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Abstract: A prototype expert system for the treatment of stochastic control and nonlinear signal
processing problems is described with several illustrative examples. The system is written in
MACSYMA, LISP, and PROLOG. It accepts user input in natural language or symbolic form; it
carries out the basic analysis of the user’s problem in symbolic form (e.g., computing the Bellman
dynamic programming equation for stochastic control problems or the Zakai equation and the
estimation Lie algebra or likelihood ratio for nonlinear filtering problems); and it produces output
in the form of automatically generated FORTRAN code for the final numerical reduction of the
problem. The system also has a module using PROLOG which can check the well-posedness
(existence and uniqueness) of certain classes of linear and nonlinear partial differential equations
specified in symbolic form by computing a natural Sobolev space for the solutions and verifying
classical existence and uniqueness criteria for the given equation using MACSYMA for the compu-
tations and PROLOG for the logical analysis. Sample sessions with three of the modules of the
system are presented to illustrate its operation. The status of the system and plans for its further
development are described.

1. Introduction

In this paper we shall describe a prototype ezpert system using symbolic manipula-
tion languages developed for the analysis and design of stochastic control and signal pro-
cessing systems. The system has four major components: (i) a modular system of pro-
grams written in MACSYMA! which “‘solve” certain stochastic control and filtering
problems in symbolic form; (ii) an ‘“intelligent” command language interface using
OBLOGIS, a PROLOG system written in LISP (1]; (iii) a ‘‘theorem proving module,”
also using OBLOGIS, capable of checking the well-posedness (existence and uniqueness
of solutions on a Sobolev space determined by the module) of certain classes of linear
and nonlinear PDE’s in symbolic form; and (iv) a general purpose module for generating
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FORTRAN programs from the symbolic manipulation modules of the system. The func-
tion of the system is to accept input from the user in natural language with model equa-
tions expressed in symbolic form, to “expertly” (automatically) select a solution tech-
nique for his control or filtering problem, to reduce his mode! equation by symbolic
manipulations to a form appropriate for the technique, checking well-posedness of the
model along the way; and to automatically generate a numerical language (FORTRAN)
program realizing the solution algorithm.

In this way the system serves as a kind of symbolic compiler for control systems
engineering. This is its intended purpose. See Figure 1.

The system which now exists is capable of treating, among other problemsz, sto-
chastic optimal control problems by symbolically evaluating the Hamilton-Jacobi
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Figure 1. Structure of the expert system.

%lt, can also handle stochastic approximation, decentralized stochastic control, optimal control by the
Maximum Principle, system identification, and certain nonlinear control and filtering problems. Several oth-

er modules are under development, including a program for automatic implementation of the Hunt-Su-Meyer
method for exact linearization of nonlinear control systems [2] (suggested by C 1. Byrnes).



dynamic programming equation for the evolution of the optimal return function, select-
ing from four methods for the analysis, and then producing a FORTRAN code for the

numerical solution of this equation [3]. To execute the system, one inputs® the system
model equations, identifying state and control variables, and specifies in general terms
the type of optimization problem involved. The cost function, the initial conditions, and
any other boundary conditions are also entered. The MACSYMA portion of the code
carries out the calculations involved in implementing dynamic programming for the
optimization problem. That is, it carries out, in symbolic form, the differentiations,
function minimizations, and routine algebra necessary to compute the Hamilton-Jacobi
equation which describes the evolution of the optimal cost and the functional form of the
optimal control law. This portion of the code involves a grammar based on MACSYMA
expressions. A subsequent portion of the code which is written in MACSYMA and LISP
evaluates FORTRAN expressions for the appropriate MACSYMA expressions and pro-
duces ‘“‘dimension’, “‘write’”, ‘“format’’, ‘‘goto”, ‘“‘logical if”’, ““numerical if’’, and other
standard FORTRAN lines for the construction of a FORTRAN program. The FOR-
TRAN (subroutine) is written into a file using a MACSYMA command. For typical sto-
chastic control problems execution of the MACSYMA program and generation of the
FORTRAN code takes about 30 seconds. The programmer can at this point enter
numerical values for the system functions and data and then execute the FORTRAN
code. (These could be also entered automatically from preassigned files, and the FOR-
TRAN code executed automatically.) A sample session with this component of the sys-
tem is summarized in the next section.

The advantages of this system are clear. Given a new control problem, the time
involved in analyzing the dynamic programming equation and then writing the FOR-
TRAN code to execute it is eliminated. The mistakes and the time required to test and
debug the FORTRAN code are also eliminated. This is a major advantage of the system
in its present form. Most importantly, the system allows the engineer to interact with
the computer for design in terms of symbolic expressions. In this way he can modify his
analysis or design problem by modifying the symbolic functional form of the model. The
FORTRAN subroutines that he might have to modify by hand to accomplish this in
conventional design procedures are written automatically for him. The advantages of
working at the higher level are clear. As we shall show later, the system may also be
used for basic research in control theory.

The stochastic control portion of the system also has production rules written in
OBLOGIS which take advantage of the of the special structures associated with such
problems to select or guide the selection of analytical or numerical procedures to treat
specific applications.

1.1 Related work

Several systems for computer-aided-design of control systems have been developed
recently:

(1) ORACLS by NASA [4];

8Using a special grammar of MACSYMA expressions, or a natural language interface. See section 2.1.



(2) DELIGHT .MIMO by the University of California, Berkeley and Imperial College,
London [5];

(3) DELIGHT.Maryland by the University of Maryland [6];

(4) CACE-III by the General Electric Company and RPI [7];

(5) The Federated System by the General Electric Company (8);

(6) and various commerical packages like Matrixy, Program CC, and Cntl-C.

In addition, there has been some excellent work on general and specific algorithms for
numerical problems associated with control system design [9]. The cumulative product
of these efforts is a strong library of numerical systems and packages for the analysis
and design of numerically defined control systems.

The system in [7] is closest to ours in spirit. It has an interface written in LISP
which provides an “intelligent’’ interaction with pre-existing design packages.

The system described here has a different function. It is designed to automatically
generate numerical programs for the solution of problems posed in symbolic form. By
using symbolic manipulation programs, the system permits design efforts to take place at
the “‘next level up” from FORTRAN code. It interfaces more naturally with Al con-
structs since it is based in LISP and involves symbolic expressions, as opposed to the
numerical structures of FORTRAN. In this way it facilitates the incorporation of an
intelligent natural language interface. It would be difficult to design such an interface in
FORTRAN, and it would be equally awkward to write theorem proving modules in
FORTRAN. :

1.2 Summary

In the next section we present a summary of a sample session with one module of
the system with the interaction taking place through the natural language interface. In
the Section 3 we explain how the MACSYMA portion of the code is developed for one
particular application - the construction of approximate nonlinear filters for systems
with small parameters. In Section 4 we present a sample session with the
PROOFONPDE module. In Section 5 we discuss the present status of the overall sys-
tem and plans for its further development.

Acknowledgements: We would like to thank C.I. Byrnes, P. Kumar and K. Paul for
their contributions to the University of Maryland portion of this work.

2. A sample session for optimal stochastic control

The operation of the system in treating a static, elliptic stochastic optimal control
problem is illustrated in the transcript which follows. The problem is first specified
using symbolic expressions. In the interaction, the user specifies the states, controls, and
system structure, including the physical interpretation of the problem. In this case, the
system is told that the problem corresponds to the problem of optimal production con-
trol of a hydropower system. The states are the volumes of water stored for release in
two reservoirs, and the controls are the release rates. The system retains this informa-
tion, and returns it when asked for the physical meaning of the problem. Notice that



the system returns a summary of the information it has on the mathematical structure
of the problem at any stage, and the information is returned in the same terms used to
introduce it. Notice too that the system checks for well-posedness of the problem by
keeping track of dimensions, indicating that the problem type (parabolic or static) has
not yet been declared, and asking for the specification of a discount factor. Finally, and
most importantly, notice that the information the user has to enter corresponds to the
information necessary to write down a dynamic programming problem. The system per-
forms all the required calculations needed to determine the Belman equation from the
system dynamics and derive the numerical implementation of the equation.

‘When the problem specification is complete, as shown in the example, the system
invokes a MACSYMA routine, in a procedure which is invisible to the user, to compute

the associated Hamilton-Jacobi-Bellman (HJB) dynamic programming equation.* The
system will display the HJB equation in symbolic form if asked. At this point, the user
asks for the generation of a FORTRAN program to solve the HIB equation numerically.
This may be done in a variety of ways. The user may simply enter the command
*‘graph,” which is equivalent to asking the system to compute the optimal return func-
tion and make a graph of it. The system generates a FORTRAN program and tells the
user where to find it; it then proceeds to execute the FORTRAN code and produce the
desired graph (shaded by hand in the transcript). The numerial results are stored in a
file, and this is also reported to the user.

2.1 Interaction through the command language interface

In the session (Figures 2a,b) the user sets up the stochastic control problem
T
inf {fo F (@ (8)zq(t)u,(t)uy(t) e dt | uju,}

f(upugz,z)=ul + ufl + z,0-z,)z,(1-7,)

+ (G- 2)m1-2) + (5 = 22,1 - 21)?

with the discount rate ¢ = 1 and the state equations

dx,(t)=[32- ~uyldt + dw,(t)

d:c2(t)——-[—:1;- —uyldt + dwy(t)
(u(t)ug(t)) € [0,1)°, (z4(t).84(t)) € [0,1)%

as a model for the control of a pair of hydropower reservoirs with states #; and x,, the
stored water volumes, and controls u; and u,, the release rates of the water from the

*In fact, the system is capable of selecting {rom several methods for treating a given optimization prob-
lem. See section 2.4.



reservoirs. The cost function corresponds, in effect, to the cost of producing the
equivalent thermal power. See, e.g., [10]. The processes w,(f) and w,(t) are indepen-
dent standard Wiener processes, and 71, is the first exit time of the state from the
domain D = [0,1]%

The optimality conditions for this problem lead to the following HJB equation
dv ov

+ U
dz, 29z,

~v + min{ (u,,uy) € 0,1 | u,

+ uf + ul + (05-2)(1-7,)°%z, + (1-7,)7,(1-z, )z,

2 2
d%v 4 0 v}
oz f 0z f

+ (1-2 )%z ,(0.5~1,) +

on the domain D = { (2,,z,) € [0,1]* } with the boundary conditions

v =121, for 2,=0and 2,=0

v = (1-z,)(1-z,) for z,=1 and z,=1

In the listing user input follows the arrow (===>). The system’s response is on
the lines immediately thereafter. Note the role of the help facility and the responses of
the system to an incompletely posed problem. The total time required for the session
was about 30 seconds on the Honeywell Multics system at INRIA.



EXEMPLE DE SESSION

hello .

we shall try to solve your stochestic
conirol problem

o you want to keep & previous siatement?

no

do you want to keep the following session?

no

plesse give the statement of the problem

if you have trouble type help

«=>[x1,%2) Is & siate verisble denoling
the water-levels
state : [x1, x2]

physical meaning of [x1, x2] . water - levels

«=>{ut,u2} is a control varuble
’denohngturbmedwrater ;

=()53sthe driﬂ'
e dimensionsiol the staleand thedri

o d\rfusmn '5 ~
E'i va\ue DTS jOSOSl

-

Ao

=)
--u‘l 2+u2°24x 1% (1~x1)"x2* (1-x2)+ .
TUO.5-x1)* x2% (1-x2))" 2+
{(0.5-x2x 1*(1-x1))2 is Lhe mstantnneuus
- cost

insianteneous : ¢

value of ¢ 1 (0.5 - x 1)1 - x2¥x2

+0=x D = x2) %24 (1 - k151005 - %2)
422412

=m>what do you know .
instanteneous it 7LD T T ‘
~value of ¢ (05 - xl)(l-x?)?x2
oL (Y -x )X x2)2 T

K¢ -xl}Qxl(OS qz)uz?wz? "ﬁ“‘;

==>lhe ;:roblem is stau
i ihe pmblemxs tatic .-

1--=>dynamrmc programming tquahon E
= gdiscount factor is missing - EOA
L do you wish {ostop 7 s
.. no DR iy

«==3q =1 Is a discount factor -- .- .
discount : q .
value of g ;)

==>help
do you need help Lo

- give the dynamic of the problem (1)

- - give the horizon and the limil congitions
- - generate the bellman equation (3)
— = generate the fortran program and
--numer\ca\ resuits (4) == - -- — -

-~ ~wZ—zgsk for the edition funcuons loe dats =
-—bas of the robot 5) - :

‘asﬁ?:‘afih@iwr?ob}e A3sELatitn:
Ehmed!ependent by Aypingithe problemis) ==
Estatic7parabolic:
E==s====whenthe problem is=tatic. goum:s_tgw
gthe dlscount{aclorrwhen the pmb)em =

% =Dis of the neuman/dirichlet type
enc equal to x+ 1 youtype:- =~ - T
x =0 dirichlet/neyman $4x- - - - >

you can substitute stopping to mrtcmet and
. refiexion lo neumen - o

Figure 2a. A session with the system for optimal stochastic control.




wsyx 1 =0 dirichlel 2
Himit condition for x1 =0 : 1
dirichlel type

==>delete limit condition x1 =0
limil condilion deleted

==>x1 =0 dirichlet 1-* -
< limit condition for x1-=0 :- -
* dirichlet type - -~ -

Fwex2 =0 dirichiel 1
E'limit condition for x2 =0
Edirichlel lype = .72

L =ox{=1 neuman 0 - " -
=3imit condhlion for xt =1 : 0.

- ==>%2 =1-neuman 0
- limit condition for-x2.=1:0
" neurnen Lype - o
-limit condition fo
Cdirichlet type_

==>equation
hamilton-jacobi equation :

minl(0.5 - x 1)V = x2)2x2

A

-

- ms)generate oo L E

do you wish to stop ? o

1 1 P SR S it

you will find the subroutine in the segment

belman fortran

do you wish to stop 7
no

==)principal program

you will find the principal program in the

segment pp.foriran

=

. you will fing the fortran program in the

do you wish to stop ?
no

==>g¢xecute

& =segment num fortran_ . - - -

you will find the numerical resultsinfile0

_ “where v denotfes the bellman

PR

=

~functionand uthe optimal control o o
doyouwishtostop? .. - - -
- no : )

no

Figure 2b. Continuation of the session.




2.2 The MACSYMA grammar for the example

The class of stochastic control problems treated by the system is defined internally
by a special grammar shown in Figure 3. The grammar uses the Backus-Naur notation
where *‘|”” stands for “‘or” and < word> stands for a nonterminal word. There are also
semantic constraints which defilne a sublanguage of this grammar. These constraints
effect the use of <<y>. We shall not discuss this feature here.

< gtochastic —control —problem > =< domain >, <instde ~condition >, < boundary —-condition >
<domain >::= [0,1]* | [0,1]* X [0,T].

< boundary —conditions > .= Y < boundary —conditions >, < boundary —element >
<boundary —element >

< boundary —element > = {<y > <y > € <domain >, <z,> =1} |
{<y>, <y> € <domain >, <z,> =0 |
{(z.1), z €lo1)"}
<z, >i=1zy| 22| | 2

<y>u=1z | (z.t)

<boundary ~condition > =V = [ | %_:{_ =f

< operator > .= < evolution —operator > + < space—operator >
< evolution —operator > .= ... %

< operalors > == <operator > | <operator > + <operators>

| min {<operator >, <operators >}

<inside —condition > 1= <operstors > = 0

. o a8V 3%V
< space —operator >.= - N<y>)V + Y b (<y >)(—9-z— + Ya(<y>) 527
=] : 1 [3

+ C(<y>)

| min {# €ER™ : -NM<y>)u)V + T{hi<y >ﬂ)-§7v-

s =}

8%V
+ a,(<y>,u)gz—2] + C(<y>u)}

Figure 3. Prototype grammar for stochastic control.




The MACSYMA program which sets up the HIB equation in the example, written
in the special grammar for stochastic control problems, is shown in Figure 4. The gram-
mar is highly efficient, and so the MACSYMA program is quite compact.

2.3 Specialized natural language interface

The interface illustrated in the interactive session is a program written in LOGIS
[11} which recognizes the specialized terminology of stochastic control. The sentences
the user enters are analyzed and matched against aptterns of typical sentences. Depend-
ing on the type of sentence, various actions are initiated: answer the user; access a data
base; etc.

For example, when the user enters
let [z, 12] be a state variable denoting water level
the corresponding internal pattern is:
?- let 1x I- I- Itype ?- denoting !- !physical-meaning

where ?- matches anything, !- matches one word, and !x matches one word and binds it

appel():=(

fIT:x 1%(1-x1)*¥x2%(1-x2),

fsc:((0.5-x1)*x2*(1-x2))*¥*24((0.5-x2)*X 1 ¥(1-X1))¥*2+
2*x2%(1-x2)+2*x1*(1-x1),

condi:|[dirich,x1*x2],(dirich,x1*x2}],

condim:{[dirich,(1-x1)*(1-x2)],[dirich,(1-x1)*(1-x2)]],

type:[2,stat,ecriture,pasmoy,condlim,condi,condim,elp,1,difu,derive,
plus,dif,{1,1],belm,2,newto,an,ul*pl+
u2*p2-+ul**24u2**2-4-fsc+fif,param,(}],

hjb(type,prodyn,belman));

Figure 4. MACSYMA program for stochastic control




to X. The result of the pattern matching is an association list:

(x. [z, 5], type . state, physical-meaning . water level)

The associated actions are:

. transform the data and store them

. verify the properties and meaning of the data
. answer the user.

The answer is:

state: [T, 2,

physical meaning of [z, z, |: water level

Through the interface the user can delete a variable, ask for the meaning of a vari-
able, and ask for all the data and variables in the system at any point in the interaction.
The user can request certain actions including the generation of the dynamic program-
ming equation associated with a problem, or the generation of FORTRAN code to imple-
ment a specific algorithm for the optimization problem. '

2.4 Rules for selection of solution method

Using the logic programming facilities of the OBLOGIS system, it is possible to
develop rules for evaluating the problem statements provided by the user to test whether
or not they are complete and to request additional information. In effect, the system is

able to determine when an optimal stochastic control problem is completely posed.5
Rules have also been incorporated into the system to select among four different
methods for treating optimal stochastic control problems. The MACSYMA portion of
the program is capable of treating stochastic optimal control problems using four
different methods: (i) direct numerical solution of the Bellman equation for systems with
small state dimension using methods in {12,13,14}; (ii) a decoupling method for systems
which have decoupled dynamics and product form objective function [15]; (iii) the sto-
chastic gradient method [16]; and (iv) a regular perturbation method {17,18].

The problem statement supplied by the user is tested to determine which method is
applicable. For example, the (regular) perturbation method is applicable if

e the problem is a control problem
e the time horizon is finite

e the noise intensity is small

e there are no state constraints

e there are not control contraints

5See section 4 where the issue of well-posedness is discussed.



e the second order differential operator in the Bellman equation is regular
These conditions are realized in the following LOGIS PROLOG clauses:

(« (methode !perturbation)
(type !commande)
(horizon !fini)
(petit-bruit)
(pas-constrainte tetat)
(pas-constraint !commande)
(non-degenere thamiltonien !commande))

Here ‘‘—’’signifies installation of a clause and ““!”’ introduces a PROLOG constant. The

first list in the clause is the conclusion and the subsequent lists are the hypotheses which
must be tested to satisfy the conclusion. This order reflects the backward chaining
inference structure of PROLOG.

2.5 FORTRAN program output

Numerical evaluation of the solution of the Bellman equation is done by a FOR-
TRAN program written automatically by the system. A listing is given in the Appendix.
Note that it is a fully commented, ‘‘stand alone’ program written in FORTRAN IV. It
contains some 120 lines, including comments. It is produced in 1-2 seconds by the Sys-
tem in the course of the interactive session.

3. Algebraic and asymptotic simplification of nonlinear filters

The problem of estimating one diffusion Markov process { I } in terms of observa-
tions of another Y, = o{ y,, § <t } based on the model (Ito calculus)

dry = f (z;)dt + g(z;)dw, (1)

dy¢=h(z¢)dt +dU¢, OStST<OO

is fundamental in many engineering applications. Here f , ¢, and h are smooth func-
tions, w,, u; are independent standard Wiener processes, and z, is a random variable
independent of (w,, u;) for all ¢. The problem of recursively estimating z; given the o-
algebra Y; generated by the observations, may be formulated in terms of the (Stratono-
vich) stochastic partial differential equation for the unnormalized conditional density



du(t,z) = (L u)t,z)dt + h(z)u(t,z)dy

L'u =28, (g%x)u) - 8,(f (x)u) - %hﬁ(x)u @)

)

B | o

©{(0,z) = p,(z), the density of x,

That is, if (2) has a nice solution, then the conditional density of z, given Y, is

p(t.z)=u(t,z)/[fu(t,z)dz].

A considerable effort has been devoted to the search for (recursive) finite dimen-
sional ‘“‘representations’ of estimators in terms of various ‘‘sufficient statistics” of either
the solution of (2) or other conditional statistics (such as the conditional mean). This
effort, which has produced few such estimators, has nevertheless increased our under-
standing of the system (2) and of the tools available for its treatment [19]. In [20] a sys-
tematic procedure was developed for constructing approximations to the solutions of (2)
in terms of certain Lie algebras of differential operators associated with the equation.
See also [21,22,23]. The procedure is based on the presence of a small parameter in the
model (1), and it uses the methods of asymptotic analysis to derive the approximations.

3.1 Asymptotic analysis and the estimation algebra

‘The idea is as follows: Consider the simple perturbation of the Kalman filtering
problem treated in [20].

d:C‘ = ar; dt -+ dw,
dy = [z + €=z)*)dt + dy (3)
Yo =0, z, has Gaussian density py(x), k > 2
The conditional density of z, given Y,® satisfies
du(t,2)=[L" - -;—(x ek )ut(t,z)dt + (z + ezF)u(t,x)dy  (4)
©90,2) = p,(z)

L'u 2%—8”11 - ad, (zu).

Assume that u ¢ has an asymptotic expansion

ul==uy + €u,; + €uy + - (5)

Substituting this into (4) and equating coeflicients of like powers of ¢ gives



dug=L "ugdt + z u,dy* (8)
uo = p, ()
* € k&
duy =L u dt + 2z udy, + z2%u.’,

U (0,2) =0, k =1,2,..

Defining the vector

Ug
Uyt,e)= | "1 1)
Up
we have
dU, (t,z)=[(L* - %:ﬁ)El - gt g, - -;-x2"E3] U,(t,z)dt (8)

+ [zE, + z* E ) U,(t,z) dy°

where the (n+1) x (n +1) matrix E; has zero entries everywhere except for 1’ s on the
subdiagonal (¢,1)(z +1,2),...,(n +1,n +2-t) (i.e.,, on a particular subdiagonal). Note that
E, is the identity matrix.

The equation for u is the Kalman conditional density equation (given y,‘, s <t).
Therefore, it has a closed form analytical solution - a Gaussian density. This density
defines the Green’s function for all the subsequent equations, £ = 1,2,..., in (6). Since
u, involves this Green’s function and a:"uo dy,© as a forcing function, u, can also be
computed explicitly. It follows that all the terms wu,,u, - - - can be computed expli-
citly; however, the complexity of the calculation increases very rapidly. By computing
U, (t,xz) we produce an approximation to the conditional density which is accurate to
O (" *h.

All these calculations can be done automatically in symbolic form by MACSYMA.
To do this, we use Lie theory. First, we rewrite (8) abstractly as

U, (t)=AU,(t) + BU,y{

* 1

A=(L" - —2)E, - " E, - S 2™ Ey) 9)

L3

2
B=[zE, + z* E,|

Note that A is a second order differential operator and B is multiplication by a matrix

valued function. The Lie algebra generated by A and B consists of all linear combina-~
tions of A and B and their consecutive commutator products, e.g.,



[A,B] = AB - BA (10)

and subsequent repeated products (taken as differential operators). This is always a

finite dimensional solvable’ (e.g., “lower triangular” structure) Lie algebra for the class of
filtering problems with polynominal coeflicients described above.

Consequently, we can use the Wei-Norman theory [24] to solve (8) globally in the
form

U"(t,l') — [eﬂl(‘)Al 692“)‘42_“ eﬂd(t)Ai ](1’) (11)

where (A ,A,,...,A;) is a basis for the Lie algebra generated by A and B, and the g;(t)
are defined by a lower triangular system of nonlinear (stochastic) ordinary differential
equations. These equations must be solved numerically (in general). The g;(¢t) s may
be thought of as a finite dimensional family of (approximate) conditional statistics for
the original nonlinear filtering problem.

3.2 Symbolic algorithm structure

To implement the approximate nonlinear filter using this methodology and
MACSYMA, one must program the following six step procedure:

(M1) Compute the differential operators A and B in (9) in terms of the original func-
tions in the filtering problem model (1), modulo the appropriate power of the small
parameter €, if one is present in the model.

(M2) Compute basis elements A ,,A,,...,A; for the Lie algebra generated by A and B.

(M3) Compute ODE’s for the g,,...,g; functions in (11) by substituting (11) into (9),
differentiating, and inverting the resulting matrix equation.

(F1) Solve the ODE’s for the ¢g;' s numerically using an appropriate numerical integra-
tion scheme for stochastic ODE’s [25].

(M4) Compute the approximate conditional mean z £ (the best mean square estimator of
z,* given Y;°) by integrating the conditional density.

(F2) Represent the conditional mean computed in (M4) in FORTRAN code in terms of
the actual measurements { y,°, s < t } as input data to the code.

The steps labeled (M1)-(M4) are done in the MACSYMA part of the code. The
step (F1) is best carried out in FORTRAN; and so, the MACSYMA step (M3) which
computes the symbolic ODE’s has an auxiliary component which writes the FORTRAN
code to numerically integrate the ODE’s.

The result of step (F2) is the output of the system - that is, a FORTRAN code to
numerically evaluate the best estimate of the state in terms of numerical measurement
data. All the steps (M1) - (M4) and (F1) (F2) are carried out automatically after the
system model (the functions [, ¢, and h in (2)) are specified.

%A Lie algebra is solvable if the derived series of ideals L@ = L ; LEO) = L&) L&)} 5 > 0is the
trivial ideal { 0 } for some n.



The system also includes a test for well-posedness which consists of checking rela-
tive growth conditions on the coefficients f, g, and h for existence and uniqueness of a
(classical) solution to the robust form of the Zakai equation. The criteria used are those
developed in the paper [26]. As is the case in the other components of the system, com-
plicated analysis is required to setup the existence and uniqueness test. This analysis is
done ‘‘automatically” by the program. Since the existence and uniqueness theory for
nonlinear filtering problems is not complete, the program cannot give a definitive
analysis of a large class of problems. Rather, it uses the classical existence and unique-
ness theorems for parabolic partial differential equations as adapted to a class of filtering
models with smooth coefficient functions. It is not unlikely that more sophisticated tech-
niques could be accomodated by simple modifications of the program.

It is possible to have MACSYMA offer a choice of numerical integration procedures
to be (automatically) coded for computation of the state estimate. Our system does not
now have this capability. However, it does have a second method for computing the
conditional density based on evaluation of the likelihood ratio using formulas for integra-
tion of stochastic function space integrals developed in {27,28]. The system also has the
capability to test the well posedness of (robust form of the) Zakai equation. In conduct-
ing this test, using the theorems in {26}, the system tests the coefficients in the Zakai
equation to see if they are polynominals. If so, a simple test suffices for well-posedness.
If not, then a more complex computation is executed. See [29] for details.

3.3 A sample session with the filtering module

The weak quadratic sensor treated in the paper [20] is one of the few examples in
which the estimation algebra and the Wei-Norman series representation of the condi-
tional density have been worked out by hand. It is necessary to have such examples
when programming in MACSYMA to validate the program.

In the session shown in Figure 5 the program is asked to analyze the simple filter-
ing problem

dz, = duw, (12)

dy! == x, + 6:6,2 + du,

The system asks the user to declare the system as scalar or vector and then to enter the
functions f ,¢,and h in a standard format. It then sets up the Zakai equation,
identifies the two operators in the equation which will be used to generate the estimation
algebra, and proceeds to find the representation of the conditional density to the
appropriate power of €, in the form of a Wei-Norman series. The system returns a basis
for the estimation algebra (modulo the designated power of €) and various intermediate
expressions of interest, including the matrix of structure constants for the estimation
algebra. Its “final result” is a set of stochastic ordinary differential equations for the
functions appearing in the exponentials of the Wei-Norinan series.

The final output of the program is a FORTRAN program integrating these equa~
tions and computing numerical expressions for the conditional mean. The FORTRAN



program written by the system is given in the Appendix. The complexity of the expres-
sions in this program effectively illustrates the value of a tool for the automatic genera-
tion of programs. It would be tedious to type this code, and difficult to debug it by
hand. If a single parameter in the system model were changed, then the entire code
might have to be rewritten. This would be time consuming, and a poor use of engineer-
ing talent. On the other hand, the code in the Appendix was generated in about 10
seconds on a VAX 11/785 under modest load conditions.

4. A Sample Session with the Theorem Proving Module

The system contains a module called PROOFONPDE for the automatic verification
of well-posedness of certain classes of nonlinear PDE’s. The module is constructed in
LOGIS [11]. It analyzes the coercivity properties of a given PDE and the monotonicity
properties of its nonlinear components on a Sobolev space which it constructs in the
course of the analysis. The theorems of functional analysis used in the arguments are
encoded in rules in the LOGIS PROLOG syntax. The system interfaces completely with
MACSYMA; and MACSYMA functions performing symbolic calculations are used when
necessary. The problems treated are in abstract form

Au=f im QCR" (13)

Biju =g;, J =0,1,..m — 1 on the boundary T of Q

where A and BJ- are differential operators. The system verifies the existence of a solu-
tion to (13) and finds the function space V to which this solution belongs.

The function spaces used are Sobolev spaces which are represented internally as
MACSYMA objects. For example, the space W{,""’ (£2) is handled in the following way: It
is typed by the user in MACSYMA syntax as space(w,m,p,0) where space() is a
MACSYMA function that generates the list

({(space simp) ((p m 0 )) nil)

which serves as the internal representation of the space. When the MACYSMA disp
function operates on this list, it prints W7 (Q).

The main components of the formal calculus (Green’s function application, varia-
tional formulation, computation of canonical forms, etc.) are written in LISP. This is
done since the main part of the work consists of manipulating lists (MACSYMA expres-
sions), and it is most efficient to do this in LISP. When necessary, MACSYMA functions
(diff, expand, etc.) are called. The programming technique is data driven programming.
This facilitates the updating of the knowledge base.

The portion of the system using existence theorems and deciding what computa-
tions must be done to verify the hypotheses is encoded in Horn clauses with the PRO-
LOG syntax of LOGIS [11).. This is the core of the system which determines what
theorem and what method will be applied in a given case. I or example, the Lax-
Millgram theorem is encoded in the following clause:
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(e5) exit();

Figure 5. A sample session with the nonlinear filtering module.

((solution space)

(well defined)

(linear $principal-op $solution)
(elliptic $principal-op space)
(continuous $principal-op space))



This is interpreted as follows: The problem (P) has a solution in a space V if (P) is well
defined, if the principal operator A is linear with respect to the solution u, if A is ellip-
tic in V, and if A is continuous in V. Each clause triggers the execution of another
clause, MACSYMA functions, or LISP functions. All the results or facts obtained during
the inference process are kept in a fact data base to avoid useless computations and
thereby to increase the speed of the system.

In the listing in Figures 6a,b inputs are on the lines terminated with *;”. In the
first portion of the program the system explains its notation and then asks the user to
type in the equation in a specific notation. It then asks for the boundary condition; and
then it repeats the statement of the problem in symbolic form. The system then asks
for the nature of the object ““u”, the solution. The user supplies this, and the system
summarizes what it knows about u; in particular, it does not yet know the space in
which u is defined and it does not know any properties of u. This process is repeated for
each element appearing in the original equation. Function space and inequality proper-
ties can be given for each function.

When the problem is completely specified, the system enters a PROLOG loop. At
this point the user can ask several questions about the problem; in the listing he asks the
system to find out whether or not the problem posed has a solution. The system prints
out everything it has proved: it finds that the problem is well defined, tests the linear-
ity, computes the variational formulation, and the associated Sobolev space, and verifles
coercivity. At the end of the manipulations the system reports that the equation has a
solution in a particular Sobolev space which is H'() in the first example and
HJ} Q)N L?(Q) in the second. The total computation times for the two examples are 9
and 13 seconds, respectively.

The system operates by putting the problem in various canonical forms (i.e., canon-
ical forms of A u and canonical forms for the variational formulation) where it can
check the criteria spelled out in certain standard theorems for the existence and unique-
ness of solutions to nonlinear PDE’s. All the computations are done in symbolic form,
and the conditions are stored and checked in symbolic form.

5. Status and objectives of the research

At the time of this writing, the work is progressing on several fronts. New modules
are being added to the system, including a system for identification of nonlinear
diffusions with jumps, a system for the analysis and design of nonlinear control systems
using geometric methods, together with new optimization routines, inciuding routines for
search and scheduling problems. The fiitering module is being enhanced to handle vec-
tor problems more efficiently, and it is being tested on a variety of problems. The
natural language interface is being redesigned to incorporate more logic (PROLOG) func-
tions. The system, which now has some 15000 lines of code in LISP, MACSYMA, and
LOGIS, has been ported on a (Symbolics) Lisp machine at INRIA.

The development of the program so far has concentrated on providing capabilities
for executing specific control ‘theoretical constructions. In the next phase of the work it
will be important to bring to bear more of the techniques of expert systems to provide a
systematic logical structure for the system. This appears to be the appropriate long
term direction for the work.



EXEMPLE 1 3
I

(c1) cogito();
Cogito : Version 4 (13/06/84)

n
dimension de 1'espace R :
3

ls dimension de l'espace est 3

est-ce-correct ?
oui;

equation a resoudre dans omega sous la forme "A{u)=f" :
~delta(u)+atu=f;

conditions sur la frontiere gamma sous la forme "[B[1](u)=0,...,B[m](u)=0]" ¢
{diff(u,nor)=0];

le probleme a resoudre est @
N
au~/_N\uz={ dans omega

avec sur gamma @
du

——z 0

dnor

est-ce-correct ?
oui;

nature de a ¢
coefficlent;

espace de & ¢
espace(l,inf);

proprietes de a :
a>l;

fonction : a
SRESEINAND

nature : coefficient
espace : L{inf)
proprietes : a > 1t

est-ge-correct 7
oui;

nature de u
solution;

Figure 6a. Well-posedness of a linear PDE.
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est-ce-correct ?

fonction 3 f
(LI T T )

nature : smembre
espace ¢ inconnu
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EXEMPLE 2 1 fonotion : a

fusdasens (IIIZTITITY)
(e1) cogito(); nature : coefficient
Cogito : Version & (13/06/84) espace : L(inf)
n proprietes : a > 1
dimension de l'espace R :
2; est-ce~correct ?
oui;

la dimension de l'espace est 2
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u+rabs{u) (p-2)¥u-sum(diff(ali1®difrf(u,x[11),x(11),1,1,m)=f;
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o
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Figure 8b. Well-posedness of & nonlinear PDE.
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Appendix: Automatically generated FORTRAN programs

belman.fortran

subroutine prodyn(ni,n2,epsimp,impmax,v,ro,u,eps,nmax)
dimension v(ni,n2),u(2,n1,n2)

Resolution de 1 equation de Bellman dans le cas ou:
Les parametres sont
L etats-temps est: x1 x2
La dynamique du systeme est decrite par | operateur

[« B s TN ¢ BN ¢ BN 2



c Minu( (0.5 - X1)**2 (I - x2)**2 x2**%2 + (1 - x1) x1 (I - x2) x2

c

¢+ 2(1-x2)x2 4 (1-x1)*%2 x1**2 (0.5 - x2)**2 + 2 (1 - x1) X1 + u2**2 -+ p2 u2
¢+ ul**2 4+ plul +q2 + ql)

C

ou v designe le cout optimal

ou pi designe sa derivee premiere par rapport a xi

ou qi designe sa derivee seconde par rapport a xi

Le probleme est statique

Les conditions aux limites sont:

X2 = 0 v=x1 X2
x2 = 1 v=(1- x1) (1 - x2)
X1 == 0 v= X1 X2
x1 = 1v=(1-x1)(1-x2)

Les nombres de points de discretisation sont: nl n2
X2 == 1 correspond a i2 = n2
X2 == 0 correspond a i2 = 1
X1 == 1 correspond a i1 = nl
x1 == O correspond a il =1
Le taux d actualisation vaut: 1
impmax designe le nbre maxi d iterations du systeme implicite
epsimp designe 1 erreur de convergence du systeme implicite
ro designe le pas de la resolution du systeme implicite
par une methode iterative
Minimisation par la methode de Newton de 1’'Hamiltonien
L inversion de la Hessienne est faite formellement
nmax designe le nombre maxi d iteration de la methode de Newton
eps designe 1 erreur de convergence de la methode de Newton

OO GO0 00 0000606000066 606660600

h2 = float(1)/(n2-1)
hi = float(1)/(n1-1)
u2 = u(2,1,1)
ul = u(1,1,1)

hih2 == h2**2
hihl = h1%*2
h22 = 2*h2
h21 = 2*hl

nm2 = n2-1
nml = ni-1
do 119 i2=1,n2,1
do 119 i1 =1,n1,1
v(i1,i2) = 0.0

119 continue

imiter == 1}
113 continue
erimp = 0

do 111 i1 ==1,ni,1
x1 == hi*(i1-1)
v(i1,n2) =0
v(il,1) =0

111 continue .
do 108 {2=2,nm2,1
x2 = h2*(i2-1)
v(nl.i2) -~ O
v(1,i2) = 0



110 continue
do 109 i1 =2,nmi1,1
x1 == h1*(i1-1)
q2 = (v(i1,i2+1)-2*v(i1,12)+v(i1,i12-1))/hih2
ql = (v(i1+41,i2)-2%v(i1,i2)+v(i1-1,i2))/hih1
p2 = (v(i1,12+1)v(i1,i2-1))/h22
pl == (v(i1+1,12)-v(i1-1,i2))/h21
niter = 0
w0 = -1.0e+20
101 continue
niter = niter+1
if ( niter - nmax ) 102, 102, 103
103 continue
write(8,901)i1,i2
901 format(’ newton n a pas converge’, 2 i3)
goto 104
102 continue
ul == -pl1/2.0
u2 = -p2/2.0
WW = (0.5-X1)%*2%(1-x2)%*2%x2%*2 4+ (1-X1)*¥X 1 ¥(1-X2)*x 2+ 2%(1-x2)*x2+(
1 1-X1)**2%x1*2%(0.5-X2)**2+4+2%(1-X1)*X1+u2**2+p2*u2+ul**2+pi*ul+
2 q2+ql
er = abs(ww-wO0)
if (er-eps) 104,104, 105
105 continue
w0 = wWw
goto 101
104 continue
u(1,i1,12) = ul
u(2,i1,i2) = u2
W0 = wWw
w0 = wo0-v(i1,i2)
vnew = ro*wo0+v(i1,i2)
v(it,i2) = vnew
erimp = abs(w0)+erimp
109 continue
imiter = imiter+1
if ( imiter - impmax ) 116 , 115, 115
116 continue
if ( epsimp - erimp ) 113, 112, 112
115 continue
write(8,907)
907 format(’ schema implicite n a pas converge’)
112 continue
do 117 i1 =1,nl1,1
do 117 i2=1,n2,1
write(8,900)i1,i2,v(i1,12)
900 format(’ v[’, (3,’,’), 13,")’, €14.7,"$")
write(8,902)i1,12,u(1,11,12),u(2,i1,i2)
902 format(’ u[’, (13,",", 13,"1:[', (€14.7,","), €14.7,']$")
117 continue
return
end



OO 6000 a0 0600 006060066060

100
110

This is a routine that solves for the conditional estimate of

X at t, given the observations y up to time t. It is written
by Macsyma

Program Variables

xinput real(4000)
contains the actual x values which are to be estimated for
times at instants of 0.001 sec.

observ real(4000)
contains the sample observations to be filtered again at
0.001 sec time intervals.

estim  real (4000)
contains the calculated estimate given the observations up to
that time instant.

real xinput(4002), var(4002), observ(4002), estim(4002), g(10), ng
1 (10), x0xfx, x1xfx, X2xfXx, X3xfx, X4xfx
integer i, j, k
do 300 ii=1,300,1
=1
k=0
size==0.001
xinput(0)=1
observ(0)=1
estim{0)=1
do 100 i==1,10,1
g(i)=0
continue
continue
if(g(1) .gt. 2.5) goto 120
call nexty(xinput,observ,1,size,j k)
deltay==observ(j)-observ(k)

sinhgl==sinh(1.0*g(1))
sinhg2=sinh(2.0*g(1))
coshgl==cosh(1.0*g(1))
coshg2~==cosh(2.0*g(1))
ng(l1)==size+g(1)

ng(2)==coshg2*deltay+coshgl*deltay-1.0*deltay-+g(2)

ng(3)=-2.0*deltay*sinhg2+2.0*deltay*sinhg1-+g(3)

ng(4)==coshg1*deltay+g(4)

ng(5)==g(56)-1.0*deltay*sinhgl
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ng(6)=coshg2*deltay-2.0*coshgl*deltay+deltay-g(6)

cstl=-coshgl*sinhg2*size+coshg2*sinhgl*size+2.0*coshgl*sinhgl*
size-sinhgl*size+coshgl*deltay**2*sinhg2
cst2=-coshg2*deltay**2*sinhg1-2.0*coshgl*deltay**2*sinhg1+delt
ay**2*sinhgl-2.0*g(2)*deltay*sinhgl-g(3)*coshgl*deltay
ng(7)=cst2+cst1+4-g(7)

cst3==-sinhgl*sinhg2*size+sinhgl **2*sjze-coshgl*coshg2*size+2.0
*coshgl**2*gjze-coshgl*size

cst4=deltay**2*sinhgl*sinhg2-deltay**2*sinhg1**2-g(3)*deltay*s
inhgl-+coshgl*coshg2*deltay**2-2.0*coshgli**2*deltay**2

cstb=coshgl*deltay**2-+2.0*g(4)*coshg2*deltay-4.0*g(4)*coshgl*d
eltay-+2.0*g(4)*deltay +g(8)

ng(8)=cst5+cst4+cst3

ng(9)=0.5*coshgl*sinhgl*size-0.5%coshgl*deltay**2*sinhgl-1.0*g
(4)*deltay*sinhgl+g(9)

cst6=—-g(4)*sinhgl*sinhg2*size+g(5)*coshgl*sinhg2*size+g(4)*sin
hg1**2*size+g(2)*sinhgl**2*size-g(5)*coshg2*sinhgl *size

cst7==-2.0*%g(5)*coshgl*sinhg1*size+g(3)*coshgl*sinhgi*size+g(5)
*sinhgl*size-g(4)*coshgl*coshg2*size+2.0%g{4)*coshgl**2*siz
e

cst8=-g(4)*coshgl*size+g(4)*deltay**2*sinhgl *sinhg2-g(5)*coshg
1*deltay**2*sinhg2-deltay*sinhg2-g(4)*deltay**2*sinhg1**2

cst9=-g(2)*deltay **2*sinhgl**2+-g(5)*coshg2*deltay**2*sinhg1+2.
0*g(5)*coshgi*deltay **2*sinhgl-g(3)*coshgl*deltay**2*sinhg1
-g(5)*deltay**2*sinhg1

cst10==2.0%g(2)*g(5)*deltay *sinhg1-g(3)*g(4)*deltay*sinhgl+delt
ay*sinhgl-+g(4)*coshgl*coshg2*deltay**2-2.0*%g(4)*coshg1**2*d
eltay**2

cst11==g(4)*coshgl1*deltay**2-+g(4)**2*coshg2*deltay+g(3)*g(5)*co
shgl*deltay-2.0*g(4)**2*coshgl*deltay +-g(4)**2*deltay

ng(10)=cst9+cst8+cst7+cst6+cst11+-cst104-g(10)

do 105 i=1,10,1

g(i)=ng(i)

continue

XOxIx=X0fx(g)
X1xfx==x1x(g)
x2xIx=x2fx(g)
x3xfx==x31x(g)
x4xIx=—x4x(g)
sinhgl=sinh(1.0*g(1))
sinhg2==sinh(2.0*g(1))
sinhg3=sinh(3.0*g(1))
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coshgl=cosh(1.0*g(1))
coshg3=cosh(3.0*g(1))
coshg2=cosh(2.0*g(1))
€st12=-0.25%coshg1**2*sinhg3*x3xfx /sinhg1**2-0.083333333333333
33*sinhg3*x3xfx-0.75*sinhg1*x3xfx+0.25%coshg1*coshg3*x3xfx/
sinhgl+1.5%coshgl**2*x3xfx/sinhgl
cst13==-coshgl1*x3xfx/sinhg1+0.08333333333333333*coshgl**3*coshg
3*x38xfx/sinhgl**3-0.75*%coshgl**4*x3xfx /sinhgl**3+0.66666666
66666667 *coshg1**3*x3x{x/sinhgl**3-0.5*g(5)*coshgl*sinhg3*x
2xfx /sinhgl**2
cst14==0.5*coshg1*sinhg3*x2xfx/sinhg1**2-g(6)*coshgl *sinhg2*x2x
fx/sinhgl-g(2)*coshg*sinhg2*x2xfx /sinhg1+0.5%g(3)*coshgl**
2*sinhg2*x2xfx /sinhg1**2+0.5%g(3)*sinhg2*x2xx
€st15=0.25*g(5)*coshg3*x2xfx/sinhg1-0.25%coshg3*x2xfx /sinhgl-g
(3)*coshgl*coshg2*x2xfx /sinhgl+2.25%g(5)*coshgl*x2xfx/sinhg
1-2.25*%coshgl*x2xfx/sinhgl
cst16=-g(5)*x2xfx/sinhgl+x2xfx/sinhg1+0.5%g(6)*coshgl**2*coshg
2*x2xfx /sinhgl ¥*2-4-0.5%g(2)*coshgl1¥*2*coshg 2*x2xfx /sinhg1**2
+0.5%g(6)*coshg1 **2*x2xfx /sinhgl1**2
cst17=-0.5%g(2)*coshgl**2*x2x{x/sinhg1**2+0.25*g(5)*coshg1**2*
coshg3*x2xfx/sinhg1**3-0.25*%coshgl **2*coshg3*x2xfx /sinhg1**
3-2.25%g(5)*coshg1*¥*3*x2xfx /sinhg1**3+2 25%coshg1**3*x2xx/
sinhg1**3
cSt18==2.0*g(5)*coshg1 **2*x2xfx /sinhg1**3-2.0*%coshg1 **2*x2xfx /s
inhg1**34-0.5%g(6)*coshg2*x2xfx-+0.5*g(2)*coshg2*x2x{x-0.5*g(
6)*x2xfx
cst19==0.5%g(2)*x2xfx+0.5*coshgl*sinhg3*x1xfx /sinhg1-0.25%g(5)*
*2%sinhg3*x1xfx /sinhgl**2+40.6%g(5)*sinhg3*x1xfx /sinhg1**2-0
.25*sinhg3*x1xfx/sinhg1**2
cst20=-g(5)*g(6)*sinhg2*x1xfx/sinhgl+g(6)*sinhg2*x1xfx/sinhgi-
g(2)*g(5)*sinhg2*x1xfx/sinhgl+g(2)*sinhg2*x1xfx /sinhgl-+g(3)
*g(5)*coshgl*sinhg2*x1xfx/sinhgl**2
cst21==-g(3)*coshgl*sinhg2*x1xfx /sinhgl**2+4g(8)*sinhg1*x1xfx-2.
O*g(4)*g(6)*sinhg1*x1xfx-g(3)*g(5)*coshg2*x1xfx/sinhgl-+g(3)
*coshg2*x1xfx/sinhgl
cst22=-g(8)*coshg1 **2*x1xfx /sinhg1+42.0*g(4)*g(6)*coshgl **2*x1x
fx/sinhg1+0.75*g(5)**2*x1xfx /sinhgl-1.5%g(5)*x1xfx /sinhgl+0
L75*x1xfx/sinhgl
€st23==-0.25*coshg1**2*coshg3*x1xfx/sinhg1**2+g(5)*g(6)*coshgl*
coshg2*x1xfx/sinhgl**2-g(6)*coshgl*coshg2*x1xfx/sinhgl**2+-¢g
(2)*g(5)*coshgl*coshg2*x1xfx /sinhgl**2-g(2)*coshgl*coshg2*x
1xfX/sinhgl1**2
cs5t24==2.25*%coshg1**3*x1xfx/sinhg1**2-2.0*coshg1**2*x1x{x/sinhg
1%%24+g(5)*g(6)*coshgl *x1xfx /sinhg1**2-g(6)*coshgl *x 1xfx /sin
hg1**2-g(2)*g(5)*coshg1 *x1xfx/sinhgl**2
cst25=g(2)*coshg1*x1xfx /sinhgl**2+40.25*g(5)**2*coshgl*coshg3*x
1xfx/sinhg1%*3-0.6*g(5)*coshgl *coshg3*x1xIx /sinhgl**3-+0.25%
coshgl*coshg3*x1xXfx/sinhgl**3-2,25%g(5)**2*coshg1 **2*x1xfx/
sinhgl1**3
cst26=4.5*g(5)*coshg1**2*x1xfx/sinhg1*%3-2.25%coshg1 **2*x1xx /
sinhg1**3+2.0*g(5)**2*coshg1*x1xfx/sinhg1**3-4.0*g(5)*coshg
1*x1xfx/sinhg1**34-2.0%coshgl*x1xfx /sinhg1**3
cst27=-0.25*coshg3*xX1XIxX-2.25*coshg 1 *X1XIX+X1xX+0.25*g(56)*sin
hg3*x0xfx/sinhg1-0.25%sinhg3*x0xfx/sinhgl
cs5t28==-0.5*%g(3)*coshg1*sinhg2*x0xx/sinhg1+40.5%g(3)*g(5)**2*si
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nhg2*x0xfx/sinhg1**2-g(3)*g(5)*sinhg2*x0xfx /sinhg1**2+4-0.65*g
(3)*sinhg2*x0xfx /sinhg1**2+0.6*g(6)*sinhg2*x0xfx
€st29=0.5*%g(2)*sinhg2*x0xfx-0.5*g(6)}*coshgl*coshg2*x0xfx /sinhg
1-0.5*g(2)*coshgl *coshg2*x0xfx /sinhg1-g(5)*g(8)*coshg1*x0xf
x/sinhgl+g(8)*coshgl*x0xfx/sinhgl
cst30=2.0*g(4)*g(5)*g(6)*coshg1*x0xfx/sinhg1-2.0*g(4)*g(6)*cos
hg1*x0xfx/sinhg1-0.5%g(6)*coshgl*x0xfx/sinhgl1+0.5%g(2)*cosh
g1*x0xfx /sinhg1-0.25%g(5)*coshgl*coshg3*x0xfx /sinhgl1**2
¢st31=0.25*coshg1*coshg3*x0xfx/sinhg1**2+4-0.5%g(5)**2*g(6)*cosh
g2*X0xfx /sinhgl **2-g(5)*g(6)*coshg2*x0xfx /sinhg1**240.5*g(6
Y*coshg2*x0xfx/sinhgl**2+-0.5*g(2)*g(5)**2*coshg2*x0xfx /sinh
gl**z
cst32=-g(2)*g(5)*coshg2*x0xfx/sinhg1**2+0.5*g(2)*coshg2*x0xfx/
sinhg1**2+4-2 25%g(5)*coshgl **2*x0xfx /sinhg1**2-2 25*coshg1**
2*x0xfx/sinhgl **2-2.0*g(5)*coshg1*x0xfx /sinhg1**2
cst33=2.0*coshg1*x0xfx/sinhgl**2+40.5%g(5)**2*g(6)*x0xfx/sinhgl
**2-g(5)*%g(6)*x0xfx/sinhg 1 ¥*2-+0.5*g(6)*x0xfx /sinhg1**2-0.5%
g£(2)*g(5)**2*x0x{x /sinhg1%%2
cst34==g(2)*g(5)*x0xfx/sinhgl **2-0.5%g(2)*x0xfx /sinhg1**2+40.083
33333333333333*g(5)**3*coshg3*x0xIxX/sinhg1*%3-0.25%g(5)**2*
coshg3*x0xfx/sinhgl**3+0.25%g(5)*coshg3*x0xfx/sinhg1**3
cst35==-0.08333333333333333*coshg3*x0xfx/sinhg1**3-0.75%g(5)**3
*coshg1*x0xfx /sinhgl**3+4-2.25%g(5)**2*coshg1*x0xfx /sinhg1 **3
-2.25*%g(5)*coshg1*x0xfx/sinhg1**3+0.75*%coshgl *x0xfx/sinhg1*
*3
cst36=0.6666666666666667*g(5)**3*x0xfX /sinhg1**3-2.0*g(5)**2*x
Oxfx/sinhgl**3+42.0*g(5)*x0x{X /sinhg1**3-0.6666666666666667 *
x0xfx/sinhgl**3+0.5*%g(3)*coshg2*x0xfx
¢st37=g(10)*x0xfx-g(4)*g(8)*x0xIx+g(7 ) *xOxfx+g(4)**2*g(6)*x0xf
X-0.75%g(5)*xx0xx
ul=-0.5*g(3)*x0x{x+0.75*x0x{x+cst37+cst36-+cst35+cst34+cst33+-cs
t32+c5t31+cst30-+-cst29+cst28+-¢cst27 +-cst26+-cst25+¢cst24+cst23+-¢
5t22+cst21+4-¢cst20+cst19+cst18+cst174-cst16+cst15+-cst14+cst13+
cstl2

€st38==-0.25*coshg1**2*sinhg3*x4xfx /sinhg1**2-0.083333333333333
33*sinhg3*x4xfx-0.75*sinhg1*x4xfx+0.25*coshg1*coshg3*x4xfx/
sinhgl+1.5*coshgl**2*x4xfx/sinhgl

cst39=—=-coshgl*x4xfx/sinhg1+0.08333333333333333*coshgl**3*coshg
3*x4xfx /sinhgl**3-0.75*coshgl**4*x4xfx /sinhg1**3+0.66666666
66666667 *coshgl**3*x4xfx/sinhgl**3-0.5%g(5)*coshgl*sinhg3*x
3xfx/sinhg1**2

cst40=0.5*coshg1*sinhg3*x3xfx /sinhgi**2-g(6)*coshgl*sinhg2*x3x
fx/sinhgl-g(2)*coshgl*sinhg2*x3xfx /sinhg1+0.5*g(3)*coshgl1**
2*sinhg2*x3xfx/sinhg1**2+0.5*g(3)*sinhg2*x3xfx

cst41=0.25%g(5)*coshg3*x3xfx/sinhg1-0.25*coshg3*x3xfx/sinhgl-g
(3)*coshgl*coshg2*x3xfx/sinhgl+2.25%g(5)*coshg1*x3xfx/sinhg
1-2.25*coshgl*x3xfx/sinhgl

cst42=-g(5)*x3xfx /sinhgl+x3xfx /sinhgl+0.5%g(6*coshg1**2*coshg
2*x3xfx/sinhgl**2-+0.6%g(2)*coshg1**2*coshg2*x3xfx /sinhg1%*2
+0.5%g(6)*coshg1**2*x3xfx /sinhgl**2

c5143=—=-0.5%g(2)*coshg1 **2*x3xx /sinhg1**2+0.25*g(5)*coshg1**2*
coO~hg3*X3XIX/sinhg1**3-0.25*coshgl **2%coshg3*x3xfx /sinhg1**
3-2 25%g(5)*coshg1**3*x3xIx /sinhg1**3+2.25*coshgl **3*x3xIx /
sinhgl*%3
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cst44=2.0*g(5)*coshg1**2#x3xx /sinhg1**3-2.0*coshgl**2*x3xIx/s
inhg1**3+4-0.5%g(6)*coshg2*x3xfx+0.5*%g(2)*coshg2*x3xx-0.6*g(
6)*x3xfx
€s5t45=0.5*g(2)*x3xfx+0.5*coshg1*sinhg3*x2xfx /sinhg1-0.25*%g(5)*
*2%sinhg3*x2xfx/sinhg1**2+0.5*g(5)*sinhg3*x2xfx /sinhg1%*2-0
.25*sinhg3*x2xfx/sinhgl**2
cst46=-g(5)*g(6)*sinhg2*x2xfx/sinhgl-+g(6)*sinhg2*x2xfx /sinhg1-
g(2)*g(5)*sinhg2*x2xfx /sinhgl+g(2)*sinhg2*x2xfx/sinhg1+g(3)
*g(5)*coshgl*sinhg2*x2xfx /sinhgl**2
cst47=-g(3)*coshgl*sinhg2*x2xfx/sinhgl**2+g(8)*sinhg1 *x2xfx-2.
O*g(4)*g(6)*sinhgl*x2xx-g(3)*g(5)*coshg2*x2xfx/sinhg1+g(3)
*coshg2*x2xfx/sinhgl
cst48=-g(8)*coshg1**2*x2xfx /sinhgl+2.0*g(4)*g(6)*coshgl ¥*2*x2x
fx/sinhg1+0.76%g(5)**2*x2xfx /sinhgl-1.5%g(5)*x2xfx /sinhg1+4-0
.75%x2xfx /sinhgl
cst49==-0.25*coshgl**2*coshg3*x2x{x/sinhg1**2+g(5)*g(6)*coshgl*
coshg2*x2xfx/sinhg1**2-g(6)*coshgl*coshg2*x2xfx/sinhg1**2+¢g
(2)*g(5)*coshgl*coshg2*x2xfx/sinhgl**2-g(2)*coshgl*coshg2*x
2xfx/sinhg1**2
cst50==2.25*%coshg1**3*x2xfx /sinhg1**2-2.0*coshg1**2*x2xfx /sinhg
1*%*24g(5)*g(6)*coshgl*x2xfx /sinhg 1 **2-g(6)*coshg1 *x2xfx /sin
hg1#**2-g(2)*g(5)*coshgl*x2xfx /sinhgl**2
cst51==g(2)*coshg1*x2xfx /sinhg1**2+40.25%g(5)**2*coshg1*coshg3*x
2xfx/sinhgl1**3-0.5%g(5)*coshgl*coshgd3*x2xfx /sinhg1**3+0.25%
coshgl*coshg3*x2xfx/sinhgl**3-2,25%g(5)**2*coshg 1 ¥*2*x2xfx/
sinhg1**3
cst52==4.5*g(5)*coshg1**2*x2xfx /sinhg1**3-2.25*coshg1 **2*x2xfx/
sinhg1**342.0*g(5)**2*coshgl *x2xfx /sinhgl**3-4.0*%g(5)*coshg
1*x2xfx/sinhgl**3+42.0*coshg1*x2xfx /sinhgl1**3
cst58=-0.25*coshg3*x2xfx-2.25%coshgl *x2xfx+x2xfx+0.25*g(5)*sin
hg3*x1xfx/sinhgl-0.25*sinhg3*x1xfx/sinhgl
cst54=-0.5%g(3)*coshgl*sinhg2*x1xfx/sinhgl+0.5%g(3)*g(5)**2*s}
nhg2*x1xfx/sinhg1**2-g(3)*g(5)*sinhg2*x1xfx/sinhg1**2+40.5%g
(3)*sinhg2*x1xfx/sinhgl **24-0.5*g(6)*sinhg2*x1xfx
cst55=0.5*g(2)*sinhg2*x1x1x-0.5*g(6)*coshgl *coshg2*x1xfx/sinhg
1-0.5*%g(2)*coshgl*coshg2*x1xfx/sinhgl-g(5)*g(8)*coshg1*x1ixf
x/sinhgl+g(8)*coshgl *x1xfx/sinhg1
cst56=2.0*g(4)*g(5)*g(6)*coshg1*x1xfx/sinhg1-2.0%g(4)*g(6)*cos
hg1*x1xfx/sinhgl-0.5%g(6)*coshg1*x1xfx/sinhg1+0.5%g(2)*cosh
g1*x1xfx/sinhgl-0.25*g(5)*coshgl*coshg3*x1xfx /sinhgl**2
cst57=0.25*coshgl*coshg3*x1xIx/sinhgl1**2+0.5%g(5)**2*g(6)*cosh
g2*x1xfx/sinhg1**2-g(5)*g(6)*coshg2*x1xfx /sinhg1**2-+0.5%g(6
Y*coshg2*x1xfx/sinhgl**2+0.5%g(2)*g(5)**2*coshg2*x1xfx/sinh
gl**z
cst58=-g(2)*g(5)*coshg2*x1xfx/sinhg1**2+0.5*g(2)*coshg2*x1xfx/
sinhg1**242.25%g(5)*coshgl **2*x1xfx/sinhg1**2-2.25%coshg1**
2%x1xfX /sinhgl**2-2.0*g(5)*coshg1 *x1xfx/sinhgi**2
cst59=—2.0*coshg1*x1xx /sinhgl**2+4-0.6*g(5)**2*g(6)*x1xfx/sinhgl
*%2-g(5)*g(6)*x1x{xX/sinhg1**2+0.5*g(6)*x1xfx /sinhg1**2-0.5%
g(2)*g(5)**2*x1xfx/sinhg1**2 :
cst60=g(2)*g(5)*x1xfx/sinhg1**2-0.5*g(2)*x1xfx/sinhg1*%2+40.083
33333:2.1.3333333%g(5)**3*coshg3*x1xfx/sinhg1**3-0.25%g(5)**2*
coshgi* X IXIX/sinhgl1**3+0.25*g(5)*coshg3*x1xfx/sinhg1**3
cstB1=-0.0x333333333333333*coshg3*x1xfx/sinhgl **3-0.75%g(5)**3
*coshy | *x1xfx/sinhg1**3-1-2 25%g(5)**2*coshg1*x1xfx/sinhg1**3
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2 -2.25%g(5)*coshgl*x1xfx/sinhg1**34-0.76*coshgl *x1xfx/sinhg1*
3 *3
cst62=0.6666666666666667*g(5)**3*x1xx /sinhg1**3-2,0%g(5)**2*x
1 1xXfx/sinhg1**3+42.0%g(5)*x1xfx/sinhgl1**3-0.6666666666666667 *
2 x1xfx/sinhg1**3+4-0.6*g(3)*coshg2*x1xfx
cst63=g(10)*x1xIx-g(4)*g(8)*X1xIX+g(7)*x1xIx+g(4)**2*g(6)*x1xf
1 x-0.75%g(5)*x1xIx
ulx==-0.5%g(3)*x1xfx+0.75*X1xfXx+c5t63+Cc6t62+c5t614-cst60+cst59+¢
1 st58-+cstH74cst56+cst55+cst54+cst53+cst524-¢cstb514-cst504-cst49+
2 cst48+cst47+cst464-cst45+-cst44+cst43+4-cst424-cst41+-¢cst40+-cst39
3 +cst38
estim(j)=(ulx-ul*x1xfx/x0x{x)/X0xIX-+x1xfx/X0xfx
var(j)=(xinput(j)-estim(j))**2+var(j)
k=}
J=}+1
go to 110
continue
continue

do 400 i=1,4000,1
var(i)==var(i)/300.0
y==l*size

print*,y,var(i)

continue

stop
end

real function x0fx(g)
real g(1)
x0fx=1/sqrt(cosh{g(1)))
return

end

real function x1fx(g)

real g(1)
x1Ix=(1-g(5))*cosh(g(1))**((-3.0)/2.0)
return

end

real function x2rx(g)
real g(1)
x2fx—cosh(g(1))**((-5.0)/2.0)*(cosh(g(1))*sinh(g(1))+&(5)**2-2*(5

1

)+1)

return
end

real function x3x(g)
real g(1)
x3fx==(1-g(5))*cosh(g(1))**((-7.0)/2.0)*(3*cosh(g(1))*sinh(g(1))+&(

1

5)**2-2%g(5)+1)

return
end

real function x4fx(g)
real g(1)



x4fx=cosh(g(1))**((-9.0)/2.0)*(3*cosh(g(1))**2*sinh(g(1))**2-+6*g(5
1 )**2*cosh(g(1))*sinh(g(1))-12*g(5)*cosh(g(1))*sinh(g(1))+6*cosh
2 (g(1))*sinh(g(1))+g(5)**4-4%g(5)**3+6*g(5)**2-4*g(5)+1)
return

end

subroutine nexty(xinput,observ,e,size,j,k)

real xinput(1), observ(1), e, size

integer §, k

xinput({j)==grand(0)*sqrt(size)+xinput(k)
observ(j)=(e*xinput(j)**2+xinput(j))*size+grand(0)*sqrt(size)+obse
1 rv(k)

return

end



