WEYL-HEISENBERG WAVELET EXPANSIONS:
EXISTENCE AND STABILITY IN
WEIGHTED SPACES

by

David Francis Walnut
M

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1989

( "

Professor John J. Benedetto, Chairman/Advisor
Professor Raymond L. Johnson / /
- / } W anel

Professor C. Robert Warner
Professor Perinkulam Krishnaprasad -
Associate Professor Nariman Farvardin ZL [)

32z
“N1-10d.
T aﬁ, TE‘;«,
D.F.
FOZL@)



©® Copyright by
David Francis Walnut

1989



ABSTRACT

Title of Dissertation: WEYL-HEISENBERG WAVELET EXAPNSIONS:

EXISTENCE AND STABILITY IN WEIGHTED SPACES

David Francis Walnut, Doctor of Philosophy, 1989

Dissertation directed by: Professor John J. Benedetto, Department

of Mathematics.

The theory of wavelets can be used to obtain expansions of
vectors in certain spaces. These expansions are like Fourier
series in that each vector can be written in terms of a fixed
collection of vectors in the Banach space and the coefficients
satisfy a “Plancherel Theorem” with respect to some sequence
space. In Weyl-Heisenberg expansions, the expansion vectors
(wavelets) are translates and modulates of a single vector (the
analyzing vector).

The thesis addresses the problem of the existence and
stability of Weyl-Heisenberg expansions in the space of functions
square-integrable with respect to the measure w(x) dx for a
certain class of weights w. While the question of the existence
of such expansions is contained in more general theories, the
techniques used here enable one to obtain more general and

explicit results.



In Chapter 1, the class of weights of interest is defined and
properties of these weights proven.

In Chapter 2, it is shown that Weyl-Heisenberg expansions
exist if the analyzing vector is locally bounded and satisfies a
certain global decay condition.

In Chapter 3, it is shown that these expansions persist if
the translations and modulations are not taken at regular
intervals but are perturbed by a small amount. Also, the
expansions are stable if the analyzing vector is perturbed. It is
also shown here that under more general assumptions, expansions
exist if translations and modulations are taken at any
sufficiently dense lattice of points.

Like orthonormal bases, the coefficients in Weyl-Heisenberg
expansions can be formed by the inner product of the vector being
expanded with a collection of wavelets generated by a transformed
version of the analyzing vector. In Chapter 4, it is shown that
this transformation preserves certain decay and smoothness
conditions and a formula for this transformation is given.

In Chapter 5, results on Weyl-Heisenberg expansions in the

space of square-integrable functions are presented.
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INTRODUCTION

Anyone who has ever heard a sound such as a siren or a piece
of music has registered the impression that the signal consists of
a combination of different frequencies at different times.
However, this common intuition is not reflected in classical
Fourier analysis techniques. Specifically, expanding a compactly
supported function, thought of as a signal of finite duration, in
an ordinary Fourier series can be interpreted as viewing the
signal as the superposition of signals of constant pitch and fixed
amplitude which persist for the entire duration of the original
signal.

The first attempt to define a transformation which reflected
the way the ear percieves sound was made in [Ga]. Gabor was
inspired by some techniques in use by quantum physicists for
decades and was the first to apply them to signal analysis. A
version of Gabor’s transform, known as the Short-time Fourier
Transform, has been in use by signal processing engineers for many
years. The idea behind this transform is the following.. In order
to obtain a picture of how the frequencies present in a signal
change over time, one divides the signal into distinct time
intervals, then takes the Fourier transform of each piece.

These ideas were given a rigorous mathematical foundation in
[DGM] and [D1], where the theory of frames in Hilbert space (cf.

Section 0.5) was used to define a short-time Fourier transform in



which there is more freedom in the choice of a window function,
thereby obtaining a generalization of Fourier series to the
Hilbert space LZ(R). These expansions were referred to as
Weyl-Heisenberg (W-H) wavelet expansions because of their
relationship to the so-called wavelet transform (or affine wavelet
transform) defined in [GM], and to the wavelet orthonormal basis
of Daubechies and Meyer.

In [F2], Feichtinger obtains W-H expansions of distributions
on R lying in certain Banach spaces called modulation spaces,
which are defined by smoothness and decay conditions. These
include the space LZ(IR). Here, Feichtinger used the theory of
Wiener-type spaces (cf. [F1]) to obtain W-H wavelet expansions by
a method analogous to that used in [FJ1] to obtain affine wavelet
expansions in Besov spaces. This theory was superseded by the
general theory found in [FG1] and [FG2], which proved the
existence of W-H and affine wavelet expansions of distributions in
a large class of spaces, the coorbit spaces. This theory is quite
abstract and relies on the theory of group representations to
obtain its results.

Thus, there are three methods for obtaining W-H expansions of
distributions in Banach spaces. Daubechies’ method (cf. [DGM],
[D1]) is essentially restricted to the space L2(Rk), but provides
very general conditions on the mother wavelets and the frame

parameters which guarantee the existence of frames. Also, these



methods provide good estimates on the critical values of frame
parameters and frame bounds for a given mother wavelet.

The method of Feichtinger in [F2] shows the existence of W-H
wavelet expansions in a larger class of spaces than just Lz(RkL
This method is a great deal more abstract than Daubechies’ method
but still gives a very general, easily checkable condition on a
mother wavelet guaranteeing that it generate a set of W-H atoms
for a given modulation space. Estimates on the values of the
lattice parameters and on the atomic bounds are difficult in this
case.

The method of Feichtinger and Grédchenig (cf. [FG1l, [FG21) is
a very beautiful and general theory which shows the existence of
wavelet expansions by means of both W-H and affine wavelets for a
very large class of Banach spaces. This method gives specific
results concerning stability of the wavelet expansions under
perturbations. This is not done in either of the first two
methods and makes explicit an advantage which expansions in terms
on non-orthogonal sets of vectors possess over orthogonal
expansions! On the other hand, this method is very abstract and
does not give a transparent condition on a vector guaranteeing
that it generate a set of W-H atoms, nor does it provide a simple
means of obtaining estimates on valid parameter values or atomic
bounds.

This paper presents a method for finding sets of W-H atoms

for spaces other than the Hilbert space LZ(RK), namely the spaces



Lg(Rk), with very explicit conditions on mother wavelets which
guarantee that they generate sets of atoms. Although Ls(Rk) is a
Hilbert space with respect to the inner product <-,->, (cf.
Section 0.3), it is viewed as a Banach space and no attention is
paid to its Hilbert space structure. The question of Hilbert
space frames for LE(RR) is dealt with in Section 2.5. It will
turn out that the crucial property of LE(RR) that enables this
method to work is the fact that functions in L3(RX) are locally in
L%(R¥), specifically that L3(R¥) = W(L*(R"),L3(R")) (cf. [F11).
Also, this method enables one to prove more general and different
stability results than [FG1] in this case.

The paper is organized as follows. Chapter O contains
notations and definitions used throughout the paper. Chapter 1
contains the definition and properties of the types of weights for
which the results of the paper hold.

Chapter 2 contains the proofs of the existence of sets of W-H
atoms for Lﬁ(mk). Section 2.1 shows that the spaces LE(Rk) are
actually coorbit spaces in the sense of [FG1] so that the
existence of such expansions for some mother wavelets can be
inferred from [FGl]l. Section 2.2 gives basic results on the
Wiener-type space which will turn out to be the reservoir of
mother wavelets generating sets of W-H atoms for LE(Rk). Section
2.3 gives the proof of the existence of these atoms for
appropriate mother wavelets, and Section 2.4 does the same in

certain Sobolev spaces. Section 2.5 compares the concepts of



Banach frames and Hilbert space frames of W-H wavelets for the
Banach space LE(Rk) and the Hilbert space LE(Rk), respectively,
and shows that they are not equivalent (cf. Section 0.5). Section
2.6 compares the notions of a Banach frame and a set of atoms for
the space LE(RkL

Chapter 3 presents some of the stability results yilelded by
the methods of the previous chapter. Section 3.1 gives results on
stability of sets of W-H atoms for LE(Rk) under perturbation of
the mother wavelet and of the lattice points. Section 3.2 says
that, under a reasonable but strictly more general condition on
the mother wavelets, the results of Section 2.3 can be modified to
show that sets of W-H atoms exist for a “rectangle” of parameter
values. This can be thought of as a result on stability under
perturbation of the lattice parameters.

Chapter 4 presents stability results of a different kind.
Given a set of W-H atoms, {E,Thag}, for some gELE(Rk) and a, b >

0, we can define the operator U formally by
Ut = Z Z <f, EnbTha8”Emblna8-
n m

If U defined in this way makes sense, and is invertible, we can
write

£ = Ul = Z Z<f,EmanaU'1g>Emanag.
n m

Operators of the form

Sf = ) ) <, EmTna¢>EnpTnal
m

n

for certain functions ¢ and ¥, are studied in Chapter 4, where is



is shown that, for a large class of ¢ and Yy, and appropriate
values of a and b, the operator S makes sense, is continuous, and
is continuously invertible on many Banach spaces. The reason
these can be thought of as stability results is that on certain
spaces the operator S defined above is the identity operator when
P = U—lg and Yy = g. To say that U (or more generally S) is a
continuously invertible operator on many Banach spaces is to say
that in the W-H expansion of a function, the function “inside” the
inner product has many of the same properties (decay, smoothness,
etc.) as the function “outside” the inner product. Also, this
shows that one can oLtain W-H expansions of distributions in a
large variety of Banach spaces, though in most cases, one cannot
conclude that {E,;Thag} is a set of atoms for those spaces.

In Section 4.1, Banach spaces of functions on Rk defined by
decay conditions, including the LP spaces and the weighted L*
spaces are considered. In Section 4.2, the same is done for
spaces defined by smoothness conditions, specifically Banach
spaces of distributions defined by decay conditions on their
Fourier transforms. Also, this section gives formulas for the
derivative of the function Sf for appropriate f, and it is shown
that if f, ¢, and ¥ are in #(R*) then so is Sf and that in fact S
is a continuous operator from 9(Rk) into itself. Section 4.3
gives a formula for computing the operator S_l, and Section 4.4

generalizes a result of Benedetto in [B], and show that on the



spaces LE(Rk), the continuously defined analogue of the operator S
can be inverted.

Chapter S5 presents some results in the special case when w =
1, i.e., for the Hilbert space LZ(RR). Section 5.1 presents two
results on the general theory of frames in Hilbert spaces due to
Grochenig and Heil. These are included because they are used
elsewhere in the paper. The remaining two sections give a closer
examination of results in [D1], specifically a result on existence
of frames in Lz(Rk), which is generalized slightly, and a result
on phase-space localization, for which a more transparent

hypothesis is given.



CHAPTER O

NOTATION AND DEFINITIONS

Section 0.1. Basic symbols.

and

Note

C denotes the complex numbers.

If z<C, the modulus or absolute value of z is denoted by |z].
The complex conjugate of z is denoted by z.

T denotes the torus, the set of complex numbers of modulus 1.
If k 2 1 is an integer, then

Rk denotes k-dimensional Euclidean space,

&k denotes the dual group of RK

Z* denotes the set of k-tuples of integers.

If xeR* and x = (%1, %2, ...,Xx) then

2 2 2 2
[x]© = x7 +x5 ++ - +Xy,

[X]max = max{|xy]l: J=1,2,...,k}.
that [Xlmpax £ Ix| £ kIX|npax-

Given x and y in Rk with x = (x1,Xp,...,Xx) and y =

(y1,¥2,.--,Yx), the inner product of x and y is given by

K
<X,y> = Z ijj
J=1
If nez® and n = (ny,nz,...,n,) then

In] = max{Inyl: J=1,2,...,k}.

A multi-index is an n-tuple of non-negative integers.



If « is a multi-index and « = (o&q,@p,...,0%) then

k
|a-| = Zajv
=1
a! = agta! oy !,
< k
and if x<R,
(24 o 24 24
X = q 1X2 2"‘ka

Given a differentiable function f, a« a multiindex,

e e alalg
dx 8x 8%
o a2

1 &k
A rectangle R ¢ Rk is a set of the form
[aq,by]x[ag, bolx: = x[ay, byl
where for each i, b; > a;. A rectangle is a cube if for all

i and j, laj=by| = laj-by|. Given a > 0, the cube [-a/2,a/2]" is

denoted Q,.



Section 0.2. Summation and integration.

1. Lebesgue measure on Rk is denoted by dx.

Given a measurable set E c Rk, the Lebesgue measure of E is
denoted by |E]|.

Given a measurable set E c Rk, the characteristic function of
E is denoted by 1E.

Unless otherwise specified, all integrals will be over R®.

2. Unless otherwise specified, a series of the form

Ten

n

with c,€C will mean the sum over nez"”.
& Given 1 £ p < o, and a sequence (w,) of positive numbers, we
define the Banach space ££(Zk) as the space of all sequences (cp)

of numbers such that

Z leal® wy € o
n

with norm given by

1/p
Heallpn = [ L leal® ua]
n

4. A series of numbers,

e

n

is said to converge to a number c if given € > 0, there is a
finite set F < Z* such that for all finite sets G containing F,

< B

IC“ ch
ne G

10



5. A series of numbers is said to be Cauchy if given € > O,

there is a finite set F ¢ Zk such that for any finite set G ¢ ZK

‘ch < e.
neGA\F
6. Unless otherwise specified, a sequence of the form (c,) with
. k
cp<C will mean a sequence over n<Z
Ts Given a Banach space B with norm |-|g, a series of functions,

Y fn,
n

is said to converge to f in B if given € > O, there is a finite

set F ¢ z* such that for any finite set G c it containing F,

- 3o

n€ G\F

< &

B
8. Given a Banach space B with norm || -|lg, a series of functions
is said to be Cauchy in B if given € > 0, there is a finite set F

C Zk such that for all finite sets G ¢ Zk,

11



Section 0.3. Function spaces.

1s Given a measurable function f on Rk, we define f_(x) = f(-x)

for all x€RK

2. Given 1 < p < o, and a positive, locally integrable function
w, we define the Banach space LS(Rk) as the space of all

measurable functions f such that
Jlf‘(x)lp w(x) dx < =

with norm given by

1/p
Iflp,w = [Jlf(x)lp w(x) dx] )

If p = w, we define the Banach space Lf(Rk) as the space of
all measurable functions f such that
Ifll,,w = ess sup{|f(x)|w(x): xemk) < o,

3. Given two measurable functions f and g, we define
<f,g> = Jf(x)g(x) dx

whenever the integral makes sense and if w is a locally integrable

function, we define
<, gy = J>f(x)§(x)w(x) dx

whenever the integral makes sense.
4. Co(Rk) is the Banach space of continuous functions vanishing

at infinity, equipped with the sup-norm topology.

12



5. Cb(Rk) is the Banach space of bounded, continuous functions
equipped with the sup-norm topology.
B. Given a non-negative integer r, we define the space C"(RY) as
the space of functions such that for every multiindex «, with |«
<r, D%f exists and is continuous. We denote by CE(RK) the
subspace of c"(R*) consisting of those elements of C"(RX) which
have compact support.
7. We define the space Cm(Rk) as the space of functions
possessing arbitrarily many continuous derivatives, and the space
C?(Rk) as the subspace of c®(R") consisting of those elements of
C®(R*) which have compact support.
8. ?(Rk) is the space of Cm(Rk) functions such that for every
multiindex a and integer n = O,

sup{ D" (x) (1+[x1)"]: xR} < w.
The dual of #(R*), the space of tempered distributions, is denoted

9’ (RY).

13



Section 0.4. The Fourier transform.

1. The Fourier transform of a function feLl(Rk) is
f(y) = Jf(x)e‘z’“""?’> dx.
for yemk.
2. The Fourier transform of a function feL®(R¥) is
f(y) = lim J £(x)e 2T gy
n-eo JQu
in L%(RY).
3 Given a > 0, the Fourier transform of an a-periodic function

feLz(Qa) is
£(n) = [ £(x)e dmHm> gy
Qa

for nely

14



Section 0.5. Atoms and frames.

DEFINITION 0.5.1. Let B be a Banach space and denote by By an

appropriate sequence space associated to B. A collection of

vectors {g;: i<l} in B is a set of atoms for B if there is a

collection of linear functionals on B, called A;, such that

(1) each f<B can be written f = } A;(f) g;, where the sum

converges in B-norm, and

(2) there exist constants c4, co > 0 such that for all fe<B,
cillflls = 1A (£)) s, = callflle.

The smallest value of c; and the largest value of c; which work

are the atomic bounds for {g;}, c; being the lower bound and cy,

the upper bound.

DEFINITION 0.5.2. Let B, By be as in Definition 0.1. A
collection of vectors {e;: i€l} in B’, the dual of B, is called a
Banach frame for B if there exist constants d;, dz > 0, such that
for all fe<B,

dillflls < [1(<f,e;>) g, < dalfle.
The smallest value of d; and the largest value of d; which work
are the frame bounds of {e;}, di being the lower bound and d;, the

upper bound.

15



DEFINITION 0.5.3 Let H be a Hilbert space and {x,: n<l} a
collection of vectors in H. Then {x,} is a frame for H if there
exist constants A, B > 0 such that for all xe<H,

2 2 <
AlxIl® < Y 1<x,%0>1% < BiIx)®.
n

The smallest value of A and the largest value of B which work are

called the frame bounds of {x,}.

DEFINITION 0.5.4. Let H be a Hilbert space, and {x,: n<l} a
collection of vectors in H. Then {x,} is a set of atoms for H if
the following conditions hold.

(1) there exist linear functionals a,: H —— € for each n<I

such that for each x<H,

X = Zan(x)xn

n

where the sum converges strongly in H, and
(2) there exist constants A, B > 0 such that for all x<H,

Alx||? < Z lag(x) 12 < Blx|?

The smallest value of A and the largest value of B which work are

called the atomic bounds of {xn}.

DEFINITION 0.5.5. Let {x,: n<l} be a frame for a Hilbert space H.

Let {e,} be a collection of vectors such that for all x<H,

X = 2: <X, en>Xn
n

where the sum converges strongly in H. Then {e,} is said to be

dual to {x,}.

16



DEFINITION 0.5.6. Given u, VEIRk, and f a measurable function, we
define the functions E,f and T,f on R by

Euf ( %) = e21't1<u,x>

fiix);
T, £(x) = £f(x-v).
Also, given a locally integrable function w on R* such that for
each veR* the operator T, is bounded on LS(Rk) for 1 £ p < », we
define the function ¥W(v) by
W(v) = ”TV”LieLE'
DEFINITION 0.5.7. Given a Banach space B of funct;ons on Rk, g<B,
and a, b > 0, we say that (g,a,b) generates a Weyl-Heisenberg
(W-H) frame for B if the collection {E,zThag} is a Banach frame
for B. Similarly, we say that (g,a,b) generates a set of
Weyl-Heisenberg (W-H) atoms for B if {EpThag} is a set of atoms
for B. The numbers a and b are the frame parameters, a being the
translation parameter, and b the modulation parameter. The

collection {(na,mb): n.melk} is the translation-modulation

lattice. The vector g is the analyzing vector or mother wavelet.

REMARK 0.5.8. In the remainder of this paper, we will often use
the terms “sets of atoms” and “atomic decompositions” to refer to
expansions in the sense of Definition 0.5.1. It is important to
distinguish between this type of decomposition and the type

encountered for example in the theory of uP spaces (cf. [C],

17



[La]l]). Atomic decompositions in the sense of Definition 0.5.1 are
more like Fourier series expansions or some other kind of
orthogonal expansion than those given in [C] and [Lal.

The important characteristics of atomic decompositions in the
sense of Definition 0.5.1 are the following.
1. A set of atoms is a fixed collection of vectors in terms of
which every other vector in the space can be expanded. That is,
the atoms are independent of the vector being expanded.
2. The expansion coefficients depend linearly on the vector
being expanded.
3. The sum expanding a given vector is required to converge in
norm to the vector.

The corresponding characteristics of atomic decompositions in
the sense of [C] and [La] are the following.
1. The atoms by means of which a distribution is expanded depend
on the distribution.
2. The expansion coefficients do not necessarily depend linearly
on the distrubution being expanded.
3 The expansion sum is only required to converge in the sense

of distributions.

18



CHAPTER 1

MODERATE WEIGHTS

The notion of a moderate weight was first defined by
Feichtinger and Gréchenig in [FG1]. In this chapter, we prove
some important and useful properties of these weights and of the
submultiplicative functions associated to them.

In particular, we show that these weights are well suited for
W-H expansions of functions in LE(Rk) in that they lend themselves
naturally to discretization, thereby allowing one to define the
growth condition characterizing the expansion coefficients. The
relevant property of the weights, property (4) of Theorem 1.1.8,
can be stated as follows: The values of a moderate weight at any
two points are comparable, with the constants of comparability
depending not on the location of the points but only on the
distance between them. Thus, given a partition of R* into cubes
of fixed size, w can be replaced by an equivalent weight which is
constant on each element of the partition. Such a discrete-valued
version of w is given in Definition 1.1.10.

The characterization of moderate weights as those weights for
which LE(Rk) is translation-invariant (cf. Theorem 1.1.6) is
well-known to Feichtinger and Gréchenig (cf. [F2], [FG1]) but has

not appeared in print.
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Section 1.1. Properties of Moderate Weights.

DEFINITION 1.1.1. A function w: R* — 5 R is called a
submultiplicative weight provided that the following hold.
(1) w(0) = 1, and

(2) wixty) < w(x)w(y) for all x,yeR.

DEFINITION 1.1.2. A locally integrable function w: R — R is
called a moderate weight provided that there exists a
submultiplicative weight m such that for all x, y€RK

wix+y) < m(x)w(y).

DEFINITION 1.1.3. Given a locally integrable function
k + Pk P
w: RR —— R and 1 £ p < w, we say that Ly(R") is

translation-invariant if for each aERk, Ta(Lg(Rk)) o LE(RRI

LEMMA 1.1.4. (cf. [K]) Let m be a submultiplicative weight. Then
m is locally bounded.

PROOF. Suppose not then I claim that m would be unbounded in
every neighborhood of 0. That is, suppose that for some € > O,
m(x) € M on Qe for some M < w. Then by submultiplicativity, m(x)

n

< M° on Q€+Q€ = Qze’ and in general, m(x) < M on Qz"s' Since

every compact set is contained in Qz"e for some n, m is locally

20



bounded. Consequently, if m is not locally bounded, then m is
unbounded on Qe for every € > O.

This implies that on a set of positive measure, m takes the
value +w. To see this, fix € > 0 so small that for every yEQe,
1Q;A(Q1+y)| < 1/4. Then given NeN, there exists xNeQc such that
m(xy) 2 N, Now, for each XERk, N® < m(xy) < m(x)m(xy-x) which
implies that for all xERk, either m(x) =2 N or m(xy-x) 2 N (or
both).

Let Ay = {x<Q;: m{x) 2 N}). I claim that |Ayl 2 1/4 for all

v

N. Suppose not, then |Qi\Ayl 3/4, But if x<Qi;\Ay then xgAy so
that m(x) < N. Thus, m{xy-x) 2 N and so xy-x€Ay as long as
xN-%x<Q; so that [Ayl 2 [Ixx=(Q\AY)] N Q1] = [Q1\AxI-1(Q1+xx)\Qq |

> 3/4-1/4 = 1/2 > 1/4. Now, the sequence {Ax}%; is nested and
each is contained in Q. Thus, if A = nAy then |A| 2 174 and m(x)

= o on A. This is clearly impossible since m was assumed to be

real-valued. Thus, m is bounded on compact sets.m

PROPOSITION 1.1.5. Let w be a moderate weight, then w is locally
bounded.

PROOF. This proof is almost identical to that of Lemma 1.1.4.

Let € > 0, and let m(x) £ M on Qe. Suppose that w is bounded by M

on Qe. Then we have, as in the proof of Lemma 1.1.4, that for any
n-1 n-2
)2

n
neN, m(x) < M on ane and hence that w(x) < MC (MM on
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ane. Thus, if w is not locally bounded, it must be unbounded in
every neighborhood of O.

Suppose this is the case. Let € > 0 and let m(x) < My on
Q1+e' Then given B > O there is xg with |xgl < £ and w(xg) 2 BMg.
For each x<Q;, we have that BMy < w(Xg) < m(xg—x)w(x) < Mgw(x)
since x<Q; implies that xo—st1+€. Thus, w(x) 2 B on Q;. But

since B was arbitrary, this means w(x) = » on Q;, clearly an

impossibility. Thus, w must be locally bounded.m

THEOREM 1.1.6. Let w: Rk —_— R+ be a locally integrable function
and let 1 £ p < w. Then the following are equivalent.

(1) w is a moderate weight.

(2) LS(Rk) is translation-invariant.

(3) For every compact set K c R* there is a

constant C(K) such that

W(x+y)

(4) For every v > 0 there exists a constant B(v) such that

sup w(x) < B(v) igg w(x)

for every cube Q ¢ Rk with |Q|=v.
(5) For every cube Q c R® centered at the origin, there exist

constants A;(Q) > 0 and A3(Q) < o such that for every xeR"

AL(Q) < [W%—X)J w(t) dt] < As(Q).
x+Q
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PROOQF.
(1)=(2) Suppose w is moderate. Then if 1 £ p < o, aemk, and

f<LB(RY),
ITafl,p = Jlf(x~a)|pw(x) dx = Jlf(x)lpw(x+y) dx
< m(y)J|f(x)lpw(x) dx = m(y)Ifll}y,p-

Since m is finite-valued, LB(Rk) is translation invariant.

(2)=(1) First we show that if LE(Rk) is translation-invariant,

then ||Tall.p. p is finite for each a<R*. To do this, we use the
e it

Closed Graph Theorem.

Let a<R*, and suppose that f,——f in LP(R*) and that T.f,—og
in LB(Rk). We will show that T,f = g. Suppose not, then there
exists a set E with 0 < |E|] € o, E ¢ K where K is some compact set
in Rk, and m > O such that lg(x)-f‘(x—a)lp > m for all x<E. Since

1

£f.—f in LR(R®), fw'P—stw'® in LP(R*) so that by passing to a

subsequence, we may assume without loss of generality that

VP__,ew'P almost everywhere and hence that T,f,—T,f almost

faw
everywhere.
Since |E| < w, Egoroff’s Theorem implies that there is a set

A ¢ E with O < |A| and such that T,f,—T,f uniformly on A. Now

we have that

1/p
m[J wi(x) dx]
A

= ”g"Tafn”Lg(A) s ”Tafn_Taf”LE(A)

1A

1/p
[[ [@lsi=f (o) [Pt 3e) dx]
A
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1A

1/p
”g—Tafn”p,u * [J |Tafn(x)—Taf(X)|pw(X) dx]
A

IA

1/p
le=Tafulg * sgpITafn(x)—Taf(x)l[ w(x) dx] — 0

A

as n—wo. Since w is locally integrable, this contradicts the
assumption that m > O.

Now let m(a) = “Ta”Ep+Lp. Then
Jlf(x—a)IPW(x) dx = Jlf(x)|Pw(x+a) dx < Jlf(x)lpm(a)w(x) dx

for all fiLs(Rk). Thus, w(x+a) £ m(a)w(x) for all a<R* and almost
every x<R". Also, since Tg = Id and since Ta4p = Talp, m is a
submultiplicative weight. Thus, w is moderate.
It should be noted here that in the above paragraphs, m was
defined in a p-dependent way, when certainly m is independent of
. . S < P - q ’
p. I claim that given 1 P, q o, "Ta“LsaLS ”Ta”LgaLg To see
this, note that for all f£<LP(R"), ITafllp,w < HTallip el flp,w and
: L.-Lw ;
that HTaHEpaLp is the smallest such constant for which this holds
w W
. . B2 p/q;d
uniformly in f. We also know that [[Tafllp,w = [Taf “liq,u <

p/q9,q
lq,w

q = q P P @

”Ta”Eq+Lq' The same argument with p and q reversed gives finally
w w

p = q

(1)==(3) First, by Lemma 1.1.4, we know that m is locally
bounded.

Put C(K) = SYp m(x). Then for all yeK,

w(x+y)
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independently of x<R*. Thus,

w(x+y)
S}ép[';‘k‘ w_(x—)—] S S G

(3)=(2) Let a<R* be contained in some compact set K. Then by

(3), w(x+a) < C(K)w(x) for every xemk. Thus,
Jlf(x)lpw(x+a) dx < C(K)Jlf(x)|pw(x) dx

and LE(RR) is translation invariant.

(3)=(4) Suppose that w is a moderate weight and let Q c R be a
cube with |Q|=v. Then Q=x’+Q’ where x’ is some point in R* and @4
is that unique cube of volume v such that Q’=-Q’, i.e. such that
Q’ is centered at the origin.

Since w is a moderate weight, there exists a constant C(Q”)
such that for every XERk, wix+y) <€ C(Q”)w(x) for all y<Q”. Also,
we have that w(x)=w(y+(x-y)) < C(Q”)w(x-y) for all y<Q”. Since
Q”=-Q”, we may write the above as w(x) < C(Q”)w(x+y).

Certainly the above holds when x=x’. Fix y; and ys in Q”.
Then

wix’+ys) < g%%;% CQM)w(x’) = C(Q")? < w.

Since Q=x’+Q”, we have that
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syp w(x) _ SR wi(x)

< C(Q")? = B(v)

igf w(x) xieg" w(x)

since Q” depends only on the volume of Q.

(4)=(3) Let K ¢ R be a fixed compact set. Then K ¢ Q for some

cube Q and

X ye€ w(x) X Y€ W(X)

SUp[SU M] £ sup[sug w(x—+y)]

1 1
sgp[w(x) sup w(x+y)] < sup [tgggo w(Ey +Sup, w(t)]

B(1Ql)

IA

since w(x) > 0 for all x<R® implies that su 1 _ - - for
Tk w(t)

w(t)

=
mHh

any set E.

(4)=(5) Let Q ¢ R be a cube. Then

J w(t) dt
x+Q

IA

IQIEBB w(t)

IA

BOIQD) 1QIing w(t) < BUIQI) QIu(x)

for almost every xsmk. Similarly,

J w(t) dt 2 |Qlinf w(t)
x+Q x+Q
> 1QIBOIQD sup w(t) 2 lalB(IQD) Twix)

for almost every x<R¥.
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(5)=(4) Let Q be a cube in R* centered at the origin and let
xeR* be fixed. Let Q' = Q+Q, and Q” = Q'+Q’. Then, given yx+Q,

x+Q ¢ y+Q’ < x+Q” and y+Q < x+Q’ c y+Q”. Now,

1 1 Ax(Q")
e wit) dt € 2= wit) df & 2= A, (07)
w(y)L+Q, ”(V)L+Q" A(QTY

Ax(Q”) 1

< = - - w(t) dt.
A (Q7) wix) JX+Q'

Thus, for all xemk and y<x+Q,

" wix) _ Ax(Q")
(*) wly) = A Q)

Also,
1 1 A, (Q)
wit) dt = — o wit] di & ==l A(F*)
wiy) JX+Q' wiy) Jy+Q A;(Q7) 72

A(Q) 1 J
2 e ——— w(t) dt.
Ax(Q’) wix) %+Q
Thus, for all x<Rk and y<x+Q,

* w(x) Al(Q)
[**1 w(y) 2 A(QT"

Therefore, for all yex+Q,

AZ(Q”)
a7 YY)

wix) <
and so

wix) < A2(Q") infow(t)

A1(Q") tex+
by (*). Similarly, by (**),

A,(Q)

W) 2 LR ¥R

w(t)

which gives finally

As(Q”“)As(Q")
B O TAy (0] e g i b

Since x was arbitrary, and the constant does not depend on x, we

<
tEQEQW(t) -

are done.=s
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PROPOSITION 1.1.7.

Let w be a moderate weight. Then there exist

a continuous function wp and positive constants c¢; and cs such
that

CiWo(x) = w(x) < cowg(x)

for all x<R*. Thus, LE(RY) = LSO(IR") for 1

< p < w.
PROOF.

Let kECC(Rk) with supp(k) < K, for some cube K.

Suppose
that jk(x) dx =

1 and that k = 0.

Let

wo(x) = Jw(y)k(x—y) dy = J wiy)k(x-y).
x+K

Certainly, wg 1s continuous and

i <
yéngw(y) < wolx) < y§¥EKw(y).

By property (4) of moderate weights given in Theorem 1.1.6, we
have that

1/B(IK|)y§gEKw(y) < wolx) < B(IKI)ngQKw(y)
and finally that for every x€RK

1/B( 1K )wo(x) < w(x) < B(|K|)wp(x).m

REMARK 1.1.8.

Proposition 1.1.7 says that given a moderate weight
w, there is a continuous function which defines the same

weighted—Lp space as W.

PROPOSITION 1.1.8.

Let w be moderate with associated function m.
Then
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(1) m(x) 2 1/w(0) w(x) for all xeR,

(2) m.(x) 2 w(0) 1/w(x) for all x<R*.

PROOF. (1) follows immediately from the fact that w(x+y) <
m(y)w(x) and by putting x = 0. (2) follows from the fact that

w((x+y)-y) £ m(-y)w(x+y) which implies that

1 ' 1

which gives the result when x = O.m

DEFINITION 1.1.10. Given a cube Q ¢ Rk, a > o, nelk, we define

w(n;Q,a)= 398 w(x-na). We will denote w(n;Q;,a) by w(n;a).

PROPOSITION 1.1.11. Let aemk, Qg & Qc R be cubes. Then there
are constants c; and c, independent of n such that for all nEZk.
c; w(n;Q,a) = w(n;Qg,a) £ cp w(n;Q,a).
Moreover if Q and Qp are any two cubes in Rk, then there are
constants d; and d; such that for all nelk,
d; w(n;Q,a) € w(n;Qg,a) £ dp w(n;Q,a).
PROOF. w(n;Q,a) = ipg w(x~-na) < iggow(x—na) = w(n;Qg,a), so that

cy = 1. Now,

IA

inf w(x-na) sup w(x-na)
X€Qqo X€

= R

< B(IQ]) inf w(x) = B(|Ql)inf w(x-na).
x€ Q+na x€Q
Thus, cz = B(|Q|) and the first part of the conclusion holds.

Now, given arbitrary cubes Q, Qg in Rk, we can certainly find
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a cube Q' such that Q ¢ Q" and Qg <« Q°. From this the result

follows with d; = B(1Q’ )™ and dy = B([Q’|).=

EXAMPLES 1.1.12.

(1) Any finite-valued, submultiplicative function is a moderate
weight. In particular, a Beurling weight, i.e., a continuous
submultiplicative function, is a moderate weight. For example, if

n 2 0, then (1+le2)n/2 is a Beurling weight and hence a moderate

weight.

(2) For x<R, let w(x) = e€*. Then w(0) = 1, and w(x+y) < w(x)w(y)
for all x,y<R. Thus, w is moderate with itself as the associated
submultiplicative function. This example shows that if m is a

submultiplicative function associated to a moderate weight, then m

need not be bounded away from zero.

(3) 1t is easy to see that condition (4) of Theorem 1.1.6 is
symmetric in w and 1/w. That is, if w is moderate then so is 1/w.
If m is a submultiplicative function associated to w then m. is a
submultiplicative function associated to 1/w. To see this, note
that for every x and y, w(x) = w(-y+(x+y)) £ m(-y)w(x+y), so that

1/wix+y) £ m_(y)[1/w(x)].
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n/2

We can now say that for every ne<R, (1+Ix]2) is moderate.

In fact, the reciprocal of any finite valued (and non-zero)

submultiplicative function is moderate.

(4) A finite-valued submultiplicative function need not be
continuous. For example, let w(0) = 1, and w(x) =2 if x = 2.
Then w is submultiplicative, but discontinuous at O.

Consequently, a moderate weight need not be continuous.
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CHAPTER 2

SETs OF ATOMS FOR Li(Rk).

This chapter is devoted to showing the existence of W-H atoms
for LE(Rk). That such atoms exist is shown in [F2] and [FG1],
using different techniques in each case. The theory of
Feichtinger and Grdchenig ([FG1], [FG2]) demonstrates in part the
existence of such wavelet expansions in a large collection of
Banach spaces. Also, Feichtinger’s theory of Gabor-type
decompositions of modulation spaces ([F2]), while only done for
polynomial weights, goes through without modification for moderate
weights.

The method used here is adapted from [F2] and exploits the
local character of L2(RX), i.e., that a funcfion in Ls(Rk) is
locally in LZ(Rk). to obtain a larger class of mother wavelets for
Ls(Rk) and also to give a more computationally explicit means of
obtaining appropriate translation and modulation parameters for
generating the atoms.

Also, as we shall see in Chapter 3, this technique can be
used to prove stability results for W-H atoms which are stronger
than similar results in [FG1].

In Section 2.1, we show directly that [FG1] can be applied to
the case of LE(Rk) by showing that LE(Rk) is the coorbit space

associated to a function space on the Heisenberg group.
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The techniques of [F2] rely heavily on the theory of
Wiener-type spaces developed in [F1], especially on the
convolution relations between these spaces. This is necessary
because most of the work there is done in the frequency domain.
Since the spaces LE(Rk) are defined by a local Lz(Rk) condition,
we can do all of our work in the time domain. Consequently, we do
not require all of the power of the theory of Wiener-type spaces.
We do, however, require at least some definitions and basic
properties of these spaces. These are given in Section 2.2.

Section 2.3 gives conditions on a function in a certain
Wiener—-type space which guarantee that, as a mother wavelet, it
generates a set of W-H atoms for LE(Rk). Section 2.4 shows that
such expansions exist for functions in certain Sobolev spaces.

Related to the notion of a set of atoms for a Banach space is
that of a Banach frame (cf. Section 0.5). 1In a Hilbert space,
these notions are equivalent but the proof of the result breaks
down for general Banach spaces (cf. [Grl]l, Theorem 5.1.1). Also,
in a Hilbert space, the coefficient functionals are unique (cf.
[H], Theorem 5.1.8). Here, too, it is not clear how the result
can be extended to general Banach spaces.

Of course, L2(R*) is a Hilbert space with respect to a
weighted inner product. However, the notions of a set of atoms
for the Hilbert space LE(Rk) and that of a set of atoms for the

Banach space Lg(Rk) are not the same. This is also true of the

33



notions of a Hilbert frame and a Banach frame for LE(RR). The
latter is the subject of Section 2.5.

In Section 2.6, we examine the relationship between sets of
atoms for the Banach space La(Rk) and Banach frames for the same

space.
Section 2.1. Coorbit spaces

In this section, we show that LE(Rk) is a coorbit space in
the sense of [FG1] and [FG2] whenever w is moderate. This implies
the existence of W-H expansions of functions in LE(RK) by means of

the Feichtinger/Grochenig theory.

DEFINITION 2.1.1. The Heisenberg group, H, is the set Fkaka
with the following group operation. Given (ty,a;,b1),
(t2»a21b2)ém’

2Mibjap

(tl,al,bl)'(tg,ag,bz) = (t1t2e ,a1+a2,b1+b2).

Also,

(t,a,b)-l ) (t—1ezn1ab

,—a, ~b).
The identity element in H is (1,0,0). H is topologized by the
product topology on Tkax&K

The left-invariant Haar measure on H is denoted du. The

measure du is also given by the product measure on Fkaka, dt da

db, where dt is normalized so that JTdt = 1.

34



Given functions F and G on H, we define the convolution of F

and G by
F*G(x) = [F(y“lx)c(y) dply).
Given f, g in appropriate spaces, we define the function
V4(f) on H by
Vao(f)(t,a,b) = t<f, TyE 8> = tezni(aﬂ»J}(s)g(s—b)e—znlqhs> ds.

The function Vg(f) is referred to as the voice transform of f with

respect to g (cf. [FGil).

DEFINITION 2.1.2. Given a moderate weight, w, we define the
corresponding weight ws on H by ws(t,a,b) = w(b).

Define W3(t,a,b) = ||T(¢+,a,»)| where T is the left-translation
operator on the space LEB(H). That is, if x,yeH, then T F(y) =

F(xly).

DEFINITION 2.1.3. Given w moderate, we define W(LZ(R*),L%(R")) as
the Banach space of functions, f, on Rk such that, for some fixed

k<C.(R"),

1/2
B 2
”f”W(Lz,Ls) = [JHfTkang w(b) db] < o

where |glg 2 = Iglls = lgla (see [F1] for details).

LEMMA 2.1.4. Let w be a moderate weight. Then W5(t,a,b) = W(b)

for almost every beR® (¥ is defined in Definition 0.5.7).
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PROOF. Note first that for every xetRk, wix+y) < Wz(x)w(y). Let

F<L§3(H) and let (tg,ag, bg)<H. Then

~ee

|F(t-tg, a-ag, b-bg) | % wa(t,a,b) dt da db

= IF(t,a,b-bo)l2 w(b) dt da db

~rr

= IF(t,a,b)]? wib+by) dt da db

JJJ

IA

-2 2
“"(bo) ”F”LS (H)
3
Thus Wi(t,a,b) < W(b) almost everywhere. To see equality, let £ >
0 and f<LZ(R*) be such that |Tefliz,w 2 (¥(b)-€) [flz,u. Let
2, k
g<L“(R") be such that |lgllz = 1. Then defining F(t,a,b) = f(blg(a)

gives that “F”LZ(IH) = |[[flz,u. Now,
W

J{JIF(t—to,a-ao,b—bo)lz w(b) dt da db

= {Ig(a—ao)lz da Jlf(b—bo)lz w(b) db 2 (W(b)-g)? HFHEz(m).

Thus, ¥5(t,a,b) = W(b)-eg for almost every b<R* and all € > O.

Hence, the lemma is proved.=s

1
LEMMA 2.1.5. The space L%([H) is a Banach module over LEG(IH) with
respect to convolution.

PROOF. Let HéLf/ga(H). Then

| <F*G, B> |

IJJF(y_lx)G(y)H(x) duly) du(x)

IA

JIG(Y)|JIF(Y_IX)IIH(X)I du(x) duply)
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< ”H”2JJG3JlG(y)|”TyF”2,Gs du(y)
£ HH”2,1/m3”F”2,m3”G”1,Q3-
Since IIF*GIIZ,;«,3 = sup{ |<F*G, H>|: HHHZJ/GB = 1}, we are done.m

LEMMA 2.1.8. W(FLZ(R"),L3(R*)) = Co(Y) where Y = Lfa(m). That
N - 1 2 k 2 k .

is, given g such that Vg(g)ELQB(H), feW(FL(R),L (R7)) if and
only if Vg(f)eY.

PROOF. First observe that
Vg(£)(t,a,b) = t<f,T,Epg> = teZ"’<°“”J}(s)§(s—b) e IS yg

2Mi<a,b>
e

=t (£Tpg) " (2).

Now, let geC.(R¥). Then feW(¥L% L2) if and only if

”fHW(Lz,LE) = JHfTbEH;Lz w(b) db = JJI(fTbE)A(a)Iz w(b) da db

= J”lvg(f)(t,a,b)l2 w(b) dt da db < .

The Feichtinger/Grdchenig theory asserts that if the above holds
for some g with Vg(g)<Lé3(H), then it holds for all such g. Thus,
we can extend to all g such that Vg(g)éLés(m) since certainly, if

g<C.(R*) then Vg(g)<Lé3(H).I

THEOREM 2.1.7. (Feichtinger/Grochenig)
LE(RR) = Co(Y) where Y = L§3(H).
PROOF. This is true since, by Plancherel’s Theorenm,

WIFLA(RY), L2(RY)) = WLA(RY),L2(RY) = L3(RY). w
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Section 2.2. Lemmas on Wiener-type spaces

This section contains results on the compatibility of norms
in Wiener-type spaces of the form W(Lm,L:) where w is a moderate
weight. The purpose of this section is to provide specific
estimates for constants whose existence can be inferred directly
from [F1]. These constants will play a role in the results which

follow in this chapter.

DEFINITION 2.2.1. A partition, P, of Rk into a countable
collection of closed rectangles with disjoint interiors, P =
(Iv}ch’ where A is some index set, is called a bounded partition
if there exist numbers, r, R > 0 such that 0 < r £ &(I,) £ m(I,) <
R < o, for all veA, where &(I,) is the length of the smallest side
of Iy, and m(I,) is the length of the largest side of I,. The
numbers r and R are the bounds of P, r being the lower bound and R
k

the upper bound of P. In particular, observe that < |1, <R

for all veA,

DEFINITION 2.2.2. Given a function g, a moderate weight w, and a
partition P of Rk, we define the Wiener space norm corresponding
to w and P, or just the Wiener space norm corresponding to P when

w is understood, by
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Iglhu,p = ) lgl) ll. o(P,v)
veA

where w(P,v) = inf w(x).
X€ 1y
If d > 0, and P = {Qg+dn: neZ"}, then ||, p is denoted
I*fw,a- If w =1, then |-|l,p is denoted |-l,,1,a-
We define
WILT(R"), Lu(R*)) = {£: [Ifll4,1 < «}.
Since Rk is understood, we will write simply W(Lm,Li), and if w =

1, WL, Lh.

REMARK 2.2.3. Let us define, for P a bounded partition with

bounds r and R, the norm

lghae = ) lgly I, o (P,v)
veA

o
where w (P,v) = sup w(x). Since P is bounded, for each veA, I, is
v
contained in a cube Q, such that [Q,| < Rk. Hence by Theorem

1.1.6(4), for all veA,

w(P,v) = )1<£1f1‘ wix) < sup wix) = w(P,v)

and
w'(P,v) < sup wix) < B(R®) inf w(x)
x€Qy X€Qy
< B(R®) inf w(x) = B(R*) w(P,v)
x€ Iy
and hence | -|ly,p 1s equivalent to ”'”:’p. Actually, all that was
required was the upper bound on P. It is clear from the above

that we could replace w(P,v) by w(x,) for any xy€I, and still

define an equivalent norm.
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LEMMA 2.2.4. Let Py = {I,: veA}, P = {L,: meB} be bounded
partitions of R® with bounds ry, Ri, and rp, R, respectively.
Suppose that P, refines Py. Then there exists a number M > 0 such
that for all jeA,

#{meB: I, n Ly # 2} = #{meB: Ly c Iy} £ M < o,
PROOF. Since P; and P, are bounded partitions with the given
bounds, |I,] < RT and |Ln| =< rg for all veA and meB. Thus if I, =

Ny
U Lm1 then since the sets Lml are pairwise disjoint almost
=1

everywhere, we have that
1 £ Ny £ (Ry/ra)k.

Putting M = (Rl/rz)k, we are done.m

LEMMA 2.2.5. Let Py = {I,: veA}, P, = {L,: m<B} be two partitions
of Rk into non-empty, closed rectangles with disjoint interiors
which are not necessarily bounded and let w be a moderate weight.
Suppose that P, refines P; and that for each ve€A, there exists a
number M, such that

#{meB: Ly c Iy} = My < o

and such that

Finally, suppose that P; has an upper bound in the sense of
Definition 2.2.1, that bound being R. Then the two norms [-|,p,

and ll-llw,p2 are equivalent.
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PROOF. Note first that, as in Remark 2.2.3, if L, < I, then,

= i <
w(Py, m) i?{mw(x) < ﬁgng(x)
< B(R") inf w(x) = B(R") w(P,,v).
x€ Iy
Ny
Now, given j, I, = U Lm1 where the collection of Lm1 are
i=1

pairwise disjoint almost everywhere and 1 < N, < M. Now

Ilg1IVIIﬂ, w(Py,v) = llg1Lrn l, w(Py,v) < et )II.,, w(Pz,my(v))

'y m, (v

for some 1 £ i £ N,. Also, because P, refines P;, there is a

one—to-one correspondence between v and m;(v}). Thus

IA

Zug11vum w(Py, V) Z”gkml(v,”m w(Pa,m; (v))

IA

2181 o w(Pe,m).

That is, lglu,e, < lglu,p,

Now,

) lgt . ©(Pem) =y ) gl N, w(Pm)

v o {m:LpSIyr ™

= ”81I l, w(Ps,m) (since L, < Iy)
v {m:LpSlyr ¥
k
< Y B(RY) et I, w(Py,v)
v {m:LpSIy) Y
<

M B(R") ) gt ll, w(Py,v).

. k
That is, lgll.,e, < M B(R ) lglu,p -®

LEMMA 2.2.6. Let Py = {Iy: veA}, Py = {L,: meB} be two bounded

partitions of R* with bounds ri, Ry and rp, Rp respectively and
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let w be a moderate weight. Then |]-|l,,,p1 is equivalent to

Il ey

PROOF. Consider the partition of R* defined by Pz = {I, n Ly

veA, meB}. Relabel the sets in Pz so that we may write Pz = {Qg:

s<C}. Clearly, Pz refines both P; and P; and I claim that there

is a number M such that for all v<A and me<B,

#{s<C:QqcIy} = M

and

#{seC: Qg < Lyt = M.

To see why this is true, let

N, N
I, = U Qs = U L, n I,.
1=1 fe

Since £(I,) £ R; and m(Ly) 2 ro > O for all veA and m<B any edge

of I, can pass through at most |Ry/rp|+2 of the L, - Thus

k
#{seC: Qg < I,} = #{meB: L, n I, = g} < [|_R1/r2_|+2]

independent of j. A similar calculation shows the same result for

K
the L, where the upper bound is [LRz/r‘1_|+2] . Thus we let
k K
M = max {[[R1/PZJ+2] : [LRz/r1J+2] }.

Also, since P; and P; are bounded, Lemma 2.2.5 implies that

k
lglhw,p, = llglw,p, < M B(R2)liglw,p,

k 2 k
< M B(R3)lIgllw,p, < MB(RDBR) lIglu,p, -

Hence the two norms are equivalent.m
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COROLLARY 2.2.7. Let ¢, d be positive numbers, and assume that d

> ¢. Then for any function g,

IA

-k
k
[Ld/CJ*'Z] lela,1,c = l8lla,1,a = 27 l8ll,,1,c-

and

IA

-k
[bd/cj+2] B(d) lglo,c < lglg,a < 2B lgllg, e

PROOF. Consider the two partitions P; = {Q.+nc: nEZk} and Py =
{Qq+nd: niZk}. It is easy to see that the largest number of
elements of P, intersecting a given element of P, is [Ld/cj+2]k
and the largest number of elements of P, intersecting a given
element of P; is 2%, Thus the results follows from the arguments
of Lemma 2.2.6.w
COROLLARY 2.2.8. Let d > O, aERk, gEW(Lm,Ll), and gew(Lm,Li) for
w a moderate weight. Then
ITagle,1,a < 2"Igla,1,4

and

ITagllu,a < 2°B(d")Iglw,a-
PROOF. We are comparing the Wiener space norms corresponding to
the partitions P = {Qg+nd: neZ*} and P, = {Qg+a+nd: nez®}. It is
easy to see that the largest number of elements of P intersecting
a given element of P, is 2k and the largest number of elements of
P, intersecting a given element of P is also 2%, Thus the results

follow from the arguments of Lemma 2.2.6.=m
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PROPOSITION 2.2.9. Let g_eW(L®,LL). Then geL2,,(RY).

PROOF. Note first that any function hEW(Lm,Lé) if and only if
~ o 1 . - 2 k

hWeW(L ,L"). Since w(x+y) £ %(x)“w(y) for all x, ye<R,

Proposition 1.1.9 says that

Thus, LZ2(R*) ¢ LI . (R).

I claim that geL32(R“). Note that

1/2 1/2
[[Ig(X)Izwg(x) dx] - [JIg-W(X)IZdXJ
2 172 o 1/2
[JZ FEROIL DY [J -90x) 1]
n Q1+n

n
; lg-y ,le < -m

IA

EXAMPLE 2.2.10.
(1) 1If there is a C > 0 such that for almost all xERK
lg(x)] < Cl1+]x)*?
then geW(L®(R*),L (R¥)), k = 1.
(2) Let wi(x) = (1+|x]|)" for some integer n 2 0. Let gsy(RkL
Then for all multiindices «, DagEW(Lw,Li). This is true because
ID%g () (1+1x ™1+ 1x D M, < w,
so that
D%g () (1+1x)™ < C(1+]x])*
Thus, (D%g)weW(L®,L'), so that D%geW(L®,L}).
Since w is a Beurling weight, we can take

W(x) = (1+|x])"™.

Thus, D“gEW(Lw,Lé) for all « and n.
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Section 2.3. Existence of atoms for Li(Rk)

In this section, we present a two-step method for obtaining
sets of W-H atoms for the space LE(Rk), when w is moderate.
First, we assume that the analyzing vector is bounded and
compactly supported, and compute explicitly the coefficient
functionals. Next, we extend the collection of possible analyzing
vectors to a large class of functions which do not necessarily
have compact support. We show how to determine the coefficient
functionals in this case also.

The following two lemmas establish the existence of
appropriate decompositions of LE(Rk) when the analyzing vector has

compact ‘support.

LEMMA 2.3.1. Let ¢ be a compactly supported function, Q a cube
with side bg and supp(¢) < Q. Suppose that for some a > 0, there

exist numbers A, B > 0 such that
A< Z lp(x-na)|® < B
n

for almost every XERR. If 0 < b £ by then there exist constants

Cy, Ca > 0, independent of b, such that for all feLE(RkL

-k 2 2 -~k 2
b Callfl S Z Z <, EnpTnag> | 0(n;Q,2) < b Callfll] .
m

n
PROCF.
Y. ) 1<, EnTna> | 0(n;0Q,2)
m

n
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Y w(n;Q,a) ) 1<F-Taa#, Enp> |
m

b~ E:to(n;Q,a){ If(x)|2|¢(x—na)|2dx

Q+na

(=X,

Now,

L3

IA

b K 2:.[ If‘(x)lzw(x)lq)(x—na)l2 dx
n JQ+na

b“‘pf(x) 1%w(x) ) lo(x-na)1* dx < b “BIf3,u.
n
Since w is a moderate weight, by Theorem 1.1.6(4), we have that

(*)

v

b_kB(IQI)‘1§:.[ |f(x)|2|¢(x—na)|2w(x) dx
n Q+na

v

b™*B(1Q1) AIEIE, -

Since B(|Q|) is independent of b, we are done.m

LEMMA 2.3.2. Let ¢, g be bounded, compactly supported functions
such that

(1) supp(¢) < Q, and supp(g) < Qg where Q and Qg are cubes, Q ¢
Qo, and Qp has side bp, and

(2) for some a > 0, there exist numbers Ag, Bp > 0 such that

Ag < |§:g(x—na)$(x—na) < Bg.
n

Define the operator, S, by

St = 2: E: <f,EnpTna¢> EmpTnag.
n m

Then the sum defining S converges strongly in Ls(Rk) and moreover,

Sf(x) = f‘(x).b_k Z g(x-na)p(x-na)
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for all 0 < b < bg, S is a bijective homeomorphism of LE(RK) onto

itself, and for all feL3(R¥)

-1
ff = Z Z(S f, Emanaq)> Emanag'
m

n

PROOF. We will see in Lemma 2.3.7 that the sum defining S

converges strongly since gew(Lw,Lé) and
Z Z |<£, EmpTna®> |2 ©(n;Q,2) < w,
n m

where supp(¢) ¢ Q. Since the sum defining S converges strongly,
it converges as an iterated sum in LE(Rk). Since g is bounded and
compactly supported, Tnag-2;<ana5,Emb>Emb converges strongly in
L2(R*), provided 0 < b < by, to b “fT,.(gp). Specifically, since
£eL2(R*), fTnap<L®(Qo). Thus, L <fTnaP, Eng>Eny converges in

L%(Qo) to b *fT,.¢. Since supp(Tpag) is compact,

Thag Z <ana5, Enb>Emb
m

converges in L2(R*) and L2(R*) to b™ fT,.(gp).

Since the series ¥ g(x-na)gp(x-na) converges uniformly on
compact sets, we have that ¥ fT,.(gp) converges strongly in
LE(Rk). Specifically, since fELa(Rk), for all € > 0, there exists
R > O such that

[ I£(x) [ 2u(x) dx < (e/Bo)>.
|x]2R
Also, there exists N > 0 such that if [n|2N then

supp[g(x—na)a(x-na)] c {x: IxI>R}.

Thus,
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2
“ E: f‘(x)g(x—na)a(x—na)“2

' W

|n|2N
= J|f(x)|2w(x)\ 2: g(x~na)p(x-na)| dx
In|2N
" 2
< “ Z g(x—na)qo(x—na)Hm { I£(x)|%w(x) dx < €°
In|2N [x|2R

Therefore, Z;anangaa converges strongly in Li(mk)
Since S is given by multiplication by a function bounded
above and below, it is a continuous map from Ls(Rk) onto itself,

and has a continuous inverse. Therefore, we have that

£ =5(sf) = ) ) <STf,EnpTnap> EnpTnag.®
n m

COROLLARY 2.3.3. Let ¢, g, satisfy the hypotheses of Lemma 2.3.1
for some a > 0. Then for any O < b £ bg, there exists a
collection of continuous linear functionals, ap g Lﬁ(Rk) —> C

such that for all féLg(Rk),

f = Z Zan,m(f) EnbTnag
n m

strongly in Ls(Rk) and there exist constants C;, Cy > O,

independent of b, such that

K 2 2 k 2
E E . <
b C1||f‘||2’w < lan,m(f)1"w(n;Q,a) < b C2|]f‘|l2’w
m

n

PROOF. By Lemma 2.3.1 we can let a, ,(f) = <S_1f,Emana¢> and get

that

f = Z Zan,m(f) EnbTnag
n m

strongly. Letting C=B(]Q[|), Lemma 2.3.1 says that
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PP (R P~
b "AC "|S f‘||2,w

] - -
< ) ) I<s £, EnpTna¢> | 0(n;Q,a) < b BIST )2 -
n m

Now,
1S < (b*/A) and IS7Y 2= (b%/B),
s0,

b*(A/CB®) |Ifll3,, < Z Z l2n,m(£) 1% w(n;Q,a) < b (B/A%) |£]3,,.m
n m

REMARK 2.3.4. The reason for using two functions, ¢ and g to
define the decompositions is to get atomic decomposition
constants, called C; and Cy in Corollary 2.3.3, which do not
depend on b.

The only requirement of g, besides that it be bounded and
compactly supported, is that E;g(x—na)a(x—na) be bounded above and
below. This condition depends only on the values of g on the
support of ¢. Thus, we can alter g arbitrarily off the support of
¢, provided we keep it compactly supported and bounded, and still
infer the existence of appropriate coefficient functionals as in

Corollary 2.3.3 (cf. Example 5.1.3).

The following results establish the existence of a large

class of mother wavelets for LE(Rk)

LEMMA 2.3.5. Let g be such that g, g_EW(Lm,Lé). Suppose that for

some a > 0, there exist constants A, B > 0 such that for almost
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Kk
every x<R -,

2
A< |g(x-na)|“ < B.
)

Then there exists a cube Q and constants A’, B’ > 0, depending on

Q, such that for every cube Qp containing Q, and almost every

k
x€R,

PO l;g1Q(x—na)g1Q(()x—na) < B,
In particular,
» = 2 ]
A % ;lg'lq(x na)|® < B,

PROOF. Observe first that geW(L®,Li) if and only if gweW(L® L').

Claim: Let h be any function. Then
2172
[T ihena) 1?7 < im0
n

for almost every x in R .

Proof of claim:

172 172
- < =
essxsup[z;lh(x na)l] < [Z;eigoiuplh(x na)l]

< ) |Monale = 1hle,1,a-0

If we now write g(x) = gi(x)+hi(x) = ga(x)+hs(x), then

z:lg(x—na)l = |§:g(x—na)§(x—na)l
n n

l }: [gl(x—na)+h1(x—na)][é;(x—na)+ﬁg(x—na)]‘

l Z g1(x-na)gz(x-na)+ Z hy (x-na)gs(x-na)
n n

+ Z gz2(x-na)ha(x-na)+ ; h; (x-na)ha(x-na) ‘
n

(%)
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Now, since for all x, 1 = W(0) £ W(x)W(-x), we have that

(*) < |Zg1(x—na)g—2(x-na)l
n

'l

Z h; (x-na)gs(x-na) |+| Z g1(x-na)hz(x-na) I
n n

-+

Z hy (x-na)hy(x-na) ’]

< ‘ ; gl(x—na)g_z-(x—na)i
+ Z |hy(x-na) |¥(x-na) | ga-(na-x) | ¥(na-x)
n
+ Z |g1(x-na) [¥(x-na) | ho_(na-x) | ¥(na-x)
n

- Z |hy (x-na) | ¥(x-na) | hs-(na-x) | ¥(na-x)

n

| Z g1(x-na)gy(x-na)

+ Z |hi%(x-na) | | g2-¥(na-x) |

* Z |g1¥(x-na) | | hp-¥(na-x) |+ Z |hy%(x-na) | | hp-¥(na-x) |

1A

| Z g1(x-na)ga(x-na) |+ [l!h1wli,,1,a||82-wllm A,

+ug1wu°,1,a||h2-w|m,1,a+uh1wu,,,1,anh2-wu\,1,a].
Similarly,
() > | T astxna)gateena) |- (Il ol 291 1,0
.
+||gm|,,,1,a||h2-wu,,,1,a+||h1wu,,l,anhz-wu,,,1,a].

Now, given € > O, there exists a cube Q such that

188147 < e, and "g_W—g_1QOW“ % 8

ﬂiilpa 0’115

for all cubes Qg containing Q. Let € be so small that
e(IIEWH@,1,a+||8-wll,,1,a)+s:2 < A/2 and choose Q corresponding to

this €. Let Qg be any cube such that Q ¢ Qp. Let gy = g1Q, hy =
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Then |lh1W",,,1,a < g,

g - 310. g2 = g1Qo. and hy = g - 8100-

IA

Iha-®l,,1,a < €, 18191,,1,a < I8¥l,,1,a» and lg2-¥la,1,a =

Ig-%l,,1,a- Combining this with the above inequalities gives that

for almost every XERk,

0 < A/2 < I Zé1Q(x—na)g1ng—na) < B+A/2 < o.m

The functions g‘]Q and g1Qo will play the roles of ¢ and g

respectively in Lemmas 2.3.1 and 2.3.2.

k
LEMMA 2.3.6. Let {hy: n<Z“} be such that h,<L®(R), and supp(hy)

c Q+nc for each neZ® where Q is a cube of side d > 0. If ¢ 2d >

0, then

2,w

172
< B(d“)"z[Zuhnn% w(n;o,c)] .

PR
n

If O £ ¢ € d, then

|

PROOF. If ¢ 2 d > 0, then the supports of the h, are all disjoint

172
< [B(d“)3“a"‘d“]‘42[zuh,,né w(n;Q,c)] .
n

2,w

and

J' Zhn(X)l2 w(x) dx = Z’[Ihn(x)l2 w(x) dx
n

n

< B(1Qql) Zjlhn(x)lz dx w(n;Q,c)
= B(d") Z Ihall2 (n;Q,c).

If ¢ < d then let R = [d/c|+2. then given ne<Z¥, n # O,

Q n (Q+cRn) = @.
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Thus we may partition z* into R* disjoint pieces.

k

I; where
1

write Z° =
i

I Cx

That is, we may

n, j<I; = (Q+cn) n (Q+jn) = @ if n=j.

More specifically, for each multi-index j = (ji,.

and 0 £ j, £ R-1 for m=1,2,...,k, set I = {j+Rl:

Relabeling the I gives us the partition we want.

numbers a;<C,
n 2 n
2
(Lrat] sn) e
1=1 i=1

we have that

2 rK
J" Zhn(x)l w(x) dx < J[Z Ihy (x)l] w(x) dx

r=1 ne€JIp,
k

IA

=1 ‘nel, =1 ne I,.

IA

3 *d*B(d") Z Ihall3 ©(n;Q,c).m
n

v Jk) with jn<Z

1€Z}.

Since for any

G Rk k R
RJ [Z Ihn(x)l] wix) dx = J Ihy(x) | %w(x) dx
r r

R ZJ']hn(x)Izw(x) dx < R*B(|Qq4l) ij,,(xnz dx w(n;Q,c)

LEMMA 2.3.7. Let (a,,n) be a sequence of numbers only finitely

many of which are non-zero, a, b > 0, and géw(Lm,Lé).

any 0 < d £ 1/b, and cube Q of side d,

H Z Zan,m TnaEmbg.lz,w
n m

< [B(d¥)3*a™ a7 ] 1/2[Z||g1Q+du|| w(du)]

b_k/z[ Z: 2: lan,nt 2 w(rl;Q,a)]1/2
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where B(dk) is the constant defined in Theorem 1.1.6(4) and hence

is independent of b.

PROOF. We can write

;Tdv(T-—dvg1Q+dv) = ;Tdvgu

where g, is supported in Q for all v and where ”gu"

Thus,

N Z Z an,m TnaEmb
n m

“ ZTdU[ZTna[Zanm Enbg ]]

na[z 2n,m mbgv] 2,w

2 172
Zw(dv) k72, ~k/2 gk/2p ok )[Z Za“’"‘ E“‘bgvnz w(n;Q,a)]
14 m

n

2,w

2,w

IA

IA

Il

(*)

by Lemma 2.3.6 since

Supp[ Z a-n,mEmbgu] cQ
m

for all n in Zk. Now, since the side length of Q is < 1/b and

SUpp(gv) ¢ Q,

2 2
“ Z a-n,mEmbgv“2 = lt gv Z an, mEmb
m m

2 .-k 2
12(q) S lg,lle b ;mn,ml

Thus,

(*) = Y wlalg,l, 3*%™%d"B(d")

¢ 1/2
'k/z[z Z |2, ml 2 w(n;Q,a)]

n m

< [B(d*)3%a™a™) 1/2[2 |80+av e W(d")]
v

K/2 2 1/2
b Z Z lan, ml w(n;Q,a)] ..
n m

X
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COROLLARY 2.3.8. Let w(n;a) = w(n;Q;,a) and denote by B(v) the
constant corresponding to the moderate weight ¥ as in Theorem
1.1.6(4). Then for any sequence of numbers (a,,), with the
property that

2
E:IanﬂJ w(n;a) < o,
n,m

there is a constant C independent of g and b, for b £ 1, such that

-k/2 2
| T ¥ 2nn Toskuse], , < Clele, 5™ ¥ ¥ lan,al® otnia)]
n m n m

and the sum on the left side converges strongly in Ls(RkL

172

PROOF. Suppose first that only finitely many of the a, n are
non-zero. By Proposition 1.1.11, if we let C; = B(IQal) where o =
max{1,d} then w(n;Q,a) < Cijw(n;a). Now, by definition,

) |8l gsav]w (@) < Bd)lgla,q
v

and by Corollary 2.2.6, if d > 1 then |gly,q < 2°B(d“)liglly,: and
if d <1, lgllg,a ([§J+2)kB(1)HgHQ’1. Combining the above with
Lemma 2.3.7 gives the conclusion with

C = Cy(|a]+2) B(1)B(d) [B(d*)3 27112,
Since the only requirement of d was that 0 < d £ 1/b, the
inequality follows in this case. For arbitrary (a,,m), the fact

that

Z lan,nl? ©(nja) <
n,m
enables us to show that the series

Z z a~n,m‘ ThaEmbg

n m
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is Cauchy in L?,(Rk). The conclusion follows from completeness of

L2(R"). =

THEOREM 2.3.9. Let g be such that g, g_EW(Lm,Lé) and for some a >
0 there exist constants A, B > O such that for almost every dek,

(*) A< Z lg(x-na)|? < B.

Then there exist a cube Q and bg > O such that for all 0 < b £ bg,
there exist linear functionals ap n: LE([Rk) —— C such that for

all feL3(R"),

e Z Zan,m(f) ThaEmbg
n m
strongly and there exist constants T3, Tp > O such that for all
feL2(RY),

nlfl; | < Z Y lan,a(£)1% 0(niQ,a) < Talfl} .

PROOF. By Lemma 2.3.7, there exists a cube Q and constants A’, B’

> 0 such that Q has side d and
AT £ I;é1q(x—na)g1q(()x—na)l < B

for every cube Qg containing Q and almost every xetRk. Now fix Qg

such that Q < Qgp, Qo has side by and

; | Cete, - 0ra

for some O < A < 1. Now by Lemmas 2.3.1 and 2.3.2, for all 0 < b

-1
¥ W(dv) < A [3k/2a-k/2dk/2B( Q)8 1/2]

< bg, there exist linear functionals cy n: LE(le) —— C such that

£=) ;cn,m(f) ToaEms (g1, )

and

56

RS - -
AT

s

ok e

LWRETRILINBAL T ABIARI

e b= DR



1/2
=k/2 2 1/2
Ci'®)fllz,w < b [§ ) Ica,n(f)] w(n;q,a)] < G2 e,
n m

where C, is independent of b. By Lemma 2.3.7,

“f— Z ch,m(f) T,,,E.E,,,.,g”z'w

“; ;c,\,m(f) TnaEmb(g’]Qo—g)l

k/2_ ~k/2 k/2
a d

It

2,W

IA

3 BUIQD ) [ ety -8, q | )
v

172
b_k/z[; ; lcn,m(£) 12 w(n;Q,a)]

< lell2 .

W

. . 2,k 2,k
Hence if we define the operator U: Ly(R) —— Ly(R") by

ute) = ) ) can(f) EnsTnag,

we have that ||I-U|l £ A < 1 so that U is continuously invertible.
Defining

anm(f) = cn m(U'F)
we have that

£ =ute) = Z Zan,m(f) TraEnbg
m

n

where the coefficient functionals, a,, satisfy the appropriate

estimates. m
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Section 2.4. Existence of atoms in Sobolev Spaces

Because the translation and modulation operators exchange
roles under the action of the Fourier transform, the results of
Section 2.3 give decomposition theorems for functions whose
Fourier transforms lie in LE(&k). In particular, if the weight w
is a polynomial, then we have decompositions for certain of the

Bessel potential spaces, or Sobolev spaces (cf. [F21]).

DEFINITION 2.4.1. Let w be a moderate weight on Rk, then we
define the spaces fﬁ(mk) by

LAR") = {f‘: Jlf‘(y)lzw(ar) dy = IIfIi;2 < m}

2,a/2

If wiy) = (1+]717) for some a > 0, we denote EE(Rk) by EZ(RRL

This is a Sobolev space of order «.

THEOREM 2.4.2. Let ge<f2(R*) be such that &, f_<W(L® L) and
suppose that for some a > O, there exist constants A, B > 0 such
that

A< Z |18(y-na)|® < B
n

for almost all yiRk. Then there exist a cube Q and bg > 0 such
that for every O < b £ bg, there exists a collection of linear
functionals ag,m: fs(Rk) —— € and constants T1, T2 > 0 such that

for every fEfa(RkL
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£ = Z Zan,m(f) TubEnag
n m

where the sum converges strongly in EE(Rk) and

172
ALPEE [Z L 1200617 wmiQa)] s Tl e

PROOF. If fef2(R*) then f<L2(R*). Thus, it follows from Theorem
2.3.9 that there exists a cube Q, and bg > 0 such that for every O
< b < bg, there exists a collection of linear functionals b, p:
2. K
Ly(R") — C such that
A & A
£f= ) ) bou(f) ExsTnad
n m
where the sum converges strongly in LE(Rk). Thus we have that
= Z an,m(f) TmbE-nag
n m

where the sum converges strongly in ff(mk). Also by Theorem

2.3.9, there exist constants T; and T2 such that

A

~ ~ 1/2
tilfle < [T T 1onat®1® amigo)] " s walfiz
n m

Putting an,m(f) = by, n(f) we are done.m

REMARK 2.4.3. A comparison of Theorems 2.3.9 and 2.4.2 reveal how
the properties of a function are reflected in the coefficients in
a Weyl-Heisenberg decomposition. Roughly speaking, fEZE(Rk) is
characterized by a smoothness condition. For example, if the
weight being considered is w(x)=(1+|x])" then to say that feLE(Rk)

th order distributional derivatives of f are in

says that the n
Lz(Rk). The smoothness of f is reflected in the local behavior of

the coefficients of the W-H decomposition. If we suppose that f =
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T ¥ @n,m TmbEnag for some g, one can think of the sequence {a, n},
m fixed, as reflecting the behavior of f in a neighborhood of the
point mb. The smoothness of f appears in the rapid decay of the

sequence {ag mt, m fixed, specifically that
2
Z lan,ml” w(n;Q,2) < «
n

for each m.

If we are decomposing Ls(Rk), the situation is reversed. A
function fELE(Rk) is characterized by a decay condition which is
global in nature. If we suppose that f =} } b, n EnpTnag, then
the sequence {bp gn}, n fixed, reflects the behavior of f in a
neighborhood of the point na. The most we can say about this
sequence is that it is square summable for each n. That is, the
global structure of f is not present in the local coefficients.
The global properties of f are reflected in the behavior of the

sequence (bn'm}, m fixed, specifically that
2
Z Ibn,ml w(n;Q,a) < «
n

for each m.

60



Section 2.5. Banach frames and Hilbert frames for Li(Rk)

What we have shown in the previous sections of this chapter
is that if the number a and the function g€W(Lm,Lé) satisfy
certain conditions then for all sufficiently small b, the
collection of functions {EpThag} is a set of atoms for La(RkL
Dual to the notion of a set of atoms for a Banach space is the
notion of a Banach frame (cf. [Grl]). 1In a Hilbert space, these
notions are equivalent.

Since Lg(Rk) is a Hilbert space with respect to a weighted
inner product (cf. Section 0.3), it is natural to investigate the
relationship between Banach frames of W-H wavelets for the Banach
space LE(Rk) and frames of such wavelets for the Hilbert space
Ls(Rk). In this section, we show that the two notions are not

equivalent in the simple case of a compactly supported, continuous

mother wavelet.

THEOREM 2.5.1. Let g be a bounded function supported in a compact
set, say in a cube Q with side length at most 1/b. If for some a
> 0, there are constants A, B > O such that for almost every X€R{

(1) A < Zw(n;Q,a)lg(x—naL)l2 < B

then {EppThnag} is a frame for the Hilbert space Ls(Rk). That is,

there are constants C;, C; > 0 such that for all f€L§(RkL
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2 2 2
Cilfliz,w € ) ) 1<f,EmTnagul” = Calfllz,u.
m

n

Moreover, condition (1) is necessary for the conclusion to hold.

PROOF .

Z Z I<f, Emanag>w|2
m

n

Z Z 1Jf(X)W(X)§(x—na) ezn1b<m,x> dx

b_kZJ 1£(x) | %w(x)®1g(x-na) | dx = (*).
n JQ+na

2

Now, since w is a moderate weight,

(*) < B(IQI)dgb_kZw(n;Q,a)Jlf‘(x)Izw(x)lg(x—na)lz dx
= B( IQI)dzb_kJIf(x)|2w(x) Zw(n;Q,a)lg(x—na)lz dx
< B(1QI)dzBb ™ | £13,,,

where d, is the constant given in Proposition 1.1.11. Also,

(*)

v

d;b’¥ Z w(n;Q,a)pf(x) |%w(x) |g(x-na) |2 dx

v

-k 2
Adib T|Ifliz,w
with dqi the constant of Proposition 1.1.11.

To see that the condition (1) is necessary, suppose for

example that ¥ w(n;Q,a)Ig(x—na)I2 is unbounded above. Then given

M > O there is a set E with O < |E| < ®» such that
Zw(n;Q,a)lg(x—na)l2 > M
n

=1/2 -1/2

for all x<E. Let f(x) = w(x) 1E(x)|El (this can be done
since w is positive and finite-valued). Then ||f]lz,4w = 1 and by

the above calculations,

Z Z I <f, Emanag>w|2
m

n

62

1
147
Y,
)
i b
"
]



v

dlb-kJIf(x)Izw(x) Zw(n;Q,a)Ig(x—na)l2 dx
n

dlb_klEIJ. E:w(n;Q,a)lg(x—na)l2 dx > dlb’km_
E

n

Thus, there is no upper frame bound. A similar calculation shows
that if § w(n;Q,a)lg(x—na)I2 were not bounded below, there would

be no lower frame bound.m

THEOREM 2.5.2. Let g be a bounded function, supported in a

compact set, say a cube Q with side length at most 1/b. If for

some a > 0, there are constants A, B > 0 such that for almost
Kk

every x<R,

(2) A< }: lg(x-na)|? < B,
n

then {EppThag} is a Banach frame for La(Rk). That is, there are

constants C;, Ca > O such that for all feL3(R¥),

2 2 2
CilfIZ,0 S ) ) I<f,EmTrag>|® w(n;Q,2) < Call I3, -
n m
Moreover, condition (2) is necessary for the conclusion to hold. W
PROOF. it

Y Y I<F, EmTaag>|? w(n;Q,a)
n m

2
= Z Z lJf(x)g(x—na) e AHPMX> gxl  w(n;Q,a)
n m

=p* J 1£(x)1%1g(x-na) |? dx w(n;Q,a) = (*).
n JQ+na

Now, since w is a moderate weight, there is a constant d; (cf.
Proposition 1.1.11) such that w(x) 2 djw(n;Q,a) for every x<Q+na.

Thus,
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IA

(*) d1b_k§:.[ lf‘(x)lzw(x)lg(x-—na)l2 dx
n JQ+na

dlb_k{lf(x)|2w(x) }: |g(x—na)|2 dx

Ky oy 2
< diBb "|f|l2,w-

Also, there is a constant d; (cf. Proposition 1.1.11) such that

w(x) < B(]Q|)daw(n;Q,a) for every x<Q+na. Thus,

v

(*) [B(lQI)dz]'lb'kZJ‘ 1£(x) | %w(x) |g(x-na) |? dx
n JQ+na

]

[B(1Q| )dzl—lb_lef(x)lzw(x) Z lg(x-na)|? dx
n

[B(1Q])dz] *Ab ¥ £13 .

[\

The necessity of condition (2) follows as in the previous
theorem. Specifically, suppose that Zlg(x—na)l2 was not bounded
below, then given 8 > 0 there would be a set E such that 0 < |E| <

© and such that Ylg(x-na)|® < & for all x<E. Let f(x) =

w(x)-1/21E(x)II:",I_V2 which can be done since w is positive and

finite-valued. Thus, |f|2,+ = 1 and

v

) dlb_k[lf(x)|2w(x) }: lg(x-na)l2 dx
n

dlb"‘|E|'1J Z lg(x-na) % dx < dib ™ Bs|fl3, ..
o

Since 8 was arbitrary, there is no lower frame bound. Similarly,

it Zlg(x—na)l2 were unbounded above, there would be no upper frame

bound. m

REMARK 2.5. 3. Ah examination of Theorem 2.5.1 reveals that unless

W is bounded above and away from zero, condition (1) is vacuous.
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That is, if g is any function, compactly supported or not, which
satisfies (1), then g = O almost everywhere.

To see this, suppose not. Then there is a set E ¢ Rk with O
< |E] < w such that for some « > 0, |g(x)] 2 a« on E. If w(x) is
unbounded above, then given M > O and any cube Q, there is an
no<Zk such that w(ng;Q,a) > M. If x<E+nga, then

Zw(n;a.a)lg(x-nan2 2 w(ng;Q,a) lglx-ng) 1% 2 aM.

n

Since M was arbitrary, (1) fails. If w(x) were not bounded away
from zero, we could in a similar fashion show that {EppTh.g}
failed to have a lower frame bound. Thus no compactly supported
function can generate a Hilbert space é;ame for Ls(Rk) for all b
in a neighborhood of zero.

Now, let g be a continuous function with compact support
which does not vanish in the interior of its support. Then for
some small a > 0, condition (2) of Theorem 2.5.2 is satisfied so
that for all b sufficiently small, (g,a,b) generates a Banach

frame for LE(Rk). Obviously, then, the notions of a Banach frame

and a Hilbert space frame for LE(RR) are not equivalent.
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Section 2.6. Banach frames and sets of atoms in Li(Rk)

In this section, we examine the relationship between sets of
atoms and Banach frames for LS(Rk). It is well-known (cf. [Gr1l])
that, in a Hilbert space, the notion of a set of atoms and a frame
are equivalent. Also, Chris Heil has proven a remarkable result
which says that in a Hilbert space, the dual frame associated to
any frame is unique. We will prove slightly weaker analogues of
these results.

In what follows, w(n;a) is taken to mean w(n;Q;,a) for a > O.

THEOREM 2.6.1. Let a, b > 0 and geW(L®,Ly). If {EpTmag} is a
set of atoms for LE([Rk) with atomic bounds A, B and coefficient
functionals ap,n, then it is a Banach frame for L?/H(Rk). PROOF .
Suppose that {EgpThag} 1s a set of atoms for Lf([Rk). Note that

for any héLs([Rk) )

[<f,h>| = |<f| Z Zan,m(h) Emanag>l
n m

I Z Z <f, EmbTnag® a-n,m(T)
n m

Z Z | 2 . 172 ) 172
an,m(h)|” win;a) Z Z | <f, EmpTnag> | < 1/w(n;a) .
n m m

n

IA

Since Ilfllg’l/w = sup{{<f,h>|: Jhflz,w = 1}, we have that

2
I£12,1w < B) ) 1<f,EnpTnag> | 1/0(n;a).
n m

Now, let a, n = <f,EmwTnag8>, and observe that for any sequence

{bn,m} we have that
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|<an,m,bn,m>‘ = l Z Zan,m bn,m| = l Z Z<f,Emanag> m
n m n m

= ’(f, Z Z bn,m Erb LnaE> Z Z bn,m EnbThag
n m n m

By Corollary 2.3.8, we know that there is a constant, C, depending

< lifll2,1/w

2,w'

only on k, a, g, and b such that

| ¥ Y oo EmTnag z <Y Y Ion,al® olnsa).
n m n m

Since the dual space of Zi is £§,m, we have that

Z Z |<f, EppTrnag> 1> 1/0(n;a)
n m

= SUP{I Z Z<f»Emanag> bn,m|: ||(bn,m)||ez = 1}
n o m w

and hence that

Y ) 1<f,EmTnag>|? 1/0(n;a) < CIFIS, /0.8
m

n

Here we state the result due to Heil mentioned in the
introduction to this section. Its proof can be found in [H] and

is reproduced in Section 5.1.

THEOREM 5.1.6. (Heil) Let H be a Hilbert space, and {x,} a set of
atoms for H. Let a, be the collection of coefficient functionals
associated to {x,}. Then a,(f) = <f,S-lxn> where

Sf = Z <f, Xpo> Xn.

n

THEOREM 2.6.2. let wp(x) = max{1,%(x)}, and let g be such that g,
g_ew(Lm,Lio). Suppose that for some a > 0, there exist constants

A, B > 0 such that for almost every xemk,
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A < Z lg(x-na)1? < B.
n

Then there is a bg > 0 such that for all O < b £ by, {EmwTlnag} is
a Banach frame for LE(Rk). that is, there exist constants c;, c3 >

0 such that for all f<L2(R¥),

2 2
Call£12,0 £ ) ) I<F, EmTnag>|® 0(n;a) < collfllz,u
m

n

PROOF. Consider the coefficient functionals, a, , defined in
Theorem 2.3.38. I claim that if b is sufficiently small and if
reL2(R*) n L2(R*), then L5 |a.n,m(f)|2 is equivalent to |f]2, and
¥ Ia.n,m(f‘)l2 w(n;a) is equivalent to ang,w

Choose a cube Qp so large that there are constants Ag, Bg > O

such that for almost every Ximk,

Ag = | ;§1Q(x—na)g1qo(x-na) < Bg. “é’
7
Such a cube exists by Lemma 2.3.5. ‘e

Let gy ulf) = <S{1f,EmbT,,a(g1Q)> where

Slf = Z Z <f, Emanag1Q> Emanag1
m

n

QO)

Q and Qg are cubes, Q ¢ Qp, and Qg has side length at most 1/b.

Since £<L®(R*) n Lﬁ(Rk) and since g‘lQ and g1. are bounded and

Qo

compactly supported, the sum defining S; converges strongly in

L%(R") and in LE(RK) and converges to

£(x) b~ Z §1Q(x—na)g1Q0(x—na).

n

Thus S; is bounded on LZ(Rk) and Lﬁ(mk) with a bounded inverse.
Applying Corollary 2.3.3 twice, once with the weight

identically 1 and again with weight w, we have that
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kK, =2, .2
b AgBo IIfll2

IA

2 k -2 2
Y ) lca,m(£)1% < b"BoAd’IENI3
n m
and that

k -2 -1 2
b ApBo B(1Ql) "Ifllz2,w

IA

E: E: ICn,m(f)l2 w(n;a) < kaoAazufHS,w-
n

m

Def ine

uf

Z ch,m(f) EnbTnag-
n m

We wish to estimate ||f-Uf|la. To do this, note that the estimates

of ||f-Uf|lz,4 in Theorem 2.3.9 are valid when w = 1. Thus we have
k/2_-k/2 k/2 -1.,1/2
) < =
I£-UEl, < 3*%a™%d §v | Cetg, 82 san | ol Bota 1211

Let Qo be so large that

2: wo(dv)

v

(ely, "8 gsan | o

-1

< A[s"/za'k’zd“’zB(IQI)[BOA51]1’2] .
Since B(|Q|) =2 1, we have that

;"(8100—8)1Q+dvum = ;“(m%—gnwv“m wo(dv)

=
z % [ak/za—k/2dk/28( 1al) [B0A51]1/2]

<

-1
5 [skxza—k/z R By A(—)l ] 1/2]

and also that

Z; ”(g1Qo_g)1Q+dv“m wldv) < Z; “(g1Qo—g)1Q+dv“m wol(dv)
&% [sk/za—kxzdksz( o) [BOA51]1/2] -1.

Therefore |f-Uf|lz < A|f|2, where A < 1, and consequently, U maps

LZ(RR) onto Lz(Rk) and has a continuous inverse. Similarly,
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I£-Ufllz,w < Allfll2,. and U is a continuous bijection on LZ(R*) with
a continuous inverse.

Letting an,m(f) = cn,m(U'f) we have that ¥ T lan a(£)1? is
equivalent to I£l5 and that f = Y ¥ an,n(f) EpThag where the sum
. 2,k s

converges strongly in L"(R"). Thus by Heil’s Lemma (Theorem
-1 2.k 2,k .
5.1.7), ap,m(f) = <f,EnpThaS g> for all f<L"(R") n L (R"). Since
each ap,n is a continuous linear functional on LE(le) and since
. ; 2, k
L3(R") n Ij(le) is dense in Ly(R"), we have that a, n(f) =
-1 2, k
<f,EppTnaS &> for all fely(R).

To complete the proof we must show that in fact
<f,EmpTraS 'g> = <S'f,EmpTnag> for all fel2(RX). Certainly, this
is true for f‘ELz(le).

By Theorem 4.1.6, S™' is a bounded operator on L2(R*) and
12,(R) for all sufficiently small b. Thus let £,<L2(R*) n
2,k . 2,k
Le(R") be such that £, — f in L (R"). Then
|<f, EnpTnaS  8>=<S 'f,EmTnag>|
< | <f~fp, EnpTnaS 8>+ <Fp, EnpTnaS  8>-<S 'fn, EnpTnag” |

+1<S7 n-S" , Epp Tra |
=1
< ”f_anZ,w”EmanaS 8||2,1/w+0
-1 -1
+|S ”L39L§|If_fn|]2,w“EmanaS g”2,1/w-
Since g_sw(Lm,Lé), giLf,w([Rk) by Proposition 2.2.8. Also, since
s™! is a continuous operator on Lf/w([Rk) for all sufficiently
small b by Theorem 4.1.6, we have that [|EmpTnaS 'gllz,1/w < .

Thus, we have shown that <f,EmTnaS &> = <S 'f,EpyTnag>.
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Now, an,m(Sf) = <f,EnThag> and } } Ian,m(Sf‘)l2 w(n;a) is
equivalent to HSfHS,w which is equivalent to ang’w_ That is,

there exist constants ¢; and c5; independent of f such that

2 2
0 < cillflZw £ ) ) 1<F, EnpTnag> 1% w(nja) < collfllz,u < .8
n m

THEOREM 2.6.3. Suppose that g is such that g, g_<W(Lm,Lé), and

that for some a > 0, there exist constants A, B > 0 such that

2
A < lg(x-na)|” £ B.
L

Finally suppose that there exists bg > O such that for all 0 < b <
by, {EmTrag} is a Banach frame for L2(R¥), that is, there exist

constants cq, ¢ > 0 such that for all f<L3(RkL

2 2 2
cilifliz,w € ) ) 1<E,EnpTnag>1® w(nia) < callfl2,w
m

n
Then there exists a 0 < by £ bg such that for all 0 < b £ by,
{EmbTrnag} is a set of atoms for LE(Rk). In fact, for each

Fel2(R),

=1
f= Z Z<S f, EmbThag8> EmpTnag
n

m

-1
= Z Z &, ExpTrad  &F Euwling
n

m

~1
Y ) <f.EmTnag> EmpTnaS g
n

m

where

St = Z Z <f, EmbTna8> EmbTnag-
n m
PROOF. Since g<W(Lw,Lé), since {EppThag} is a Banach frame, and

by Lemma 2.3.6, the sum defining the S operator converges strongly

in L2(R*). By Theorem 4.1.6, for all sufficiently small b, the S
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operator is continuously invertible on LE([Rk). Therefore the
formulas for f hold. Also, since {EpThag} 1is a Banach frame for

-1 2 . .
LE([R}‘), Y Y 18 f,EmnTnag>|” wln;a) is equivalent to |1f||§,w.-

72



CHAPTER 3

STABILITY OF ATOMS IN Li(Rk)

The stability results in this chapter are in the spirit of
similar results proven by Feichtinger and Grdchenig in [FG2]. The
results obtained in [FG2] concern W-H decompositions for a wide
variety of spaces, namely coorbit spaces for the Heisenberg group.
In this chapter, we prove similar but more general results for the
spaces Lﬁ(mk) using the techniques of Chapter 2.

In Section 3.1, we prove that, under suitable hypotheses, a
set of W-H atoms for LE(Rk) continues to be a set of atoms under
perturbation of the mother wavelet and of the translation and
modualtion lattice.

In Section 3.2, we show that, under suitable hypotheses, a
set of W-H atoms for Lﬁ(Rk) continues to be so under a change in

the lattice parameters.
Section 3.1. Stability under perturbations

The results of this section fall into two categories: 1)
stability with respect to a perturbation of the mother wavelet and
2) stability with respect to a perturbation of the lattice.

The notion of closeness for mother wavelets is simply the

metric in W(Lm,Lé). The theorem here is valid whether the mother
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wavelet being perturbed is in W(Lm,Lé) or not.

The notion of closeness of two collections of points in this
section is simply uniform closeness of the corresponding points,
i.e., two collections of points in kaRk, (an, bn) and (cgn,dn) are
within a distance ¢ if |ap—-c,|l < € and |by=d,l < €. This notion
is more general than the one in [FG2] which is given in terms of
closeness with respect to the topoclogy of the Heisenberg group.
The result here is the expected stability result for the W-H
wavelet decomposition.

The problem with defining closeness in terms of the
Heisenberg group, H (cf. Definition 2.1.1), is that the toral
component of elements in H, while essential to the group
structure, is simply superfluous when one is obtaining
decompositions of LE(Rk) in terms of translations and modulations.
Requiring that two points in the lattice, x and y, be close in H
requires that the toral component of their difference, i.e., of
y'ix be close to 1. In doing so, one may force the two other
components to be artificially close together. Specifically, we

have the following result.

THEOREM 3.1.1. Let £ > 0 and let x, y<H be given by x =
(ty1,219,b1) and y = (tg,ap,bz). Then there is a neighborhood U, of
the identity, (1,0,0), in H such that y !x<U implies that |a;-azl
< & and |bj~bs] < £. However, the converse is false, that is,

there exists a neighborhood U of the identity in H such that given
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e > 0 and t;, tpeT, there exist a;, a,<R* and bj, by<R® such that
jaj-asl < € and |by-byl < £ but y 'x is not in U.

PROOF. Recall that the Heisenberg group H is identified with the
set ITx[ka[ARk, and is equipped with the product topology. To prove
the first part, we can take U = TxB(0,e)xB(0,e), then clearly, if
vy 'xeU then a;-2,<B(0,e) and b;-bo<B(0,¢e).

To prove the second part, we may take, for any O < A < 1, U =
{zeT: arg(z)e[-nA,mA]}xB(0,c)xB(0,g). Take any a, beR® such that
t1/tee P = 1 and let a; = az = aand b; = by = b. then
y_lx = (-1,0,0) which is not in U, but of course |aj;-as! < € and

Ib1-by| < €.m

THEOREM 3.1.2. Suppose that giLE([Rk) is such that for some a, b >
0, {EmThag} is a set of atoms for LE([Rk) with atomic bounds A, B.
Then given € > O there is a 8 > 0 such that if g;<L2(R*) is such
that |lg-g1llg,1 < 6 then {EypTha81} is also a set of atoms for
L2(R*) with atomic bounds A;, B; where A; > A(1-¢) and B; <

B(1+e).

PROOF. Let a, g, be the collection of coefficient functionals

associated to the set of atoms {EThag}. Then we have

£ = Z Zan,m(f‘) EnbTna8
m

n

for all stE([R“). Let gleLE(le) be such that g—g1€W(Lm,Lé) and

define the operator S; by

S, f = Z Zan,m(f) EnpTnalt -
m

n
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We show first that the sum defining S; converges strongly in
LE(Rk) for each feLs(Rk). Given a finite set of indices J =

(Jq,Jd2) < 7*x7" define the partial sum operators s’ and Si by

o
Sf =) ) onnlf) ETng
neJq me€Jg

and

J
S1f = Z Z an,m(f) Emanagl-
neJy meJop

Let € > 0. Then there is a finite set of indices F = (Fy{,F2) ¢
kaZk such that for any other finite set of indices G = (Gy,G2),

we have that

2
fan,m(f) " win;a) < e.
n<G1\Fy me€Gp\Fp

We know also that, since {EThag8} 1s a set of atoms, the sum
defining Sf converges strongly. Thus there is a finite set of
indices H = (H;,Hs) such that if G = (Gy,Gz) is any finite set of
indices, we have that
1S5V )l2,y < e.

Now let I = FuUH-= (Il,Iz).m Then for any finite set of indices G
= (Gy,G2), we have that

G\I G\I

GAI GAI
181 "fllz,w s ISy £-S" fll2,u*lIS" fll2,u

2
< Clg-gills,1 Z Z lag,u(F) 1™ wln;a)+e
n€ G1\I1 m€Go\Ip

< e(Cllg-gillg,1+1)
where C depends on a, b, and w. Since £ was arbitrary, we are

done.
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Since by definition, S is the identity, we have that

I|f"51f“2,w = H Z Zan,m(f) Emana(g_gl)l

2,w

A

< Clig-gillg,1lfli2,w
where C is independent of g, g; and f. Assuming that A < 1, we
have that ||[I-Sq]l £ A < 1 which implies that S; is a bijective
homeomorphism of LE(RK). Hence, |[S1] = [[I=-Sq|+|I]] < 1+A, |IS1] =

ITI-I1-S;1 = 1-A, and [ST I < (1-A)"". Letting cp n(f) =

an’m(Silf), we have that for all f<LZ(R¥),

£ = Z ch,m(f‘) EmbTnag1-
n m

Now,

Y Y lena(£)1% 0lnia) = ) Y lan,a(S1'0) 1 win;a)

n n
2 -1 -
< BIsT'rIS, . < BP(1-0) 72 g2 .

Also,

Y Y lenn(£)1% wnia) = ) ) lan,a(s7'0) 1% w(n;a)

n m

2 -1 2 2 -2 2 -1 2 - 2
2 A%|IST EI5,w = AS(1+A) T2IS1I%IST Fliz,w 2 A2(142) 2If13, u-
Now, given € > 0, there is a 0 < Ag £ 1 such that for all 0 <
A < Ao, (1-2)7% < 1+e and (1+A)™2 > 1-e. Let & be such that Cs <

Ao. Then if llg-gillg,1 < 8, [II-S1fl = A < Ap and the conclusion

follows.m

LEMMA 3.1.3. Let c > 0 be given and let {hp: ne<zZ*} be a
collection of functions such that supp(h,) ¢ Q for some cube Q
with side d > 0. Let (c,) be a collection of points in R* such

that for some A < o, |cp-cn| < A. Then there is a constant C
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depending only on ¢, d, A, and k such that

1/2
2
“ ) Te b, , < C[Z Ihall3 w(n;Q,c)] :
n n

PROOF. The result will follow as in Lemma 2.3.6 if we can show

that for some R > 0, we can partition Z* into R disjoint subsets,
I;, such that if n; and npel;, then (Q+cn1) N (Q+cn2) = @. Now,
let R = |d/c|+1+|2A/ck]|. For each j = (j', 3, ...,%) with j"zZ, 0
< j™ < R-1, m=1,2,...,k, let I; = {j+Rl: 1<Z}. We have that if
n;, np<ly, some J, and nj#np, then
feni-cnglmax = cinp—nal = cRil;—-15d

= c(|d/c]+1+|2Aa/k]) 2 c(d/c+1+2A/ke) = d+2A/k.

Hence, we have that

ICnl_anlmax = |(Cnl—cnl)+(Cn1_cn2)+(cn2_cn2) | max
> Icnl—cnglmax—(Icnl-cn1|max+lcn2—cn2|max)

> |leny—cngl pax—2A/k 2 d.

Thus, (Q+cn1) n (Q+cn2) = 2.

LEMMA 3.1.4. Let w(n;a) = w(n;Qq,a) and denote by B(v) the
constant corresponding to the moderate weight ¥ as in Theorem
1.1.6(4). Then given a sequence of numbers (a,,) only finitely
many of which are non-zero, and a collection of points (a,) in R"

such that there exists a number A such that supl|a,-na| < A, there
n

is a constant C independent of g and b, for b £ 1, such that

H Z Z An,m TanEmbg‘
n m

~k/2 2
2w < Cllalg,1b [Z ) lan,al w(n;a)]
n m

172
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PROOF. Let d £ 1. Then by the arguments of Lemma 2.3.7, there is

a constant C; independent of g and b (as long as b £ 1) such that

by
£ 3 ;W(dv)“ ;Tan[;an,m Embgv]nz'w = (*)

where g, ™ T—dv(g1Q+dv)' Thus, by Lemma 3.1.3, wehZave that
(*) < Cillgllg-,,d[RkB(l)]l/z[b_k Y Z lan,ml w(n;Q,a)]
n m
<

172
Cllgls, [b"‘ Y.} el w(n;a)]

where C = C;[R*B(1)1/%2"B(1) and R = [1/c|+1+|2A/kc].u

THEOREM 3.1.5. Let gEW(Lm,Lé), g continuous, be such that for
some a, b > 0, {EpTnag} is a set of atoms for LE(Rk) with atomic
bounds A, B. Then given € > 0 there is a 8 > 0 such that if (a,)
is any collection of points in R* such that sgplna—anl < & then
{EmbTang) is also a set of atoms for Lﬁ(Rk) with atomic bounds Ag,
B; where A; 2 A(1-g) and By < B(1l+e).

PROOF. For any collection of points (a,) in R* we define the

operator corresponding to it by

S1if = ) ) an,a(f) EwTag.
n m

If there is a number A such that |a,~-an| < A for all nilk, then by
Lemma 3.1.4, we have that the sum defining S;f converges strongly
in L2(R*) for each f<L2(R¥).

Let gOECc(Rk). Since {EmTnag} is a set of atoms, we have

that
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2,w

l ; Ean,m(f) Emana(g_gO)Hz’w

+

1£-S1fl2,0 = | ¥ ¥ @nn(f) Em(Toag=Ta )]

<

Z Z an,m(f) E:ml;:'rna(gO'T(an—na)go)“2 w
n m ’

Y ) ann(f) EmTa (g0-8) “2"‘

+

= Nl + N2 + Na.
-k/2 2 . .
Now, N; < C;b Bl[g—goiiq,ﬂlf"g,w, where C; is given in Corollary
2.3.8, and by Lemma 3.1.3, there is a constant C, such that Nj <
-k/2
Cob " “Bllgo—8llg,1lfll2,w-

To get the desired estimate on Ny, let h, = go-T(a -na)&o-
n

v v
< i = -
For any O < d £ 1/b, define h, T—dvh“1Qd+dv' Thus, hp > hn
and each hﬁ is supported in Qi;,,. Repeating the arguments of

Lemma 2.3.7, we have that

Nz < ) ®(dv)(3“a™d" B(d")1"*
v

172
~-k/2 v 2
b [}: Inall. ) l2n,nl w(n;od,a)]
n m

172
- v -k/2 2
< CQZw(dv) sHthn[[m b [Z Z \an,ml w(n;Qd,a)]
v n m

where Cy = [3a ™ d“B(d*)1'"2.

I claim that given € > 0, there is a 8 > 0 such that if
suplas—nal < 8, then
n

Y #(dv) suplngll, < e.
v

To see this, observe that if sgplan—na[ < A for some constant A,

then the functions h, = 80"T(an-—na)go are supported in a single

compact set K for all nEZk. Consequently, letting M =
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{meZ": K n (Q1+m) # @}, we see that #(M) = Cy is finite. Now,
since ¥ is locally bounded, there is a constant R such that ¥(dv)
< R for each veM. Also, since gp is uniformly continuous, there
is a 8 > 0 such that if sgp]an—nai < 8 then Igo(x)—T(anqﬂ)go(x)l

< eCx'R™" for all x<R* and n<Z®. Consequently, sup|hbf, <
n

supllhall, < eCy R™" for all veZ®. Finally, we have that
n

v v
;wdv) suplhqll, < sznsgpnhnnm < RCy suplihall, < €
€

whenever sgplan—nal < 3.

Now I claim that given € > O there is a 8 > O such that if
sgplan—nal < 8 then ||[I-S1]l = A < €. Given €1 > 0 there is a
function goecc(Rk) such that | g-golly,1 < €1. Also, by the above

paragraph, there is 8 > 0 such that if suplas-nal| < & then
n

Y o) sypitil, 5™2( T Y lan,al® o(nia 2]
v n m

-x/2
< Beib U fl2,w-

1/2

Hence,
[£-Sifll2,w

-k/2 /2 -k/2
< C4Bb lgo-glg,1lfll2,w+CaBe1b " “Ifll2,w+CaBb " “llg-goll2,w

< (C1+C2+C3)Be1b-k/211fliz,u-

Thus, if €4 is small enough, we have that |I-S, A < g,

Now, as in Theorem 3.1.2, we have that S| < [[I-Sill + |1l =
1+A. If A < 1 then we have that S; is a bijective homeomorphism
2,k -1 -1 2 -1

of Ly(R") and that |S7 || £ (1-A) *. Letting cp n(f) = a, n(S1f),

we have that for all féLs(Rk),

f= Z ch,m(f) E:mbTang
n m
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where the sum converges strongly in L?,([Rk). Also, by the same

argument as in Theorem 3.1.2, we have that

A0 ZIEI2,0 s ) Y len,a(£)1? w(nza) < BA1-0) L1530

n

Finally, given € > O there is a Ag such that if 0 < A < Aq

then (1—7\)"1 < 1+ and (1+7\)—1 2 1-e. Moreover, there isa d > 0

such that if Sgplan—nal < & then A < Ag.m

The idea for the following lemma has appeared in many places

including [PW], [Lel, [DE], and [Y].

LEMMA 3.1.8. Let b > 0 and € > 0, Then there exists 8 > 0 such

that if (b,) is such that supib,-mb| < &, then
m

A2
I_.2(Q1/b) E 8[; |Cul ]

for every sequence (cp) with only finitely many non-zero

2Mi<mb, t> 2Mi<bpy, t>
| T enemm_mons
m

terms. PROOF. First observe that

Q2T <bpmmb,t> L Z (Zni(bm_mb))ata
ot

oF0

where the sum is taken over all non-zero multiindices.

Now,

2Mi<mb,t> 2Mi<b, t>
Zcm(e > mit>y

m

L2(Q1/b)

271 <mb, t> 211 <bp-mb, t>
= Z Cn€ Y (1-e ]

m

L )

Z 21i<mb,t> Z: {2ni (by~mb) )octoc"
= Cne

— o= ol IILZ(QUb)

.y al o 2711 <mb, t> oc“
= 2 170! t bg—-mb
2, TBAT Gl 7 e (oemb) | 2, )
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IA

Z (21) [l e “toc Z cm(bm-—mb)aezmmb’b
o#0 m

Lz(Ql/b)

IA

Z (2mb™h) ol 1/al “ Z cm(bm—mb)aezmmb’t)
oF0 =

L%(Q1)

-1
(since te€Q,p, implies |tlpax < b )

1/2
Z (2np 1y 1! 1/a!b“"2[z leql 2l (bm—mb)alz]
o*0 m

IA

1/2
b-k/z[z Icmlz] Z (21Ib_16)locI 1/a! (since sup|b,-mb] < &)
m
m o+0

-1 1/2
(eZTIb k6_1) b-k/a[z |Cm|2] -
m

Now, given € > O we can choose & > O such that

-k/2

-1
l(ez’tb K_1) b <e.m

. K
COROLLARY 3.1.7. Let a > 0 and (b,) a collection of points in R

such that for some b > O, S}nlplbm—mbl < A < w. Then there is a

constant M depending only on A such that for any function g,
1/2
-k/2 2
| ¥ ¥ 2nm Bo Tnae, , < MCligla, b [Z Y lan,al w(n;a)]
n m n m

for each sequence (a, ,) with finitely many non-zero terms and

where C is the constant from Corollary 2.3.8.

PROOF. First, observe that by Lemma 3.1.6,

” Z Cme2m<bm,t>
m

2TMi<mb, t> 2Ti<bp—mb, t>

” ; em® Z S L2(Q1/b)

172 -1 1/2
- 2 2ub 'k -

bk/z[Zlle ] 4 (2T KA Ly k/z[ZICng]

m

m
-1 1/2
A -
eznb k " k/2[z |Cm|2]

m

L2(Q1/b)

IA

L2(Q1/b)+

IA

83



where (cp) is any sequence with only finitely many non-zero terms.

Now, by the arguments of Lemma 2.3.7, we have

| T T o ]
Cy ZW(dv)|lg1Q+dV||m [Z H Zan,m Ep_
v n m

= 1/2
2nb kA -k/2 2
EaT lgls,1 b [Z Z lan,m! w(n;a)] .
n m

2mb kA
e . N

1A

2 1/2
Lz(Ql/b) w(n;Q,a)]

IA

Hence we are done with M =

THEOREM 3.1.8. Let gew(Lw,Lé) be such that for some a, b > O,
{EmbTnag} is a set of atoms for LE([RR) with atomic bounds A, B.
Then given € > O there is a 8 > 0 such that if (b,) is any
collection of points in U;k such that sgplmb-bml < & then {Emenag}
is also a set of atoms for L‘z,(le) with atomic bounds A;, B; where
Ay 2 A(l-g) and By < B(l+e).

PROOF. Observe first that E,T,g = e> VYT Eg for all x, y<R".
Let a,ll,m(f) Ll b

an,m(f) and note that Ia:,,m(f)l =

lan,m(f)]. Define the operator S; by

1
S1f = ) ) an,m(f) TnaFs g
m

n

Then by Corollary 3.1.7 the sum defining S; converges strongly in
LE([RR) for each fELE(IRk).

Now,

llf—S1fllz,w = “ Z Zan,m(f) EnbT a8~ Z Zax}\,m(f) TnaEbmgH2,w

- “; ;a,},,m(f) Tna(Ems=Eb_)g

By the arguments of Lemma 2.3.7 and Corollary 2.3.8, there is a

2,w'
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constant C such that

2 1/2
I£-S1fll2,w < cugng,l[zn Y an,m(f) (Emb—Ebm)nLa(QUb) w(n;a)] :

By Lemma 3.1.6, given € > O there is a 8 > 0 such that if

sup|by-mb| < & then
m

2
1 2 1 2
| ¥ ahnte) (Emb—};:bm)HLz(Q“b) < €Y lapalf)]l
m m
Consequently, we have that

12
I£-Sifll2,u < cugua,le[z Y lan,(£)1° w(n;a)]

< CBligly,1ellfli2,w

1]

Rllfﬂz,w-
Now, as in Theorem 3.1.2, |[Sill < {[I-Sqlf + Il £ 1+x. If A <

1 then S; is a bijective homeomorphism of L3(R*) and [S; | <

(1-0)71 Let Cn, plf) = an,m(SIIf). Then

f = Z ch,m(f) Emenag
n m

and arguing as in Theorem 3.1.2,
A0 ZIE1,w ) ) lenn(0)1 0lnia) < B21-0 7813, .
n m

Finally, given € > O there is a 8 > O such that if sup|bp-mb| < &
m

then (1+A)™2 > 1-¢ and (1-A)72 < 1+e.m

The following theorem shows that one can combine the two
previous results to obtain the expected theorem on stability of

atomic decompositions under simultaneous perturbation of the

lattice in both time and frequency.
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THEOREM 3.1.9. Let geW(L™,L3), g continuous, be such that for

some a, b > 0, {EmTn.g} is a set of atoms for L2(R*) with atomic
bounds A, B. Then given € > O there is a 8 > 0 such that if

(an, by), n, meZ®, is any collection of points in R* x R* such that
sup|na-a| < & and sup|mb-bm| < & then {E, T, g} is also a set of
atoms for Lﬁ(Rk) with atomic bounds A;, B; where A; > A(1-¢£) and
B; < B(1l+g).

PROOF. Let us define the operator S; by

Sif = ) ) @n,m(f) Ep Tag.
m

n

Then
1£-Sifle,w < | L ) onn(®) (EmbTnag-En Ta @], |
n o m 4
< ” Z Za—n,m(f) Emanau(g_T(an-na)g)"2
n m A

% H ; ;a,l,,m(f) Tan(Emb—Ebm)gHZ'w

= (1) + (2)

,mb-b,
where a;,m(f) = g2t<enm m>an,m(f) and in particular, Ia;,m(f)l

= |a,,m(f)|. Now, by Theorem 3.1.5, given £; > 0, there is a &; >
0 such that if sgplan—nal < 83 then (1) < g4|f)z,4. We wish to
obtain a similar estimate on (2). By Lemma 3.1.3 and the

arguments of Lemma 2.3.7, we know that there is a constant C such

that

(2) =< C||8||W,1[Z|I Zax{.,m(f) (Emb-Ebm)Hiz(Ql/b) w(n;a)]l/z'

By Lemma 3.1.6, given €3 > O there is a 8, > 0 such that if

sup|by-mb| < 85 then
m
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| ¥ 2hnl) EaEo)rzq ) < 27T lanal®
m m

Finally, we have that (2) < €3CBliglg,1lfll2,..
Thus given A > O there exist numbers §; and 8, such that if
sgplan—nal and sgplbm-mbl < 8 = min{381,82} then ||I-S;|| < A. Hence

the conclusion follows from the same arguments used in Theorems

3.1.2, 3.1.5 and 3.1.8.m
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Section 3.2. Stability with respect to lattice parameters

In this section, we show that, under certain assumptions, a
set of W-H atoms is stable under a change in the values of the
frame parameters. To do this, we require a stronger assumption on
the analyzing vector g which is strictly weaker than the

assumption that } lg(x-na)|® be bounded above and below (cf.

Example 3.2.8).

THEOREM 3.2.1. Let g be such that g, g_ew(Lm,Lé) and suppose that
there exists a cube R ¢ R* such that

(1) 0 < esiiénflg(x)l < es§<§up|g(x)| < o,

Then there exist numbers ag and by such that for any 0 < a <

S ag

and 0 < b £ by, {EmThag} is a set of atoms for LE(RkL

The proof of this theorem will follow from analogs of certain
lemmas in this chapter. First, we show that one may assume

without loss of generality that R is centered at the origin.

LEMMA 3.2.2. If {EwThag} is a set of atoms for LE(RR) then for
almost every SERk, {EmbTna(Tsg)} is also a set of atoms for
La(RS).

PROOF. We know that for some collection of linear functionals,

(an,m), and for all feLZ(R"),
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F= ¥ 3 aall) Ealan,
n m

Thus it follows that for all feL2(R),

£ = TeToof = ) ) an,n(Tesf) To(EnsTnag)
m

n

Y.} el Tl ™ BTy (Te)
m

n

Y Y 2n,n(T-sf) EnsTna(Tsg).

n

Now, there exist constants T;, T2 > 0 such that for all fELE(RkL

T T-af12,0 £ ) ) l2n,n(T-af) 1% 0(nia) < Tol Tof 3,0
m

n

But, ||fH2,w = "TST-SfHZ,H s w(S)"T—sf‘HZ,w and ”T—sfllz,w =
“(-s)|fll2,« and for every SERk, 0 < ¥(s), ¥(-s) < ®. Thus

{EmpbTna(Tsg)} satisfies the definition of a set of atoms.=

LEMMA 3.2.3. Let ¢ be a bounded function supported in a cube Q.
Suppose that ¢ is essentially bounded above and below on some
subcube Qg of Q. Then there exists ag > 0 such that for some
constants A, B > O depending only on ag, ¢, and k we have that for
all O < a £ ag and almost every XERR,

a *A < }: lo(x-na)|? < a™B.
n

PROOF. Let s be the side length of Q, sp the side length of Qg,
and let 0 < ag < sg. Then for each xeR" and each 0 < a £ ag,

#{n<Z*: x-na<Q} < []_s/a_]+1]k < a¥(s+a)* < a ¥ (s+ag)"
Therefore,

}: l<p(x—na)|2 < Hwnf sup #{nez": x-na<Q} < a—k[(s+ao)kuwnf].

Observe now that. for all xeR* and 0 < a < ag,
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#{n<Z": x-na<Qy} 2 [go/ajk > a ¥ (sq-a)* 2 a®(sg-20)"

Therefore,

E: Igo(x-na)l2 > ess inf‘lgo(x)l2 inf #{nelk: X-na<Qq}
x€ Qo x
n

v

a™® ess infle(x)|%(so-a0)*. m
X€Qqo

We now state results corresponding to Lemmas 2.3.5, 2.3.1

2.3.2, and Corollary 2.3.3. The proofs of these results are
almost exactly the same as the originals, the only difference

being in the nature of the constants.

LEMMA 3.2.4. (Lemma 2.3.5) Let g satisfy condition (1) of Theorem

3.2.1 and suppose that g, g_EW(Lm,Lé). Then there is a cube Q and

a number ag such that there exist constants A’, B’ > 0O depending
on ag and g only such that for every cube Qg containing Q,

a *Ar < l Z:§1Q(x—na)g1Qo(x—na) < a™*p’. :
In particular,

a*A’ < 2; |g1Q(x—na)|2 < a*p’,

PROOF. We take as Q the cube R on which }g| is bounded above and
below. We may assume without loss of generality that R is
centered at the origin because if not we can replace g with an
appropriate shift of g such that the correspondingly shifted R is

centered at the origin. By Lemma 3.2.2, the shifted g will

generate a set of atoms if and only if g does for the same values

of a and b.
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The result follows immediately from Lemma 3.2.3 because for

all x<R*, §1R(X)g1QO(X) = |81R(x)l2 whenever R ¢ Qg.m

LEMMA 3.2.5. (Lemma 2.3.1). Given g and R as in Theorem 3.2.1,

there exist constants ag and bg > 0 such that there exist

constants Cy, C; > 0 depending only on g and k such that for all O

< a<ag, 0<b = by and fELE(Rk),

-k, ~k 2 2 ~k, =k 2
a b CUlEN] < ) ) I<f EmTaalelp)> 1% winia) < a™0 AT .
m

n

PROOF. We choose ag as in Lemma 3.2.3, and bg so that the side
length of R is at most 1/bg. Hence we have the estimates required

for Lemma 2.3.1 and the result follows identically.=s

LEMMA 3.2.6 (Lemma 2.3.2). Let g and R be as in the hypotheses of

Theorem 3.2.1. Define the operator, S, by

Sf = Z ;<f,Emana(g1R)> EnbTna(g1y)-

n

Then there is a number ag > 0 such that given any cube, Q,

containing R there is a by > O such that for all 0 < a £ ag, 0 <b

< bo, and fELE(Rk), Sf converges strongly in Li(Rk) to

f(x) bq‘E:éﬂR(x—na)g1Q(x—na).

Moreover, S is a bijective homeomorphism of LE(Rk) onto itself and
for all f<L2(R),
-1
£= ) ) <Sf EmTnalgly)> EnsTnalgly).
n m

PROOF. Choose ag as in Lemma 3.2.3, and bg so small that the side

length of Q is at most 1/bg. Thus the hypotheses of Lemma 2.3.2
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are satisfied for all O < a £ ag and O < b £ by and so the result

follows identically.m

COROLLARY 3.2.7 (Corollary 2.3.3). Let g and R be as in the

hypotheses of Theorem 3.2.1. There is a number ag > O such that

for any cube Q containing R, there is a number bg > O such that

for all 0 < a € ag and 0 < b £ bg there exists a collection of

linear functionals, (cph,n) such that for all fELE(Rk),

f = zcn,m(f) Emana(g1Q)

n

and there exist constants C;, Cy; > 0 depending only on g and k

such that

-k, -k 2
Calfliz,w £ 2707 ) ) lean(£)1% wln;a) < Calfl3,w
n m

PROOF. Choose ag as in Lemma 3.2.3, and bg so small that the side

length of Q is at most 1/bg. The conclusion follows exactly as in

Corollary 2.3.3 with

Ca,m(f) = <STF, EnpTnalgly)>

and

Sf = Z ;<f,EmbT,?a(g1R)> EnpTna(glg) -8 .

PROOF OF THEOREM 3.2.1. Let ap be as in Lemma 3.2.3. Now given ¢

> 0 there is a cube Q containing R such that Hg1Q—gHg,1 < g. We
will choose an appropriate ¢ and Q later but in the meantime, for

any cube Q and numbers a, b define the operator U by

uf = zcn,m(f) EnbThag

n

92



where the functionals c,,, are as defined in Corollary 3.2.7. We

then have that
1£-Uflz,w = | ¥ ) cnun(®) EmsTaalelg=e)|,

1/2
< Clglyglla, a“"zb"“’z[z Y lenm(f)1? w(n;a)]

n

where C = Ci([d[+2)"B(1)B(d")(B(d")3"d"1"%, ¢, = B(IQI), « =

max{1,d}, and O < d < 1/b. Note that C is independent of a and b.

It follows from Lemma 3.2.7 that for all sufficiently small b
there is a constant C,; depending only on g and k such that,
Hf-Ufllz, o < CC2"81Q_8”G,1 Ifll2,w-
Now, let £; > O be so small that CCyeqy = A < 1, and let Q be
a cube containing R such that Hg1Q—gHQ'1 < g7 and let by be so
small that the conclusion of Lemma 3.2.7 holds and the side length

of Q is at most 1/bg. The result now follows exactly as in

Theorem 2.3.9.m

EXAMPLE 3.2.8. There is a function g on R such that for almost

every x<R,

i
-

z:lg(x—n)l2

n€Z
but for which condition (1) of Theorem 3.2.1 fails. Let « > 0 and

let Eg € [0,1] be a Cantor set of measure «. Then we can write
o0

[0,11\Eo = U I,
i=1

where the I; ;, are open, pairwise disjoint intervals. For each i,

let Ey ;1 < I;,; be a Cantor set of measure «|I; ;| > O, and let E,
fae)

= U Ey,;. By the construction of E;, it is clear that

i=1
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[0,1]N\(EgUE]) can be written as a disjoint union of open

intervals, i.e. that

@
[0, 11N(EquEy) = U Iy 5.
i=1

Now for each i, let E;j o ¢ I; » be a Cantor set of measure «|l 2l
«©

> 0, let Ex = U Ey 5.
i=1

We can continue this process and obtain a countable

collection of disjoint sets {Ej} . It is easy to see that
N-1 ™ ©
l[o,1]\UI-:n UIl,Nl
n=0 i=1
and that
o o)
U 1| = (-0,
i=1
oo
This implies that U E, = 1.
n=0
Now, let
g0 = ) g, (0.
nez i
Then for every interval I < R, esiz}nflg(x)l = 0 but since U E,
n=0

has full measure, we see that for almost every x<R,

E: lg(x—n)lz =1l.m
neZ
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CHAPTER 4

CONTINUITY OF THE FRAME OPERATOR

To every set of atoms in a Banach space B can be associated a
Banach frame for B, called the dual frame, which gives one a
Fourier series—like expansion of any element of B in terms of the
set of atoms. Specifically, if {g;} is a set of atoms for B and
{e;} the corresponding dual frame, we have that for each f<B, f =
Yefendes .

Whenever it makes sense, we can take e; = S_lgl where the
operator S is glven by Sf = J<f, g;>g;. For example, if B is a ]
Hilbert space, the dual frame must be given by the above formula
{cf. Theorem 5.1.6). We have also seen that this is the case when
B = L‘z,(le) with w a moderate weight and the functions g; are W-H
wavelets generated by an appropriate vector geLf(Rk) for certain
parameter values (cf. Theorem 2.6.2).

In this chapter, we investigate the properties of the dual
frame when the corresponding set of atoms is a collection of W-H
wavelets. In this case, it is well known that the dual frame is
also a collection of W-H wavelets generated from a single vector.

In Section 4.1, we show that the vector S'ig reflects many of
the decay properties of g by showing that the operators S and S-1
preserve many of these same properties. In Section 4.2, we do the
same with certain smoothness properties of g, that is, properties

defined by the decay of the Fourier transform. Also, in this
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section, we obtain formulas for derivatives of Sg for a given g,
and show that S maps the space f(Rk) continuously into itself. In
Section 4.3, we give a formula for computing S-lg for any g, and

in Section 4.4, we give a generalization of a result of Benedetto

([B]) concerning the invertibility of the continuous frame

operator.

Section 4.1. Preservation of decay by the frame operator.

The results in this and the following section can be thought
of as stability results because they show that, for the cases we

examine, if a function f can be written

el — Z Z <f,Emanaq)>Emanaw
m

n

then the function ¢ is forced to be a slightly perturbed version

of Y. That is, ¢ has most of the decay and smoothness properties

of Y.

DEFINITION 4.1.1. Given functions ¢ and ¥ on Rk, we define

formally the S-operator corresponding to ¢ and Y or simply the

S-operator by

Sf = Z Z <f,EmbTna®> EmbTna¥.
m

n

When we wish to make the auxilliary functions ¢ and ¢ explicit, we
write S(¢p,¥) for S, and if we wish to make the values of a and b

in the definition explicit, we write S, v(p,¥) or S, .
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LEMMA 4.1.2. Let 0 < a £ c, let g and h be any two functions, and

m any submultiplicative function. Then

s s k
Y m(je)Bg,nlJe) < 2"Ngml,,1,alboml, 1,
3

where
Bg,n(s) = ess supl Zg(x—na)ﬁ(x—s—na) "
X
n
PROOF.

Y m(Je)Bg,nlJe)
]

Z m(jc)essxsupl Z g(x-na)h_( jc~x+na)
k] n

It

IA

Z essxsupl Z g(x-na)m(x-na)h.( je-x+na)m( jc-x+na)
j n

A

; Z: esg(ggplg(x—na)m(x—na) | ess, glclplh_(Jc—x+na)m(jc—x+na) |

since the sum over n above actually is an a-periodic function so
that we need only take the essential supremum over Q,. Now,

; ] esicggplg(x—na)m(x—na)l es§<ggplh_(Jc—x+na)m(Jc-x+na)|

= Z ess_ g:plg(x—na)m(x—na) | g:eS§< ggplh_(jc—x+na)m(jc-x+na) |
n
k

< 27 gmll,,1,alh-mll, 1,c

by Corollary 2.2.7.m

LEMMA 4.1.3. Let m be a submultiplicative function and let g and

h be functions such that gm and h_m are in W(Lm,Ll). Then

lim Zm(j/b)Bg,h(J/b) 0
j¥o

b0

where B4 n is defined as in Lemma 4.1.2.
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PROOF. Let € > 0. There exists a cube Q such that Q = -Q,
llgm-gm1Qllu,,1 < e, II(h-m-h_m1Q)_||m,1 £ 8, Hgm-gm1Qllm,1,a < g, and
ll(h_m—h_m1Q)_|Im,1,a < € with a > 0 as in the definition of Bq,n-

Now, letting go = g1Q, gy = g—g1Q, ho = h1Q and hy = h—h1Q,we have
that for each Jj,

Bg,h(j/b) < Bgo'ho(‘j/b)+Bgo'h1(‘j/b)+’391’ho(‘j/b)+Bg1'h1(‘j/b)'
Observe that for all b small enough, Bgo’go(‘j/b) = 0 for j=0, and

that if b = 1 then [-ll,,1,16 < 2°-l,,1 (cf. Corollary 2.2.8).

Zm(j/b)Bg,h(j/b)

i=0

Zm(j/b)rsgo,hl(j/bh Zm(j/b)Bgl,ho(J/b) +
SET] jFo

1A

¥ Z m(J/b)Bg, ,n, (J/b)

j*o

IA

2k
27 (llgomlly,1,allhy-mll, 1+ g1mil,,1,allho-mil, 1

+ lgimlls,1,althimll, 1)

IA

2k
2% (ellgmll, ,1,a*€lhoml, 1 +€2).

Since € > 0 was arbitrary, we are done.m

THEOREM 4.1.4. Let f, h<L®(R*) and suppose that ¢, yeW(L®,L').

Then

(1) the sums Sf and Sh converge strongly in Lz(le),

(2) «Sf,h> = b * Z [f(x-—j/b)ﬁ(x) Zl,b(x—na)zz(x—na—j/b), and
i n
(3) Sf =b" Z £(x-j/b) Zw(x—na)g?(x—na-j/b).
3 n
PROOF. Let feLZ(R¥).

By the argument in Theorem 5.2.1, Lemma

4.1.2, and the fact that ¢,yeW(L®,L'), we have that for all
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feL®(R¥),

5[]

2
Y 1<f, EmTnag> | < BIEI
m

and

2
Y. ) I<E.EmTna¥>|® < BIfI3
n m

for some B > 0. Thus, by a very familiar argument, we can show

that the sum defining Sf converges in Lz(le). Specifically, we

can show that for any sequence (a,,,) with } ¥ lan,ml2 < oo,

Z Zan,mEmanaw , < B[Z Z ian,mlz]l/z

n€EG meF n€G meF

for any finite subsets F, G of % (cf. [HWI). Thus, (1) holds.

Now suppose that f, hECc([Rk). Then

<Sf,h> = <) ) <F,EmTnap> EnpTnal, h>
n m

Y. ) <F EmTnap> <h,EmTnat>
m -

n

L) [Jf(x)a(x—na)e'2"1<mb’*> dx] [[h(t)ﬁ(t—m)e‘2"1<mb»x> dt]

(L) k Z }'Q Z f(x-j/b)e(x-na-j/b) Zﬁ(x—l/b)w(x—na—l/b) dx
n JQi/b ]

o Z Jﬂ(x)w(x—na) Z £(x-j/b)p(x-na-j/b) dx
J

(L )b‘kj Y £(x-3/b)h(x) ) Ylx-na)g(x-na-j/b) dx.
J n

The equality (i) can be Jjustified as follows. First, observe

that the numbers

bk/sz‘(x)a(x--na)e_zmmb'x> dx,

and
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bk/ZJ'h(t )—'ﬁ(t_na)e—21U<mb,t) dt

are the Fourier coefficients of the 1/b-periodic functions
Zf(x—j/b){é(x—na—j/b), and Zh(x-l/b)w(x—na—l/b)
B 1

respectively. If we can show that each is in LZ(Q1A) for each n,

the equality (i) will follow from Parseval’'s formula. It will be
enough to show that each is bounded.

Now, since f and h are

bounded, we have that,

[J‘ E:ZF(X'J/b)a(x—na—j/b)lz dx]l/z
J

1/2

< E: [{ If(x—j/b)lzlsv(x—na—j/b)l2 dx]

i) Qi/b

272 e
< nfﬂw[z;§§glégp l@(x—na—l/b)l] b
-x/2

< 1o I Thalle, 1D " < @
Similarly,

B 2 172 —k/2
m Zh(x—l/b)w(x—na—l/b)l dx] < Il I Toadlle 1P < .
1

The equality (ii) is justified since by Lemma 4.1.3 and the
fact that feLz(Rk) and heLz(Rk), the iterated sums and integral
following equality (ii) converge absolutely at each xeRk so that
any interchange of summation and integration is Jjustified.

Since Cc(Rk) is dense in Lz(Rk), (2) follows. (3) follows

immediately from (2).=

THEOREM 4.1.5. Let B be a Banach space of tempered distributions

on Rk satisfying the following conditions.
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(1) L%(R*) A B is dense in B.

(2) B is a Banach module over L™(R*), i.e., for every
heL®(R*) and £el2(R*) n B, we have that hfe<B and ||hf]g < |hl lifls.
(We can define hf for arbitrary f<B by letting f, — f in B, with
fneLz(Rk) n B. Then {hf,} is Cauchy in B. Define hf as the limit

of this sequence.)

(3) For each aERk, T, acts boundedly on B, and HTaHBQB is
denoted by m(a).

If ¢ and Yy are such that ¢ and ¢y are in W(Lm,Li) n B, and ¢-m
and ym are in W(L”, L"), then for any a, b > 0, the S-operator can
be extended uniquely to a continuous operator on B.

PROOF. By Theorem 4.1.4, S is defined on Lz(Rk) n B where the sum
is taken to mean L%(R") convergence of the partial sums.

Moreover,
st = b* Z £(x-3j/b) Z Y(x-na)p(x-na-j/b)
j] n
for such f. Define the operator S« on B by
Suf = b ¥ Zf(x—j/b)GJ(x)
J
where
Gy(x) = 2:1b(x—na)5(x—na—j/b)
n

and where the sum over j converges strongly in B. In fact, the

partial sums defining S« converge in operator norm to Se.

To see this, observe that by the assumptions on ¢ and y, and

by Lemma 4.1.2,

Z m(J/B) Gy, < w.
J
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Thus, given € > 0, there is a finite set F c¢ i such that for
every finite set G < ZE

m(Jj/b)IGyll, < e.
J€G\F

Therefore,

f(x_j/b)(;.](x)”B < 2: £ (x-3/b)G;(x) s
JE€G\F Je< G\F

s ) ITyaflslGylla < I€l8 ) m(3/BIGI, < elfls:
J<G\F J=GNE

It follows that the sequence of partial sums defining S« is Cauchy
in operator norm and hence converges to some bounded operator on

B. It is also clear that

~k s
ISeflls < b Il ) m(3/BIIGC,-
J

Hence, Ss is a continuous operator on B which agrees with S
on La(Rk) Nn B and so is an extension of S. Since there is only

one continuous extension of S to B, S« is unique.nm

THEOREM 4.1.6. Let B, ¢ and Y be as in Theorem 4.1.5 and suppose

further that for some constant A > 0, and almost every xeﬁk,

A< l E:W(x—na)a(x—na).

Then there exists bg > 0 such that for all 0 < b < bg, the
S-operator is a topological isomorphism from B onto B.

PROOF. Let bg be so small that for all 0 < b < bg,

A™ Zm(j/b)llGJuw =A< 1.
JF0

Such a bg exists by the assumptions on ¢ and ¥, and Lemma 4.1.2.

Then we have that
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b Go(x) T'SE(x) = £(x)+b Go(x) ™" Zf(x—j/b)Gj(x).
ED)
Thus,

K.-1
I£-b Go Sflls

IA

5

Zf(x—j/b)Gj(x)||B
JF0

I €A™t Zm(j/b)llGJH\ < Alflg.
SEe)

Thus the inverse of the operator kaals can be computed by means

IA

of an absolutely convergent power series. Thus bkcals is a
topological isomorphism on B. Since multiplication by kaal is

obviously a topological isomorphism as well, the theorem is

proved. =

The space Lf(Rk), w moderate, does not satisfy the hypotheses
of Theorems 4.1.5 and 4.1.8 because compactly supported functions
are not dense in Lf(Rk). The following two theorems give

interpretations of S as an operator on the space LS(RRL

THEOERM 4.1.7. Let ¢_% and y# be in W(L®,L!) and suppose that

fiLf(Rk). Then for each n€Zk,
-k . = .
E: <, EmpTna@>EmpTna = b }::f(x—J/b)w(x—na)¢(x—na—J/b)
m J

where the sum on the left converges in Lf(mk) and that on the

right converges absolutely and uniformly. Also,
p ¥ Z Z £ (x-j/b)y(x-na)e(x-na-j/b)
n
converges absolutely and uniformly on compact sets. Thus, Sf

: : . . 2,k
converges as an iterated sum, the inner sum converging in Ly(R’)
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and the outer sum uniformly on compact sets, and

St =b " Z £(x-j/b) Z ¥(x-na)g(x-na-j/b).
j] n

S interpreted in this way is a continuous operator on Lf(RkL
PROOF. We know that the sequence of numbers {bk<f,Emng¢>} are

the Fourier coefficients of the 1/b-periodic function

Z £(x-3/b)p(x-na-j/b).

i
I claim that the above function is bounded and hence is in
Lz(Ql,b). First, the essential supremum of a 1/b-periodic

function is equal to the essential supremum of the function over

Qi,p. Hence, since w(0) < w(x)®(-x) for all xeR¥,

H Z:f(x~j/b)$(x-na—j/b)“§ = esgligpl Z:f(x—j/b)a(x—na—j/b)

IA

esg sup ) 1£(x-J/b) [W(x=3/0) | Tnap-(J/b=x) |%°( j/b-x)
Q1/b 3

1A

w(O)_lnfwnm z:ess suplTnaw_Wz(j/b—x)l
3 Q1/b

-1 2
w(0) Ifwl 1 Thae-¥ 15 1,170 < .

It follows then that

) <f,EnpTna¢>Emp = Y £(x-3/b)p(x-na-j/b)
m ]
in 1.2(Qy). It remains to show that

That (%) Z <f, EmpTna¢>Eqp (x)
m

converges in LE(Rk) to
W(x-na) ) £(x-3/b)p(x-na-j/b).
J

Let € > 0 and let F ¢ 7" be a finite set with the property that if

G ¢ 7" is any other finite set, then
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-1/2
<f, EmbTna®>Emb

me€ G\F

< ew(0)

Then we have that, since w(x) = w(O)Wz(x) for all xemﬁ

L3y m) ”Tnawwzu;fl,l/b-

Tnaw Z <f1 E:mana‘p>Emb
me€ G\F

2,w

2
le(x—na)lz‘ }: <f,Emanaw>Emb(x)l w(x) dx
me€ G\ F

2
2
j [Tnaw(x) | ‘ 2: <f,Emana¢>Emb(x)l w(x) dx
I JQi1,+1/b me G\F
2

W(0) ) esg suplToad# (x-1/b) | | Y <F, EnpTnap>Emp(x) | dx

T Q1/b Q 4

1/b m€G\F

2

L2(Q1/b)

IA

2
< g .

1A

g Sy D
w(0) || TrathW ”a,,l,l/b|

Z <f, Emanaq’)Emb
meG/F

: ; . Bpak
Hence, the series is Cauchy and so converges in Lg(R

).

We now consider the convergence of the sum over n of the
above functions. I claim that this sum converges uniformly on
compact sets. Let € > 0 and let K ¢ Rk be a compact set. There
is a cube Q c R® such that ”W1QCW2”m,La < &. Now, there is a
finite set F c Zk such that if ne<F° then ¢1Q(x—na) = 0 for all
x<K, that is, pick F so that neF° implies that (K-na) n Q = &.
Now let G c Z* be any finite set, let yy, = w1Q and Yo = w1Qc, and

let m = inf w(x) > O. Then since
x€ K

A

wix) < wix=j/b)%2(j/b)

IA

w(x-3/b)¥2(x-na)¥ (j/b+na-x),

we obtain

esiiﬁup\ 2: Y(x-na) E:f(x—j/b)¢(x—na—j/b)\
ne€ G\F ]

< esiziuP. 2: Y1 (x~na) 2:f(x—j/b)w(x—na—j/b)‘
ne G\F J
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+ esgcﬁupl z: Yo (x-na) E:f(x-j/b)a(x—na—j/b)(
n< G\F 3

1A

0 + m'esg_gup ) | Y92 (x-na) | ; | £w(x=3/b) | |9-9%( J/b+na-x) |
n

IA

m_ln }: |¢2W2(x—na)| 2: Ifw(x—j/b)l|¢_W2(x—na-j/b)|“m
n 5)

-1 2 K 2 -1,k 2
m o Ewll 2%l 1,22 19915 ,1,10 < €m 27wl l9-%"l,,1,1/0-

IA

Thus, since € > O was arbitrary, the sum in question is uniformly
Cauchy on compact sets and so converges uniformly on compact sets.
Also,

SF = bd‘z:f(x—j/b) E:w(x—na)a(x—na—j/b).
3 n

Since [[(T.f)wl, < Wz(a)ufwuw, the argument of Theorem 4.1.5

shows that S is continuous on Lf(Rk).l

THEOREM 4.1.8. Let ¢ and ¢ be as in Theorem 4.1.7 and suppose

that for some a > O, there exists a constant A > 0 such that for

k
almost every xR,

A =

z:w(x—na)a(x—na)A

Then there exists bg > 0 such that for all 0 < b < bg, S
interpreted as in Theorem 4.1.7 is a bijective homeomorphism of
Ly (R).

PROOF. The proof is exactly the same as Theorem 4.1.6.m

REMARK 4.1.9. Examples of spaces B satisfying the hypotheses of

Theorem 4.1.5 include the following.
(1) LB(R*) for w moderate and 1 < p < m.

(2) W(Lm,Li), for w moderate.
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(3)  WLP(RY),LY(R*)) where w is moderate and 1 < p, q < ® (cf.

[Fi1] for details on these spaces). To see why this is true,

observe the following facts.

Certainly, W(Lp,Lg) is a Banach space with respect to the

q/p 1/q
IEll = [J[{lf(x)lplk(x—y)lp dx] wiy) dy]

where k€Cc(Rk) is fixed.

norm

Since w is moderate, W(Lp,Lg) is translation invariant.

Clearly, for any heL®(R*) and feW(LP,LY), hfeWw(L”,1%) and
Ihel < fhli Ifl.

We now show that Cc([Rk) is dense in W(LP,L]). Let
feW(LP,L)), let € > 0 and suppose that supp(k) c Q, for some

compact set Q. Let K c [Rk be a compact set so large that

q/p
[ I£(x) 1Pl &(x-y)|P dx] wix) dx < gi/2
K°+Q

and let geC.(R") with supp(g) ¢ K be such that

=1

q’/p
U | £(x)-g(x) 1P dx] < g2 [|K+Q|||k]|g sup w(x)]
K x€ K*Q

Such a g exists because if feW(LP,L}) then £ is locally in LP(R").

Now,

q/p
I£-gl? = J[Jlf(x)—g(x)lplk(x—y)lp dx] w(y) dy

q/p
= [ | £(x)-g(x) Pl &(x-y)|P dx] w(y) dy
K+Q ~JK

q/p
+J u If(X)lpIk(x—y)Ip] w(y) dy
Kc+Q K
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q/p
< J&I21K+QI xf'll%EQW(X)[J I f(x)-g(x)|® dx]
K

q/p
+{ [ If(x)|p|k(x—y)lp] w(y) dy
K°+Q

< el/o+el/2 = 9.
Thus, |f-g| < .

(4) Note that the space Co(Rk) does not satisfy the hypotheses of
Theorem 4.1.5 because it is not a Banach module over Lm(RkL
However, the conclusion of the theorem still holds if we assume

that ¢ and ¢ are continuous and in W(Lm,Ll), i.e., that ¢ and ¥

are in W(Co,L') (cf. [F11).

To see this, observe that given any bounded, continuous

function h and £<Co(R"), hf<Co(R*) and |hff, < |h|_Ifl,. I claim

that for each a > 0 and fixed jezk, the sum
E:lﬁ(x—na)a(x—na—j/b)
n

converges uniformly on compact sets. To see this, let K ¢ Rk be a

compact set and let € > 0. There is a cube Q such that

1Wlgele 1,2 < € and ITymelgelo 1,0 < & Let F c Z* ve a finite

set of indices such that if n is not in F then Q n (Q+n) = @.

Thus, for any other finite set of indices G < Zk, we have that

EEE‘ 2: w(x—na)Ij/ba(x—na)

ne G\F

< sup <;\FldﬂQ(x—na)lITJ/bﬂmQ(x—na\)I

+ sup Z W1 (x-1a) [ 1Tj/p¢1qe (x-na) |

ne G\F

+ sup E;\FIlMQc(x-na) | ITJ/bﬁP1Q(x—na) l
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Y 1¥lge(x-na) | 1Ty pplge(x-na) |

€GAF
2: |lp1Qc(x-—na)l“m

TSR
n

<0+ Il,| ) ITiwelge(x-na)l
n

o 2lel.

< eyl +2llell,)-
Since £ > 0 was arbitrary, we are done.

This implies that the functions G;(x) are continuous and

bounded. Note also that since ¢ and Y are continuous, the

hypothesis of Theorem 4.1.6 is satisfied for sufficiently small a
> 0. Therefore, the arguments in Theorem 4.1.5 and 4.1.6 go
through unchanged in this case. This says that if f is a
continuous function vanishing at infinity, and if ¢, ¥, a, and b
satisfy appropriate hypotheses, then Sf as well as S_if are

continuous functions.

(5) Suppose that f€Cb(Rk), and ¢ and Y satisfy the same

conditions as in (4) above. If the sum Sf is given the same

interpretation as in Theorem 4.1.7, then by the arguments in
Theorem 4.1.7 and Theorem 4.1.8, S and S-1 are continuous

bi jections of the space Cb(Rk) for sufficiently small a and b.
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Section 4.2. Preservation of smoothness by the frame operator

DEFINITION 4.2.1. Let B be as in Theorem 4.1.6. We define the

space FB by

= {fe¥’ (R*): feB}

with norm given by “f"gB IfIIB

THEOREM 4.2.2. Let f, he<L®(R*) and suppose that ¢ and ¥ are such
that @, yeW(L®,L') and also @, $<W(L®,L'). Then

(1) the sequence of partial sums defining (s£)" converges

strongly in Lz(le),

(2) <(s£)™,h

=a" Z Jrg‘(ar—.j/a);(ar) Za('a’-mb)é(v—mb-j/a) dy, .and
J m
(3) (sp)* = a“‘i:%(y-j/ag 2:$(7—mb)5(7—mb-J/a).
il m
PROOF. Since ¢ and ¥ are in W(Lm,Ll), we know that the sum
defining Sf converges strongly in L*(R*) whenever £<L*(R*). Thus

it follows that if f<L®(R*) then Sf will be strongly convergent in

L°(R"). By Parseval’s formula, we have that

Z Z <E‘, (Emanaq’)A>(Emanaw)A

n

Z Z <f T bE—na‘P> TmbE-naa
Z Z <f EnaTmb‘p> EnaTmba

(se)?

i
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From this formula, all the conclusions follow as in Theorem

4.1.4.m

THEOREM 4.2.3. Let B be as in Theorem 4.1.5 and suppose that $
and @ are in W(Lm,LI) n B and that Q_m and @m are in W(Lm,L1L
Then S can be extended uniquely to a continuous operator on ¥B.
PROOF. Follows from Theorem 4.1.5, Theorem 4.2.2 and the fact

that the collection of functions f such that fELZ(Rk) n B is dense

in ¥B.m

THEOREM 4.2.4. Let B, ¢ and ¥ be as in Theorem 4.2.3 and suppose

A

further that for some constant A > 0 and almost every yiRﬁ

A<

Y b(r-mo)p(y-mb)|.

Then there exists ag > 0 such that for all 0 < a < ag, the
S-operator is a topological isomorphism from ¥B onto ¥B.

PROOF. Follows as in Theorem 4.1.6.m

REMARK 4.2.5. Examples of spaces ¥B include the following.

(1) A(Rk), the space of absolutely convergent Fourier transforms.
p g

(2) ?LS(Rk), with w moderate and 1 € p < w.

The following results show directly that the S-operator
preserves smoothness properties of functions. Specifically, we
show that S maps y(Rk) continuously into y(Rk) provided that the

auxilliary functions ¢ and ¥ are in Y(RRL
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LEMMA 4.2.68. Let h be a continuous function on R* such that for
all wecf(Rk) with Iw(x)dx = 0, Jh(x)w(x)dx = 0. Then h is
identically constant.
PROOF. Suppose not. Then we could find a pair of disjoint cubes
of the same size, I, and I; such that h(x) > 0 (say) on I; and I,
and for some € > 0, h(x;)-h(xz) > £ for each x;€I; and xz<Ip. Let
a<R* be such that I, = I;+a. Let ¢; 2 0 be in C:(Rk) and be
supported in I,. Define ¢(x) = @1(x) if xeI,, =-gpi(x-a) if xe<lj,
and 0 elsewhere. Then wecz(Rk), and I¢(x)dx = 0.
Now,
fh(x)go(x)dx - IIlh(x)m(x)dx-flzh(x)goi(x-a)dx
= fll[h(x)-h(x+a)]¢1(x)dx > ef¢1(x)dx > 0.

As this is a contradiction, h must be identically constant.ms

LEMMA 4.2.7. Let M 2 1 be given and suppose that {f,} is a
sequence of continuous functions on R* possessing continuous
derivatives up to M"" order which converges distributionally to a
continuous function f. Suppose that for each multi-index « with
] £ M, we have that {Dafn} converges distributionally to a

continuous function 8y Then f<C*(R¥) and D% = 8, for each |a| <
M.

PROCF. We prove this by induction on M. Suppose first that M =
1, and let |a| = 1. Specifically, let « = (0,...,0,1,0,...,0)

where the “1” is in the e position. Let ¢ be a test function on
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Rk. Then

JDafn(x)w(x) dx = —Ifn(x)Da¢(x) dx —— —Jf(x)Daw(x) dx.
But
JDafn(x)tp(x) dx —> jga(x)q;(x) dx = -Jc;a(x)n%(x) dx

where Ga is such that DaGa = 8, Specifically, we take

i
Ga(X) = J: ga(x’,t) dt

. k
where we write xeR as x = (X',t) = (X1,...,%Xj1-1,t, X1+1s - » Xi) -

Now, since wEC?(Rk), D%peCq(R*) and ID“w(x)dx = 0. Also,
every such function can be expressed as the derivative of a test
function. Therefore, by Lemma 4.2.6, we have that for all ximk,
f(x) = Ga(x)+c for some constant c. Since f and g are cont inuous
functions, we have that D f(x) = ga(x) for all x<R®.

Now suppose the theorem holds for M-1. Let 8 be a multiindex
with |B! = M. Then we can write B = B’+a where [B’| = M-1 and ||

= 1. By hypothesis,

B’ B’ ¢

fn — D
and

p*(0f ) = pPr, — g5
distributionally on R By the argument in the previous
paragraph, we can conclude that Da(DBIf) = DBf = gB. Since B was

arbitrary, we are done.m
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PROPOSITION 4.2.8. A tempered distribution f is in P(R*) if and

only if for each pair of multiindices «, B,
D*(DP) <A(R®) n LMRY).

PROOF. (=) Suppose f<#(R*). Then since ¥ is invariant under

the Fourier transform and differentiation, we have that for
multiindices «, B,
D*(0PE) <P (R*) ¢ AR®) n LY(RY).

(=) First observe that if a distribution f satisfies the
hypotheses then we can take B=0, take the inverse Fourier
transform and get that DafeA(Rk) (o Co(Rk) for all «. Thus, f is
infinitely differentiable and all of its derivatives are bounded.
Also, we have that

B0%r 1M V) = (1) BLED () A®S) n LMRS) < LR,

Thus, f<P(R*).m

PROPOSITION 4.2.89. Suppose f, ¢ and ¢ are in #(R¥), and let « be

a multiindex. Then

o - «) (B I G R
DY(S(p,Y)f) = Z Z [B][V]S(D 0, DTy)D* "r.

IBl<lel l7I=IB]
PROOF 1. We use the formula from Theorem 4.1.5,

Sle,¥)f(x) = b4‘2:f(X‘J/b) 2:¢(x—na)a(x—na—j/b)
J n

where by the assumptions on f, ¢ and ¥ and by Theorem 4.1.5, the
sum over n and J converges uniformly. Now, given finite index

sets F, G ¢ Zk, we have

b'kD“[ Z f(x-j/b) Z w(x~na)$(x—na—j/b)]
jeF n<G
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= b‘k
a) .o =
Z D~ Ff(x-j/b) Z DB[w(x—na)w(x-na—j/b)]

J<F
IBI<|al ¥ net
' L (5]
IBl<ial |¥IsIBI Ll
" g e
b JZ p% B (x-3/b) Zxﬁ"go(x—na)n"3 7 p(x-na-j/b)-
<F n€G

ums defining S(e,¥)f

AS W
as noted before, the partial S
DB_7¢ and D7¢ are

conVep
ge unif =
ormly. Since by assumption, p* Bf,

ative of the partial sums

in y(mk
) £
et or all «, B and 7, the a-deriv
ilnin
g S(g,y)f converge uniformly to

T or [t

From ¢ IBI<lal |7I<IBI
is and Lemma 4.2.7, it foll

Be.

ows that p%s(e,¥)f exists and 1S

a cont
inu
ous function equal to the above.

ing by parts, we have that

PROOF
, 2. Fin m ez Th
’ . en, integrat

(¢4
D (<f:E T
mb L na®>EmpTna)

24
L (8] | <
IBI<lal [B] EuToag> (2rtnb) T Y

I

: IB|§°L | [g] (—1)BJana5(X)(—Znimb)Be'zm'Km’x’ dx EmanaDa—B!/l
: |B|§Io¢| [g”DB(anJ)(x)e'z’“““""’ ix EnsTosD™ ¥

: I8 IE:I o [;] <0 (£T,00), Emb>EmanaDa—B¢

Tk )1z <DB"f,Eman.-,D’WEmanaD""Bw-

'BISIQI 1715|B|
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It follows from this that for finite sets F,GEZk,

o
D [ Z Z <f, Emana‘,0>EmanaW]
n€F meG

) Z Z [g] [5] Z <DB—7f’ EmanaDq‘p>EmanaDa—Bw-
IBI=lal l71=IB] b

We know that in this case, the partial sums defining S(¢,¥)f
converge in Lz(Rk) to S(¢,y)f which is a continuous function since

f is continuous, vanishes at infinity, and ¢ and ¥ decay rapidly

(cf. Remark 4.1.9(4)). Thus the a-derivative of these partial

sums converge in Lz(Rk) to

y y [g] [?]S(D%,D“‘Bw)uﬁ’%
IBl<lal l¥I1=sIBI

which is also a continuous function since DB_Wf is in Co(Rk) and
D7w and Da_Bw decay rapidly (cf. Remark 4.1.9(4)). It follows

from this and Lemma 4.2.7 that DaS(w,W)f is a continuous function

and equals the above.

It remains to show that the formula above and that given in
proof 1 are equivalent, that is each can be obtained from the

other by a change of summation indices. To see that this is so,

start with the formula

Z Z [g] [g]s(DB_%,DW)D“‘Bf.
IBl=lel lxl=|BI

For fixed B, let u=B-y. Then ¥=B-u and |y|<|B| if and only if

ful<iBl. Also, [S] = [ﬁ] Thus the above equals

y T [g] [ﬁ]s(n“‘p,nﬁ"uw)n“"ﬁf.
IBl<ial Tul=|pl

Now substitute t=a-B+u. Then B=a-t+u, B-u=a-t and a«-B=t-u. Also,
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it is easy to see that [Bl=|la-t+u|<|ia|l if and only if |ul<it| and

that Julg|a-t+ul=|B] if and only if |t|<|«|. Finally,

o) (B] _ o o—-t+u) _ ol (o—t+u)!
Bllu] = |a—t+u u T (emt+u) 1 (t-u) Tt To=t)tu!
_ o! t! i ank

T Tomt) e (t-w)ru! [t |u)”

Thus, we have

o) (B u B-u o—R
Z Z [B] [U]S(D @, D° Ty )p* Pr
IBI<lal Jul=|Bl

=y Y [‘;‘] [E]S(Duw,Da—tw)Dt-uf

ltislal [ul=zlt]

which is what we wanted to prove.m

PROPOSITION 4.2.10. Let f, ¢ and ¢ be in $(R*), a; and oap be

multiindices. Then
D*1(D*2S, (@, ¥) )"

Yy Y Y L EEEE

[Bal<logl [22l=IB2l I1B1I=lagl lo1121B]

Sb,a(Dﬁlnwl[D62_72¢]A,le[D72w]A)D“1‘31[Da2’32f]A
PROOF. By Proposition 4.2.8, we have that
D*2S,,5(0, ¥) T

=L L [B ] [BZ]S 6(D72, DP2 72y p*2 Fap,
2

[Bz2lslaal l¥21<]B2]
By above and Theorem 4.2.2, we have that

[D*2S, 600, y)f1"

= 7 'y [B][Bz]sb (1072017, [DP27¥2y1%) (p%2 Fag )"
2
1Bal=<las] lyal=|Bal

Finally, by Proposition 4.2.3, the conclusion follows.m
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THEOREM 4.2.11. Suppose that f, ¢ and ¢ are in £(R*). Then
Sa.b(@, WIF<P(RY).

PROOQOF. Let «, B be multiindices. Then by Proposition 4.2.10,
DB[DaSa,b((p,w)f]A can be written as a finite linear combination of
“S-operators”, with various auxilliary functions, applied to
derivatives of f. Since f, ¢ and Y are in y(Rk), Theorems 4.1.5
and 4.2.3 imply that DB[D“Sa,b(w,w)f]AeA(&k) n LYR*). Since o, B

are arbitrary, this implies that S, p(g,y)f<?(R*). =

THEOREM 4.2.12. Suppose f, ¢ and ¢ are in #(R*). Then S(e,y) is
a continuous operator on P(R).
PROOF. By Theorem 4.2.11, S(¢,¥)f<?(R*) whenever f<#(R*).
Suppose now that {f,} c Y(Rk) is such that f;, — 0 in Y(Rk), that
is,
Dfn(x) (1+]1x)™ —s 0

as n — o uniformly for each multiindex « and integer m 2 O.

We wish to show that for each multiindex o« and integer m 2 O,

D¥[S(p, Y fal (1+]x1)™ —s 0

as n — ® uniformly. Let o« and m be fixed.

By Proposition 4.2.9, we know that D*[S(g,y)f,] can be
written as a finite linear combination of functions of the form
S(DBw,Dwvﬁ)Dsfn where 3, 7, and 8 are multiindices independent of

n. Let w(x) = (1+|x])". Then w is a Beurling weight so that

wz(x) < (1+]x1)™. Now, since DB¢, D7w€W(Lm,L1) and DafnéLz(RkL
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the su -
M defining S(DBW,Da'w)Dsf‘n converges in L3(R*) by Theoren

b ZDan(x—j/b)GJ(x)
]

Gy(x) = ZDTW(x—na)DBE(X—na—J/b)-
1
Since pR, 2 ¥ : o 1 that
¢-%" and D?y&" are in W(L",L"), Lemma 4.1.3 says

Y FGRIG, < o
Then . .
» @S in Theorem 4.1.7, we have that

1TS(0y, DYy 08¢ 1. < (D% ul, b7 ) 5 (I/BIICs e — O
J

™ o, Thus, it follows that

ID*[S(@, y)Fn](x) (1+]x]) ", — O
R ™ o.m
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Secti
on 2
4.3. The inverse frame operator

THEORE

¥ 4.3,1, Let B, ¢, and ¢ be as in Theorem 4.1.6 with the
addjty

°nal assumption that LY(R*) n B is dense in B. (This is

tPUe o
£
211 the examples in Remark 4.1.9). Define formally the

fol &
lowing functiong,

(1) ¢
1(x) = Zw(x-na)q—:(x-na—J/b) for all jeZ¥,
n

(2) Gjo)(x) N { 1 if j=0,

0 if j=0,
(
L - LT {' 0 if j=o,
~1
~Go (x)Gy(x) if j=O0,
1x) = Z:cﬁfgcx—n/b)c‘“l’( ), and

(
S) Hul(x) = Zc(n)( ).
SquOSe that

z:m(j/b)HGj“”@ < 1.

j]

Thep,
t
he SUmS deflnlng G(m) and Hm converge absolutely and

nlfor
mly. Moreover, we have that

ij(J/b)HHh”o <
and that :

SsT'f(x) = b%bdZﬂwwwmu)

Where
t
he syp converges strongly in B.

PRog
F.
ket Sof(x) = b Ggl(x)Sf(x). I claim that for any feB and

for
a
W integer N > 0, ve have that
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(I-So)f(x) = Z S l-n/BIGEY ()
m

To
Prove 3 .
this, first suppose that feL:(Rk) n B and recall that for

Such f,

¥ Z f(x-m/b)Gm(x).

b G (x)f(x)+b
0

SE( o gk
%) = b} £(x-n/b)Gn(x)

m

Thus,

1}

f.("‘)_bk(:*(;l(x)Sf‘(x) - z:f(x—m/b)Gai(X)Gm(X)

and so

(I-So)E = ). el 0
m

Now assume

Thus &5
th g
e conclusion holds for N = 1 and feLc(Rk) n B.

it
holds for N. Then
(I-g )N+t
o) f(x) = (I-SO)"[(I—So)f]

Z (I-S0) £ (x-m/b)GNY (%)

-

Z Z £(x=(J+m) /b)G§" (x- n/b)GEY (%)

(where 1 = J+m)

Z Zf(x 1/6)6¢0 (x-m/b)GGY (%)

£ (x- "
): (x-1/b) ZGii;(x—m/b)Gé,m(x) = Zf(x—i/b)ci" P (x).

Slnc
2 F
Is compactly supported, there are only finitely many
nOn\Z
e
© terms in the sum over i and SO the last jnterchange of

Summ :
ations ig Justified.
In - .
order to pass from feLf(Rk) A B to arbitrary f<B, it 1S
neCeSS N
ary first to observe that by Theorem A1 o7 (I—SO) is a
It also will be

boUn
ded
operator on B for all integers N 2

n.ECesSaPy t
o show that the right hand sum above defines 2
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contj . g
inuous operator on B. For this, the following claim 15

Sufficient,
Claim ) N
Lo Y aGmne, < [Zm(j/b)ﬂcﬂ1 Ilm) :
J ]
Pr . i
°of: The conclusion is obvious for N =0 and N = 1. Suppose it

Molds for y,

m{ j (N+1) . (N)
; J/b)HGJ 1 I, = Zm(‘j/b)” ZGjH(x—x/b)G; (X)”m
T i

%
zj: Zm((J‘—i)/b)ncglinmm(i/b)|lc§"’n@

m( j (1) & (N)
‘J[_ J/b) |G} ||mZm(1/b)l|G1 o

i

A

Z“‘(J’/b)uc“’ ! @y |
; yola Zm(J/b)”GJ IImJ
j

= N+1
j (1)
[2;1n(J/b)”GJ ”n) )

Thusg
it holds for N+1 and we are done.O

(N)
Fr‘om this it follows that the sum Eif‘(x—i/b)G, (X) conver‘ges

Stron .
8ly in B for every f<B and that

“ ) ”"“Vb’@m(")”s < Ifle ) n(i/pIG 1o

i

So th if we
at the sum defines a continuous operator on B. Thus, 1

verging to £ 1P

Se feB and let fjeL(:([Rk) A B be a Sequence con

B, tp
© above inequality implies that

(I-.S N
0) f = s N
Hm (1-So)°f)

i . (N)
= ij(x—i/b)cﬁ“’(x) = Zf(x—l/b)ci (x).
A i

(N)(x) and

We also see from Claim 1 that the sums defining Gm

Hm(x)
Converge absolutely and uniformly.

We know that
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Solf = Z(I So)"f

DPovl
ded that the sum on the right converges in B. For f<L. S(R") n

B
» We have

Salf(x)

[l

5r~1 urng

Z (-m/b)Gp™ (x) = ¥ £(x-n/b) ) Ga™ (x)
m m n=0
£(

“M/b)Hp(x) = (*)

whepe , si ne 0 k % Y . s
€ f<L (RY), the interchange of summation is justified

By ¢y,
laim 1, we know that

g"’(m/anHmn@ Zm(m/b) Zuc“" fs
ij [Zm(m/b)HG(“H }n < o.

iz n=0
C €quen ;. y f
ently, the sum (*) converges strongly in B for ever i

A

IA

ang d

®fines g bounded operator on B. Since Sj- is also a bounded
Ope erat -1

°r on B, it follows that the formula for Sg holds for
pbitr ’

ary fes. From this in immediately follows that

ST (x) = b¥egl(x) Y £x-n/b)Hp(x). ®
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Section 4.4. The continuous frame operator

THEOREM 4.4.1. Let 1 € p < @ be fixed and let 1/p+l/q = 1. Let g
P,k q k 1 k
be such that gel (R )nlLg-q/p(R)IN\{0} and that g_L_ (R ) where for
k 1,k A k
a<R, m(a) = ||Tall,p ,p- Let p<sL"(R") be such that p<C.(R"), and
Lol
Jﬁ(q)dy = 1. Define p, by pa(x) = p(x/n) for neN. Then (pn)A(w)

= nkﬁ(ny), and {(pn)A}?=1 is an approximate identity. Then for

all f<LP(R¥),
Lim |£4~fliz, = O
n->o0

where

fnlu)

ngnézJAk{ <F, ETag>EpTag(u)pa(b) da db.
R R

PROOF .

lglafalu) = JlJ J kf(t)g(t—a)e"z"“’tg(u—a)ez"“’“pn(b) dt da db
R*JR*JR

[ kf(t)[[Akpn(b)e—znnﬂt—u) db][J kg(t—a)g(u—a) da] dt
R R R

J £(t)pa(t-u) U g((t-uw)+a)g(a) da] dt
R* R*

I

(£*%PaG) (u)
where G(x) = [ kg(x+a)g(a) da.
R

To check that the above interchanges in the order of

integration are Jjustified, note that

J*J k[J TR elt=al] dt]lg(u—a)llpn(b)l da db
RJR* UR
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[J
“x [[T.f
REjRE “P.w”guq,w-q/plg(u—a)llpn(b)l da db

IA

&0 g,
’ q/p“fllp,wJ k|Tug-(a)Im(a) da J',. Ipn(b)l db
R R

s
Bl o
vwarpll £llp, wllpnll im(u) Ig-l1,m <
= 1. Then

Now, 1 he q k h
’ et -
Ly q/p(R ) with I "q,w q/P

| <p%A
pnG*f.G(O),h>|

((£*p
J;k PnG) (x)-F(x)G(0))h(x) dx

h [£1x=
J%k[mk (x Y)G(Y)—f(x)G(O)]Sn(y) h(x) dy dxl

~

| Bal
Je' Pty Rklf(x‘y)G(y)—f(x)G

.
<
klan(y)| 1/p
JR Rklf(x_y)G(Y)‘f(X)G(OJ|pw(x) dx] dy

(0) ] 1h(x)] dx] dy

wiv,

Takj
ng the
supremum over all such h, W€ get that

1£*8.G-£+G(O) lp,w S 7

s a cont inuous function and

Noy
» Sinc i
e w is locally bounded, Glx) 1

It follows from

is 5
lso po
unded, in fact, lG(x)I < Gl0) = ngg
| €@ then

uch that if ly

thig
tha
t given ¢ > 0, there is a & > 0s
1/p
] < e

[LRk'f(x'Y)G(y)-f(x)G(O)lpw(x) dx

TherefOPe

(*) = J
N A
it Umklf(x—y)c(y)—f(x)c(m IPu(x

* A
lelz(s"’“‘y” Umklf(x-y)cty)—f(x)cm) |Pu(x) dx

b CJ
I A
lyl<g FRYI1 Ay + GO I£lp,w
|

1/p
) dx] dy

1/p
. &

[Baly)] &Y
yl28
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# G(O)ufnp,w[ |Baly) Im(y) dY:

lyl28
< elpf, + G(0)||fl|p,wj 1Pnly) | Ay
lyl2s
+ G(O)Hfllp,wJ |Pn(y) Im(y) dy-
lyl=8

. we have,
Since for n large enough, supp(ﬁn) c {lyl<st,

A
< ellpl-
lim sup || £*PaG-£-G(O)lp,w

n-o
Si ]
'NCe & > 0 was arbitrary, we have

A = 0.
lim sup Uf*pnG—f'G(O)Hp,w

n->o

t
. itive, we &€
Since all of the terms in the sequence are posl

finally that

= 0.
lim || £*PaG-£G(0)llp,w

n-w
From this, the result follows immediately-™
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CHAPTER 5

SPECIAL RESULTS FOR Lz(Rk)

In The
o "
Pem 2.3.9, we 8lve sufficient conditions on a function

8§ ang
a nump,
°T' @ > 0 50 that for all sufficiently small b, the set

{Em
bT
nag} forms g set of atoms for Lf(RkL

One jp
Portant condition on g is that it and g- be in the

Wiep
“r~type
- Pe space W(Lm,Lé). The reason for this is twofold.
T8t
» 1t
o 8Uaranteeg strong convergence of the sum defining the
ansion
- F £ (ef, Langa 2.3.7, Corollary 2.3.8). Second, it

abantee
s
- that the S-operator is defined and bounded above and
oW for
Fo all Sufficiently small b (cf. Theorems 4.1.5 and 4.1.6),
r

thig
se .
cond fact, an examination of the proof reveals that it

is &
Dly ne
CeSsary that g satisfy a “weighted B-condition”, i.e.,

the
Con s
clus1on Oof Lemma 4.1.3 with g = h.

If %y ik ; ) : By ik
Weé are dealing with the Hilbert space L°(R"),

Note that LZ(R¥) is not a Hilbert

k

hay, Fespect to the ordinary inner product. In L%(R*), we
¢ Grécp :

Set ehig’s Lemma (Theorem 5.1.3) which says that frames and
s

This means that as long as we can

of
Atoms are equivalent.

that
We have g frame, strong convergence of the S-operator

a.nd of the -
the “B-condition”

Pansion Sum are automatic. Thus,

is al
Most G ad
Sufficient in thisg case to guarantee that we have a

e
. Add: v -
ddltlonally, we require only that the sum of the squares

of
he translates
of g be bounded above and away from zero.
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In L?(R®), then, we do not necessarily require the rapid

Kk
decay of g in order to obtain a frame. For example, in L%(R") we

can use the Zak transform to give a sufficient condition that g

generates a frame which is not purely a decay condition (cf.

[DGM], [D1], [HW]). Thus, even though the weighted L2(R") theory

above contains LZ(RR) as a special case, it is still interesting
to see how far the theory can be pushed when the weight is 1.

Section 5.1 is a purely expository section in which we

present two results, due to Grochenig and Heil, concerning frames

and sets of atoms in Hilbert spaces. Heil’'s Theorem is used in

Section 2.5. In Section 5.2, we examine the B-condition for

L2(R*) functions and show how it extends the reservoir W(L™,L').
We prove an existence theorem for W-H frames in Lz(Rk) which is a
generalization of a theorem of Daubechies (cf. [D1]). We give
some examples of functions which generate frames for certain
values of the frame parameters but which do not decay very
rapidly. Finally, in Séction 5.3, we present a phase-space
localization result of Daubechies with a more tractable condition

on the mother wavelet g which enables one to obtain explicit

estimates on the localization parameters t8 and w .
Section 5.1. Frames and atoms in Hilbert space

In this section, we present two known results on frames in

Hilbert space, a result of Gréchenig proving the equivalence of
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frames and apoms In Hilbert space, and a result of Heil on the

““iqueness of the dual frame of a Hilbert space frame.

THEOREM 511, (Gréchenig) Let H be a Hilbert space and {x,: n<I}

n
2 “Ountap]¢ collection of vectors in H indexed by the set I. The

. s 'S
(e Is a frame for g with frame bounds A, B if and only if it i

a -1 =1
“BE oF atoms for H with atomic bounds B, A .
PROOF' (=) From the basic theory of frames we know that we can
wr‘ite
-1
X = 36,8 XpPXn
L
Where
Sx = <X,Xn>Xn.
L
and that
py 8 -1 2 < A7 ixI2
B %2 < ZJ<S X, %> 1" 5
n

Suppose that {x,} is a set of atoms for H with atomic
bounds A, B, Observe first that the linear functionals
C°Presp0nding to {x,} are each continuous by condition (2) of
Def‘inition 0.5.4, Thus, there exist vectors {ep} in H such that
an(x) = <x,ep>

£ : .
AL ey 8hd n<l.  Also, by (2), the collection {ep} is a fram

fo .
T H With bounds A, B. Now, we define the operators

Ti B =3 £°[1)
X — (<x,ep>)

R £%(1) —— H
(A4n) > F Ann.
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e have ; :
e immediately the following facts.

1' RT = IdH

2. T g .
'S a boundeq linear map with a closed range and T is

Cont X , 142
1nuously invertible on its range. The norm of T is B and

n - s .
O af ig = This follows from the fact that {e,} is

B
0 X<H, we have that

Ixi = (rT)x) < IRINTx] 2, < IRIITHIx].

IR 2 x| < Z I<x,en> 12 < [TIZIxIZ.
Byt Bk - o r
hls implies that |R|™ > A hence that [R] < A~>2

SI
e TplT) Is a closed subspace of H, it can be thought of

a-SaH.
1lbert SPace in its own right. Thus we can compute the

ad
Joint Opel"ators

*
T: InlT] ~= N

R: H — In(T).

NQW
SIVen A‘Im(T), yeH,

*
TAy < <A, (<y,ep>)> = Zhn <y,en> = <Z7\nemy>
n n

Whep

® the Sum ¢ is a frame. Also,
o~ onverges strongly since {e,} is
lve .

n YeH and AeIm(T)’

»*
< -y
R Y, A> = <y’ Z Anxn> = Z <Y, Xp> An = (<y, Xn”> ) AP
Thyg - 2

¥ *
T () = Zhnen and Ry = (<y,%p>).
AISQ n

Wi »*
® know that g I = ITI and that §R'J = [R. Finally we
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haVe t ha t

RT = Idy = (Idy)" = (RT)" = TR
ThePefOPe‘ - ) °
Ixf = P # * "
S0 thay T R)xI < 41 R Xl 2(p, < 1T IR T,
* -
ITH00% 5 F o001 s IR0,
SinCe ,'T*” e - n*
B %5 and |[R || = (IR s A™Y2 ye are done.m
M5 9,
ot o 2. Let y be a Hilbert space and {x,: n<I} a countable

atoms £,
r
H, and Jet {en} be the associated frame, that is,

for al] sl

X = Z<X»en>xn-
n

hen
e o .
ea(I) i Perator T is as defined in Theorem 5.1.1, Im(T) =

PRogE.

and ;
°Bly if {e;} is a basis for K.

(=) .
Suppose that T is surjective. Then T is

Vs o
ndective(in fa
This is so

ct Surjective) from £2(I) onto H.

A =
O then <A, Ty> = 0 for all yeH. But since T is

1]
(@)

» th'
'S means that <A,I'> = 0 for all [<f(I). Thus A

is in; z
Jec
tive. In other words, if (A,)<f2(I) then ThAnen =

i s
n

(e
) s
u
<A ppose {en} iS % bas' 2
T is for H. Let A<f°(I) be such that

= 0 for all nel. Thus {e,} is a basis.

=

0 for
a
11 TeIn{T). This means tbat for all yeH, <A, Ty>

h
€hee that <T*
§(A

0
A’y>=0 > ¥
hence that T A = 0. In other words, if A

n) then Zn;\ . L
"“n = 0 which implies that A, = O for all n<I hence
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et 4 5y

be y o

Thus 1m(T) is a closed dense subset of H and so must

Ne i
¥E we Present an example which shows that the assumption of

St!‘on
5 “onvergence of the expansion sum in the definition of a set

of at
oms jg ne We take H to be

L*(R)

Cessary in Grochenig’s Lemma.

' 80d fing o collection {g;} ¢ H and a collection of linear
funct .

i

°nals {3} Such that f = ¥ A;(f)g; in some sense (actually

Pointyy
Se almogt €verywhere) for each f but for which {g;} is not

a fI‘ame for H

EXAMP
LE 5
130 Let ® be a continuous function with support

“Onta;
Ned jp, the Suppose that ¢

Interval [0,a4] for some ag > O.

d0es
hot " .
Vanish in the interior of [0,ap] and fix 0 < a < ag. Now

b such tp by 12 that g is
- At ag < 1/b, and let g in L%(R) be such that g
pDOr-t .
&d jp [0, 1/b], & =1 on [0,a5] and g is unbounded on
ThEPefore we have the following facts.

here
are Constants A, B such that

0<Acx Zj]¢(x_na)|2 <B< o

Ter
e
are constants A’, B’ such that

0< A < Za(x—na) S B <w
NOw Con n
Sig
€r the Operator defined by

ST - Z Z<f’ EnbTna®> EmbTnag-
n m

Sun o
" the Pight-hand side converges almost everywhere as an
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i
ter‘ated Sum by the Carleson-Hunt Theorem to the function
f(x) bt Z g(x-na)p(x-na).

n
Now

b-iz:g(x—na)ifx—naJ = b'IZ:alx—na)
n n
3nd so is bounded above and below, and hence S defined in this way
1s continuously invertible on L%(R). Thus,

fix) = <S™'F, EupThag> EapTrag(x)
IL

and

AB'[£]3 < ) ) 1<S7'F, EmToag? I < B/A"IEIS.

n

Thus if the sum defining f converged strongly, then {E,,Thag}
Would be a set of atoms for L?(R). By Gréchenig’s Lemma, this
—— Iply that {EmwpThag} was a frame for L*(R). But this is
1mpossib1e since g is not bounded. Thus the sum defining f does
not Converge strongly.

Thus it is seen that while there may be many ways to write

f = Z Zan'm(f) EnbTna8

n

With Z;Z%lam,m(f)la equivalent to ”fﬂg, for a particular g, the
SUm need not converge in the L? sense. Such convergence forces

SOme good behavior on g.

Now we present a result due to Chris Heil on the uniqueness

°f the dua] frame.

133



5.1,
4 Let {xn} be a frame for H with bounds A, B, and let

{e,}
n be a .
£ collection of vectors dual to {x,}. Further assume that
or evep
¥ Ve, Z.-,<-y’ Xn>€en converges strongly in H. Then {e,} is a

Ix = Z<x, €n>Xn-
n

ObviouSIy I *
) 1s the identity on H. Now, we wish to compute I

Let
en
*
<I
Yyx> = e
<Y, Z <X, ep>xp> = Z <Y, Xp><X,ep> = < Z <Y, Xn>€n, X>
n n n
Since {xn}

Whepe
the last sum converges strongly.

by aSSUmptiOH,

is
a fba g
me With bounds A, B, {ep} is a set of atoms with atomic

b()u
Ndg A
* B Therefore, by Gréchenig’s Lemma, {e,} is a frame

Wi
th bounds B‘I A_i .

LEMM
A 5 .
1.5 et {xn}, {ep} be as in Lemma 5.1.4. Define the

operat
ors T, u r, v as follows.

Tt H — 5 421 T': 2%(1) — H
X = (<x,xp>) (An) f—-———%ZnAan
v ¢%(1) — H

U: § o 22”)
()‘n)  — Znanen'

X — (<x,e,>)
hen
PR ) - Im(U) and TU’ = UT’ = Idg, where R = In(T) = Im(U).
OOF
Obser‘ve f‘ipst that by Lemma 5'1.4' both {xn} and {en} are

fpa
I'nes ,
angd consequently the sums defining T' and U’ converge

for aj) (,\n)sez(”' Also, we know that Im(T) and Im
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are
closed subspaces of £2(I) and that both T and U are

cont i
tinuously invertible on their respective ranges.

Now we show that UT’ = Idmmu. If A = (Ay)eIm(U), then

A, =
n = <X,en> for some x€<H. Now,

T’ (A) )'_:n<x,e,,>xn = X

by assumption. Thus

UT' (A) = Ux = (<x,ep>) = (Ap) = A.

Simi
milarly, we can show that TU’ = IdimT)-
Now, I claim that, thought of as a map from Im(U) onto Im(U),

th :
€ adjoint of UT’ is TU’ and thought of as a map from Im(T) onto

To see this, let A= (A,;), ' =

I
m(T), the adjoint of TU' is UT’.
(¥a) be in €(I). Then
<. U T
yUT? (A)> = Z,mm'(/\)m

m
= Z m< Z AnXn, €m> = < Z TmEm» Z AnXn? -
m n m n

A].So,

<TL)? 3
T (), a5 = Zru' (') adn

m
= Z < Z 7nen, Xp>Anm = < Z ¥n€n; Z AmXm? -
m n n m

= UT’. Therefore TU’ is the

L Th *
hus, (Ur’)" = TV and (TU)
ldentity on Im(U) and UT’ is the identity on Im(T). Hence, if

But Im(TU’) ¢ Im(T). Thus A<Im(T) and
= Im(U). =

A<Im(U), then TU’ (A) = A
Thus Im(T) =

SO Im(U) ¢ Im(T). Similarly, Im(T) € Im(U).

THEOREM 5.1.6. (Heil) Let {x,} be a frame, and {e;} be as in

L ”
€mma 5.1.4. Then e, = S "Xn where
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Sx = nZ<x,xn>x,,.
PROOF. Let T, T’, U, U’ be as defined in Lemma 5.1.5. Observe
that S = T'T. e wish to show that U'U = S™. By definition, T'U
= Idy and by Lemma 5.1.5, TU' = Idpgy. Thus T'TUU = T'U = Idj.
Thus 'y = g1 Note also that by general results on frames, S =
T'T ig self-adjoint. Therefore, for all x<H,

- -1 -1
<X,ep> = Ux = TU'Ux = TS x = <S X, Xp> = <X,S Xp>.

It therefore follows that en = S™'x, for all n<l.m
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Sectjq
T 5.2, Existence of frames in L2(Rk)

I i :
7 this Section, we extend an existence theorem of Daubechies
nd gjy
© some €Xamples which show that the condition in this

the
Or‘em s
i
S not Necessary for existence.

THEORE
M
: 5.2.1. Lt g<sL®(R*) and let a > 0 satisfy
) fre exist constants A, B > 0 such that for almost every
X€R
2 a
A £ lg(x-na)|” < B,

2y .
lig .
b0 JZ;BG(J/b) = 0 where
Bals) = “ Zg(x—na)g(x—s~na)”m-

N thep .
b °X1sts a number bp > O such that if O < b < bg then

{EmbT

Z Y Supporteq. Then

I<e g 2
n n ’ manag> ' = Z Z l<f‘Tna§) Emb> ' 2

s bk n m
l _ 2
Ty, Z:f(x~l/b)g(x-na—1/b)l dx

ing
er
or €ach DEZk {b_k/z
t ]

Sy <fThag,Emp>} is the sequence of Fourier

icients
of the 1/b-periodic function

Y £(x-1/b)g(x-na-1/b).
1
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A .
Iso, Since f is compactly supported, the sum above is finite for

k
€ach xeR“ ang each nEZk. Thus, we have

nZ ; I<f, EnbTnag> | 9

Zf Z f(x-1/b)f(x-j/b)g(x-na-1/b)g(x-na-j/b) dx
nJQup T 7

Z f(x)g(x-na) Zf(x—j/b)g(xma—yb) dx
n
]

[}

it

]

JZ £(x)F(x-j/b) Zg(x-na)g(x-na—-j/bJ dx.

n
The last two equalities involve interchanges of summations and
integr’als which we will now justify. Certainly, if we can show
that the jast quantity converges absolutely, all previous
1nter‘changes will be justified. First, observe that since f is
Compactly Supported, there are only finitely many non-zero terms

in the supm over j, and by assumption (1), we have that

1/2

nZ l&(x-na) | | g(x~na-j/b) |
< B <€ m.

1/2
< (z Jg(x—na)lzJ [Z lg(x—J/b—na)lz]

Consequently, we have that

JZ[H‘(X) If(x-j/b) | Z |g(x-na) | |g(x-na-j/b)| dx

= ZBfJf(X)llf(x—J/b)l dx < ”f”gZB <o
JeF j<F
Where F ¢ 7* is some finite set depending on supp(f).

Now, it follows that if feL?(R*) has compact support, then

Z Z I<F, Emana8>l2
m

n

S Y | ¥ atenadgtena-gmi|, 1615 = b7 Bol 1.
P n
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Now, given an arbitrary fELz(Rk), we choose a sequence {fi} in
Lz(Rk) where f; increases to f almost everywhere and each f, has
compact support. Then for each ie€Z,

2 ~k 2 =
Y. Y I<f1,EmTnag>|® < b Boli£113 < b Bolf13.
n m

Also, the Dominated Convergence Theorem implies that for each n,

x
meZ -,

lim <fy,EnpTnag8> = <f,EppThag>.

i

Now, for any finite subsets, F and G, of Zk, we have that for all

ieZ,

2 -k
Y 1<f1, EnsTnag> | < b Boll£13,
n€F m<G
Taking the limit as i»w, we have that
2 -k 2
I<f,EmpTnag>|™ < b "Bollf|l2.
n<F m<G

Taking the supremum over all finite subsets of Zk, we have finally

that

2 -k 2
). ) I<f,EmTnag>|® < b Boll£l2.
m

n

If we let {fy} be as in the above paragraph, then we know

that

Z Z I <fy, Emanag> '2
m

n

b'lefi(x) = Z |g(x-na) 12
n

1]

+b % Z Jf‘,(x)f_‘_(x-.j/b) Zg(x-na)g(x-na-J/b) dx
10 .

b_kJIfi(x)l2 2: Ig(x—na)l2 + R(fy)

where
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IR(£y) 1 < |If;1207* };rsa(yb)

and hence that

Y ) I<f1, EnTnag> 1”2 b“‘[A- Zsa(yb)]unné.
m j#*o0

n

Moreover, we can use the arguments of the previous paragraph to

show that

. 1/2
(L T 1<1, EwTmae 1)
n m

1/2
2
[ ) Z | <f, EnbTnag>+<f1=f, EnbTnag” | ]
n

[Z Z |<f Emanag>| ]1/2 + [Z Z |<f1"f’Emanag>]2]1/2

n

/2
[Z Z <€, EnbTnag? | ] + 5B 2 £, .
Finally, we have that since both sides above are finite,

2 1/2
[Z ) 1<f, EnsTnag? | ]
T g 2 e k/2
[Z ) 1<f1, EnoTnag? | ] -b el
n m
144 -k/2 1/2
[A— };Ba(J/b)] I£1l2-b T
j¥o ¥

Letting i-® on the right hand side, we have that for all fe<L®(R¥),

T L 1< BTt 2 57 (4 7 matym il
m j¥o

IA

IA

v

v

n

By hypothesis (2), it follows that for all sufficiently small

b > 0, {EmTnag} is a frame for L*(R*).m

REMARK 5.2.2. If a function g satisfies condition (2) in Theorem

5.2.1, we say that g satisfies the “S-condition.”
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COROLLARY 5.2.3. If gEW(Lm,Ll), then g satisfies the B-condition.
PROOF. This follows immediately from Theorem 4.1.3, when w = 1

and g = h.m

PROPOSITION 5.2.4. There is a function gELz(R) such that
(1) gew(L®, LY,
(2) g does not satisfy the p-condition, and

(3) (g,a,b) generates a frame for L*(R) for all 0 < a, b < 1.

PROOF. Let g(x) = ?J%ff—X) Then 8(2) = 1_, » 4 57(¥).
- YT _ sin(ns)l
Claim: essxsup‘ z:g(x na)g(x-s na)l = I_—E§_~_

ne zZ

Proof. E:g(x—na)g(x—s-na)

ne Z

2:(gng)(x~na)

neZ

a™! ) (gTeg)"(Jra) e
jez

2Mixj/a

in LZ[O,a] since Y (gTsg)(x-na) is bounded on [0,a] and hence is

in L%[0,al,

2Mixj/a

Z (8*E.8) (j/a) e
jez

Z eznlxj/aJ'g(y)g(j/a_af)gs(\j/a—'a’) d'a'.
ez

Now, since g is supported on [-1/2,1/2] and since a < 1, the only

non-zero term in the sum is the j = O term. Thus,

ne Z

2: (gTsg) (x-na) = J;—zniys[g(w)]z dy

. ar = =5

2 om sin(ns)
= e ¥= L
-1/2
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Now, clearly geW(L™,L'), and for each NeN, letting b = 1/2N,
we have that
‘sin(nj/b)

nj/b
je ZX{0}

since when j = mN, where m<Z, we have that

lsin(nj/b)
nj/b

= 2/ 1/m.
Thus, g does not satisfy the B-condition. It is easy to
see, however, that (g,b,a) generates a frame for LZ(R) for every O

< a,b £ 1 which implies that (g,a,b) generates a frame for those

same values of a and b.m

PROPOSITION 5.2.5. There is a function g<L?(R) such that

(1) gew(L®,Lh,

(2) g is non-negative,

(3) g does not satisfy the B-condition, and

(4) (g,a,b) generates a frame for L%(R) when a = 1, b = 1/N, NeN.

PROOF. Let

0
g(x) = nZO’][z—n(zn_l)’z—n—1(2n+1_1) )+n(x).

Claim 1:
}: |g(x—n)|2 = 1.
n

Proof. Let x€«R. Then x = m+r for some m<Z and r<[0,1). Now

since
[ae]
[0,1) = U [27"(2"-1),27" " (2™1-1))
n=0

and since those intervals are disjoint, there exists a unique

number Jj such that rE[Z—J(ZJ—l),Z_Pq(zj*l—l)). Now,
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Y lgx-m 1% = ) lglr-(n-m) 1 = lg(r+)) 1% = 1.0
Claim 2. ZBl(jr) = 0, if reZ; = », otherwise.
JZo

Proof. Suppose that r<Z. Clearly, we have that g(x)g(x-jr)

It
o

unless j 0. Thus,

‘ z:g(x—n)g(x-jr—n) =0
n

unless J 0. This gives that B;(jr) = 0 if j = O.

Suppose that r¢Z and that r is rational. Then there is a

sequence {mj} ¢ Z and {q;} < (0,1) such that jr = my+q; for j # 0.
Let gq; = c/d in lowest terms. Then qj. = qj for all j # O and

always, qj = p/d where p =0, 1, 2,..., d-1. Thus, there are

infinitely many j for which q<[1/2,27(2-1)]. For such j,
ess Syp g(x)glx=-jr) 2 1

which implies that B;(jr) = 1 for such j, whence

ZBl(jr) = o.
JF0

Suppose that r¢Z and r is irrational. Then the collection of

numbers {q;} is dense in (0,1) and also in this case, we have that
for infinitely many Jj, qJ€[1/2,2-j(21—1)]. Thus, we are done by

the same argument as above.n

Now, clearly, g is non-negative and |gll,,1 = ». Claim 2

asserts that

Z&(j/b) =0
j=*=0

whenever b = 1/N, NeN. Thus, by the argument of Theorem 5.2.1,

(g,1,1/N) generates a frame for L2(R) for all NeN.m
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DEFINITION 5.2.6. For any function g, each jezk, and c¢c > O,

define

A = esiiggplg(x—jc) [

THEOREM 5.2.7. Let geLz(Rk) be non-negative and bounded, with

Bals) as defined in Theorem 5.2.1 for some fixed a > 0. For any c

> a, there is a sequence of open sets {0} ok With 0y < Qgpctjc,

and a constant d > O such that for any sequence {sj} with s;<0j,
Y Bals)) 2 d) Aje
3 ]

PROOF. By the definition of Ay ., there are sets E; ¢ Qc+jc such
that |g(x)| 2 Aj /2 for all x<E;. We may assume without loss of
generality that Ag,. > O for if not we could replace g by an
appropriate shift of g. This would not alter the result as B,(s)
is unaltered when g is shifted. Now, fix jEZk and let

fy(t) = | (Eo+t)nEy]

for temk. Then fJ is continuous, non-negative and we have that

ij(t) dt = JJ1Eo(x—t)1EJ(X) dx dt = J}EJ(X) de1Eo(x—t) dt

= |Eol IEj] > O.

Thus, fj(t) > 0 on some open set in Rk, call it OJ. It is clear
that O; ¢ Quc+jc for if t<0; then certainly we must have (Eg+t)nE;
# 2 and moreover that (Q.+t)n(Qc+jc) # @, or Qun(Qc+jc-t) = 2.

This means in particular that jc-teQp. or that teQp.+jc.

Now, choose sj<0; for each j. Then

Balsy) = H E: |g(x—na)||g(x-sj—na)|‘|°°
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il

esicggp Z; lg(x-na)|lg(x-sj~na) |

v

ess _suplg(x)|lglx-s;)| 2 Xg,c/4 Aj,c
X€ Q¢

since |g(x)|lg(x-sj)| 2 Ag,c/4 Aj,c for all x€Ey. Thus,

Zsa(sj) > A, /4 ZAJ,C
3 3

and we are done.=m

REMARK 5.2.8. Clearly, if geW(L™,L'), then ¥ A; . = » for all ¢ >
0, so for such a g, Theorem 5.2.7 says that for some sequence of
points {sj} in Rk, Y Ba(sj) = w. Also, it says that the sequence
{sj} can be taken to be arbitrarily “spread out” in Rk, that is,
sj€Qzc+Jjc for any sufficiently large c¢. If for arbitrarily small
b > 0, we are somehow able to take S; = j/b then Theorem 5.2.7

says that g fails to satisfy Daubechies’ B-condition. In this

sense, Theorem 5.2.7 is a partial converse to Corollary 5.2.3.

THEOREM 5.2.9. Let g be as in Theorem 5.2.7. Suppose that for

some £ > 0 and r > 0, we have that |g(x)| 2 £ for almost every x

in Qp, Then

) Balir) 2 &) Ay,
3 b

PROOF. As in the proof of Theorem 5.2.7, we have that
Ba(Jjr) = ess ;Euplg(x)llg(x—jr)l 2z ess sup|g(x)|lg(x-jrll
x€R X€Qp

> £ ess suplg(x-Jjr)| = Ay .
x€Qp

The conclusion now follows easily.m
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REMARK 5.2.10. Theorem 5.2.9 is a partial converse to Corollary
5.2.3 for if geW(L®,L'), and if g satisfies the conditions of
Theorem 5.2.9 for each r > 0, then we must have that ¥ B.(j/b) = «

for all sufficiently small b > O.

LEMMA 5.2.11. Let A be a countable index set and let {X“)nq be a

sequence in R“ such that for some non-negative function h on [Rk,

we have that ; h(x,) = w». Let {Pi}ch be a countable collection

of disjoint subsets of R with the property that {x,} < U P; and

such that there exists a constant M > 0 such that for all ie€I,
#{n<A: x,€P;} £ M.

Then there is a subsequence {X““)}icl such that for all i,

Xn(1)€Pi, and

Zh(xn(i)) = oo,
jel

PROOF. Suppose not, that is, suppose that for each subsequence

{Xn(1)} chosen so that Xn(1)€P; for each i<I, we have that

Zh(xn(i)) < .

jeT

Then by choosing at most M distinct such subsequences, we could
exhaust the entire sequence {x,}, that is, we could choose for j =
1,2,..., M, {an(i)} where for all i<l and each j, X, (1)€<P;, such

j

M
that {x,} = jL_Jl{an(i)}i<I. Thus we would have

Zh(xn) = i
=1

ne A

Zh(an“,) < o

As this contradicts our original assumption, the lemma is proved.m
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THEOREM 5.2.12. Let g, a, and Ba(s) be as in Theorem 5.2.7.

Suppose there exists a non-increasing function f on [0,©) such

that for some constants c;, c5 > 0,

cif(Is]) < Bals) =< cof(Is])

for all s€mk. Then for every r 2 a,

there is a constant ¢ > 0

such that

¢y Ayr S ) Balir).
] i

PROOF. For the i “quadrant” of R* (including the adjacent

coordinate axes), define the cube Qi . by Q; . = [O,Psﬂk where

k . . . .th .
£;€R” is that unique vector in the i quadrant whose entries are

either 1 or -1. Then the collection of cubes {Qj +nr: n in the

ith quadrant} forms a partition of the ithquadrant of RK
Now, choose a sequence of points {sj} c Rk as in Theorem
5.2.7 so that s;€Qr+jr and each s; sits in the interior of some

cube Qi  +nr for some i and n. Since s;<Q,+jr, it is clear that

there is a number M > 0 independent of n and i such that
#{jEZk: Sini,r‘H’lr‘} < M
Given n in the pth quadrant, we have that {nr| < |x| for all

x€Qy ,r+nr.  Thus

Y Balsy) sc2 ) £UsyD

s35<Qy | p+nr s;€Qi,c*0r
-1
< coMf(|nrl) £ cpoey MB,(nr).

Then, summing over all n in the ith quadrant gives,
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Balsj) < cchIM Bal(nr).

sj€ith quad. neit? quad.

Finally, we have that

k
) Bals)) = f Y Balsyp
Jj 1=1

- sjéith quad.
ok
< czcl_lMZ Balnr) < zk_lczcl—lMZBa(nr')
i=1 .th n
n<i quad.
» k
where the extra factor of 2k 1 comes from the fact that an ne€Z is

in Zk_1 quadrants when it lies on one of the coordinate axes.
we have that for some constant c,

c ZAJ"' < ZBa(jI‘).l
J J

Thus, by Theorem 5.2.7,

. 2,k
COROLLARY 5.2.13. Let g be a non-negative function in L“(R’) and

let f be a non-increasing, function on [0,w) such that

(1) Bals) < f£(|s|) for all s<R*, and

(2) for all r > 0,
Zf(lnr‘l} e
n

Then geW(L%, L').
The proof of Theorem 5.2.12 shows that

2: Balsy) < c 2: f(lnrl)

. th
nei quad.

PROOF.

sJ<ith quad.

for some constant ¢ which implies that
Z&wﬂScZNmﬂ<u
J n

By the way the points {s;} were chosen, we have that for some d >

o,
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dZA“s meﬂ<m
3 3

whence geW( Lm, LY. .

REMARK 5.2.14. In the existence theorem for W-H frames for Lz([R)
found in [D1], Daubechies makes the assumption that for some £ >
0,

Bs) < C£(1+IS|2)(1+€)/2

for every s€R and some Ce < . Corollary 5.2.13 says that this

assumption implies that geW(L™,L').
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Section 5.3. Phase-space localization

The following theorem is similar to a theorem in [D1]. The
conclusion in this theorem is the same as that in [D1], but the
condition on g required is more transparent and allows the values
of important constants to be computed easily. The crucial step is
contained in the following lemma. The proof of the theorem is

otherwise identical to that in [D1].

LEMMA 5.3.1. Lot geW(L(R),L*(R*)), let a, b > O be given. Then
for every £ > 0 there exists ts > 0 such that for every T > 0, and
t 2t , we have
€
2: ess sup 2: |g(x-na)| |g(x-na-j/b)| < .
Ix|<T, i

J |x-jspler IB12TH

PROOF. Given €9 > 0, choose M > 0 so large that letting gy =

g1Q » we have [ g-gull,,1,a < €0- Also, choose L > 0 so large that
M

Y | ¥ tetxmariigtena-ym|, < o
L JI3L &
Such an L exists by Lemma 4.1.2. Note that

{x: |XI<T, Ix=J/bI<T for all [JI<L} < Qriisb.

Now,

z: ess sup 2: |g(x-na) | [g(x-na-j/b)|

Ix|<T,
Ix-j/b|<T |PRl2T+t
< = oy -
< 2: ess_sup 2: |g(x-na) | | g(x-na-j/b) |
1 J oL n
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+ Z ess sup Z |g(x-na) | |g(x-na-j/b) |
<
[g0er,  EST. e ey

| x=j/b|<T
= (*).

Now, choose tg so large that if t 2 tp and if nae(Qyn)c, then
(Qu+na) N Qrsp = @. For this, it suffices that T+tg-M > T+L/b
or that tg > M+L/b, independent of T. then if t 2 tg, Lemma 4.1.2

says that

E: ess sup 2: |gu(x-na) | |g(x-na-j/b) |
I<L x€Qr+Lsb Ina|2T+t

Z H Z | (g~gx) (x-na) | | g(x-na- J/b)|H
T 'R

= go+0+ 2:” E: | (g—gu) (x-na) | |g(x- na—J/b)l”
j n

k Kk
< got2 |lg-gullo,1,a N8-la,1,1/b < €0(1+27]18-1l,,1,1/0)-

Now, given £ > 0, choose g9 > O so small that eo(1+2ng-Hm,11/b)

< £. Let t€ be the tgo corresponding to that gg.m

THEOREM 5.3.2. Let geW(L™(R),LY(R*)), BeW(L®(R*),LY(R")) and

suppose that (g,a,b) generates a W-H frame for Lz(Rk) with bounds

A, B. Then given £ > 0O, there exists te’ we > 0 such that for all

feLz(Rk), every T, Q > 0, and every t 2 te and w 2 R

-1
[t- T < EmTrg>EwTms g,
(n,m)e€B

1/2

s (B/7A) "TLI(I-P)flla+] (I-Q ) fl21+elf 2

where B = B(g,T,Q) = ((n,m)€kaZk: Ina|<T+t, |imb|<Q+w}, Q.f =

o v
f1[—T,T]’ and PQf = (f1[_Q,Q])

151



PROOF. Fix T, Q and let

B(t,w) = {(n,me<Z*Z*: |nl<a ' (T+t), Im|<b ' (Q+w)}.

Then,
=1
Hf‘ Z <f: Emanag>EmanaS 8“2
(n,m)eB(t, w)
-1
= ” Z <f1 Emanag>EmanaS 8“2
(n,m)eB(t,w)®
= Ssup Z <f, EmpTnag><h, E“‘bT“aS_lg> l ’
IBl2=1" myeB(t,w)®
Now,
l Z <f, EmTnag><h, EmanaS-lg> l
(n,m)eB(t, w)®
< Y 1<Qf,EnTnag> | 1<h, EnpTnaS” &>
Ina|<T+t,
m
=1
5 Z |<(I-Qp)f,EnbTnag>| |<h, EmpTraS &>1
Ina| <T+t, ’
m
+ Z |<P £, ExpTrag® | | <h, ExpTnaS 8> |
Q- mb 1 na s Embina
|mb | £Q+w,
n
-1
£ Z |<(I-P)f, EnpTnag> | | <h, EnpTnaS &>
| mb| £Q+w,
n
= Nj+No+Ng+Ng.

Now, by Cauchy-Schwarz,

1/2
Ngs[ Yy |<(1—o,r)f.Emanag>|2]

Ina|<T+t,
m
L aye
Z |<h, EmpTnaS g>| ]
|na|<T+t,
m
< (B/A)Y?

H(I-QT)fuzuhuz.
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2 172
Z |<(I-Pn)f, EnbTnag> | ]

| mb | <Q+w,
n
-1 2 172
Y I<hEnpTnsS g>|]

| mb| <Q+w,
n

< (B/A)1/2||(I—PQ)sz"hllz,

since if {EppThag} is a frame for L%(R*) with bounds A, B, then
{EmpTnaS 'g} is a frame with bounds B}, A™%.

An application of Cauchy-Schwarz, the argument in the proof
of Theorem 5.2.1, the self-adjointness of S, the assumption that

(g,a,b) generates a frame for Lz(Rk). and the fact that HQTfU2 <

Ifll2 gives that

N; < ||f‘||2||S_1h||2b'kZess sup l Z g(x—na)g(x-na—,j/b)l.

IEPOAPELIES
Now, since
|<PQf,Emanag>l = |<(PQf)A»E-naTmbg>|
and
1<S7'h, EmbTnag> | = 1<(S70)", EpaTus> |,

and since HPQfHZ < |fll2, we have as above that

Ny < ||f||2||s‘1h||2a"‘zess sup l ) Bly-mb)§(y-mb-j/a)|.

l71<Q, &
J ly-jral < |mb| £Q+w

By Lemma 5.3.1, for every € > 0, there exist numbers te’ wc

such that for every t 2 te and w 2 wc, and every T, Q > 0O,

sup  (Ny+Np+Ng+Ng) < (B/A)Uz[Il(I—Q,r)f||2+|l(I—PQ)f||2]+e||f‘1|2.-

Ihil2=1
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