
             ...   
        }  // rcnt  
}  // 1  
{  
     ...   
}  // 2  
      .   
      .   
      .   
{  
       ...   
}  // vcnt  

} 
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collision warning systems.  While this research focused on a traffic information 

system, it could be applied to transportation safety systems as well depending on a 

determined error tolerance. 

The next chapter contains how the simulation framework implemented in this 

chapter is applied to a traffic information system.  The first section shows how a 

traffic information system based on a VANET is composed and collects travel time 

information.  The second section describes how the simulation framework works in 

detail. 
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Chapter 5: Traffic Information System Application 
 

In this chapter, the integrated simulation framework developed in this study is 

applied to a traffic information system in which vehicles are provided traffic 

information through intervehicle communications.  The system configuration for a 

traffic information system based on a VANET is introduced, and the simulation 

model to apply to that system is described specifically. 

 

5.1 Traffic information system configuration 

This section introduces a VANET-based traffic information system which this 

research envisions in the real environment.  The overall system configuration, the 

process of generating self-recorded travel times, and the internal processing in an 

onboard unit are described. 

When a traffic information system based on a VANET is deployed, we 

distinguish between vehicles involved in this system and ones not involved.  The 

involved vehicles possess communications hardware and onboard units, and are 

referred to as equipped vehicles.  Unequipped vehicles are also present, but are not 

able to participate in the data collection or generation.  This is a major distinction 

from other kinds of sensing technology (e.g., inductive loop detectors) where all 

vehicles contribute to the generation of data, but only equipped vehicles can receive 

information about those data via wireless communications.  It is assumed that each 

vehicle equipped with an onboard unit will also have location technology equivalent 

to differentially-corrected GPS, as well as a digital map database and supporting 
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software and database tools.  Presumably, communications software would also 

reside in the same housing, although this is irrelevant at the conceptual level.  Figure 

5-1 illustrates the overall system configuration of a traffic information system based 

on a VANET.   

 

FIGURE 5-1  Traffic information system based on a VANET 

 

In Figure 5-1, vehicles equipped with an onboard unit travel on the road network 

intermingled with unequipped vehicles.  Equipped vehicles can recognize their 

current locations through location information such as longitudes and latitudes from 

satellites.  In particular, a reference road map included in an onboard unit allows a 

vehicle to learn which link they are on. The reference road map defines start and end 

locations for all links with an associated link ID such as L309, L204, etc.  Traveling 

on the road network, equipped vehicles transmit travel time data packets, which they 

store in their database, to other equipped vehicles within transmission range, and they 
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receive what other vehicles transmit.  Figure 5-2 illustrates how travel time data are 

generated. 

 

FIGURE 5-2  Example of map-based travel time generation 

 

In Figure 5-2, when an equipped vehicle v travels on the roadway, the vehicle 

recognizes its current location using location information obtained from GPS.  Since 

it is assumed that all equipped vehicles use the same reference map in their onboard 

units, they know link information such as link location, distance, the number of lanes, 

etc., and key all of this information to link IDs.  Presumably, the onboard maps could 

be kept both consistent and up-to-date via communications from map servers located 

throughout the network, using the communications equipment already in the equipped 

vehicles.  Returning to the figure, based on the reference map in the onboard unit, the 

vehicle obtains its own travel time of link L204, the difference (57 seconds) between 

the exit time (01:22:51) and the entry time (01:21:54), when it leaves the link.  In the 

same way as Figure 5-2, equipped vehicles record their own travel time data with the 

Link L203 exit time 
Link L204 entry time

01:21:54 

 L203  L204  L205 

Link L204 exit time 
Link L205 entry time
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vehicle ID link ID travel time  exit time
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vehicle v 

vehicle ID link ID travel time  exit time 
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vehicle ID, the link ID, and the exit time.  Figure 5-3 shows how equipped vehicles 

exchange travel time data with each other.  

 

FIGURE 5-3  Example of travel time data exchange 

 

Figure 5-3 shows two cases: data exchanges between equipped vehicles traveling 

in the same direction and between vehicles traveling in opposite directions.  Equipped 

vehicles a and b traveling in the same direction within the transmission range 

communicate and exchange travel time data which they each have.  Of data obtained 

from vehicle b, vehicle a selects and updates only travel time data which its own 

database does not have, and vice versa.  Equipped vehicles c and d traveling in 

opposite directions also communicate and exchange travel time data since they are 

within the transmission range of each other.  In that case, vehicle d is expected to 

convey data from vehicle c as well as its own data to vehicles a and b.  Figure 5-4 

depicts how an onboard unit works internally. 
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FIGURE 5-4  Internal configuration of onboard units  

 

In Figure 5-4, an onboard unit consists of a reference map, GPS, radio hardware, 

database, and processor.  Receiving current location information from satellites, GPS 

allows vehicles to learn where they are on the reference map.  Through the radio 

hardware, equipped vehicles transmit and receive travel time data.  All of these 

internal components are connected with the processor.  The processor interprets travel 

time data received from other vehicles, and determines whether to store or throw 

away the data.  For dynamic routing, the processor finds the shortest path based on 

travel time stored in database.  Finally, equipped vehicles reroute to avoid congestion. 
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5.2 Simulation model architecture 

In this section, the simulation model architecture for the traffic information 

system described in the previous section is introduced and specific methodologies are 

mentioned.  Figure 5-5 shows the logic of each stage of the traffic information system 

application which this section describes. 

 

 

FIGURE 5-5  Traffic information system application 

 

As shown in Figure 5-5, the basic logic is same as the real system described in 

the previous section.  Travel time data are generated by equipped vehicles and stored 

in their database.  Through broadcasting, vehicles share travel time data which they 
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have in their database.  At the Interpretation stage, the delivered travel time data are 

processed, which might include assimilation into an existing data set, discarding of 

stale data, modification, and calculation.  Travel time data in an on-board unit are 

used to conduct dynamic routing.  Rerouting is conducted as a reaction in this 

simulation model, and the results make traffic conditions change.  Based on Figure 

5-5, the following subsections specifically describe how each stage is simulated. 

 

5.2.1 Vehicle release and travel time generation 

In the simulation, vehicles are released from certain ends of links, called “zones.”  

When vehicles enter the road network, their origin and destination zones are 

determined.  The first process in the simulation releases vehicles into the network, 

depending on the origin and destination matrix in which the release rates, the number 

of vehicles per time period (i.e., 1500 vehicle/hour), are defined.  Vehicles are 

released according to a release algorithm which uses a number generated from a 

uniform random distribution to determine the headway between released vehicles. 

In this simulation framework, a vehicle is determined to be equipped or not on 

the basis of a Bernoulli random variable sampled for each vehicle upon its entrance to 

the network, with a parameter equal to the intended market penetration rate.  

Paramics provides the API function “qpx_VHC_release ( )” which is called 

when a vehicle is released from a zone (see code in Appendix A).  By implementing 

this function, we can create custom data fields for each vehicle, stored in the user-

definable “userdata” structure provided by Paramics.  For this simulation, we defined 

six fields in the vehicle userdata structure. 
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FIGURE 5-6  Vehicle userdata structure 

 

In Figure 5-6, “VHCID,” the first field of the structure, is a unique name 

provided for every vehicle, both equipped and unequipped.  This ID tag is the means 

by which any vehicle’s information can be accessed via the API.  The second field, 

“equipped,” records whether or not the vehicle participates in the VANET-based 

traffic information system, and this field is set as described above.  At the same time, 

the vehicle’s “ReleaseTime” is filled in according to the current simulation clock.  To 

calculate link travel time, “EntryTime” is temporarily stored whenever the vehicle 

enters a link, as illustrated in Figure 5-2.  “VHC_TTDB_s” is a pointer indicating the 

vehicle’s database in which travel time data are stored, and the total size of data 

stored in the database is updated in “DataSize” whenever the database is updated. 

To generate travel time data, the entry time and the exit time of links are used.  

The Paramics API function “qpx_VHC_transfer” is called whenever a vehicle 

traverses a node.   In this function, the entry time of the vehicle is recorded in the 

userdata structure, and the travel time is calculated from the difference between the 

entry time and the exit time of the link when the vehicle leaves the link (see code in 

struct VHC_USERDATA_s  

{ int VHCID;   // vehicle name 

Bool equipped;  // equipped or not 

float ReleaseTime; 

float EntryTime; 

struct VHC_TTDB_s *db; 

int DataSize; }; 
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Appendix A).  Figure 5-7 shows the travel time data packet structure stored in 

database. 

 

 

FIGURE 5-7  Travel time data packet structure 

 

As shown in Figure 5-7, a single travel time data packet consists of 4 fields in 

this framework.  It can be, however, different depending on an application target.  For 

example, location data such as a longitude and latitude could be included in the data 

packet in VANET applications for transportation safety. 

 

5.2.2 Data dissemination 

This research assumes that this traffic information system disseminates travel 

time data packets by simple periodic broadcast.  More advanced communications 

schemes could also be considered, such as adaptive broadcast which changes 

broadcast intervals to reduce communication collisions.  In particular, such schemes 

would be appropriate to optimize communications performance in high density traffic 

conditions with a high market penetration rate. 

struct TravelTime_s  

{ int VHCID;    // who measured travel time 

int LinkIndex;   // where travel time was measured 

float TravelTime; // value 

float ExitTime; }; // when travel time was measured 
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In this study, periodic broadcast is implemented in the communications simulator 

QualNet.  Equipped vehicles broadcast to supply their travel time data packets to the 

neighboring equipped vehicles.  In this research, the broadcast interval was set to one 

second.  Each equipped vehicle broadcasts every second, respectively, based on its 

own release time into a road network, which was randomly distributed.  Thus, 

broadcast times are uniformly distributed over a continuous time interval.  This is also 

how one would want a real system to work, since this minimizes message collisions.  

An important design consideration for real systems, however, is this timing.  If all on-

board units were time-synchronized to the GPS clock, and they all chose broadcast 

times based solely on that clock, then they would all be attempting to communicate at 

the same time.  Even in the real system, therefore, a random stand-off period would 

need to be built in to spread this demand.  Fortunately, many wireless protocols 

provide for such a mechanism already, including the 802.11 family used in this 

research. 

Travel time data packets are transmitted through a transport layer, a network 

layer, a MAC (Media Access Control) layer and a physical layer.  User Datagram 

Protocol (UDP) and Internet Protocol (IP) are used for a transport layer and the 

network layer, respectively.  We do not take into account communication routing 

performing in the network layer since we assume that the information are broadcast to 

all capable receivers, rather than routed to a specific recipient.  For the Medium 

Access Control (MAC) layer and physical layer, the 802.11a standard is chosen.  As 

mentioned before (subsection 2.13), the Carrier Sense Multiple Access / Collision 

Avoidance (CSMA/CA) scheme makes communication collisions minimized in the 
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MAC layer.  In the physical layer, communication phenomena such as path loss and 

fading are considered. 

 

5.2.3 Data interpretation 

The results of successful communications are sent from QualNet to Paramics 

every synchronization interval.  To synchronize the simulation time between two 

simulators, we use the Paramics API function “qpx_NET_timeStep” called once 

at the start of each step of simulation time (see code in Appendix A).  While users can 

directly choose a simulation time step between 10 milliseconds and 0.5 seconds in 

Paramics, we used an effective synchronization interval of one second (because of 

simulation speed concerns) by invoking this function properly every other 0.5 

seconds, and returning without effect on the alternating times.  As mentioned in 

Subsection 4.2.3, the synchronization interval helps to control errors within the model, 

and the acceptable magnitudes of these errors vary depending on the application. 

The results of successful communications obtained from QualNet lead receiving 

vehicles to update their delivered travel time data packets.  The function “transmit” 

plays the role of updating (see code in Appendix A).  Based on the receiver’s data set 

(database), the function “transmit” inserts the sender’s travel time data packet into the 

receiver’s data set only if the receiver does not have the data packet.  It can be 

checked with the vehicle ID and the time stamp of data packet whether it exists in the 

data set.  The retention of travel time data for each vehicle is limited to up to 30 of the 

most recent observations per link.   In the preliminary research for individual travel 

time reliability (Subsection 3.1.3), the number of samples in the worst case 
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(congested traffic conditions) obtained from the Acceptance Probability was 23 

(Figure 3-13), and it was decided to use 30, including 30 % as a safety rate. 

The relevance of individual pieces of travel time data on a current traffic 

condition declines as they move away in time.  Depending on how fast this “data 

relevance” degrades, travel time data packets could become stale and, eventually, 

useless.  According to some staleness threshold set appropriately, old data should be 

discarded.  In the preliminary research for temporal relevance degradation of travel 

time (Subsection 3.2.3), the correlation coefficients between travel times on many 

links fell down under 0.5 over 14 minutes (Figure 3-19).  Therefore, travel time data 

packets over 15 minutes old are expired in the current simulation framework.  A 

sender removes data packets more stale than 15 minutes before it transmits.  In a real 

system, these parameters would come from the system design itself or would need to 

be calibrated to optimize system performance.  The point of this study is to showcase 

the integrated transportation and communications simulation framework, so the 

parameter choices are not optimized in any systematic way. 

 

5.2.4 Dynamic routing 

In a VANET-based traffic information system, equipped vehicles can choose 

another route to avoid traffic congestion based on the disseminated travel time data.  

In the simulation framework, the dynamic routing mechanism is the same as it would 

be in a real system.  Whenever equipped vehicles pass split road segments, which 

means a branch including more than two following links, the Paramics API function 

“qpo_RTM_decision” is called and makes vehicles choose the shortest path (see 
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code in Appendix A).  To find the shortest path, the Dijkstra algorithm (1959) was 

employed, solving the single-source shortest path problem for a directed graph with 

non-negative edge weights.  The Dijkstra algorithm is used in the function 

“ShortestPath” (see code in Appendix A).  An average of the travel times 

accumulated from up to 30 records is calculated over each link, and the link distance 

divided by the speed limit is substituted for links without data in the database.  A 

more robust travel time estimation routine could be used in place of this process, and 

this is recommended as one of the areas of future research later in this dissertation. 

 

This chapter described the system configuration, map-based travel time data 

abstraction, and onboard unit configuration for a VANET-based traffic information 

system.  Based on the system configuration mentioned, it was depicted specifically 

how the simulation framework is built.  According to the information system logic, 

vehicle release, data generation, dissemination, interpretation, and dynamic routing 

were explained.  The next chapter contains a case study based on a real road network.  

As a result, framework performance, information dissemination speed, and dynamic 

routing performance are discussed. 
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Chapter 6: Case Study 
 

This chapter demonstrates an integrated simulation framework of a traffic 

information system in which vehicles are provided with traffic information through 

intervehicle communications.  Through the case study with a real road network, the 

framework performance, traffic information dissemination, and dynamic routing 

performance are discussed on the simulation framework implemented in this research. 

 

6.1 Simulation environment 

It is important to attempt to contrive more realistic simulation environments 

although the purpose of the case study is to assess the simulation framework.  A real 

road network, for example, includes road elements such as road alignment, conflict 

areas (merging and splitting), and ramps, which could influence traffic movements.  

A real traffic demand might distribute vehicles throughout the road network.   

The road network in this simulation experiment denotes real roadways to 

compose realistic simulation environment.  The roadways include road curvature, 

merging and splitting areas, and ramps in road sections and interchanges.  Figure 6-1 

shows the location of the simulation site and the network structure. 
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FIGURE 6-1  Simulated road network 

 

The roadway site selected for this simulation is located between Washington, 

District of Columbia and Baltimore, Maryland in the United States.  This highway 

network (a total of 13 miles, equivalent to 22 km) consists of an eight-lane highway 

(I-95) and four-lane highways (MD-295, I-195, MD-32, and MD-100), and includes 

six interchanges.  On the termini of the road network, ten traffic demand zones are 

defined to release vehicles into the network.  

It would be necessary that the simulation framework is evaluated in a variety of 

traffic conditions.  Based on 2006 Annual Average Daily Traffic (AADT) data 

provided by the Maryland State Highway Administration, various traffic demands are 

established.  A half of the AADT on the road that each zone is located is assigned as a 

traffic demand of the zone since AADT denotes a two-way traffic.  We build the ratio 

table of origin and destination traffics in which the number of vehicles arriving at a 
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zone is same as the traffic demands released from that zone.  Using the assigned 

traffic demands and the origin-destination ratio table, various traffic demands for 

traffic conditions from a low density through a high density are generated.  Demand 

Level (DL) is denoted in the range of 1 to 7, DL 1 being one percent of the assigned 

traffic demands and DL 7 being seven percent of the assigned traffic demands.  

Figure 6-2 shows the traffic densities during a period of 40 minutes for each DL. 

 

 

FIGURE 6-2  Traffic demand levels 

 

In Figure 6-2, the traffic density is measured across the whole road network 

including ramps.  The simulation results for the first 10 minutes are excluded since it 

is regarded as a beginning period.  In DLs 1 through 5, the traffic densities are stable 

after the beginning period, which means any serious congestion does not happen on 

the road network.  The densities in DLs 6 and 7, however, continue to increase 

because congestions occurred in several interchanges expand.  Table 6-1 contains key 

simulation parameters in experiments. 
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TABLE 6-1  Simulation parameters 

Number of lanes 4 lanes on I-95 and  
2 lanes on others per direction 

Speed limits 65 mph on I-95 and 55 mph on others 

Demand level DLs 1, 2, 3, 4, 5, 6 and 7 

Market penetration 0.5, 1, 3, 5 and 10 [%] 

Broadcasting interval 1 second 

Protocol 
Transport layer: UDP 

Network layer: IP 
MAC and Physical layer: 802.11a  

Transmission range 250 meters 

Simulation time 70 minutes for dynamic routing and 
 40 minutes for others 

 

 

In Table 6-1, traffic demands take account of both uncongested conditions and 

congested conditions.  Considering the beginning of the system deployment, this 

study focuses more on low market penetration.  UDP and IP protocols stand for User 

Datagram Protocol and Internet Protocol, respectively. 

For this experiment, a 32-bits personal computer is used (Core 2 Duo processor / 

2.4 GHz clock speed, 4 GB memory and Windows XP).  Considering high memory 

usage, 4 GB memory, which is the maximum size of memory in a 32-bits personal 

computer, is installed.  In this computer, Paramics and QualNet run with reciprocal 

communication via shared memory.   

 

6.2 Framework performance 

The VANET simulation is computationally expensive, partly because it needs 

long computation time and a large amount of memory space since thousands of 
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vehicles can communicate with each other every ε seconds given.  The performance 

of this simulation framework was measured in terms of ratio of simulation time to 

computation time (real time).  Figures 6-3 and 6-4 show computation time and 

computer memory usage from 40-minute simulations. 

 

 

FIGURE 6-3  Computation time 

 

 

FIGURE 6-4  Computer memory usage 
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Figure 6-3 illustrates that the simulation time slows exponentially as the traffic 

becomes heavier.  From the demand level 5, simulation works in QualNet certainly 

increased simulation time. As the number of vehicles grew, the number of 

communications increased exponentially, which eventually made simulation time 

slower than real time.  The highest ratio of computation time to simulation time was 

5.63.  In Figure 6-4, the results of memory usage were obtained in 10 % market 

penetration rate.  Memory usage in Paramics did not change very much, whereas that 

in QualNet significantly became higher from the traffic demand level 5.  This reflects 

that an increase in traffic density considerably boosts communications among 

equipped vehicles.  When approximately 4,000 vehicles (400 equipped vehicles) in 

the demand level 7 were on the road network, the memory spaces needed for 

Paramics and QualNet were about 0.7 Gbytes and 1 Gbytes, respectively.  Figures 6-5 

and 6-6 show the amount of data which Paramics and QualNet exchanged each other 

for 40-minute simulations. 

 

 

FIGURE 6-5  Total data exchange between simulators 
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FIGURE 6-6  Maximum data exchange between simulators 

 

Data exchange as well as simulation time and memory usage mentioned above 

depends on the number of vehicles traveling on the road network.  In Figure 6-5, the 

total amount of exchanged data increases as traffic demand level increases.  Although 

they stiffly increased at the demand level 6, the total of exchanged data increased less 

at the demand level 7.  It appears more conspicuously in Figure 6-6.  The maximum 

amount of the exchanged data increased 140 Kbps more at the demand level 6, 

whereas it increased only 30 Kbps more at the demand level 7.  Figure 6-7 shows 

broadcast delivery performance from 40-minute simulations. 
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FIGURE 6-7  Broadcast delivery performance 

 

Computation time, memory usage, and data exchange are substantially associated 

with “broadcast delivery factor” defined as the average number of transferred packets 

per broadcast from each vehicle.  Figure 6-7 shows that the broadcast delivery factor 

increases as a traffic demand level increases.  Compared to a stiff increase at the 

demand level 6, a broadcast delivery factor slightly increased at the demand level 7.  

This result explains that more communication collisions occurred in high density 

traffic condition. 

 

6.3 Traffic information speed 

In this section, disseminated speeds of traffic information via broadcast on a real 

roadway network are investigated in order to evaluate a road network performance.  

All simulations for traffic information dissemination speed were conducted for 40 

minutes.  Figure 6-8 show average information speed. 
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FIGURE 6-8  Average information dissemination  

 

Figure 6-8 was obtained from data throughout the demand levels 1 to 7.  

Individual travel time data were traced with time and distance from the time when the 

vehicle released into the network.  Using traced data, an average of travel time 

dissemination speeds was calculated with traffic density every minute.  All one-

minute speed-density data were aggregated based on density.  As shown in Figure 6-8, 

information speed increases according to density over all market penetration rates. In 

the low traffic density situations (5 and 10 vehicle/lane.km), information seems to be 

disseminated via equipped vehicles in the opposite direction; most information speed 

is around the speed limit (65 mile/hour = 29 meter/sec).  In the high traffic density 

condition (40 vehicle/lane.km), the sufficient availability of equipped vehicles 

traveling in the same direction reduces the chance to use vehicles in the opposing 

direction even though it is still possible. 
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6.4 Dynamic routing performance 

As a case study, this simulation framework was applied to investigate the 

feasibility of dynamic routing mechanism based on traffic information dissemination 

through inter-vehicular communication.  Dynamic routing was conducted using travel 

time data that were limited up to 30 observations per link as mentioned in Subsection 

5.2.3.  It determined the shortest path at each split section through Dijkstra’s 

algorithm. 

All results were obtained from simulations for 70 minutes.  Figures 6-9 and 6-10 

show the average travel times of equipped vehicles and unequipped vehicles by 

market penetration and traffic demand level.  For the simulation shown in Figure 6-9, 

traffic demand level 6 was used, and 10 % market penetration rate was applied in 

Figure 6-10.   

 

 

FIGURE 6-9  Dynamic routing performance by market penetration 
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FIGURE 6-10  Dynamic routing performance by traffic demand 

 

As shown in Figure 6-9, it is clear that vehicles equipped with intervehicle 

communication devices obtain benefits from traffic information dissemination 

compared to unequipped vehicles.  The results show that, even with 0.5 % market 

penetration rate, the equipped vehicles could gather enough information to avoid 

traffic congestion.  As more equipped vehicles re-route to alternative paths, the 

overall traffic pattern seems to get better since the average travel time for all the 

vehicles decreases.  However, as the market penetration rate increases, the benefit of 

re-routing slightly decreases since more vehicles re-route.  In this simulation, 3% 

market penetration rate was the threshold, but the threshold value could change 

depending on simulation assumptions such as the traffic demand level and the 

transmission range.  As Figure 6-10 indicates, it is clear that re-routing loses its 

benefits when no congestion is on the road.  An unequipped vehicle follows the 

shortest path based on a link’s distance and speed, which means that it always 

chooses the real shortest path on uncongested condition.  The shortest path by limited 

information could provide an equipped vehicle with a wrong direction. 
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To evaluate the performance of dynamic routing, a scenario with an incident was 

simulated.  Figure 6-11 shows an incident location and two routes from zone A to 

zone B, which are the normal route in an uncongested traffic condition and the 

alternative route in the congested traffic condition caused by the incident.   

 

 

FIGURE 6-11  Incident scenario 

 

In Figure 6-11, the incident which decreases the capacity by 1/3 occurred for 20 

minutes (00:30:00 – 00:50:00) during a simulation period of 70 minutes.  In an 

uncongested traffic condition, all vehicles choose the normal route because it is the 

shortest path.  After the congestion caused by this incident happens, equipped 

vehicles choose the alternative route, whereas equipped vehicles keep following the 

normal route.  Figure 6-12 shows the results obtained at traffic demand level 5, and 

Figure 6-13 contains the results at market penetration 10 %. 
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FIGURE 6-12  Dynamic routing performance under incident by market penetration 
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FIGURE 6-13  Dynamic routing performance under incident by traffic demand 

 

Both Figure 6-12 and Figure 6-13 show conspicuous benefits by dynamic routing.  

In Figure 6-12, the incident in this scenario caused the traffic condition heavily 

congested.  As a result, the difference in travel time between equipped and 

unequipped vehicles became large.  In Figure 6-13, while the incident did not 

influence the traffic conditions at demand levels 1 and 2, it increased the difference in 
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travel times from demand level 3.  In fact, it is not important how many seconds this 

traffic information system allow equipped vehicles to save in this incident scenario 

since it depends on simulation parameters such as an incident location and incident 

time periods.  It is, however, important that the equipped vehicles could gather 

enough information to avoid traffic congestion even in the low market penetration. 

 

6.5 Discussion 

In this chapter, the simulation framework from this dissertation was used to 

develop experimental cases.  These experiments deployed a VANET-based traffic 

information system to evaluate the performance of the framework.  They were 

conducted based on a real road network and real traffic demands, and the results 

demonstrated that this system is capable of providing traffic information even in a 

low market penetration.  In particular, equipped vehicles conspicuously obtained 

benefits to save travel time in comparison with unequipped ones.  The road network 

used in this research was the simple road network, which provides fewer 

opportunities to turn to an alternative route.  Clearer results might be expected on a 

road network with more alternative routes.  The next chapter reviews the entire works 

in this dissertation, and shows the contributions to this research. 
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Chapter 7: Conclusion 
 

The ongoing efforts to apply advanced technologies to help solve transportation 

problems advanced the growing trend of integrating mobile wireless communications 

into transportation systems.  In particular, VANETs based on ad hoc networks allow 

vehicles to constitute a decentralized information dissemination system on roadways 

and to share their own information. 

This dissertation presented some work on information dissemination and spatial 

and temporal degradation of information.  This is an important issue to understand in 

the decentralized, autonomous information system likely to prevail with VANETs.  

The first results of the dissertation were developed in a relatively simple simulation 

framework, partly to highlight the fact that some general results are possible without 

sophisticated tools, but also to show the envelope where this argument loses strength.  

The dissertation also included the development of a conjoined transportation and 

communication simulation framework to evaluate the decentralized system based on a 

VANET, and showed its implementation on a traffic information system.  This 

chapter summarizes the whole research effort and describes the interpretation of the 

results obtained from the experiments.  The dissertation is concluded with a summary 

of the contributions this work has made to the body of research on VANETs.  

 

7.1 Summary of Findings  

As part of this research, we developed an integrated simulation framework for 

VANET applications in which the characteristics of transportation and wireless 
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communications were embedded.  For practical vehicle movements such as car 

following, lane changing, and shock waves, a transportation simulator (Paramics) was 

employed.  A communication simulator (QualNet) was chosen for wireless 

communications characteristics such as path loss, fading, interference, and 

communication collision.  For the implementation of this framework, these simulators 

were tightly coupled and finely synchronized in terms of simulation time and node 

(vehicle) mobility, facilitated by their respective APIs. 

The implemented simulation framework was evaluated on a traffic information 

system with various traffic demands and market penetration rates based on a real road 

network.  For framework performance, simulation time (Figure 6-3), memory usage 

(Figure 6-4), data exchange (Figures 6-5 and 6-6), and the number of delivered nodes 

(Figure 6-7) were investigated.  While these performance metrics degraded gradually 

in uncongested traffic conditions, they changed much more precipitously in congested 

traffic conditions.  The slopes of the data exchange and the number of delivered 

nodes metrics were, however, less severe in a jammed traffic condition.  Since the 

metrics depend on vehicle density, normally, an increase in traffic density induces an 

exponential increase in the communications among vehicles.  Nevertheless, some 

metrics show a lower slope in high density conditions, due to the fact that the actual 

number of successful communications is reduced beyond a certain density due to an 

increase in message collisions.  Fortunately, with robust protocols, message collisions 

do not take as much time as successful messages to resolve; hence communications 

systems tend to treat these congested communications conditions rather gracefully. 
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For traffic information system performance, information in the low traffic density 

situations (5 and 10 vehicle/lane.km) seems to be delivered primarily via equipped 

vehicles traveling in the opposite direction, given that most of the recorded 

information speeds are less than the speed limit (65 mile/hour = 29 meter/sec).  In the 

high traffic density condition (40 vehicle/lane.km), the average of information speed 

(117 meter/second) in the 10 % market penetration rate scenario seems to be 

reasonable compared to the maximum transmission speed (250 meter/second).  Based 

on these results, traffic information speed in a VANET is sufficiently fast to deliver 

reliable information in low density conditions as well as high density conditions.  

Dynamic routing conducted based on delivered traffic information was effected in 

congested traffic conditions rather than uncongested ones, as would be expected. 

 

7.2 Contribution  

This dissertation treated research issues on inter-vehicle communications for 

transportation applications.  With the spread of wireless communications devices, 

many research studies have been conducted for a variety of transportation 

applications under the topic of VANETs.  While the computer simulation approach is 

a popular evaluation method in this field, previous researches have not provided 

simulation frameworks fully satisfied both in the transportation and communications 

domains.  By developing an integrated transportation and communication simulation 

framework for VANET applications, this dissertation has contributed to the research 

on VANETs as follows. 
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• State-of-the-art research related to VANETs was reviewed.  In particular, the 

critical limitations of previous simulation framework results were disclosed. 

• Basic studies on information value and the degradation of that value were 

offered.  These studies offer insights into the ways that these decentralized 

and autonomous data sources can provide inputs into algorithms that differ 

from how current versions of these algorithms – fed from fixed sensors at 

known locations – might operate. 

• The system model that was designed through this research can include most 

applications in VANETs.  It is expected to be used as a base to develop 

applications for VANETs.   

• This research implemented a VANET-based information model into an 

integrated transportation and communication simulation framework in which 

these independent simulation tools were tightly coupled and finely 

synchronized.   

• A traffic information system as a VANET application was built based on the 

simulation framework developed in this research.  In this system, vehicles 

record their own travel time data, share these data via an ad hoc network, and 

reroute at split sections based on stored travel time data.  The programming 

code used to build this application is attached in Appendix.  It is expected to 

be used for experiments to simulate various traffic situations in a VANET. 

• The sensitivity for simulation loads was shown as a function of traffic 

demands and market penetration.  It is expected to help design a simulation 

framework. 
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• Information speeds on a real roadway network were obtained.  In this research, 

information speeds were approximately between the road speed limit - in 

which case they were mostly delivered by vehicles traveling on the opposite 

direction - and half of the transmission range (250/2 meter) per second, which 

means they were delivered by vehicles traveling in the same direction. 

• Successful dynamic routing based on stored traffic data was demonstrated in 

this framework.  The benefits from dynamic routing were shown, which 

previous studies have not shown. 

 

This chapter described the findings obtained through the entirety of this 

dissertation, and summarized the contributions to the research on VANETs, 

particularly simulation work.  This research focused on the development of an 

integrated transportation and communication simulation framework to build a more 

realistic environment with which to study VANETs, as compared to previous studies.  

It is believed that a wide range of VANET applications can be designed and assessed 

using methodologies influenced by and contributed to by the simulation framework 

and other methods developed in this dissertation. 
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Appendix A 
 

Paramics API code 

 
#define _CRT_SECURE_NO_DEPRECATE 0 
#define REMOTE_HOST "10.0.0.2" 
#define REMOTE_PORT 2000 
#define REALLOC_FACTOR 10 
#define SKIP_SEC 0 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include <float.h> 
#include <winsock2.h> 
#include <assert.h> 
#include "programmer.h" 
#include "hash.h" 
//#include "queue.h" 
 
#define MAXLINK 686 
#define MAX_VCNT 3000 
#define MAX_RCNT 2000 
#define MAX_NODES 500 
#define MAX_Q2P_PKT_SIZE  (12+MAX_VCNT*(8+MAX_RCNT*16)) 
#define SHMBUF_SIZE 2000*1000*16*4 //204800000 
 
int MarketRate = 50;  // Market penetration rate [0.1%]  
int shortest_path = 1; // 1 yes, 0 no 
 
float CommInterval = 3;  // transmission interval of equipped vehicles [sec] 
float CommRange = 100.0; // [meter] 
int NumOfLinks;   // # of links 
int NumOfNodes; 
int MaxTT = 30;   // Maximum number of Travel time structures 
int ExpiryTime = 1800;  // Expired time difference from current time [sec] 
int MaxGTT = 4000;  // Maximum # of Global Travel time structures 6000veh/4lane.hr 
 
float QualnetTime = 0; //NEW ALGORITHM 
 
// Global Travel Time structure by linked list 
struct TravelTime_s 
{ int VHCID;     //4 
 int LinkIndex; //2 byte 
 float TravelTime;//4 
 float ExitTime;// 
 float x; //infospeed 
 float y; //infospeed 
}; 
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// Vehicle Travel Time structure by linked list 
struct VHC_TravelTime_s 
{ 
 float updated_time; 
 struct TravelTime_s* GTT; 
}; 
 
struct VHC_TTDB_s 
{ 
    struct VHC_TravelTime_s VHC_TT[MAXLINK][30]; 
}; 
 
// Vehicle user data structure  
typedef struct VHC_USERDATA_s 
{ int VHCID; 
 Bool equipped;                 // Bool = int, yes: 1, no: 0  
 float ReleaseTime; 
 float EntryTime; 
 struct VHC_TTDB_s *db; 
 int  DataSize; 
} VHC_USERDATA; 
 
FILE *outResult, *TTResult, *densityResult, *errout; 
 
int sockfd; 
 
int *GTTIndex; ;  // Index array for Global TT array 
struct TravelTime_s** GTT;  // Global TT structure pointer array 
 
float TotalMile; 
 
// --- Prototypes ---------- 
void transmit(VEHICLE* source, VEHICLE* target, float updated_time); 
int CompareGTT(const void* x, const void* y); 
void PrintStatistics(); 
void got_new_data( struct VHC_TravelTime_s *TT); //infospeed 
// --- End of Prototypes --- 
 
// --- qualnet update begins --- 
 
struct QU_trsmt  // vehicle receiving packet 
{ 
 int svid; 
 int rvid; 
 float rtime; 
}; 
 
typedef struct 
{ 
 int total_size; 
 float qualnet_time; 
 int trsmt_cnt; 
 struct QU_trsmt *trsmt; 
}QualnetUpdate; 
 
QualnetUpdate qu; 
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float ParseQualnetUpdate(char *buff, int size); 
 
int LinkMap[MAXLINK]; 
void InitLinkMap(); 
int GetLinkMap(int link); 
 
// shared memory 
typedef struct { 
 HANDLE shmHandle; 
 HANDLE shmMutex; 
 LPCTSTR shmBuf; 
 int shmSize; 
}SHMComm; 
 
SHMComm shmemPQ, shmemQP; 
 
SHMComm SHMCommConnect(char *shmName, int bufSize); 
SHMComm SHMCommCreate(char *shmName, int bufSize); 
int SHMCommWrite(SHMComm shmComm, char *buf, int bufSize); 
int SHMCommRead(SHMComm shmComm, char *buf); 
void SHMCommClose(SHMComm shmComm); 
 
int SOCKCommConnect(char *hostname, int port); 
int SOCKCommCreate(char *hostname, int port); 
int SOCKCommWrite(int fd, char *buf, int bufSize); 
int SOCKCommRead(int fd, char *buf); 
void SOCKCommClose(int fd); 
 
int ShortestPath(VHC_USERDATA* vudata, int stt, int end); 
 
// we try to avoid calling realloc every time with these 
// pre-allocated global communication buffers  
char *buffPQ; // communication buffer  P->Q 
char *buffQP;   // communication buffer  Q->P 
int buffPQSize; // buffer size  
int buffQPSize; 
 
typedef struct p2q_vehicle { 
 int  vid; 
 float x; 
 float y; 
 int  pkt_size; 
} P2QVehicle; 
 
typedef struct p2q_packet_s { 
 float  time; 
 int  vcnt;  
 P2QVehicle vhcl[MAX_VCNT]; 
} P2QPacket; 
 
P2QPacket pkt; 
 
typedef struct all_vehicle_s VehicleLnk; 
 
struct all_vehicle_s { 
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 VEHICLE *v; 
 VHC_USERDATA *vudata; 
 int vid; 
 VehicleLnk *next; 
}; 
 
VehicleLnk *empty_lnk; 
VehicleLnk *vehicle_lnk; 
int vehicle_cnt; 
VehicleLnk gvlink_vehicles[MAX_VCNT]; 
 
WBHASH *hash; 
 
unsigned int HashFunct(void *nullitem, void *item) 
{ 
    unsigned int val = 0; 
    VehicleLnk *pv = (VehicleLnk*) item; 
  
    nullitem = nullitem; 
  
 val = pv->vid; 
  
    WBTrcReturn(WBTRC_HASH,val,("%d",val)); 
} 
 
int Compare(void *nullitem, char *item1, char *item2) 
{ 
 VehicleLnk *pv1=(VehicleLnk*) item1, *pv2=(VehicleLnk*) item2; 
 nullitem = nullitem; 
  
 if(pv1->vid < pv2->vid) return 1; 
 else if(pv1->vid > pv2->vid) return -1; 
 else return 0; 
} 
 
void qpg_VHC_hash_init() 
{ 
 if ((hash = WBHashOpen(NULL,50)) != NULL){ 
  WBHashHashingF(hash,NULL,HashFunct); 
  WBHashCompareF(hash, NULL, (int (*) ()) Compare); 
  //WBHashExecuteF(hash, NULL, (int (*) ()) Execute); 
 } 
} 
 
void qpg_VHC_hash_add(VehicleLnk *pv) 
{ 
 WBHashAdd(hash, pv); 
} 
 
VehicleLnk* qpg_VHC_hash_lookup(int vid) 
{ 
 VehicleLnk pv; 
 pv.vid = vid; 
 return WBHashSearch(hash, &pv); 
} 
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void qpg_VHC_hash_remove(VehicleLnk *pv) 
{ 
 WBHashDelete(hash, pv); 
} 
 
void qpg_VHC_hash_close() 
{ 
     WBHashClose(hash); 
} 
 
int LinkMap[MAXLINK]; 
int Junction[MAXLINK]; 
int NodeMap[MAX_NODES]; 
float *SPTT[MAX_NODES]; 
 
void InitMap() 
{ 
 FILE *fp; 
 char line[1024]; 
 char tmp1[256], tmp2[256]; 
 int node1, node2; 
 char *token; 
 int start_node, end_node; 
 int i; 
 int first_link; 
 LINK *link; 
  
 // node map 
 for(i=0;i<MAX_NODES;i++) 
  NodeMap[i]=i; 
  
 fp = fopen("links", "rt"); 
 if(fp == NULL) { 
  fprintf(errout, "no links file\n"); 
  return; 
 } 
  
 while(!feof(fp)){ 
  fgets(line, 1024, fp); 
  
  sscanf(line, "%s %s", tmp1, tmp2); 
  if(!strcmp(tmp1, "link")){ 
   node1 = atoi(tmp2); 
  } 
  if(!strcmp(tmp1, "on-ramp")){ 
   fgets(line, 1024, fp); 
   sscanf(line, "%s %s %d", tmp1, tmp2, &node2); 
   NodeMap[node2] = node1; 
  
  } 
 } 
  
 fclose(fp); 
  
 // link map 
 for(i=0;i<MAXLINK;i++){ 
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  LinkMap[i]=i; 
 } 
  
 fp = fopen("MergedLinks.txt", "rt"); 
 if(fp == NULL) return; 
  
 while(!feof(fp)){ 
  fgets(line, 1024, fp); 
  
  first_link = -1; 
  
  token = strtok(line, "-"); 
  end_node = atoi(token); 
  while(token) 
  { 
   start_node = end_node; 
   end_node = atoi(token); 
  
   for ( i = 1 ; i <= NumOfLinks ; i++) 
   { 
     link = qpg_NET_linkByIndex(i); 
     if( start_node != atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))) continue; 
     else if( end_node != atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))) continue; 
     else { 
      if(first_link < 0) first_link = i; 
      LinkMap[i] = first_link; 
      break; 
     } 
  
   } 
   token = strtok(NULL, "-"); 
  
  }; 
 } 
 fclose(fp); 
  
 for ( i = 0 ; i <= NumOfLinks ; i++) Junction[i] = 0; 
  
 fp = fopen("junctions", "rt"); 
 if(fp == NULL) { 
  fprintf(errout," junctions doesn't exist\n"); 
  return; 
 } 
  
 while(!feof(fp)){ 
  fgets(line, 1024, fp); 
  
  sscanf(line, "%s %s", tmp1, tmp2); 
  
  if(!strcmp(tmp1, "junction")){ 
   token = strtok(tmp2, ":"); 
   start_node = atoi(token); 
   token = strtok(NULL, " "); 
   end_node = atoi(token); 
  
   for ( i = 1 ; i <= NumOfLinks ; i++) 
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   { 
    link = qpg_NET_linkByIndex(i); 
    if( start_node != atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))) continue; 
    else if( end_node != atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))) continue; 
    else { 
     Junction[i] = 1; 
     break; 
     } 
 
   } 
  } 
  
 } 
  
 fclose(fp); 
} 
 
 
gvlink_initialize() { 
 VehicleLnk *p; 
 empty_lnk = gvlink_vehicles; 
 for( p = gvlink_vehicles; p < gvlink_vehicles+MAX_VCNT-1; p++) 
  p->next = p+1; 
 p->next = NULL; 
 
 vehicle_lnk = NULL; 
 vehicle_cnt = 0; 
 
 // hash init 
 qpg_VHC_hash_init(); 
} 
 
VehicleLnk *gvlink_first_vehicle() { return vehicle_lnk; } 
 
void gvlink_print(char *s) 
{ 
 VehicleLnk *p; 
 VHC_USERDATA *vudata; 
 
 return; 
 
 fprintf(errout, "vehicles: "); 
 fprintf(errout, s ); 
 
 for( p = vehicle_lnk; p; p = p->next ) 
 { 
  vudata = p->vudata; 
 
  if(vudata) 
   fprintf(errout, "(%p:%d:%d:%d:%.2f:%.2f)->", p->v, p->vid, qpg_VHC_uniqueID(p->v), vudata-
>equipped,  
    vudata->ReleaseTime, vudata->EntryTime ); 
  else 
   fprintf(errout, "(%p:%d:%d)->", p->v, p->vid, qpg_VHC_uniqueID(p->v) ); 
 } 
 fprintf(errout, "\n"); 
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 fflush(errout); 
} 
 
gvlink_add_vehicle( VEHICLE *v, VHC_USERDATA* data) 
{ 
 VehicleLnk *nv; 
 
 if( ! empty_lnk ) 
 { 
  fprintf(errout, "\nno more memory for vehicle" ); 
  exit(1); 
 } 
 nv = empty_lnk; 
 empty_lnk = empty_lnk->next; 
 
 
 // safety code 
 if(!qpg_VHC_uniqueID(v))  
  v = qpg_VHC_original(v); 
 
 nv->v = v; 
 nv->next = vehicle_lnk; 
 nv->vudata = data; 
 vehicle_lnk = nv; 
 vehicle_cnt++; 
 
 // hash add 
 nv->vid = qpg_VHC_uniqueID(v); 
 
 qpg_VHC_hash_add(nv); 
 
} 
 
struct VHC_USERDATA_s* gvlink_get_userdata( VEHICLE *v) 
{ 
 VehicleLnk *p; 
 
 int vid; 
 
 // for safety 
 if(!qpg_VHC_uniqueID(v))  
  v = qpg_VHC_original(v); 
  
 for( p = vehicle_lnk; p; p = p->next ) 
 { 
  vid = qpg_VHC_uniqueID(v); 
  if(p->vid == vid){ 
   return p->vudata; 
  } 
 } 
  
 return NULL; 
} 
 
VehicleLnk* gvlink_get_vehicle(int vid) 
{ 
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 VehicleLnk *p; 
  
 for( p = vehicle_lnk; p; p = p->next ) 
 { 
  if(p->vid == vid){ 
   if(qpg_VHC_uniqueID(p->v) != p->vid){ 
    fprintf(errout, "p->vid (%d) != qpg_VHC_uniqueID(%d)\n", p->vid, qpg_VHC_uniqueID(p->v)); 
    fflush(errout); 
    continue; 
   } 
   return p; 
  } 
 } 
  
 return NULL; 
} 
 
void gvlink_delete_vehicle(int vid) 
{ 
 VehicleLnk *p, *q, *found, *prev; 
 
 if( ! vehicle_lnk ) 
 { 
  fprintf(errout, "\nno more vehicle to delete" ); 
  exit(1); 
 } 
 
 // safety code 
 
 if( qpg_VHC_uniqueID(vehicle_lnk->v) == vid ) 
 { 
  prev = NULL; 
  found = vehicle_lnk; 
 } 
 else  
 { 
  int cnt=0; 
  for( p = vehicle_lnk, q = vehicle_lnk->next; q && q->vid != vid; p = q, q = q->next ) 
  { 
   ; 
  } 
 
  if( !q ) 
  { 
   fprintf(errout, "\nno such vehicle %d found to delete", vid ); 
   fflush(errout); 
   return; 
  } 
  prev = p; 
  found = q; 
 } 
  
 if( !prev ) 
  vehicle_lnk = found->next; 
 else 
  prev->next = found->next; 
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 if(found->vudata->db) 
  free(found->vudata->db); 
 if(found->vudata) 
  free(found->vudata); 
 
 found->next = empty_lnk; 
 empty_lnk = found; 
 vehicle_cnt--; 
 
 // hash delete 
 found->vid = qpg_VHC_uniqueID(found->v); 
 qpg_VHC_hash_remove(found); 
 found->vid = -1; 
 
} 
 
 
// --------------------------------------------------------------------- 
// called once when the full network has been read into modeller 
// --------------------------------------------------------------------- 
void qpx_NET_postOpen(void) 
{ 
 int i; 
 LINK* link; 
 
 char outputname[256]; 
 
 errout = fopen("erroutput.txt", "w"); 
 
 if(shortest_path) 
  sprintf(outputname,"report-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
 else 
  sprintf(outputname,"report-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
 
 outResult = fopen(outputname, "w"); 
 fprintf(outResult, "Duration Time = %d\n", qpg_CFG_duration()); 
 fprintf(outResult, "Market Rate = %.1f\n", (float)MarketRate/10.); 
 if(shortest_path) fprintf(outResult, "ShortestPath\n"); 
 else fprintf(outResult, "NO ShortestPath\n"); 
 
 if(shortest_path) 
  sprintf(outputname,"TTreport-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
 else 
  sprintf(outputname,"TTreport-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
 
 TTResult = fopen(outputname, "w"); 
 fprintf(TTResult, "Duration Time = %d\n", qpg_CFG_duration()); 
 fprintf(TTResult, "Market Rate = %.1f\n", (float)MarketRate/10.); 
 if(shortest_path) fprintf(outResult, "ShortestPath\n"); 
 else fprintf(outResult, "NO ShortestPath\n"); 
 
 if(shortest_path) 
  sprintf(outputname,"density-%dsec-mr%.1f-shortest.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
 else 
  sprintf(outputname,"density-%dsec-mr%.1f.txt", qpg_CFG_duration(), (float)MarketRate/10.); 
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 densityResult = fopen(outputname, "w"); 
 fprintf(densityResult, "Duration Time = %d\n", qpg_CFG_duration()); 
 fprintf(densityResult, "Market Rate = %.1f\n", (float)MarketRate/10.); 
 if(shortest_path) fprintf(densityResult, "ShortestPath\n"); 
 else fprintf(densityResult, "NO ShortestPath\n"); 
 
// initialize random number generator seed  
 srand((unsigned) time(NULL)); 
 
 NumOfLinks = qpg_NET_links(); 
 NumOfNodes = qpg_NET_nodes(); 
 
    qps_GUI_printf(" --- Paramics Programmer API: Vehicular Ad hoc Network --- \n"); 
    qps_GUI_printf(" --- Number of Links: %d --- \n", NumOfLinks); 
  
 fprintf(errout, " --- Paramics Programmer API: Vehicular Ad hoc Network --- \n"); 
    fprintf(errout, " --- Number of Links: %d --- \n", NumOfLinks); 
 fflush(errout); 
 
 GTTIndex = (int*) malloc((NumOfLinks+1)*sizeof(int));  
 memset( GTTIndex, 0, (NumOfLinks+1)*sizeof(int)); 
 
 GTT = (struct TravelTime_s**) malloc((NumOfLinks+1)*sizeof(struct TravelTime_s*));  
 if(GTT == NULL){ 
  fprintf(errout, "malloc error: %d\n", __LINE__); 
  fflush(errout); 
 } 
 for( i = 0 ; i < (NumOfLinks+1) ; i++ ) { // Allocate GTT memory 
  GTT[i] = (struct TravelTime_s *) malloc(MaxGTT*sizeof(struct TravelTime_s)); 
   
  if(GTT[i]==NULL){ 
   fprintf(errout, "malloc error: %d\n", __LINE__); 
   fflush(errout); 
  } 
 } 
 
 for( i =0; i<MAX_NODES; i++) 
  SPTT[i] = (float*) malloc(MAX_NODES*sizeof(float)); 
 
 InitMap(); 
 
 // qualnet update initialization 
 qu.trsmt = malloc(MAX_VCNT*MAX_RCNT*sizeof(struct QU_trsmt)); 
 if(qu.trsmt==NULL) { 
  fprintf(errout, "QualnetUpdate: malloc error\n"); 
  fflush(errout); 
  exit(1); 
 } 
 
 gvlink_initialize(); 
 
#ifdef HIGHWAY_SHMEMLIB 
 
 shmemPQ = SHMCommCreate("P2Q", SHMBUF_SIZE); 
 shmemQP = SHMCommCreate("Q2P", SHMBUF_SIZE); 
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 fprintf(errout, "\nSHMCommCreate done.\n"); 
 fflush(errout); 
 
#elif HIGHWAY_SOCKET 
 
 sockfd = SOCKCommConnect(REMOTE_HOST, REMOTE_PORT); 
 
 fprintf(errout, "\nSocket connect success: %s\n", REMOTE_HOST); 
 fflush(errout); 
#endif  
 
 buffPQ = malloc(MAX_Q2P_PKT_SIZE ); 
 buffQP = malloc(MAX_Q2P_PKT_SIZE ); 
 
 buffPQSize = MAX_Q2P_PKT_SIZE ; 
 buffQPSize = MAX_Q2P_PKT_SIZE ; 
 
 //density 
  
 TotalMile = .0; 
 for(i=0; i<MAXLINK; i++){ 
    
  link = qpg_NET_linkByIndex(i); 
  if(link == NULL) continue; 
  if(qpg_LNK_barred(link)) continue; 
    
  TotalMile += (float) qpg_LNK_lanes(link) * qpg_LNK_length(link) / 1609.0;  // mile  
 } 
 fprintf(densityResult, "Total Mileage = %f\n", TotalMile); 
 fflush(densityResult); 
} 
 
Bool qpo_RTM_enable(void) 
{ 
 if(shortest_path) return TRUE; 
 else return FALSE;  
} 
 
#if 1 
int qpo_RTM_decision(LINK *link, VEHICLE *vehicle) 
{ 
 int i; 
 int prevpos, curpos; 
 int end_candidate[256]; 
 int next_node; 
 int nextlink_end; 
 LINK *nextlink; 
 ZONE* zone; 
 VHC_USERDATA* vudata; 
 
 int nlinks; 
 int nexitlinks; 
 
 int link_index = qpg_LNK_index(link); 
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 if(shortest_path == 0) return 0; 
 
 if(Junction[link_index] == 0) return 0; 
 
 // safety code 
 if(!qpg_VHC_uniqueID(vehicle))  
  vehicle = qpg_VHC_original(vehicle); 
 
 vudata = gvlink_get_userdata(vehicle); 
 
 if(!vudata) return 0; 
 
 if(!vudata->equipped) { 
  return 0; 
 } 
 
 // this is not equipped vehicle 
 vudata = gvlink_get_userdata(vehicle); 
 
 // nonvalid user data 
 if(vudata == NULL){ 
  fprintf(errout, "warning: vudata is null. vid = %d, RTM_decision is called before the car is released.\n", 
qpg_VHC_uniqueID(vehicle)); 
  fflush(errout); 
  return 0; 
 } 
 
 prevpos = atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)));  
 curpos = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)));    
 
 zone = qpg_NET_zone(qpg_VHC_destination(vehicle)); 
 
 nlinks = qpg_ZNE_links(zone); 
 
 for(i=1;i<=nlinks;i++){ 
  end_candidate[i] = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(qpg_ZNE_link(zone, i)))); 
 } 
 
 nexitlinks = qpg_LNK_exitLinks(link); 
 
 if(nexitlinks<2) return 0; 
 
 for(i=1;i<=nlinks;i++) { 
  next_node = ShortestPath(vudata, curpos, end_candidate[i]); 
 
  if(next_node != 0){ 
   next_node = NodeMap[next_node]; 
   break; 
  } 
 } 
 
 if(prevpos == 358 && curpos == 4 && next_node == 170)  
  return 0; 
 
 if(prevpos == 298 && curpos == 269 && next_node == 294)  
  return 0; 
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 for(i=1; i<= nexitlinks ; i++){ 
  nextlink = qpg_LNK_exit(link, i); 
 
  nextlink_end = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink))); 
  nextlink_end = NodeMap[nextlink_end]; 
   
  if( next_node == nextlink_end){ 
   return i; 
  } 
 } 
 
 fprintf(errout,"check this out\n"); 
 
 return 0;              
}  
#endif 
 
#if 0 
 
void  qpo_RTM_nextLink(LINK* link, VEHICLE* vehicle, int nextout, LINK* *nextlink, int *newdestp) 
{ 
 int i; 
 int prevpos, curpos; 
 int end_candidate[256]; 
 int next_node; 
 int candidatelink_end; 
 LINK* candidatelink; 
 ZONE* zone; 
 VHC_USERDATA* vudata; 
 
 int nlinks; 
 int nexitlinks; 
 
 int link_index = qpg_LNK_index(link); 
 
 fprintf(errout," nextout = %d\n", nextout); 
 fflush(errout); 
 
 *nextlink = qpg_LNK_exit(link, nextout+1); 
 
 // safety code 
 if(!qpg_VHC_uniqueID(vehicle))  
  vehicle = qpg_VHC_original(vehicle); 
 
 vudata = gvlink_get_userdata(vehicle); 
 if(vudata == NULL) return; 
 
 if(!vudata->equipped) return; 
 
 if(shortest_path == 0) return; 
 
 if(Junction[link_index] == 0) return; 
 
 // nonvalid user data 
 if(vudata == NULL){ 
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  fprintf(errout, "vudata is null (%d), vid= %d, exitTime= %d \n", __LINE__, qpg_VHC_uniqueID(vehicle), 
qpg_VHC_existTime(vehicle)); 
  fprintf(errout, "!!! original pointer. vid = %d\n", qpg_VHC_uniqueID(qpg_VHC_original(vehicle))); 
  fflush(errout); 
 
  return; 
 } 
 
 prevpos = atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)));  
 curpos = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)));    
 
 zone = qpg_NET_zone(qpg_VHC_destination(vehicle)); 
 
 nlinks = qpg_ZNE_links(zone); 
 
 for(i=1;i<=nlinks;i++){ 
  end_candidate[i] = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(qpg_ZNE_link(zone, i)))); 
 } 
 
 nexitlinks = qpg_LNK_exitLinks(link); 
 
 if(nexitlinks>1 && vudata->equipped ) 
 { 
  for(i=1;i<=nlinks;i++) { 
   next_node = ShortestPath(vudata, curpos, end_candidate[i]); 
 
   if(next_node != 0){ 
    next_node = NodeMap[next_node]; 
    break; 
   } 
  } 
 
  for(i=1; i<= nexitlinks ; i++){ 
   candidatelink = qpg_LNK_exit(link, i); 
   if(candidatelink == NULL){ 
    fprintf(errout, "candidatelink is null %d\n", __LINE__); 
    fflush(errout); 
   } 
 
   candidatelink_end = atoi(qpg_NDE_name(qpg_LNK_nodeEnd(candidatelink))); 
   candidatelink_end = NodeMap[candidatelink_end]; 
    
   if( next_node == candidatelink_end){ 
 
    if(nextout != i){ 
    }  
 
    *nextlink = candidatelink; 
    return; 
   } 
  } 
 
  fprintf(errout,"check this out\n"); 
 
  *nextlink = qpg_LNK_exit(link, nextout+1); 
  return; 
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 } 
  
 *nextlink = qpg_LNK_exit(link, nextout+1); 
 return;  
 
} 
#endif 
 
 
// --------------------------------------------------------------------- 
// called once at the start of each time step of simulation time. 
// --------------------------------------------------------------------- 
void  qpx_NET_timeStep(void) 
{ 
 static int qualnet_running = TRUE; 
 
 float CurrentTime = qpg_CFG_simulationTime(); 
 int nrecv; 
 
 VHC_USERDATA *vudata; 
 struct VHC_TravelTime_s* vttlink = NULL; 
 float z, b, g; 
 int cnt; 
 VehicleLnk *pv; 
 
 static stop = 0; 
 static time_t elapsed=0; 
 clock_t st, et; 
 
 static float accumulated_density=0; 
 static int accumulated_step=0; 
 
 if( (int)(CurrentTime*10) % 10 == 5) return; 
 
 if(CurrentTime < SKIP_SEC) return; 
 
 if(CurrentTime > (float) qpg_CFG_duration() - 6.0 && stop == 0) { 
  PrintStatistics(); 
  stop = 1; 
 } 
  
 st = clock(); 
 
 pkt.time = CurrentTime; 
 
 pv = gvlink_first_vehicle(); 
 cnt = 0; 
 
 while(pv) 
 { 
  VehicleLnk *to_delete; 
 
  if( qpg_LNK_index(qpg_VHC_link(pv->v)) < 0 ) 
  { 
   to_delete = pv; 
   pv = pv->next; 
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   gvlink_delete_vehicle(to_delete->vid); 
 
   continue; 
  } 
 
  vudata = pv->vudata; 
  if(vudata == NULL){ 
   fprintf(errout, ">>>>>>>>vudata == null\n"); 
   fflush(errout); 
    
   to_delete = pv; 
   pv = pv->next; 
   gvlink_delete_vehicle(to_delete->vid); 
   continue; 
  } 
   
  if(pv->vid != vudata->VHCID){ 
   gvlink_print("invalid_vhcid"); //debug 
   fprintf(errout, ">>>>>>>>vudata->VHCID (%d) != pv->vid (%d) real:%d\n", vudata->VHCID, pv-
>vid,qpg_VHC_uniqueID(pv->v)); 
   fflush(errout); 
    
   to_delete = pv; 
   pv = pv->next; 
   gvlink_delete_vehicle(to_delete->vid); 
 
   continue; 
  } 
 
  pkt.vhcl[cnt].vid = pv->vid;  
  qpg_POS_vehicle(pv->v, qpg_VHC_link(pv->v), &pkt.vhcl[cnt].x, &pkt.vhcl[cnt].y, &z, &b, &g ); 
   
  pkt.vhcl[cnt].pkt_size = vudata->DataSize * 12; /*sizeof(struct TravelTime_s)*/;  
 
  if(pkt.vhcl[cnt].pkt_size < 0) { 
   fprintf(errout, "pkt.vhcl[%d].pkt_size = %d\n", cnt, pkt.vhcl[cnt].pkt_size); 
   fflush(errout); 
 
   to_delete = pv; 
   pv = pv->next; 
 
   gvlink_delete_vehicle(to_delete->vid); 
 
   pv = pv->next; 
   continue; 
  } 
 
  if(pkt.vhcl[cnt].pkt_size > 655355){ 
   fprintf(errout, "pkt.vhcl[%d].pkt_size = %d\n", cnt, pkt.vhcl[cnt].pkt_size); 
   fflush(errout); 
   pkt.vhcl[cnt].pkt_size = 655355; 
  } 
 
  pv = pv->next; 
  cnt++; 
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 } 
 
 pkt.vcnt = cnt; 
 
 accumulated_density += qpg_NET_vehiclesSimulating()/TotalMile;  
 accumulated_step++; 
 fprintf(densityResult, "Time %f Density= %f  EquippedVCNT= %d   TotalVCNT= %d\n", CurrentTime, 
qpg_NET_vehiclesSimulating()/TotalMile, pkt.vcnt, qpg_NET_vehiclesSimulating()); 
 fflush(densityResult); 
 
 if( ((int)(CurrentTime*10)/10) % 60 == 0){ 
  fprintf(densityResult, "[***AVG***] Time %f Density= %f \n", CurrentTime, 
accumulated_density/accumulated_step); 
  fflush(densityResult); 
  accumulated_density = .0; 
  accumulated_step = 0; 
 } 
 
 
#ifdef HIGHWAY_SHMEMLIB 
 
 if(MAX_Q2P_PKT_SIZE  < sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle) )  
  fprintf(errout, "packet size is too big..[%d]\n", sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle)); 
 
 if( SHMCommWrite( shmemPQ, (char *)&pkt, sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle) ) < 0 ) 
 { 
  fprintf(errout, "\nWrite error\n"); 
  fflush(errout); 
  fclose(errout); 
  exit(1); 
 } 
#elif HIGHWAY_SOCKET 
 if( SOCKCommWrite(sockfd, (char *)&pkt, sizeof(int)+sizeof(float)+pkt.vcnt*sizeof(P2QVehicle) )  < 0 ) 
 { 
  fprintf(errout, "\nWrite error\n"); 
  fflush(errout); 
  fclose(errout); 
  exit(1); 
 } 
#endif 
 
 // check if qualnet is running  
 if( qualnet_running ) 
 { 
 
#if defined(HIGHWAY_SHMEMLIB) || defined(HIGHWAY_SOCKET) 
 do { 
 
#ifdef HIGHWAY_SHMEMLIB 
 
  nrecv = SHMCommRead(shmemQP, buffQP); 
 
#elif HIGHWAY_SOCKET 
   
  nrecv = SOCKCommRead(sockfd, buffQP); 
#endif 
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  if ( nrecv < 0 ) { 
   fprintf(errout, "\nCommRead() Error" ); 
   fprintf(errout, "\nCurrentTime = %.10f\n", CurrentTime); 
   fflush(errout); 
   break; 
  } 
  else if (nrecv > 0 ) 
  { 
   QualnetTime = ParseQualnetUpdate(buffQP, nrecv); 
 
   if( QualnetTime < 0 ) 
   { 
    qualnet_running = FALSE; 
   } 
  } 
 
 } while( qualnet_running && QualnetTime < CurrentTime ); 
 
#endif 
 
 } 
 else{ 
  qpx_NET_close(); 
  exit(0); // if qualnet is running 
 } 
 
 et = clock(); 
 elapsed += et - st; 
} 
 
 
// --------------------------------------------------------------------- 
// As each vehicle is released into the network create a new lookup 
// record for it. 
// ---------------------------------------------------------------------  
void qpx_VHC_release(VEHICLE* vehicle) 
{ 
 VHC_USERDATA *data; 
 
 int i,j; 
 int vid; 
 
 // check for a bad vehicle 
 if(!vehicle)  
  return; 
 
 // safety code 
 if(qpg_VHC_uniqueID(vehicle)) 
  vehicle = qpg_VHC_original(vehicle); 
 
 vid = qpg_VHC_uniqueID(vehicle); 
 
 data = calloc(1, sizeof(VHC_USERDATA)); 
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 data->VHCID = qpg_VHC_uniqueID(vehicle); 
 data->ReleaseTime = qpg_CFG_simulationTime(); 
 data->EntryTime = -1; 
 data->DataSize = 0; // data size 
 
 if ( MarketRate >= (rand() % 1000) + 1)  
 {   
  data->equipped = TRUE; 
 
  data->db = calloc(1, sizeof(struct VHC_TTDB_s)); 
  for(i=0;i<MAXLINK;i++) { 
   for(j=0; j<MaxTT; j++){ 
    data->db->VHC_TT[i][j].GTT = NULL; 
    data->db->VHC_TT[i][j].updated_time=0.0; 
   } 
  } 
 
  gvlink_add_vehicle(vehicle, data); 
 
 } 
 else 
 { 
  data->equipped = FALSE; 
  data->db = NULL; 
 
  qps_VHC_userdata(vehicle, data); 
 } 
 
} 
 
 
// --------------------------------------------------------------------- 
// store travel time into USERDATA structure whenever vehicles  
// pass nodes 
// ---------------------------------------------------------------------  
void qpx_VHC_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2) 
{ 
 VHC_USERDATA *vudata; 
  
 int i, j; 
 int tt_cnt; 
 float z; 
 float len, limit; 
 
 // safety code 
 if(qpg_VHC_uniqueID(vehicle)) 
  vehicle = qpg_VHC_original(vehicle); 
 
 vudata = gvlink_get_userdata(vehicle); 
 if(!vudata) return; 
 
 if(vudata->db == NULL) return; 
 
 // if entry is -1, this is first transfer and we don't make TT data 
 if( vudata->EntryTime < 0 ) 
 { 
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  vudata->EntryTime = qpg_CFG_simulationTime(); 
  return; 
 } 
 
 // store travel time in Global travel time linked list 
 if( LinkMap[qpg_LNK_index(link1)] == LinkMap[qpg_LNK_index(link2)]) return; 
 
 i = LinkMap[qpg_LNK_index(link1)]; 
 j = GTTIndex[i]; 
 GTT[i][j].VHCID = vudata->VHCID; 
 GTT[i][j].LinkIndex = LinkMap[qpg_LNK_index(link1)]; 
 GTT[i][j].ExitTime = qpg_CFG_simulationTime(); 
 GTT[i][j].TravelTime = GTT[i][j].ExitTime - vudata->EntryTime; 
  
 len = qpg_LNK_length(link1); 
 limit = qpg_LNK_speedlimit(link1); 
 
 qpg_POS_node(qpg_LNK_nodeEnd(link1), &GTT[i][j].x, &GTT[i][j].y, &z ); //infospeed 
 GTTIndex[i]++; 
 if (GTTIndex[i] == MaxGTT){ 
  fprintf(errout,"GTTIndex == MaxGTT\n"); 
  GTTIndex[i] = 0; 
 } 
 
 vudata->EntryTime = GTT[i][j].ExitTime; 
 
 // store travel time in travel time linked list 
 
 for(tt_cnt=0; tt_cnt<MaxTT; tt_cnt++) { 
  if(vudata->db->VHC_TT[i][tt_cnt].GTT == NULL )  
   break; 
 } 
 
  vudata->db->VHC_TT[i][tt_cnt].GTT = NULL; 
  vudata->DataSize++; 
 } 
 else{ 
  // replacement 
  vudata->db->VHC_TT[i][MaxTT-1].GTT= &GTT[i][j]; 
  vudata->db->VHC_TT[i][MaxTT-1].updated_time = GTT[i][j].ExitTime; 
 } 
  
 qsort(vudata->db->VHC_TT[i], tt_cnt, sizeof(struct VHC_TravelTime_s), CompareGTT); 
} 
 
 
void qpx_VHC_arrive(VEHICLE* vehicle, LINK* link, ZONE* zone) 
{  
 VHC_USERDATA *data; 
 
 int dest, org; 
 
 float CurrentTime = qpg_CFG_simulationTime(); 
 
 // safety code 
 if(qpg_VHC_uniqueID(vehicle)==0) 
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  vehicle = qpg_VHC_original(vehicle); 
 
 data = gvlink_get_userdata(vehicle); 
 if(!data) data = qpg_VHC_userdata(vehicle); 
 
 dest = qpg_ZNE_index(qpg_NET_zone(qpg_VHC_destination(vehicle))); 
 org = qpg_ZNE_index(qpg_NET_zone(qpg_VHC_origin(vehicle))); 
  
 // equipped vehicle 
 if(data->equipped) 
 { 
  if (org == 5 && dest == 10) 
  { 
   fprintf(TTResult,"\n( %d -> %d ) \t rel: %f \t tt: %f equipped vhcid: %d", org, dest, data->ReleaseTime, 
qpg_CFG_simulationTime()-data->ReleaseTime, data->VHCID);  
   fflush(TTResult); 
  } 
 
  // free TT DB 
  gvlink_delete_vehicle(qpg_VHC_uniqueID(vehicle)); 
   
 } 
 // nonequipped vehicle 
 else { 
  fprintf(TTResult,"\n( %d -> %d ) \t rel: %f \t tt: %f unequipped vhcid: %d", org, dest, data->ReleaseTime, 
qpg_CFG_simulationTime()-data->ReleaseTime, data->VHCID); 
  fflush(TTResult); 
 
  free(data); 
 } 
 
} 
 
 
// --------------------------------------------------------------------- 
// called once when the full network has been closed into modeller 
// --------------------------------------------------------------------- 
void qpx_NET_close(void) 
{ 
 int i; 
 
 for( i = 0 ; i < (NumOfLinks+1) ; i++ ) // Allocate GTT memory 
  free(GTT[i]); 
 
 free(GTT); 
 free(GTTIndex); 
 
 for( i =0; i<MAX_NODES; i++) 
  free(SPTT[i]); 
 
 // qualnet update finalization   
 free(qu.trsmt); 
  
 free(buffPQ); 
 free(buffQP); 
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#ifdef HIGHWAY_SHMEMLIB 
 
 SHMCommClose(shmemPQ); 
 SHMCommClose(shmemQP); 
 
#elif HIGHWAY_SOCKET 
 
 SOCKCommClose(sockfd); 
 
#endif 
 
 fprintf(errout, "\n qpx_NET_close is called \n"); 
 
 fclose(errout); 
 fclose(outResult); 
 fclose(TTResult); 
 fclose(densityResult); 
 
} 
 
VEHICLE *global_current_vehicle; 
LINK *global_current_link; 
 
 
//---------------------------------------------------------------------- 
// Function name: transmit 
// Parameters:    VEHICLE *source: host vehicle 
//                VEHICLE *target: guest vehicle 
// Return value:  void 
// Description:   Transmit travel time data of host vehicle to guest vehicle 
//---------------------------------------------------------------------- 
void transmit(VEHICLE* source, VEHICLE* target, float updated_time) 
{  
 int i,j; 
 int tp, sp; 
 int copied; 
 int cnt_t; 
 
 struct VHC_TravelTime_s c[30]; 
 struct VHC_TravelTime_s *s, *t; 
 
 VHC_USERDATA *sourcedata = gvlink_get_userdata(source);      // host 
 VHC_USERDATA *targetdata = gvlink_get_userdata(target); // guest 
  
 if(sourcedata == NULL){ 
  fprintf(errout, "sourcedata is null , vid = %d\n", qpg_VHC_uniqueID(source)); 
  fflush(errout); 
  return; 
 } 
 if(targetdata == NULL){ 
  fprintf(errout, "targetdata is null, vid = %d\n", qpg_VHC_uniqueID(target)); 
  fflush(errout); 
 
  gvlink_get_userdata(target); 
  return; 
 } 
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  global_current_vehicle = target; 
  global_current_link = qpg_VHC_link(target); 
   
 for(i=0;i<MAXLINK;i++){ 
  s = sourcedata->db->VHC_TT[i]; 
  t = targetdata->db->VHC_TT[i]; 
 
  copied = 0; 
  tp=0; sp=0; 
  for(j=0;j<30;j++){ 
   if( t[tp].GTT == s[sp].GTT){ 
    c[j] = t[tp++]; 
    sp++; 
   } 
   else if( CompareGTT(&t[tp], &s[sp]) < 0 ) { 
    c[j] = t[tp]; 
    tp++; 
   } 
   else if( CompareGTT(&t[tp], &s[sp]) > 0 ) { 
    c[j] = s[sp]; 
    c[j].updated_time = updated_time; 
 
    copied++; 
    sp++; 
   } 
   else { 
    fprintf(errout,"this shouldn't happen. check this out!, line %d\n", __LINE__); 
    fflush(errout); 
   } 
   if(c[j].GTT == NULL) break; 
  } 
   
  if(copied>0){ 
   for(j=0;j<30;j++){ 
    if(t[j].GTT==NULL) break; 
   } 
   cnt_t = j; 
   
   for(j=0;j<30;j++){ 
    if(c[j].GTT==NULL) break; 
   } 
 
   if( cnt_t != j) { 
    assert( j > cnt_t); 
    targetdata->DataSize += (j-cnt_t);; 
   } 
 
   memcpy(t, c, MaxTT*sizeof(struct VHC_TravelTime_s)); 
  } 
 
 } 
 
 return; 
} 
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// -------------------------- Shared Mem Communication API DEFINITIONS -------------------------// 
 
// create shared memory region 
// returns when it accepts a connection 
SHMComm SHMCommCreate(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
  
 shmComm.shmHandle = CreateFileMapping( 
  INVALID_HANDLE_VALUE,    // use paging file 
  NULL,                    // default security  
  PAGE_READWRITE,          // read/write access 
  0,                   // max. object size  
  bufSize,                 // buffer size   
  shmName); 
 
 if (shmComm.shmHandle == NULL) 
 {  
  fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError()); 
  fflush(errout); 
  exit(1); 
 } 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                FILE_MAP_ALL_ACCESS, // read/write permission 
                0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout,"Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 memset(shmComm.shmBuf, 0, bufSize); 
  
 *((int *)shmComm.shmBuf) = 0; 
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0; 
 
 sprintf(name_buf, "%sMutex", shmName); 
 // create mutex 
 shmComm.shmMutex = CreateMutex(  
  NULL, // default security attributes 
  FALSE,  // initially not owned 
  name_buf);  
  
 if (shmComm.shmMutex == NULL)  
 {  
  fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 shmComm.shmSize = bufSize; 
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 return shmComm; 
 
} 
 
 
SHMComm SHMCommConnect(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
 
 // !!! infinite loop to open shared memory  
 while( NULL == (shmComm.shmHandle = OpenFileMapping( 
  FILE_MAP_ALL_ACCESS,   // read/write access 
  FALSE,                 // do not inherit the name 
  shmName))) Sleep(1000); 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                FILE_MAP_ALL_ACCESS, // read/write permission 
                0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout, "Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 sprintf(name_buf, "%sMutex", shmName); 
 // !!! another infinite loop to open mutex 
 while ( NULL == (shmComm.shmMutex = OpenMutex(  
  MUTEX_ALL_ACCESS,      // request full access 
  FALSE,                 // handle not inheritable 
  name_buf))) Sleep(1000); 
 
 shmComm.shmSize = bufSize; 
 
 return shmComm; 
} 
 
int SHMCommWrite(SHMComm shmComm, char *buf, int _size) { 
 DWORD waitResult; 
 int head, rear;  // head, rear of circular queue 
 char *cq;  // circular queue 
 int cq_size; // circular queue size 
 int first_half, second_half; 
 int data_size, block_size; 
  
 if(NULL == buf) { 
  fprintf(errout, "ERROR - SHMCommWrite: buf is NULL..\n"); 
  fflush(errout); 
  return -1; 
 } 
 
 // if data size is not divided by 4, we append some nulls 
 if(0 != _size%4) { 
  data_size = _size + (4 - _size%4); 
  fprintf(errout, "WARNING - SHMCommWrite: size is not divided by 4. \n"); 
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  fflush(errout); 
 } 
 else 
  data_size = _size; 
 
 block_size = data_size + sizeof(int); 
 
LABEL: 
 while(1){ 
  waitResult = WaitForSingleObject(  
   shmComm.shmMutex,   // handle to mutex 
   5000L);   // five-second time-out interval 
  if(waitResult == WAIT_OBJECT_0)    
   break; // got mutex lock 
 } 
 
 // now mutual exclusion block starts from here 
 
 // first 4 byte points to the head of circular queue 
 // second 4 byte points to the rear of circular queue where new data should be appended 
 head = *((int *)shmComm.shmBuf); 
 rear = *((int *)(shmComm.shmBuf + sizeof(int))); 
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int)); 
 cq_size = shmComm.shmSize - 2*sizeof(int);  
  
 if(rear < head) {  
  // check whether new rear would exceed head 
  if( (rear+block_size)>=head ) { 
   fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n"); 
   fflush(errout); 
    
   ReleaseMutex(shmComm.shmMutex); 
   exit(1); 
  } 
 
  memcpy(cq+rear, &data_size, sizeof(int)); 
  memcpy(cq+rear+sizeof(int), buf, _size); 
 
  rear = (rear + block_size) % cq_size;  
 } 
 else if( (rear+block_size) > cq_size ){ 
  // need to wrap around 
  // check whether new rear would exceed head 
  if( (rear + block_size - cq_size) >= head ) { 
   fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n"); 
   fflush(errout); 
   ReleaseMutex(shmComm.shmMutex); 
   goto LABEL; 
  } 
 
  memcpy(cq+rear, &data_size, sizeof(int)); 
 
  first_half = cq_size - (rear + sizeof(int)); 
  second_half = _size - first_half; 
 
  memcpy(cq+rear+sizeof(int), buf, first_half); 
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  memcpy(cq, buf + first_half, second_half); 
 
  rear = ( rear + block_size ) % cq_size; 
 } 
 else { 
  // nothing to worry about 
  memcpy(cq+rear, &data_size, sizeof(int)); 
  memcpy(cq+rear+sizeof(int), buf, _size); 
  rear = ( rear + block_size ) % cq_size; 
 
 } 
  
 // mutual exclusion block ends here 
 
 if (! ReleaseMutex(shmComm.shmMutex)) {  
  fprintf(errout, "\n0) Error for release (%d)\n", GetLastError() ); 
  fflush(errout); 
  return -1; 
 }  
 
 return block_size; 
} 
 
int SHMCommRead(SHMComm shmComm, char *buf) { 
 DWORD waitResult; 
 int head, rear;  // head, rear of circular queue 
 char *cq;  // circular queue 
 int cq_size; // circular queue size 
 int first_half, second_half; 
 int size; 
 
 if(NULL == buf) { 
  fprintf(errout, "ERROR - SHMCommRead: buf is NULL..\n"); 
  fflush(errout); 
  return -1; 
 } 
 
 while(1){ 
  waitResult = WaitForSingleObject(  
   shmComm.shmMutex,   // handle to mutex 
   5000L);   // five-second time-out interval 
  if(waitResult== WAIT_OBJECT_0)  
   break; // got mutex lock 
 } 
 // now mutual exclusion block starts from here 
 // first 4 byte points to the head of circular queue 
 // second 4 byte points to the rear of circular queue where new data should be appended 
 head = *((int *)shmComm.shmBuf); 
 rear = *((int *)(shmComm.shmBuf + sizeof(int))); 
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int)); 
 cq_size = shmComm.shmSize - 2*sizeof(int);  
 if(head == rear) { 
  if (! ReleaseMutex(shmComm.shmMutex)) {  
   fprintf(errout, "\n2) Error for release (%d)\n", GetLastError() ); 
   fflush(errout); 
   return -1; 
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  } 
  // no data ready 
  return 0; 
 } 
  
 
 size = *((int *)(cq+head)); 
 
 if(size > MAX_Q2P_PKT_SIZE ) { 
  fprintf(errout, "WARNING!!!: packet is too big :%d bytes\n", __FILE__, __LINE__, size); 
  fprintf(errout, "INCREASE MAX_Q2P_PKT_SIZE . \n", size); 
  fflush(errout); 
 } 
 
 if( (head + (int)sizeof(int) + size) > cq_size){ 
  // wrap around 
  first_half = cq_size - head - sizeof(int); 
  second_half = size - first_half; 
 
  memcpy(buf, cq + head + sizeof(int), first_half); 
  memcpy(buf+first_half, cq, second_half); 
 
  head = ( head + size + sizeof(int) )% cq_size; 
 } 
 else { 
 
  // nothing to worry about 
  memcpy(buf, cq+head+sizeof(int), size); 
  head = ( head + size + sizeof(int) )% cq_size; 
 } 
 
 *((int *)shmComm.shmBuf) = head; 
 
 // mutual exclusion block ends here 
 if (! ReleaseMutex(shmComm.shmMutex)) {  
  fprintf(errout, "\n1) Error for release (%d)\n", GetLastError() ); 
  fflush(errout); 
  return -1; 
 }  
 return size; 
} 
 
 
void SHMCommClose(SHMComm shmComm){ 
 // unmap shaered memory 
 UnmapViewOfFile(shmComm.shmBuf); 
 
 CloseHandle(shmComm.shmHandle); 
 // end of shared memory 
} 
 
 
int SOCKCommCreate(char *hostname, int port) 
{ 
 int fd=0; 
 // Qualnet creates socket..  
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 return fd; 
} 
 
int SOCKCommConnect(char *hostname, int port) 
{ 
 int fd; 
 struct hostent *server; 
 struct sockaddr_in servAddr; 
 int errcode; 
 u_long arg = 1; int err; // non-blocking socket 
 
 // socket open  
 if ((fd = socket(AF_INET, SOCK_STREAM, 0/*IPPROTO_TCP*/)) < 0){ 
   fprintf(errout, "\nSocket open error\n"); 
   fflush(errout); 
 } 
 
 //setsockopt(sd,SOL_SOCKET,SO_SNDBUF,&soptval,sizeof (soptval)); 
 
 server = gethostbyname(hostname); 
 
 memset ( (char*) &servAddr, 0, sizeof(servAddr)); 
 servAddr.sin_family = AF_INET; 
 servAddr.sin_port = htons(port); 
    memcpy( (char *)&servAddr.sin_addr.s_addr, (char *)server->h_addr, server->h_length); 
     
 while ( connect(fd, (struct sockaddr *) &servAddr, sizeof(servAddr)) < 0) { 
  errcode = WSAGetLastError(); 
  fprintf(errout, "\nSocket connect error: %s, %d\n", hostname, errcode); 
  fflush(errout); 
 } 
 
 err = ioctlsocket(fd, FIONBIO, &arg); 
    if (err) 
    { 
        fprintf(errout, "Error setting socket to non-blocking mode, err = \"%s\"", 
                           WSAGetLastError()); 
  fflush(errout); 
  assert(1); 
    } 
 
 return fd; 
} 
 
 
int SOCKCommWrite(int sock, char *buf, int size) 
{ 
 int nsend; 
 int remaining_size; 
 char *remaining_data; 
 
 remaining_size = size; 
 remaining_data = buf; 
 
 while( remaining_size > 0 ) 
 { 
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  if( (nsend = send(sock, (const char*) remaining_data, remaining_size, 0)) < 0 ) { 
   if( nsend == SOCKET_ERROR ){ 
    int err = WSAGetLastError(); 
    if( err == WSAEWOULDBLOCK ) // no data ready for read 
     continue; 
    fprintf(errout, "\nERROR: SOCKCommWrite()\n"); 
    fflush(errout); 
    exit(1); 
   } 
  } 
  if( nsend <= remaining_size ) 
  { 
   remaining_size -= nsend; 
   remaining_data += nsend; 
  } 
 
 } 
 
 return size; 
} 
 
int SOCKCommRead(int fd, char* buf) 
{ 
 int nrecv; 
 int size, remaining_size; 
 char* remaining_data = buf; 
  
 
 // this will take care of the size of qualnet update packet 
 nrecv = recv(fd, (char*) &size, sizeof(int), 0); 
 if(nrecv<0) return 0; 
  
 fprintf(errout, "data to be read : %dbyte\n", size); 
 fflush(errout); 
 
 *(int*)buf = size; 
 remaining_size = size - nrecv; 
 remaining_data += nrecv; 
 
 while(remaining_size){ 
  nrecv = recv(fd, (char*) remaining_data, remaining_size, 0); 
 
  if( nrecv == 0 ) continue; 
  if( nrecv == SOCKET_ERROR ) 
  { 
   int err = WSAGetLastError(); 
   if( err == WSAEWOULDBLOCK ) // no data ready for read 
    continue; 
   else if( err == WSAECONNRESET ) // connection closed 
   { 
    fprintf(errout, "Socket closed by qualnet\n"); 
    fflush(errout); 
    fclose(errout); 
    exit(1); 
   } 
   else if( err == WSAEMSGSIZE ) 
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   { 
    fprintf(errout, "Data too big for buffer" ); 
    fflush(errout); 
    fclose(errout); 
    exit(1); 
   } 
  } 
 
  if( nrecv <= remaining_size ){ 
   remaining_size -= nrecv; 
   remaining_data += nrecv; 
  } 
 } 
 
 return size; 
} 
 
 
void SOCKCommClose(int fd) 
{ 
 closesocket(fd); 
} 
 
 
int CompareQUrtime(const void* x, const void* y) 
{ 
 // low to high 
 struct QU_trsmt *a= (struct QU_trsmt*) x; 
 struct QU_trsmt *b= (struct QU_trsmt*) y; 
  
 if(a->rtime - b->rtime > 0) return 1; 
 else if(a->rtime - b->rtime < 0) return -1; 
 else return 0; 
} 
 
int CompareGTT(struct VHC_TravelTime_s *a,  struct VHC_TravelTime_s *b) 
{ 
 // high to low  
 
 if(a->GTT==NULL && b->GTT==NULL) return 0; 
 if(a->GTT==NULL) return 1; 
 if(b->GTT==NULL) return -1; 
 
 if(a->GTT->ExitTime > b->GTT->ExitTime) return -1; 
 else if(a->GTT->ExitTime < b->GTT->ExitTime) return 1; 
 else { 
  if(a->GTT->VHCID > b->GTT->VHCID) return -1; 
  else if(a->GTT->VHCID < b->GTT->VHCID) return 1; 
  else return 0; 
 } 
} 
 
 
//---------------------------------------------------------------------- 
// Update TT according to communication results provided from Qualnet 
//---------------------------------------------------------------------- 
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float ParseQualnetUpdate(char *buff, int size) 
{ 
 VehicleLnk *source, *target; 
 
 int i,j; 
 int ptr=0; 
 int rvhc_cnt; 
 int svhc_cnt; 
 int rvid; 
 
 qu.total_size = *(int*)buff; 
 ptr += sizeof(int); 
 
 qu.qualnet_time = *(float*)(buff+ptr); 
 
 ptr += sizeof(float); 
 
 rvhc_cnt = *(int*)(buff+ptr); 
 ptr += sizeof(int); 
 
 if(rvhc_cnt > MAX_VCNT){ 
  fprintf(errout, "ERROR - ParseQualnetUpdate: qu.rvhc_cnt > MAX_VCNT\n"); 
  exit(1); 
 } 
 
 qu.trsmt_cnt=0; 
 for(i=0; i<rvhc_cnt; i++) 
 { 
  rvid = *(int*)(buff+ptr); 
  ptr += sizeof(int); 
 
  svhc_cnt = *(int*)(buff+ptr); 
  ptr += sizeof(int); 
 
  if(svhc_cnt > MAX_RCNT){ 
   fprintf(errout, "ERROR - ParseQualnetUpdate: svhc_cnt [%d] > MAX_RCNT\n", svhc_cnt); 
   exit(1); 
  } 
 
  for(j=0; j<svhc_cnt; j++){ 
   qu.trsmt[qu.trsmt_cnt].rvid = rvid; 
 
   qu.trsmt[qu.trsmt_cnt].rtime = *(float*)(buff+ptr);   // update time 
   ptr += sizeof(float); 
 
   qu.trsmt_cnt++; 
  } 
 } 
 
 qsort(qu.trsmt, qu.trsmt_cnt, sizeof(struct QU_trsmt), CompareQUrtime); 
 
 for(i=0; i<qu.trsmt_cnt; i++) 
 { 
  source = gvlink_get_vehicle(qu.trsmt[i].svid); 
  if( !source ) 
  { 
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   fprintf(errout, "ParseQualnetUpdate: src vid %d do not exist\n", qu.trsmt[i].svid ); 
   fflush(errout); 
   gvlink_delete_vehicle(qu.trsmt[i].svid); 
  } 
  target = gvlink_get_vehicle(qu.trsmt[i].rvid); 
  if( !target ) 
  { 
   fprintf(errout, "ParseQualnetUpdate: dst vid %d do not exist\n", qu.trsmt[i].rvid); 
   fflush(errout); 
   gvlink_delete_vehicle(qu.trsmt[i].rvid); 
  } 
 
  if( source && target ) { 
   transmit(source->v, target->v, qu.trsmt[i].rtime); 
  } 
 } 
 
 return qu.qualnet_time; 
} 
 
 
int ShortestPath(VHC_USERDATA* vudata, int stt, int end) 
{  
 int previous[MAX_NODES]; // previous node 
 int v[MAX_NODES];  // Permanent label array (1: permanent, 0: undefined) 
 float ttarr[MAX_NODES];  // Travel time array from stt 
 float min;   // Temporary smallest cost 
 
 int i, j, k; 
 LINK *link, *nextlink; 
 int nextlinks; 
 int n1, n2, n3, n4; 
 
 float tm; 
 int cnt; 
 
 float link_len, speed; 
 float speed_limit; 
 float angle1, angle2; 
 int need_split; 
 
 if(!vudata) return 0; 
 
 // initialize with a large number 
 for ( i = 0 ; i < MAX_NODES ; i++ ){ 
  for( j = 0 ; j < MAX_NODES ; j++) { 
   if(i!=j) SPTT[i][j] = FLT_MAX; 
   else SPTT[i][j] = .0; 
  } 
 } 
 
 // adjust with optimal time 
 for ( k = 1 ; k < MAXLINK ; k++) 
 { 
  link = qpg_NET_linkByIndex(k); 
  if(link == NULL) continue; 
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  if(qpg_LNK_barred(link)) continue; 
 
  i = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))];    // start node 
  j = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))];      // end node 
 
  if(qpg_LNK_speedlimit(link) != 0){ 
   link_len = qpg_LNK_length(link);    // meter 
   speed_limit = qpg_LNK_speedlimit(link); 
   speed = 1000 * speed_limit* 1.609;   // meter/hr 
   SPTT[i][j] = 3600 * link_len / speed; // 3600 * hour  
  } 
  else { 
   fprintf(errout,"qpg_LNK_speedlimit(link) is 0.. OTL\n"); 
   fflush(errout); 
  } 
 } 
 
 // update with what this vehicle knows of 
 for(i=0; i<MAXLINK; i++) 
 { 
  tm=.0; cnt=0; 
 
  for(j=0; j<MaxTT; j++) 
  { 
   tm += vudata->db->VHC_TT[i][j].GTT->TravelTime; 
   cnt++; 
  } 
 
  if(cnt>0 && tm!=0) {  
   link = qpg_NET_linkByIndex(i); //vulink->LinkIndex); 
   n1 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))];    // start node 
   n2 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))];      // end node 
 
   link_len = qpg_LNK_length(link); 
   speed_limit = qpg_LNK_speedlimit(link); 
 
   SPTT[n1][n2] = tm/cnt; // average travel time for this link 
  } 
 } 
 
 // safety code. handle junctions!!!  
   
 for(i=0; i<MAXLINK; i++) 
 { 
  link = qpg_NET_linkByIndex(i); 
  if(link == NULL) continue; 
  if(qpg_LNK_barred(link)) continue; 
 
  n1 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(link)))];  
  n2 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(link)))];  
 
  angle1 = 2.0*3.14*qpg_LNK_endAngle(link)/360.0; 
 
  need_split = 0; 
 
  nextlinks = qpg_LNK_exitLinks(link); 
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  if(nextlinks>1){ 
   for(j=1; j<=nextlinks; j++) 
   { 
    nextlink = qpg_LNK_exit(link, j); 
 
    angle2 = 2.0*3.14*qpg_LNK_endAngle(nextlink)/360.0; 
    
    n3 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(nextlink)))];  
    n4 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink)))];  
 
    if( cos(angle1)*cos(angle2)+sin(angle1)*sin(angle2) < 0 || 
     (n1 == 358 && n3 == 4 && n4 == 170) ){ 
 
     if(n1 == 162 && n3 == 4 && n4 == 170)  
      continue; 
       
     need_split = 1; 
     break; 
    } 
   } 
 
   if(need_split){ 
    for(j=1; j<=nextlinks; j++) 
    { 
     nextlink = qpg_LNK_exit(link, j); 
     angle2 = 2.0*3.14*qpg_LNK_endAngle(nextlink)/360.0; 
 
     n3 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeStart(nextlink)))];  
     n4 = NodeMap[atoi(qpg_NDE_name(qpg_LNK_nodeEnd(nextlink)))];  
 
     if( cos(angle1)*cos(angle2)+sin(angle1)*sin(angle2) > 0 || 
      (n1 == 162 && n3 == 4 && n4 == 170) ){ 
 
      if(n1 == 358 && n3 == 4 && n4 == 170)  
      continue; 
 
      assert(n2 == n3); 
 
      SPTT[n1][n4] = SPTT[n1][n2] + SPTT[n3][n4]; 
 
     } 
    } 
    SPTT[n1][n2] = FLT_MAX; 
   } 
  } 
 } 
 
 
 for( i = 0 ; i < MAX_NODES ; i++ ) // initialize 
 { v[i] = 0;   // undefined 
  ttarr[i] = FLT_MAX;  // infinite 
  previous[i] = INT_MAX;  // undefined 
 } 
 
 ttarr[stt] = 0;    // set the cost of the start node 
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 // iterate as such the number of nodes 
 for( i = 1, k = INT_MAX ; i < MAX_NODES ; i++ ) 
 { 
  // Set the currently minimum cost 
  for( j = 1, min = FLT_MAX ; j < MAX_NODES ; j++ ) 
   if(( v[j] == 0 ) && ( ttarr[j] < min )) 
   {  
    k = j; 
    min = ttarr[j]; 
   } 
 
  if ( k == end )  // reach destination 
   break; 
 
  v[k] = 1;   // set a permanent label 
 
  if( min == FLT_MAX ) 
   break; 
 
  // Calculate the smallest cost 
  for( j = 1 ; j < MAX_NODES ; j++ ) 
   if (( stt != j ) && ( ttarr[j] > ttarr[k] + SPTT[k][j])) 
   {  
    ttarr[j] = ttarr[k] + SPTT[k][j]; 
    previous[j] = k; 
   } 
   
 } 
 
 
 // Find the next node of the start node 
 i = end; 
 while( previous[i] != stt ){ 
  if(end == 359) { 
  } 
  i = previous[i]; 
 
  if(i==INT_MAX) { 
   return 0; 
  } 
 } 
 return i; // i: next node 
} 
 
 
void PrintStatistics() 
{ 
        int i,j; 
        float total_time=.0, total_avg=.0, temp=.0, avg_lane=.0; 
  float* vehicle_tt; 
  int max_vcnt=80000; 
 
  vehicle_tt = (float*) malloc(max_vcnt*sizeof(float)); 
  if(vehicle_tt == NULL) fprintf(errout, "malloc error %d\n", __LINE__); 
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  for(i=0;i<max_vcnt;i++) 
   vehicle_tt[i]=.0; 
  
        for( i = 0 ; i < (NumOfLinks+1) ; i++ ) { 
  
                temp = .0; 
                for( j=0 ; j< GTTIndex[i] ; j++ ){ 
                        temp += GTT[i][j].TravelTime; 
      vehicle_tt[GTT[i][j].VHCID] += GTT[i][j].TravelTime; 
                } 
 
    if( GTTIndex[i] != 0){ 
     temp /= (float) GTTIndex[i]; 
  
     total_time += temp; 
 
    } 
        } 
        total_avg = total_time / NumOfLinks; 
  
  fprintf(outResult, "\n####avg travel time per lane per vehicle = %f\n\n", total_avg); 
 
  for(i=0;i<MAX_VCNT;i++)  
   if(vehicle_tt[i]!=.0) 
    fprintf(outResult, "travel time per vehicle [%d] = %f\n", i, vehicle_tt[i]); 
 
  fflush(outResult); 
  
  free(vehicle_tt); 
} 
 
void got_new_data( struct VHC_TravelTime_s *TT) 
{ 
 float x,y,z,b,g; 
 float dist; 
 float CurrentTime = qpg_CFG_simulationTime(); 
 float time_diff; 
 float speed; 
 
 static float accumulated_speed=0; 
 static int accumulated_cnt=0; 
 static int tag=0; 
 
 if( TT->GTT->VHCID % 100 != 0 ) 
  return; 
 
 // get my position 
 qpg_POS_vehicle(global_current_vehicle, global_current_link, &x, &y, &z, &b, &g ); //infospped 
 
 // get distance 
 dist = sqrt(pow(x-TT->GTT->x,2) + pow(y-TT->GTT->y,2));  // Calculate Eucleadian distance 
 
 // get time difference 
 time_diff = CurrentTime - TT->GTT->ExitTime; 
 
 // calculate info speed 
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 if( time_diff > 0) { 
  speed = dist / time_diff; 
 
  accumulated_speed += speed; 
  accumulated_cnt++; 
 } 
 else 
  speed = -1; 
 
 // print out info speed 
 if(speed > 0 ) 
 { 
  fprintf( outResult, "\n%f sender %d receiver %d packet %d dist %f time %f speed %f",  
   CurrentTime, TT->GTT->VHCID, qpg_VHC_uniqueID(global_current_vehicle),  
   TT->GTT->VHCID*1000000 + TT->GTT->LinkIndex*1000 + ((int)TT->GTT->TravelTime), dist, 
time_diff, speed ); 
  fflush(outResult); 
 } 
 
} 
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Appendix B 
 

QualNet code 

 
#ifdef _WIN32 
#include <winsock2.h> 
#else /* unix/linux */ 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <errno.h> 
#ifdef sgi 
#include <unistd.h> 
#endif 
#endif 
 
 
#include <stdio.h> 
#include <hash_map> 
#include "api.h" 
#include "partition.h" 
#include "external_util.h" 
#include "highway.h" 
#include "scheduler.h" 
#include "highway_app.h" 
 
#ifdef HIGHWAY_SH 
MEMLIB 
 
// shared memory 
typedef struct { 
 HANDLE shmHandle; 
 HANDLE shmMutex; 
 LPCTSTR shmBuf; 
 int shmSize; 
}SHMComm; 
SHMComm shmemPQ, shmemQP; 
 
#define SHMBUF_SIZE 2000*1000*16*4 
 
#endif 
 
using namespace stdext; 
 
typedef hash_map<int, Vehicle*> VHASH; 
 
 
Vehicle *inactive_vehicles = NULL; 
Vehicle *active_vehicles = NULL; 
Vehicle *neutral_vehicles = NULL; 
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int vehicle_pool_cnt=0; 
Vehicle vehicles[MAX_VCNT]; 
 
VHASH vhash1, vhash2; 
VHASH &vhash_neutral = vhash1; 
VHASH &vhash_active = vhash2; 
 
Q2PPacket *q2p_pkt; 
 
// global global 
FILE *logff; 
#ifdef HIGHWAY_STAT 
FILE *statff; 
#endif 
 
clocktype sync_interval; 
float paramics_time_float; 
float qualnet_time_float_sec; 
clocktype skip_time; 
 
//--------------------------------------------------------------------------- 
// External Interface API Functions 
//--------------------------------------------------------------------------- 
 
void HighwayInitializeNodes( 
    EXTERNAL_Interface *iface, 
    NodeInput *nodeInput) 
{ 
    int            i, j; 
    int            channelIndex; 
    Node*          nextNode  = NULL; 
 struct sockaddr_in addr; 
 int    addr_len = sizeof(sockaddr_in); 
 HighwayData *data; 
    EXTERNAL_SocketErrorType err; 
 
    // Allocate memory for interface-specific data.  The allocated memory 
    // is verified by MEM_malloc.  Set the iface->data variable to the 
    // newly allocated data for future use. 
    data = (HighwayData*) MEM_malloc(sizeof(HighwayData)); 
    iface->data = (void*) data; 
 
 q2p_pkt = (Q2PPacket *)malloc(MAX_Q2P_PKT_SIZE); 
 
 logff = fopen("log.txt", "w"); 
 
#ifdef HIGHWAY_STAT 
 statff = fopen("stat.txt", "w" ); 
#endif 
 
#ifdef STANDALONE 
 return; 
#endif; 
 
 
#ifdef HIGHWAY_SHMEMLIB 
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 { 
 SHMComm SHMCommConnect(char *shmName, int bufSize); 
 int SHMCommRead(SHMComm shmComm, char *buf); 
 int nRead; 
 
 
    fprintf(stderr, "Waiting for shared memory ready \n"); 
 
  shmemQP = SHMCommConnect("Q2P", SHMBUF_SIZE); 
  shmemPQ = SHMCommConnect("P2Q", SHMBUF_SIZE); 
 
    printf("Success with shared memory\n"); 
 
 }  
#endif 
 
#ifdef HIGHWAY_SOCKET 
 
 
    // Initialize a listening socket and a data socket 
    EXTERNAL_SocketInit(&data->listenSocket); 
    EXTERNAL_SocketInit(&data->s); 
 
    // Listen for a socket connection on port 5132.  The newly opened socket 
    // connection will be returned in the data->s socket structure. 
    printf("Listening for socket connection on port %d...\n", HIGHWAY_PORT); 
 
 err = EXTERNAL_SocketListen(&data->listenSocket, HIGHWAY_PORT, &data->s); 
    if (err != EXTERNAL_NoSocketError) 
    { 
        ERROR_ReportError("Error listening for socket connection"); 
    } 
 
 if( getsockname(data->s.socketFd, (sockaddr *)&addr, &addr_len) ) 
 { 
  printf("\nerror code=%d", WSAGetLastError() ); 
  ERROR_ReportError("Error getting address");  
 } 
 
 printf("Connection Accepted from %s \n", inet_ntoa(addr.sin_addr)); 
 
#endif 
 
#ifdef HIGHWAY_COMMAND 
 
 
    // Initialize a listening socket and a data socket 
    EXTERNAL_SocketInit(&data->listenSocket); 
    EXTERNAL_SocketInit(&data->s); 
 
    // Listen for a socket connection on port 5132.  The newly opened socket 
    // connection will be returned in the data->s socket structure. 
    printf("Listening for socket connection on port %d...\n", HIGHWAY_PORT); 
 
 err = EXTERNAL_SocketListen(&data->listenSocket, HIGHWAY_PORT, &data->s); 
    if (err != EXTERNAL_NoSocketError) 
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    { 
        ERROR_ReportError("Error listening for socket connection"); 
    } 
 
 if( getsockname(data->s.socketFd, (sockaddr *)&addr, &addr_len) ) 
 { 
  printf("\nerror code=%d", WSAGetLastError() ); 
  ERROR_ReportError("Error getting address");  
 } 
 
 printf("Connection Accepted from %s \n", inet_ntoa(addr.sin_addr)); 
 
#endif 
 
 PartitionData* partitionData = iface->partition; 
 
 
    for (i = 0; i < partitionData->numNodes; i++) { 
  HighwaySetInitPosition( iface, i, i*10.0 + 100.0, 1000.0, 0.0 ); 
 
 } 
 HighwaySetInitPosition( iface, 0, -1000.0, -1000.0, 0.0 ); 
 
} 
 
 
void HighwayReceive(EXTERNAL_Interface *iface) 
{ 
    EXTERNAL_SocketErrorType err; 
    HighwayData *data; 
    char error[MAX_STRING_LENGTH]; 
    unsigned int size; 
 char simtimebuf[256], realtimebuf[256], paratimebuf[256], bufnext[256]; 
 
 clocktype qualnet_time; 
 clocktype next_event_time; 
 static clocktype paramics_time = 0; 
 static clocktype prev_qualnet_time = -1; 
 static clocktype start_realtime = EXTERNAL_QueryRealTime(); 
 static float sent_qualnet_time_float = -1; 
 
 float qualnet_time_float_old, qualnet_time_float_sec; 
 
 qualnet_time = EXTERNAL_QuerySimulationTime(iface); 
 qualnet_time_float_sec = qualnet_time / 1000000000.0; 
 next_event_time = GetNextInternalEventTime(iface->partition); 
  
 TIME_PrintClockInSecond( qualnet_time, simtimebuf ); 
 TIME_PrintClockInSecond( EXTERNAL_QueryRealTime()-start_realtime, realtimebuf ); 
 TIME_PrintClockInSecond( next_event_time, bufnext ); 
 
#ifdef FASTSIM 
 //SKIP TIME 
 
 if( qualnet_time_float_sec*SECOND < skip_time ) 
 { 
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  fprintf(logff, "\nRecv(): Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, 
realtimebuf ); 
  printf("\nRecv(): Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf ); 
 
  return; 
 } 
  
#endif 
 
#ifndef HIGHWAY_COMMAND 
 
 if( next_event_time < paramics_time_float * SECOND 
  || sent_qualnet_time_float >= paramics_time_float ) 
 { 
  return; 
 } 
  
 
#ifdef STANDALONE 
 printf("\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf ); 
 fflush(stdout); 
 fprintf(logff, "\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf ); 
 fflush(logff); 
 return; 
#endif 
 
 // use packet 
  
 HighwayPopulatePkt( q2p_pkt, paramics_time_float, iface ); 
 
#endif 
 
#ifdef HIGHWAY_SHMEMLIB 
{ 
 int nrecv; 
 int SHMCommWrite(SHMComm shmComm, char *buf, int _size); 
 int SHMCommRead(SHMComm shmComm, char *buf); 
 
 //if( SHMCommWrite( shmemQP, (char*)&qualnet_time_float_sec, sizeof(qualnet_time_float_sec) ) < 0 ) 
 //if( SHMCommWrite( shmemQP, (char*)&pkt, sizeof(pkt) ) < 0 ) 
 if( SHMCommWrite( shmemQP, (char*)q2p_pkt, q2p_pkt->size ) < 0 ) 
 { 
  ERROR_ReportError("\nWrite error"); 
 } 
 
 sent_qualnet_time_float = q2p_pkt->time; 
 
 printf("\nSent Qualnet Time = %f ----------- REAL TIME = %s", q2p_pkt->time, realtimebuf ); 
 fflush(stdout); 
 fprintf(logff, "\nSent Qualnet Time = %f ----------- REAL TIME = %s", q2p_pkt->time, realtimebuf ); 
 fflush(logff); 
 
 // Extract the interface-specific data 
    data = (HighwayData*) iface->data; 
 
 if( qualnet_time_float_sec * SECOND > iface->partition->maxSimClock - 5 * SECOND ) { 
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  HighwayFinalize(iface); 
  exit(1); 
 } 
 
 
 do 
 { 
  nrecv = SHMCommRead(shmemPQ, (char *)&p2q_pkt); 
  if ( nrecv < 0 ) 
   ERROR_ReportError("\nSHMCommRead() Error" ); 
 
  else if (nrecv == 0 )  
  { 
   continue; 
  } 
  else if (nrecv > 0 ) 
  { 
   paramics_time_float = p2q_pkt.time; 
 
   if( p2q_pkt.vcnt > 0 && paramics_time_float >= qualnet_time_float_sec ) 
   { 
    HighwayUpdateNodeInfo( &p2q_pkt, paramics_time_float*1000000000.0, iface ); 
   } 
 
   fprintf(logff, "\nQualnet Time=%.10f receive Paramics time=%.10f", qualnet_time_float_sec, 
paramics_time_float ); 
 fflush(logff); 
  } 
 
 } while( paramics_time_float <= sent_qualnet_time_float ); 
 
} 
#endif 
 
#ifdef HIGHWAY_SOCKET 
 
 HighwayForward(iface, (void *) q2p_pkt, q2p_pkt->size ); 
 
 printf("\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf ); 
 fflush(stdout); 
 fprintf(logff, "\nSent Qualnet Time = %f ---------------- REAL TIME = %s", qualnet_time_float_sec, realtimebuf ); 
 fflush(logff); 
 
 // Extract the interface-specific data 
    data = (HighwayData*) iface->data; 
 unsigned int size2; 
 
 if( qualnet_time_float_sec * SECOND > iface->partition->maxSimClock - 5 * SECOND ) { 
  HighwayFinalize(iface); 
  exit(1); 
 } 
 
 do 
 { 
  // read header only 
  err = EXTERNAL_SocketRecv( 
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   &data->s, 
   (char *) &p2q_pkt, 
   sizeof(int)+sizeof(float), //256, 
   &size, 
   FALSE); 
 
  if (err != EXTERNAL_NoSocketError) 
  { 
   ERROR_ReportError("Error receiving data from socket"); 
  } 
 
  if( size > 0 ) { 
   paramics_time_float = p2q_pkt.time; 
  } 
 
  if( size > 0 && p2q_pkt.vcnt > 0 ) 
  { 
 
   unsigned int to_recv = p2q_pkt.vcnt*sizeof(P2QVehicle); 
   unsigned int received = 0; 
   char *p = (char *)p2q_pkt.vhcl; 
 
   while( received < to_recv ) 
   { 
 
     // read data 
    err = EXTERNAL_SocketRecv( 
     &data->s, 
     p + received, // (char *)p2q_pkt.vhcl, 
     to_recv-received, //p2q_pkt.vcnt*sizeof(P2QVehicle), //256, 
     &size2, 
     FALSE); 
 
    if (err != EXTERNAL_NoSocketError) 
    { 
     ERROR_ReportError("Error receiving data from socket"); 
    } 
 
    if( size2 < 0 ) 
     ERROR_ReportError("Error: negative size?" ); 
 
    if( size2 > 0 ) 
     received += size2; 
 
   } 
 
   if( received > 0 ) 
   { 
    assert(received == p2q_pkt.vcnt*sizeof(P2QVehicle)); 
 
    if( p2q_pkt.vcnt > 0 && paramics_time_float >= qualnet_time_float_sec ) 
    { 
     HighwayUpdateNodeInfo( &p2q_pkt, paramics_time_float*1000000000.0, iface ); 
    } 
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//    printf( "\nQualnet Time=%.10f receive Paramis time=%.10f", qualnet_time_float_sec, 
paramics_time_float); 
   } 
   else 
    ERROR_ReportError("Error: header arrived but content didn't come yet?"); 
  } 
 } while( paramics_time_float < qualnet_time_float_sec ); 
 
#endif 
 
#ifdef HIGHWAY_COMMAND 
 
    char in[256]; 
    char payload[256]; 
 char c; 
 int x, y, d; 
 Node *node; 
    NodeAddress srcNodeId; 
    NodeAddress destNodeId; 
    NodeAddress srcAddr; 
    NodeAddress destAddr; 
 
 // Extract the interface-specific data 
    data = (HighwayData*) iface->data; 
 
 IdToNodePtrMap *nodeHash = iface->partition->firstNode->partitionData->nodeIdHash; 
  
 do 
 { 
  // check packet 
  err = EXTERNAL_SocketRecv( 
   &data->s, 
   in, 
   256, 
   &size, 
   FALSE); 
 
  if (err != EXTERNAL_NoSocketError) 
  { 
   ERROR_ReportError("Error receiving data from socket"); 
  } 
 
  if( size > 0 ) 
  { 
            memset(payload, 0, 256); 
    
            sscanf(in, "%c %d %d %d %d", &c, &srcNodeId, &x, &y, &d ); 
 
            node = MAPPING_GetNodePtrFromHash(nodeHash, srcNodeId); 
 
   switch(c) 
   { 
    case 'g': 
     printf("\nNode %d is at (%f, %f, %f)", srcNodeId,  
      node->mobilityData->current->position.common.c1, 
      node->mobilityData->current->position.common.c2, 
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      node->mobilityData->current->position.common.c3); 
     break; 
    case 'p': 
     printf( "\n got command p node %d (%d %d) at %s", srcNodeId, x, y, simtimebuf ); 
     HighwayMovePosition( node, x, y, qualnet_time ); 
     break; 
    case 'm': 
    { 
     printf( "\n got command p: move node %d to (%d %d) during %d seconds at %s",  
      srcNodeId, x, y, d, simtimebuf ); 
     printf( "\nNot Implemented Yet" ); 
    } 
    case 's': 
     printf( "\n got command s at %s", simtimebuf ); 
     HighwayStartBeacon( node ); 
     break; 
    case 'e': 
     printf( "\n got command e at %s", simtimebuf ); 
     HighwayEndBeacon( node ); 
     break; 
    default: 
     break; 
   } 
            // Get node addresses 
            srcAddr = MAPPING_GetDefaultInterfaceAddressFromNodeId( 
                iface->partition->firstNode, 
                srcNodeId); 
 
            // Verify valid pointers 
            if (srcAddr == INVALID_MAPPING ) 
            { 
                ERROR_ReportWarning("Invalid address for interfacetutorial"); 
                continue; 
            } 
 
  } 
 } while( size > 0 ); 
 
#endif 
 
} 
 
void HighwayForward( 
    EXTERNAL_Interface *iface, 
    void *forwardData, 
    int forwardSize) 
{ 
    EXTERNAL_SocketErrorType err; 
    HighwayData *data; 
 
    // Extract interface-specific data 
    data = (HighwayData*) iface->data; 
 
#ifdef HIGHWAY_SOCKET 
 
    // Send forwarded information on the data socket 
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    err = EXTERNAL_SocketSend( 
        &data->s,  
        (char*) forwardData, 
        forwardSize); 
    if (err != EXTERNAL_NoSocketError) 
    { 
        ERROR_ReportError("Error sending data on socket"); 
    } 
#endif 
} 
 
void HighwayFinalize(EXTERNAL_Interface *iface) 
{ 
    HighwayData *data; 
    EXTERNAL_SocketErrorType err; 
 
 fclose(logff); 
#ifdef HIGHWAY_STAT 
 fclose(statff); 
#endif 
 
 if( q2p_pkt ) 
  free(q2p_pkt); 
 
    // Extract interface-specific data 
    data = (HighwayData*) iface->data; 
 
#ifdef HIGHWAY_SHMEM 
 // unmap shaered memory 
 UnmapViewOfFile(shmBuf); 
 
 CloseHandle(shmMapFile); 
 // end of shared memory 
#endif 
 
#ifdef HIGHWAY_SOCKET 
 
    // Close the data socket 
    err = EXTERNAL_SocketClose(&data->s); 
    if (err != EXTERNAL_NoSocketError) 
    { 
        ERROR_ReportError("Error closing socket"); 
    } 
 
    // Close the listening socket 
    err = EXTERNAL_SocketClose(&data->listenSocket); 
    if (err != EXTERNAL_NoSocketError) 
    { 
        ERROR_ReportError("Error closing socket"); 
    } 
#endif 
} 
 
void HighwaySimulationHorizon(EXTERNAL_Interface *iface) 
{ 
#ifdef FASTSIM 
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 clocktype tempHorizon; 
 
 if( iface->partition->theCurrentTime < skip_time-10*SECOND ) 
  iface->horizon = skip_time; 
 else 
 { 
  static clocktype starttime = EXTERNAL_QueryRealTime(); 
 
  clocktype realhorizon = EXTERNAL_QueryRealTime()-starttime; //iface->lookahead; 
 
  if( iface->horizon < paramics_time_float * SECOND ) 
  { 
    iface->horizon = paramics_time_float * SECOND; // test. follow paramics 
 
   /* debug 
   char bufhorizon[256], buftime[256], bufnext[256]; 
   TIME_PrintClockInSecond( iface->horizon, bufhorizon ); 
   TIME_PrintClockInSecond( iface->partition->theCurrentTime, buftime ); 
   TIME_PrintClockInSecond( GetNextInternalEventTime(iface->partition), bufnext ); 
 
   if( paramics_time_float > 0 ) 
    fprintf(logff, "\nHorizon=%s paramics_time=%f currenttime=%s, nextevent=%s",  
      bufhorizon, paramics_time_float,buftime, bufnext ); 
   */ 
  } 
 
  // just in casae it's slower than realtime, follow real time 
  if( iface->horizon < realhorizon ) 
   iface->horizon = realhorizon; 
 
//  else 
//   iface->horizon = iface->partition->theCurrentTime; 
 
  return; 
 } 
 
#endif 
 
} 
 
// This works only at initialization 
// In the middle of simulation, use HighwayMovePosition() 
void HighwaySetInitPosition( EXTERNAL_Interface *iface, int node,  
     double c1, double c2, double c3 ) 
{ 
 iface->partition->nodePositions[node].mobilityData->current->position.common.c1 = c1; 
 iface->partition->nodePositions[node].mobilityData->current->position.common.c2 = c2; 
 iface->partition->nodePositions[node].mobilityData->current->position.common.c3 = c3; 
} 
 
void HighwayMovePosition( Node *node, double x, double y, clocktype time ) 
{ 
 Coordinates position; 
 Orientation orientation; 
 position.common.c1 = x; 
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 position.common.c2 = y; 
 position.common.c3 = 0; 
 orientation.azimuth = orientation.elevation = 0; 
 
 MOBILITY_AddANewDestination( 
 node->mobilityData, 
 time, 
 position, 
 orientation); 
 
 MobilityData *mobilityData = node->mobilityData; 
 MobilityRemainder *remainder = &(node->mobilityData->remainder); 
 
 memcpy( mobilityData->next, &mobilityData->destArray[mobilityData->numDests-1], sizeof(MobilityElement) 
); 
 mobilityData->sequenceNum++; 
 mobilityData->next->sequenceNum = mobilityData->sequenceNum; 
 
 remainder->nextMoveTime = time; 
 remainder->nextPosition = mobilityData->next->position; 
 remainder->nextOrientation = mobilityData->next->orientation; 
 remainder->speed = mobilityData->next->speed; 
 remainder->numMovesToNextDest = 0; 
 remainder->destCounter = mobilityData->numDests-1; 
 
 MOBILITY_InsertEvent(&(node->partitionData->mobilityHeap), node); 
 MOBILITY_ProcessEvent(node); 
 
} 
 
void HighwayStartBeacon( Node *node ) 
{ 
 AppDataHighway *appData; 
 Message *timerMsg; 
 AppTimer *timer; 
 
 appData = AppHighwayGet(node, 100); 
 appData->running = true; 
 timerMsg = MESSAGE_Alloc(node, 
         APP_LAYER, 
         APP_HIGHWAY, 
         MSG_APP_TimerExpired); 
 
 MESSAGE_InfoAlloc(node, timerMsg, sizeof(AppTimer)); 
 
 timer = (AppTimer *)MESSAGE_ReturnInfo(timerMsg); 
 
 timer->sourcePort = appData->srcPort; 
 timer->type = APP_TIMER_SEND_PKT; 
 
 MESSAGE_Send(node, timerMsg, 0); // start now 
} 
 
void HighwayEndBeacon( Node *node ) 
{ 
 AppDataHighway *appData; 
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 appData = AppHighwayGet(node, 100); 
 appData->running = false; 
} 
 
void HighwayUpdateNodeInfo( P2QPacket *p, clocktype t, EXTERNAL_Interface *iface ) 
{ 
 vehicle_start_update();  
 
 for( int i=0; i < p->vcnt; i++ ) 
 { 
  Vehicle *v = vehicle_get( p->vhcl[i].vid ); // should have non null node/appData 
 
  assert(v->node); 
 
  HighwayMovePosition(v->node, p->vhcl[i].x, p->vhcl[i].y, t ); 
 
  if( p->vhcl[i].pkt_size < 0 ) 
  { 
   fprintf(logff, "\nERROR: P->Q sent negative packet size (%d) for vid %d", p->vhcl[i].pkt_size, p-
>vhcl[i].vid ); 
   p->vhcl[i].pkt_size = 100; 
  } 
  v->appData->pktSize = p->vhcl[i].pkt_size; 
 } 
 
 vehicle_end_update(); 
 
 if(0)  
 { 
  fprintf(logff, "\n[P->Q: time=%f, vcnt=%d]", p->time, p->vcnt ); 
  for( int i=0; i < p->vcnt; i++ ) 
  { 
   fprintf(logff, "\n\t[vid=%d, pkt_size=%d, position=(%f,%f)]", p->vhcl[i].vid, p->vhcl[i].pkt_size, p-
>vhcl[i].x, p->vhcl[i].y ); 
  }  
 } 
 
} 
 
void HighwayPopulatePkt( Q2PPacket *p, float t, EXTERNAL_Interface *iface ) 
{ 
 p->time = t; 
 p->vcnt = 0; 
 p->size = 2*sizeof(int) + sizeof(float); 
 
 // END OF SIMULATION 
 if( t * SECOND > iface->partition->maxSimClock - 5 * SECOND ) { 
  p->time = -1; 
  return; 
 } 
 
 
 Q2PVehicle *vp = p->vhcl; 
 
 for( Node *np=iface->partition->firstNode; np; np = np->nextNodeData ) 
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 { 
  AppDataHighway *appData = AppHighwayGet(np, HIGHWAY_APP_PORT ); 
 
  if( appData && appData->running && appData->q2p_vehicle.rcnt > 0 ) 
  { 
   vp->rvid = appData->p_vid; //np->nodeId; 
   vp->rcnt = appData->q2p_vehicle.rcnt; 
   memcpy( vp->rcv, appData->q2p_vehicle.rcv, vp->rcnt * sizeof(Q2PRecv) ); 
   p->vcnt++; 
   p->size += 2*sizeof(int) + vp->rcnt * sizeof(Q2PRecv); 
   vp = (Q2PVehicle *)&vp->rcv[vp->rcnt]; 
   appData->q2p_vehicle.rcnt = 0; 
  } 
 } 
    
 if(0)  
 { 
  fprintf(logff, "\n[Q->P: time=%f, vcnt=%d, size=%d]", p->time, p->vcnt, p->size ); 
  vp = p->vhcl; 
  for( int i=0; i < p->vcnt; i++ ) 
  { 
   fprintf(logff, "\n\t[rvid=%d, rcnt=%d]", vp->rvid, vp->rcnt ); 
   for( int j=0; j < vp->rcnt; j++ ) 
   { 
    fprintf(logff, "\n\t\t[svid=%d, rtime=%f]", vp->rcv[j].svid, vp->rcv[j].rtime ); 
   } 
   vp = (Q2PVehicle *)&vp->rcv[vp->rcnt]; 
  }  
 } 
 
} 
 
///////////////////////////////////// 
// Vehicles functions 
///////////////////////////////////// 
 
// add a node to the pool of vehicles 
// inactivate 
void vehicle_add( Node *node, AppDataHighway *data ) 
{ 
 Vehicle *v; 
 
 if( vehicle_pool_cnt >= MAX_VCNT - 1) 
 { 
  printf( "no more memory for vehicle" ); 
  exit(1); 
 } 
 
 if( node->nodeId == 1 ) 
  return; 
 
 v = &vehicles[vehicle_pool_cnt++]; 
 
 v->node = node; 
 v->appData = data; 
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 // add to inactive_vehicles 
 v->next = inactive_vehicles; 
 v->prev = NULL; 
 if( inactive_vehicles ) 
  inactive_vehicles->prev = v; 
 inactive_vehicles = v; 
} 
 
// move one active vehicle 
// to inactive vehicle list 
void vehicle_inactivate(Vehicle *v) 
{ 
 // remove from active list 
 if( v->prev ) 
  v->prev->next = v->next; 
 if( v->next ) 
  v->next->prev = v->prev; 
 if( v == active_vehicles ) 
  active_vehicles = v->next; 
 
 // add to inactive_vehicles 
 v->next = inactive_vehicles; 
 v->prev = NULL; 
 if( inactive_vehicles ) 
  inactive_vehicles->prev = v; 
 inactive_vehicles = v; 
} 
 
// move one inactive vehicle  
// to active vehicle list 
Vehicle *vehicle_activate() 
{ 
 Vehicle *v; 
 
 if( !inactive_vehicles ) 
 { 
  ERROR_ReportError( "no more inactive vehicle to activate" ); 
 } 
 
 // remove from inactive vehicle 
 v = inactive_vehicles; 
 inactive_vehicles = inactive_vehicles->next; 
 inactive_vehicles->prev = NULL; 
 
 // add to active_vehicles 
 v->next = active_vehicles; 
 v->prev = NULL; 
 if( active_vehicles ) 
  active_vehicles->prev = v; 
 
 return v; 
} 
 
Vehicle *vehicle_get( int p_vid ) 
{ 
 Vehicle *v; 
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 hash_map <int, Vehicle *> :: iterator itr; 
 
 // get existing one 
 itr = vhash_neutral.find( p_vid ); 
 
 // new vehicle arrived 
 if( itr == vhash_neutral.end() ) 
  v = vehicle_activate(); 
 else 
 { 
  v = itr->second; 
 
  // remove from neutral_vehicles 
  if( v->prev ) 
   v->prev->next = v->next; 
  if( v->next ) 
   v->next->prev = v->prev; 
  if( v == neutral_vehicles ) 
   neutral_vehicles = v->next; 
 
  // remove from vhash_neutral 
  vhash_neutral.erase(itr); 
 
  // add to active_vehicles 
  v->next = active_vehicles; 
  v->prev = NULL; 
  if( active_vehicles ) 
   active_vehicles->prev = v; 
  active_vehicles = v; 
 } 
 
 // add to vhash_active 
 vhash_active[p_vid] = v; 
 
 // this is actually new car released 
 if( v->appData->running == false ) 
 { 
  v->appData->running = true; 
  v->appData->p_vid = p_vid; 
 
  AppHighwayScheduleNextPkt(v->node, v->appData); 
 } 
 else 
  v->appData->p_vid = p_vid; 
 
 return v; 
} 
 
// move all vehicles from active_list to neutral_list 
void vehicle_start_update() 
{ 
 neutral_vehicles = active_vehicles; 
 active_vehicles = NULL; 
 
 VHASH &temp = vhash_neutral; 
 vhash_neutral = vhash_active; 



 

 178 
 

 vhash_active = temp; 
 
 vhash_active.clear(); 
} 
 
void vehicle_end_update() 
{ 
 // for each vehicle in neutral_list 
 for(Vehicle *v=neutral_vehicles; v; ) 
 { 
  Vehicle *t = v->next; 
 
  // add to inactive_vehicles 
  v->next = inactive_vehicles; 
  v->prev = NULL; 
  if( inactive_vehicles ) 
   inactive_vehicles->prev = v; 
  inactive_vehicles = v; 
  v->appData->running = false; 
 
  v = t; 
 } 
 neutral_vehicles=NULL; 
} 
 
 
#ifdef HIGHWAY_SHMEMLIB 
 
// -------------------------- Shared Mem Communication API DEFINITIONS -------------------------// 
FILE *errout = stdout; 
 
#if 0 
// create shared memory region 
// returns when it accepts a connection 
SHMComm SHMCommCreate(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
  
 shmComm.shmHandle = CreateFileMapping( 
     INVALID_HANDLE_VALUE,    // use paging file 
     NULL,                    // default security  
     PAGE_READWRITE,          // read/write access 
     0,                   // max. object size  
     bufSize,                 // buffer size   
     shmName); 
 
 if (shmComm.shmHandle == NULL) 
 {  
  fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError()); 
  fflush(errout); 
  exit(1); 
 } 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                        FILE_MAP_ALL_ACCESS, // read/write permission 
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                        0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout,"Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 memset((char*)shmComm.shmBuf, 0, bufSize); 
  
 *((int *)shmComm.shmBuf) = 0; 
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0; 
 
 sprintf(name_buf, "%sMutex", shmName); 
 // create mutex 
 shmComm.shmMutex = CreateMutex(  
       NULL, // default security attributes 
    FALSE,  // initially not owned 
    name_buf);  
  
 if (shmComm.shmMutex == NULL)  
 {  
  fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 return shmComm; 
 
} 
 
 
SHMComm SHMCommConnect(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
 
 // !!! infinite loop to open shared memory  
 while( NULL == (shmComm.shmHandle = OpenFileMapping( 
    FILE_MAP_ALL_ACCESS,   // read/write access 
    FALSE,                 // do not inherit the name 
    shmName))) Sleep(1000); 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                        FILE_MAP_ALL_ACCESS, // read/write permission 
                        0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout, "Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 // !!! another infinite loop to open mutex 
  
 sprintf(name_buf, "%sMutex", shmName); 
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 while ( NULL == (shmComm.shmMutex = OpenMutex(  
      MUTEX_ALL_ACCESS,      // request full access 
      FALSE,                 // handle not inheritable 
      name_buf))) Sleep(1000); 
 
 shmComm.shmSize = bufSize; 
 
 return shmComm; 
} 
#endif 
 
// create shared memory region 
// returns when it accepts a connection 
SHMComm SHMCommCreate(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
  
 shmComm.shmHandle = CreateFileMapping( 
     INVALID_HANDLE_VALUE,    // use paging file 
     NULL,                    // default security  
     PAGE_READWRITE,          // read/write access 
     0,                   // max. object size  
     bufSize,                 // buffer size   
     shmName); 
 
 if (shmComm.shmHandle == NULL) 
 {  
  fprintf(errout, "Could not create file mapping object (%d).\n", GetLastError()); 
  fflush(errout); 
  exit(1); 
 } 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                        FILE_MAP_ALL_ACCESS, // read/write permission 
                        0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout,"Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 memset((char*)shmComm.shmBuf, 0, bufSize); 
  
 *((int *)shmComm.shmBuf) = 0; 
 *((int *)(shmComm.shmBuf + sizeof(int))) = 0; 
 
 sprintf(name_buf, "%sMutex", shmName); 
 // create mutex 
 shmComm.shmMutex = CreateMutex(  
       NULL, // default security attributes 
    FALSE,  // initially not owned 
    name_buf);  
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 if (shmComm.shmMutex == NULL)  
 {  
  fprintf(errout,"Could not create mutex lock (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 shmComm.shmSize = bufSize; 
  
 return shmComm; 
 
} 
 
 
SHMComm SHMCommConnect(char *shmName, int bufSize){ 
 SHMComm shmComm; 
 char name_buf[30]; 
 
 // !!! infinite loop to open shared memory  
 while( NULL == (shmComm.shmHandle = OpenFileMapping( 
    FILE_MAP_ALL_ACCESS,   // read/write access 
    FALSE,                 // do not inherit the name 
    shmName))) Sleep(1000); 
 
 // get a buf pointer after mapping shm 
 shmComm.shmBuf = (LPTSTR) MapViewOfFile(shmComm.shmHandle,   // handle to map object 
                        FILE_MAP_ALL_ACCESS, // read/write permission 
                        0, 0, bufSize);            
 if (shmComm.shmBuf == NULL)  
 {  
  fprintf(errout, "Could not map view of file (%d).\n", GetLastError());  
  fflush(errout); 
  exit(1); 
 } 
 
 sprintf(name_buf, "%sMutex", shmName); 
 // !!! another infinite loop to open mutex 
 while ( NULL == (shmComm.shmMutex = OpenMutex(  
      MUTEX_ALL_ACCESS,      // request full access 
      FALSE,                 // handle not inheritable 
      name_buf))) Sleep(1000); 
 
 shmComm.shmSize = bufSize; 
 
 return shmComm; 
} 
 
 
int SHMCommWrite(SHMComm shmComm, char *buf, int _size) { 
 DWORD waitResult; 
 int head, rear;  // head, rear of circular queue 
 char *cq;  // circular queue 
 int cq_size; // circular queue size 
 int first_half, second_half; 
 int data_size, block_size; 
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 if(NULL == buf) { 
  fprintf(errout, "ERROR - SHMCommWrite: buf is NULL..\n"); 
  fflush(errout); 
  return -1; 
 } 
 
 // if data size is not divided by 4, we append some nulls 
 if(0 != _size%4) { 
  data_size = _size + (4 - _size%4); 
  fprintf(errout, "WARNING - SHMCommWrite: size is not divided by 4. \n"); 
  fflush(errout); 
 } 
 else 
  data_size = _size; 
 
 block_size = data_size + sizeof(int); 
 
LABEL: 
 while(1){ 
  waitResult = WaitForSingleObject(  
      shmComm.shmMutex,   // handle to mutex 
      5000L);   // five-second time-out interval 
  if(waitResult == WAIT_OBJECT_0)    
   break; // got mutex lock 
 } 
 
 // now mutual exclusion block starts from here 
 
 // first 4 byte points to the head of circular queue 
 // second 4 byte points to the rear of circular queue where new data should be appended 
 head = *((int *)shmComm.shmBuf); 
 rear = *((int *)(shmComm.shmBuf + sizeof(int))); 
 cq = (char*) (shmComm.shmBuf + 2*sizeof(int)); 
 cq_size = shmComm.shmSize - 2*sizeof(int);  
  
 
 if(rear < head) {  
  fprintf(errout, "TEST1\n"); 
  fprintf(errout, "rear = %d < head = %d\n", rear, head); 
  fflush(errout); 
 
  // check whether new rear would exceed head 
  if( (rear+block_size)>=head ) { 
   fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n"); 
   fflush(errout); 
    
   ReleaseMutex(shmComm.shmMutex); 
   exit(1); 
  } 
 
  memcpy(cq+rear, &data_size, sizeof(int)); 
 
  rear = (rear+block_size)%cq_size; 
 } 
 else if( (rear+block_size) > cq_size ){ 
  fprintf(errout, "TEST2\n"); 
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  fprintf(errout, "head = %d\n", head); 
  fprintf(errout, "rear = %d\n", rear); 
 
  fflush(errout); 
 
  // need to wrap around 
  // check whether new rear would exceed head 
  if( (rear + block_size - cq_size) >= head ) { 
   fprintf(errout, "ERROR - SHMCommWrite: Shared memory buffer is filled up.\n"); 
   fflush(errout); 
   ReleaseMutex(shmComm.shmMutex); 
   goto LABEL; 
  } 
 
  memcpy(cq+rear, &data_size, sizeof(int)); 
 
  first_half = cq_size - (rear + sizeof(int)); 
  second_half = _size - first_half; 
 
  memcpy(cq+rear+sizeof(int), buf, first_half); 
  memcpy(cq, buf + first_half, second_half); 
 
  rear = ( rear + block_size ) % cq_size; 
 } 
 else { 
  // nothing to worry about 
  memcpy(cq+rear, &data_size, sizeof(int)); 
  memcpy(cq+rear+sizeof(int), buf, _size); 
 
  rear = ( rear + block_size ) % cq_size; 
 } 
 fprintf(errout, "----\n"); 
  
 
 *((int *)(shmComm.shmBuf + sizeof(int))) = rear; 
 
 // mutual exclusion block ends here 
 
 if (! ReleaseMutex(shmComm.shmMutex)) {  
  fprintf(errout, "\n0) Error for release (%d)\n", GetLastError() ); 
  fflush(errout); 
  return -1; 
 }  
 
 return block_size; 
} 
 
int SHMCommRead(SHMComm shmComm, char *buf) { 
 DWORD waitResult; 
 int head, rear;  // head, rear of circular queue 
 char *cq;  // circular queue 
 int cq_size; // circular queue size 
 int first_half, second_half; 
 int size; 
 
 if(NULL == buf) { 
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  fprintf(errout, "ERROR - SHMCommRead: buf is NULL..\n"); 
  fflush(errout); 
  return -1; 
 } 
 
  while(1){ 
   waitResult = WaitForSingleObject(  
       shmComm.shmMutex,   // handle to mutex 
       5000L);   // five-second time-out interval 
   if(waitResult== WAIT_OBJECT_0)  
    break; // got mutex lock 
  } 
 
  // now mutual exclusion block starts from here 
 
  // first 4 byte points to the head of circular queue 
  // second 4 byte points to the rear of circular queue where new data should be appended 
  head = *((int *)shmComm.shmBuf); 
  rear = *((int *)(shmComm.shmBuf + sizeof(int))); 
  cq = (char*) (shmComm.shmBuf + 2*sizeof(int)); 
  cq_size = shmComm.shmSize - 2*sizeof(int);  
 
  if(head == rear) { 
   if (! ReleaseMutex(shmComm.shmMutex)) {  
    fprintf(errout, "\n2) Error for release (%d)\n", GetLastError() ); 
    fflush(errout); 
    return -1; 
   } 
   return 0; 
  } 
 
 size = *((int *)(cq+head)); 
 if( (head + (int)sizeof(int) + size) > cq_size){ 
  // wrap around 
  first_half = cq_size - head - sizeof(int); 
  second_half = size - first_half; 
 
  memcpy(buf, cq + head + sizeof(int), first_half); 
  memcpy(buf+first_half, cq, second_half); 
 
  head = ( head + size + sizeof(int) )% cq_size; 
 } 
 else { 
  // nothing to worry about 
  memcpy(buf, cq+head+sizeof(int), size); 
  head = ( head + size + sizeof(int) )% cq_size; 
 } 
 
 *((int *)shmComm.shmBuf) = head; 
 
 // mutual exclusion block ends here 
 
 if (! ReleaseMutex(shmComm.shmMutex)) {  
  fprintf(errout, "\n1) Error for release (%d)\n", GetLastError() ); 
  fflush(errout); 
  return -1; 
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 }  
 
 return size; 
} 
 
 
void SHMCommClose(SHMComm shmComm){ 
 // unmap shaered memory 
 UnmapViewOfFile(shmComm.shmBuf); 
 
 CloseHandle(shmComm.shmHandle); 
 // end of shared memory 
} 
 
 
#endif 
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Abbreviations 
 

ACK    Acknowledgement 

AP    Access Point 

API    Application Programming Interface 

CDMA   Code Division Multiple Access 

CSMA/CA  Carrier Sense Multiple Access / Collision Avoidance 

CSMA/CD  Carrier Sense Multiple Access / Collision Detect 

CTS    Clear-To-Send 

DARPA   Defense Advanced Research Projects Agency 

DCF    Distributed Coordination Function 

DGPS   Differential Global Positioning System 

DIFS    DCF Inter-Frame Spacing 

DOLPHIN Dedicated Omni–purpose inter–vehicle communication Linkage 

Protocol for Highway automation 

DSRC   Dedicated Short Range Communications 

E2E    End–to–End 

ECE    Electrical and Computer Engineering 

FDMA   Frequency Division Multiple Access 

FHSS    Frequency-Hopping Spread Spectrum 

FHWA   Federal Highway Administration 

GPS    Global Positioning System 

IEEE    Institute of Electrical and Electronic Engineering 
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IP     Internet Protocol 

ISM    Industrial/Scientific/Medical 

ISO    International Organization for Standardization 

ISR    Institutes for Systems Research 

ITS    Intelligent Transportation Systems 

IVC    Inter–Vehicle Communications 

MAC    Medium Access Control 

MANET   Mobile ad hoc network 

MOP    Measures of Performance  

OBU    Onboard Unit 

OSI    Open Systems Interconnection 

PCF    Point Coordination Function 

PDA    Personal Digital Assistants 

PRNET   Packet Radio network 

RMDP   Received Message-Dependent Protocol 

RSU    Roadside Unit 

RTE    Real Time Extension 

RTS    Request-To-Send  

SIG    Special Interest Group 

TCP    Transmission Control Protocol 

TDMA   Time Division Multiple Access  

TMC    Traffic Monitoring Center 

UDP    User Datagram Protocol 
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US DOT U.S.  Department of Transportation 

VANET   Vehicular ad hoc network 

VII    Vehicle Infrastructure Integration 

Wi-Fi    Wireless Fidelity 

WLAN   Wireless Local Area Networks 
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