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The aim of the work presented in this thesis is to automatically extract the 

fundamental frequency of a periodic signal from noisy observations, a task commonly 

referred to as pitch estimation. An algorithm for optimal pitch estimation using a 

maximum likelihood formulation is presented. The speech waveform is modeled 

using sinusoidal basis functions that are harmonically tied together to explicitly 

capture the periodic structure of voiced speech. The problem of pitch estimation is 

casted as a model selection problem and the Akaike Information Criterion is used to 

estimate the pitch. The algorithm is compared with several existing pitch detection 

algorithms (PDAs) on a reference pitch database. The results indicate the superior 

performance of the algorithm in comparison with most of the PDAs. The application 

of parametric modeling in single channel speech segregation and the use of mel-

frequency cepstral coefficients for sequential grouping are analyzed in the speech 

separation challenge database.  
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Chapter 1: Introduction and Background 

1.1  Objective 

The aim of the work presented in this thesis is to automatically extract the 

fundamental frequency of a periodic signal from noisy observations, a task commonly 

referred to as pitch estimation. A Fourier series is a decomposition of a periodic 

signal into a sum of a set of simple oscillating functions, namely sines and cosines or 

complex exponentials. These sinusoids all repeat over the same interval, meaning 

they have frequencies which are integer multiples of a fundamental frequency. This 

thesis is about the estimation of the fundamental frequency for speech signals through 

parametric signal modeling. We also study some novel applications of the signal 

model for challenging problems like speech enhancement and speech segregation.  

 

1.2  Pitch Vs Fundamental Frequency 

The terms fundamental frequency and pitch will be used interchangeably in this 

thesis, although there is a fine distinction between the two. The former is a 

mathematical term that describes the periodicity in the signal whereas pitch can be 

thought of as a perceived fundamental frequency. The American National Standards 

defines the term pitch as “that attribute of the auditory sensation in terms of which 

sounds may be ordered on a scale extending from low to high”. Hence the term pitch 

has more to do with auditory sensation than the physical attribute of the signal. In 

spite of this difference, throughout this thesis we will use pitch synonymously with 
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fundamental frequency to refer to the physical attribute of the signals associated with 

the Fourier series.  

 

1.3  Pitch Detection Algorithms (PDA) 

The algorithms that aim at extracting the pitch are referred to as pitch detection 

algorithms (PDA). The problem of pitch estimation can be viewed differently from 

pitch detection which is a hypothesis testing problem. In most of the work presented 

we do not make any distinction about pitch detection and estimation. Naturally, one 

has to decide if the observed speech signal is voiced (periodic) or unvoiced 

(aperiodic) and if it is voiced, then we need to estimate the pitch. Hence both these 

terms are tied together in a generic PDA. Typically, pitch determination requires a 

search of different possible candidate frequencies over an analysis window. A cost 

function is defined for every pitch candidate and the estimated frequency is chosen to 

be the one that gives an optimum cost. We will now briefly discuss some of the 

popular techniques for pitch detection (Christensen et al., 2008; Hess, 1983; Rabiner, 

1976).  

 

1.4  Non-parametric Methods 

There exists many non-parametric methods, based on, for example, the 

autocorrelation, cross-correlation, averaged magnitude difference function or the 

cepstrum. Most of these methods define the cost function to measure some sense of 

similarity of the signal and its delayed version. For example, the autocorrelation 

based pitch detector can be formally viewed as minimizing, over possible pitch 
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periods the mean squared error between the signal and its delayed version. It is 

essentially a measure of self-similarity and we expect to observe peaks near the actual 

period.  Another example of a non-parametric method is the harmonic product 

spectrum. All these methods suffer from a common problem of non-uniqueness in 

pitch estimation even in the ideal case i.e., there exists multiple lags for which the 

signal is similar to itself. A detailed study of various non-parametric approaches is 

presented in Hess, 1983.  

 

1.5  Human Auditory System models 

Another class of methods that estimate pitch frequency is based on models of the 

human auditory system. Instead of taking their starting point in the properties of the 

signal, these methods are based on the properties of the human ear and brain. The 

motivation is that the human auditory system has a remarkable property of identifying 

multiple pitches simultaneously, and separates various sources despite the 

background noise. The hope is that by mimicking the auditory signal processing, we 

can design a system that works as well as humans. For examples of such methods, 

references therein and overview of all things related to pitch perception are discussed 

in Plack et al., 2005.  

 

1.6  Parametric Models 

The objective of the above methods is quite different from the method presented in 

this thesis. We are concerned with finding the parameters that are most likely to 

explain the observed signal and this is generally a different concept altogether than 



 

 4 

 

modeling the peculiarities of the auditory system. In parametric approach towards 

pitch estimation, a signal model is proposed which aim at explaining the observation 

with few finite parameters. In particular, we would like to infer from the observation 

the parameters of the model. R.A. Fisher (1922) discussed three aspects of the general 

problem of valid inference: (1) model specification, (2) estimation of model 

parameters, and (3) estimation of precision. The model specification is partitioned 

into two components: formulation of a set of candidate models and selection of a 

model to be used in making inferences. Among the statistical parametric estimation 

methods, the two philosophies namely Maximum likelihood (ML) and Maximum a 

posteriori (MAP) methods are analyzed. The parametric models discussed are based 

on sinusoidal modeling of the observed signal. In particular, we present the work 

where the parameters are assumed to be fixed on the duration of the signal that is 

analyzed. An ML estimation framework is presented for estimating the parameters of 

the model. In order to estimate the fundamental frequency, the Akaike information 

criterion (AIC) is applied to regularize the parameter estimation process. A closely 

related work towards MAP estimation for pitch tracking is presented in Tabrikian et 

al., 2004. The prior is imposed on the fundamental frequencies which are assumed as 

a Markov sequence and the MAP estimation of the fundamental frequency is 

implemented using a dynamic programming procedure. In this work we do not 

assume any distribution on the transition probability density function (pdf) of the 

fundamental frequencies and each frame operates independently.  
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1.7  Thesis Outline 

The parametric modeling of the speech signal and its application towards pitch 

estimation is presented in Chapter 2. The major contribution in this chapter is the 

optimal estimation of fundamental frequency through ML formulation and AIC 

model selection framework. Perhaps the earliest work which approximates the speech 

signal by a finite Fourier series is the PDA by Steiglitz et al., 1975. However, the 

algorithm was analyzed in a very limited setting for one male speaker and there was 

no extensive results reported across a database. The problem of pitch estimation using 

the signal models typically suffer from over fitting using ML methods Wise et al., 

1976 which is brought to attention in this chapter. A detailed analysis of the proposed 

algorithm with results from a publicly available pitch database is presented.  

 

Chapter three discusses the important applications of parametric modeling described 

in this thesis. There are two major applications that will be discussed highlighting the 

potential and use of this method. The major contribution in this chapter is in signal 

separation by using regularized least squares method.  

 

Chapter four extends the analyses towards a single channel speech segregation system 

and the objective is to track multiple pitch frequencies across time. This problem is 

called sequential grouping in co-channel speech (Wang & Brown, 2006). In order to 

achieve meaningful separation of the speech signals using the pitch frequencies, it is 

desired to group the speech that belongs to the target speaker into one stream and the 

masker in to another stream. A detailed analysis is presented on the problem with 
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results using different features that are used for grouping. The primary contribution in 

this chapter is the use of the Mel-frequency cepstral coefficients (MFCCs) to perform 

sequential grouping. 

 

Chapter five presents the conclusion and directions for future work. The general 

framework of parametric modeling has extensive applications and some of these were 

presented in Chapter four. Interesting ideas on future directions for improvement in 

pitch estimation and signal enhancement are presented in this chapter.  
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Chapter 2: Pitch Detection Algorithm 
 

The statistical method for pitch tracking presented in this work (Mahadevan & Espy-

Wilson, 2011) can be viewed as a generalization of the discrete Fourier transform 

representation. It is also a special case of a sinusoidal speech model where all the 

sinusoidal components are assumed to be harmonically related, i.e. integer multiples 

of the fundamental frequency. The system outputs a pitch estimate for every frame 

that is detected to be voiced. We follow a metric that estimates the local signal to 

noise ratio (SNR) and decide on the voicing probability (Quatieri, 2002). The voice 

activity detection is an integral part of the algorithm which is measured by the 

goodness of the model fit to the observation. The statistical method for pitch tracking 

presented in this work follows the maximum likelihood estimation of the parameters. 

We follow a regression framework and decide on the pitch frequency using the 

Akaike Information Criteria (Burnham & Anderson, 2002). We consider three 

principal parts of the mathematical model i.e. the conceptual, analytic and 

computational aspects in sections 2.1 through 2.5. The voicing detection block is 

outlined in section 2.6. A description of the database used in the evaluation is 

presented in section 2.7 and the performance comparison with several existing PDAs 

is discussed in section 2.8. 

2.1  Motivation 

For a stationary speech signal, pitch can be defined as the perception of a fundamental 

frequency of a pure harmonic template which optimally fits a successive harmonic 

component pattern of the speech signal (Goldstein, 1973). We follow a signal model 



 

 8 

 

that explicitly captures the periodic structure of the speech signal. This approach 

towards estimating pitch is referred as Harmonic Structure Matching Pitch Estimation 

(HSMPE) in Gong and Haton, 1987.  In our work, we explicitly model the time 

domain signal using sinusoidal basis functions that are harmonically tied together. 

2.2  Mathematical Formulation 

We start with the basic Fourier series representation of a stationary periodic signal. 

The windowed speech waveform is represented by a sum of sinusoidal functions with 

fixed amplitudes, frequencies and phases (McAulay & Quatieri, 1986). This approach 

can be viewed as a generalization of the discrete Fourier transform, i.e. the period of 

the signal is arbitrary and not necessarily equal to the length of the signal. This 

framework was used in (Arruda, 2010) the name of regressive discrete Fourier series 

and it is well known in the statistical literature as least squares spectral analysis. Under 

this condition, the windowed speech signal s[n] is represented as, 

 

    s�n� � ∑ ��	 cos�2π
��� � �	��   � ε�n�        �����	��             (2.1) 

 

where 1 � � � �, ak , φk,  f0 and ��
�� represent the amplitude, phase, fundamental 

frequency and the number of harmonics respectively and ε[n] represents the residual 

error from the model. Equation 1 can be compactly written in matrix form as, 

 

           � � � �f�� !  " �  #                                            (2.2) 
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$�
�� � %&'�()�&'*()�&'+()�
&'�(,)� -&'*(,)� -&'+(,)� -

&'�(�)�&'*(�)�&'+(�)�
.  

 

where the matrix A contains complex exponentials at the multiples of /� � 20
� and 

is of size NxM(f0). The harmonic amplitude and phase information is captured in γ. 

The residual error is assumed to be additive white Gaussian noise with zero mean and 

covariance matrix 1 �  2,3. Hence the unknown parameters in the model are f0, γ and 

σ
2
 which we wish to estimate from the observed signal. 

2.3  Maximum Likelihood Estimation 

The likelihood of observing the data given the parameters is, 

 

                               4�5|
� , 2, , "� ~ ��$�
��  !  9, 2,:�                         (2.3) 

 

and the log-likelihood function L(θ) with ; � �2,, <, 
�� containing all the unknown 

parameters is given by, 

 

             =�2,, 9, 
� � � +, ln ? �,@ABC D �,AB ��5 D $�
� �9�E�5 D $�
� �9��                (2.4) 

 

The maximum likelihood parameter estimate is found by maximizing (4), 

 

                                  ;F � arg J�K;L M =�;�                                                  (2.5) 
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The log-likelihood function is non-linear in f0 and the usual optimization methods will 

yield local maxima. However, the parameter space for f0 is restricted to the possible 

pitch frequency for humans and therefore we do a global brute force approach for 

estimating f0. To do so, we fix f0 = f0’ and observe that the optimization problem is 

quadratic in γ and the solution is given by Moore-Penrose pseudo inverse of � �f�N� 

denoted as $O�f�P� �  � � �f�N�Q ! � �f�N��'R ! � �f�N�. The well known optimal 

estimates is noted below for γ and σ
2
, 

 

                                          9S � $O�
�P� ! 5                                              (2.6) 

 

                                         2,T � �U D � �f�P� !  9S �Q�U D � �f�P� !  9S�/W                      (2.7) 

The estimated signal Û is given by the projection of the observation on the space 

spanned by the columns of � �f�′�, 

 

                                          5Y �  Ρ� Z[�′ \ ! �                                       (2.8) 

 

                                   Ρ� Z[�′ \ �  ]�]^]�'R$|_`′                                     (2.9) 

 

The maximized value of the log-likelihood function ignoring the additive constants is 

then given by, 
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                                   =Zab\ �  +, ln � �ABT�                                            (2.10) 

 

The problem formulation is reduced to minimizing the residual sum of squares. The 

column space of � ���, � is a superset of  � �f�� and therefore the residual error variance 

will follow 2,T��/, �  2,T��  . It can be seen that choosing f0 that maximizes L(θ) in (10) 

will result in pitch halving error almost always when 
��,  is in the parameter space. This 

should come as no surprise as we are simply doing a regression on the data using 

different models indexed by f0. Therefore we need a tradeoff on the number of 

parameters used to describe the model, i.e. the complexity of the model and the 

goodness of fit from the model. This is achieved using the AIC described in the next 

section. 

2.4  Model Selection 

The AIC model selection stems from the Kullback- Leibler (K-L) information loss 

(Rao et al., 2008; Burnham & Anderson, 2002) to choose the best model from a set of 

candidates. In our case, the different models are indexed by the fundamental 

frequency. The tradeoff between the model complexity and the goodness of fit as 

given by AIC is, 

 

c3d�Jef&g� �        D2 ! ���KhJhi&f j�gk& e
 lm& gh�&ghmeef Jef&g�n �
            2 ! �kJo&p e
 q�p�J&l&pU h� lm& Jef&g                                     (2.11) 
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                                           c3d�
�� �  �g� ?2,T�
��C �  2 !  ��
��          (2.12) 

 

We have the maximized log-likelihood value using the templates of projection 

matrices indexed by f0. The number of parameters in the model is equal to the number 

of regressors used, i.e. the dimension of the harmonic coefficients M(f0). We choose 

the f0 that gives the lowest AIC score. A scenario illustrating the pitch halving error 

through ML model selection which is corrected using AIC information criteria is show 

in Figure 2.1. The algorithm provides high resolution in estimating the pitch frequency 

as we are not restricted to work with integer periods with resolution dictated by the 

sampling interval. The effect of pitch resolution in computational complexity is 

analyzed in the following section. 
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Figure 2.1: Illustration of pitch halving error using maximum likelihood pitch 

estimation 

2.5  Computational Complexity 

In the problem of pitch estimation we are essentially solving a system of linear 

equations through projection templates. The storage complexity of these templates 

requires a memory space of the order (Big- O notation) ΟZΤ ! Ν,\ where Т denotes 

the cardinality of the f0 parameter search space. The number of computations done per 
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candidate model is ΟZΝ,\ and therefore for T models we have a total of ΟZΤ ! Ν,\. It 

should be noted that other minimum mean squared error methods based on similarity 

measures like the autocorrelation and the Average Magnitude Difference Function 

(AMDF) require Ο�N� for every candidate pitch period (brute force approach) and 

therefore a total of  Ο�Τ ! N� computational load.  

The algorithm can be easily scaled to meet the computational requirements with a 

tradeoff on the accuracy of the pitch estimates. By computing the pitch frequency in 

the first voiced frame, gradient search techniques can be used to estimate the 

fundamental frequency in the successive frames. There can be various strategies to 

efficiently search the pitch grid starting from a coarse resolution and then tuning it to a 

finer resolution according to the required level of accuracy. Figure 2.2 illustrates the 

computational time required to process a signal of length 1.35s sampled at 8 kHz at 

10ms frame rate in 3GHz Intel processor. The computational time further scales with 

the sampling frequency of the signal. If we down sample the signal by a factor of L, 

the computational complexity scales by a factor of =,, i.e. the load for T models is 

Ο sΤ ! ?+t C,u .   
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Figure 2.2: Run time analysis of the pitch detection algorithm as a function of pitch 

resolution 

2.6  Voice Activity Detection 

Voice activity detection is an integral part of the algorithm which is measured by the 

goodness of the model fit to the observation. The estimated speech signal Û and the 

residual ε can be used to arrive at a measure of local SNR as follows, 
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                                                  v � 5 D 5Y                        (2.13) 

 

                                                 w�1 �  10ge4�� ?ŷzŷ{z{  C                                   (2.14) 

 

The voicing decision can be based on the SNR level and one approach indicated in 

(Quatieri, 2002) is, 

 

                                               |}~ � � 1, w�1 � 10f��� �w�1 D 4�, 4f� � w�1 � 10f�0, w�1 � 4f� �         (2.15) 

2.7  CSTR Database 

Performance evaluation is done on the publicly available database provided by the 

Center for Speech Technology Research (CSTR) at University of Edinburgh, 

Scotland, UK. The database includes 50 sentences each from a male and female 

speaker.  The database was biased towards utterances containing voiced fricatives, 

nasals, liquids and glides, since PDAs generally find these difficult to analyze 

(Bagshaw, 1994). The analysis window length was fixed at 25ms at 20 kHz sampling 

frequency and a frame rate of 6.4ms was followed. The pitch range analyzed was 

between 80-400Hz for both male and female speakers. There was no pre-processing 

stage to filter the speech signal. 
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2.8  Performance Comparison 

The sentences were recorded with the use of laryngograph so that a reference 

laryngeal frequency contour can be obtained. The laryngograph measures the 

impedance between the two electrodes placed bilaterally across the larynx. The 

measured impedance decreases with the increased vocal fold contact. The glottal 

closure is marked in the laryngograph signal by a sharp rise to peak. The 

laryngograph data provides a simple and accurate method of producing a 
� contour 

with which all other contours can be compared. The method to extract the 
�value 

from the laryngograph data is outlined in Bagshaw et al., 1993. Every 
�value in the 

reference file had a time label which was used to align the estimated pitch value 

(}�y�) with the reference pitch (}���). A nearest neighbor interpolation was used to 

compare the two pitch values at the time label where the algorithm estimated the 

pitch. The error measures computed for performance evaluation are the same as 

specified in Bagshaw et al., 1993. When the estimated and reference pitch represent 

voiced speech, we have two error measures namely, gross errors and fine errors. The 

gross error high (GEH) is counted if }�y� � 1.2 !  }��� and gross error low (GEL) is 

counted if }�y� � 0.8 !  }��� for the duration when both represent voiced speech. Net 

gross error (GE) is the sum of GEL and GEH. Fine errors in pitch estimation are 

defined on the frames where�}�y� D  }���� � 0.2. The duration of unvoiced or silent 

regions incorrectly classified as voiced by the PDA is noted as unvoiced in error. 

This result is accumulated over all the utterances for a speaker and noted as a 

percentage of total unvoiced (or silent) duration. Similarly, we have voiced in error 

for the duration of voiced speech that are erroneously classified as unvoiced. The 
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statistics of the absolute deviation in the fine pitch errors are reported in mean and 

population standard deviation (p.s.d). The list of PDAs used in the comparison is, 

 

• Cepstrum pitch determination (CPD), Noll, 1967 

• Feature-based pitch tracker (FBPT), Phillips, 1985 

• Harmonic product spectrum (HPS), Schroeder, 1968 

• Integrated pitch tracking algorithm (IPTA), Secrest & Doddington, 1983 

• Parallel processing method (PP), Gold & Rabiner, 1969 

• Super resolution pitch determinator (SRPD), Medan et al., 1991 

• Enhanced version of SRPD (eSRPD), Bagshaw et al., 1993 

• Modified AMDF-based PDA with probabilistic error correction (mAMDFp), 

Ying et al., 1996 

• Pitch determination algorithm based on sub-harmonic to harmonic ratio (SHR), 

Sun, 2000 

• Maximum likelihood pitch detection (ML-AIC), Mahadevan & Espy-Wilson, 

2011 

• Raw pitch results (raw) 

• Post-processed  by median filter (filtered) 

 

The results for the first 7 PDAs are taken from Bagshaw et al., 1993 where eSRPD 

was shown to perform superior to the rest. The raw pitch estimates from the ML-AIC 

algorithm were post-processed with a 5 point median filter. The results plotted in 

Figures 2.3 through 2.8 indicate that the performance of the algorithm is comparable 
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to or better than most of the PDAs listed. The net gross error which is the sum of 

GEH and GEL values illustrated in Figures 2.7 and 2.8 reveal the comparison of 

several existing PDAs with the proposed algorithm. 

 

The GEL values for ML-AIC are quite high as compared to GEH which can be noted 

in Figures 2.5 and 2.6. The explanation for such bias in error is due to model over 

fitting. Detailed analyses on these errors on ML-AIC (raw) reveal that 75.86% of the 

GEL for male and 76.74% of the GEL for female occur due to pitch halving or sub 

multiple error i.e. �i ! }�y� D }���� � 0.2, i L �2,3, 4� . Most of the deletion errors 

(voiced in error) occur in the first few frames or last few frames of a voiced segment.  

When three frames in the beginning and end of a continuous voiced segment (i.e. no 

pause or silence in between) were excluded from the analysis, the deletion errors 

dropped to 3.51% for male and 4.99% for female. Overall the results for the raw pitch 

estimates indicate that the performance of the algorithm is comparable to (eSRPD) or 

better than most of the methods in gross errors and fine pitch errors. Median filtering 

reduced the insertion and deletion errors to some extent as seen in Figures 2.3 and 

2.4. The tradeoff for reduction in VAD errors is reflected in fine error measures. The 

mean absolute deviation and p.s.d show an increase in their values after smoothing in 

Figures 2.9 and 2.10.   

 



 

 20 

 

 

 

Figure 2.3: Voice activity detection (VAD) errors in PDA for male speaker 
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Figure 2.4: Voice activity detection (VAD) errors in PDA for female speaker 
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Figure 2.5: Comparison of gross error high and gross error low in PDA for male 

speaker 
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Figure 2.6: Comparison of gross error high and gross error low in PDA for female 

speaker 
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Figure 2.7: Net gross errors in PDA for male speaker 
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Figure 2.8: Net gross errors in PDA for female speaker 
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Figure 2.9: Fine errors in PDA for male speaker 
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Figure 2.10: Fine errors in PDA for female speaker 
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Figures 3 and 4 compare the reference pitch with the estimated pitch contour for a 

male and a female speaker respectively. The reference pitch values were linearly 

interpolated in the voiced segments at the frame rate followed in the algorithm. The 

post processed pitch estimates are shown in blue.  

 

 

 

Figure 2.11:  (top) Spectrogram and (bottom) comparison of }�y�(blue) with 

}��� (red) for male 
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Figure 2.12:  (top) Spectrogram and (bottom) comparison of }�y�(blue) with 

}��� (red) for female 

 

Pitch estimation is one of the key applications of parametric modeling. In this 

chapter, we have studied the performance of the pitch detection algorithm and the 

results reveal the superior performance of the algorithm in comparison with most of 

the existing techniques. The extension of this model based approach towards multi-
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pitch estimation is straightforward but the computational time to search the two 

dimensional grid space would be extremely high and prohibits its use for real time 

applications. As a next step towards understanding the application of pitch in signal 

modeling, chapter three explores the use of parametric models in speech enhancement 

and speech segregation. The pitch values from the clean utterances were extracted 

using Wavesurfer in the analysis that follows.   
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Chapter 3: Applications of Parametric Modeling 
 

3.1  Speech Enhancement 

There exist a number of single channel speech enhancement techniques which are 

discussed in the work by Loizou, 2007. Signal enhancement is a direct application of 

parametric modeling described in this thesis. The observed signal is projected into the 

space spanned by the columns of the data model defined by the pitch frequency. A 

good speech enhancement system based on parametric modeling takes into account 

the characteristics of noise and the properties of the signal of interest in estimating the 

parameters of the model. However, estimating the noise and speech characteristics 

over time requires an adaptive framework which is quite challenging to implement. 

The noise in the observation is assumed to be additive white Gaussian with zero mean 

and covariance matrix 1 �  2,3. If we don’t make any assumptions on the prior 

model for harmonic coefficients, the resulting estimator is given by the ordinary least 

squares solution.   

 

3.2  Speech Segregation 

A parameterization of the signal into components allows for a natural separation of 

sources if the signal components have a close relation to the sources. In the case of 

periodic signals, the model discussed in this thesis allows a direct representation of 

different sources provided their pitch frequencies are known. The parameters of the 

target and masker can be estimated using least squares solution. A detailed 

description of the segregation process is explained in Vishnubhotla & Espy-Wilson, 
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2009. Let us consider the following case of two overlapping sources which are 

represented by the signal model discussed in Chapter 2. 

 

    �R � � �f�,�� ! "R �  #R             (3.1) 

 

                                               �� � � �f�,,� ! "� �  #�              (3.2) 

 

� � �R � �� �  �� Zf�,�\  �  � Zf�,,\�  !  �"R"�� �  � � �Zf�,�, f�,,\  !  " �  �             (3.3) 

 

                                               v �  #R �  #�               (3.4) 

 

Now, observe that the overall signal model is represented by concatenating the data 

matrix of speaker A with pitch frequency f�,� and speaker B with pitch frequency f�,,. 

The signal separation framework is achieved by minimizing the energy of the residual 

error v. The OLS estimate for 9 �  �"R"��  is given by the pseudo-inverse 

of �Zf�,�, f�,,\. For sake of simplicity we drop the arguments in A. The least squares 

estimate for γ is given below, 

                                               9S � $O ! 5               (3.5) 

 

                                                           $O �  � � Q ! � �'R !  � Q                      (3.6) 
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The harmonic coefficient estimates for the individual speakers is obtained from 9S by 

picking the entries that belong to speaker A i.e. the first MZf�,�\ coefficients which 

represents the number of harmonics for speaker A. Similarly we can find the 

contribution for speaker B. The process of estimating γ requires inverting a matrix 

which will cause problems if the matrix is not well-conditioned. A challenging 

problem in speech separation is when we have overlapping harmonics from the two 

speakers (Danieswicz & Quatieri, 1998; Quatieri and Danieswicz, 2000). At which 

point, the resulting estimate for γ using OLS becomes unreliable. When the data 

matrix becomes ill-conditioned or singular, the resulting solution for γ is no longer 

unique. In order to give preference to a particular solution with desired properties we 

need to include an additional penalty in the cost function (Foster, 1961; Sayed, 2008). 

 

3.3  Regularized Least Squares 

In regularized least squares (RLS) the cost function is modified to include a penalty 

on the L
2
 norm of the parameters. A formal expression for the cost function is 

described below: 

 

=�t��9� �  |�5 D  �Zf�,�, f�,,\  !  "�|� �  ||� !  "||� �  =�t��9� �  ||� !  "||�       (3.7) 

 

The first term in the cost function is the residual sum of squares; the second term is 

the regularization term, where Г is called the Tikhonov matrix. The choice of Г as the 

identity matrix gives preference to solutions with smaller L
2
 norms. The Tikhonov 

matrix Γ �  � !  Ι, where α is the Tikhonov factor. The value of α decides the tradeoff 
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between minimizing the residual sum of squares and minimizing the norm of the 

estimate. For example, setting α to zero implies there is no regularization term and the 

solution is same as the OLS solution and for � � ∞, the estimated γ approaches zero. 

For intermediate values of α, the estimated γ is shrunk towards zero compared to OLS 

estimate. The estimate for γ using the RLS approach is given by, 

 

                                  9S�t� �  � � Q ! � �   � !  ��'R !  � Q ! �                             (3.8) 

 

Even if the data matrix �  is rank deficient, so that  � Q ! � is singular, the regularized 

matrix  � Q ! � �   � !  � is non-singular for any non-zero value of α and hence a 

stable solution is guaranteed.  In order to study this problem, a synthetic speech 

mixture voiced frame was created using the signal model. The pitch frequencies used 

in the model were 110Hz and 275Hz for speaker A and speaker B respectively. Hence 

the harmonics of speaker A include {110, 220, 330, 440, 550, 660 ,.., 1100,..} and the 

harmonics of speaker B include {275, 550, 825, 1100 ,..}. Evidently there are 

overlapping harmonics present in the data matrix and therefore the data matrix is ill-

conditioned. The solution from OLS will be unstable which is illustrated in the figure 

below. A comparison is made with the RLS method where Tikhonov matrix Γ �  Ι. 
The target to masker ratio (TMR) for the synthetic mixture was 12dB. 
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Figure 3.1: Synthetic signals analyzed to compare OLS and RLS 
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Figure 3.2: Synthetic target signal reconstruction (pitch 110Hz) using OLS and RLS 
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Figure 3.3: Synthetic masker signal reconstruction (pitch 275Hz) using OLS and RLS 

 

3.4  SSC Database 

The speech separation challenge (SSC) database (Cooke et al., 2010) was used to 

evaluate the performance of the algorithm. All the speech files are single-channel 

“wav” data sampled at 25 kHz. The files were down sampled to 8 kHz in all the 
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processing and analysis. The categories of speech mixtures analyzed belonged to 

different talker files with gender categories being “MaleMale, FemaleMale, 

MaleFemale and FemaleFemale”. The database has a total of 1200 clean files from 

34 speakers of which 18 are male and 16 are female. These files were mixed at 

different target to masker ratios (TMRs) to analyze the robustness of the algorithms. 

The TMRs analyzed are 0dB, 3dB and 6dB from the SSC database. There are a total 

of 379 files per TMR in the different talker category (includes same gender and 

different gender files only).  

 

3.5  Experimental Results 

A real speech mixture frame was analyzed with the pre-mixing pitch values of 110Hz 

and 120Hz for target and masker respectively. A similar unstable behavior of OLS 

was observed and the estimates are compared with RLS which reveals the importance 

of regularization in speech separation.  To evaluate the comparison of OLS and RLS 

in speech separation, an extensive evaluation on the segregated signals was done on 

the speech separation challenge database. Perceptual evaluation of speech quality 

(PESQ) was used as the objective measure to compare the performance of the 

algorithms (Rix et al., 2001). PESQ is a standard used for comparing the quality of 

the speech signals transmitted over the telephone network. The PESQ score ranges 

from 0.5 (highly degraded) to 4.5 (high quality).  The pitch values were taken from 

Wavesurfer before the utterances were mixed.  
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Figure 3.4: Target signal reconstruction (pitch 110Hz) using OLS and RLS with the 

original signal in blue and reconstructed signal in red 
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Figure 3.5: Masker signal reconstruction (pitch 120Hz) using OLS and RLS with the 

original signal in blue and reconstructed signal in red 
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Figure 3.6: PESQ scores for Target Speaker comparing the segregation performance 

of OLS and RLS 
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Figure 3.7: PESQ scores for Masker Speaker comparing the segregation 

performance of OLS and RLS 

 

 

 

 

 



 

 

 

 

Figure 3.8: Spectrograms comparing the performance of 

signal. Panel a): Speech mixture at 6dB TMR

Panel c): Extracted target using OLS

RLS (PESQ = 2.84) 
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rograms comparing the performance of RLS and OLS

: Speech mixture at 6dB TMR (PESQ = 2.28), Panel b): Clean target, 

: Extracted target using OLS (PESQ = 1.50), Panel d): Extracted target using 

 

RLS and OLS for target 

b): Clean target, 

: Extracted target using 



 

 

 

Figure 3.9: Spectrograms comparing the performance of RLS an

signal. Panel a): Speech mixture at 6dB TMR

Panel c): Extracted masker using OLS

using RLS (PESQ = 1.50)

3.6  Critical Region Analysis

The critical regions where OLS will result in unstable solution are when the two pitch 

values come close or when some harmonics of the two speakers come close together. 

44 

: Spectrograms comparing the performance of RLS and OLS for masker 

: Speech mixture at 6dB TMR (PESQ = 1.34), Panel b): Clean masker, 

: Extracted masker using OLS (PESQ = 1.13), Panel d): Extracted masker 

(PESQ = 1.50) 

Critical Region Analysis 

The critical regions where OLS will result in unstable solution are when the two pitch 

values come close or when some harmonics of the two speakers come close together. 

 

d OLS for masker 

b): Clean masker, 

: Extracted masker 

The critical regions where OLS will result in unstable solution are when the two pitch 

values come close or when some harmonics of the two speakers come close together. 
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In these regions the system matrix is ill-conditioned and therefore we suggested the 

use of RLS. An interesting experiment to perform is to understand if RLS provides 

any improvement as compared to not processing the frames in critical region. A frame 

will be flagged as critical if the system matrix describing the observation has a 

condition number greater than a threshold value, tc (100).  There were two cases 

analyzed for these frames, 

1) Leave the frames as they were in the mixture for both target and masker 

extracted speech i.e. no processing (NP).  

2) Process the frames using RLS and extract the target and masker contributions. 

The claim here is that using RLS for speech segregation provides less leakage as 

opposed to leaving the critical frames unprocessed. Since, RLS aims at extracting the 

speech only the harmonics of the pitch, any overlapping harmonics will have equal 

energies distributed between them and the non-overlapping harmonics are segregated. 

In order to quantify the performance of the above two cases, PESQ scores were 

analyzed on the segregated speech signals across the SSC database. It can be 

observed that the improvement in PESQ is very minimal for different gender category 

for both target and masker and noticeable for the same gender category. The 

difference between the two can be observed in the spectrograms shown in Figures 

3.11 and 3.12 for target and masker speaker respectively. The dark red ellipse 

highlights the critical region frames for the female-female mixture at 0dB TMR. As 

the plots reveal, the original mixture contents is retained for both target and masker 

on the highlighted region in panel 3. In panel 4, the extent of leakage from either 

speaker is minimized as seen in the spectrogram. 
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Figure 3.10: PESQ scores for target speaker comparing the segregation 

performance on critical regions using RLS. 
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Figure 3.11: PESQ scores for masker speaker comparing the segregation 

performance on critical regions using RLS. 



 

 

 

 

Figure 3.12: Spectrograms comparin

signal. Panel a): Speech mixture at 6dB TMR

Panel c): Extracted target using RLS with critical region unprocessed (PESQ = 1.87), 

Panel d): Extracted target using R
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: Spectrograms comparing the performance of RLS and NP

Speech mixture at 6dB TMR (PESQ = 1.51), Panel b): Clean target, 

Panel c): Extracted target using RLS with critical region unprocessed (PESQ = 1.87), 

: Extracted target using RLS processing on critical region (PESQ = 2.14

 

g the performance of RLS and NP for target 

: Clean target, 

Panel c): Extracted target using RLS with critical region unprocessed (PESQ = 1.87), 

processing on critical region (PESQ = 2.14). 



 

 

 

 

Figure 3.13: Spectrograms comparing the perfor

signal. Panel a): Speech mixture at 6dB

Panel c): Extracted masker using RLS with critical region unprocessed (PESQ = 2.09) 

and Panel d): Extracted masker using RLS processing on cri

2.24). 
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: Spectrograms comparing the performance of RLS and NP for masker 

Speech mixture at 6dB TMR (PESQ = 1.51), Panel b): Clean masker, 

Extracted masker using RLS with critical region unprocessed (PESQ = 2.09) 

and Panel d): Extracted masker using RLS processing on critical region (PESQ = 

 

P for masker 

TMR (PESQ = 1.51), Panel b): Clean masker, 

Extracted masker using RLS with critical region unprocessed (PESQ = 2.09) 

tical region (PESQ = 
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Chapter 4: Sequential Grouping in Co-channel Speech 

4.1  Speech Segregation System 

The block diagram shown in Figure 4.1 describes the working of the speech 

segregation system that is studied in this thesis. This system has three major 

components namely: 1) Multi-pitch detector, 2) Segregation block and 3) Sequential 

grouping block. The segregation system is designed to separate two overlapping 

sources, and starts by analyzing the input signal into a number of channels. The 

signals through these channels are used to estimate the pitch of both participating 

speakers. These pitch estimates are used to set up a least-squares matrix equation, the 

solution for which yields the harmonic amplitudes and phases of both the speakers 

(Vishnubhotla & Espy-Wilson, 2009). The next stage assigns the segregated speech 

to the appropriate speaker for each time frame. Finally, overlap-add synthesis over 

multiple frames yields the final reconstructions of both speaker streams. 

 

 

 

 

 

 

 

Figure 4.1: Block diagram of the speech segregation system 
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4.2  Multi-pitch Detector 

The pitch of both speakers is next estimated using the channel outputs from the 

gammatone filterbank (Hohmann, 2002) using the multi-pitch detector algorithm 

described in (Vishnubhotla & Espy-Wilson, 2008). This algorithm relies on the 2-

dimensional Average Magnitude Difference Function (2-D AMDF) as the pitch-

estimation feature, and gives robust pitch estimates for both speakers. As described in 

(Zissman & Seward, 1992; Zissman, 1991), using pitch labels may not be the best cue 

to use for speaker assignment. Thus, in this work, the algorithm is used only to 

estimate the numerical values of both pitches, but not to assign either pitch to either 

speaker - this assignment problem is instead solved in a later section.  

 

4.3  Least Squares Model for Segregation 

This block was extensively discussed in the previous chapter where we proposed the 

use of RLS instead of OLS in frames where pitch values come close together or one is 

a multiple of another or when the two speakers have overlapping harmonics. By 

virtue of this segregation block, we end up with an extracted speech frame that has a 

one to one correspondence with the pitch value. Hence, given we have two pitch 

values at a frame, the output of this stage will be two extracted speech signals that 

represent the signal contributions of the target and masker on that frame. The least 

squares segregation therefore operates on a frame level basis yielding signal outputs 

that map one to one with the pitch estimates. The question of connecting the speech 

frames that belong to the target speaker into one stream and those belonging to 

masker speaker into another stream is addressed in the following section. 
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4.4  Sequential Grouping Block 

Even though the multi-pitch detector yields the numerical pitch estimates of the two 

speakers, and the segregation algorithm yields the two constituent speech signals for a 

given frame, these are not yet assigned to any speaker. In particular, for two speakers 

A and B, and two segregated signals s1(t) and s2(t), the question of which segregated 

signal si(t) should be assigned to speaker A will be answered in this section and the 

next. In the proposed algorithm, the well known Mel frequency cepstral coefficients 

(MFCCs) are used as the features for the speaker assignment problem.  

 

4.5  Motivation 

The motivation behind using the MFCCs is to capture the vocal tract features using 

the extracted harmonic coefficients from the co-channel speech. In speech analysis, 

we usually estimate parameters of an assumed speech-production model. The most 

common model views speech as the output of a linear, time-varying system (the vocal 

tract) excited by either quasi-periodic pulses or random noise. The deconvolution of 

the system and source components is feasible for speech because the convolved 

signals have very different spectra. Since the spectral envelope (characteristic of 

vocal tract) varies slowly with time, the possibility of using this information in 

sequential grouping is explored. The Mel frequency cepstral coefficients provide an 

alternative representation of the speech spectra which incorporates some aspects of 

audition (O’Shaughnessy, 2000). The C0 coefficient represents the average energy in 

the speech frame. The value of C1 reflects the energy balance between low and high 

frequencies. The coefficients C2- C12 capture the finer details of the spectrum.  



 

 53 

 

4.6  Classification of Sequential Grouping 

The speaker assignment problem is divided into two classes namely: Intra-segment 

sequential grouping and Inter-segment sequential grouping. A segment is defined as a 

region of continuously voiced co-channel speech without any pauses, silence or 

unvoiced speech. In intra-segment sequential grouping, the problem is to connect the 

speech frames within the continuously voiced segment. Inter-segment grouping 

addresses the issue when we have a voiced-unvoiced-voiced transition in the co-

channel speech. Then the problem is to link the voiced speech regions across the 

unvoiced region. The motivation for this classification is due to the inherent 

continuity in the acoustic features within a voiced segment. 

 

4.7  Intra-segment Sequential Grouping 

In the proposed algorithm, the well known MFCCs are used as the features for the 

speaker assignment problem. The MFCCs of each of the segregated streams s1(t) and 

s2(t) are evaluated to get the features M1(t) and M2(t), respectively. These features are 

then used in combination with the features from the speech of the two speakers A and 

B in the previous frames, i.e. with MA(t - 1) and MB(t - 1). The order of the MFCCs 

used in the proposed system is 13, including the energy coefficient but not including 

the difference coefficients. The algorithm is described in the flow chart below. The 

norm computed in the distance measure block is the Euclidean distance or L
2
 norm. 

Hence, we have a distance measure for every possible connection of the speech 

frames in the current time with the speech frames in the previous time. In our case, 
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given we have 2 speech frames in time t and t – 1, there can be two hypothesis to test 

namely, 

 

1. Hypothesis 0 = s1(t) → sA(t-1) and s2(t) → sB(t-1) 

2. Hypothesis 1 = s1(t) → sB(t-1) and s2(t) → sA(t-1) 

Based on the norm values, a discriminant feature D is computed. The sign of D and 

its magnitude are used in making the decision at a frame. The choice of the 

hypothesis is decided based on the lowest norm in the assignment. This is shown in 

the second flowchart in the nearest neighbor classifier block. The reliability threshold 

δ on the magnitude of D was set to zero in all the experiments and analysis. In the 

analysis, frames were analyzed in pairs and error locations were noted for each pair. 
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Figure 4.2: Flow chart of the sequential grouping algorithm 
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threshold (typically 7 or 12Hz). The pitch values that are before and after these 

critical regions are connected by making a decision on which hypothesis to follow 

(cross-over of the tracks or no cross-over) using pitch track interpolation. Further, the 

pitch values within the critical region are assigned randomly to the two speakers as 

there was no hope for separation of the signal when the pitch values come arbitrarily 

close. This was a major limitation in the speech segregation system developed by 

Quatieri and Danisewicz (1990). The SSC database analysis reveals that for the same 

gender category the average length of the critical region is about 65 ms. In the report 

by Zissman & Seward (1992), there was no analysis within the critical region. In the 

algorithm presented, we analyze these regions and identify the accuracy of using the 

MFCC coefficients in making the assignment. An important reason for the algorithm 

to perform in the critical region is due to the stable nature of the RLS algorithm in 

speech segregation. 

 

4.8.2  Analysis of the Algorithm 

The use of MFCCs as the features to perform grouping is studied extensively across 

the SSC database. An interesting observation was made using pre-mixing MFCC 

features, i.e. MFCCs from the clean pre-mixing speech frames. These features 

provided near perfect grouping performance in the continuously voiced regions of the 

target and masker and less than 0.25% error in the transition frames where the signal 

was beginning to be voiced. Whereas the use of clean pitch values from the pre-

mixing utterances provided 98% accurate grouping. These errors were predominantly 

due to pitch tracks coming close and when they cross over. Hence, there was a strong 
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motivation to analyze the use of MFCC features from the segregated speech signals 

(extracted MFCC). It was observed that using the extracted MFCCs from the 

segregated speech based on clean pitch values provided at least 97% accurate 

grouping performance. The discussion that follows will analyze the error locations 

and limitations of MFCC grouping. In Figure 4.3, the brown ellipse highlights a target 

speaker’s voiced segment and the magenta rectangle highlights a masker speaker’s 

voiced segment. The black vertical lines mark the frames where the MFCC norm 

assignment results in an error. The first error frame between 0.2 and 0.4 seconds 

occurs in the first 1/3
rd

 of the target speaker’s voiced segment and in the last 1/3
rd

 of 

the masker speaker’s voiced segment. In a similar fashion, all the error frames are 

broken down in to a two dimensional grid with the X-axis corresponding to target 

speaker’s voiced segment and Y-axis being masker speaker’s voiced segment. It was 

found that most of the errors were concentrated towards the beginning and end of the 

voiced segments. There are three sets of features analyzed in the algorithm namely, 

a) Pitch values 

b) MFCC Coefficients (C0 – C12) 

c) MFCC Coefficients and pitch value (C0 - C12 – f0) 

The pitch values used in the experiments below are taken from pre-mixing utterances 

using Wavesurfer (true pitch values) or estimated from the speech mixture using the 

multi-pitch algorithm. The MFCC features are computed using the segregated speech 

signals using the pitch values that are input to the algorithm. The last set of features is 

a concatenation of both MFCC and pitch together into a single vector and its 
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combined performance is analyzed. The histogram of these errors relative to the total 

number of frames analyzed is studied in the following sections. 

 

 

 

Figure 4.3: Illustration of the error location analysis in sequential grouping algorithm 
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4.8.3 Experimental Results from True Pitch Values 

The pitch feature used as the input to the algorithm is from Wavesurfer. The tables in 

the appendix B.1 reveal the actual numbers for the error in different regions of the 

voiced segment. We can observe from Figures 4.4 and 4.5 that the use of MFCC 

features (C0 – C12) has the error concentration more towards the first one-third and 

last one-third of the voiced segment for both target and masker speaker. The trend of 

V shape in the plot reveals the drop in error in the middle of a voiced segment. The 

combination of MFCC with pitch value was critical in bringing down the error in 

transition region (first 1/3
rd

 and last 1/3
rd

) by a factor of two in the same gender 

category and it was reduced close to zero in different gender case. It should be noted 

that in all the above analysis we have the pre-mixing pitch values given to us. This is 

not a practical scenario in which we expect to operate but this provides a ceiling 

performance of what we can hope to achieve using the algorithm. Further, any error 

made in one frame at the beginning of a voiced segment will propagate indefinitely 

till a subsequent change in the assignment is made. This is true with any online 

tracking algorithm and it is recognized in the algorithm discussed. The numbers 

reported above are for a particular pair of frames analyzed and the decision made on 

that pair. This is different from the actual number of frames that are assigned 

incorrectly which depends on the duration till which a subsequent error is made in the 

tracking.  
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Figure 4.4: Target speaker summary analysis of error location using MFCC (C0 – C12) 

from true pitch values 
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Figure 4.5: Masker speaker summary analysis of error location using MFCC (C0 – 

C12) with true pitch values 

4.8.4  Experimental Results from Estimated Pitch Values 

The results with the estimated pitch values using multi-pitch algorithm is analyzed 

after the ground truth assignment was made on the estimated pitch tracks using the 

pre-mixing clean pitch tracks. There is a significant increase in the number of frames 

that are assigned incorrectly based on the assumed ground truth. The V trend that was 

Masker Speaker Voiced Segment 

E
rr

o
r 

(%
) 



 

 63 

 

observed with true pitch values is consistent with the estimated pitch values as seen in 

Figures 4.6 and 4.7. However, the combination of MFCC feature with the estimated 

pitch values resulted in an increase in assignment error. This is primarily due to pitch 

octave errors from the multi-pitch estimation algorithm. The table with actual 

numbers for the error is shown in Appendix B.2 

 

 

Figure 4.6: Target speaker summary analysis of error location using MFCC (C0 – C12) 

from estimated pitch values 
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Figure 4.7: Masker speaker summary analysis of error location using MFCC (C0 – 

C12) from estimated pitch values 

 

4.8.5 Experimental Results from True Pitch Values in Critical Regions 

One of the primary problems in making the assignment is when the pitch tracks come 

really close. On those frames, the estimated speech signals have more leakage and as 

a result the estimated MFCC coefficients are not reliable. The error contribution in 

the different gender category is primarily due to the fact that the female speaker’s 
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pitch is a multiple of male speaker’s pitch frequency. In order to narrow down the 

performance of the system at closely spaced pitch frequencies, the same algorithm 

was analyzed only on those frames where the two pitch values are separated by less 

than 8Hz. The system addressed in Zissman and Seward (1992) does not account for 

any separation on these frames and they make random assignments of the pitch tracks 

on this region. They highlight the use of cepstral coefficients to connect the speech 

frames on these critical regions but there was no results reported on those frames. In 

the summary plots below we study the results for the assignment on these frames 

using MFCCs (C0 – C12). 
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Figure 4.8: Target speaker summary analysis of error location using MFCC (C0 – C12) 

from true pitch values in the critical regions with pitch separation threshold of 8 Hz. 
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Figure 4.9: Masker speaker summary analysis of error location using MFCC (C0 – 

C12) from true pitch values in the critical regions with pitch separation threshold of 8 

Hz. 

 

4.9  Discussion 

We can observe that using true pitch values in making the assignment has less than 

10% error in these critical region frames. However, when the estimated pitch values 

are used in these regions, the error is at least 50% on all of the above features. This 
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reveals the difficulty in tracking these regions as estimating the two pitch frequencies 

on these frames is a challenging task. The weakness of the algorithm is 1) It cannot 

distinguish which pitch track belongs to target and masker (speaker verification) 2) 

The assignments made on one frame is not independent of the subsequent 

assignments i.e. any error made in the first few frames propagates indefinitely. 

 

4.10 Inter-segment Sequential Grouping 

In this thesis, we only present an overview of the problem and some literature on the 

existing methods that address this issue. Inter-segment sequential grouping is the 

problem of connecting segments of speech that belong to target into one stream and 

masker into another stream. This problem has been studied in the literature in the 

name of speaker diarization (Tranter & Reynolds, 2006). Typically in speaker 

diarization, we have clean non-overlapping speech segments that belong to different 

speakers and the task is to correctly identify and group the speech segments that 

belong to a particular speaker. This is inherently difficult when there are no prior 

speaker models available (usually a Universal background model is available) and a 

clustering algorithm is employed after all the segments have been analyzed. For 

example, if we have segments S = {S1, S2, …, Sk}, k is the total number of segments. 

Each Si can originate from speaker A or B and the objective is to classify each of 

these segments into speaker A or speaker B stream. Basically, we look for a partition 

of S into SA and SB which is addressed in multiple hypotheses tracking by Shao and 

Wang, 2006.  They employ prior speaker models and use only the speech segments 

that are non-overlapping in the co-channel speech.  
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Chapter 5:  Conclusion and Future Work 
 

This thesis has focused on parametric modeling of speech signals and studied its 

application towards pitch estimation, speech enhancement and speech segregation. A 

novel pitch estimation algorithm is proposed and the results indicate the superior 

performance of the algorithm in comparison with several existing PDAs. The speech 

segregation system was studied in detail and the use of regularized least squares 

approach towards speech separation was proposed. The RLS algorithm was compared 

extensively with OLS on the SSC database and the PESQ scores reveal the potential 

of RLS.  We have studied sequential grouping in co-channel speech into two broad 

categories i.e. intra-segment and inter-segment sequential grouping. An algorithm for 

intra-segment sequential grouping was explored using MFCC features which provide 

an alternative to the pitch feature in the grouping process. The potential benefits and 

pitfalls of the algorithm were analyzed. As the results show, there is a significant 

difference between pitch tracking results based on a priori versus jointly estimated 

pitch tracks. Some directions of future research work on these aspects are highlighted 

below. 

5.1  Pitch Detection Algorithm 

The use of AIC for regularization mitigates some of the pitch halving error problems 

but there still remains significant contribution of these errors. This suggests the use of 

prior information to enforce continuity on the tracks as well as other post processing 

schemes which can be done by allowing suitable latency. The future work can be 

directed towards, 
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• Testing the robustness of the algorithm in the presence of noise.  

• Exploring regularization methods to reduce the pitch halving errors. 

• Improving the computational performance. 

5.2  Gradient Search for Pitch Estimation 

Raw pitch estimates indicate high level of accuracy. We observe that there is a great 

potential to reduce the computational time through intelligent search techniques. The 

algorithm proposed in the work performs a global brute force search for every speech 

frame. If we have a good initial estimate of pitch value for the first voiced frame, then 

we can do a local gradient search for the minima in the residual error. A basic 

approach towards gradient descent for pitch estimation can be formulated as, 

 

   
�,( �  
�,('� D � !  � �
�,('��              (5.1) 

 

              �
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where i and i – 1 are current and previous iteration values, β > 0 is the step factor in 

the direction of descent,   �
�� represents the residual error variance and the gradient 

of the error variance � �
�� is approximated by finite central difference by taking 

small steps around either side of 
�. The rate of convergence to the local minima is 
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controlled using the step factor β. For the initial guess for 
� in every frame, we can 

use the pitch frequency value estimated in the previous frame. For the first frame in 

the voiced segment, there can be a global search across the entire pitch range which 

will guarantee the subsequent minima from the gradient search to be the global 

minimum. This approach can be extended to multi-pitch estimation as well, where we 

have two fundamental frequencies to update instead of one. The same approach can 

be extended to have a vector update instead of a scalar as shown above. This 

approach was presented in the report by Danieswicz and Quatieri, 1988. 

5.3  Two Talker Detection 

A fundamental detection problem in co-channel speech is to identify the number of 

speakers present. In a multi-pitch detector, the number of pitch values estimated from 

the algorithm can be a used to identify the number of speakers. However, like any 

PDA there will be insertion errors due to false alarms. Further, the pitch detector is 

also prone to octave errors like pitch doubling and pitch halving. Given we have two 

pitch estimates in a frame; we can create a number of hypothesis for different octaves 

of the estimated pitch frequencies. For example, if we have pitch estimates for a 

particular frame to be P1 = 150 Hz, P2 = 220 Hz, then we can create the following 

hypothesis. 
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Hypothesis P1 (Hz) P2 (Hz) 

1 150 220 

2 75 220 

3 300 220 

4 150 110 

5 75 110 

6 300 110 

7 150 0 

8 75 0 

9 300 0 

10 0 220 

11 0 110 

 

Table 5.1: Illustration of the various hypotheses in a multi-pitch detector 

 

The hypothesis testing problem can be validated using the well-known model 

selection framework like AIC, BIC or MAP criterion. The ML criterion was shown to 

have over-fitting problem and needs to be regularized. Further, if the pitch estimation 

algorithm has deletion errors then there is no hope of identifying it through this 

method. Hence, the threshold for VAD in the PDA should be tuned to minimize the 

deletion errors and maximize insertion errors which can hopefully be corrected using 

the model selection framework outlined in chapter two.  
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5.4  Sequential Grouping 

The system described in this thesis cannot handle unvoiced speech or silence nor can 

it identify which stream belongs to target and masker. Extension in the direction of 

inter-segment sequential grouping with a priori speaker models can be a logical next 

step. An important challenge with online systems is to group the speech on a frame 

level basis. In this scenario, even if we have plenty of training data for different 

speakers the test data is typically few milliseconds (typically 20-50ms latency). 

Further, the maximum length of a test segment can be approximately few hundred 

milliseconds long (< 400-500ms).  Traditionally, speaker identification or verification 

systems based on the vocal tract system features (MFCC) follow statistical approach 

(Reynolds et al, 2000). The statistical methods capture the speaker variability in terms 

of the probability density function (pdf) of the feature vectors of the speaker in the 

feature space. The performance of these systems depends on the amount of data 

available for both training and testing. If the data available is small, then the 

distribution of the feature vectors is sparse, and hence the recognition performance is 

poor during testing. In the work by Mahadeva Prasanna et al., 2006 they study the use 

of source and system features for speaker identification and perform extensive 

comparison of using only source or system features for different sizes of train and test 

dataset. For small test data size of 1-5 seconds, their study indicate that the source 

features from the LPC residual captured the speaker information better in recognition 

accuracy. A detailed study of the database and the algorithm used to extract the 

features is presented in their paper which can be a useful future direction of research 

for inter-segment sequential grouping. 



 

 74 

 

Appendices 
 

A.1 Table comparing the performance of the PDAs 
 

PDA Unvoiced in 

error (%) 

Voiced in 

error (%) 

Gross Errors (%)  Net GE 

(%) 

Absolute 

deviation (Hz) 

 

   High Low  Mean p.s.d 

Male  

CPD 18.11 19.89 4.09 0.64 4.73 2.94 3.60 

FBPT 3.73 13.9 1.27     0.64 1.91 1.86 2.89 

HPS 14.11 7.07 5.34 28.15 33.49 3.25 3.21 

IPTA 9.78 17.45 1.40 0.83 2.23 2.67 3.37 

PP 7.69 15.82 0.22 1.74 1.96 2.64 3.01 

SRPD 4.05 15.78 0.62 2.01 2.63 1.78 2.46 

eSRPD 4.63 12.07 0.90 0.56 1.46 1.40 1.74 

mAMDFp - - 1.94 2.33 4.27 - - 

SHR - - 1.29 0.78 2.07 - - 

ML-AIC 

(raw) 

8.69 7.59 0.21 0.44 0.65 1.60 1.92 

ML-AIC 

(filtered) 

5.68 6.48 0.18 0.86 1.04 1.77 2.33 

Female  

CPD 31.53 22.22 0.61 3.97 4.58 6.39 7.61 

FBPT 3.61 12.16 0.60 3.55 4.15 5.40 7.03 

HPS 19.10 21.06 0.46 1.61 2.07 4.59 5.31 

IPTA 5.70 15.93 0.53 3.12 3.65 4.38 5.35 

PP 6.15 13.01 0.26 3.20 3.46 6.11 6.45 

SRPD 2.35 12.16 0.39 5.56 5.95 4.14 5.51 

eSRPD 2.73 9.13 0.43 0.23 0.66 4.17 5.13 

mAMDFp - - 0.63 2.93 3.56 - - 

SHR - - 0.75 1.69 2.44 - - 

ML-AIC 

(raw) 

4.26 14.4 0.06 2.02 2.08 3.96 4.37 

ML-AIC 

(filtered) 

2.05 13.91 0.04 1.86 1.90 4.02 4.5 

 

Table A.1.1: PDA evaluation for male speech (top) and female speech (bottom) 
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A.2  Performance of intra-segment sequential grouping using true pitch 

values 
 

 

Table A.2.1: Pitch feature used in the analysis of intra-segment sequential grouping 

using true pitch values 
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Table A.2.2: MFCC Coefficients (C0 – C12) used in the analysis of intra-segment 

sequential grouping using true pitch values 
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Table A.2.3: MFCC Coefficients and pitch value (C0 - C12 – f0) used in the analysis of 

intra-segment sequential grouping using true pitch values 
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A.3  Performance of intra-segment sequential grouping using estimated 

pitch values 

 

Table A.3.1: Pitch feature used in the analysis of intra-segment sequential grouping 

using estimated pitch values 
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Table A.3.2: MFCC Coefficients (C0 – C12) used in the analysis of intra-segment 

sequential grouping using estimated pitch values 
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Table A.3.3: MFCC Coefficients and pitch value (C0 - C12 – f0) used in the analysis of 

intra-segment sequential grouping using estimated pitch values 
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A.4  Performance of intra-segment sequential grouping using true pitch 

values in the critical regions with pitch difference less than 8 Hz 

 

 

Table A.4.1: Pitch feature used in the analysis of intra-segment sequential grouping 

using true pitch values on the critical region frames where the pitch difference is less 

than 8Hz 
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Table A.4.2: MFCC Coefficients (C0 – C12) used in the analysis of intra-segment 

sequential grouping using true pitch values on the critical region frames where the 

pitch difference is less than 8Hz 
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Table A.4.3: MFCC Coefficients and pitch value (C0 - C12 – f0) used in the analysis of 

intra-segment sequential grouping using true pitch values on the critical region frames 

where the pitch difference is less than 8Hz. 
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