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ABSTRACT

In this paper we give reason to hope that errors in regression variables are
not as harmful as one might expect. Specifically, we will show that although
the errors can change the values of the quantities one computes in a regres-
sion analysis, under certain conditions they leave the distributions of the
quantities approximately unchanged.
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1 Introduction

Of all the practical problems associated with linear regression analysis, none is more
vexing than errors in the variables. These errors are found everywhere and usually
cannot be eliminated. Moreover, in many cases it is obvious that they are large enough
to have important effects on quantities, such as F-statistics, calculated in the course
of the analysis. Since there are no procedures for dealing with errors in the variables
that do not require rather precise information about the errors themselves, the analyst
usually has no choice but to ignore the errors and analyze the data as though they were
not there. What is surprising is that this does not seem to result in obvious catastrophes.
The purpose of this paper is to provide a partial explanation.

The nature of the explanation is that under appropriate circumstances the errors
enter cooperatively into some of the procedures of regression analysis. To see what this
means, we must first define our model. We will suppose that we are given the usual
model

y=Xb+e, (1.1)

where X is an n X p matrix of rank p and the components of e are iid N(0,0?%). We will
further assume that in place of the matrix X we observe

X=X+E,

where the rows of I are iid N(0,X) and are independent of e.
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Hypothesis Testing 2

Let us now consider the vector b of regression coefficients. This would ordinarily be
estimated by
b=XTy=b+ XTe (1.2)
where XT = (XTX)7'XT is the pseudo-inverse of X. Unfortunately, we are forced to
compute

b= XTg, (1.3)
which can differ considerably from b. However, if we rewrite the model (1.1) in the form

y=Xb+e— Eb,

then . .
b=b+ XT(e— Eb). (1.4)
Now it is known from perturbation theory for pseudo-inverses (Stewart, 1977) that
Xt=xt4 T,
where
lim F = 0.
E—0
Consequently we have from (1.4)
b=b+ X'(e - Eb)+ Fl(e — Eb). (1.5)

Comparing (1.5) with (1.2) we see that if F is small, so that F'is also small, the b we
compute behaves as if were the correct estimate for the model

j=Xb+ (e — Eb). (1.6)

In other words, up to terms that vanish with E, the vector b comes from a model in
which the errors are iid N(0, 02 4+ bT¥b). If these vanishing terms are small enough,
the only untoward effect of the errors is that they inflate the variance of the response
vector.

It is important to keep in mind that this is not simply a continuity result. Nothing
is said about Ebin (1.6) being small compared to e. Indeed o could be zero so that all
the variability in the problem comes from E. The point is that this variability enters in
a benign way.

Our approach is related to the approximation of functions of random variables by one
or two terms in a Taylor series—something that is by no means new. For example, Gauss
(1821) used it to linearize nonlinear least squares problems, and Brown, Kadane, and
Ramage (1974) have used it in the analysis of certain econometric models. In regression
analysis Hodges and Moore (1972) and Davies and Hutton (1975) have examined first
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and second order terms in the expansion of b. Our approach differs from this in that we
actually ignore terms of the first order in I [cf. (1.5) and (1.6)]. Nontheless, a number
of important quantities computed using X approach the same quantities derived from
(1.6).

In the next section, we shall show that b converges in an appropriate sense to b 4
XT(e+ Eb) and establish a similar result for the residual vector. We will also show that
F-statistics computed using X converge to a true F-statistic. The paper concludes with
some general observations.

2 Coefficients, residuals, and F-tests

In this section we are going to show that as 3 — 0 a number of quantities—regression
coeflicients, residuals, F-statistics—computed using X converge with probability one to
the corresponding quantities from the model (1.6). As we indicated in the introduction,
the results hold when ¢ = 0, which is in fact the most important case. Before we
proceed, however, we must make sure that the result itself is formulated in such a way
that it will be useful.

Let b be defined by (1.3), and let b= X1y be the corresponding vector from the
model (1.6).1 If o = 0, it is trivial to show that as ¥ — 0 the vector b converges to
b with probability one, since they both converge to b. Even when o = 0, the result is
trivial, since the two distributions are collapsing around the vector b. However, if we
normalize our quantities by dividing by

& =/o? + bT%0, (2.1)

then their distributions do not collapse. Convergence will then imply that for the
purpose of estimating variability the distributions of (N)/é' and i)/é‘ are equivalent for
small . This is especially gratifying, since the latter is not computable while the
former does not in general have a first moment.

Turning now to the main result of this section, we must set up the underlying
probability space. Let & denote the space of matrices (eg Fp), where e¢g € R™ and
Ey € R™ P, with the elements of (eq Ep) iid N(0,1). For fixed ¢ > 0 and ¥ positive
semi-definite, the matrix (oeg EOE%) defines a measurable function on &, representing
our error e and perturbation F.

One final technical point. We propose to normalize our quantities by & defined by
(2.1). Since we have assumed only that X is positive semi-definite, it is possible for &
to be zero, even though Y. is nonzero. However, in this case e — F'b = 0, so that y = X0,

' The convention introduced here will be followed throughout the paper. A quantity with a tilde
above it will refer to the quantity computed using the X. A quantity with a dot above it will refer to
the model (1.6).
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and it as if the model had no error at all. Consequently, we may assume that ¢ > 0 as
Y — 0.

The results on regression coefficients and residual vectors are contained in the fol-
lowing theorem. We will treat the F-tests separately.

Theorem 2.1 With the definitions given in the introduction, let b= Xty and b= Xty.
Moreover, with P = I— X Xt and P = I-X X', let # = Py and # = Py be the computed
residual vector and the residual vector from the model (1.6). Then as ¥ — 0

L
g
f—f‘wpl

2. el 2.2
Ly, (22
T

R |
_

3. 0.

o2
Proof. Since convergence with probability one is convergence almost everywhere in the
underlying probability space, let (eg Ey) denote a fixed member of £, and let e = oeg
and F = EOE%. As we mentioned in the introduction, Xt = Xt + F, where F — 0 as
Y — 0. Now from (1.4)

b=1b+ XT(e— Eb)+ FX(e — Eb) = b+ F(0eq — Eo¥2b).

Hence

i)— b _ FTO'€0 — E()E%b

G G ’
When ¢ # 0, this expression clearly converges to zero, since FT — 0 and (oey —
E()E%b)/é' — eg. When o = 0,

b—b . EeNzh
—=F —,
7 1328]
where || - || denotes the usual Euclidean vector norm. The result then follows from the

fact that EOE%I)/HE%I)H remains bounded as ¥ — 0.
To establish (2.2.2), observe that we can write P = P 4+ @, where  — 0 as £ — 0
(Stewart, 1977). Since

F =7+ Q(oeo + FgB7b),

the result follows as above.
Finally to establish (2.2.3), write

FrF =717 4 20T Q (e + EOE%())-I-

2.3
(0'60—|-E02%b)TQ(0'60—|—E02%b), ( )
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When o # 0 the ratio of the difference 717 — 717 to &% obviously converges to zero. For
the case ¢ = 0, consider the inequality

. 1 . 1 .
21T Q Bz _ QIS0 _ Do
62T | Eoxt|? e

Since 5 = PEOE%I), we have

127 TQ EgX2b)|
é—2

<R[l — 0.

Thus the ratio of the second term in the right hand side of (2.3) to 6% has zero for its
limit. The third term is treated similarly. O

An immediate consequence of the theorem is that 717 /(n—p) is asymptotically (small
¥) a good estimate of the inflated variance o 4+ b"¥b. Moreover it is asymptotically
independent of b. This means that it can be used to construct confidence intervals and
t-tests in the usual way.

Let us now turn to the problem of F-tests of hypotheses. Partition X = (X7 X3),
where X9 has k columns. Partition b conformally in the form

Then the hypothesis we will test is
H: by=c.

Note that the most general linear hypothesis can be brought into this form by a linear
(in fact orthogonal) transformation of b.

The classical F-test is computed from the residual vector of the least squares estimate
when b5 is constrained to be equal to ¢. In the unperturbed model, this process amounts
to forming the projection Py = I—XlXIr and computing the residual ry = Py(y— Xzc).
The usual F-statistic for testing €2 is

n—p TETH—TTT

F =
k Ty

Following our convention, let 7y and F be the corresponding quantities for the model
(1.6) and let Py, /g and F' be the quantities actually computed. Since

7= PHXQ(()Q — C) + PH(@ — Eb),

we see that F' has an F-distribution, which is central if and only if b, = ¢. Moreover we
have the following theorem.
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Theorem 2.2 Ifn > 2p and by = ¢, then as 3 — 0
F— ¥,
Proof. Let PH = Py + Qu, where Qg — 0 as £ — 0. We have
= PuXa(by — ¢) + Pu(e — Eb), (2.4)
and since the hypothesis is true,
g = Pu(e — Eb) + Qule — Eb).

Thus as in Theorem 2.1 . .
b T 1
H'H  "H'H wpl

T 0. (2.5)
NOW . 4 ~T~ .T . .T . ~T~
k (F B F) _ o~ (TH.THT ~7‘ - THTHT 7) (2.6)
n—p o4 (FTrrTy)

By Theorem 2.1 and (2.5), the numerator of the right hand side of (2.6) converges to
zero a.e. Thus if we can show that the denominator remains bounded below our result
will be established.
As unusual the difficult case is when ¢ = 0, which we will now treat. For fixed Fg
in £, we have
i1 || PE7h|?
A T
We claim that with probability one

(2.7)

inf(PFo) = inf | PEoll > 0.

To see this let V = (V; V3) be an orthogonal matrix such that the columns of V5 span

the column space of P. Then
Tp 0
e ( vy ) ’

—— 0
1% PEO_(VZTEO).

But since the columns of V5 are orthonormal, the elements of the matrix VQTEO are iid
N(0,1); and since n > 2p, it has more rows that columns. Thus V,' Ey and hence PFE,
has full column rank except on a set of measure zero.

and
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Since HPEOE%I)H > inf(PEo)HE%bH, it follows from (2.7) that
iti
? Z lnf(PEO),

which is positive almost everywhere. Since

the quantity #'7/5? is also uniformly bounded below almost everywhere as ¥ — 0. This
completes the proof of the theorem. O

When by, # ¢, the F may still converge to F. THowever, this case is essentially
different from our previous results, since the term PgXy(by — ¢) in (2.4) contributes
errors of the same order of magnitude as Py(e — Eb), errors which do not have a nice
distributions. Thus, unless ¥ is small compared with o, the distribution of F will not
approximate a noncentral F-distribution. This means that we cannot use the usual
procedures for relating power to sample size when there are errors in the variables.
Nonetheless, equation (2.4) suggests that the errors cause a loss of power, not so much
by diminishing the source PyXs(by — ¢) of noncentrality as by inflating the variance
with which it must be compared.

3 Concluding remarks

We have shown that if the variance of the errors in the variables is small enough, then
some of the common procedures in regression analysis are unaffected by the errors. As
we pointed out in the introduction, this is not a continuity result; for the errors can have
a palpable effect on the numbers one calculates. But the numbers will nontheless have
approximately the right distributions. What is particularly nice about these results is
that they require no detailed knowledge of 3I; only that it is sufficiently small.

Now it is possible to question the value of small ¥ theorems. As it has been put
to one us, “You provide no statistical justification for the assumption that ¥ tends to
zero.” In response one might note that a similar objection can be raised to large sample
theorems: there is no statistical justification for assuming that n — oco. The answer to
both objections is that people, not statistics, make n large or X small. If it turns out
that the sample is too small or the errors too large for the problem at hand, no amount
of mathematical analysis will alter the situation.

However, this line of argument misses the real point. The value of asymptotic
theorems of all kinds is that they give hope that an otherwise intractable problem may
be treated in a simple manner. In any particular problem, one must decide whether the
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asymptotic behavior actually obtains; but this does not detract from the value of the
asymptotic result itself.

There remains the question of how small the errors must be before the results of
a regression analysis can be trusted. To a large extent this is an open question. The
authors (1982) attempted to obtain rigorous bounds on the terms ignored; however, the
results were so conservative as to be practically useless.

Nonetheless, we can give realistic advice about when not to trust the results. Let

7 =inf H(EXT).

One of the authors (Stewart, 1986) has shown informally that there is a linear combi-
nation of the regression coefficients that will be biased downward by a factor of approx-
imately (n — p)72. Thus unless, say,

(n—p)r* < 0.1 (3.1)

the bias can be over ten percent, and b clearly cannot be near b, which is unbiased.
However, at this time we cannot say that a bound like (3.1), perhaps with a smaller
constant, can tell us when to trust our asymptotics.
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