ABSTRACT

Title of dissertation: DEEP ANALYSIS OF BINARY CODE
TO RECOVER PROGRAM STRUCTURE

Khaled ElWazeer, Doctor of Philosophy, 2014

Dissertation directed by: Professor Rajeev Barua
Department of Electrical and Computer Engineering

Reverse engineering binary executable code is gaining mtgeest in the research
community. Agencies as diverse as anti-virus companiegjrisg consultants, code
forensics consultants, law-enforcement agencies andrnatsecurity agencies routinely
try to understand binary code. Engineers also often neeeltog] optimize or instrument
binary code during the software development process.

In this dissertation, we present novel techniques to extbadcapabilities of ex-
isting binary analysis and rewriting tools to be more sdalabandling a larger set of
stripped binaries with better and more understandableutsiigs well as ensuring cor-
rect recovered intermediate representation (IR) from esasuch that any modified or
rewritten binaries compiled from this representation wookrectly.

In the first part of the dissertation, we present technigogedover accurate func-
tion boundaries from stripped executables. Our techniqsespposed to current tech-
niques ensure complete live executable code coverage ghiglity recovered code, and
functional behavior for most application binaries. We us¢ic and dynamic based tech-

niques to remove as much spurious code as possible in a safeemtaat does not hurt

code coverage or IR correctness. Next, we present statioitpees to recover correct
prototypes for the recovered functions. The recoveredopypes include the complete
set of all arguments and returns. Our techniques ensureatdsehavior of rewritten
binaries for both internal and external functions.

Finally, we present scalable and precise techniques toseedocal variables for
every function obtained as well as global and heap varialleerent techniques are
represented for floating point stack allocated variablesraemory allocated variables.
Data type recovery techniques are presented to declaremgéardata types for the de-
tected variables. Our data type recovery techniques caneemteger, pointer, structural
and recursive data types. We discuss the correctness ad¢beared representation.

The evaluation of all the methods proposed is conducted oare&Vrite, a binary
rewriting framework developed by our research group. Anartgmt metric in the evalu-
ation is to be able to recompile the IR with the recoveredrimfation and run it producing
the same answer that is produced when running the origirgiugable. Another metric
is the analysis time. Some other metrics are proposed toure#ise quality of the IR

with respect to the IR with source code information ava#gabl

DEEP ANALYSIS OF BINARY CODE
TO RECOVER PROGRAM STRUCTURE

by

Khaled ElWazeer

Dissertation submitted to the Faculty of the Graduate Sabfabe
University of Maryland, College Park in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy
2014

Advisory Committee:

Professor Rajeev Barua, Chair/Advisor
Professor Manoj Franklin

Professor Shuvra Bhattacharyya
Professor Donald Yeung

Professor Jeffrey S. Foster

(© Copyright by
Khaled EIWazeer
2014

Acknowledgments

First and foremost, all praise and thanks are due to ALLAHgltty. He is the one
who blessed me with the ability to achieve this success.dgunard times in the course
of my PhD, | always return to him and ask him in my prayers andlivays answers my
prayers and supplications.

I'd like to thank my advisor Professor Rajeev Barua for all msmnous help and
support along the PhD years. His continuous advice has allvegn shedding the light
in my way.

| also thank my dissertation committee: Prof. Manoj Framkitrof. Shuvra Bhat-
tacharyya, Prof. Donald Yeung and Prof. Jeff Foster for piiag to serve on my com-
mittee and for their valuable feedback.

I'd like to thank my research group members including Kapparna, Matt, and
Jim. Without their hard work, help and support, this disssh would not have been a
reality.

I'd like to thank my father Dr. Mohamed ElWazeer and my motbBer Mona
Ibrahim for all what they did for me. Being a homeschooled kiy, parents were my
only teachers in almost all pre-college studies. They werg patient with me and stood
behind me until I got to this point in my life. No words can delse my gratitude to them.
I'd like also to thank my brother Ammar, my sister Salma and tnesband Ahmed for
their continuous support and prayers.

Special thanks to my wife Soha. From my first day in US, we wegether. We

faced all the challenges together. Without her being besiel@nd providing all kinds of

care and support, this dissertation would not have beenlpesShe always takes away
from her time and duties to make sure | have the suitable @amvient to excel in my
work. | will never forget all what she did for me.

Special thanks to all my friends at the ‘Tauba’ community.e Weekly gathering
we have been holding since | came to US affected my life gre&tbecial thanks to Dr.
Hisham Abdullah, Dr. Tamer ElSayed and his wife for their iediate support during
the first year of my PhD. Special thanks to my dear friend Mod@dukashef for all what

he did for me during my PhD years.

Table of Contents

Vi

List of Figures

@uon L C .. 101
3.3 The memory stack layout after executing a tramoollnb ca]

...... 103
£ ack Functiona xample 107
A acy of reqgister argumentsandreturns 114

6 Overhead of the trampoline function in the rewri

4.4 _Modified Data Flow Rules for FP Stack Decoding . cee.n 132

4.5 Translatlon to IR rules When some indirect | |umos aresmWedj 134
. 147

. 148

165
.. 167
. 170
175
177
178
. 179

viii

Chapter 1: Introduction

There has been tremendous amount of ongoing work on prognaiyses and un-
derstanding on the source code level. Many tools as wellsesareh efforts have taken
place to analyze source code programs for variety of readdasy advanced tools ex-
ist for source level bug detection, vulnerabilities dategtmodel checking, verification,
memory analysis, debugging and code optimization.

In practice, often times users need to apply the above aglys the executable
level instead of applying them on the source code level. &aes good reasons for this.
Most of the applications used on a daily basis are IP pradestéh no access to the
source code. In other cases, applications utilize thirtysmftware and components with
no access to their source code. Sometimes, the softwaredkds to be analyzed is a
legacy software system with no available source code. Ithaie scenarios and others,
users are left only with executables to analyze.

Even if the source code of software applications is avaglabls usually not a good
representative of what actually happens during the bingegwion. There is a well-
known phenomenon called¥hat You See Is Not What You Execute (WY SINWAX)
Compilers translating source code into binaries often doifications on the source code

by introducing new variables, defining a memory layout f@ pihogram and doing whole

program transformations. These changes can cause sonmerahilities not existing in
source code to start appearing in binary executables. tnrizgearchers started realizing
that some compiler optimizations might not be safe and neghte security breaches to
come up in the optimized code [72].

Sometimes, the binaries do not represent source code leechim®difications that
happen after the compilation process took place. For exandghamic instrumentation
might be inserted into the binary after being compiled to iowrcertain program behav-
ior. Another example is bad code injection and malware.

Even if all of the above scenarios do not happen, source codgsas might be
difficult. One reason is because of having a code base wiittemore than one source
language each with different syntax and semantics.

Reverse engineering executable code is also becoming estyrémportant in the
cyber security domain. Recently, the rate of cyber-attacksutnerable application code
increased significantly. In 2010, the federal governmeseoled an average of 15,000
attacks per day [27]. Most of the attacks were utilizing \euwabilities in application code.

Because of all the above, analyzing executable code is vegngal and it is com-
monplace today. Agencies as diverse as anti-virus compaseeurity consultants, code
forensics consultants, law-enforcement agencies andratsecurity agencies routinely
try to understand binary code.

Unfortunately, current tools and research for handlingcetables is not going at
the same pace as the development of source level analytss Td® executable analysis
is usually harder because of the limited amount of infororaavailable in executables
compared to source code. This also results in less pregséigef the same analyses

2

done on binary executables compared to source code.

In this dissertation, we aim at converting executables tmtmmediate representa-
tion (IR) similar to the IR obtained from source code. By doihgtwe directly enable
the reuse of all current advanced source level tools foryaima executables without the
need to develop new custom tools for this purpose.

To make the maximum benefit of the source level analyses mgrom the IR re-
covered from executables, we identify four main properted should exist in any tool
recovering IR from executables. Our goal in this dissestais to have all the four prop-
erties in our system. Unfortunately, current existing exable level tools converting

binaries to IR cannot achieve all combined four properflds four properties are:

1. Functionality The recovered IR should fully represent all aspects of tpeatiti-
nary. For this to happen, we define the functionality propeftthe IR to be the
ability to recompile the IR producing a rewritten binary thhesembles the input
binary for all input data sets. This is a strong guarante®aidrrectness. This also
makes it easier for applications like binary debugging whesers can update the
IR with print statements, addition, or removal of code andmeixing the effect of
that on the binary behavior. In general, code updates aglpeonly if the IR is
functional. Any kind of compiler passes and static/dynaarieven hybrid analy-
ses can run on the recovered IR and the results of such passgsasanteed to be

correct if the IR is functional.

2. Quality The IR should be of a high quality. We will use the term higheldR to

refer to the IR quality as well during the course of this ditsteon. The IR quality

here means that the IR contains the same kind of informatianare available in
source code. For example, the IR should have functionstitméPIs, variables
and data types. The more features the IR has, the highetyttadi IR is. This
enables better code understanding by users as well as betprts from source

code compiler passes that might be run on the recovered IR.

3. PrecisionThe recovered information about the binary that is represkim the IR
should be precise. The conversion to IR process should eetlg same informa-
tion that is presented in the original source code of thergimgthout missing some
information or adding extra too many false positives. Assameple, if a function
takes only two arguments in the original binary, we shouttbver only two argu-
ments. If we recover less than that, we might fall into a fiowlity issue since
the recovered IR might not work in all cases. On the other, sidee recover six
arguments, the IR will probably be working fine, but we wilMaaa less precise IR
that is harder to analyze and understand. The added falg&@@sguments might
introduce fake side effects and data flow edges that migheraalg analysis run-
ning on the IR less accurate and effective. Users will hase teadable recovered

code from the IR.

4. Analysis Scalability The analyses used to recover information from the IR should
be scalable. The system should support arbitrary largeibsaithout taking too

long time to analyze those. This makes the system practiasé.

Achieving all of the above four goals is very hard if we wanth@ndle any ex-
ecutable in the world. In this dissertation, we show thatrfarst of the compiled ap-

4

plication code that is used now, all these properties coetboan be achieved. We do
this by laying out specific assumptions and developing tegtas that can always work
for binaries satisfying these assumptions. These assongpéire usually valid in most
application code as we show in the dissertation.

This dissertation discusses various techniques that aessary for any system re-
covering IR from binaries. We discuss the recovery of funej function boundaries,
function APIs, variables, and data types from executalias dissertation is not claim-
ing to discuss all aspects of the IR recovery process. Thersane aspects and chal-
lenges that this dissertation does not present solutioasdaare presented in other dis-
sertations and published work.

In the next few sections we describe briefly the challengetewbacovering these
specific IR aspects mentioned above and present why theo$tagart techniques before
ours fail to achieve all the four properties stated above. dd/@ot present a complete
literature review in this chapter. Every chapter will beldaled by a detailed literature

review related to the topic of that chapter.

1.1 Functions Recovery

Current binary analysis and rewriting tools cannot combiveefbur properties de-
scribed above while recovering functions from strippedcexables (those without any
relocation, symbolic or debugging information). This isaese of the challenging trade-
offs the analyses face.

In binaries, distinguishing code from data buried inside ¢bde section, such as

literal constants, jump tables, and literal tables, isditfi Techniques such as recursive
traversal[62, 67] that track direct control flow paths frame binary entry point fail to
detect all possible code sequences in a binary because eXigtence of indirect control
flow paths.

Other techniques liké [31] [30] [55] heuristically deteclysome code entry points
by observing certain function prologue patterns which $gachon-guaranteed code cov-
erage. We call such techniquiesst effort techniques

Speculative disassemblyas proposed to achieve completeness by disassembling
all portions of the binary including portions that could biner code or data. The cost of
that is sacrificingaccuracyby having extra recovered spurious code. The outputtion-
ality is also sacrificed since disassembling all possible codergsat in having conflict-
ing code sequences. In addition, the existence of many@mifunctions has two more
negative consequences: (i) it is difficult to manually coet@nd a spurious code; and (ii)
it makes code analysis inaccurate since spurious codelintes non-existent dataflow
relations and side effects.

In chaptef 2, we present techniques that can recover aedurattion boundaries
from executables with guaranteed code coverage. We presealttechniques that iden-
tify likely spurious functions not only based on their prgle patterns ‘like most of the
related work’, but also based on what these functions do actme ‘their semantics’.
We also present dynamic based techniques to further entiamspurious code detection
process.

Our function recovery methods are based on speculativestigably. Instead of

disassembling the executable from every possible bytenhffge only disassemble from

6

code addresses that appear as constants in any of the dotecgigments. This will cover
all functions and all executable code in the binary provitlet the binary does not use
computed addresses. We keep all conflicting code aroundusadunction inlining to
merge split functions together. We identify likely spursofunctions by examining the
semantics of such functions and identifying invalid bebawviike accessing out of bound
memory or using conditional flags in an inconsistent way. Sdentified functions are
hidden from the user, but they are included in the rewriti@aities for safety since they
cannot be proven not to execute at run time.

Our techniques prove to be very effective in practice. Weahte to identify func-
tion boundaries with almost 100% detection accuracy. Weaelmost 96% of the spu-
rious functions in the IR. We never miss any actual functicat ttan be executed in the
binary during our recovery process. None of our identifiegrigus functions gets exe-

cuted at run time which proves that our techniques are randteliable.

1.2 Function APl Recovery

Recovering function APIs usually mean recovering argumantsreturns as well
as the function calling convention. In this dissertationfaeus on recovering register
allocated arguments and returns of our recovered functiesalso describe how exist-
ing techniques to recover memory arguments and returndfaceal by having possible
inaccurate function boundaries from our function bouretarecovery techniques.

The first challenge behind identifying accurate and yet detepegister arguments

information is that callee-saves registers should not hevteal as being arguments or

returns only because they have been saved and then restmkdnba function. Stat-
ically tracking which registers are used as callee-savestidrivial. Some techniques
identify callee-saves based on dynamic analyises [10]. Tdlggam with such techniques
is that they might miss arguments if the input data set is shahthese arguments are
not accessed. In this dissertation, we present a statioitpeh that can recover such
callee-saves accurately without missing any of them.

To recover an accurate set of register arguments and retwmsiccurately and
completely identify callee-saved registers. We define leeaaved register to be a reg-
ister saved to a certain memory stack offset and then restmaek from the same stack
offset. The save operation should dominate the restoreabperand the stack memory
location used for the save operation should not be read ttewttio inside a certain func-
tion. We use a modified version of the value set analysis tgalerby Balakrishnan and
Reps|[5] to accurately track the memory stack.

The second challenge is recovering external function ARtsensuring their cor-
rect execution while passing all needed arguments. Apam Standard libraries which
have a known prototype, external function prototypes at&nown to the static analyzer
and needs special handling. We present a static techniquienisures that for any ex-
ternal function following a known compiler calling convemnt, all arguments are passed
correctly and the execution of the recompiled IR is corréét.use a trampoline function
that gets executed at run time and passes all needed arguniig trampoline function
adjusts the memory stack such that it appears to the caltechak function the same way
it appears in the original input binary.

Finally, having possible inaccurate function boundariessent in the IR makes

8

current memory allocated argument recovery techniquesarpletely functional. Such
techniques usually assume there is a return address on tiog sthick of a function which
is not always true if function boundaries are inaccurate. éxample, if a single binary
function is split into two parts in the IR (because of inaatarboundaries), this makes
the second part of this function in the IR having no returnradsl on top of the stack.
Current published memory allocated arguments recovennigals have to account for
these situations. We present the necessary changes tdebbe&ues to account for the
inaccurate function boundaries problem. The return addsealways abstracted in the

recovered stack array in the recovered IR such that thidgmols avoided.

1.3 \Variables and Data Types Recovery

Current tools recovering variables and data types from d¢abtes cannot have all
the combined four propertidsinctionality, scalability, precisionand quality. Some of
them have very high precision at the cost of no scalabilily [athers are scalable but
with low precision [31]. Many of the current tools cannotaeer functional IR while
recovering variables and data types.

Existing tools recovering variables from executablesroftess the special types of
variables like the ones allocated on the x86 floating poentist Such variables are very
important to recover and will render the IR incomplete if netovered. IDA Pro[[31]
is the only tool known to us that can recover x86 floating pwariables in some cases
with some sort of a heuristic that might fail and hence th@veced code is not always

functional.

In chaptei # of this dissertation, we present a sound teakrtig recover all vari-
ables allocated on the floating point stack in x86 architestuThe techniques presented
build a linear system of equations based on the low levelaijmers done on the binary
level to determine the floating point stack height at all pamg points including program
points located after indirect control transfer instrunonvhose targets are usually not
known statically.

For memory and register allocated variables, current tealsvering such variables
are either imprecisé [31] or recover precise informatiotihwio scalability. For example,
DIVINE [4], the most precise variable identification toobposed in the literature spends
two hours while analyzing programs of the order of 55,00@msy instructions.

Current work on type analysis from binaries has the precsepeoblem. Many
type recovery tools cannot track data flow through memonctvhimits their type recov-
ery capabilities especially for multi-level pointers aedursive data structures. [51][22]
[68].

Precise type analyses that can detect multi-level poihiare a scalability problem.
TIE [43] is the state of the art type recovery technique framakies which is very precise,
unfortunately it is built on top of DIVINE[4] which has a wellinown scalability issue.

In chaptef b of this dissertation, we present novel techesdbat can recover vari-
ables with data types 352X faster than current technigutsalmost the same precision.
The techniques presented are also completely functiorned.b&sic intuition of the tech-
niques presented is to use a non-sound pointer analysis ety fast while maintaining
the memory layout of the original binary in the recovereddRraintain correctness. We
show that a non-sound pointer analysis gives almost the paewgsion as a sound one

10

while achieving linear scalability and not sacrificing thegut correctness.

1.4 SecondWrite

Figure [1.1 presents an overview of SecondWrite [63]] [23], {Be executables
analysis and rewriting framework we use to implement thanepes presented in this
dissertation. SecondWrite translates the input x86 binadg¢o the intermediate format
of the LLVM compiler [46]. The disassembler along with thaduy reader translate every

x86 instruction to an equivalent LLVM instruction.

EXISTING LLVM COMPILER

/ x86 __>O_utput
¢ > LLVM Optimized backend binary
|| , Output
Fortran || "¢ *| optimizations |; C backend 1> - "o
1 Symbolic H»Vulnerabilities
\ Execution
OUR NEW CODE
|I1PUt—->/Binary reader _| Internal passes recovering: \

binary and

Disassembler | LLVM IRV e Function prototypes

e Variables and data types

T Optimization passes (optional):
x86 ISA XML ¢ Automatic parallelization

e Security checks

AN

Figure 1.1: SecondWrite Flow

The disassembler implements the function boundaries esgaechniques pre-
sented in this dissertation. These techniques are eddentiae whole system to recover
high-level LLVM IR from stripped executables.

Once the initial LLVM IR is obtained, it is passed to Second@/mternal passes to

11

recover more information about the binary and enhance taktgof the IR. One of these
internal passes is our function APIs recovery techniquestier internal pass recovers
variables and data types and emit them into the IR. Some attesnial passes exist and
not discussed in this dissertation including physical tsti@tt stack conversionl[3], call
translation, call back handleis [63] and others.

The recovered LLVM IR is then fed to the LLVM compiler core. &R can be
further optimized or analyzed. Finally, the backend of LL\fd/used to generate either
an output rewritten binary, or an output C code using the kdyadt of LLVM. The IR
could be used in tools like Klee [11] to do symbolic executmalyses.

Without the techniques of this dissertation, SecondWritenoawork correctly. If
the earlier published techniques to be used (like the teciasi present in IDAPro and
other tools), the functionality and quality objectives af gystem will be sacrificed. This
is because existing tools like IDA Pro cannot guarantee ¢et@gode coverage and re-
cover less precise information.

Our techniques can still be used by any other binary anadysisrewriting frame-
work. They do not need to run on SecondWrite to be effectivee itleas presented in
this dissertation can be applied directly while analyzing kinary (using IDA Pro tool
for example). Our techniques will automatically give thadtionality guarantees if ap-
plied. Hex-Rays for example can use our variables and da&arggovery techniques

while recovering C code from binaries.

12

1.5 Comparison with previous work in the SecondWrite project

The techniques presented in this thesis represent an dsmmponent of Sec-
ondWrite [3]23,68]. As we discussed in the previous sect8atondWrite is a binary
analysis and rewriting system that translates the inpusk@@ped binary code to the high
level intermediate format of the LLVM compiler [46]. The tdsng IR can be used in
program analyses and understanding purposes. It can alsgebdegn many other analy-
ses like symbolic analysis, automatic parallelization syrdbolic execution. The LLVM
backend can be used later to compile the resulting IR backaiméwritten binary which
aids applications like binary translation and binary dejing.

SecondWrite uses the techniques described in our previous W@RE& 63] to
distinguish code from data during binary rewriting. Ourypoeis WCRE paper presents
code translation mechanisms for translating code addsessile the rewritten binary
and keeps a copy of the original binary segment in the reswitiinary to guarantee
correct data accesses. The WCRE paper describes the binaagtehaation technique
as a means to find an inclusive set of entry point code addréssiele the binary. The
results presented in the WCRE paper are only related to the eagsiof the translation
mechanisms. There is no discussion about obtaining aectuattion boundaries and
eliminating spurious functions from the IR. The IR qualitydarorrectness in the presence
of functions that might be of inaccurate boundaries is netused in that paper.

The techniques we present in chapier 2 of this thesis coayleé picture by show-
ing that binary characterization by itself produces codtwarge number of spurious

functions (up to 40% of the IR functions are spurious usirgrtiethods in the WCRE

13

paper). In chapter]2, we show novel techniques that redineesarnount of IR spuri-
ous functions to less than 2%. This is essential for a highitguend readable IR. The
techniques in chaptér 2 has been submitted for publicatiGiOPLAS [25].

In this dissertation, there is no comparison with our presi&uroSys|[3] tech-
niques because they are solving a different problem in teeesyand because the tech-
nigues presented in this dissertation are essential for tbeun correctly. The techniques
presented in our EuroSys paper [3] transforms the phygiaek present in the binary into
an abstract stack array in the IR for every function. It alssspnts how symbols can be
extracted from the recovered abstract stack. In chaptett8dlissertation, we relax one
of the assumptions in our EuroSys paper [3] to enable hagpdimurious functions and
functions with inaccurate boundaries correctly if they ever executed in the rewritten
binary. This relaxation is also part of our TOPLAS submisg2t].

The remaining chapters of this dissertation build on thefions identified using
the techniques presented in Chapier 2 to identify source adidacts from binaries and
represent them in the recovered IR correctly. The basicvexgoof floating point stack
variables with all indirect jumps are resolved, discovgmtl function arguments, returns,
variables and data types was published in our PLDI 2013 p238%r We extended this
work later to include discovering floating point stack vates with unresolved indirect
jumps, rewriting external functions with unknown protodgacorrectly, and detecting ad-
vanced data types like recursive data structures. Thesas®hs to the work were sub-
mitted for publication to TOPLAS [24]. There is no previousnk in the SecondWrite
project that is concerned with solving these research prmblother than our PLDI 2013
paper[23] and our submitted TOPLAS paper/[24].

14

1.6 Organization of the Dissertation

This dissertation is composed of the following chapters:

e Chapte 2 presents methods to recover functions with aecl@indaries from

executables

e Chapte B presents methods to recover register argumentetmds and hence

function APIs
e Chaptef ¥ presents methods to recover the floating point sthodated variables

e Chapter b presents our methods to recover memory allocatébles and data

types and

e Chaptef b concludes the thesis

15

Chapter 2: Recovering Functions with Accurate Boundaries

2.1 Introduction

The first step in any binary analysis and rewriting systen theovers IR from
executables is to locate where the code exists and dividedtle into procedures for
higher quality IR.

Executables only have their entry point address visiblelkarmvn in the file for-
mat. Other than that, it is up to every tool to analyze thedyimad know exactly where
all functions are located. This problem becomes trivialimme executables where all
control transfer instructions (CTI) like calls and jumps direct ones. By direct we mean
their target is known by examining the instruction itseffdirect control transfers through
registers or memory make the code discovery problem verjectiang since an indirect
call or jump can theoretically jump to any arbitrary locatia the binary code.

In our work, as we mentioned in the introduction chapter, ve@tto achieve four
properties in any IR we recovefunctionality, quality, accuracyandscalability. For an
IR to be functional, it has to fully represent all code in thedoy which means that any
disassembler we use has to have a 100% complete code caverage

Achieving complete code coverage along with high qualityali®l accurate func-

tion boundaries is very hard. The price paid while recowgéihpossible executable code

16

is usually a large number of spurious functions (up to 40%oating to the best tech-
nique recovering 100% live executable code by Smithson. ¢63]). We present novel
techniques that reduce the number of spurious functions Bfotwhich greatly enhances
the readability and the quality of the recovered IR. Morepa#rour identified spurious
functions are true spurious ones that never execute atmenviihich shows the strength
of our techniques.

The main contributions achieved by the techniques predentehis chapter are as

follows:

e Accurate Function Boundaries: We present disassembly techniques that can re-
cover function boundaries that are as accurate as whatrs thehe debugging
information of the input binary (debugging information isly used in testing)
without sacrificing complete code coverage, thus aidindyaisprecision and code

readability.

e Pruning Spurious Functions: We present safe and sound hybrid static/dynamic
techniques that can identify and delete spurious functiaideng analysis precision

and readability.

e Marking Likely Spurious Functions: We also present novel techniques that can
identify functions that are spurious with high probabilitgsed on their semantics
and move them to a separate file, thus further aiding humalabdéy. Our results
indicate that none of these functions gets executed in thetten binaries. In
other words, for our input binaries compiled from sourcegpams totaling over
one million instructions, we never mis-identified a legiit@ function as spurious

17

(although the opposite, which is much less harmful, did leapp a few rare cases.)

Our techniques in this chapter represent an essential cenpof the Second-
Write [3,/23/63] system we use. The techniques presentedisnchapter are imple-
mented as part of the front end component of SecondWrite wieiatis the input binary
and translates it into a working IR with accurate functionihdaries.

Function information is needed in all our work presentechmfollowing chapters.
The techniques in the following chapters need functionrmfation to define function
APIs and declare local variables. In addition, the highkeléfR recovery techniques like
the one by Anand et al. [3] need function information to deteemory arguments and
be able to do interprocedural symbolic analysis.

Our techniques can still be used by any other binary anadysisrewriting frame-
work. They do not need to run on SecondWrite to be effective ifleas presented in this
chapter can be applied directly while disassembling angryiifusing IDA Pro tool for
example). They will automatically give the complete codesrage guarantees if applied.

We tested our methods inside SecondWrite on the SPEC 200émankc suite
compiled using two different compilers (GCC and Visual Stydin two different plat-
forms (Linux and Windows). All rewritten binaries work cently and give the same
results as the original binaries. We show in the results@edf this chapter that the
recovered IR procedures using our techniques are 99% aeamapared to the original
binary procedures. The 1% inaccurate procedures do nafisathe IR correctness. We
show detailed results about SecondWrite relevant to thiptehancluding IR procedures

accuracy and readability metrics, disassembler scalghaind the performance of some

18

of our individual heuristics in the overall procedures nesry process.

We recognize that recovering source-level function infation is impossible in
many casesWe stress that this is not our target in this chaptéfe are trying to recover
the same function information as what is in the debuggingrimfition of the input binary
to our systemnotin the original source code (we never use, and do not needgdeiy
information in our analysis). Source code functions canigpeificantly changed during
compilation using compiler transformations like functiahining or CPS transformations
in functional languages compilers. When we refer to the amyuof the recovered func-
tions in this chapter, we compare what we recover to fundiimmdaries in the function
symbol table of the original binary (in a control binary widlebug information; the ac-
tual binary we rewrite does not have such a function tabled.dé/not compare with the

original source code.

2.2 Background and Motivating Example

The problem of recovering accurate function informatianirbinaries and ensur-
ing their correctness is challenging. Binaries are compo$sebde and data segments.
Data can be embedded into the code segment and it is not knbatrpartions of the code
segment might contain this embedded data. This resultsnavalid recovered code if
such embedded data is disassembled or rewritten by midkaka. among the code, since
the targets of indirect calls and branches are generallgmawn, the structure of the code
is hard to determine especially with variable length indians (like in x86) where mul-

tiple overlapping instruction sequences are possiblelfersame code, depending upon

19

which byte we disassemble from.

The first attempt to discover code was recursive traversalssembly [62, 67], in
which disassembly starts from the entry point of the binaviii¢h is known according
to the binary format). To recover a code portion, there haset@ direct control flow
path (through direct calls and jumps) from the entry pointhat portion. This leaves
large portions of the binary that we cannot prove is code. Aexample, let us assume
the code example in Figufe 2.1 is only reachable using intlzells (through function
pointers). Recursive traversal will not be able to discovsr@ortion of this code.

Improving on that, some best-effort techniques/[31,55]mdde entry points to the
recursive traversal by examining known function entry pgole patterns like allocating
stack, initializing the frame pointer or saving registérse problem with such techniques
is that they cannot guarantee completeness. As shown imefigll, the code example
does not have any known entry point pattern and hence wilbeadiscovered by these

best-effort techniques.

Func_0x100: Func_0x10d: Func_0x100: Func_0x10d:

" fldl 0x8454310 push %ebp fldl 0x8454310 push %ebp
=0x100 : dd 05 10 43 45 08 fidI 0x8454310 fldl 0x8454314 call Func_Ox10e fldl 0x8454314 fmul %st(1),%st
0x106: dd 05 14 43 45 08 fidI 0><84BS4314 sub $0x55,%eax ret sub $0x55,%eax je BB_Ox129

0x10b: 83 €8 55 sub $0x55,%eax call Func_0x10e fmul %st(1),%st | ...
=0x10d : 55 push %ebp ret je BB_O0x129 ret

0x10e: d8 c9 fmul %st(1),%st Func Ox10e: -

0x120: Of 84 04 00 00 00 je 0x129 ~fmul %st(1) %st ret

je BB_0x129

Figure 2.1: ConflictingFigure 2.2: Rules applicatidrigure 2.3: Improvements

CFGs (input) output output

Speculative disassembly [33] was proposed to tackle tlislpm. It assumes that
anything in the code segment can potentially be code. Inctise, every byte offset can

be a potential entry point. This results in two main proble@)sCode explosions due to

20

many possible assembly listings. In the code example inrEi@u we have 23 different

entry points. Few of them will lead to illegal instructior®jt we will still be left with

a large number (up to 23) possible listings of which all bug¢ @ne spurious. 2) Given

variable-length x86 instructions, some of the possiblagismbled listings may conflict
with other listings because of unaligned and variable lemnggtructions. As an example,

The listing starting at 0x100 conflicts with the one startaigddx10d since 0x10d starts
in the middle of the instruction at 0x10b. Thus both sequsma@not be correct, but we
cannot statically determine which one. Speculative teqes solve these two problems
by removing conflicting code sequences to avoid code exgigsi This sacrifices the

complete code coverage as well as the functionality.

Recently, we proposed thenary characterization technique to greatly reduce the
number of entry points (and thus spurious code) [63]. It do®mpute a super-set of all
possible targets of indirect control transfers in the paogr Its intuition is that under the
conditions we will list later, all local control transferstructions (CTIs) target addresses
have to appear somewhere in the binary. The technique is adzed in section 2]3.
In the example in Figure_2.1, this technigue reduces they gmdints to only the two
addresses 0x100 and 0x10d.

Binary characterization partially solves the code explogicoblem (around 40%
of the code is still spurious, but that is better than the o8peculative techniques). In
this chapter, we complete the big picture for the whole sydig proposing how we deal
with the problem of having conflicting code sequences andioinig accurate function
boundaries out of the disassembled listings.

We have five main components to our techniques. They arengesbeext using an

21

example.

Disassembly We disassemble the binary starting from each binary chexiaation entry
point as well as from the binary entry point. During this, vee conflicting code around.
In the example in Figurle 2.1 we will create two functions fottbbinary characterization
addresses 0x100 and 0x10d as shown in Figure 2.2 and soleetifiet by creating a
third function for the fall-through address from both fuoas (which is address 0x10e
in this case). The fall through appears because both codessees fall to the same
instruction later. This step achieves complete code cgeevehile keeping conflicting
code around. It does not solve the function boundaries amdtifinality problems.
Improving Function Boundaries The first step to solve the function boundaries prob-
lem is to use inlining. After our disassembly, functionsseXiut they are split into parts
because of the spurious entry points and code conflictsimiglimerges the splits back
into one function. In this example, we inline the fall-thgbufunction into both parent
functions. This guarantees that at least one of the furstiah have the correct bound-
aries. The function at the fall-through address (0x10e)eadteleted in this case as shown
in Figure[2.8. Section 2.4.2 includes guarantees on wherséfe to prune such spurious
functions. This step achieves better function boundagtssome spurious functions still
exist (which are not safe to remove).

Marking Likely Spurious Functions We identify spurious functions based on their se-
mantics. In this examplésunc_0x10d uses the zero flag in a conditional jump without
setting it. Such behavior is unlikely to happen in a valideathce such flags are most
commonly used as local variables. We idenfifiync_0x10d as a potential spurious
function and move it away into a separate file to enhance cealdability. The function

22

still exists since we cannot prove statically it cannot biéedaat runtime.

Pruning Spurious Functions Based on Dynamic TechniquesWe present novel tech-
niques to safely prune spurious code based on dynamic iat@ymcollected from the
execution of the original binaries. For example, if we monithat the instruction at
0x10b in figurd 2.1l is executed at runtime, we can safely edlet function starting at
0x10d since its entry point instruction starts in the midofi¢he other executed instruc-
tion at Ox10b. This pruning is safe for all data sets, not fhese used in the dynamic
run(s). This is because if a portion of the code segment isdd@a be code for one input
data set, it must be code for all input data sets. There aer othys of using dynamic
information to have high quality code that we explore in tthspter.

High Level IR Functionality The last problem this chapter addresses is to guarantee
correct behavior of detected functions if ever executedthis particular example, we
make sure that any caller to function 0x10d passes the véliie aero flag to the func-
tion. This is done by modifying the call translator functidescribed in[[63] to have such

arguments. Detailed discussion about this can be founc:irosé.7.

2.3 Binary Characterization and Code Coverage

Binary characterization’s intuition was given above; heeefarmalize it. Binary
characterization scans all the executable segments at ewgile byte and come up with
a list of all constants that might be potential code addses8epotential code address
satisfies the following conditionL; < = < U;, whereL; is the lower bound address of

code segmentandU; is its upper bound address.

23

Binary characterization is based on two assumptions whiehuaually valid in
most application code: 1) Code addresses used in indirettotaransfer instructions
(CTIs) are not computed at run time. 2) No self-modifying cedests in the binary.
The first assumption is valid in all compiled code which istimeil position independent
nor obfuscated. The second assumption is a limitation aftatic executable analysis
techniques. Sectidn 2.10 discusses how these assumpdiot®celaxed in our system.

The first assumption does not exclude binaries having iatdjtanps with jump
tables embedded in the code or the data segment. Thesecirjdimgs will calculate the
addresses of the jump table entries, not the target addrdssmselves. The target code
addresses are still non-computed constants present imtleecr the data segment. They
are loaded and then used in the jumps.

The first assumption implies that CTl local target addressest appear somewhere
in the executable segments. They can either appear as dpdcanstructions in the code
segments, or initial values of global variables in the datarsents.

When we talk about binary code coverage in this dissertatverefer to covering
instructions that can be executed in any dynamic run of tharigi We call such instruc-
tions thelive code There are parts of the binary that can never be executed timele
assumptions above which we cdiktad code Examples of dead code include functions
that are inserted in the binary and are never reachable asygind of control transfer
instructions (either direct or indirect).

We formulate the fact that under the previous assumptiongacsiéeve complete
live code coverage in the next property. We write it as a priypt® easily refer to it
throughout the dissertation.

24

Property 2.1 Let B be the binary characterization list of addresses and let a
code address within the executable reachable indirectdréssr must appear in3.
Static recursive traversal disassembly starting fromyegech address € B as well
as from any externally visible function address in the bingmarantees the complete
coverage of live binary code.

Proof The first part of the property falls directly from the binaryacacterization
definition above. To prove the second part of the propertyuseecontradiction. Assum-
ing that we start recursive disassembly from every address B as well as from the
binary entry point and from externally visible functionssfble in export address tables
for example) and we still do not achieve complete live codescage. This implies that
there is some part of the code that is reachable using sormefswontrol flow and yet
is not covered by static disassembly. This code can be oalsheble using direct con-
trol transfers, indirect control transfers from within thi@ary or from outside the binary.
We prove each case individually. For code that is reachabte fvithin the binary, if it
is reachable indirectly, then it has to start with a binargreleterization address which
means it is covered by the static recursive traversal. §fieachable directly, then recur-
sive traversal will be able to follow it and hence it is alsvexd. For externally visible
parts of the code within the binary, in order for them to behedole by other external bi-
naries, their entry addresses have to be externally vigitilee outside code (for example
in export tables, relocation tables, ... etc.). We alreddst static disassembly from such
addresses and hence we cover such code as well.

The fact that there is some portion of the binary code thahihiig dead and hence

not covered by our static disassembler means that we migktdsses when our recov-

25

ered IR after disassembly is smaller in size than the inpres. We discuss this more
in the results section and show this detailed effect on aitbhemarks.

The two assumptions stated at the start of this section nsiggtn to limit the ap-
plicability of this work especially in the security domaihhis is not right because of two

reasons:

1. These assumptions are only needed if we want a functiemaitten binary and
100% live code coverage. They can be easily relaxed if omlgityianalysis (but not
rewriting) is to be performed like in many security applioas, such as analyzing
malware or discovering vulnerabilities in legitimate bhiynaode. The price paid in

this case is an IR which is not guaranteed to work correctlgabmpiled.

2. The effect of code obfuscation does not limit the applidsitof this work to the
security domain. IDA Pro and Hex-Rays are well-known tookt tho not present
special handling to obfuscated binaries and they are s@dbduy many security
analysts to understand binaries. Our tool can be used the sayn As we show
later, we have much higher precision than IDA Pro and othelstoln addition,
existing de-obfuscation approaches such as [40], [42] earsbd prior to our tool,

to allow our tool to be used on obfuscated code.

We discuss the issue of how to relax the assumptions fumhszdtiori 2.10.

2.4 Disassembly Methods

In this section, we describe our custom disassembler thetcomes the prob-
lems described in the previous section. We explain first tgdorules that create non-

26

conflicting functions and attain complete code coveragsipbswith less accurate func-

tion boundaries, and then we describe our techniques toweghe function boundaries.

2.4.1 Disassembly Rules

While disassembling the binary, a single code addxeissreachable if it is one of
the following: 1) A speculative entry point (like being a by characterization address).
2) A target of a call. 3) A direct branch target. 4) An indirécanch target embedded
in a jump table. and 5) A sequential address to a previouslgssembled address. We
start the disassembly process from the entry points of tharpias well as from every
speculative entry point. We apply the rules in Figuré 2.4levdisassembly.

For direct calls and jumps, we create a new function only amdhse of call in-
structions, or in the case of jumps when they cross functeambaries. This latter case is
needed because calls are sometimes implemented by a phgtrefurn address followed
by a jump. Indirect calls will be replaced by a call to the siamor function explained
in [63].

Indirect jumps are analyzed using a modified version of thiekvewn jump table
recovery heuristics by Cifuentes and Emmelrik [14]. We modifiee heuristics to ensure
that they can run across function boundaries. For simplialt recovered addresses from
these heuristics will be initially considered as functiomrg points and annotated for later
inlining. Even if the heuristics fail, all such addressesigdhave been recognized using
binary characterization as function entry points. We usehtburistics as hints for better

function boundaries accuracy because jump table targetasarally not function entry

27

Instruction

Rules

call x //Direct call
X is a constant address

If X is disassembled as part of function foo
Split f 00 at x
Insertacalltof oo_spl it (starting at X)
Else Insert a call to a function starting at X

call *x //Indirect call
X is a register or a
memory location

Replace with a call to the general call translator

junp x //Direct jump
X is a constant address

If X is within the current function OR not disassembled yet
Create a basic block at X inside current function
Insert a branch to basic block x

Letf oo = parent (Xx)

Split foo at X

Insert a call tothef 00_spl it (starting at X)
Annotate f oo_spl i t with JUMP_TARGET

Else

junmp *x //Indirect
jump

X is a register or a
memory location

Run jump table identification heuristic

Annotate every target discovered with
INDIRECT_JUMP_TARGET

Create a new function for every discovered target address
Replace with a call to the general call translator

Other sequentials from
address X to addressy
where:

X: instruction 1
y: instruction 2
andy = x + sizeof
(instruction 1)

Let f 00 be the current function, f 00 = parent (X)
If y is not disassembled yet
Disassemble y as part of f 00
Else Ify marks a start of a function bar
Insert a direct call to bar
Annotate bar with SEQ_TARGET
Elseifparent (y) = bar, bar
Split bar aty
Insert a call to bar _spl it (startingaty)
Mark bar _spl it asaSEQ_TARGET
//parent (y) = foo
Create a basic block starting aty
Insert a direct jump to basic block 'y

1= foo

Else

Figure 2.4: Disassembly Rules

28

points.

The rule for sequential addresses will create a new fundtitre sequential fall-
through address is a function entry point, or if it crossestibundaries of the current
function. Such functions will be annotated as being sedalent

The disassembly rules in figure P.4 do not describe when t@adnaction. We stop
the disassembly process inside a function in three casdfsarigther function begins. 2)
If there is a one way control transfer instruction (CTI) redting control to a different
function (like a jump instruction). 3) If a return instruati is detected. For call instruc-
tions, we keep disassembling the sequential address ladteatl. This is okay since even
if the call instruction does not return back to the same atdl she disassembled extra
code will never get executed which does not harm functipnali

After finishing this disassembly stage, a complete disabBeaof the IR is obtained
and according to property 2.1 it will cover 100 % of the inpu¢ Ibinary code. There are
two major problems in the IR after this stage: 1) There willrbany function splits as
shown in the example in figufe 2.2. 2) Some functions mightakenly appear as parts
of other bigger functions if such functions are only readdalsing direct jumps (which

is the case for tail calls). The next section describes hate#d with these two problems.

2.4.2 Improving Function Boundaries

In order to do more improvements to the function boundaries perform three
main tasks: 1) Use heuristics such as known function prasgund external stubs pattern

matching. 2) Merge indirect branch targets into their pafemctions. 3) Merge as many

29

splits together as possible.

Even though this section will present some heuristics thatt gigher quality and
more accurate IR from binaries, this does not sacrifice amyectmess of the system.
Whenever our heuristics fail, we still achieve our 100% lieele coverage and IR cor-
rectness. We never delete IR code unless it is safe to do saeWée delete live IR code.
Even if we have non-accurate function boundaries, our fgcies presented in sectionP.7
will make sure the flow of variables and arguments still hapjeesuch false functions.

The first thing we do is to recognize known function prologwadtgrns. In our
implementation, we rely on two main prologue patterns: #f)dlizing the frame pointer
with the value of the stack pointer. 2) Indirect jumps to caltion entries which are used
to form external function stubs in some binaries. Many medhhiques and heuristics
can be integrated in this step easily such as existing madearning techniques for
recovering function entry points [55].

The second improvement we do is related to merging as maitg sgl possible.
For this, we define aactualfunction as any recovered function having at least one of the
following four properties: 1) It is called directly. 2)It ison-speculative (reachable from
the executable entry point). 3) It has a well-known functwologue. 4) Its entry is a
binary characterization address not annotated as beingesggl or a jump target. For
every nonactual function, we search all the callers up the call graph untilfiwd a set
of actualfunction parents. We then inline the nantualfunction into all its parents. To
avoid code size explosions, we set a limit on the number afeslper IR function; we
call this limit the inlining threshold.

Algorithm[1 shows how amctual function can be identified as well as parents for

30

Algorithm 1 isActualFunction algorithm - detecting actual functiomsl goarents of non-

functions

10:

11:

12:

13:

Input: x: an address of a suspect functiomc x in the IR
Input: analyzed a set of already analyzed caller addresses (for handimgssn)
Output: isActualFunction false ifx is not considered a function entry point

Output: parents: a set of all possible parent functions to the basic blockiataatx

. If X € analyzedhen

return withisActualFuncitorr false
end if
SetisEntryIF (x is the entry point function)
SetisDirectlyCalledIF (x is reachable using at least one direct call)
SetNonSpeculativé- (x exists in the function symbol table of the binary)

SetlsBinCharAddrlF (x is a binary characterization address)

. SetlsJumpAddiF (function atx is marked as JUMHARGET)

SetlsSegAddtF (function atx is marked as SEQARGET)
SetlsKnownPrologudF (function has a known prologue pattern)
if (IsknownPrologue OR isEntry OR isDirectlyCalled OR NonSpeculative
OR (sBinCharAddr AND NOT(IsJumpTablg AND NOT(IsSegAddr AND
NOT(IsJumpAdd))) then

return withisActualFuncitorr true

end if

31

14: insertz into analyzedist

15: Let C be the set of all functions callinfiyinc x in the IR

16: for all parentn € C do

17: (callerlsFunction callerParent$ = isActualFunction(AddressQdérentn), an-
alyzed

18: insert callerParents into parents

19: if callerlsFunctionthen

20: insert AddressOffarentn) into parents

21: end if

22: end for

23: return withisActualFuncitore false

non-actual functions. Lines 4-13 check fmrtual function attributes described above. If
the function is non-actual, lines 16-22 traverse the capbrup (from callees to callers)
and gets albctual parent functions.

There are many reasons why algorithm 1 can return more thaparent function
for a certain input address. One reason is CFG conflicts. Asawve already seen in the
code example in figuifie 2.2, the function starting at Ox10énweil be considered an actual
function and it will have two parents. Ideally, a single agk#r should be part of only one
function, but because of CFG conflicts and splits, we mightigméiaving many parent
functions.

It is important to notice that algorithfd 1 is a heuristic whimeans it is not guar-

anteed to give accurate information. The results secti@ntfies how often this algo-

32

rithm is accurate. The algorithm gives accurate infornmatiomost cases since suspect
functions that are only reachable using direct jumps or gaesgtial addresses to other
instructions are usually non-functions. The reasons fa¢sgtives might happen where

non-functions are considered functions by mistake are:

¢ If the jump table heuristic fails to identify some indirecabch addresses. These

addresses will be considered function entry points.

¢ If a binary characterization address appears in the midddedead function which
is not reachable in any run of the code. This kind of addreiso@iconsidered a

function.

In some other rare cases, algorithm 1 might give false neggmitvhere it tells that an
actual function in the binary is not a function and is partdter bigger function. This
only happens because of tail calls which use direct jumpungbns. If some function
is only reachable using tail calls, and is not having any kméwnction prologue, then
algorithm1 will mistakenly consider it as part of all parefp to the constant threshold).
The results show that this happens in less than 1% of the time.

After merging functions with their parents, some IR funn8@an be safely deleted.
The following property states the conditions under whigh gan happen and proves that
the IR will still be complete after such a code cleanup.

Property 2.2 Let B be the binary characterization address list. For every iR{u
tion f 0o starting at address in the original binary where: is not externally visible in
the original binary, iff oo has been inlined with all parents, andZ B, thenf oo can be
safely removed from the IR.

33

Proof Functionf oo is either reachable using a direct call/jump, or through an
indirect call/jump. For direct calls and jumpgspo has already been inlined into all the
parents, which means there is no more direct calls/jumpotn For indirect calls and
jumps, suppose addresdss reachable using indirect calls and jumps, then accortting
property 2.1, it has to appear in the binary characterindigt B which is not the case.
For calls from outside the binary, has to be externally visible in the original binary
which is not the case.

To illustrate the previous rule, figure 2.3 shows the codergta in figurd 211 after

merging and deleting the function at 0x10e.

2.5 Marking Likely Spurious Code

In this section, we discuss semantic based techniques mdifidékely spurious
functions. The recovered functions from the previous tegpes should do something
meaningful. If they are doing something illogical, thenlpably they are not actual func-
tions. We partition the recovered set of functions in thecet@ble from the previous
techniques into two sets according to thetecution probability 1) The set of functions
that are unlikely to be executed at run time. We call themispsrfunctions. 2) All the
other functions which are likely to be executed. Identifipdreous functions are inserted
in a separate file which the user can ignore reading. Our igeés will aim to minimize
the percentage of spurious functions present in the maiedBvery file.

It is important to mention that the techniques describetlimigection are heuristics

aiming to optimize the code for readability. We do not remtwe identified spurious

34

functions from the IR and they can still be executed (lesslyik We discuss how to
maintain correct execution of such functions in secliol 228 we show in the results
section, these heuristics prove to be very effective in egduthe spurious functions in
the main IR recovery file down to 2% of all IR functions presierthat file. None of the
identified likely spurious functions using these heursexecutes in all of the tests we
have done.

Even if our heuristics fail in identifying spurious code, identifies valid code as
being spurious, this does not impact the correctness okttw/ered code by any means.
We still keep this code around, and make sure the data flowsatty to this code if
ever executed. The heuristics are used for better IR gqualitsnanual analysis and code
readability and do not impact the correctness and the coderage by any means. The
user may decide to delete the spurious file which automtieahances the precision
of any automated analyses running on the IR especially ifRr&purious functions have
side effects (which is usually the case). In all our expiretegwe never monitored any
of the identified spurious functions got executed at run tivhech gives users of our tool

more confidence to delete the spurious file.

2.5.1 Inlined Functions

In the last section, we mention that we inline atin-actualfunctions into their
parents (if parents exist) up to a certain inlining thredho6ome of thes@aon-actual
functions get removed using property (2.2) above.

For the non-actual functions that did not get removed usnoggrty (2.2), if they

35

got inlined to all the parents without hitting the inliningréshold, we mark such functions
as being spurious. The reason behind this is that since tieegleeady inlined to all
parents, it is unlikely they will be executed as stand alamecfions. In most cases,
such inlined functions will get called (or branched to) frtmeir parents. The only case
they might get called as stand alone functions is when sugtethfunctions are actual
functions in the input binary that are only called indirgctThis is very unlikely as we
show later in our expirements.

Such non-removed non-actual inlined functions are ususllit parts of bigger
functions because of the existence of binary characteizatddress in the middle of

their actual parent functions.

2.5.2 Identifying Actual Parent Function

In most binaries, a certain code region is usually part of onle function. We use
this intuition to mark more spurious functions as follows.

Many of our inlined functions mentioned above have more taparent function
because of code conflicts. Algoritim 1 returns a set of pdienttions for a specific
inlined function. Only one of them is the correct parent alhthea others are spurious.

We examine all parent functions and check how many propeftieactual func-
tions they have. Usually we find that only one function hashéigproperties than the
others (for example, in most of our experiments, one parelyt would have a known
prologue pattern). If we have only one parent function hgnarhigher number of func-

tion properties, we mark it as non-spurious and mark all tiers as being spurious.

36

Properties for actual functions are checked in algorithingg 4-13). We have different
weights for each property. For example, the known prologateem is a stronger indica-
tor than being a directly called function for example (sidgectly called functions might

be called from spurious ones).

2.5.3 Memory Analysis

This readability optimization examines the operationsedon the global memory
as well as the memory stack. It moves a function to the spsiffiif any of the following
is true: 1) A memory access to a constant address not witkirexecutable segments
and not to a memory-mapped I/O location is detected in thetifom. 2) Very large
number of memory arguments are passed to the function. $hismable by the user.
3) A function accesses stack variables that are never éeteéatbe allocated. 4) The
function is accessing the memory stack using the frame @oinithout initializing it
first. (The frame pointer is usually a callee saved regist&)rhe code is accessing the
return address. Given that we currently do not rewrite pmsindependent code (PIC),
it is very unlikely that a function will access its return adsls. Handling PIC code is a

future work as elaborated in section 2.10.

2.5.4 |ISA Analysis

This readability optimization detects the binary instioictsequences that are less
likely to be executed and move their parent functions ingogjurious file. One optimiza-

tion we do is that we move functions having instructions tatess 1/0 ports —like x86

37

instructionsi n andout to the spurious files. We also move code that is doing software
interrupts into the spurious file. These kinds of instrutsi@nd behaviors are not com-
mon in application code and more common in kernel code anedi User has a choice

to turn this optimization off when rewriting kernel code atelice drivers.

Another readability optimization moves functions that ggachronization primi-
tives from the main file into the spurious file only if the bipas single threaded. To
detect that, we assume that the binary has to do some libadi(g)cto create or manip-
ulate threads. To determine that, we examine the dynanocagbn table of the binary

looking for any known multithreaded library such that ptde, OpenMP and MPI.

2.5.5 Empty Functions Detection

We let the LLVM optimizer run on the recovered functions alneit detect if any of
the recovered functions becomes empty without any codes iShisually an indication
that the function is really not doing anything useful andéhaw side effects. Still as per
property (2.2) such functions are not safe to remove, so wp K&em but in the spurious

file.

2.5.6 Conditional Handling

This readability optimization relies on the common pragiit binaries where con-
ditional flags are usually set and used in one single functide are not aware of any
calling convention that sets a conditional flag in a functiand then uses it in another

function. In some rare cases, some compiler intrinsics atimgl some floating point be-

38

haviors return conditional flags. If this ever happens, #dahhiques presented later in
sectior 2.I7 will guarantee the correctness of the rewrliteary.

Every function is analyzed with respect to all definitionsl arses of conditional
flags. A function can be moved to the spurious file if it has aafsa conditional flag
without any definition. As an example, figurel2.3 shows thefioms recovered from the
code in figuré 2]1. In functioRunc_0x10d, the zero flag is used without being defined.
We can move this function to the set of likely spurious fumes since it is highly probable

it is not an actual function.

2.6 Static Function ldentification Based on Dynamic Information

In this section, we discuss novel dynamically assistedcsiathniques that can be
used to assist the previously discussed static technigupsuning out more spurious
code in a safe manner. During the dynamic run of the binarypmhe measure the char-
acteristics of the binary, but do not modify it. The collettiynamic information is then
provided as feedback to a subsequent static analysispthalewing the static analysis
to improve. Even though the dynamic information is colleabe particular data sets, the
subsequent static methods we present are correct for allseétd, not just the ones seen.
The techniques presented here are optional and are notsaegdsr the whole system
to work. They prove to be effective in practice in reducing #mount of spurious code,
reducing the total IR size for the spurious code, and makuegstatic disassembly run
faster.

This section is divided into the following parts: first we peat the exact problem

39

we are solving including a big picture of the dynamic compura our system with its
inputs and outputs, then we proceed to discuss the techaetails of how we imple-
ment this static analyses that use the collected dynanmocnrEtion. Then we discuss the
correctness of the dynamically assisted analyses in treedbat the IR is still complete
regardless of the fact that dynamic information used mighta@ complete. Finally, we

discuss how dynamic information from different runs can beied in our framework.

2.6.1 Disassembler based on dynamic information - The big picture

In the previous sections, we show some techniques and tiesitisat can remove
some spurious functions altogether, or at least hide them firsers if they are likely not
to be executed. These techniques were based on static esalyly.

In this section, we extend the effectiveness of our previeshniques by letting
them use some dynamic information collected from the injnay’s execution. We let
the input binary run for some input data set, then collectetesl instruction traces and
other information about locations and targets of contam$fer instructions. We then use
this information to safely remove spurious functions frdra tR altogether.

The main challenge in the techniques presented in thisosedithat whatever
information we collect from a certain binary’s executiorttwa specific input data set
must be valid for all possible input data sets to the binary.oByer means, we have to
prove that a function that we remove from the IR based on sgmardic information is
safe to remove for any input data set to the binary. Otherwligetechniques will not be

safe and sound.

40

Pruned Bin.
Bin. Char. Char. Addrs,

Input Binary Static Binary Addresses Dynamic Pruning . P —
Characterizer Component Pot. Bin.
Char. Addrs

Figure 2.5: The disassembler with the dynamically assist@dponent inserted

As shown in figuré 2]5, the dynamic component of the disaskamekists in the
front end of the system and is used before the static disddsermomponent. First,
the binary characterizer reads the binary and identifiestafibinary characterization
addresses that are considered entry points to functiongrisystem. Instead of feeding
this directly to the static disassembler (that is discugsdite previous sections), we feed
that to our dynamic component which prunes out some of thedeeases. The dynamic
component produces a list of pruned binary characterizaitnresses as well as a list of
potential binary characterization addresses. The staassembler uses both to create
the IR functions as we show in the next section.

The dynamic component of the system has indirect effectb®mvhole disassem-
bly process. Since it reduces the amount of IR to be analyhedtatic disassembly time
is reduced. The IR size is also reduced because of the sasenre®e show detailed

results related to these effects later in the results sectio

2.6.2 Function Pruning using Dynamic Information

The dynamic information used in the techniques presentiildisection are used to

prune spurious functions by eliminating their startingr@ddes from being considered as

41

valid entry points. We prune binary characterization aglsies and hence achieve higher
quality IR with less spurious code. We do not create spurfonstions in the first place
which is different from the previous static disassemblyteques which create functions
and then prune them.

There are three main techniques we use to achieve this painys pruning. The
first technique removes binary characterization addrekaesonflict with other executed
addresses. Recall that binary characterization descrindidren sectiori 2.3 produces a
superset of all possible function entry points. It does sadilecting all constant code
addresses in all code and data segments inside the binary.

The second technique prunes out binary characterizatidresses that are ob-
served to be reachable only directly in the execution. Tirel technique relies on ex-
amining the stack memory at function entry points. All theht@iques are presented next
and their results are unified to produce the final binary attar&ation list of addresses

that is supplied to the static disassembler.

2.6.2.1 Pruning conflicting addresses

In order to produce the list of pruned binary characterwatiddresses, we run the
input binary once. We collect all instruction addresseslthagse been executed along with
their length. We remove an address from the binary chaiaatem list of addresses if
it starts in the middle of an already executed instructiome &ssumption here is that the
binary does not contain overlapped instructions which atelunstructions starting in

the middle of other valid instructions.

42

In a more formal way the following property clarifies whenstsafe to remove an
address: from the list of binary characterization addresses.

Property 2.3: let T" be a list of pairgi, /) wherei represents the starting address
of an executed instructior, represents the corresponding instruction length. A binary
characterization addresgss an invalid address and can be pruned out if the following is

true:

A,) eT,x=i+n,neN0<n<I (2.1)

2.6.2.2 Pruning directly reachable addresses

The binary characterization list of addresses should aottie code addresses that
are only reachable indirectly. If a certain code addresslg ceachable using direct
control transfers, then it can be safely removed from tharyicharacterization list of
addresses since recursive traversal can follow the dicett@ transfer to that function.

If a function is reachable using both direct and indirecttoariransfers, it might not
always be safe to remove such function from the binary chamaation list of addresses.
To see why, consider the code example shown in figufe 2.6idictlde example, function
f 0o is reachable indirectly fromai n, and they reachable directly frohoo itself (as a
recursive call). If the address bbo is removed from the binary characterization list of
addresses, the recursive traversal will not reach oubtstarting frommai n and hence
it is not safe to remove such address.

For this pruning, we collect all indirectly reachable addes from the execution

43

main () {

call *eax //indirect call that targets foo at runtime

}
foo () {

call foo //Direct call to foo

Figure 2.6: Code example illustrating pruning directly festnle addresses

trace. These addresses include targets of indirect caflsratirect jumps. All such
addresses are populated in a set of addresses cdll@ddirect targets).

To prune a binary characterization address, we notice & rily reachable us-
ing direct control transfers. If the address is containedin then it cannot be pruned.
Otherwise, it can be pruned if executed. We formalize thibéfollowing property.

Property 2.4: Let I'T be the set of addresses that are reachable indirectly daring
certain binary execution. An addresan be removed from the binary characterization
address list if the instruction atwas executed and ¢ 17T

To prove this property, we state the following property ahdnt use it to prove
property 2.4.

Property 2.5: Static recursive traversal starting from binary charazagion entry
points after removing all addresses that are only reactdatdetly will always cover all
instructions that got executed while collecting the cquoesling dynamic trace.

Proof: The execution trace is composed of some direct and indirets.CRor
direct CTls, static recursive traversal can follow themiadiy. For indirect CTls, their
targets will never be pruned and hence they will still existhie binary characterization

44

addresses and will be followed because of that.

Proof of property 2.4: By contradiction: assume it is not safe to prune an address
x that is executed during runtime and is not observed to bedirent CTI target. This
means that all code starting at instructiomill not be covered by recursive traversal in
this case. This contradicts property 2.5 above since at teasexecution trace will be

covered using recursive traversal.

2.6.2.3 Pruning jump table target addresses

From the discussion in sectign 2.3, binary characterinadiddresses are either in-
direct function call targets, or indirect branch targetadilect call targets are always
considered function entry points. Some indirect brancfetiarare also considered func-
tion entry points (like tail calls), but many of them are jgsise statement entry points
represented as jump tables in the binaries.

We use the dynamic component to differentiate betweenantjump targets that
are function entry points and the other non-function entings. The intuition here is
that for instruction set architectures where the returrresklis memory allocated (like
the x86 architecture we currently support), the return esslhas to be stored in a specific
memory location known to a function at its entry point sucatttime function can return
back to some call site. This is only valid for non-obfuscabathries which follow any
compilation model. Obfuscated binaries in which returnredsles are calculated and
pushed on the stack at any arbitrary program point are natictly completely supported.

We discuss later in sectign 2110 how they can be supported asir framework.

45

We build a stackS of return addresses at the run time of the original binary by
monitoring call instructions and what addresses they push® memory stack. We also
monitor return instructions and what addresses they pop fh@ memory stack. At every
branch target, we monitor the stack pointer value beforewk®y the first instruction at
the branch target and check if it contains the last-insextéigrn address on the stagk
(i.e. TOB(Y9)). If the value at the stack pointer is not equaltoP(.S), then we insert this
address into se? which represents addresses that are not function entryspaocording
to our assumptions. This set of addresBéas the set of potential binary characterization
addresses shown in figure 2.5. These are usually not funatidresses but rather jump
table target addresses that are reachable indirectly.

Given that the initial set of binary characterization addes i, we calculate the
setC’ = C — P and start static disassembly from every address’'inC’ represents the
set of binary characterization addresses that may be mentry points.

If we only disassemble from every addres(iy we cannot have complete code
coverage. To see why, consider tliatontains all executed indirect jump table targets
(representing case statements in the original source c@leh jump table targets will
not have a valid return address on top of the stack since tieaya function entry points.
Yet they are removed from the binary characterization axfdlist. If such addresses are
only reachable indirectly, they will never get disasserdideatically in this case. We
usually identify such addresses using jump table heusistlten possible.

To solve the above problem, we finish all static disassentalgisg from the ad-
dresses irC’. After all is done, we start the static disassembly agaimfemy address

x that is a binary characterization address and was moniesdxting executed with no

46

valid return address on top of the stack at its entry only ffas never been disassem-
bled. This means that we start static disassembly again &moyrentry point address

satisfying the following three conditions:

reC (2.2a)
reP (2.2b)

x was never disassembled statically in the first round ofcsthsiassembly (2.2c)

For every such addregssatisfying the previous conditions, it can be determined
which function this addressbelongs to by monitoring the function from which the jump
originated. Address can be then disassembled and inserted into that functidreiiRR.

We clarify here that the jump table targets pruning techaigresented in this sec-
tion only works for instruction set architectures havingemory allocated return address.
The x86 architecture is one example of such an architecthezena function is called us-
ing thecal | instruction which pushes the return address on top of tle& sTene return is
done through the et instruction which pops the return address from the memagkst
Other instruction set architectures like MIPS and ARM havegdster-allocated return
address that is accessible through regular instructidestdranch and link and regular
moves. The advanced pruning technique presented here murrently supported for

such architectures and should be turned off.

a7

2.6.3 The dynamically assisted analyses code coverage guarantees

In this section, we discuss why the techniques presentdidreare sound and safe
even though it might be coming from a limited input data set.

The first technique represented by property 2.3 excludeseases that are in the
middle of some actual valid instruction that got executedis levident that if the bi-
nary does not contain overlapping instructions, instardistarting in the middle of valid
executed instructions cannot be valid.

The second technique represented by property 2.4 remowesarst bharacterization
address if it is executed but is never monitored to be a tarfggt indirect control transfer
instruction (CTI). This means that a normal recursive tre&kis enough to reach out to
that function and it is not necessary to include its addneske binary characterization
list of addresses.

In the third technique when we remove jump table target adeefrom the binary
characterization list of addresses, we already add backuamy table target address that
was never disassembled during the static run after prurtifence, we will never miss

any parts of the code and still guarantee complete code @geen this case.

2.6.4 Unification of dynamic information

In this section we discuss how we can unify information fromtiple input binary
runs with different input data sets. We present unificatidag and discuss why they are
correct.

The three techniques presented in the previous sectionsecathapplied one after

48

the other to produce a final binary characterization listadrasses that is given as an
input to the static disassembly. There are no restrictiongloch order they are applied
or which ones can be combined together. The final prunedflisinary characterization
addresses is the one shown in figuré 2.5. The potential botesacterization addresses
shown in the same figure represent the jJump table target sslelreletected using the third
technique above (represented by theRet

For the first technique represented in property 2.3, theaatifin rule is simply
the union of allx accross all dynamic runs satisfying equafiod 2.1. This &abse such
addresses are always false and this fact is not dependenyonpat set.

For the second technique represented in property 2.4, the gpaoperty can be
applied to dynamic information collected from differenteeutions if all disassembled
instructions are unioned and dll” sets are unioned as well. This can be verified by
following the proof of the property in the previous sectiohil® applying the unification
rules presented here.

For the third technique, if we have multiple runs with mukip’ sets (which repre-
sent addresses of jump table targets that are non functiwasjo a simple set union and
apply the same technique. This is true under the assumgiadnnt any execution of the
binary, a function entry has to have a return address on tap sffack. As we mentioned
before, this assumption is valid in all instruction set @eattures (ISA) having memory

allocated return addresses and in non-obfuscated binaries

49

2.7 High Level IR Functionality

In this section, we go over some of the aspects of high leveétevery and binary
rewriting techniques used in SecondWrite and not discusgedih this dissertation and
present the necessary modifications —if required— to stipgeriting spurious functions
correctly as well. The high level IR aspects we review in gastion include call trans-
lation and conditionals. We present these below. Effectsaning inaccurate function
boundaries and spurious functions on other IR recoverycsmiscussed later in this
dissertation like identifying correct register argumentemory arguments, variables and

data types will be presented in the next few chapters.

2.7.1 Call Translation

In our previous work as well as this work, we assume therdsaisranslator func-
tion that is inserted at every indirect call and branch toread the execution at run time
to the correct IR function. The translator function is aistdly inserted function with a
gigantic if statement that checks for the value of the taagieiress and calls the corre-
sponding function. The details of the translation mechansis discussed in our previous
WCRE work [63].

Our previously published call translation mechanism wiill svork correctly for
the IR with spurious code only if the spurious functions atdeal as extra entries in the
translator table. This ensures correct control flow redimecin the rewritten binaries

from the indirect call and branch sites to IR functions.

50

2.7.2 Conditional Handling

The conditionals are presented in the IR as variables thaagggned at condi-
tional generation instructions (like arithmetic operatidor example), and then get used
at conditional use instructions (like conditional branghe

Splitting functions will cause some conditional flags to ledimked in one function
and used in another one. To guarantee the correctness afionatiflag uses, we iterate
over all the functions in the IR and check if there is a use o&g Without a dominating
definition. If there exists a functiohoo that satisfies this condition, we do the following
three steps: 1) At every direct call/jumpft@o from within the IR, we pass all the used
flag values as extra argumentstoo. 2) If f oo can be called indirectly (its address is a
binary characterization address as stated in property)(2aen at every indirect call and
indirect branch site in the IR, we pass all the used flag valsesxaa arguments to the
translator function and hence tmo. 3) f 0o as well as the translator function have to
return the latest version of the modified flags back to all gdksites off oo and the call
translator.

The above three steps will guarantee the data flow of comditilags between

definition points and use points across function boundamiali cases.

2.8 Results

This section discusses all the experiments done to testeétizoals described in this
chapter and confirm their validity and effectiveness corag@do the related work in the

field.

51

Work 100% Function Boundaries | Identify Likely High Level
Coverage Accuracy Spurious Funcs. | Functionality
X
—_ 0,
Rosenblum et. al. Known Prologue F05=98.9% No X
Patterns Only
X
- 0,
IDA Pro Known Prologue Fo5=87.6% No X
Patterns Only
X
- (o)
Dyninst Known Prologue F05=97.1% No X
Patterns Only
Reduction in
Our Work \/ F05=99.5% spurious functions \/
from 34.6% to 2%

Figure 2.7: Recent related work results summary

Although some existing tools aim to detect function bouredgaunlike our method,
(i) they do not maintain correctness in all cases (e.g., byatding conflicting sequences);
(i) most do not guarantee complete code coverage; andtiigy do not mark likely
spurious functions, hurting readability.

The table in Figure 217 summarizes all our proposed feaagasst the other tools.
The F measure is an accuracy measure. We show the exactidefofithat metric later
in this section. The tables shows that our method to detectifon boundaries is the first
in the literature to ensure that the output is functionalilevimaintaining an accuracy that
is comparable or better than existing techniques.

Speculative techniques like the one by Harris et al. [33]Jaescode conflicts alto-
gether which is not suitable for our target of obtaining a ptate set of functions in the
IR. This is demonstrated by the fact that 12.5% of the recavdigassembled binaries

using their techniques cannot run correctly. In our cas@%d.6f the binaries run correctly

52

if recompiled from the recovered IR.

Despite the fact that current tools are incomparable to tissgsare solving a partial
problem of what we are solving, we compare our accuracy to tieeshow that we did not
sacrifice the function boundaries accuracy while maintgriunctionality and complete
coverage. We also show more results on the amount of spuiioesons we are able
to eliminate which is a readability metric that none of thiated work on speculative
disassembly shows.

We show more detailed results on the SPEC2006 benchmarksledmping two
compilers. Tablé 2|8 shows the complete list of binariespited using the GCC 4.3
compiler along with their size (in assembly instructionsl &ines of code (SLOC)) and
the number of functions each benchmark contains. Table Hb@s our visual studio
binaries. Some GCC binaries in the first table are not showhenuS table because
visual studio does not compile Fortran code and some C and EEC®enchmarks.

The charts used here in this section are all based on optintireries because
these are the challenging ones where function boundareetiader to recover. Non
optimized binaries usually have standard prologue pattana almost no tail calls which
makes identifying the boundaries much easier. Optimizedri@s are also more common
among deployed binaries.

To collect dynamic information traces to apply the techegin section 216, we
use the PIN tool by Intel to run the input binaries and colldtthe required instruction
traces and other information as per the discussion in s€2i®. We noticed from our
experiments that the sensitivity of the results obtainethéoinput data set is very low.

The results almost did not change by having different in@tadets with different sizes.

53

Application Lang Inst Funcs | SLOC Type Version
specrand C 290 5 49 SPEC2006 2006
mcf C 3,357 26 2,685 SPEC2006 2006
Ibm C 7,740 22 1,155 SPEC2006 2006
astar C++ 12,677 155 5,842 SPEC2006 2006
libquantum o 13,800 121 4,357 SPEC2006 2006
bwaves F 19,002 9 918 SPEC2006 2006
bzip2 C 21,408 105 8,293 SPEC2006 2006
sjeng o 32,238 146 13,847 SPEC2006 2006
milc o 34,183 237 9,784 SPEC2006 2006
sphinx C 41,669 373 13,683 SPEC2006 2006
leslie3d F 43,432 23 3,807 SPEC2006 2006
hmmer o 85,981 541 35,992 SPEC2006 2006
namd C++ 103,365 154 3,188 SPEC2006 2006
soplex C++ 116,743 | 1,593 | 28,592 SPEC2006 2006
zeusmp F 118,429 79 19,068 SPEC2006 2006
omnetpp C++ 148,453 | 2,770 | 20,393 SPEC2006 2006
h264ref C 170,684 593 51,578 SPEC2006 2006
gobmk C 196,230 | 2,683 |157,883| SPEC2006 2006
cactusADM C 218,896 | 1,395 | 60,452 SPEC2006 2006
povray C++ 288,957 | 2,098 (108,339| SPEC2006 2006
perlbench C 313,036 | 1,872 (126,367| SPEC2006 2006
gromacs C/F 396,450 | 3,872 | 65,182 SPEC2006 2006
calculix C/F 506,725 | 1,386 |105,683| SPEC2006 2006
dealll C++ 766,555 | 18,779 | 96,382 SPEC2006 2006
gcc o 934,292 | 5,627 |236,269| SPEC2006 2006
xalancbmk C++ 965,001 | 30,062 |267,318| SPEC2006 2006
tonto F 1,303,359| 4,086 |108,330| SPEC2006 2006

Figure 2.8: Application Table (GCC-compiled binaries)

54

Application Lang Inst | Funcs | SLOC Type Version
specrand C 302 5 49 SPEC2006 2006
mcf C 2,149 26 2,685 SPEC2006 2006
Ibm C 2,174 22 1,155 SPEC2006 2006
astar C++ 6,681 155 5,842 SPEC2006 2006
bzip2 C 10,785 105 8,293 SPEC2006 2006
sjeng C 20,838 146 13,847 SPEC2006 2006
milc C 26,987 237 9,784 SPEC2006 2006
sphinx C 37,901 373 | 13,683 | SPEC2006 2006
hmmer C 60,737 541 | 35,992 [SPEC2006 2006
namd C++ 72,517 154 3,188 SPEC2006 2006
omnetpp C++ 101,480 2,770 | 20,393 SPEC2006 2006
h264ref C 113,550 593 51,578 SPEC2006 2006
gobmk C 179,612 2,683 | 157,883 SPEC2006 2006
perlbench C 222,994 1,872 |126,367 SPEC2006 2006
gec C 702,755 | 5,627 |236,269| SPEC2006 2006

Figure 2.9: Application Table (VS-compiled binaries)

Because of that, we only present dynamic information basadtsain this section for the
combined traces from the test and the ref data sets of the @B&&benchmarks suite.
All benchmarks are rewritten successfully and the recal/digh level IR (with
functions, arguments and variables) is recompiled using\lk backend. The rewritten
binaries produce the correct answers which shows the ofitpationality and the com-
plete coverage we achieve. To the best of our knowledge atic stwriter can produce a
correct rewritten binary with accurate function boundsaffem binaries exceeding a mil-
lion instructions. We do not show numbers on the run time efréwritten binaries since
this is mostly affected by the SecondWrite framework itseitlg its internal passes) and
not by our techniques. The effects of SecondWrite on the t@mrbinaries runtime can
be found in[3]. Next, we show that we do not sacrifice the amcyiof the recovered

function boundaries. We also show the amount of spurious eadwere able to identify

55

as well as the time spent during the disassembly processId&/aslaow the effect of the
individual heuristics in identifying spurious functional/e show how these results change

with the dynamic information present and used.

2.8.1 Comparison with best-effort techniques

We compare against the machine learning technique by Rasendl. al. [55]
which aims to solve a much simpler problem than what we aregrip solve. They only
recover function entry points. Unlike our method, they dé mecover complete bound-
aries with guaranteed functionality. If Rosenblum’s tecjmei is used for disassembly to
identify code, it would lead to incomplete coverage.

Rosenblum et. al. [55] calculate the F-meastiye which is a well-known accuracy
metric in the machine learning field. The F-measure is uguskd for binary classifica-
tion problems where a test is being done on a certain datandetha test has only two
possible outcomes. The F-measure is the harmonic mean pfekesion and the recall
of the test. In general, the precision (PR) and the recall (R€¥alculated according to

the following formula:

TP

PR_TP+FP
TP

RC_TP+FN

WhereT P is the true positive resultd; P is the false positives, andN are the

false negative results. Thg 5 gives more relevance to the precision than to the recall. It

56

can be defined as follows:

B 1.25 %« PR x RC
" 0.25% PR+ RC

Eos (2.3)

In our test (as well as Rosenbulum et al. test), the true pesitre the functions
with correct entry points. The false positives are the eptints we identified as being
function entry points but they are not which representsisparfunctions in the context
of this dissertation. The false negatives are the entrytpahfunctions that we missed
during our analysis. We never miss any function as per oug coslerage guarantees, but
we might inline a function into some parent and hence migshiay point. We calculate
the inlined functions (which are real functions in the dejing information of the binary)
as the false negative ones.

Rosenblum et al! [55] report af, 5 measure of 98.8% among all recovered entry
points for stripped binaries compiled from gcc and 92.3%vfsual studio. We calculated
the same measut&, ; for our techniques for both compilers and it is 99.4% for gad a
95.3% for visual studio. Visual Studio binaries usually dnawore functions with no
default prologue patterns and hence their numbers arelysess.

It is worth mentioning that we already perform much bettemtithe well-known
disassemblers IDA Pro_[31] and Dyninst. The reporfed for IDA Pro for GCC is
87.6% and for Visual Studio is 78.9%. For Dyninst, the repo, 5 is 97.1% for GCC
and 6.7% for Visual Studio. This is as reported by Rosenbluah. ¢55].

If we incorporate the dynamic information while identifgifunctions, the numbers

become slightly better. Thg, 5 for GCC becomes around 99.5% while for Visual Studio

57

it becomes 95.5%. Dynamic information is more beneficiakuiucing the size of the IR
and reducing the disassembly time by eliminating many spgrentry points.

These results show that despite solving a more difficult lprabwe are able to
achieve higher quality of function entry points. This shakat our techniques can replace
even the best machine learning techniques and get betteithRlwour added features of

functionality and complete code coverage.

2.8.2 Function Boundaries Accuracy

In this section, we describe the quality of the recoveredtion boundaries.

Our Method Our Method Our Method Our Method
Category | Bef.Improv. | After Improv. | Bef. Improv. | After Improv.
No Dyn. Info No Dyn. Info | With Dyn. Info | With Dyn. Info
Matched 93.83 % 99.32 % 95.02 % 99.34 %
Split 5.96 % 0.12% 4.77 % 0.12%
Merged 0.21% 0.56 % 0.21% 0.54 %
Uncovered | 0 % 0% 0% 0%

Figure 2.10: Function Boundaries Accuracy

We define three metrics for every function in the originaldmn(read from the
debugging information) indicating its quality in the reeoed code. Anatchedunction
is when the exact function boundaries are discoveredpli function is when a single
function from the input binary is divided into many diffeten@covered IR functions. A
mergedfunction is when the input binary function is recovered amdépgart of another
bigger function in the IR. Theoretically, an original furartihas to be one of these three

categories.

58

Figurel2.10 shows the average matched, split and mergetidoson all our bina-
ries. We initially detect 93.83% of the functions with exaoundaries and this improves
to 99.32% after doing our proposed improvements presentsedtion 2.4J2.

The dynamic techniques presented in sedtioh 2.6 have a weadl sffect on the
results presented in this section. There are two reasonsiof First, the results are
already very good from our static methods (more than 99% efuhctions are already
matched). Second, the effect of the dynamic informationsigally a reduction in the
number of the entry points (binary characterization adggps All of such addresses that
are pruned are spurious and represent no functions in the lrpary. This has no effect
on real functions in the input binary. The effect of dynamiformation is presented more
on the IR size and the amount of time spent in disassembly ahowe next.

We do not show detailed per benchmark result for matchedyedeand split func-
tions since in most of the binaries we get 100% matched fonstcomparing to the
functions in the symbol table of the original binary. Sonrgéa binaries will have a tiny
percent of merged functions (usually less than 1%). Exasnplesuch binaries are gcc,
xalancbmk and gromacs. The common trend in such binaribatightey have larger func-
tions in the input binary, so the binary characterizatiotedis more spurious addresses
in the same function which requires more splits to happehaerfitst disassembly stage,

and more merges to happen in later stages.

59

Bin. Char After ™ Bin. Char Before

| |
xalancbmk #
gce #

dealll
calculix

gromacs
perlbench
povray
cactusADM
gobmk
h264ref
omnetpp

zeusmp |}
soplex
namd

hmmer

<
I 1 I I I

0 5000 10000 15000 20000

Figure 2.11: Reduction in number of binary characterizaiddresses

2.8.3 Dynamic Based Reduction in Binary Characterization Addresses

In this section, we show the quantified effect of having dymanformation present
while doing the static disassembly on the number of entrpisdor static disassembly.
We show how the binary characterization list of addressdscfwconstitute the above
entry points) change by having the dynamic information.

The average reduction in the number of binary charactévizaiddresses is 31.4%

in GCC binaries and 22% on Visual Studio binaries. This radnds calculated after

60

using all the discussed dynamic techniques in se€tidn 2.6.

Figure[2.11 shows the details of the number of binary charaettion addresses
before and after the pruning for some large GCC benchmarksldnet show results for
smaller benchmarks because they will not appear on the gsieir number of binary
characterization addresses is negligible compared tatged benchmarks.

The percentage of reduction does not change much by chatigingput data set
for the SPEC benchmarks from the test input to the ref inptd dat. The results are
shown for the combined data sets.

Some benchmarks like dealll have a small reduction pergen(i®2%) compared
to other larger reduction percentages (gcc has 30.1% tiedlicT his is usually because
the dynamic runs used to calculate the dynamic traces nded#dte experiment did not
cover large parts of the binary characterization entry ggamdealll and similar binaries.

This is a feature of the input data set used to conduct thisrexent.

2.8.4 Spurious Functions

Binary characterization as described in section 2.3 cantleagdundant function
entry points. This is the price paid to guarantee completie coverage and functionality.
Here we present detailed statistics regarding spurioudifums.

Figure[2.12 shows the percentage of the spurious functimsept in the main IR
file after every stage of our techniques for GCC binaries. Vevsthis for both cases
when we use the dynamic information and when we do not uségitiré{2.18 shows the

same percentages for Visual Studio binaries.

61

%

40
35
30
25
20
15
10

H Without Dynamic Information @ With Dynamic Information

Before Adjustments After Adjustments After Semantic Detection

Figure 2.12: Percent of spurious functions - GCC binaries

%

45
40
35
30
25
20
15
10

H Without Dynamic Information 1 With Dynamic Information

Before Adjustments After Adjustments After Semantic Detection

Figure 2.13: Percent of spurious functions - VS binaries

62

For GCC binaries, after the basic disassembly algorithmribestin section 2.4]1,
an average of 38.5% of all IR functions are spurious. Thisgeiage is reduced to 32.4%
if we use dynamic information. During the function boundarimprovements phase,
some of these spurious functions can be safely removed asingroperty 2.2. This
brings down the spurious IR functions to an average of 16% ¢Rdunctions (11.4% if
we use the dynamic information). Finally, applying the listios described in sectién 2.5
prunes away most of these remaining spurious functions frmmimain file resulting in
around 0.55% spurious functions (also the same 0.55% if walysamic information).
The final spurious functions percentage after applying theiktics did not change when
we use the dynamic information since the total number of fons is smaller and the
remaining spurious functions in the IR at this stage is igdgke, so the overall percentage
does not come down that much compared to the percentageuviitBng the dynamic
information.

The same trend happens in Visual Studio binaries as showguiref2.18. The only
difference is that we have higher percentages of spuriotis abevery stage. The reason
is that we noticed that Visual Studio binaries have muchelasgt of binary characteri-
zation addresses than GCC binaries. As an example, the gquleotminary compiled
using GCC has 8,249 binary characterization addresses thieileorresponding Visual
Studio binary has 11,155 addresses.

Figure[2.14 shows the detailed per benchmark results fatmmifunctions detec-
tion in GCC binaries. Figure 2.115 shows the same result fandliStudio binaries. The
x-axis in these figures represent the percentage of theoguitinctions that remain not

detected in the main IR file. Zero percent in these graphs shearspurious functions

63

O Spurious % (After Heuristics) O Spurious % (After Heuristics)
Spurious % (After Adjustments) Spurious % (After Adjustments)
H Spurious % (Before Adjustments) M Spurious % (Before Adjustments)
wlarchrk e | =SS
gcc gee
deall e = E——
calculix |
Bromacs P -
perlbench I —
povray & | . omnetpp h
cactusADM | ‘ ha6aret b
YT S———
h264ref 7:"—"' namd &
omnetpp
p | hmmer | —
soplex = .
namd | —— sphinx &
hmmer : E
leslie3d |t e
sphinx 7‘;— milc L
milc 7;!
sieng | — bzip2 L
bzip2 —! astar a
bwaves _T
libquantum 7h lbm a
astar 7b
tbm mcf a
mcf |
specrand —T specrand a))
¥ T T T T T T
0 20 40 60 80 0 20 40 60 80
% %

Figure 2.14: Spurious Functions - GCC Figure 2.15: Spurious Functions - VS

remain undiscovered in the main IR file. We show only the teswithout using the dy-
namic information. Using the dynamic information gives tzeme trend. As expected,
small binaries usually have smaller spurious code that irsradter all our adjustments
and heuristics. This is because the number of binary cherraation addresses is usually
small in such functions resulting in a lower number of spusifunctions.

As we discussed in the sectibn2.5, we do not remove the smufimctions from
the binary for safety reasons such that if one of our heuasséil we still have functional
rewritten binaries. We monitored the execution of the riemi binaries and none of the
spurious functions detected by our heuristics gets exdcUteis shows that the spurious

functions detection does not have any false positives.eRagatives do happen; these

64

are when we leave a function as a non-spurious function lmiittually spurious. False
negatives happen with a rate of 0.55% as we discuss earlier.

There are other methods that can prune out spurious codeotsbumscated binaries.
They are trying to solve a different problem which is de-agfation. If such methods
are applied to our code with our assumptions, they wouldtelefalid code which is not
acceptable. As an example, one of the heuristics used Intp4@¢lete spurious code
from conflicting CFGs is to delete one random function suchttimaconflict in CFGs is
resolved. That is an unsafe approach since the IR is incaenpi¢his case, resulting in a

non-functional recovered IR.

2.8.5 IR Size Changes due to Adjustments

Our function boundaries adjustment techniques may resudt change of the IR
code size. The main factors that affect the IR code size analitiing. 2) Spurious code
removal (property 2.2).

We show the effect of our adjustments to the IR compared totiggnal IR ob-
tained using the basis disassembly techniques presenttiion 2.4.1. The original
IR obtained using the basis disassembly techniques cemaamy function splits as we
showed before. We also show how the IR code size changesaafibring our dynamic
techniques presented in section 2.6.

Figure[2.16 shows the detailed results of the increase obtk size while doing
the adjustments for GCC binaries. Figlre 2.17 shows the sasuts on Visual Studio

binaries. On average, the IR code size increases by 5.5%3ar I@naries due to having

65

spurious functions as well as due to the function boundamgsovements we do (like
inlining). The increase is 7.2% for Visual Studio binaridhis shows that the growth
in code size from our methods is modest and manageable. fidrsaise requires more
memory, but on the other hand, our detection of spurioustiome makes the amount of
code a human reverse engineer has to look at significantlfesm@his is a significant

benefit in reverse engineering.

xalancbmk
gee gee
deall perlbench
calculix
gromacs gobmk
perlbench
povray omnetpp
tusADM
e h264ref
gobmk
h264ref namd
omnetpp
zeusmp hmmer]
soplex 4
namd sphinx '
hmmer seng
leslie3d
sphinx mile
milc
sieng bzip2
bzip2 .
bwaves s astar
libquantum lbm
astar J
lbm I mcf
mcf s
specrand U specrand
-20 -10 0 10 20 30 % -10 0 10 20 30 40 50 %

Figure 2.16: Code Size Effect (GCC) Figure 2.17: Code Size Effect (VS)

The figure shows that Fortran and some larger C binaries lysumle some code
increase. This happened because many of these binariesrcbigger functions which
usually causes more splits to happen. Since there will adsmdny binary characteriza-

tion spurious addresses in the same function, we will notteta remove many of these

66

splits as the starting address of removed functions caorm in the binary characteriza-
tion list. This overall behavior increases the code size.

If we apply our dynamic techniques, many binary characiion addresses get
removed as we showed before. This results in a decrease It #iee. The average code
size reduction is about 7.4% in GCC binaries and around 3.3%i$oal Studio binaries.
Visual Studio binaries have much more binary characteoraddresses than GCC bina-
ries and hence not many addresses get pruned with the samedyinformation. This

results in larger Visual Studio binary sizes.

2.8.6 Disassembly Time

Figure[2.18 shows a scatter plot between the time spent iorn8#¢rite for our
techniques (in seconds) versus the binary size for all tharlds we have in our tests.
We show two sets of points — one with dynamic information beised and the other one
without dynamic information being used.

The average runtime of our disassembly techniques was dtes with a max-
imum of 55 minutes on the gcc binary compiled using GCC (wh#&B34,292 instruc-
tions).

If we add the dynamic information to aid the static disasdgndchniques, the
average disassembly time reduces by 32%. The averageafhsalgstime becomes 1.7
minutes and gcc takes around 21.7 minutes during disasgemiti$ is expected since the

entry points needs to be disassembled is reduced when ha@mtynamic information.

67

Disassembly Time (seconds)

2000

1800

1600

1400

1200

1000

800

600

400

200

¢ Without Dyn. Info B With Dyn. Info
——Linear (Without Dyn. Info) — Linear (With Dyn. Info)

L g
[]
*]
u]
0 500000 1000000 1500000 2000000 2500000 3000000

Binary Size (Bytes)

Figure 2.18: Time spent during disassembly

68

2.8.7 Heuristics Effect

Figure[2.19 shows the share of every heuristic among thedisesssed in section
[2.3 while identifying spurious functions in GCC binaries gtie[2.20 shows the same
results for Visual Studio binaries.

The best heuristic is the one based on inlining functiondl jpeaents. Many spuri-
ous functions have direct control transfers from other fiams and they are successfully
inlined to all of them and hence are less probable to exedutenaime and are consid-
ered spurious. Such spurious functions represent 74% spatlous functions on average
in GCC binaries and 47% of all spurious functions in VS binariehe Visual Studio bi-
naries have many more binary characterization addresseh wiakes this heuristic less
effective.

The next effective heuristics in GCC binaries is the one basedetecting the
actual parent of inlined functions. Only one parent is uguah actual parent and all
other parents are marked as being spurious. 16% of the siguiimctions on average
are detected based on this heuristic. For Visual Studiorieimathe same heuristic is
not as effective and ISA based heuristic performs better 24t% reduction in spurious
functions. For VS binaries, the detection of the actual pianeuristic has an 18% share
in the spurious functions reduction.

The remaining semantic based techniques contribute toethaining 10% of the
spurious functions. The most effective heuristic out ofsaimantic based ones is the
memory analysis based heuristic. This is true in both GCC &divaries. Many of the

detected spurious functions have unusual memory accesdesaa be identified based

69

on that.

=ISA i Conditionals m Memory % Empty M Inlined i Parents

0% 3% 1%

Figure 2.19: Heuristics Effect - GCC binaries

Some of the spurious functions have more than one propeatygtnalifies them
to be spurious. For example, most inlined spurious funsticen be caught using the
memory analysis techniques as well. In the results showgimeég 2.79 and 2.20, we do
not show this effect. We run the heuristics in order and stoge®ne heuristic identifies
a function as being spurious. We start first with the inlinfreuristics and then use the
semantic based ones. We could have chosen any other ordertidled that inlining is

the most effective heuristic so we run it first.

2.9 Related Work

Section 2.B has already compared with some of the relatel. worthis section,

we cover other related work to the disassembly process anatidun boundaries recovery.

70

=ISA i Conditionals Wl Memory # Empty Minlined i Parents

Figure 2.20: Heuristics Effect - VS binaries

De-obfuscation techniques are orthogonal to the techsidigeussed in this chapter, so
we will not discuss them here. We discuss some of these gebsin sectionh 2.10.
Cifuentes et al.[14] propose some methods which are usedeby@BT tool [16]
to recover indirect control transfer targets from binargedased on program slicing
and pattern matching with some well-known function prolegju They do not recover
any function boundaries. Their technique does not guaeabh®®% code coverage (in
fact they report an average of 74% code coverage). Theiradsthre not robust since
prologue patterns depend on the particular compiler, itsiee number, and flags used.
Other work by Theiling[[67] has the same problem.
Other control flow graph (CFG) construction techniques psepan [38] use data
flow analysis to reason about indirectly reachable targits. used in the Jakstab [36]

tool. It does not guarantee full code coverage and do nobtrgcover function bound-

71

aries. A later hybrid disassembly approach was develdpgpt@Bimprove the Jakstab
tool code coverage. The technique is based on a formal gésardf a technique similar
to the one used in the BIRD dynamic binary rewriter| [52].

Sutter et. al.[[20] and Schwarz et. al.[59] also look at ndsgl CFGs from binaries
but they are not practical since they require relocatioarmgtion.

Tallent et. al.[[66] develop binary analysis techniquesitbtiae attribution of dy-
namic runtime costs to dynamic calling contexts. For thay tave techniques to recover
function entry and exit points in binaries, as well as reciogpcomplete stack unwinding
information. They assume that some part of the binary has twb-stripped and debug-
ging information exists in the binary which is not suitabde éur problem. Their work is
used in the HPCToolkit suite of performance monitoring ofleapions [2].

Shen B. et. al. implement a binary translation system calleBTL[61] which
is ARM to LLVM based. One of their code discovery techniquesimsilar to the binary
characterization technique [63]. Their disassembleritalle for aligned instructions and
cannot be used for variable length instructions like in x8&we code conflicts problem
can arise.

Recently, machine learning techniques were introducedtfbgtect which com-
piler was used to produce a certain binary or to differeateatde from data in x86 bina-
ries [76]. Such techniques are best-effort and do not gteeasomplete code coverage.

Another machine learning technique presented by Wartell §I6] provides meth-
ods to differentiate code from data in x86 executables. ésdwot recover any function
boundaries though. Their work identified the problems wi¥A Pro regarding differenti-
ating code from data and build a classifier to overcome trssdban training the classifier

72

on 10 binaries and then testing it on one binary.

Marco et. al. introduced a static system![19] built on top ofvBarz et. al. disas-
sembler[[59] to detect vulnerabilities in x86 binaries lwhea symbolic execution tech-
niques. Their work assumes binaries have relocation irdtion which is not true in
stripped binaries. Another tool by Wartell et al. [74, 75i@ces security by doing binary
rewriting. The rewriter relies on the IDA Pro disassembl&t][which is a best-effort
disassembler that cannot guarantee complete code coverage

Binary rewriting has been considered by a number of reseexcfdere are two
main categories when talking about binary rewriters — dyindmmary rewriters and static
binary rewriters. Dynamic binary rewriters rewrite the duiy during its execution. Ex-
amples are Pin [48], BIRD [52] and DynInét [34]. None of the dym@abinary rewriters
can guarantee complete code coverage. They can only cawegyotttion of the code
that is being executed. Examples of existing static binawriters include ATOMI[28],
PLTO [60] Spike [18] and Diabld [70] none of which supportiged binaries as they
require relocation information.

Some binary analysis platforms like BAR [9], [64] and Codd&uj30] rely on the
IDA Pro [31] disassembler which cannot guarantee complede coverage. Some other
tools like Boomerang [26] rely on specifying where the entojnp of the program is
which makes it of a very limited capability. All such toolsrchenefit greatly from the

techniques described in this chapter.

73

2.10 Limitations and Future Work

In this section, we describe some of the limitations to thekwwresented in this
chapter and possible directions on how to tackle them. Theetimain limitations to
this work are position independent code (PIC), obfuscatee emd self-modifying code.

Below we describe each one of them.

2.10.1 Position Independent Code

One main assumption this work relies on is that the binarg ¢ have any calcu-
lated addresses. This is valid for application code we aaittill now, but it is not valid
in some shared library code.

Shared libraries are usually loaded at run time. There apentain techniques to
load shared libraries: 1) Load-time relocation. 2) Positimdependent Code.

Load-time relocation simply uses a relocation table in thvalty code. Every entry
in the table is updated at load time with the correct addréks.good thing about these
libraries is that the relocation table cannot be removed éue library is stripped. This
allows accurate function boundaries to be identified withemy issues. Usually such
libraries are handled nicely in our framework. FortunagtaliWindows DLLs and many
Unix ones fall in this category.

Position independent code is the other technique some Lshared libraries use
to avoid the overhead of the load-time relocation. Such ameputes the addresses
of functions and variables at run-time. Whenever the compiéxides to calculate a

function address at a certain location in the binary, themtamwill first load the current

74

program counter, and then adds the offset to that functmm the current location. This
invalidates our assumptions that addresses are not daldwarun-time.

Many instruction set architectures (ISA) will have diffategechniques to imple-
ment position independent code. There are two main techeitm load the program
counter at run time. The first one is to use a dedicated progoamter register that is ac-
cessible in regular move instructions in the ISA. This tegbe is usually found in RISC
architectures like ARM and MIPS. In x64, there is an explidtdeessing mode called the
RIP-relative addressing mode which makes the program coredester visible to some
instructions. The second way of loading the program coustased in ISAs where no
dedicated program counter is available to instructionsthése cases, there is usually
an instructions that pushes the return address into memoffymction calls. A simple
technique to load the program counter is to call some addveah then pops whatever
on the stack and jumps back to the original call site.

The idea to support position independent code is to deteetevtme code is trying
to access the program counter. For ISAs where the prograntexas visible, this is very
easy and obviuos. For other ISAs (like x86) where the prograomter is not visible to
instructions, instruction sequences that simulate theéihggof the program counter value
can be detected using pattern matching techniques. Onceteetdhe binary locations
that are loading the program counter, constant propagatidnmemory analysis will lead
to actual address calculations. We are currently lookingpate techniques to recover
this information efficiently. Fortunately, the sequencéstructions that can read the
program counter are not many, and simple pattern matchatopigues can be effective.

One important note is that the reader might think that sineeda/not support po-

75

sition independent code (PIC), then we do not support theriesvaompiled for address
space layout randomization (ASLR). This is not exactly righte ASLR will not result
in a PIC binary code. For example, in Windows OS, if ASLR isiaed ON for a specific
binary (achieved by turning on thédynam cbase option in the linker in Visual Stu-
dio), the binary will still have a preferred load address ikehard coded in the binary
image (the static binary entry point). The operating systelwcates the binary image at
load time to a different pseudo random base address (repaslo position independent
code is necessary for rebasing as we discussed earlier.oWsndoes not use PIC code
to achieve rebasing.

The only technique that might be affected by ASLR is the dycamased tech-
nigues discussed in sectibn2.6. Such dynamic techniquedsre collect the executed
addresses during the original binary run-time. Such addseare then used during the
static disassembly process. Since the static disassesmbBsed on the preferred static
base address of the binary, the collected instruction addeeat run-time might be totally
different from the static image addresses and hence becsehess.

It turns out that ASLR is not a real problem for our dynamidi@ques. Instead of
collecting the executed virtual addresses at run-time,amecollect the binary file offsets.
The conversion between the executed virtual addresse$aminary file offsets is trivial
if we know what is the actual dynamic base address of the ngniinary. During run-
time, knowing the actual binary base address is trivial. &oa conclusion, ASLR is
supported in our framework only if it does not result in P1@day code which is satisfied

in most of the cases.

76

2.10.2 Obfuscated Code

Obfuscated code is one challenge that we currently cannaopletely handle. There
are two main techniques to obfuscations: source code ddtfoss and binary obfusca-
tions.

Source code obfuscations are easier to implement and male spread. They
rely on making the source code very hard to read by comptigadimple operations
and adding more redundancies. As long as these techniqueast ditroduce calculated
addresses, we can handle them nicely in our framework siagewill be compiled using
a compiler and the executable will follow a certain compitesdel.

The binary obfuscations are implemented on the low exetaitelel, where obfus-
cation is inserted on the assembly level. The survey by Roehdy [57] summarizes all
such techniques and current work in handling them. The naosbfis research on binary
obfuscation techniques is by Linn and Debriay [45]. In gelnéna most used obfuscation
techniques are: 1) Inserting junk code in unreachable cladepto trick the linear sweep
disassemblers, 2) Using a return instruction to simulaiesgticall. 3) Altering the return
address of call instructions and inserting junk code atisc4) Using interrupt handling
to make function calls [53].

There are many static de-obfuscation techniques that vearelaped recently try-
ing to handle such problems. Most of them disassemble therpstarting from every
single byte offset. Static techniques presented in [4d]] { to resolve conflicts in the
disassembled code by removing any conflicting CFG. This ddmsafe if this technique

is applied to non-obfuscated binaries as well as obfusaated. Since they do not try to

77

solve the problem of having complete code coverage, thisag@able in their case.

Some other work by Lakhotia et al. [42] try to reason aboutfiom boundaries in
the presence of obfuscation techniques. They rely on IDA[BLpfor the disassembly
process. IDA Pro is not accurate enough even for non-obfeddainaries([55]. Their
technique is to build an abstract stack from the physicaksénd monitor the behavior
of return instructions and calls.

Another work presented by Ma et al. [49] tries to extract ocanflow of binary
code with calls simulated by returns. They use prologueogpg patterns as well as
tracking the stack pointer manipulation to detect the retacting as function calls. They
present their technique only on one binary program. Othekwyg Boccrado et al. [8]
and Lakhotia et al_ [41] achieve the same goal by precisafiking the stack memory.

To handle the obfuscation problem in our framework, we ap&iltg at static tech-
niques that can insert a translator function similar to the we described in [63] at every
return instruction. If no calculated addresses exist irbihary, the translator will be able
to redirect execution to the correct code. The translatoicgire has to be changed to
accommodate the normal return instruction use as well aglihescated use.

The interrupt handling mechanisms can be handled by dewgldpchniques to
recover the exception tables from the binary code. We ar&kimgron techniques to
recover such information.

One promising technique to be able to use our techniques wagheut change
is to record one execution of the obfuscated binary and tautdntrol flow graph and
a call graph at run-time and produce a de-obfuscated bifetydan be analyzed by

SecondWrite. During run-time, we can collect targets of bhas, calls and returns and

78

can build a deobfuscated binary this way. This is an ongoiaogkwn our group that is
under test. The only disadvantage of such techniques ighbaesulting recovered IR
will be only valid for this particular input data set. It witlot be generalized to any other
input data set. We are looking at some ways to overcome tbisiggn. Some existing
dynamic techniques of malware code extraction and reusehi Inspector Gadget [39]

and Trace Oriented Programming (TOP)![77].

2.10.3 Self Modifying Code

Like most static binary tools, we do not handle self-modifycode. Various tools
[73] statically detect the presence of self-modifying cade program. Such a tool can
be integrated in our front-end to warn the user and to discoatfurther operation.

The most common scenario where self-modifying code exssisrimalware bina-
ries that are packed and unpack themselves at run-time. ddekthing is that unpacker
has to emit the complete code that can be executed by the nealia guarantee code
coverage, the dynamic technique described at the end ofélveps section can be used.
It can monitor the unpacking process and tracks what insong are emitted at run time
and emits an unpacked binary. After that, our current statibniques can disassemble

this image and proceed.

79

Chapter 3: Recovering Function APIs

3.1 Introduction

In this chapter, we present our techniques to recover fomgirototypes for the re-
covered functions from the previous chapter. The recovesggss is presented such that
the IR is still functional, accurate, of a high quality aneé tiecovery process is scalable.

This chapter is composed of five parts. Secftion 3.2 addréssgsoblem of recov-
ering a complete and precise set of register arguments &mchseto internal functions
whose body is inside the binary. Section]3.3 extends theustison to include external
functions which only have calls from within the binary. Weoshhow to pass the correct
arguments to such functions even if their prototypes ar&noitvn and show under what
assumptions this is guaranteed to work. Sedtioh 3.4 shawsftéct of having inaccurate
function boundaries from the techniques discussed in ehgpbn our previously pub-
lished memory arguments recovery techniques [3] as welbdkéd register arguments
recovery techniques. Sectibn3.5 shows the results of apgsed techniques. Finally,

sectior 3.b shows the related work in the literature.

80

3.2 Function Prototypes Recovery

Detecting the complete and accurate set of function argtsrerd returns is es-
sential in producing a high quality code that can run colyettrecompiled. If some
arguments are missing, the code will not work correctly Irtases. If more unnecessary
arguments are identified, the code will run correctly, but e less understandable by
users.

We show how to accurately identify the register argumentsraturns. Existing
techniques show how to identify the exact set of memory asnism SecondWrite al-
ready uses a variant of the algorithm used by Balakrishnah [&]do identify memory
arguments|[[3]. Surprisingly, we did not find any related wtrat correctly and accu-
rately recognizes register arguments and returns. Nogrezing register arguments and
returns is acceptable if the goal is to help human understgraf binaries (as for exist-
ing methods), but unacceptable if the goal is to generateciorewritten code (as for our
method.) Typical x86 codes have less register argumentsrtteanory arguments, but
they still have large numbers of register arguments eskhetoa optimized executables.

A brute force algorithm for identifying register argumeatsd returns is to define
the set of registers read without being initialized insiderecedure as arguments, and
the registers modified inside a procedure and then later atsgoime of the call sites as
returns. This technique will result in many spurious argataeince all registers which
are saved and then restored back in a function (such as calles) will be declared
as arguments and returns for this function, which is not.trierther, this algorithm

might miss some arguments if not carefully implemented. éxample, a procedure not

81

accessing any register at all might be declared as takinggister arguments, which may
not be true since it might be calling a function which is takaregister argument.

We propose below an algorithm which identifies accuratdlyegjfister arguments
and returns. Our algorithm is conservative since it will mi$s any arguments. It is also
accurate since it prunes out unnecessary extra argumemeny cases.

The main challenge in being accurate and yet conservatit@ agcurately track
all registers that are saved and restored (callee-savesh r8gisters are usually re-used
inside functions for their local variables and temporariésey are saved at the beginning
of a function and then restored back at the end of the funcfldis allows the function
to write and read from them without corrupting their oridimalues. Such registers will
be considered as arguments and returns to functions bykmistsing the brute force
technique described earlier if they are not identified.

The key challenge in tracking callee saved registers isthigastack locations used
to save such registers need to be tracked to make sure theglginesed for this purpose,
thus allowing those registers to be pruned from the argusraneturns. The stores of the
register values at the beginning of the function should dare the loads used to restore
them back. There should not be any write to those stack mtain between. If those
stack locations are read in the middle of a function, theesponding registers must be
declared as arguments.

Our register arguments and returns detection techniqu®isrsin algorithmi 2. It
is composed of five steps. 1) We assume all registers are argano every function and
there are no register returns. 2) We declare all registatsewto inside a function or any

of its callees as potential return registers. 3) We run ogoréthm for detecting saved

82

Algorithm 2 The algorithm to detect register arguments and returns
Input: LLVM IR for a binary

Input: AllRegs : set of all available physical registers
Output: RegArgs map between functions and their register arguments set
Output: RegRets : map between functions and their return registers set

1: for all Function Fdo

2: PotArggF) = All Regs

3: end for

4. PotRets= FindPotentialReturns ()

5. (DeadStores,PotRet$ = FindDeadStoresPptArgs PotRet$

6: RegArgs= PropagateArgument$XeadStores, PotArg9

7. RetArgs = PruneReturnsHotRet3

locations by detecting the set of stores to the memory stdig&hnare never loaded back
except before the return from the function. We call thoseestostructiondDeadStores
since they will be eventually removed from the code. For edthe detected dead stores,
we determine the corresponding saved register and remdnanitthe potential returns
set. 4) We run our algorithm to propagate the register argisneorrectly and prune
unused ones. 5) We prune the unused return registers out, Wexdescribe each of
those steps in details. Step 1 is trivial. We proceed from ste.

The second step in our algorithm is to detect the initial $@btential return regis-
ters. Algorithnm 8 shows the details of the detection methidte simple idea is that any
register which is being written to inside a function is a i return register from this

function. For example, if a functiohoo is calling functionbar , andbar is modifying

83

Algorithm 3 The algorithm implementing: FindPotentialReturns ()

Input: LLVM IR for a binary

Output: PotRets map between functions and their potential return regster

1: WorkList= Functions sorted in reverse call graph order
2. while WorkListis not emptydo

3 remove a function F froriorkList

4: mark function F astarted

5: for all Instruction | in Fdo

6: if | writes to a register then
7: PotRet§F) = PotRet¢F) U {r}
8: else
9: if 1is a call instruction to function Xhen
10: let callee = called function
11: else ifcallee is startedhen
12: PotRet$F) = PotRet$F) U PotRetéX)
13: else
14: add F to the end of thé/orkList
15: end if
16: end if

17: end for

18: end while

84

eax, thenf oo andbar will be declared as potentially returniegx despite the fact that
there is no write teeax inside off 00. We do a post-order depth-first search traversal
of the call graph (which visits child nodes before their pasg and propagate the set of
potential return registers upwards in the call graph by ilogkor the written-to registers.
Whenever we find a call to a function, we add its potential refuo the caller function
potential returns. We handle recursion using a work listimecsm such that whenever
we detect a call to a function which has not been analyzedwsefdd the caller function
back to the work list.

After detecting the potential returns, we add them to thenlRviery return state-
ment inside every function. If more than one register isrretd, we return a structure
containing all combined potential return registers.

The third step in our algorithm is to detect the callee saegssters and exclude
them from the list of potential returns. Since callee-saxgses are saved to the memory
stack, we need a memory analysis technique to track the nyestexck locations where
they are saved. Tracking memory in executables is not aktizsk. Our saved registers
detection does not need a sophisticated memory trackimgigdgn because it only needs
to track stack memory. Neither heap nor global memory neée toacked.

We modify the Value Set Analysis (VSA) algorithm proposeBajakrishnan et al.
[5] by removing global and heap memory tracking, keepingy stdck memory tracking.
We also remove the context sensitivity from the algorithntsiit is not needed in this
application. The resulting algorithm is less powerful fengral memory tracking but is
sufficient for this purpose.

As a quick summary of the VSA algorithm, it derives a conseveaestimate of the

85

set of addresses and integer values every memory locattregister can contain at any
program point. Every set of values is represented as a dtiderval with a lower and
upper bounds; and a stride. In our modified implementatioi®A, we only keep track
of the lower and upper bounds.

In our modified version of the VSA, we assume that indirecisoalll only access
stack locations up to a certain offset determined by the mam number of memory
arguments to all functions in the binary. We also use the kewtgrnal function proto-
types to determine that maximum offset for external fumtioFinally, we assume that
TOP VSA values do not alias with the stack offsets used to sagyisters. These TOP
values are usually input dependent values, global poiotareap pointers that usually do
not alias with the memory stack. The only exception is foagsrallocated on the stack
with statically unbounded indexing. Those are usually moh@on since such arrays are
usually allocated on the heap (sometimes they are allocetd¢ide global memory).

Before we run the saved registers detection algorithm, weezbthe registers in-
side of each function into the SSA form. This is straight fard; indeed in our imple-
mentation LLVM already does that. Our algorithm works on @perary copy of the
IR.

Algorithm[4 detects the dead stores used to save registdrpranes those saved
registers from the potential return register set. Lideg6uhh 12 in the algorithm collect
the addresses on the stack that are used to store registesvdfror each of those ad-
dresses, a simple memory liveness analysis is being caalusing standard memory-
to-register promotion and dead code elimination compisses (both these passes are

already available in LLVM). Line§_13 throudh 16 create a dummemory location in

86

Algorithm 4 The callee-saves detection algorithm (FindDeadStores)

10:

11:

12:

13:

14:

15:

16:

Input: A copy of the LLVM IR for a binary

Input: PotArgs: maps functions to their potential register arguments
Input: PotRets maps functions to their potential return registers
Output: DeadStores maps functions to the dead register stores
Output: PotRets The input map after pruning saved registers

for all reg € PotArgsdo

Create a dummy registdummy, DummyRedseg) = dummy

: end for

. ADDRS= ¢

for all Function Fdo
for all Instruction | in Fdo
if | = storereg, Ptr AND reg € PotArgsthen
if ValueSetPtr) = {addres$ (Singleton)then
ADDRS= ADDRSU {(reg,addresd)
end if
end if
end for
for all (reg,addressl) € ADDRSdo
allocate a dummy pointddummyPt((reg, addres$) at the beginning of F
storeDummyRedseg) to DummyPtf(reg, addres})

end for

87

17:

18:

19:

20:

21:

22.

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

for all Instruction | in Fdo
if I is Unsafelnstructiorgddres$ where (eg,addressX) € ADDRSthen
insert a volatile load fronDummyPt((reg, addres$)
end if
if | = storevalue Ptr AND ValueSetPtr) O {addres$ AND (reg,addressX)
€ ADDRSthen
insert a storealueto DummyPt{(reg, addres$)
end if
if | = load Ptr AND ValueSetPtr) O {addres$ AND (reg,addressX) € AD-
DRSthen
insert I' = loadDummyPt((reg, addres3)
for every use of | insert a cloned use of I
end if
end for
Run LLVM Memory to Register Promotion on ADummyPtr
Run LLVM Dead Code Elimination on F
for all (reg,addressl) € ADDRSdo
if DummyPtfreg, addres$is deleted ANDDummyRegseg) has no uses OR
only used in return instructiorteen
DeadStored~) = DeadStored~) U {I}

end if

88

35: if DummyRegseg) has no uses O®ummyRegseg) is used in all return
instructions of Rhen

36: PotRet§F) = PotRet$F) - {reg}

37 end if

38: end for

39: end for

the IR for each pair of address and register identified. Wealhyji store a dummy value
we create to each one of those memory locations. Llinks 1dghf@8 examine the uses
of every address using VSA. At every possible read of an addree insert a load from
the dummy memory location we create. At every possible watthat address, we in-
sert a store to that dummy memory location of the stored valfter that, we run the
memory-to-register promotion compiler pass again on tmosmory locations. Finally,
lines[31 through 38 determine the final set of dead storekelfltmmy memory location
is promoted successfully to registers, and the only usesofittimmy value is at the return
then it is saved and can safely be removed from the poteetiafr. The corresponding
initial register stores are declared to be dead in this dage same previous conditions
occur and also there are other uses of the dummy value, teerdister is removed from
the potential returns, but the initial store is not dead andonsidered a real use of the
register; i.e. the register becomes an argument.

The Unsafelnstructiofaddres3 functions appearing in line_18 in the algorithm is
responsible of deciding whether the instruction may hagle sifects which can poten-

tially access thaaddress External calls without a known prototype where any stack

89

address appears in the value sets of one of the argumentsrasielered unsafe as they
may do arithmetic on those addresses and potentially read dr write to ouraddress
Some external functions are pre-identified safe and knowiorgo arithmetic on pointer
arguments, or do it with a bounded identified offset. For gglanwe parse format strings
of pri nt f,scanf and similar functions and in some cases we can prove thosgéduog
are safe.

After detecting the dead stores used to save registers anthgrthe callee-saves
from the potential returns, we proceed to step four whictifies the actual register
arguments. Algorithral5 shows the method to do so. We travbseall graph of the
executable in post-order depth-first search traversatiwgmsures child nodes are visited
before their parents. For each potential register arguinside a function, we declare
it as an argument if and only if we see a “real” use of this fegis the function. If a
register is used in a store instruction among the dead stbeatified by algorithni 4, the
store is not considered a real use. Uses in calls are onlyd=ares “real” if the callee
takes the register as an actual identified argument. A wetkdechanism is maintained
to handle the dependencies between functions. PHI noddgithenultiple SSA versions
of the same register are not considered uses and are traRkéatns are not considered
real uses because if the return is the only use of a registge ts no need to pass it as an
argument.

Propagating the actual return registers (step 5 in our élhgoy is done in a similar
way to the one above except that it works on functions in tiedod call graph order and
looks for uses of return values at call sites.

The correctness of our register arguments and returnsitgors guaranteed for

90

Algorithm 5 The algorithm to propagate register arguments

Output: PotRets map between functions and their potential return regster
1: WorkList= Functions sorted in reverse call graph order
2. while WorkListis not emptydo
3 remove a function F froriVorkList
4: mark function astarted

5: for all reg € PotArggF) do

6: for all Instruction | that useseg do
7 if 1is a RealUsa€g) then
8: RegArgéF) = RegArgéF) U {reg}
9: end if
10: if (I =call X) AND (X is not started then
11: Add F toWorkList
12: end if
13: if 1 =call X AND X is startedAND reg € RegArg¢X) then
14: RegArgéF) = RegArgéF) U {reg}
15: end if
16: end for

17: end for

18: end while

91

internal functions. The reason is that we start our algorithitially by having all registers
as arguments, and then remove those which are not really Bsedeturns, we start the
algorithm by adding all registers that are written to insafea function or one of its
callees, we then remove the ones which are unused at call Jitee correctness in the
presence of indirect calls, external calls and call backiescribed below.

Our algorithm runs the same way on indirect calls and is corit every indirect
call, SecondWrite inserts a call translator function thagai{s the value of the function
pointer and calls the corresponding IR function accordinigl this case, this call transla-
tor is treated the same way as any normal function in thisralgo under the assumption
that the call translator will call all possible target fulects. External calls are discussed

separately in the following section.

3.3 External Calls Prototypes

In the previous part of this chapter, we proposed sound tquba to detect register
arguments and returns. We showed the correctness of oumdees when all calls in the
binary are to internal functions.

In this section, we extend our methods to support rewritixtgraal calls correctly
and making sure all required arguments are passed corrgadlgr certain assumptions.
We start first by describing why it is important to handle seelis. We then state our
assumptions. After that, we move forward to describe how aredetect external calls
in the original binary. We then show how we represent extdumactions in the IR. We

show the details of our rewriting techniques of externalscalVe finally prove that our

92

techniques are sound and the external functions will recig same arguments as in the

original binary and will therefore return the same values.

3.3.1 Overview and Problem Statement

Resolving external calls while recovering IR from executahiks very important.
Almost no real-world binary is free from external calls. &xtal calls are usually done to
libraries to perform certain tasks that are not part of thenrapplication stream.

Functions that are external to the application are usualiyd in libraries. There
are two main ways to link libraries to application code: 1at&tlinking. 2) Dynamic
linking.

Static linking is done when the linker decides to insert tivection body inside the
application code itself. The advantage of that is fast execuime of the calls to such
functions and no overhead in loading the application, befatice paid is the increase in
the binary code size.

On the other hand, dynamic linking is when the linker deciddseep the external
functions outside the binary application and refer to thgnuging their names (or loca-
tions) in the dynamic link library that contains them. Duyritihe application load time,
the libraries are loaded with the application such that wienapplication calls one of
these external functions, they can execute correctly. Thvargage of dynamic linking
is the smaller binary code size and application modulabtyKeeping the binary code
that is not related to the application main stream extern@hother advantage is that

dynamic libraries are almost alwagharedon the system. The disadvantage is usually

93

slower binary load time.

In this section we only target recovering functional IR watkternal function calls
that are dynamically linked to the binary. We do not targatisally linked external
functions in this section since they are already handlecectly by our earlier techniques
since their code exists inside the binary itself.

For every external call site in the original binary, the gesb we are solving here is
to recover some code that replaces the original call in theuléh that all of the following

is true when the IR is compiled to a rewritten binary:

1. The rewritten binary redirects control to the same exdunction when executed.

2. The external function takes the same memory and regisgeimeents that were

passed at the original binary call site..

3. The return value(s) if any from the external function aasged back to the rewritten

binary correctly.

This problem is challenging in a static binary analyzer lngeaf two main reasons.
1) Statically detecting an external call site in a binary ¢ always trivial. 2) External
function prototypes and calling conventions are usuallykmown to a static binary ana-
lyzer. This section gives an overview of the first problem disgusses in details how the

second problem can be solved.

3.3.2 Assumptions

As per any static binary analysis system, it is impossiblestadle all scenarios. In
this section, we discuss our main assumptions while regayexternal calls.

94

In this work, we assume that any external function has to r@dteesome known
application binary interface (ABI). This means that any s@# to an external function in
the binary has to have a known calling convention from a fiséeof supported calling

conventions. More specifically, we assume all of the follayvis true:

1. All external functions can only take arguments eitheegisters or using the mem-

ory stack.

2. All external functions expect memory arguments at spesifick offsets.

3. All external functions expect register arguments onlgpecific registers. These

registers are found in a set we cRikgArgs

4. All external functions can only return values in speciit of registers we call

CallerSaves

5. Any register other than theéallerSavesnust be saved and restored back if used by

an external function.

The previous assumptions are valid in almost all compiledecoThe reason is
that external functions are usually shared between melapplications and sometimes
between different systems. For them to be portable, theg taadhere to a certain ABI
with some specific calling convention such that it is morevenient for compilers to
interface with them. In practice, we found that almost dtdries adhere to the above
assumptions in all our tests.

In theory, external functions are not required to adhereotoescertain ABI. De-
velopers writing source code usually specify a prototypesf@ry external function they

95

use, which includes the complete calling convention of tirecfion. The compiler then
reads this calling convention and adheres to it while engttow level binary code. One
challenge in dealing with binaries as we mentioned aboueisack of this prototype.
One example we found that does not adhere to these assum#ioery few in-

ternal compiler intrinsics. These are compiler specificctiomns inserted in the binary to
speed up specific tasks (or for other reasons). Very few @ktirgrinsics do not adhere
to the above assumptions since they are already known totheiter. We support this
by maintaining a list of known compiler intrinsics with theustom calling conventions.
We do not support other compiler intrinsics not found in flesand not adhering to the

above assumptions.

3.3.3 Detecting External Function Calls

At compile time, the compiler does not know the external fiorcaddresses at their
call sites. These addresses are only known when the opgatstem loads the binary.
Because of this, the compiler has to call such functions @atly through some memory
location that the loader updates with the actual addredseatdlled function.

There has to be a common language between the compiled lindthe operating
system. The operating system has to know which memory mtaito update when load-
ing the external libraries. Different systems implemeffedent mechanisms of handling
this issue. For example, some Linux binaries use a dynartacaton table, Windows
binaries use an import address table and so on.

In theory, since the loader is able to update these memoayitots, these memory

96

locations have to be visible to any static binary analyssdesy. All external libraries and
functions used in a binary can be statically known from thaby image.

The challenge exactly is how to determine which indirectlealds to which exter-
nal function. Static binary analysis and rewriting systersigally rely on pattern matching
techniques that are mostly accurate and depend on certaipileo behaviors. Some of

these techniques include:

1. If the indirect call site uses the memory location thatissble to the loader (spec-
ified in the dynamic relocation entry or the import addre®deta then it is simple
to determine which function it is calling by looking up in thable. IDA Pro [31]

uses this method.

2. Some compilers implement procedure linkage tables wdrieltomposed of exter-
nal function stubs. Each stub has an indirect jump to thereatdunction. Such
stubs are usually standard and can be detected accurateywdll-known Linux

disassembler toabj dunp uses this technique.

There are some other techniques compilers use to make akoalts. Such tech-
niques are outside the scope of this dissertation. Statarypianalyzers can fail in detect-
ing if an indirect call is calling an external function or ndm all our tests this happened
in very rare cases, but it needs to be handled for correctiressich cases, our IR repre-
sentation of indirect calls guarantees correct rewriti@ardy execution as we discuss in

the following section.

97

3.3.4 External Calls IR Representation

We divide indirect call sites in a binary into two categorié3 The call sites that
are detected to call external functions using a static ginagalyzer. 2) All other indirect
call sites that may or may not call external functions.

We maintain a list of the prototypes of as many external fionstas possible (like
the standard libraries functions). This list may not be estise since for custom DLLs
it is hard to ensure they are all considered.

For detected external calls, if their prototypes are knomngearching the known
prototypes list), we present them as direct calls to thesarmad functions in the IR and
pass all required arguments with their correct data types.uRknown prototypes, we
represent them by a call to a special function we create inRhealled thetrampoline
function. We discuss the trampoline function in the nextisac

For all other indirect call sites that are not guaranteedtbexternal functions, we
use the call translation mechanism described in our WCRE péfégr The call transla-
tor function is a static function inserted in the IR that hdarge switch statement that
redirects control from constant original function addesst® their corresponding IR func-
tions. The number of cases in the switch statement is the auoflall IR functions that
can be possibly reached indirectly in the original binarye Mfplace the assertion in the
default case of the translator function by a call totriaenpolinefunction described in the
next section. The translator function looks like the fuomtin figure[3.1 in this case.

In order for the rewritten binary to work correctly, we maimmt the same dynamic

relocation entries (or the import address table entriesheit original locations in the

98

switch (input_address) {
case 0x400:

call rewritten_0x400;
case 0x500:

call rewritten_0x500;

default:

call *input_address;

Figure 3.1: The call translator function

rewritten binary. We discuss this more after we describértirapoline function.

External calls get executed in the rewritten binary theofslhg way: first, a call
to the call translator function is executed and the callgi@or function case statement
comes to the default case (since the external call addresst @ny one of the original
function addresses). The trampoline function gets exdcael redirects the control to

the external function as we discuss in the next section.

3.3.5 Trampoline Function

The trampolinefunction is a custom function only existing in the recoveted
without a corresponding function in the input binary. It ised to redirect control to
external functions at external call sites in one of thre@sat) In case the call site could
not be proven to call a specific external function. 2) In caseetxternal function has an
unknown prototype. 3) Or, in case the external function Hasoavn prototype but with a

variable number of arguments.

99

Thetrampolinefunction has to do all of the following tasks:
1. Redirect control to the correct external function.

2. Pass memory and register arguments correctly from thallRsite to the external

callee.
3. Pass the return value(s) correctly from the externa¢edb the call site.

In order for the trampoline function to work correctly, ikes the following argu-

ments:

1. The function address being called (usually a registerload from some memory

location).
2. Theabstract staclpointer value in the IR right before the call site.
3. The values of all registers in the s&gArgsefore the call.

4. Pointers to place holders of the return values, one fon eagister in theCaller-

Saveset.
5. Pointer to a variable holding the staa&lance numbeof the external call.

The first argument above is the function address. This isllysaiaesult of some
register read or some memory load. It cannot be a direct addnat is known since the
call site is for an external function. This address is uss@lmthe trampoline function to
redirect control correctly to the destination externaldtion.

The second argument is needed to adjust the memory arguarehfsut them into
their correct offsets on the memory stack of the rewritteraby. Theabstract stacks the

100

stack array in the IR resembling the original stack in thautipnary. More information
about how the physical stack in the input binary is convettedbstract stack arrays in
the recovered IR can be found in our EuroSys pager [3].

The third set of arguments are required to pass the corrgistee argument values
to the external function. We pass all of the possible regetguments conservatively.

The fourth set of arguments are pointers to variables dettlairthe call sites of the
trampoline function to pass the return values back to thercalhe trampoline function
updates each of them.

The last argument to the trampoline function is a pointer ¥@arable declared at
the call sites of the trampoline function to hold the sthekance numbeof the external
call. This balance number is the difference between the&k giamter before and after
executing the external function. The abstract stack powdakie in the caller has to be

adjusted to this value after returning from the trampolunection.

void trampoline (fn_address, SPws RegArgs, CallerSaves, Bal Num
{

/* Assume the physical stack pointer register is: E SP */

(l) Let SP CURR™ ESP, SIZE = SP(R| G- SP CURR

(2) Allocate a temporary memory at SP TEMP

?3) Save the contents between SP currand SP ogig to the temp
memory between: SP tgvpand SP tempt SIZE

(4) Set ESP =SP oric

5) Copy all RegAr gs values to the physical registers

(6) Call the function at fn_address

(7) Bal Num= SPg - ESP

(8) Copy return register(s) to Cal | er Saves

9) Restore back the contents between SP Temp = SP temp+ SIZE

to between SP curr 2 SPric
(10) SetESP=SP curr
(11) Return

Figure 3.2: Pseudo code of the trampoline function

Figure[3.2 shows pseudo code of the trampoline function thighpreviously dis-

101

cussed arguments. The memory stack layout of the rewrittearypimmediately after
executing a call to the trampoline is shown in figlre 3.3. L{hgin the code saves the
current stack pointer of the rewritten binary in a local abte. Line (2) allocates a tem-
porary storage that is needed for saving some values as wergho.

The rewritten stack layout shown in figure 3.3 contains thstrabt stack array
where its TOP value is represented by 88, ;s variable. The abstract stack is the IR
array that represents the input binary’s physical stackhetaller. For the external call to
be executed correctly, it needs to have the same stack vieda@swvas there in the input
binary, which means the stack pointer must point to the tofh@fabstract stack frame.
The problem that happens in this case is that functions lysasdume that any address
that is lower than the current stack pointer at the functi@mitry point is free space that
can be used by local variables of the function. In this paldiccase, the stack addresses
between the top of the abstract stack pointe¥{r;;) and the top of the rewritten stack
frame (SPcurr) are used by the caller function in the IR as shown in figuré 38is
means that we have to save this stack region such that if tieenak function allocates
some stack space and corrupts this region, we can restaekit b

This is exactly what line (3) in figure_3.2 does. It saves ttgiae on top of the
abstract stack frame in the rewritten stack frame to the tearg storage.

Line (4) in figurd 3.2 sets the current physical rewrittertktaointer to point to the
top of the abstract stack frame of the original caller fumetiLine (5) copies the register
arguments to the actual physical registers. Line (6) chseiternal function.

At the point of the call at line (6), the physical registersdall the arguments. The
memory stack view is the same as what was there in the inpatyirlence, the external

102

function will produce the same result as the input binary.

After returning from the external call, line (7) stores tredmce number by sub-
tracting the stack pointer before and after the call. Lined@&oies the return physical
registers into the IR return variables. Line (9) restoresklihe stack memory region that
was saved in line (3). Line (10) restores the physical stadkter to its value at the entry
to the trampoline such that line (11) can return back to threeco call site.

Because the trampoline code writes to physical registesyeads from them, it
is usually written as a separate function in low level asdgnamd then linked with the
rewritten binary when re-compiled. This way we maintainrésedability of the recovered
IR by hiding all these low level details. The user will onlyesa call to the trampoline
function with the first argument being the function that Wi called (or some pointer to

it).

Lower €«—SP
Address Return Address CURR

Outgoing Arguments to
Trampoline Function

IR Variables and
Temporaries / Saves

€ SPogiG
External Arguments
Abstract
Stack Array Other original binary
stack variables

IR Variables and
Temporaries / Saves

Higher
Address

Figure 3.3: The memory stack layout after executing a trdm@aall

103

3.3.6 Correctness of the Trampoline Function

The trampoline function in figurle_3.2 achieves all the threalg stated at the be-
ginning of the previous section under the assumptions itige8.3.2. We clarify this
here.

The first goal of the trampoline function is to redirect thentrol to the correct
external function. This is guaranteed as long as the addfdake function passed to the
trampoline is correct.

We notice that the address passed to the trampoline is thessddf the external
function in the input binary which might be different thae @ddress of the same function
in the rewritten binary (because of different loader bebigviThe key point here is that
the place holders of these addresses are exactly the saime imput and the rewritten
binary as we state at the end of secfion 3.3.4. These pladersare known to any static
analyzer as they have to be visible to the loader before ¢xedine binary. They depend
on the binary format (dynamic relocation tables in ELF or ari@ddress tables in PE).

Under the assumption that any external call has to load thetitn address from
these place holders, then the external function addrese@as the trampoline function
is correct and the execution will be redirected to the caregternal function.

The second goal of the trampoline function is that any regist memory argu-
ments have to be passed correctly to the external functiogisiee arguments are passed
correctly in line (5) of the function in figuiile 3.2. Memory argents are passed correctly
since the external function has the same stack view as thgaakribinary’s stack view

which is guaranteed by changing the stack pointer valuenm (#) of the function to

104

point to the top of the abstract stack frame (which contailrsrguments).
The third goal of passing the returns correctly is achieweexecuting line (8) of

the trampoline function.

3.4 Effect of inaccurate function boundaries

In this section, we discuss the effect of having inaccuratetion boundaries on
the function API recovery process described in this chapter per chaptell2, the IR
might have inaccurate function boundaries as well as spsifisnctions that have to work
correctly in all cases for guaranteed functionality of tReals we discussed in chaptér 2.

This section is divided into two parts, the first part addessthe modifications
required for the previous stack memory arguments identificdechniques for Second-
Write presented in |3]. The second part talks about the mgasguments identification

techniques presented in this chapter.

3.4.1 Memory Stack

When the function boundaries are not accurate, the assumtpad every function
has a return address on top of its physical stack (which istdiek memory in the orig-
inal binary) is no longer valid. This assumption is used & BuroSys work recovering
abstract stack and arguments from physical stack acce3ke$His assumption is not
usually valid in spurious code.

In this section, we show that modifications are needed to teeiqus high level

symbol promotion work [3] in case procedure boundaries at@ocurate. We first intro-

105

duce a summary of our previous technique and why it cannok wiocase of inaccurate
procedure boundaries (spurious code), then we proceedthatmodified technique to
overcome that and prove that it will work.

Our previous symbol promotion work aims at converting thggidal stack frame
in the original binary to a set of abstract stack frames (Wilie IR arrays representing
the physical stack) for every recovered procedure in the i 1B an important step of
the high level IR recovery. The way we do that is that we alleedocal array in every IR
procedure with a size that is equal to the maximum allocatetkssize in this procedure.
This maximum size can be a fixed constant or a non-constame&sipn. In case we
cannot come up with an expression, we do not convert the gdiysiack into abstract
stacks.

Instead of describing the details of the previous techrigue give an example of
why they will not work in case of inaccurate procedure boure$a Consider the code
example shown in figure_3.4-a. In this example, functioo is split into two parts in
the IRfoo andfoo_split. Assume the indirect jump ifoo was compiled from some case
statement whose targets were not known in the IR and one ¢drgets is:foo_split.
Assume the indirect call is calling the actual procedbae. foo_split is not an actual
procedure in the input binary and will not have any returnradsl allocated at the top of
its stack in the IR as it is originally a part &@fo. bar will have a return address allocated
on top of its stack by the call instruction. If we use the rudescribed in our previous
paper [3], and assuming the return address is four bytes tbadocal variable access at
offset 5 infoo_split will be translated as index: (5-4) = 1 foo's IR abstract stack array

to account for the return address (which does not exist sixdase). This will resultin a

106

wrong access since the right one is actually 5 (without swhitrg 4 bytes for the return
address). On the other hand, the access to offset@rinvill be translated correctly to
offset (9-5-4) = zero in the recovered stack arrayoafbecausdar has a return address

stored on top of its stack (the call instruction pushes thtairn address on the stack). The

recovered code which will not work correctly is shown in figi&.4-b.

foo:
sub $10, %esp

movb $4, 5(%esp)
jmp *eax

foo () {
char MStack[10];

MStack[5] = 4;
call_translator (eax, &MStack[0]);

foo () {
char MStack[14];

MStack[9] = 4;
call_translator (eax, &MStack[4]);

/IArg moved to TOP MStack[0] = dl; MStack[4] = dl;
movb %dl, (%esp) MStack[0] = ret_address;
call *ebx call_translator (ebx, &MStack[0]); call_translator (ebx, &MStack[0]);
_ } }
/Inot a function
foo_split: foo_split (char* Parent_Stack) { foo_split (char* Parent_Stack) {
movb 5(%esp), %ebx char ebx = Parent_Stack[1]; char ebx = Parent_Stack[5];
} }
bar: bar (void* Parent_Stack) { bar (char* Parent_Stack) {

sub $5, %esp
movb 9(%esp), %edx
... lINo calls

char MStack[5];
char edx = Parent_Stack[0];//Argl

char MStack[5];
char edx = Parent_Stack[4];//Argl

@ (b) ©

Figure 3.4: Stack Functionality. a) The input binary. b) Teken recovered IR using

previous techniques. c) The correct recovered IR.

To avoid this problem, we introduce our modified physicallieteact stack transla-
tion rules and prove they will work in all cases even for spiiictions. Before we begin,
we introduce some notation. We assume a general case irctinvered IR of a call stack
(chain of recovered procedures reachable using calls§umghe original binary) with
lengthn where the entry point procedure is referred to as index zettti$ chain. The IR
procedures in this chain may or may not be actual procedardgioriginal binary. The

following notation will be used:

107

e SP, refers to the physical stack pointer value in the input bjrerthe entry point

of procedurer in the chain before executing its first instruction.

e ST, . refers to the physical stack pointer value in the input birster executing
instruction: inside procedure in the chain. In caseis a call instructionST; ..
represents the stack pointer value after executing theacallpushing the return

address, but before jumping to the callee.

e MStack, [x-] is the recovered abstract stack array in the IR indexed &br pro-

cedurez; in the chain.

e SZ isthe recovered size dStack array in bytes.

First, the recovered size dfiStack is calculated as followsSZ, = max@SP, -
STi.) Vi € procedurer in the chain. This means the maximum growth in the stack in
this particular procedure. The growth of the stack pointdue includes all growth due
to any kind of stack pushes including the return address thethhappens with a call
instruction. This is a major fix to the previous work [3] thates not consider the return
address push during a call as a stack allocation.

Next, we assume the following relation holds for any recedeprocedure: in
the chain:SB, =SB,_; — Y,,_; whereY,, € Z,Y,, > 0. Y,, represents the stack offset
immediately before procedure— 1 jumps to procedure. This relation means that the
physical stack grows in the negative direction when procedu- 1 calls procedure.
This is valid in most compiled code.

For any physical stack pointer value that can be represeage&T;,) = SP, -

108

X, in the input binary whereX,, € Z, it will be translated to IR acceddStack, x, »)

[SZy(x,n) — Tn(X,)] wWhere:

;

n, X, >0

n'(X,,n) = n'(Xp + Yyo1,n—1), X, <0

W here SB,=SB,_;1—-Y,_

Xn> Xn >0

Tn<Xn) = Tn—1<Xn + Yn—l)> X, <0

W here SB, =SB, Y,
\

In the above recursive equations,(X,,) represents the offset from the end of the
recovered abstract stack of procedurior a particular physical offseX,, in the original
binary. n’ is some ancestor procedureroin the call stack.7},(X,,) is measured from
the end of the abstract stack array because the physicklgtawes backwards as per our
assumption above. For every physical stack pointer V@lljg,) there are two important
definitions: 1) The originating procedure is the IR procedfrom which this access
originates in the chain which is procedure 2) The landing procedure which is the IR
procedure whose abstract stack is the one accessed btinagshis stack pointer value.
We refer to that procedure asin our notation. Ifn’ = n then the originating procedure
and the landing procedures are the same which means theasteegs refers to a local
variable inside procedure On the other hand, #f’ # n this means that the stack pointer
value refers to an argument obtained from the parent proeedu

The intuition behind the above equations is: in cases whgre- 0 the access is

109

inside the local abstract stack frame because the staclsgna¥we negative direction, any
positive value subtracted from the stack pointer value eethtry point of the procedure
means a local allocation. It has to be translated to the sdfset.oOn the other hand,
X, < 0 represent positive offsets relative to the stack pointahatbeginning of the

procedure which means they are previously allocated inenpabstract frame.

To implement this correctly in the recovered IR, a call instian in the original
binary will be translated into a store of the return address the location in the recov-
ered abstract stack array representing the stack poinlige vamediately after the call
according to the above translation rules. This stack agegtion is passed as a pointer to
the caller. For jump instructions, the stack array locateihbe passed without storing
any return address. This can be shown in the code exampleuief&4-c.

In cases when the stack size is not constant, or constam stisets cannot be
inferred from the binary, the translation rules above arplé@mented as runtime checks
in the same way described in [3] but with the new translatides described above.

To prove this will always be correct, we prove that the recedeabstract stack
exactly resembles the original physical stack. Insteadofgaring absolute values of the
physical and abstract stacks (which are runtime values);omgpare relative values on
the physical stack (stack differences) and prove they aaetlgxequal to the offset on the
abstract stack. The next lemma proves this.

Definition 3.1 A functional binary is a binary where there does not exist aogy
access accessing stack locations not allocated insidertaeybi.e. for any stack access
represented asST;) =SP, — X,,, n/(X,,,n) > 0 andX,, <SZ,

Preposition 3.1Any stack pointer value has to access either the same statie fr

110

or an ancestor stack frame in the IR. n/(X,,,n) <n

Proof Follows directly from the mathematical definition of

Lemma 3.1For anyn chain of IR procedures reachable using calls/jumps and-form
ing a call stack in the recovered IR of a functional binaryg &r any instruction in the
original binary, the physical stack pointer value a¢lative to the physical stack pointer
value at the entry point of the landing procedure is exaajlyaéto the translated abstract
stack offset of that physical stack pointer value if the station rules above are used.

This Lemma can be formulated as follows: for a particulargitgl stack pointer
value at instruction represented &8T; ., =SP, — X,,, SP,(x,,.»)—ST.») is exactly equal
to 7,,(X,,).

Proof For cases where’(X,,,n) = n the proof is trivial by doing simple substitu-
tion in the formulas and the definitions above.

For cases where/(X,,,n) # n, we use mathematical induction. We prove the
relation atn = 1, assume it is valid at and prove it at. + 1. In the proof, our left hand
side (LHS) isSP,(x,, »)—STi,») and our right hand side (RHS) i%;,(X,,).

Base Case:n = 1 In this case,n’ = 0 according to preposition (1). LHS =
SR—-SP + X; =SB — (SR — Yy) + X; =Yy + X; RHS =T1(X;) = To(X1 + Vo) =
X1 + Y, which is the same as the LHS.

Inductive Case: Assuming:SP, (x, »)—ST;n = 1,,(X,) we want to prove that:
SPy(xni1mt1) = STt nt1) = Tng1(Xns1)

LHS = SPn’(X,,,+1,n+1)_SPn+1 + Xn+1 :Spn/(X"_,_1+Yn,n) — (Spn — Yn) =+ Xn+1

AssumeX, i +Y, = P,, LHS =SR,(p, n) — (SR, — P,) = T,(P,) = T5,(Xp41 +

111

Y,) = Tpi1(Xpy1) = RHS

Lemma (3.1) shows that the relative offsets between theipdlystack pointer val-
ues in the original binary are exactly the same as the relaiffisets on the recovered
abstract stack arrays. This implies correct stack memanmavwer in all cases under the

assumptions stated earlier in this section.

3.4.2 Register Arguments

Earlier in this chapter, we presented a sound techniquectrabe used to recover
register arguments for any function in the binary. The tégpimm is based on tracking
memory locations on the stack used to save and restoreaeggisihe memory tracking is
done using a simplified version of the Value Set Analysis (Y&&hniquel[5] that runs
on the IR before the identification process takes place.

Our previous techniques for detecting register argumeiitsstifi be correct and
sound for spurious code provided that the Value Set Analgsign on the IR after con-
verting the physical stack into an abstract stack usingrémestation rules discussed in the
previous section. This is necessary to ensure that the stantory values flow correctly
to spurious functions (as well as other functions). If theeolstack translation presented
in our previous EuroSys work [3] is used, it might lead to inaate flow of values to

spurious code as discussed in the previous section.

112

3.5 Results

3.5.1 Register Arguments and Returns

In this section we show the accuracy of the detected regisgeiments and returns.
We get our results only for the C and C++ benchmarks shown ime[@u and present
the average number of added register arguments and refalses ositives). We never
had any false negatives in any of the binaries we tested. \Mel emt compare Fortran
binaries since currently, we do not support reading Fonanotypes from debugging
information.

As shown from the figure 3.5, the average number of falseipesitguments is 0.2
per function. The average number of false positive retus1®44 registers per function.

While collecting these results, we assume that return egisire eitheeax or
edx or both in x86. This is valid in all the code we know of that riorsx86 systems
since this is a standard ABI feature for x86. Our main algarmiithoes not require this
feature to be functional.

The number of false positive return registers is higher beedhe return registers
identification process is usually less accurate than mg@guments identification pro-
cess. To see why this is true, consider a functiow that is called 10 times in the whole
binary in different call sites. To identify register argum&tof 0o, only the entry point of
f 00 has to be analyzed for uses of arguments. To analyZedorreturns, all 10 callsites
have to be analyzed for real uses of the return registerse3ine number of callsites of

functions in the binary is usually larger than one, the retegisters identification process

113

is likely to introduce more false positive returns.

1.2 - B Arguments Returns
- .
oo
&
= 1 -
o
£
z 0.8 -
w
S
E 0.6 T
wn
2 .
a
o 04 —
K]
© —
(18
0.2 +
. th Jrjq
0 T T T T T I_T T T T T T T T T 1
= o - Q Y= S - Y Ke) - a -— > 0o x
s =2 5 § &8 ¢ § £ g £ BE E § g &£ &
h N 0 § € = § E & ® 2 3 & o
© -] b -] g € o c c o n o
c = 2 € o @
= o

Figure 3.5: Accuracy of register arguments and returns

In contrast to the work iri [10], our method has three adva¥a(j) it is guaranteed
to discover all arguments; (ii) it has been demonstrated mmeh larger programs; and
(iii) it is orders of magnitude faster. First, their methahaot guarantee full coverage of
arguments and returns because of being a dynamic analysysuriused argument or re-
turn during an execution trace can be missed. Missing argtsyg returns is acceptable
for human understanding of binaries, but unacceptablesforiting binaries. Second, our
method has been evaluated on far more functions (48,854idmscfor our method, vs.
just 13 functions for theirs.) Third, our analysis is mucstéa: for example, it takes only
30 seconds to analyze a program lg@plexwhich has 116,743 instructions containing
1,523 procedures and produces prototypes for all of thenthdim case, they need the

same 30 seconds to only extrdd5_Fi nal which is a single function of 67 instruc-

114

tions. This shows that our analysis is two to three orders afjmtude faster than their

method, at the expense of a small loss in precision.

3.5.2 Trampoline Function Overhead

In this section we show the effect of inserting the trampofunction discussed in
sectior 3.B on the overall performance of the rewrittentyina

As we discussed in sectign B.3, the trampoline function sefited to guarantee
correct execution of external functions that do not have @kmprototype, or for func-
tions with variable number of arguments. The trampolinecfiom adds some overhead
of restoring the state of the rewritten binary as it was inatiginal binary before running
the external call.

We measure the time spent in the trampoline function redatvthe whole run
time of the rewritten binary. We do not consider the time $pehe external function
itself since this time is not considered an overhead. We his@erf Linux performance
monitoring tool to measure the overhead. All original bieamwere compiled using the
maximum optimization level when performing this experimen

As shown from the figure_3.6, the overhead of the trampolimetion is negligible
in all cases. The average overhead is 0.18% of the runtimleeofewritten binary. In
many cases, there is no overhead at all when the binary dddwwe any external call
with unknown prototype or a variable number of argumentss $hows that the cost of
achieving correctness in case of rewriting external fumgithat do not have a known

prototype is very small.

115

gcc
dealll
calculix
gromacs
perlbench
povray
cactus
gobmk
h264ref
omnetpp
zeusmp
soplex

namd

hmmer
leslie3d :
sphinx |
milc I
sjeng /
bzip2 |/
bwaves |/
libquantum J
astar (D
lbm |/

mcf |

Z Vd Z Z Z

T T T T 1

0 0.5 1 15 2 2.5
Trampoline Overhead (%)

Figure 3.6: Overhead of the trampoline function in the réemi binary

116

We do not show the runtime of the rewritten binaries compéaoeithie runtime of
the original binaries here since it involves many otherdestn the SecondWrite system
that are outside the scope of this dissertation. This istified in our previous work][3].

Some binaries use external compiler intrinsics to achieweestasks. Those intrin-
sics we do not have prototypes for. This behavior is showraloutix binary which has
3% trampoline overhead. In calculix, lots of low level Fartiintrinsics are used and Sec-
ondWrite does not have their prototypes and hence it usedahmgpoline function. They
get called with high frequency.

The other main reason some binaries have larger trampalmgtiébn overhead is
calling the printf family functions (like printf, scanf, fmtf, ...). Some binaries like gcc,
dealll, astar and sphinx use them more often than otheribsafmhose functions have
a variable number of arguments and hence SecondWrite usdgthpoline function
while rewriting them. For such printf family functions, wave implemented some static
techniques that are now under test which can detect the fostring and extract the
exact number and data types of arguments; this removes ¢itoénsert the trampoline

function for these cases. The results above do not reflecirttulementation.

3.6 Related Work

Cifuentes and Simon present techniques to recover procethsteaction from bi-
naries[17]. They present an abstraction language thatmeeifg machine independent
prologue patterns, epilogue patterns, stack frames, agulmcations, return value regis-

ters, and other issues related to procedure calls. Theiraatisn depends on specifying

117

a certain ABI that the binary has to follow. This abstractianduage is used in the
UQBT [16].

In her PhD dissertation, Cifuentes [15] presents a simplenigae based on live-
ness analysis to detect register arguments and returns.tddfinique is implemented in
the dcc decompiler.

Zhang et al. present a technique to recover function argtsyaerd returns from
executablel [78]. Their technique is similar the brute faemhnique described in section

[3.2 which leads to imprecise results.

118

Chapter 4: Recovering Floating Point Stack Allocated Variables

4.1 Introduction

In this chapter, we describe our techniques to convertalk@®6 floating point stack
operations into higher level code that uses floating poinatsées, function arguments and
function returns, instead of the low level stack layout usethe assembly. We present
sound techniques for this process and prove that they waaik gtenarios under certain
assumptions that are stated clearly in this chapter.

This section has five main parts. Section 4.2 discusses théo@ing point stack
and how it is maintained in the x86 executables. Sedtioh ¥@udses the assumptions
based on which we develop our techniques. Seétidn 4.4 tescai basic recovery tech-
nique that can work in all cases given that all indirect blescare resolved correctly from
the executable. Sectidn 4.5 discusses essential teclsrtizpieare necessary in case some
indirect branches are unresolved in the binary. Finallyeictisn[4.6, we prove that the
stated techniques can work under the stated assumptionslitf@swell as related work

are presented at the end of the chapter.

119

4.2 x86 Floating Point Stack Layout and Problem Overview

We begin by introducing the x86 floating point stack. The fleapoint hardware
stack has a maximum height of 8 which means there are only Sigdiyfloating point
registers that can be used at any time. The names of thosg#temrsgias used by the
hardware instructions, are dynamic and are relative totent top of the floating point
stack.

If we assume the fixed physical register names &87;, - PST7, then the x86
assembly instructions will refer to another set of narG&s - ST%, whereST; always
refers to the register at the top of the stack. For examptheiheight of the stack is one,
then ST refers toPST,. If the stack is full (with stack height of eight), the&iv}, refers
to PST%. In general ST, is mapped ta?ST, wherey = TOR(I) — 1 — x whereTOR(I)
is the stack height at instructidnand0 < y < TOF(I).

Whenever a function returns a floating point value in a regigtpushes the value
on the floating point stack. Whenever a function takes flogtimigt values as arguments
in registers, the caller pushes the values on the floatingt pt&ck. It is assumed that
TOP(I) cannot be negative at any instruction

In the recovered intermediate representation (IR), we eribadting point variables
corresponding to every physical floating point registerhia hardware. For simplicity,
we use the same physical stack register namgs, - P.ST; to refer to the IR floating
point variables as well. Such variables are declared asVacables for every recovered
function in the IR.

Decoding the floating point stack operations means mappey @assembly operand

120

amongSTy - ST into a corresponding IR register amoRg'T, - PST~. It turns out from
the previous equations that we only need to identify for gwestruction/, what is the
corresponding OR(I) in order to decode the floating point operands successttithyre
4.1-c shows an example of the recovered output of the degqutizcess of the assembly

instructions in figuré 4]1-b. THEOP(I) values are shown in figuke 4.1-a.

TOP Value: Foo: double foo (
double argl, double arg2)
0 {
double PSTO,PST1,temp;
1 fld 0x08(%ebp) //push argl - st(0) PSTO = arg1;
2 fld Ox10(%ebp) //push arg2 - st(0) PST1 = arg2;
2 fadd %st(1) //st(0)=st(0)+st(1) PST1+=PSTO;
2 fxchg %st(1) //st(1) & st(0) temp=PST1; PST1=PSTO;
PSTO=temp;
1 fstp 0x8(%esp) //pop st(0) - Memory
1 ret return PSTO;
}

@ (b) (©

Figure 4.1: Floating Point Stack lllustration: a) TOP valig Original assembly code c)

Recovered Code

If there is no indirect or unknown control transfer instiaos in the program, the
floating point stack decoding problem is trivial because e taverse the control flow
of the program, tracking the floating point stack height &rgypoint, and set the value of
TOP(I) at every instruction depending on the floating point operations observed. This
analysis will not work in the presence of indirect and ex&icontrol transfers because
when we hit such transfers, we will not know what code will Be@ited next and how
the height of the stack will be affected by this control tifens The following sections

describe how to overcome this problem.

121

4.3 Floating Point Stack Assumptions

It is statically indeterminable to be able to decode the ifhgapoint operations
correctly in all cases in the presence of unknown indirecttrad transfer instructions.
In this work, we show that if we make some assumptions, we cauraly guarantee a
correct and functional representation of the floating pstatk operations in all cases

that adhere to those assumptions. Our assumptions are:

1. At control-flow join points, the floating point stack heighust be the same for

every predecessor basic block.

2. At indirect and external calls, the floating point stackghe must be zero before

the call.

3. Everyindirect or external call can return at most a sifigiting point value on the

floating point stack.

The above assumptions are correct in compiled code in easgyio every compiler
we are aware of. They are also true in most hand written adgeratle, but may not be
always true in theory. The justifications for the assumitor compiled code are as

follows:

1. If the stack height is not balanced at join points, any sghent floating point stack
access will be indeterminable as it might access differahtes depending on the

path taken at run time.

122

2. For indirect and external calls, the behavior of theigé#s is usually unknown to
the compiler, and hence the compiler must assume they maghallithe floating
point stack registers. As a result it has to clean the statkréeuch calls. We
can state this assumption by saying we assume floating pamigters are scratch
registers. Theoretically, a compiler might know in someesa$ie behavior of the
functions being called and may not clean the floating poatkstbut practically we

are not aware of such a compiler.

3. The assumption that the maximum number of floating pomfister returns equals
one comes from the fact that we are not aware of any callingergion that allows
the return of more than one floating point stack register findirect calls and

externals.

4.4 Basic Approach for Decoding the Floating Point Stack

In this section, we describe our basic approach to decodfading point stack.
In this basic approach, we assume that all targets of indimesches in the executable
are known. This assumption is relaxed in the next section.olRieg the targets of
indirect branches in compiled executables can be done eficgent heuristics like the
ones described in[14].

To solve the floating point stack decoding problem, we usenabsjic analysis
scheme by maintaining a symbolic valte for every indirect and external callrepre-
senting the difference of the floating point stack heighbbefand after the call. Some-

times we refer to that difference &tackDiff in this chapter. After doing the symbolic

123

analysis, eaclfOP(I) will become a symbolic expression in terms of thies. We build
symbolic linear equations to solve fof;s. Once theX;s are calculatedTOP(I) will be
known for every instruction.

We translate the above assumptions into the symbolic asgtyspagation rules
present in figure 412, explained as follows. For internatfiom calls, we use helper vari-
ablesY (F') to represent the symbolic expression represer8iagkDiff of every function
F. The executable is traversed in a depth first search mararéingtfrom the entry point
function for the binary, and from functions that are neveieckdirectly in the code. The
assumptions (1) through (3) in sectlon]4.3 above reprekersyimbolic equations in lines
(1) through (3) in figuré_4]2. The actual valuesXfs can only be zero or one because
before the indirect and external calls, the stack heighgitie according to assumption (2),
and the call can return at most one value according to assum({®). The height of the
stack cannot go negative and hence the actual value of theannot be negative.

The symbolic equations represented by equations (1) thr{®)gn figurd 4.2 along
with the symbolic unknowng(;s are transformed into a linear system of equations. To
solve these equations, we employ our custom linear soleticiitegorizes the equations
into disjoint groups based on the variables used in evergtamy and then solves every
group only if the number of equations is equal to the numbeuriinowns. We keep
propagating calculated values to other groups until no roaleulated values are present.
Most of the X;s are usually solved using equation (3) in figure 4.2.

The remaining unknowns are assumed to take a valug;of 1 conservatively.
This will be always correct because from our third assunmpitiosectiori 4.8 above, the
stack height is either zero or one after every indirect aridraal call. In this case, if we

124

Unknown Symbolic Values :

X;, whereX; = StackDiff of indirect/external callsité

Helper Variables :

Y (F) = StackDiffof function ', whereF' is an internal function
TOR(I) = top of the stack after executing instructién

TOR,(I) = top of the stack before executing instructibn

Initial Conditions :

Root functions “not called directly anywhere” as well as tmérg point function

have entryTOR,(I) = 0 where! is the first instruction of those functions.

Data flow rules :

For every instructiomn’
if I =push..= TORI) = TOR,(I) + 1
if I =pop..=

it (TOR,(I) = X)) X, = 1 3)

TOP(I) = TOR,(I) — 1

125

if =call F =

if (F'is an external or indirect)

TOR,(I) = zero (2)

TOP(I) = X;
else
TOR,(A) = TOR,(I) whereA is the first instruction int'
AnalyzeF' to getY (F) = func(Xy, ..., X,)
TOR(I) = TOR,(I) + Y(F)
if [=jmpL =
AssumeL points to a set of known targets

Vi € S let instruction/; be the instruction at

= TOR,(I) = TOR,(I) €y
if Ir =return fromF =

Y(F) =TOR,(Igr) — TOR,(A), A is the first instruction in#’
VZ =return fromF' = TOR,(Z) = TOR,(Ir)

VI € C whereC'is the set of call sites of' = TOP(I) = TOR,(Ig)
if 7 =any other instruction

TOR(I) = TOR,(I)

Figure 4.2: Data flow rules used to decode the floating poaukst

126

declare by mistake that a particular indirect call has oeeneht on the stack top after
its return; this element will never be accessed. In this,cagen if there are subsequent
floating point stack operations, they have to push valueb@stack before reading them.
The floating point register arguments and returns are detiarthe IR as follows:
a) Whenever a function haOR,(I) > 0 at its entry point instructior, the function is
declared in the IR to take as many floating point values asahe\ofTOR, (I). They will
be passed as arguments and copied to the correct locallegradrording to the mapping
we described earlier. b) Wheneugy or Y (F') are greater than zero at a call site, this call
site will be returning as many float returns as Yh@") or the X; values in the IR and they

will be copied to the corresponding local variables in thiéecs.

4.5 Decoding the Floating Point Stack in the Case of Unresolved Indirect

Jumps

We say that an indirect jump in the binary is not resolved wtienjump table
identification heuristics used during disassembly (sudh §4]) fails and thus no target
addresses are statically identified for the indirect brai¢hen this happens, portions of
the input binary can be disassembled as separate functigdhe IR, but in fact they are
just some targets of unresolved branches in the originariinrhis causes a problem to
our floating point analysis technique described above smed#oating point height after
indirect jumps will not be known. We refer here to both indirenconditional jumps
as well as indirect conditional branches but not indirediscdndirect calls are handled

correctly in the previous section by assuming the TOP vafter ghem is either zero

127

or one. In the rest of the section, we use the term ‘branch’ to referdthlzonditional
branches and unconditional jumps

Applying the same indirect and external calls techniquedlesd in the previous
section will not work for unresolved indirect branches. &e svhy, consider equation (2)
in figure[4.2 which sets the TOP variable to zero before imdicalls. If we set TOP to be
zero before unresolved indirect branches, we are impliagsuming that the correspond-
ing case statements in the original source code cannot legister-allocated floating
point variables defined before the case statement and Bedrinside the case statement.
Any optimizing compiler can invalidate this assumption efhleads to a problem. Since
the jumps are one way transfers, putting any kind of condtcai the TOP value after the
jump instruction is not feasible.

To clarify the issues with indirect jumps that are unresdjveonsider the code
example shown in figurle 4.3-b. In this code, functfon has an indirect jump, and let us
assume that one of its targets (located at I&bel the figure) is unresolved. For a binary
analysis tool with a complete code coverage (like Second@/\&i]), the code ah will
be recovered as part of a new function in the IR since no dimeicidirect control transfer
instruction was detected to readhBy looking into what the code does, the part before
the indirect jump pushes two elements on the floating poadkstand then later after the
jump these two elements are being added and the added vélemgsreturned from the
function. If we assume a value of zero for TOP before the edijump, it will be not
true since there are two elements present on the stack gtdinis

Before we describe our method to handle such a case, we méetierthat current

known heuristics to resolve jump tables from binaries amy @ecurate. For example,

128

TOP Value: f oo: double ST[8], TOP;
void foo (double argl,
0 double arg2) {
double PSTO,PST1,temp;
1 fld 0x08(%ebp) //push argl -2 st(0) PSTO = arg1;
2 fld 0x10(%ebp) //push arg2 - st(0) PST1 = arg2;
2 jmp *%ecx /* jumping to A: TOP=2; ST[0]=PST1,
(part of Foo) */ ST[1]=PSTO;
call_translator (ECX);
return;
}
X A: void A() {
X fadd %st(1) //st(0)=st(0)+st(1) PST1+=PSTO;
X fxchg %st(1) //st(1) & st(0) temp=PST1; PST1=PSTO;
PSTO=temp;
X-1 fstp 0x8(%esp) //pop st(0) - Memory
X-1 ret return PSTO;
}

@) (b) (©

Figure 4.3: Floating Point Stack Problem with Indirect Jsmgy) TOP values b) Original

assembly code c) Recovered Code

129

SecondWrite uses a modified version of the heuristics destiily Cifuentes and Em-
merik [14] which leads to almost 100% accurate recovery mabes compiled from two
compilers (GCC and Visual Studio). This shows that the tepmdescribed in the pre-
vious section handles most of the cases. The techniquesioibtiere are needed in
case such heuristics fail (may be for a compiler not knowmécommunity, or for hand
coded assembly). Our method is important since withoutvithea single unresolved
branch may result in non-functional recovered IR from theaby.

In order to solve this problem, we perform a check first to $@eeineed to imple-
ment this technique and not the other one described in theopiesection. The check
algorithm is shown in algorithiinl 6. The algorithm returnsé&meaning that no adjust-
ments are needed if all indirect jumps are resolved. In thgecthe technique in the
previous section is enough. If at least one indirect jumpoisrasolved, then for every
recovered function in the IR having no direct call or direghp to it, we check to see if
there is any instruction accessing the floating point stagkinning the functiolccess-
esFPStackif so, then this IR function is identified in th&djustsset for later processing.

The functionAccessesFPSta@k conservatively returns true for any functién
which cannot be analyzed statically to determine if it ubedlioating point stack. Exam-
ples of such functions include IR functions which have uohe=d indirect jumps domi-
nated by the function entry. One target of the indirect bnamgght use the floating point
stack and we should assume that for correctness.

Once the check in algorithi 6 returns true, we proceed toyapplsame data flow
rules as in figuré 412 but with the modified unknown variabled mitial conditions as
shown in figuré 414. We only set the executable’s entry pod®Value to be zero. We do

130

Algorithm 6 Algorithm to check if adjustments are needed to the floatiagtpstack

recovery
1: Input: Funcs: a set of recovered IR functions with their complete bodezghable

only indirectly

2. Input: Jumps a set of unresolved indirect jumps in the IR

3: Output: adjustmentNeededa boolean representing the need to adjust the floating
point stack for unresolved indirect jumps

4: Output: Adjusts: A set of functions detected to have floating point accesses

5. adjustmentNeeded=false

6: If Jumps# ¢ then

7: for all F € Funcsdo

8: if AccesseFPStack) then

9: adjustmentNeedetrue
10: Adjusts= Adjustsu F
11: end if

12: end for

13: end if

131

Unknown Symbolic Values :

X;, whereX, = StackDiff of indirect/external callsite¢

vi, Wherey, = TOP of the floating point stack at the entry point of some IR fuoicti

l

Helper Symbolic Variables :

Y (F') = StackDiff of function ', whereF' is an internal function
TOR(I) = top of the stack after executing instructidon

TOR,(I) = top of the stack before executing instructibn

Initial Conditions :

TOR,(I) = 0 wherel is the first instruction of the entry point function.

Data flow rules :

Same as before in figure 4.2.

Figure 4.4: Modified initial conditions for the data flow raldecoding the floating point

stack

132

not do that for other functions that are not reachable diréate call them Root functions

in the original data flow rules in figufe 4.2). We set the TORugdlor other functions

reachable indirectly to be new unknowps. The reason thesg’s are not set to zeros
is that such functions reachable indirectly can be somesoived branch targets and
not actual functions. For branch targets, it is acceptableate floating point variables
pushed on the stack at their entry points.

We solve the linear system of equations as before gettingesdior all unknown
X;s andy;s. For all unknownX;'s, we set their values to ones conservatively as before.

After solving all equations and setting all unknowis to ones, some unknowns
(y;S) might remain. This is unlike when using the techniqueseqged in the previous
section where at every pointin the binary the top of the stedomes known after solving
all equations and setting all unknowns to ones. If stackhteggnot known, we use a run
time global variable to represent the current stack heigtitsse it to index a global array
that simulates the physical floating point stack. The chgkehere is to make correct
transfers between using local variables when the stackhsignown to using the global
runtime variables when the stack height is not known.

To convert floating point stack accesses into variable aeses the IR, we follow
the rules stated in figufe 4.5. The left hand side shows thggnaii binary instruction,
and the right hand side shows the instruction that has to liéeelhmto the IR. Below we
discuss these rules.

For any instruction accessing a floating point register witee TOP value is known,
we do a direct translation to IR local floating point variabéince we know exactly which

variable the instruction is accessing. For instructionseasing floating point registers

133

| Binary instruction IR code inserted
1 | I=op (st(i)), TOPy(I) = constant | = op (PSTropb ()-1-1)
) | = op (st(i)), TOPy(l) # constant | = op (GST[TOP-1-i])
Assume C(l) = StackDiff of instruction | TOP = TOP + C(l)
| = call F, F is known statically (direct call) //Pass arguments only if TOPy(l) is known
_ . Call F (PSTTOPb(I)—l-iI PSTropb()-is ++er PSTo)
U(F) = true, TOP(l) is known
3 . //Move from globals to locals
Note: If arguments are passed, they are copied to the local for (i=0: TOP(1))
variables of the callees at their entries -
PSTropb()-1-1 = GST[TOP(I) =1 —1]
//Pass arguments only if TOPy(1) is known
I = call F, F is known statically (direct call) Call F (PSTropb()-1-i» PSTropb)-is ---s PSTo,
U(F) = false, TOP(I) is known &retArg, &retArgy, ..., &retArgropq)-1)
4 . .
Note: If arguments are passed, they are copied to the local | //Move from return pointers to locals
variables of the callees at their entries for (i=0: TOP(1)-1)
PSTropb() -1-1 = retArg;
TOP = zero
Call call_translator
I =call F, Fis unk ically (indi Il -
5 call F, F is unknown statically (indirect call) //Read the return from global
PST, = GST[0] //Remove if X; is zero here
for (i=0: TOP,(I)-1)
GST[TOPy(l) =1=1] = PST: -
I =jmp L, Lis not known and unresolved [TOP(1)] TOPBl} =1 -1
6 TOP = TOP,(l)
TOPy(I) = constant
Call call_translator
Return
7 Before entry point instruction | of a function F only for (i=0: y;-1)
reachable indirectly, y,is known PSTropb()-1-1 = GST[TOP(I) — 1 =1]
F (argo, argy, ..., argyi1) {
o . . for (i=0: y-1)
3 Before entry point instruction | of a function F reachable PST - are
directly, y,is known ToPb{))-1-1 = g
}
| = return, TOP,, (1) is known for (i=0: TOPy(1)-1)
| GST[TOP,(1) = 1 = 1] = PSTropp)_1-1
9 returned to function is unknown OR retArg = PST //when applicable
there exists F where F is a returned to function, U(F) = true Return &= ToPe() -1-1 PP
~ . for (i=0: TOP(I)-1)
10 | = return, TOPy, (1) is known retArg = PSTrons(y 11

Any other case than above

return

U(F) = true if F or one if its direct callees has an indirect branch that is unresolved.

Figure 4.5: Translation to IR rules when some indirect jugsunresolved

134

where the TOP value is not known, we use the global floatingtparay as well as the
global variable representing the TOP value.

For direct calls, if the callee has unresolved indirect jartigen it will be using the
global variables to represent the floating point stack. Upaiarn from the callee, we
make sure that the global variables are updated correctfier e return, if the TOP
value is known, we copy the contents of the global variablesthe local variables such
that instructions start using the local variables coryettithe TOP value is known before
the call, floating point local variables are passed as argtsrie the callee.

For indirect calls, we have an assumption that before sulthtba stack top value
should be zero. We copy this to the global TOP value in casedee is using the globals
to represent the floating point stack operations. Beforamgtg from all functions that
can be called indirectly, we make sure to update the globh@bies contents (if locals
were used).

Before indirect jumps that are unresolved, we copy the statkeg from local
variables to the global variables (in case the local vagslere used before the jump).
The general translator function is used in the indirect tinato redirect control to the
correct IR function. The global TOP variable is updated also

For all of this to work, if some functions that can be callediractly have a known
TOP value on their entry point, the floating point variables eopied from the global
variables to the local ones. For functions reachable dye€tthey have floating point
arguments, they are copied to local floating point varialsiébe IR at the function entry

point.

135

4.6 Correctness Proofs

In this section, we prove that all the techniques presentdds section will produce
a correct IR with respect to floating point stack operatidne. show first a proof of the
simple technique when all indirect jumps are resolved, terproceed to proving the
general techniqgue when some indirect jumps are not resclvedctly.

Definition 4.1 anfp-functionalrewritten binary is a rewritten binary that executes
correctly with respect to floating point accesses which radlaat any floating point value
that is being read/written into a floating point register le toriginal binary results in
reading/writing the same value to some floating point vaeiab the rewritten binary
when executed.

When we prove the correctness of our floating point stack egaechniques pre-
sented before, we prove that our rewritten binaries cordgdilem the recovered IR are
fp-functional To prove this, we usually prove that we track the originaldoy’'s TOP of
the floating point stack value correctly.

Lemma 4.1 Under the assumptions stated in secfiod 4.3, if algorithnetGrns
false, then solving the equations resulting from the pragiag rules in figuré_ 412 and
setting the remaining unknowns to ones will always ensua¢ ttie rewritten binary is
fp-functional

Proof Suppose the input binary has no direct or indirect calls. T®P of the stack
is tracked correctly for every program point since instiutd are always known to the
static analyzer and no uncertainty happens. Since the eesdVv OP is exactly equal to

the original TOP value in the input binary, the lemma holdthis case.

136

Now, if the binary have direct calls, the callee functiondl wlways be known
to our static techniques and hence no uncertainty occumscovering?’OP(I) for any
instruction/. Hence the lemma also holds in this case.

The only uncertainty occurs when some indirect controldfers happen. Indirect
control transfers are either indirect calls or indirectriotzes.

For indirect calls, uncertainty happens when sotgeare set to one conservatively.
An X; represents the top of the stack after the return from intlical sitei. Per our
second and third assumptions in secfion 4:3z(X;) = 1. If the actual call site in the
input binary does not return any floating point value and weXs¢o one conservatively,
the lemma still holds since the input binary will never hamg access to the additional
non-existing return value that we created in the IR. The lyihas to push some element
to the stack before reading it. In this case, the recovéiéd (/) for any instruction
I will always be one plus the original value during both staagites and reads which
guarantees correct behavior.

Regarding indirect branches, Since the check in algofithail§, this means either
all indirect branches are resolved, or no indirect branepetacan access the floating
point stack. In case all indirect branches are resolved, tdungets are known to the static
analyzer and hence the recoverB@P(I) for any instruction/ will be tracked correctly
and hence the lemma holds. If some indirect branches arsalweel, and it is known
that none of their targets can access the floating point staek no problem occurs in
this case since no floating point register is accessed.

Lemma 4.2 For a direct call instructiod in the IR calling functionf'. Let the

first IR instruction inF" be I. If TOPR,(I) is known, thenTOR,(/r) cannot be unknown

137

and vice-versa.

Proof Since the propagation rules in figlrel4.4 assign the samedim@xpression
to bothTOR,(Ir) andTOPR,(/), then if one of them is known, the other is automatically
known and vice versa.

Lemma 4.3 For a return instructiord in the IR returning to functiorf’ that can
be determined statically. Létbe any call site ta". If TOP(]) is known, therilTOPR,(/x)
cannot be unknown and vice versa.

Proof Can be proved in a similar way to lemma (4.2).

Lemma 4.4Under the assumptions stated in sectioh 4.3, if algorithet@ns true,
then the IR recovery rules stated in figlrel 4.5 will alwaysueaghat any floating point
value that is being read/written into a floating point regjish the original binary results
in reading/writing the same value to some floating pointalalg in the rewritten binary
when executed.

Proof From the first two translation rules in figure 4.5, at any nstion / that
can access the floating point stack, the IR uses either tla¢ VaciablesPSTwhen the
TOR,(I) value is known, or the global arragST] if the TOPR,(I) value is unknown.
If we guarantee correct flow of floating point values betwemral variablesRST$ and
global variablesGST$ in the IR, we can prove this lemma.

To make it easier to understand the proof, we introduce th@wmg claims. If all
these claims are true, the proof can be constructed in asivwgy. We assume they are
true, prove the lemma, then state the proof of each clainvichatally.

Claim A For atrace of IR instructions containing no calls or resitat/ be the first

instruction in the trace, iTOR, (/) is statically known and local variabl€éxST, contain

138

all live floating point values af that are stored in order starting fram= 0 until x =
TOP(I) — 1, then this trace ifp-functional

Claim B For a trace of IR instructions containing no calls or resyrtet I be
the first instruction in the trace, TOP, (/) is statically unknown, then this trace fis-
functionalgiven the following two conditions: 1) The global variabl®P contains the
valueTOR,(I) before executing. 2) The global arraysST[z] contains all live floating
point values af that are stored in order starting from= 0 until z = TOP,(I) — 1.

Claim C VF € FuncsK whereFuncsKrepresents the set of IR functions with a
statically known entry poinTOR, (1) where! is the first instruction inF', let I be any
call site of ', the local variablé ST, at F' entry point contains one of the following values

forall0 < ax < TOP,(I) — 1:

PST,(before Ir), TOP,(Ir) is known
PST,(before I) = (4.1)

GST|x](before Ir), TOPy(Ir) is unknown
Claim D: VF' € FuncsU whereFuncsUrepresents the set of IR functions with a
statically unknown entry pointOP, (/) where[is the first instruction inZ’, let I be
any call site ofF, all the following is true before executing 1) Global variableTOP
contains the valudOR,(Ir). 2) Global variableGSTx] contains one of the following

values for all0 < x < TOP,(I) — 1:

PST (before Ir), TOP,(Ip) is known
GST,(before I) = (4.2)

GST|[z|(before Ir), TOPy(Ir) is unknown

139

Claim E VI € CallSitesK whereCallSitesKrepresents the set of all IR call sites
with a statically knownTOP([/), let F' be any actual function that can be called frém
(possibly through a call translator) and gt represent any return instruction insidg

the local variabld’ST, after I has one of the following two values:

PST (before Ig), TOP,(Ig) is known
PST,(after I) = (4.3)

GST|[z|(before Ig), TOPy(Ig) is unknown
Claim F. VI € CallSitesU whereCallSitesUrepresents the set of all IR call sites
with a statically unknow T OP(]), let F' be any actual function that can be called from
I (possibly through a call translator) and lgtrepresent any return instruction insiéle
all the following is true after executingz and returning taF: 1) Global variableTOP
contains the valudOPR,(I). 2) Global variableGSTz] contains one of the following

values for all0 < x < TOP,(Ig) — 1:

PST . (before Ig), TOPy(Ig) is known
GST . (after I) = (4.4)

GSTIz](before Ig), TOPy(Ig) is unknown
Claims A and B state correct and functional execution tractsve calls or returns.
Claims C and D ensure correct floating point values flow fronh iogtructions to the
functions being called. Claims E and F ensure correct flogimigt values flow from
return instructions to the call sites.
Assuming claims A through F are correct. We can use matheatatiduction to
prove lemma (4.4) as discussed below.

140

Assuming the dynamic execution of the rewritten binary isd#d inton instruc-
tion traces separated by calls/returns and ending with ithgram terminationn can be
arbitrary large and cannot be computed statically, but wealeek calculating, rather
we will use mathematical induction onto prove the lemma.

Base casen = 1 Since the entry point has a zero top of the stack (according to
our assumptions), there is no live floating point values atthce entry and hence lemma
(4.4) is true as a direct result of applying claim (A).

Inductive caseAssuming trace: is fp-functiona) we want to prove that trace+ 1
is alsofp-functional

There are two cases: either a call instruction separatesvtihéraces, or a return
instruction separates the two traces. We discuss everyimdiselually. For both cases,
we assume that the live floating point values are stored ciyran tracen since it is
fp-functional

1) If a call instruction/ > separates the two traces, let the calle@’lvéith instruction
I the first instruction in functiod” (the first instruction in trace +1). We have four cases
depending on if we statically know the valu€® P, (/) and TOP,(I). Each of the cases
is proved in tabl& 4]1.

2) If a return instruction’ separates the two traces, let the returned to function be
F with instruction/ being the call instruction that was used to redthWe have four
cases depending on if we statically know the valU&sP,(/z) and TOP(I). Each of
the cases can be proved in a very similar way to the previoses icatablé 4J1 but using
Claims (E) and (F) instead of claims (C) and (D).

Below we discuss the proofs of every claim from the above.

141

TOPb([F) TOPb(I) Proof

X X Both traces: andn + 1 are using the global arrdgST][] as
per rule (2) in figuré 4l5.
Claim (D) guarantees that the global an@gT[] will not
change in this case across the call.
Applying Claim (B) to tracen + 1 proves lemma (4.4) in
this case.

X V Tracen uses the global arra@STzx] but tracen + 1 will

be using local variableBSTz| as per rules (1) and (2) i
figure[4.5.

Claim (C) guarantees that the global ar@®Tx] will be
copied over to local variabld3STz| in F'.

Applying Claim (A) to tracen + 1 proves lemma (4.4) i

this case.

=]

N

142

V/ X Tracen uses local variableBSTz]| but tracen + 1 is using

the global arraycSTx] as per rules (1) and (2) in figure 4.

o

Claim (D) guarantees that local variablBSTz| will be
copied over to the global arraySTz| before callingF'.
Applying Claim (B) to tracen + 1 proves lemma (4.4) in

this case.

V vV Both traces: andn + 1 are using the local variablé3ST,
as per rule (1) in figure4.5.

The local variables in this case are in different functigns.
Claim (C) guarantees that the local variabRST, in the
caller are copied to the local variabl®sST, in the callee
(F).

Applying Claim (A) to tracen + 1 proves lemma (4.4) in

this case.

Table 4.1: Proofs of Lemma (4.4) for traget 1 if reachable using a call instruction

143

Claim A ProofSince the trace of instruction with no call/returns représe binary
trace that is completely known to the static analyzer, tikeveredTOP(/’) value at any
instruction/’ in this trace is statically determinable with respect tottlaee entry point
TOPR,(I) wherel is the trace entry instruction. Given that all floating poiatiables are
stored correctly to local variabld3ST, before the trace entry, any instruction that reads
these values will get them from the sa8T, variables as per rule (1) in figure 4.5.

Claim B ProofCan be constructed using the same argument in the proof of clai
(A) but referring to the global variableSSTz| instead of local variables and rule (2)
instead of rule (1) in figure4.5.

Claim C Proofinstruction! in F'is either reachable using a direct call, indirect call,
or an unresolved indirect jump. We discuss every case belpwirect calls: according
to lemma (4.2)TOPR,(Ir) is known in this case and hence rules (3) and (4) in figure 4.5
govern the direct calls in this case. In both rules, the loealables are passed directly
as arguments té¢’ and insideF’ they are then copied to local variables as per rule (8) in
figure[4.5. The stack height at the call site cannot be knowthigicase according to
lemma (4.2).

2) Indirect calls will always have zero TOP of the stack beftire call site as per
our second assumption in sectjonl4.3 and hence no transfariables is required in this
case. Rule (5) in figurie_ 4.5 sets the global varidlild to zero at the call site.

3) At unresolved indirect jumps, FOPR, (1) is known, local variables are copied
to the corresponding globals in rule (6).TIOR, (/) is not known, globals are already up
to date according to rule (2). Insid€, globals are copied back to locals insifleas per
rule (7).

144

Claim D Proof Can be proved using similar argument to claim (C) proof above.
Will only write the relevant rules for each case below: 1)dgircalls: they have to have
an unknown stack height as per lemma (4.2) and hence globables remain to be used.

2) Indirect calls: have to have a zero stack height on thentfand hence no transfer
is required.

3) Unresolved indirect jumps: globals are updated accgrttirrule (6). The same
argument in the claim C proof applies here.

Claim E ProofHere the stack height after call sites known, hence local variables
have to be updated aftér I can only be reachable through a return instruction. We have
two cases:

1) If TOPR,(IRr) is known: either rule (9) or rule (10) applies in this caseai®ws:

e In case the return cannot be statically proven to returh @r I’s parent function
has one or more unresolved jumps, then the globals are uptatale (9). The
return will come back to a call translator function in the IRieh returns back to
either an indirect call site or to an unresolved indirect jusite. For indirect calls,
rule (5) will copyPST, from the global array. For unresolved indirect jumps, they
return back to some call site as per rule (6). This call sitelvaive U(F') = true

and rule (3) will copy variables from the globals back to lsca

e If the return can be proven to return to some IR function whodé&ect jumps are
all resolved, then rule (10) applies and return argumemerpagated. Rule (4)

propagates the return arguments back to local variables/aft

2) If TOPR,(Ir) is unknown, no transfers are required. The globals will lz&lyeat

145

I as per rule (2). According to lemma (4.3); cannot be statically proven to return to
I since in this casé would have an unknowmOP(/) which is not the case. For non-
statically resolvable returns, they are handled the sanyeasan the previous case (1)
above in this same proof.

Claim F ProofCan be proved using similar arguments to claim (E) above. \&& sh
a summary of which rules apply here.

1) If TOR,(Iy) is known: As per lemma (4.3)z will not be statically proven to
return to/ since in this cas@OP() would have been known which is not the case. Return
site updates globals in rule (9). Rule (2) will use these dkhtthe call sites.

2) If TOPR,(Ir) is not known: globals are already used both at the returs aite

also at the call sites per rule (2). No transfer is neededisctse.

4.7 Results

In this section, we show the effectiveness of our techniguégentifying floating
point stack variables.

In all of our experiments, the check described in algoritimetsirns false which
means that we did not need to do any global adjustments todhtnily point stack vari-
ables in any of our tests. The reason behind this is that oap jiable heuristics are very
accurate and resolve most of the indirect jumps. SecondWnipgements a modified
version of the heuristics described In [14]. Almost 100% lté tndirect branches are
resolved (by knowing all their targets) statically. For threesolved ones, the indirectly

called functions in these cases were never detected tosaiteefoating point stack.

146

We show the percentage of the symbolic values that were ha&dasing our linear
solver and required the conservative assumptioXpt= 1. As mentioned in chapter
4, the main challenge while decoding the floating point stadio identify whether an
indirect or an external call is modifying the floating poitack height. According to our
assumptions, whenever we are not sure about an indirectextamal call site, we decide
conservatively that it is modifying the floating point stamkpushing a single value. We
show how often we took that conservative decision in difiét@naries.

All register allocated floating point stack variables wexeavered correctly and all
the rewritten benchmarks ran correctly and produced coamswvers. The conservative
decision taken does not affect correctness as we explaingthptef 4. It only adds extra
return values to some indirect and external calls and thghtmeflect adding more return

values to internal functions as well.

gee Optimted

perlbe... 1_!_!—# B Non Optimized
povray

h26dret |
omnetpp
namd
hmmer
milc
sjeng
bzip2
astar
Ibm
mcf

T T U T T 1 U 1

0 10 20 30 40 50 60 70
% of conservative decisions taken

Figure 4.6: Conservative floating point decisions for Window

Figure[4.6 shows the percentage of the unknown calls forlwivietook the conser-

147

tonto
gcc

dealll
calculix
gromacs
perlbench
povray
cactus
h264ref
omnetpp
zeusmp
soplex
namd
hmmer
leslie3D
milc
sjeng
bzip2
bwaves
libquantum
astar
Ibm

mcf

[] Optinlized

H Non C

)ptimized

10 20 30 40 50
% of conservative decisions taken

60

70

Figure 4.7: Conservative floating point decisions for Linux

148

vative decision in the subset of the benchmarks that we wieg@acompile on Microsoft

Visual Studio 2010. Figurle 4.7 shows the results on Linuabés. On average, we took
the conservative decision 28% of the time for non-optimigeelcutables and 25% of the
time for optimized ones. This means we are able to identdyetkact floating point argu-
ments and returns for more than 72% of the indirect and eatealls on average. We are
not aware of any work that identifies such information. Ojtad binaries often have less
variables than non-optimized binaries which translatdsge floating point stack usage
and less number of times when the conservative decisiorkéniaThis is true in most

of the cases, but in some cases the optimized binaries ateraiag because they have
fewer control flow edges. One example of this behavior is ‘ferirwhere the optimized

binary has much less control flow join points and hence mus$ meimber of equations
and higher conservative decision ratio. The conservaggestn is usually taken more

often in C++ binaries because they have more indirect cadls @and Fortran binaries.

4.8 Related Work

We are not aware of any work done to recover floating poinkstadables except
Hex-Rays[[31]. Hex-Rays produces inline assembly in casaitaaresolve the variables
which is not acceptable for our goal. There is no publishedkvem the details of their
techniques as well as how often it fails to identify variadi®m low level stack accesses.

None of the static and dynamic binary rewriting tools likiNR#3], BIRD [52],
ATOM [28], PLTO [60], Boomerang [26], Jakstab [36], UQBT [1@itblaze (BAP) [9]

and CodeSurfer/X86 _[50] decodes the x86 floating point statkk variables. None of

149

those tools employ a compiler level intermediate form&g LLLVM IR or similar; rather

they define their own low-level custom intermediate format.

150

Chapter 5: Recovering Memory Allocated Variables and Data Types

5.1 Introduction

In this chapter, we present static analyses that can resouece level variable and
type information from x86 binaries as large as millions dtractions in a few minutes.
The produced information is as accurate as the currentaftétte art x86 binary analysis
systems with much faster and scalable analysis. The resduafiormation is represented
in a high level compiler IR that is completely functional gerdduces a correct rewritten
executable when recompiled. Our static techniques confbmetionality, precision and
scalability; features that collectively do not exist in &yt binary analysis tools.

This chapter presents an important step towards a systdrethiates executables
into a functional high-level program representation ammdiporates as much source level

information as possible in a scalable manner. This chaptetite following contributions:

¢ It presents a highly scalable mechanism for identifyingaldes and types which
is orders of magnitude faster than current analysis teciasiqOur techniques do

not rely on symbol or debug information to be present in besar

e It presents practical techniques to emit the recoveredtgipes from binaries into

a high level IR. The emitted types include scalars, pointmsys, structures and

151

recursive data structures.

e Itis evaluated and shown to recover accurate and precisemation from C, C++,
and Fortran binaries obtained from the SPEC2006 benchmaities sompiled us-

ing two different compilers in a reasonable amount of time.

This chapter is divided into eight sections. Seclion 5.2gjian overview about the
variables and data types identification problem. Sed¢ti@ré&presents our variables re-
covery technique. Sectign 5.4 presents our data type recta@hniques for the variables
discovered in the binary. Sectién b.5 shows how we emit datestinto the recovered
IR including pointer and recursive data types. Secfioh $s6u$ses the correctness of
the IR recovered and the algorithms termination guarantgestiori 5.7 shows how our
variable recovery techniques can still work for inaccurfatection boundaries. Section
5.8 shows a detailed evaluation of the techniques presemeédsectiorn 519 presents a

literature review about the variables and data types regdu@m binaries.

5.2 Variable and Type Recovery - Challenges and Intuitions

Variable and type recovery from executables is a hard pnollecause symbol ta-
bles are absent. Every memory-allocated variable accélss source code is represented
by a memory store or load in the executable. Those memorysaeseare either direct
accesses to locations represented by constant addresgediy@ct memory accesses to
locations represented by some register value.

Direct memory accesses can be used to infer variable intommay examining
the constant memory address being accessed, but indiresbmaccesses are unknown

152

accesses and need more advanced memory analysis to revaatdarlying memory
locations. That is why pointer analysis is important wh#eavering variables and data
types from executables since it reveals what are the pessibimory locations an indirect
memory reference can possibly access.

Researchers in this field know this and the best known varidblification tech-
nique from executables (DIVINE][4]) uses an advanced merapnajysis technique called
value set analysis [5], which is a generalized form of aliaalysis for binaries built on
top of the aggregate structures identification algorithd].[IDIVINE presents accurate
variable identification that detects 88% of the memoryealted variables in executables.
The problem with DIVINE is that it is not scalable and reqaigevery long time to an-
alyze even small programs. Our aim is to present techniquibste same accuracy as
DIVINE, but run orders of magnitudes faster.

Scalable source-level pointer analysis techniques (liker&gaard’s analysis [65])
cannot be used on executables since executables lacklearsata data types information.
A custom pointer analysis technigue has to be implementethi®purpose.

Our key insight that enables scalability is that efficieniafale detection and type
recovery do not require a sound pointer analysis. Unsouimdgranalysis usually means
incomplete points-to sets. As an example, if variablpoints toy andz, an unsound
pointer analysis might repoxt points toy only. Usually unsound pointer analysis is un-
acceptable, but variable detection from executables istaddtort analysis and no method
claims to detect 100% of the variables. If we are going to regsgse variables anyways
because of the nature of the problem we are solving, then weaifice the soundness

of the analysis at the expense of losing some variable irdban — as losing variable

153

in the given example above, but with the gains of having atmacanalysis that scales
well for large executables.

The correctness of the recovered IR, while missing somehlasadue to the un-
sound pointer analysis, comes from the fact that the relatirdering between variables
in the memory layout is maintained in the recovered IR. Fongla, if we detect two
integer local variables at offsets 0 and 20 on a stack franszef24 bytes, we will lay
out those variables in a structure which has the followingghmembers: a) An inte-
ger in the range [0-3]. b) A generic array of bytes in the rajdg&9]. c) An integer in
the range [20-23]. Preserving the layout of the variablesuich a structure maintains
the correctness of any indirect memory access to this re@iba arrays inserted fill the
unknown gaps between variables and maintain the memorytayihis representation
helps understanding what variables are detected alongteihtypes, and at the same
time maintains the functionality of the rewritten program.

We introduce the concept of a best-effort pointer analysisere the identified
points-to set of each pointer may not be complete, but weitexte the analysis in a
certain amount of time nevertheless to prevent it from t@ao long even before it con-
verges. This analysis is not correct given the usual caiten correctness, but suffices
in the way we use it to identify as many discrete variablesassiple. Our best-effort
pointer analysis is a flow and context insensitive data floahens that has the following

properties:

¢ It limits the cardinality of the points-to sets to a fixed nuanb

e It does not track interprocedural information via indireatls.

154

e The number of analysis iterations is set to a fixed number.

Having the above relaxations makes our analysis much fasgar extremely small
loss in precision. The intuition behind this is as follow$:Aaflow and context sensitive
pointer analysis is not needed since the variables usuallg the same size and type
in all flows and contexts of a program. Some exceptions torthght happen which
is not common in the programs. b) Limiting the cardinalitypafints-to sets does not
affect the precision that much since only few variables héle large points-to sets. c)
Propagating interprocedural information through indireadls will only affect functions
which are only called indirectly. Those functions are stitlalyzed, but their arguments
will have unknown points-to sets. Given that there are ingdht few such functions in
executables, skipping their arguments propagation is bag &ss. d) Limiting the total
number of iterations will only affect longer chains of pard. For example, the first
iteration will always reveal some pointers. The second walleal two-level (double)
pointers. Subsequent iterations reveal more pointergew¢dually most variables do not
have more than four level pointers, which means subseqtexations will only reveal

very little information.

5.3 Best Effort Static Variable Recovery

We show in this section how a simple best-effort pointer ysialcan be used for
identifying variables. This pointer analysis should beadle to run on executables where
no variables are identified yet. We could have modified caimeemory analysis schemes

on executables like [5] to fit our needs, but we show a simptedysis with similar

155

precision and much better scalability.
Before we begin the analysis, we identify all base memonoregin the executable.

An executable has the following three base memory regions.

1. The global memory region where global variables are &xtat

2. The stack memory region where local variables insidetfans are located. Stack
regions are allocated at the beginning of a function andatssted at the end of the

function.

3. The heap memory region where dynamically allocated bbesare usually located.
Those are identified by detecting calls to functions ik | oc andnew in the

executable.

Every detected memory-allocated variable is represeneghbabstraction called
ALoc which stands for Abstract Location. The name is similar te ttame used by
DIVINE [4]. An ALoccontains an offset inside a base memory region and a size-repr
senting the variable size. Variables allocated to registee represented by IR symbols
which represent the SSA form of those registers.

Our pointer analysis conservatively assumes that evemctezt variable can be
a pointer. We assign points-to sets to every IR symbol andctled ALoc. When the
analysis is done, the actual pointers are identified by ingakthe corresponding points-
to sets are not empty.

We implement the points-to sets using the efficient LLVM sgabit vector data

structure. For every base memory region, we assign it assefianique bits where the

156

number of bits equals the size of the region in bytes. If the of the base memory region
is not known (usually in heap allocated arrays), we assunslatrary size. This allows
us to detect variables with offsets up to that size. Whenavercaess is detected beyond
that arbitrary size, we do not track it. This is an importaattf our best-effort analysis
that allows us to recover a subset of the variables on urdtdiase memory regions instead
of totally giving up on them as the case in DIVINE [4]. Wheneaesymbol or an ALoc
points to some variable in a certain memory region, the bitesponding to the starting
address of the variable will be set to one. The number of bitsosone equals the number
of variables pointed to by a symbol or an ALoc.

Table[5.1 shows our detailed propagation rules for the éféstt pointer analysis
as well as for detecting the variables. We introduce theWatig definitions to ease the

understanding:

1. PtSetf): takes an ALoc or an IR symbal and retrieves its points-to set ‘bit-

vector’.

2. ALocs(r): takes a bit-vector: and retrieves the set of ALocs starting at the ad-

dresses that correspond to the set-bits in the bit vactor

3. UpdateALocst,y): takes a bit-vector and a sizey and creates ALocs starting at
the addresses corresponding to the set-bits in the bibrveatith the given sizey.
If existing ALocs overlap the new ALocs, the new and old AL@gh be split into

smaller ALocs to avoid the overlap.

4. UpdateStructure(y): takes a bit-vector and a numbey. It defines a set of struc-
tures starting at the addresses corresponding to thetsetrhe bit-vector:. Each

157

storey, x (store valuey to lo-

cationz of sizeS)

V z € ALocs(PtSett)) :
PtSet¢) U = PtSetf))

Variables: UpdateALocs (PtSetf, .S)

y = loadz (load locationz of

sizeS toy)

vV z € ALocs(PtSett)) :
PtSet()) U = PtSetf)

Variables: UpdateScalar (PtSet), 5)

<
I
8

PtSet()) = PtSet{)

y =x + 2z, PtSetf) is not

empty

if z is a constanthen
PtSet()) = PtSetf) >> 2
Variables:
if z is a constanthen
UpdateStructure (PtSef), z)
else ifz has SCEV bounds and stritleen

UpdateArray (PtSet), stride, bounds)

Table 5.1: Points-to sets propagation and variable detectiles

158

structure has its last member at offgetlf a structure already starts at one of the
starting addresses, its last member offset will be updatgdtiie maximum of the

existing offset and the new ong)(

5. UpdateArrayf,y,z): takes a bit-vector;, a number representing a stride, and an-
other numbet representing the upper bound of the array. It defines artaytsng
at the addresses corresponding to the set-bits in the tlibwe. Each array has a
maximum sizez. The arrays will be declared to have an element gizExisting
arrays will be merged with the new declared ones and the elesiee will be set

to one if overlapping arrays have conflicting element sizes.

Here we describe briefly the propagation rules in table 5c0t.aFstore instruction,
the points-to sets of the ALocs pointed to by the pointer apéwill be unioned with the
points-to set of the value stored. This is called a weak wguohathe domain of pointer
analysis. A load will set the loaded value points-to set t@ister is pointed to by the
pointer operand. Stores and loads will create ALocs as theyesolved using the Up-
dateALocs function described earlier. For pointer arithoehe points-to sets will be
shifted right according to the positive constant addechdfd¢onstant is negative, the shift
will become to the left. Adding a constant to a pointer is & hioout the existence of a
structure where the pointer address is the start addredgharconstant represents one
field offset inside the structure. We use this hint and decestructure identified by the
starting address and the last member offset. The strustla®’ member offset might be
updated in subsequent pointer arithmetic operations thdtfsom the same base. The

structure’s last member offset will eventually be the maxmmobserved constant that was

159

added to the pointer in the program. Adding a non-constdaoeva an indication that an
array exists. An array will be declared in this case. We useStalar EVolution (SCEV)
analysis by LLVM to deduce the bounds and the stride of thdmetic and use this in-
formation to describe the array. If such information is naggent, we do not declare an
array.

The more pointer analysis rounds done, the more ALocs,tstres and arrays are
identified in all base memory regions. More pointer analysisnds help identifying
multi-level pointers since the first round will always relsmgle level pointers. The
second round will propagate the points-to sets for thosecAlamd identify their points-
to sets leading to the identification of two level pointersorilrounds will reveal more
levels.

After all iterations are done, collected information abatrays gets resolved. For
every base memory region, we fill in the gaps between ALoasguairays. The bounds
and stride information are available from our earlier piggdaon. If no bounds are avail-
able, previously defined ALocs are used as bounds. If noestnidrmation is available,
a stride of one is used which means the array is an array of b@eerlapping arrays are
combined into one bigger array as described earlier.

At the end of this process, a structure hierarchy is creassed on the structure
information calculated for every base memory region. Usihegstarting and ending off-
sets previously calculated for every structure, we coostnested hierarchy structures.
We define inner and outer structures such that any outertgteumust have its starting
address less than any starting address of any nested imaetus¢, and its ending ad-

dress larger than any ending address of any nested innetustu This nested structure

160

hierarchy is used to emit structure data types in the IR as ieexplain later in this

chapter.

5.4 Data Type Recovery

Data type recovery aims at representing every symbol inRheith a meaningful
type. It declares a map between every symbol in the IR anddfresponding detected
data type. It uses this map to rewrite the complete IR sudhtiigainstructions use the
detected types instead of the generic types that are useddon&Write.

Without integrating type recovery with some pointer analydetected types will
be less accurate because of two reasons: 1) Instructiansigknory loads and stores will
usually be untyped since there is no memory tracking passiB) Multi-level pointer
types will not be detected because there is no way to track thighout having some sort
of pointer analysis.

To achieve the goal of typing memory accesses and IR symbaols;detecting
multi-level pointer types, we integrate our best-efforirper analysis and variable recov-
ery techniques described above with our type recovery sysiay other pointer analysis
like [5] can be theoretically used, but will be orders of miagghe slower which makes it
less practical in large executables. That is the disadgard&TIE [43] which is the state
of the art binary type recovery technique.

Integrating our variable identification system with typeaeery makes the type
recovery simpler because it will need only recover scalpesylike integers, floats and

doubles. Structures and arrays are detected as part ofribbleadentification. A pointer

161

is detected if the points-to set of the corresponding ALotRosymbol is not empty. In
this case, we get the ALocs pointed to by that pointer and tipen according to our

rules. We keep doing this for longer pointer chains as needed

Vxe[l,n]
A=call foo (argi, ...,arg,)
setType(rg., type.)
foo has the known prototype:
setTypel, retType)
retType foo (typey, ...,type,)

A=BopC
op € {+,—*/,%,>> <<}
op has typeopType setType{ A, B, C}, opType)

A, B, C has empty points-to sets

A=loadB

unifyType(A, ALocs(PtSetR)))
storeA, B

Op1 = gb (0p21 ---sopn)

unifyType(opy, ...,opn })
op1 = typecasbp; to type

Table 5.2: Typing rules

Table[5.2 shows the most important typing rules we have. &laegr two main type
sources. a) Known external function calls like standard C/{irary calls. For those, we
set the types of actual arguments passed to be the same astre &rgument types from
the prototypes and we do the same thing for the return valyérithmetic operations
with non-pointers: in this case the type is deduced from #mastics of the operation

itself —whether it is an integer or a floating point operatioiWe use the functiosetType

162

to update the type of the symbol or the ALoc in the type map watade. For pointer
types, we type the ALocs represented by the points-to séteaorresponding variables.
For the other operations in the table, we propagate the tygiag the functioruni-
fyType This function attempts to set the data type of all the givanitsols and ALocs
to be the same. At least one of the symbols or the ALocs givehabfunction should
be typed. Whenever this function finds conflicting types,vegiup and does not update
any types. It is used for copy operations like type casts dma@des. It is also used to
propagate types through memory as shown in the rules foestord loads. Interproce-
dural information is propagated by unifying the formal amtual arguments types at a
call instruction. The return value data type at the callisitnified with all the data types

of all return values appearing in the return statementsli@sie called function body.

5.5 IR Data Types Emission Algorithm

After recovering variables and data types information ftbmtechniques presented
in the previous two sections, we proceed to express thisrnrdbon in the IR such that
end users can use this information right away.

The data type emission process we present in this sectiohaiproducing an IR

which has the following three properties:

1. The IR is readable with as many recovered data types esquiés the IR as possi-

ble.

2. The IR is correct which means that users can take the IRymeit® it and still
produce a correct rewritten binary that produces the samsees as the input

163

binary.

3. The IR contains recursive data types if applicable.

Achieving all three goals together is challenging. The adslity goal usually con-
flicts with the correctness goal since our recovered typaeghitmot be 100% accurate.
Recursive data structures are hard to emit in the IR. For exanifghn original binary
has a linked list, the recovered information will be a stmuetwith two fields, the first
field is the element and the second field is a pointer to the stimeture. Before emitting
the complete structure, the type emission will need to rieféhe same structure that is
being emitted which might result in an infinite loop if the &pmission algorithm does
not specifically account for this case. In fact, this is oresoa why the state of the art
type recovery system called TIE [43] does not recover suchirsive data types.

It is important to mention that we do not recover any shapdkeflata types. We
cannot distinguish a linked list from a tree or a graph. Weyartover structures and
pointers that might refer to the same structures. Othereshaplysis techniques can run
on our recovered IR to detect this kind of information.

The pseudo code in figure 5.1 shows how we choose a data typettioea certain
point to setitset For an IR symbol or an ALoc, we first obtain its points-to s&d ¢éhen
execute the algorithm in figure 5.1. If an IR symbol or an ALoes not have a points-to
set, we either get the recovered scalar type or return a igetyee if no scalar type is
recovered. The initial execution of the functigatEmittedTypshown in figuré 5.1 will
haveignoreStructset to false andhainedBitSeset to an empty bit vector.

Lines (1) and (2) of the code returns the cached type of therubit vector if any.

164

Type* getEnittedType (bitset, ignoreStructs = fal se, chainedBitSet = enpty) {
(1) if ('ignoreStructs && cachedType(bitset))

(2) return get CachedType(bi tset)

(3) if (chainedBitSet n bitset is not enpty) //Circular pointer

(4) return get Generi cPoi nter Type ()

(5) else

(6) chai nedBi t Set = chai nedBitSet U bitset

(7) if (l'ignoreStructs && isStartOFStruct(bitset)) //Structure

(8) returnType = get Struct Type(bitset, structHierarchy(bitset))

(9) elseif (isStartOrArray(bitset)) //Array

(10) returnType = ArrayType (get Scal ar Type(bitset))

(11) elseif (hasScal ar Type(bitset)) //scalar type

(12) returnType = get Scal ar Type (bitset)

(13) elseif (P2Set (bitset) is not enpty) //pointer type

(14) returnType = PointerType (getEm ttedType (P2Set (bitset),
i gnoreStructs, chai nedBit Set)

(15) else

(16) return get Generi cScal ar Type () //non-identified type

(17) cahcedType (bitset) = returnType //store to cache
(18) return returnType

Figure 5.1: The type emission algorithm

We use type caching for two reasons: 1) It speeds up the typssiem process. 2) It is
necessary for recovering recursive data structures as o Islter in this section. The
cache is updated at line (17) in the algorithm.

Lines (3) through (6) of the code are inserted to avoid irditobps while emitting
IR data types. Infinite loops come when a circular pointeetedted where some pointer
type is detected to point to itself, or to point to some oth&ic of pointer types among
which one of them points back to the first pointer type. We ttafl a circular pointer
data type. We do not allow emitting circular pointer dataetygxcept for recursive data
structures where pointers point to detected structuretorstalars as we show next. If a
circular pointer is detected, we return back a generic poitata type (we still know it is

a pointer, but lose the information about what it points to).

165

The code in figuré 511 then proceeds to emit different typegmates accordingly.
The code is showing type emission for memory locations, uarg similar technique is
used to emit types for IR symbols representing use pointsshigdev every emitted data
type category below.

Scalar Data Types Lines (11) and (12) emit a scalar data type (like int, float,
double, char, ...). The data type is already recovered flandchniques in the previous
section. We only emit a scalar data type if the bit vector isdetected to point to an
array or a structure.

The functiongetScalarTypeeturns a recovered scalar type if all the ALocs pointed
to by the bit vectobitsethave the same scalar type. If there is a conflict, a generiarsca
type is returned.

Pointer Data Types Lines (13) and (14) emit a pointer data type if the bit vector
bitsetis detected to have a non-empty points-to set. We run thaiumgetEmittedType
recursively for the points-to set and return a pointer torégterned data type.

Array Data Types: Lines (9) and (10) emit an array data type if the bit vector
bitsetcorresponds to a single array ALoc, or if all set bits in theviectorbitsetrefer to
isomorphic array ALocs (those with the same size and stritleis information is stored
for us during the best-effort pointer analysis discussetthénprevious sections. For the
sake of simplicity, we only show scalar arrays. Arrays ofpeis and arrays of structures
can be emitted by recursively applying tgetEmittedTypéunction on the array ALoc
element.

Structure Data Types Lines (7) and (8) emit a structure data type in the array. A

bit vector refers to a structure if: 1) It has only a singlelsigtand 2) There is a structure

166

hierarchy defined starting at this set bit as per our disonssi the last paragraph of
section 5.8. If both conditions are true, we get the strectiata type as shown in the

pseudo code in figufe 8.2.

Struct Type* getStruct Type (bitset, H/*Structure H erarchy*/) {

(1) if (cachedType(bitset)) return getCachedType(bitset)

(2) returnType = createQpaqueStruct ()

(3) cachedType(bitset) = returnType

(4) startOffset = offset = LowerBound(H); maxOffset = Upper Bound(H)
(5) while (offset <= maxCOffset) {

(6) if (innerStructExist (offset, H))
(7) current Type = get Struct Type (bitset
, getlnnerStructHi erarchy (offset, H))
(8) else
(9) current Type = getEm ttedType (bitset, (offset==startffset))

(10) addFi el dToStruct (current Type, returnType)
(11) of fset = offset + size (currentType)
(12) bitset = bitset >> size (currentType)

(13) }
(14) return returnType

Figure 5.2: The structure data type emission algorithm

To emit a structure data type, we first check if this structlata type has already
been cached in line (1) of figute 5.2. If not cached, we createpaque structure and
cacheitinlines (2) and (3).

An opaque structure is a structure with no body defined. Grgatn opaque struc-
ture is very similar to using forward declarations in C and C+43reating an opaque
structure and caching it is one key point in supporting releerdata structures. The
reason is that once a field of some structure is declared td ihe beginning of the
same structure, the cached opaque version will be retunséelad of redefining the same

structure again and again.

167

The algorithm in figuré€5]2 handles the case of emitting agajeetypes containing
other aggregate and non-aggregate types to any nestinly. dEp¢ aggregate hierarchy
recovery process was discussed before at the end of secionibes (5) through (12) of
the algorithm iterate over the structure elements. If aeirgtructure exists in the hierar-
chy, it is declared by callingetStructTypeecursively. If not, we call thgetEmittedType
recursively to recover the non-structure data type.

The reason we add thgnoreStructsargument to theggetEmittedTypdunction is
that once an opaque structure is created, its correspoidirvgctor will be cached to
that structure type. The first element of that structure ale the same bit vector (the
first iteration of the loop starting at line (5) of figure b.2have the sambitsetthat was
cached to the opaque structure in line (3). If ilpeoreStructdlag is not set in this case,
the functiongetEmitted Typwvill return the cached opaque structure, not the first elémen
type of the structure.

It is clear from the discussion above that the two algoritimfgure[5.1 and 512
enable the emission of recursive data structures. The tyw@émts enabling this is the
caching and the opaque structure creation mechanisms.e Tiwesalgorithms do not

allow circular pointers to scalar elements on the other feEndiscussed before.

5.5.1 Practical Considerations

The algorithms discussed in the previous section for typisson show the basic
idea of type emission. Some practical details are not iredud the algorithms to simplify

the discussion. We discuss these practical details here.

168

Emitting data types in the recovered IR works fine as long a®thitted data type
has the same size as the underlying ALoc recovered from timegp@nalysis. There are
two situations where the size of the emitted data type carifteeeht from the ALoc size.
The first situation is related to type recovery inaccuragciesl the second is related to
data structure alignment. We discuss these below.

Sometimes, the type detection is not accurate and thererexcowered type for cer-
tain ALoc(s). In this case, the algorithm in figlrel5.1 retiangeneric type. If we use the
same generic type for all unknown ALoc types, they might naisrh the ALoc(s) size(s)
and hence create problems in the rewritten binary execuilamake sure we choose the
correct generic type that exactly matches the size of thenlyidg ALoc(s). If the points-
to setbitsetrefers to more than one ALoc, they have to have the same siatherwise
the algorithm emits a data type that matches the semantib® aforresponding instruc-
tion in the IR without considering the ALocs at all. The adtalgorithm implemented in
SecondWrite takes care of that with extra added checks.

Another reason why a size mismatch happens is related tctgteualignment is-
sues. If the recovered types inside of a structure in the IRadanatch exactly the types
in the original source code, the backend of the compiler tsgénerate the rewritten bi-
nary (LLVM in this case) might introduce extra alignmentside the structure that makes
the actual size of the structure in the rewritten binaryedéht from its size in the IR.

As an example of when this alignment issue might occur, censthe original
source code structure in figure b.3-a and the correspondauyered IR structure in figure
B.3-b. The structure in figufe 5.3-a is compiled into the ttree in figure 5.83-c after
adding one byte padding to ensure that the short is aligneal taro bytes boundaries.

169

Original IR Recovered

Structure Structure
struct { struct {
char x; char x;
short y; chary;
short z; int z;
}
}
(@ (b)
Memory Layout Memory Layout
(Original Binary) (Rewritten Binary)
X (Lbyte) X (1 byte)
Padding (1 byte) Y (1 byte)
y (2 bytes) Padding (2 byte)
Z (2 bytes) y (4 bytes)
() (d)

Figure 5.3: Structure alignment problem example

The total size of the recovered IR structure in figure 5.3-bgmwadding up the individual
field sizes) exactly matches the input binary structure iaré5.3-c. Because the type
recovery is not 100% accurate, the type recovery data flolysisacombined the two
shortsy andz into one single integez. This can happen if the original binary initializes
bothy andz simultaneously using a single store instruction. Charactetthe recovered
IR represents the padding in the original binary structure.

The problem is when we try to compile the code in figure 5.3ib,dompiler adds
2 bytes padding between the second character and the ttegkirsince integers have to
be aligned on 4 bytes boundary. The resulting memory layoahown in figuré 513-d.
This layout is different than the input binary layout showrfigure[5.8-c since only one
byte padding is required to be added. This will result in amaich in the sizes between
the original and the rewritten structures which causes gioehavior in case pointer
arithmetic is used.

To solve this problem, we detect if the compiled IR structize can be different

170

from what is emitted and in such cases we mark the IR struetsifgeingpacked. A
packed attribute for a structure instructs the backendmetttit any extra alignments at

all.

5.6 IR Correctness and Analysis Termination

In this section we discuss the correctness guarantees nabkeand data type re-
covery as well as the type emission techniques provide @ratvritten IR. We also prove
that our type emission techniques will never go into infitgigps (always terminate).

The correctness of the recovered IR comes from the fact tigaif the memory
layout in the rewritten binary exactly resembles the memayput in the original bi-
nary, then every memory access either being a direct accessiindirect reference using
pointer arithmetic will always land on the correct (abstyacemory region in the rewrit-
ten binary and hence the rewritten binary memory refereaexesute correctly.

The reason a compiler can change some memory layout is Wfichdil variables
are provided in the code that is being compiled. Compilersotprovide any guarantees
about the order of the variables in the binary. It can alle¢aém in any random order.

The only case when a compiler has to respect some memorytlay/athen the
code instructs the compiler to do so. One way the code canatasioy having arrays
and/or structures in the IR. The array and structure fields lmvemain in the same order
in memory.

We show here that for every memory region in the original kyinhe corresponding

abstract memory region in the rewritten binary is alwaysaurded by either an array or

171

a structure in the IR that keeps the same layout.

In any case when a stack location is accessed in the originahh it is accessed
by adding some constant (or non-constant) offset to thé gt@initer to get to the desired
stack location. Following the last rule in talile]5.1, thiscaoatically creates a structure
or an array for this particular memory region. The same aentrapplies for global and
heap regions.

Regarding the type emission termination, we prove belowtttealgorithm in fig-
ure[5.]1 always terminates. In this proof, we use the factttieatype detection techniques
along with the best effort pointer analysis techniques gértarminate (either after con-
vergence, or after a certain number of iterations).

The only cases when the algorithm can go into an infinite lsoghien it is calling
itself recursively. This can only happen in line (8) and l{ad).

At line (8) of the algorithm, the code is recovering a struetdata type. The func-
tion getStructTypenight call itself (in case an inner structure exists), otsc#legetEmit-
tedTypdor other non-structure fields. Since the pointer analy@isiinates, the structure
hierarchy is finite, and hence when the functgetStructTypealls itself, it will keep
calling itself until the hierarchy is done (which means atémumber of times) bounded
by the number of inner structures. When the funcgetStructTypeallsgetEmittedType
it tries to get a non-structure data type which is discusstaiib

Line (14) of functiongetEmittedTypealls itself for getting the type a certain pointer
points to. Since we prevent circular pointers using the kfiég lines (3) and (4), and
since the original pointer analysis terminates, then thetps chain has a finite length
which leads to finite number of recursive calls at line (14)tabed by the chained pointers

172

length.

5.7 Effects of inaccurate function boundaries and spurious functions

This chapter presented scalable techniques to recovabl@siand data types from
binaries. These techniques use pointer analysis on meraogidns in the binary to
reason about memory allocated variables and their data.type

These memory allocated variable and data type recoveritpads will still work
correctly for spurious functions and functions with ina@te boundaries provided that
arguments are passed correctly to all functions includigisus ones. For register argu-
ments, they will flow correctly using the techniques presénn chapter3. For memory
arguments, they will flow correctly if the stack translatioes in section 3.411 are used
to construct the IR before running the pointer analysis passented in this chapter. The

same discussion applies to data types since they also usartfeepointer analysis.

5.8 Results

In this section, we present the results showing the effectgs of our schemes to
identify variables and data types. We first show results enotrerall variable and data
type detection process and then we show specific in-deptittsder floating point vari-
ables and function prototypes. We evaluate our techniqunésedSPEC2006 benchmark
suite which represents C, C++ and Fortran executables udfegetit optimization levels
and compiled using two different compilers (GCC 4.3 for Linard Visual Studio 2010

for Windows). We use a machine with an Intel Core i7 3.33GHzessor with 24 GB of

173

RAM.

All the recovered code in all the experiments was recompilgidg LLVM 3.0,
linked using GCC (Linux) and MinGW (Windows), and then testadhe ref and test in-
puts provided by the SPEC2006 test suite. All rewritten etadilas worked successfully
and produced the correct answer as provided in the test suite

For the experiments presented in this section, we compilei@tmmarks from
SPEC2006 with all debugging information present and onlythsen for comparison.
We currently do not support reading complete debuggingimé&tion for C++ and For-
tran, yet we collected results on those benchmarks withamparing with source code.

The first experiment shows the quality of the recovered Béegusing the same
metrics DIVINE [4] used for comparison purposes. DIVINE [@mpares recovered
variables in the binary to corresponding variables in thes® code of those binaries to
determine how well it did. It defines four variable categsrés a result: 1) a matched
variable is a recovered variable whose exact size and posiiatches the variable from
the source code. 2) An over refined variable is when the sawrde variable is divided
into more recovered variables; for example, an integertified as four characters. 3)
Under refined variables which are recovered as part of arlamece code variable ; for
example, an un-identified structure member. 4) An unknowialkie is a variable which
is not one of those mentioned categories.

As shown from figuré 514, an average of 86% of the variablesratehed to the
debugging information. We run this experiment on prograamging from 2,149 instruc-
tions (mcf) to 934,292 instructions (gcc). DIVINE [4] rep@an average of 88% matched
variables on programs ranging between 252 to 5,371 ingtngt This shows that our

174

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

% of variables recovered

m Matched M Over Refined Under Refined

Figure 5.4: Accuracy of variable detection

schemes has comparable precision to DIVINE [4] but on mughédyi benchmarks. The
largest benchmark they report variables results atelgabluewith 5,371 instructions.
The scalability of the variables and type detection is shiowfigure[5.T. Our anal-
ysis scales linearly with program size for larger binariése detailed benchmarks sizes
were previously shown in figurés 2.8 and|2.9 in chapter 2. Tadyais takes around 6
minutes to analyzeontowhich is a Fortran benchmark whose size is 1.3 million ircstru
tions. The average analysis speed is 1.7 seconds per 10&@@ctrons compared to 10
minutes per 10000 instructions in DIVINE. Thus our metho858X faster than DIVINE
on average. As mentioned before, the underlying reasonuomuich-faster analysis is
using an underlying best-effort pointer analysis that isquaranteed to have complete
points-to sets. We consider that while recovering the IR tontain correctness as we
discussed earlier in sectidbn b.2. dealll is the only progfant of 25) that did not scale

well. dealll has very large number of procedures. The imtgdural data flow propaga-

175

tion took most of the time in dealll. Still, it is finishing im@nd 13 minutes given that it
has 766,555 instructions.

In order to evaluate our type analysis techniques, we caietihe same metrics that
TIE [43] uses. TIE defines a type range for every variablevexd from the executable.
An ordering between basic types is specified by a type lastiwevn in their paper. The
first metric they define is thdistancewhich is the difference between the lattice heights
of the upper and lower bounding types for each type range. siiedler thedistance
the more accurate the identified types are. The maximumndists 4. They also define
their detected type range to benservativef the actual source code type falls inside the
detected range.

In order to compare with TIE [43], we define a range of typesfary variable we
detect where the lower bound is the single detected type bywailysis and the upper
bound is the genericegx_t type they define in their lattice, whererepresents the
number of bits of the underlying ALoc or register. Based ort taage, we calculate
our distances and conservativeness rates. Since the THf gapot clear about how to
define conservativeness for structure and array types, Whesedistances to 4. We also
added floating point types to their lattice the same way tteger types are added. As an

example, floats are added in the following order:

T :>reg32_t :>float :> L

In addition to the distance and conservativeness, we defin@wn metric that

measures the precision of multi-level pointers detectidlic metrics do not show how

176

multi-level pointers are precisely typed since all poirtigres have the same height on
their lattice [43]. Our precision metric is defined as theéordietween the correctly re-
covered pointer levels to the source level pointer levets. @xample, if a variable has a
double pointer to integer typé (t * *) in the source code and we identified it as a single
pointer to an integeri (nt *), then we identified one level only out of the three levels in
source, which ar@ointer to pointer to integer. Our precision in this example will be
33%.

Figurd5.b shows the conservativeness as well as the meciour detected types.
The conservativeness rate is 96% on average which is sligigher than 90% that TIE
reports. Our precision metric shows that we detect 73% optheter levels on average.
The average distance detected for our type recovery systéri which is slightly better

than the distance of 2 that TIE [43] reports. Figurd 5.6 shihvesdistance measured per

benchmark.

100 .
80 - B
60 - B
40 - B
20 - B
0 "

& @@‘ @&‘ 5 &,fao‘ & & ¢ Qs""
NN &

B Type Precision Conservativeness

Figure 5.5: Accuracy of type detection

177

Some of the larger binaries have lower type precision thheramaller ones. This
is expected since larger programs tend to have more highel peinters than smaller
ones and those are usually hard to detect since they relyecefféctiveness of the under-
lying pointer analysis. The conservativeness and distameasures used by TIE do not
capture this fact as it is clear from figurel5.5.

It is worth mentioning that our variable and type recovery iategrated together
in our system. The scalability shown in figlrel5.7 is capibioth the variable recovery

and the type analysis.

25
2
s \VMVAV/
1
05
0 x —

& ¢ P&&é & S & & &

AN AN R\

Figure 5.6: Distance of type detection

The recovered IR after our type analysis is usually of a higjuality than the one
before our techniques. To evaluate this, we calculate treepeage of the IR symbols that
have a non-generic type after our techniques. Results sheiv®@196 of the IR symbols
are typed in Fortran binaries, 88% of them are typed in C and Kimaries, and 81%
of them are typed in the visual studio binaries. Those basanere compiled using the

178

800 *
& 700
pe]
S 600
g 00
R ~
D 400 _—
8 $
& 300 //:/
[WN]
GE) 200
~ 100 4 . ®
0 T T 1
0 500000 1000000 1500000
Assembly Instructions

Figure 5.7: Scalability of variable and type detection

maximum compiler optimization level while conducting tledperiment.

5.9 Related Work

Throughout this chapter, we compared our work with the mexstmt work done in
the areas of variable and type recovery [4,43] and functrotopypes identification [10].
In this section, we discuss other work that is relevant totecinniques.

Binary rewriting has been considered by a number of reseegclidere are two
main categories when talking about binary rewriters, dyindymary rewriters and static
binary rewriters. Dynamic binary rewriters rewrite the duiy during its execution. Ex-
amples are PIN[[48], BIRD[[52] and others. None of the dynamitakj rewriters
found produce high-level compiler IR. Examples of existitatis binary rewriters in-

clude ATOM [28], PLTO [60] and UQBTL[16]. None of those binamwriters employ

179

a compiler level intermediate format, like LLVM IR or simitarather they define their
own low-level custom intermediate format. They do not delegh level features such as
floating point stack variables, register arguments to fonstand data types.

Boomerang|[26] is an open source decompiler. It has very dundapabilities
and cannot handle large binaries. Register arguments hdwe $pecified manually. It
does not detect any floating point stack operations. Emnmeehtions in his PhD the-
sis [69] some type recovery techniques based on SSA whigbeati@ally implemented in
Boomerang. They have very limited memory tracking capaéditvhich are very impor-
tant in recovering variables and data types as we stateérarthis chapter.

Cifuentes et al. present technigues to recover high levelde éfmm SPARC bina-
ries [13]. There is no discussion on how to detect variablesgawith their data types.
The paper is more towards recovering the high level constroicthe C language like
conditionals, loops, etc.

Saxena et al. present an efficent binary instrumentatidmtquae [58]. For their
technique to be effective, they perform memory analysislamo VSA [5] but limited
only to stack memory to detect escaped local variables. akgyme complete knowledge
of accurate function boundaries.

REWARDS [44] presents a dynamic type recovery technique; #8E$hows better
precision than REWARDS. We already compared to TIE [43] in esults. A technique
to automatically reconstruct data types from binaries esented in[[22]. It is used in
a tool that aims to produce C code from binaries; however ngah€ code generation
is demonstrated. One main disadvantage in their work is doeyot track memory. As
we have shown, tracking memory is very important in ideintiyaccurate types. The

180

analysis they produce is intraprocedural which limits @swaacy. Their algorithm is used
by Torshina et. all[68] in another attempt to reverse erggidata types in a tool named
TyDec for program decompilation. An early work on type coustion from binaries is
by Mycroft [51]. It tries to construct C code from binariestivcorrect type information.
However, it does not actually show results producing C coflee algorithm does not
track memory locations and it is not clear if it can produckdvi® or C output code.

Many static custom memory analysis techniques in binanés.eNone of them
recovers variables or data types. The VSA analysis by Balakan and Reps/[5] is used
by them to implement various analyses. One of them is callBd/R86 [6] which is
used to detect bugs in device drivers. Device drivers wes@ahalyzed using the Jakstab
tool [36] using a modified version of the VSA techniquel[37].

A low level pointer analysis was proposed by Guo et/all [32]s b context sen-
sitive, flow insensitive analysis detecting accurate [®iotsets of registers and memory
locations. They do not recover variables or data types im #ralysis. Their technique
can be used in place of ours, but as we show in this chaptetechnique is simple,
scalable and sufficient for the application we are presgntin

Alias analysis on binaries was proposed by Debray et al. [2detects aliases be-
tween registers using address descriptors. No real memacking takes place. The
same problem is present in the static slicing technique oarlds by Cifuentes and
Fraboulet[[12].

Other types of alias analysis on executables were prop&eztulative alias anal-
ysis of executables was proposed by Fernandez and ESpdsen2B increases aliasing

information precision by introducing unsafe speculatiahsnalysis time which might

181

result in wrong analysis results in rare cases. Anotherghilibtic alias analysis for
executables was proposed by Lu and Chen [47] which estimlagegrobability of two

registers referring to the same memory address.

182

Chapter 6: Conclusion

In this dissertation, we presented a set of techniques tb&ssential for the core of
any binary analysis and rewriting system. Our techniquesdisassemble the complete
executable binary code, produce accurate function irdesfarecover function APIs, re-
cover variables and data types. Our techniques guarargeettectness of any high-level
IR recovery process based on the recovered code. Our temegn handle stripped bi-
naries without symbolic, relocation, or debugging infotioia.

In chapte R, we presented function boundaries recovehntgues that achieve
100% complete code coverage for most application code. @hetibn boundaries are
almost 100% accurate. We presented techniques to redueanbient of disassembled
spurious functions up to 4%. Our techniques perform bdtiamn &ll other binary analysis
tools aiming at disassembling binaries and achieving fanstwith accurate boundaries.

In chapteiB, we defined APIs for the recovered functions. Vésgnted precise
techniques to recover accurate register arguments anthsetformation from binaries.
Our techniques guarantee that external function callseptas the binary without any
known prototype can still work correctly in our recovered IR.

In chaptef#, we presented techniques to recover varididesite allocated on the

x86 floating point stack. These variables are often missadast of the tools recovering

183

variables from executables. Our techniques are sound dhdlways have a functional
recovered IR for most application binaries.

In chaptefb, we extend the variables recovery process tode@ll memory allo-
cated variables in executables. We also present techniguesover data types for the
recovered variables. The recovered data types includarspalinters, aggregates and re-
cursive data types. Our techniques are 352X faster thaemuchniques which enables
the analysis of very large binaries (up to a million instioics).

All the techniques presented were tested on the SPEC20061arnks suite. The
recovered IR was recompiled and the rewritten binaries aebdorrectly giving the same
output as the original binaries. We presented in the dssent detailed metrics showing

the quality of the recovered IR.

184

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Bibliography

Proceedings of the Network and Distributed System Securityp8sium, NDSS
2010, San Diego, California, USA, 28th February - 3rd Marcii@0The Internet
Society, 2010.

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: Tools for performance anaysi optimized parallel
programs http://hpctoolkit.orgConcurr. Comput. : Pract. Exper22(6):685-701,
April 2010.

Kapil Anand, Matthew Smithson, Khaled Elwazeer, Apaiatha, Jim Gruen,
Nathan Giles, and Rajeev Barua. A compiler-level intermedigpresentation based
binary analysis and rewriting system.RPnoceedings of the 8th ACM European Con-
ference on Computer SysterisiroSys '13, pages 295-308, New York, NY, USA,
2013. ACM.

G. Balakrishnan and T. Reps. DIVINE: Discovering variable executables. In
Verification, Model Checking, and Abstract Interpretatiggages 1-28. Springer,
2007.

Gogul Balakrishnan and Thomas Reps. Analyzing memory ssaein x86 exe-
cutables. In Evelyn Duesterwald, edit@pmpiler Constructionvolume 2985 of
Lecture Notes in Computer Scienpages 5-23. Springer Berlin Heidelberg, 2004.

Gogul Balakrishnan and Thomas Reps. Analyzing strippegcdedriver executa-
bles. InProceedings of the Theory and Practice of Software, 14thriatenal
Conference on Tools and Algorithms for the Construction analysis of Systems
TACAS'08/ETAPS’08, pages 124-140, Berlin, Heidelberg, 20®@&inger-Verlag.

Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you se®i what you
execute ACM Trans. Program. Lang. SysB2(6):23:1-23:84, August 2010.

Davidson R Boccardo, Arun Lakhotia, A Manacero Jr, and il Venable.
Adapting call-string approach for x86 obfuscated binarfesnpsio Brasileiro em
Seguranca da Informacao e de Sistemas ComputacioPRi®.

185

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and EdwaSchwartz. Bap: A
binary analysis platform. IProceedings of the 23rd International Conference on
Computer Aided VerificatignCAV’11, pages 463-469, Berlin, Heidelberg, 2011.
Springer-Verlag.

[10] Juan Caballero, Noah M. Johnson, Stephen McCamant, anth Bang. Binary
code extraction and interface identification for securipplacations. InNetwork
and Distributed System Security Symposjljn

[11] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klgeassisted and auto-
matic generation of high-coverage tests for complex systeragrams. IfOSD|,
volume 8, pages 209-224, 2008.

[12] C. Cifuentes and A. Fraboulet. Intraprocedural staiwrgl of binary executables.
In Software Maintenan¢gages 188 —195, oct 1997.

[13] C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to Heytel language trans-
lation. In Software Maintenance, 1998. Proceedings., Internationalf@ence on
pages 228-237, Nov 1998.

[14] C. Cifuentes and M. Van Emmerik. Recovery of jump table ctagements from
binary code. IrProgram Comprehension, 1999. Proceedings. Seventh Iritenad
Workshop onpages 192-199, 1999.

[15] Cristina Cifuentes.Reverse compilation techniqueBhD thesis, Queensland Uni-
versity of Technology, 1994.

[16] Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptable&iy Translation
at Low Cost.Computey 33(3):60—66, March 2000.

[17] Cristina Cifuentes and Doug Simon. Procedure abstnacgoovery from binary
code. InProceedings of the Conference on Software Maintenance anigReer-
ing, CSMR ’00, pages 55—, Washington, DC, USA, 2000. IEEE Compudeie§).

[18] Robert Cohn, David Goodwin, P. Geoffrey Lowney, Norman iRuBobert Cohn,
David Goodwin, P. Geoffrey Lowney, and Norman Rubin. Spika:obtimizer for
alpha/nt executables. In USENIX Windows NT Workshopages 17—-24, 1997.

[19] M. Cova, V. Felmetsger, G. Banks, and Giovanni Vigna. iB@gtection of vulner-
abilities in x86 executables. I@omputer Security Applications Conference, 2006.
ACSAC '06. 22nd Annugpages 269-278, Dec 2006.

[20] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, andeBhden. On the
static analysis of indirect control transfers in binarigs Proc. of the International
Conference on Parallel and Distributed Processing Techesqand Applications
pages 1013-1019, 2000.

186

[21] Saumya Debray, Robert Muth, and Matthew Weippert. Adiaalysis of executable
code. InProceedings of the 25th ACM SIGPLAN-SIGACT symposium on Pl&sci
of programming language®OPL, pages 12-24, New York, NY, USA, 1998. ACM.

[22] E. N. Dolgova and A. V. Chernov. Automatic reconstruotiof data types in the
decompilation problemProgram. Comput. Softw35(2):105-119, March 2009.

[23] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew itison, and Rajeev
Barua. Scalable variable and data type detection in a bireavyiter. InProceed-
ings of the 34th ACM SIGPLAN Conference on Programming LangDegign and
ImplementationPLDI '13, pages 51-60, New York, NY, USA, 2013. ACM.

[24] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthewithison, Jim Gruen, and
Rajeev Barua. Scalable variable and data type detection inaaybrewrite. ACM
Transactions on Programming Languages and Systems (TOPR@AB!, Under Re-
view.

[25] Khaled ElWazeer, Matthew Smithson, Kapil Anand, Amaikotha, , and Rajeev
Barua. Scalable variable and data type detection in a bieswsite. ACM Transac-
tions on Programming Languages and Systems (TOPL288%, Under Review.

[26] M.V. Emmerik and T. Waddington. Using a decompiler feakworld source re-
covery. InReverse Engineering, 2004. Proceedings. 11th Working @mte on
pages 27-36, Nov 2004.

[27] eSecurityPlanet Staff. eSecurity Planet News, 2011.

[28] Alan Eustace and Amitabh Srivastava. ATOM: a flexibleiface for building high
performance program analysis tools. Rroceedings of the USENIX 1995 Techni-
cal Conference Proceeding§CON’95, pages 25-25, Berkeley, CA, USA, 1995.
USENIX Association.

[29] M. Fernandez and R. Espasa. Speculative alias analysisxécutable code. In
Parallel Architectures and Compilation Techniques, 200@ceedings. 2002 Inter-
national Conference qgrpages 222 — 231, 2002.

[30] GrammaTech. CodeSurfer by GrammaTecht t p: / / waww. gr ammat ech.
com product s/ codesurfer/overview htm ,b 1998.

[31] lifak Guilfanov. Idapro Disassembler, Hexrays, 2005.

[32] B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Ramand D.I. August. Prac-
tical and accurate low-level pointer analysisdade Generation and Optimization,
2005. CGO 2005. International Symposium pages 291 — 302, march 2005.

[33] L.C. Harris and B.P. Miller. Practical analysis of strggpbinary code. ACM
SIGARCH Computer Architecture Nev@3(5):63—-68, 2005.

187

http://www.grammatech.com/products/codesurfer/overview.html
http://www.grammatech.com/products/codesurfer/overview.html

[34] J.K. Hollingsworth, B.P. Miller, and J. Cargille. Dynagrpprogram instrumentation
for scalable performance tools. 8talable High-Performance Computing Confer-
ence, 1994., Proceedings of tlpages 841-850, May 1994.

[35] Johannes Kinder and Dmitry Kravchenko. Alternatingitrol flow reconstruction.
In Viktor Kuncak and Andrey Rybalchenko, editok&rification, Model Checking,
and Abstract Interpretationvolume 7148 ofLecture Notes in Computer Science
pages 267-282. Springer Berlin Heidelberg, 2012.

[36] Johannes Kinder and Helmut Veith. Jakstab: A statidysieaplatform for binaries.
In Proceedings of the 20th International Conference on Compdiiged Verifica-
tion, CAV '08, pages 423427, Berlin, Heidelberg, 2008. Springmtag.

[37] Johannes Kinder and Helmut Veith. Precise static amalyf untrusted driver bina-
ries. InProceedings of the 2010 Conference on Formal Methods in Canputded
Design FMCAD ’10, pages 43-50, Austin, TX, 2010. FMCAD Inc.

[38] Johannes Kinder, Florian Zuleger, and Helmut Veith. a&ostract interpretation-
based framework for control flow reconstruction from bieari InProceedings of
the 10th International Conference on Verification, Model (iveg, and Abstract
Interpretation VMCAI '09, pages 214-228, Berlin, Heidelberg, 2009. Springe
Verlag.

[39] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspectgadget: Automated
extraction of proprietary gadgets from malware binarigs Sécurity and Privacy
(SP), 2010 IEEE Symposium,qgrages 29-44, May 2010.

[40] Christopher Kruegel, William K Robertson, Fredrik Vateand Giovanni Vigna.
Static disassembly of obfuscated binaries. USBENIX security Symposiuniol-
ume 13, pages 18-18, 2004.

[41] Arun Lakhotia, Davidson R. Boccardo, Anshuman Singh, Alghrdo Manacero,
Jr. Context-sensitive analysis of obfuscated x86 execegabbhProceedings of the
2010 ACM SIGPLAN Workshop on Partial Evaluation and Prograaniulation
PEPM '10, pages 131-140, New York, NY, USA, 2010. ACM.

[42] Arun Lakhotia, Eric Uday Kumar, and Michael Venable. Aetimod for detecting
obfuscated calls in malicious binarielEEE Trans. Softw. Eng31(11):955-968,
November 2005.

[43] JongHyup Lee, Thanassis Avgerinos, and David Brumleg. Principled reverse
engineering of types in binary programs.NiDSS The Internet Society, 2011.

[44] Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatwerse engineering of
data structures from binary execution.NIDSS1].

[45] Cullen Linn and Saumya Debray. Obfuscation of execetalolde to improve re-
sistance to static disassembly. Rroceedings of the 10th ACM Conference on

188

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Computer and Communications Secur@®CS '03, pages 290-299, New York, NY,
USA, 2003. ACM.

LLVM. The LLVM Compiler Infrastructure, 2003.

Yu-Min Lu and Peng-Sheng Chen. Probabilistic alias ysial of executable
code. International Journal of Parallel Programming39:663-693, 2011.
10.1007/s10766-010-0157-y.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, ArKiauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazetlvd?in: Building
customized program analysis tools with dynamic instruraon. pages 190-200,
2005.

Jinxin Ma, Zhoujun Li, and Chaojian Hu. Towards extragticontrol flow abstrac-
tion with static disassembly for binary code. @omputational Intelligence and
Communication Networks (CICN), 2012 Fourth International Confeeson pages

430-435, Nov 2012.

D. Melski, T. Teitelbaum, and T. Reps. Static analysisaftware executables. In
Conference For Homeland Security, 2009. CATCH '09. Cybersgcagplications
Technologypages 97 —102, march 2009.

Alan Mycroft. Type-based decompilation. FProceedings of the 8th European
Symposium on Programmingolume 1576 ofecture Notes in Computer Science
pages 208-223. Springer, 1999.

Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker Chilghd: Binary inter-
pretation using runtime disassemblyHroceedings of the International Symposium
on Code Generation and Optimizatic@GO '06, pages 358—-370, Washington, DC,
USA, 2006. IEEE Computer Society.

Igor V Popov, Saumya K Debray, and Gregory R Andrews. Binzbfuscation
using signals. IVSENIX Security Symposiypages 275-290, 2007.

G. Ramalingam, John Field, and Frank Tip. Aggregatectiine identification and
its application to program analysis. RFroceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming LanguaB&¥L '99, pages
119-132, New York, NY, USA, 1999. ACM.

Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karearil Learning to an-
alyze binary computer code. FRroceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2AAAI'08, pages 798—-804. AAAI Press, 2008.

Nathan E. Rosenblum, Barton P. Miller, and Xiaojin Zhu. tri@agting compiler
provenance from program binaries. Rroceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools amgingering
PASTE '10, pages 21-28, New York, NY, USA, 2010. ACM.

189

[57] Kevin A. Roundy and Barton P. Miller. Binary-code obfusoas in prevalent packer
tools. ACM Comput. Sury46(1):4:1-4:32, July 2013.

[58] Prateek Saxena, R Sekar, and Varun Puranik. Efficieatdgmained binary instru-
mentationwith applications to taint-tracking. Rroceedings of the 6th Annual
IEEE/ACM International Symposium on Code Generation andr@pétion CGO
'08, pages 74-83, New York, NY, USA, 2008. ACM.

[59] Benjamin Schwarz, S. Debray, and G. Andrews. Disassgwibéxecutable code
revisited. InReverse Engineering, 2002. Proceedings. Ninth Working Gamde
on, pages 45-54, 2002.

[60] Benjamin Schwarz, Saumya Debray, Gregory Andrews, amadthdw Legendre.
PLTO: A Link-Time Optimizer for the Intel IA-32 Architecter In Workshop on
Binary Translation 2001.

[61] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu YabBT: An LLVM-
based Static Binary Translator. Rroceedings of the 2012 International Confer-
ence on Compilers, Architectures and Synthesis for EmbesigltdmsCASES '12,
pages 51-60, New York, NY, USA, 2012. ACM.

[62] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, MauriPeMarks, and Scott G.
Robinson. Binary translatiorCommun. ACM36(2):69-81, February 1993.

[63] M. Smithson, K. EIWazeer, K. Anand, A. Kotha, and R. Bar8gatic binary rewrit-
ing without supplemental information: Overcoming the &affl between coverage

and correctness. IReverse Engineering (WCRE), 2013 20th Working Conference

on, pages 52-61, Oct 2013.

[64] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivagei, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankankratekk Saxena.
Bitblaze: A new approach to computer security via binary ysial InProceedings
of the 4th International Conference on Information Systeemufty, ICISS '08,
pages 1-25, Berlin, Heidelberg, 2008. Springer-Verlag.

[65] Bjarne Steensgaard. Points-to analysis in almostiitieee. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programhaimguages
POPL '96, pages 32—-41, New York, NY, USA, 1996. ACM.

[66] Nathan R. Tallent, John M. Mellor-Crummey, and MichaelR&gan. Binary anal-
ysis for measurement and attribution of program perforreana Proceedings of
the 2009 ACM SIGPLAN Conference on Programming Language Dasid Im-
plementationPLDI ‘09, pages 441-452, New York, NY, USA, 2009. ACM.

[67] H. Theiling. Extracting safe and precise control flowrfr binaries. InReal-Time
Computing Systems and Applications, 2000. Proceedingen8evnternational
Conference oppages 23-30, 2000.

190

[68] K. Troshina, Y. Derevenets, and A. Chernov. Reconstoactf composite types
for decompilation. InNSource Code Analysis and Manipulation (SCAM), 2010 10th
IEEE Working Conference opages 179 —188, sept. 2010.

[69] Michael James Van EmmerikStatic single assignment for decompilatioPhD
thesis, The University of Queensland, 2007.

[70] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De BosscHgiablo: a re-
liable, retargetable and extensible link-time rewritirgmhework. InSignal Process-
ing and Information Technology, 2005. Proceedings of tlign FEEEE International
Symposium grpages 7-12, Dec 2005.

[71] Giovanni Vigna. Static disassembly and code analysisMihai Christodorescu,
Somesh Jha, Douglas Maughan, Dawn Song, and Cliff Wang, reditalware
Detection volume 27 ofAdvances in Information Securjtpages 19-41. Springer
Us, 2007.

[72] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Amdo Solar-Lezama.
Towards optimization-safe systems: Analyzing the imp&anaefined behavior. In
Proceedings of the Twenty-Fourth ACM Symposium on Operatistg®s Princi-
ples SOSP '13, pages 260-275, New York, NY, USA, 2013. ACM.

[73] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liul: &xploit code detec-
tion via static taint and initialization analyses. Pmoceedings of the 2008 Annual
Computer Security Applications Confereng€CSAC '08, pages 289-298, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[74] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, andigiang Lin. Binary
stirring: Self-randomizing instruction addresses of 3ge36 binary code. IfPro-
ceedings of the 2012 ACM Conference on Computer and Communis&exurity
CCS 12, pages 157-168, New York, NY, USA, 2012. ACM.

[75] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, andging Lin. Securing
untrusted code via compiler-agnostic binary rewriting.Phoceedings of the 28th
Annual Computer Security Applications Conferem8€SAC '12, pages 299-308,
New York, NY, USA, 2012. ACM.

[76] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Karti&glu, and Bhavani
Thuraisingham. Differentiating code from data in x86 biear InProceedings of
the 2011 European Conference on Machine Learning and KnowlBdg®very in
Databases - Volume Part IECML PKDD’11, pages 522-536, Berlin, Heidelberg,
2011. Springer-Verlag.

[77] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhigidng, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuseutlin trace-oriented
programming. InProceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications SecuritCCS 13, pages 487-498, New York, NY, USA,
2013. ACM.

191

[78] Jingbo Zhang, Rongcai Zhao, and Jianmin Pang. Paramedereturn-value analy-
sis of binary executables. Proceedings of the 31st Annual International Computer

Software and Applications Conference - Volume [®dges 501-508, Washington,
DC, USA, 2007. IEEE Computer Society.

192

	List of Figures
	Introduction
	Functions Recovery
	Function API Recovery
	Variables and Data Types Recovery
	SecondWrite
	Comparison with previous work in the SecondWrite project
	Organization of the Dissertation

	Recovering Functions with Accurate Boundaries
	Introduction
	Background and Motivating Example
	Binary Characterization and Code Coverage
	Disassembly Methods
	Disassembly Rules
	Improving Function Boundaries

	Marking Likely Spurious Code
	Inlined Functions
	Identifying Actual Parent Function
	Memory Analysis
	ISA Analysis
	Empty Functions Detection
	Conditional Handling

	Static Function Identification Based on Dynamic Information
	Disassembler based on dynamic information - The big picture
	Function Pruning using Dynamic Information
	The dynamically assisted analyses code coverage guarantees
	Unification of dynamic information

	High Level IR Functionality
	Call Translation
	Conditional Handling

	Results
	Comparison with best-effort techniques
	Function Boundaries Accuracy
	Dynamic Based Reduction in Binary Characterization Addresses
	Spurious Functions
	IR Size Changes due to Adjustments
	Disassembly Time
	Heuristics Effect

	Related Work
	Limitations and Future Work
	Position Independent Code
	Obfuscated Code
	Self Modifying Code

	Recovering Function APIs
	Introduction
	Function Prototypes Recovery
	External Calls Prototypes
	Overview and Problem Statement
	Assumptions
	Detecting External Function Calls
	External Calls IR Representation
	Trampoline Function
	Correctness of the Trampoline Function

	Effect of inaccurate function boundaries
	Memory Stack
	Register Arguments

	Results
	Register Arguments and Returns
	Trampoline Function Overhead

	Related Work

	Recovering Floating Point Stack Allocated Variables
	Introduction
	x86 Floating Point Stack Layout and Problem Overview
	Floating Point Stack Assumptions
	Basic Approach for Decoding the Floating Point Stack
	Decoding the Floating Point Stack in the Case of Unresolved Indirect Jumps
	Correctness Proofs
	Results
	Related Work

	Recovering Memory Allocated Variables and Data Types
	Introduction
	Variable and Type Recovery - Challenges and Intuitions
	Best Effort Static Variable Recovery
	Data Type Recovery
	IR Data Types Emission Algorithm
	Practical Considerations

	IR Correctness and Analysis Termination
	Effects of inaccurate function boundaries and spurious functions
	Results
	Related Work

	Conclusion
	Bibliography

