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Reverse engineering binary executable code is gaining more interest in the research

community. Agencies as diverse as anti-virus companies, security consultants, code

forensics consultants, law-enforcement agencies and national security agencies routinely

try to understand binary code. Engineers also often need to debug, optimize or instrument

binary code during the software development process.

In this dissertation, we present novel techniques to extendthe capabilities of ex-

isting binary analysis and rewriting tools to be more scalable, handling a larger set of

stripped binaries with better and more understandable outputs as well as ensuring cor-

rect recovered intermediate representation (IR) from binaries such that any modified or

rewritten binaries compiled from this representation workcorrectly.

In the first part of the dissertation, we present techniques to recover accurate func-

tion boundaries from stripped executables. Our techniquesas opposed to current tech-

niques ensure complete live executable code coverage, highquality recovered code, and

functional behavior for most application binaries. We use static and dynamic based tech-

niques to remove as much spurious code as possible in a safe manner that does not hurt



code coverage or IR correctness. Next, we present static techniques to recover correct

prototypes for the recovered functions. The recovered prototypes include the complete

set of all arguments and returns. Our techniques ensure correct behavior of rewritten

binaries for both internal and external functions.

Finally, we present scalable and precise techniques to recover local variables for

every function obtained as well as global and heap variables. Different techniques are

represented for floating point stack allocated variables and memory allocated variables.

Data type recovery techniques are presented to declare meaningful data types for the de-

tected variables. Our data type recovery techniques can recover integer, pointer, structural

and recursive data types. We discuss the correctness of the recovered representation.

The evaluation of all the methods proposed is conducted on SecondWrite, a binary

rewriting framework developed by our research group. An important metric in the evalu-

ation is to be able to recompile the IR with the recovered information and run it producing

the same answer that is produced when running the original executable. Another metric

is the analysis time. Some other metrics are proposed to measure the quality of the IR

with respect to the IR with source code information available.
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Chapter 1: Introduction

There has been tremendous amount of ongoing work on program analysis and un-

derstanding on the source code level. Many tools as well as research efforts have taken

place to analyze source code programs for variety of reasons. Many advanced tools ex-

ist for source level bug detection, vulnerabilities detection, model checking, verification,

memory analysis, debugging and code optimization.

In practice, often times users need to apply the above analyses on the executable

level instead of applying them on the source code level. There are good reasons for this.

Most of the applications used on a daily basis are IP protected with no access to the

source code. In other cases, applications utilize third party software and components with

no access to their source code. Sometimes, the software thatneeds to be analyzed is a

legacy software system with no available source code. In allthese scenarios and others,

users are left only with executables to analyze.

Even if the source code of software applications is available, it is usually not a good

representative of what actually happens during the binary execution. There is a well-

known phenomenon called:What You See Is Not What You Execute (WYSINWYX)[7].

Compilers translating source code into binaries often do modifications on the source code

by introducing new variables, defining a memory layout for the program and doing whole
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program transformations. These changes can cause some vulnerabilities not existing in

source code to start appearing in binary executables. In fact, researchers started realizing

that some compiler optimizations might not be safe and mightcause security breaches to

come up in the optimized code [72].

Sometimes, the binaries do not represent source code because of modifications that

happen after the compilation process took place. For example, dynamic instrumentation

might be inserted into the binary after being compiled to monitor certain program behav-

ior. Another example is bad code injection and malware.

Even if all of the above scenarios do not happen, source code analysis might be

difficult. One reason is because of having a code base writtenin more than one source

language each with different syntax and semantics.

Reverse engineering executable code is also becoming extremely important in the

cyber security domain. Recently, the rate of cyber-attacks on vulnerable application code

increased significantly. In 2010, the federal government observed an average of 15,000

attacks per day [27]. Most of the attacks were utilizing vulnerabilities in application code.

Because of all the above, analyzing executable code is very essential and it is com-

monplace today. Agencies as diverse as anti-virus companies, security consultants, code

forensics consultants, law-enforcement agencies and national security agencies routinely

try to understand binary code.

Unfortunately, current tools and research for handling executables is not going at

the same pace as the development of source level analysis tools. The executable analysis

is usually harder because of the limited amount of information available in executables

compared to source code. This also results in less precise results of the same analyses
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done on binary executables compared to source code.

In this dissertation, we aim at converting executables to anintermediate representa-

tion (IR) similar to the IR obtained from source code. By doing this, we directly enable

the reuse of all current advanced source level tools for analyzing executables without the

need to develop new custom tools for this purpose.

To make the maximum benefit of the source level analyses running on the IR re-

covered from executables, we identify four main propertiesthat should exist in any tool

recovering IR from executables. Our goal in this dissertation is to have all the four prop-

erties in our system. Unfortunately, current existing executable level tools converting

binaries to IR cannot achieve all combined four properties.The four properties are:

1. Functionality The recovered IR should fully represent all aspects of the input bi-

nary. For this to happen, we define the functionality property of the IR to be the

ability to recompile the IR producing a rewritten binary that resembles the input

binary for all input data sets. This is a strong guarantee of IR correctness. This also

makes it easier for applications like binary debugging where users can update the

IR with print statements, addition, or removal of code and examining the effect of

that on the binary behavior. In general, code updates are possible only if the IR is

functional. Any kind of compiler passes and static/dynamicor even hybrid analy-

ses can run on the recovered IR and the results of such passes are guaranteed to be

correct if the IR is functional.

2. Quality The IR should be of a high quality. We will use the term high-level IR to

refer to the IR quality as well during the course of this dissertation. The IR quality
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here means that the IR contains the same kind of information that are available in

source code. For example, the IR should have functions, function APIs, variables

and data types. The more features the IR has, the higher quality the IR is. This

enables better code understanding by users as well as betteroutputs from source

code compiler passes that might be run on the recovered IR.

3. PrecisionThe recovered information about the binary that is represented in the IR

should be precise. The conversion to IR process should recover the same informa-

tion that is presented in the original source code of the binary without missing some

information or adding extra too many false positives. As an example, if a function

takes only two arguments in the original binary, we should recover only two argu-

ments. If we recover less than that, we might fall into a functionality issue since

the recovered IR might not work in all cases. On the other side, if we recover six

arguments, the IR will probably be working fine, but we will have a less precise IR

that is harder to analyze and understand. The added false positive arguments might

introduce fake side effects and data flow edges that might make any analysis run-

ning on the IR less accurate and effective. Users will have less readable recovered

code from the IR.

4. Analysis Scalability The analyses used to recover information from the IR should

be scalable. The system should support arbitrary large binaries without taking too

long time to analyze those. This makes the system practical to use.

Achieving all of the above four goals is very hard if we want tohandle any ex-

ecutable in the world. In this dissertation, we show that formost of the compiled ap-
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plication code that is used now, all these properties combined can be achieved. We do

this by laying out specific assumptions and developing techniques that can always work

for binaries satisfying these assumptions. These assumptions are usually valid in most

application code as we show in the dissertation.

This dissertation discusses various techniques that are necessary for any system re-

covering IR from binaries. We discuss the recovery of functions, function boundaries,

function APIs, variables, and data types from executables.This dissertation is not claim-

ing to discuss all aspects of the IR recovery process. There are some aspects and chal-

lenges that this dissertation does not present solutions toand are presented in other dis-

sertations and published work.

In the next few sections we describe briefly the challenges while recovering these

specific IR aspects mentioned above and present why the stateof the art techniques before

ours fail to achieve all the four properties stated above. Wedo not present a complete

literature review in this chapter. Every chapter will be followed by a detailed literature

review related to the topic of that chapter.

1.1 Functions Recovery

Current binary analysis and rewriting tools cannot combine the four properties de-

scribed above while recovering functions from stripped executables (those without any

relocation, symbolic or debugging information). This is because of the challenging trade-

offs the analyses face.

In binaries, distinguishing code from data buried inside the code section, such as
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literal constants, jump tables, and literal tables, is difficult. Techniques such as recursive

traversal [62, 67] that track direct control flow paths from the binary entry point fail to

detect all possible code sequences in a binary because of theexistence of indirect control

flow paths.

Other techniques like [31] [30] [55] heuristically detect only some code entry points

by observing certain function prologue patterns which leads to non-guaranteed code cov-

erage. We call such techniquesbest effort techniques.

Speculative disassemblywas proposed to achieve completeness by disassembling

all portions of the binary including portions that could be either code or data. The cost of

that is sacrificingaccuracyby having extra recovered spurious code. The outputfunction-

ality is also sacrificed since disassembling all possible code mayresult in having conflict-

ing code sequences. In addition, the existence of many spurious functions has two more

negative consequences: (i) it is difficult to manually comprehend a spurious code; and (ii)

it makes code analysis inaccurate since spurious code introduces non-existent dataflow

relations and side effects.

In chapter 2, we present techniques that can recover accurate function boundaries

from executables with guaranteed code coverage. We presentnovel techniques that iden-

tify likely spurious functions not only based on their prologue patterns ‘like most of the

related work’, but also based on what these functions do in practice ‘their semantics’.

We also present dynamic based techniques to further enhancethe spurious code detection

process.

Our function recovery methods are based on speculative disassembly. Instead of

disassembling the executable from every possible byte offset, we only disassemble from
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code addresses that appear as constants in any of the executable segments. This will cover

all functions and all executable code in the binary providedthat the binary does not use

computed addresses. We keep all conflicting code around, anduse function inlining to

merge split functions together. We identify likely spurious functions by examining the

semantics of such functions and identifying invalid behaviors like accessing out of bound

memory or using conditional flags in an inconsistent way. Such identified functions are

hidden from the user, but they are included in the rewritten binaries for safety since they

cannot be proven not to execute at run time.

Our techniques prove to be very effective in practice. We areable to identify func-

tion boundaries with almost 100% detection accuracy. We detect almost 96% of the spu-

rious functions in the IR. We never miss any actual function that can be executed in the

binary during our recovery process. None of our identified spurious functions gets exe-

cuted at run time which proves that our techniques are robustand reliable.

1.2 Function API Recovery

Recovering function APIs usually mean recovering argumentsand returns as well

as the function calling convention. In this dissertation wefocus on recovering register

allocated arguments and returns of our recovered functions. We also describe how exist-

ing techniques to recover memory arguments and returns are affected by having possible

inaccurate function boundaries from our function boundaries recovery techniques.

The first challenge behind identifying accurate and yet complete register arguments

information is that callee-saves registers should not be counted as being arguments or
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returns only because they have been saved and then restored back in a function. Stat-

ically tracking which registers are used as callee-saves isnot trivial. Some techniques

identify callee-saves based on dynamic analyses [10]. The problem with such techniques

is that they might miss arguments if the input data set is suchthat these arguments are

not accessed. In this dissertation, we present a static technique that can recover such

callee-saves accurately without missing any of them.

To recover an accurate set of register arguments and returns, we accurately and

completely identify callee-saved registers. We define a callee saved register to be a reg-

ister saved to a certain memory stack offset and then restored back from the same stack

offset. The save operation should dominate the restore operation and the stack memory

location used for the save operation should not be read or written to inside a certain func-

tion. We use a modified version of the value set analysis technique by Balakrishnan and

Reps [5] to accurately track the memory stack.

The second challenge is recovering external function APIs and ensuring their cor-

rect execution while passing all needed arguments. Apart from standard libraries which

have a known prototype, external function prototypes are not known to the static analyzer

and needs special handling. We present a static technique that ensures that for any ex-

ternal function following a known compiler calling convention, all arguments are passed

correctly and the execution of the recompiled IR is correct.We use a trampoline function

that gets executed at run time and passes all needed arguments. This trampoline function

adjusts the memory stack such that it appears to the called external function the same way

it appears in the original input binary.

Finally, having possible inaccurate function boundaries present in the IR makes
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current memory allocated argument recovery techniques notcompletely functional. Such

techniques usually assume there is a return address on top ofthe stack of a function which

is not always true if function boundaries are inaccurate. For example, if a single binary

function is split into two parts in the IR (because of inaccurate boundaries), this makes

the second part of this function in the IR having no return address on top of the stack.

Current published memory allocated arguments recovery techniques have to account for

these situations. We present the necessary changes to thesetechniques to account for the

inaccurate function boundaries problem. The return address is always abstracted in the

recovered stack array in the recovered IR such that this problem is avoided.

1.3 Variables and Data Types Recovery

Current tools recovering variables and data types from executables cannot have all

the combined four propertiesfunctionality, scalability, precisionandquality. Some of

them have very high precision at the cost of no scalability [4]. Others are scalable but

with low precision [31]. Many of the current tools cannot recover functional IR while

recovering variables and data types.

Existing tools recovering variables from executables often miss the special types of

variables like the ones allocated on the x86 floating point stack. Such variables are very

important to recover and will render the IR incomplete if notrecovered. IDA Pro [31]

is the only tool known to us that can recover x86 floating pointvariables in some cases

with some sort of a heuristic that might fail and hence the recovered code is not always

functional.
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In chapter 4 of this dissertation, we present a sound technique to recover all vari-

ables allocated on the floating point stack in x86 architectures. The techniques presented

build a linear system of equations based on the low level operations done on the binary

level to determine the floating point stack height at all program points including program

points located after indirect control transfer instructions whose targets are usually not

known statically.

For memory and register allocated variables, current toolsrecovering such variables

are either imprecise [31] or recover precise information with noscalability. For example,

DIVINE [4], the most precise variable identification tool proposed in the literature spends

two hours while analyzing programs of the order of 55,000 assembly instructions.

Current work on type analysis from binaries has the preciseness problem. Many

type recovery tools cannot track data flow through memory which limits their type recov-

ery capabilities especially for multi-level pointers and recursive data structures. [51] [22]

[68].

Precise type analyses that can detect multi-level pointershave a scalability problem.

TIE [43] is the state of the art type recovery technique from binaries which is very precise,

unfortunately it is built on top of DIVINE [4] which has a well-known scalability issue.

In chapter 5 of this dissertation, we present novel techniques that can recover vari-

ables with data types 352X faster than current techniques with almost the same precision.

The techniques presented are also completely functional. The basic intuition of the tech-

niques presented is to use a non-sound pointer analysis thatis very fast while maintaining

the memory layout of the original binary in the recovered IR to maintain correctness. We

show that a non-sound pointer analysis gives almost the sameprecision as a sound one
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while achieving linear scalability and not sacrificing the output correctness.

1.4 SecondWrite

Figure 1.1 presents an overview of SecondWrite [63], [23], [3]; the executables

analysis and rewriting framework we use to implement the techniques presented in this

dissertation. SecondWrite translates the input x86 binary code to the intermediate format

of the LLVM compiler [46]. The disassembler along with the binary reader translate every

x86 instruction to an equivalent LLVM instruction.
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LLVM IR 

optimizations 
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Figure 1.1: SecondWrite Flow

The disassembler implements the function boundaries recovery techniques pre-

sented in this dissertation. These techniques are essential for the whole system to recover

high-level LLVM IR from stripped executables.

Once the initial LLVM IR is obtained, it is passed to SecondWrite internal passes to
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recover more information about the binary and enhance the quality of the IR. One of these

internal passes is our function APIs recovery techniques. Another internal pass recovers

variables and data types and emit them into the IR. Some other internal passes exist and

not discussed in this dissertation including physical to abstract stack conversion [3], call

translation, call back handlers [63] and others.

The recovered LLVM IR is then fed to the LLVM compiler core. The IR can be

further optimized or analyzed. Finally, the backend of LLVMis used to generate either

an output rewritten binary, or an output C code using the C backend of LLVM. The IR

could be used in tools like Klee [11] to do symbolic executionanalyses.

Without the techniques of this dissertation, SecondWrite cannot work correctly. If

the earlier published techniques to be used (like the techniques present in IDAPro and

other tools), the functionality and quality objectives of our system will be sacrificed. This

is because existing tools like IDA Pro cannot guarantee complete code coverage and re-

cover less precise information.

Our techniques can still be used by any other binary analysisand rewriting frame-

work. They do not need to run on SecondWrite to be effective. The ideas presented in

this dissertation can be applied directly while analyzing any binary (using IDA Pro tool

for example). Our techniques will automatically give the functionality guarantees if ap-

plied. Hex-Rays for example can use our variables and data type recovery techniques

while recovering C code from binaries.
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1.5 Comparison with previous work in the SecondWrite project

The techniques presented in this thesis represent an essential component of Sec-

ondWrite [3, 23, 63]. As we discussed in the previous section,SecondWrite is a binary

analysis and rewriting system that translates the input x86stripped binary code to the high

level intermediate format of the LLVM compiler [46]. The resulting IR can be used in

program analyses and understanding purposes. It can also beused in many other analy-

ses like symbolic analysis, automatic parallelization andsymbolic execution. The LLVM

backend can be used later to compile the resulting IR back into a rewritten binary which

aids applications like binary translation and binary debugging.

SecondWrite uses the techniques described in our previous WCRE paper [63] to

distinguish code from data during binary rewriting. Our previous WCRE paper presents

code translation mechanisms for translating code addresses inside the rewritten binary

and keeps a copy of the original binary segment in the rewritten binary to guarantee

correct data accesses. The WCRE paper describes the binary characterization technique

as a means to find an inclusive set of entry point code addresses inside the binary. The

results presented in the WCRE paper are only related to the overheads of the translation

mechanisms. There is no discussion about obtaining accurate function boundaries and

eliminating spurious functions from the IR. The IR quality and correctness in the presence

of functions that might be of inaccurate boundaries is not discussed in that paper.

The techniques we present in chapter 2 of this thesis completes the picture by show-

ing that binary characterization by itself produces code with large number of spurious

functions (up to 40% of the IR functions are spurious using the methods in the WCRE
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paper). In chapter 2, we show novel techniques that reduces the amount of IR spuri-

ous functions to less than 2%. This is essential for a high quality and readable IR. The

techniques in chapter 2 has been submitted for publication in TOPLAS [25].

In this dissertation, there is no comparison with our previous EuroSys [3] tech-

niques because they are solving a different problem in the system and because the tech-

niques presented in this dissertation are essential for them to run correctly. The techniques

presented in our EuroSys paper [3] transforms the physical stack present in the binary into

an abstract stack array in the IR for every function. It also presents how symbols can be

extracted from the recovered abstract stack. In chapter 3 ofthis dissertation, we relax one

of the assumptions in our EuroSys paper [3] to enable handling spurious functions and

functions with inaccurate boundaries correctly if they areever executed in the rewritten

binary. This relaxation is also part of our TOPLAS submission [25].

The remaining chapters of this dissertation build on the functions identified using

the techniques presented in Chapter 2 to identify source codeartifacts from binaries and

represent them in the recovered IR correctly. The basic recovery of floating point stack

variables with all indirect jumps are resolved, discovering all function arguments, returns,

variables and data types was published in our PLDI 2013 paper[23]. We extended this

work later to include discovering floating point stack variables with unresolved indirect

jumps, rewriting external functions with unknown prototypes correctly, and detecting ad-

vanced data types like recursive data structures. These extensions to the work were sub-

mitted for publication to TOPLAS [24]. There is no previous work in the SecondWrite

project that is concerned with solving these research problems other than our PLDI 2013

paper [23] and our submitted TOPLAS paper [24].
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1.6 Organization of the Dissertation

This dissertation is composed of the following chapters:

• Chapter 2 presents methods to recover functions with accurate boundaries from

executables

• Chapter 3 presents methods to recover register arguments andreturns and hence

function APIs

• Chapter 4 presents methods to recover the floating point stackallocated variables

• Chapter 5 presents our methods to recover memory allocated variables and data

types and

• Chapter 6 concludes the thesis
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Chapter 2: Recovering Functions with Accurate Boundaries

2.1 Introduction

The first step in any binary analysis and rewriting system that recovers IR from

executables is to locate where the code exists and divide thecode into procedures for

higher quality IR.

Executables only have their entry point address visible andknown in the file for-

mat. Other than that, it is up to every tool to analyze the binary and know exactly where

all functions are located. This problem becomes trivial in simple executables where all

control transfer instructions (CTI) like calls and jumps aredirect ones. By direct we mean

their target is known by examining the instruction itself. Indirect control transfers through

registers or memory make the code discovery problem very challenging since an indirect

call or jump can theoretically jump to any arbitrary location in the binary code.

In our work, as we mentioned in the introduction chapter, we want to achieve four

properties in any IR we recover:functionality, quality, accuracyandscalability. For an

IR to be functional, it has to fully represent all code in the binary which means that any

disassembler we use has to have a 100% complete code coverage.

Achieving complete code coverage along with high quality IRand accurate func-

tion boundaries is very hard. The price paid while recovering all possible executable code
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is usually a large number of spurious functions (up to 40% according to the best tech-

nique recovering 100% live executable code by Smithson et al. [63]). We present novel

techniques that reduce the number of spurious functions up to 2% which greatly enhances

the readability and the quality of the recovered IR. Moreover, all our identified spurious

functions are true spurious ones that never execute at run time which shows the strength

of our techniques.

The main contributions achieved by the techniques presented in this chapter are as

follows:

• Accurate Function Boundaries: We present disassembly techniques that can re-

cover function boundaries that are as accurate as what is there in the debugging

information of the input binary (debugging information is only used in testing)

without sacrificing complete code coverage, thus aiding analysis precision and code

readability.

• Pruning Spurious Functions: We present safe and sound hybrid static/dynamic

techniques that can identify and delete spurious functions, aiding analysis precision

and readability.

• Marking Likely Spurious Functions: We also present novel techniques that can

identify functions that are spurious with high probabilitybased on their semantics

and move them to a separate file, thus further aiding human readability. Our results

indicate that none of these functions gets executed in the rewritten binaries. In

other words, for our input binaries compiled from source programs totaling over

one million instructions, we never mis-identified a legitimate function as spurious
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(although the opposite, which is much less harmful, did happen in a few rare cases.)

Our techniques in this chapter represent an essential component of the Second-

Write [3, 23, 63] system we use. The techniques presented in this chapter are imple-

mented as part of the front end component of SecondWrite whichreads the input binary

and translates it into a working IR with accurate function boundaries.

Function information is needed in all our work presented in the following chapters.

The techniques in the following chapters need function information to define function

APIs and declare local variables. In addition, the high-level IR recovery techniques like

the one by Anand et al. [3] need function information to detect memory arguments and

be able to do interprocedural symbolic analysis.

Our techniques can still be used by any other binary analysisand rewriting frame-

work. They do not need to run on SecondWrite to be effective. The ideas presented in this

chapter can be applied directly while disassembling any binary (using IDA Pro tool for

example). They will automatically give the complete code coverage guarantees if applied.

We tested our methods inside SecondWrite on the SPEC 2006 benchmark suite

compiled using two different compilers (GCC and Visual Studio) on two different plat-

forms (Linux and Windows). All rewritten binaries work correctly and give the same

results as the original binaries. We show in the results section of this chapter that the

recovered IR procedures using our techniques are 99% accurate compared to the original

binary procedures. The 1% inaccurate procedures do not sacrifice the IR correctness. We

show detailed results about SecondWrite relevant to this chapter including IR procedures

accuracy and readability metrics, disassembler scalability, and the performance of some
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of our individual heuristics in the overall procedures recovery process.

We recognize that recovering source-level function information is impossible in

many cases.We stress that this is not our target in this chapter. We are trying to recover

the same function information as what is in the debugging information of the input binary

to our system;not in the original source code (we never use, and do not need, debugging

information in our analysis). Source code functions can be significantly changed during

compilation using compiler transformations like functioninlining or CPS transformations

in functional languages compilers. When we refer to the accuracy of the recovered func-

tions in this chapter, we compare what we recover to functionboundaries in the function

symbol table of the original binary (in a control binary withdebug information; the ac-

tual binary we rewrite does not have such a function table). We do not compare with the

original source code.

2.2 Background and Motivating Example

The problem of recovering accurate function information from binaries and ensur-

ing their correctness is challenging. Binaries are composedof code and data segments.

Data can be embedded into the code segment and it is not known what portions of the code

segment might contain this embedded data. This results in non-valid recovered code if

such embedded data is disassembled or rewritten by mistake.Even among the code, since

the targets of indirect calls and branches are generally notknown, the structure of the code

is hard to determine especially with variable length instructions (like in x86) where mul-

tiple overlapping instruction sequences are possible for the same code, depending upon
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which byte we disassemble from.

The first attempt to discover code was recursive traversal disassembly [62, 67], in

which disassembly starts from the entry point of the binary (which is known according

to the binary format). To recover a code portion, there has tobe a direct control flow

path (through direct calls and jumps) from the entry point tothat portion. This leaves

large portions of the binary that we cannot prove is code. As an example, let us assume

the code example in Figure 2.1 is only reachable using indirect calls (through function

pointers). Recursive traversal will not be able to discover any portion of this code.

Improving on that, some best-effort techniques [31,55] addmore entry points to the

recursive traversal by examining known function entry prologue patterns like allocating

stack, initializing the frame pointer or saving registers.The problem with such techniques

is that they cannot guarantee completeness. As shown in Figure 2.1, the code example

does not have any known entry point pattern and hence will notbe discovered by these

best-effort techniques.

 

 
� 0x100 : dd 05 10 43 45 08  fldl 0x8454310 

0x106: dd 05 14 43 45 08  fldl 0x8454314 
0x10b: 83 e8 55           sub  $0x55,%eax 

� 0x10d :       55           push %ebp 
0x10e: d8 c9              fmul %st(1),%st 
0x120: 0f 84 04 00 00 00  je   0x129 
…… 
 
 

 

 

Figure 2.1: Conflicting

CFGs (input)

Func_0x100:  
fldl 0x8454310 
fldl 0x8454314 
sub  $0x55,%eax 
call Func_0x10e  
ret 

Func_0x10d:  
 push %ebp 
 call Func_0x10e  
 ret 
 

Func_0x10e:  
fmul %st(1),%st 
je   BB_0x129 
…… 

 

Figure 2.2: Rules application

output

Func_0x100:  
fldl 0x8454310 
fldl 0x8454314 
sub  $0x55,%eax 
fmul %st(1),%st 
je   BB_0x129 
…… 
ret 

Func_0x10d:  
 push %ebp 

fmul %st(1),%st 
je   BB_0x129 
…… 

 ret 
 

 

Figure 2.3: Improvements

output

Speculative disassembly [33] was proposed to tackle this problem. It assumes that

anything in the code segment can potentially be code. In thiscase, every byte offset can

be a potential entry point. This results in two main problems: 1) Code explosions due to
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many possible assembly listings. In the code example in Figure 2.1 we have 23 different

entry points. Few of them will lead to illegal instructions,but we will still be left with

a large number (up to 23) possible listings of which all but one are spurious. 2) Given

variable-length x86 instructions, some of the possible disassembled listings may conflict

with other listings because of unaligned and variable length instructions. As an example,

The listing starting at 0x100 conflicts with the one startingat 0x10d since 0x10d starts

in the middle of the instruction at 0x10b. Thus both sequences cannot be correct, but we

cannot statically determine which one. Speculative techniques solve these two problems

by removing conflicting code sequences to avoid code explosions. This sacrifices the

complete code coverage as well as the functionality.

Recently, we proposed the⁀binary characterization technique to greatly reduce the

number of entry points (and thus spurious code) [63]. It aimsto compute a super-set of all

possible targets of indirect control transfers in the program. Its intuition is that under the

conditions we will list later, all local control transfer instructions (CTIs) target addresses

have to appear somewhere in the binary. The technique is summarized in section 2.3.

In the example in Figure 2.1, this technique reduces the entry points to only the two

addresses 0x100 and 0x10d.

Binary characterization partially solves the code explosion problem (around 40%

of the code is still spurious, but that is better than the other speculative techniques). In

this chapter, we complete the big picture for the whole system by proposing how we deal

with the problem of having conflicting code sequences and obtaining accurate function

boundaries out of the disassembled listings.

We have five main components to our techniques. They are presented next using an

21



example.

Disassembly We disassemble the binary starting from each binary characterization entry

point as well as from the binary entry point. During this, we keep conflicting code around.

In the example in Figure 2.1 we will create two functions for both binary characterization

addresses 0x100 and 0x10d as shown in Figure 2.2 and solve theconflict by creating a

third function for the fall-through address from both functions (which is address 0x10e

in this case). The fall through appears because both code sequences fall to the same

instruction later. This step achieves complete code coverage while keeping conflicting

code around. It does not solve the function boundaries and functionality problems.

Improving Function Boundaries The first step to solve the function boundaries prob-

lem is to use inlining. After our disassembly, functions exist but they are split into parts

because of the spurious entry points and code conflicts. Inlining merges the splits back

into one function. In this example, we inline the fall-through function into both parent

functions. This guarantees that at least one of the functions will have the correct bound-

aries. The function at the fall-through address (0x10e) canbe deleted in this case as shown

in Figure 2.3. Section 2.4.2 includes guarantees on when it is safe to prune such spurious

functions. This step achieves better function boundaries,but some spurious functions still

exist (which are not safe to remove).

Marking Likely Spurious Functions We identify spurious functions based on their se-

mantics. In this example,Func_0x10d uses the zero flag in a conditional jump without

setting it. Such behavior is unlikely to happen in a valid code since such flags are most

commonly used as local variables. We identifyFunc_0x10d as a potential spurious

function and move it away into a separate file to enhance code readability. The function
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still exists since we cannot prove statically it cannot be called at runtime.

Pruning Spurious Functions Based on Dynamic TechniquesWe present novel tech-

niques to safely prune spurious code based on dynamic information collected from the

execution of the original binaries. For example, if we monitor that the instruction at

0x10b in figure 2.1 is executed at runtime, we can safely delete the function starting at

0x10d since its entry point instruction starts in the middleof the other executed instruc-

tion at 0x10b. This pruning is safe for all data sets, not justthose used in the dynamic

run(s). This is because if a portion of the code segment is found to be code for one input

data set, it must be code for all input data sets. There are other ways of using dynamic

information to have high quality code that we explore in thischapter.

High Level IR Functionality The last problem this chapter addresses is to guarantee

correct behavior of detected functions if ever executed. Inthis particular example, we

make sure that any caller to function 0x10d passes the value of the zero flag to the func-

tion. This is done by modifying the call translator functiondescribed in [63] to have such

arguments. Detailed discussion about this can be found in section 2.7.

2.3 Binary Characterization and Code Coverage

Binary characterization’s intuition was given above; here we formalize it. Binary

characterization scans all the executable segments at every single byte and come up with

a list of all constants that might be potential code addresses. A potential code addressx

satisfies the following condition:Li ≤ x ≤ Ui, whereLi is the lower bound address of

code segmenti andUi is its upper bound address.
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Binary characterization is based on two assumptions which are usually valid in

most application code: 1) Code addresses used in indirect control transfer instructions

(CTIs) are not computed at run time. 2) No self-modifying codeexists in the binary.

The first assumption is valid in all compiled code which is neither position independent

nor obfuscated. The second assumption is a limitation of allstatic executable analysis

techniques. Section 2.10 discusses how these assumptions can be relaxed in our system.

The first assumption does not exclude binaries having indirect jumps with jump

tables embedded in the code or the data segment. These indirect jumps will calculate the

addresses of the jump table entries, not the target addresses themselves. The target code

addresses are still non-computed constants present in the code or the data segment. They

are loaded and then used in the jumps.

The first assumption implies that CTI local target addresses must appear somewhere

in the executable segments. They can either appear as operands to instructions in the code

segments, or initial values of global variables in the data segments.

When we talk about binary code coverage in this dissertation,we refer to covering

instructions that can be executed in any dynamic run of the binary. We call such instruc-

tions thelive code. There are parts of the binary that can never be executed under the

assumptions above which we calldead code. Examples of dead code include functions

that are inserted in the binary and are never reachable usingany kind of control transfer

instructions (either direct or indirect).

We formulate the fact that under the previous assumptions weachieve complete

live code coverage in the next property. We write it as a property to easily refer to it

throughout the dissertation.
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Property 2.1 Let B be the binary characterization list of addresses and letx be a

code address within the executable reachable indirectly. Addressx must appear inB.

Static recursive traversal disassembly starting from every such addressx ∈ B as well

as from any externally visible function address in the binary guarantees the complete

coverage of live binary code.

Proof The first part of the property falls directly from the binary characterization

definition above. To prove the second part of the property, weuse contradiction. Assum-

ing that we start recursive disassembly from every addressx ∈ B as well as from the

binary entry point and from externally visible functions (visible in export address tables

for example) and we still do not achieve complete live code coverage. This implies that

there is some part of the code that is reachable using some sort of control flow and yet

is not covered by static disassembly. This code can be only reachable using direct con-

trol transfers, indirect control transfers from within thebinary or from outside the binary.

We prove each case individually. For code that is reachable from within the binary, if it

is reachable indirectly, then it has to start with a binary characterization address which

means it is covered by the static recursive traversal. If it is reachable directly, then recur-

sive traversal will be able to follow it and hence it is also covered. For externally visible

parts of the code within the binary, in order for them to be reachable by other external bi-

naries, their entry addresses have to be externally visibleto the outside code (for example

in export tables, relocation tables, ... etc.). We already start static disassembly from such

addresses and hence we cover such code as well.

The fact that there is some portion of the binary code that might be dead and hence

not covered by our static disassembler means that we might have cases when our recov-
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ered IR after disassembly is smaller in size than the input binaries. We discuss this more

in the results section and show this detailed effect on all benchmarks.

The two assumptions stated at the start of this section mightseem to limit the ap-

plicability of this work especially in the security domain.This is not right because of two

reasons:

1. These assumptions are only needed if we want a functional rewritten binary and

100% live code coverage. They can be easily relaxed if only binary analysis (but not

rewriting) is to be performed like in many security applications, such as analyzing

malware or discovering vulnerabilities in legitimate binary code. The price paid in

this case is an IR which is not guaranteed to work correctly ifrecompiled.

2. The effect of code obfuscation does not limit the applicability of this work to the

security domain. IDA Pro and Hex-Rays are well-known tools that do not present

special handling to obfuscated binaries and they are still used by many security

analysts to understand binaries. Our tool can be used the same way. As we show

later, we have much higher precision than IDA Pro and other tools. In addition,

existing de-obfuscation approaches such as [40], [42] can be used prior to our tool,

to allow our tool to be used on obfuscated code.

We discuss the issue of how to relax the assumptions further in section 2.10.

2.4 Disassembly Methods

In this section, we describe our custom disassembler that overcomes the prob-

lems described in the previous section. We explain first the basic rules that create non-
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conflicting functions and attain complete code coverage possibly with less accurate func-

tion boundaries, and then we describe our techniques to improve the function boundaries.

2.4.1 Disassembly Rules

While disassembling the binary, a single code addressx is reachable if it is one of

the following: 1) A speculative entry point (like being a binary characterization address).

2) A target of a call. 3) A direct branch target. 4) An indirectbranch target embedded

in a jump table. and 5) A sequential address to a previously disassembled address. We

start the disassembly process from the entry points of the binary as well as from every

speculative entry point. We apply the rules in Figure 2.4 while disassembly.

For direct calls and jumps, we create a new function only in the case of call in-

structions, or in the case of jumps when they cross function boundaries. This latter case is

needed because calls are sometimes implemented by a push of the return address followed

by a jump. Indirect calls will be replaced by a call to the translator function explained

in [63].

Indirect jumps are analyzed using a modified version of the well-known jump table

recovery heuristics by Cifuentes and Emmerik [14]. We modified the heuristics to ensure

that they can run across function boundaries. For simplicity, all recovered addresses from

these heuristics will be initially considered as function entry points and annotated for later

inlining. Even if the heuristics fail, all such addresses would have been recognized using

binary characterization as function entry points. We use the heuristics as hints for better

function boundaries accuracy because jump table targets are usually not function entry
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Instruction Rules 

call x      //Direct call 

x is a constant address 

If x is disassembled as part of function foo 

Split foo at x 

Insert a call to foo_split (starting at x) 

Else   Insert a call to a function starting at x 

call *x   //Indirect call 

x is a register or a 

memory location 

Replace with a call to the general call translator 

jump x      //Direct jump 

x is a constant address 

If x is within the current function OR not disassembled yet 

Create a basic block at x inside current function 

Insert a branch to basic block x 

Else   Let foo = parent (x) 

Split foo at x 

Insert a call to the foo_split (starting at x) 

Annotate foo_split with JUMP_TARGET 

jump *x   //Indirect 

jump 

x is a register or a 

memory location 

Run jump table identification heuristic 

Annotate every target discovered with 

INDIRECT_JUMP_TARGET 

Create a new function for every discovered target address 

Replace with a call to the general call translator 

Other sequentials from 

address x to  address y 

where: 

x: instruction 1 
y: instruction 2 
and y = x + sizeof 
(instruction 1) 

Let foo be the current function, foo = parent (x) 

If y is not disassembled yet 

Disassemble y as part of foo 

Else   If y marks a start of a function bar 

Insert a direct call to bar 

Annotate bar with SEQ_TARGET 

Else if parent (y) = bar, bar != foo 

Split bar at y 

Insert a call to bar_split (starting at y) 

Mark bar_split as a SEQ_TARGET 

Else    //parent(y) = foo 

Create a basic block starting at y 

Insert a direct jump to basic block y 
 

Figure 2.4: Disassembly Rules
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points.

The rule for sequential addresses will create a new functionif the sequential fall-

through address is a function entry point, or if it crosses the boundaries of the current

function. Such functions will be annotated as being sequential.

The disassembly rules in figure 2.4 do not describe when to enda function. We stop

the disassembly process inside a function in three cases: 1)If another function begins. 2)

If there is a one way control transfer instruction (CTI) redirecting control to a different

function (like a jump instruction). 3) If a return instruction is detected. For call instruc-

tions, we keep disassembling the sequential address after the call. This is okay since even

if the call instruction does not return back to the same call site, the disassembled extra

code will never get executed which does not harm functionality.

After finishing this disassembly stage, a complete disassembly of the IR is obtained

and according to property 2.1 it will cover 100 % of the input live binary code. There are

two major problems in the IR after this stage: 1) There will bemany function splits as

shown in the example in figure 2.2. 2) Some functions might mistakenly appear as parts

of other bigger functions if such functions are only reachable using direct jumps (which

is the case for tail calls). The next section describes how todeal with these two problems.

2.4.2 Improving Function Boundaries

In order to do more improvements to the function boundaries,we perform three

main tasks: 1) Use heuristics such as known function prologues and external stubs pattern

matching. 2) Merge indirect branch targets into their parent functions. 3) Merge as many
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splits together as possible.

Even though this section will present some heuristics that give higher quality and

more accurate IR from binaries, this does not sacrifice any correctness of the system.

Whenever our heuristics fail, we still achieve our 100% live code coverage and IR cor-

rectness. We never delete IR code unless it is safe to do so. Wenever delete live IR code.

Even if we have non-accurate function boundaries, our techniques presented in section 2.7

will make sure the flow of variables and arguments still happen to such false functions.

The first thing we do is to recognize known function prologue patterns. In our

implementation, we rely on two main prologue patterns: 1) Initializing the frame pointer

with the value of the stack pointer. 2) Indirect jumps to relocation entries which are used

to form external function stubs in some binaries. Many more techniques and heuristics

can be integrated in this step easily such as existing machine learning techniques for

recovering function entry points [55].

The second improvement we do is related to merging as many splits as possible.

For this, we define anactualfunction as any recovered function having at least one of the

following four properties: 1) It is called directly. 2)It isnon-speculative (reachable from

the executable entry point). 3) It has a well-known functionprologue. 4) Its entry is a

binary characterization address not annotated as being sequential or a jump target. For

every nonactual function, we search all the callers up the call graph until wefind a set

of actual function parents. We then inline the nonactual function into all its parents. To

avoid code size explosions, we set a limit on the number of inlines per IR function; we

call this limit the inlining threshold.

Algorithm 1 shows how anactual function can be identified as well as parents for

30



Algorithm 1 isActualFunction algorithm - detecting actual functions and parents of non-

functions
Input: x : an address of a suspect functionfunc x in the IR

Input: analyzed: a set of already analyzed caller addresses (for handling recursion)

Output: isActualFunction: false ifx is not considered a function entry point

Output: parents: a set of all possible parent functions to the basic block starting atx

1: if x ∈ analyzedthen

2: return withisActualFunciton= false

3: end if

4: SetisEntryIF (x is the entry point function)

5: SetisDirectlyCalledIF (x is reachable using at least one direct call)

6: SetNonSpeculativeIF (x exists in the function symbol table of the binary)

7: SetIsBinCharAddrIF (x is a binary characterization address)

8: SetIsJumpAddrIF (function atx is marked as JUMPTARGET)

9: SetIsSeqAddrIF (function atx is marked as SEQTARGET)

10: SetIsKnownPrologueIF (function has a known prologue pattern)

11: if (IsKnownPrologue OR isEntry OR isDirectlyCalled OR NonSpeculative

OR (IsBinCharAddr AND NOT(IsJumpTable) AND NOT(IsSeqAddr) AND

NOT(IsJumpAddr)) ) then

12: return withisActualFunciton= true

13: end if
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14: insertx into analyzedlist

15: Let C be the set of all functions callingfunc x in the IR

16: for all parentn∈ C do

17: (callerIsFunction, callerParents) = isActualFunction( AddressOf(parentn), an-

alyzed)

18: insert callerParents into parents

19: if callerIsFunctionthen

20: insert AddressOf(parentn) into parents

21: end if

22: end for

23: return withisActualFunciton= false

non-actual functions. Lines 4-13 check foractual function attributes described above. If

the function is non-actual, lines 16-22 traverse the call graph up (from callees to callers)

and gets allactualparent functions.

There are many reasons why algorithm 1 can return more than one parent function

for a certain input address. One reason is CFG conflicts. As we have already seen in the

code example in figure 2.2, the function starting at 0x10e will not be considered an actual

function and it will have two parents. Ideally, a single address should be part of only one

function, but because of CFG conflicts and splits, we might endup having many parent

functions.

It is important to notice that algorithm 1 is a heuristic which means it is not guar-

anteed to give accurate information. The results section quantifies how often this algo-
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rithm is accurate. The algorithm gives accurate information in most cases since suspect

functions that are only reachable using direct jumps or as sequential addresses to other

instructions are usually non-functions. The reasons falsepositives might happen where

non-functions are considered functions by mistake are:

• If the jump table heuristic fails to identify some indirect branch addresses. These

addresses will be considered function entry points.

• If a binary characterization address appears in the middle of a dead function which

is not reachable in any run of the code. This kind of address will be considered a

function.

In some other rare cases, algorithm 1 might give false negatives where it tells that an

actual function in the binary is not a function and is part of another bigger function. This

only happens because of tail calls which use direct jump instructions. If some function

is only reachable using tail calls, and is not having any known function prologue, then

algorithm 1 will mistakenly consider it as part of all parents (up to the constant threshold).

The results show that this happens in less than 1% of the time.

After merging functions with their parents, some IR functions can be safely deleted.

The following property states the conditions under which this can happen and proves that

the IR will still be complete after such a code cleanup.

Property 2.2 Let B be the binary characterization address list. For every IR func-

tion foo starting at addressx in the original binary wherex is not externally visible in

the original binary, iffoo has been inlined with all parents, andx 6∈ B, thenfoo can be

safely removed from the IR.
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Proof Functionfoo is either reachable using a direct call/jump, or through an

indirect call/jump. For direct calls and jumps,foo has already been inlined into all the

parents, which means there is no more direct calls/jumps tofoo. For indirect calls and

jumps, suppose addressx is reachable using indirect calls and jumps, then accordingto

property 2.1, it has to appear in the binary characterization list B which is not the case.

For calls from outside the binary,x has to be externally visible in the original binary

which is not the case.

To illustrate the previous rule, figure 2.3 shows the code example in figure 2.1 after

merging and deleting the function at 0x10e.

2.5 Marking Likely Spurious Code

In this section, we discuss semantic based techniques to identify likely spurious

functions. The recovered functions from the previous techniques should do something

meaningful. If they are doing something illogical, then probably they are not actual func-

tions. We partition the recovered set of functions in the executable from the previous

techniques into two sets according to theirexecution probability. 1) The set of functions

that are unlikely to be executed at run time. We call them spurious functions. 2) All the

other functions which are likely to be executed. Identified spurious functions are inserted

in a separate file which the user can ignore reading. Our techniques will aim to minimize

the percentage of spurious functions present in the main IR recovery file.

It is important to mention that the techniques described in this section are heuristics

aiming to optimize the code for readability. We do not removethe identified spurious
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functions from the IR and they can still be executed (less likely). We discuss how to

maintain correct execution of such functions in section 2.7. As we show in the results

section, these heuristics prove to be very effective in reducing the spurious functions in

the main IR recovery file down to 2% of all IR functions presentin that file. None of the

identified likely spurious functions using these heuristics executes in all of the tests we

have done.

Even if our heuristics fail in identifying spurious code, oridentifies valid code as

being spurious, this does not impact the correctness of the recovered code by any means.

We still keep this code around, and make sure the data flows correctly to this code if

ever executed. The heuristics are used for better IR qualityfor manual analysis and code

readability and do not impact the correctness and the code coverage by any means. The

user may decide to delete the spurious file which automatically enhances the precision

of any automated analyses running on the IR especially if theIR spurious functions have

side effects (which is usually the case). In all our expirements, we never monitored any

of the identified spurious functions got executed at run timewhich gives users of our tool

more confidence to delete the spurious file.

2.5.1 Inlined Functions

In the last section, we mention that we inline allnon-actualfunctions into their

parents (if parents exist) up to a certain inlining threshold. Some of thesenon-actual

functions get removed using property (2.2) above.

For the non-actual functions that did not get removed using property (2.2), if they
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got inlined to all the parents without hitting the inlining threshold, we mark such functions

as being spurious. The reason behind this is that since they are already inlined to all

parents, it is unlikely they will be executed as stand alone functions. In most cases,

such inlined functions will get called (or branched to) fromtheir parents. The only case

they might get called as stand alone functions is when such inlined functions are actual

functions in the input binary that are only called indirectly. This is very unlikely as we

show later in our expirements.

Such non-removed non-actual inlined functions are usuallysplit parts of bigger

functions because of the existence of binary characterization address in the middle of

their actual parent functions.

2.5.2 Identifying Actual Parent Function

In most binaries, a certain code region is usually part of only one function. We use

this intuition to mark more spurious functions as follows.

Many of our inlined functions mentioned above have more thanone parent function

because of code conflicts. Algorithm 1 returns a set of parentfunctions for a specific

inlined function. Only one of them is the correct parent and all the others are spurious.

We examine all parent functions and check how many properties for actual func-

tions they have. Usually we find that only one function has higher properties than the

others (for example, in most of our experiments, one parent only would have a known

prologue pattern). If we have only one parent function having a higher number of func-

tion properties, we mark it as non-spurious and mark all the others as being spurious.
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Properties for actual functions are checked in algorithm 1 (lines 4-13). We have different

weights for each property. For example, the known prologue pattern is a stronger indica-

tor than being a directly called function for example (sincedirectly called functions might

be called from spurious ones).

2.5.3 Memory Analysis

This readability optimization examines the operations done on the global memory

as well as the memory stack. It moves a function to the spurious file if any of the following

is true: 1) A memory access to a constant address not within the executable segments

and not to a memory-mapped I/O location is detected in the function. 2) Very large

number of memory arguments are passed to the function. This is tunable by the user.

3) A function accesses stack variables that are never detected to be allocated. 4) The

function is accessing the memory stack using the frame pointer without initializing it

first. (The frame pointer is usually a callee saved register). 5) The code is accessing the

return address. Given that we currently do not rewrite position independent code (PIC),

it is very unlikely that a function will access its return address. Handling PIC code is a

future work as elaborated in section 2.10.

2.5.4 ISA Analysis

This readability optimization detects the binary instruction sequences that are less

likely to be executed and move their parent functions into the spurious file. One optimiza-

tion we do is that we move functions having instructions thataccess I/O ports –like x86
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instructionsin andout to the spurious files. We also move code that is doing software

interrupts into the spurious file. These kinds of instructions and behaviors are not com-

mon in application code and more common in kernel code and drivers. User has a choice

to turn this optimization off when rewriting kernel code anddevice drivers.

Another readability optimization moves functions that usesynchronization primi-

tives from the main file into the spurious file only if the binary is single threaded. To

detect that, we assume that the binary has to do some library call(s) to create or manip-

ulate threads. To determine that, we examine the dynamic relocation table of the binary

looking for any known multithreaded library such that pthreads, OpenMP and MPI.

2.5.5 Empty Functions Detection

We let the LLVM optimizer run on the recovered functions and then detect if any of

the recovered functions becomes empty without any code. This is usually an indication

that the function is really not doing anything useful and have no side effects. Still as per

property (2.2) such functions are not safe to remove, so we keep them but in the spurious

file.

2.5.6 Conditional Handling

This readability optimization relies on the common practice in binaries where con-

ditional flags are usually set and used in one single function. We are not aware of any

calling convention that sets a conditional flag in a function, and then uses it in another

function. In some rare cases, some compiler intrinsics emulating some floating point be-
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haviors return conditional flags. If this ever happens, the techniques presented later in

section 2.7 will guarantee the correctness of the rewrittenbinary.

Every function is analyzed with respect to all definitions and uses of conditional

flags. A function can be moved to the spurious file if it has a useof a conditional flag

without any definition. As an example, figure 2.3 shows the functions recovered from the

code in figure 2.1. In functionFunc_0x10d, the zero flag is used without being defined.

We can move this function to the set of likely spurious functions since it is highly probable

it is not an actual function.

2.6 Static Function Identification Based on Dynamic Information

In this section, we discuss novel dynamically assisted static techniques that can be

used to assist the previously discussed static techniques in pruning out more spurious

code in a safe manner. During the dynamic run of the binary, weonly measure the char-

acteristics of the binary, but do not modify it. The collected dynamic information is then

provided as feedback to a subsequent static analysis, thereby allowing the static analysis

to improve. Even though the dynamic information is collected on particular data sets, the

subsequent static methods we present are correct for all data sets, not just the ones seen.

The techniques presented here are optional and are not necessary for the whole system

to work. They prove to be effective in practice in reducing the amount of spurious code,

reducing the total IR size for the spurious code, and making the static disassembly run

faster.

This section is divided into the following parts: first we present the exact problem
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we are solving including a big picture of the dynamic component of our system with its

inputs and outputs, then we proceed to discuss the technicaldetails of how we imple-

ment this static analyses that use the collected dynamic information. Then we discuss the

correctness of the dynamically assisted analyses in the sense that the IR is still complete

regardless of the fact that dynamic information used might not be complete. Finally, we

discuss how dynamic information from different runs can be unified in our framework.

2.6.1 Disassembler based on dynamic information - The big picture

In the previous sections, we show some techniques and heuristics that can remove

some spurious functions altogether, or at least hide them from users if they are likely not

to be executed. These techniques were based on static analyses only.

In this section, we extend the effectiveness of our previoustechniques by letting

them use some dynamic information collected from the input binary’s execution. We let

the input binary run for some input data set, then collect executed instruction traces and

other information about locations and targets of control transfer instructions. We then use

this information to safely remove spurious functions from the IR altogether.

The main challenge in the techniques presented in this section is that whatever

information we collect from a certain binary’s execution with a specific input data set

must be valid for all possible input data sets to the binary. Byother means, we have to

prove that a function that we remove from the IR based on some dynamic information is

safe to remove for any input data set to the binary. Otherwise, the techniques will not be

safe and sound.

40



Input Binary 

Bin. Char. 

Addresses 

Pruned Bin. 

Char. Addrs. 

Pot. Bin. 

Char. Addrs. 

 
Dynamic Pruning 

Component 
Static Disassembler 

Static Binary 

Characterizer 

Figure 2.5: The disassembler with the dynamically assistedcomponent inserted

As shown in figure 2.5, the dynamic component of the disassembler exists in the

front end of the system and is used before the static disassembler component. First,

the binary characterizer reads the binary and identifies a list of binary characterization

addresses that are considered entry points to functions in our system. Instead of feeding

this directly to the static disassembler (that is discussedin the previous sections), we feed

that to our dynamic component which prunes out some of these addresses. The dynamic

component produces a list of pruned binary characterization addresses as well as a list of

potential binary characterization addresses. The static disassembler uses both to create

the IR functions as we show in the next section.

The dynamic component of the system has indirect effects on the whole disassem-

bly process. Since it reduces the amount of IR to be analyzed,the static disassembly time

is reduced. The IR size is also reduced because of the same reason. We show detailed

results related to these effects later in the results section.

2.6.2 Function Pruning using Dynamic Information

The dynamic information used in the techniques presented inthis section are used to

prune spurious functions by eliminating their starting addresses from being considered as
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valid entry points. We prune binary characterization addresses and hence achieve higher

quality IR with less spurious code. We do not create spuriousfunctions in the first place

which is different from the previous static disassembly techniques which create functions

and then prune them.

There are three main techniques we use to achieve this entry-points pruning. The

first technique removes binary characterization addressesthat conflict with other executed

addresses. Recall that binary characterization described earlier in section 2.3 produces a

superset of all possible function entry points. It does so bycollecting all constant code

addresses in all code and data segments inside the binary.

The second technique prunes out binary characterization addresses that are ob-

served to be reachable only directly in the execution. The third technique relies on ex-

amining the stack memory at function entry points. All the techniques are presented next

and their results are unified to produce the final binary characterization list of addresses

that is supplied to the static disassembler.

2.6.2.1 Pruning conflicting addresses

In order to produce the list of pruned binary characterization addresses, we run the

input binary once. We collect all instruction addresses that have been executed along with

their length. We remove an address from the binary characterization list of addresses if

it starts in the middle of an already executed instruction. The assumption here is that the

binary does not contain overlapped instructions which are valid instructions starting in

the middle of other valid instructions.
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In a more formal way the following property clarifies when it is safe to remove an

addressx from the list of binary characterization addresses.

Property 2.3: let T be a list of pairs(i, l) wherei represents the starting address

of an executed instruction,l represents the corresponding instruction length. A binary

characterization addressx is an invalid address and can be pruned out if the following is

true:

∃(i, l) ∈ T, x = i+ n, n ∈ N, 0 < n < l (2.1)

2.6.2.2 Pruning directly reachable addresses

The binary characterization list of addresses should contain the code addresses that

are only reachable indirectly. If a certain code address is only reachable using direct

control transfers, then it can be safely removed from the binary characterization list of

addresses since recursive traversal can follow the direct control transfer to that function.

If a function is reachable using both direct and indirect control transfers, it might not

always be safe to remove such function from the binary characterization list of addresses.

To see why, consider the code example shown in figure 2.6. In this code example, function

foo is reachable indirectly frommain, and they reachable directly fromfoo itself (as a

recursive call). If the address offoo is removed from the binary characterization list of

addresses, the recursive traversal will not reach out tofoo starting frommain and hence

it is not safe to remove such address.

For this pruning, we collect all indirectly reachable addresses from the execution
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main () { 

 … 

call *eax  //indirect call that targets foo at runtime 

 … 

} 

foo () { 

 … 

 call  foo  //Direct call to foo 

 … 

} 

Figure 2.6: Code example illustrating pruning directly reachable addresses

trace. These addresses include targets of indirect calls and indirect jumps. All such

addresses are populated in a set of addresses calledIT (indirect targets).

To prune a binary characterization address, we notice if it is only reachable us-

ing direct control transfers. If the address is contained inIT , then it cannot be pruned.

Otherwise, it can be pruned if executed. We formalize this inthe following property.

Property 2.4: Let IT be the set of addresses that are reachable indirectly duringa

certain binary execution. An addressx can be removed from the binary characterization

address list if the instruction atx was executed andx /∈ IT .

To prove this property, we state the following property and then use it to prove

property 2.4.

Property 2.5: Static recursive traversal starting from binary characterization entry

points after removing all addresses that are only reachabledirectly will always cover all

instructions that got executed while collecting the corresponding dynamic trace.

Proof: The execution trace is composed of some direct and indirect CTIs. For

direct CTIs, static recursive traversal can follow them trivially. For indirect CTIs, their

targets will never be pruned and hence they will still exist in the binary characterization
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addresses and will be followed because of that.

Proof of property 2.4: By contradiction: assume it is not safe to prune an address

x that is executed during runtime and is not observed to be an indirect CTI target. This

means that all code starting at instructionx will not be covered by recursive traversal in

this case. This contradicts property 2.5 above since at least that execution trace will be

covered using recursive traversal.

2.6.2.3 Pruning jump table target addresses

From the discussion in section 2.3, binary characterization addresses are either in-

direct function call targets, or indirect branch targets. Indirect call targets are always

considered function entry points. Some indirect branch targets are also considered func-

tion entry points (like tail calls), but many of them are justcase statement entry points

represented as jump tables in the binaries.

We use the dynamic component to differentiate between indirect jump targets that

are function entry points and the other non-function entry points. The intuition here is

that for instruction set architectures where the return address is memory allocated (like

the x86 architecture we currently support), the return address has to be stored in a specific

memory location known to a function at its entry point such that the function can return

back to some call site. This is only valid for non-obfuscatedbinaries which follow any

compilation model. Obfuscated binaries in which return addresses are calculated and

pushed on the stack at any arbitrary program point are not currently completely supported.

We discuss later in section 2.10 how they can be supported using our framework.
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We build a stackS of return addresses at the run time of the original binary by

monitoring call instructions and what addresses they push on the memory stack. We also

monitor return instructions and what addresses they pop from the memory stack. At every

branch target, we monitor the stack pointer value before executing the first instruction at

the branch target and check if it contains the last-insertedreturn address on the stackS

(i.e. TOP)(S)). If the value at the stack pointer is not equal toTOP(S), then we insert this

address into setP which represents addresses that are not function entry points according

to our assumptions. This set of addressesP is the set of potential binary characterization

addresses shown in figure 2.5. These are usually not functionaddresses but rather jump

table target addresses that are reachable indirectly.

Given that the initial set of binary characterization addresses isC, we calculate the

setC ′ = C − P and start static disassembly from every address inC ′. C ′ represents the

set of binary characterization addresses that may be function entry points.

If we only disassemble from every address inC ′, we cannot have complete code

coverage. To see why, consider thatP contains all executed indirect jump table targets

(representing case statements in the original source code). Such jump table targets will

not have a valid return address on top of the stack since they are not function entry points.

Yet they are removed from the binary characterization address list. If such addresses are

only reachable indirectly, they will never get disassembled statically in this case. We

usually identify such addresses using jump table heuristics when possible.

To solve the above problem, we finish all static disassembly starting from the ad-

dresses inC ′. After all is done, we start the static disassembly again from any address

x that is a binary characterization address and was monitoredas being executed with no
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valid return address on top of the stack at its entry only ifx has never been disassem-

bled. This means that we start static disassembly again fromany entry point addressx

satisfying the following three conditions:

x ∈ C (2.2a)

x ∈ P (2.2b)

x was never disassembled statically in the first round of static disassembly (2.2c)

For every such addressx satisfying the previous conditions, it can be determined

which function this addressx belongs to by monitoring the function from which the jump

originated. Addressx can be then disassembled and inserted into that function in the IR.

We clarify here that the jump table targets pruning technique presented in this sec-

tion only works for instruction set architectures having a memory allocated return address.

The x86 architecture is one example of such an architecture where a function is called us-

ing thecall instruction which pushes the return address on top of the stack. The return is

done through theret instruction which pops the return address from the memory stack.

Other instruction set architectures like MIPS and ARM have a register-allocated return

address that is accessible through regular instructions like branch and link and regular

moves. The advanced pruning technique presented here is notcurrently supported for

such architectures and should be turned off.
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2.6.3 The dynamically assisted analyses code coverage guarantees

In this section, we discuss why the techniques presented earlier are sound and safe

even though it might be coming from a limited input data set.

The first technique represented by property 2.3 excludes addresses that are in the

middle of some actual valid instruction that got executed. It is evident that if the bi-

nary does not contain overlapping instructions, instructions starting in the middle of valid

executed instructions cannot be valid.

The second technique represented by property 2.4 removes a binary characterization

address if it is executed but is never monitored to be a targetof an indirect control transfer

instruction (CTI). This means that a normal recursive traversal is enough to reach out to

that function and it is not necessary to include its address in the binary characterization

list of addresses.

In the third technique when we remove jump table target addresses from the binary

characterization list of addresses, we already add back anyjump table target address that

was never disassembled during the static run after pruning.Hence, we will never miss

any parts of the code and still guarantee complete code coverage in this case.

2.6.4 Unification of dynamic information

In this section we discuss how we can unify information from multiple input binary

runs with different input data sets. We present unification rules and discuss why they are

correct.

The three techniques presented in the previous sections canbe all applied one after
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the other to produce a final binary characterization list of addresses that is given as an

input to the static disassembly. There are no restrictions on which order they are applied

or which ones can be combined together. The final pruned list of binary characterization

addresses is the one shown in figure 2.5. The potential binarycharacterization addresses

shown in the same figure represent the jump table target addresses detected using the third

technique above (represented by the setP ).

For the first technique represented in property 2.3, the unification rule is simply

the union of allx accross all dynamic runs satisfying equation 2.1. This is because such

addresses are always false and this fact is not dependent on any input set.

For the second technique represented in property 2.4, the same property can be

applied to dynamic information collected from different executions if all disassembled

instructions are unioned and allIT sets are unioned as well. This can be verified by

following the proof of the property in the previous section while applying the unification

rules presented here.

For the third technique, if we have multiple runs with multipleP sets (which repre-

sent addresses of jump table targets that are non functions), we do a simple set union and

apply the same technique. This is true under the assumption that in any execution of the

binary, a function entry has to have a return address on top ofits stack. As we mentioned

before, this assumption is valid in all instruction set architectures (ISA) having memory

allocated return addresses and in non-obfuscated binaries.
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2.7 High Level IR Functionality

In this section, we go over some of the aspects of high level IRrecovery and binary

rewriting techniques used in SecondWrite and not discussed later in this dissertation and

present the necessary modifications –if required– to support rewriting spurious functions

correctly as well. The high level IR aspects we review in thissection include call trans-

lation and conditionals. We present these below. Effects ofhaving inaccurate function

boundaries and spurious functions on other IR recovery aspects discussed later in this

dissertation like identifying correct register arguments, memory arguments, variables and

data types will be presented in the next few chapters.

2.7.1 Call Translation

In our previous work as well as this work, we assume there exists a translator func-

tion that is inserted at every indirect call and branch to redirect the execution at run time

to the correct IR function. The translator function is a statically inserted function with a

gigantic if statement that checks for the value of the targetaddress and calls the corre-

sponding function. The details of the translation mechanisms is discussed in our previous

WCRE work [63].

Our previously published call translation mechanism will still work correctly for

the IR with spurious code only if the spurious functions are added as extra entries in the

translator table. This ensures correct control flow redirection in the rewritten binaries

from the indirect call and branch sites to IR functions.
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2.7.2 Conditional Handling

The conditionals are presented in the IR as variables that get assigned at condi-

tional generation instructions (like arithmetic operations for example), and then get used

at conditional use instructions (like conditional branches).

Splitting functions will cause some conditional flags to be defined in one function

and used in another one. To guarantee the correctness of conditional flag uses, we iterate

over all the functions in the IR and check if there is a use of a flag without a dominating

definition. If there exists a functionfoo that satisfies this condition, we do the following

three steps: 1) At every direct call/jump tofoo from within the IR, we pass all the used

flag values as extra arguments tofoo. 2) If foo can be called indirectly (its address is a

binary characterization address as stated in property (2.1)), then at every indirect call and

indirect branch site in the IR, we pass all the used flag values as extra arguments to the

translator function and hence tofoo. 3) foo as well as the translator function have to

return the latest version of the modified flags back to all the call sites offoo and the call

translator.

The above three steps will guarantee the data flow of conditional flags between

definition points and use points across function boundariesin all cases.

2.8 Results

This section discusses all the experiments done to test the methods described in this

chapter and confirm their validity and effectiveness compared to the related work in the

field.

51



Work 
100% 

Coverage 

Function Boundaries 

Accuracy 

Identify Likely 

Spurious Funcs. 

High Level 

Functionality 

Rosenblum et. al. 
× 

Known Prologue 

Patterns Only 

F0.5=98.9% No × 

IDA Pro 
× 

Known Prologue 

Patterns Only 

F0.5=87.6% No × 

DynInst 
× 

Known Prologue 

Patterns Only 

F0.5=97.1% No × 

Our Work � F0.5=99.5% 
Reduction in 

spurious functions 

from 34.6% to 2% 
� 

 

Figure 2.7: Recent related work results summary

Although some existing tools aim to detect function boundaries, unlike our method,

(i) they do not maintain correctness in all cases (e.g., by discarding conflicting sequences);

(ii) most do not guarantee complete code coverage; and (iii)they do not mark likely

spurious functions, hurting readability.

The table in Figure 2.7 summarizes all our proposed featuresagainst the other tools.

The F measure is an accuracy measure. We show the exact definition of that metric later

in this section. The tables shows that our method to detect function boundaries is the first

in the literature to ensure that the output is functional, while maintaining an accuracy that

is comparable or better than existing techniques.

Speculative techniques like the one by Harris et al. [33] remove code conflicts alto-

gether which is not suitable for our target of obtaining a complete set of functions in the

IR. This is demonstrated by the fact that 12.5% of the recovered disassembled binaries

using their techniques cannot run correctly. In our case, 100% of the binaries run correctly
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if recompiled from the recovered IR.

Despite the fact that current tools are incomparable to us asthey are solving a partial

problem of what we are solving, we compare our accuracy to them to show that we did not

sacrifice the function boundaries accuracy while maintaining functionality and complete

coverage. We also show more results on the amount of spuriousfunctions we are able

to eliminate which is a readability metric that none of the related work on speculative

disassembly shows.

We show more detailed results on the SPEC2006 benchmarks compiled using two

compilers. Table 2.8 shows the complete list of binaries compiled using the GCC 4.3

compiler along with their size (in assembly instructions and lines of code (SLOC)) and

the number of functions each benchmark contains. Table 2.9 shows our visual studio

binaries. Some GCC binaries in the first table are not shown in the VS table because

visual studio does not compile Fortran code and some C and C++ SPEC benchmarks.

The charts used here in this section are all based on optimized binaries because

these are the challenging ones where function boundaries are harder to recover. Non

optimized binaries usually have standard prologue patterns and almost no tail calls which

makes identifying the boundaries much easier. Optimized binaries are also more common

among deployed binaries.

To collect dynamic information traces to apply the techniques in section 2.6, we

use the PIN tool by Intel to run the input binaries and collectall the required instruction

traces and other information as per the discussion in section 2.6. We noticed from our

experiments that the sensitivity of the results obtained tothe input data set is very low.

The results almost did not change by having different input data sets with different sizes.
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Application  Lang  Inst Funcs  SLOC Type Version

specrand  C 290 5 49 SPEC2006 2006

mcf  C 3,357 26 2,685 SPEC2006 2006

lbm  C 7,740 22 1,155 SPEC2006 2006

astar  C++ 12,677 155 5,842 SPEC2006 2006

libquantum  C 13,800 121 4,357 SPEC2006 2006

bwaves  F 19,002 9 918 SPEC2006 2006

bzip2  C 21,408 105 8,293 SPEC2006 2006

sjeng  C 32,238 146 13,847 SPEC2006 2006

milc  C 34,183 237 9,784 SPEC2006 2006

sphinx  C 41,669 373 13,683 SPEC2006 2006

leslie3d  F 43,432 23 3,807 SPEC2006 2006

hmmer  C 85,981 541 35,992 SPEC2006 2006

namd  C++ 103,365 154 3,188 SPEC2006 2006

soplex  C++ 116,743 1,593 28,592 SPEC2006 2006

zeusmp  F 118,429 79 19,068 SPEC2006 2006

omnetpp  C++ 148,453 2,770 20,393 SPEC2006 2006

h264ref  C 170,684 593 51,578 SPEC2006 2006

gobmk  C 196,230 2,683 157,883 SPEC2006 2006

cactusADM  C 218,896 1,395 60,452 SPEC2006 2006

povray  C++ 288,957 2,098 108,339 SPEC2006 2006

perlbench  C 313,036 1,872 126,367 SPEC2006 2006

gromacs  C/F 396,450 3,872 65,182 SPEC2006 2006

calculix  C/F 506,725 1,386 105,683 SPEC2006 2006

dealII  C++ 766,555 18,779 96,382 SPEC2006 2006

gcc  C 934,292 5,627 236,269 SPEC2006 2006

xalancbmk  C++ 965,001 30,062 267,318 SPEC2006 2006

tonto  F 1,303,359 4,086 108,330 SPEC2006 2006

Figure 2.8: Application Table (GCC-compiled binaries)
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Application  Lang  Inst Funcs  SLOC Type Version

specrand  C 302 5 49 SPEC2006 2006

mcf  C 2,149 26 2,685 SPEC2006 2006

lbm  C 2,174 22 1,155 SPEC2006 2006

astar  C++ 6,681 155 5,842 SPEC2006 2006

bzip2  C 10,785 105 8,293 SPEC2006 2006

sjeng  C 20,838 146 13,847 SPEC2006 2006

milc  C 26,987 237 9,784 SPEC2006 2006

sphinx  C 37,901 373 13,683 SPEC2006 2006

hmmer  C 60,737 541 35,992 SPEC2006 2006

namd  C++ 72,517 154 3,188 SPEC2006 2006

omnetpp  C++ 101,480 2,770 20,393 SPEC2006 2006

h264ref  C 113,550 593 51,578 SPEC2006 2006

gobmk  C 179,612 2,683 157,883 SPEC2006 2006

perlbench  C 222,994 1,872 126,367 SPEC2006 2006

gcc  C 702,755 5,627 236,269 SPEC2006 2006

Figure 2.9: Application Table (VS-compiled binaries)

Because of that, we only present dynamic information based results in this section for the

combined traces from the test and the ref data sets of the SPEC2006 benchmarks suite.

All benchmarks are rewritten successfully and the recovered high level IR (with

functions, arguments and variables) is recompiled using LLVM’s backend. The rewritten

binaries produce the correct answers which shows the outputfunctionality and the com-

plete coverage we achieve. To the best of our knowledge, no static rewriter can produce a

correct rewritten binary with accurate function boundaries from binaries exceeding a mil-

lion instructions. We do not show numbers on the run time of the rewritten binaries since

this is mostly affected by the SecondWrite framework itself (with its internal passes) and

not by our techniques. The effects of SecondWrite on the rewritten binaries runtime can

be found in [3]. Next, we show that we do not sacrifice the accuracy of the recovered

function boundaries. We also show the amount of spurious code we were able to identify
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as well as the time spent during the disassembly process. We also show the effect of the

individual heuristics in identifying spurious functions.We show how these results change

with the dynamic information present and used.

2.8.1 Comparison with best-effort techniques

We compare against the machine learning technique by Rosenblum et. al. [55]

which aims to solve a much simpler problem than what we are trying to solve. They only

recover function entry points. Unlike our method, they do not recover complete bound-

aries with guaranteed functionality. If Rosenblum’s technique is used for disassembly to

identify code, it would lead to incomplete coverage.

Rosenblum et. al. [55] calculate the F-measureF0.5 which is a well-known accuracy

metric in the machine learning field. The F-measure is usually used for binary classifica-

tion problems where a test is being done on a certain data set and the test has only two

possible outcomes. The F-measure is the harmonic mean of theprecision and the recall

of the test. In general, the precision (PR) and the recall (RC) are calculated according to

the following formula:

PR =
TP

TP + FP

RC =
TP

TP + FN

WhereTP is the true positive results,FP is the false positives, andFN are the

false negative results. TheF0.5 gives more relevance to the precision than to the recall. It
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can be defined as follows:

F0.5 =
1.25 ∗ PR ∗RC

0.25 ∗ PR +RC
(2.3)

In our test (as well as Rosenbulum et al. test), the true positives are the functions

with correct entry points. The false positives are the entrypoints we identified as being

function entry points but they are not which represents spurious functions in the context

of this dissertation. The false negatives are the entry points of functions that we missed

during our analysis. We never miss any function as per our code coverage guarantees, but

we might inline a function into some parent and hence miss that entry point. We calculate

the inlined functions (which are real functions in the debugging information of the binary)

as the false negative ones.

Rosenblum et al. [55] report anF0.5 measure of 98.8% among all recovered entry

points for stripped binaries compiled from gcc and 92.3% forvisual studio. We calculated

the same measureF0.5 for our techniques for both compilers and it is 99.4% for gcc and

95.3% for visual studio. Visual Studio binaries usually have more functions with no

default prologue patterns and hence their numbers are usually less.

It is worth mentioning that we already perform much better than the well-known

disassemblers IDA Pro [31] and DynInst. The reportedF0.5 for IDA Pro for GCC is

87.6% and for Visual Studio is 78.9%. For DynInst, the reportedF0.5 is 97.1% for GCC

and 6.7% for Visual Studio. This is as reported by Rosenblum etal. [55].

If we incorporate the dynamic information while identifying functions, the numbers

become slightly better. TheF0.5 for GCC becomes around 99.5% while for Visual Studio
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it becomes 95.5%. Dynamic information is more beneficial in reducing the size of the IR

and reducing the disassembly time by eliminating many spurious entry points.

These results show that despite solving a more difficult problem, we are able to

achieve higher quality of function entry points. This showsthat our techniques can replace

even the best machine learning techniques and get better IR with all our added features of

functionality and complete code coverage.

2.8.2 Function Boundaries Accuracy

In this section, we describe the quality of the recovered function boundaries.

Category 

Our Method 

Bef. Improv. 

No Dyn. Info 

Our Method 

After Improv. 

No Dyn. Info 

Our Method 

Bef. Improv. 

With Dyn. Info 

Our Method 

After Improv. 

With Dyn. Info 

Matched 93.83 % 99.32 % 95.02 % 99.34 % 

Split 5.96 % 0.12 % 4.77 % 0.12 % 

Merged 0.21 % 0.56 % 0.21 % 0.54 % 

Uncovered 0 % 0 % 0 % 0 % 

 

Figure 2.10: Function Boundaries Accuracy

We define three metrics for every function in the original binary (read from the

debugging information) indicating its quality in the recovered code. Amatchedfunction

is when the exact function boundaries are discovered. Asplit function is when a single

function from the input binary is divided into many different recovered IR functions. A

mergedfunction is when the input binary function is recovered as being part of another

bigger function in the IR. Theoretically, an original function has to be one of these three

categories.
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Figure 2.10 shows the average matched, split and merged functions on all our bina-

ries. We initially detect 93.83% of the functions with exactboundaries and this improves

to 99.32% after doing our proposed improvements presented in section 2.4.2.

The dynamic techniques presented in section 2.6 have a very small effect on the

results presented in this section. There are two reasons of this. First, the results are

already very good from our static methods (more than 99% of the functions are already

matched). Second, the effect of the dynamic information is usually a reduction in the

number of the entry points (binary characterization addresses). All of such addresses that

are pruned are spurious and represent no functions in the input binary. This has no effect

on real functions in the input binary. The effect of dynamic information is presented more

on the IR size and the amount of time spent in disassembly as weshow next.

We do not show detailed per benchmark result for matched, merged and split func-

tions since in most of the binaries we get 100% matched functions comparing to the

functions in the symbol table of the original binary. Some larger binaries will have a tiny

percent of merged functions (usually less than 1%). Examples of such binaries are gcc,

xalancbmk and gromacs. The common trend in such binaries is that they have larger func-

tions in the input binary, so the binary characterization detects more spurious addresses

in the same function which requires more splits to happen in the first disassembly stage,

and more merges to happen in later stages.
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Figure 2.11: Reduction in number of binary characterizationaddresses

2.8.3 Dynamic Based Reduction in Binary Characterization Addresses

In this section, we show the quantified effect of having dynamic information present

while doing the static disassembly on the number of entry points for static disassembly.

We show how the binary characterization list of addresses (which constitute the above

entry points) change by having the dynamic information.

The average reduction in the number of binary characterization addresses is 31.4%

in GCC binaries and 22% on Visual Studio binaries. This reduction is calculated after
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using all the discussed dynamic techniques in section 2.6.

Figure 2.11 shows the details of the number of binary characterization addresses

before and after the pruning for some large GCC benchmarks. Wedo not show results for

smaller benchmarks because they will not appear on the graphas their number of binary

characterization addresses is negligible compared to the larger benchmarks.

The percentage of reduction does not change much by changingthe input data set

for the SPEC benchmarks from the test input to the ref input data set. The results are

shown for the combined data sets.

Some benchmarks like dealII have a small reduction percentage (8.2%) compared

to other larger reduction percentages (gcc has 30.1% reduction). This is usually because

the dynamic runs used to calculate the dynamic traces neededfor the experiment did not

cover large parts of the binary characterization entry points in dealII and similar binaries.

This is a feature of the input data set used to conduct this experiment.

2.8.4 Spurious Functions

Binary characterization as described in section 2.3 can leadto redundant function

entry points. This is the price paid to guarantee complete code coverage and functionality.

Here we present detailed statistics regarding spurious functions.

Figure 2.12 shows the percentage of the spurious functions present in the main IR

file after every stage of our techniques for GCC binaries. We show this for both cases

when we use the dynamic information and when we do not use it. Figure 2.13 shows the

same percentages for Visual Studio binaries.
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Figure 2.12: Percent of spurious functions - GCC binaries
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Figure 2.13: Percent of spurious functions - VS binaries
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For GCC binaries, after the basic disassembly algorithm described in section 2.4.1,

an average of 38.5% of all IR functions are spurious. This percentage is reduced to 32.4%

if we use dynamic information. During the function boundaries improvements phase,

some of these spurious functions can be safely removed usingour property 2.2. This

brings down the spurious IR functions to an average of 16% of all IR functions (11.4% if

we use the dynamic information). Finally, applying the heuristics described in section 2.5

prunes away most of these remaining spurious functions fromthe main file resulting in

around 0.55% spurious functions (also the same 0.55% if we use dynamic information).

The final spurious functions percentage after applying the heuristics did not change when

we use the dynamic information since the total number of functions is smaller and the

remaining spurious functions in the IR at this stage is negligible, so the overall percentage

does not come down that much compared to the percentage without using the dynamic

information.

The same trend happens in Visual Studio binaries as shown in figure 2.13. The only

difference is that we have higher percentages of spurious code at every stage. The reason

is that we noticed that Visual Studio binaries have much larger set of binary characteri-

zation addresses than GCC binaries. As an example, the gcc compiler binary compiled

using GCC has 8,249 binary characterization addresses whilethe corresponding Visual

Studio binary has 11,155 addresses.

Figure 2.14 shows the detailed per benchmark results for spurious functions detec-

tion in GCC binaries. Figure 2.15 shows the same result for Visual Studio binaries. The

x-axis in these figures represent the percentage of the spurious functions that remain not

detected in the main IR file. Zero percent in these graphs means no spurious functions
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Figure 2.14: Spurious Functions - GCC
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Figure 2.15: Spurious Functions - VS

remain undiscovered in the main IR file. We show only the results without using the dy-

namic information. Using the dynamic information gives thesame trend. As expected,

small binaries usually have smaller spurious code that remains after all our adjustments

and heuristics. This is because the number of binary characterization addresses is usually

small in such functions resulting in a lower number of spurious functions.

As we discussed in the section 2.5, we do not remove the spurious functions from

the binary for safety reasons such that if one of our heuristics fail we still have functional

rewritten binaries. We monitored the execution of the rewritten binaries and none of the

spurious functions detected by our heuristics gets executed. This shows that the spurious

functions detection does not have any false positives. False negatives do happen; these
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are when we leave a function as a non-spurious function but itis actually spurious. False

negatives happen with a rate of 0.55% as we discuss earlier.

There are other methods that can prune out spurious code fromobfuscated binaries.

They are trying to solve a different problem which is de-obfuscation. If such methods

are applied to our code with our assumptions, they would delete valid code which is not

acceptable. As an example, one of the heuristics used in [40]to delete spurious code

from conflicting CFGs is to delete one random function such that the conflict in CFGs is

resolved. That is an unsafe approach since the IR is incomplete in this case, resulting in a

non-functional recovered IR.

2.8.5 IR Size Changes due to Adjustments

Our function boundaries adjustment techniques may result in a change of the IR

code size. The main factors that affect the IR code size are: 1) Inlining. 2) Spurious code

removal (property 2.2).

We show the effect of our adjustments to the IR compared to theoriginal IR ob-

tained using the basis disassembly techniques presented insection 2.4.1. The original

IR obtained using the basis disassembly techniques contains many function splits as we

showed before. We also show how the IR code size changes afterapplying our dynamic

techniques presented in section 2.6.

Figure 2.16 shows the detailed results of the increase of IR code size while doing

the adjustments for GCC binaries. Figure 2.17 shows the same results on Visual Studio

binaries. On average, the IR code size increases by 5.5% for GCC binaries due to having
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spurious functions as well as due to the function boundariesimprovements we do (like

inlining). The increase is 7.2% for Visual Studio binaries.This shows that the growth

in code size from our methods is modest and manageable. This increase requires more

memory, but on the other hand, our detection of spurious functions makes the amount of

code a human reverse engineer has to look at significantly smaller. This is a significant

benefit in reverse engineering.
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Figure 2.16: Code Size Effect (GCC)
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Figure 2.17: Code Size Effect (VS)

The figure shows that Fortran and some larger C binaries usually have some code

increase. This happened because many of these binaries contain bigger functions which

usually causes more splits to happen. Since there will also be many binary characteriza-

tion spurious addresses in the same function, we will not be able to remove many of these
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splits as the starting address of removed functions cannot to be in the binary characteriza-

tion list. This overall behavior increases the code size.

If we apply our dynamic techniques, many binary characterization addresses get

removed as we showed before. This results in a decrease of theIR size. The average code

size reduction is about 7.4% in GCC binaries and around 3.3% for Visual Studio binaries.

Visual Studio binaries have much more binary characterization addresses than GCC bina-

ries and hence not many addresses get pruned with the same dynamic information. This

results in larger Visual Studio binary sizes.

2.8.6 Disassembly Time

Figure 2.18 shows a scatter plot between the time spent in SecondWrite for our

techniques (in seconds) versus the binary size for all the binaries we have in our tests.

We show two sets of points – one with dynamic information being used and the other one

without dynamic information being used.

The average runtime of our disassembly techniques was 3.1 minutes with a max-

imum of 55 minutes on the gcc binary compiled using GCC (which is 934,292 instruc-

tions).

If we add the dynamic information to aid the static disassembly techniques, the

average disassembly time reduces by 32%. The average disassembly time becomes 1.7

minutes and gcc takes around 21.7 minutes during disassembly. This is expected since the

entry points needs to be disassembled is reduced when havingthe dynamic information.
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Figure 2.18: Time spent during disassembly
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2.8.7 Heuristics Effect

Figure 2.19 shows the share of every heuristic among the onesdiscussed in section

2.5 while identifying spurious functions in GCC binaries. Figure 2.20 shows the same

results for Visual Studio binaries.

The best heuristic is the one based on inlining functions to all parents. Many spuri-

ous functions have direct control transfers from other functions and they are successfully

inlined to all of them and hence are less probable to execute at run-time and are consid-

ered spurious. Such spurious functions represent 74% of allspurious functions on average

in GCC binaries and 47% of all spurious functions in VS binaries. The Visual Studio bi-

naries have many more binary characterization addresses which makes this heuristic less

effective.

The next effective heuristics in GCC binaries is the one basedon detecting the

actual parent of inlined functions. Only one parent is usually an actual parent and all

other parents are marked as being spurious. 16% of the spurious functions on average

are detected based on this heuristic. For Visual Studio binaries, the same heuristic is

not as effective and ISA based heuristic performs better with 24% reduction in spurious

functions. For VS binaries, the detection of the actual parent heuristic has an 18% share

in the spurious functions reduction.

The remaining semantic based techniques contribute to the remaining 10% of the

spurious functions. The most effective heuristic out of allsemantic based ones is the

memory analysis based heuristic. This is true in both GCC and VS binaries. Many of the

detected spurious functions have unusual memory accesses and can be identified based
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on that.
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Figure 2.19: Heuristics Effect - GCC binaries

Some of the spurious functions have more than one property that qualifies them

to be spurious. For example, most inlined spurious functions can be caught using the

memory analysis techniques as well. In the results shown in figures 2.19 and 2.20, we do

not show this effect. We run the heuristics in order and stop once one heuristic identifies

a function as being spurious. We start first with the inliningheuristics and then use the

semantic based ones. We could have chosen any other order. Wenoticed that inlining is

the most effective heuristic so we run it first.

2.9 Related Work

Section 2.8 has already compared with some of the related work. In this section,

we cover other related work to the disassembly process and function boundaries recovery.
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Figure 2.20: Heuristics Effect - VS binaries

De-obfuscation techniques are orthogonal to the techniques discussed in this chapter, so

we will not discuss them here. We discuss some of these techniques in section 2.10.

Cifuentes et al. [14] propose some methods which are used by the UQBT tool [16]

to recover indirect control transfer targets from binary code based on program slicing

and pattern matching with some well-known function prologues. They do not recover

any function boundaries. Their technique does not guarantee 100% code coverage (in

fact they report an average of 74% code coverage). Their methods are not robust since

prologue patterns depend on the particular compiler, its version number, and flags used.

Other work by Theiling [67] has the same problem.

Other control flow graph (CFG) construction techniques proposed in [38] use data

flow analysis to reason about indirectly reachable targets.It is used in the Jakstab [36]

tool. It does not guarantee full code coverage and do not try to recover function bound-
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aries. A later hybrid disassembly approach was developed [35] to improve the Jakstab

tool code coverage. The technique is based on a formal description of a technique similar

to the one used in the BIRD dynamic binary rewriter [52].

Sutter et. al. [20] and Schwarz et. al. [59] also look at resolving CFGs from binaries

but they are not practical since they require relocation information.

Tallent et. al. [66] develop binary analysis techniques to aid the attribution of dy-

namic runtime costs to dynamic calling contexts. For that they have techniques to recover

function entry and exit points in binaries, as well as recovering complete stack unwinding

information. They assume that some part of the binary has to be non-stripped and debug-

ging information exists in the binary which is not suitable for our problem. Their work is

used in the HPCToolkit suite of performance monitoring of applications [2].

Shen B. et. al. implement a binary translation system called LLBT [61] which

is ARM to LLVM based. One of their code discovery techniques issimilar to the binary

characterization technique [63]. Their disassembler is suitable for aligned instructions and

cannot be used for variable length instructions like in x86 where code conflicts problem

can arise.

Recently, machine learning techniques were introduced [56]to detect which com-

piler was used to produce a certain binary or to differentiate code from data in x86 bina-

ries [76]. Such techniques are best-effort and do not guarantee complete code coverage.

Another machine learning technique presented by Wartell etal. [76] provides meth-

ods to differentiate code from data in x86 executables. It does not recover any function

boundaries though. Their work identified the problems with IDA Pro regarding differenti-

ating code from data and build a classifier to overcome this based on training the classifier
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on 10 binaries and then testing it on one binary.

Marco et. al. introduced a static system [19] built on top of Schwarz et. al. disas-

sembler [59] to detect vulnerabilities in x86 binaries based on symbolic execution tech-

niques. Their work assumes binaries have relocation information which is not true in

stripped binaries. Another tool by Wartell et al. [74,75] enforces security by doing binary

rewriting. The rewriter relies on the IDA Pro disassembler [31] which is a best-effort

disassembler that cannot guarantee complete code coverage.

Binary rewriting has been considered by a number of researchers. There are two

main categories when talking about binary rewriters – dynamic binary rewriters and static

binary rewriters. Dynamic binary rewriters rewrite the binary during its execution. Ex-

amples are Pin [48], BIRD [52] and DynInst [34]. None of the dynamic binary rewriters

can guarantee complete code coverage. They can only cover the portion of the code

that is being executed. Examples of existing static binary rewriters include ATOM [28],

PLTO [60] Spike [18] and Diablo [70] none of which support stripped binaries as they

require relocation information.

Some binary analysis platforms like BAP [9], [64] and CodeSurfer [30] rely on the

IDA Pro [31] disassembler which cannot guarantee complete code coverage. Some other

tools like Boomerang [26] rely on specifying where the entry point of the program is

which makes it of a very limited capability. All such tools can benefit greatly from the

techniques described in this chapter.
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2.10 Limitations and Future Work

In this section, we describe some of the limitations to the work presented in this

chapter and possible directions on how to tackle them. The three main limitations to

this work are position independent code (PIC), obfuscated code and self-modifying code.

Below we describe each one of them.

2.10.1 Position Independent Code

One main assumption this work relies on is that the binary does not have any calcu-

lated addresses. This is valid for application code we dealtwith till now, but it is not valid

in some shared library code.

Shared libraries are usually loaded at run time. There are two main techniques to

load shared libraries: 1) Load-time relocation. 2) Position Independent Code.

Load-time relocation simply uses a relocation table in the library code. Every entry

in the table is updated at load time with the correct address.The good thing about these

libraries is that the relocation table cannot be removed even if the library is stripped. This

allows accurate function boundaries to be identified without any issues. Usually such

libraries are handled nicely in our framework. Fortunately, all Windows DLLs and many

Unix ones fall in this category.

Position independent code is the other technique some Linuxshared libraries use

to avoid the overhead of the load-time relocation. Such codecomputes the addresses

of functions and variables at run-time. Whenever the compiler decides to calculate a

function address at a certain location in the binary, the compiler will first load the current
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program counter, and then adds the offset to that function from the current location. This

invalidates our assumptions that addresses are not calculated at run-time.

Many instruction set architectures (ISA) will have different techniques to imple-

ment position independent code. There are two main techniques to load the program

counter at run time. The first one is to use a dedicated programcounter register that is ac-

cessible in regular move instructions in the ISA. This technique is usually found in RISC

architectures like ARM and MIPS. In x64, there is an explicit addressing mode called the

RIP-relative addressing mode which makes the program counter register visible to some

instructions. The second way of loading the program counteris used in ISAs where no

dedicated program counter is available to instructions. Inthese cases, there is usually

an instructions that pushes the return address into memory for function calls. A simple

technique to load the program counter is to call some addresswhich then pops whatever

on the stack and jumps back to the original call site.

The idea to support position independent code is to detect where the code is trying

to access the program counter. For ISAs where the program counter is visible, this is very

easy and obviuos. For other ISAs (like x86) where the programcounter is not visible to

instructions, instruction sequences that simulate the loading of the program counter value

can be detected using pattern matching techniques. Once we detect the binary locations

that are loading the program counter, constant propagationand memory analysis will lead

to actual address calculations. We are currently looking atsome techniques to recover

this information efficiently. Fortunately, the sequences of instructions that can read the

program counter are not many, and simple pattern matching techniques can be effective.

One important note is that the reader might think that since we do not support po-
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sition independent code (PIC), then we do not support the binaries compiled for address

space layout randomization (ASLR). This is not exactly rightsince ASLR will not result

in a PIC binary code. For example, in Windows OS, if ASLR is turned ON for a specific

binary (achieved by turning on the (/dynamicbase option in the linker in Visual Stu-

dio), the binary will still have a preferred load address that is hard coded in the binary

image (the static binary entry point). The operating systemrelocates the binary image at

load time to a different pseudo random base address (rebasing). No position independent

code is necessary for rebasing as we discussed earlier. Windows does not use PIC code

to achieve rebasing.

The only technique that might be affected by ASLR is the dynamic based tech-

niques discussed in section 2.6. Such dynamic techniques needs to collect the executed

addresses during the original binary run-time. Such addresses are then used during the

static disassembly process. Since the static disassembly is based on the preferred static

base address of the binary, the collected instruction addresses at run-time might be totally

different from the static image addresses and hence become useless.

It turns out that ASLR is not a real problem for our dynamic techniques. Instead of

collecting the executed virtual addresses at run-time, we can collect the binary file offsets.

The conversion between the executed virtual addresses and the binary file offsets is trivial

if we know what is the actual dynamic base address of the running binary. During run-

time, knowing the actual binary base address is trivial. So,as a conclusion, ASLR is

supported in our framework only if it does not result in PIC binary code which is satisfied

in most of the cases.
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2.10.2 Obfuscated Code

Obfuscated code is one challenge that we currently cannot completely handle. There

are two main techniques to obfuscations: source code obfuscations and binary obfusca-

tions.

Source code obfuscations are easier to implement and more wide spread. They

rely on making the source code very hard to read by complicating simple operations

and adding more redundancies. As long as these techniques donot introduce calculated

addresses, we can handle them nicely in our framework since they will be compiled using

a compiler and the executable will follow a certain compilermodel.

The binary obfuscations are implemented on the low executable level, where obfus-

cation is inserted on the assembly level. The survey by Roundyet al. [57] summarizes all

such techniques and current work in handling them. The most famous research on binary

obfuscation techniques is by Linn and Debray [45]. In general, the most used obfuscation

techniques are: 1) Inserting junk code in unreachable code places to trick the linear sweep

disassemblers, 2) Using a return instruction to simulate a direct call. 3) Altering the return

address of call instructions and inserting junk code after calls, 4) Using interrupt handling

to make function calls [53].

There are many static de-obfuscation techniques that were developed recently try-

ing to handle such problems. Most of them disassemble the binary starting from every

single byte offset. Static techniques presented in [40], [71] try to resolve conflicts in the

disassembled code by removing any conflicting CFG. This cannot be safe if this technique

is applied to non-obfuscated binaries as well as obfuscatedones. Since they do not try to
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solve the problem of having complete code coverage, this is acceptable in their case.

Some other work by Lakhotia et al. [42] try to reason about function boundaries in

the presence of obfuscation techniques. They rely on IDA Pro[31] for the disassembly

process. IDA Pro is not accurate enough even for non-obfuscated binaries [55]. Their

technique is to build an abstract stack from the physical stack and monitor the behavior

of return instructions and calls.

Another work presented by Ma et al. [49] tries to extract control flow of binary

code with calls simulated by returns. They use prologue epilogue patterns as well as

tracking the stack pointer manipulation to detect the returns acting as function calls. They

present their technique only on one binary program. Other work by Boccrado et al. [8]

and Lakhotia et al. [41] achieve the same goal by precisely tracking the stack memory.

To handle the obfuscation problem in our framework, we are looking at static tech-

niques that can insert a translator function similar to the one we described in [63] at every

return instruction. If no calculated addresses exist in thebinary, the translator will be able

to redirect execution to the correct code. The translator structure has to be changed to

accommodate the normal return instruction use as well as theobfuscated use.

The interrupt handling mechanisms can be handled by developing techniques to

recover the exception tables from the binary code. We are working on techniques to

recover such information.

One promising technique to be able to use our techniques as iswithout change

is to record one execution of the obfuscated binary and builda control flow graph and

a call graph at run-time and produce a de-obfuscated binary that can be analyzed by

SecondWrite. During run-time, we can collect targets of branches, calls and returns and
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can build a deobfuscated binary this way. This is an ongoing work in our group that is

under test. The only disadvantage of such techniques is thatthe resulting recovered IR

will be only valid for this particular input data set. It willnot be generalized to any other

input data set. We are looking at some ways to overcome this problem. Some existing

dynamic techniques of malware code extraction and reuse like the Inspector Gadget [39]

and Trace Oriented Programming (TOP) [77].

2.10.3 Self Modifying Code

Like most static binary tools, we do not handle self-modifying code. Various tools

[73] statically detect the presence of self-modifying codein a program. Such a tool can

be integrated in our front-end to warn the user and to discontinue further operation.

The most common scenario where self-modifying code exists is for malware bina-

ries that are packed and unpack themselves at run-time. The good thing is that unpacker

has to emit the complete code that can be executed by the malware. To guarantee code

coverage, the dynamic technique described at the end of the previous section can be used.

It can monitor the unpacking process and tracks what instructions are emitted at run time

and emits an unpacked binary. After that, our current statictechniques can disassemble

this image and proceed.
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Chapter 3: Recovering Function APIs

3.1 Introduction

In this chapter, we present our techniques to recover function prototypes for the re-

covered functions from the previous chapter. The recovery process is presented such that

the IR is still functional, accurate, of a high quality and the recovery process is scalable.

This chapter is composed of five parts. Section 3.2 addressesthe problem of recov-

ering a complete and precise set of register arguments and returns to internal functions

whose body is inside the binary. Section 3.3 extends the discussion to include external

functions which only have calls from within the binary. We show how to pass the correct

arguments to such functions even if their prototypes are notknown and show under what

assumptions this is guaranteed to work. Section 3.4 shows the effect of having inaccurate

function boundaries from the techniques discussed in chapter 2 on our previously pub-

lished memory arguments recovery techniques [3] as well as to the register arguments

recovery techniques. Section 3.5 shows the results of our proposed techniques. Finally,

section 3.6 shows the related work in the literature.
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3.2 Function Prototypes Recovery

Detecting the complete and accurate set of function arguments and returns is es-

sential in producing a high quality code that can run correctly if recompiled. If some

arguments are missing, the code will not work correctly in all cases. If more unnecessary

arguments are identified, the code will run correctly, but will be less understandable by

users.

We show how to accurately identify the register arguments and returns. Existing

techniques show how to identify the exact set of memory arguments. SecondWrite al-

ready uses a variant of the algorithm used by Balakrishnan et al. [5] to identify memory

arguments [3]. Surprisingly, we did not find any related workthat correctly and accu-

rately recognizes register arguments and returns. Not recognizing register arguments and

returns is acceptable if the goal is to help human understanding of binaries (as for exist-

ing methods), but unacceptable if the goal is to generate correct rewritten code (as for our

method.) Typical x86 codes have less register arguments than memory arguments, but

they still have large numbers of register arguments especially for optimized executables.

A brute force algorithm for identifying register argumentsand returns is to define

the set of registers read without being initialized inside aprocedure as arguments, and

the registers modified inside a procedure and then later usedat some of the call sites as

returns. This technique will result in many spurious arguments since all registers which

are saved and then restored back in a function (such as calleesaves) will be declared

as arguments and returns for this function, which is not true. Further, this algorithm

might miss some arguments if not carefully implemented. Forexample, a procedure not
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accessing any register at all might be declared as taking no register arguments, which may

not be true since it might be calling a function which is taking a register argument.

We propose below an algorithm which identifies accurately all register arguments

and returns. Our algorithm is conservative since it will notmiss any arguments. It is also

accurate since it prunes out unnecessary extra arguments inmany cases.

The main challenge in being accurate and yet conservative isto accurately track

all registers that are saved and restored (callee-saves). Such registers are usually re-used

inside functions for their local variables and temporaries. They are saved at the beginning

of a function and then restored back at the end of the function. This allows the function

to write and read from them without corrupting their original values. Such registers will

be considered as arguments and returns to functions by mistake using the brute force

technique described earlier if they are not identified.

The key challenge in tracking callee saved registers is thatthe stack locations used

to save such registers need to be tracked to make sure they areonly used for this purpose,

thus allowing those registers to be pruned from the arguments or returns. The stores of the

register values at the beginning of the function should dominate the loads used to restore

them back. There should not be any write to those stack locations in between. If those

stack locations are read in the middle of a function, the corresponding registers must be

declared as arguments.

Our register arguments and returns detection technique is shown in algorithm 2. It

is composed of five steps. 1) We assume all registers are arguments to every function and

there are no register returns. 2) We declare all registers written to inside a function or any

of its callees as potential return registers. 3) We run our algorithm for detecting saved
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Algorithm 2 The algorithm to detect register arguments and returns
Input: LLVM IR for a binary

Input: AllRegs : set of all available physical registers

Output: RegArgs: map between functions and their register arguments set

Output: RegRets : map between functions and their return registers set

1: for all Function Fdo

2: PotArgs(F) =AllRegs

3: end for

4: PotRets= FindPotentialReturns ()

5: (DeadStores,PotRets) = FindDeadStores (PotArgs, PotRets)

6: RegArgs= PropagateArguments (DeadStores, PotArgs)

7: RetArgs = PruneReturns (PotRets)

locations by detecting the set of stores to the memory stack which are never loaded back

except before the return from the function. We call those store instructionsDeadStores

since they will be eventually removed from the code. For eachof the detected dead stores,

we determine the corresponding saved register and remove itfrom the potential returns

set. 4) We run our algorithm to propagate the register arguments correctly and prune

unused ones. 5) We prune the unused return registers out. Next, we describe each of

those steps in details. Step 1 is trivial. We proceed from step two.

The second step in our algorithm is to detect the initial set of potential return regis-

ters. Algorithm 3 shows the details of the detection method.The simple idea is that any

register which is being written to inside a function is a potential return register from this

function. For example, if a functionfoo is calling functionbar, andbar is modifying
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Algorithm 3 The algorithm implementing: FindPotentialReturns ()
Input: LLVM IR for a binary

Output: PotRets: map between functions and their potential return registers

1: WorkList= Functions sorted in reverse call graph order

2: while WorkListis not emptydo

3: remove a function F fromWorkList

4: mark function F asstarted

5: for all Instruction I in Fdo

6: if I writes to a registerr then

7: PotRets(F) = PotRets(F)∪ {r}

8: else

9: if I is a call instruction to function Xthen

10: let callee = called function

11: else ifcallee is startedthen

12: PotRets(F) = PotRets(F) ∪ PotRets(X)

13: else

14: add F to the end of theWorkList

15: end if

16: end if

17: end for

18: end while
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eax, thenfoo andbarwill be declared as potentially returningeax despite the fact that

there is no write toeax inside offoo. We do a post-order depth-first search traversal

of the call graph (which visits child nodes before their parents) and propagate the set of

potential return registers upwards in the call graph by looking for the written-to registers.

Whenever we find a call to a function, we add its potential returns to the caller function

potential returns. We handle recursion using a work list mechanism such that whenever

we detect a call to a function which has not been analyzed yet,we add the caller function

back to the work list.

After detecting the potential returns, we add them to the IR in every return state-

ment inside every function. If more than one register is returned, we return a structure

containing all combined potential return registers.

The third step in our algorithm is to detect the callee saves registers and exclude

them from the list of potential returns. Since callee-savesvalues are saved to the memory

stack, we need a memory analysis technique to track the memory stack locations where

they are saved. Tracking memory in executables is not a trivial task. Our saved registers

detection does not need a sophisticated memory tracking algorithm because it only needs

to track stack memory. Neither heap nor global memory need tobe tracked.

We modify the Value Set Analysis (VSA) algorithm proposed byBalakrishnan et al.

[5] by removing global and heap memory tracking, keeping only stack memory tracking.

We also remove the context sensitivity from the algorithm since it is not needed in this

application. The resulting algorithm is less powerful for general memory tracking but is

sufficient for this purpose.

As a quick summary of the VSA algorithm, it derives a conservative estimate of the
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set of addresses and integer values every memory location and register can contain at any

program point. Every set of values is represented as a strided interval with a lower and

upper bounds; and a stride. In our modified implementation ofVSA, we only keep track

of the lower and upper bounds.

In our modified version of the VSA, we assume that indirect calls will only access

stack locations up to a certain offset determined by the maximum number of memory

arguments to all functions in the binary. We also use the knowexternal function proto-

types to determine that maximum offset for external functions. Finally, we assume that

TOP VSA values do not alias with the stack offsets used to saveregisters. These TOP

values are usually input dependent values, global pointersor heap pointers that usually do

not alias with the memory stack. The only exception is for arrays allocated on the stack

with statically unbounded indexing. Those are usually not common since such arrays are

usually allocated on the heap (sometimes they are allocatedon the global memory).

Before we run the saved registers detection algorithm, we convert the registers in-

side of each function into the SSA form. This is straight forward; indeed in our imple-

mentation LLVM already does that. Our algorithm works on a temporary copy of the

IR.

Algorithm 4 detects the dead stores used to save registers and prunes those saved

registers from the potential return register set. Lines 6 through 12 in the algorithm collect

the addresses on the stack that are used to store register values. For each of those ad-

dresses, a simple memory liveness analysis is being conducted using standard memory-

to-register promotion and dead code elimination compiler passes (both these passes are

already available in LLVM). Lines 13 through 16 create a dummy memory location in
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Algorithm 4 The callee-saves detection algorithm (FindDeadStores)
Input: A copy of the LLVM IR for a binary

Input: PotArgs: maps functions to their potential register arguments

Input: PotRets: maps functions to their potential return registers

Output: DeadStores: maps functions to the dead register stores

Output: PotRets: The input map after pruning saved registers

1: for all reg∈ PotArgsdo

2: Create a dummy registerdummy; DummyRegs(reg) = dummy

3: end for

4: ADDRS= φ

5: for all Function Fdo

6: for all Instruction I in Fdo

7: if I = storereg, Ptr AND reg∈ PotArgsthen

8: if ValueSet(Ptr) = {address} (Singleton)then

9: ADDRS= ADDRS∪ {(reg,address,I)

10: end if

11: end if

12: end for

13: for all (reg,address, I) ∈ ADDRSdo

14: allocate a dummy pointerDummyPtr((reg, address)) at the beginning of F

15: storeDummyRegs(reg) to DummyPtr((reg, address))

16: end for
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17: for all Instruction I in Fdo

18: if I is UnsafeInstruction(address) where (reg,address,X) ∈ ADDRSthen

19: insert a volatile load fromDummyPtr((reg, address))

20: end if

21: if I = storevalue, Ptr AND ValueSet(Ptr) ⊇ {address} AND (reg,address,X)

∈ ADDRSthen

22: insert a storevalueto DummyPtr((reg, address))

23: end if

24: if I = loadPtr AND ValueSet(Ptr) ⊇ {address} AND (reg,address,X) ∈ AD-

DRSthen

25: insert I’ = loadDummyPtr((reg, address))

26: for every use of I insert a cloned use of I’

27: end if

28: end for

29: Run LLVM Memory to Register Promotion on AllDummyPtr

30: Run LLVM Dead Code Elimination on F

31: for all (reg,address, I) ∈ ADDRSdo

32: if DummyPtr(reg, address) is deleted ANDDummyRegs(reg) has no uses OR

only used in return instructionsthen

33: DeadStores(F) = DeadStores(F) ∪ {I}

34: end if
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35: if DummyRegs(reg) has no uses ORDummyRegs(reg) is used in all return

instructions of Fthen

36: PotRets(F) = PotRets(F) - {reg}

37: end if

38: end for

39: end for

the IR for each pair of address and register identified. We initially store a dummy value

we create to each one of those memory locations. Lines 17 through 28 examine the uses

of every address using VSA. At every possible read of an address, we insert a load from

the dummy memory location we create. At every possible writeto that address, we in-

sert a store to that dummy memory location of the stored value. After that, we run the

memory-to-register promotion compiler pass again on thosememory locations. Finally,

lines 31 through 38 determine the final set of dead stores. If the dummy memory location

is promoted successfully to registers, and the only use of the dummy value is at the return

then it is saved and can safely be removed from the potential return. The corresponding

initial register stores are declared to be dead in this case.If the same previous conditions

occur and also there are other uses of the dummy value, then the register is removed from

the potential returns, but the initial store is not dead and is considered a real use of the

register; i.e. the register becomes an argument.

The UnsafeInstruction(address) functions appearing in line 18 in the algorithm is

responsible of deciding whether the instruction may have side effects which can poten-

tially access thataddress. External calls without a known prototype where any stack

89



address appears in the value sets of one of the arguments are considered unsafe as they

may do arithmetic on those addresses and potentially read from or write to ouraddress.

Some external functions are pre-identified safe and known not to do arithmetic on pointer

arguments, or do it with a bounded identified offset. For example, we parse format strings

of printf, scanf and similar functions and in some cases we can prove those functions

are safe.

After detecting the dead stores used to save registers and pruning the callee-saves

from the potential returns, we proceed to step four which identifies the actual register

arguments. Algorithm 5 shows the method to do so. We traversethe call graph of the

executable in post-order depth-first search traversal, which ensures child nodes are visited

before their parents. For each potential register argumentinside a function, we declare

it as an argument if and only if we see a “real” use of this register in the function. If a

register is used in a store instruction among the dead storesidentified by algorithm 4, the

store is not considered a real use. Uses in calls are only considered “real” if the callee

takes the register as an actual identified argument. A work list mechanism is maintained

to handle the dependencies between functions. PHI nodes that link multiple SSA versions

of the same register are not considered uses and are tracked.Returns are not considered

real uses because if the return is the only use of a register, there is no need to pass it as an

argument.

Propagating the actual return registers (step 5 in our algorithm) is done in a similar

way to the one above except that it works on functions in the forward call graph order and

looks for uses of return values at call sites.

The correctness of our register arguments and returns algorithm is guaranteed for
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Algorithm 5 The algorithm to propagate register arguments
Output: PotRets: map between functions and their potential return registers

1: WorkList= Functions sorted in reverse call graph order

2: while WorkListis not emptydo

3: remove a function F fromWorkList

4: mark function asstarted

5: for all reg∈ PotArgs(F) do

6: for all Instruction I that usesregdo

7: if I is a RealUse(reg) then

8: RegArgs(F) = RegArgs(F)∪ {reg}

9: end if

10: if (I = call X) AND (X is not started) then

11: Add F toWorkList

12: end if

13: if I = call X AND X is startedAND reg∈ RegArgs(X) then

14: RegArgs(F) = RegArgs(F)∪ {reg}

15: end if

16: end for

17: end for

18: end while
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internal functions. The reason is that we start our algorithm initially by having all registers

as arguments, and then remove those which are not really used. For returns, we start the

algorithm by adding all registers that are written to insideof a function or one of its

callees, we then remove the ones which are unused at call sites. The correctness in the

presence of indirect calls, external calls and call backs isdescribed below.

Our algorithm runs the same way on indirect calls and is correct. At every indirect

call, SecondWrite inserts a call translator function that checks the value of the function

pointer and calls the corresponding IR function accordingly. In this case, this call transla-

tor is treated the same way as any normal function in this algorithm under the assumption

that the call translator will call all possible target functions. External calls are discussed

separately in the following section.

3.3 External Calls Prototypes

In the previous part of this chapter, we proposed sound techniques to detect register

arguments and returns. We showed the correctness of our techniques when all calls in the

binary are to internal functions.

In this section, we extend our methods to support rewriting external calls correctly

and making sure all required arguments are passed correctlyunder certain assumptions.

We start first by describing why it is important to handle suchcalls. We then state our

assumptions. After that, we move forward to describe how we can detect external calls

in the original binary. We then show how we represent external functions in the IR. We

show the details of our rewriting techniques of external calls. We finally prove that our
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techniques are sound and the external functions will receive the same arguments as in the

original binary and will therefore return the same values.

3.3.1 Overview and Problem Statement

Resolving external calls while recovering IR from executables is very important.

Almost no real-world binary is free from external calls. External calls are usually done to

libraries to perform certain tasks that are not part of the main application stream.

Functions that are external to the application are usually found in libraries. There

are two main ways to link libraries to application code: 1) Static linking. 2) Dynamic

linking.

Static linking is done when the linker decides to insert the function body inside the

application code itself. The advantage of that is fast execution time of the calls to such

functions and no overhead in loading the application, but the price paid is the increase in

the binary code size.

On the other hand, dynamic linking is when the linker decidesto keep the external

functions outside the binary application and refer to them by using their names (or loca-

tions) in the dynamic link library that contains them. During the application load time,

the libraries are loaded with the application such that whenthe application calls one of

these external functions, they can execute correctly. The advantage of dynamic linking

is the smaller binary code size and application modularity (by keeping the binary code

that is not related to the application main stream external). Another advantage is that

dynamic libraries are almost alwayssharedon the system. The disadvantage is usually
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slower binary load time.

In this section we only target recovering functional IR withexternal function calls

that are dynamically linked to the binary. We do not target statically linked external

functions in this section since they are already handled correctly by our earlier techniques

since their code exists inside the binary itself.

For every external call site in the original binary, the problem we are solving here is

to recover some code that replaces the original call in the IRsuch that all of the following

is true when the IR is compiled to a rewritten binary:

1. The rewritten binary redirects control to the same external function when executed.

2. The external function takes the same memory and register arguments that were

passed at the original binary call site..

3. The return value(s) if any from the external function are passed back to the rewritten

binary correctly.

This problem is challenging in a static binary analyzer because of two main reasons.

1) Statically detecting an external call site in a binary is not always trivial. 2) External

function prototypes and calling conventions are usually not known to a static binary ana-

lyzer. This section gives an overview of the first problem anddiscusses in details how the

second problem can be solved.

3.3.2 Assumptions

As per any static binary analysis system, it is impossible tohandle all scenarios. In

this section, we discuss our main assumptions while recovering external calls.
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In this work, we assume that any external function has to adhere to some known

application binary interface (ABI). This means that any callsite to an external function in

the binary has to have a known calling convention from a finiteset of supported calling

conventions. More specifically, we assume all of the following is true:

1. All external functions can only take arguments either in registers or using the mem-

ory stack.

2. All external functions expect memory arguments at specific stack offsets.

3. All external functions expect register arguments only inspecific registers. These

registers are found in a set we callRegArgs

4. All external functions can only return values in specific set of registers we call

CallerSaves.

5. Any register other than theCallerSavesmust be saved and restored back if used by

an external function.

The previous assumptions are valid in almost all compiled code. The reason is

that external functions are usually shared between multiple applications and sometimes

between different systems. For them to be portable, they have to adhere to a certain ABI

with some specific calling convention such that it is more convenient for compilers to

interface with them. In practice, we found that almost all libraries adhere to the above

assumptions in all our tests.

In theory, external functions are not required to adhere to some certain ABI. De-

velopers writing source code usually specify a prototype for every external function they
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use, which includes the complete calling convention of the function. The compiler then

reads this calling convention and adheres to it while emitting low level binary code. One

challenge in dealing with binaries as we mentioned above is the lack of this prototype.

One example we found that does not adhere to these assumptions is very few in-

ternal compiler intrinsics. These are compiler specific functions inserted in the binary to

speed up specific tasks (or for other reasons). Very few of these intrinsics do not adhere

to the above assumptions since they are already known to the compiler. We support this

by maintaining a list of known compiler intrinsics with their custom calling conventions.

We do not support other compiler intrinsics not found in thislist and not adhering to the

above assumptions.

3.3.3 Detecting External Function Calls

At compile time, the compiler does not know the external function addresses at their

call sites. These addresses are only known when the operating system loads the binary.

Because of this, the compiler has to call such functions indirectly through some memory

location that the loader updates with the actual address of the called function.

There has to be a common language between the compiled binaryand the operating

system. The operating system has to know which memory locations to update when load-

ing the external libraries. Different systems implement different mechanisms of handling

this issue. For example, some Linux binaries use a dynamic relocation table, Windows

binaries use an import address table and so on.

In theory, since the loader is able to update these memory locations, these memory
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locations have to be visible to any static binary analysis system. All external libraries and

functions used in a binary can be statically known from the binary image.

The challenge exactly is how to determine which indirect call leads to which exter-

nal function. Static binary analysis and rewriting systemsusually rely on pattern matching

techniques that are mostly accurate and depend on certain compiler behaviors. Some of

these techniques include:

1. If the indirect call site uses the memory location that is visible to the loader (spec-

ified in the dynamic relocation entry or the import address table), then it is simple

to determine which function it is calling by looking up in that table. IDA Pro [31]

uses this method.

2. Some compilers implement procedure linkage tables whichare composed of exter-

nal function stubs. Each stub has an indirect jump to the external function. Such

stubs are usually standard and can be detected accurately. The well-known Linux

disassembler toolobjdump uses this technique.

There are some other techniques compilers use to make external calls. Such tech-

niques are outside the scope of this dissertation. Static binary analyzers can fail in detect-

ing if an indirect call is calling an external function or not. In all our tests this happened

in very rare cases, but it needs to be handled for correctness. In such cases, our IR repre-

sentation of indirect calls guarantees correct rewritten binary execution as we discuss in

the following section.
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3.3.4 External Calls IR Representation

We divide indirect call sites in a binary into two categories: 1) The call sites that

are detected to call external functions using a static binary analyzer. 2) All other indirect

call sites that may or may not call external functions.

We maintain a list of the prototypes of as many external functions as possible (like

the standard libraries functions). This list may not be exhaustive since for custom DLLs

it is hard to ensure they are all considered.

For detected external calls, if their prototypes are known (by searching the known

prototypes list), we present them as direct calls to these external functions in the IR and

pass all required arguments with their correct data types. For unknown prototypes, we

represent them by a call to a special function we create in theIR called thetrampoline

function. We discuss the trampoline function in the next section.

For all other indirect call sites that are not guaranteed to call external functions, we

use the call translation mechanism described in our WCRE paper [63]. The call transla-

tor function is a static function inserted in the IR that has alarge switch statement that

redirects control from constant original function addresses to their corresponding IR func-

tions. The number of cases in the switch statement is the number of all IR functions that

can be possibly reached indirectly in the original binary. We replace the assertion in the

default case of the translator function by a call to thetrampolinefunction described in the

next section. The translator function looks like the function in figure 3.1 in this case.

In order for the rewritten binary to work correctly, we maintain the same dynamic

relocation entries (or the import address table entries) attheir original locations in the
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switch (input_address) { 

case 0x400:  

 call rewritten_0x400; 

case 0x500:  

 call rewritten_0x500; 

…… 
 
default: 

 call *input_address; 

} 

Figure 3.1: The call translator function

rewritten binary. We discuss this more after we describe thetrampoline function.

External calls get executed in the rewritten binary the following way: first, a call

to the call translator function is executed and the call translator function case statement

comes to the default case (since the external call address isnot any one of the original

function addresses). The trampoline function gets executed and redirects the control to

the external function as we discuss in the next section.

3.3.5 Trampoline Function

The trampoline function is a custom function only existing in the recoveredIR

without a corresponding function in the input binary. It is used to redirect control to

external functions at external call sites in one of three cases: 1) In case the call site could

not be proven to call a specific external function. 2) In case the external function has an

unknown prototype. 3) Or, in case the external function has aknown prototype but with a

variable number of arguments.

99



Thetrampolinefunction has to do all of the following tasks:

1. Redirect control to the correct external function.

2. Pass memory and register arguments correctly from the IR call site to the external

callee.

3. Pass the return value(s) correctly from the external callee to the call site.

In order for the trampoline function to work correctly, it takes the following argu-

ments:

1. The function address being called (usually a register or aload from some memory

location).

2. Theabstract stackpointer value in the IR right before the call site.

3. The values of all registers in the setRegArgsbefore the call.

4. Pointers to place holders of the return values, one for each register in theCaller-

Savesset.

5. Pointer to a variable holding the stackbalance numberof the external call.

The first argument above is the function address. This is usually a result of some

register read or some memory load. It cannot be a direct address that is known since the

call site is for an external function. This address is used inside the trampoline function to

redirect control correctly to the destination external function.

The second argument is needed to adjust the memory argumentsand put them into

their correct offsets on the memory stack of the rewritten binary. Theabstract stackis the
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stack array in the IR resembling the original stack in the input binary. More information

about how the physical stack in the input binary is convertedto abstract stack arrays in

the recovered IR can be found in our EuroSys paper [3].

The third set of arguments are required to pass the correct register argument values

to the external function. We pass all of the possible register arguments conservatively.

The fourth set of arguments are pointers to variables declared at the call sites of the

trampoline function to pass the return values back to the caller. The trampoline function

updates each of them.

The last argument to the trampoline function is a pointer to avariable declared at

the call sites of the trampoline function to hold the stackbalance numberof the external

call. This balance number is the difference between the stack pointer before and after

executing the external function. The abstract stack pointer value in the caller has to be

adjusted to this value after returning from the trampoline function.

void trampoline ( fn_address, SPORIG, RegArgs, CallerSaves, BalNum) 
{ 

/* Assume the physical stack pointer register is: E SP */ 

(1)  Let SP CURR = ESP, SIZE = SPORIG - SP CURR 
(2)  Allocate a temporary memory at SP TEMP 
(3)  Save the contents between SP CURR and SP ORIG to the temp 

memory between: SP TEMP and SP TEMP + SIZE 
(4)  Set ESP = SP ORIG 
(5)  Copy all RegArgs values to the physical registers 
(6)  Call the function at fn_address 
(7)  BalNum = SPORIG - ESP  
(8)  Copy return register(s) to CallerSaves 

(9)  Restore back the contents between SP TEMP ���� SP TEMP + SIZE 

to between SP CURR ���� SPORIG 
(10)  Set ESP = SP CURR 
(11)  Return 

} 

 

Figure 3.2: Pseudo code of the trampoline function

Figure 3.2 shows pseudo code of the trampoline function withthe previously dis-
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cussed arguments. The memory stack layout of the rewritten binary immediately after

executing a call to the trampoline is shown in figure 3.3. Line(1) in the code saves the

current stack pointer of the rewritten binary in a local variable. Line (2) allocates a tem-

porary storage that is needed for saving some values as we show next.

The rewritten stack layout shown in figure 3.3 contains the abstract stack array

where its TOP value is represented by theSPORIG variable. The abstract stack is the IR

array that represents the input binary’s physical stack of the caller. For the external call to

be executed correctly, it needs to have the same stack view aswhat was there in the input

binary, which means the stack pointer must point to the top ofthe abstract stack frame.

The problem that happens in this case is that functions usually assume that any address

that is lower than the current stack pointer at the function’s entry point is free space that

can be used by local variables of the function. In this particular case, the stack addresses

between the top of the abstract stack pointer (SPORIG) and the top of the rewritten stack

frame (SPCURR) are used by the caller function in the IR as shown in figure 3.3. This

means that we have to save this stack region such that if the external function allocates

some stack space and corrupts this region, we can restore it back.

This is exactly what line (3) in figure 3.2 does. It saves the region on top of the

abstract stack frame in the rewritten stack frame to the temporary storage.

Line (4) in figure 3.2 sets the current physical rewritten stack pointer to point to the

top of the abstract stack frame of the original caller function. Line (5) copies the register

arguments to the actual physical registers. Line (6) calls the external function.

At the point of the call at line (6), the physical registers have all the arguments. The

memory stack view is the same as what was there in the input binary. Hence, the external
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function will produce the same result as the input binary.

After returning from the external call, line (7) stores the balance number by sub-

tracting the stack pointer before and after the call. Line (8) copies the return physical

registers into the IR return variables. Line (9) restores back the stack memory region that

was saved in line (3). Line (10) restores the physical stack pointer to its value at the entry

to the trampoline such that line (11) can return back to the correct call site.

Because the trampoline code writes to physical registers, and reads from them, it

is usually written as a separate function in low level assembly, and then linked with the

rewritten binary when re-compiled. This way we maintain thereadability of the recovered

IR by hiding all these low level details. The user will only see a call to the trampoline

function with the first argument being the function that willbe called (or some pointer to

it).

Return Address 

Outgoing Arguments to 

Trampoline Function 

IR Variables and 

Temporaries / Saves 

External Arguments 

Other original binary 

stack variables 

IR Variables and 

Temporaries / Saves 

 

 

 

 

SPORIG 

Abstract 

Stack Array 

SPCURR 

Higher 

Address 

Lower 

Address 

Figure 3.3: The memory stack layout after executing a trampoline call
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3.3.6 Correctness of the Trampoline Function

The trampoline function in figure 3.2 achieves all the three goals stated at the be-

ginning of the previous section under the assumptions in section 3.3.2. We clarify this

here.

The first goal of the trampoline function is to redirect the control to the correct

external function. This is guaranteed as long as the addressof the function passed to the

trampoline is correct.

We notice that the address passed to the trampoline is the address of the external

function in the input binary which might be different than the address of the same function

in the rewritten binary (because of different loader behavior). The key point here is that

the place holders of these addresses are exactly the same in the input and the rewritten

binary as we state at the end of section 3.3.4. These place holders are known to any static

analyzer as they have to be visible to the loader before executing the binary. They depend

on the binary format (dynamic relocation tables in ELF or import address tables in PE).

Under the assumption that any external call has to load the function address from

these place holders, then the external function address passed to the trampoline function

is correct and the execution will be redirected to the correct external function.

The second goal of the trampoline function is that any register or memory argu-

ments have to be passed correctly to the external function. Register arguments are passed

correctly in line (5) of the function in figure 3.2. Memory arguments are passed correctly

since the external function has the same stack view as the original binary’s stack view

which is guaranteed by changing the stack pointer value in line (4) of the function to
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point to the top of the abstract stack frame (which contains all arguments).

The third goal of passing the returns correctly is achieved by executing line (8) of

the trampoline function.

3.4 Effect of inaccurate function boundaries

In this section, we discuss the effect of having inaccurate function boundaries on

the function API recovery process described in this chapter. As per chapter 2, the IR

might have inaccurate function boundaries as well as spurious functions that have to work

correctly in all cases for guaranteed functionality of the IR as we discussed in chapter 2.

This section is divided into two parts, the first part addresses the modifications

required for the previous stack memory arguments identification techniques for Second-

Write presented in [3]. The second part talks about the register arguments identification

techniques presented in this chapter.

3.4.1 Memory Stack

When the function boundaries are not accurate, the assumption that every function

has a return address on top of its physical stack (which is thestack memory in the orig-

inal binary) is no longer valid. This assumption is used in the EuroSys work recovering

abstract stack and arguments from physical stack accesses [3]. This assumption is not

usually valid in spurious code.

In this section, we show that modifications are needed to the previous high level

symbol promotion work [3] in case procedure boundaries are not accurate. We first intro-
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duce a summary of our previous technique and why it cannot work in case of inaccurate

procedure boundaries (spurious code), then we proceed withthe modified technique to

overcome that and prove that it will work.

Our previous symbol promotion work aims at converting the physical stack frame

in the original binary to a set of abstract stack frames (which are IR arrays representing

the physical stack) for every recovered procedure in the IR. This is an important step of

the high level IR recovery. The way we do that is that we allocate a local array in every IR

procedure with a size that is equal to the maximum allocated stack size in this procedure.

This maximum size can be a fixed constant or a non-constant expression. In case we

cannot come up with an expression, we do not convert the physical stack into abstract

stacks.

Instead of describing the details of the previous techniques, we give an example of

why they will not work in case of inaccurate procedure boundaries. Consider the code

example shown in figure 3.4-a. In this example, functionfoo is split into two parts in

the IR foo andfoo split. Assume the indirect jump infoo was compiled from some case

statement whose targets were not known in the IR and one of itstargets is: foo split.

Assume the indirect call is calling the actual procedurebar. foo split is not an actual

procedure in the input binary and will not have any return address allocated at the top of

its stack in the IR as it is originally a part offoo. bar will have a return address allocated

on top of its stack by the call instruction. If we use the rulesdescribed in our previous

paper [3], and assuming the return address is four bytes long, the local variable access at

offset 5 infoo split will be translated as index: (5-4) = 1 infoo’s IR abstract stack array

to account for the return address (which does not exist in this case). This will result in a
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wrong access since the right one is actually 5 (without subtracting 4 bytes for the return

address). On the other hand, the access to offset 9 inbar will be translated correctly to

offset (9-5-4) = zero in the recovered stack array offoo becausebar has a return address

stored on top of its stack (the call instruction pushes that return address on the stack). The

recovered code which will not work correctly is shown in figure 3.4-b.

foo:  
sub $10, %esp 
… 
movb $4, 5(%esp) 
jmp *eax  
… 
//Arg moved to TOP 
movb %dl, (%esp)  
call *ebx 
… 
… 
//not a function 
foo_split:  
movb 5(%esp), %ebx 
… 
 
 
bar: 
sub $5, %esp 
movb 9(%esp), %edx 
… //No calls 
 

foo  () {  
char MStack[10]; 
… 
MStack[5] = 4; 
call_translator (eax, &MStack[0]); 
… 

     MStack[0] = dl; 
 

call_translator (ebx, &MStack[0]); 
… 

} 
 
foo_split  (char* Parent_Stack) { 

char ebx = Parent_Stack[1]; 
… 

} 
 
bar  (void* Parent_Stack) { 

char MStack[5]; 
char edx = Parent_Stack[0];//Arg1 
… 

} 

foo  () {  
char MStack[14]; 
… 
MStack[9] = 4; 
call_translator (eax, &MStack[4]); 
… 
MStack[4] = dl; 
MStack[0] = ret_address; 
call_translator (ebx, &MStack[0]); 
… 

} 
 
foo_split  (char* Parent_Stack) { 

char ebx = Parent_Stack[5]; 
… 

} 
 
bar  (char* Parent_Stack) { 

char MStack[5]; 
char edx = Parent_Stack[4];//Arg1 
… 

} 
(a)  (b)  (c)  

 

 

 

 

 

 

Figure 3.4: Stack Functionality. a) The input binary. b) Thebroken recovered IR using

previous techniques. c) The correct recovered IR.

To avoid this problem, we introduce our modified physical to abstract stack transla-

tion rules and prove they will work in all cases even for splitfunctions. Before we begin,

we introduce some notation. We assume a general case in the recovered IR of a call stack

(chain of recovered procedures reachable using calls/jumps in the original binary) with

lengthn where the entry point procedure is referred to as index zero in this chain. The IR

procedures in this chain may or may not be actual procedures in the original binary. The

following notation will be used:
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• SPx refers to the physical stack pointer value in the input binary at the entry point

of procedurex in the chain before executing its first instruction.

• ST(i,x) refers to the physical stack pointer value in the input binary after executing

instructioni inside procedurex in the chain. In casei is a call instruction,ST(i,x)

represents the stack pointer value after executing the calland pushing the return

address, but before jumping to the callee.

• MStackx1
[x2] is the recovered abstract stack array in the IR indexed atx2 for pro-

cedurex1 in the chain.

• SZx is the recovered size ofMStackx array in bytes.

First, the recovered size ofMStackx is calculated as follows:SZx = max(SPx -

ST(i,x)) ∀i ∈ procedurex in the chain. This means the maximum growth in the stack in

this particular procedure. The growth of the stack pointer value includes all growth due

to any kind of stack pushes including the return address pushthat happens with a call

instruction. This is a major fix to the previous work [3] that does not consider the return

address push during a call as a stack allocation.

Next, we assume the following relation holds for any recovered proceduren in

the chain:SPn =SPn−1 − Yn−1 whereYn ∈ Z, Yn ≥ 0. Yn represents the stack offset

immediately before proceduren − 1 jumps to proceduren. This relation means that the

physical stack grows in the negative direction when procedure n − 1 calls proceduren.

This is valid in most compiled code.

For any physical stack pointer value that can be representedas: ST(i,n) = SPn -
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Xn in the input binary whereXn ∈ Z, it will be translated to IR accessMStackn′(Xn,n)

[SZn′(Xn,n) − Tn(Xn)] where:

n′(Xn, n) =







































n, Xn > 0

n′(Xn + Yn−1, n− 1), Xn ≤ 0

Where SPn = SPn−1 − Yn−1

Tn(Xn) =








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
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


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





Xn, Xn > 0

Tn−1(Xn + Yn−1), Xn ≤ 0

Where SPn = SPn−1 − Yn−1

In the above recursive equations,Tn(Xn) represents the offset from the end of the

recovered abstract stack of proceduren for a particular physical offsetXn in the original

binary. n′ is some ancestor procedure ofn in the call stack.Tn(Xn) is measured from

the end of the abstract stack array because the physical stack grows backwards as per our

assumption above. For every physical stack pointer valueST(i,n) there are two important

definitions: 1) The originating procedure is the IR procedure from which this access

originates in the chain which is proceduren. 2) The landing procedure which is the IR

procedure whose abstract stack is the one accessed by translating this stack pointer value.

We refer to that procedure asn′ in our notation. Ifn′ = n then the originating procedure

and the landing procedures are the same which means the stackaccess refers to a local

variable inside proceduren. On the other hand, ifn′ 6= n this means that the stack pointer

value refers to an argument obtained from the parent proceduren′.

The intuition behind the above equations is: in cases whereXn > 0 the access is
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inside the local abstract stack frame because the stack grows in the negative direction, any

positive value subtracted from the stack pointer value at the entry point of the procedure

means a local allocation. It has to be translated to the same offset. On the other hand,

Xn ≤ 0 represent positive offsets relative to the stack pointer atthe beginning of the

procedure which means they are previously allocated in a parent abstract frame.

To implement this correctly in the recovered IR, a call instruction in the original

binary will be translated into a store of the return address into the location in the recov-

ered abstract stack array representing the stack pointer value immediately after the call

according to the above translation rules. This stack array location is passed as a pointer to

the caller. For jump instructions, the stack array locationwill be passed without storing

any return address. This can be shown in the code example in figure 3.4-c.

In cases when the stack size is not constant, or constant stack offsets cannot be

inferred from the binary, the translation rules above are implemented as runtime checks

in the same way described in [3] but with the new translation rules described above.

To prove this will always be correct, we prove that the recovered abstract stack

exactly resembles the original physical stack. Instead of comparing absolute values of the

physical and abstract stacks (which are runtime values), wecompare relative values on

the physical stack (stack differences) and prove they are exactly equal to the offset on the

abstract stack. The next lemma proves this.

Definition 3.1 A functional binary is a binary where there does not exist a memory

access accessing stack locations not allocated inside the binary. i.e. for any stack access

represented as:ST(i,n) =SPn −Xn, n′(Xn, n) ≥ 0 andXn ≤SZn

Preposition 3.1Any stack pointer value has to access either the same stack frame
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or an ancestor stack frame in the IR.i.e. n′(Xn, n) ≤ n

Proof Follows directly from the mathematical definition ofn′.

Lemma 3.1For anyn chain of IR procedures reachable using calls/jumps and form-

ing a call stack in the recovered IR of a functional binary, and for any instructioni in the

original binary, the physical stack pointer value ati relative to the physical stack pointer

value at the entry point of the landing procedure is exactly equal to the translated abstract

stack offset of that physical stack pointer value if the translation rules above are used.

This Lemma can be formulated as follows: for a particular physical stack pointer

value at instructioni represented asST(i,n) =SPn−Xn, SPn′(Xn,n)−ST(i,n) is exactly equal

to Tn(Xn).

Proof For cases wheren′(Xn, n) = n the proof is trivial by doing simple substitu-

tion in the formulas and the definitions above.

For cases wheren′(Xn, n) 6= n, we use mathematical induction. We prove the

relation atn = 1, assume it is valid atn and prove it atn + 1. In the proof, our left hand

side (LHS) isSPn′(Xn,n)−ST(i,n) and our right hand side (RHS) is:Tn(Xn).

Base Case:n = 1 In this case,n′ = 0 according to preposition (1). LHS =

SP0−SP1 +X1 =SP0 − (SP0 − Y0) +X1 = Y0 +X1 RHS =T1(X1) = T0(X1 + Y0) =

X1 + Y0 which is the same as the LHS.

Inductive Case: Assuming:SPn′(Xn,n)−ST(i,n) = Tn(Xn) we want to prove that:

SPn′(Xn+1,n+1)−ST(i′,n+1) = Tn+1(Xn+1)

LHS = SPn′(Xn+1,n+1)−SPn+1 +Xn+1 =SPn′(Xn+1+Yn,n) − (SPn − Y n) +Xn+1

AssumeXn+1+Yn = Pn, LHS =SPn′(Pn,n)− (SPn−Pn) = Tn(Pn) = Tn(Xn+1+
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Yn) = Tn+1(Xn+1) = RHS

Lemma (3.1) shows that the relative offsets between the physical stack pointer val-

ues in the original binary are exactly the same as the relative offsets on the recovered

abstract stack arrays. This implies correct stack memory behavior in all cases under the

assumptions stated earlier in this section.

3.4.2 Register Arguments

Earlier in this chapter, we presented a sound technique thatcan be used to recover

register arguments for any function in the binary. The technique is based on tracking

memory locations on the stack used to save and restore registers. The memory tracking is

done using a simplified version of the Value Set Analysis (VSA) technique [5] that runs

on the IR before the identification process takes place.

Our previous techniques for detecting register arguments will still be correct and

sound for spurious code provided that the Value Set Analysisis run on the IR after con-

verting the physical stack into an abstract stack using the translation rules discussed in the

previous section. This is necessary to ensure that the stackmemory values flow correctly

to spurious functions (as well as other functions). If the older stack translation presented

in our previous EuroSys work [3] is used, it might lead to inaccurate flow of values to

spurious code as discussed in the previous section.
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3.5 Results

3.5.1 Register Arguments and Returns

In this section we show the accuracy of the detected registerarguments and returns.

We get our results only for the C and C++ benchmarks shown in figure 2.8 and present

the average number of added register arguments and returns (false positives). We never

had any false negatives in any of the binaries we tested. We could not compare Fortran

binaries since currently, we do not support reading Fortranprototypes from debugging

information.

As shown from the figure 3.5, the average number of false positive arguments is 0.2

per function. The average number of false positive returns is 0.44 registers per function.

While collecting these results, we assume that return registers are eithereax or

edx or both in x86. This is valid in all the code we know of that runson x86 systems

since this is a standard ABI feature for x86. Our main algorithm does not require this

feature to be functional.

The number of false positive return registers is higher because the return registers

identification process is usually less accurate than register arguments identification pro-

cess. To see why this is true, consider a functionfoo that is called 10 times in the whole

binary in different call sites. To identify register arguments tofoo, only the entry point of

foo has to be analyzed for uses of arguments. To analyze forfoo returns, all 10 callsites

have to be analyzed for real uses of the return registers. Since the number of callsites of

functions in the binary is usually larger than one, the return registers identification process
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is likely to introduce more false positive returns.

0

0.2

0.4

0.6

0.8

1

1.2

a
st

a
r

b
zi

p
2

d
e

a
lI

I

g
cc

h
2

6
4

re
f

h
m

m
e

r

lb
m

li
b

q
u

a
n

t

m
cf

m
il

c

n
a

m
d

o
m

n
e

tp
p

p
e

rl

p
o

v
ra

y

sj
e

n
g

so
p

le
x

Fa
ls

e
 P

o
si

ti
v

e
s 

(N
u

m
. 

o
f 

R
e

g
s)

Arguments Returns

Figure 3.5: Accuracy of register arguments and returns

In contrast to the work in [10], our method has three advantages: (i) it is guaranteed

to discover all arguments; (ii) it has been demonstrated on amuch larger programs; and

(iii) it is orders of magnitude faster. First, their method cannot guarantee full coverage of

arguments and returns because of being a dynamic analysis. Any unused argument or re-

turn during an execution trace can be missed. Missing arguments or returns is acceptable

for human understanding of binaries, but unacceptable for rewriting binaries. Second, our

method has been evaluated on far more functions (48,854 functions for our method, vs.

just 13 functions for theirs.) Third, our analysis is much faster: for example, it takes only

30 seconds to analyze a program likesoplexwhich has 116,743 instructions containing

1,523 procedures and produces prototypes for all of them. Intheir case, they need the

same 30 seconds to only extractMD5_Final which is a single function of 67 instruc-
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tions. This shows that our analysis is two to three orders of magnitude faster than their

method, at the expense of a small loss in precision.

3.5.2 Trampoline Function Overhead

In this section we show the effect of inserting the trampoline function discussed in

section 3.3 on the overall performance of the rewritten binary.

As we discussed in section 3.3, the trampoline function is inserted to guarantee

correct execution of external functions that do not have a known prototype, or for func-

tions with variable number of arguments. The trampoline function adds some overhead

of restoring the state of the rewritten binary as it was in theoriginal binary before running

the external call.

We measure the time spent in the trampoline function relative to the whole run

time of the rewritten binary. We do not consider the time spent in the external function

itself since this time is not considered an overhead. We use the Perf Linux performance

monitoring tool to measure the overhead. All original binaries were compiled using the

maximum optimization level when performing this experiment.

As shown from the figure 3.6, the overhead of the trampoline function is negligible

in all cases. The average overhead is 0.18% of the runtime of the rewritten binary. In

many cases, there is no overhead at all when the binary does not have any external call

with unknown prototype or a variable number of arguments. This shows that the cost of

achieving correctness in case of rewriting external functions that do not have a known

prototype is very small.
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Figure 3.6: Overhead of the trampoline function in the rewritten binary
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We do not show the runtime of the rewritten binaries comparedto the runtime of

the original binaries here since it involves many other factors in the SecondWrite system

that are outside the scope of this dissertation. This is illustrated in our previous work [3].

Some binaries use external compiler intrinsics to achieve some tasks. Those intrin-

sics we do not have prototypes for. This behavior is shown in calculix binary which has

3% trampoline overhead. In calculix, lots of low level Fortran intrinsics are used and Sec-

ondWrite does not have their prototypes and hence it used the trampoline function. They

get called with high frequency.

The other main reason some binaries have larger trampoline function overhead is

calling the printf family functions (like printf, scanf, fprintf, ...). Some binaries like gcc,

dealII, astar and sphinx use them more often than other binaries. Those functions have

a variable number of arguments and hence SecondWrite uses thetrampoline function

while rewriting them. For such printf family functions, we have implemented some static

techniques that are now under test which can detect the format string and extract the

exact number and data types of arguments; this removes the need to insert the trampoline

function for these cases. The results above do not reflect this implementation.

3.6 Related Work

Cifuentes and Simon present techniques to recover procedureabstraction from bi-

naries [17]. They present an abstraction language that can specify machine independent

prologue patterns, epilogue patterns, stack frames, argument locations, return value regis-

ters, and other issues related to procedure calls. Their abstraction depends on specifying
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a certain ABI that the binary has to follow. This abstraction language is used in the

UQBT [16].

In her PhD dissertation, Cifuentes [15] presents a simple technique based on live-

ness analysis to detect register arguments and returns. This technique is implemented in

the dcc decompiler.

Zhang et al. present a technique to recover function arguments and returns from

executable [78]. Their technique is similar the brute forcetechnique described in section

3.2 which leads to imprecise results.
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Chapter 4: Recovering Floating Point Stack Allocated Variables

4.1 Introduction

In this chapter, we describe our techniques to convert all the x86 floating point stack

operations into higher level code that uses floating point variables, function arguments and

function returns, instead of the low level stack layout usedin the assembly. We present

sound techniques for this process and prove that they work inall scenarios under certain

assumptions that are stated clearly in this chapter.

This section has five main parts. Section 4.2 discusses the x86 floating point stack

and how it is maintained in the x86 executables. Section 4.3 discusses the assumptions

based on which we develop our techniques. Section 4.4 describes a basic recovery tech-

nique that can work in all cases given that all indirect branches are resolved correctly from

the executable. Section 4.5 discusses essential techniques that are necessary in case some

indirect branches are unresolved in the binary. Finally in section 4.6, we prove that the

stated techniques can work under the stated assumptions. Results as well as related work

are presented at the end of the chapter.
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4.2 x86 Floating Point Stack Layout and Problem Overview

We begin by introducing the x86 floating point stack. The floating point hardware

stack has a maximum height of 8 which means there are only 8 physical floating point

registers that can be used at any time. The names of those registers, as used by the

hardware instructions, are dynamic and are relative to the current top of the floating point

stack.

If we assume the fixed physical register names are:PST0 - PST7, then the x86

assembly instructions will refer to another set of namesST0 - ST7, whereST0 always

refers to the register at the top of the stack. For example, ifthe height of the stack is one,

thenST0 refers toPST0. If the stack is full (with stack height of eight), thenST0 refers

to PST7. In general,STx is mapped toPSTy wherey = TOP(I)− 1− x whereTOP(I)

is the stack height at instructionI and0 ≤ y < TOP(I).

Whenever a function returns a floating point value in a register, it pushes the value

on the floating point stack. Whenever a function takes floatingpoint values as arguments

in registers, the caller pushes the values on the floating point stack. It is assumed that

TOP(I) cannot be negative at any instructionI.

In the recovered intermediate representation (IR), we create floating point variables

corresponding to every physical floating point register in the hardware. For simplicity,

we use the same physical stack register namesPST0 - PST7 to refer to the IR floating

point variables as well. Such variables are declared as local variables for every recovered

function in the IR.

Decoding the floating point stack operations means mapping every assembly operand
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amongST0 - ST7 into a corresponding IR register amongPST0 - PST7. It turns out from

the previous equations that we only need to identify for every instructionI, what is the

correspondingTOP(I) in order to decode the floating point operands successfully.Figure

4.1-c shows an example of the recovered output of the decoding process of the assembly

instructions in figure 4.1-b. TheTOP(I) values are shown in figure 4.1-a.

TOP Value:  
 
0 
 
1 
 
2 
 
2 
 
2 
 
1 
 
1 

Foo:  

 

fld 0x08(%ebp) //push arg1 ���� st(0) 

fld 0x10(%ebp) //push arg2 ���� st(0) 

fadd %st(1)    //st(0)=st(0)+st(1) 

fxchg %st(1)   //st(1) ���� st(0) 

fstp 0x8(%esp) //pop st(0) ���� Memory       

ret 

 

double foo (  
double arg1, double arg2)  
{ 
 double PST0,PST1,temp; 
 PST0 = arg1;  
  
 PST1 = arg2;   
  
 PST1+=PST0; 
  
 temp=PST1; PST1=PST0; 
 PST0=temp; 
  
  
 return PST0; 
} 
 

(a)  (b)  (c)  
 

 

Figure 4.1: Floating Point Stack Illustration: a) TOP values b) Original assembly code c)

Recovered Code

If there is no indirect or unknown control transfer instructions in the program, the

floating point stack decoding problem is trivial because we can traverse the control flow

of the program, tracking the floating point stack height at every point, and set the value of

TOP(I) at every instructionI depending on the floating point operations observed. This

analysis will not work in the presence of indirect and external control transfers because

when we hit such transfers, we will not know what code will be executed next and how

the height of the stack will be affected by this control transfer. The following sections

describe how to overcome this problem.
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4.3 Floating Point Stack Assumptions

It is statically indeterminable to be able to decode the floating point operations

correctly in all cases in the presence of unknown indirect control transfer instructions.

In this work, we show that if we make some assumptions, we can actually guarantee a

correct and functional representation of the floating pointstack operations in all cases

that adhere to those assumptions. Our assumptions are:

1. At control-flow join points, the floating point stack height must be the same for

every predecessor basic block.

2. At indirect and external calls, the floating point stack height must be zero before

the call.

3. Every indirect or external call can return at most a singlefloating point value on the

floating point stack.

The above assumptions are correct in compiled code in every case in every compiler

we are aware of. They are also true in most hand written assembly code, but may not be

always true in theory. The justifications for the assumptions for compiled code are as

follows:

1. If the stack height is not balanced at join points, any subsequent floating point stack

access will be indeterminable as it might access different values depending on the

path taken at run time.
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2. For indirect and external calls, the behavior of their targets is usually unknown to

the compiler, and hence the compiler must assume they might use all the floating

point stack registers. As a result it has to clean the stack before such calls. We

can state this assumption by saying we assume floating point registers are scratch

registers. Theoretically, a compiler might know in some cases the behavior of the

functions being called and may not clean the floating point stack, but practically we

are not aware of such a compiler.

3. The assumption that the maximum number of floating point register returns equals

one comes from the fact that we are not aware of any calling convention that allows

the return of more than one floating point stack register fromindirect calls and

externals.

4.4 Basic Approach for Decoding the Floating Point Stack

In this section, we describe our basic approach to decode thefloating point stack.

In this basic approach, we assume that all targets of indirect branches in the executable

are known. This assumption is relaxed in the next section. Resolving the targets of

indirect branches in compiled executables can be done usingefficient heuristics like the

ones described in [14].

To solve the floating point stack decoding problem, we use a symbolic analysis

scheme by maintaining a symbolic valueXi for every indirect and external calli repre-

senting the difference of the floating point stack height before and after the call. Some-

times we refer to that difference asStackDiff in this chapter. After doing the symbolic
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analysis, eachTOP(I) will become a symbolic expression in terms of theXis. We build

symbolic linear equations to solve forXis. Once theXis are calculated,TOP(I) will be

known for every instruction.

We translate the above assumptions into the symbolic analysis propagation rules

present in figure 4.2, explained as follows. For internal function calls, we use helper vari-

ablesY (F ) to represent the symbolic expression representingStackDiffof every function

F . The executable is traversed in a depth first search manner starting from the entry point

function for the binary, and from functions that are never called directly in the code. The

assumptions (1) through (3) in section 4.3 above represent the symbolic equations in lines

(1) through (3) in figure 4.2. The actual values ofXis can only be zero or one because

before the indirect and external calls, the stack height is zero according to assumption (2),

and the call can return at most one value according to assumption (3). The height of the

stack cannot go negative and hence the actual value of theXis cannot be negative.

The symbolic equations represented by equations (1) through (3) in figure 4.2 along

with the symbolic unknownsXis are transformed into a linear system of equations. To

solve these equations, we employ our custom linear solver that categorizes the equations

into disjoint groups based on the variables used in every equation, and then solves every

group only if the number of equations is equal to the number ofunknowns. We keep

propagating calculated values to other groups until no morecalculated values are present.

Most of theXis are usually solved using equation (3) in figure 4.2.

The remaining unknowns are assumed to take a value ofXi = 1 conservatively.

This will be always correct because from our third assumption in section 4.3 above, the

stack height is either zero or one after every indirect and external call. In this case, if we
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Unknown Symbolic Values :

Xi, whereXi = StackDiffof indirect/external callsitei

Helper Variables :

Y (F ) = StackDiffof functionF , whereF is an internal function

TOP(I) = top of the stack after executing instructionI

TOPb(I) = top of the stack before executing instructionI

Initial Conditions :

Root functions “not called directly anywhere” as well as the entry point function

have entryTOPb(I) = 0 whereI is the first instruction of those functions.

Data flow rules :

For every instructionI:

if I = push ...⇒ TOP(I) = TOPb(I) + 1

if I = pop ...⇒

if (TOPb(I) = Xi) Xi = 1 ——————–(3)

TOP(I) = TOPb(I)− 1
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if I = callF ⇒

if (F is an external or indirect)

TOPb(I) = zero ——————– (2)

TOP(I) = Xi

else

TOPb(A) = TOPb(I) whereA is the first instruction inF

AnalyzeF to getY (F ) = func(X1, ..., Xn)

TOP(I) = TOPb(I) + Y(F)

if I = jmpL ⇒

AssumeL points to a set of known targetsS

∀i ∈ S let instructionIi be the instruction ati

⇒ TOPb(I) = TOPb(Ii) ——————– (1)

if IR = return fromF ⇒

Y (F ) = TOPb(IR)− TOPb(A), A is the first instruction inF

∀Z = return fromF ⇒ TOPb(Z) = TOPb(IR)

∀I ∈ C whereC is the set of call sites ofF ⇒ TOP(I) = TOPb(IR)

if I = any other instruction

TOP(I) = TOPb(I)

Figure 4.2: Data flow rules used to decode the floating point stack
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declare by mistake that a particular indirect call has one element on the stack top after

its return; this element will never be accessed. In this case, even if there are subsequent

floating point stack operations, they have to push values on the stack before reading them.

The floating point register arguments and returns are declared in the IR as follows:

a) Whenever a function hasTOPb(I) > 0 at its entry point instructionI, the function is

declared in the IR to take as many floating point values as the value ofTOPb(I). They will

be passed as arguments and copied to the correct local variables according to the mapping

we described earlier. b) WheneverXi or Y (F ) are greater than zero at a call site, this call

site will be returning as many float returns as theY (F ) or theXi values in the IR and they

will be copied to the corresponding local variables in the callers.

4.5 Decoding the Floating Point Stack in the Case of Unresolved Indirect

Jumps

We say that an indirect jump in the binary is not resolved whenthe jump table

identification heuristics used during disassembly (such asin [14]) fails and thus no target

addresses are statically identified for the indirect branch. When this happens, portions of

the input binary can be disassembled as separate functions in the IR, but in fact they are

just some targets of unresolved branches in the original binary. This causes a problem to

our floating point analysis technique described above sincethe floating point height after

indirect jumps will not be known. We refer here to both indirect unconditional jumps

as well as indirect conditional branches but not indirect calls. Indirect calls are handled

correctly in the previous section by assuming the TOP value after them is either zero
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or one. In the rest of the section, we use the term ‘branch’ to refer to both conditional

branches and unconditional jumps.

Applying the same indirect and external calls technique described in the previous

section will not work for unresolved indirect branches. To see why, consider equation (2)

in figure 4.2 which sets the TOP variable to zero before indirect calls. If we set TOP to be

zero before unresolved indirect branches, we are implicitly assuming that the correspond-

ing case statements in the original source code cannot have register-allocated floating

point variables defined before the case statement and later used inside the case statement.

Any optimizing compiler can invalidate this assumption which leads to a problem. Since

the jumps are one way transfers, putting any kind of constraint on the TOP value after the

jump instruction is not feasible.

To clarify the issues with indirect jumps that are unresolved, consider the code

example shown in figure 4.3-b. In this code, functionfoo has an indirect jump, and let us

assume that one of its targets (located at labelA in the figure) is unresolved. For a binary

analysis tool with a complete code coverage (like SecondWrite [63]), the code atA will

be recovered as part of a new function in the IR since no director indirect control transfer

instruction was detected to reachA. By looking into what the code does, the part before

the indirect jump pushes two elements on the floating point stack, and then later after the

jump these two elements are being added and the added value isbeing returned from the

function. If we assume a value of zero for TOP before the indirect jump, it will be not

true since there are two elements present on the stack at thispoint.

Before we describe our method to handle such a case, we mentionhere that current

known heuristics to resolve jump tables from binaries are very accurate. For example,
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TOP Value:  
 
0 
 
1 
 
2 
 
2 
 
 
 
 
 
 
X 
 
X 
 
X 
 
X-1 
 
X-1 

f oo:  

 

fld 0x08(%ebp) //push arg1 ���� st(0) 

fld 0x10(%ebp) //push arg2 ���� st(0) 

jmp *%ecx      /* jumping to A:  
    (part of Foo) */ 

 

 

A: 

fadd %st(1)    //st(0)=st(0)+st(1) 

fxchg %st(1)   //st(1) ���� st(0) 

fstp 0x8(%esp) //pop st(0) ���� Memory       

ret 

 

double ST[8], TOP;  
void foo (double arg1,  
   double arg2) { 
 double PST0,PST1,temp; 
 PST0 = arg1;  
 
 PST1 = arg2;   
  
 TOP=2; ST[0]=PST1;  
 ST[1]=PST0; 
 call_translator (ECX); 
 return; 
} 
 
 
void A() { 
 
 PST1+=PST0; 
  
 temp=PST1; PST1=PST0; 
 PST0=temp; 
   
  
 return PST0; 
} 
 

(a)  (b)  (c)  
 

 

Figure 4.3: Floating Point Stack Problem with Indirect Jumps: a) TOP values b) Original

assembly code c) Recovered Code
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SecondWrite uses a modified version of the heuristics described by Cifuentes and Em-

merik [14] which leads to almost 100% accurate recovery in binaries compiled from two

compilers (GCC and Visual Studio). This shows that the technique described in the pre-

vious section handles most of the cases. The techniques described here are needed in

case such heuristics fail (may be for a compiler not known to the community, or for hand

coded assembly). Our method is important since without it, even a single unresolved

branch may result in non-functional recovered IR from the binary.

In order to solve this problem, we perform a check first to see if we need to imple-

ment this technique and not the other one described in the previous section. The check

algorithm is shown in algorithm 6. The algorithm returns false meaning that no adjust-

ments are needed if all indirect jumps are resolved. In this case, the technique in the

previous section is enough. If at least one indirect jump is not resolved, then for every

recovered function in the IR having no direct call or direct jump to it, we check to see if

there is any instruction accessing the floating point stack (by running the functionAccess-

esFPStack. If so, then this IR function is identified in theAdjustsset for later processing.

The functionAccessesFPStack(F) conservatively returns true for any functionF

which cannot be analyzed statically to determine if it uses the floating point stack. Exam-

ples of such functions include IR functions which have unresolved indirect jumps domi-

nated by the function entry. One target of the indirect branch might use the floating point

stack and we should assume that for correctness.

Once the check in algorithm 6 returns true, we proceed to apply the same data flow

rules as in figure 4.2 but with the modified unknown variables and initial conditions as

shown in figure 4.4. We only set the executable’s entry point TOP value to be zero. We do
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Algorithm 6 Algorithm to check if adjustments are needed to the floating point stack

recovery
1: Input: Funcs: a set of recovered IR functions with their complete bodies reachable

only indirectly

2: Input: Jumps: a set of unresolved indirect jumps in the IR

3: Output: adjustmentNeeded: a boolean representing the need to adjust the floating

point stack for unresolved indirect jumps

4: Output: Adjusts: A set of functions detected to have floating point accesses

5: adjustmentNeeded=false

6: if Jumps6= φ then

7: for all F ∈ Funcsdo

8: if AccesseFPStack(F) then

9: adjustmentNeeded=true

10: Adjusts= Adjusts∪ F

11: end if

12: end for

13: end if
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Unknown Symbolic Values :

Xi, whereXi = StackDiffof indirect/external callsitei

yi, whereyi = TOPof the floating point stack at the entry point of some IR function

i

Helper Symbolic Variables :

Y (F ) = StackDiffof functionF , whereF is an internal function

TOP(I) = top of the stack after executing instructionI

TOPb(I) = top of the stack before executing instructionI

Initial Conditions :

TOPb(I) = 0 whereI is the first instruction of the entry point function.

Data flow rules :

Same as before in figure 4.2.

Figure 4.4: Modified initial conditions for the data flow rules decoding the floating point

stack
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not do that for other functions that are not reachable directly (we call them Root functions

in the original data flow rules in figure 4.2). We set the TOP value for other functions

reachable indirectly to be new unknownsyi’s. The reason theseyi’s are not set to zeros

is that such functions reachable indirectly can be some unresolved branch targets and

not actual functions. For branch targets, it is acceptable to have floating point variables

pushed on the stack at their entry points.

We solve the linear system of equations as before getting values for all unknown

Xis andyis. For all unknownXi’s, we set their values to ones conservatively as before.

After solving all equations and setting all unknownXis to ones, some unknowns

(yis) might remain. This is unlike when using the techniques presented in the previous

section where at every point in the binary the top of the stackbecomes known after solving

all equations and setting all unknowns to ones. If stack height is not known, we use a run

time global variable to represent the current stack height and use it to index a global array

that simulates the physical floating point stack. The challenge here is to make correct

transfers between using local variables when the stack height is known to using the global

runtime variables when the stack height is not known.

To convert floating point stack accesses into variable accesses in the IR, we follow

the rules stated in figure 4.5. The left hand side shows the original binary instruction,

and the right hand side shows the instruction that has to be emitted into the IR. Below we

discuss these rules.

For any instruction accessing a floating point register where the TOP value is known,

we do a direct translation to IR local floating point variables since we know exactly which

variable the instruction is accessing. For instructions accessing floating point registers
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# Binary instruction IR code inserted 

1 I = op (st(i)), TOPb(I) = constant I = op (PSTTOPb (I)-1-i) 

2 
I = op (st(i)), TOPb(I) ≠ constant 

Assume C(I) = StackDiff of instruction I 

I = op (GST[TOP-1-i]) 

TOP = TOP + C(I) 

3 

I = call F, F is known statically (direct call) 

U(F) = true, TOP(I) is known 

Note: If arguments are passed, they are copied to the local 

variables of the callees at their entries 

//Pass arguments only if TOPb(I) is known 

Call F (PSTTOPb(I) – 1 - i, PSTTOPb(I) - i, …, PST0) 

//Move from globals to locals 

for (i=0: TOP(I)) 

     PSTTOPb(I) – I – 1 = GST[TOPb(I) – I – 1]  

4 

I = call F, F is known statically (direct call) 

U(F) = false, TOP(I) is known 

Note: If arguments are passed, they are copied to the local 

variables of the callees at their entries 

//Pass arguments only if TOPb(I) is known 

Call F (PSTTOPb(I) – 1 - i, PSTTOPb(I) - i, …, PST0, 

&retArg0, &retArg1, …, &retArgTOP(I) - 1) 

//Move from return pointers to locals 

for (i=0: TOP(I)-1) 

     PSTTOPb(I) – I – 1 = retArgi  

5 I = call F, F is unknown statically (indirect call) 

TOP = zero 

Call call_translator 

//Read the return from global 

PST0 = GST[0]   //Remove if Xi is zero here 

6 
I = jmp L, L is not known and unresolved 

TOPb(I) = constant 

for (i=0: TOPb(I)-1) 

     GST[TOPb(I) – I – 1] = PSTTOPb(I) – I – 1 

TOP = TOPb(I) 

Call call_translator 

Return 

7 
Before entry point instruction I of a function F only 

reachable indirectly, yI is known 

for (i=0: yI-1) 

     PSTTOPb(I) – I – 1 = GST[TOPb(I) – I – 1]  

8 
Before entry point instruction I of a function F reachable 

directly, yI is known 

F (arg0, arg1, …, argyi-1) { 

for (i=0: yI-1) 

     PSTTOPb(I) – I – 1 = argi  

… 

} 

9 

I = return, TOPb (I) is known 

returned to function is unknown OR 

there exists F where F is a returned to function, U(F) = true 

for (i=0: TOPb(I)-1) 

     GST[TOPb(I) – I – 1] = PSTTOPb(I) – I – 1 

     retArgi = PSTTOPb(I) – I – 1 //when applicable 

Return 

10 
I = return, TOPb (I) is known 

Any other case than above 

for (i=0: TOP(I)-1) 

     retArgi = PSTTOPb(I) – I – 1 

return 

U(F) = true if F or one if its direct callees has an indirect branch that is unresolved. 

Figure 4.5: Translation to IR rules when some indirect jumpsare unresolved
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where the TOP value is not known, we use the global floating point array as well as the

global variable representing the TOP value.

For direct calls, if the callee has unresolved indirect jumps then it will be using the

global variables to represent the floating point stack. Uponreturn from the callee, we

make sure that the global variables are updated correctly. After the return, if the TOP

value is known, we copy the contents of the global variables into the local variables such

that instructions start using the local variables correctly. If the TOP value is known before

the call, floating point local variables are passed as arguments to the callee.

For indirect calls, we have an assumption that before such calls the stack top value

should be zero. We copy this to the global TOP value in case thecallee is using the globals

to represent the floating point stack operations. Before returning from all functions that

can be called indirectly, we make sure to update the global variables contents (if locals

were used).

Before indirect jumps that are unresolved, we copy the stack values from local

variables to the global variables (in case the local variables were used before the jump).

The general translator function is used in the indirect branch to redirect control to the

correct IR function. The global TOP variable is updated also.

For all of this to work, if some functions that can be called indirectly have a known

TOP value on their entry point, the floating point variables are copied from the global

variables to the local ones. For functions reachable directly, if they have floating point

arguments, they are copied to local floating point variablesin the IR at the function entry

point.
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4.6 Correctness Proofs

In this section, we prove that all the techniques presented in this section will produce

a correct IR with respect to floating point stack operations.We show first a proof of the

simple technique when all indirect jumps are resolved, thenwe proceed to proving the

general technique when some indirect jumps are not resolvedcorrectly.

Definition 4.1 an fp-functionalrewritten binary is a rewritten binary that executes

correctly with respect to floating point accesses which means that any floating point value

that is being read/written into a floating point register in the original binary results in

reading/writing the same value to some floating point variable in the rewritten binary

when executed.

When we prove the correctness of our floating point stack recovery techniques pre-

sented before, we prove that our rewritten binaries compiled from the recovered IR are

fp-functional. To prove this, we usually prove that we track the original binary’s TOP of

the floating point stack value correctly.

Lemma 4.1 Under the assumptions stated in section 4.3, if algorithm 6 returns

false, then solving the equations resulting from the propagation rules in figure 4.2 and

setting the remaining unknowns to ones will always ensure that the rewritten binary is

fp-functional.

Proof Suppose the input binary has no direct or indirect calls. TheTOP of the stack

is tracked correctly for every program point since instructions are always known to the

static analyzer and no uncertainty happens. Since the recovered TOP is exactly equal to

the original TOP value in the input binary, the lemma holds inthis case.
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Now, if the binary have direct calls, the callee functions will always be known

to our static techniques and hence no uncertainty occurs in recoveringTOP(I) for any

instructionI. Hence the lemma also holds in this case.

The only uncertainty occurs when some indirect control transfers happen. Indirect

control transfers are either indirect calls or indirect branches.

For indirect calls, uncertainty happens when someXis are set to one conservatively.

An Xi represents the top of the stack after the return from indirect call site i. Per our

second and third assumptions in section 4.3,max (Xi) = 1. If the actual call site in the

input binary does not return any floating point value and we set Xi to one conservatively,

the lemma still holds since the input binary will never have any access to the additional

non-existing return value that we created in the IR. The binary has to push some element

to the stack before reading it. In this case, the recoveredTOP(I) for any instruction

I will always be one plus the original value during both stack writes and reads which

guarantees correct behavior.

Regarding indirect branches, Since the check in algorithm 6 fails, this means either

all indirect branches are resolved, or no indirect branch target can access the floating

point stack. In case all indirect branches are resolved, their targets are known to the static

analyzer and hence the recoveredTOP(I) for any instructionI will be tracked correctly

and hence the lemma holds. If some indirect branches are unresolved, and it is known

that none of their targets can access the floating point stack, then no problem occurs in

this case since no floating point register is accessed.

Lemma 4.2For a direct call instructionIF in the IR calling functionF . Let the

first IR instruction inF be I. If TOPb(I) is known, thenTOPb(IF ) cannot be unknown
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and vice-versa.

ProofSince the propagation rules in figure 4.4 assign the same symbolic expression

to bothTOPb(IF ) andTOPb(I), then if one of them is known, the other is automatically

known and vice versa.

Lemma 4.3For a return instructionIR in the IR returning to functionF that can

be determined statically. LetI be any call site toF . If TOP(I) is known, thenTOPb(IR)

cannot be unknown and vice versa.

Proof Can be proved in a similar way to lemma (4.2).

Lemma 4.4Under the assumptions stated in section 4.3, if algorithm 6 returns true,

then the IR recovery rules stated in figure 4.5 will always ensure that any floating point

value that is being read/written into a floating point register in the original binary results

in reading/writing the same value to some floating point variable in the rewritten binary

when executed.

Proof From the first two translation rules in figure 4.5, at any instruction I that

can access the floating point stack, the IR uses either the local variablesPSTwhen the

TOPb(I) value is known, or the global arrayGST[] if the TOPb(I) value is unknown.

If we guarantee correct flow of floating point values between local variables (PSTs) and

global variables (GSTs) in the IR, we can prove this lemma.

To make it easier to understand the proof, we introduce the following claims. If all

these claims are true, the proof can be constructed in a simple way. We assume they are

true, prove the lemma, then state the proof of each claim individually.

Claim A: For a trace of IR instructions containing no calls or returns, letI be the first

instruction in the trace, ifTOPb(I) is statically known and local variablesPSTx contain
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all live floating point values atI that are stored in order starting fromx = 0 until x =

TOP b(I)− 1, then this trace isfp-functional.

Claim B: For a trace of IR instructions containing no calls or returns, let I be

the first instruction in the trace, ifTOPb(I) is statically unknown, then this trace isfp-

functionalgiven the following two conditions: 1) The global variableTOPcontains the

valueTOPb(I) before executingI. 2) The global arrayGST[x] contains all live floating

point values atI that are stored in order starting fromx = 0 until x = TOP b(I)− 1.

Claim C: ∀F ∈ FuncsK whereFuncsKrepresents the set of IR functions with a

statically known entry pointTOPb(I) whereI is the first instruction inF , let IF be any

call site ofF , the local variablePSTx atF entry point contains one of the following values

for all 0 ≤ x ≤ TOP b(I)− 1:

PST x(before I) =



















PST x(before IF ), TOP b(IF ) is known

GST [x](before IF ), TOP b(IF ) is unknown

(4.1)

Claim D: ∀F ∈ FuncsU whereFuncsUrepresents the set of IR functions with a

statically unknown entry pointTOPb(I) whereI is the first instruction inF , let IF be

any call site ofF , all the following is true before executingI: 1) Global variableTOP

contains the valueTOPb(IF ). 2) Global variableGST[x] contains one of the following

values for all0 ≤ x ≤ TOP b(I)− 1:

GST x(before I) =



















PST x(before IF ), TOP b(IF ) is known

GST [x](before IF ), TOP b(IF ) is unknown

(4.2)
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Claim E: ∀I ∈ CallSitesK whereCallSitesKrepresents the set of all IR call sites

with a statically knownTOP(I), let F be any actual function that can be called fromI

(possibly through a call translator) and letIR represent any return instruction insideF ,

the local variablePSTx afterI has one of the following two values:

PST x(after I) =



















PST x(before IR), TOP b(IR) is known

GST [x](before IR), TOP b(IR) is unknown

(4.3)

Claim F: ∀I ∈ CallSitesU whereCallSitesUrepresents the set of all IR call sites

with a statically unknownTOP(I), let F be any actual function that can be called from

I (possibly through a call translator) and letIR represent any return instruction insideF ,

all the following is true after executingIR and returning toF : 1) Global variableTOP

contains the valueTOPb(IR). 2) Global variableGST[x] contains one of the following

values for all0 ≤ x ≤ TOP b(IR)− 1:

GST x(after I) =



















PST x(before IR), TOP b(IR) is known

GST [x](before IR), TOP b(IR) is unknown

(4.4)

Claims A and B state correct and functional execution traces with no calls or returns.

Claims C and D ensure correct floating point values flow from call instructions to the

functions being called. Claims E and F ensure correct floatingpoint values flow from

return instructions to the call sites.

Assuming claims A through F are correct. We can use mathematical induction to

prove lemma (4.4) as discussed below.
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Assuming the dynamic execution of the rewritten binary is divided inton instruc-

tion traces separated by calls/returns and ending with the program termination.n can be

arbitrary large and cannot be computed statically, but we donot seek calculatingn, rather

we will use mathematical induction onn to prove the lemma.

Base case: n = 1 Since the entry point has a zero top of the stack (according to

our assumptions), there is no live floating point values at the trace entry and hence lemma

(4.4) is true as a direct result of applying claim (A).

Inductive case: Assuming tracen is fp-functional, we want to prove that tracen+1

is alsofp-functional.

There are two cases: either a call instruction separates thetwo traces, or a return

instruction separates the two traces. We discuss every caseindividually. For both cases,

we assume that the live floating point values are stored correctly in tracen since it is

fp-functional.

1) If a call instructionIF separates the two traces, let the callee beF with instruction

I the first instruction in functionF (the first instruction in tracen+1). We have four cases

depending on if we statically know the valuesTOP b(IF ) andTOP b(I). Each of the cases

is proved in table 4.1.

2) If a return instructionIR separates the two traces, let the returned to function be

F with instructionI being the call instruction that was used to reachF . We have four

cases depending on if we statically know the valuesTOP b(IR) andTOP(I). Each of

the cases can be proved in a very similar way to the previous case in table 4.1 but using

Claims (E) and (F) instead of claims (C) and (D).

Below we discuss the proofs of every claim from the above.
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TOP b(IF ) TOP b(I) Proof

X X Both tracesn andn+1 are using the global arrayGST[] as

per rule (2) in figure 4.5.

Claim (D) guarantees that the global arrayGST[] will not

change in this case across the call.

Applying Claim (B) to tracen + 1 proves lemma (4.4) in

this case.

X
√

Tracen uses the global arrayGST[x] but tracen + 1 will

be using local variablesPST[x] as per rules (1) and (2) in

figure 4.5.

Claim (C) guarantees that the global arrayGST[x] will be

copied over to local variablesPST[x] in F .

Applying Claim (A) to tracen + 1 proves lemma (4.4) in

this case.
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√
X Tracen uses local variablesPST[x] but tracen+ 1 is using

the global arrayGST[x] as per rules (1) and (2) in figure 4.5.

Claim (D) guarantees that local variablesPST[x] will be

copied over to the global arrayGST[x] before callingF .

Applying Claim (B) to tracen + 1 proves lemma (4.4) in

this case.

√ √
Both tracesn andn + 1 are using the local variablesPSTx

as per rule (1) in figure 4.5.

The local variables in this case are in different functions.

Claim (C) guarantees that the local variablesPSTx in the

caller are copied to the local variablesPSTx in the callee

(F ).

Applying Claim (A) to tracen + 1 proves lemma (4.4) in

this case.

Table 4.1: Proofs of Lemma (4.4) for tracen+ 1 if reachable using a call instruction
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Claim A ProofSince the trace of instruction with no call/returns represents a binary

trace that is completely known to the static analyzer, the recoveredTOP(I ′) value at any

instructionI ′ in this trace is statically determinable with respect to thetrace entry point

TOPb(I) whereI is the trace entry instruction. Given that all floating pointvariables are

stored correctly to local variablesPSTx before the trace entry, any instruction that reads

these values will get them from the samePSTx variables as per rule (1) in figure 4.5.

Claim B ProofCan be constructed using the same argument in the proof of claim

(A) but referring to the global variablesGST[x] instead of local variables and rule (2)

instead of rule (1) in figure 4.5.

Claim C ProofInstructionI in F is either reachable using a direct call, indirect call,

or an unresolved indirect jump. We discuss every case below:1) Direct calls: according

to lemma (4.2),TOPb(IF ) is known in this case and hence rules (3) and (4) in figure 4.5

govern the direct calls in this case. In both rules, the localvariables are passed directly

as arguments toF and insideF they are then copied to local variables as per rule (8) in

figure 4.5. The stack height at the call site cannot be known inthis case according to

lemma (4.2).

2) Indirect calls will always have zero TOP of the stack before the call site as per

our second assumption in section 4.3 and hence no transfer ofvariables is required in this

case. Rule (5) in figure 4.5 sets the global variableTOPto zero at the call site.

3) At unresolved indirect jumps, ifTOPb(IF ) is known, local variables are copied

to the corresponding globals in rule (6). IfTOPb(IF ) is not known, globals are already up

to date according to rule (2). InsideF , globals are copied back to locals insideF as per

rule (7).
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Claim D ProofCan be proved using similar argument to claim (C) proof above.

Will only write the relevant rules for each case below: 1) Direct calls: they have to have

an unknown stack height as per lemma (4.2) and hence global variables remain to be used.

2) Indirect calls: have to have a zero stack height on their front and hence no transfer

is required.

3) Unresolved indirect jumps: globals are updated according to rule (6). The same

argument in the claim C proof applies here.

Claim E ProofHere the stack height after call siteI is known, hence local variables

have to be updated afterI. I can only be reachable through a return instruction. We have

two cases:

1) If TOPb(IR) is known: either rule (9) or rule (10) applies in this case as follows:

• In case the return cannot be statically proven to return toI, or I ’s parent function

has one or more unresolved jumps, then the globals are updated in rule (9). The

return will come back to a call translator function in the IR which returns back to

either an indirect call site or to an unresolved indirect jump site. For indirect calls,

rule (5) will copyPST0 from the global array. For unresolved indirect jumps, they

return back to some call site as per rule (6). This call site will haveU(F ) = true

and rule (3) will copy variables from the globals back to locals.

• If the return can be proven to return to some IR function whoseindirect jumps are

all resolved, then rule (10) applies and return arguments are propagated. Rule (4)

propagates the return arguments back to local variables after I.

2) If TOPb(IR) is unknown, no transfers are required. The globals will be ready at
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IR as per rule (2). According to lemma (4.3),IR cannot be statically proven to return to

I since in this caseI would have an unknownTOP(I) which is not the case. For non-

statically resolvable returns, they are handled the same way as in the previous case (1)

above in this same proof.

Claim F ProofCan be proved using similar arguments to claim (E) above. We show

a summary of which rules apply here.

1) If TOPb(IR) is known: As per lemma (4.3),IR will not be statically proven to

return toI since in this caseTOP(I) would have been known which is not the case. Return

site updates globals in rule (9). Rule (2) will use these globals at the call sites.

2) If TOPb(IR) is not known: globals are already used both at the return sites and

also at the call sites per rule (2). No transfer is needed in this case.

4.7 Results

In this section, we show the effectiveness of our techniquesin identifying floating

point stack variables.

In all of our experiments, the check described in algorithm 6returns false which

means that we did not need to do any global adjustments to the floating point stack vari-

ables in any of our tests. The reason behind this is that our jump table heuristics are very

accurate and resolve most of the indirect jumps. SecondWriteimplements a modified

version of the heuristics described in [14]. Almost 100% of the indirect branches are

resolved (by knowing all their targets) statically. For theunresolved ones, the indirectly

called functions in these cases were never detected to access the floating point stack.
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We show the percentage of the symbolic values that were not solved using our linear

solver and required the conservative assumption ofXi = 1. As mentioned in chapter

4, the main challenge while decoding the floating point stackis to identify whether an

indirect or an external call is modifying the floating point stack height. According to our

assumptions, whenever we are not sure about an indirect or anexternal call site, we decide

conservatively that it is modifying the floating point stackby pushing a single value. We

show how often we took that conservative decision in different binaries.

All register allocated floating point stack variables were recovered correctly and all

the rewritten benchmarks ran correctly and produced correct answers. The conservative

decision taken does not affect correctness as we explained in chapter 4. It only adds extra

return values to some indirect and external calls and this might reflect adding more return

values to internal functions as well.
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Figure 4.6: Conservative floating point decisions for Windows

Figure 4.6 shows the percentage of the unknown calls for which we took the conser-
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vative decision in the subset of the benchmarks that we were able to compile on Microsoft

Visual Studio 2010. Figure 4.7 shows the results on Linux binaries. On average, we took

the conservative decision 28% of the time for non-optimizedexecutables and 25% of the

time for optimized ones. This means we are able to identify the exact floating point argu-

ments and returns for more than 72% of the indirect and external calls on average. We are

not aware of any work that identifies such information. Optimized binaries often have less

variables than non-optimized binaries which translates toless floating point stack usage

and less number of times when the conservative decision is taken. This is true in most

of the cases, but in some cases the optimized binaries are challenging because they have

fewer control flow edges. One example of this behavior is ‘hmmer’ where the optimized

binary has much less control flow join points and hence much less number of equations

and higher conservative decision ratio. The conservative decision is usually taken more

often in C++ binaries because they have more indirect calls than C and Fortran binaries.

4.8 Related Work

We are not aware of any work done to recover floating point stack variables except

Hex-Rays [31]. Hex-Rays produces inline assembly in case it cannot resolve the variables

which is not acceptable for our goal. There is no published work on the details of their

techniques as well as how often it fails to identify variables from low level stack accesses.

None of the static and dynamic binary rewriting tools like PIN [48], BIRD [52],

ATOM [28], PLTO [60], Boomerang [26], Jakstab [36], UQBT [16],Bitblaze (BAP) [9]

and CodeSurfer/X86 [50] decodes the x86 floating point stack into variables. None of
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those tools employ a compiler level intermediate format, like LLVM IR or similar; rather

they define their own low-level custom intermediate format.
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Chapter 5: Recovering Memory Allocated Variables and Data Types

5.1 Introduction

In this chapter, we present static analyses that can recoversource level variable and

type information from x86 binaries as large as millions of instructions in a few minutes.

The produced information is as accurate as the current stateof the art x86 binary analysis

systems with much faster and scalable analysis. The recovered information is represented

in a high level compiler IR that is completely functional andproduces a correct rewritten

executable when recompiled. Our static techniques combinefunctionality, precision and

scalability; features that collectively do not exist in today’s binary analysis tools.

This chapter presents an important step towards a system that rewrites executables

into a functional high-level program representation and incorporates as much source level

information as possible in a scalable manner. This chapter has the following contributions:

• It presents a highly scalable mechanism for identifying variables and types which

is orders of magnitude faster than current analysis techniques. Our techniques do

not rely on symbol or debug information to be present in binaries.

• It presents practical techniques to emit the recovered datatypes from binaries into

a high level IR. The emitted types include scalars, pointers,arrays, structures and
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recursive data structures.

• It is evaluated and shown to recover accurate and precise information from C, C++,

and Fortran binaries obtained from the SPEC2006 benchmarks suite; compiled us-

ing two different compilers in a reasonable amount of time.

This chapter is divided into eight sections. Section 5.2 gives an overview about the

variables and data types identification problem. Section 5.3 represents our variables re-

covery technique. Section 5.4 presents our data type recovery techniques for the variables

discovered in the binary. Section 5.5 shows how we emit data types into the recovered

IR including pointer and recursive data types. Section 5.6 discusses the correctness of

the IR recovered and the algorithms termination guarantees. Section 5.7 shows how our

variable recovery techniques can still work for inaccuratefunction boundaries. Section

5.8 shows a detailed evaluation of the techniques presentedand section 5.9 presents a

literature review about the variables and data types recovery from binaries.

5.2 Variable and Type Recovery - Challenges and Intuitions

Variable and type recovery from executables is a hard problem because symbol ta-

bles are absent. Every memory-allocated variable access inthe source code is represented

by a memory store or load in the executable. Those memory accesses are either direct

accesses to locations represented by constant addresses, or indirect memory accesses to

locations represented by some register value.

Direct memory accesses can be used to infer variable information by examining

the constant memory address being accessed, but indirect memory accesses are unknown
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accesses and need more advanced memory analysis to reveal the underlying memory

locations. That is why pointer analysis is important while recovering variables and data

types from executables since it reveals what are the possible memory locations an indirect

memory reference can possibly access.

Researchers in this field know this and the best known variableidentification tech-

nique from executables (DIVINE [4]) uses an advanced memoryanalysis technique called

value set analysis [5], which is a generalized form of alias analysis for binaries built on

top of the aggregate structures identification algorithm [54]. DIVINE presents accurate

variable identification that detects 88% of the memory-allocated variables in executables.

The problem with DIVINE is that it is not scalable and requires a very long time to an-

alyze even small programs. Our aim is to present techniques with the same accuracy as

DIVINE, but run orders of magnitudes faster.

Scalable source-level pointer analysis techniques (like Steensgaard’s analysis [65])

cannot be used on executables since executables lack variables and data types information.

A custom pointer analysis technique has to be implemented for this purpose.

Our key insight that enables scalability is that efficient variable detection and type

recovery do not require a sound pointer analysis. Unsound pointer analysis usually means

incomplete points-to sets. As an example, if variablex points toy andz, an unsound

pointer analysis might reportx points toy only. Usually unsound pointer analysis is un-

acceptable, but variable detection from executables is a best-effort analysis and no method

claims to detect 100% of the variables. If we are going to misssome variables anyways

because of the nature of the problem we are solving, then we can sacrifice the soundness

of the analysis at the expense of losing some variable information – as losing variablez
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in the given example above, but with the gains of having a practical analysis that scales

well for large executables.

The correctness of the recovered IR, while missing some variables due to the un-

sound pointer analysis, comes from the fact that the relative ordering between variables

in the memory layout is maintained in the recovered IR. For example, if we detect two

integer local variables at offsets 0 and 20 on a stack frame ofsize 24 bytes, we will lay

out those variables in a structure which has the following three members: a) An inte-

ger in the range [0-3]. b) A generic array of bytes in the range[4-19]. c) An integer in

the range [20-23]. Preserving the layout of the variables insuch a structure maintains

the correctness of any indirect memory access to this region. The arrays inserted fill the

unknown gaps between variables and maintain the memory layout. This representation

helps understanding what variables are detected along withtheir types, and at the same

time maintains the functionality of the rewritten program.

We introduce the concept of a best-effort pointer analysis;where the identified

points-to set of each pointer may not be complete, but we terminate the analysis in a

certain amount of time nevertheless to prevent it from taking too long even before it con-

verges. This analysis is not correct given the usual criteria for correctness, but suffices

in the way we use it to identify as many discrete variables as possible. Our best-effort

pointer analysis is a flow and context insensitive data flow analysis that has the following

properties:

• It limits the cardinality of the points-to sets to a fixed number.

• It does not track interprocedural information via indirectcalls.
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• The number of analysis iterations is set to a fixed number.

Having the above relaxations makes our analysis much fasterat an extremely small

loss in precision. The intuition behind this is as follows: a) A flow and context sensitive

pointer analysis is not needed since the variables usually have the same size and type

in all flows and contexts of a program. Some exceptions to thismight happen which

is not common in the programs. b) Limiting the cardinality ofpoints-to sets does not

affect the precision that much since only few variables willhave large points-to sets. c)

Propagating interprocedural information through indirect calls will only affect functions

which are only called indirectly. Those functions are stillanalyzed, but their arguments

will have unknown points-to sets. Given that there are relatively few such functions in

executables, skipping their arguments propagation is not abig loss. d) Limiting the total

number of iterations will only affect longer chains of pointers. For example, the first

iteration will always reveal some pointers. The second willreveal two-level (double)

pointers. Subsequent iterations reveal more pointer levels. Usually most variables do not

have more than four level pointers, which means subsequent iterations will only reveal

very little information.

5.3 Best Effort Static Variable Recovery

We show in this section how a simple best-effort pointer analysis can be used for

identifying variables. This pointer analysis should be suitable to run on executables where

no variables are identified yet. We could have modified current memory analysis schemes

on executables like [5] to fit our needs, but we show a simpler analysis with similar
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precision and much better scalability.

Before we begin the analysis, we identify all base memory regions in the executable.

An executable has the following three base memory regions.

1. The global memory region where global variables are located.

2. The stack memory region where local variables inside functions are located. Stack

regions are allocated at the beginning of a function and deallocated at the end of the

function.

3. The heap memory region where dynamically allocated variables are usually located.

Those are identified by detecting calls to functions likemalloc andnew in the

executable.

Every detected memory-allocated variable is represented by an abstraction called

ALoc which stands for Abstract Location. The name is similar to the name used by

DIVINE [4]. An ALoccontains an offset inside a base memory region and a size repre-

senting the variable size. Variables allocated to registers are represented by IR symbols

which represent the SSA form of those registers.

Our pointer analysis conservatively assumes that every detected variable can be

a pointer. We assign points-to sets to every IR symbol and detected ALoc. When the

analysis is done, the actual pointers are identified by tracking if the corresponding points-

to sets are not empty.

We implement the points-to sets using the efficient LLVM sparse bit vector data

structure. For every base memory region, we assign it a series of unique bits where the
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number of bits equals the size of the region in bytes. If the size of the base memory region

is not known (usually in heap allocated arrays), we assume anarbitrary size. This allows

us to detect variables with offsets up to that size. Whenever an access is detected beyond

that arbitrary size, we do not track it. This is an important part of our best-effort analysis

that allows us to recover a subset of the variables on un-sized base memory regions instead

of totally giving up on them as the case in DIVINE [4]. Whenevera symbol or an ALoc

points to some variable in a certain memory region, the bit corresponding to the starting

address of the variable will be set to one. The number of bits set to one equals the number

of variables pointed to by a symbol or an ALoc.

Table 5.1 shows our detailed propagation rules for the best-effort pointer analysis

as well as for detecting the variables. We introduce the following definitions to ease the

understanding:

1. PtSet(x): takes an ALoc or an IR symbolx and retrieves its points-to set ‘bit-

vector’.

2. ALocs(x): takes a bit-vectorx and retrieves the set of ALocs starting at the ad-

dresses that correspond to the set-bits in the bit vectorx.

3. UpdateALocs(x,y): takes a bit-vectorx and a sizey and creates ALocs starting at

the addresses corresponding to the set-bits in the bit-vector x with the given sizey.

If existing ALocs overlap the new ALocs, the new and old ALocswill be split into

smaller ALocs to avoid the overlap.

4. UpdateStructure(x,y): takes a bit-vectorx and a numbery. It defines a set of struc-

tures starting at the addresses corresponding to the set-bits in the bit-vectorx. Each

157



storey, x (store valuey to lo-

cationx of sizeS)

∀ z ∈ ALocs(PtSet(x)) :

PtSet(z) ∪ = PtSet(y)

Variables: UpdateALocs (PtSet(x), S)

y = loadx (load locationx of

sizeS to y)

∀ z∈ ALocs(PtSet(x)) :

PtSet(y) ∪ = PtSet(z)

Variables: UpdateScalar (PtSet(x), S)

y = x PtSet(y) = PtSet(x)

y = x + z , PtSet(x) is not

empty

if z is a constantthen

PtSet(y) = PtSet(x) >> z

Variables:

if z is a constantthen

UpdateStructure (PtSet(x), z)

else ifz has SCEV bounds and stridethen

UpdateArray (PtSet(y), stride, bounds)

Table 5.1: Points-to sets propagation and variable detection rules
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structure has its last member at offsety. If a structure already starts at one of the

starting addresses, its last member offset will be updated with the maximum of the

existing offset and the new one (y).

5. UpdateArray(x,y,z): takes a bit-vectorx, a numbery representing a stride, and an-

other numberz representing the upper bound of the array. It defines arrays starting

at the addresses corresponding to the set-bits in the bit-vector x. Each array has a

maximum sizez. The arrays will be declared to have an element sizey. Existing

arrays will be merged with the new declared ones and the element size will be set

to one if overlapping arrays have conflicting element sizes.

Here we describe briefly the propagation rules in table 5.1. For a store instruction,

the points-to sets of the ALocs pointed to by the pointer operand will be unioned with the

points-to set of the value stored. This is called a weak update in the domain of pointer

analysis. A load will set the loaded value points-to set to whatever is pointed to by the

pointer operand. Stores and loads will create ALocs as they are resolved using the Up-

dateALocs function described earlier. For pointer arithmetic, the points-to sets will be

shifted right according to the positive constant added. If the constant is negative, the shift

will become to the left. Adding a constant to a pointer is a hint about the existence of a

structure where the pointer address is the start address, and the constant represents one

field offset inside the structure. We use this hint and declare a structure identified by the

starting address and the last member offset. The structure’s last member offset might be

updated in subsequent pointer arithmetic operations that start from the same base. The

structure’s last member offset will eventually be the maximum observed constant that was
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added to the pointer in the program. Adding a non-constant value is an indication that an

array exists. An array will be declared in this case. We use the Scalar EVolution (SCEV)

analysis by LLVM to deduce the bounds and the stride of the arithmetic and use this in-

formation to describe the array. If such information is not present, we do not declare an

array.

The more pointer analysis rounds done, the more ALocs, structures and arrays are

identified in all base memory regions. More pointer analysisrounds help identifying

multi-level pointers since the first round will always reveal single level pointers. The

second round will propagate the points-to sets for those ALocs and identify their points-

to sets leading to the identification of two level pointers. More rounds will reveal more

levels.

After all iterations are done, collected information aboutarrays gets resolved. For

every base memory region, we fill in the gaps between ALocs using arrays. The bounds

and stride information are available from our earlier propagation. If no bounds are avail-

able, previously defined ALocs are used as bounds. If no stride information is available,

a stride of one is used which means the array is an array of bytes. Overlapping arrays are

combined into one bigger array as described earlier.

At the end of this process, a structure hierarchy is created based on the structure

information calculated for every base memory region. Usingthe starting and ending off-

sets previously calculated for every structure, we construct nested hierarchy structures.

We define inner and outer structures such that any outer structure must have its starting

address less than any starting address of any nested inner structure, and its ending ad-

dress larger than any ending address of any nested inner structure. This nested structure
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hierarchy is used to emit structure data types in the IR as we will explain later in this

chapter.

5.4 Data Type Recovery

Data type recovery aims at representing every symbol in the IR with a meaningful

type. It declares a map between every symbol in the IR and the corresponding detected

data type. It uses this map to rewrite the complete IR such that the instructions use the

detected types instead of the generic types that are used by SecondWrite.

Without integrating type recovery with some pointer analysis, detected types will

be less accurate because of two reasons: 1) Instructions like memory loads and stores will

usually be untyped since there is no memory tracking possible. 2) Multi-level pointer

types will not be detected because there is no way to track them without having some sort

of pointer analysis.

To achieve the goal of typing memory accesses and IR symbols;and detecting

multi-level pointer types, we integrate our best-effort pointer analysis and variable recov-

ery techniques described above with our type recovery system. Any other pointer analysis

like [5] can be theoretically used, but will be orders of magnitude slower which makes it

less practical in large executables. That is the disadvantage of TIE [43] which is the state

of the art binary type recovery technique.

Integrating our variable identification system with type recovery makes the type

recovery simpler because it will need only recover scalar types like integers, floats and

doubles. Structures and arrays are detected as part of the variable identification. A pointer
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is detected if the points-to set of the corresponding ALoc orIR symbol is not empty. In

this case, we get the ALocs pointed to by that pointer and typethem according to our

rules. We keep doing this for longer pointer chains as needed.

A = call foo (arg1, ...,argn)

foo has the known prototype:

retType foo (type1, ..., typen)

∀ x ∈ [1,n]

setType(argx, typex)

setType(A, retType)

A = B opC

op ∈ {+,−, ∗, /,%, >>,<<}

op has type:opType

A, B, C has empty points-to sets

setType({A,B,C}, opType)

A = loadB

storeA, B
unifyType(A, ALocs(PtSet(B)))

op1 = φ (op2, ...,opn)

op1 = typecastop2 to type
unifyType({op1, ...,opn})

Table 5.2: Typing rules

Table 5.2 shows the most important typing rules we have. There are two main type

sources. a) Known external function calls like standard C/C++library calls. For those, we

set the types of actual arguments passed to be the same as the known argument types from

the prototypes and we do the same thing for the return value. b) Arithmetic operations

with non-pointers: in this case the type is deduced from the semantics of the operation

itself – whether it is an integer or a floating point operation–. We use the functionsetType
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to update the type of the symbol or the ALoc in the type map we declare. For pointer

types, we type the ALocs represented by the points-to sets ofthe corresponding variables.

For the other operations in the table, we propagate the typesusing the functionuni-

fyType. This function attempts to set the data type of all the given symbols and ALocs

to be the same. At least one of the symbols or the ALocs given tothat function should

be typed. Whenever this function finds conflicting types, it gives up and does not update

any types. It is used for copy operations like type casts and phi nodes. It is also used to

propagate types through memory as shown in the rules for stores and loads. Interproce-

dural information is propagated by unifying the formal and actual arguments types at a

call instruction. The return value data type at the call siteis unified with all the data types

of all return values appearing in the return statements inside the called function body.

5.5 IR Data Types Emission Algorithm

After recovering variables and data types information fromthe techniques presented

in the previous two sections, we proceed to express this information in the IR such that

end users can use this information right away.

The data type emission process we present in this section aims at producing an IR

which has the following three properties:

1. The IR is readable with as many recovered data types expressed in the IR as possi-

ble.

2. The IR is correct which means that users can take the IR, recompile it and still

produce a correct rewritten binary that produces the same answers as the input
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binary.

3. The IR contains recursive data types if applicable.

Achieving all three goals together is challenging. The readability goal usually con-

flicts with the correctness goal since our recovered types might not be 100% accurate.

Recursive data structures are hard to emit in the IR. For example, if an original binary

has a linked list, the recovered information will be a structure with two fields, the first

field is the element and the second field is a pointer to the samestructure. Before emitting

the complete structure, the type emission will need to referto the same structure that is

being emitted which might result in an infinite loop if the type emission algorithm does

not specifically account for this case. In fact, this is one reason why the state of the art

type recovery system called TIE [43] does not recover such recursive data types.

It is important to mention that we do not recover any shapes ofthe data types. We

cannot distinguish a linked list from a tree or a graph. We only recover structures and

pointers that might refer to the same structures. Other shape analysis techniques can run

on our recovered IR to detect this kind of information.

The pseudo code in figure 5.1 shows how we choose a data type to emit for a certain

point to setbitset. For an IR symbol or an ALoc, we first obtain its points-to set and then

execute the algorithm in figure 5.1. If an IR symbol or an ALoc does not have a points-to

set, we either get the recovered scalar type or return a generic type if no scalar type is

recovered. The initial execution of the functiongetEmittedTypeshown in figure 5.1 will

haveignoreStructsset to false andchainedBitSetset to an empty bit vector.

Lines (1) and (2) of the code returns the cached type of the current bit vector if any.
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Type* getEmittedType (bitset, ignoreStructs = false, chainedBitSet = empty) { 

(1) if  (!ignoreStructs && cachedType(bitset))  
(2)      return  getCachedType(bitset)  

(3) if (chainedBitSet ∩ bitset is not empty) //Circular pointer 

(4)  return  getGenericPointerType () 
(5) else  

(6)  chainedBitSet = chainedBitSet ∪ bitset  
(7) if  (!ignoreStructs && isStartOfStruct(bitset)) //Structure 

(8)  returnType = getStructType(bitset, structHierarchy(bitset)) 
(9) else if  (isStartOfArray(bitset)) //Array 

(10)  returnType = ArrayType (getScalarType(bitset))  
(11) else if  (hasScalarType(bitset)) //scalar type  

(12)  returnType = getScalarType (bitset) 
(13) else if  (P2Set(bitset) is not empty) //pointer type 

(14)  returnType = PointerType (getEmittedType (P2Set(bitset),         
     ignoreStructs, chainedBitSet) 

(15) else   
(16)  return  getGenericScalarType () //non-identified type 

(17) cahcedType (bitset) = returnType //store to cache 
(18) return  returnType 

} 

 

 Figure 5.1: The type emission algorithm

We use type caching for two reasons: 1) It speeds up the type emission process. 2) It is

necessary for recovering recursive data structures as we show later in this section. The

cache is updated at line (17) in the algorithm.

Lines (3) through (6) of the code are inserted to avoid infinite loops while emitting

IR data types. Infinite loops come when a circular pointer is detected where some pointer

type is detected to point to itself, or to point to some other chain of pointer types among

which one of them points back to the first pointer type. We callthis a circular pointer

data type. We do not allow emitting circular pointer data types except for recursive data

structures where pointers point to detected structures notto scalars as we show next. If a

circular pointer is detected, we return back a generic pointer data type (we still know it is

a pointer, but lose the information about what it points to).
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The code in figure 5.1 then proceeds to emit different type categories accordingly.

The code is showing type emission for memory locations, but avery similar technique is

used to emit types for IR symbols representing use points. Weshow every emitted data

type category below.

Scalar Data Types: Lines (11) and (12) emit a scalar data type (like int, float,

double, char, ...). The data type is already recovered from the techniques in the previous

section. We only emit a scalar data type if the bit vector is not detected to point to an

array or a structure.

The functiongetScalarTypereturns a recovered scalar type if all the ALocs pointed

to by the bit vectorbitsethave the same scalar type. If there is a conflict, a generic scalar

type is returned.

Pointer Data Types: Lines (13) and (14) emit a pointer data type if the bit vector

bitsetis detected to have a non-empty points-to set. We run the function getEmittedType

recursively for the points-to set and return a pointer to thereturned data type.

Array Data Types: Lines (9) and (10) emit an array data type if the bit vector

bitsetcorresponds to a single array ALoc, or if all set bits in the bit vectorbitsetrefer to

isomorphic array ALocs (those with the same size and stride). This information is stored

for us during the best-effort pointer analysis discussed inthe previous sections. For the

sake of simplicity, we only show scalar arrays. Arrays of pointers and arrays of structures

can be emitted by recursively applying thegetEmittedTypefunction on the array ALoc

element.

Structure Data Types: Lines (7) and (8) emit a structure data type in the array. A

bit vector refers to a structure if: 1) It has only a single setbit, and 2) There is a structure
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hierarchy defined starting at this set bit as per our discussion in the last paragraph of

section 5.3. If both conditions are true, we get the structure data type as shown in the

pseudo code in figure 5.2.

StructType* getStructType (bitset, H /*Structure Hierarchy*/) { 

(1) if  (cachedType(bitset)) return getCachedType(bitset)  

(2) returnType = createOpaqueStruct () 
(3) cachedType(bitset) = returnType 
(4) startOffset = offset = LowerBound(H); maxOffset = UpperBound(H) 
(5) while  (offset <= maxOffset) { 
(6)   if  (innerStructExist (offset, H))  

(7)     currentType = getStructType (bitset 
                          , getInnerStructHierarchy (offset, H)) 

(8)   else  

(9)     currentType = getEmittedType (bitset, (offset==startOffset)) 
(10)   addFieldToStruct (currentType, returnType) 
(11)   offset = offset  + size (currentType) 
(12)   bitset = bitset >> size (currentType) 
(13) } 
(14) return  returnType 

} 

 

 

 

Figure 5.2: The structure data type emission algorithm

To emit a structure data type, we first check if this structuredata type has already

been cached in line (1) of figure 5.2. If not cached, we create an opaque structure and

cache it in lines (2) and (3).

An opaque structure is a structure with no body defined. Creating an opaque struc-

ture is very similar to using forward declarations in C and C++. Creating an opaque

structure and caching it is one key point in supporting recursive data structures. The

reason is that once a field of some structure is declared to point to the beginning of the

same structure, the cached opaque version will be returned instead of redefining the same

structure again and again.

167



The algorithm in figure 5.2 handles the case of emitting aggregate types containing

other aggregate and non-aggregate types to any nesting depth. The aggregate hierarchy

recovery process was discussed before at the end of section 5.3. Lines (5) through (12) of

the algorithm iterate over the structure elements. If an inner structure exists in the hierar-

chy, it is declared by callinggetStructTyperecursively. If not, we call thegetEmittedType

recursively to recover the non-structure data type.

The reason we add theignoreStructsargument to thegetEmittedTypefunction is

that once an opaque structure is created, its correspondingbit vector will be cached to

that structure type. The first element of that structure willhave the same bit vector (the

first iteration of the loop starting at line (5) of figure 5.2 will have the samebitsetthat was

cached to the opaque structure in line (3). If theignoreStructsflag is not set in this case,

the functiongetEmittedTypewill return the cached opaque structure, not the first element

type of the structure.

It is clear from the discussion above that the two algorithmsin figure 5.1 and 5.2

enable the emission of recursive data structures. The two key points enabling this is the

caching and the opaque structure creation mechanisms. These two algorithms do not

allow circular pointers to scalar elements on the other handas discussed before.

5.5.1 Practical Considerations

The algorithms discussed in the previous section for type emission show the basic

idea of type emission. Some practical details are not included in the algorithms to simplify

the discussion. We discuss these practical details here.
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Emitting data types in the recovered IR works fine as long as the emitted data type

has the same size as the underlying ALoc recovered from the pointer analysis. There are

two situations where the size of the emitted data type can be different from the ALoc size.

The first situation is related to type recovery inaccuracies, and the second is related to

data structure alignment. We discuss these below.

Sometimes, the type detection is not accurate and there is norecovered type for cer-

tain ALoc(s). In this case, the algorithm in figure 5.1 returns a generic type. If we use the

same generic type for all unknown ALoc types, they might mismatch the ALoc(s) size(s)

and hence create problems in the rewritten binary execution. We make sure we choose the

correct generic type that exactly matches the size of the underlying ALoc(s). If the points-

to setbitsetrefers to more than one ALoc, they have to have the same size orotherwise

the algorithm emits a data type that matches the semantics ofthe corresponding instruc-

tion in the IR without considering the ALocs at all. The actual algorithm implemented in

SecondWrite takes care of that with extra added checks.

Another reason why a size mismatch happens is related to structure alignment is-

sues. If the recovered types inside of a structure in the IR donot match exactly the types

in the original source code, the backend of the compiler usedto generate the rewritten bi-

nary (LLVM in this case) might introduce extra alignments inside the structure that makes

the actual size of the structure in the rewritten binary different from its size in the IR.

As an example of when this alignment issue might occur, consider the original

source code structure in figure 5.3-a and the corresponding recovered IR structure in figure

5.3-b. The structure in figure 5.3-a is compiled into the structure in figure 5.3-c after

adding one byte padding to ensure that the short is aligned ona two bytes boundaries.
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Original  
Structure 

IR Recovered  
Structure 

  
struct {  

char x; 
short y; 
short z; 

} 

struct {  
char x; 
char y; 
int z; 

 
} 

(a)  (b)  
  

Memory Layout  
(Original Binary) 

Memory Layout  
(Rewritten Binary) 

x (1 byte )  x (1 byte)  
Padding (1 byte)  Y (1 byte)  

y (2 bytes)  Padding ( 2 byte )  
Z (2 bytes)  y (4 bytes)  

  
(c)  (d)  

 

Figure 5.3: Structure alignment problem example

The total size of the recovered IR structure in figure 5.3-b (when adding up the individual

field sizes) exactly matches the input binary structure in figure 5.3-c. Because the type

recovery is not 100% accurate, the type recovery data flow analysis combined the two

shortsy andz into one single integerz. This can happen if the original binary initializes

bothy andz simultaneously using a single store instruction. Charactery in the recovered

IR represents the padding in the original binary structure.

The problem is when we try to compile the code in figure 5.3-b, the compiler adds

2 bytes padding between the second character and the third integer since integers have to

be aligned on 4 bytes boundary. The resulting memory layout is shown in figure 5.3-d.

This layout is different than the input binary layout shown in figure 5.3-c since only one

byte padding is required to be added. This will result in a mismatch in the sizes between

the original and the rewritten structures which causes wrong behavior in case pointer

arithmetic is used.

To solve this problem, we detect if the compiled IR structuresize can be different
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from what is emitted and in such cases we mark the IR structureas beingpacked. A

packed attribute for a structure instructs the backend not to emit any extra alignments at

all.

5.6 IR Correctness and Analysis Termination

In this section we discuss the correctness guarantees our variable and data type re-

covery as well as the type emission techniques provide for the rewritten IR. We also prove

that our type emission techniques will never go into infiniteloops (always terminate).

The correctness of the recovered IR comes from the fact that the if the memory

layout in the rewritten binary exactly resembles the memorylayout in the original bi-

nary, then every memory access either being a direct access or an indirect reference using

pointer arithmetic will always land on the correct (abstract) memory region in the rewrit-

ten binary and hence the rewritten binary memory referencesexecute correctly.

The reason a compiler can change some memory layout is if individual variables

are provided in the code that is being compiled. Compilers cannot provide any guarantees

about the order of the variables in the binary. It can allocate them in any random order.

The only case when a compiler has to respect some memory layout is when the

code instructs the compiler to do so. One way the code can do that is by having arrays

and/or structures in the IR. The array and structure fields have to remain in the same order

in memory.

We show here that for every memory region in the original binary, the corresponding

abstract memory region in the rewritten binary is always surrounded by either an array or
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a structure in the IR that keeps the same layout.

In any case when a stack location is accessed in the original binary, it is accessed

by adding some constant (or non-constant) offset to the stack pointer to get to the desired

stack location. Following the last rule in table 5.1, this automatically creates a structure

or an array for this particular memory region. The same argument applies for global and

heap regions.

Regarding the type emission termination, we prove below thatthe algorithm in fig-

ure 5.1 always terminates. In this proof, we use the fact thatthe type detection techniques

along with the best effort pointer analysis techniques always terminate (either after con-

vergence, or after a certain number of iterations).

The only cases when the algorithm can go into an infinite loop is when it is calling

itself recursively. This can only happen in line (8) and line(14).

At line (8) of the algorithm, the code is recovering a structure data type. The func-

tion getStructTypemight call itself (in case an inner structure exists), or calls thegetEmit-

tedTypefor other non-structure fields. Since the pointer analysis terminates, the structure

hierarchy is finite, and hence when the functiongetStructTypecalls itself, it will keep

calling itself until the hierarchy is done (which means a finite number of times) bounded

by the number of inner structures. When the functiongetStructTypecallsgetEmittedType,

it tries to get a non-structure data type which is discussed below.

Line (14) of functiongetEmittedTypecalls itself for getting the type a certain pointer

points to. Since we prevent circular pointers using the checks in lines (3) and (4), and

since the original pointer analysis terminates, then the pointers chain has a finite length

which leads to finite number of recursive calls at line (14) bounded by the chained pointers
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length.

5.7 Effects of inaccurate function boundaries and spurious functions

This chapter presented scalable techniques to recover variables and data types from

binaries. These techniques use pointer analysis on memory locations in the binary to

reason about memory allocated variables and their data types.

These memory allocated variable and data type recovery techniques will still work

correctly for spurious functions and functions with inaccurate boundaries provided that

arguments are passed correctly to all functions including spurious ones. For register argu-

ments, they will flow correctly using the techniques presented in chapter 3. For memory

arguments, they will flow correctly if the stack translationrules in section 3.4.1 are used

to construct the IR before running the pointer analysis passpresented in this chapter. The

same discussion applies to data types since they also use thesame pointer analysis.

5.8 Results

In this section, we present the results showing the effectiveness of our schemes to

identify variables and data types. We first show results on the overall variable and data

type detection process and then we show specific in-depth results for floating point vari-

ables and function prototypes. We evaluate our techniques on the SPEC2006 benchmark

suite which represents C, C++ and Fortran executables using different optimization levels

and compiled using two different compilers (GCC 4.3 for Linux, and Visual Studio 2010

for Windows). We use a machine with an Intel Core i7 3.33GHz processor with 24 GB of
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RAM.

All the recovered code in all the experiments was recompiledusing LLVM 3.0,

linked using GCC (Linux) and MinGW (Windows), and then testedon the ref and test in-

puts provided by the SPEC2006 test suite. All rewritten executables worked successfully

and produced the correct answer as provided in the test suite.

For the experiments presented in this section, we compile C benchmarks from

SPEC2006 with all debugging information present and only usethem for comparison.

We currently do not support reading complete debugging information for C++ and For-

tran, yet we collected results on those benchmarks without comparing with source code.

The first experiment shows the quality of the recovered variables using the same

metrics DIVINE [4] used for comparison purposes. DIVINE [4]compares recovered

variables in the binary to corresponding variables in the source code of those binaries to

determine how well it did. It defines four variable categories as a result: 1) a matched

variable is a recovered variable whose exact size and position matches the variable from

the source code. 2) An over refined variable is when the sourcecode variable is divided

into more recovered variables; for example, an integer identified as four characters. 3)

Under refined variables which are recovered as part of a larger source code variable ; for

example, an un-identified structure member. 4) An unknown variable is a variable which

is not one of those mentioned categories.

As shown from figure 5.4, an average of 86% of the variables arematched to the

debugging information. We run this experiment on programs ranging from 2,149 instruc-

tions (mcf) to 934,292 instructions (gcc). DIVINE [4] reports an average of 88% matched

variables on programs ranging between 252 to 5,371 instructions. This shows that our
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Figure 5.4: Accuracy of variable detection

schemes has comparable precision to DIVINE [4] but on much bigger benchmarks. The

largest benchmark they report variables results on isdeltabluewith 5,371 instructions.

The scalability of the variables and type detection is shownin figure 5.7. Our anal-

ysis scales linearly with program size for larger binaries.The detailed benchmarks sizes

were previously shown in figures 2.8 and 2.9 in chapter 2. The analysis takes around 6

minutes to analyzetontowhich is a Fortran benchmark whose size is 1.3 million instruc-

tions. The average analysis speed is 1.7 seconds per 10000 instructions compared to 10

minutes per 10000 instructions in DIVINE. Thus our method is352X faster than DIVINE

on average. As mentioned before, the underlying reason for our much-faster analysis is

using an underlying best-effort pointer analysis that is not guaranteed to have complete

points-to sets. We consider that while recovering the IR to maintain correctness as we

discussed earlier in section 5.2. dealII is the only program(out of 25) that did not scale

well. dealII has very large number of procedures. The interprocedural data flow propaga-
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tion took most of the time in dealII. Still, it is finishing in around 13 minutes given that it

has 766,555 instructions.

In order to evaluate our type analysis techniques, we calculate the same metrics that

TIE [43] uses. TIE defines a type range for every variable recovered from the executable.

An ordering between basic types is specified by a type latticeshown in their paper. The

first metric they define is thedistancewhich is the difference between the lattice heights

of the upper and lower bounding types for each type range. Thesmaller thedistance,

the more accurate the identified types are. The maximum distance is 4. They also define

their detected type range to beconservativeif the actual source code type falls inside the

detected range.

In order to compare with TIE [43], we define a range of types forevery variable we

detect where the lower bound is the single detected type by our analysis and the upper

bound is the genericregx_t type they define in their lattice, wherex represents the

number of bits of the underlying ALoc or register. Based on that range, we calculate

our distances and conservativeness rates. Since the TIE paper is not clear about how to

define conservativeness for structure and array types, we set their distances to 4. We also

added floating point types to their lattice the same way the integer types are added. As an

example, floats are added in the following order:

⊤ :> reg32_t :> float :> ⊥

.

In addition to the distance and conservativeness, we define our own metric that

measures the precision of multi-level pointers detection.TIE metrics do not show how
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multi-level pointers are precisely typed since all pointertypes have the same height on

their lattice [43]. Our precision metric is defined as the ratio between the correctly re-

covered pointer levels to the source level pointer levels. For example, if a variable has a

double pointer to integer type (int**) in the source code and we identified it as a single

pointer to an integer (int*), then we identified one level only out of the three levels in

source, which arepointer to pointer to integer. Our precision in this example will be

33%.

Figure 5.5 shows the conservativeness as well as the precision of our detected types.

The conservativeness rate is 96% on average which is slightly higher than 90% that TIE

reports. Our precision metric shows that we detect 73% of thepointer levels on average.

The average distance detected for our type recovery system is 1.7 which is slightly better

than the distance of 2 that TIE [43] reports. Figure 5.6 showsthe distance measured per

benchmark.
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Figure 5.5: Accuracy of type detection
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Some of the larger binaries have lower type precision than other smaller ones. This

is expected since larger programs tend to have more higher level pointers than smaller

ones and those are usually hard to detect since they rely on the effectiveness of the under-

lying pointer analysis. The conservativeness and distancemeasures used by TIE do not

capture this fact as it is clear from figure 5.5.

It is worth mentioning that our variable and type recovery are integrated together

in our system. The scalability shown in figure 5.7 is capturing both the variable recovery

and the type analysis.
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Figure 5.6: Distance of type detection

The recovered IR after our type analysis is usually of a higher quality than the one

before our techniques. To evaluate this, we calculate the percentage of the IR symbols that

have a non-generic type after our techniques. Results show that 91% of the IR symbols

are typed in Fortran binaries, 88% of them are typed in C and C++binaries, and 81%

of them are typed in the visual studio binaries. Those binaries were compiled using the
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Figure 5.7: Scalability of variable and type detection

maximum compiler optimization level while conducting thisexperiment.

5.9 Related Work

Throughout this chapter, we compared our work with the most recent work done in

the areas of variable and type recovery [4,43] and function prototypes identification [10].

In this section, we discuss other work that is relevant to ourtechniques.

Binary rewriting has been considered by a number of researchers. There are two

main categories when talking about binary rewriters, dynamic binary rewriters and static

binary rewriters. Dynamic binary rewriters rewrite the binary during its execution. Ex-

amples are PIN [48], BIRD [52] and others. None of the dynamic binary rewriters

found produce high-level compiler IR. Examples of existing static binary rewriters in-

clude ATOM [28], PLTO [60] and UQBT [16]. None of those binary rewriters employ
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a compiler level intermediate format, like LLVM IR or similar; rather they define their

own low-level custom intermediate format. They do not detect high level features such as

floating point stack variables, register arguments to functions and data types.

Boomerang [26] is an open source decompiler. It has very limited capabilities

and cannot handle large binaries. Register arguments have tobe specified manually. It

does not detect any floating point stack operations. Emmerikmentions in his PhD the-

sis [69] some type recovery techniques based on SSA which arepartially implemented in

Boomerang. They have very limited memory tracking capabilities which are very impor-

tant in recovering variables and data types as we stated earlier in this chapter.

Cifuentes et al. present techniques to recover high level C code from SPARC bina-

ries [13]. There is no discussion on how to detect variables along with their data types.

The paper is more towards recovering the high level constructs of the C language like

conditionals, loops, etc.

Saxena et al. present an efficent binary instrumentation technique [58]. For their

technique to be effective, they perform memory analysis similar to VSA [5] but limited

only to stack memory to detect escaped local variables. Theyassume complete knowledge

of accurate function boundaries.

REWARDS [44] presents a dynamic type recovery technique; TIE [43] shows better

precision than REWARDS. We already compared to TIE [43] in our results. A technique

to automatically reconstruct data types from binaries is presented in [22]. It is used in

a tool that aims to produce C code from binaries; however no actual C code generation

is demonstrated. One main disadvantage in their work is theydo not track memory. As

we have shown, tracking memory is very important in identifying accurate types. The
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analysis they produce is intraprocedural which limits its accuracy. Their algorithm is used

by Torshina et. al. [68] in another attempt to reverse engineer data types in a tool named

TyDec for program decompilation. An early work on type construction from binaries is

by Mycroft [51]. It tries to construct C code from binaries with correct type information.

However, it does not actually show results producing C code.The algorithm does not

track memory locations and it is not clear if it can produce valid IR or C output code.

Many static custom memory analysis techniques in binaries exist. None of them

recovers variables or data types. The VSA analysis by Balakrishnan and Reps [5] is used

by them to implement various analyses. One of them is called DDA/x86 [6] which is

used to detect bugs in device drivers. Device drivers were also analyzed using the Jakstab

tool [36] using a modified version of the VSA technique [37].

A low level pointer analysis was proposed by Guo et al. [32]. It is a context sen-

sitive, flow insensitive analysis detecting accurate points-to sets of registers and memory

locations. They do not recover variables or data types in their analysis. Their technique

can be used in place of ours, but as we show in this chapter, ourtechnique is simple,

scalable and sufficient for the application we are presenting.

Alias analysis on binaries was proposed by Debray et al. [21]. It detects aliases be-

tween registers using address descriptors. No real memory tracking takes place. The

same problem is present in the static slicing technique on binaries by Cifuentes and

Fraboulet [12].

Other types of alias analysis on executables were proposed.Speculative alias anal-

ysis of executables was proposed by Fernandez and Espasa [29] which increases aliasing

information precision by introducing unsafe speculationsat analysis time which might
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result in wrong analysis results in rare cases. Another probabilistic alias analysis for

executables was proposed by Lu and Chen [47] which estimates the probability of two

registers referring to the same memory address.
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Chapter 6: Conclusion

In this dissertation, we presented a set of techniques that are essential for the core of

any binary analysis and rewriting system. Our techniques can disassemble the complete

executable binary code, produce accurate function interfaces, recover function APIs, re-

cover variables and data types. Our techniques guarantee the correctness of any high-level

IR recovery process based on the recovered code. Our techniques can handle stripped bi-

naries without symbolic, relocation, or debugging information.

In chapter 2, we presented function boundaries recovery techniques that achieve

100% complete code coverage for most application code. The function boundaries are

almost 100% accurate. We presented techniques to reduce theamount of disassembled

spurious functions up to 4%. Our techniques perform better than all other binary analysis

tools aiming at disassembling binaries and achieving functions with accurate boundaries.

In chapter 3, we defined APIs for the recovered functions. We presented precise

techniques to recover accurate register arguments and returns information from binaries.

Our techniques guarantee that external function calls present in the binary without any

known prototype can still work correctly in our recovered IR.

In chapter 4, we presented techniques to recover variables that are allocated on the

x86 floating point stack. These variables are often missed inmost of the tools recovering
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variables from executables. Our techniques are sound and will always have a functional

recovered IR for most application binaries.

In chapter 5, we extend the variables recovery process to include all memory allo-

cated variables in executables. We also present techniquesto recover data types for the

recovered variables. The recovered data types include scalar, pointers, aggregates and re-

cursive data types. Our techniques are 352X faster than current techniques which enables

the analysis of very large binaries (up to a million instructions).

All the techniques presented were tested on the SPEC2006 benchmarks suite. The

recovered IR was recompiled and the rewritten binaries worked correctly giving the same

output as the original binaries. We presented in the dissertation detailed metrics showing

the quality of the recovered IR.
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Segurança da Informaçao e de Sistemas Computacionais, 2009.

185



[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. Bap: A
binary analysis platform. InProceedings of the 23rd International Conference on
Computer Aided Verification, CAV’11, pages 463–469, Berlin, Heidelberg, 2011.
Springer-Verlag.

[10] Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song. Binary
code extraction and interface identification for security applications. InNetwork
and Distributed System Security Symposium[1].

[11] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee:Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. InOSDI,
volume 8, pages 209–224, 2008.

[12] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables.
In Software Maintenance, pages 188 –195, oct 1997.

[13] C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language trans-
lation. InSoftware Maintenance, 1998. Proceedings., International Conference on,
pages 228–237, Nov 1998.

[14] C. Cifuentes and M. Van Emmerik. Recovery of jump table casestatements from
binary code. InProgram Comprehension, 1999. Proceedings. Seventh International
Workshop on, pages 192–199, 1999.

[15] Cristina Cifuentes.Reverse compilation techniques. PhD thesis, Queensland Uni-
versity of Technology, 1994.

[16] Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptable Binary Translation
at Low Cost.Computer, 33(3):60–66, March 2000.

[17] Cristina Cifuentes and Doug Simon. Procedure abstraction recovery from binary
code. InProceedings of the Conference on Software Maintenance and Reengineer-
ing, CSMR ’00, pages 55–, Washington, DC, USA, 2000. IEEE Computer Society.

[18] Robert Cohn, David Goodwin, P. Geoffrey Lowney, Norman Rubin, Robert Cohn,
David Goodwin, P. Geoffrey Lowney, and Norman Rubin. Spike: An optimizer for
alpha/nt executables. InIn USENIX Windows NT Workshop, pages 17–24, 1997.

[19] M. Cova, V. Felmetsger, G. Banks, and Giovanni Vigna. Static detection of vulner-
abilities in x86 executables. InComputer Security Applications Conference, 2006.
ACSAC ’06. 22nd Annual, pages 269–278, Dec 2006.

[20] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen. On the
static analysis of indirect control transfers in binaries.In Proc. of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
pages 1013–1019, 2000.

186



[21] Saumya Debray, Robert Muth, and Matthew Weippert. Aliasanalysis of executable
code. InProceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL, pages 12–24, New York, NY, USA, 1998. ACM.

[22] E. N. Dolgova and A. V. Chernov. Automatic reconstruction of data types in the
decompilation problem.Program. Comput. Softw., 35(2):105–119, March 2009.

[23] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. Scalable variable and data type detection in a binary rewriter. InProceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 51–60, New York, NY, USA, 2013. ACM.

[24] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, Jim Gruen, and
Rajeev Barua. Scalable variable and data type detection in a binary rewrite. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2014, Under Re-
view.

[25] Khaled ElWazeer, Matthew Smithson, Kapil Anand, Aparna Kotha, , and Rajeev
Barua. Scalable variable and data type detection in a binary rewrite. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 2014, Under Review.

[26] M.V. Emmerik and T. Waddington. Using a decompiler for real-world source re-
covery. InReverse Engineering, 2004. Proceedings. 11th Working Conference on,
pages 27–36, Nov 2004.

[27] eSecurityPlanet Staff. eSecurity Planet News, 2011.

[28] Alan Eustace and Amitabh Srivastava. ATOM: a flexible interface for building high
performance program analysis tools. InProceedings of the USENIX 1995 Techni-
cal Conference Proceedings, TCON’95, pages 25–25, Berkeley, CA, USA, 1995.
USENIX Association.

[29] M. Fernandez and R. Espasa. Speculative alias analysis for executable code. In
Parallel Architectures and Compilation Techniques, 2002. Proceedings. 2002 Inter-
national Conference on, pages 222 – 231, 2002.

[30] GrammaTech. CodeSurfer by GrammaTech.http://www.grammatech.
com/products/codesurfer/overview.html, 1998.

[31] Ilfak Guilfanov. Idapro Disassembler, Hexrays, 2005.

[32] B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Prac-
tical and accurate low-level pointer analysis. InCode Generation and Optimization,
2005. CGO 2005. International Symposium on, pages 291 – 302, march 2005.

[33] L.C. Harris and B.P. Miller. Practical analysis of stripped binary code. ACM
SIGARCH Computer Architecture News, 33(5):63–68, 2005.

187

http://www.grammatech.com/products/codesurfer/overview.html
http://www.grammatech.com/products/codesurfer/overview.html


[34] J.K. Hollingsworth, B.P. Miller, and J. Cargille. Dynamic program instrumentation
for scalable performance tools. InScalable High-Performance Computing Confer-
ence, 1994., Proceedings of the, pages 841–850, May 1994.

[35] Johannes Kinder and Dmitry Kravchenko. Alternating control flow reconstruction.
In Viktor Kuncak and Andrey Rybalchenko, editors,Verification, Model Checking,
and Abstract Interpretation, volume 7148 ofLecture Notes in Computer Science,
pages 267–282. Springer Berlin Heidelberg, 2012.

[36] Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries.
In Proceedings of the 20th International Conference on ComputerAided Verifica-
tion, CAV ’08, pages 423–427, Berlin, Heidelberg, 2008. Springer-Verlag.

[37] Johannes Kinder and Helmut Veith. Precise static analysis of untrusted driver bina-
ries. InProceedings of the 2010 Conference on Formal Methods in Computer-Aided
Design, FMCAD ’10, pages 43–50, Austin, TX, 2010. FMCAD Inc.

[38] Johannes Kinder, Florian Zuleger, and Helmut Veith. Anabstract interpretation-
based framework for control flow reconstruction from binaries. InProceedings of
the 10th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI ’09, pages 214–228, Berlin, Heidelberg, 2009. Springer-
Verlag.

[39] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspectorgadget: Automated
extraction of proprietary gadgets from malware binaries. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 29–44, May 2010.

[40] Christopher Kruegel, William K Robertson, Fredrik Valeur, and Giovanni Vigna.
Static disassembly of obfuscated binaries. InUSENIX security Symposium, vol-
ume 13, pages 18–18, 2004.

[41] Arun Lakhotia, Davidson R. Boccardo, Anshuman Singh, andAleardo Manacero,
Jr. Context-sensitive analysis of obfuscated x86 executables. InProceedings of the
2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM ’10, pages 131–140, New York, NY, USA, 2010. ACM.

[42] Arun Lakhotia, Eric Uday Kumar, and Michael Venable. A method for detecting
obfuscated calls in malicious binaries.IEEE Trans. Softw. Eng., 31(11):955–968,
November 2005.

[43] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse
engineering of types in binary programs. InNDSS. The Internet Society, 2011.

[44] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automaticreverse engineering of
data structures from binary execution. InNDSS[1].

[45] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve re-
sistance to static disassembly. InProceedings of the 10th ACM Conference on

188



Computer and Communications Security, CCS ’03, pages 290–299, New York, NY,
USA, 2003. ACM.

[46] LLVM. The LLVM Compiler Infrastructure, 2003.

[47] Yu-Min Lu and Peng-Sheng Chen. Probabilistic alias analysis of executable
code. International Journal of Parallel Programming, 39:663–693, 2011.
10.1007/s10766-010-0157-y.

[48] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. pages 190–200,
2005.

[49] Jinxin Ma, Zhoujun Li, and Chaojian Hu. Towards extracting control flow abstrac-
tion with static disassembly for binary code. InComputational Intelligence and
Communication Networks (CICN), 2012 Fourth International Conference on, pages
430–435, Nov 2012.

[50] D. Melski, T. Teitelbaum, and T. Reps. Static analysis ofsoftware executables. In
Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity Applications
Technology, pages 97 –102, march 2009.

[51] Alan Mycroft. Type-based decompilation. InProceedings of the 8th European
Symposium on Programming, volume 1576 ofLecture Notes in Computer Science,
pages 208–223. Springer, 1999.

[52] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker Chiueh. Bird: Binary inter-
pretation using runtime disassembly. InProceedings of the International Symposium
on Code Generation and Optimization, CGO ’06, pages 358–370, Washington, DC,
USA, 2006. IEEE Computer Society.

[53] Igor V Popov, Saumya K Debray, and Gregory R Andrews. Binary obfuscation
using signals. InUSENIX Security Symposium, pages 275–290, 2007.

[54] G. Ramalingam, John Field, and Frank Tip. Aggregate structure identification and
its application to program analysis. InProceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’99, pages
119–132, New York, NY, USA, 1999. ACM.

[55] Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karen Hunt. Learning to an-
alyze binary computer code. InProceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2, AAAI’08, pages 798–804. AAAI Press, 2008.

[56] Nathan E. Rosenblum, Barton P. Miller, and Xiaojin Zhu. Extracting compiler
provenance from program binaries. InProceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’10, pages 21–28, New York, NY, USA, 2010. ACM.

189



[57] Kevin A. Roundy and Barton P. Miller. Binary-code obfuscations in prevalent packer
tools. ACM Comput. Surv., 46(1):4:1–4:32, July 2013.

[58] Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-grained binary instru-
mentationwith applications to taint-tracking. InProceedings of the 6th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’08, pages 74–83, New York, NY, USA, 2008. ACM.

[59] Benjamin Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
revisited. InReverse Engineering, 2002. Proceedings. Ninth Working Conference
on, pages 45–54, 2002.

[60] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre.
PLTO: A Link-Time Optimizer for the Intel IA-32 Architecture. In Workshop on
Binary Translation, 2001.

[61] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang.LLBT: An LLVM-
based Static Binary Translator. InProceedings of the 2012 International Confer-
ence on Compilers, Architectures and Synthesis for EmbeddedSystems, CASES ’12,
pages 51–60, New York, NY, USA, 2012. ACM.

[62] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, MauriceP. Marks, and Scott G.
Robinson. Binary translation.Commun. ACM, 36(2):69–81, February 1993.

[63] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua.Static binary rewrit-
ing without supplemental information: Overcoming the tradeoff between coverage
and correctness. InReverse Engineering (WCRE), 2013 20th Working Conference
on, pages 52–61, Oct 2013.

[64] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, andPrateek Saxena.
Bitblaze: A new approach to computer security via binary analysis. InProceedings
of the 4th International Conference on Information Systems Security, ICISS ’08,
pages 1–25, Berlin, Heidelberg, 2008. Springer-Verlag.

[65] Bjarne Steensgaard. Points-to analysis in almost linear time. InProceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[66] Nathan R. Tallent, John M. Mellor-Crummey, and Michael W.Fagan. Binary anal-
ysis for measurement and attribution of program performance. In Proceedings of
the 2009 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’09, pages 441–452, New York, NY, USA, 2009. ACM.

[67] H. Theiling. Extracting safe and precise control flow from binaries. InReal-Time
Computing Systems and Applications, 2000. Proceedings. Seventh International
Conference on, pages 23–30, 2000.

190



[68] K. Troshina, Y. Derevenets, and A. Chernov. Reconstruction of composite types
for decompilation. InSource Code Analysis and Manipulation (SCAM), 2010 10th
IEEE Working Conference on, pages 179 –188, sept. 2010.

[69] Michael James Van Emmerik.Static single assignment for decompilation. PhD
thesis, The University of Queensland, 2007.

[70] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere. Diablo: a re-
liable, retargetable and extensible link-time rewriting framework. InSignal Process-
ing and Information Technology, 2005. Proceedings of the Fifth IEEE International
Symposium on, pages 7–12, Dec 2005.

[71] Giovanni Vigna. Static disassembly and code analysis.In Mihai Christodorescu,
Somesh Jha, Douglas Maughan, Dawn Song, and Cliff Wang, editors, Malware
Detection, volume 27 ofAdvances in Information Security, pages 19–41. Springer
US, 2007.

[72] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
Towards optimization-safe systems: Analyzing the impact of undefined behavior. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 260–275, New York, NY, USA, 2013. ACM.

[73] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Still: Exploit code detec-
tion via static taint and initialization analyses. InProceedings of the 2008 Annual
Computer Security Applications Conference, ACSAC ’08, pages 289–298, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[74] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. InPro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 157–168, New York, NY, USA, 2012. ACM.

[75] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Securing
untrusted code via compiler-agnostic binary rewriting. InProceedings of the 28th
Annual Computer Security Applications Conference, ACSAC ’12, pages 299–308,
New York, NY, USA, 2012. ACM.

[76] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. Differentiating code from data in x86 binaries. InProceedings of
the 2011 European Conference on Machine Learning and KnowledgeDiscovery in
Databases - Volume Part III, ECML PKDD’11, pages 522–536, Berlin, Heidelberg,
2011. Springer-Verlag.

[77] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, ZhiqiangLin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. InProceedings of the 2013 ACM SIGSAC Conference on Computer
&#38; Communications Security, CCS ’13, pages 487–498, New York, NY, USA,
2013. ACM.

191



[78] Jingbo Zhang, Rongcai Zhao, and Jianmin Pang. Parameterand return-value analy-
sis of binary executables. InProceedings of the 31st Annual International Computer
Software and Applications Conference - Volume 01, pages 501–508, Washington,
DC, USA, 2007. IEEE Computer Society.

192


	List of Figures
	Introduction
	Functions Recovery
	Function API Recovery
	Variables and Data Types Recovery
	SecondWrite
	Comparison with previous work in the SecondWrite project
	Organization of the Dissertation

	Recovering Functions with Accurate Boundaries
	Introduction
	Background and Motivating Example
	Binary Characterization and Code Coverage
	Disassembly Methods
	Disassembly Rules
	Improving Function Boundaries

	Marking Likely Spurious Code
	Inlined Functions
	Identifying Actual Parent Function
	Memory Analysis
	ISA Analysis
	Empty Functions Detection
	Conditional Handling

	Static Function Identification Based on Dynamic Information
	Disassembler based on dynamic information - The big picture
	Function Pruning using Dynamic Information
	The dynamically assisted analyses code coverage guarantees
	Unification of dynamic information

	High Level IR Functionality
	Call Translation
	Conditional Handling

	Results
	Comparison with best-effort techniques
	Function Boundaries Accuracy
	Dynamic Based Reduction in Binary Characterization Addresses
	Spurious Functions
	IR Size Changes due to Adjustments
	Disassembly Time
	Heuristics Effect

	Related Work
	Limitations and Future Work
	Position Independent Code
	Obfuscated Code
	Self Modifying Code


	Recovering Function APIs
	Introduction
	Function Prototypes Recovery
	External Calls Prototypes
	Overview and Problem Statement
	Assumptions
	Detecting External Function Calls
	External Calls IR Representation
	Trampoline Function
	Correctness of the Trampoline Function

	Effect of inaccurate function boundaries
	Memory Stack
	Register Arguments

	Results
	Register Arguments and Returns
	Trampoline Function Overhead

	Related Work

	Recovering Floating Point Stack Allocated Variables
	Introduction
	x86 Floating Point Stack Layout and Problem Overview
	Floating Point Stack Assumptions
	Basic Approach for Decoding the Floating Point Stack
	Decoding the Floating Point Stack in the Case of Unresolved Indirect Jumps
	Correctness Proofs
	Results
	Related Work

	Recovering Memory Allocated Variables and Data Types
	Introduction
	Variable and Type Recovery - Challenges and Intuitions
	Best Effort Static Variable Recovery
	Data Type Recovery
	IR Data Types Emission Algorithm
	Practical Considerations

	IR Correctness and Analysis Termination
	Effects of inaccurate function boundaries and spurious functions
	Results
	Related Work

	Conclusion
	Bibliography

