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Hypothesis TestingwithErrors in the VariablesNancy David�G. W. StewartyabstractIn this paper we give reason to hope that errors in regression variables arenot as harmful as one might expect. Speci�cally, we will show that althoughthe errors can change the values of the quantities one computes in a regres-sion analysis, under certain conditions they leave the distributions of thequantities approximately unchanged.1 IntroductionOf all the practical problems associated with linear regression analysis, none is morevexing than errors in the variables. These errors are found everywhere and usuallycannot be eliminated. Moreover, in many cases it is obvious that they are large enoughto have important e�ects on quantities, such as F-statistics, calculated in the courseof the analysis. Since there are no procedures for dealing with errors in the variablesthat do not require rather precise information about the errors themselves, the analystusually has no choice but to ignore the errors and analyze the data as though they werenot there. What is surprising is that this does not seem to result in obvious catastrophes.The purpose of this paper is to provide a partial explanation.The nature of the explanation is that under appropriate circumstances the errorsenter cooperatively into some of the procedures of regression analysis. To see what thismeans, we must �rst de�ne our model. We will suppose that we are given the usualmodel y = Xb+ e; (1:1)where X is an n� p matrix of rank p and the components of e are iid N(0; �2). We willfurther assume that in place of the matrix X we observe~X = X + E;where the rows of E are iid N(0;�) and are independent of e.�Research Institute of Michigan, 1501 Wilson Blvd., Arlington VA 22209yDepartment of Computer Science and Institute for Physical Science and Technology, Universityof Maryland, College Park. This work was supported in part by the O�ce of Naval Research undercontract No. N00014-76-C-3091



Hypothesis Testing 2Let us now consider the vector b of regression coe�cients. This would ordinarily beestimated by b̂ = Xyy = b+Xye (1:2)where Xy = (XTX)�1XT is the pseudo-inverse of X . Unfortunately, we are forced tocompute ~b = ~Xy~y; (1:3)which can di�er considerably from b̂. However, if we rewrite the model (1.1) in the formy = ~Xb+ e� Eb;then ~b = b+ ~Xy(e�Eb): (1:4)Now it is known from perturbation theory for pseudo-inverses (Stewart, 1977) that~Xy = Xy+ FT;where limE!0F = 0:Consequently we have from (1.4)~b = b+Xy(e�Eb) + FT(e�Eb): (1:5)Comparing (1.5) with (1.2) we see that if E is small, so that F is also small, the ~b wecompute behaves as if were the correct estimate for the model_y = Xb+ (e� Eb): (1:6)In other words, up to terms that vanish with E, the vector ~b comes from a model inwhich the errors are iid N(0; �2 + bT�b). If these vanishing terms are small enough,the only untoward e�ect of the errors is that they in
ate the variance of the responsevector.It is important to keep in mind that this is not simply a continuity result. Nothingis said about Eb in (1.6) being small compared to e. Indeed � could be zero so that allthe variability in the problem comes from E. The point is that this variability enters ina benign way.Our approach is related to the approximation of functions of random variables by oneor two terms in a Taylor series|something that is by no means new. For example, Gauss(1821) used it to linearize nonlinear least squares problems, and Brown, Kadane, andRamage (1974) have used it in the analysis of certain econometric models. In regressionanalysis Hodges and Moore (1972) and Davies and Hutton (1975) have examined �rstDraft November 2, 1987



Hypothesis Testing 3and second order terms in the expansion of ~b. Our approach di�ers from this in that weactually ignore terms of the �rst order in E [cf. (1.5) and (1.6)]. Nontheless, a numberof important quantities computed using ~X approach the same quantities derived from(1.6).In the next section, we shall show that ~b converges in an appropriate sense to b +Xy(e+Eb) and establish a similar result for the residual vector. We will also show thatF-statistics computed using ~X converge to a true F-statistic. The paper concludes withsome general observations.2 Coe�cients, residuals, and F-testsIn this section we are going to show that as �! 0 a number of quantities|regressioncoe�cients, residuals, F-statistics|computed using ~X converge with probability one tothe corresponding quantities from the model (1.6). As we indicated in the introduction,the results hold when � = 0, which is in fact the most important case. Before weproceed, however, we must make sure that the result itself is formulated in such a waythat it will be useful.Let ~b be de�ned by (1.3), and let _b = Xy _y be the corresponding vector from themodel (1.6).1 If � = 0, it is trivial to show that as � ! 0 the vector ~b converges to_b with probability one, since they both converge to b̂. Even when � = 0, the result istrivial, since the two distributions are collapsing around the vector b. However, if wenormalize our quantities by dividing by_� = p�2 + bT�b; (2:1)then their distributions do not collapse. Convergence will then imply that for thepurpose of estimating variability the distributions of ~b= _� and _b= _� are equivalent forsmall �. This is especially gratifying, since the latter is not computable while theformer does not in general have a �rst moment.Turning now to the main result of this section, we must set up the underlyingprobability space. Let E denote the space of matrices (e0 E0), where e0 2 Rn andE0 2 Rn�p, with the elements of (e0 E0) iid N(0; 1). For �xed � � 0 and � positivesemi-de�nite, the matrix (�e0 E0� 12 ) de�nes a measurable function on E , representingour error e and perturbation E.One �nal technical point. We propose to normalize our quantities by _� de�ned by(2.1). Since we have assumed only that � is positive semi-de�nite, it is possible for _�to be zero, even though � is nonzero. However, in this case e�Eb = 0, so that y = ~Xb,1The convention introduced here will be followed throughout the paper. A quantity with a tildeabove it will refer to the quantity computed using the ~X. A quantity with a dot above it will refer tothe model (1.6).Draft November 2, 1987



Hypothesis Testing 4and it as if the model had no error at all. Consequently, we may assume that _� > 0 as�! 0.The results on regression coe�cients and residual vectors are contained in the fol-lowing theorem. We will treat the F-tests separately.Theorem 2.1 With the de�nitions given in the introduction, let ~b = ~Xyy and _b = Xy _y.Moreover, with P = I�XXy and ~P = I� ~X ~Xy, let ~r = ~Py and _r = P _y be the computedresidual vector and the residual vector from the model (1.6). Then as �! 01: ~b� _b_� wp1�! 0;2: ~r � _r_� wp1�! 0; (2.2)3: ~rT~r � _rT _r_�2 wp1�! 0:Proof. Since convergence with probability one is convergence almost everywhere in theunderlying probability space, let (e0 E0) denote a �xed member of E , and let e = �e0and E = E0� 12 . As we mentioned in the introduction, ~Xy = Xy+ F , where F ! 0 as�! 0. Now from (1.4)~b = b+Xy(e� Eb) + FT(e�Eb) = _b+ FT(�e0 � E0� 12 b):Hence ~b� _b_� = FT �e0 �E0� 12 b_� :When � 6= 0, this expression clearly converges to zero, since FT ! 0 and (�e0 �E0� 12 b)= _�! e0. When � = 0, ~b� _b_� = FTE0� 12 bk� 12 bk ;where k � k denotes the usual Euclidean vector norm. The result then follows from thefact that E0� 12 b=k� 12 bk remains bounded as �! 0.To establish (2.2.2), observe that we can write ~P = P +Q, where Q! 0 as E ! 0(Stewart, 1977). Since ~r = _r +Q(�e0 +E0� 12 b);the result follows as above.Finally to establish (2.2.3), write~rT~r = _rT _r + 2 _rTQ(�e0 +E0� 12 b)+(�e0 +E0� 12 b)TQ(�e0 +E0� 12 b); (2:3)Draft November 2, 1987



Hypothesis Testing 5When � 6= 0 the ratio of the di�erence ~rT~r� _rT _r to _�2 obviously converges to zero. Forthe case � = 0, consider the inequalityj2 _rTQE0� 12 bj_�2 � k _rkkQkkE0� 12 bkkE0� 12 bk2 = k _rkkE0� 12 bkkQkSince _r = PE0� 12 b, we have j2 _rTQE0� 12 bj_�2 � kQk ! 0:Thus the ratio of the second term in the right hand side of (2.3) to _�2 has zero for itslimit. The third term is treated similarly. 2An immediate consequence of the theorem is that ~rT~r=(n�p) is asymptotically (small�) a good estimate of the in
ated variance �2 + bT�b. Moreover it is asymptoticallyindependent of ~b. This means that it can be used to construct con�dence intervals andt-tests in the usual way.Let us now turn to the problem of F-tests of hypotheses. Partition X = (X1 X2),where X2 has k columns. Partition b conformally in the formb =  b1b2 ! :Then the hypothesis we will test is H : b2 = c:Note that the most general linear hypothesis can be brought into this form by a linear(in fact orthogonal) transformation of b.The classical F-test is computed from the residual vector of the least squares estimatewhen b2 is constrained to be equal to c. In the unperturbed model, this process amountsto forming the projection PH = I�X1Xy1 and computing the residual rH = PH(y�X2c).The usual F-statistic for testing 
 isF = n� pk rTHrH � rTrrTr :Following our convention, let _rH and _F be the corresponding quantities for the model(1.6) and let ~PH, ~rH and ~F be the quantities actually computed. Since_r = PHX2(b2 � c) + PH(e�Eb);we see that _F has an F-distribution, which is central if and only if b2 = c. Moreover wehave the following theorem.Draft November 2, 1987



Hypothesis Testing 6Theorem 2.2 If n � 2p and b2 = c, then as �! 0~F � _F wp1�! 0:Proof. Let ~PH = PH +QH, where QH ! 0 as E ! 0. We have~rH = ~PH ~X2(b2 � c) + ~PH(e�Eb); (2:4)and since the hypothesis is true,~rH = PH(e�Eb) + QH(e� Eb):Thus as in Theorem 2.1 ~rTH~rH_�2 � _rTH _rH_�2 wp1�! 0: (2:5)Now kn� p( ~F � _F ) = _��4(~rTH~rH _rT _r � _rTH _rH~rT~r)_��4(~rT~r _rT _r) (2:6)By Theorem 2.1 and (2.5), the numerator of the right hand side of (2.6) converges tozero a.e. Thus if we can show that the denominator remains bounded below our resultwill be established.As unusual the di�cult case is when � = 0, which we will now treat. For �xed E0in E , we have _rT _r_�2 = kPE0� 12 bk2k� 12 bk2 : (2:7)We claim that with probability oneinf(PE0) = infkbk=1 kPE0k > 0:To see this let V = (V1 V2) be an orthogonal matrix such that the columns of V2 spanthe column space of P. Then V TP =  0V T2 ! ;and V TPE0 =  0V T2 E0 ! :But since the columns of V2 are orthonormal, the elements of the matrix V T2 E0 are iidN(0; 1); and since n � 2p, it has more rows that columns. Thus V T2 E0 and hence PE0has full column rank except on a set of measure zero.Draft November 2, 1987



Hypothesis Testing 7Since kPE0� 12 bk � inf(PE0)k� 12 bk, it follows from (2.7) that_rT _r_�2 � inf(PE0);which is positive almost everywhere. Since~rT~r_�2 ! _rT _r_�2 a:e:;the quantity ~rT~r= _�2 is also uniformly bounded below almost everywhere as �! 0. Thiscompletes the proof of the theorem. 2When b2 6= c, the ~F may still converge to _F . However, this case is essentiallydi�erent from our previous results, since the term ~PH ~X2(b2 � c) in (2.4) contributeserrors of the same order of magnitude as PH(e � Eb), errors which do not have a nicedistributions. Thus, unless � is small compared with �, the distribution of ~F will notapproximate a noncentral F-distribution. This means that we cannot use the usualprocedures for relating power to sample size when there are errors in the variables.Nonetheless, equation (2.4) suggests that the errors cause a loss of power, not so muchby diminishing the source PHX2(b2 � c) of noncentrality as by in
ating the variancewith which it must be compared.3 Concluding remarksWe have shown that if the variance of the errors in the variables is small enough, thensome of the common procedures in regression analysis are una�ected by the errors. Aswe pointed out in the introduction, this is not a continuity result; for the errors can havea palpable e�ect on the numbers one calculates. But the numbers will nontheless haveapproximately the right distributions. What is particularly nice about these results isthat they require no detailed knowledge of �; only that it is su�ciently small.Now it is possible to question the value of small � theorems. As it has been putto one us, \You provide no statistical justi�cation for the assumption that � tends tozero." In response one might note that a similar objection can be raised to large sampletheorems: there is no statistical justi�cation for assuming that n! 1. The answer toboth objections is that people, not statistics, make n large or � small. If it turns outthat the sample is too small or the errors too large for the problem at hand, no amountof mathematical analysis will alter the situation.However, this line of argument misses the real point. The value of asymptotictheorems of all kinds is that they give hope that an otherwise intractable problem maybe treated in a simple manner. In any particular problem, one must decide whether theDraft November 2, 1987



Hypothesis Testing 8asymptotic behavior actually obtains; but this does not detract from the value of theasymptotic result itself.There remains the question of how small the errors must be before the results ofa regression analysis can be trusted. To a large extent this is an open question. Theauthors (1982) attempted to obtain rigorous bounds on the terms ignored; however, theresults were so conservative as to be practically useless.Nonetheless, we can give realistic advice about when not to trust the results. Let� = inf�1(�Xy):One of the authors (Stewart, 1986) has shown informally that there is a linear combi-nation of the regression coe�cients that will be biased downward by a factor of approx-imately (n� p)�2. Thus unless, say,(n� p)�2 < 0:1 (3:1)the bias can be over ten percent, and ~b clearly cannot be near _b, which is unbiased.However, at this time we cannot say that a bound like (3.1), perhaps with a smallerconstant, can tell us when to trust our asymptotics.References[1] Brown, G. F., J. B. Kadane, and J. G. Ramage (1974), \The Asymptotic Biasand Mean-Squared Error of Double K-Class Estimators when the Disturbances areSmall," International Economic Review 15, 667-679.[2] Davies, R. B. and Hutton, B. (1975), \The E�ects of Errors in the IndependentVariables in Linear Regression," Biometrika 62, 383-391.[3] David, N. A. and Stewart, G. W. (1982), \Signi�cance Testing in a FunctionalModel," University of Maryland Computer Science Technical Report 1204.[4] Gauss, C. F. (1821), \Theoria Combinationis Observationum Erroribus Minims Ob-noxiae: Pars Prior," in Werke v. 4, K�oiglichen Gesellschaft Der Wissenschaften zuG�ottingen, 1880.[5] Hodges, S. D. and Moore, P. G. (1972), \Data Uncertainties and Least SquaresRegression," Appl. Stat. 21, 185-195.[6] Stewart, G. W. (1977), \On the Perturbation of Pseudo-Inverses, Projections, andLinear Least Squares Problems," SIAM Review 19, 634-666.Draft November 2, 1987


