
Fast computation of sums of Gaussians in high
dimensions

VIKAS CHANDRAKANT RAYKAR, CHANGJIANG YANG, RAMANI DURAISWAMI,

and NAIL GUMEROV

Perceptual Interfaces and Reality Laboratory

Department of Computer Science and Institute for Advanced Computer Studies

University of Maryland, CollegePark, MD 20783

{vikas,yangcj,ramani,gumerov}@umiacs.umd.edu

Evaluating sums of multivariate Gaussian kernels is a key computational task in many problems
in computational statistics and machine learning. The computational cost of the direct evaluation
of such sums scales as the product of the number of kernel functions and the evaluation points.
The fast Gauss transform proposed by Greengard and Strain (1991) is a ε-exact approximation
algorithm that reduces the computational complexity of the evaluation of the sum of N Gaussians
at M points in d dimensions fromO(MN) toO(M+N). However, the constant factor inO(M+N)
grows exponentially with increasing dimensionality d, which makes the algorithm impractical for
dimensions greater than three. In this paper we present a new algorithm where the constant factor
is reduced to asymptotically polynomial order. The reduction is based on a new multivariate
Taylor’s series expansion (which can act both as a local as well as a far field expansion) scheme
combined with the efficient space subdivision using the k-center algorithm. The proposed method
differs from the original fast Gauss transform in terms of a different factorization, efficient space
subdivision, and the use of point-wise error bounds. Algorithm details, error bounds, procedure
to choose the parameters and numerical experiments are presented. As an example we shows how
the proposed method can be used for very fast ε-exact multivariate kernel density estimation.

[CS-TR-4767/UMIACS-TR-2005-69]: November 4, 2005

CS-TR-4767/UMIACS-TR-2005-69

2 · Raykar,Yang, Duraiswami, and Gumerov

Contents

1 Introduction 3

2 Prelimnaries 5
2.1 Multidimensional Taylor’s Series . 5
2.2 Multi-index Notation . 7
2.3 Space sub-division . 8

3 Improved Fast Gauss Transform 10
3.1 Factorization . 10
3.2 Regrouping . 11
3.3 Space subdivision . 11
3.4 Rapid decay of the Gaussian . 11
3.5 Comparison with the FGT factorization 12
3.6 Computational Complexity . 12
3.7 Space Complexity . 13
3.8 Horner’s rule . 14
3.9 Partial distance . 14

4 Choosing the parameters based on point wise error bounds 15
4.1 Automatically choosing the cut off radius for each cluster 16
4.2 Automatically choosing the truncation number for each source . . . 16
4.3 Automatically choosing the number of clusters 17

5 Related work 18
5.1 Methods based on sparse data-set representation 19
5.2 Binned Approximation based on FFT 20
5.3 Dual-tree methods . 20
5.4 Fast Gauss Transform . 21

5.4.1 Series expansions and Translation 21
5.4.2 Error bounds . 22
5.4.3 Spatial data structures . 23
5.4.4 Exponential growth of complexity with dimension 24

6 Numerical Experiments 24
6.1 Speedup as a function of N . 24
6.2 Speedup as a function of d . 27
6.3 Speedup as a function of the desired error ε 28
6.4 Speedup as a function of the bandwidth h 28

7 Approximate fast multivariate kernel density estimation 31

8 Conclusions 33

9 Appendix 1: Relative vs Absolute Error 34

10 Appendix 2: Error bound for Hermite series truncation 35

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 3

1. INTRODUCTION

In most kernel based machine learning algorithms [Shawe-Taylor and Cristianini
2004] and non-parametric statistics [Izenman 1991] the key computational task is
to compute a linear combination of local kernel functions centered on the training
data, i.e.,

f(x) =
N∑

i=1

qik(x, xi),

where {xi ∈ Rd, i = 1, . . . , N} are the N training data points, {qi ∈ R, i =
1, . . . , N} are the weights, k : Rd×Rd → R is the local kernel function, and x ∈ Rd

is the test point at which f(.) is to be computed. f is the regression/classification
function in case of regularized least squares [Poggio and Smale 2003], Gaussian
process regression [Williams and Rasmussen 1996], support vector machines [Cris-
tianini and Shawe-Taylor 2000], kernel regression [Wand and Jones 1995], and radial
basis function neural networks [Girosi et al. 1995]. For non-parametric density esti-
mation it is the kernel density estimate [Wand and Jones 1995]. Also many kernel
methods like kernel principal component analysis [Smola et al. 1996] and spectral
clustering [Chung 1997] algorithms involve computing the eigen values of the Gram
matrix. Training Gaussian process machines [Seeger 2004] involves the solution of
a linear system of equations. Solutions to such problems can be obtained using it-
erative methods, where the dominant computation is evaluation of f(x). Recently,
such problems have been collectively referred to as N -body problems in learning by
[Gray and Moore 2001], in analogy with the columbic N -body problems occurring
in computational physics.

The most commonly used kernel function is the Gaussian kernel

K(x, y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel. The Gaussian kernel is a local kernel
in the sense that lim‖x−y‖→∞K(x, y) = 0. The sum of multivariate Gaussian
kernels is known as the discrete Gauss transform. More formally, for each target
point {yj ∈ Rd}j=1,...,M the discrete Gauss transform is defined as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

. (1)

where {qi ∈ R}i=1,...,N are the source weights, {xi ∈ Rd}i=1,...,N are the source
points, i.e., the center of the Gaussians, and h ∈ R+ is the source scale or band-
width. In other words G(yj) is the total contribution at yj of N Gaussians centered
at xi each with bandwidth h. Each Gaussian is weighted by the term qi.

The computational complexity to evaluate the discrete Gauss transform (Equa-
tion 1) at M target points is O(MN). This makes the computation for large
scale problems prohibitively expensive. In many machine learning tasks data-sets
containing more than 104 points are already common and larger problems are of
interest.

The Fast Gauss Transform (FGT) is an ε− exact approximation algorithm that
reduces the computational complexity to O(M + N), at the expense of reduced

CS-TR-4767/UMIACS-TR-2005-69

4 · Raykar,Yang, Duraiswami, and Gumerov

precision, which however can be arbitrary. The constant depends on the desired
precision, dimensionality of the problem, and the bandwidth. Given any ε > 0, it
computes an approximation Ĝ(yj) to G(yj) such that the maximum absolute error
relative to the total weight Q =

∑N
i=1 |qi| is upper bounded by ε, i.e.,

max
yj

[
|Ĝ(yj)−G(yj)|

Q

]
≤ ε. (2)

The FGT was first proposed by [Greengard and Strain 1991] and applied success-
fully to a few lower dimensional applications in mathematics and physics. However
the algorithm has not been widely used much in statistics, pattern recognition, and
machine learning applications where higher dimensions occur commonly. An impor-
tant reason for the lack of use of the algorithm in these areas is that the performance
of the proposed FGT degrades exponentially with increasing dimensionality, which
makes it impractical for the statistics and pattern recognition applications. There
are three reasons contributing to the degradation of the FGT in higher dimensions:

(1) The number of the terms in the Hermite expansion used by the FGT grows
exponentially with dimensionality d (as pd, where p is the truncation number),
which causes the constant factor associated with the nominal complexityO(M+
N) increases exponentially with dimensionality. So the total computations and
the amount of memory required increases dramatically as the dimensionality
increases.

(2) The space subdivision scheme used by the fast Gauss transform is a uniform
box subdivision scheme which is tolerable in lower dimensions but is extremely
inefficient in higher dimensions.

(3) The constant term due to the translation of the far-field Hermite series to the
local Taylor series grows exponentially fast with dimension making it imprac-
tical for dimensions greater than three1.

In this paper we present an improved fast Gauss transform (IFGT) suitable for
higher dimensions. The IFGT differs from the FGT in the following three ways,
addressing each of the issues above.

(1) A multivariate Taylor’s series expansion is used to reduce the number of the
expansion terms to the polynomial order.

(2) The k-center algorithm is applied to subdivide the space which is more efficient
in higher dimensions.

(3) Our expansion can act both as a far-field and local expansion. As a result we
do not have separate far-field and local expansions which eliminates the cost of
translation.

1The new version of the FGT proposed in [Greengard and Sun 1998] reduces the cost of translating
the Hermite series. The new version is based on replacing the Hermite and Taylor expansions with
an expansion in terms of exponentials (plane waves). Because of this the translation operator
becomes diagonal. This reduces the cost of translation from O(d(2n + 1)dpd+1) to O(3dpd). In
any case the cost of translation grows exponentially with dimension. Also the details of the scheme
are presented only for d ≤ 3.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 5

This paper builds upon two papers [Yang et al. 2005; Yang et al. 2003] where the
core IFGT algorithm was first presented in brief. It adds details on the automatic
choice of the algorithm parameters, presents a tighter error bound and provides a
careful comparison with the original FGT algorithm, and clearly explains the dif-
ferences between the algorithms. The error bound proposed in the original paper
was not tight to be useful in practice. Also the paper did not suggest any strategy
for choosing the parameters to achieve the desired bound. An attempt for auto-
matically choosing the parameters was suggested by [Lang et al. 2005]. However
the strategy was not the optimal one. In the first place the error bound had to
be tightened to make the IFGT algorithm useful in practice. In this paper we use
pointwise error bounds for each source point. This naturally leads to tighter error
bounds and a good strategy for choosing the parameters. Another novel idea in this
paper is that a different truncation number is chosen for each data point depending
on its distance from the cluster center. A good consequence of this strategy is that
only a few points at the boundary of the clusters have high truncation numbers.

The rest of the paper is organized as follows. In Section 2 we introduce the
key technical concepts used in the IFGT algorithm. More specifically, we discuss
the multivariate Taylor series which we use to factorize the Gaussian, the multi-
index notation, and the space subdivision scheme based on the k-center clustering
algorithm. In Section 3 we describe our improved fast Gauss transform and present
computational and space complexity. In Section 4 we propose a strategy to choose
the free parameters based on pointwise error bounds. In Section 5 we describe
related work and how the proposed method differs from the originally proposed
FGT. In Section 6 we present numerical results of our algorithm and demonstrate
the speedup achieved for higher dimensions. As an example, in Section 7, we show
how the IFGT can be used to accelerate multivariate kernel density estimation. We
conclude the paper in Section 8. The appendices at the end of the paper discuss a
few technical issues.

2. PRELIMNARIES

Before we discuss the IFGT we first discuss the multivariate Taylor’s series expan-
sion, multi-index notation, and our space subdivision scheme.

2.1 Multidimensional Taylor’s Series

The factorization of the multivariate Gaussian and the evaluation of the error
bounds are based on the multidimensional Taylor’s series and Lagrange’s evalu-
ation of the remainder which we state here without the proof.

Theorem 2.1. For any point x∗ ∈ Rd, let I ⊂ Rd be an open set containing
the point x∗. Let f : I → R be a real valued function which is n times partially
differentiable on I. Then for any x = (x1, x2, . . . , xd) ∈ I, there is a θ ∈ R with
0 < θ < 1 such that

f(x) =
n−1∑

k=0

1
k!

[(x− x∗) · ∇]k f(x∗) +
1
n!

[(x− x∗) · ∇]n f(x∗ + θ(x− x∗)),

where the operator ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
.

CS-TR-4767/UMIACS-TR-2005-69

6 · Raykar,Yang, Duraiswami, and Gumerov

Based on the above theorem we have the following corollary which gives the mul-
tivariate Taylor’s series expansion of the exponential function e2(x−x∗).(y−x∗)/h2

.

Corollary 2.1. Let Brx(x∗) be a open ball of radius rx with center x∗ ∈ Rd,
i.e., Brx

(x∗) = {x ∈ Rd : ‖x − x∗‖ < rx}. Let h ∈ R+ be a positive constant and
y ∈ Rd be a fixed point such that ‖y − x∗‖ < ry. For any x ∈ Brx(x∗) and any
non-negative integer p the function f(x) = e2(x−x∗).(y−x∗)/h2

can be written as

f(x) = e2(x−x∗).(y−x∗)/h2
=

p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp(x), (3)

and the residual Rp(x) is bounded as follows.

Rp(x) ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2
. (4)

<
2p

p!

(rxry

h2

)p

e2rxry/h2
. (5)

Proof. Let us define a new function g(x) = e2[x.(y−x∗)]/h2
. Using the result

[(x− x∗) · ∇]k g(x∗) = 2ke2[x∗.(y−x∗)]/h2
[(

x− x∗
h

)
·
(

y − x∗
h

)]k

and Theorem 2.1, we have for any x ∈ Brx(x∗) there is a θ ∈ R with 0 < θ < 1
such that

g(x) = e2[x∗.(y−x∗)]/h2

{
p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2
}

.

Hence

f(x) = e2(x−x∗).(y−x∗)/h2
=

p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp(x),

where,

Rp(x) =
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2
.

Using the Cauchy-Schwartz inequality x · y ≤ ‖x‖‖y‖ the remainder is bounded as
follows.

Rp(x) =
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2
,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2θ‖x−x∗‖‖y−x∗‖/h2
,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2
[Since 0 < θ < 1],

<
2p

p!

(rxry

h2

)p

e2rxry/h2
[Since ‖x− x∗‖ < rx and ‖y − x∗‖ < ry]. (6)

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 7

−0.5 0 0.5
10

−20

10
−15

10
−10

10
−5

10
0

10
5

x

E
rr

o
r

Actual
Bound 1
Bound 2

(a)

−0.5 0 0.5
0

5

10

15

20

25

x

p

(b)

Fig. 1. (a) The actual residual (solid line) and the bound (dashed line) given by Equation 4 as
a function of x. [x∗ = 0, y = 1.0, h = 0.5, rx = 0.5, ry = 1.0, and p = 10]. The residual is
minimum at x = x∗ and increases as x moves away from x∗. The dotted line shows the very
pessimistic bound which is independent of x (Equation 15) used in the original IFGT. (b) The
truncation number p required as the function of x so that the error is less than 10−6.

Remark: The error bound which we have in Equation 4 is independent of the
dimensionality d. Figure 1(a) compares the actual residual and the bound given
by Equation 4 as a function of x, for p = 10 and d = 1. The actual residual Rp(x)
is minimum at x = x∗ and increases as x moves away from x∗. The dashed line
shows the bound given by Equation 4. It can be seen that the bound is pretty tight.
The dotted line is the bound which is independent of x (Equation 15). The bound
is tight only at ‖x − x∗‖ = rx. It can be seen that the bound is very pessimistic
for ‖x− x∗‖ < rx. A consequence of this is that a lower truncation number p can
achieve a given error, depending on the magnitude of ‖x− x∗‖. Figure 1(b) shows
the truncation number p required as the function of x so that the error is less than
10−6. It can be seen that for points close to x∗ we need a very small truncation
number compared to points far from the center. The original IFGT and the FGT
algorithms used the same truncation number for all the points in the open ball.
The truncation number was chosen based on the points at the boundary. However
our current approach adaptively chooses p based ‖x− x∗‖.
2.2 Multi-index Notation

A multi-index α = (α1, α2 . . . , αd) is a d-tuple of nonnegative integers. The length
of the multi-index α is defined as |α| = α1+α2+. . .+αd. The factorial of α is defined
as α! = α1!α2! . . . αd!. For any multi-index α ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd

the d-variate monomial xα is defined as xα = xα1
1 xα2

2 . . . xαd

d . xα is of degree n if
|α| = n. The total number of d-variate monomials of degree n is

(
n+d−1

d−1

)
. The

total number of d-variate monomials of degree less than or equal to n is rnd =∑n
k=0

(
k+d−1

d−1

)
=

(
n+d

d

)
.

We denote by Πd
n the space of all real polynomials in d variables of total degree

CS-TR-4767/UMIACS-TR-2005-69

8 · Raykar,Yang, Duraiswami, and Gumerov

less than or equal to n; its dimensionality is rnd =
(
n+d

d

)
. To store, manipulate and

evaluate the multivariate polynomials, we consider the monomial representation of
polynomials. A polynomial p ∈ Πd

n can be written as

p(x) =
∑

|α|≤n

Cαxα, Cα ∈ R.

It is computationally convenient and efficient to stack all the coefficients into a
vector. To store all the rnd coefficients Cα in a vector of length rnd, we sort the
coefficient terms according to Graded lexicographic order. “Graded” refers to the
fact that the total degree |α| is the main criterion. Graded lexicographic ordering
means that the multi-indices are arranged as

(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1),
(2, 0, . . . , 0), (1, 1, . . . , 0), . . . , (0, 0, . . . , 2), , (0, 0, . . . , n).

Let x, y ∈ Rd and v = x·y = x1y1+. . .+xdyd. Then using the multi-index notation
vn can be written as,

vn =
∑

|α|=n

n!
α!

xαyα. (7)

2.3 Space sub-division

In the IFGT we will appropriately cluster source points and evaluate their contri-
butions using an expression that involves the Taylor’s series. Accordingly we need
a strategy to choose a set of centers about which to expand the Taylor’s series, i.e.,
we need to subdivide the space. We model the space subdivision task as a k-center
problem, which is defined as follows:
k-center problem Given a set of N points in d dimensions and a predefined
number of the clusters k, find a partition of the points into clusters S1, . . . , Sk,
and also the cluster centers c1, . . . , ck, so as to minimize the cost function – the
maximum radius of clusters, maxi maxx∈Si ‖x− ci‖.

The k-center problem is known to be NP-hard [Bern and Eppstein 1997]. [Gonza-
lez 1985] proposed a very simple greedy algorithm, called farthest-point clustering,
and proved that it gives an approximation factor of 2. Initially pick an arbitrary
point v0 as the center of the first cluster and add it to the center set C. Then for
i = 1 to k do the following: at step i, for every point v, compute its distance to the
set C: di(v, C) = minc∈C ‖v − c‖. Let vi be the point that is farthest from C, i.e.,
the point for which di(vi, C) = maxv di(v, C). Add vi to set C. Report the points
v0, v1, . . . , vk−1 as the cluster centers. Each point is assigned to its nearest center.

Gonzalez proved the following 2-approximation theorem for the farthest-point
clustering algorithm [Gonzalez 1985]:

Theorem 2.2. For k-center clustering, the farthest-point clustering computes a
partition with maximum radius at most twice the optimum.

Proof. For completeness, we provide a simple proof for the above theorem.
First note that the radius of the farthest-point clustering solution by definition is

dk(vk, C) = max
v

min
c∈C

‖v − c‖.
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 9

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 2. (a) Using the farthest point clustering algorithm 10,000 points uniformly distributed in a
unit square are divided into 22 clusters with the maximum radius of the clusters being 0.2. (b)
10,000 points normally distributed in a unit square are divided into 11 clusters with the maximum
radius of the clusters being 0.2.

In the optimal k-center case, two of these k + 1 points, say vi and vj , must be
in a same cluster centered at c by the pigeon hole principle. Observe that the
distance from each point to the set C does not increase as the algorithm progresses.
Therefore dk(vk, C) ≤ di(vk, C) and dk(vk, C) ≤ dj(vk, C). Also by definition, we
have di(vk, C) ≤ di(vi, C) and dj(vk, C) ≤ dj(vj , C). So we have

‖vi − c‖+ ‖vj − c‖ ≥ ‖vi − vj‖ ≥ dk(vk, C),

by the triangle inequality. Since ‖vi− c‖ and ‖vj − c‖ are both at most the optimal
radius δ, we have the radius of the farthest-point clustering solution dk(vk, C) ≤
2δ.

[Hochbaum and Shmoys 1985] proved that the factor 2 cannot be improved unless
P = NP .

The direct implementation of farthest-point clustering has running time O(Nk).
[Feder and Greene 1988] give a two-phase algorithm with optimal running time
O(N log k). The first phase of their algorithm clusters points into rectangular
boxes using [Vaidya 1986]’s box decomposition– a sort of quadtree in which cubes
are shrunk to bounding boxes before splitting. The second phase resembles the
farthest-point clustering on a sparse graph that has a vertex for each box. In
practice, the initial point has little influence on the final approximation radius, if
number of the points is sufficiently large.

Figure 2 displays the results of farthest-point algorithm on a sample two dimen-
sional data-set. After the end of the clustering procedure the center of each cluster
is recomputed as the mean of all the points lying in each cluster. The farthest
point algorithm is progressive. This means that if we have k centers and we wish
to compute the (k + 1)th center, the first k centers do not change.

CS-TR-4767/UMIACS-TR-2005-69

10 · Raykar,Yang, Duraiswami, and Gumerov

3. IMPROVED FAST GAUSS TRANSFORM

Having established the Taylor’s series expansion and the farthest point clustering
algorithm for k-center clustering, we are now ready to present the IFGT. The
method relies on the expansion of the Gaussian using the truncated Taylor’s series
expansion. For any point x∗ ∈ Rd the Gauss Transform at yj can be written as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

,

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2
e2(yj−x∗)·(xi−x∗)/h2

. (8)

In Equation 8 the first exponential inside the summation e−‖xi−x∗‖2/h2
depends

only on the source coordinates xi. The second exponential e−‖yj−x∗‖2/h2
depends

only on the target coordinates yj . However for the third exponential e2(yj−x∗)·(xi−x∗)/h2

the source and target are entangled. The crux of the algorithm is to separate this
entanglement via the Taylor’s series expansion of the exponentials.

3.1 Factorization

Using Corollary 2.1 the series expansion for e2(yj−x∗)·(xi−x∗)/h2
can be written as,

e2(yj−x∗)·(xi−x∗)/h2
=

pi−1∑
n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n

+ errorpi . (9)

The truncation number pi for each source xi is chosen based on the prescribed error
and the distance from the expansion center. A strategy for choosing pi is discussed
in a later section. Using the multi-index notation (Equation 7), this expansion can
be written as,

e2(yj−x∗)·(xi−x∗)/h2
=

∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α

+ errorpi . (10)

Ignoring error terms for now G(yj) can be approximated as,

Ĝ(yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2


 ∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α

 .

(11)

Let pmax = maxi pi and 1|α|≤pi−1 be an indicator function for |α| ≤ pi− 1, that is,

1|α|≤pi−1 =
{

1 if |α| ≤ pi − 1
0 if |α| > pi − 1 .

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 11

3.2 Regrouping

Rearranging the terms Equation 11 can be written as

Ĝ(yj) =
∑

|α|≤pmax−1

[
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

1|α|≤pi−1

]

e−‖yj−x∗‖2/h2
(

yj − x∗
h

)α

,

=
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α

,

where,

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

1|α|≤pi−1.

The coefficients Cα can be evaluated separately is O(N). Evaluation of Ĝr(yj)
at M points is O(M). Hence the computational complexity has reduced from the
quadratic O(NM) to the linear O(N +M). Detailed analysis of the computational
complexity will be provided later.

3.3 Space subdivision

Thus far, we have used the Taylor’s series expansion about a certain point x∗.
However if we use the same x∗ for all the points we typically would require very high
truncation numbers since the Taylor’s series is valid only in a small open ball around
x∗. We use an data adaptive space partitioning scheme like the farthest point
clustering algorithm to divide the N sources into K clusters, Sk for k = 1, . . . ,K
with ck being the center of each cluster. The Gauss transform can be written as,

Ĝ(yj) =
K∑

k=1

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

,

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

1|α|≤pi−1.

3.4 Rapid decay of the Gaussian

Since the Gaussian decays very rapidly a further speedup is achieved if we ignore
all the sources belonging to a cluster if the cluster is greater than a certain distance
from the target point, ‖yj − ck‖ > rk

y . The cluster cutoff radius depends on the
desired precision ε. So now the Gauss transform is evaluated as

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

, (12)

CS-TR-4767/UMIACS-TR-2005-69

12 · Raykar,Yang, Duraiswami, and Gumerov

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

1|α|≤pi−1. (13)

3.5 Comparison with the FGT factorization

The general fast multipole methods (FMM) [Greengard 1988], of which the FGT
is a special case use two kind of expansions of the potential function: the far-field
expansion and the local expansion. The FGT uses the Hermite expansion of the
Gaussian for the far-field and the Taylor expansion of the Gaussian (which is ob-
tained by interchanging y and xi in the Hermite expansion) as the local expansion.
The following are the two expansions used by the FGT.

e−‖y−xi‖2/h2
=

∑

α≥0

[
1
α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)
[far-field Hermite expansion],

e−‖y−xi‖2/h2
=

∑

β≥0

[
1
β!

hβ

(
xi − x∗

h

)] (
y − x∗

h

)β

[local Taylor expansion],

where hα(y) are the multivariate Hermite functions [Greengard and Strain 1991].
The real benefit of FMM is for singular potential functions whose forces are long
ranged and locally non-smooth, hence it is necessary to make use of the tree data
structures, local expansions, far-field expansions and translation operators between
representations. Translation between local and far-filed representations is expan-
sive, but unavoidable in the case of singular potential functions.

The Gaussian is a regular potential. For the IFGT we represent the Gaussian
into a product of two Gaussians and an exponential (Equation 8), and then use one
factorization for the exponential using the Taylor’s series. The factorization used
by the IFGT can be written as follows.

e−‖y−xi‖2/h2
=

∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α]
e−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

.

This factorization has the property that it is both a good far-field and and local
expansion, and in fact does a very good job in the whole domain. Thereby it avoids
the need for two different representations and the expensive translation operation.

Figure 3 shows the absolute value of the actual error between the one dimensional
gaussian (e−(xi−y)/h2

) and the different series approximations. The Gaussian was
centered at xi = 0. All the series were expanded about x∗ = 1.0. p = 5 terms were
retained in the series approximation. From the plot it can be seen that the Hermite
expansion is essentially a far field expansion which gives better approximation as
we move far away from x∗. The Taylor expansion is a local expansion giving good
approximation only for a region very close to x∗. The Taylor expansion used by the
IFGT can serve both as the far field as well as the local expansion.

3.6 Computational Complexity

The farthest point clustering has running time O(N log K) [Feder and Greene
1988]. Computing the cluster coefficients Ck

α for all the clusters is ofO(Nr(pmax−1)d),
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 13

−5 0 5
10

−15

10
−10

10
−5

10
0

10
5

y

A
bs

ol
ut

e
E

rr
or

p=5

x
*

FGT Hermite
FGT Taylor
IFGT Taylor

Fig. 3. The absolute value of the actual error between the one dimensional gaussian (e−(xi−y)/h2
)

and different series approximations. The Gaussian was centered at xi = 0. All the series were
expanded about x∗ = 1.0. p = 5 terms were retained in the series approximation.

where r(pmax−1)d =
(
pmax+d−1

d

)
is the total number of d-variate monomials of degree

less than or equal to pmax− 1. Computing Ĝ(yj) is of O(Mnr(pmax−1)d) where n if
the maximum number of neighbor clusters (depends on the bandwidth h and the
error ε) which influence the target. Hence the total computational complexity is

O(N log K + Nr(pmax−1)d + Mnr(pmax−1)d).

Assuming M = N , the complexity is O(
[
log K + (1 + n)r(pmax−1)d

]
N). The con-

stant term depends on the dimensionality, the bandwidth, and the accuracy re-
quired. The number of terms r(pmax−1)d is asymptotically polynomial in d. For
d →∞ and moderate p, the number of terms is approximately dp.

A different truncation number is chosen for each data point depending on its
distance from the cluster center. A good consequence of this strategy is that only a
few points at the boundary of the clusters will have high truncation numbers. The-
oretically we expect to get a much better speed up since for many points pi < pmax.
However some computation resources are used in determining the truncation num-
bers based on the distribution of the data points. As a result in lower dimensions
the proposed method shows only a slight improvement in speedup, compared to
using the same truncation number for all points. The speedup is more noticeable
especially in higher dimensions where the advantage of a lower order expansion is
greater.

3.7 Space Complexity

For each cluster we need to store r(pmax−1)d coefficients. So the storage complexity
is O(Kr(pmax−1)d + N + M).

CS-TR-4767/UMIACS-TR-2005-69

14 · Raykar,Yang, Duraiswami, and Gumerov

ab2 abc ac 2 b3 b2c c3

a

1

b c

ab ac b2 bc

a b c

a b c

a b c

a b c

a4 a3b a3c a2b2 a2bc a c 22 ab3 ab2c abc 2 ac 3 b4 b3c b2c2 bc3 c

2

4

ca2

bc23a a c2a b2

Fig. 4. Efficient expansion of multivariate polynomials.

3.8 Horner’s rule

One of the benefits of the graded lexicographic order is that the expansion of multi-
variate polynomials can be performed efficiently. Evaluating each d-variate mono-
mial of degree n directly requires n multiplications. Hence direct evaluation of of
all d-variate monomials of degree less than or equal to n requires

∑n
k=0 k

(
k+d−1

d−1

)
multiplications. The storage requirement is rnd. However, efficient evaluation using
the Horner’s rule requires rnd − 1 multiplications. The required storage is rnd (See
Table I).

For a d-variate polynomial of order n, we can store all terms in a vector of length
rnd. Starting from the order zero term (constant 1), we take the following approach.
Assume we have already evaluated terms of order k − 1. We use an array of size
d to record the positions of the d leading terms (the simple terms such as ak−1,
bk−1, ck−1, . . . in Figure 4) in the terms of order k − 1. Then terms of order k
can be obtained by multiplying each of the d variables with all the terms between
the variables leading term and the end, as shown in the Figure 4 The positions of
the d leading terms are updated respectively. The required storage is rnd and the
computations of the terms require rnd − 1 multiplications.

3.9 Partial distance

For each cluster we need to find the clusters which are within a certain radius to it.
Computing partial distances helps to reduce the computational burden in nearest-
neighbor searches in high dimensional spaces. By partial distance, we calculate the
distance using some subset r of the full d dimensions. If this partial distance is
too great we do not compute distances any further. The partial distance is strictly
nondecreasing as we add the contributions from more and more dimensions.
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 15

n 2 4 6 8 10 12 15 20

Direct d=2 8 40 112 240 440 728 1360 3080

Efficient d=2 5 14 27 44 65 90 135 230

Direct d=3 15 105 378 990 2145 4095 9180 26565

Efficient d=3 9 34 83 164 285 454 815 1770

Direct d=6 48 720 4752 20592 68640 190944 697680 3946800

Efficient d=6 27 209 923 3002 8007 18563 54263 230229

Direct d=10 120 3640 43680 318240 1679600 7054320 44574000 546273000

Efficient d=10 65 1000 8007 43757 184755 646645 3268759 30045014

Table I. Number of multiplication required for the direct and the efficient method for evaluating
all d-variate monomials of degree less than or equal to n.

4. CHOOSING THE PARAMETERS BASED ON POINT WISE ERROR BOUNDS

A criticism [Lang et al. 2005] of the original IFGT [Yang et al. 2005] was that
the error bound was too pessimistic, and too many computational resources were
wasted as a consequence. Further the choice of the parameters was not automatic.
In the following we present an automatic way for choosing the parameters.

Given any ε > 0, we want to choose the following parameters, K (the number of
clusters), {rk

y}K
k=1 (the cut off radius for each cluster), and {pi}N

i=1 (the truncation
number for each source point xi) such that for any target point yj we can guarantee
that

|Ĝ(yj)−G(yj)|
Q

≤ ε,

where Q =
∑N

i=1 |qi|. Let us define ∆ij to be the point wise error in Ĝ(yj) con-
tributed by the ith source xi. We now require that

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij | ≤ Qε =
N∑

i=1

|qi|ε.

One way to achieve this is to let

|∆ij | ≤ |qi|ε ∀i = 1, . . . , N.

We choose this strategy because it helps us get tighter bounds. Let ck be the center
of the cluster to which xi belongs. There are two different ways in which a source
can contribute to the error.

The first is due to ignoring the cluster Sk if it is outside a given radius rk
y from

the target point yj . In this case,

∆ij = qie
−‖yj−xi‖2/h2

if ‖yj − ck‖ > rk
y . (14)

The second source of error is due to truncation of the Taylor’s series. For all
clusters which are within a distance rk

y from the target point the error is due to the
truncation of the Taylor’s series after order pi. From Equation 8 and 9 we have,

∆ij = qie
−‖xi−ck‖2/h2

e−‖yj−ck‖2/h2
errorpi if ‖yj − ck‖ ≤ rk

y . (15)
CS-TR-4767/UMIACS-TR-2005-69

16 · Raykar,Yang, Duraiswami, and Gumerov

Our strategy for choosing the parameters is as follows. The cutoff radius rk
y

for each cluster is chosen based on Equation 14 and the radius of each cluster rk
x.

Given rk
y and ‖xi − ck‖ the truncation number pi for each source is chosen based

on Equation 15. Towards the end we suggest a strategy to choose the number of
clusters K and the maximum truncation pmax jointly.

4.1 Automatically choosing the cut off radius for each cluster

We ignore all sources belonging to a cluster Sk if ‖yj−ck‖ > rk
y . rk

y should be chosen
such that for all sources in cluster Sk the error |∆ij | = |qi|e−‖yj−xi‖2/h2 ≤ |qi|ε.
This implies that

‖yj − xi‖ > h
√

ln(1/ε)

Using the reverse triangle inequality, ‖a − b‖ ≥
∣∣‖a‖ − ‖b‖

∣∣, and the fact that
‖yj − ck‖ > rk

y and ‖xi − ck‖ ≤ rk
x, we have

‖yj − xi‖ = ‖yj − ck + ck − xi‖ = ‖(yj − ck)− (xi − ck)‖,
≥

∣∣‖(yj − ck)‖ − ‖(xi − ck)‖
∣∣,

>
∣∣rk

y − rk
x

∣∣.
So in order that the error due to ignoring the faraway clusters is less than qiε we
have to choose rk

y and rk
x such that,

∣∣rk
y − rk

x

∣∣ > h
√

ln(1/ε).

If we choose rk
y > rk

x then,

rk
y > rk

x + h
√

ln(1/ε).

Let R be the maximum distance between any source and target point. For example
if the data were distributed in a d-dimensional hypercube of length a, then R ≤

√
da,

i.e., the length of the maximum diagonal. Hence,

rk
y > rk

x + min
(
R, h

√
ln(1/ε)

)
.

4.2 Automatically choosing the truncation number for each source

From Corollary 2.1 we have,

errorpi ≤
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e2‖xi−ck‖‖yj−ck‖/h2
.

Hence for all sources for which ‖yj − ck‖ ≤ rk
y , substituting in Equation 15 we have

∆ij ≤ qi
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e−(‖xi−ck‖−‖yj−ck‖)2/h2
. (16)

For a given source xi we have to choose pi such that |∆ij | ≤ |qi|ε. ∆ij depends
both on distance between the source and the cluster center, i.e., ‖xi − ck‖ and the
distance between the target and the cluster center, i.e., ‖yj − ck‖. The speedup is
achieved because at each cluster Sk we sum up the effect of all the sources. As a
result we do not have a knowledge of ‖yj − ck‖ when we are using Equation 13. So
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 17

0 1 2 3 4 5
10

−40

10
−30

10
−20

10
−10

10
0

10
10

p=5
p=15

||y
j
−c

k
||

∆
ij

h=0.5 ||x
i
−c

k
||=0.5

(a)

0 1 2 3 4 5
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

p=5
p=15

||y
j
−c

k
||

∆
ij

h=1.0 ||x
i
−c

k
||=0.5

(b)

Fig. 5. The error at yj due to source xi, i.e., ∆ij [Equation 16] as a function of ‖yj − ck‖ for
different values of p and for (a) h = 0.5 and (b) h = 1.0. The error increases as a function of
‖yj − ck‖, reaches a maximum and then starts decreasing. The maximum is marked as ’*’. qi = 1
and ‖xi − ck‖ = 0.5.

we will have to bound the right hand side of Equation 16, such that it is independent
of ‖yj − ck‖. Figure 5 shows the error at yj due to source xi, i.e., ∆ij [Equation 16]
as a function of ‖yj − ck‖ for different values of p and for (a) h = 0.5 and (b)
h = 1.0. The error increases as a function of ‖yj − ck‖, reaches a maximum and
then starts decreasing. The maximum is attained at

‖yj − ck‖ = ‖yj − ck‖∗ =
‖xi − ck‖+

√
‖xi − ck‖2 + 2pih2

2
.

Hence we choose pi such that,

|∆ij |
∣∣‖yj−ck‖=‖yj−ck‖∗ ≤ |qi|ε.

In case ‖yj − ck‖∗ > rk
y we need to choose pi based on rk

y , since ∆ij will be much
lower there. Hence out strategy for choosing pi is,

|∆ij |
∣∣∣[‖yj−ck‖=min (‖yj−ck‖∗,rk

y)] ≤ |qi|ε. (17)

Figure 6(a) shows ∆ij as a function of ‖xi − ck‖ for different values of p, h = 0.4
and ‖yj − ck‖ = min

(‖yj − ck‖∗, rk
y

)
. Figure 6(b) shows the truncation number pi

required to achieve an error of ε = 10−3.

4.3 Automatically choosing the number of clusters

Our strategy for choosing the number of clusters is optimized for uniform distrib-
ution of the source points. The total computational complexity assuming M = N
is O(cN). The constant term is given by

c = log K + (1 + n)r(pmax−1)d. (18)

pmax and n are both functions of K. We choose the number of clusters K for
which c is minimum. The truncation number pmax is a function of the maximum

CS-TR-4767/UMIACS-TR-2005-69

18 · Raykar,Yang, Duraiswami, and Gumerov

0 0.2 0.4 0.6 0.8 1
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

||x
i
−c

k
||

∆ ij

h=0.4

p=5

p=10

p=20

p=40

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

||x
i
−c

k
||

p i

h=0.4

(b)

Fig. 6. The error at yj due to source xi, i.e., ∆ij [Equation 16] as a function of ‖xi − ck‖ for
different values of p, h = 0.4 and ‖yj − ck‖ = min

�‖yj − ck‖∗, rk
y

�
. (b) The truncation number

pi required to achieve an error of ε = 10−3.

cluster radius rx, implicitly via Equation 17. If the source and the target points
are uniformly distributed in a unit hypercube then rx ∼ K−1/d. 2 The number
of influential neighbor clusters is roughly n ∼ (r/rx)d, where r = h

√
ln(1/ε) is the

cutoff radius.
Figure 7 shows the constant c as function K. Initially the constant c decreases

because as K increases the maximum cluster radius rx decreases, leading to a
smaller truncation number pmax. However after a certain point the growth in K
dominates the decrease in pmax. The optimum K can be found by differentiating
Equation 18 w.r.t. K and setting it to zero. However since the dependence of pmax

on K is implicit it is difficult to derive an analytic expression for K. A simple
strategy as outlined in Algorithm 1 is to evaluate c for a range of values of K and
choose the one for which c is minimum.

The algorithm is summarized in Algorithm 2 and Figure 8(a). Figure 8(b) shows
the truncation number pi required for each data point. Dark shade indicates a
higher truncation number. Note that for points close to the cluster center the
truncation number required is less than that at the boundary of the cluster.

5. RELATED WORK

In this section we briefly discuss the other methods available for efficient computa-
tion of the Gauss transform. In particular we elucidate in detail on how our current
method differs from the fast Gauss transform, as there appears to be some interest
in this issue.

2If the data lies on a lower dimensional manifold, as usually is the case for structured data in high
dimensions, we use the relation rx ∼ K−1/deff . deff is the actual intrinsic dimensionality of the
data.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 19

0 50 100 150 200
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

K

c

Fig. 7. The constant c = log K + (1 + n)r(pmax−1)d as function K. d = 2, h = 0.3, and ε = 10−6.

Algorithm 1: Choosing the parameters for the IFGT.
Input : d (dimension)

h (bandwidth)
ε (error)
R (range of the data)

Output: K (number of clusters)
r (cutoff radius)
pmax (maximum truncation number)

Define
δ(p, a, b) = 1

p!

(
2ab
h2

)p
e−(a−b)2/h2

, b∗(a, p) = a+
√

a2+2ph2

2 , and rpd =
(
p−1+d

d

)
;

Choose the cutoff radius r ← min(R, h
√

ln(1/ε));

Choose Klimit ← d20R/he ;

for k ← 1 : Klimit do
compute an estimate of the maximum cluster radius as rx ← k−1/d;
compute an estimate of the number of neighbors as n ← (r/rx)d;
choose p[k] such that δ(p = p[k], a = rx, b = min [b∗(rx, p[k]), r + rx]) ≤ ε;
compute the constant term c[k] ← log k + (1 + n)r(p[k]−1)d

end
choose K ← k∗ for which c[k∗] is minimum. pmax ← p[k∗].

5.1 Methods based on sparse data-set representation

There are many strategies for specific problems which try to reduce this compu-
tational complexity by searching for a sparse representation of the data [Williams
and Seeger 2001; Smola and Bartlett 2001; Fine and Scheinberg 2001; Lee and
Mangasarian 2001]. All these try to find a reduced subset of the original data-set
using either random selection or greedy approximation. In these methods there is
no guarantee on the approximation of the kernel matrix in a deterministic sense.

CS-TR-4767/UMIACS-TR-2005-69

20 · Raykar,Yang, Duraiswami, and Gumerov

Algorithm 2: The improved fast Gauss transform.
Input :

xi ∈ Rd i = 1, . . . , N /* N sources in d dimensions. */
qi ∈ R i = 1, . . . , N /* source weights. */
h ∈ R+ i = 1, . . . , N /* source bandwidth. */

yj ∈ Rd j = 1, . . . , M /* M targets in d dimensions. */
ε > 0 /* Desired error. */

Output: Computes an approximation Ĝ(yj) to G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

.

such that the |Ĝ(yj)−G(yj)|Q ≤ ε, where Q =
∑N

i=1 |qi|.

Step 0 Define δ(p, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

and b∗(a, p) = a+
√

a2+2ph2

2 ;

Step 1 Choose the cutoff radius r, the number of clusters K, and the
maximum truncation number pmax using Algorithm 1;

Step 2 Divide the N sources into K clusters, {Sk}K
k=1, using the Feder and

Greene’s farthest-point clustering algorithm. Let ck and rk
x be the center and

radius respectively of the kth cluster ;

Step 3 For each cluster Sk with center ck compute the coefficients Ck
α.

Ck
α = 2α

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2 (

xi−ck

h

)α
1|α|≤pi−1 ∀|α| ≤ pmax − 1

The truncation number pi for each source is selected such that

δ(p = pi, a = ‖xi − ck‖, min
[
b∗(‖xi − ck‖, pi), r + rk

x

]
) ≤ ε;

Step 4 For each target yj the discrete Gauss transform is evaluated as

Ĝ(yj) =
∑
‖yj−ck‖≤r+rk

x

∑
|α|≤pmax−1 Ck

αe−‖yj−ck‖2/h2
(

yj−ck

h

)α

;

5.2 Binned Approximation based on FFT

If the source points are on a evenly spaced grid then we can compute the Gauss
transform at an even spaced grid exactly in O(N log N) using the fast Fourier trans-
form (FFT). One of the earliest methods, especially proposed for univariate fast
kernel density estimation was based on this idea [Silverman 1982]. For irregularly
spaced data, the space is divided into boxes, and the data is assigned to the closest
neighboring grid points to obtain grid counts. The Gauss transform is also evalu-
ated at regular grid points. For target points not lying on the the grid the value is
obtained by doing some sort of interpolation based on the values at the neighboring
grid points. As a result there is no guaranteed error bound for such kind of meth-
ods. Also another problem is that the number of grid points grows exponentially
with dimension.

5.3 Dual-tree methods

The dual-tree methods [Gray and Moore 2001; 2003] are based on space partitioning
trees for both the source and target points. This method first builds a spatial tree
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 21

y
j

r

r
y
k

r
x
k

c
k

(a) (b)

Fig. 8. (a) Schematic of the data adaptive improved fast Gauss transform. (b) Illustration of the
truncation number pi required for each data point. Dark red color indicates a higher truncation
number. Note that for points close to the cluster center the truncation number required is less
than that at the boundary of the cluster.

like kd-trees on both the source and target points. Using the tree data structure
distance bounds between nodes can be computed.The bounds can be tightened by
recursing on both trees. An advantage of the dual-tree methods is that they work
for all common kernel choices, not necessarily Gaussian. The series based methods
require a different expansion and error bounds for each kernel. Another interest-
ing point is that the dual-tree methods give good speedup for small bandwidths
while the series based methods such as IGT and FGT give good speedup for large
bandwidths.

5.4 Fast Gauss Transform

The fast Gauss transform (FGT) [Greengard and Strain 1991] is a special case
of the more general single level fast multipole method [Greengard and Rokhlin
1987], adapted to the Gaussian potential. The first step of the FGT is the spatial
subdivision of the unit hypercube into Nd

side boxes of side
√

2rh were r < 1/2.
The paper suggests to choose the largest r ≤ 1/2 such that Nside = 1/

√
2rh is an

integer. The sources and targets are assigned to different boxes. Given the sources
in one box and the targets in a neighboring box, the computation is performed
using one of the following four methods depending on the number of sources and
targets in these boxes: Direct evaluation is used if the number of sources and targets
are small (In practice a cutoff of the order O(pd−1) is introduced.). If the sources
are clustered in a box then they can be transformed into Hermite expansion about
the center of the box. This expansion is directly evaluated at each target in the
target box if the number of the targets is small. If the targets are clustered then
the sources or their expansion are converted to a local Taylor series which is then
evaluated at each target in the box. Since the Gaussian decays very rapidly only a
few neighboring source boxes will have influence on the target box.

5.4.1 Series expansions and Translation. As discussed in Section 3.5 the IFGT
algorithm uses the same expansion both for local as well as far-field. The fast

CS-TR-4767/UMIACS-TR-2005-69

22 · Raykar,Yang, Duraiswami, and Gumerov

multipole methods use two kind of expansions of the potential function. The far-
field expansion and the local expansion. For any x∗ ∈ Rd we call the expan-
sion Φ(y, xi) =

∑∞
m=0 bm(xi, x∗)Sm(y − x∗) far field expansion outside a sphere

B>
R∗(x∗) = {y ∈ Rd : ‖y − x∗‖ > R∗}, if the series converges for all y ∈ B>

R∗(x∗).
For any x∗ ∈ Rd we call the expansion Φ(y, xi) =

∑∞
m=0 am(xi, x∗)Rm(y − x∗)

regular (local) inside a sphere B<
r∗(x∗) = {y ∈ Rd : ‖y − x∗‖ < r∗}, if the series

converges for all y ∈ B<
r∗(x∗). If the potential has a singular point xi, then we

use the local expansion for all ‖y − x∗‖ < ‖xi − x∗‖, and far-field expansion for all
‖y − x∗‖ > ‖xi − x∗‖.

The FGT uses the Hermite expansion of the Gaussian for the far-field and the
Taylor expansion of the Gaussian (which is obtained by interchanging y and xi in
the Hermite expansion) as the local expansion. The following are the two expansions
used by the FGT.

e−‖y−xi‖2/h2
=

∑

α≥0

[
1
α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)
[far-field Hermite expansion],

e−‖y−xi‖2/h2
=

∑

β≥0

[
1
β!

hβ

(
xi − x∗

h

)] (
y − x∗

h

)β

[local Taylor expansion],

where hα(y) are the multivariate Hermite functions [Greengard and Strain 1991].
Since the original FGT uses two representations it must convert between them
using a process called translation. The original FGT in d dimensions represents the
solution using pd coefficients. The cost of translation is

O(dpd+1(2n + 1)dmin((
√

2rh)−d/2,M)).

The new version of the FGT proposed in [Greengard and Sun 1998] reduces the
cost of translating the Hermite series. The new version is based on replacing the
Hermite and Taylor expansions with an expansion in terms of exponentials (plane
waves). Because of this the translation operator becomes diagonal. This reduces
the cost of translation from O(d(2n + 1)dpd+1) to O(3dpd). In any case the cost of
translation grows exponentially with dimension 3.

In contrast our method uses just one representation with

e−‖y−xi‖2/h2
=

∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α]
e−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

.

This factorization has the property that it is both a good far-field and and local ex-
pansion (See Figure 3). Thereby it avoids the need for two different representations
and the expensive translation operation.

5.4.2 Error bounds. In this section we compare the number of terms needed
to achieve a desired error for the truncated expansions used by the FGT and the
IFGT algorithm. We cannot compare both the expressions in terms of p since the
truncation method is different for the FGT and the IFGT. We need to see the total
number of terms that need to be retained to achieve a given target error. For the

3Also the details of the scheme are presented only for d ≤ 3.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 23

10
−10

10
−8

10
−6

10
−4

10
0

10
2

10
4

10
6

10
8

10
10

error

d=3
d=3

d=9

d=9

h=1.0 a=0.1 b=0.5

IFGT: Number of terms
FGT: Number of terms

(a)

10
−10

10
−8

10
−6

10
0

10
2

10
4

10
6

10
8

error

d=3
d=3
d=9

d=9

h=4.0 a=0.1 b=1.5

IFGT: Number of terms
FGT: Number of terms

(b)

Fig. 9. The total number of terms required by the IFGT and the FGT series expansions to achieve
a desired error bound.

Hermite expansion all terms with multi indices α > p are ignored (as a result we
retain pd terms) while in the case of IFGT all terms with multi indices of degree
|α| > p are ignored (as a result we retain all monomials who’s degree is ≤ p − 1
(i.e. a total of r(p−1)d terms)).

Let |xi(j) − x∗(j)| = a and |y(j) − x∗(j)| = b. The error due to truncation in
IFGT after ignoring all terms with multi indices of degree |α| > p can be bounded
as follows.

|errorIFGT | <
2p

p!

(‖xi − ck‖
h

)p (‖yj − ck‖
h

)p

e−(‖xi−ck‖−‖yj−ck‖)2/h2
,

=
2p

p!

(
dab

h2

)p

e−d(a−b)2/h2
.

The error due to truncation of either the Hermite series or the Taylor series in FGT
after ignoring all terms with multi indices α > p can be bounded as follows (see
Appendix 10 for a detailed derivation).

|errorFGT | <
e−db2/2h2

(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp

√
p!

)d−k

.

where r =
√

2a/h. Figure 9 compares the total number of terms required by
the IFGT and the FGT series expansions to achieve a desired error bound. Our
expansion and truncation scheme results in a substantial reduction in the number
of terms.

5.4.3 Spatial data structures. The original FGT uses boxes to subdivide the
space. However such a simple space subdivision scheme is not suitable for high
dimensions. If each dimension of a unit hyper cube is divided into Nside parts,
then the number of boxes grows exponentially with dimension as Nd

side, resulting in
prohibitive memory requirements. In most statistical and machine learning appli-
cations we do not have truly high dimensional data. The data will typically lie on

CS-TR-4767/UMIACS-TR-2005-69

24 · Raykar,Yang, Duraiswami, and Gumerov

low dimensional manifolds. The consequence of this is that most of the boxes will
be empty and we will be spending resources in searching nonempty neighboring
boxes. To adaptively fit the density of points, the IFGT uses the farthest-point
algorithm to subdivide the space. Table II compares the number of boxes required
by the FGT and the number of clusters required by the IFGT as a function of the
data dimensionality d. For example in a seven dimensional space while the FGT
subdivides the space into 2187 boxes the IFGT just needs 67 clusters.

5.4.4 Exponential growth of complexity with dimension. The total computa-
tional complexity of the FGT is of the form [Greengard and Strain 1991]

O(pdN) + O(pdM) + O(dpd+1(2n + 1)dmin((
√

2rh)−d/2, M)).

The third term dpd+1(2n+1)dmin((
√

2rh)−d/2, M) is essentially a constant depend-
ing on the number of box-box interactions and the cost of translating a Hermite
expansion into a Taylor series. The translation is one of the most expensive step
in any FMM algorithm. Even though it does not depend on N the constant term
grows exponentially with increasing dimensionality. Table. II shows the constant
term as a function of d for h = 0.5 and ε = 10−6. This suggests that the FGT may
not be practical for dimensions > 3. Also the constant term pd grows exponentially
with dimension. Compare this with the computational complexity of the IFGT.

O(log KN) + O(r(p−1)dN) + O(nr(p−1)dM).

Assuming M = N , the complexity is O(
[
log K + (1 + n)r(p−1)d

]
N). The constant

r(p−1)d is asymptotically polynomial in d. For d →∞ and moderate p, the number
of terms is O(dp). Since we cluster only the source points we do not use any
expensive translation operation. Table II compares the number of terms required
for FGT (pd) with the number of terms required by IFGT (r(p−1)d).

If the bandwidth is large then the FGT will not subdivide the space and work
with only one box. Table III shows the same results for h = 2.0. Even in this case
the number of terms pd grows much rapidly than the number of terms in the IFGT.
Also in order for the FGT to reach the asymptotic performance of O(pdN) a large
N will be required because of the constant term due to translation.

6. NUMERICAL EXPERIMENTS

In this section we present some numerical studies of the speedup and error as a
function of the number of data points for different dimensions, bandwidths, and
data distribution. The algorithms were programmed in C++ and was run on a 1.6
GHz Pentium M processor with 512Mb of RAM. The code for both the FGT and
the IFGT implementation are available by contacting the first author for academic
use.

6.1 Speedup as a function of N

We first study the performance as the function of N for d = 3 (where the asymp-
totic performance of the FGT can be compared with the IFGT for reasonable N).
N points were uniformly distributed in a unit cube. The Gauss transform was
evaluated at M = N points uniformly distributed in the unit cube. The weights qi

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 25

FGT IFGT
d # of boxes p # of terms n Constant term # of p # of terms

(Nd
side) (pd) clusters (K) (r(p−1)d)

1 3 9 9 2 7.014806e+002 5 9 9
2 9 10 100 2 1.500000e+005 7 15 120
3 27 10 1000 2 1.948557e+007 15 16 816
4 81 11 14641 2 3.623648e+009 29 17 4845
5 243 11 161051 2 4.314985e+011 31 20 42504
6 729 12 2985984 2 9.069926e+013 62 20 177100
7 2187 14 105413504 2 3.774303e+016 67 22 1184040

Table II. Comparison of the different parameters chosen by the FGT and the IFGT as a function
of the data dimensionality d. N = 100, 000 points were uniformly distributed in a unit hyper
cube. The bandwidth was h = 0.5 and the target error was ε = 10−6.

FGT IFGT
d # of boxes p # of terms n Constant term # of p # of terms

(Nd
side) (pd) clusters (K) (r(p−1)d)

1 1 8 8 0 6.400000e+001 1 10 10
2 1 8 64 0 1.024000e+003 2 8 36
3 1 9 729 0 1.968300e+004 1 10 220
4 1 9 6561 0 2.361960e+005 3 8 330
5 1 9 59049 0 2.657205e+006 2 9 1287
6 1 10 1000000 0 6.000000e+007 2 9 3003
7 1 10 10000000 0 7.000000e+008 2 9 6435

Table III. Comparison of the different parameters chosen by the FGT and the IFGT as a function
of the data dimensionality d. N = 100, 000 points were uniformly distributed in a unit hyper
cube.The bandwidth was h = 2.0 and the target error was ε = 10−6.

were uniformly distributed between 0 and 1. The parameters were automatically
chosen without any user intervention. The target error was set to 10−6.

While the computational complexity of the IFGT grows linearly with N , the
linear growth of FGT is a bit intricate because of the various cutoff s involved
and the cost of the translation. In order to understand the complexity of the
FGT, we refer to Figure 10 where we plot the theoretical complexity(O(2pdN +
dpd+1(2n + 1)dmin((

√
2rh)−d/2, N))) as a function of N for d = 3. Initially before

the translation has kicked in (i.e. before point A in Figure 10) the growth is linear
in N. The sudden jump observed is due to the constant associated with the high cost
of translation after which the growth is dominated by the constant term. From this
point all all box-box interactions are performed only by the translations. However
after a large N the asymptotics dominate because the growth in N has dominated
the cost of translation (i.e. after point B in Figure 10). In practice especially for
high dimensions the constant term due to translation is so large that the N has
to be typically very large (e.g. around N = 108 for d = 3) for the asymptotic
performance to kick in.

Table IV and V show the results for h = 0.40 and h = 1.00. For the IFGT the
computational cost grows linearly with N . For the FGT the cost grows linearly
only after a large N when the linear term O(pdN) dominates the initial cost of
Hermite-Taylor translation. The IFGT shows a better speedup than the FGT.
However for the case when h = 0.40 the FGT finally catches up with IFGT (i.e.
the asymptotic performance starts dominating) and shows a better speedup than

CS-TR-4767/UMIACS-TR-2005-69

26 · Raykar,Yang, Duraiswami, and Gumerov

Table IV. [d=3 h=0.4]The running times in seconds for direct evaluation, FGT, and IFGT. The
speedup achieved and the maximum absolute error relative to the total weight Q are also shown.
The target error was set to 10−6. The bandwidth was h = 0.4. The source and target points were
uniformly distributed in a unit cube. The weights qi were uniformly distributed between 0 and
1. For N > 25600 the timing results for the direct evaluation were obtained by evaluating the
Gauss transform at M = 100 points and then extrapolating the results. The parameters chosen
by the FGT were p = 10, n = 3, and number of boxes B = 64. For the IFGT the parameters
chosen were K = 21 and pmax = 15.

Direct FGT IFGT
N = M Time Time Speedup Error Time Speedup Error

100 0.00 0.02 0.00 1.97e-016 0.14 0.00 2.78e-008
200 0.01 0.01 1.00 3.03e-016 0.10 0.10 3.66e-008
400 0.03 0.03 1.00 4.21e-016 0.20 0.15 3.23e-008
800 0.11 0.10 1.11 6.38e-016 0.39 0.28 1.79e-008
1600 0.47 0.42 1.12 1.15e-015 0.78 0.60 9.99e-008
3200 1.83 1.58 1.16 1.48e-015 1.53 1.20 7.72e-008
6400 7.24 292.72 0.02 5.14e-009 3.05 2.37 8.84e-008
12800 29.08 1223.93 0.02 4.33e-009 6.10 4.77 1.18e-008
25600 116.04 1226.07 0.09 4.53e-009 12.33 9.41 1.29e-008
51200 620.54 1229.29 0.50 2.46e-009 24.45 25.37 3.65e-008
102400 1875.97 1235.98 1.52 2.17e-009 49.06 38.24 3.25e-008
204800 7587.84 1250.00 6.07 1.84e-009 97.97 77.45 3.39e-008
409600 29982.72 1277.02 23.48 2.46e-009 196.16 152.85 3.67e-008
819200 120266.75 1330.57 90.39 2.72e-009 392.96 306.05 3.25e-008
1638400 480247.81 1438.42 333.87 4.09e-009 785.11 611.70 3.41e-008
3276800 1930526.72 1661.08 1162.21 2.45e-009 1574.56 1226.07 3.51e-008

10
2

10
4

10
6

10
−5

10
0

10
5

10
10

N

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

10
2

10
4

10
6

10
−20

10
−15

10
−10

10
−5

N

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target error
IFGT
FGT

the IFGT. However this happens typically after a very large N which increases
with the dimensionality of the problem. With regard to the error the IFGT error
is closer to the target than is the FGT. The initial error for the FGT is almost zero
due to direct evaluation.
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 27

Table V. [d=3 h=1.0]The running times in seconds for direct evaluation, FGT, and IFGT. The
speedup achieved and the maximum absolute error relative to the total weight Q are also shown.
The target error was set to 10−6. The bandwidth was h = 1.0. The source and target points were
uniformly distributed in a unit cube. The weights qi were uniformly distributed between 0 and 1.
For N > 25600 the timing results for the direct evaluation were obtained by evaluating the Gauss
transform at M = 100 points and then extrapolating the results. The parameters chosen by the
FGT were p = 9, n = 1, and number of boxes B = 8. For the IFGT the parameters chosen were
K = 2 and pmax = 14.

Direct FGT IFGT
N = M Time Time Speedup Error Time Speedup Error

100 0.01 0.01 1.00 5.18e-016 0.03 0.33 2.94e-008
200 0.02 0.01 2.00 8.31e-016 0.02 1.00 5.46e-008
400 0.02 0.02 1.00 1.27e-015 0.03 0.67 4.59e-008
800 0.10 10.21 0.01 3.73e-008 0.06 1.67 4.25e-008
1600 0.42 10.25 0.04 3.00e-008 0.10 4.21 3.19e-008
3200 1.67 10.43 0.16 3.92e-008 0.20 8.36 4.55e-008
6400 6.74 10.70 0.63 3.31e-008 0.39 17.24 5.05e-008
12800 26.77 11.37 2.36 3.37e-008 0.76 35.18 4.48e-008
25600 109.37 12.85 8.51 3.84e-008 1.53 71.34 4.63e-008
51200 435.71 15.47 28.16 2.27e-008 3.07 141.69 3.83e-008
102400 1733.63 20.26 85.57 2.30e-008 6.07 285.65 3.25e-008
204800 7014.40 30.67 228.68 2.20e-008 12.29 570.83 3.38e-008
409600 28467.20 51.23 555.63 1.95e-008 25.28 1126.25 2.15e-008
819200 114933.76 91.05 1262.30 2.34e-008 49.83 2306.42 2.46e-008
1638400 448593.92 172.31 2603.44 1.85e-008 99.76 4496.55 3.00e-008

10
2

10
4

10
6

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

10
2

10
4

10
6

10
−20

10
−15

10
−10

10
−5

N

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target error
IFGT
FGT

6.2 Speedup as a function of d

The main advantage of the IFGT is in higher dimensions where we can no longer
run the FGT algorithm due to its enormous computation and space requirements.
Figure 11 shows the performance as a function of N for d = 3 and d = 4. The band-
width was set to h = 1.0. The FGT becomes impractical after three dimensions.
For the IFGT as d increases the crossover point increases. Figure 12 shows the
performance for a fixed N = M = 50, 000 as a function of d for a fixed bandwidth
of h = 2.0. Since the crossover point increases with d for N = M = 50, 000 we

CS-TR-4767/UMIACS-TR-2005-69

28 · Raykar,Yang, Duraiswami, and Gumerov

10
0

10
2

10
4

10
6

10
8

10
10

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

N

Quadratic growth

Asymptotically linear

Cutoff point

Hermite / Taylor Translation

Jump due to translation

A B

Fig. 10. The theoretical complexity of the FGT showing different regions as a function of N = M
for d = 3.

were able to achieve good speedups unto d = 10. Note that after d = 5 we could
no longer run the FGT. The FGT gave good speedup only for d ≤ 4.

It should be noted that IFGT and FGT show good speedups especially for large
bandwidths. Figure 13 shows the performance for a fixed N = M = 10, 000 as
a function of d. In this case for each dimension we set the bandwidth h = 0.5d.
With h varying with dimension we were able to run the algorithm for arbitrary
high dimensions.

6.3 Speedup as a function of the desired error ε

Figure 14 shows the tradeoff between the computational complexity and the desired
error ε. A decrease in running time is obtained at the expense of reduced precision.

6.4 Speedup as a function of the bandwidth h

Figure 15 shows the performance as a function of the bandwidth h. Both the FGT
and IFGT generally show very good performance when the bandwidth h is large 4.
For smaller bandwidth the performance is often poor. For small bandwidths it may
be more efficient to directly evaluate the contribution from its neighbors within
a certain radius. Techniques for efficient computation of nearest neighbors [Arya

4As the dimensionality d increases the volume enclosed by a hypercube increases as Rd. As a
result relative to the volume, for a fixed h the Gaussian appears to be at a smaller scale as the
dimensionality of the space increases. We need an exponentially large number of samples to cover
the increasing volume. So unless the number of samples is very very large using a small h does
not make any sense. Especially in tasks like kernel density estimation this leads to a estimate
with very high variance. Also in high dimensions the tails of the density contribute significantly
to the total probability mass. It is unlikely that we will have a very dense sampling in the tails.
Hence we are better off using a large h.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 29

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s
e

c
)

 d=3

 d=3

 d=4

 d=4Direct
IFGT
FGT

(a)

10
2

10
3

10
4

10
5

10
−20

10
−15

10
−10

10
−5

N

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target
IFGT
FGT

(b)

Fig. 11. (a) Comparison of the time taken by the different methods as a function of the number
of points N for d = 3 and d = 4. (b) The corresponding maximum absolute error relative to the
total weight Q. The bandwidth was set to h = 1.0. The target error was set to 10−6. The source
and target points were uniformly distributed in a unit square. The weights qi were uniformly
distributed between 0 and 1. For N > 256, 000 the timing results for the direct evaluation were
obtained by evaluating the Gauss transform at M = 100 points and then extrapolating the results.

0 2 4 6 8 10
10

−2

10
0

10
2

10
4

10
6

d

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

(a)

0 2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

d

M
a

x
.

a
b

s
.

e
rr

o
r

/
Q

Target
IFGT
FGT

(b)

Fig. 12. (a) The running times in seconds and (b) the maximum absolute error relative to the
total weight Q for direct evaluation, FGT, and IFGT as a function of the dimension d. The target
error was set at ε = 10−6. The bandwidth was h = 2.0. N = 50, 000 source and target points were
uniformly distributed in a unit hyper cube. The weights qi were uniformly distributed between 0
and 1.

and Mount 1993; Friedman et al. 1977] can be incorporated in the algorithm to
automatically do this when the bandwidths are small.

CS-TR-4767/UMIACS-TR-2005-69

30 · Raykar,Yang, Duraiswami, and Gumerov

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

d

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

(a)

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

d
M

a
x
.

a
b

s
.

e
rr

o
r

/
Q

Target
IFGT
FGT

(b)

Fig. 13. (a) The running times in seconds and (b) the maximum absolute error relative to the total
weight Q for direct evaluation, FGT, and IFGT as a function of the dimension d. The target error
was set at ε = 10−6. The bandwidth was h = 0.5d. N = 10, 000 source and target points were
uniformly distributed in a unit hyper cube. The weights qi were uniformly distributed between 0
and 1.

10
−8

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

 d=4

 d=4

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

ε
(a)

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

ε

T
im

e
 (

s
e

c
)

Target error
IFGT
FGT

ε
(b)

Fig. 14. (a) The running times in seconds and (b) the maximum absolute error relative to the
total weight Q for direct evaluation, FGT, and IFGT as a function of the desired error ε. The
bandwidth was h = 1.0. N = 10, 000 source and target points were uniformly distributed in a
unit hyper cube of dimension d = 4. The weights qi were uniformly distributed between 0 and 1.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 31

0 0.5 1 1.5 2
10

−1

10
0

10
1

10
2

10
3

10
4

h

T
im

e
 (

s
e

c
)

 d=3

 d=3

Direct
IFGT
FGT

(a)

0.5 1 1.5
10

−12

10
−10

10
−8

10
−6

h

M
a

x
.

a
b

s
.

e
rr

o
r

/
Q

Target
IFGT
FGT

(b)

Fig. 15. (a) The running times in seconds and (b) the maximum absolute error relative to the
total weight Q for direct evaluation, FGT, and IFGT as a function of the bandwidth h. The target
error was set at ε = 10−6. N = 20, 000 source and target points were uniformly distributed in a
unit hyper cube of dimension d = 3. The weights qi were uniformly distributed between 0 and 1.

7. APPROXIMATE FAST MULTIVARIATE KERNEL DENSITY ESTIMATION

As a application we show how the IFGT can be used to accelerate multivariate
kernel density estimation. We also show the effect of the approximation on the
performance of the estimator.

A random variable X on Rd has a density p if, for all Borel sets A of Rd,∫
A

p(x)dx = Pr[x ∈ A]. The task of density estimation is to estimate p from an

i.i.d. sample x1, . . . , xN drawn from p. The estimate p̂N : Rd × (
Rd

)N → R is
called the density estimate.

The parametric approach to density estimation assumes a functional form for
the density, and then estimates the unknown parameters using techniques like the
maximum likelihood estimation. However unless the form of the density is known
a priori, assuming a functional form for a density very often leads to erroneous
inference. On the other hand nonparametric methods do not make any assumption
on the form of the underlying density. This is sometimes referred to as ’letting the
data speak for themselves’ [Wand and Jones 1995]. The price to be paid is a rate
of convergence slower than 1/N , which is typical of parametric methods. Some of
the commonly used non-parametric estimators include histograms, kernel density
estimators, and orthogonal series estimators [Izenman 1991]. The histogram is very
sensitive to the placement of the bin edges and the asymptotic convergence is much
slower than kernel density estimators 5. The most popular non-parametric method
for density estimation is the kernel density estimator (KDE) (also known as the

5The best rate of convergence of the MISE of kernel density estimate is of order N−4/5 while that
of the histogram is of the order N−2/3.

CS-TR-4767/UMIACS-TR-2005-69

32 · Raykar,Yang, Duraiswami, and Gumerov

Parzen window estimator [Parzen 1962]) given by

p̂N (x) =
1
N

N∑

i=1

1
VN

k

(
x− xi

hN

)
,

where K(u) is called kernel function and h = h(N) is called the bandwidth. The
bandwidth h is a scaling factor which goes to zero as N → 0. In order that p̂N (x)
is a bona fide density, k(u) is required to satisfy the following two conditions:

k(u) ≥ 0,

∫

Rd

k(u)du = 1

VN is the volume occupied by the window k(u/hN). Hence VN = hd
N . The most

commonly used kernel is the Gaussian of zero mean and unit variance,

k(u) =
1

(2π)d/2
e−‖u‖

2/2.

In this case the density estimate can be written as,

p̂N (x) =
1
N

N∑

i=1

1

(2πh2)d/2
e−‖x−xi‖2/2h2

. (19)

The computational cost of evaluating Equation 19 at M points due to N source
points isO(NM), making it prohibitively expensive. The proposed IFGT algorithm
can be used to reduce the computational cost to O(N + M).

In order the study the effect of the ε− exact approximation on the performance
of the kernel density estimator we use the notion of L1 distance. The L1 distance
also known as the integrated absolute error (IAE) between the estimate p̂(x) and
the actual density p(x) is given by,

IAE(p̂, p) = L1(p̂, p) =
∫

Rd

|p̂(x)− p(x)| dx.

The mean integrated absolute error (MIAE) is given by,

MIAE(p̂, p) = E[IAE(p̂, p)] = E

[∫

Rd

|p̂(x)− p(x)|dx

]
.

[Devroye and Lugosi 2000] opine that the total variation criterion is a natural
distance measure between two densities. If B is the class of all Borel sets of Rd,
then the total variation (TV) is defined as,

TV(p̂, p) = sup
B∈B

∣∣∣∣
∫

B

p̂(x)dx−
∫

B

p(x)dx

∣∣∣∣ .

By the Scheffe’s identity [Theorem 7.1] L1 distance is twice the total variation
criterion.

Theorem 7.1. [Scheffe’s identity [Devroye and Lugosi 2000]]Let f and g be two
functions defined on Rd satisfying

∫
f =

∫
g = 1. Let B denote the class of all

Borel sets of Rd. Then

sup
B∈B

∣∣∣∣
∫

B

f −
∫

B

g

∣∣∣∣ =
1
2

∫

Rd

|f − g|

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 33

Proof. supB∈B

∣∣∫
B

f − ∫
B

g
∣∣ =

∫
f>g

(f − g) =
∫

g>f
(g − f) = 1

2

∫
Rd |f − g| .

Thus if we know that L1(f, g) < ε then the differences in probabilities are at
most ε/2. Also the L1 distance is invariant to monotone continuous change of
scale [Devroye and Lugosi 2000]. We have the following theorem which shows the
effect of the approximation on the total variation.

Theorem 7.2. Let X ∈ [0, 1]d ⊂ Rd (i.e. we assume that the data is scaled
to a unit hyper cube) be a random variable with density p, p̂ be the kernel density
estimate, and p̂A be the approximate kernel density estimate computed using the
improved fast Gauss transform such that |p̂A − p̂| ≤ Qε = (2πh2)−d/2ε. Then

TV (p̂A, p) ≤ TV (p̂, p) +
ε

2
(2πh2)−d/2. (20)

Proof. By Scheffé’s Identity [Theorem 7.1],

TV (p̂A, p) =
1
2

∫
|p̂A − p|

=
1
2

∫
|(p̂− p) + (p̂A − p̂)|

≤ 1
2

∫
|p̂− p|+ |p̂A − p̂|

≤ 1
2

∫
|p̂− p|+ 1

2

∫
(2πh2)−d/2ε

= TV (p̂, p) +
ε

2
(2πh2)−d/2

8. CONCLUSIONS

We proposed the improved fast Gauss transform which is capable of computing the
Gauss transform in O(N) time in dimensions as high as tens for small bandwidths
and as high as hundreds for large bandwidths. The reduction is based on a new
multivariate Taylor’s series expansion (which can act both as a local as well as a
far field expansion) scheme combined with the efficient space subdivision using the
k-center algorithm. We derived tight pointwise error bounds and gave a strategy
to choose the parameters of the algorithm. Numerical experiments demonstrated
the speedup achieved over the original FGT. Finally we showed how the IFGT can
be used for fast kernel density estimation.

The following are two simple extensions.

—The bandwidth h is different for each dimension, i.e.,

G(yj) =
N∑

i=1

qie
−(yj−xi)

T Σ−1(yj−xi) =
N∑

i=1

qie
−Pd

k=1(yj(k)−xi(k))2/h2
k ,

where Σ is diagonal matrix with the kth element equal to h2
k. In this case we can

divide each co-ordinate of the source and target points with the corresponding
bandwidth hk and then use the IFGT with bandwidth h = 1.

CS-TR-4767/UMIACS-TR-2005-69

34 · Raykar,Yang, Duraiswami, and Gumerov

—More generally we can have

G(yj) =
N∑

i=1

qie
−(yj−xi)

T H−1(yj−xi),

where H is a symmetric positive definite d×d matrix called the bandwidth matrix.
In this case we can factorize the inverse bandwidth matrix as H−1 = UT Σ−1U =
(Σ−1/2U)T (Σ−1/2U). Now we can apply the following linear transformation x →
Σ−1/2Ux to each of the source and target points and then use the IFGT with
h = 1. This is equivalent to rotating and scaling the points before using the
IFGT.

We also point out that the algorithm is easily adaptable in an online setting. If
a new target point arrives them we just have to sum the contributions from all its
influential neighbor clusters. If a new single source point arrives we just add its
contribution directly to all the target points. In case a lot of source points arrive in
a batch then we update the coefficients of the clusters to which the source points
belong to and then reevaluate the contribution at the target points.

0.1 0.2 0.3 0.4

10
−100

10
−50

h

ε a
b

s
/ε

re
l d=16

d=8
d=4

d=2
d=1

(a)

Fig. 16. (a) εabs/εrel for different h and d. R =
√

d.

9. APPENDIX 1: RELATIVE VS ABSOLUTE ERROR

The astute reader would have observed that we have used the absolute error rather
than the relative error. Equation 2 is the error used in the original paper on
FGT [Greengard and Strain 1991]. However it would be more reasonable if we had
used the maximum absolute relative error,

max
yj

[
|Ĝ(yj)−G(yj)|

|G(yj)|

]
. (21)

The reason we prefer to use Equation 2 over Equation 21 is that it easy to derive
more tighter point-wise error bound than using the relative error. However if the
the reader still feels comfortable only with relative bounds, it is possible to upper
CS-TR-4767/UMIACS-TR-2005-69

IFGT · 35

bound the relative error bound with the absolute error bound as follows. However
this is true for only when the weights qi are positive (for example in kernel density
estimation). For any yj ∈ Rd

|Ĝ(yj)−G(yj)|
|G(yj)| =

|Ĝ(yj)−G(yj)|
|∑N

i=1 qie−‖yj−xi‖2/h2 |
≤ |Ĝ(yj)−G(yj)|

Qe−R2/h2 ,

where R = maxi,j ‖yj − xi‖, i.e., the maximum range of the data. For example is
all the points are uniformly in a d-dimensional unit hypercube than R ≤

√
d. So

if 0 < εrel < 1 is the desired relative error then the desired absolute error εabs will
be,

εabs ≤ e−R2/h2
εrel.

This will be tight as long as h is large. But for very small e−R2/h2
will be very

small (see Figure 16) and we will be spending more resources than necessary. Our
recommendation is to use the absolute error for small h. Also it should the noted
that Equation 2 is relative to the the total weight Q, and this in a sense takes care
of the relative scale issues.

10. APPENDIX 2: ERROR BOUND FOR HERMITE SERIES TRUNCATION

The error due to truncation of the Hermite series in FGT after ignoring all terms
with multi indices α > p can be bounded as follows [Greengard and Strain 1991;
Baxter and Roussos 2002].

|errorFGT | =

∣∣∣∣∣∣
∑

α≥p

[
1
α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)∣∣∣∣∣∣

≤
∑

α≥p

1
α!

∣∣∣∣
(

xi − x∗
h

)α∣∣∣∣
∣∣∣∣hα

(
y − x∗

h

)∣∣∣∣

≤
∑

α≥p

d∏

j=1

∣∣∣∣
(

xi(j)− x∗(j)
h

)αj
∣∣∣∣

1
αj !

∣∣∣∣hαj

(
y(j)− x∗(j)

h

)∣∣∣∣

where xi(j) is the jth coordinate of xi. Based on the Cramer’s inequality we have
the following useful bound for Hermite functions. For any t ∈ R

1
n!
|hn(t)| ≤ 2n/2 1√

n!
e−t2/2.

Hence we have,

|errorFGT | ≤
∑

α≥p

d∏

j=1

1√
αj !

∣∣∣∣
(

xi(j)− x∗(j)
h

)αj
∣∣∣∣ 2αj/2e−(y(j)−x∗(j))2/2h2

≤ e−‖y−x∗‖2/2h2 ∑

α≥p

d∏

j=1

1√
αj !

∣∣∣∣∣

√
2(xi(j)− x∗(j))

h

∣∣∣∣∣

αj

CS-TR-4767/UMIACS-TR-2005-69

36 · Raykar,Yang, Duraiswami, and Gumerov

Let |xi(j)− x∗(j)| = a and |y(j)− x∗(j)| = b. Then,

|errorFGT | ≤ e−‖y−x∗‖2/2h2 ∑

α≥p

d∏

j=1

1√
αj !

rαj

where r =
√

2a/h. This can be simplified as follows.

∑

α≥p

d∏

j=1

1√
αj !

rαj =


∑

α≥0

d∏

j=1

1√
αj !

rαj −
∑
α<p

d∏

j=1

1√
αj !

rαj




=




d∏

j=1





∑

αj≥0

1√
αj !

rαj



−

d∏

j=1





∑
αj<p

1√
αj !

rαj








=








∑
αj<p

1√
αj !

rαj +
∑

αj≥p

1√
αj !

rαj





d

−




∑
αj<p

1√
αj !

rαj





d



=
d−1∑

k=0

(
d

k

) 
 ∑

αj<p

1√
αj !

rαj




k 
 ∑

αj≥p

1√
αj !

rαj




d−k

[Binomial theorem]

≤
d−1∑

k=0

(
d

k

) 
 ∑

αj<p

rαj




k 
 rp

√
p!

∑

αj≥0

rαj




d−k

≤
d−1∑

k=0

(
d

k

)(
1− rp

1− r

)k (
rp

√
p!

1
1− r

)d−k

[Geometric series r < 1.]

=
1

(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp

√
p!

)d−k

So we have,

|errorFGT | < e−db2/2h2 1
(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp

√
p!

)d−k

where r =
√

2a/h.

REFERENCES

Arya, S. and Mount, D. M. 1993. Approximate nearest neighbor searching. In Proc. 4th Ann.
ACM-SIAM Symposium on Discrete Algorithms. 271–280.

Baxter, B. J. C. and Roussos, G. 2002. A new error estimate of the fast gauss transform. SIAM
J. Sci. Stat. Comput. 24, 1, 257–259.

Bern, M. and Eppstein, D. 1997. Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston, Chapter Approximation algorithms for geometric problems, 296–345.

Chung, F. 1997. Spectral Graph Theory. Amer. Math. Society Press.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and
other kernel-based learning methods). Cambridge University Press.

Devroye, L. and Lugosi, G. 2000. Combinatorial Methods in Density Estimation. Springer-
Verlag.

CS-TR-4767/UMIACS-TR-2005-69

IFGT · 37

Feder, T. and Greene, D. 1988. Optimal algorithms for approximate clustering. In Proc. 20th
ACM Symp. Theory of Computing. 434–444.

Fine, S. and Scheinberg, K. 2001. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research 2, 243264.

Friedman, J. H., Bentley, J. L., and Finkel, R. 1977. An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software 3, 3, 209–226.

Girosi, F., Jones, M., and Poggio, T. 1995. Regularization theory and neural networks archi-
tectures. Neural Computation 7, 2, 219–269.

Gonzalez, T. 1985. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science 38, 293–306.

Gray, A. and Moore, A. 2001. N-body problems in statistical learning. In Advances in Neural
Information Processing Systems. 521–527.

Gray, A. G. and Moore, A. W. 2003. Nonparametric density estimation: Toward computational
tractability. In SIAM International conference on Data Mining.

Greengard, L. and Strain, J. 1991. The fast gauss transform. SIAM J. Sci. Stat. Comput. 12, 1,
79–94.

Greengard, L. and Sun, X. 1998. A new version of the fast gauss transform. Documenta
Mathematica Extra Volume ICM, III, 575 – 584.

Greengard, L. F. 1988. The Rapid Evaluation of Potential Fields in Particle Systems. The MIT
Press.

Greengard, L. F. and Rokhlin, V. 1987. A fast algorithm for particle simulation. Journal of
Computational Physics 73, 2, 325–348.

Hochbaum, D. S. and Shmoys, D. B. 1985. A best possible heuristic for the k-center problem.
Mathematics of Operations Research 10, 180–184.

Izenman, A. J. 1991. Recent developments in nonparametric density estimation. J. Amer. Stat.
Assoc. 86, 413, 205–224.

Lang, D., Klaas, M., and Freitas, N. 2005. Empirical testing of fast kernel density estimation
algorithms. Tech. Rep. UBC TR-2005-03, Dept. of Computer Science, University of British
Columbia.

Lee, Y.-J. and Mangasarian, O. 2001. Rsvm: Reduced support vector machines. In First SIAM
International Conference on Data Mining, Chicago.

Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Sta-
tist. 33, 3, 1065–1076.

Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the
American Mathematical Society 50, 5, 537–544.

Seeger, M. 2004. Gaussian processes for machine learning. International Journal of Neural
Systems 14, 2, 1–38.

Shawe-Taylor, J. and Cristianini, N. 2004. Kernel Methods for Pattern Analysis. Cambridge
University Press.

Silverman, B. W. 1982. Algorithm AS 176: Kernel density estimation using the fast Fourier
transform. Journal of Royal Statistical society Series C: Applied statistics 31, 1, 93–99.

Smola, A. and Bartlett, B. 2001. Sparse greedy gaussian process regression. In Advances in
Neural Information Processing Systems. MIT Press, 619625.

Smola, A., Scholkopf, B., and Muller, K.-R. 1996. Nonlinear component analysis as a kernel
eigenvalue problem. Tech. Rep. 44, Max-Planck-Institut fr biologische Kybernetik, Tubingen.

Vaidya, P. M. 1986. An optimal algorithm for the all-nearest-neighbors problem. In Proc. 27th
IEEE FOCS. 117–122.

Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall.

Williams, C. K. I. and Rasmussen, C. E. 1996. Gaussian processes for regression. In Advances
in Neural Information Processing Systems. Vol. 8.

Williams, C. K. I. and Seeger, M. 2001. Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems. MIT Press, 682688.

CS-TR-4767/UMIACS-TR-2005-69

38 · Raykar,Yang, Duraiswami, and Gumerov

Yang, C., Duraiswami, R., and Davis, L. 2005. Efficient kernel machines using the improved
fast Gauss transform. In Advances in Neural Information Processing Systems. 1561–1568.

Yang, C., Duraiswami, R., and Gumerov, N. 2003. Improved fast Gauss transform. Tech. Rep.
CS-TR-4495, Dept. of Computer Science, University of Maryland, College Park.

CS-TR-4767/UMIACS-TR-2005-69

