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The central dogma of molecular biology implies that DNA holds the

blueprint which determines an organism’s structure and functioning. However,

this blueprint can be read in different ways to accommodate various needs,

depending on a cell’s location in the body, its environment, or other external

factors. This is accomplished by first transcribing DNA into messenger RNA

(mRNA), and then translating mRNA into proteins. The cell regulates how

much each gene is transcribed into mRNA, and even which parts of each gene

is transcribed. A single gene may be transcribed in different ways by splicing

out different parts of the sequence. Thus, one gene may be transcribed into

many different mRNA sequences, and eventually into different proteins.

The set of mRNA sequences found in a cell is known as its transcrip-

tome, and it differs between tissues and with time. The transcriptome gives a

biologist a snapshot of the cell’s state, and can help them track the progression



of disease, etc. Some modern methods of transcriptome sequencing give only

short reads of the mRNA, up to 100 nucleotides. In order to reconstruct the

mRNA sequences, one must use an assembly algorithm to stitch these short

reads back into full length transcripts.

De novo transcriptome assemblers are an important family of transcrip-

tome assemblers. Such assemblers reconstruct the transcriptome without using

a reference genome to align to and are, therefore, computationally intensive.

We present here a de novo transcriptome assembler designed for a parallel com-

puter architecture, the XMT architecture. With this assembler we produce

speedups over existing de novo transcriptome assemblers without sacrificing

performance on traditional quality metrics.
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Chapter 1: Introduction

In cell biology messenger RNA (mRNA) is an important class of molecules

which control the cell’s production of proteins. mRNA molecules are copies of

the cell’s DNA, genes which have been modified and prepared for translation

into the final protein product [10]. The set of mRNA molecules in a cell is

known as its transcriptome, and unlike the genome, it can vary drastically be-

tween cells and change over time as mRNA is produced by transcribing DNA

and consumed after translation into protein. Biologists are often interested

in the contents of the transcriptome because it gives further insight into the

expression of genes than the genome.

Next Generation Sequencing (NGS) are DNA and RNA sequencing tech-

niques that have been developed and used extensively in the past decades [22].

While NGS has made huge improvements on sequencing throughput over past

techniques, most NGS techniques read only short sequences of DNA or RNA

at a time. As a result transcriptome assembly, the computational problems of

reconstructing the transciptome based on the sequencing reads, is more dif-

ficult [18]. While many transcriptome assemblers rely on using a reference

genome to align to, there is a class of assemblers called de novo assemblers
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which use only the reads produced by assembly.

De novo transcriptome assemblers are generally better than genome-

guided transcriptome assemblers at detecting novel transcripts, and are espe-

cially important for species with an incomplete reference genome. However,

de novo transcriptome assemblers generally consume much more time than

genome-guided assemblers [17].

In this paper, we present the XMT Assembler, a de novo transcriptome

assembler designed for the Explicit Multi-Threaded (XMT) parallel architec-

ture. We chose the XMT architecture over other parallel architectures because

it is designed from the ground up to support parallel random access model

(PRAM) programming [27]. This includes concurrent access of all processors

to a shared memory and efficient support of fine-grained, irregular parallelism.

Due to the nature of de novo transcriptome assembly algorithms, these advan-

tages are important for effectively exploiting parallelism. By leveraging these

advantages, we are able to achieve significant speedups over the fastest se-

rial de novo transcriptome assemblers while maintaining traditional assembly

quality metrics.

While the current project did not seek implementation on commodity

platforms, we expect that the parallelism exposed by the current work can be a

first step towards improved performance on such platforms. For exploiting this

parallelism for performance gains, this parallelism will need to be coarsened

and the coarsening will need to be done with minimal overheads. But, will

such coarsening be possible? Though the data can be divided naturally into
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localized partitions in later stages, no such natural divisions exist in early

stages. Alternatively, commodity systems may choose in the future to upgrade

their support for fine-grained irregular parallelism to bring their capabilities

closer to XMT. Given the quest to support deep learning applications, the case

for such an upgrade seems to gain broadening support.

In chapter 2 of this paper, we describe in more detail the role of mRNA,

the techniques used to analyze the transcriptome, and features of the XMT

architecture. In chapter 3, we describe in detail the algorithm for the XMT

Assembler and how we evaluated the performance of the XMT Assembler. In

chapter 4, we present the results of our evaluation, and in chapter 5 we discuss

our final conclusions.
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Chapter 2: Background

2.1 The Transcriptome and the Role of Messenger RNA

DNA holds the genetic information of a cell, based on which all the cell’s

proteins are built. This information is encoded in the sequence of nucleotides

which comprise the DNA molecule. There are four basic types nucleotides in

DNA, and the order of these nucleotides in a gene determines which amino

acids the resulting protein will have. These nucleotides are adenine (A), cyto-

sine (C), guanine (G), and thymine (T). Each type of nucleotide has a “com-

plementary” nucleotide type with which it can bond. Adenine bonds with

thymine and guanine pairs with cytosine. The the complete DNA molecule

consists of two strands of nucleotides with complementary sequences [28]. See

figure 2.1 on page 6.

Messenger RNA (mRNA) is the set of RNA molecules which transfer ge-

netic information from DNA to the ribosomes, where they are then translated

into proteins (see figure 2.2 on 6). DNA is the long-term storage of the cell

and the information it stores does not vary much between cells in an organ-

ism. Changes in protein production are instead achieved by regulating which
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genes are transcribed into precursor mRNA (pre-mRNA), and by regulating

how the pre-mRNA is processed into mature mRNA. An mRNA molecule is

called a transcript, and the set of all mRNA molecules in a cell is called its

transcriptome.

2.1.1 Transcription

Transcription is the process of producing mRNA from DNA. A protein

called RNA polymerase binds to a particular region in the DNA molecule

known as a promoter region. The RNA polymerase then traverses the DNA,

using the DNA sequence as the template to add matching RNA nucleotides

to a pre-mRNA molecule. The level of expression of a particular gene is

regulated by many factors, including changes to the physical structure of the

DNA molecule, methylation of the DNA, and general transcription factors

which position RNA polymerase at the promoter region [24].

2.1.1.1 Splicing

After pre-mRNA is copied from the DNA template, it undergoes further

processing to convert it to mature mRNA. One major change is splicing, where

certain sections of the mRNA, called introns, are removed. The remaining

sections, called exons, are placed next to each other. Different copies of a single

pre-mRNA sequence may be spliced in many different ways via alternative

splicing, where different sets of exons are retained for each mature mRNA
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Figure 2.1: Sketch of a DNA molecule from Cancer Research
UK [2], showing the complementary arrangement of the nucleotides
on its two strands.

Figure 2.2: Overview of the transcription and translation process
from the National Institutes of Health [19], showing how mRNA is
used in converting DNA into protein.
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molecule. In this way, a single gene can code for many different proteins [8].

See figure 2.3 on page 8.

2.1.2 Translation

Translation is the process of producing proteins from mRNA. The cellular

machinery used to accomplish this is called ribosome. A ribosome is composed

of proteins and ribosomal RNA molecules, which are distinct from mRNA. The

ribosome binds an mRNA molecule and begins traversing the molecule. For

each set of three nucleotides (called a codon), the ribosome adds one amino

acid to a growing protein. This continues until the ribosome reaches a “stop

codon”, which signals that translation is complete, and the ribosome releases

the protein and mRNA.

2.2 Transcriptome Sequencing and Assembly

In order to analyse the cellular transcriptome, we would like to create

a digital representation of the transcript sequences. This is accomplished in

two steps. First we sequence the transcriptome, producing digital “reads” of

small sections of each transcript. Then we assemble the original full length

transcript sequences using an assembly algorithm. See figure 2.4 on page 8.
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Figure 2.3: Different copies of the same pre-mRNA can be spliced
in many ways to produce different mature mRNA sequences and
eventually different proteins.

Figure 2.4: Overview of the process of analyzing physical mRNA
transcripts to discover their nucleotide sequence. Blue shapes rep-
resent physical mRNA molecules and red shapes represent digital
nucleotide sequences.
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2.2.1 Transcriptome Sequencing

There are several modern sequencing methods. We will discuss here the

most widely used method, short-read RNA-seq. This is the method used by

the popular Illumina platform [1], and the method upon which our assembly

algorithm is based.

In short-read RNA-seq, mRNA is fragmented into “fragments” of hun-

dreds of nucleotides. These fragments are converted into complementary DNA

(cDNA) fragments via reverse transcription. With the Illumina platform, one

end of each cDNA fragment is fixed to a surface and cloned repeatedly, cre-

ating one cluster of fragments for each original fragment. Then, nucleotides

marked with a flourescent dye are bonded to the end of the cDNA fragments

one at a time, and the dye color is measured after each nucleotide is added.

Using this process, a shorter section of the cDNA fragment (typically around

100 nucleotides) is sequenced. This sequence is called a “read”.

After sequencing one end of the cDNA fragment, the fragment is cloned

again, but with the other end of the fragment fixed to the surface. Sequencing

the fragment again produces another read, giving the sequence of the other

end of the cDNA fragment. Together with the first read, these are called a

“paired read”. The final output of transcriptome sequencing is a set of paired

reads.
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2.2.2 Transcriptome Assembly

Transcriptome assembly is the computation problem of taking the paired

reads produced by sequencing and reconstructing the sequence of the original

transcriptome. There are two basic assembly methods: genome-guided and de

novo assembly. In genome-guided assembly, reads are aligned to a reference

genome and transcripts are reconstructed based on overlaps between reads

in this alignment. In de novo assembly, no reference genome is used, so the

assembler uses only the set of reads to reconstruct the transcriptome. As a

result, the assembly is not biased toward any reference and is better at identi-

fying structural changes such as alternative splicing. The assembly algorithm

we present in this paper is a de novo assembler.

There are two major classes of algorithms for de novo transcriptome as-

sembly: overlap layout consensus algorithm and de Bruijn graph algorithms

[16]. In overlap layout consensus algorithms, every set of two reads is checked

for overlap. An overlap graph is built where each read is a vertex, and an

edge is drawn between two reads if they overlap. This graph is then simplified

and evaluated to produce full-length transcripts. Overlap layout consensus

algorithms are not well-suited for assembling modern sequencing data which

produce many short reads. This is because these algorithms are computation-

ally intensive, requiring checking every set of two reads for overlap, and thus

quadratic work for construction of the overlap graph.
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2.2.2.1 De Bruijn Graph Assembly Algorithms

De Bruijn graph assembly algorithms improve the computational effi-

ciency by building a special overlap graph called a de Bruijn graph. In a

de Bruijn graph each vertex corresponds to a unique sequence of length k-1,

called a (k-1)-mer. An edge may be drawn between two vertices if they over-

lap by k-2 nucleotides. Though only a k-2 overlap is required to draw an edge

between two vertices, each edge corresponds to a uniqe sequence of length k,

called a k-mer. This k-mer is the (k-1)-mer of the predecessor edge with the

last nucleotide of the successor edge appended to it.

In de Bruijn graph assembly algorithms, a de Bruijn graph is built based

on the k-mers and (k-1)-mers found in the set of reads. The number of times

each k-mer and (k-1)-mer appears in the read set is counted, and edges and

vertices are added for each unique k-mer and (k-1)-mer. This standardizes

the sequence length of vertices in the overlap graph, and the length of overlap

between vertices which correspond to edges. As a result, the graph can be

built with linear work, instead of quadratic work as in overlap layout consensus

algorithms.

After a de Bruijn graph is constructed from the read set, it can be con-

verted into a compacted de Bruijn graph by merging certain vertices which

have only one successor with that successor. The resulting vertex will repre-

sent a longer sequence, incorporating all of the merged (k-1)-mers. All the

edges in the graph, however, still represent k-mers. See figure 2.5 on page 12.
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Figure 2.5: Given the reads in (a), which differ in only one nu-
cleotide, and a k-mer size of 6, the de Bruijn graph in (b) will
be constructed. Note that the vertices represent (k-1)-mers, and
the edges represent k-mers. After compaction, the graph in (c) is
produced. While the vertices now represent longer sequences, the
edges still represent k-mers.
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2.2.2.2 Existing De Novo Transcriptome Assemblers

There are several existing de novo transcriptome assemblers, such Trinity

[7], Oases [25], and Soapdenovo-Trans [29]. These examples are all de Bruijn

graph assemblers, using typical k-mer sizes of between 20 and 40 nucleotides.

The parallel assembler we present in this text adapts many of the techniques

used by these assemblers for parallel computation. Our assembler most closely

resembles the Trinity assembler at a high level of abstraction, but borrows some

heuristics from the other assemblers where they are more suitable for parallel

implementation.

There are de novo transcriptome assemblers which have been adapted

to run in parallel on a standard multi-core system with shared memory, such

as Trinity [9], as well as de novo transcriptome assemblers designed for dis-

tributed systems, such as Trans-ABySS [23, 26]. The XMT Assembler is the

only assembler designed for a many-core architecture with thousands of pro-

cessors.

2.3 The Explicit Multi-Threading (XMT) Architecture

THe XMT architecture is a many-core computer architecture which aims

to improve single-task completion time and ease-of-programming for fine-grained

parallel applications by supporting Parallel Random Access Model (PRAM)

programming [27]. PRAM is the foremost model for parallel algorithms [11,14]

in the theory of computer science and algorithms. We will discuss two par-
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allel programming features which XMT supports, the spawn block and the

prefix-sum operation.

A spawn block denotes a region of parallel code. When a spawn block

is encountered, many threads are created, each of which executes at its own

pace. Each thread is assigned to a small processor called a thread control unit

(TCU). The TCU then executes the code within the spawn block. If there are

more threads than TCUs, then threads are assigned to TCUs as the TCUs

become available. The spawn block is complete only when all threads have

been processed, at which point the program can continue.

Prefix-sum is an operation that can be performed within a spawn block.

This operation takes two arguments, a base variable and an increment variable.

After the prefix-sum is operation, the base variable is incremented by the value

of the increment variable, and the increment variable is set to the original value

of the base variable. This is an atomic operation, meaning it completes in one

step from the point of view of other threads. The prefix-sum operation can be

used to synchronize access to shared data within a spawn block. The XMT

architecture has dedicated prefix-sum hardware which allows for fast multi-

operand prefix-sum calculation when multiple threads perform the prefix-sum

operation at the same time.
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Chapter 3: Methods

3.1 Algorithm for Parallel De Novo Transciptome As-

sembly

Our parallel de novo transcriptome assembler (the XMT Assembler)

uses the de Bruijn graph framework used by Trinity, SOAPdenovo-Trans, and

Oases. Specifically, it is based on the Trinity assembler and thus follows the

same general steps as the Trinity assembler, though sometimes the order of

computation is changed to facilitate parallelization. The XMT Assembler has

five major steps, as outlined in figure 3.1 on 16

3.1.1 K-mer Counting and De Bruijn Graph Construc-

tion

The XMT assembler can use any choice of k-mer size less than or equal

to 32. This limit is due to the space required to store a k-mer. We currently

use two 32-bit words to store each k-mer, and since each base requires 2 bits

to store, 32 bases is the maximum that can be stored using this scheme. For
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Figure 3.1: An overview of the XMT Assembler algorithm. The
input to the algorithm is the set of paired reads produced by tran-
scriptome sequencing. The algorithm (a) counts k-mers and builds
a de Bruijn graph (b) finds non-overlapping linear “contigs” in a
greedy manner (c) evaluates the edges between contigs and removes
those that are not well supported (d) simplifies the graph by re-
moving structures that are likely the result of sequencing errors,
and (e) finds paths through the de Bruijn graph that are likely to
represent true transcripts.
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testing, we chose a k-mer size of 25, the default k-mer size for the Trinity

assembler. This choice was arbitrary, but close to the default k-mer size of

other assemblers. For example, the default k-mer size of SOAPdenovo-Trans

is 23.

The k-mer counting stage is the first stage of the assembly algorithm.

Thus, the input to this stage is the output of the sequencer, or sequence

simulator. The XMT assembler accepts strand-specific paired reads in the

FASTA format. “Strand-specific” means that we know which read is closer to

the start of transcript, and which end is closer to the end of the transcript. The

algorithm could be modified to accept unstranded paired reads. This would

require counting two k-mers for each k-mer found in the reads: the unmodified

k-mer and the reverse complement of the k-mer. A perfect assembly using

unstranded reads would therefore produce two copies of each transcript: one

forward copy and one reverse complement copy.

The XMT assembler counts k-mers and (k-1)-mers in three stages, count-

ing (k/2)-mers, grouping k-mers by their first half, and then counting k-mers

within each group. The k-mer counting stage of the algorithm is based on

work done by James Edwards [4].

3.1.1.1 Count (k/2)-mers

An array is created with an entry for each (k/2)-mer. Each entry will

track the number of times its (k/2)-mer is found as the first half of a k-mer

17



in the reads. Since there are four possible values for each base, this requires

4⌊k/2⌋ entries. Our default value of k is 25, and we round k/2 down to 12,

so 16 million entries are required. One thread traverses each read, using the

prefix-sum operation to count each (k/2)-mer found.

3.1.1.2 Group k-mers By Their First Half

The prefix-sum of the count array from the previous step is performed.

This allows us to group the k-mers by their first half by giving the index where

the first element which starts with each (k/2)-mer must be stored. Then each

read is traversed again- this time the entire k-mer is inspected and copied to an

array, using the (k/2)-mer index and the prefix-sum operation so that k-mers

are grouped by (k/2)-mer in the array, but unsorted within each (k/2)-mer

group.

3.1.1.3 Count k-mers Within Each Group

Small Groups:

Each group smaller than some threshold is processed serially in its own

thread. The k-mers in the group are sorted, and then each k-mer and (k-

1)-mer is counted. When a new k-mer or (k-1)-mer is found, the prefix-sum

operation is used to assign an index for a new edge or vertex, respectively.

The vertices corresponding to each edge are assigned by inspecting the two

(k-1)-mers contained by the edge’s k-mer.

18



Large Groups:

Each large group is processed in parallel, using a similar method as was

used to count the first half of each k-mer. Another array of 4⌈k/2⌉ elements is

used to hold the count of each k-mer within the group. A thread is assigned

to each entry in the group. It finds the correct index in the array based on the

second half of of its k-mer. If this is the first time this k-mer has been found,

a new edge is assigned to represent this k-mer. Otherwise, the count of the

representative edge is incremented using the prefix-sum operation. Meanwhile,

(k-1)-mers are also counted using an array of 4⌈k/2⌉−1 elements.

3.1.1.4 Compact Graph

Once all k-mers and (k-1)-mers have been counted and assigned to edges

and vertices, the “light” graph is copied to a more memory intensive “full”

graph, which includes vertices that hold pointers to “dna vectors”, a data

structure which can hold an unlimited number of bases, still storing each base

using 2 bits.

The de Bruijn graph is then compacted. The algorithm identifies “lin-

ear” vertices: vertices which have only one successor and which are the only

predecessor of their successor. These vertices can be merged with their suc-

cessor, taking its outgoing edges. It also identifies all linear vertices which are

the start of a linear sequence as the representative vertex for that sequence. A

thread is assigned to each representative vertex, and the subsequent vertices

19



are merged into it, adding their bases and count statistics to it. Finally, the

representative vertex takes the edges of the first vertex it finds which is not

“linear”. When this is complete, the vertices no longer correspond to (k-1)-

mers, but can hold longer sequences. The edges, however, still correspond to

unique k-mers and there is still a k-2 overlap between all adjacent vertices.

See figure 3.2 on page 26.

3.1.2 Greedy Contig Construction

In this stage we find non-overlapping contigs in the de Bruijn graph. A

contig in the context of the de Bruijn graph is a simple chain of vertices. Each

chain of vertices represents a sequence of nucleotides, and since the chains do

not overlap, no two contigs share any (k-1)-mers. The goal of this stage is to

divide the graph into as few contigs as possible and to minimize the number

of edges which connect two different contigs. Edges which connect different

contigs are the subject of the next stage, and are known as “welds”.

Our approach is based on Trinity’s Inchworm stage, which performs the

same function. In the Trinity algorithm, the k-mers are sorted in descending

order of count in the read set. The most abundant k-mer is used as a seed and

a contig is built by choosing the next k-mer with (k-1)-mer overlap with the

highest count. Though a de Bruijn graph has not yet been built at this stage

of the Trinity algorithm, this is equivalent to choosing the vertex with the

highest count, and then extending by choosing the successor with the highest
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count. K-mers are added until one is reached which has no successor which

has not been used in a previous contig. The contig is then extended by looking

at predecessors in a similar manner.

In order to facilitate parallelism, our algorithm runs in two passes. First,

each thread chooses a random vertex, without regard for vertex count. This

vertex becomes the seed for a draft contig, using the same algorithm as Trin-

ity’s Inchworm. During the construction of this draft contig, the vertex with

the highest count is recorded. Then, during the second pass, this vertex is

used as a seed. This allows us to find a sort of local maximum.

The problem with choosing all the vertices with the maximum counts as

seeds is that these vertices are likely to be clustered near eachother in the de

Bruijn graph, as they likely come from a highly abundant transcript, or from

a sequence that is found in multiple transcripts. Thus, if we use these nearby

vertices as seeds, the contigs will collide early on and the resulting contigs will

be very small. This can also be a problem for our parallel algorithm. If there

are too many threads operating in the de Bruijn graph, there will be threads

running simultaneously which have seeds close to one another. We will explore

the effect that the number of parallel threads has on assembly quality and run

time in section 4.4.
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3.1.3 Evaluation of Connections Between Contigs

After the greedy contig construction, the edges connecting contigs are

evaluated. Each such edge is extended by (k−1)/2 onto both contigs, produc-

ing a sequence of length 2∗k−1, referred to as a “weld”. A weld is considered

valid if it appears in the read set at least 4% as much as the average (k − 1)-

mer of each of the contigs it connects. This stage corresponds to the Chrysalis

stage of the Trinity algorithm.

Because all the welds are the same length, searching for the welds in the

read set is well suited for the Rabin-Karp [12] algorithm. In the Rabin-Karp

Agorithm, an integer hash is calculated for the weld with a polynomial hash

function. Each character in the alphabet is assigned an integer between 0 and

A − 1, where A is the size of the alphabet. In our case, we use the 2-bit

encoding of nucleotides, so A = 4. A large prime p is also chosen. Then,

starting with the rightmost character of the weld and proceeding left, the key

is calculated as follows:

1 f o r ( i = l en ( weld ) ; i > 0 ; i−−) {
2 c = i n t e g e r encoding o f cha rac t e r i
3 hash = ( hash ∗ A + c ) % p
4 }

Because a polynomial hash function is used, a corresponding hash can

be calculated for each position in the read set in linear time. First one must

calculate the hash represented by the first b characters of the read, where

m = 2∗k−1, the length of the weld. To get the hash of the next position, add
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the next character entering the rolling window and subtract the one leaving.

hash = ((hash ∗ A) + (new c)− Am−1 ∗ old c)%p

When you encounter a hash value in the text that matches the weld’s

hash value, you must check that position for a match character by character.

Because this checking could theoretically occur at every position in the text,

the algorithm takes O(N ∗ m) time, where N is the total length of the read

set.

To adapt the algorithm for multiple weld matching, we used a hash table

with open addressing and stored pointers to the corresponding weld. When a

hash from the a text hit an entry in the hash table, it checks that entry (and

possibly more) for a match. It should be noted that the algorithm cannot be

as easily adapted for multiple pattern matching if the patterns have different

lengths.

The parallel implementation is straightforward. Each thread is first as-

signed to a weld, which it processes and adds to the hash table, resolving

collisions if necessary. Then each thread is assigned to a read and processes it

independently from the other threads.

3.1.4 Graph Simplification

In this stage we used heuristics inspired by the SOAPdenovo-Trans and

Oases algorithms. We iterate through three steps until no further simplifica-
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tion is performed: we compact the graph as described in section 3.1.1.4, we

remove “short tips”, and we merge “bubbles”.

3.1.4.1 Short Tip Removal

A short tip is any single vertex v which represents a sequence of length

≤ 2 ∗ k and has either no predecessor or no successor. Assume for the case of

explanation that the vertex has no successor. Then we inspect its predecessor

p. If p has a successor with a higher count than v, or which continues longer

than v, we remove v.

The reasoning behind this heuristic is that short tips branching off an

otherwise linear nucleotide sequence can be generated by a sequencing error

within k-1 nucleotides of the end of a read. The error rate for Illumina is

around 2%, so we expect that most short tips in the de Bruijn graph are

produced by errors.

3.1.4.2 Bubble Merging

A bubble is a structure in the de Bruijn graph where there are two paths

which start at some vertex u and end at some vertex v, without sharing any

vertices between u and v. Like short tips, these structures are often caused

by sequencing errors, this time near the middle of the read. For example, if

there is an error in one nucleotide of one read, we expect this to generate a

bubble of 2 ∗ k − 2 nucleotides. This is because there will be k − 1 (k-1)-mers
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overlapping the error, before returning to the currect sequence.

In our algorithm we remove the majority of bubbles by inspecting every

vertex v with a single predecessor u and a single sucessor w. We search for

alternate paths between u and w, and if one of these paths has a greater count

than v and has at least 90% identity with v’s sequence, we remove v and merge

it into the alternate path. See figure 3.3 on page 26 for an example of a short

tip and a bubble.

3.1.5 Reconstruction of Full Length Transcripts

After the de Bruijn graph has been simplified, the final stage is to find

paths through the graph which are supported by reads. These nucleotide

sequences of these paths are reported as transcripts in the final output of

the assembler. This corresponds to the Butterfly stage of Trinity. At this

point in the algorithm, there are many connected components consisting of a

single vertex. These represent sequencing for which there is branching or other

ambiguity, and can be reported as transcripts if they are long enough.

There are also connected components which contain forks, bubbles, and

more complicated structures. These components can result from sequencing

errors that were not resolved using the heuristics of the previous stages, they

may be caused by alternative splicing during messenger RNA transcription,

or they may be the result of genes which share sequences of length ≥ k − 1.

See figure 3.4 on page 27.
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(a) (b)

Figure 3.2: A graph (a) before and (b) after compaction. Both
orange and green vertices are considered “linear” because they have
only one successor, and that successor has only one predecessor.
Orange vertices are also the first of a linear sequence, because their
predecessor (or predecessors) are not linear. Each thread starts at
an orange vertex and merges subsequent vertices until it reaches a
non-linear vertex, which is also merged.

Figure 3.3: A graph with a bubble and a short tip. The bubble
consists of the orange and green vertices. If the average count of
the green path is greater than that of the orange vertex, and the
sequence of the green path is has at least 90% identity with the
orange vertex, the orange vertex is removed. The red vertex is
a short tip, assuming its sequence has ≤ 2 ∗ k nucleotides. If its
sibling vertex has a higher average count or a longer sequence, the
red vertex is removed.
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(a) (b) (c) (d)

Figure 3.4: Some typical structures of connected components dur-
ing the transcript reconstruction stage:
(a) A single vertex: this represents a linear sequence, any sequenc-
ing errors were resolved in earlier stages.
(b) A fork: this may represent a sequencing error or a pair of tran-
scripts which share one or more introns before diverging.
(c) A bubble: this may represent a sequencing error or a pair of
transcripts, one of which has an extra intron.
(d) More complex structures: thes can arise by a combination of
sequencing errors, alternative splicing, and multiple genes which
share sequences of length k or longer.
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We attempt to resolve which paths in the de Bruijn graph represent true

transcripts by using paired reads. Up to this point, we have only considered

reads individually, and have only considered the k-mer profile of the read set

(except when evaluating welds, where we looked at (2*k-1)-mers). Individual

reads are typically less than 100 nucleotides long, but these reads are taken

from RNA fragments of up to 500 nucleotides. In our datasets, the reads are

70 nucleotides long, and the average fragment length is 250 nucleotides with

a standard deviation of 25 nucleotides.

We can determine the likelihood of paths by checking if there are paired

reads consistent with every subpath of the average fragment length. We will

describe how this is done in the following sections, but in the next two para-

graphs we will describe a limitation of this approach.

Unfortunately, we cannot resolve which alternative paths are not consis-

tent with each other if the distance between branches in the de Bruijn graph

is greater than the average fragment length. Consider figure 3.4(d) on page

27. Assume that the algorithm determines that the subpaths A-B-D, A-C-D,

D-E, and D-F are all supported by paired reads, but no path including the

edge C-F is. If the sequence of D is smaller than the average than the av-

erage fragment length, then we can resolve which direction each of the paths

ending in D continues by checking which subpaths spanning D are supported

by paired reads. For example, if only B-D-F and C-D-E are supported, then

the likely transcripts for this component include A-B-D-F and A-C-D-E, but

not A-B-D-E or A-C-D-F .
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However, if the sequence of D is larger than the average fragment length,

then there will be few or no paired reads which span D. Thus we cannot resolve

which combinations of paths are unlikely, and we must report all four possible

paths. This limitation is a consequence of the fragment length and read length

limitation during sequencing.

3.1.5.1 Read Mapping and Loop Resolution

Throughout the previous stages of of the algorithm, the vertex and po-

sition within that vertex’s sequence where each read starts is tracked. Now,

we assign each read a thread, and track its path through the de Bruijn graph.

In this way, we convert each read from a sequence of nucleotides into a list of

vertices.

We now use reads to resolve short loops in the de Bruijn graph: self loops

and double loops.

Self Loops:

Self loops are vertices are their own successor. This can be the result of

a short repeated sequence in the transcriptome. We search the reads to find

the maximum number of times each self loop vertices appears in a row. We

then expand each self loop vertex by duplicating its sequence the maximum

number of times that the self loop vertex was found in any read.

Double Loops:
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A double loop is a vertex v which has only predecessor and one successor,

and these are the same vertex, u. Once again, this can be the result of a short

repeated sequence. We search the reads to find the maximum number of times

v occurs in sequence with u. We remove v and expand the sequence of u by

adding the sequence of v and u the maximum number of times that the double

loop was found in any read.

3.1.5.2 Paired Read Extension

At this point we are done modifying the de Bruijn graph, and move on

to considering paired reads together. We want to use paired reads to resolve

longer sequences, up to the total length of the fragment the reads are derived

from. If there is only one path (with a length less than the maximum fragment

size) from the end of the first read to the beginning of the second read, we

say that this pair of reads supports that entire path, and the two reads can be

merged into single longer read.

If there are multiple such paths between the ends of a paired read, we

will still attempt to extend the ends toward each other. We will extend the

first end as long as the last vertex of the first end has only one successor which

lies on all paths to the second end. When this extension is complete, we extend

the second end back to the first end in the same manner. We then track the

two ends together as a paired read. See figure 3.5 on page 32

If there are no paths between the reads, they are tracked singly. If a

30



read consists of only a single vertex, it is discarded as it won’t help resolve

alternative paths.

Building a Hash Table of Distances Between Vertices:

In order to extend the reads, we need to know whether there is a path

between any two vertices shorter than the maximum fragment size. So, we

build a hash table- the key is the pair of vertices, and the value is the distance

between the two vertices, including the end vertices. The hash table will only

hold pairs of vertices for which that distance is smaller than the maximum

fragment size.

To do this, we assign a thread to each vertex u, and use Dijkstra’s shortest

path algorithm [3]. When we find the shortest distance to a vertex v, we add

the pair u-v to the hash table. When we exceed the maximum fragment size,

we stop early. Once this hash table is built, we can use it to check whether a

path exists between a pair of vertices, as is needed to extend the reads.

3.1.5.3 Paired Read Grouping

After extending paired reads, there are many identical reads, and we

would like to choose a representative read for each group of identical reads so

we have fewer reads to track in the next stage. To do this, we build a “read

forest” as follows:

• Each vertex in the de Bruijn graph is assigned a vertex in the read forest,

and this vertex is the root of a tree.
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(a) (b)

Figure 3.5: Examples of paired read extension (red vertices rep-
resent the original vertices of the paired reads, and blue vertices
represent the vertices added after extension):
(a) The ends of the paired read have only one path connecting
them, so they are merged into a single read.
(b) The ends of the paired read have multiple paths and therefore
cannot be merged into a single read. However, the first end can
be extended by one vertex, since all paths between the ends of the
reads use the blue vertex.
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• Each thread is assigned a read. We follow the vertex sequence of the

read and descend the read forest by one vertex for every vertex (or gap

between paired ends) in the read. If the corresponding vertex in the read

forest does not yet exist, it is created.

• Once we reach the final vertex of the read in the de Bruijn graph, we

have reached the vertex in the read forest which represents the unique

path of that read. We check if a representative read has already been

assigned for this unique path. If so, we increment the count of that

representative read and mark the current read for deletion. If not, the

current read is set as the representative read for that path.

For each vertex in the de Bruijn graph, we also build a list of the repre-

sentative reads which start at that vertex.

3.1.5.4 Transcript Building

At this point in the algorithm, the de Bruijn graph has been contracted

and simplified using only unpaired read information, and the paired reads

themselves have been represented as lists of vertices in the graph, extended,

and grouped. All that remains is to determine which paths through the de

Bruijn graph are supported by the paired reads, and to report the sequence of

these paths as assembled transcripts.

We start by assigning a thread to each source vertex (a vertex with no

predecessor). This thread will keep track of two things: the path it traverses
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as it builds a transcript, and a list of reads which are compatible with this

path so far.

The thread then builds a transcript by checking each of the successors

of the last vertex in its path. If none of the possible extensions of the path

is supported by its reads, the thread is done building its transcript path. If

exactly one of the possible extensions is supported, the thread will add the

next vertex to its path and continue checking the extensions of that vertex. If

more than one of the possible extensions is supported, the thread must copy

the information it is tracking (path so far and compatible reads), and spawn

new threads for every supported extension beyond one. The thread and all

the newly spawned threads will continue checking their vertices for extension.

Eventually each thread will reach a vertex with no supported extension,

or a vertex that is already in its path, and stop building its path. Once this

happens, we find the vertices in the graph which have not been visited, and

which have no predecessors which have not been visited. These are our new

source vertices, and we repeat the transcript building process. This continues

until all vertices have been visited.

Determining if a Path Extension is Supported by Reads:

When deciding whether to extend a path to a new vertex, we check

whether some number of reads support the extension (2 by default). We say

that a read supports an extension if it contains both the new vertex and the

vertex some number of nucleotides back in the path. This number should be
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the expected distance between the ends of a paired read (before extension).

In this manner, we are able to use information from the full length of the

sequenced fragments to resolve branches in the de Bruijn graph.

When an extension is made, the algorithm checks the tracked reads to

make sure they are still compatible and relevant. If the read diverges from

the path, or if we have passed the first end into the gap between the ends and

have gone too far to rejoin the second end, we stop tracking that read for this

transcript path.

Final Output

Once all the transcripts have been built, we filter out those that are too

short and print the remaining transcripts in the FASTA format.

3.2 Evaluation of the XMT Assembler

3.2.1 Datasets

For each dataset, we chose a number of transcripts from chromosome

22, as annotated in in the NCBI Reference Sequence Database [21]. These

transcripts represent the “ground truth”, so the output of the transcriptome

assembly algorithm should be as close to these transcripts as possible. The

number of transcripts used were 1, 2, 5, 10, 20, 50, and 100.

We then used the polyester [5] package of bioconductor to simulate a

set of reads. Polyester simulates the steps of RNA sequencing by creating

35



fragments with the expected distribution of fragment sizes and sequencing

both ends of those fragments to create paired reads. It also introduces errors

based on an error model for the sequencing platform being simulated. For

our datasets, we simulated strand specific paired reads of 70 nucleotides, from

fragments with a mean length of 250 and standard deviation of 25. We used

the ’illumina5’ error model. For each set of transcripts, we produced two sets

of reads- one where each transcript had an average coverage of 20, and one

where each read had a different average coverage between 0 and 40. Coverage is

defined as the total number of nucleotides in the reads derived from a transcript

divided by the number of nucleotides in that transcript.

3.2.2 Assemblers

We assembled each datasets using the XMT assembler and three other

assemblers:

• Oases: Assemblies were created using all odd k-mer sizes between 20

and 32, and then merged into a final assembly using a k-mer size of

25. We chose the strand-specific option, indicated the average fragment

length of 250 nucleotides, and reported only transcripts longer than 200

nucleotides.

• SOAPdenovo-Trans: Assemblies were created using the default k-mer

size of 23. Again we chose the strand-specific option and indicated the

average fragment length of 250 nucleotides.
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• Trinity: Assemblies were created using the default k-mer size of 25. We

chose the strand-specific option and used the default maximum fragment

length of 500 nucleotides.

• XMT Assembler: The XMT architecture was simulated using XMTsim

[13]. The configuration used for most testing had 1024 TCUs arranged

in 64 clusters of 16 TCUs each, and connected to 128 cache modules

using a mesh of trees interconnection network

3.2.3 Evaluation Metrics

3.2.3.1 Run Time and Memory Use

All of the assemblers besides the XMT assembler were run on an Intel

Core i7-4810MQ processor with a clock frequency of 2.80 GHz. We used the

unix time utility to measure the total processor time for each assembly (user

and system time). To measure the peak memory use of the assemblers, we

used the valgrind massif memory profiler [20].

To measure the run time and memory use of the XMT assembler, we

ran the assembler on XMTsim. XMTsim is a cycle-accurate simulator for the

XMT architecture, and can be used to measure clock cycles and total memory

use. In this paper we convert the clock cycle count to the wall-clock time of

an XMT computer using a clock frequency of 2.80 GHz, for direct comparison

to the run time of the other assemblers.
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3.2.3.2 Assembly Quality

Transcript Length Metrics:

The sequence length profile is a metric commonly used to evaluate the

quality of genome assemblies. It is less appropriate for evaluating the quality

of a transcriptome assembly, because transcriptome assemblies are expected

to be more fragmented. However, we collected sequence length statistics from

our assemblies in order to characterize the assemblies.

• Number of transcripts

• Length of longest transcript

• N50, N90: The N50 statistic is the length of the shortest transcript in

the smallest subset of transcripts which contains at least 50% of the total

number of nucleotides in the assembly. N90 is defined similarly.

• L50, L90: The L50 statistic is the least number of transcripts which

contain at least 50% of the total number of nucleotides in the assembly.

Sensitivity and Specificity:

Since we use simulated datasets, we have a “ground truth” set of tran-

scripts to compare our assemblies to. We use the BLAT aligner [15] to find

alignments between the assembled transcripts and true transcripts which have

a similarity of 95% or greater. Using these alignments we calculate the sensi-

tivity and specificity of the assembly.
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• Sensitivity: This is the proportion of true transcripts which can be

aligned to an assembled transcript with at least 95% similarity.

• Specificity: This is the proportion of assembled transcripts which can be

aligned to a true transcript with at least 95% similarity.

Log Average Probability (LAP):

Another approach to assessing the quality of an assembly is one which

does not use the “ground truth” set of transcripts. This method, described in

[6], instead calculates the probability that each individual read in the read set

would be produced by a transcriptome sequencer, assuming that the assembly

is correct. The assembly quality can then be defined as the geometric mean

of each individual read probability. The log of this value is called the LAP,

and is equal to the arithmetic mean of the log of individual read probabilities.

We use the program, also called LAP, to calculate the LAP statistic for each

assembly.
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Chapter 4: Results

4.1 Assembly Quality

We found that the XMT Assembler produced results that were qualita-

tively similar to the SOAPdenovo-Trans results, in terms of transcript length

statistics. Trinity typically assembles more transcripts than the XMT As-

sembler of SOAPdenovo-Trans, especially for larger datasets. In the largest

datasets, the XMT Assembler produces shorter transcripts than Trinity and

SOAPdenovo-Trans. Oases consistently produced shorter and more transcripts

(so more fragmented in general) than the other assemblers. The differences

between length statistics for assemblies of the constant and variable coverage

datasets were minor. See table 4.1 on page 41 for the length statistics on the

5, 20, and 100 transcript datasets.

The specificity of the XMT Assembler was consistently higher than that

of any of the other assemblers, but the sensitivity was worse than Trinity and

SOAPdenovo-Trans for the three largest datasets. Trinity had the highest

sensitivity in general. The LAP for the XMT Assembler was higher than for

all other assemblers besides Trinity, which had a higher LAP statistic than
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Table 4.1: Transcript length statistics for data sets with 5, 20, and 100 “ground
truth” transcripts. The unit is # nucleotides for all numbers besides the #
transcripts column.

Data set
(# Tran.)

Coverage Assembler
# Tran.

Assembled
Longest

Tran.
N50 N90 L50 L90

5

Constant

trinity 4 2050 1688 742 2 4
oases 7 926 648 399 3 6
soap 7 2041 1424 735 2 4
xmt 4 2050 1799 742 2 4

Variable

trinity 4 2052 1705 724 2 4
oases 10 1219 619 281 3 8
soap 4 2050 1866 706 2 4
xmt 6 2052 1538 724 2 4

20

Constant

trinity 20 8593 3060 1467 5 15
oases 74 3060 892 361 18 55
soap 18 8563 2700 1363 4 12
xmt 18 8593 2711 1475 5 13

Variable

trinity 19 8608 2709 1373 4 13
oases 68 2511 894 304 17 51
soap 16 8600 2642 1451 4 11
xmt 15 8608 2709 1483 4 11

100

Constant

trinity 99 9837 4494 1727 28 74
oases 316 2753 803 323 80 237
soap 68 9847 3938 1536 16 45
xmt 69 8087 3241 1450 17 50

Variable

trinity 101 9836 4093 1703 27 70
oases 244 3447 876 312 55 179
soap 70 9452 4047 1451 16 45
xmt 68 9835 2723 1432 18 48
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the XMT Assembler for some datasets. The sensitivity, specificity, and LAP

statistics for Oases were consistently much worse than for the other three

assemblers. See table 4.2 on page 43 for the assembly quality statistics on

the 5, 20, and 100 transcript datasets and figure 4.1 on page 44 for statistic

comparison on all datasets with constant coverage.

4.2 Run Time and Memory Use

The fastest serial assembler for most datasets was SOAPdenovo-Trans,

though Oases was faster for the smallest datasets. Trinity was slower than all

other assemblers, by a factor of 5 or more. The XMT assembler was faster

than all the serial assemblers on all datasets, with speedups of between 25x

and 61x over the fastest serial assembler. See table 4.3 on page 45 for the

run time and memory use of the assemblers on the 5, 20, and 100 transcript

datasets and figure 4.1 on page 44 for run time and memory comparisons on

all datasets with constant coverage. See figure 4.2 on page 47 to see the XMT

Assembler’s speedup over other assemblers on all datasets.

4.3 Runtime Scaling with Processor Count

In order to evaluate how the total work done by the XMT Assembler

compares to that of the other assemblers, we simulated a configuration of the

XMT architecture which had only one TCU, so the algorithm was performed

serially. We found the XMT assembler had a 2x slowdown over the fastest
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Table 4.2: Assembly quality statistics for data sets with 5, 20, and 100 “ground
truth” transcripts.

Data set
(# Tran.)

Coverage Assembler Sensitivity Specificity LAP

5

Constant

trinity 0.80 1.00 -8.39
oases 0.00 1.00 -12.63
soap 0.80 1.00 -8.76
xmt 0.80 1.00 -8.21

Variable

trinity 0.80 1.00 -8.53
oases 0.00 1.00 -13.16
soap 0.60 1.00 -8.77
xmt 0.60 1.00 -8.48

20

Constant

trinity 0.95 1.00 -8.60
oases 0.00 0.97 -13.19
soap 0.95 1.00 -8.84
xmt 0.90 1.00 -8.71

Variable

trinity 0.90 1.00 -8.65
oases 0.00 0.96 -13.47
soap 0.90 0.94 -8.81
xmt 0.85 1.00 -8.79

100

Constant

trinity 0.92 0.95 -9.11
oases 0.03 0.91 -15.20
soap 0.83 0.93 -9.62
xmt 0.71 0.99 -9.49

Variable

trinity 0.81 0.94 -9.11
oases 0.04 0.93 -15.65
soap 0.75 0.91 -9.60
xmt 0.75 0.99 -9.43
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Figure 4.1: Comparison of evaluation metrics for assemblies of all
datasets. The lighter bars represents datasets with constant cover-
age and the darker bars represent datasets with variable coverage.
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Table 4.3: Total runtime and peak memory usage of assemblers for data sets
with 5, 20, and 100 “ground truth” transcripts.
Data set
(# Tran.)

Coverage Assembler Total Runtime (s) Peak Memory (GB)

5

Constant

trinity 9.35 8.73
oases 0.71 0.13
soap 0.56 3.50
xmt 0.011 0.75

Variable

trinity 9.48 8.73
oases 1.37 0.13
soap 0.57 3.50
xmt 0.011 0.76

20

Constant

trinity 34.74 8.73
oases 3.97 0.14
soap 0.83 3.45
xmt 0.021 0.78

Variable

trinity 36.54 8.73
oases 4.51 0.14
soap 0.83 3.44
xmt 0.020 0.78

100

Constant

trinity 121.79 8.73
oases 18.21 0.15
soap 1.66 3.46
xmt 0.089 0.94

Variable

trinity 125.12 8.73
oases 22.73 0.15
soap 1.96 3.46
xmt 0.074 0.96
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serial assembler for the 100 transcript constant coverage dataset. We simulated

XMT configurations with TCUs between 1 and 1024 (see figure 4.3 on page

47). There continues to be significant improvement in run time up to 128

TCUs, at which point adding more TCUs give diminishing returns.

4.4 Parallelism During Greedy Contig Construction

As mentioned in section 3.1.2, using more threads during the greedy

contig construction stage of the XMT Assembler algorithm can result in a

more fragmented graph and diminish the quality of the final assembly. For

the datasets with 1, 10, and 100 transcripts and constant coverage, we used

a number of threads between 1 and 1024 during contig construction. For all

datasets, we see a sharp drop in LAP and sensitivity as we increase the number

of threads. As we see in figure 4.4 on page 49, this drop occurs with a smaller

number of threads for smaller datasets. This is as expected, because in the

larger dataset the deBruijn graph is larger and parallel threads are less likely

to collide with eachother during contig construction. The specificity of the

assemblies was relatively unaffected by the number of threads used during

contig construction.

Figure 4.4 also shows the total run time of the algorithm as a function of

the number of threads used during contig construction. Interestingly, after an

initial drop, the run time increases with the number of threads. Although the

run time for the contig construction stage decreases monotonically with the
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Figure 4.2: Speedup achieved by the XMT assembler over the
fastest serial assembler for all datasets.
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Figure 4.3: Effect of the number of TCUs on run time for the 100
transcript dataset with constant coverage.
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number of threads, the run time of the next stage (evaluation of connections

between contigs) increases. When there are enough threads that they begin to

interfere during contig construction, the graph will be more fragmented and

there will be more connections between contigs that need to be evaluated.

48



−14
−13
−12
−11
−10
−9
−8
−7
−6

LA
P

1 Transcript
10 Transcripts
100 Transcripts

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

1 2 4 8 16 32 64 128 256 512 1024
# Threads in the Greedy Contig Contruction Stage

0.00

0.05

0.10

0.15

0.20

To
ta

l R
un

tim
e 

(s
)
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Chapter 5: Conclusions

The scope of testing was limited by our use of the XMT simulator. The

XMT simulator is limited to 2GB of memory and requires a large amount

of wall-clock time to simulate a very short program. As a result, we could

only test the XMT Assembler on very small datasets. We recommend more

extensive testing of the XMT Assembler on large datasets to check if the

promising speedup and quality results continue as the input size increases.

This can be achieved if an updated version of the XMT simulator is made, or

if a physical version of the XMT architecture is built.

The XMT Assembler achieved speedups of between 25x and 61x over

the fastest serial de novo transcriptome assemblers tested, without falling be-

hind other de novo transcriptome assemblers in assembly quality metrics. This

brings the run time of de novo transcriptome assembly on par with genome-

guided transcriptome assembly. Thus, the XMT Assembler can provide the

benefits of de novo transcriptome assembly without the cost of greatly in-

creased run time.
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