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Aircraft aging has become an immense challenge in terms of ensuring the safety of 

the fleet while controlling life cycle costs.  One of the major concerns in aircraft 

structures is the development of fatigue cracks in the fastener holes.  A probabilistic-

based method has been proposed to manage this problem.  In this research, the Bayes’ 

theorem is used to assess airframe integrity by updating generic data with airframe 

inspection data while such data are compiled.  This research discusses the 

methodology developed for assessment of loss of airframe integrity due to fatigue 

cracking in the fastener holes of an aging platform.  The methodology requires a 

probability density function (pdf) at the end of SAFE life. Subsequently, a crack 

growth regime begins.  As the Bayesian analysis requires information of a prior initial 

crack size pdf, such a pdf is assumed and verified to be lognormally distributed.  The 

prior distribution of crack size as cracks grow is modeled through a combined Inverse 

Power Law (IPL) model and lognormal relationships.  The first set of inspections is 



used as the evidence for updating the crack size distribution at the various stages of 

aircraft life.  Moreover, the materials used in the structural part of the aircrafts have 

variations in their properties due to their calibration errors and machine alignment.  A 

Matlab routine (PCGROW) is developed to calculate the crack distribution growth 

through three different crack growth models.  As the first step, the material properties 

and the initial crack size are sampled. A standard Monte Carlo simulation is 

employed for this sampling process.  At the corresponding aircraft age, the crack 

observed during the inspections, is used to update the crack size distribution and 

proceed in time.  After the updating, it is possible to estimate the probability of 

structural failure as a function of flight hours for a given aircraft in the future.  The 

results show very accurate and useful values related to the reliability and integrity of 

airframes in aging aircrafts.  Inspection data shown in this dissertation are not the 

actual data from known aircrafts and are only used to demonstrate the methodologies. 
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Chapter 1 Introduction 

The word fatigue originated from the Latin expression “fatigare”, which 

means “to tire” [1].  Although commonly associated with physical and mental 

weariness in people, the word fatigue also became a widely accepted term in 

engineering vocabulary when referring to the damage and failure of materials under 

cyclic loads. From an engineering perspective, the American Society of Testing 

Material (ASTM) defines fatigue as: “the process of progressive localized permanent 

structural change occurring in a material subjected to conditions which produce 

fluctuating stresses and strains at some point or points and which may culminate in 

cracks or complete fracture after a sufficient number of fluctuations” [2]. 

The design of many structures in aeronautical engineering (aircraft structures), 

mechanical engineering (pressure vessels, piping, etc.), and civil engineering 

(bridges, offshore structures, nuclear power plants, etc.) include provisions to prevent 

fatigue related failures.  At the same time, the prediction of fatigue related failures is 

still an active subject of research, which can help design, and maintain these 

structures.  In relation with aircraft structures (which is the focus of this research), 

fatigue still plays an important role in aging aircrafts, (that is those over 15 years old.)  

Many of these aircrafts have accumulated flight hours approaching and in many cases 

exceeding the original design.  The statistics show that the number of aging 

commercial aircrafts (older than 15 years) has increased continuously.  This number 

was around 4600 in 1997 for US and European built civil aircrafts flown with more 

than 1900 aircrafts older than 25 years.  This number increased to 4730 (>15 years) 

and 2130 (>25 years) respectively in 1999 [3].  The same can be seen with military 
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aircraft, where an increasing number of aircrafts (e.g. F-14, T-38, MiG21) now 

exceed their anticipated life of 40 years.  Looking at ongoing mid-life updates of 

fighter airplanes, service lives of 50 years and more are not exceptional.  Even in the 

civil aircraft world nearly half of the whole DC-8 fleet is still flying [4].  

1.1 Historical background 

 Fatigue has been recognized as an important failure mode in the aircraft 

industry from the very beginning. Even before the Wright brother’s first flight in 

1903, a fatigue failure in an engine shaft delayed the first flight attempt while a new 

shaft was manufactured.  In the succeeding century, fatigue failures have been 

brought under control to the extent that fatal accidents resulting from failure of the 

aircraft structure occur approximately once every 100 million flights [3].  This low 

rate arises not only from technologies, which have eliminated fatigue; but also from 

acknowledging that fatigue damage is inevitable, that aircraft structures contain flaws, 

and that most accurately calculated lives may be uncertain.  

 Despite the growth in air transport passenger hours of about 6% per year, civil 

aircraft accident numbers have remained roughly constant over the past 20 years 

between 20-30 per year worldwide [5].  As the number of flights has increased, the 

number of fatal accidents per flight has reduced in the same period, from 1 in every 

10 million flights in 1980 to about 1 in every 30 million flights today.  Figure 1.1 

shows a considerable year-to-year variation in the fatal accident rate.  It also shows 

that the trend is generally downward.  
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Figure 1.1  World fatal accident numbers and fatal accident rates 1978 -98.  Large 

Civil Jet Transport aircraft Data [4]. 

 

1.2 Technical Background 

 Fatigue of materials is still only partly understood. The available knowledge 

has been developed in stages and has become quite complex.  Consider the following 

brief historical review of fatigue developments which demonstrate a few basic 

concepts and briefly indicates their development. 

1.2.1 Stresses 

 The first major impact of failures due to repeated stresses affected the 

railway industry in the 1840s.  Consequently, in Germany during the 1850s and 

1860s, August Wohler performed many laboratory fatigue tests under repeated 

stresses.  These experiments were concerned with railway axle failures and are 
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considered to be the first systematic investigation of fatigue.  Thus, Wohler has been 

called the "father" of systematic fatigue testing. He also introduced the concept of the 

S-N diagram and the fatigue limit, and pointed out that the range of stresses is more 

important than the maximum stress [6].  During the 1870s and 1890s additional 

researchers substantiated and expanded Wohler's classical work. Gerber [2], along 

with others, investigated the influence of mean stress.  In addition, Goodman [2] 

proposed a simplified theory concerning mean stresses. 

1.2.2 Crack Size 

 In 1920 Griffith [7] published the results of his theoretical calculations 

and experiments on brittle fracture using glass. He found the strength of glass 

depended on the size of microscopic cracks.  He showed that if S is the nominal stress 

at fracture and a is the crack size at fracture, the relation s a is constant. For this 

classical pioneering work on the importance of cracks, Griffith is known as the 

"father" of fracture mechanics. 

1.2.3 Tensile Strength 

 In 1929-30 Haigh [8] presented his rational explanation of the 

difference in the response of high tensile strength steel and of mild steel to fatigue 

when notches are present. He used concepts of notch strain analysis and self-stresses 

that were later more fully developed by others.  In 1937, Neuber introduced stress 

gradient effects at notches and the elementary block concept, which considers that the 

average stress over a small volume at the root of the notch is more important than the 

peak stress at the notch. 
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1.2.4 Fatigue 

 During World War II the deliberate use of compressive self-stresses 

became common in the design of aircraft engines and armored vehicles.  Many brittle 

fractures in welded tankers and in Liberty ships motivated substantial efforts and 

thinking concerning preexisting defects in the form of cracks and the influence of 

stress concentrations.  Many of these brittle fractures started at square hatch corners 

or square cutouts and welds.  Solutions included rounding and strengthening corners, 

adding riveted crack arresters, and greater emphasis on material properties.  In 1945 

Miner [9] formulated a linear cumulative fatigue damage criterion suggested by 

Palmgren [10] in 1924.  This linear fatigue damage criterion is now recognized as the 

Palmgren-Miner rule.  It has been used extensively in fatigue design and, despite its 

many shortcomings, still remains an important tool in fatigue life predictions. 

1.2.5 Fatigue in the Aerospace Industry 

 The Comet, the first jet propelled passenger airplane, started service in 

May 1952 after more than 300 hours of flight tests.  Four days after an inspection in 

January 1954 it crashed into the Mediterranean Sea.  After much of the wreckage had 

been recovered from the bottom of the sea and exhaustive investigation and tests on 

components of Comet aircraft was made, it was concluded that the accident was 

caused by fatigue failure of the pressurized cabin.  The small fatigue cracks originated 

from a corner of an opening in the fuselage.  

Two Comet aircrafts failed catastrophically.  Probably the first 30 high load 

levels induced sufficient self (residual) stresses in the test section so as to falsely 
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enhance the fatigue life of the test component and provide overconfidence.  As a 

result, all Comet aircrafts of this type were taken out of service 

The fatigue induced failures in the Comet aircrafts significantly increased the 

attention in preventing this type of failure mode.  For example, Irwin [11] introduced 

the stress intensity factor KI, which has been accepted as the basis of linear elastic 

fracture mechanics (LEFM) and of fatigue crack growth life predictions. 

 Subsequently, in the early 1960s low cycle strain-controlled fatigue behavior 

became prominent with the Manson-Coffin [12,13] relationship between plastic strain 

amplitude and fatigue life.  These ideas are the basis for current notch strain fatigue 

analysis.  Also in the early 1960’s Paris [14] showed that fatigue crack growth rate 

da/dN could best be described using the stress intensity factor range ∆KI. In the late 

1960s the catastrophic crashes of F-111 aircrafts were attributed to brittle fracture of 

members containing preexisting flaws.  These failures, along with fatigue problems in 

other U.S. Air Force planes, laid the groundwork for the requirements to use fracture 

mechanics concepts in the B-1 bomber development program of the 1970s.  This 

program included fatigue crack growth life considerations based on a pre-established 

detectable initial crack size.  In July 1974 the U.S. Air Force issued Mil A-83444, 

defining damage tolerance requirements for the design of new military aircrafts.  At 

this point, the use of fracture mechanics as a tool for fatigue was thus thoroughly 

established through practice and through regulations. 

 The aftermath of the 1988 Aloha Airlines flight 243 incidents, in which a 

portion of the passenger compartments disintegrated during a short flight, forced the 
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aerospace community to reexamining the procedure developed to ensure the structural 

integrity of aircraft for civilians and military aircrafts.  The committee that 

investigated the Aloha airlines incident attributed the failure to the sudden linking of 

multiple undetected cracks at and around rivet holes in the metallic panels comprising 

the skin of the pressurized fuselage.  This in-service incident unveiled the potential 

threat to airframe structural integrity caused by the interaction and uncontrolled 

linkup of seemingly small and often undetectable cracks in riveted primary structure 

[15].  This type of fatigue damage, often referred to as widespread fatigue damage 

(WFD), is characteristic of the large population of aging aircraft. Figure 1.2 shows an 

example of fatigue crack in a fuselage splice joint of a transport aircraft. 

Figure 1.2  Crack on the skin fillet at the wing root of a F-100 aircraft [16]. 

Aircraft structural engineers have used several methods to determine the life 

of aircraft. The following methods are the important ones: 
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1.2.5.1 Safe-Life method 

The safe-life method predicts a replacement time for aircraft 

components, usually specified as a number of allowable landings or flight 

hours. The replacement time based upon the time required for failure, 

which is obtained from component fatigue tests. In most cases, a 

component is designed so that the replacement time for that component 

exceeds the expected service life of the aircraft. Once a component 

reaches its replacement time, its safe-life is considered to be used up and it 

is retired, regardless of whether any fatigue cracks are present. Ideally, a 

component designed according to safe-life principles will be replaced 

before it develops a fatigue crack. There were, however, two significant 

problems inherent in this method [17]: 

• the safety of an aircraft was not protected if it contained a 

manufacturing or maintenance induced defect, and 

• retirement times were not related to statistically-based safety 

factors. To maximize safety, the selected safety factor had to be 

conservative. As a result, many components were prematurely 

retired. 

1.2.5.2 Fail-Safe method 

The fail-safe method to aircraft fatigue design was developed 

during the 1960s and implemented in a number of commercial aircraft 

[18]. The goal of the fail-safe philosophy is to design multiple load path 

structures, such that if an individual element should fail, the remaining 
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elements would have sufficient structural integrity to carry the additional 

loads from the failed element until the damage is detected through 

scheduled maintenance inspections.  In addition to multiple load path 

structures, crack stoppers are also commonly used in fail-safe designs. 

Crack stoppers, which typically consist of materials with high fracture 

toughness, are used to supplement the residual strength of surrounding 

structure and prevent cracks from propagating to failure [17].  An example 

of a crack stopper is a stringer in a pressurized fuselage. The stringer 

reduces the amount of energy available for crack growth, slowing or 

stopping the advance of a crack that crosses it. Ideally, an aircraft designed 

according to fail-safe principles can sustain damage and remain airworthy 

until the damage is detected and repaired.  This necessitates periodic 

inspections to examine the structure to determine if the primary load 

carrying member contains cracks.  The frequency of these inspections is 

typically assigned by the manufacturer based upon service experience.  A 

limitation of this method is that it does not consider the initiation and 

growth (linking up) of small cracks at fastener holes.  As a result, the loss 

of several “fail-safe” aircrafts in the mid-1970s emphasized the need to 

locate cracks and repair damage before failure occurred [19]. 

1.2.5.3 Damage-Tolerance Method 

Based upon fracture mechanics techniques, the damage tolerance 

approach redefined the basis for analyzing fatigue cracks in aircraft 

structures. With economic and safety advantages over the previous 
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methods, the damage-tolerance philosophy was eventually adopted by the 

commercial aircraft industry as well [20, 21].  The objective of the damage 

tolerance approach is to detect cracks in principal structural elements 

before they propagate to failure. A principal structural element (PSE) is 

defined as any aircraft structure carrying flight, ground, or pressurization 

loads, whose failure could result in the loss of the aircraft [17].  By 

establishing inspection intervals for these elements based upon the time it 

takes a crack to grow from an initial detectable size to the critical crack 

length, the objective of the damage-tolerance approach can be achieved. 

Unlike the safe-life approach where components are retired whether or not 

they are damaged, components are only replaced if a crack is found during 

an inspection.  It is important to note that, although the detectable crack 

size dictates the time between inspections to a certain degree, any size 

crack found during an inspection mandates replacement of the damaged 

component. 

A limitation of this method is lack of consideration of uncertainties. That 

is the developers of the damage tolerance requirements make deterministic 

rather than probabilistic assessment of, specific load numbers and the 

critical length of cracks [22].  Lately, some researchers have proposed an 

Initial Flaw Size Distribution, which is obtained from tests that determine 

the distribution of times it takes a crack of some initial size to reach a 

specified reference size [23]. 
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Furthermore, because of the inherent fatigue strength variability of materials as well 

as the statistical nature of the service loads experienced by the structures, the 

uncertainty consideration is essential to the fatigue life prediction.   

1.3 Objectives 

Based on the limitations mentioned above, the main objectives of this 

dissertation are:  

1. To review the probabilistic approaches to fatigue crack growth based on the 

concept of Linear Elastic Fracture Mechanics (LEFM). 

2. To assess the uncertainty about the crack size distribution through of the Bayesian 

approach, which provides a mechanism of updating one’s degree of belief about a 

proposition (e.g. crack size) in light of new evidence (e.g. inspection results).  

3. To estimate the probability of structural failure after a number of flight hours. 

4. To account for crack growth model uncertainty by considering three different 

models in order to give the decision makers more information to make a risk-

informed decision. 

5. To demonstrate the methodology on a specific aging aircraft fleet. 

 

1.4 Motivation 

 A recent survey of aircraft accidents in the UK showed that only 10% of 

recent accidents could be attributed to airworthiness causes [24].  However, there are 
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10 non-fatal accidents for every fatal one, and also there are many fatigue failures 

which do not result in serious accidents. This represents an economic problem rather 

than one with human dimension, because it is related to the cost of detection, repair 

and maintenance required in order to avoid that fatigue failures becoming fatal 

accidents.  

In this research, we are proposing a methodology that allows calculating either 

the probability of finding a crack of any size or the probability of airframe failure 

using a probabilistic approach.  Fundamentally, the proposed approach is to develop a 

crack size probability density function corresponding to the fixed time (cumulative 

damage state) of crack initiation.  Then the projection of crack size distribution for a 

specific aircraft at the present age of the aircraft is computed by a probabilistic crack 

growth analysis method in which loads are known by tracking the data and the crack 

growth start from the initial crack distribution.  Once the present crack size 

distribution for a specific aircraft is ascertained it is possible to compute reliability of 

some future flight regimes.  Such calculations are done based on probabilistic crack 

growth analysis, in which both material properties and load are random variables.  In 

essence, the key question is the reduction of the uncertainty of the initial crack size 

distribution.  A Bayesian approach using two different methods, based on conjugate 

and Markov Chain Monte Carlo (MCMC) simulation, is developed to take into 

consideration the findings that are to become available from an extensive fleet 

inspection program.   

 Moreover, this research assesses the uncertainty about the empirical fatigue 

crack growth models. This uncertainty including the scatters in the results using 
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different models, and the factors that affect the crack growth rate, justify the need for 

developing a tool that allows the users to manage the crack growth life prediction in 

aging aircraft. 

1.5 Contributions 

The specific contributions of this research are: 

• The development of a joint damage-life remaining distribution showing fatigue 

crack size distribution at different damage levels.  This distribution is applied to 

analyze the behavior of the fatigue crack growth under random loads and material 

variability. 

• The development of a method for characterizing crack growth deterministic 

models and their uncertainties.   

• Discussing options for Decision-making based on the crack growth model 

including uncertainties. 

1.6 Application 

 Application of the methodology developed in this dissertation is in terms of 

aircraft type, the analysis location, the aircraft material experiencing fatigue related 

failures, and the selected models for analysis.  The following subsections provide 

specific details on each of these areas. 

1.6.1 Aircraft 

 In this research, we will analyze the structural part of one military aircraft.  

This aircraft fleet is more than 15 years old, therefore it is considered aged. 
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1.6.2 Analysis Location 

 In spite of the fact that an aircraft has more that one critical location 

susceptible to fatigue failure, the analysis in this work was carried out in an area near 

the engine, which was identified as a “hot spot” by the results obtained during the 

inspections carried out over the screw and rivet holes. Figure 1.3 shows the layout of 

the area, and the location where the analysis was carried out.  

 

Screw 
hole

Rivet 
hole 

Figure 1.3  Layout of the part, and the location where the analysis was carried out. 

 
It is important to note that the developed methodology allows the estimation 

of fatigue life in different locations in the aircraft taking into consideration the 

geometry of the metallic structure, which defines the geometry factor used in the 

crack growth calculation. 
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1.6.3 Materials 

 The material of the structure under analysis is aluminum 7075-T6 (UNS 

A97075), which provides excellent strength-to-weight ratio and is one of the highest 

strength aluminum alloys available.  Its high strength sacrifices other important 

properties, such as formability. It can be formed in the annealed condition followed 

by heat treatment to give it specific mechanical properties. Its corrosion resistance is 

good, due to its copper contents. This material is typically used for highly stressed 

parts, especially in the aircraft and space industries [25]. 

1.6.4 Models 

 There is no a universal fatigue crack growth model. This statement is based on 

the fact that a relatively large number of models are found in the literature.  Most of 

these models were developed to account for the different factors affecting the crack 

growth rate.  Table 1.1 shows some of these models and the numbers of 

experimentally determined parameters involved in the calculation. Because we are 

treating these parameters as uncertain, the uncertainty of the output of models is 

greater as the number of parameters become large.  On the other hand, the models 

with greater number of parameters may yield more accurate results, because they are 

taking into account more factors that can affect the fatigue crack growth.  Therefore, 

the life estimation should be a tradeoff between precision and the uncertainty 

propagation due to the number of parameters involved in the model. 
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Table 1.1  Parameters of crack growth models. 

Paris 
model 

Forman 
model 

Walker 
model 

Generalized 
Willenborg model 

[26] 

Fastran 
model [27] 
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In this research, we analyze the fatigue cracks phenomenon using three 

models that have been extensively used in the literature. These models are: Forman, 

Walker and Crack Closure.  These models will be described in more details in 

Chapter 4. 

 

1.6.5 Structure 

 This dissertation is structured according to the diagram in Figure 1.4. This 

outline is consistent with the selected method of analysis.  

 Chapter 2 covers the technical description of fatigue and material properties of 

aluminum 7075-T6 (UNS A97075).  

 Chapter 3 describes the data collection process.  Specifically, the chapter 

explains how the load (stresses) for the analysis is collected, the definition of the 

Initial Crack Size (ICS) distribution, and how the evidence (inspections finding) data 

is collected.  
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The fatigue crack growth models are described in Chapter 4.  This includes the 

Forman, Walker and Closure crack growth models, and the fatigue life estimation and 

uncertainty propagation from the input variables using a Monte Carlo simulation.   

 Chapter 5 describes the probabilistic fatigue life model used to analyze the 

data and explains the probabilistic model parameter estimation of the fatigue life 

model using the Maximum Likelihood Estimator approach. A comparison of the 

values estimated is carried out using the MCMC and Genetic Algorithm methods. 

 Chapter 6 will cover the Bayesian updating process of the ICS distribution.  

Two different approaches are used, the first one based on the Conjugate Lognormal, 

and the second based on the Monte Carlo Markov Chain (MCMC).   

 Chapter 7 describes the analysis of the results and the strategies to follow in 

order to deal with the output from the three models used in the analysis.  

 Finally, Chapter 8 shows the conclusions and recommendations of the 

research. 
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Chapter 2
Technical description of fatigue 

crack growth / Material Properties

Chapter 3
Data Collection / Initial Crack Definition

Chapter 4
Fatigue Crack Growth Prediction / 

Uncertainty Propagation

Chapter 5
Parameter Estimation

Chapter 6
Updating Process – Bayesian 

Analysis

Chapter 7
Analysis of Results

Chapter 8
Conclusions/Recommendations
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Chapter 4
Fatigue Crack Growth Prediction / 

Uncertainty Propagation

Chapter 5
Parameter Estimation

Chapter 6
Updating Process – Bayesian 

Analysis
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Conclusions/Recommendations

Figure 1.4  Structure of the dissertation. 



19 
 

Chapter 2 Technical Description of Fatigue Crack 

Growth / Material Properties 

 

2.1 Fatigue Crack Growth Phenomenon 

 Fatigue is one of the most important phenomenon to take into account in 

engineering systems.  Fatigue is an important phenomenon, because it is related to the 

economy and the safety [28].  Economy, because the cost of high reliability structures 

are high and early removal from service is not economical, and safety, because the 

consequences of failure due to fatigue can be catastrophic. 

 Appreciation of the fatigue problem is peculiar from two different points of 

view. For instance, from the perspective of designers, their interest is to produce a 

structure with high fatigue resistance and low cost, therefore, they have to account for 

aspects such as cyclic stresses, material properties, surface roughness, etc.  On the 

other hand, from the users’ point of view, their interest is to use the items in a safe 

manner; therefore, they have to account for aspects such as the utilization of the 

structure, environment that may have been overlooked by the designer, etc. 

 For the users, it is important to have knowledge about the areas susceptible to 

crack, and how fast the crack grows in order to manage the life of the structure, 

therefore, maintenance, inspection and non-destructives techniques play a key role in 

the fatigue phenomenon.  Moreover, dealing with fatigue depends on the type of 

structure under analysis.  Schijve lists three examples (see Table 2.1) to illustrate this 

concept [28]: 
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Table 2.1  Typical cases of fatigue problems. 

Structure  
Automotive engine • Cracks should not occur. 

• “Infinite” life is a requirement. 
• Crack growth is not of interest. 
• The key factor is to design and to 

produce the structure free of crack 
nucleation. 

Nuclear pressure vessel • Crack growth should be considered, 
but must be very slow.  

• Crack growth is allowable. 
• Crack nucleation is of little interest. 
• Initial flaws and defects in a welded 

steel structure have to be expected. 
Aircraft • Crack nucleation and crack growth 

are significant. 
• “Finite” life has to be accepted. 

Figure 2.1 illustrates schematic curves for both finite and infinite life for 

different cases of crack nucleation and crack growth. In the cases starting from 

polished surfaces (no defects and inclusions), it is clear that most of the fatigue life is 

spent in the micro crack region.  The error of ignoring the remaining life is small. In 

these cases, it is considered that the fatigue damaging process is largely occurring in a 

very small volume of the material.  On the other hand, starting from defects, the total 

fatigue life is spent in the macro crack region, and bulk properties of material have to 

be considered. 
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Figure 2.1  Schematic curves for both finite and infinite life [28]. 

In this research, we will limit the scope by considering the prediction of 

fatigue properties for an aircraft structure starting from a defect under variable cyclic 

loading.  The fatigue life under cyclic loading consists of two phases, crack 

nucleation (crack initiation) followed by crack growth as is represented in the Figure 

2.2.  A problem involved in this definition is how to determine the transition between 

nucleation period and crack growth period (i.e., existence of a macro crack).  

According to the literature [29], there are several definitions trying to set this 

transition,  

1. A macro crack is one that is large enough to be seen by the naked eyes. 



22 
 

2. A crack is macro crack if it had sufficient depth (or length) to be sure that 

local condition, responsible for crack nucleation does not longer affect crack 

growth. 

3. A crack is a macro crack as soon as fracture mechanics are applicable. In 

other words, a crack is a macro crack as soon as the stress intensity factor, K

has a real meaning for describing its growth. 

Nucleation Microcrack
growth

Macrocrack
growth

Final 
failure

Nucleation period Crack growth period

Complete fatigue life (N)

Nucleation Microcrack
growth

Macrocrack
growth

Final 
failure

Nucleation period Crack growth period

Complete fatigue life (N)

 

Figure 2.2  Fatigue life [28]. 

Fatigue cracks generally start at the surface of the material.  Among the 

factors that may contribute are: high stress levels, surface roughness, and 

environmental effects.  All these aspects will promote crack nucleation at the surface.  

In addition, material structure and residual stresses may contribute.  However, they 

are not necessarily unfavorable for fatigue (e.g. shot peening) [28]. 

At stress levels near the fatigue limit, it may happen that only one crack has 

been nucleated.  Typically there is a weakest link in a material which may have as 

many as 1000 grains per mm2. This weak link is a highly local phenomenon in the 

nucleation period, while at higher stress level several weak links are ready to produce 

a crack.  Therefore, the fatigue phenomenon is still a local process for a long time, i.e. 

microcracks are present in a rather small volume of the material only. 
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Figure 2.3 shows the impact of surface roughness.  The quality of the surface 

finish has a large effect on the nucleation period, while the effect on the crack growth 

period is negligible.  Therefore, macrocrack growth is depending on bulk material 

properties, since it is no longer a localized phenomenon.  

Figure 2.3  Effect of surface finish on the pre-crack life and the crack propagation 

life of unnotched rotating beam specimens of 0.2%C steel (SAE 1020) [28]. 

It is important to note that crack nucleation is not always followed by crack 

propagation due to compressive stresses.  The environment affects crack propagation.  

The crack rate is slower under inert environment, and faster under aggressive 

environments, such as salt water. 

To overcome the above factors a practical approach is to correlate crack 

growth rates under similar conditions, which imply the same loading on the crack tip 

area, described by the stress intensity factor, and the same environment surrounding 

the crack tip. 

Figure 2.4 illustrates the approach followed in this research, which is based on 

the concept of fracture mechanic and linear elastic fracture mechanics (LEFM), where 
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the stress intensity factor, K, and the stress intensity factor range, ∆K, are the base of 

the calculations. 
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Figure 2.4  Approach followed in the research. 

2.2 Linear Elastic Fracture Mechanics 

The fracture mechanics concept has been used extensively in the aerospace, 

nuclear and ship industries. It uses the stress intensity factor, the strain energy release 

rate, and the J-integral.  Linear Elastic Fracture Mechanics (LEFM) assumes that the 

material is isotropic and linearly elastic. Based on this assumption, the stress field 

near the crack tip is calculated using the theory of elasticity. When the stresses near 

the crack tip exceed the material fracture toughness, the crack will grow [30].  In 
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LEFM, most formulas are derived for either plane stresses or plane strains, associated 

with the three basic modes of loadings on a cracked body. 

In the following sections, we will briefly discuss: stress intensity factor, 

plastic zone near the crack tip, and the fracture toughness. 

2.2.1 Stress Intensity Factor 

The stress intensity factor can be defined from the stress analysis of cracks.  

There are three modes in which a crack can extend.  Mode I, which is the most 

common in the fatigue field, is an opening or tensile mode, and   Modes II and III are 

the sliding and tearing modes, respectively.  In order to develop the stress intensity 

factor derivation, it is assumed that there is a crack in a linear elastic isotropic block 

subjected to Mode I loading.  Figure 2.5 shows the stress in the vicinity of this crack 

tip with coordinates r and θ.

Figure 2.5  Elastic stresses near the crack tip (r/a<<1) [2]. 

The stresses at any point near the crack tip can be derived through the use of 

mathematical theory of linear elasticity and the Westergaard stress function in 
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complex form [2].  It is important to notice that by definition, the normal and shear 

stresses in the z direction are zero for plane stress, while the normal and shear strains 

involving the z direction are zero for plane strain.  In polar coordinates, the equations 

around the crack tip are defined by, 
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where K is the stress intensity factor, and the polar coordinates r and θ. From this 

calculation, it is possible to prove that elastic normal and elastic shear stresses in the 

vicinity of the crack tip depend on r, θ, and K. Because the magnitudes of these 

stresses at a given point are dependent entirely on K, then K is called stress intensity 

factor.  When K is used without a mode subscript, it refers to mode I. 

 The elastic stress distribution in the y direction for θ =0 is shown in Figure 

2.5.  It can be seen that the stress at the crack tip approaches infinity as r approaches 

zero.  Therefore, a stress singularity exists at r = 0, and the elastic solution must be 

modified to account for crack tip plasticity.  However, if the plastic zone size ry at the 

crack tip is small in comparison to local geometry (ry/thickness and ry/a ≤0.1) little or 

not modifications to K is needed [2].  This last statement imposes an important 

restriction to the use of LEFM, which state that the plastic zone size at the crack tip 
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must be small relative to the geometrical dimensions of the structure.  However, a 

definite limiting condition for LEFM is that nominal stresses in the crack plane must 

be less than the yield strength. 

Finally, stress intensity factor for different geometries, configurations, and 

loadings is given by, 

aSK πβ= (2.2) 

where S is the far field stress, a is the crack size and β is the geometry factor.  The 

geometry factor is a dimensionless parameter that depends on the crack size and 

width of the piece.  The value of the β factor highly depends on the geometry of the 

structure.  For example, for a given geometry Figures 2.6 and 2.7 [31] show β along 

with its associated uncertainties. 
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Figure 2.6  β factor for the growth towards small rivet holes. 
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Figure 2.7  β factor for the growth from satellite rivet holes. 

 

2.2.2 Crack tip Plastic Zone Size 

The local plasticity at the crack tip is known to control both the crack growth 

and fracture.  From equation 2.1, it is possible to calculate the plastic zone size near 

the crack tip as a function of the stress intensity factor and the yield strength.  Figure 

2.8 shows the resultant monotonic plastic zone shape for mode I, using the von Mises 

criterion [2].  Figure 2.8 also illustrates that for plane stress conditions, the plastic 

zone is larger than the plane strain condition, because the value of σz have different 

values for plane stress and plane strain, which decreases the magnitude of two of the 

three principal shear stresses. 
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Figure 2.8  Plastic zone size at the tip of a through thickness crack [2]. 

The plastic zone is proportional to the square of the ratio of the stress intensity 

factor to the yield strength, and due to the relaxation of the stress field in the plastic 

zone, the actual plane stress plastic zone size is approximately twice this value.  

Moreover, the plane strain plastic zone size in the plane of the crack is generally 

taken as one-third the plane stress value.  Under monotonic loading, the plane stress 

plastic zone, 2ry, at the crack tip is given by [2], 
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and for plane strain, 
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 In the literature there are additional models for plastic zone size and shape that 

have been widely used [2]. 
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2.2.3 Fracture Toughness 

Fracture toughness is defined as the resistance of a material or structure from 

a grown crack. This definition can be mathematically expressed by the following 

expression:  

cCC πaSK β= (2.5) 

where KC is the fracture toughness, SC is the applied nominal stress at crack instability 

and ac is the crack length at instability. Fracture toughness depends on the material, 

temperature, strain rate, environment, thickness, and to a lesser extent, crack length 

[2].  Figure 2.9 shows the relationship between KC and thickness.  It is seen that thin 

parts have a high value of KC accompanied by appreciable slant fracture (plane 

stress).  As the thickness increase, the KC and percentage of slant fracture decreases 

(mixed mode).  For thick parts, essentially the entire fracture surface is flat and KC

approaches an asymptotic minimum value (Plane strain).  The minimum value of 

fracture toughness is known as plane strain fracture toughness, KIC. Further increase 

in thickness does not the decrease KIC value.  The subscript I is used, because the fact 

that these fractures occur almost entirely by mode I crack opening. 
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Figure 2.9  Effect of specimen thickness on fracture toughness [2]. 

If the fracture toughness is known for a given material and thickness, and the 

stress intensity factor is known for a given component and loading, it is possible to 

estimate a design criterion to prevent fracture. For the plane strain fracture toughness 

KIC to be a valid failure criterion, plane strain conditions must exist at the crack tip. 

This means, the material must be thick enough to ensure plane strain conditions.  It 

has been estimated empirically that for plane strain conditions the minimum material 

thickness B must be [32], 
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Using the LEFM concept, one can translate the information from the fatigue 

crack length and applied cycles to fatigue prediction.  Figure 2.10 shows an example 

of three crack length versus applied cycle curves for three identical test specimens, 
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which are subjected to different repeated stress levels.  All the specimens have the 

same initial crack size, and the minimum stress was zero.  It is clear that the higher 

the stress level, the shorter the fatigue life.  Consequently, we can say that total life to 

fracture depend on the initial crack size, the stress magnitude, and the final fracture 

resistance of the material.  However, this information is not applicable to fatigue 

prediction except under the exact same conditions used in obtaining the data [2].  

Therefore, through the LEFM concept, it is possible to obtain a sigmoidal curve, 

where the axes are the crack growth rate, da/dN, and the applied stress intensity factor 

range, ∆K. The stress ranges, ∆S, and crack size, a, are included in ∆K.

Figure 2.10  Fatigue crack length vs. applied cycles. Fracture is indicated by X [2]. 

Using the proper stress intensity factor for a given component and crack, 

integration of the sigmoidal sharpe curve can provide fatigue crack growth life for 

components subjected to different stress levels and different initial crack sizes.  The 

following section will cover the sigmoidal shape da/dN curve.  The initial crack size 

and the stress load will be covered in Chapter 3. 
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2.3 Sigmoidal Shape da/dN Curve 

The stress intensity factor was introduced in the early 1960s as the correlation 

between the crack growth rate, da/dN, and the stress intensity factor range, ∆K. Paris 

et al. published the results in terms of da/dN as a function of ∆K using a log-log scale, 

where it is possible to see a linear relationship between log(da/dN) and log(∆K). After 

the publication of the Paris et al. results, several crack growth test were carried out by 

other authors, obtaining the same trend, which led to the well-known Paris equation 

[14], 

mKC
N
a

∆=
d
d

(2.7) 

 
where C and m are experimentally estimated constants. At the same time, crack 

growth is subjected to physical laws [33].  In general terms, there is a crack driving 

force, which is associated with the stress intensity factor. The material response 

(da/dN) is characterized in equation 2.7, but the experimental constant C and m are 

not easily associated with physical properties of the material.  However, the crack 

growth rate obtained is representing the crack growth resistance of the material. 

Moreover, the results of crack growth test indicate systematic deviations of 

Equation 2.7 at relatively high and low stress intensity factor values, which led to the 

definition of three regions in the da/dN curve, see Figure 2.11. 
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Figure 2.11  Fatigue crack growth rate behavior [34]. 

Region I, depict low stress intensities, where the crack growth is associated 

with a threshold value, ∆Kth, which is in the range of 3 and 6 ksi- in , for aluminum 

alloys [35].  Below this value, crack growth occurs at a rate too slow to measure.  For 

example, the smallest measured rates are larger than approximately 10-8 in/cycle, 

which corresponds to the spacing between atoms in most metals.  Due to the 

sensitivity of ∆Kth to the environment and load history, it is recommended to carry out 

the fatigue tests under conditions that simulate the actual service conditions [36]. 

Region II also known as Paris regime, encompasses data where the rate of crack 

growth changes roughly linearly with a change in stress intensity fluctuation, i.e., 

exhibits a linear variation of log (da/dN) with log (∆K), and in region III the crack 
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growth rates are very high and little fatigue crack growth life is involved [2]. This 

region is controlled primarily by the fracture toughness KC (KIC). 

Table 2.2 summarizes the characteristics of crack growth in the three regions of stable 

fatigue fracture. 

 

Table 2.2 Characteristics of the three regimes of fatigue crack growth [2].  

Region I II III 

Terminology Slow-growth rate 
(near threshold) 

Mid-growth rate 
(Paris regime) High-growth rate 

Microscopic failure 
mode Stage I, single shear Stage II (striations) 

and duplex slip Additional static  

Fracture surface 
features Faceted or serrated Planar, with ripples 

Additional 
cleavage or 
microvoid 
coalescence 

Crack closure levels High Low --- 
Microstructural 
effects Large Small Large 

Load ratio stress Large Small Large 
Environmental 
effects Large ** Small 
**Large influence on crack growth for certain combinations of environment, load ratio 
and frequency. 
 

It has been observed that Equation 2.7 requires adjustments to account for the 

commonly observed effects of ratio (mean) stresses, and the nonlinear effects 

observed when a complex time history of load is employed [37].  These two effects 

will be covered in the following sections. 
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2.4 Effect of Stress Ratio Stress on fatigue Crack Growth 

Crack growth tests are commonly carried out at zero-to tension loading stress 

ratio, R = 0.  However, it is clear from this test that the correlation da/dN and ∆K

depends on the stress ratio.  An increased mean stress for a constant ∆S should give a 

faster crack growth while the R value is also increased, which is illustrated in Figure 

2.12.  The effect is generally more pronounced for more brittle materials. In contrast, 

mild steel and other relatively low-strength, highly ductile, structural metals exhibit 

only a weak R effect in the intermediate region of the da/dN vs. ∆K curve  [38].  

Forman’s equation and Walker’s equation, two relationships mostly used to 

compensate for ratio effect, will be explained in more details in Chapter 4. 

 

Figure 2.12.  Schematic mean stress influence on fatigue crack growth rates [2]. 
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2.5 Effects of complex time history loads on fatigue crack growth  

Under variable loading the increment of fatigue crack growth also depend on 

the preceding cyclic loading history, which is known as load interaction.  According 

to Schijve [29], the crack growth increment in a certain load cycle will be a function 

of: 

1. the crack geometry being present before the cycle started, 

2. the condition of the crack tip material, and 

3. the magnitude of the load cycle. 

 Several tests have been performed on materials to have a better understanding 

of the interaction effects.  Some of the observations as result of tests with overloads 

loading as discussed below: 

a. Positive overloads introduce significant crack growth delays. In general, 

longer delays are obtained by: (a) increasing the magnitude of the overload, 

(b) repeating the overload during the crack propagation life, and (c) 

application of blocks of overloads instead of single overload [29,39]. 

b. The rate of fatigue crack growth depends strongly on the order in which 

tensile and compressive overloads are applied [1]. 

c. Overload sequence effects are likely to be important where high overloads 

occur predominantly in one direction [38].  

d. Negative overloads have a relatively small detrimental effect on crack growth.  

However, a negative overload added immediately after positive overloads can 

significantly reduce the crack growth delay of the latter one [29,38,39]. 
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e. Delays clearly depend on the ductility of the material [29]. 

 Figure 2.13 shows typical effects of tension-compression sequence effects on 

variable amplitude fatigue fracture.  Case I, crack growth during constant amplitude 

fatigue.  Case II, crack growth during tensile-compressive overload sequences, and 

case III, crack growth during variable amplitude loading involving single tensile 

overloads. 

 

Figure 2.13  A schematic illustration of transient crack growth during constant and 

variable amplitude [1]. 

An example of crack propagation under variable amplitude loading for a 

2024-T3 aluminum alloy specimen is shown in Figure 2.14.  The specimen containing 

a center crack was subjected to a simulated flight loading of a civil transport aircraft, 

where the highest stress in the time history was 140 MPa.  In order to simulate the 

unloading of a point on the lower surface of an aircraft wing, the stress was at some 

points reduced to zero for each flight. 
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Figure 2.14  Crack propagation under simulated flight loading, 2024-T3 alum [37]. 

 

Figure 2.14 shows that the specimen survived about 70,000 simulated flights 

instead of the few thousand flights expected (less than 10,000), if no load iteration 

effects were considered.  The prediction of crack growth was based on crack closure 

[37]. 

 Originally, crack growth delay was based on residual stresses in the crack tip 

zone. In the early 1970s, Elber argued that such plasticity induced crack closure can 

also account for the transient retardation phenomena due to overloads [1,29]. 

 As it is indicated in Section 2.6, the materials properties also play an 

important role in the crack growth phenomenon.  The following section will describe 

the material properties that are considered in this research for fatigue prediction. 
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2.6 Material Properties 

The properties of material are those characteristics that help modify and 

distinguish one material from another.  Taken as a whole, these qualities define a 

material. All properties are observable and most can be measured quantitatively with 

some uncertainty.  Properties are classified into two main groups, chemical and 

physical properties.  Chemical properties are associated with the transformation of 

one material into another. For example, iron rusts when it combines with oxygen to 

produce an iron oxide through a chemical reaction.  Physical properties involve no 

change in the composition of the material.  Density, strength, and hardness are 

examples of such properties.  Physical properties are, in turn, arbitrarily subdivided 

into many categories.  These subdivisions bear names such as mechanical, 

metallurgical, fabrication, general, magnetic, electrical, thermal, optical, 

thermonuclear, and electro-optical.  Regardless of the name, physical properties result 

from the response of the materials to some environmental variable, such as a 

mechanical force, a temperature change, or an electromagnetic field [35].  For 

purposes of this research, only mechanical properties will be taken into account for 

the analysis. 

 

2.6.1 Mechanical Properties 

Mechanical properties are defined as a measure of a material's ability to carry 

or resist mechanical forces or stresses.  Three tests are carried out to obtain the useful 

information for most applications: the tensile, hardness, and impact tests.  For ductile 

material, the yield strength is the most important property, because can be used as a 
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criterion of failure, and it can be described by the results of tensile testing.  The other 

two tests are used to asses the durability and rigidity of the materials, respectively. 

 The data from the tensile tests are obtained by fracturing a specimen of 

material intended for a specific design project, and the fracture occurs when the 

material or structure separates into two or more pieces.  The failure criterion used in 

design is different for different materials.  For example, for elastomers, the failure 

criterion is the tear strength; for composite materials, it is tensile strength and for 

concrete, the criterion of failure is crushing strength or compression.  As it was 

mentioned above, for ductile metals in particular aluminum, the design criterion is 

yield strength.  Many factors, such as the amount of cold working and strain 

hardening, affect metal strength. Work done on metals directly affects metal strength, 

producing a range of values for its yield strength.  Metal in an annealed condition 

would exhibit a low value, while a strain-hardened metal would be approaching its 

tensile strength.  Depending upon the design criteria, a failure may occur prior to 

fracture.  Beams, such as floor beams, that are designed not to deflect beyond a 

standard amount under normal loads may be termed a failure if deflection exceeds 

this stated amount. In this case, no fracture has occurred. Similarly, an aluminum 

desk chair that collapses and buckles is a failure even though it has not fractured.  

Elastic modulus, yield and ultimate strength are some of the mechanical properties 

used in this research. 
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2.6.2 Elastic modulus (E)

The elastic modulus, also known as Young's modulus, is defined as the ratio 

of engineering stress (σ) to engineering strain (ε) in the linear or elastic region of the 

stress-strain diagram.  It is also a measure of the interatomic bonding forces in a 

material [40].  The higher the magnitude of these bonding forces, the higher the 

resistance of the material to being deformed.  When a material is loaded with external 

forces in the elastic region, the material with the highest modulus value experiences 

the least amount of deformation or strain, which may be either elastic or plastic 

deformation.  If the material reverts back to its normal size and shape upon removal 

of the load, it is elastic deformation.  If the applied force or load is removed and the 

material is permanently deformed, the material is said to have undergone plastic 

deformation. 

The elastic modulus can be obtained graphically by measuring the tangent of 

the slope angle in the elastic region of the stress-strain curve. 

2.6.3 Yield strength (Sy)

The yield strength is defined as the strain corresponding to the elastic limit, 

and it is the lowest stress at which plastic deformation occurs.  For most design 

purposes, the yield strength is assumed to be the same in tension as in compression 

[40].  Strain is measured at various points in the engineering stress-strain diagram. 

The strain corresponding to the elastic limit is called the yield point strain (εyp). The 

elastic limit replaces the yield point in those metals that do not show a yield point on 

the stress-strain diagram.  Several face-centered cubic materials, for example, such as 

copper and aluminum, do not have a well-defined yield point.  The stress at the yield 
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point strain is the yield strength (Sys).  The strain corresponding to the tensile strength 

is called uniform strain (εu), because the strain to this point is uniformly distributed 

throughout the specimen or gauge cross section.  The engineering strain at the 

fracture point (εf) may also be used to express ductility of the metal specimen or 

sample.  Low-carbon steel is one of just a few materials that exhibit a point where the 

strain increases without an accompanying increase in stress, which poses a problem in 

deciding when plastic deformation begins for such materials.  By agreement, a 

practical approximation of the elastic limit, called the offset yield strength, is used.  It 

is the stress at which a material exhibits a specified plastic strain.  For most 

applications, a plastic strain of 0.002 in./in. can be tolerated, and the stress that 

produces this strain is the yield strength, sometimes expressed as 0.2% strain.  The 

yield strength is determined by drawing a straight line, called the offset line, from the 

0.2% strain value on the horizontal axis parallel to the straight-line portion of the 

stress-strain curve.  The stress at which this offset line intersects the stress-strain 

curve is designated as the yield strength of the material at 0.2% offset.  In some cases 

the offset can be specified as 0.1 % or even 0.5%.  Figure 2.15 shows the results for 

the ultimate tensile and yield strength obtained from numerous tension specimens for 

the aluminum 7075-T651 [41].  The tensile properties are normally determined on 

longitudinal specimens. Generally, they have properties higher than those of 

transverse specimens. 
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Figure 2.15  Variation of material properties [41]. 

 

2.6.4 Ultimate strength (Sult)

Ultimate strength or tensile strength is the maximum stress developed in a 

material during a tensile test.  It is a good indicator of the presence of defects in the 

crystal structure of a metal material, but it is not used too much in design because 

considerable plastic deformation occurs in reaching this stress.  For brittle materials, 

tensile strength is still a valid criterion. Most gray cast irons are specified by their 

tensile strengths.  Plastic deformation is not all bad; however, in many applications 

the amount of plastic deformation must be limited to much smaller values than that 

accompanying the maximum stress.  

At this point it is important to notice that material properties are not exact 

quantities.  There is scatter or variability in the data that are collected from specimen 

of the same material, in spite of the use of the most precise measuring apparatus, and 
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a very efficient controlled test.  In fact, a number of identical tensile prepared from 

the same piece of material, and tested by the same equipment will lead to different 

stress-strain plots, and to different values of modulus of elasticity, yield strength, and 

tensile strength values.  Among the factors that contribute to this variability are: the 

test method, variations in specimen fabrication procedures, operator bias and 

equipment calibration [34]. 

It is important for the fatigue prediction to realize that variability of material is 

present and must be taken into account to obtain more realistic results.  In this 

research, the material properties are considered with uncertainty according to some 

average and coefficient of variation reported in the literature [38,42].  They are 

typically assumed normally distributed for it is a reasonable model for many natural 

processes or physical properties [43,44].  Table 2.3 shows the values for the 

aluminum 7075-T651.  

Table 2.3 Properties for the aluminum 7075-T651. 

 

Parameter Mean Coefficient of 
variation [36] Units. 

E 1.00E+05 5% ksi 
Sy 68 7% ksi 
Sul 84 5% ksi 

When any material is at rest, it is known that the atomic structure is in 

equilibrium.  The bonding forces in this structure resist any attempt to disrupt this 

equilibrium.  One such attempt may be an external force or load.  Stress results from 

forces such as tension, compression, or shear that pull, push, twist, cut, or in some 

way deform or change the shape of a piece of material.  In the case of aircraft 
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structures, they are subjected to load conditions that are characterized by variable 

amplitude loading. Such structures are subjected to working loads due to takeoffs, 

maneuvers, and landing, as well as to vibratory loads due to runway roughness and air 

turbulence, and wind gust loads in storms.  In Chapter 3, we will cover the treatment 

of the load for the fatigue crack growth prediction. 
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Chapter 3 Data Collection 

3.1 Load Spectrum - Background 

Information of the load-time history of an aircraft in service is collected in 

load spectra, which is the engineering definition of the fatigue environment that a 

structure experiences throughout its design life.  It is defined by the load (or stress) 

amplitude versus the number of cycles [45].  The need for further research in load 

spectra started in the aeronautical field as the result of some early accidents. In fact, 

the accident of a Lufthansa aircraft in 1927 triggered a significant fatigue research by 

Gassner [46] and Teichmann [47].  As a result of this research, it was understood that 

aircraft wings were dynamically loaded during flying in turbulent air which resulted 

in numerous load cycles with quite variable amplitudes, and the need for measuring 

these loads was recognized.  

In the early 1930s, a strain measurement was developed for measuring the 

load, which consisted in scratch the load-time history with a diamond on glass and 

analyze it under the microscope [48] and other techniques available by that time.  

Teichmann analyzed the load-time history statistically in two different ways.  First, he 

considered maxima and minima as the relevant data of a load-time history, then the 

statistical data was restricted to counting these peak values in specified intervals, 

which lead to a one-dimensional spectrum.  Later, Teichmann defined a statistical 

counting of ranges between successive maxima and minima and considered different 

values of these ranges, which then lead to a two-dimensional spectrum. 
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In later years, other load measurement techniques were developed as well as 

statistical evaluation methods for the colleted data.  In the 1950s, a new technique 

was introduced to measure accelerations in the centre of gravity of the aircraft from 

which the loads on the structure were calculated.  Also, The Royal Aircraft 

Establishment in the UK [49] developed a counting accelerometer, also known as 

“fatigue meter”, which counted the number of times an acceleration level was 

exceeded.  Figure 3.1 shows an example of this technique.  However, the precision of 

the calculation of loads in the center of gravity of the aircraft was not always realistic 

or sufficiently accurate.  Strain gauges were then used to measure the load history on 

a fatigue critical component, which are designed to convert mechanical motion into 

an electronic signal.  A change in capacitance, inductance, or resistance is 

proportional to the strain experienced by a sensor.  If a wire is held under tension, it 

gets slightly longer and its cross-sectional area is reduced.  This changes its resistance 

(Re) in proportion to the strain sensitivity (Se) of the wire's resistance. When a strain 

is introduced, the strain sensitivity, which is also called the gage factor (GF), is given 

by [50], 

Strain
Re
Re

Re
Re







 ∆

=





 ∆







 ∆

=
L
LGF  (3.1) 

Techniques based on strain gage showed long-term reliability under various service 

conditions. 
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Figure 3.1  Gust load spectra measured with counting accelerometers compared to 

the design load spectrum of the Fokker F-28 [33]. 

 

3.2 Calculation of Spectrum Load  

In developing a fatigue spectrum, one must define all loading events that a 

structure will experience and the number of times that each event will occur.  In the 

case of an aircraft, each flight profile may be divided into different events, such as 

taxi, takeoff, ascent, cruise, descent, landing, and taxi after landing.  Figure 3.2 shows 

this profile.  
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Figure 3.2 Mission profile [45]. 

The fatigue spectrum for each event is a function of several variables.  For 

instance, the wing load magnitude and its cyclic behavior during ascent may depend 

on speed, weight, and gust factor.  Figure 3.3 shows a simplified version of a complex 

load spectrum for the wings of a transport aircraft during each flight. 

Figure 3.3 Simplified load spectrum for an aircraft [45]. 

Load spectrum is determined differently depending on whether the loading 

event is static or dynamic.  In the case of the former, it can be established with 

relative ease.  A spur gear that is designed to actuate the wing flaps of an aircraft 
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during ascent would undergo a fixed number of complete revolutions under a constant 

torque.  The stress time history for a typical gear tooth during each ascent event can 

be calculated using the equations of static equilibrium.  However, in situations where 

flexible structures and fast changing loads are involved, the structure or components 

react dynamically to the loading environment.  The cyclic behavior of the time history 

would be a function of both the load variation and the dynamics of the structure.   

The time history for each event is established using a cycle counting 

procedure.  In the literature, it is possible there are different procedures such as rain 

flow counting, peak counting, level crossing and range-pair counting.  The most 

recognized and most widely used is the rain flow method.  In all of the above 

mentioned cases, the irregular load sequence can be converted to a sum of cycles with 

different stress amplitudes that assess the total damage induced in a given part. 

Once the time history for each event is established, it must then be converted 

to a fatigue spectrum consisting of load range and mean range versus number of 

cycles, where range is defined as the algebraic difference between successive valley 

and peak loads.  

For the component analyzed in this research, the load in the form of stress 

spectrum was collected at the dome nut hole locations at Fillet Fairing for each flight. 

Figure 3.4 indicates the general locations. 
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Lower Surface Dome Nuts at Fillet Fairing
WS 217 WS 157 WS 157 WS 217

Lower Surface Dome Nuts at Fillet Fairing
WS 217 WS 157 WS 157 WS 217

 

Figure 3.4 Dome nut hole locations. 

The data was collected using the SAFE (Structural Appraisal of Fatigue 

Effects) life methodology [17] within which individual aircraft tracking is a 

requirement.  The SAFE methodology was explained in Chapter 1.  However, it is 

mentioned again, in this research the stress history as a function of the Fatigue Life 

Expended Index (FLEI) is used as the time-damage agent for aging.  A partial 

example sample of this data appears in Table 3.1.  A description of the flight in line 

one, followed by data in subsequent lines indicating the peaks and valleys of each 

stress.  Each flight comprises about one million peaks and valleys. 

 
Table 3.1 Flight and stresses description. 

 

Flt No Flt Date 
Flight 

Duration 
[hours] 

# Full Stop 
Landings 

# Touch & 
Go Landings 

# of stress points in 
the flight spectrum 

1 01-Feb-73 4.4 1 2 1148 
Max 
[psi] 

Min 
[psi] 

Max 
[psi] 

Min 
[psi] 

Max 
[psi] 

Min 
[psi] 

Max 
[psi] 

Min 
[psi] 

10290.2 6561.4 10766.2 6561.4 11321.5 6561.4 10434.3 7855.2 
9382.8 5334.6 9382.8 5792.9 10634.4 8021.7 9571.4 6471.9 
9901.7 6640.7 9502.2 6397.4 …. … …. …. 
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The load spectrum is calculated using a MatLab® routine developed in this 

research.  The routine is based on the standard ASME E-1049 "Standard Practices for 

Cycle Counting in Fatigue Analysis" [51].  The results of this calculation are used as 

variables in both the crack initiation phase, and the crack growth phase.  In this study 

only crack growth is modeled, as it analyzes all aircrafts passed the 100% FLE, an 

index that has been assumed as a point where some crack growth phenomenon 

initiates.  

Table 3.2 shows a summary of spectrum statistics related to each of the 25 

aircrafts analyzed in this research. The data are not accurate loads of specific 

aircrafts.  The load spectrum contains between 281,479 and 1,109,450 cycles. 

Table 3.2  Spectrum summary for the 25 aircrafts. 

 
Aircraft Max stress 

[ksi] 
Min Stress 

[ksi] 
Median

[ksi] 
Mean 
[ksi] 

SD 
[ksi] 

1 24.2 -9.4 10.8 8.6 4.2 
2 25.0 -8.0 11.1 9.2 4.0 
3 25.4 -9.4 11.0 9.5 4.1 
4 24.2 -6.7 10.5 9.8 3.9 
5 25.2 -8.8 11.2 9.1 4.5 
6 24.1 -8.0 11.5 9.1 4.3 
7 23.5 -6.5 11.4 9.4 4.0 
8 25.5 -7.8 11.3 9.4 4.1 
9 23.8 -7.3 11.8 9.3 3.8 
10 26.0 -7.1 11.3 9.3 4.8 
11 22.7 -7.5 11.8 9.2 4.2 
12 24.7 -8.8 11.5 9.5 3.8 
13 26.8 -9.3 11.4 9.1 3.9 
14 23.9 -9.1 12.0 9.4 4.5 
15 23.4 -6.5 10.8 9.3 4.1 
16 22.7 -7.0 11.6 9.7 3.9 
17 26.1 -6.5 10.7 10.2 3.8 
18 24.1 -8.4 11.8 9.2 3.7 
19 23.8 -7.3 11.3 8.5 4.2 
20 26.0 -6.8 13.1 9.6 3.7 
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21 24.1 -6.7 11.5 9.4 5.5 
22 23.0 -6.4 11.4 8.8 4.7 
23 23.9 -7.4 11.9 9.0 3.7 
24 22.5 -9.0 11.3 8.5 5.1 
25 24.4 -6.4 12.2 9.0 5.0 

From Table 3.2, it is important to notice that for all aircrafts the mean stresses 

is below the 0.8 Sy design requirement of LEFM. 

3.2.1 Fatigue Life Expended Index (FLE)

To allow a fleet manager to optimize the maintenance of the aircrafts, a 

fatigue index is used, rather than the traditional, and less accurate, flight hour basis.   

The aircrafts are fatigue monitored using strain data recorded by sensors 

installed at different critical locations on the structure.  The strain data is processed 

using a fatigue life prediction program to calculate the damage that has accumulated 

by each aircraft.  The result is a Fatigue Life Expended index (FLE) which compares 

the amount of damage accumulated by each aircraft to the damage experienced by a 

representative fatigue test article.  The SAFE process which calculates a Fatigue Life 

Expended index (FLE) for individual aircraft in the fleet is defined below [52]: 

1SFDamage FatigueAircraft  Calculated ⋅= ∑FLE  (3.2) 

where  

SF1 is the scatter factor applied by the fleet operator. 

The FLE is the complement of fatigue-life remaining. As such, an FLE of 100 

percent is equal to not fatigue-life remaining.  The FLE index limit of 100% is 

determined by a full-scale fatigue test (FSFT).  In the FSFT the time to reach a crack 
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size of 0.01 inches is determined.  This time is specified as test demonstrated life.  

Then the FLE value of 100% corresponds to half the time of the test-demonstrated 

life.  In other words, an FLE value of 100% corresponds to a damage accumulation of 

one half of the value predicted by the Miner’s Rule [53]. 

For the prediction of the fatigue crack growth life, an initial crack size 

distribution assumption must be made.  The following section will explain how this 

initial crack size is obtained. 

 

3.3 Initial Crack Size Distribution 

Structural components inevitably suffer from flaw or crack defects, such as 

surface scratches, surface roughness or weld defects of random sizes, which usually 

occur during the manufacturing and handling process [54].  These defects are shown 

to have a detrimental effect on the fatigue life of the structural components by 

promoting crack initiation sites.  In order to make reliable predictions, data regarding 

the initial flaws size must be known.  However, the Non Destructive Inspection 

methods (NDI) available cannot provide the adequate information concerning the 

statistical distributions of initial flaws.  Consequently, two concepts have been 

developed and have been proven useful as design tools for making predictions for 

aircraft structural reliability problems.  These methods are:  the equivalent initial flaw 

size distribution and the distribution of time-to-crack initiation. 
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3.3.1 Equivalent Initial Flaw Size 

Initial flaws of a high quality structure are not detectable. For this reason, the 

equivalent initial flaw size concept was introduced by Gray and Rudd [55] and 

developed by Yang and Manning [56].  Once the initial flaw size distribution is 

established, the fatigue crack growth can be estimated without further experimental 

tests. 

The initial flaw size is an artificial crack size, which is derived from the 

distribution of fatigue crack occurring later on during service life.  The distribution of 

initial flaw size is determined by back-extrapolating this distribution of fatigue cracks 

according to a master crack growth function to zero time (zero damage) or some 

reference time serving to represent the initial time of the assessment.  Therefore, the 

initial flaw size will result in an actual fatigue crack at a point in time when it is 

grown forward.  

The distribution of fatigue cracks at a particular time can be difficult and 

costly to determine.  This kind of information usually requires a tear down inspection, 

possibly following a full-scale fatigue test or from retired airframes.  Fatigue cracks 

detected during in-service inspections of structural components or fatigue cracks 

obtained in laboratory coupon testing may also serve as a starting point for 

developing the initial flaw size distribution. 

3.3.2 Time-To-Crack Initiation 

The period of crack initiation or the time-to-crack initiation is defined as the 

time in cycles flights, or flight hours it takes for a non detectable crack from the 
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beginning of fatigue loading to grow to a reference crack size.  This crack initiation 

distribution is physically observable and can be obtained by experiments and test 

results. 

In some instances, the time-to-crack initiation period makes up a large 

proportion of the crack growth life of a structural component and this is especially the 

case for jet engine disc components [57].  The reference crack size is commonly 

selected on the basis of a detectable crack by NDI technique. 

In order to determine the initial flaw size distribution, the test results of the 

time-to-crack initiation are produced and through a transformation, the initial flaw 

size distribution is derived, (see section 3.2.1.)  The relation between the time-to-

crack initiation distribution and initial flaw size distribution can be visualized in 

Figure 3.5.  Yang et al. [56] have demonstrated existence of compatibility between 

the time-to-crack initiation and initial flaw size distributions function for the Weibull 

and the lognormal distributions.  Since accurate crack growth is almost impossible to 

predict at the small crack size, a power law matching the crack growth rate is used to 

reflect the crack growth law transforming the time-to-crack initiation distribution 

function back to the y-axis at zero time to produce a compatible initial crack size 

distribution. 



58 
 

Time-to-crack initiation

In
iti

al
fla

w
si

ze

Time-to-crack initiation

In
iti

al
fla

w
si

ze

Figure 3.5 Process showing the compatibility between time-to-crack initiation and 

initial flaw size pdf  [42]. 

 

The Weibull distribution is one of the most commonly used distributions for 

representing the crack size distribution.  Many applications indicated that this 

distribution fits particular well to the tail of the large crack size data found in 

teardown inspections and maintenance inspections.  However, the selection of the 

probability distribution should be based on how well it fits the data. 

In this research, we are interested in a methodology to estimate the initial flaw 

size distribution function when a 100% FLE has been reached.  The fundamental 

military characterization of the initial cracks at 100% FLE, assume that the 

probability of a crack size of 0.01 inch or larger is less than 1/1000.  A lognormal 

distribution seems to be good fit to represent the prior distribution in a Bayesian 
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updating.  This initial crack size is characterized by the parameters, log mean µt = -

4.71 and log S.D. σt = 3.59E-02.  Figure 3.6 shows a plot of such a pdf.

Figure 3.6  Estimated Initial Crack Size pdf. 

3.4 Crack Observation (Evidence) 

Conventional inspection is based on either visual inspection or one of the 

different NDI methods developed in the mid-50s and initially used in the early to the 

mid-60s.  Frequent visual inspections can be rapidly and easily performed on a 

variety of structures. Visual inspection is particularly valuable in nondirected or 

general inspections or in those inspections in which no previous damage is suspected. 

When fatigue test or in-service experience indicate that a directed structural 

inspection is required, instrumented NDI methods become valuable since they can 

detect smaller cracks and require only minimal disassembly [58].  Figure 3.7 shows a 

distribution of cracks found in service depending on the inspection method.  In this 

research, a directed structural inspection is the approach used to obtain the evidence.    
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Figure 3.7  Distribution of cracks found in service [58]. 

NDI is one of the elements of the Aircraft Structural Integrity Program 

(ASIP)[3], which also includes tools such as teardown inspection, full scale fatigue 

testing, component testing, and testing of structural parts.  There are five major NDI 

techniques: magnetic particle (MT), liquid penetrant (PT), ultrasonic (UT), eddy 

current (ET) and radiography (RT).  New techniques such as thermography and 

shearography have recently emerged. 

 All these NDI techniques are used in the location being analyzed in this 

research, the Dome Nut and Rivet Hole Geometry at FC351 area of each aircraft. 

Figure 3.8 shows the location of the cracks.  
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Figure 3.8  Cracks location at the FC 351 area. 

Ideally the exact crack sizes would be the best form for reporting observed 

crack size evidence. However, the findings have been reported according to the 

format shown in Figure 3.9.  As such, the cracks are assigned one of four sizes of 

extra small, small, large and extra large and the database reports how many of such 

cracks in each bin has been observed for each aircraft inspected. 

L0.260”0.098” 0.098”SXS L0.260”0.098” 0.098”SXS

XL0.260”0.098” XL0.260”0.098”

Critical Crack Size = 0.796”.

L0.260”0.098” 0.098”SXS L0.260”0.098” 0.098”SXS

XL0.260”0.098” XL0.260”0.098”

L0.260”0.098” 0.098”SXS L0.260”0.098” 0.098”SXS

XL0.260”0.098” XL0.260”0.098”

Critical Crack Size = 0.796”.Critical Crack Size = 0.796”.

Figure 3.9  Inspection cracks size. 
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Table 3.3 shows the finding results (evidence) to be used as evidence to build 

the likelihood probability function in the Bayesian updating step.  This will be 

discussed in chapter 6. 

Table 3.3  Observed number of various crack sizes for the 25 aircrafts. 

 
Crack Size 

Aircraft XS S L XL 
1 1 1 0 0
2 8 0 0 0
3 2 0 0 0
4 0 7 0 0
5 3 0 0 0
6 0 1 0 0
7 4 0 0 0
8 0 3 0 3
9 1 0 0 0
10 0 3 0 1 
11 0 0 0 1 
12 3 2 0 0 
13 3 1 0 2 
14 42 0 0 0 
15 6 0 0 0 
16 6 0 0 0 
17 4 1 0 0 
18 3 0 0 0 
19 7 0 0 0 
20 4 5 0 0 
21 0 2 0 0 
22 0 1 0 0 
23 5 2 2 0 
24 8 0 0 0 
25 2 2 0 4 
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Chapter 4 An Integrated Approach for Assessing the 

Crack Growth Under Variable Amplitude 

Loading 

4.1 Crack Growth Assessment 

Assessing crack growth and the lifetime of the aircrafts under variable 

amplitude loading can be done using either the global (characteristic) approach or 

cycle-by-cycle approach.  The global approach is based on the statistical description 

of the load spectrum [59], while the cycle-by-cycle approach is based on the sum of 

cyclic damage or crack advance associated with each cycle.  This research focuses on 

the cycle-by-cycle approach describes the crack growth models, which consider the 

stress ratio effect and the interaction effect.  It is important to note that the cycle-by-

cycle approach can be used by either taking into account interaction effects [1,29,59] 

or by ignoring such effects.  Figure 4.1 illustrates the two approaches. 

 The global approach, which has been used in a number of fatigue-critical 

applications such as the fatigue of steel bridges, will be explained briefly.  In some 

applications such as flight simulation of gust loading spectra for aircraft, random 

loading and its statistically equivalent program loading are known to provide different 

results [1].  
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Figure 4.1 Life prediction models. 

 

4.1.1 Global Approach 

This model was first proposed by Paris [1] for random loading, and it is based 

on the hypothesis that random variation of the crack tip fields are describable in terms 

of the root-mean-square value of the stress intensity factor range, ∆Krms. The variable 

amplitude crack growth rates are given by the Paris relationship: 

( )mKC
dN
da

rms∆= (4.1) 

where C and m are material constants and 

n

K
K

n

i
i∑

=

∆
=∆ 1

2

rms  (4.2) 
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where ∆Ki is the stress intensity factor range in the ith cycle in a sequence consisting 

of n stress cycles.  For constant amplitude, ∆Krms = ∆K.

4.1.2 Cycle-by-Cycle Approach 

The Palmgren-Miner model is the most well-known cycle-by-cycle approach, 

in which load interaction effects are not considered.  The cycle-by-cycle summation 

theory, extended to damage crack growth, assumes that the crack growth increment 

per cycle is equal to the crack growth rate associated with constant amplitude loading 

of the same magnitude; however, it may also be deduced from a load interaction 

model [1].  In such model, the crack growth ∆a in each individual cycle can be 

calculated in two different ways:  

1. by estimation from the da/dN Vs. ∆K curve of the material, or 

2. by integration where a is the dependent variable. 

If the current crack length is aj and the increment is ∆aj, the new value of crack length 

for the next cycle is 

j
jjjj dN

daaaaa 





+=∆+=+1 (4.3) 

by denoting the initial crack length as a0, we obtain a prediction for the whole 

spectrum, 

 ( ) ∑∑
==

∆+=∆+=
N

i
i

N

i
aaRKfaa

1
0

1
0 ,..., (4.4) 
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Figure 4.2 shows the logic diagram for damage crack growth computation 

used in this work. 

Initial inputs for the location of interest:
Initial crack length, material properties, 

model parameters, geometry factor
FLE= 100%

aj+1 ≥ acritical
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Figure 4.2  Logic diagram for damage crack growth. 

Models used in the cycle-by-cycle approach fall into two groups: 

� Non-interaction (Walker and Forman models) 

� Interaction (crack closure model) 
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4.2 Non-interaction models 

In these models, the main assumption is that growth for a given cycle is not 

affected by the prior history of loads.  That is, the load sequence effect is not 

considered.  These models however, lead to conservative estimates since interaction 

effects retard crack growth [38,39].  An integration procedure that makes use of a 

semi-empirical retardation model is more complicated. It means that the prediction 

should include evaluation of residual stresses and crack closure.  

 Two of the most popular non-interactions models are the Walker and Forman 

models, which are described in the following sections. 

 

4.2.1 Walker Model 

Walker’s crack growth equation [60] is the extension of the Paris relationship, 

but it accounts for the effect of the mean stress ratio, R, in region II.  

The notion that stress should be related to crack-growth rate and crack length 

was, first developed by Brock and Schijve [61], McMillan and Pelloux [62], and 

Erdogan [63], 

( ) ( ) 



 ∆=

bc
aSaSf

N
a

22
d

)2(d
maxβ (4.5) 

this equation can be rewritten as, 

( )( )[ ]{ }ωγγβ aSSf
N
a

π
d

)(d 1
max ∆= − (4.6) 

where 

1− γ = c/(c + b)
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γ = b/(c + b)

ω = c + b

ω and γ are exponents, and γ is assumed to have a single value for both crack 

propagation and fatigue life.  

Since product of the two stress terms in Equation 4.6 is a stress, and effective 

stress can be defined as the following [60], 

( )γγγ RSSSS −=∆= − 1max
1

max  (4.7) 

then, crack growth can be written in the form, 

[ ] ( )KfaSf
N
a

∆== π
d

)(d
β (4.8) 

where K∆ is an equivalent zero-to-tension (R = 0) stress intensity that causes the 

same growth rate as the actual Kmax, R combination.  Figure 4.3 shows cracking-rate 

data for 2024-T3 and 7075-T6 aluminum [61] using K∆ as abscissa for different 

values of R. Values of γ used in computing K∆ (0.5 for 2024-T3 aluminum and 

0.425 for 7075-T6 aluminum) were determined for best fit using available computer 

routines.  It is important to note, that the effect of stress ratio as accounted for by S is 

independent of the environment [64]. 
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Figure 4.3  Crack growth in 2024-T3 and 7075-T6 [60]. 

From the above derivation, we can write Equation 4.7 in terms of stress 

intensity factor, 

( )γRKK −=∆ 1max  (4.9) 

By substituting Equation 4.7 and Equation 4.9 in the classical crack growth model 

(Equation 2.7), and denoting C and m as C1 and m1 for the special case of R = 0, 

( ) 1)π1(
d
d

max1
maRSC

N
a γβ −= (4.10) 

constant C1 can be calculated by the following equation, 

 )γ1(

*

1 1

1

)1( −−
= mR

C
C (4.11) 
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where, *
1C and m1 are material constants.  

Parameters m1, *
1C and γ [38] are sampled from normal distributions with the 

characteristics described in Table 4.1. 

Table 4.1  Walker parameters. 

Parameter Mean Coefficient of 
variation Units. 

m1 3.70 5% Dimensionless 

*
1C 1.51E-09 7% ( ) 1inksi

in/cycle
m

γ 0.55 7% Dimensionless 

The value of β is related to the geometry of the structure as shown in Figures 

2.6 and 2.7, and can be expressed by the least square regression as follows:  

Growth towards small rivet hole: 

β = 15878.62a4 - 4895.55a3 + 562.01a2 - 29.75a + 2.39   (4.12) 

Growth from satellite rivet hole: 

β = 128285.12a4 - 173837.85a3 + 88331.08a2 - 19957.33a + 1695.45    (4.13) 

A random number is included in (4.12) and (4.13) in order to account for the 

uncertainties in the β factor.  This random number is generated in order to calculate 

the β value between the lower and upper limits.  

4.2.2 Forman Model 

The Forman equation, published in 1967, modifies the exponential crack 

propagation equation proposed by Paris [14] to account for discrepancies when a 

large variation in the data exits.  These discrepancies are: 1) The layering of the data 
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owing to the load ratio, R, and 2) the instability of the crack growth when the stress-

intensity factor approaches the KC value for the material [65]. 

To account for these discrepancies, and assuming that current fracture 

mechanics theory remains valid, a correct crack-growth model should have the 

following criteria, 

∞=
→ N

a
KK d

d
lim

Cmax
 (4.14) 

Additionally, making the substitution, 

R
K

K
−
∆

=
1

max  (4.15) 

where R is the mean ratio (of the minimum stress-intensity factor to the maximum 

stress-intensity factor.) A more general requirement for crack-growth rate is, 

( )
∞=

−→∆ N
a

KRK d
d

lim
C1

(4.16) 

Assuming, then, that a correct crack-growth equation has both an exponential form 

with singularity at (1-R)KC – ∆K, an improved crack growth equation is proposed as 

( )
( ) KKR

KC
N
a m

∆−−
∆

=
C

2

1d
d 2

(4.17) 

By substituting the stress intensity factor, ∆K, in terms of stress and crack size, (4.17) 

may re-written as  

( )
( ) KKR

aSC
N
a

m

∆−−
∆

=
C

2

1
π

d
d 2β

(4.18) 
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where C2 and m2 are material constants. It is important to note that the parameter 

constants, m and C, in the Walker equation, Forman equation, closure, and Paris 

equation do not have the same numerical values or units [66]. 

Figure 4.4 shows a comparison of equation 4.17 and the test results for 7075-

T6.  The wide range of test data in the plots show the correlation for the layering 

effects at different R-values, and for the predicted theoretical asymptote. The material 

constants used for calculating the theoretical curves in Figure 4.4 are, KC = 68,000 

lb/in1/2, C2 = 5E-13, and m2 = 3.   

Figure 4.4  Comparison of experimental and theoretical crack-propagation rates in 

7075-T6 aluminum plate for R = 0 to R = 0.15 [65]. 

Parameters m2, C2 and KC [38], are sampled from normal distributions with 

the characteristics described in Table 4.2.  The value of β is related to geometry of the 

structure as shown in Figures 2.6, and 2.7.  
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Table 4.2  Forman Parameters. 

Parameter Mean Coefficient of 
variation Units. 

m2 3.21 5% Dimensionless 

C2 2.56E-07 7% ( ) 1-2inksi

in/cycle
m

KC 70 7% ( )inksi  

4.3 Interaction model: Closure Model 

Experiments [67,68] on metals have shown that fatigue cracks remain closed 

during part of the load cycle under constant and variable-amplitude loading.  This 

phenomenon is known as the crack-closure concept.  A model that account for crack 

closure can be used to calculate crack growth under constant-amplitude loading [69], 

and is a significant factor in causing load-interaction effects on crack growth rates 

and retardation/acceleration, under variable-amplitude loading [67].  Crack-closure is 

caused by the presence of a plastic zone ahead of a crack tip, which is generally 

accepted as a characteristic of crack behavior in aluminum alloys [37].  The material 

adjacent to the crack surfaces near a crack tip in the plastic zone become deformed in 

tension.  Consequently, as the load is reduced, this material forces the crack surfaces 

to close.  Figure 4.5 illustrates the crack closure concept. 
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Figure 4.5 Crack closure concept [37]. 

Crack propagation can only occur during that portion of the loading cycle in 

which the crack is fully open at the crack tip; therefore, the crack opening stress is 

used as a reference stress level from which an effective stress range is obtained.  The 

effective stress range is defined as 

opmaxeff SSS −=∆ (4.19) 

where Sop is the crack opening stress.  An effective stress ratio is then defined as [69]: 

( )
( ) K

K
S

S
SS
SS

U
∆
∆

=
∆
∆

=
−
−

= effeff

minmax

opmax  (4.20) 

Constant amplitude loading tests were conducted to establish the relationship 

between U and three variables which were anticipated to have a significant effect on 

U (stress intensity range, crack length, and stress ratio).  For the given range of testing 

conditions R is the significant variable.  Empirical relations for some aluminum alloys 

are as follows [69,70]: 

� 2024-T3, U = 0.5 + 0.4R (-0.1 < R < 0.7)  
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� 7175-T651, U = 0.4 + 0.4R [71] 

� 7475-T73, U = 0.618 + 0.365R + 0.139R2 [72] 

� mild steel, U = 1/(1.5-R) [73] 

Measurements of crack opening stresses are very complex and have been 

taken on only a few materials and for a limited number of loading variables. In this 

research, the crack closure phenomenon was analyzed using the state-space model 

proposed by Ray and Patankar [74,75].  This model is structurally similar to the Paris 

Equation [14], which was modified for crack closure, and subsequently used in the 

FASTRAN code [27].  The major difference is in the formulation of transient 

behavior of the crack opening stress.  The crack opening stress in FASTRAN is 

calculated asynchronously based on a relatively long history of stress excitation over 

the past (~300) cycles, while the state-space model captures the effects of stress 

overload and reverse plastic flow, and is applicable to various types of loading 

including single-cycle overloads, irregular sequences and random loads [75]. It is 

important to note that when the model predictions of using the state-space model 

were compared with those of FASTRAN and AFGROW codes for identical input 

stress excitation, results were close [75]. 

The FASTRAN model is based on the equation for the effective stress-

intensity factor range given by [76], 

( ) ( )[ ] KRSSK ∆−−=∆ 1//1 max0peff  (4.21) 

where  

0for  / 3
3

2
210maxp0 ≥+++= RRARARAASS (4.22) 

and 
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01for / 10max0p <≤−+= RRAASS (4.23) 

when S0p ≥ Smin. The coefficients are defined by 
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where R is the stress ratio, Sy is the yield strength, Sult is the ultimate strength, and the 

constants A0, A1, A2, A3 are functions of the stress ratio, the stress level, Sflow the flow 

stress, and the constraint factor α.

The state-space model states that the information for calculating the memory-

dependent variable in damage crack growth can be modeled in a finite-dimensional 

state-space setting by an ordinary differential equation, and is formulated based on 

the crack closure concept, where the crack length and the crack opening stress are the 

state variables.  It is a modification of the Paris equation defined earlier in section 2.3, 

in which the inputs are max
kS and min

kS in the kth cycle and the output is the crack 

length increment ∆ak.

By expressing the dynamic behavior of damage crack growth as a derivative 

da/dN with respect to the number of cycles, i.e., ∆ak in the kth cycle as,  
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where ak-1 and O
kS 1− are the crack length and the crack-opening stress, respectively, 

during the kth cycle and change to ak and O
kS at the end of the kth cycle; β(⋅,⋅) is related 

to geometry of the structure as shown in Figures 2.6 and 2.7, and G(x) is the 

Heaviside function, defined by 





≥
<

=
0if1
0if0

)(
x
x

xG (4.30)  

The non-negative monotonically increasing function h(⋅) can be represented 

either by a closed form algebraic equation or by lookup table [27]; 

In this research, the following lookup table is used to represent the non-

negative function )( eff
kKh ∆ in Equation 4.29 for the aluminum 7075-T6,  

Table 4.3  Crack growth lookup table for 7076-T6 [75]. 

∆Keff 
[Mpa-m1/2]

da/dN
[m/cycle] 

∆Keff 
[Ksi-in1/2]

da/dN
[in/cycle] 

0.90 1.00E-11 0.82 3.94E-10 
1.35 1.20E-09 1.23 4.72E-08 
3.40 1.00E-08 3.09 3.94E-07 
5.20 1.00E-07 4.73 3.94E-06 
11.90 1.00E-06 10.83 3.94E-05 
18.80 1.00E-05 17.11 3.94E-04 
29.00 1.00E-04 26.39 3.94E-03 

The rest of the formulation for the state-space model can be found in references 

[74,75] 

Parameters Sy, Sult and E [38], are sampled from normal distributions with the 

characteristics described in Table 4.4. 
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Table 4.4  Materials properties for the 7057-T6. 

Parameter Mean Coefficient of 
variation Units. 

Sy 72 7% ksi 

Sult 85 5% ksi 
Ε 1.00E+04 5% ksi 

In the preceding section the process of combining material and parameters 

uncertainties through the damage crack growth models were discussed.  The 

uncertainties and variabilities are accounted for using a Monte Carlo simulation of 

crack growth using a MatLab® routine, Probabilistic Crack GROWth (PCGROW), 

developed in this research. 

4.4 Failure Criteria 

Two failure criteria in the crack growth calculation can be seen in Figure 4.2.  

Half crack length greater than 1 inch or Kmax greater than KC are determined by using 

Equation 2.6 and Figure 4.6 [31], respectively.  For the structure analyzed in this 

research, 

in 300.0
ksi72

inksi26
5.2

2

≥









≥B

The structural part of the aircraft under analysis is 0.080 inches thick.  

Therefore, not thick enough to meet the requirement of Equation 2.6.  According to 

this, plane stress can better characterizes this condition than does plane strain, and the 

critical stress intensity factor, KC, to be used as failure criteria is determined using 

Figure 4.6. 
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Figure 4.6  Stress intensity Factor for the 7075-T6 aluminum [31]. 

4.5 Crack Growth Estimation and Uncertainty Propagation 

The damage crack growth estimation and uncertainty propagation from the 

input variables to the fatigue life is carried out by a simple Monte Carlo simulation.  

The procedure consists of four steps, shown in Figure 4.7. 
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Figure 4.7  Crack growth and uncertainty propagation algorithm. 

Figure 4.8 illustrates an example of the number of possible solutions when 

one considers the scatter of material properties and model parameters.  About 50% of 

the crack sizes at this FLE are below 0.0172”, and 75% are below 0.0215”. 

 



81 
 

Figure 4.8 Example of Random Rack Growth trajectories at 231% FLE. 

 

4.6 Model Verification 

This section validates the routines included in PCGROW by comparing 

different types of cycle loading with the predictions made by the models that are 

available in the AFGROW software package.  AFGROW, developed by Harter [77], 

uses crack closure concept to determine ∆Keff. In AFGROW, the opening stress 

intensity factor, Kop, is determined by using a closure factor (Cf) according to the 

following relationship [78], 

( )( )( )[ ],16.0111 0 RRcC ff −+−−= (4.31) 
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where Cf0 is the experimentally determined value of Cf at R= 0 and  is assumed to be a 

material parameter. 

 AFGROW has an option to input the existing stress intensity factor solution in 

the form of a beta table for any 1-D crack, using the through crack geometry model, 

which is illustrated in Figure 4.9, where w and T are the respective width and 

thickness of the specimen.  For the calculations, an initial crack length equal to 

0.009’’ is assumed. 

Figure 4.9  Model geometry and dimension in AFGROW. 

Appropriate beta values are used at various crack lengths, so that the 

appropriate value at a given crack length may be interpolated. For the crack length 

dimension, we have, 

β(c)cSK π= (4.32) 

where S is the stress level, c is the crack length, and β(c) is given by the following 

table, 
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Table 4.5  Beta values. 

c [inches] β
0.0000 2.486 
0.0007 2.237 
0.0130 2.178 
0.0260 1.929 
0.0390 1.772 
0.0650 1.779 
0.1040 1.770 
0.1300 1.769 
0.1500 2.100 
0.1740 3.000 

The material properties and empirical parameters for the 7075-T6 aluminun 

alloy are available in the library of AFGROW, under the module Nasgro equation.   

Four different blocks loading spectrums were used, according to the profile 

shown in Figure 4.10, where f and s, indicate that a block of f constant amplitude 

cycles is followed by a block of s different constant amplitude cycles.  The values of 

S1, S2, and Smin were assumed in this study by considering the real values from the 

spectrum flight data.  

Figure 4.10  Spectrum profile. 
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Figure 4.11 shows a comparison of PCGROW predictions with the predictions 

of AFGROW for the crack closure model. The results show that both codes produce 

similar results for case 1 under constant amplitude cyclic stresses.  For cases 2 to 4, 

under variable amplitude cyclic stresses, the results show that PCGROW predictions 

are close to the predictions of AFGROW.  The difference is much due to the 

difference in computational algorithms used in those codes. 

Case 1
f=50 ; s =0; Smax=15 ksi; Smin = 6 ksi  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 2
f=50 ; s =40; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 3
f=50 ; s=2; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 4
f=1000 ; s=10; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 1
f=50 ; s =0; Smax=15 ksi; Smin = 6 ksi  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 2
f=50 ; s =40; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 3
f=50 ; s=2; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

Case 4
f=1000 ; s=10; S1=15 ksi; S2= 10 ksi; Smin = 6 ksi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10000 20000 30000 40000 50000 60000
Cycles

C
ra

ck
Le

ng
th

[in
ch

es
]

AFGROW
PCGROW

 

Figure 4.11  PCGROW and AFGROW comparison – Closure. 

A fifth spectrum considering three overloads and one underload was also 

analyzed (see Figure 4.12), using the Walker, Forman and Crack Closure models. 
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Figure 4.12  Overload and underload spectrum. 

The plot in Figure 4.13 indicates that the accuracy of PCGROW is 

comparable to the AFGROW predictions for overload and underload amplitudes.  The 

result from PCGROW is slightly more conservative than AFGROW. 
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Figure 4.13  Results under overload-underload amplitude. 
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The same analysis was carried out for the routines developed for no-

retardation effect, Walker and Forman models, and the results shown in Figures 4.14 

and 4.15 indicate that PCGROW predictions are very close to the predictions 

obtained from AFGROW. 
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Figure 4.14  PCGROW and AFGROW comparison - Walker. 
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Figure 4.15  PCGROW and AFGROW comparison – Forman. 

Generally in the deterministic validation effort it can be concluded that for the 

block and overload-underload cycling amplitudes, accuracy of PCGROW are 

comparable to the results obtained from the AFGROW code.  Therefore, it can be 

concluded that the results from the models used is this study are acceptable for further 

use in probabilistic analysis. 
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Chapter 5 Probabilistic Parameter Estimation of the 

Models. 

The objective of this research is to analyze the behavior of the damage crack 

growth under random loads and by considering material variability (aleatory 

uncertainty) and by considering modeling uncertainty (epistemic uncertainty).  For 

useful statistical inference, we are proposing a lifetime model, which consists of an 

underlying life distribution that describes the structure at different stress levels and a 

stress-life relationship that quantifies the manner in which the life distribution 

changes as a function of stress levels [79].  Figure 5.1 shows the elements of this 

approach. 
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Figure 5.1  Underlying life distribution and stress-life relationship at different stress 

levels. 
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The combination of both the life distribution and the stress-life model can be 

best seen in Figure 5.2 where a joint pdf is plotted against both time and stress.  

Figure 5.2  pdf vs. time and stress. [80]. 

The assumed underlying life cycle to failure distribution can be any 

distribution form, and the stress or damage life relationship can be any empirically 

derived relationships consistent with underlying physical principles describing 

degradation or damage.  The objective then becomes to obtain the parameters of the 

life distribution and the life-stress damage relationship [80]. 

This research deals with the probability of structural failure due to fatigue 

damage (i.e. fracture mechanics).  It models damage crack growth by assuming a 

lognormal life distribution, and using the empirical Inverse Power Law (IPL) to 
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depict the form of damage median life relationship.  Lognormal distribution and IPL 

relationships have shown to best fit the crack size (damage) and FLE (life expended).  

In the following paragraphs, we will explain the theory that supports this assumption. 

 

5.1 Lognormal Distribution as a Representation of Crack Size 

Distribution. 

One of the commonly used crack size distribution in fatigue is the lognormal

distribution [81]. This distribution is particularly appropriate when the cycle to 

failure or repair has cumulative contributing factors.  This property can be seen in 

several degradation processes associated with fatigue and creep failure mechanisms.  

The degradation in such cases is generally progressive. For example, a crack grows 

rapidly under high stress, because the stress intensity increases progressively (damage 

accumulation) as the crack grows [82].  The basic properties of lognormal distribution

were established long ago (Weber [83], Fechner [84], Galton [85], McAlister [86]),

and it is not difficult to characterize lognormal distributions mathematically. A

random variable, X, is said to be lognormally distributed if log(X) (i.e. natural or

based-10 logarithm) is normally distributed. Only positive values are possible for the

variable, and the distribution is skewed to the left. Two parameters are needed to

specify a lognormal distribution. Traditionally, the mean µ and the standard deviation

σ (or the variance σ2) of log(X) are used [87].

In the fatigue material field, Sinclair and Dolan [2] have shown that lognormal 

distribution is a good fit to model fatigue life.  Their experiment consisted of testing 
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174 identical, highly polished, unnotched, 7075 aluminum specimens under six 

different stress levels. Figures 5.3 and 5.4 show the results obtained.   

Figure 5.3  Lognormal fit for 7075 aluminum specimens under six different stress 

levels [2]. 

Figure 5.4  Lognormal fit for 7075 aluminum specimens [2]. 

In this study, to determine appropriateness of lognormal distribution, crack 

size data obtained from the Monte Carlo simulation at different FLE’s were analyzed 

using two statistical goodness of fit tests: Chi-Square and Anderson-Darling at 0.05 
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confidence level [88,89].  These statistics measure how good the distribution fits the 

input data and how confident one can be that the data was produced by the 

distribution function.  For each of these statistics, the smaller the value, the better the 

fit.  In this case, any fit that has a test value above the critical value is rejected, while 

fits with tests values below the critical value are accepted.  The critical value for any 

hypothesis test depends on the significance level at which the test is carried out. 

Table 5.1 shows that the best fit is the lognormal distribution, followed by the 

normal distribution.  Weibull distribution does not show good fit at all.  

Table 5.1  Goodness of fit results. 

Lognormal Normal Weibull 
FLE Statistics Chi-Sq Anderson-

Darling Chi-Sq Anderson
-Darling Chi-Sq Anderson-

Darling 
Test Value 11.600 0.246 18.320 0.499 16.240 0.768 

100 C.Val @ 
0.05 35.173 0.752 35.173 0.751 35.173 0.757 

Test Value 25.600 0.238 24.480 0.559 17.840 0.520 
112 C.Val @ 

0.05 35.173 0.752 35.173 0.751 35.173 0.757 

Test Value 18.160 1.109 44.880 1.898 18.240 0.495 
139 C.Val @ 

0.05 35.173 0.752 35.173 0.751 35.173 0.757 

Test Value 2.000 0.275 2.000 0.264 2.907 0.167 
152 C.Val @ 

0.05 18.307 0.752 18.307 0.746 18.307 0.757 

Test Value 5.856 0.219 11.300 0.747 6.082 0.227 
182 C.Val @ 

0.05 18.307 0.752 18.307 0.746 18.307 0.757 

Test Value 10.000 0.297 6.211 0.746 13.370 0.308 
213 C.Val @ 

0.05 14.067 0.752 14.067 0.736 14.067 0.757 

Test Value 4.000 0.344 5.600 0.725 4.400 0.334 
232 C.Val @ 

0.05 14.067 0.752 14.067 0.737 14.067 0.757 
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Moreover, one set from the above data is plotted on probability papers to 

confirm the results obtained from the goodness of fit tests.  Figure 5.5 confirms that 

lognormal distribution is a good fit for this dataset. 
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Figure 5.5  Lognormal and Weibull graphical comparison. 

5.2 Inverse Power Law Relationship (IPL) as a Representation of 

Life (life expended) and Crack Size. 

According to the physical relations discussed in Chapter 4, the IPL model is 

the appropriate form that can be used to represent crack growth as a function of time, 

cycle, or life-expended [90].  An IPL form showing two scalar quantities x and y can 

be written as 

y = axb (5.1) 

where a is the constant of proportionality and b is the exponent of the power law.  It 

can be displayed as a straight line on a log-log (natural logarithm is used in this study) 

relationship as,  

Ln(y) = bLn(x) + Ln(a) (5.2) 
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The special form of the IPL given by [91] is used in this research

nkV
VL 1)( = (5.3) 

where, L is a quantifiable index of life measure (in our case crack size).  May be 

hours as a function of “damage” index (in our case FLE) V. In (5.3) k and n are 

constant parameters of the model to be estimated. 

Where fatigue crack occurs, the crack growth rate (da/dN) has a IPL 

relationship such as Equation 2.7.  

Now that life distribution and damage-life (crack size vs. life expended) 

relationship have been defined, the relationship between these two will be discussed. 

 

5.3 IPL –Lognormal Relationship. 

The model for crack growth-damage is defined by Equations 4.6, 4.18 and 

4.21 in the following form [38] 

( ) /2)(1π

/21/21

mSFC

aa
ifN m

m
i

m
f

−∆

−
=

−−

(5.4) 

where Nif is the number of load cycles causing crack to grow from an initial crack size 

ai to final crack size af. According to Equation 5.4, naN 1/∝ . Using FLE to measure 

life expended, one can conclude that 

n
n

aFLE
N
a

N
NFLE 1/

f

1/

f

or  ∝∝∝ (5.5) 

where Nf is the number of cycles that the strain-based life model estimate for a crack 

to initiate. 
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To incorporate the IPL model (given by Equation 5.3) into the model for crack 

growth life, crack growth can be itself the representation of the characteristic life, and 

since na
V

1/1
∝ (as noted in Equation 5.5), one may conclude that 

V
aFLE n 11/ ∝∝ ,

where the life expended index V = (FLE)-1. 

In summary, if nV
a 1
∝ , the IPL model for the crack growth can be defined as: 

n-FLEk
FLEa

)(
1)1-( = (5.6) 

Moreover, the IPL model and lognormal relationship are used to calculate the 

joint prior distribution of crack size (a) and damage index (V) as 


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where, 

a’= Ln(a) (5.8) 

( ) ( )FLEnkVnka Ln)Ln(Ln)Ln(' +−=−−= (5.9) 

Accordingly, the joint prior lognormal model pdf for crack size “a” and life expended 

index FLE is 


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The parameters k, n, and σa may be estimated using one of several possible 

methods.  The data needed as inputs are the crack size, and the corresponding FLE 

values.  The parameters for the prior pdf are calculated using Equation 5.9.  It should 
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be noted that for an aircraft with a given value of FLE=j%, the prior crack size 

distribution can be obtained using the following equation:  




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σ
)Ln()Ln(

2
1exp

2πσ
1)|(

a

j%

a
j%

FLEnka
a

FLEaf (5.11) 

The joint distribution of the crack growth and the IPL model is shown in 

Figure 5.6, where a typical pdf of crack size is plotted and damage (FLE) is shown. 

Figure 5.6  A three dimensional representation of the pdf vs. crack size and FLE.

The next step is to choose one of the several methods to estimate the 

parameters of the pdf model described by (5.10).  Among these classical methods, we 

have the probability plotting, the least square, and the maximum likelihood estimation 

(MLE).  In this work, the MLE is the method chosen.  In addition, two relatively new 

techniques are also used.  These methodologies are the Genetics Algorithm (GA) 
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approach and Markov Chain Monte Carlo (MCMC), which is based on the 

subjectivist Bayesian estimation notion.  

 

5.4 Parameter Estimation Using MLE 

The most common inference technique used to estimate the "true value" of a 

parameter is the MLE, which uses values that maximize the likelihood (L) of a 

sample [92]. The likelihood of a sample of n observations x1, x2, ..., xn, is the joint 

probability function p(x1, x2, ..., xn) where x1, x2, ..., xn are discrete random variables. 

If x1, x2, ..., xn are continuous random variables, then the likelihood of a sample of n

observations, x1, x2, ..., xn, is the joint density function f(x1, x2, ..., xn).  If L is a 

function of the parameters θ1, θ2, … θk, the maximum likelihood estimators are the 

values of θ1, θ2, … θk that maximize L.

The IPL-lognormal log-likelihood function of Equation 5.10 is given by, 
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(5.12) 

 
where: 
 

• Fe is the number of groups of exact crack growth rate data points. 

• Ni is the number of crack growth rate data points in the ith crack growth 

rate data group. 

• σa is the standard deviation of the natural logarithm of the crack growth 

rate (unknown, the first of three parameters to be estimated). 
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• k is the IPL parameter (unknown, the second of three parameters to be 

estimated). 

• n is the second IPL power parameter (unknown, the third of three 

parameters to be estimated). 

• FLEi is the damage level of the ith group. 

• ai is the exact crack growth rate of the group. 

The solution for nKa ˆ,ˆ,ˆ 'σ will be found by solving 
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The MLE method has many advantages over other methods when dealing 

with large samples.  Some of those advantages are [ 94]: 

• It is asymptotically consistent, which means that as the sample size gets 

larger, the estimates converge to the right values.  
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• It is asymptotically efficient, which means that for large samples, it 

produces the most precise estimates.  

• It is asymptotically unbiased, which means that for large samples one 

expects to get the right value on average. The distribution of the estimates 

themselves is normal, if the sample is large enough, and this is the basis 

for the usual Fisher Matrix confidence bounds.  

 

5.5 Estimation of the Prior Distribution of Crack Size as Crack 

Grows for Bayesian Parameter Estimation 

The MLE estimation of the parameters of the model described in equation 

5.10 for each model are shown in Tables 5.2 - 5.4 at the FLE of interest.  These can 

be considered as the prior distribution for additional Bayesian analysis discussed 

later. 

Table 5.2  IPL-Lognormal mean parameters at the FLE showed – Based on Walker 

crack growth model. 

Aircraft Location FLEj% k n σa 'pa
1 351 262.070 3.781E+09 3.766 0.918 -1.083 
2 351 249.969 5.157E+12 5.275 0.799 -0.146 
3 351 266.774 3.192E+12 5.195 0.903 0.228 
4 351 167.107 4.594E+16 7.205 0.754 -1.487 
5 351 261.734 1.892E+12 5.084 0.913 0.035 
6 351 286.539 8.164E+10 4.428 0.970 -0.074 
7 351 184.818 1.646E+13 5.574 0.907 -1.339 
8 351 227.468 1.448E+13 5.540 0.900 -0.238 
9 351 282.209 1.016E+12 4.952 0.887 0.296 
10 351 231.367 2.608E+13 5.691 0.940 0.092 
11 351 260.811 7.284E+10 4.442 0.947 -0.300 
12 351 259.977 3.021E+11 4.701 0.917 -0.295 
13 351 261.406 4.371E+11 4.820 0.912 0.027 
14 351 257.347 3.044E+12 5.212 0.943 0.184 
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15 351 215.797 7.187E+12 5.404 0.929 -0.563 
16 351 204.943 4.033E+14 6.300 0.929 -0.098 
17 351 184.989 6.611E+17 7.883 0.885 0.118 
18 351 178.613 7.562E+12 5.404 0.997 -1.633 
19 351 186.131 1.354E+08 3.040 0.723 -2.834 
20 351 204.518 7.874E+12 5.396 0.939 -0.985 
21 351 208.503 2.116E+12 5.087 0.891 -1.215 
22 351 210.690 1.145E+11 4.447 0.999 -1.670 
23 351 217.473 7.853E+09 3.861 0.911 -2.005 
24 351 153.734 7.649E+06 2.400 0.280 -3.764 
25 351 166.920 3.037E+09 3.737 0.552 -2.712 

Table 5.3.  IPL-Lognormal mean parameters at the FLE showed – Based on Forman 

crack growth model. 

Aircraft Location FLEj% K n σa 'pa
1 351 262.070 7.401E+10 4.384 0.838 -0.615 
2 351 249.969 8.504E+13 5.869 0.785 0.329 
3 351 266.774 3.960E+14 6.200 0.762 1.021 
4 351 167.107 1.915E+18 7.999 0.747 -1.154 
5 351 261.734 1.497E+14 5.992 0.804 0.720 
6 351 286.539 1.326E+13 5.498 0.784 0.894 
7 351 184.818 2.347E+15 6.614 0.739 -0.870 
8 351 227.468 4.734E+15 6.749 0.745 0.531 
9 351 282.209 5.372E+13 5.789 0.769 1.051 
10 351 231.367 2.269E+16 7.107 0.721 1.029 
11 351 260.811 2.230E+13 5.634 0.773 0.611 
12 351 259.977 2.011E+13 5.561 0.794 0.289 
13 351 261.406 2.840E+13 5.693 0.700 0.711 
14 351 257.347 1.093E+14 5.968 0.757 0.797 
15 351 215.797 2.629E+15 6.637 0.809 0.166 
16 351 204.943 3.945E+17 7.755 0.806 0.760 
17 351 184.989 1.454E+21 9.501 0.754 0.872 
18 351 178.613 1.651E+15 6.527 0.915 -1.197 
19 351 186.131 3.758E+08 3.262 0.604 -2.699 
20 351 204.518 5.168E+14 6.282 0.837 -0.453 
21 351 208.503 9.709E+13 5.889 0.838 -0.758 
22 351 210.690 1.128E+12 4.953 0.902 -1.250 
23 351 217.473 2.189E+11 4.538 0.807 -1.686 
24 351 153.734 1.916E+07 2.600 0.174 -3.676 
25 351 166.920 3.349E+09 3.744 0.270 -2.771 
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Table 5.4  IPL-Lognormal mean parameters at the FLE showed – Based on Closure 

crack growth model. 

Aircraft Location FLEj% K n σa 'pa
1 351 262.070 2.422E+05 1.658 0.216 -3.165 
2 351 249.969 1.305E+11 4.391 0.795 -1.352 
3 351 266.774 1.548E+11 4.440 0.766 -0.962 
4 351 167.107 4.355E+08 3.246 0.196 -3.279 
5 351 261.734 1.460E+10 3.937 0.782 -1.483 
6 351 286.539 8.448E+09 3.818 0.783 -1.256 
7 351 184.818 2.276E+07 2.636 0.194 -3.184 
8 351 227.468 1.826E+11 4.492 0.718 -1.553 
9 351 282.209 1.160E+10 3.891 0.733 -1.217 
10 351 231.367 2.544E+11 4.581 0.729 -1.323 
11 351 260.811 1.269E+09 3.453 0.735 -1.752 
12 351 259.977 9.135E+09 3.841 0.786 -1.577 
13 351 261.406 7.683E+09 3.826 0.787 -1.469 
14 351 257.347 3.202E+10 4.124 0.743 -1.301 
15 351 215.797 8.439E+10 4.340 0.838 -1.835 
16 351 204.943 5.132E+11 4.757 0.687 -1.643 
17 351 184.989 1.235E+15 6.415 0.664 -1.264 
18 351 178.613 1.978E+07 2.603 0.221 -3.305 
19 351 186.131 1.724E+04 1.102 0.094 -3.995 
20 351 204.518 4.099E+10 4.171 0.723 -2.243 
21 351 208.503 9.723E+06 2.430 0.234 -3.113 
22 351 210.690 7.366E+05 1.883 0.180 -3.434 
23 351 217.473 7.311E+04 1.397 0.127 -3.684 
24 351 153.734 9.987E+03 0.970 0.054 -4.323 
25 351 166.920 6.769E+04 1.404 0.086 -3.940 
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5.6 Markov Chain Monte Carlo (MCMC) 

The Markov Chain Monte Carlo simulations started in earnest with the 1953 

publication of an article by Nicolas Metropolis et al. [95].  Since then simulations 

have become an indispensable tool in many branches of science.  They allow 

integration over the posterior distribution of model parameters to make inferences or 

predictions about model parameters.  The MCMC simulations are based on the 

Metropolis algorithm which makes use of the Gibb sampler [96]. 

Before introducing the Metropolis algorithm and the Gibbs sampler, a few 

introductory comments on the Monte Carlo integration must be made, because the 

Monte Carlo integration is used to approximate posterior (or marginal posterior) 

distributions required by a Bayesian analysis. 

5.6.1 Monte Carlo integration 

The original Monte Carlo approach was a method developed by the physicists 

to use random number generation to compute complex integrals [97].  This is done 

using the following, 

∫
b

a

dxxs )( (5.14)

If s(x) is defined as the product of a function f(x) and a probability density function 

p(x), over the interval (a, b), then 
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Hence that the integral can be expressed as an expectation of f(x) over the density 

p(x). Thus, if we draw a large number x1,…, xn of random variables from the density 

p(x), then 

[ ] ∑∫
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n
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ixp

b
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This is known as the Monte Carlo integration, and it can be used to 

approximate posterior distributions required for a Bayesian analysis. Consider the 

integral, I(y) = dxxpxiyf∫ )()|( , which we approximate by 
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where xi are draws from the density p(x). 

The Monte Carlo integration draws samples from the required distribution and 

then forms sample averages to approximate expectations. MCMC draws these 

samples by running a Markov chain for a long time.  Although the chains may be 

constructed using various methods, Gibbs sampling is one of the most popular 

methods (a special case of the Metropolis-Hastings method) [98].   

5.6.2 Metropolis-Hasting and Gibbs Sampling 

One problem with applying the Monte Carlo integration is in obtaining 

samples from complex pdf p(x). Mathematical physicists attempted to solve this 

problem by integrating very complex functions by random sampling [98,99,100].  

The result was the Metropolis-Hastings algorithm. A detailed review of this method is 

given by Chib and Greenberg [101]. 
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The Metropolis-Hasting algorithm can draw samples from any probability 

distribution p(x), requiring only that the density can be calculated at x. The algorithm 

generates a Markov chain in which each state xt depends only on the previous state xt-

1. The algorithm uses a proposal density q(x*,xt), which depends on the current state  

xt, to generate a new proposed sample x*. By using the following procedure, the 

algorithm generates a sequence of draws from this distribution: 

1. At t =1, fix x0.

2. Simulate state x* from density x*~ q(xt-1,·). 

3. Given the candidate point x∗, calculate the ratio of the density at the candidate 

(x∗) and current (xt-1) points, 


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4. Decide acceptance.  

If u ≤ α(xt-1,x*), then accept transition: xt = x*

else u > α(xt-1,x*), then stay in the present state xt = xt-1.

5. t = t +1, go to step 2.  

This generates a Markov chain (x0, x1,…, xq,...), as the transition probabilities 

from xt to xt+1 depends only on xt. Following a sufficient burn-in period (of, say, q

steps), the chain approaches its stationary distribution and, samples from the vector 

(xq+1, …,xq+n) are samples from p(x). 

This is the Metropolis-Hastings algorithm. By assuming that the proposal 

distribution is symmetric, i.e., q(x,y) = q(y,x), the original Metropolis algorithm may 

be recovered. 
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The Gibbs sampler is a special case of Metropolis-Hastings sampling where 

the acceptance probability is always 1(i.e. α = 1) [102]. The task remains to specify 

how to construct a Markov Chain whose values converge to the target distribution.  

The key to the Gibbs sampler is that one considers only univariate conditional 

distributions (the distribution when all of the random variables but one is assigned 

fixed values). Such conditional distributions are far easier to simulate than complex 

joint distributions and usually have simple forms (often being normal, inverse χ2, or 

other common prior distributions). Thus, one simulates nb random variables 

sequentially from the nb univariate conditionals rather than generating a single nb-

dimensional vector in a single pass using the full joint distribution. 

To introduce the Gibbs sampler, consider a bivariate random variable (x,y), 

and suppose we wish to compute one or both marginals, p(x) and p(y). The idea 

behind the sampler is that it is far easier to consider a sequence of conditional 

distributions, p(x|y) and p(y|x), than it is to obtain the marginal by integration of the 

joint density p(x,y), e.g., ∫= dyyxpxp ),()( . The sampler starts with an initial value 

y0 for y and obtains x0 by generating a random variable from the conditional 

distribution p(x|y = y0). The sampler then uses x0 to generate a new value of y1,

drawing from the conditional distribution based on the value x0, p(y|x = x0). The 

sampler proceeds as follows  

xi ~ p(x|y = yi-1) and yi ~ p(y|x = xi)

Repeating this process r times, generates a Gibbs sequence of length q, where 

a subset of points (xj, yj) for 1≤ j ≤ m < q are taken as our simulated draws from the 

full joint distribution. (One iteration of all the univariate distributions is often called a 
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scan of the sampler. To obtain the desired total of m sample points (here each “point” 

on the sampler is a vector of the two parameters), one samples the chain (i) after a 

sufficient burn-in to remove the effects of the initial sampling values and (ii) at set 

time points (say every nb samples) following the burn-in. The Gibbs sequence 

converges to a stationary (equilibrium) distribution that is independent of the starting 

values.  By construction this stationary distribution is the target distribution being 

simulated [103] 

For evaluating the IPL-lognormal parameters, Equation 5.12 is programmed 

in the code WinBUGS [104], which is a free software package that implements Gibbs 

sampling under a wide variety of conditions. 

5.6.2.1 Burn-in period 

 
A key issue in the successful implementation of the MCMC sampler is the 

number of runs (steps) taken until the chain approaches stationarity (the length of the 

burn-in period).  Typically the first 1000 to 5000 elements are thrown out.  A poor 

choice of starting values and/or proposal distribution can greatly increase the required 

burn-in time, and an area of much current research is whether an optimal starting 

point and proposal distribution can be found. One suggestion for a starting value is to 

start the chain as close to the center of the distribution as possible, for example taking 

a value close to the distribution’s mode (such as using an approximate MLE as the 

starting value) [97]. 
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5.7 Genetic Algorithm (GA) 

A revolution in biological thought, and indeed in human philosophy, began 

when Charles Darwin and Alfred Russel Wallace presented their evidence for the 

theory of evolution before the Linnean Society of London on July 1, 1858. Classical 

Darwinian evolutionary theory, combined with the selectionism of Weismann and the 

genetics of Mendel, has now become a rather universally accepted set of arguments 

known as the neo-Darwinian paradigm [105].  

This paradigm asserts that the history of the vast majority of life is fully 

accounted for by only a very few statistical processes acting on and within 

populations and species.  These processes are reproduction, mutation, competition, 

and selection.  Reproduction is an obvious property of all life; mutation is guaranteed 

in any system that continuously reproduces itself in a positively entropic universe.  

Competition and selection become the inescapable consequences of any expanding 

population constrained to a finite arena.  Evolution is then the result of these 

fundamental, interacting, stochastic processes as they act on populations, generation 

after generation [105].  

The idea of using evolutionary computation as a problem solving technique 

has existed since the 1950s. Since then, four major approaches have evolved: 

Evolutionary Programming, Evolutionary Strategies, Genetic Algorithms and Genetic 

Programming.  All of these are algorithms that have been inspired by the notions of 

evolution and survival in nature [106]. In this research, GA is used to estimate the 

parameters of the IPL-lognormal model. 
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The GA was first introduced by Holland [107]  to find approximate solutions 

to optimization problems. This methodology is designed to mimic the natural genetic 

behaviors by incorporating specific mathematical operators to replicate processes 

such as crossover, mutation, and recombination. The generic approach to GA is 

implemented as follows: 

1. The problem to be addressed is defined as an objective function that indicates 

the fitness of any potential solution.   

2. A population of candidate solutions (in our case parameters of the IPL-

lognormal model) is initialized.  Typically, each trial is coded as a vector 

x,(chromosome) with its elements (genes) and varying values at specific 

positions (alleles). 

3. Each chromosome in the population is decoded into a form appropriate for 

evaluation and is then assigned a fitness score, according to the objective. 

4. A probability of reproduction is assigned to each chromosome.  The 

likelihood of being selected is proportional to its fitness relative to the other 

chromosomes in the population.  Techniques such as the roulette wheel, 

tournament, and stochastic universal sampling are used to select the parents.  

a. Roulette wheel: In order to reproduce offspring, parents need to be 

selected.  The most commonly used methods are roulette wheel selection 

and rank selection.  The key for roulette wheel selection is fitness.  The 

fitter the chromosomes are, the more chances they will have to be selected.  

Imagine a roulette where each chromosome is placed in its own section 
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according to its fitness function.  The fittest one gets the largest area, 

while the least fit gets the smallest area [108]. 

b. Tournament: In tournament, the selection of individuals is randomly 

chosen from the population. They may be drawn from the population with 

or without replacement. These individuals take part in a tournament 

whereby the winning individual is determined depending on its fitness 

value. The individual having the highest fitness value is usually chosen 

deterministically although a stochastic selection may occasionally be 

made.  In both cases only the winner is inserted into the next population 

and the process is repeated n times to obtain a new population [109]. 

c. Stochastic universal sampling (SUS): This is a simple, single-phase 

sampling algorithm.  This method provides zero bias and minimum

spread. The individuals are mapped to contiguous segments of a line, such

that each individual's segment is equal in size to its fitness exactly as in

roulette-wheel selection. Hence, SUS has minimal spread. Furthermore,

in a randomly ordered population, an individual’s selection probability is 

based solely on the initial spin and the magnitude of his expected value.  

Hence, SUS has zero bias [110]. 

5. A new population of chromosomes is generated according to the assigned 

probabilities of reproduction.  Operators such as discrete recombination, 

intermediate recombination, extended line recombination and mutation are 

used to generate the new chromosome or offspring.  These operators work in 

the following way: 
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a. Discrete recombination: This operator performs an exchange of variable 

values between the individuals [111]. For each variable, the parent who 

contributes its variable to the offspring is chosen randomly with equal 

probability.  Typical values for the probabilities of recombination are 0.6 

[112], 0.75 to 0.95 [113] and 0.95 [114].  Discrete recombination can be 

used with any kind of variables (binary, real or symbols).  

b. Intermediate recombination: Here the variable values of the offspring are 

chosen somewhere around and between the variable values of the parents 

[109]. Offspring are produced according to the rule:   

Offspring = parent 1+κ (parent 2 - parent 1), 

where κ is a scaling factor chosen uniformly at random over an interval [-

d, 1 + d]. In intermediate recombination d = 0, for extended intermediate 

recombination d > 0. A good choice is d = 0.25. Each variable in the 

offspring is the result of combining the variables according to the above 

expression with a new α chosen for each variable.  It is only applicable to 

real variables. 

c. Extended line recombination: It generates offspring in a direction defined 

by the parents (line recombination). It tests more often outside the area 

defined by the parents and in the direction of parent 1. The point for the 

offspring is defined by features of the mutation operator of the Breeder 

GA [113]. It is only applicable to real variables.  

d. Mutation: This operator is applied after recombination, and plays an 

important role in genetic algorithm, because it helps to prevent the 
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problems of premature convergence associated with the repeated use of 

crossover. Offspring variables are mutated by the addition of small 

random values (size of the mutation step) with low probability [116].  

Typical values for the probabilities of mutation are 0.001 [110], 0.005 to 

0.01 [113] and 0.01 [114].  Mutation is considered a background operator, 

ensuring that the crossover has a full range of alleles and that the adaptive 

plan is not trapped on local optima.  Typically, a point is considered 

locally optima if no improvement can be made by searching in a nonempty 

neighborhood around that point.  This may not be the case for genetic 

algorithms relying solely on crossover. The sequence of trials may 

stagnate at any homogeneous collection of points.  Under such conditions, 

the point is locally optima only because the search algorithm is incapable 

of proceeding further [105]. 

6. The process stops if a suitable solution has been achieved or if the computer 

time has expired.  Otherwise, the process proceeds to step three, where the 

new chromosomes are scored. 

A numerical function calculating the parameters of the IPL-lognormal model 

was developed on MATLAB® and the Genetic and Evolutionary Algorithm Toolbox 

created for use with MATLAB® [116].  Figure 5.7 shows the structure of the 

algorithm. 
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Figure 5.7  Genetic Algorithm structure. 

The assumptions, values and functions used in the calculations are explained 

in the following paragraphs: 

• Coding: A real variable coding is used in the algorithms.  The use of 

binary strings is not universally accepted in the GA literature.  

Michalewicz [117] indicated that for real-valued numerical optimization 

problems, floating-point representations outperform binary representation, 

because they are more consistent, more precise, and more quickly 

executed. 

• Generations and Population size: These two variables are tightly 

intertwined in the GA solutions.  A big population size will increase the 

computational time for each generation.  As part of this research, different 
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population sizes and generation numbers were tested.   A size population 

of 60 and generation number of 250 showed the best results. 

• Parent Selection technique:  In this research we used Roulette wheel, 

Tournament, and Stochastic Universal Sampling functions. 

• Recombination operator: A probability of 0.6 was used in the routine for 

the operators: Discrete, Intermediate and Extended line recombination. 

• Mutation operator: In this case, we use the mutation function for real 

values.  

• Objective function: In this case, the objective function is the likelihood 

function of the IPL-Lognormal model. 

The likelihood equation of the IPL-lognormal model is obtained through 

Equation 5.12, which is implemented in the GA routine to estimate the parameters k,

n and σa such that Λ becomes maximum in Equation 5.12. Ten data sets were 

analyzed using all parent selection techniques, and genetic operators to find the best 

combination that maximize the likelihood.  From this analysis, it was observed that 

the three parent selection and the discrete recombination operator showed the best 

results.  Figure 5.8 and Figure 5.9 illustrate how the likelihood equation converges to 

the optimum value in two examples. 
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Figure 5.8  Likelihood and average likelihood for aircraft 2. 

 

Figure 5.9 Likelihood and average likelihood for aircraft 18. 

Table 5.4 shows a comparison of the mean values of parameters estimated for 

10 aircrafts using the three methodologies discussed.  The MLE and MCMC methods 

produce very close estimates; however GA results are closed but somewhat different.  

Determining the best results depends on the characteristics of the data and the 

application in which the parameters will be used. 
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As was mentioned previously, several methods may be used to estimate the 

model’s parameters (MLE, MCMC, GA, etc). Of these, the MLE method is preferred 

because; it is very precise when dealing with large amount of data, which is the case 

in this research (> 600 data points).  One of the weaknesses of the MCMC method is 

the starting values for the empirical distribution, and to solve this, we recommend that 

values from a previous MLE analysis be used.  Although GA has proven to be an 

efficient and powerful problem-solving strategy, it also has certain limitations. If the 

population size is too small, the genetic algorithm may not explore enough of the 

solution space to consistently find good solutions. If the rate of genetic change is too 

high or the parent selection is chosen poorly, the results may be poor. 

 

Table 5.5  IPL-Lognormal mean parameters values using three estimation 
methodologies. 

MLE MCMC GA 
K n σa K n σa K n σa

1 2.422E+05 1.658 0.216 2.374E+05 1.654 0.216 3.001E+05 1.704 0.341
2 1.305E+11 4.391 0.795 1.270E+11 4.385 0.796 2.467E+11 4.520 0.759
3 1.548E+11 4.440 0.766 1.574E+11 4.444 0.767 3.285E+11 4.583 0.795
4 4.355E+08 3.246 0.196 4.308E+08 3.243 0.197 3.331E+08 3.191 0.198
7 2.276E+07 2.636 0.194 2.162E+07 2.625 0.194 2.501E+07 2.654 0.228
13 7.683E+09 3.826 0.787 7.541E+09 3.822 0.788 6.860E+09 3.802 0.732
14 3.202E+10 4.124 0.743 3.319E+10 4.131 0.744 2.801E+10 4.097 0.740
18 1.978E+07 2.603 0.221 1.958E+07 2.600 0.221 2.504E+07 2.645 0.244
20 4.099E+10 4.171 0.723 4.244E+10 4.178 0.723 4.088E+10 4.171 0.727
25 6.769E+04 1.404 0.086 6.777E+04 1.404 0.086 6.312E+04 1.389 0.095

Because of this, MLE is the preferred technique to estimate the model 

parameters (in the prior joint density function) in this research.  The results are 
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considered reasonable because of the large size of the sample and of the small amount 

of time and computational effort that it takes to do the calculation [118]. 

Accordingly, for a given aircraft with FLE = j%, the prior pdf of crack size 

can be determined by Equation 5.11.  By combining the evidence of cracks for an 

aircraft at FLE = j% with this prior pdf, Bayesian updating mathematics can be used 

to generate the posterior distribution.  This procedure is discussed in the Chapter 6. 

 



117 
 

Chapter 6 Bayesian Updating Process of the Crack Size 

Distribution 

Classical inferential models do not permit the introduction of prior knowledge 

into the calculations. For the rigor of the scientific method, this is an appropriate response 

to prevent the introduction of extraneous data that might skew the experimental results. 

However, there are times when the use of prior knowledge would be a useful contribution 

to the evaluation process [119]. 

Bayesian inference is proposed as a model for updating probabilities via Bayes' 

Theorem, in which one starts with an initial set of beliefs about the relative plausibility of 

various hypotheses, collects new information, and adjusts the original set of beliefs in 

light of the new information to produce a more refined set of beliefs.  

Bayes’ Theorem has proven to be a coherent method of mathematically 

expressing a decrease in uncertainty gained by an increase in knowledge [120]. 

Bayes' Theorem is mathematically expressed as: 

)(
)|(()()|( 00

0 EP
HEPHPEHP ⋅

= (6.1) 

 where H0 represents a hypothesis, called a null hypothesis that was inferred before new 

evidence E, became available; P(H0) is called the prior probability of H0; P(E|H0) is 

called the conditional probability of seeing the evidence E given that the hypothesis H0 is 

true. It is also called the likelihood function; P(E) is the probability of witnessing the new 

evidence E under all mutually exclusive hypotheses. It is also called the marginal 

probability and can be calculated as the sum of the product of all probabilities of 
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mutually exclusive hypotheses and corresponding conditional probabilities; P(H0|E) is 

called the posterior probability of H0 given E.

It is important to note that the factor P(E | H0) / P(E) represents the impact that the 

evidence has on the belief in the hypothesis. Multiplying the prior probability of the 

hypothesis by this factor would result in a large posterior probability of the hypothesis 

given the evidence. Bayes' theorem therefore measures how much new evidence should 

alter a belief in a hypothesis [121]. 

In this research, the prior knowledge about the initial crack size at 100% FLE is 

represented by a probability density function in Chapter 3.  If further inspection is carried 

out on the aircrafts, and new evidence of cracks obtained, the Bayes’ theorem will allow 

us to calculate a new pdf that reflects this update of knowledge. 

 

6.1 Bayesian Updating of Crack Size Distribution 

 
The Updating of the prior initial crack size pdf information is carried out using 

crack evidence from the inspection of the aircrafts coupled with a proper prior 

distribution of such cracks. The updating process is based on the Bayesian approach, 

which provides a mechanism of updating one’s degree of belief about the crack size in 

light of any new crack evidence data such as inspection results, according to, 

)()|(1)|( aFaEL
h

Ea =π (6.2) 

and 

∫== aaFaELELh )d()|()( (6.3) 
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where π(a|E) = posterior updated distribution of crack size, a, given evidence E, L(E|a) =

likelihood function or probability of observing evidence E given a, and  F(a) = prior 

probability distribution of a.

The calculations are performed assuming non-conjugate lognormal prior 

distribution of crack size at FLE=j%, which is defined by [122] 
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where λ0 and δ0 are the parameters of the prior distribution  

Assume a lognormal likelihood function (L): 
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λ∗, and δ∗ are parameters of the likelihood distribution and, a* is the distribution of 

evidence (i.e. crack sizes observed). 

Using the Bayes Theorem, posterior distribution is:  
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Posterior distribution is also lognormal: 
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In this particular case (i.e. lognormal prior and likelihood), λ' and δ’, parameters of the 

posterior distribution function are calculated from [123]: 
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where 

2
*

2
0

2
*

0 δδ
δ
+

=w 2
*

2
0

2
0

1 δδ
δ
+

=w and w0 + w1 =1  (6.10) 

Accordingly, for a given aircraft with FLE = j%, the prior pdf of crack size can be 

described by Equation 5.11.  Through Bayesian mathematics, the prior pdf is updated 

with the evidence of cracks for an aircraft at FLE = j%, resulting in the posterior 

distribution for crack sizes at FLE = j%. Consequently, the same updated parameters in 

Equation 5.11 are applicable for updated parameters to Equation 5.10. Figure 6.1 

illustrates this process. 
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Figure 6.1  Updating process at the FLE of interest. 

The parameters of the prior distribution are calculated from Equation 5.13 and are 

tabulated in Tables 5.1 - 5.3.  The likelihood distribution function is calculated using the 

methodology developed by Groen [123], which is based on the sequential conjugate of 

the lognormal.  This methodology uses the evidence, assuming that each value is an 

observation to be used in characterizing the variability in the parameter of interest.  Such 
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variability is represented by a range of values around the observations (evidence) made.  

This range, which is considered the uncertainty of the inspection findings, is calculated 

through an Error Factor (EF).  To deal with this type of data, the methodology has two 

probability distribution options: normal, for evidence in the form of an observation and 

additive error factor, and lognormal, for evidence in the form of an observation and 

multiplicative error factor.  

In this research, a lognormal pdf is used, according to, 

Upper bound = median � EF. 

Lower bound = median / EF. 

As the crack sizes are defined in the inspection data report (evidence)  as: XS = 

0.04”; S = 0.09”, L = 0.17”; XL = 0.35”, then assuming these are mean values, the 

following EF's are assigned to cover the possible ranges of crack size EFXS = 1.5; EFS =

1.5, EFL = 1.25; EFXL = 1.6. Figure 6.2 shows the ranges assigned to each crack size bin 

category. 
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Figure 6.2  Crack size ranges. 

Once the evidence is introduced, in combination with the prior pdf model 

calculated in Chapter 5, the posterior (updated) distribution of crack size is obtained 
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through the conjugate of the lognormal distribution. Table 6.1 shows the updated values 

for the three models, and Figure 6.3 displays the results. 

 

Table 6.1  Updated Lognormal Parameters for the Three Crack Growth models – 

Conjugate. 

Walker Forman Closure 
µup σup µupLn µup σup µupLn µup σup µupLn 

1 0.064 0.171 -2.754 0.066 0.171 -2.723 0.052 0.136 -2.953 
2 0.042 0.087 -3.182 0.042 0.087 -3.175 0.041 0.087 -3.197 
3 0.045 0.171 -3.094 0.049 0.170 -3.008 0.045 0.170 -3.108 
4 0.091 0.093 -2.394 0.092 0.093 -2.389 0.077 0.084 -2.568 
5 0.043 0.141 -3.142 0.045 0.140 -3.099 0.042 0.140 -3.163 
6 0.104 0.239 -2.266 0.121 0.235 -2.111 0.100 0.235 -2.305 
7 0.041 0.122 -3.184 0.043 0.122 -3.156 0.040 0.104 -3.209 
8 0.164 0.107 -1.806 0.169 0.107 -1.780 0.162 0.107 -1.823 
9 0.052 0.238 -2.966 0.060 0.235 -2.822 0.049 0.234 -3.018 

10 0.123 0.126 -2.098 0.130 0.126 -2.043 0.121 0.126 -2.114 
11 0.373 0.274 -0.987 0.427 0.268 -0.850 0.319 0.266 -1.142 
12 0.057 0.110 -2.858 0.059 0.109 -2.834 0.057 0.109 -2.868 
13 0.086 0.105 -2.450 0.090 0.104 -2.412 0.085 0.104 -2.465 
14 0.040 0.038 -3.214 0.040 0.038 -3.209 0.040 0.038 -3.214 
15 0.041 0.100 -3.187 0.042 0.100 -3.168 0.041 0.100 -3.199 
16 0.042 0.100 -3.182 0.043 0.100 -3.158 0.041 0.100 -3.187 
17 0.049 0.109 -3.008 0.051 0.109 -2.974 0.049 0.109 -3.008 
18 0.041 0.141 -3.187 0.042 0.141 -3.170 0.039 0.120 -3.244 
19 0.040 0.092 -3.211 0.041 0.092 -3.206 0.027 0.066 -3.605 
20 0.064 0.082 -2.755 0.064 0.082 -2.746 0.063 0.082 -2.761 
21 0.094 0.171 -2.364 0.096 0.171 -2.339 0.070 0.140 -2.659 
22 0.094 0.239 -2.366 0.098 0.238 -2.328 0.046 0.145 -3.077 
23 0.091 0.067 -2.395 0.091 0.067 -2.393 0.069 0.059 -2.675 
24 0.038 0.083 -3.268 0.037 0.078 -3.310 0.018 0.046 -4.017 
25 0.125 0.092 -2.079 0.118 0.088 -2.137 0.046 0.063 -3.073 
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Figure 6.3  Bayesian Updating Results. 

If one uses the estimated parameters and the mean of the posterior distribution at 

FLE = j%, a line parallel to the “prior” line shown in Figure 6.1 describes the posterior 

mean crack size growth as a function of FLE.

A comparison of the results was carried out using the MCMC methodology 

discussed in Chapter 5.  The Bayesian approach based on the MCMC methodology 

requires a number of components: the likelihood, the data or evidence and parameter 

distributions. The methodology estimate the posterior parameter distribution p(θ|D)

implied by the observed data D. A prior distribution p(θ) represents any known 

information regarding the parameters before D is observed; in this case, a non-

informative prior is used to assign equal probability density to all combinations of 

parameter values k, n, and σ. The likelihood distribution is represented by the Equation 

5.12.  With an increasing length of sequence data, p(θ|D) approaches a normal 

distribution centered on the MLE of the parameters, independently of the prior 

distribution. 
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A Markov chain with stationary distribution p(θ|D) is used to generate the sample 

( θ1, θ2, …, θi).  At each step of this chain, we update a single parameter θi. After a large 

number of updates, the sample of realizations is effectively drawn from p(θ|D). 

Once the parameters, k, n, σ are obtained, the lognormal distribution of crack size 

at FLEj% for each aircraft is calculated using the following equations. 
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Table 6.2 shows the results of the updating the 25 aircrafts. 

Table 6.2  Lognormal distribution parameters at FLEj% for each aircraft – MCMC. 

Aircraft µup σup µupLn 
1 0.059 0.566 -2.818 
2 0.039 0.202 -3.222 
3 0.043 1.057 -3.138 
4 0.090 0.247 -2.403 
5 0.040 1.548 -3.220 
6 0.089 0.536 -2.413 
7 0.039 1.290 -3.220 
8 0.178 0.433 -1.721 
9 0.040 0.533 -3.215 
10 0.125 0.545 -2.078 
11 0.376 0.507 -0.978 
12 0.055 0.554 -2.887 
13 0.093 0.392 -2.375 
14 0.039 0.026 -3.220 
15 0.040 0.334 -3.217 
16 0.039 0.322 -3.222 
17 0.053 0.504 -2.927 
18 0.039 1.550 -3.222 
19 0.040 0.263 -3.218 
20 0.089 0.314 -2.413 
21 0.170 1.056 -1.772 
22 0.173 0.537 -1.751 
23 0.066 0.315 -2.716 
24 0.040 0.207 -3.220 
25 0.145 0.335 -1.929 
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6.2 Posterior pdf for FLE = 100%  

This step is carried out in order to improve the estimation of the initial crack 

distribution at 100% FLE by taking into account the evidence observed.  It consists of 

first updating the conditional pdf of the prior crack size (at FLE = j%) and extrapolating 

the resulting posterior pdf (at FLE = j%) back to FLE = 100%, thus calculating the 

posterior crack size distribution at FLE = 100%.  However, it is important to note that 

multiple combinations of the initial model parameters and initial crack size  need to be 

determined in order  to reach the mean of posterior distribution where FLE = j%.  Figure 

6.4 illustrates the process used to obtain these combinations.  Initial random values of the 

parameters and initial crack size are sampled from their distributions and used in the 

crack growth model.  If the result is equal or within the range of the target resulting from 

the updating process, the initial values are considered as a combination that meet the 

requirement, and a new combination is tested. 
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Figure 6.4  Updating Prior Crack Size Distributions. 

 

Figure 6.5 shows a simplified algorithm used in the PCGROW code for the 

Walker model.  The same algorithm was used for the Forman and Closure models. It is 

important to recall that a table lockup was used for the crack closure model; therefore, 

only three parameters are updated for this model. 
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Figure 6.5  Algorithm used in PCGROW code for the parameters updating. 

From the Monte Carlo Simulations, any number of parameter estimates and initial 

crack size may be calculated.  From these trial estimates, a distribution for each 

parameter and initial crack size can be estimated.  Applying the same methodology for 

the rest of the aircrafts, we will obtain 25 pdfs for each parameter.  See Figure 6.6. 
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Updated m distribution Updated C1 distribution Updated γ distributionUpdated a0 distribution at 100%FLE Updated m distributionUpdated m distribution Updated C1 distributionUpdated C1 distribution Updated γ distributionUpdated γ distributionUpdated a0 distribution at 100%FLEUpdated a0 distribution at 100%FLE

 

Figure 6.6  Updated distributions at 100% FLE.

To obtain the combined updated initial crack length distribution, a linear 

arithmetic weighted approach is used, by assigning equal weight to each posterior initial 

crack size probability. As such  

w = w1�p1(∆a)+ w2�p2(∆a)+ …. wn�pn(∆a) (6.12) 

where w is the weight (wi = 1/na) and p(∆a) is the probability that a random initial crack 

will have a size in the interval ∆a, and na is the number of aircrafts analyzed (in this case 

na=25).   

The following paragraphs show the results for the initial crack size and the model 

parameters after updating at 100% FLE.

6.2.1 Posterior Initial Crack Size pdf for FLE = 100%

Each aircraft analyzed yields a posterior crack size distribution corresponding to 

FLE = 100%.  Hence, for the 25 aircraft studied, the analysis estimates 25 corresponding 

posterior crack size distributions at FLE = 100%.  Combination of these 25 posterior 

distributions leads to an estimate of “fleet” crack size distribution at FLE = 100%.  This 

distribution may be used for any aircraft in the fleet. 

Figures 6.8- 6.10 show the combined pdf for the 25 aircraft according to Equation 
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6.9. Because this pdf is multimodal, assuming that the resulting combined distribution 

should be smooth (i.e., only one underlying failure mechanism of strain-caused crack 

imitation is active), the combined distribution is “smoothed” by fitting a lognormal 

distribution developed by way of moment matching, which is a technique for 

constructing estimators of the parameters that is based on matching the sample moments 

with the corresponding distribution moments (see Figure 6.7)[124 ]. 
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Figure 6.7  Method of moments. 
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Initial Crack Distribution - Walker

 

Figure 6.8  Prior & Posterior crack size pdf, FLE=100% - Walker model. 

Initial Crack Distribution - FormanInitial Crack Distribution - Forman

 

Figure 6.9  Prior & Posterior crack size pdf, FLE=100% - Forman model. 
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Initial Crack Distribution - ClosureInitial Crack Distribution - Closure

 

Figure 6.10  Prior & Posterior crack size pdf, FLE=100% - Closure model. 

 

Figures 6.11 - 6.13 show the resulting smooth lognormal pdf of the initial crack 

size distribution for the aircraft population, based on the 25 sample data points for each 

model. 

Initial Crack Distribution - WalkerInitial Crack Distribution - Walker

 

Figure 6.11  Posterior versus smooth crack size pdf, FLE = 100% - Walker model 
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Initial Crack Distribution - FormanInitial Crack Distribution - Forman

.

Figure 6.12  Posterior versus smooth crack size pdf, FLE = 100% - Forman model 

Initial Crack Distribution - ClosureInitial Crack Distribution - Closure

 

Figure 6.13 Posterior versus smooth crack size pdf, FLE = 100% - Closure model. 
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6.2.2 Posterior Model Parameters  

Like the initial crack size, a combination of the 25 posterior distributions of 

parameters leads to a new distribution, which can be taken as representative of the fleet 

initial crack size.  As pdf mentioned in section 6.2, from the Monte Carlo results, a 

distribution for each parameter can be estimated.  Applying the same methodology for the 

rest of the aircraft, we will obtain 25 pdfs for each parameter.  Figures 6.14 - 6.16 show 

the pdfs for the 25 aircrafts and the prior and posterior pdf at 100 % FLE for the Walker 

model, Figures 6.16 - 6.18 for the Forman model, and Figures 6.20 - 6.22 for the Closure 

model.   

 

m1 parameter distribution m1 parameter distributionm1 parameter distributionm1 parameter distribution m1 parameter distributionm1 parameter distribution

 

Figure 6.14  m1 parameter. pdf, FLE=100%. 
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C1 parameter distribution C1 parameter distributionC1 parameter distributionC1 parameter distribution C1 parameter distributionC1 parameter distribution

 

Figure 6.15  *
1C parameter pdf, FLE=100%. 

γ parameter distribution γ parameter distributionγ parameter distributionγ parameter distribution γ parameter distributionγ parameter distribution

 

Figure 6.16  γ parameter. pdf, FLE=100%. 
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m2 parameter distribution m2 parameter distributionm2 parameter distributionm2 parameter distribution m2 parameter distributionm2 parameter distribution

 

Figure 6.17  m2 parameter. pdf, FLE=100%. 

 

C2 parameter distribution C2 parameter distributionC2 parameter distributionC2 parameter distribution C2 parameter distributionC2 parameter distribution

 
Figure 6.18 C2 parameter. pdf, FLE=100%. 
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KC parameter distribution KC parameter distributionKC parameter distributionKC parameter distribution KC parameter distributionKC parameter distribution

 
Figure 6.19  KC parameter. pdf, FLE=100%. 

 

Sy parameter distribution Sy parameter distributionSy parameter distributionSy parameter distribution Sy parameter distributionSy parameter distribution

 
Figure 6.20 Sy parameter. pdf, FLE=100%. 
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Sult parameter distribution Sult parameter distributionSult parameter distributionSult parameter distribution Sult parameter distributionSult parameter distribution

 
Figure 6.21  Sult parameter. pdf, FLE=100%. 

E parameter distribution E parameter distributionE parameter distributionE parameter distribution E parameter distributionE parameter distribution

 
Figure 6.22  E parameter. pdf, FLE=100%. 

If the posterior pdfs are multimodal, then keeping the same assumption as the 

initial crack size, the resulting combined distribution should be “smoothed” by fitting a 

normal distribution (developed by way of moment matching).  Table 6.3 shows the prior 

and posterior values. 
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Table 6.3  Model parameters updating. 

Prior Posterior 
Parameter 

mean SD CV mean SD CV 
m1 3.70 0.19 5.00% 3.69 0.14 3.73% 

*
1C 1.51E-09 1.06E-10 7.00% 1.53E-09 1.03E-10 6.71% 
γ 0.55 0.04 7.00% 0.54 0.04 6.73% 

m2 3.21 0.16 5.00% 3.19 0.14 4.39% 
C2 2.56E-07 1.79E-08 7.00% 2.54E-07 1.66E-08 6.54% 
Kc 70.00 4.9 7.00% 70.50 5.10 7.23% 
Sy 72.00 5.04 7.00% 71.60 5.01 7.00% 
Sult 85.00 4.25 5.00% 85.30 4.08 4.78% 
E 10000.00 500.00 5.00% 10030.00 506.00 5.04% 

6.2.3 Posterior Initial Crack Size pdf for FLE = 100% - MCMC 

The same methodology used in section 6.2.1 was applied to obtain the initial 

crack size through the use of the MCMC approach.  Figures 6.23 - 6.25 show the 

resulting smooth pdf of the initial crack size distribution for the aircraft population, based 

on the 25 sample data points for each model. 
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Initial Crack Distribution – Walker/ MCMCInitial Crack Distribution – Walker/ MCMC

 
Figure 6.23  Posterior versus smooth crack size pdf, FLE = 100% - Walker model, 

MCMC approach. 

Initial Crack Distribution – Forman/MCMCInitial Crack Distribution – Forman/MCMC

 
Figure 6.24  Posterior versus smooth crack size pdf, FLE = 100% - Forman model, 

MCMC approach. 
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Initial Crack Distribution – Closure/MCMCInitial Crack Distribution – Closure/MCMC

 
Figure 6.25  Posterior versus smooth crack size pdf, FLE = 100% - Closure model, 

MCMC approach. 

The differences between Conjugate and MCMC approach will be discussed in 

Chapter 7.  

 

6.3 Forecasting Probability of Failure for a Specific FLEj% 

Given that the updated combined initial crack size distribution represents the total 

population of the aircrafts, and assuming no information exits other than the loads 

experienced by aircrafts to reach its present FLEj%, a Monte Carlo simulation might be 

used to project  crack size distribution that results from additional flight hours (∆FH) 

beyond FLEj%.

The procedure takes the recorded loads for this aircraft sequentially to reach 

FLEj%. Once reached, the loads are sampled randomly to grow cracks beyond FLEj% 

until they reach the desired ∆FH. The resulting distribution is used to determine the 
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probability that it exceeds critical crack size for failure.  The critical crack size is 

calculated using the applicable fracture toughness KC associated with the dome nut hole.  

Figure 6.26 illustrates the process. 

 
a

[in
ch

]

j%

0.01

FLE [%]
100

pdf at j%

j%+ ∆FH

∆FH

acric

EIFS pdf at 100 %

pdf at (j+∆FH)%

a
[in

ch
]

j%

0.01

FLE [%]
100

pdf at j%

j%+ ∆FH

∆FH

acric

EIFS pdf at 100 %

pdf at (j+∆FH)%

Figure 6.26  Forecasting process for a specific FLEj%.

6.4 Decision Making Methodology 

Uncertainties in this research arise when dealing with the variables that affect the 

damage crack growth models, and when dealing with the different outputs that result 

when different damage crack growth model are applied.  Fleet managers responsible for 

maintaining the existing aircrafts have to face this, in order to ensure the structural 

integrity of the aircraft. 

 In this research, we propose a decision making process based on three elements, 

which are explained in the following paragraphs. 
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First one must determine the maximum crack size or damage that can be repaired 

or restored at a reasonable cost.  A cost benefit analysis needs to be done based on the 

maintenance history of the fleet.  

Second element is to define the probability of crack size that the decision maker is 

willing to accept (or actual crack size he/she accepts).  

Third factor to address is characterization of the uncertainties of the crack growth 

models.  There is no universally accepted model that represents the phenomenon of 

fatigue.  Therefore, it is up to the decision maker to determine which model represents 

the best one for the decision making.  As mentioned in Chapter 1, this implies a trade-off 

between precision and the uncertainty propagation due to the number of parameters 

involved in the model.  

Since the work of Paul Paris in 1961, who postulated his law under conditions of 

constant amplitude loading and long cracks, a great number of different models have 

been proposed to handle the cases that do not meet the Paris law conditions.  Fatigue life 

prediction remains very much an empirical science at present [125].  Model uncertainty 

arises when different models, using the same set of data lead to different predictions.  The

proliferation of models would appear to suggest that the essential physics of fatigue-crack

growth is not completely captured by only one model.

Although model uncertainty is a field that requires more research, it is possible to

make a classification based on the prediction of a property of interest: single model and

multiple models methods [126].  Figure 6.27 illustrates this classification. 

One model case is out of this scope; therefore the analysis in this research is focus 

on the case of multiple models where the same data, information and knowledge is used



143 
 

to develop a model, but with different assumptions. The damage crack growth estimation

developed in this work meets the conditions because the three models assume totally

different phenomena of crack growth due to fatigues, and they may satisfy the same data

and information available. In this case, the averaging approach (used when the

assumptions in developing the model are the same) is meaningless, because for the given

problem of interest, only one of these models may be appropriate. The characterization

of epistemic uncertainty of the model accuracy can only be done separately for each

model, and only qualitatively (or semi-quantitatively) explain the goodness of each

model. It becomes the final decision maker’s partiality (e.g., fleet manager’s decision as

to which of the model output he/she prefers to use) [127]. 
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Figure 6.27  Model uncertainty analysis. 
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Moreover, we identified some sources of model uncertainty applicable to damage 

crack growth model, which should be considered by the decision maker.  These criteria 

are based on the work developed by Isukapalli [127]: 

• Model details: Often, models are simplified for the purpose of tractability. When 

used to calculate the crack growth caused by fatigue, this simplification can 

produce conservative results, because parameters that affect the output of interests 

could not be taken into account.  On the other hand, to include too much detail 

could increase the uncertainty.  For example, if the manager decides to use the 

Forman model, the results will be considered conservative in comparison with the 

other two models, because the Forman model does not take into account the 

retardation effect.  

• Model Boundaries: All models have boundaries in terms of time, space, number 

of chemical species, types of pathways, and so on.  The selection of a boundary 

may be a type of simplification.  Within the boundary, the model may be an 

accurate representation, but other overlooked phenomenon may play a role in the 

scenario being modeled. 

In the case of crack growth, there are models whose boundary may be the 

intermediate region, the threshold region or the unstable rapid growth region.  For 

example, if the manager decides to use the Walker model, the results will not be 

accurate, if the stress intensity factors range is close to the unstable rapid growth 

region. 
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• Model Extrapolation:  Models that are validated for one portion of input space 

may be completely inappropriate for making predictions in other regions of the 

parameter space.  In the case of crack growth, it is important to evaluate if the 

model is able to make good predictions considering the three region of the crack 

growth behavior.  For example, if the manager is aware that stress intensity 

factors range is close to the unstable rapid growth region, he/she should discard 

the Walker model and use the Forman and/or Closure model, which take into 

account this effect.  

 
In the following chapter, the results at 1000 ∆FH will be discussed.  In this 

analysis, the loads were the same as those used in the previous calculations.  The 

PCGROW code was modified in order to sample random loads when the FLE = j% is 

reached. 
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Chapter 7 Analysis of the results  

7.1 Monte Carlo Simulation 

From the Monte Carlo simulation results, significant facts are worth 

summarizing.  First, the crack growth graph shows that there are a great number of 

solutions where the variability in material properties should be considered.  

Therefore, the use of this factor will improve the damage crack growth calculation.  

Figure 7.1 illustrates an example of 10 iterations for a specific aircraft at 297% FLE.

The variations in crack size are due to material variability, about 50% of the crack 

sizes at this FLE are below 0.0393”, and 75% are below 0.0613”. 

Second, the results highlight the importance of using a probabilistic approach 

to analyze this kind of problems. A deterministic approach would base the prediction 

on the mean of the crack size, and it would not account for the fact that there is a 50% 

probability to have a crack size above that value.  Clearly this additional information 

benefits the decision making process.  
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Figure 7.1  Examples of random crack growth trajectories at 297% FLE. 

7.2 Crack Growth Model Comparisons 

Figure 7.2 illustrates the crack growth versus FLE for two aircrafts.   The 

results show the effect of model uncertainty. The closure model is the least 

conservative one and reaches the critical crack size much later than the other two 

models.  This model account for the retardation phenomenon, which realistically exits 

and extends the life substantially.  The Forman model, which include the effect of the 

ratio stress (R) and the instability of the crack growth when the stress-intensity factor 

approaches the KC value for the material, and the Walker model, which only consider 

the effect of the ratio stress (R) are far more conservative.  This is important 

information for the decision maker, because it allows comparing the damage crack 

models determining that (in general) for all the crack size ranges, the Walker model is 
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the most conservative, followed by the Forman model, and the closure model being 

the least conservative. 

Crack growth vs. FLE
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Figure 7.2 Crack growth vs. FLE.

7.3 Selection of Lognormal Distribution 

Two goodness of fit techniques were used to determine the distribution that 

best represent the damage crack growth at the FLE of interest. From these results, the 

lognormal distribution proves to be the best fit.  The normal distribution also shows 

good fit for some cases. In contrast, Weibull distribution does not show a good fit for 

the data.  This supports the assumption of modeling the prior distribution of crack 

size as lognormal distribution in the proposed Bayesian updating calculation.  Figure 

7.3 shows an example of the goodness of fit analysis in a probability plot paper.  This 

comparison graph superimposes the input data and fitted distribution on the same 

graph, allowing you to visually compare them as density curves [88].  In addition, this 

graph allows you to determine that the fitted distribution matches the input data in 

specific areas.  For example, it is important to have a good match around the mean or 

in the tails. 
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Figure 7.3 Example of lognormal fit for aircraft 4. 

7.4 Parameter Estimation 

Three methodologies were used to estimate the parameters of the IPL-

Lognormal model.  1) GA (deterministic method), 2) MLE (a statistical method), and 

3) MCMC (a probabilistic method).  The results (mean values) from the three 

methods although valid provide the following insights.  The MLE is the preferred 

method, because it gives very precise estimate when dealing with large data (within a 

95% confidence level).  Recall that the MLE estimates can be very precise when the 

sample size is sufficiently large.  The dependency of the GA and MCMC methods on 

the MLE for initial value, and their level of computational intensity requirements also 

support the choice for the MLE.  Figure 7.4 illustrate these methods, and Figure 7.5 

shows an example of the parameter estimation. 
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Figure 7.4  Comparison of parameter estimation methodologies. 
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Figure 7.5  Examples of parameter estimation.  

 

7.5 Bayesian Analysis 

The Bayesian updating results in Chapters 5 and 6 depend on the quality and 

amount of evidence (inspection data) available for the analysis.  Bayes' theorem 

measures how much new evidence would alter a belief in a hypothesis.  In this study, 

the evidence was reported using four bin of crack sizes (extra small, small, large and 

extra large) and the database reports the number of cracks in each bin observed for 

each aircraft inspected.  Figures 7.6 – 7.7 illustrate that the aircrafts with larger 
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number of cracks have their posterior distribution shifted to the right, which 

contribute more to the adjustment of the initial crack size. 

Figure 7.6  Prior and post for two aircraft evidential datasets (4 cracks size “XS”) and 
(1 crack size “XS”, 1 crack size “S”.) 

Figure 7.7  Prior and post for two aircraft evidential datasets (7 cracks size “S”) and 
(5 cracks size “XS”, 2 cracks size “S”, 2 cracks size “L”.) 

The results of the posterior initial crack distribution using the conjugate 

approach are different from the MCMC approach.  The difference is because both 

methods used two different likelihood functions, which are determined by the way of 

treating the evidences.  In addition, the difference in the results is attributed to the fact 
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that the posterior distributions were calculated using different procedures (See Table 

7.1).  Figure 7.8 illustrate the difference for two aircrafts. 

Figure 7.8  initial crack size for aircrafts 12 and 22 using conjugate and MCMC 

approach. 

For the Conjugate approach, a set of posterior lognormal parameters is 

obtained for each crack growth model (Forman, Walker, Closure).  They are the 

outcome of combining the evidence with the prior pdf’ resulting from the Monte 

Carlo simulation (for each model) at the FLE of interest.  The result from the 

conjugate is a lognormal distribution with its parameters.  For the MCMC approach, 

only one set of posterior IPL-Lognormal parameters is obtained, which are used in 

Equation 5.12 to obtain the posterior lognormal distribution.  The prior IPL-

lognormal parameters are originally assumed from a non-informative distribution, and 

they are updated directly with the evidence. Furthermore, both approaches handle the 

evidence in a different manner. In the conjugate approach, a multiplicative error 

factor is used to build the likelihood function.  In the MCMC, the evidence is used 
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without any modification. Table 7.1 shows the difference between the two 

approaches. 

 

Table 7.1  Differences between Conjugate and MCMC approach. 

Approach 
Conjugate MCMC 

Prior The prior pdf is the results of the 
IPL-Lognormal parameters 
estimated from the Monte Carlo 
simulation and Equation 5.10. 

The parameters of the IPL-
lognormal are sampled from non-
informative pdfs.

Likelihood A multiplicative error factor is 
used to cover the possible crack 
size ranges. 

The evidence is used without 
ranges. 

Posterior The posterior pdf is obtained from 
the conjugated Equations 6.9 and 
6.10 

The posterior pdf is obtained from 
the Equation 5.9 

Three different initial crack size distributions at 100% FLE were obtained, one 

from each crack growth model used in the calculations.  These results are expected 

because they should reach the same evidence at the FLE where the data were 

recorded, even if they are based on different assumptions. Furthermore, these results 

confirm the conclusions of the Bell study [125] that initial distributions depend on the 

crack growth method used.  Figure 7.9 illustrates that the closure model, which 

consider the retardation effect, is shifted to the right.  In the same manner, the model 

with less variables affecting the growth, such as Walker model (only consider the 

ratio effect), is the one shifted to the left.  
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Figure 7.9 Initial crack size at 100% FLE for the three models. 

 
The above results were obtained using the conjugate approach. A set of initial 

crack size distributions also were obtained using the MCMC approach.  Table 7.2 

shows a comparison between both approaches.  The difference in the results is a 

consequence of the posterior distribution explained in the above paragraphs.  

Table 7.2  Initial crack size Conjugate and MCMC at 100% FLE. 

Conjugate MCMC Model 
µLN σLN µLN σLN 

Walker -5.40 0.38 -5.76 0.69 
Forman -5.60 0.42 -5.82 0.79 
Closure -4.84 0.30 -4.80 0.79 

The same procedure to estimate the initial crack size at 100% FLE was used to 

estimate the parameters of the damage crack growth models.  The graphs in Chapter 6 

show that m1, m2, and γ are the parameters most affected by the evidence, while the E
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and Sy do not show significant variation.  Figure 7.10 shows the parameter with most 

variation and the parameter with the least variation. 

m1 parameter distributionm1 parameter distributionm1 parameter distribution Sy parameter distributionSy parameter distributionSy parameter distributionm1 parameter distributionm1 parameter distributionm1 parameter distribution Sy parameter distributionSy parameter distributionSy parameter distribution

 
Figure 7.10 Example of posterior pdf crack growth models parameter.   

7.6 Decision Making 

This research uses three different damage crack growth models to estimate the 

probability of having cracks of different sizes.  Tables 7.3 to 7.4 show three sets of 

predictions at ∆H = 1000 of additional flight hours for a given aged aircraft. This 

reflects the fact that there is not standard methodology used to perform fatigue life 

predictions for aircraft structures spectrum loading.  In the majority of the cases, the 

Forman model yields the highest probability and the Closure model the lowest 

probability.  These results correspond to the facts that The Forman and Walker 

models are more conservative than the Closure model. 
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Table 7.3  Prediction results  ∆FH= 1000 – crack size XS. 

Forman Walker Closure 
Pr(a>XS) Pr(a>XS) Pr(a>XS)

1 7.23E-01 6.23E-01 5.43E-01 
2 9.35E-01 8.43E-01 8.42E-01 
3 9.78E-01 9.24E-01 9.13E-01 
4 7.38E-01 6.23E-01 5.76E-01 
5 9.33E-01 8.46E-01 8.81E-01 
6 9.47E-01 8.75E-01 8.46E-01 
7 6.74E-01 6.26E-01 5.11E-01 
8 9.34E-01 8.35E-01 8.58E-01 
9 9.61E-01 8.83E-01 8.46E-01 
10 9.75E-01 8.95E-01 8.98E-01 
11 8.60E-01 7.58E-01 7.94E-01 
12 9.33E-01 8.59E-01 8.45E-01 
13 9.24E-01 8.37E-01 8.64E-01 
14 9.61E-01 8.65E-01 8.86E-01 
15 8.32E-01 7.45E-01 7.33E-01 
16 9.24E-01 8.21E-01 8.48E-01 
17 9.65E-01 8.76E-01 9.22E-01 
18 5.37E-01 4.96E-01 3.54E-01 
19 9.00E-02 1.17E-01 6.92E-03 
20 8.30E-01 7.51E-01 7.14E-01 
21 7.22E-01 5.80E-01 5.32E-01 
22 6.64E-01 5.67E-01 4.27E-01 
23 5.47E-01 4.16E-01 1.90E-01 
24 6.85E-03 1.63E-02 1.12E-03 
25 5.50E-02 1.19E-01 1.59E-02 
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Table 7.4  Prediction results  ∆FH= 1000 – crack size S. 

Forman Walker Closure 
Pr(a>S) Pr(a>S) Pr(a>S) 

1 4.30E-01 3.37E-01 1.81E-01 
2 7.94E-01 6.18E-01 5.90E-01 
3 9.01E-01 7.64E-01 7.07E-01 
4 4.23E-01 3.05E-01 1.92E-01 
5 7.94E-01 6.36E-01 6.60E-01 
6 8.22E-01 6.79E-01 5.95E-01 
7 3.51E-01 3.26E-01 1.30E-01 
8 7.90E-01 6.15E-01 6.09E-01 
9 8.49E-01 6.88E-01 5.98E-01 
10 8.87E-01 7.06E-01 6.76E-01 
11 6.44E-01 5.07E-01 5.00E-01 
12 7.81E-01 6.29E-01 5.73E-01 
13 7.69E-01 6.19E-01 6.13E-01 
14 8.53E-01 6.60E-01 6.49E-01 
15 6.11E-01 4.82E-01 4.31E-01 
16 7.65E-01 5.89E-01 5.73E-01 
17 8.58E-01 6.79E-01 7.11E-01 
18 2.31E-01 2.16E-01 6.44E-02 
19 6.60E-03 1.30E-02 2.40E-06 
20 5.82E-01 4.76E-01 3.88E-01 
21 4.15E-01 2.84E-01 1.59E-01 
22 3.73E-01 2.84E-01 9.16E-02 
23 2.32E-01 1.47E-01 8.78E-03 
24 4.41E-05 2.18E-04 4.46E-08 
25 2.34E-03 1.12E-02 1.74E-05 
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Table 7.5  Prediction results  ∆FH= 1000 – crack size L. 

Forman Walker Closure 
Pr(a>L) Pr(a>L) Pr(a>L) 

1 2.18E-01 1.60E-01 4.34E-02 
2 6.08E-01 4.00E-01 3.51E-01 
3 7.65E-01 5.65E-01 4.62E-01 
4 1.99E-01 1.24E-01 4.40E-02 
5 6.13E-01 4.29E-01 4.25E-01 
6 6.48E-01 4.70E-01 3.56E-01 
7 1.50E-01 1.46E-01 2.13E-02 
8 6.02E-01 4.04E-01 3.66E-01 
9 6.78E-01 4.77E-01 3.60E-01 
10 7.35E-01 4.93E-01 4.29E-01 
11 4.26E-01 3.02E-01 2.60E-01 
12 5.84E-01 4.00E-01 3.20E-01 
13 5.75E-01 4.08E-01 3.64E-01 
14 6.87E-01 4.48E-01 3.97E-01 
15 4.01E-01 2.74E-01 2.12E-01 
16 5.66E-01 3.75E-01 3.17E-01 
17 6.88E-01 4.68E-01 4.52E-01 
18 8.32E-02 8.19E-02 7.84E-03 
19 3.75E-04 1.20E-03 2.34E-10 
20 3.54E-01 2.61E-01 1.71E-01 
21 1.99E-01 1.20E-01 3.27E-02 
22 1.81E-01 1.25E-01 1.29E-02 
23 8.11E-02 4.43E-02 1.94E-04 
24 2.06E-07 2.13E-06 4.53E-13 
25 7.42E-05 8.12E-04 5.89E-09 
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Table 7.6  Prediction results  ∆FH= 1000 – crack size XL. 

Forman Walker Closure 
Pr(a>XL) Pr(a>XL) Pr(a>XL)

1 7.18E-02 4.94E-02 4.39E-03 
2 3.65E-01 1.89E-01 1.42E-01 
3 5.33E-01 3.19E-01 2.06E-01 
4 5.68E-02 2.95E-02 3.98E-03 
5 3.76E-01 2.18E-01 1.91E-01 
6 4.07E-01 2.46E-01 1.44E-01 
7 3.77E-02 4.09E-02 1.13E-03 
8 3.58E-01 1.97E-01 1.47E-01 
9 4.27E-01 2.48E-01 1.48E-01 
10 4.87E-01 2.56E-01 1.84E-01 
11 2.06E-01 1.29E-01 8.50E-02 
12 3.34E-01 1.79E-01 1.13E-01 
13 3.33E-01 2.01E-01 1.42E-01 
14 4.41E-01 2.27E-01 1.61E-01 
15 1.96E-01 1.09E-01 6.60E-02 
16 3.21E-01 1.74E-01 1.10E-01 
17 4.32E-01 2.43E-01 1.87E-01 
18 1.69E-02 1.87E-02 2.97E-04 
19 5.85E-06 3.82E-05 2.22E-16 
20 1.50E-01 9.73E-02 4.40E-02 
21 5.92E-02 3.11E-02 2.53E-03 
22 5.74E-02 3.55E-02 5.73E-04 
23 1.56E-02 7.22E-03 5.29E-07 
24 1.01E-10 2.82E-09 6.25E-16 
25 5.05E-07 1.76E-05 3.80E-14 

Figures 7.11 to 7.13 show the results for each aircraft using the three models 

with their uncertainties.  As was defined in Chapter 6, this is a multiple model 

uncertainty case where it requires management’s decision as to which of the model

output would be used.
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Figure 7.11  Box plot of the three models at ∆FH=1000 - Aircrafts 1 to 9.  
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Figure 7.12  Box plot of the three models at ∆FH=1000 - Aircrafts 10 to 18. 



161 
 

-0.02 0 0.02 0.04 0.06

Wal

For

Clo

a [inches]

Aircraft Nº 19

0 0.2 0.4 0.6

Wal

For

Clo

a [inches]

Aircraft Nº 20

0 0.2 0.4

Wal

For

Clo

a [inches]

Aircraft Nº 21

0 0.2 0.4

Wal

For

Clo

a [inches]

Aircraft Nº 22

0 0.1 0.2

Wal

For

Clo

a [inches]

Aircraft Nº 23

0 0.02 0.04

Wal

For

Clo

a [inches]

Aircraft Nº 24

0 0.02 0.04 0.06

Wal

For

Clo

a [inches]

Aircraft Nº 25

 

Figure 7.13  Box plot of the three models at ∆FH=1000 - Aircrafts 19 to 25. 

Taking into account the above statements, the results will be discussed from 

the point of view of risk.  Uncertainty and risk are closely associated with one 

another, but not are identical.  In this research, we identify two different decision 

makers in the presence of risk: one who is comfortable with risk-taking and another 

who is risk-averse.  Figure 7.14 shows an example of the different alternatives for 

decision making in aircraft aging. The probability values are only for illustration of 

the methodology. 
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Figure 7.14  Alternatives for decision making. 

According to this, a risk taker may define a probability of crack size larger 

than 50%, and a crack growth model non-conservative in order to extend the 

inspection frequency, and reduce cost because of the inspection.  
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For example, a risk taker would define a crack size large, “L”, a probability of 

crack size L greater than 75% to perform maintenance and the crack closure model to 

represent the damage crack growth phenomenon.  The highlighted path in Figure 7.14 

shows this alternative.  According to these factors, none of the aircrafts would be 

scheduled for maintenance at the 1000 ∆FH. 

On the other hand, a risk-averse decision maker may define a probability of 

crack size average, “S”, greater than 50%, and a conservative model, such as Forman. 

The dotted path in Figure 7.14 shows this alternative.  In this case, 15 out of the 25 

aircrafts would be scheduled for maintenance at the 1000 ∆FH.  If it is not feasible to 

performance maintenance over the 15 aircrafts, the decision maker could use the Box 

plot graphs in order to reduce the number.  In this case, from the graphs, it is possible 

to reduce the number from 15 to 7.  Table 7.7 and 7.8 show the maintenance schedule 

after 1000 FHR, according to this decision maker. 

Table 7.7  Aircrafts to maintenance.

Aircrafts that require maintenance after 1000 FHR 
2 3 5 6 8 9 10 11 13 14 
15 16 17 20       

Table 7.8  Aircrafts to maintenance after the box plot analysis. 

Aircrafts that require maintenance after 1000 FHR 
3 5 6 9 10 14 17 

The analysis carried out in this research was developed over 25 aircrafts, 

however the results will be used to make probability statements on the total 

population of the fleet.  In fact, the results obtained will be the initial assessment for 

decision making over a total population about 200 aircrafts.  This is a continuous 
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improving process; therefore data from more aircrafts has been analyzed to be 

included in the analysis. This new data will contribute to reduce the uncertainties, 

because the Bayesian updating will improve the calculation of the initial crack size 

and parameters, which it will help to discover the ‘unknown unknown” in a timely 

manner. 
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Chapter 8 Conclusions & Recommendations 

This dissertation describes a probabilistic approach for determining crack 

sizes in aging aircrafts.  The use of the proposed probabilistic techniques in 

engineering and economic analyses related to cost reduction, risk management, and 

cost-effective decision management is increasing.  Purely deterministic approaches, 

although simple to use, do not consider variability and uncertainty inherent in any 

real-life data.  As a consequence, it often results in overly conservative estimates.  It 

is thus important to introduce the concept of variability and uncertainty in the 

analysis, since it usually offers a realistic representation of the process been modeled 

accompanied by the corresponding uncertainty bounds. 

From a deterministic perspective, there is not a universal model that represents 

the fatigue crack growth phenomenon, particularly in aging aircrafts.  Fatigue induced 

crack growth predictions remains an empirical science at present.  Therefore, a 

probabilistic analysis of the different factors involved in the calculation was 

performed in this research in order to address these uncertainties. 

There are three deterministic models that can be used for estimating crack 

growth: the Closure model, the Forman model, and the Walker model.  The selection 

of any model will depend on the specific application.  In general, the Forman and 

Walker models provide conservative estimates when compared to the Closure model. 

The damage crack growth estimation and uncertainty propagation from the 

input variables to the fatigue life is carried out by a simple Monte Carlo simulation.  

The results obtained show that the methodology developed in this research is an 

effective approach for assessing structural health of aging aircrafts.  The Bayesian 
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process used to update the evidence of the crack size takes into account the inspection 

results and reduces the uncertainty of the initial crack size.  Furthermore, 

consideration of the scatter in the material properties brings all of the variability into 

consideration and makes the estimations more objective. 

The initial crack size distribution depends on the crack growth model.  

Therefore, it is very important to use the initial crack size that corresponds to the 

damage crack growth model used in the calculations. 

For more accurate results, it is strongly recommended that the crack sizes be 

reported without binning them, and to avoid errors due to “smoothing” of the 

population initial crack size distribution, more aircrafts (perhaps 40 or more) be 

inspected and reported.  Further, it is recommended to analyze around 40 aircrafts to 

further reduce uncertainties. 

The model parameters depend on a particular application, therefore it is 

recommended to devise a continuous updating when new evidence is available.  The 

parameters m1, m2, and γ are the parameters more affected by the evidence, while the 

E and Sy do not show significant variation. 

The parameter estimation using the Maximum Likelihood Estimation method 

was shown to be very reliable, however the Markov Chain Monte Carlo method 

allows for estimation of the distribution of the parameters, which is useful for 

uncertainty analysis.   

The material properties play an important role in the estimation of the damage 

crack growth, however the results obtained show that the mean values reported in the 

literature can be used with a great level of confidence. 
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The results obtained through the lognormal conjugate updating are 

satisfactory, however further analysis should be done to automate the MCMC 

approach, and to reduce the uncertainty about the way the data are treated.  One 

approach would be to develop the likelihood function for each model; however, it is a 

complex calculation due to the number of parameters involved in the formulas. 

The life estimation should be a tradeoff between accuracy and uncertainty 

propagation due to the number of parameters involved in the model.  Some 

researchers to minimize risk could add complexity to realistically reflect the damage 

crack growth phenomenon such as the retardation effect.  However, complexity 

means more parameters to estimate, for which more assumptions needs to be done.   

To deal with a single model it is recommended to calculate the crack growth 

using the Closure model.  Although this model is the least conservative of the models 

analyzed in this research, its results have been shown to be more realistic, because it 

considers the retardation effect, which is a phenomena present in the crack growth 

behavior. 

The risk in building a very simple model is that it may lead to an 

underestimate of the risk (because all the elements may not be modeled) or to an 

inefficient use of the available information.  The question of the appropriate level of 

complexity (i.e., the trade-off between precision and uncertainty) depends on the 

manager’s decision as to which of the model outputs he/she prefers to use.

The initial crack length distribution representative of the fleet is a multimodal

pdf obtained from the linear arithmetic approach. In this approach, equal weights are

assigned to the mechanism due to fatigue and the mechanism due to fatigue plus

environmental corrosion, which gives rise to a heavy tail of the fitting lognormal
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distribution. A new approach to derive an averaged crack length for the fleet based

on the Bayesian averaging would improve the calculation of this distribution.

Further analysis is necessary in order to safely extend the service life of aging 

aircrafts.  Such studies should consider Wide Fatigue Damage (WFD), which is 

characterized by the simultaneous presence of cracks at multiple structural points.  

The two sources of WFD are multiple-site damage (MSD), characterized by the 

simultaneous presence of fatigue cracks in the same structural element; and multiple 

element damage (MED), characterized by the simultaneous presence of fatigue cracks 

in similar adjacent structural elements. 

 



169 
 

Appendix A PCGROW code for crack growth –closure 

model example calculation. 

This is the complete MatLab code for crack growth calculation example. It is the 
same structure for Walker and Forman models in chapter 4. The difference is the ∆K
and da/dN equations. 
 

[at,bt]=size(Sm); 
[ct,dt]=size(Rr); 
while at>ct 
 cbt=ct+1; 
 Rr(cbt,:)=0;ct=cbt; 
 cbt=ct+1; 
end 
Smi=Rr.*Sm; 
 
NI=500; %number of Iterations (montecarlo loop # 1) 
cs1=0;cs2=0;cs3=0;cs4=0;cs5=0;cs6=0; 
for j=1:1:NI 
 j

%v1: CLosure version + change in the Soo calculation 
 clear aini;clear p1c;clear p2c;clear p3c; 
 %============================================= 
 %Material Parameters 
 %============================================= 
 p1c=rand(1); % random number for Sy 
 p2c=rand(1); % random number for Sult 
 p3c=rand(1); % random number for E 
 

Symean=72.00; % Matweb 
 Sultmean=85.00; % Matweb 
 Emean=10000; %Matweb 
 Sysd=5.04; %(7%) 
 Sultsd=4.25; %(5%) 
 Esd=500; %(5%) 
 

Sy=norminv(p1c,Symean,Sysd); 
 Sult=norminv(p2c,Sultmean,Sultsd); 
 E=norminv(p3c,Emean,Esd); 
 %============================================== 
 %Model Parameters 
 %============================================== 
 ethr=0.68;%??? 
 alphamax=1.8; %Fastran Manual [paper 2,pp998.] 
 alphamin=1.1; %Fastran Manual [paper 2,pp998.] 
 Damax=5.0e-6; %Fastran Manual [paper 2,pp998.] 
 Damin=5.0e-7; %Fastran Manual [paper 2,pp998.] 
 %============================================== 
 %Geometry (needed for nu calculation) 
 %============================================== 
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w=10; 
 t=0.08; 
 %============================================= 
 %Parameters Calculation 
 %============================================= 
 Sflow=(Sy+Sult)/2; 
 nu=t*Sy/(2*w*E); 
 vv=(alphamax-alphamin)/(log(Damin)-log(Damax)); 
 %================================================= 
 %Model initialization 
 %================================================== 
 q=1;d=1;dd=1;d1=1; 
 
%===================================================================
=== 
% initial crack size with montecarlo loop 
%===================================================================
== 
 aimean=-4.7112;                     % Initial prior 
 aisd=3.5877e-2; 
 

plLn=rand(1);     % random number generation to use in the 
ainitial 
 ainiM=logninv(plLn,aimean,aisd); 
 aini=ainiM; 
 a=aini; 
 a2=mean(ainiM); 
 
%========================================================== 
%If Sop(0) is not specified , then it is estimated as: 
%========================================================= 
 for q=1:1:1 
 p26=((1.04934560880854-
0.950654391191456)*rand(1))+0.950654391191456; 
 

F = 15878.62698180*p26*((a)4)-
4895.55344187*p26*((a)3)+562.01593579*p26*((a)2)-
29.75689715*p26*(a)+2.39504608*p26; 
 

Sm(1,1); 
 Sm1=Rr(1,1)*Sm(1,1); 
 if Sm(1,1)<ethr 
 Soss=0; 
 else 
 R=Rr(q,d); 
 A0=((0.825-((0.34-
0.05*alphamax)*alphamax)))*((cos((pi/2)*((Sm(1,1)*F)/Sflow)))^(1/alp
hamax)); 
 A1=(0.415-0.071*alphamax)*((Sm(1,1)/Sflow)*F); % Check 
equation cosine 
 if R>0 
 A3=((2*A0)+A1-1); 
 A2=(1-A0-A1-A3); 
 else 
 A3=0; 
 A2=0; 
 end 
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Soss=(A0+(A1+(A2+A3*Rr(1,1))*Rr(1,1))*R(1,1))*Sm(1,1); 
 

end 
 end 
 Sop=Soss; 
 FLEN=0;   contador=1; 
%=========================================== 
% Initial/Final FLE 
LimitFLE=240.07;     FLEINI=100.0236;  
%========================================== 
[sd,ssd]=size(Sm);q=2; 
%============================ 
 

p25=((1.04934560880854-
0.950654391191456)*rand(1))+0.950654391191456; 
 p27=1; 
 

while FLEN <= LimitFLE 
 

Smax=Sm(q,d); 
 R=Rr(q,d); 
 DFLE=Fl(q,d); 
 Smin=Smi(q,d); 
%===================== 
%Beta calculation 
%===================== 
 

if a< 0.175 
 F = 15878.62698180*p25*((a)4)-
4895.55344187*p25*((a)3)+562.01593579*p25*((a)2)-
29.75689715*p25*(a)+2.39504608*p25; 
 else 
 if a>=0.286 & a<0.3695 
 F = 128285.12327039*p25*((a)4)-
173837.85902229*p25*((a)3)+88331.08415259*p25*((a)2)-
19957.33863252*p25*(a)+1695.45829351*p25; 
 else 
 F = 0.33994400*p25*((a)4)-
2.72024784*p25*((a)3)+7.74277893*p25*((a)2)-
9.07774951*p25*(a)+4.83625521*p25; 
 end 
 end 
 
%===================================================================
===        %DKef calculation 
%========================== 
 if Smax>Sop 
 DKef=F*sqrt(pi*aini)*(Smax-max(Smin,Sop)); 
 max(Smin,Sop); 
 else 
 DKef=0; 
 end 
 
%===================================================================
=
%Da calculation 
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%===================================================================
== 
 

Da=(p27*0.00000000388448909)*(DKef4.14232502); 
 
%=========================================== 
% New Stress opening calculation routine 
%========================================= 
 if Da>0 
 alpha=alphamax+(log(Da)-log(Damin))*vv; 
 alpha=min(alpha,alphamax); 
 alpha=max(alpha,alphamin); 
 else 
 alpha=alphamax; 
 end 
 

if Smax<ethr 
 Soss=0; 
 else 
 Ra=Smi(q-1,d)/Sm(q,d); 
 A0=((0.825-((0.34-
0.05*alpha)*alpha)))*((cos((pi/2)*((Sm(q,d)*F)/Sflow)))^(1/alpha)); 
 

A1=(0.415-0.071*alpha)*((Sm(q,d)*F/Sflow)); 
 if R>0 
 A3=((2*A0)+A1-1); 
 A2=(1-A0-A1-A3); 
 else 
 A3=0; 
 A2=0; 
 end 
 Sossold=(A0+(A1+(A2+A3*Ra)*Ra)*Ra)*Sm(q,d); 
 

end 
 

if Smax<ethr 
 Soss=0; 
 else 
 R=Rr(q,d); 
 A0=((0.825-((0.34-
0.05*alpha)*alpha)))*((cos((pi/2)*((Smax*F)/Sflow)))^(1/alpha)); 
 A1=(0.415-0.071*alpha)*((Smax/Sflow)*F); 
 if R>0 
 A3=((2*A0)+A1-1); 
 A2=(1-A0-A1-A3); 
 else 
 A3=0; 
 A2=0; 
 end 
 Soss=(A0+(A1+(A2+A3*R)*R)*R)*Smax; 
 end 
 

if Soss>=Sop 
 DSop=Soss-Sop; 
 else 
 

if Smi(q,d)<Smi(q-1,d) 
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DSop=((nu/(1+nu))*(Soss-Sop))+(1/(1+nu))*(Soss-
Sossold); 
 else 
 DSop=((nu/(1+nu))*(Soss-Sop)); 
 end 
 end 
%============================================================= 
%crack growth & Sopening 
%============================================================ 
 a=aini+Da; 
 Sop=Sop+DSop; 
 Sop=max(Sop,0); 
 FLEN=FLEINI+DFLE; 
 
%============================================================ 
%Jump rivet hole 
%========================================================== 
 if a>0.174 & a <=0.175 
 a=a+0.110; 
 FLEN=FLEN; 
 else 
 a=a; 
 FLEN=FLEN; 
 end 
 
%========================================================== 
%Failure criteria 
%============================================================ 
 Kcr=Smax*F*sqrt(pi*a); 
 

if Kcr > 70 % 1rst criteria 
 break; 
 else 
 if a>=2  % 2nd criteria 
 break; 
 else 
 if FLEN>=LimitFLE 
 break; 
 end 
 end 
 end 
 
%=============================================================== 
%start new cycle calculation 
%=============================================================== 
 q=q+1; 
 aini=a; %aa 
 FLEINI=FLEN; 
 BB=Sm(q,d); 
 

if (BB)==0 
 

aac(dd,j)=[a]; 
 FLEac(dd,j)=[FLEN]; 
 cycles(dd,j)=[contador+d1]; 
 [cc,ss]=size(cycles); 
 dd=dd+1; 
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d=d+1; 
 q=2; 
 else 
 d=d; 
 end 
 if d>ssd 
 

d=round((rand(1)*(ssd-1))+1); %use when 
running more FLE(+DH) 
% break % Comment when are using +DH 
 end 
 end 
 
%===================================== 
%Loop for prepare file for ALTA 
%==================================== 
Altaf(1,:)=FLEac(1,:); 
Altaa(1,:)=aac(1,:); 
scale2=280; 
 
for jp=2:1:(cc/scale2) 
 Altaf(jp,:)=FLEac(jp*scale2,:); 
 Altaa(jp,:)=aac(jp*scale2,:); 
end 
 
Altaf(jp+1,:)=FLEac(cc,:); 
Altaa(jp+1,:)=aac(cc,:); 
 
ks=0; 
[ss,ps]=size(Altaa); 
 
for ls=1:ss 
 for bs=1:1:ps 
 as(ks+1,1)=Altaa(ls,bs); 
 fs(ks+1,1)=Altaf(ls,bs); 
 if Altaa(ls,bs)==0 
 as(ks+1)=[]; 
 fs(ks+1)=[]; 
 ks; 
 else 
 ks=ks+1; 
 end 
 

end 
end 
 
lore=[as,fs]; 
 
robin =sortrows(lore,2); 
LP=length(robin); 
 
proba=[NDe/(j),Xs/(j),Ss/(j),Ls/(j),XLs/(j),Fs/(j)]; 
 
%===================================== 
%Plot results 
%==================================== 
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plot(FLEac,aac,'s','MarkerFaceColor','y','MarkerSize',2), 
xlabel('FLE [%]'),ylabel('a [inches]'),xlim([100 200]),ylim([0 2.1]) 
title('Aircraft 1','FontWeight','bold') 
 
Ending = 'PROGRAM COMPLETED. 
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Appendix B WinBUGS code for parameter estimation 

example calculation. 

The WINBUGS model specification is as follows, 
 
• Initial values for K, n and σ:

list(kapa1=10,neta=3,sigma=0.1) 

• IPL-Lognormal model: 
 
model; 
{

kapa1~dunif(5,22) 
 neta~dunif(0.01,7) 
 sigma~ dunif(0.001,2) 
 kapa<-exp(kapa1) 
 

# kapa1~dnorm(-20,0.01)I(-40.0,0.0) 
 # neta~dnorm(3,0.1)I(0,10) 
 # beta ~ dnorm(4,0.06)I(0,10) 
 # kapa<-exp(kapa1) 
 

tau<-1/(sigma*sigma) 
 C <- 10000 
 

for( i in 1 : N ) { 
 zeros[i] <- 0 
 ghr[i] <- ( -1) * log(L[i]) + C 
 zeros[i] ~ dpois(ghr[i]) 
 }

for( i in 1 : N ) { 

• Data (a versus FLE)

list(tf=structure(.Data=c(0.005014,1,0.009995,0.005024,1,0.009986,0.005034,1,0.00998
1,0.005044,1,0.009968,0.005046,1,0.009965,0.005048,1,0.00996,0.005062,1,0.009949,0.00
5062,1,0.009947,0.005063,1,0.009945,0.005075,1,0.00994,0.005093,1,0.009924,0.005101,
1,0.00992,0.005109,1,0.009915,0.005123,1,0.009902,0.005135,1,0.009896,0.005154,1,0.00
9882,0.005172,1,0.009861,0.005174,1,0.009858,0.005182,1,0.009852,0.005185,1,0.00985,
0.005189,1,0.009843,0.005194,1,0.009838,0.005197,1,0.009836,0.005201,1,0.009803,0.00
5205,1,0.009794,0.005221,1,0.009776,0.005229,1,0.009758,0.005244,1,0.009749,0.005259
,1,0.009735,0.00526,1,0.009733,0.005278,1,0.009705,0.00528,1,0.009686,0.005289,1,0.00
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9675,0.005291,1,0.009668,0.005292,1,0.009663,0.005293,1,0.009656,0.005301,1,0.009637
,0.005303,1,0.009632,0.005318,1,0.009615),.Dim=c(39,3)),N=39) 

• Results: 
 

node  mean  sd 2.50% median 97.50% start sample 
kapa 113400 282900 44.89 7326 819600 1001 200000 
kapa1 8.772 2.949 3.804 8.899 13.62 1001 200000 
neta 1.064 0.5651 0.1124 1.088 1.992 1001 200000 
sigma 0.01989 0.02722 0.01012 0.01408 0.06254 1001 200000 
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