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Allocation decisions in many natural resource markets are governed by 

mechanisms designed to alleviate information asymmetries and other types of market 

imperfections.  For example, the crew in most commercial fisheries is remunerated via a 

lay system of payments designed to alleviate a potential team agency problem.  The four 

essays in this dissertation explore the use of mechanisms in natural resource and 

environmental economics. 

The first essay examines the lay system of payments in commercial fisheries.  

Under the lay system, the harvesting crew is remunerated via a share of total vessel 

revenues less a portion of trip expenditures.  The essay has two goals.  First, the essay 

provides an explanation for the lay system as an incentive mechanism to alleviate a 

potential team agency problem.  This explanation of the lay system explains anomalies 

that are at odds with the theory of pure risk sharing.  Second, the essay shows the 

implications of the lay system for econometric modeling of fisheries and for 

understanding firm behavior.

The second and third essay, examine bidder behavior in auctions for cutting rights 

of standing timber in British Columbia.  The second essay provides an empirical 



framework for estimating treatment assignment of observations given data on outcomes.  

The framework is used to explore whether bidder collusion was evident in a data set of 

nearly 3,000 auctions (over 10,000 individual bids) for cutting rights of standing timber 

in British Columbia from 1996-2000.  The third essay examines the role of ex ante

uncertainty over private values and ex post resale opportunities on bidder behavior.  The 

essay extends the theoretical work of Haile (2003) by allowing for risk-averse bidders.  

The theoretical model is tested by examining both field data and experimental data from 

the lab.  

The fourth essay provides a formal model of individual contribution decisions 

under a tontine mechanism.  The essay analyzes the performance of tontines and 

compares them to another popular fundraising scheme: lotteries.  Individual contribution 

decisions under the optimal tontine, an equivalent valued single-prize lottery, and the 

voluntary contribution mechanism are compared using a controlled laboratory 

experiment.  
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Chapter 1:

The Lay System in Commercial Fisheries: Origin and Implications1

I. Introduction

In most fisheries, the crew is rewarded by a lay system.  Under the lay system, the 

crew is paid with a share of revenues or a share of revenues less costs, rather than a fixed 

wage per hour worked.  This system is an integral part of fisheries, governing the 

remuneration and hence allocation of a crucial input in fisheries production.  Labor costs 

are a substantial component of variable trip costs – often forty percent or more – so that 

the working of the system has a substantial impact on fishing firms' resource allocation.  

For example, Jin et al. calculate labor's share of total costs including fixed costs in the 

New England ground fish fleet constitute between 30 and 60 percent (Table II, p. 549).  

Consequently, it is important to understand of the allocation of labor inputs.

The presence and the functioning of the lay system are well known and accepted 

as one of fishery's important institutions.  Compared with share contracts in agriculture, 

however, the lay in fisheries has received relatively little research.2  This is true despite 

the fact that lay systems vary substantially among fisheries, and have changed over time.  

There is little evidence that the prevailing explanation of lays has any larger implication

for modeling behavior in fisheries.

1 This essay was written with Ted McConnell.  John Horowitz, Tigran Melkonyan, Daan van Sooest and 
two anonymous referees provided useful suggestions on an earlier version of this article.  The authors are 
also grateful to participants at Camp Resources XI and the 2004 European Association of Environmental 
and Resource Economics meetings.  

2 See for example Stiglitz (1974); Braverman and Stiglitz (1982, 1986); Allen and Lueck (1992).
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The lay system is typically explained as a means of sharing risk.  Sutinen (1979)

developed the standard model of risk sharing.  Plourde and Smith (1989) extend the 

model to examine bioeconomic equilibrium when the crew is remunerated by a lay.  

However, there is reason to question the pure risk-sharing explanation.  Production and 

price risk are pervasive in fisheries.  In a pure wage system, asset owners would absorb 

all risk and so one sees the intuitive appeal of risk sharing.  Under the lay system, the 

owner and crew share unanticipated fluctuations in prices and production.

Although the risk sharing model is widely accepted, several studies examine the 

incentive features of share contracts in specific situations.  Matthiasson (1999) provides a 

model to explain the provisions of share contracts in Icelandic fisheries whereby captains 

are remunerated with a share of catch, subject to an agreed minimum, but do not share 

operating costs.  In this model, the base wage and zero cost share is likely to coexist as an 

incentive contract when strategy-dependent captain-specific costs are important.  In a

study of the 19th century whaling contracts, Craig and Knoeber (1992) examine manager 

share holding in the U.S. fleet as an incentive to prevent shirking near the end of the 

captain's career.  In their model, share contracts are optimal only as a means to resolve 

end period opportunism and are assumed to exist solely to prevent such behavior.

This paper has two goals.  First, we propose an alternative explanation for the lay 

system: moral hazard and team agency.  This explanation of the lay system explains 

anomalies, such as the presence of wages in some fisheries that are odds with the theory 

of pure risk sharing.  Second we show the implications of the lay system for econometric 

modeling of fisheries and for understanding firm behavior.  Models that fail to account 

explicitly for the incentive properties of shares may provide poor models of fishing firm.  
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The thrust of the paper is that the formation and working of the lay system are a 

fundamental force in fisheries influencing firm behavior and research results in a way 

that has been largely ignored.

Moral hazard is present in fisheries because the expense of monitoring workers is 

substantial.  Individual effort is typically unobserved by a vessel owner, leaving harvest 

the only measure of crew effort.  Team agency problems arise as the typical commercial 

fishing crew is comprised of multiple crew members individually and independently 

making decisions as to the allocation of costly and largely unobservable effort.  In such a 

setting, crewmembers that are paid via a fixed wage per hour worked are not likely to 

exert the same level of effort as those who are rewarded via an optimal incentive contract.

In the following section we argue that moral hazard plays a central role in crew 

effort allocation.  We then show some neglected implications of lay systems that arise 

regardless of the explanation of lays.  Finally we develop simple contracts in the spirit of 

Holmstrom (1979; 1982) that avert moral hazard when crew effort is not observable.  The 

central motivation for paper is to further the understanding of the behavior of fishing 

firms. 

II. Why Moral Hazard? Lays and Risk Sharing

In a production process such as commercial fisheries, with production or price 

risk, a variety of risk sharing agreements are feasible.  At one extreme, vessel owners 

could rent their equipment to the captain and crew for a fixed payment, and let the renters 

absorb all the risk.  At the other extreme, the crew could be paid a fixed wage, with the 

owner absorbing the risk.  In practice we find a complex set of sharing arrangement in 

which the crew may get paid a share of the net returns, or may get one share of the gross 
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returns and pay another share of the variable costs.  These arrangements vary by industry 

and by vessel within industry.3  Crew themselves often get different shares, depending on 

their experience, skills, and knowledge.  

There are a number of reasons to view the pure risk sharing explanation for the 

development of the lay system as suspect.  First, for the lay system to have emerged 

purely as a means to spread risk the vessel owners must be risk averse.  Under the pure 

wage system the asset owner, not the crew, absorbs all production risk.  A risk averse 

asset owner would like to share some of this risk with a hired crew.  A risk averse crew 

would require additional compensation to relinquish a pure wage system.  However, it is 

only optimal for asset owners to provide such reward if they are in fact risk averse.  

Otherwise labor will be remunerated via a fixed wage with the asset owner absorbing all 

production risk.4

Recent evidence weakens the notion that vessel owners are risk averse.  In a 

location choice model, Eggert and Tveteras (2004) find that about 70% of the trips in a 

sample of Swedish trawlers demonstrate behavior inconsistent with risk aversion.  In a 

stated preference study, Eggert and Martinsson estimate that about 50% of a sample of 

Swedish commercial fishermen responds inconsistently with risk aversion.  Without risk 

averse owners, the pure risk-sharing argument for the lay system is not valid.  

3 For example, in the Gulf of Mexico reef fishery, the lay systems seem to be different for each vessel, and 
researchers doing cost-earnings studies simply collect data on payments to labor (personal communication, 
Jim Waters, National Marine Fisheries Service).

4 This result comes directly from Proposition 2 of Stiglitz (1974) which shows that in agricultural 
production a pure wage system will arise if and only if landlords are risk neutral.  Under such assumption 
the asset owner absorbs all production risk and labor is paid its mean marginal product.
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Second, risk is less convincing as an argument for the lay system in conjunction 

with the need to monitor labor.  For the lay system to prevail simultaneously with 

efficient resource allocation crew effort would have to be carefully monitored and 

"contracts" completely enforced.  Implicit to the theory of risk sharing is the existence of 

a recipe book that provides a menu of actions that dictate how factors of production are to 

be employed in every conceivable state of nature.  All contingencies in the field would be 

accounted for and all effort observed.  Contracts would be fully enforceable in the sense 

that if the agents adhere to this menu, they would be remunerated via a predetermined 

share of output (Stiglitz, 1974).    

In practice, we do not observe such contracts in commercial fisheries.  Given the 

vagaries of the production process in a commercial fishery – fluctuations in resource 

stock abundance, unexpected variations in weather conditions, the length of a typical 

fishing trip – developing and enforcing a contract that provide the crew with verifiable 

actions for every conceivable contingency is not feasible.  

Third, the phenomenon that the shares paid to crew members within the same firm 

may differ according to experience, skill, knowledge, etc. implies that individual risk 

preference must differ systematically across these characteristics.5  In the Atlantic sea-

scallop fishery the captain and first-mate are remunerated via an ordinary crew share plus 

a bonus share of total harvests.  For this outcome to be internally consistent with risk 

sharing, these agents must be more risk loving than an ordinary seaman.  Not only does 

the base "wage" paid to such skilled fishermen depend upon an uncertain harvest but so 

does the bonus payment they accept as reward for demonstrated skill.  Thus, vessel 

5 This observation is a direct application of Proposition 4 of Stiglitz (1974) which states that the group that 
is relatively risk averse assumes less than its proportion of the risk.
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captains and mates accept a contract that is effectively more risky (relative to a certain 

outside wage) than unskilled, inexperienced crew.  Under a pure risk-sharing explanation 

of the lay system, such an outcome constitutes an equilibrium only if one considers 

captains (mates) more risk loving than ordinary crew.  

Finally, not all fisheries use lay systems and within a given lay system, some 

vessels may pay some crew wages.  A key to understanding the choice of remuneration 

systems is to determine the circumstances under which a given type of institution is used.  

All fisheries are subject to some degree of uncertainty in harvests.  Thus under the pure 

risk-sharing rationale for the development of the lay system, all fisheries should 

remunerate crew via a share system.  The presence of wages for some crew is an anomaly 

within the pure risk-sharing explanation of the lay system.

Types of Remuneration Systems

Several fisheries operate with wages as well as shares.  Such remuneration 

schemes are not necessarily consistent with risk sharing.  We review a number of cases 

that shed light on the rationale for share contracting.6 In the Chesapeake Bay blue crab 

fishery, vessels use a pure wage system in approximately 40% of the trips.  Naturally in 

these cases the captain-owner absorbs the risk.  In blue crab harvesting, the captain is 

able to observe crew effort, especially when there is only one crew.  Vessels in the blue 

crab fishery set and tend a fixed number of pots per day.  The operation is largely 

mechanized with wenches that pull pots.  Crew pull pots and hook them up to the 

wenches, sort harvested crabs and re-bait pots.  These actions are largely observable, 

6 Researchers studying costs and earnings in commercial fisheries typically do not collect information on 
contracts and simply record returns to crew, captain and boats.  See, for example, Waters on the Gulf of 
Mexico reef fishery.
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making monitoring costs low.  Yet production in the blue crab fishery is no less 

stochastic than many fisheries with lay systems.7

Factory trawlers in the Bering Sea both harvest and process ground fish while at 

sea.  Harvesting crews receive a share of revenues (typically 30-35% in aggregate).  

However, the processing crew and engineers are paid primarily via a daily wage.  In a 

pure risk sharing arrangement, there is no reason to leave any member of the crew out of 

a sharing agreement.  But in a remuneration system that uses to share system to provide 

incentives rather than share risk, the production crew would be most susceptible to a 

sharing arrangement.8

Third, in the Plourde and Smith model, revenue shares are determined solely by 

the underlying risk preference of the vessel owner and crew.  Optimal revenue shares for 

a vessel owner take the form:

Bc

c

αα
αβ +=−1 , 

where β is the optimal share of revenues for the crew and αc and αB are parameters on the 

variance of income in a quadratic utility function.  Differences in the underlying 

composition of shares across or within fisheries can only be attributed to equivalent 

differences in individual risk posture.  In the Chesapeake Bay blue crab fishery, when 

there is a share system, crew shares are about 10-25% of daily revenue. This implies 

considerable differences in risk preferences of owners across vessels.

7 We thank Doug Lipton for help with the blue crab data.

8 We thank Ron Felthoven of the National Marine Fisheries Service for help with the Bering Sea fishery.



8

The floating trap fishery on Narragansett Bay provides another example of wages 

for crew.  This fishery pays crew on skiffs via shares, but pays wages to crew chiefs and 

laborers on the mother vessel.  This payment system is consistent with incentives that 

induce greater effort from harvesting crew.

Several studies have examined contractual relations in the nineteenth century U.S. 

whaling fleet (Davis, Gallman, and Hutchins, 1990; Craig and Knoeber, 1992; Craig and 

Fearn, 1993).  The lays reported in these studies are inconsistent with both the pure risk-

sharing story and Plourde and Smith's formulation of the optimal risk-sharing contract.  

Davis et al. report shares of total catch ranging from 6.58% for vessel captains, 4.31% 

(2.60%) for first (second) mates, and down to 0.60% (0.54%) for skilled (unskilled) 

seamen.  Given that all crew members face the same risk per trip, there should not be 

such wide variations in the shares under a pure risk sharing story.  Further, Davis et al. 

report wide variations in the relative lays for a given occupation depending upon the 

fishing ground visited during a given trip.  E.g., captains (first mates) received an 

addition 7 (14) percent lay when a trip fished in the Pacific Ocean compared to the 

Atlantic.  For skilled (unskilled) seamen these same differences represent a 17 (19)

percent increase in lay for trips to the Pacific.  Risk preferences would be unlikely to 

differ for trips to the Pacific Ocean as compared to those in the Atlantic by the 

magnitudes implied by these disparities.  Hence it is difficult to view the Atlantic whaling 

lay as consistent with the Plourde and Smith formulation.

III. Owner-Skipper Contracts

Although many vessels are operated by captains who are not owners, there is only

a limited literature on contracts between owners and captains.  Craig and Knoeber (1992) 
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and Matthiasson (1999) develop models of owner-captain contracts of the lay system as 

an incentive mechanism.  Craig and Knoeber investigate the contractual relations 

between a whaling master (captain) and the vessel owner as a dynamic game.  They argue 

that manager shareholding was a supplement to the market for managers designed to 

address end-of-career shirking.  In their model, masters and vessel owners repeatedly 

interact in a well functioning labor market.  As such, reputation and the threat of 

sanctions for poor performance are sufficient to regulate behavior (and prevent shirking) 

early in a captain's career.  However, as a master nears the end of his career, both the 

threat of sanction and its realization are insufficient penalties to prevent defection and 

shirking.  Owners therefore offer incentive contracts that reward hard work and effort as 

a master nears the end of his career.

While intuitively appealing to consider share contracts as an incentive 

mechanism, the Craig and Knoeber (1992) model and explanation for the lay system has 

limited appeal.  The same economic logic that leads the authors to conclude that share 

contracts are optimal in the later periods of the game implies that in no stage of the game 

is it a "best" strategy for the owner to reward labor via a wage.  Consider the choice of 

action by a master in period t, knowing that in period t+1 he will be rewarded via a lay 

regardless of period t's payoffs.  Assuming that effort is costly, the master will choose a 

strategy (effort level) that is below that which optimizes joint payoffs.  Therefore, the 

owner would want to institute the lay system in period t rather than period t+1.  By a 

similar line of reasoning, we can conclude that in no period is it optimal to reward the 

master via a wage.  Hence, viewing revenue sharing as the resolution to an end-period 

problem is unsatisfying.
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Matthiasson's model pertains to the particular provisions of captain contracts in 

fisheries in Iceland.  In these contracts, captains are rewarded the maximum of some 

predetermined fixed wage or share of revenues and do not share any of the operating 

costs.  Given the optimality of a zero cost share, the generality of his results is limited.  

Almost all commercial fisheries in the United States include contractual provisions 

stating some degree of cost sharing for the captain and crew.  

The results of Matthiasson stem from an assumption of strategy-dependent 

captain-specific costs.  While this assumption may be valid for the particular fishery 

under study, it is hard to generalize to a wider array of fisheries.  Operating costs may be 

strategy dependent but the link between strategy choice and captain costs is tenuous.  

Later in this paper, we provide an alternate representation of contract design that 

generates the Matthiasson structure as a special case under a much less stringent cost 

structure.

These contracts deal with the peculiar relationships between owners and captains, 

and pertain to a dynamic setting.  They do not address the allocation of crew of most 

commercial vessels.

IV. Observability, Teams, and Incentive Contracts

We have argued that both the pure risk-sharing story and owner-captain contracts 

do not explain some significant aspects of remuneration in fisheries.  As a competing 

hypothesis, we propose that remuneration systems in fisheries are consistent with 

incentive contracts designed to address the problem of moral hazard and team agency.

The examples of wages in fisheries are consistent with incentive-based contracts. 

In the blue crab fishery, the vessel is small, the crew few or simply one, and observability 
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of effort high.  Incentives for effort are not necessary.  A risk-neutral owner would thus 

be indifferent between offering crew a share and fixed-wage contract.  For Bering Sea 

factory trawlers, the effort of processing workers, who are compensated by wages, is 

more observable than effort by harvesting crew.  Harvests are subject to vagaries outside 

the direct control and observation of vessel owners.  It is difficult to separate the effects 

of individual shirking from those of a random shock.  We would thus expect labor 

contracts to provide incentive for exerting effort in the harvesting crew whereas such 

provisions are less necessary for labor in processing, which is less random and more 

observable.

The lay system is also consistent with an industry with heterogeneous payment 

schemes that vary across vessels, geographic regions, and types of labor.  All incentive 

contracts must satisfy an individual rationality constraint.  In expectation, the labor 

contract must provide returns that are at least equivalent to some next best alternative 

while compensating the individual for undertaking a costly (but unobservable) action.  

Otherwise the individual would pursue the outside employment option.  Testing the 

consistency of the moral hazard interpretation with this observation is equivalent to 

testing if such differences are correlated with differences in the cost of effort or payments 

from alternate employment.

Anecdotally, evidence of such correlation exists.  Consider the example of 

differential wages across job types in the U.S. whaling fleet.  Davis et al. report that on 

average captains of whaling vessels could earn approximately 23.3% (55.8%) more 

working in the merchant marines than could a ship's first (second) mate.  These variations 

in outside wage alternates across employment types are positively correlated with the 
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reported 53.7% (153.1%) differences in revenue share between whaling captains and first 

(second) mates.

V. The Implications of Share Systems

The share system has a variety of implications for modeling of fisheries.  The 

implications depend on whether the shares differ for revenues and costs and whether 

shares vary across fishing firms within a fishery.  We explore but do not exhaust the 

implications of share systems.

Risk aversion versus risk neutrality

One implication concerns the nature of risk preferences by owners and operators 

of fishing vessels. In models of risk sharing developed by Sutinen, risk naturally matters.  

Both the owner of the vessel and crew are assumed risk averse.  Yet under the pure risk-

sharing interpretation, the lay system is only optimal when the asset owner is risk averse.  

But when crew are paid fixed wages in the presence of uncertain returns, then one may 

argue that vessel owners are risk neutral and share contracts are designed as an incentive 

mechanism.  Indeed, there is growing evidence in the empirical contract literature to 

support the risk-neutral transaction-cost view of sharing rather than the risk avoidance 

alternative.9

Researchers have begun to downplay risk aversion altogether in contract models 

(e.g., Holmstrom and Milgrom, 1991; Matthiasson 1999).  The lay system can arise as a 

consequence of monitoring costs for crew and the difficulties in attributing output when 

there are multiple crewmembers.  However, one would be foolish to argue that there is no 

9 See for example Hallagan (1978); Mulherin (1986); Leffler and Rucker (1991); and Allen and Lueck 
(1992).  
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risk in fisheries.  Consequently, it is reasonable to believe that both moral hazard and risk 

aversion can be found in fisheries.

Duality models and share systems

Economists have estimated a variety of duality models for fisheries (Squires, 

1987a, 1987b; Kirkley and Strand, 1988; DuPont 1990, 1991; Pradhan, Sharma, and 

Leung 2003; Sharma, Pradhan, and Leung, 2003).  These models include profit, revenue 

and cost functions.  They typically treat variable input prices as constants, and capital 

costs associated with vessels as fixed costs often excluded from econometric analysis.  

When firm behavior involves share systems, incorporating labor in duality models is 

problematic.  One approach is to use the opportunity cost of labor, often a wage rate that 

could be earned in a similar industry.  Squires (1987a) derives a Divisia index of the 

opportunity costs of the crew (mean annual income of total manufacturing), the mechanic 

(mean annual income of maintenance mechanic, machinery), and captain (20% higher 

than an ordinary seaman's).  Differences in crew size and the vessel's port for a given trip 

are exploited to generate variations in the index across trips and vessels.  DuPont (1991) 

proxies opportunity cost wages as an average of weekly earnings in the home port of a 

vessel.  An alternative is to leave labor out of the modeling.  Kirkley and Strand (1988) 

estimate a revenue function using only output prices and a composite input (the product 

of vessel gross registered tonnage and days absent from fishing per vessel), hence 

ignoring the allocation of labor.  Each approach has advantages and drawbacks.  Labor 

choices are obviously made.  On the other hand, the opportunity cost of labor in other 
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alternatives may not capture appropriately the costs of labor in a share system.10 Given 

the high proportion of variable costs comprised by labor remuneration (see Jin et al.), the 

choice of how to treat labor can have a significant impact on estimation in dual models.

In some circumstances the share system undermines the interpretation of input 

demands and output supplies.  One of the basic tenets underlying the use of dual based 

methods to recover vessel technology is that such representations are linearly 

homogeneous in factor and output prices.  However, under a share system of 

remuneration, homogeneity assumptions may not hold as a global property.  In fact, 

under the lay system both input demand and output supply are dependent upon the 

allocation of labor effort which may be discontinuous over certain ranges of price change.  

Such discontinuities in labor effort would map into similar discontinuities in factor 

demand and output supply functions.11

The share system may also lead to econometric problems.  Consider an owner 

who remunerates labor via a lay system which includes a cost-sharing rule.  The assumed 

objective of the owner in such an environment is to maximize his share of profits.12  This 

10 This is an assertion with casual observation but no hard empirical research behind it.  A variety of forces 
separate the opportunity cost of labor in its next best use from the cost to the firm.  Fringe payments 
available for onshore employment and the much greater risks of commercial fishing would likely raise the 
constant wage relative to the equivalent constant onshore wage for the skill group.  Further, optimal share 
contracts are influenced by variations in factors correlated with the “disutility” of labor effort.  To the 
extent that such measures are vessel specific, a constant onshore wage may fail to account for important 
differences in the labor decisions of vessels operating from the same port.

11 The presence of the share system is not the only reason why the regularity conditions underlying duality 
results may be violated.  For example, homogeneity assumptions may not hold due to corner solutions 
driven by regulatory conditions or other factors.   

12 Two alternate choice environments pointed out by an anonymous referee would be one where the asset 
owner makes all production decisions and remunerates the crew via a lay system but has no obligations for 
variable costs or one where a captain hired via the lay system makes all production decisions.  In the former 
choice environment, the objective of the owner would be to maximize total vessel revenues subject to the 
satisfaction of the individual rationality and incentive compatibility constraints.  In the latter choice 
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objective holds whether the vessel owner is also the vessel captain or hires a captain to 

operate the vessel.  The vessel owner i's profit maximization is:13

( ) ( ) iiiii
z

i wzxEzpfxwp γβπ ˆ,,ˆmax,, −=

where E is the effort from the crew which we take as given for the time, z is a non-labor 

variable input such as fuel and bait, x is the resource stock, p is output price, w the input 

price, βi and γi are the boat's share revenue and costs.14  While we use only one input and 

one type of labor, the results generalize to a firm that employs multiple variable inputs 

and multiple types of labor.  

We assume that labor is fixed, and only labor effort varies, depending on the 

contract.  Sometimes labor requirements are fixed by vessel size and gear configuration.  

For trips lasting more than a single day, there is an upper limit on the number of crew 

determined by the number of berths on the vessel.  The number of crew per vessel may 

also be influenced by social norms.  Typically there is little variation within a fishery and 

region for a given type of vessel.  While there are fisheries in which the number of crew 

is chosen, it is a reasonable starting point to suppose that crew size is fixed by the 

configuration of the vessel.  

environment, the behavioral objective of the firm would be the maximization of the crew share taking as 
given the share parameter.

13 As a reviewer notes, the model ignores the distorting effects of taxes on wages that would be paid if there 
is a constant payment to the crew.  In particular, wage payments would make the firm liable for its share of 
social security payments, giving another inducement to a share system relative to wage remuneration not 
based on risk aversion.

14 For an absentee vessel owner, these shares will be γγ −≡−≡ ˆˆ where β and γ are labor’s shares.  

For an owner-operated vessel, these share would be γγββ
n

n

n

n 1
1ˆ,

1
1ˆ −−≡−−≡ (where n is the number of 

crew) as the owner would receive both the owner’s share of vessel profits plus a portion of the crew share 
for his role as vessel captain.  
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We look at the implications of the share system for the application of duality as if 

we had the true profit function.  Then we look at the econometric implications of the 

share system.  First duality cannot give a labor demand function because there is no 

wage.  Second, input demands when they exist mix technology and shares.  The demand 

for the variable input implied by profit maximization is





= xE

w

p
zz i

i

i ,
ˆ

ˆ

γ
β

,

so that only when the share of costs is the same as the share of revenues will the share 

system not distort input choice.  With unequal shares, a higher share for revenue than for 

costs raises the effective p/w ratio, and leads to a higher than efficient level of variable 

inputs.  The same result would hold for capital purchases also.  

This result carries several econometric implications.  In practice, when one 

estimates input demand equations or output supply equations, the prices p and w are used.  

However, as shown above, optimality conditions in a fishery operating under a lay 

system are defined in terms of a share weighted index of input and output prices rather 

than observed market prices.  Consequently the parameter estimates have the shares 

embodied in them.  Basic duality results for behavior may differ with shares.  The supply 

function for vessel i would typically come from the envelope theorem:

( ) ( )( )
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Hence when the shares differ, the envelope theorem implies a supply response that is less 

than what one would expect without a share system.  An analogous result holds for 

inputs.
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We can examine the impact of shares on the estimation of a profit function.15

Consider the generalized Leontief profit function:

( ) ( ) ( )
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where gij and fi are parameters to be estimated.  The impact of shares in this model will 

depend on whether the shares vary by observation.  Without loss of generality we can 

write the ith firm's shares as iiii εγγθββ +=+= ˆ,ˆ  where θi and εi can be considered 

firm-specific random errors.  The firm's supply function would be
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whereas the researcher would assume to be estimating

t
t

t

t

GL
i xf

p

w
gg

p 1

5.0

1211 +



+=∂

∂π

What would be the properties of parameters estimated from a model in which behavior is 

implied by share systems, but the research assumes that shares are not present?  The 

answer depends on whether the shares vary by vessel.  If constant, then the shares are 

simply incorporated into the parameters, marking them down by the proportion of the 

shares.  If the shares vary across vessels, as they do within various fisheries, then the 

actual model estimated will have something like a multiplicative error-in-variables for 

some of the variables, with uncertain implications.  

15 To focus on the impact of the share system in estimation we represent the profit function and the random 
errors for estimation ‘conventional’ in the Pope-Just sense, based on the idea of a disturbance but without 
further attribution.  A more sophisticated specification of the error would include a joint distribution for the 
input demands and output supply and would be more informed about whether the errors were errors in 
measurement or errors in specification.  
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The impacts on parameter estimates will depend on the dual model estimated.  For 

example, when estimating a translog profit function, unaccounted for share parameters 

are factored as a constant shift in the overall model intercept.  However, for other 

functional forms such as the normalized quadratic or generalized leontief, some weighted 

transformation of unaccounted for share parameters are embedded in estimated slope 

coefficients.  In addition, the choice of whether to estimate a cost function, profit function 

or revenue function should be informed by the type of share system that prevails in the 

fishery.  If the lays include separate shares for costs and revenues, then estimating a cost 

function, which takes output as predetermined, would seem inappropriate.  Furthermore, 

the workings of the share system have direct implication for pooling data across vessels 

and time.  The behavioral objectives of a hired captain remunerated by a share of total 

vessel revenue minus trip variable costs may differ from that of the same captain when 

remunerated by a share of net vessel profits.  Incorrectly specifying either the behavioral 

objective of a given fishing firm or the relative prices underlying observed choice would 

impact the coherence of estimated parameters.   

Such misspecification error may in part explain a number of empirical 

irregularities noted in literature.  For example, when interpreting results from a translog

model of behavior for the multispecies New England otter trawl fishery, Squires (1987a) 

indicates that, "The profit function is not convex at 81% of the sample points."  DuPont 

(1991) encounters similar problems in estimating a normalized, restricted quadratic profit 

function for the British Columbia salmon fishery.  Parameter estimates are inconsistent 

with the assumption of convexity of the profit function and generate a downward-sloping 
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output supply function.  Both authors attribute these problems to the need to aggregate 

prices and harvests over a number of different outputs and insufficient price variations.  

There are several reasons why regularity conditions may not be satisfied in 

empirical work.  The workings of the share system influence relative price ratios 

underlying choice which if left unaccounted for in econometric models would introduce 

measurement error and potential misspecifications.  In addition, commercial fisheries are 

often subject to regulatory constraints that induce corner solutions for the allocation of 

some subset of factor demands and important factors of production such as resource 

stocks and the quality of physical capital are often unobserved or measured with error.  

Incorrectly specifying or measuring any of the factors underlying behavior and choice 

may impact parameter estimates.  

Random utility models of location choice

Researchers have increasingly turned to location choice models for understanding 

fishery behavior.16 The lay system affects how we set up and evaluate these models.  

Typically, researchers use some form of total vessel expected profits (and often a 

measure of its variability) as the primary determinant of fishing location choice.  If the 

vessel is owner-operated, then this formulation of the problem is correct.  The captain 

would select the site that maximizes total vessel profits.  However, when the captain is 

not the owner of a vessel, his objective is no longer to maximize total vessel profits but 

rather to maximize his own payoffs.  Under the lay system, the rank ordering of sites in 

terms of total vessel profits and the rank order of sites in terms of crew payoffs may not 

coincide.

16 See for example, Curtis and Hicks (2000) and Mistiaen and Strand (2000).
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Consider the following example.  A captain chooses between two sites, A and B.  

Fishing at site A generates revenue of $100 whereas fishing site B generates revenue 

$200.  However, site B is further from shore than is site A and costs $100 to access 

whereas site A only costs $25 to access. If the lay for this captain is a 50-50 split of 

revenues and costs, then Site B is the preferred choice as doing so generates payoffs of 

$50 whereas choosing site A results in a payoff of only $37.50.  However, if the captain 

share of revenues were to change to 60% and his cost share increase to 100%, then the 

rank ordering of sites for the captain will change.  Under this new contract, he strictly 

prefers site A and its $35 payoff to site B and its $20 payoff.  In general, we will tend to 

underestimate the impacts of costs on location choice when the relative ratio of revenue 

to cost shares is less than unity and overestimate its impacts when the relative ratio is 

greater than unity. 

Production and efficiency under the share system

Efficient allocation of resources in fisheries depends on rules of capture and the 

dynamic structure of property rights.  Given these more fundamental characteristics of 

the industry, we can ask whether the share system produces a given industry output more 

cheaply than other remuneration systems.  Of course in a fishery output may not be 

efficient in a bioeconomic sense, regardless of shares.

Sutinen (1979) was interested in the efficiency of output under the share system.  

He argued that earlier research was incorrect in assuming that vessels were inefficient 

under the share system.  Sutinen concluded that under risk aversion, firms operating 

under a share system would be efficient when compared with wage or rental contracts.  

However, he did not address the issue of the aggregate costs of production.  
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The issue has been explored in the context of bioeconomic equilibrium by 

Anderson (1982, 1986), and by Plourde and Smith (1989).  Assuming risk neutral 

behavior, Anderson (1982) investigates industry equilibrium in terms of the number of 

vessels and output per vessel.  He concludes that a share system will not change firm 

efficiencies or the bioeconomic equilibrium if revenues are shared at the same proportion 

as costs.  Plourde and Smith (1989) analyze equilibrium conditions when risk averse 

captains harvest in a bioeconomic equilibrium.  Using quadratic preferences, they show 

that under a share system the quantity of labor hired will be greater than that hired under 

an equivalent wage contract.  However, aggregate stock size will be larger under a share 

system of remuneration than that corresponding to a wage based system.

The risk neutral result is easy to see.  For firm i, profits after labor payments 

would be βi[pf(zi,Ei,x)-wzi].  Assuming that aggregate fishing effort (Ei) is independent of 

the contractual shares (βi), the skipper-owner would behave the same whether 

maximizing profits or a proportion of profits.  Since agents that maximize profits always 

minimize the costs of a given level of output, no distortions in production decisions stem 

from sharing profits.  

The effect of the share system has direct implications for efficiency in quota 

markets too, as shown by Hannesson (2000).  In a market for individual quotas with risk 

neutral asset owners, Hannesson demonstrates how the decision to purchase quota is 

affected by the share system.  Assuming that shares are over gross vessel revenues, the 

share system attenuates the incentive of an asset owner to invest in permits.  As 

Hannesson notes, ‘the gain from obtaining an additional quota for an existing boat must 

be shared with the crew (p. 185)’.  All else equal, the owner will be more likely to invest 
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in a new vessel rather than additional quota, leading to an equilibrium in which 

investment exceeds the optimal level.

One can complement the basic Hannesson analysis by allowing for vessels that 

operate with different shares on costs and revenues to examine the equilibrium allocation 

of quota across vessels.  When all vessels receive the same price for harvests, the 

marginal profits from harvest for vessel i are given by

iii cp γβ ˆˆ −

where p is price and ci is the marginal cost of harvest.  Quota trade equilibrium requires 

marginal profits to be equal or vessels i and j: jjjiii cpcp γβγβ ˆˆˆˆ −=− .  Rearranging this 

expression gives the equilibrium for quota trade:
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Thus, there is no guarantee that the marginal costs will be equal across firms unless 

shares are equal for both revenues and costs.  Whenever vessels operate with different 

shares on costs and revenues, the potential efficiency gains from quota trade diminish.  

Hence, two inefficiencies emerge share systems with ITQ’s; (i) Hannesson’s result that 

too many vessels remain active and (ii) a possible inefficient allocation of quota across 

firms.

VI. A Model with Multiple Crew

Consider a model of crew remuneration that follows the general framework of 

Sutinen (1979).  There are two contracting parties: the owner of the vessel and the crew.  

The owner contracts with a captain/crew who determines the allocation of both the 

quality and quantity of labor effort.  The owner plays the role of capitalist (budget 
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breaker) in the spirit of Holmstrom (1982) and builds upon his observation that, 

“…budget breaking is the essential instrument in neutralizing externalities from joint 

production.  The primary role of the principal is to administer schemes that police agents 

in a credible way…”  The timing of decision making in our model is as follows.  The 

parties enter a contract under which the owner agrees to provide the capital to the crew 

for use in the harvest of stochastic resource stocks.  The contract consists of two 

parameters (β, γ) selected by the asset owner specifying the share of ex post revenues 

received by and the ex ante costs paid by the crew.  In selecting the contract parameters, 

the asset owner takes as given the effect of these shares on the effort choice of the crew 

and the quantity of such labor chosen by the vessel captain.  Contract parameters are 

selected to maximize the owner’s share of total vessel profits.

Once the contract is agreed upon, the captain and crew agree to make a fixed 

payment of γVC to the owner – where VC is variable non-labor costs of production.  By 

requiring the crew to cover a portion of the variable costs (assumed independent of labor 

effort), the owner is inducing an ex ante “fine” or punishment for shirking while at sea.17

In equilibrium, the asset owner selects a level of γ such that ex post payments to the crew 

satisfy individual rationality and incentive compatibility constraints only if the crew 

exerts a target effort level, E*.  Once these payments have been made, the crew allocates 

17 The perceived credibility of this “fine” is crucial.  To maintain such credibility, ex post payments must be 
made in accordance with the contract parameters independent of cost and revenue realizations.  Given the 
stochastic nature of harvests, we would thus expect to view some proportion of fishing trips where crew 
“earnings” are negative.  In practice there is limited evidence of such.  For example, approximately 2.2% of 
fishing trips (9 out of 414) for a sample of nine vessels operating in the Atlantic sea-scallop fisher during 
the period 1996-200 resulted in ex post payments being made by the crew to the vessel owner to cover cost 
liabilities in excess of their revenue share.
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the capital provided by the owner and decides upon how much of its own effort to exert.  

Ex post rents are then reallocated between the parties according to γ and β.

Incomes under a sharing agreement for the owner are given by18

( ) ( )∑ −−−=
i

i
o VCexp γαβπ 11 (1)

and for the individual crew member




 −= ∑ VCexp
N i

i
c γαβπ 1

(2)

where, i = 1, N denotes the individual crew members, α is the catchability coefficient, and 

x is the flow of resource stocks.  Production technology in the fishery is assumed to be 

given by y = αxE where E = Σei.  Non-labor inputs are used in fixed proportions so that 

the allocation of such inputs is independent of realized contract parameters.19  The crew 

will exert low effort (eL) or high effort (eH) depending upon incentives, so 

that ( )HLi eee ,∈ .  Uncertainty enters directly through the flow of stocks which are 

random with [ ] xxE = .  Total variable costs are independent of labor effort so that πE > 0, 

i.e., monetary incomes are strictly increasing for both parties in labor effort. 

In our model, each crewmember allocates labor effort independently, selecting 

either a low or high level of effort at increasing personal cost.  Given stochastic resource 

stocks, this suggests the possibility of a team agency problem.  Without credible threat of 

detection and punishment, a crewmember lacks the incentive to exert full effort.  Share 

systems as incentive contracts provide an alternate rationale to the pure risk-sharing 

18 Keeping in mind that γγββ −≡−≡ 1ˆ,1ˆ .

19 This assumption does not imply that non-labor inputs are unproductive.  For example, one could rewrite 
the catchability coefficient as a function of non-labor inputs such that α = θz where z is a vector of non-
labor inputs.  
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arguments.  We derive our results under the assumption of risk neutrality on the part of 

the asset owner.  Under this assumption, we are able to show that in the case considered 

by Plourde and Smith (1989) – that of a single crewmember providing an ex ante known 

level of labor effort – there exists a wage contract that is strictly preferred to the optimal 

share contract by the crew and to which the asset owner is indifferent. 

The preferences of the asset owner and the ith crewmember are given by the 

following expected utility functions:

[ ] ( ) ( )VCexpEU
i

i
oo γαβπ −−−== ∑ 11 (3)

[ ] ( )i
i

i
cc evVCexp

N
E

N
U −


 −== ∑ γαβπ 11

(4)

where v(ei) is a strictly convex, non-monetary cost of effort for the ith crewmember.  

Equations (3) and (4) highlight two major differences between our model and those 

employed by Sutinen and Plourde and Smith.  First, the asset owner and the crew are 

assumed risk neutral.  Second, preference structures for the crew are not strictly 

increasing in effort level.  Hence, any optimal contract must include incentive to invoke 

some desired level of individual effort and dissuade shirking whenever such effort is 

unobservable and/or unverifiable.

The asset owner guarantees a fixed level of utility to the crew, cU , and select the 

contract parameters (β and γ) that would induce a choice by the crew of individual effort 

(ei) and total crew size (N) that would maximize his own welfare subject to an incentive 

compatibility and individual rationality constraint on crew behavior. In selecting the 

contract parameters, the owner takes as given the response of the captain and crew in 
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determining both the quality and quantity of labor effort exerted.  Formally, the problem 

faced by the owner is

( ) ( )
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  (5)

where ê is the level of individual effort that maximizes the asset owner’s welfare.  

Constraint (i) is the individual rationality constraint evaluated at ê , and constraint (ii) is 

the incentive compatibility constraint evaluated at ê .  Denote a solution to problem (5) 

by [ ]*** ,, eγβ .

We restrict the choice of labor effort to the set (eL, eH) where eL denotes a low 

effort level and eH a high effort level.20  This simplification eases the computational 

burden but has no impact on the general incentive properties of the optimal labor 

contract.21 To examine solutions to equation (5), we use the individual rationality (i) and 

incentive compatibility constraints (ii) to solve for the optimal contract parameters β* and 

γ*.  Substituting equation (4) into (ii) and noting that e* = eH implies that for all crew 

members:

( ) ( ) ( ) ( )LLHH evVCExp
N

evVCExp
N

−−≥−− γαβγαβ 11
(6)

20 In our setting, eL does not have to be zero effort level.  One can imagine a case where effort is 
imperfectly monitored over some range, but defections outside of this range easily detected and credibly 
punished.  In this case, eL would correspond to the lower bound of this range and eH the upper bound. 

21 Our focus in this article is to examine labor contracts in commercial fisheries as a mechanism to resolve 
the team agency problem as opposed to the pure risk sharing argument set forth in the previous literature.  
We are thus concerned with the general structure/incentive properties of such contracts and not their exact 
derivation.  The use of a discrete choice set for the agent’s action space as opposed to a continuum of 
actions does not alter these basic features of the contract and are sufficient for our intentions.  
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Equation (6) has the straightforward interpretation that expected utility under high effort 

levels must be greater than or equal to that generated by exerting low effort.  Hence, the 

problem of the asset owner is to select a revenue share β that satisfies equation (6) and 

maximizes his own expected utility.  Solving for β, we have

( ) ( )( )
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evevN

−
−≥ αβ (7)

Noting that for any given level of γ, the owner maximizes expected utility by minimizing 

subject to equation (3) we get
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We now consider possible solutions for the cost share parameter, γ.  To solve for 

γ, we substitute β* into the individual rationality constraint.  By substitution we have that,
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This expression has the interpretation that for any potential crew member, the utility 

expected under the labor contract must not be less than the reservation utility.  Solving 

equation (9) for γ and noting that the asset owner’s utility is maximized by selecting the 

maximum possible value of γ that satisfies equation (5) we have that
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In equation (10), the sign of the optimal cost share depends upon model parameters and is 

a priori unknown.  For given parameter values, wages could include a flat payment 

independent of effort levels and harvests and no cost sharing.  For other values, the owner 

and crew share both costs and revenues.  If γ* < 0, then the optimal contract resembles 



28

that considered in Matthiasson (1999) where crew remuneration is based upon an internal 

wage rate plus a catch share.  So the Matthiasson result emerges as a special case of the 

model with multiple crew.  When γ* ≥ 0, we are in the more traditional setting for U.S. 

fisheries with a sharing of both catch and operating costs.

Given the optimal revenue and cost shares, there are two empirical regularities 

that one ought to be able to explain.  First, there are commercial fisheries where cost and 

revenue shares are constant across vessels.  Is this regularity consistent with our model of 

incentive contracts and what type of economic conditions could generate such 

equilibration across distinct fishing vessels?  In our model, the expressions defining the 

optimal revenue and cost shares are functions of the economic conditions – i.e., prices, 

production technology, stock flows – within a fishery, the reservation utility of labor, and 

the disutility of labor effort.  Testing the consistency of our model with the observation of 

equal shares across firms within a given fishery is equivalent to determining whether the 

factors that determine an optimal contract are equivalent across these same firms.  For a 

geographically concentrated fisher with relatively homogeneous firms we would expect 

such equivalence.  Firms would face an identical distribution of resource stocks and 

would hire crew from localized labor markets where agents face similar outside options.  

Second, there are instances where revenue and cost shares are equal for a given 

vessel.  What types of industry structure and underlying biological/economic conditions 

would rationalize such an outcome as optimal?  Conceptually one could derive a 

mathematical expression that would determine the structure necessary to rationalize equal 

cost and revenue shares but such an expression would have no clear economic 

interpretation.  However, if one considers contractual parameters as the solution to a 
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bargaining problem between a vessel owner and a pool of potential labor, then one could 

imagine such an outcome constituting an equilibrium.  The expressions derived above for 

β* and γ* are the minimum possible incentive compatible revenue and cost shares.  There 

are other possible equilibria for the contact shares one of which could set equal revenue 

and cost share (β = γ) provided that we have β* > γ*.  

Single Crew with Observable Effort

In this section, we consider the solution to a special case of our more general 

model – that of a single crewmember with contractible and ex post verifiable effort.  The 

case mirrors that considered by Plourde and Smith and highlights the major differences 

between the moral hazard and pure risk sharing interpretations of the lay system.  First, 

the assumption of risk aversion on the part of the boat owner is fundamental to the pure 

risk sharing interpretation of the lay system.  By relaxing this assumption, it is shown that 

there exists a wage contract that is strictly preferred by labor to the “optimal” share 

contract and to which the asset owner is indifferent.  In such markets, we would expect 

labor to be paid a wage, not a revenue share.  Second, given a risk neutral boat owner, 

revenue sharing is optimal only as an incentive mechanism to induce high effort levels 

when such effort is ex post unverifiable.  Whenever such an asset owner can contract over 

effort levels and such contracts are verifiable, there exists a wage contract that strictly 

dominates any sharing arrangement.

We now consider potential solutions to the owner's maximization problem in this 

special case.  The general structure of the analysis follows that presented in the previous 

section with two modifications.  First, instead of considering multiple crew each 

providing an independently chosen level of fishing effort we limit crew size to a single 
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agent.  Second, we assume that effort is contractible and ex post verifiable. Hence, while 

the crew can still choose to provide either a high or a low level of effort, ex ante the 

parties can contract over this choice and ex post the choice is known to the asset owner. 

We maintain the assumption that e* = eH and limit our analysis to contracts of the form 
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in deriving potential solutions to equation (5).

The owner's maximization problem in this special case is given by the following 

version of equation (5):
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The maximization problem in equation (11) does not include an incentive compatibility 

constraint as the contract explicitly induces high effort given that the inequality is 

satisfied.  Potential solutions to equation (11) are derived in a manner identical to that 

employed in the previous section.  Solving the constraint for β, we get 

( )*

H

HU v e VC

p xe

γβ α
+ += (12)

where γ is exogenously determined by the vessel owner.  Under this contract, the agent's 

expected utility is given by U  when exerting high effort and –v(eL) when exerting low

effort.  The contract is thus an equilibrium solution to the principal's problem as it 

maximizes the principal's utility and the agent's best response is to exert high effort.

While equation (12) is an equilibrium contract, we can show that since effort is 

contractible and observable there exists a pure wage contract that weakly dominates this 
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sharing arrangement for risk averse agents.  Hence, in the basic Plourde and Smith 

situation with a risk neutral boat owner we would expect a pure wage contract.  The proof 

is available in a separate appendix.  We first show that there exists a wage contract under 

which it is the agent's best response to exert high effort.  It is then shown that a risk 

averse agent strictly prefers a wage contract as payments under a wage contract second 

order stochastically dominate those earned under the optimal share contract.  Finally we 

show that a risk neutral boat owner is indifferent between a wage and share contract as 

expected earnings are equal under both.

VII. Concluding Comments

This paper has explored the origin and implications of the lay system in fisheries.  

The received explanation for the lay system is the sharing of risk between the crew and 

the owner or captain.  There are reasons to doubt risk sharing as the single explanation of 

the lay system. Risk sharing requires risk aversion to explain the lay system.  Even if all 

agents are risk averse, it seems unlikely that it would be optimal for poorer crew to share 

risks with wealthier owners.  Further, the share system is prominent in some fisheries 

with considerable uncertainty but do not have risk sharing among all crew.  An additional

explanation of the lay system is to avoid shirking among crew.

There are two sorts of implications of the lay system.  In estimation, both random 

utility models and dual models of production may be subverted by the presence of shares.  

Concerning efficient resource use, differences in shares among vessels in an industry may 

mean that an ITQ system will not achieve full efficiencies.  Further Hannesson shows 

that the presence of a share system will lead to investment in new boats rather than ITQ's.  
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Finally in a share system with different shares for revenues and costs, captain owner 

decisions about resource use will not be optimal.

There are fruitful directions for research.  For example, we examine two types of 

remuneration systems offered in commercial fisheries – fixed wages and share contracts –

and explain each in the context of individual incentives and the feasibility of monitoring 

and enforcing fisherman effort.  However, there are two alternate incentive compatible 

contracts – fixed rental and rank-order tournaments – which arise in agriculture but are 

rarely observed in commercial fisheries.  Why are such contract forms missing from 

fisheries?
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Appendix

Consider the following wage contract structure where the principal offers the 

agent a wage

( )
0   

H HU v e if e e
w

if otherwise

 + == 
Under this contract structure, the agent's best response is to give high effort as he earns 

U when exerting high effort and -v(eL) if exerting low effort. This constant wage 

contract second order stochastically dominates that derived in equation (12) which 

generates expected utility of U but has a positive variance as actual payments are 

dependent upon stochastic harvest levels. A risk averse agent thus strictly prefers a wage 

contract.

A risk neutral principal is indifferent between a wage and share contract as 

expected rents under both are equal. Under the optimal share contract the principle earns 

expected rents given by: 

( ) ( ) ( )
( )

* *1 1o
H

H H

E E p xe VC

p xe VC v e U

π β α γ
α
 = − − − 

= − − −
 

Under a wage contract, the principle earns expected rents given by: 

( ) [ ]
( )

o
H

H H

E E p xe VC w

p xe VC v e U

π α
α

= − −
= − − −

The risk neutral principal is thus indifferent between a pure wage and a pure sharing 

contract as both result in equal expected rents.  
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Chapter 2:

Inferring Treatment Status when Treatment Assignment is Unknown:

with an Application to Collusive Bidding Behavior in Timber Auctions22

I. Introduction

Several quite distinct empirical approaches have been developed to study the 

impact of public policies. Approaches as diverse as general equilibrium analyses to 

partial equilibrium research programs have lent important insights into fundamental 

issues such as the impact of taxes and subsidies on labor supply and demand (for 

examples, see Shoven and Whalley 1992; Ashenfelter 1978). Within this rich assortment 

of empirical methods, the program evaluation literature has witnessed rapid growth in the 

past several decades (see, e.g., Heckman and Smith 1995).  The task confronting 

econometricians utilizing this framework is to identify treatment effects using non-

experimental data on treatment assignment and outcomes conditional on treatment 

assignment.  Intuitively, the crux of the approach relies on constructing the proper 

counterfactual since a given person cannot be observed simultaneously in both the 

treatment and control groups.  With the increased focus on evidence-based policy in the 

U.S. and abroad, the methodology of program evaluation has expanded ubiquitously 

among both academicians and policymakers.  And, it is fair to say that this area of 

research remains one of the most vibrant within empirical economics.

22 This essay was written with Daniel Millimet and John List.  Thanks to Bill Howard who provided the 
Canadian timber auction data.  Also, numerous discussions with several Canadian officials, including but 
not limited to, Bruce McRae, Michael Stone, and Bill Howard, considerably enhanced this paper.  Larry 
Ausubel, Patrick Bajari, Peter Cramton, John Horowitz, Esfandiar Maasoumi, Michael Margolis, Tigran 
Melkonyan, and Richard Woodward provided useful suggestions.  The authors are also grateful to seminar 
participants at U. of Nevada – Reno, SMU, and Texas AM.  
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An interesting, and heretofore unexplored, aspect of the program evaluation 

method is that the underlying structure can be used as a starting point in the development 

of an empirical model to identify the treatment assignment of observations given data on 

outcomes.  In this spirit, the major goal of this study is to provide a unified framework for 

estimating treatment assignment when the econometrician does not observe this piece of 

information.  Such an approach has a myriad of economic applications.  For example, in 

principal/agent settings determining whether agents have shirked conditional on output 

realizations remains an important issue in both a positive and normative sense.  Further, 

detecting renegers of bilateral trade or environmental agreements based on trade and 

environmental quality patterns is an important policy consideration, as is detecting job 

search effort by the unemployed given data on the duration of unemployment spells.

After presenting our formal framework, we make use of economic theory to apply 

the empirical methods to a timely application concerning bidder behavior in Canadian 

softwood timber auctions.  The long-standing softwood timber trade dispute between the 

U.S. and Canada is nearing resolution and the cornerstone of the agreement between the 

U.S. and the province of British Columbia (the largest player in Canada) is that auctions 

will be used to price cutting rights on non-auctioned federal lands.  A necessary condition 

articulated in the agreement is that these auction markets must be viable and robust and 

not be influenced by collusion.  We apply our empirical methods to examine whether 

these Canadian timber auctions meet this condition.  Previous research related to our 

application – detection of corruption – has proceeded in a literature distinct from the 

treatment effects literature (see, e.g., Porter and Zona 1993, 1999; Baldwin et al. 1997; 

Pesendorfer 2000; Bajari and Ye 2003).  Our approach clarifies many issues of 
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importance in the collusion literature; it rejects the validity of some approaches

commonplace in the literature, and highlights other approaches not previously 

considered.  Making use of a unique data set that includes nearly 3,000 auctions (over 

10,000 individual bids) for cutting rights of standing timber in British Columbia from 

1996 – 2000, we find statistical evidence consistent with a model of collusive behavior 

by a nontrivial subset of bidders.  From a policy perspective this finding merits serious 

consideration; in a normative sense, this application raises several issues that scholars 

should find useful.

The remainder of the paper is organized as follows.  Section 2 presents our 

framework in which to infer unobserved treatment assignment.  Section 3 presents the 

application to collusion in Canadian timber auctions.  Section 4 concludes.

II. Empirical Framework

Our goal is to devise a coherent framework in which to infer the treatment status 

(i.e., membership in either the treatment or control group) of observations from non-

experimental data when actual treatment assignment is unobserved by the 

econometrician.  As stated, the problem represents a twist of the existing program 

evaluation methodology, where the goal is to identify the impact of a treatment on the 

outcome of interest, typically using non-experimental data (see, e.g., Heckman and Smith 

(1995) and the citations therein).  Using standard notation from this literature, we let τ

denote the average treatment effect (ATE), where τ = E[y1 -y0] and y1 (y0) is the outcome 

if treated (untreated), {yi1}i=1,..., N1 denote the observed outcomes for the treatment sample 

(given by Di=1), and {yi0}i=1,..., N0 denote the observed outcomes for the control sample 
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(given by Di=0).23 In this framework, the problem confronted in the program evaluation 

literature is how to consistently estimate τ given the observed sample {yi, Di}i=1,..., N

obtained from non-experimental data, where yi = Diyi1 + (1-Di)yi0 and N = N0 + N1.
24

In the current context, the problem is not how to identify the treatment effect

given data on treatment assignment and outcomes conditional on treatment assignment 

for a sample of observations, but rather how to identify treatment assignment given data 

on outcomes for a sample of observations. Since some additional information is required 

for this to be feasible, we assume that the sign of τ is known. In other words, the goal is 

to estimate Di – which is unobserved by the econometrician – for all i given the observed 

sample { } 1

N

i i
y =  and the known sign of τ. Alternatively, one might focus on the less 

ambitious goal of detecting whether 1iD =  for some i in the sample, i.e., detecting 

whether any observations in a given sample are treated. Many practical economic 

problems, of course, require this most basic piece of information.

To proceed, we take a multi-faceted approach to the identification of treatment 

assignment. Since we do not claim to know the underlying data generating process, we 

advocate analyzing several possibilities and, in the end, weighing the totality of the 

evidence. In our application (detection of collusion), this is consonant with the claim in 

Porter and Zona (1993, p. 519) that “finding a single test procedure to detect bid rigging 

is an impossible goal.”  Finally, we consider a slightly richer environment by assuming 

23 The treatment and control groups are mutually exclusive (i.e., the same individuals do not appear in both 
groups).  Of course, if the same individual could be observed in both states the evaluation problem is 
solved.

24 In the program evaluation literature, there are many parameters of interest (e.g., the average treatment 
effect, the average treatment effect on the treated or untreated, the local average treatment effect, etc.). For 
present purposes, we do not worry about such distinctions.
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the presence of panel data on observations and outcomes. This approach not only 

maintains consistency with our application considered below, but also nests other 

important data configurations in that we consider (i) it iD D= for all i (time-invariant 

treatment assignment) and (ii) it iD D≠ for all i (time-varying treatment assignment).

Time-Invariant Treatment Assignment

To devise test(s) of whether in fact 1iD =  for at least a subset of the sample, we 

begin by considering the ‘true’ data-generating process (DGP).  Thus, the DGP gives the 

‘correct’ specification that one would wish to estimate if treatment assignment were 

observed.  As the true DGP is unknown in practice, we shall consider several potential 

specifications. Initially, we consider two cases given by: 

( )                sgn  is knownit it i ity X Dβ τ ε τ= + +  (DGP1)

[ ] ( )[ ]1 0 0 11        it i it i it ity D X D Xβ β ε β β= + − + ≠ (DGP2)

where yit is the outcome for observation i at time t, X is a set of controls, and εit is a mean-

zero, normally distributed, homoskedastic error term, which is independent of X and D.25

Specifications (DGP1) and (DGP2) assume the ‘true’ model adheres to the standard 

linear approximation, where (DGP1) indicates that the treatment acts only as an intercept 

shift, while (DGP2) permits the treatment effect to enter both the intercept and slope 

terms. In addition, across both specifications, the idiosyncratic error term is presumed to 

be correlated among the treatment group (D = 1), but uncorrelated among the control 

25 Thus, if D were observed, we restrict attention to problems falling within the ‘selection on observables’ 
framework.  Inferring treatment status in applications involving ‘selection on unobservables’ is left for 
future research.
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group (D = 0), and between the treatment and control groups.26 Finally, both 

specifications restrict the treatment assignment to be static over time. The question in 

this case becomes: if the underlying data is generated according to (DGP1) or (DGP2), 

how can one infer which (or, whether any) observations are treated given the data 

{ } 1,..., ; 1,...,
,it it i N t T

y X = = .

Case I

To begin, we assume that the data is generated according to (DGP1). 

Accordingly, there are (at least) three methods for detecting whether Di =1 for some 

subgroup of the sample. In each of the three methods considered, the null hypothesis 

being tested is that there are no treated observations (Di =0 for all i); the alternative 

hypothesis is that some sample observations belong to the treatment group (Di =1 for 

some i).

Our first detection algorithm notes that while this specification cannot be 

estimated on the observed sample (since Di is unobserved); the model may be estimated 

via a standard fixed effects approach since Di is time-invariant. Thus, one can estimate 

it it i ity X β τ ε= + + (1)

where τi are observation fixed effects. Given the following set of assumptions:

(A1) (DGP1) represents the ‘true’ data-generating process

(A2) Xit in (DGP1) does not contain an intercept

(A3) Xit in (DGP1) does not contain any time invariant variables

(A4) there is no other source of time-invariant heterogeneity,

26 In the application we consider, cross-section dependence within the treatment group is an important 
consideration. In other contexts, such correlation may seem unrealistic.
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then ˆE β β  =   and 

[ ]            1
ˆ

0           0
i

i
i

if D
E

if D

ττ ==  =
Consistency of the parameter estimates requires that T →∞.  As a result, if τ < 0 (> 0) 

and τi is negative (positive) and statistically different from zero, then we reject the null 

that Di =0 for all i and infer that Di = 1 for these observations. Note that under 

assumptions (A1) – (A4), this method also yields the identities of the treated 

observations.27

In the event that (A2) is unlikely to hold, an alternative detection method is 

available by estimating (1) after de-meaning the data. Specifically, it is clear that 

estimation of

it it i it

it i it

y X D

X

β τ ε
β τ ε

∆ = ∆ + ∆ +∆
≡ ∆ + + ∆% (2)

where ∆ in front of a variable indicates deviations from the overall sample mean, implies 

that ˆE β β  =   and 

( )1             1ˆ
                  0

i

i i

i

D if D
E D

D if D

ττ τ τ
 − =  = ∆ =   − =

%

27 If (A3) does not hold, it is still possible to estimate τi via a two-step estimation procedure.  Specifically if 
(1) may be re-written as

0 0 1 1

0 0

it it i it

it i i it

it i it

y X

X X

X

β τ ε
β β τ ε
β τ ε

= + +
= + + +
= + +%

where Xit = [X0it X1it], then upon estimating iτ% , îτ is given by the residuals from a second-stage regression 

of iτ% on X1i (and no intercept). 
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under (A1), (A3), and (A4), where D is the sample proportion of treated observations. 

Moreover, if ( )0,1D∈ , then

( ) ( )
( )

sgn               1
ˆsgn

sgn            0

i

i

i

if D

if D

ττ τ
== − =

%

Thus, as above, if τ < 0 (> 0) and îτ% is negative (positive) and statistically different from 

zero, then we reject the null that Di = 0 for all i and infer that Di = 1 for these 

observations. Once again, this method yields the identities of the treated observations.

A second detection method requires estimation of (1), obtaining the residuals, îtε ,

and testing for correlation among pairs of observations.28 Under assumption (A1) only, 

pairs of observations i and j for which ˆ
ijρ , the estimated correlation coefficient between 

the residuals for observations i and j, is non-zero are inferred to belong to the treatment 

group. As in the previous case, this method consistently estimates the specific 

observations that belong to the treatment group as T →∞.

Formal statistical testing for non-zero correlation is accomplished using the 

Fisher-Z transformation given by

ˆ11
ln

ˆ2 1
ij

ij

Z
ρ
ρ

 +=   − 

where ( )3z Z n= −  follows a standard normal distribution under the null hypothesis of 

conditional independence and n is the number of observations. Rejection of the null 

hypothesis of zero correlation is equivalent to rejection of the null of belonging to the 

28 This test draws upon the conditional independence test of Bajari and Ye (2003) in the context of 
detecting collusion.
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control group. Note that unlike the previous method based on the statistical significance 

of the fixed effects, this test does not require assumptions (A2) – (A4).

The final detection method calls for (i) guessing Di, denoted by iD% for each 

observation based on some a priori information, and (ii) estimating (DGP1) by replacing 

Di with iD% .29 This procedure almost certainly introduces measurement error into the 

estimation, but measurement error – even in the case of a mis-measured binary regressor 

– only attenuates τ̂  toward zero. Given the following assumptions:

(A5) ( ), 0i iCov D D >%

(A6) ( ), 0,  where  denotes the measurement errorit it itCov X ξ ξ= ,

in addition to (A1), τ̂  constitutes a lower bound in absolute value (Aigner 1973; 

Bollinger 1996; Black et al. 2000).30  As a result, under (A1), (A5) – (A6), τ̂ should be 

of the correct sign if Di = 1 for some i.31  Further, if one uses the criterion that τ̂  should 

be statistically significant (and of the correct sign) in order to reject the null of no treated 

observations, then this is a conservative test as it will tend to under-reject the null 

(resulting in Type II error).

Black et al. (2000) show that the lower bound may be improved via estimation of 

29 This algorithm builds on the proposed tests for collusion set forth in Porter and Zona (1993) and Bajari 
and Ye (2003).

30 Bollinger (1996, 2001) and Black et al. (2000) derive measures of how to obtain various upper bounds 
(in absolute value) for τ̂ in fixed effects and cross-sectional models. Since we only are concerned with 
whether or not τ =0 in the current context, however, the upper bound is of little substantive interest.

31 In particular if (A1) fails because iD% directly affects y, then the sign of the coefficient on iD% contains no 

information about whether Di = 1 for some i.  To see this, suppose the ‘true’ DGP is given by 

,it it i i it i i iy X D D D Dβ τ δ ε ξ= + + + = +% % and (A5) and (A6) hold.  It follows then, that  

( ) ( )it it i it iy X Dβ τ δ ε τξ= + + + −% and ( )sgn τ δ+ reveals nothing about sgn (τ) and Di.  
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0 1 20, 1 1, 0 1, 1it it i i i i i i ity X I D D I D D I D Dβ τ τ τ η     ′ ′ ′= + = = + = = + = = +     % % % % % %  (3)

where I[·] is an indicator function equal to one if the condition is true, zero otherwise, and 

iD′% is a second mis-measured indicator equal to one if observation i is suspected of 

belonging to the treatment group, zero otherwise. Black et al. (2000) prove that 

[ ] [ ]2ˆ ˆ0 E Eτ τ τ< < < if the measurement errors for iD%  and iD′%  are independent 

conditional on actual treatment assignment, Di. Using this general framework, Black et 

al. (2000) also show how one may obtain a point estimate for τ via a method of moments 

estimator provided that the measurement errors are independent conditional on actual 

treatment assignment.32 Given such independence, τ̂ should be of the correct sign and 

statistically significant if Di = 1 for some i. Unfortunately, in many cases the assumption 

of conditionally independent measurement errors may not be reasonable.

Before continuing to the detection tests assuming the data are generated according 

to (DGP2), it is worth emphasizing that the tests for treatment assignment discussed thus 

far depend crucially on assumption (A1). Specifically, the validity of two aspects of the 

underlying model are worth emphasizing.33 First, even if the structure of (DGP1) is 

correct (i.e., linear specification with the treatment affecting the intercept only), the tests 

may be invalid if there are omitted covariates. If only it itX X⊂%  is included in (1), then 

the observation fixed effects will partially reflect the effect of the omitted covariates, 

even if the omitted variables vary across auctions. Moreover, such omissions will also 

32 Unlike the classical measurement error model, an instrumental variable strategy only yields an upper 
bound (in absolute value) for τ; the point estimate is not identified given the correlation that exists between 
Di and the measurement error (Black et al. 2000).

33 Similar points are raised in Bajari and Ye (2003) in the context of detecting collusion.
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affect the consistency of residual estimates, thereby invalidating the tests for conditional 

independence (e.g., residuals across observations may be correlated either because they 

belong to the treatment group or because of similar values of omitted covariates).

Finally, such omissions will invalidate tests based on ( )2ˆ ˆandτ τ obtained using iD%  (or 

iD′% ) if the omitted regressors are correlated with iD% or iD′% .  Second, the test based on 

correlation between the residuals presumes that the errors are uncorrelated across 

observations in the control group. Thus, the test relies on the fact that, absent treatment, 

there is no cross-sectional dependence.

Case II.

Next, we assume that the data are generated according to (DGP2). As before, the 

null hypothesis is that Di = 0 for all i; the alternative is that Di = 1 for some i. Under 

(DGP2), we consider three methods of detecting whether Di = 1 for some subgroup of the 

sample. Our first detection algorithm makes use of the following assumptions:

(B1) (DGP2) represents the `true' data-generating process

(B2) T ≥ k, where k is the rank of Xit.

Under assumptions (B1) – (B2), one may estimate the following model separately for 

each observation in the sample: 

it it i ity X β ε= + (4)

where 

1

0

          1ˆ
          0

i
i

i

if D
E

if D

ββ β
=  =   =
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and consistency requires T →∞.Upon estimating { }
1,...,

ˆ
i

i N
β

=
,the null of either no treated 

or no control observations is equivalent to the null 0
ˆ:  iH iβ β= ∀ , which may be tested 

using an F-test, as in a standard Chow test. Rejection of the null implies that different 

observations are operating under different regimes, a result inconsistent with the notion 

that all observations belong to the control group.34

Two remarks are worth noting prior to extending the model. First, this detection 

algorithm does not identify the specific observations belonging to the treatment group. 

Second, if (DGP1) represents the underlying data structure, only the intercepts should 

differ across the treatment and control groups. Thus, if the null 0
ˆ:  iH iβ β= ∀% % cannot be 

rejected, but 0 ˆ:  iH iα α= ∀ is rejected, where i i iβ α β =  % and αi is the intercept, then 

this is consonant with (DGP1) being the `true' model, as opposed to (DGP2).

If assumptions (B1) – (B2) are met, then a second detection algorithm is available 

based on correlation of the residuals (conditional independence). As in Case I, one may 

obtain consistent estimates of the residuals, îtε , as T →∞ by estimating (4) separately for 

each i and then testing for correlation among pairs i, j, i ≠ j. Pairs of observations i and j

for which ˆ
ijρ is non-zero are inferred to belong to the treatment group. Note that unlike 

the previous detection algorithm, this method identifies the specific observations 

belonging to the treatment group.

Given that the rank condition (B2) may fail in practice, a third detection method 

calls for replacing Di with iD% , estimating 

34 This test builds on the test of exchangeability outlined in Bajari and Ye (2003) in the collusion context.
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[ ] ( )[ ]1 01it i it i it ity D X D Xβ β ε= + − +% %  (5)

and testing the null 0 1 0
ˆ ˆ:H β β= .  As before, this procedure introduces non-trivial 

measurement error into the estimation, making this a conservative test as it will tend to 

under-reject the null of no treated observations.35  Moreover, as noted above (see footnote 

32), an instrumental variables strategy will not correct this problem, as it will only 

produce upper bounds (in absolute value) for β1 and β0 (since DiXit and (1- Di)Xit remain 

negatively correlated with the measurement error). Furthermore, to our best knowledge 

there exists no method for deriving more accurate lower bounds that would improve upon 

the power and performance of the test procedures.36

Prior to continuing, two comments pertaining to Case II are necessary. First, 

(DGP2) specifies that the errors are correlated (uncorrelated) among treated (untreated) 

observations. However, the measurement error introduced via the use of iD%  implies that 

the residuals will not be consistent estimates of the errors; thus, estimates of the pair wise

correlations are also inconsistent. Thus, assumption (B2) is necessary for any valid test 

based on error correlation within (DGP2).  Second, as in Case I, it is worth emphasizing 

that the three detection algorithms considered in Case II depend on assumption (B1).  The 

presence of omitted, relevant covariates in practice will invalidate both tests if the 

omitted variables are correlated with some of the included regressors. In addition, 

correlation of the residuals between control observations (e.g., due to common, omitted 

35 Unlike in Case I, the presence of a second mismeasured indicator is of little help as inference would still 
be based on bower bounds for β1 and β0 as opposed to actual point estimates.

36 The only possible solution we envision is an expanded version of the method of moments estimator for 
obtaining actual point estimates as proposed in Black et al. (2000). 
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variables or cross-sectional dependence arising for other reasons) will invalidate tests 

based on the independence of the errors.

Time-Varying Treatment Assignment

(DGP1) and (DGP2) both suppose that treatment assignment is time-invariant.  In 

many applications, however, this may not be the case.  For example, countries may 

renege on bilateral trade or environmental agreements at some points in time and not 

others; similarly, firms may engage in price-fixing only at certain times.  In light of this 

possibility, we redefine the treatment assignment of interest as

1        

0   it

if treated at time t
D

otherwise

=  (6)

which is still unobserved by the econometrician. Consequently, we consider two 

additional specifications of the underlying DGP: 

( )                sgn  is knownit it it ity X Dβ τ ε τ= + +  (DGP3)

[ ] ( )[ ]1 0 0 11        it it it it it ity D X D Xβ β ε β β= + − + ≠ (DGP4)

where all notation has been previously defined. As before, we consider each specification 

in turn, and devise tests of the null that Dit = 0 for all i, t versus the alternative that Dit = 1 

for some i, t.

Case III.

Assume the data are generated according to (DGP3). Under this specification, we 

consider two methods of detecting whether Dit = 1 for some subgroup of the sample. The

first detection algorithm replaces Dit with itD% , the hypothesized value of Dit, as in the 

previous section. Estimation of 
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it it it ity X Dβ τ ε= + +%   (7)

introduces measurement error, but still allows for a conservative test based on the sign 

and statistical significance of τ̂ .  In addition, as in Case I, a less conservative test may be 

devised if a second mis-measured indicator of ,it itD D′% – with uncorrelated measurement 

errors conditional on treatment assignment – is available. Such a test is based on the sign 

and significance of 2τ from the regression 

0 1 20, 1 1, 0 1, 1it it it it it it it it ity X I D D I D D I D Dβ τ τ τ η     ′ ′ ′= + = = + = = + = = +     % % % % % %  (8)

Finally, a point estimate for τ is available via the method of moments estimator outlined 

in Black et al. (2000) if the measurement error associated with the two indicators, ,it itD D′% % , 

is uncorrelated conditional on treatment assignment. In all cases, if 2ˆ ˆ (or )τ τ  is of the 

correct sign and statistically significant, one rejects the null of no treated observations.

A second detection algorithm, based on correlation of the errors among the 

treatment group, is possible only if one pursues the Black et al. (2000) method of 

moments approach to derive point estimates of β and τ in (7). Given consistent estimates 

of the parameters in (7), one may test for correlation of the residuals, îtε , among pairs of 

observations i and j. This will also be a conservative test, however, as even when i and j

both belong to the treatment group for some t and t’, respectively, the residuals may be 

uncorrelated if t ≠ t’. Moreover, if one suspects cross-sectional dependence of the errors 

even absent treatment, then this test will be invalid.
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Case IV.

Lastly, assume that the underlying data structure is given by (DGP4).  Under this 

specification, there continues to be (at least) two feasible detection algorithms; both, 

however, require replacing Dit with itD% . First, given the following assumptions:

(D1) (DGP4) represents the `true' data-generating process

(D2) T0i, T1i ≥ k for all i, where k is the rank of Xit and T0i (T1i) is the number of periods 

in which observation i is assumed to be untreated (treated),

then the following regression equation is estimable separately for each observation: 

[ ] ( )[ ] itiititiititit XDXDy εββ +−+= 01 1

Given (D1) – (D2), 0 0
ˆ

iE β β  =  and 1 1
ˆ

iE β β  =   and consistency requires T →∞. Upon 

estimating { }0 1
1,...,

ˆ ˆ,i i
i N

β β
=

, the null 0 0 1
ˆ ˆ:  i iH iβ β= ∀ may be tested using an F-test, as in a 

standard Chow test. Rejection of the null implies that at least some observations are 

operating under different regimes during different periods, which is inconsistent with the 

observation belonging to either the treatment or control group throughout the sample 

period.

A few comments are warranted. First, as in Case II, this procedure introduces 

non-trivial measurement error into the estimation, making this a conservative test as it 

will tend to under-reject the null of no ‘structural break’ for any particular observation 

(Type II error). Second, this method identifies particular observations that are treated for 

at least some periods (although not the specific periods). Finally, as in Case II, if (DGP3) 

is the ‘true’ model, only the intercepts should differ across the periods for which a 

particular observation is treated and not treated.
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Given that (D2) may fail in practice, a second detection method is available based 

on pooling the sample and estimating the single regression model

[ ] ( )[ ]1 01it it it it it ity D X D Xβ β ε= + − +% %  (10)

and testing the null 0 1 0
ˆ ˆ:H β β= . Once again, this procedure introduces measurement 

error into the estimation, making this a conservative test. Furthermore, as previously 

stated (see footnote 32), an instrumental variables strategy will not correct this problem, 

as it will only produce upper bounds (in absolute value) for β1 and β0, and improved 

lower bounds also will not remedy the situation (see footnote 36).  Finally, it is worth 

noting that, as in Case II, a test based on correlation of the errors will not be valid unless 

consistent point estimates of the parameters of (10) are obtainable.

Distributional Analysis

Up to this point, the analysis has been couched within a standard linear regression 

framework.  Of course this is quite restrictive; more robust evidence of treatment 

assignment can potentially be gleaned from comparisons of the distribution of outcomes 

of suspected treated and untreated observations.  In general terms, then, the underlying 

DGP may take the following form:

( ) ( )1 0it it it itF y X F y X≠ (DGP5)

F1(·) and F0(·) are the cumulative distribution functions (CDFs) of the outcome for the 

treatment and control group, respectively.  Note that (DGP5) nests all of the previous 

models (DGP1) – (DGP4).

To formally test for differences in the distributions across the two groups, we 

utilize a two-sample Kolmogorov-Smirnov (KS) statistic (see, e.g., Abadie 2002).  To 
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implement such tests, we once again require an initial guess for Di or Dit,  or i itD D% % , 

depending on whether or not treatment assignment is assumed static.  While 

measurement error is introduced, the distribution-based tests will remain valid, although 

conservative, provided ( ) or i itD D% % are positively correlated with the true values.

To proceed, let W and V denote two variables, where W (V) represents the 

outcomes for the hypothesized treatment (control) group. { } 1

1

N

i i
w = is a vector of N1

observations of W; { } 0

1

N

i i
v = is an analogous vector of realizations of V.  Let F1(w) and F0(v)

represent the CDF of W and V, respectively. Thus, the null hypothesis of interest – the 

absence of either control or treated observations – is equivalently expressed as H0: F1=F0. 

To test this null hypothesis, we define the empirical CDF for W as

( ) ( )1

11
11

1ˆ
N

N
i

F w I W w
N =

= ≤∑
where I(·) is an indicator function. ( )

00̂NF v is defined similarly for V. Next, we define the 

following KS statistic:

0 1
1 0

0 1

supeq N N
d F F

N N
= −+        (11)

Our test of F1 = F0 is based on the empirical counterpart of deq using the empirical 

CDFs. Specifically, the test requires:

(i) computing the values of ( )1̂ qF z and ( )0̂ qF z for where zq, q = 1, …, Q denotes points 

in the support Ζ that are utilized (Q=500 in the application), and

(ii) computing ( ) ( ){ }0 1
1 0

0 1

ˆ ˆ ˆmaxeq
q q

N N
d F z F z

N N
= −+ .
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Inference is conducted using the bootstrap procedure outlined in Abadie (2002). 

Specifically, we pool the two samples, resample (with replacement) from the combined 

sample, split the new sample into two samples, where the first N1 observations are placed 

in the treatment group and the remainder are placed in the control group, and compute the 

KS statistic, *ˆ eqd .  This process is repeated B times, and the p-value is given by

( )*

1

1 ˆ ˆ
B

eq eq

b

p value I d d
B =

− = >∑    (12)

The null hypothesis is rejected if the p-value is less than the desired significance level, 

say 0.10.

To this point W and V have represented two unconditional variables. Yet (DGP5) 

indicates that it is differences in the conditional distributions that matter. Thus, to control 

for differences in observed attributes, we perform our test of equality on the residual

distribution of outcomes.37  To obtain the relevant distributions, we estimate

1
1 ,      1,...,it it ity X v i Nβ= + =     (13)

by ordinary least squares (OLS) using the hypothesized treatment sample and obtain the 

distribution of residuals 1
1̂ît it itv y X β= − . One could proceed similarly and obtain the 

residual distribution, 0
îtv , for the control group as well. However, because differences in 

the coefficients also suggest that observations belong to different regimes – the treatment 

and control group – as discussed in the context of the exchangeability tests in the 

previous section, we avoid simply testing for the equality of the distributions of 

37 A similar strategy is followed in Maasoumi and Millimet (2003), who analyze the distributions of 
pollution conditional on income at various points in time, and Pesendorfer (2000), who analyzes the 
distribution of low order cartel and all non-cartel bids conditioned on auction- and time-specific variables 
to test for anti-competitive bidding.
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ˆ , 0,1k
itv k = .  Instead, we compare the distribution of 1

îtv with the distribution of 

0
1 0

ˆ ˆ , 1,...,it it itv y X i Nβ= − =% ; it is straightforward to show that

( )0 0
1 0 1

ˆ ˆ ˆ ˆˆit it it it itv y X v Xβ β β= − = + −% . As a result, differences in 1
îtv  and 0

îtv%  arise due to 

differences in the coefficients as well as differences in the residuals, and not differences 

in the observed covariates, thus constituting the proper empirical test of (DGP5).

For these residual tests, inference is conducted using the same bootstrap 

procedure outlined above. The only difference is that the first-stage regression, (13), is 

estimated anew during each bootstrap repetition. As discussed in Maasoumi et al. (2004) 

and Millimet et al. (2004), this (i) accounts for parameter uncertainty in the estimation of 

the residual distributions, and (ii) maintains the between-sample dependence that arises 

from a common set of coefficients being used to obtain the residuals 1
îtv  and 0

îtv%  within 

each bootstrap repetition.

III. Application: Detecting Collusion in Canadian Softwood Timber Auctions

U.S.-Canada Softwood Lumber Dispute

To highlight the economic relevance of the application at hand, we begin by 

providing a brief historical account of U.S.-Canadian relations regarding timber trade. 

The U.S.-Canada softwood lumber dispute dates back to at least the 1820s when disputes 

occurred between New Brunswick and Maine. In the 1840s, the U.S. imposed duties of 

20 to 30 percent on imports of Canadian lumber. Since that time the U.S. has repeatedly 

imposed and dropped duties on softwood lumber imported from Canada. Canada 

retaliated by placing an export duty on saw logs which was raised and lowered until the 

Wilson Bill in 1894 removed all U.S. tariffs on lumber. This hiatus of trade restrictions 
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lasted a mere three years. The ups and downs of tariffs and duties on both sides of the 

border have continued until today.

While the tariff rates on different lumber products have changed over time, the 

legal issues behind the tariffs have not. The two main underlying issues are (i) the 

downward pressure on U.S. lumber prices due to imports of Canadian lumber and (ii) the 

ownership structure of Canadian forests (94 percent are publicly owned, resulting in U.S. 

accusations of public subsidies; specifically, cutting rights for standing timber on federal 

lands are priced below fair market value). While the depressing nature of trade on 

domestic prices benefits U.S. consumers, U.S. lumber producers favor import restrictions 

and have been fairly effective at garnering such protections. From the Canadian 

perspective, exports to the U.S. are a primary contributor to the economic strength of its 

timber industry, as nearly 80 percent of all Canadian timber exports are shipped to the 

U.S.

During the past two decades, U.S. producers have repeatedly filed countervailing 

duty (CVD) petitions with the U.S. International Trade Commission (ITC). The most 

recent dispute began in 2002 when the Coalition for Fair Lumber Imports (CFLI) filed a 

CVD petition and an anti-dumping (AD) petition. In April 2002, the Department of 

Commerce (DoC) released a final determination in the subsidy and antidumping case, 

setting a combined CVD/AD rate of 27.22 percent.38 Since the DoC's ruling, negotiators 

have discussed various measures to be undertaken on a province-by-province basis to lift 

the CVD/AD.

38 The final determination is subject to ongoing appeals and a final rate for the CVD/AD has yet to be 
settled.
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The proposed solution with respect to British Columbia (BC) – the largest player 

on the Canadian side – revolves around a market-based system.39 Under the proposed 

market-based pricing system, cutting rights on a portion of the federal lands would be 

auctioned in a first-price sealed bid auction to enable estimation of a simple hedonic 

function of the form

b X β ε= + (14)

where b is the winning auction bid, X is a vector of plot attributes, and ε is an error term. 

After estimating (14), results are to be used to price cutting rights on other public lands 

not subject to an auction according to 

ˆP X β= (15)

where β̂ is the OLS estimate of β in (14). Provided that the initial market signal from the 

auctions is reliable, the cutting rights on public lands are priced via a robust market 

mechanism, a necessary condition for lifting the CVD/AD.  However, concerns exist that 

some of the Canadian firms may have colluded (i.e., engaged in bid-rigging), which 

could invalidate the use of the auction's results to set prices for non-auctioned public 

lands. Thus, the salient question becomes: Is there evidence that Canadian firms 

engaged in behavior inconsistent with competitive bidding models when submitting bids 

in these auctions? Prior to discussing the data, we provide additional details on the 

auction mechanism itself.

39 The timber industry in BC employs more than 80,000 people directly and generates shipments exceeding 
$15 billion annually.
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The SBFEP Auction Market

Timber auctions are conducted in BC under the Small Business Forest Enterprise 

Program (SBFEP). SBFEP timber auctions are publicly advertised by the Ministry of 

Forests (MoF). These advertisements include the geographic location of the plot, an 

announced upset rate (reserve price), and an estimated net cruise volume (NCV) of the 

standing timber on the plot. Interested bidders typically conduct an independent 

evaluation of the plot to determine the accuracy of the MoF estimates. Based upon these 

evaluations, bidders determine their value of the timber rights and submit a sealed tender 

indicating a bonus bid (a fixed amount per m3 to be paid in addition to the announced 

upset rate) to the MoF. At a designated time, the MoF announces the identity of all

bidders and their bid. Finally, the MoF awards the cutting rights to the highest bidder.

BC is currently using data from SBFEP Category 1 timber auctions that occurred 

in 1996 – 2000 as the basis for a preliminary testing of their hedonic pricing scheme; 

thus, we focus on these data.40 Our objective is to determine if the SBFEP auctions offer 

a legitimate environment from which to price the timber cutting rights on non-auctioned 

land. For this to be the case, the auctions should operate as intended: without collusion. 

Our definition of collusion in this context, then, is either an explicit or implicit 

arrangement among a group of Category 1 bidders designed to limit competition and 

increase joint profits. There is some anecdotal evidence to suggest previous attempts at 

bid-rigging in Category 1 auctions. For instance, according to MoF officials, a Category 

40 SBFEP auctions are subdivided into two types: Category 1 and Category 2. Category 1 auctions are 
sealed bid tenders by registered market loggers who do not own or lease a processing facility.  Category 2 
auctions are open to both registered market loggers and registered owners of small “historic” processing 
facilities.  In Category 1 auctions, bidders vie for timber cutting rights in order to sell the harvested timber 
to end users.  In the interior of BC, almost all harvested timber is sold to either major forest license holders 
or local sawmills.  Category 1 bidders typically enter into an agreement in principle to sell the timber to a 
prospective buyer prior to the auction.  The winning bidder then consummates the agreement in principle.
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1 bidder was convicted of attempting to rig bids in an SBFEP auction; he was 

subsequently fined and sentenced to serve jail time.41 While this particular auction 

predates our sample, it may signal a more pervasive underlying pattern of behavior 

amongst loggers.

There a number of characteristics of the SBFEP auction market – similar to those 

reported in Porter and Zona (1993) for Department of Transportation sealant contracts in 

Nassau and Suffolk counties – that could help sustain cooperative agreements among 

bidders.42 First, the supply and location of SBFEP timber auctions is exogenously 

determined by the MoF and is relatively insensitive to the price received for cutting 

rights.  By contract, the MoF designates the location (and hence the associated volume, 

species mix, and quality) of timber that must be removed from any auctioned plot. 

Second, bidders compete solely on price. Winning bidders supply labor and materials 

and harvest a pre-determined quantity of timber over some fixed time horizon; output is 

thereby constant across all potential bidders. The resulting product homogeneity helps to 

facilitate collusion, as it reduces the dimensions upon which firms must coordinate action 

(Porter and Zona 1993).

Third, the MoF's policy of publicly announcing the identity of all bidders along 

with their bid enables firms to perfectly detect deviations from cooperative agreements. 

This could enable bidders to detect and credibly punish deviations from previously 

41 A regional MoF employee overheard the convicted bidder attempting to bribe fellow loggers to either 
withhold bids entirely from an upcoming auction or to submit “phantom” bids below a predetermined price.

42 It should be noted that there are other characteristics of the SBFEP auction market that serve to deter 
collusion.  For example, the use of an upset rate (reserve price) purportedly set at 70% of the estimated 
value of an auctioned tract limits the potential gains from bid-rigging.  Furthermore, there are a large 
number of registered loggers (and hence potential bidders) in some districts which may serve to limit the 
expected profitability of any bidding-ring.           
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agreed upon bidding strategies. Fourth, the nature of the timber market in BC serves to 

aggregate information and coordinate behavior, which as the existing theoretical and 

empirical literature suggests will help sustain anti-competitive outcomes. Insofar as 

localized bidders interact with the same set of mills, such information aggregation is 

likely to occur. A bidder thus has a great deal of information on the expected 

profitability of a plot for competitors, which provides greater incentive and prospects for 

coordinating actions. Furthermore, the pre-contracting of timber prices with local mills 

could serve as a coordination mechanism.43

Fifth, the restrictions on participation in SBFEP Category 1 auctions (participants 

must have at least one year's harvesting experience and be registered loggers) ensure that 

the set of potential competitors in any auction is common knowledge. Furthermore, 

participation in SBFEP auctions is largely localized, with bidders participating within 

confined geographic areas.  These factors serve to reduce uncertainty over the level of 

competition in a given market, which could enhance the stability of any cartel 

arrangements (Porter and Zona 1993). Sixth, the same set of loggers encounter one 

another in multiple markets, which may serve to limit competition. Repeated contact 

between competitors in multiple markets (forest districts and plots) has been shown to 

facilitate collusion by relaxing incentive constraints (Bernheim and Whinston 1990). 

Finally, the timing and spacing of SBFEP auctions – which tend to be spread out over 

time – may serve to facilitate collusion. This regularity increases the discounted stream 

43 Intuitively, mills have the incentive to provide low quotes in order to obtain raw materials at minimal 
cost. If localized bidders contract primarily with the same subset of mills, this would give the mills a degree 
of monopsonist power. By appropriately adjusting their price quotes, the mills could coordinate bidder 
behavior around an anti-competitive outcome.
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of collusive payouts relative to an optimal deviation since it limits the potential profits a 

deviating bidder can earn before other cartel members retaliate (Porter and Zona 1993).44

Theoretical Background

Prior to discussing the data and the empirical estimates, it is useful to present a 

simple theoretical framework for examining the impact of collusion. As the empirical 

methods outlined in the previous section presume either that the sign of the treatment 

effect is known (Cases I and III) or that the return to exogenous covariates differs 

amongst collusive and competitive firms (Cases II and IV), the theoretical model 

provides the basis upon which we derive this information.

Following Bajari and Ye (2003), we begin by defining a bidding strategy for firm 

i in a particular auction as a mapping, ( ) [ ]: ,iB r r +⋅ →ℜ , where ri is the revenue estimate 

of the project if undertaken by firm i with probability and cumulative distribution 

functions gi(r) and Gi(r); [ ],r r  is the support of r, which is identical for all firms. The 

auction is a first-price sealed-bid auction: firms submit sealed bids, and the highest bidder 

is awarded the timber rights at a price equal to the winning bid. As in Bajari and Ye 

(2003), we assume risk neutrality and that the distributions gi and Gi are common 

knowledge, but that the actual revenue estimate, ri, is known only to firm i. Suppose 

there exists an increasing equilibrium such that Bi(·) is strictly increasing and 

differentiable on the support of ri for all i. It follows, then, that there exists an inverse bid 

function, φi(·), that is also strictly increasing and differentiable on the support of the bids, 

44 Although multiple contracts were offered on some days, these contracts were often for smaller plots. 
Further, even when multiple larger contracts were awarded on a given day, the profitability of winning and 
holding several such contracts at one time is limited. Capacity constraints and legal obligations binding 
winning firms to remove a set volume of timber over some pre-determined period imply a substantial 
opportunity cost of capital utilization.
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bi. Denoting the set of strategies followed by other firms bidding in the auction as B-i, 

then the probability that firm i wins the auction is

( ) ( ) ( )Pri i j j i j j ij i
P b r b j i G bϕ ϕ≠   ≡ < ∀ ≠ =   ∏ .

The expected profits for firm i from participating in the auction are given by:

[ ] ( ) ( ); ,i i i i i i iE b B r b P bπ − = −         (16)

Equation (16) indicates that expected profits for a given firm depend only on its private 

information.

A competitive bidder derives an optimal bid, *
ib , to maximize (16) conditional 

upon own revenues from the project and some probability distribution of the revenues of 

all competitors. If revenues from the project depend on a vector of project- and/or firm-

specific characteristics, Z, then there will be a common relationship between the bid by 

each firm and these attributes (i.e., ( )*
ib Zϕ= for all i, where φ(·) is some function). 

Alternatively, if firms (or a subset of firms) are engaged in bid-rigging, it need not be the 

case that low valuation cartel members submit bids that adhere to these equilibrium 

conditions. In fact, such bidders are likely to submit ‘phantom’ bids that are more likely 

to be correlated and are much less aggressive than non-cartel members (Porter and Zona 

1993, 1999; Pesendorfer 1996, 2000; Bajari and Ye 2003). Consequently, based on this 

prior evidence we would expect that collusion – to the extent that it exists in our 

application – has a negative impact on bids ceteris paribus.45  Thus, in the notation of the 

previous section, we assume sign(τ) < 0.  Moreover, this framework suggests that the bids 

45 This assumption, and hence our identification strategy, is true in the context of a first-price IPV auction. 
The interested reader should see Graham and Marshall (1987) who outline a model of collusion in second-
price or English auctions and Baldwin et al. (1997) who outline empirical strategies to detect collusion in 
such settings.
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of low valuation cartel members will not follow the same relationship, namely φ(Z), as 

competitive firms, and that the bids of cartel members are likely to be correlated 

conditional on Z.

The Data

We observe 2,671 SBFEP sealed-bid tender first-price auctions conducted in the 

interior of BC between January 1996 and December 2000. These auctions provide more 

than 10,000 individual bids. To generate the data for the empirical model, we combine 

information from a number of sources. First, a list of all bidders currently registered to 

participate in SBFEP timber auctions was provided by the MoF in BC. This list was used 

to generate unique identification codes for each bidder in the data set. Second, the MoF 

provided the raw bid sheets for each of the 2,671 auctions. The bid sheets provide 

information on (i) the regional office holding and date of the auction, (ii) the estimated 

NCV of timber on the plot, (iii) the upset rate for the auction, and (iv) the identity and 

bonus bid per m3 for each participant in the auction. Finally, the MoF provided 

information on the characteristics of each plot and the required deadline to complete the 

harvest of the specified timber.  We were careful to follow the Canadian hedonic 

specification when choosing auction-specific covariates:

• UPSET RATE: announced reservation price per m3

• NCV: estimated net cruise volume (divided by 1000)

• VPH: estimated volume of trees per hectare (divided by 1000)

• LNVPT: log of estimated volume per tree

• LSPI: the average selling price index for timber harvested

• DC: deflated development costs (divided by NCV)
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• SLOPE: weighted average slope

• BWDN: estimated percent of volume blown down

• BURN: estimated percent of volume burned

• CY: estimated percent of volume to be extracted via cable

• HP: estimated percent of volume to be extracted via helicopter

• HORSE: estimated percent of volume to be extracted via horse

• UTIL: estimated capacity utilization for firm i – ratio of current backlog of timber 

contracts in m3 to maximum backlog of timber contracts in m3

• CYCLE: estimated cycle time for harvested timber

• LNB: natural log of the number of bidders.

For the interior region of BC, SBFEP auctions are conducted at 31 regional 

offices.  Table 1 provides the mean bid and upset rate per m3 by district and auction type 

in the data set.  In determining which bids to employ in the empirical analysis, we 

eliminated all auctions for which (i) the designation was Category 2, (ii) the NCV of the 

plot was less than 1,000 m3, (iii) there were fewer than three bids placed, and (iv) the sale 

method was other than a sealed-bid tender.  This approach is consistent with the criteria 

the BC government plans to use to estimate the hedonic pricing function given in (14). 

Furthermore, we eliminate any firm that places only one bid in the sample, as we would 

be unable to identify the individual fixed effects for any such bidder.  These selection 

criteria result in a sample of 6,353 observed bids placed by 847 different firms.

Summary statistics of the relevant variables are provided in Table 2.  The 

statistics are provided for the full sample of 6,353 bids, as well as by sub-sample 

depending on whether the bid is assumed to be part of a bid-rigging scheme or not.  We 
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utilize two means of classifying bids as collusive or competitive at this point.  For 

purposes of utilizing the methods set forth in Case I and Case III, we postulate an 

auction-invariant and auction-varying indicator of collusion, respectively.

As a starting point for identifying potentially collusive firms in the auction-

invariant models, we draw upon previous theoretical and empirical literature identifying 

conditions likely to foster and sustain collusive outcomes.  First, we examine the number 

of potential competitors in a given market and the frequency with which these 

competitors bid.  It is well understood that both the likelihood of firms entering a 

collusive arrangement and stability of anti-competitive behavior conditional upon such 

agreements are directly related to the level of concentration in a given market 

(Chamberlain 1929; Bain 1951; Dolbear et al. 1968).  More recently, authors have 

considered not only the level of concentration in a given market, but also the frequency 

with which pairs of firms interact in this market.  Benoit and Krishna (1985) and 

Fudenberg and Maskin (1986) show the importance of repeated interaction between 

individuals for the stability of trigger strategies and anti-competitive pricing.

Using the theoretical studies outlined above as a guide, we settled on the 

following set of decision rules for selecting pairs of firms whose bidding behavior 

warrant further examination: (i) the pair must have jointly submitted bids in at least six 

auctions during the sample period; (ii) each firm must have won at least one of these 

auctions; and (iii) there must be a fairly even balance in the pairwise rank of submitted 

bids between the two firms.46  Based upon these selection criteria, we classify 130 firms 

46 Our selection criteria implicitly assume that the cartel strategy followed is one whereby all but a single, 
predetermined cartel member submits “phantom” bids.  There are alternate cartel strategies whereby only a 
single cartel firm participates in a given auction.  Such a cartel would go undetected via our selection 
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(2,617 total bids) as belonging to the treatment group in the auction-invariant 

specification.

To identify suspected collusive bids in the auction-varying models, we denote a 

bid as collusive if it is placed by a firm suspected of engaging in bid-rigging under the 

auction-invariant classification in an auction in which at least one other firm also 

suspected of being engaged in bid-rigging participated.  Based upon this criteria, we 

classify 1,475 total bids (distributed among 127 firms) as belonging to the treatment 

group in the auction-varying specification.

Lastly, throughout the empirical analysis, we assume that our bid data are drawn 

from IPV auctions.  This is intuitively appealing for these data considering that bidders 

face different capacity constraints (and possibly possess different information about the 

composition of species on any given plot), suggesting that idiosyncratic, firm-specific 

cost factors are more important than plot-specific uncertain costs.  Furthermore, bidders 

contract with different mills to sell harvested timber at some predetermined price.  To the 

extent that these mills face different demand conditions and/or capacity constraints, the 

price quotes generated will differ.  This implies independent and private expectations 

over revenues across loggers.

criteria.  We argue that such omission would serve to make the Bajari and Ye (2003) identification strategy 
a conservative indicator of collusion-provided that there is not a systematic selection issue.  On the other 
hand, if there is some unaccounted for deterministic process by which firms organize bids into competitive 
and collusive auctions, then not only ours, but any identification strategy that relies upon a comparison of 
estimates from reduced form bid functions across competitive and cartel designations is potentially biased.
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Empirical Results

Auction-Invariant Treatment Assignment

Empirical results from a variety of tests assuming that the underlying data are 

generated according to (DGP1) are presented in Tables 3 – 6.  The first set of results is 

displayed in Table 3.  The “level specification” refers to results obtained from estimating 

equation (1), omitting a constant term.  The first specification uses the total bid as the 

dependent variable.  Because there appears to be a selection issue whereby suspected bid-

rigging firms tend to participate in auctions with higher upset rates, we utilize a second 

specification that includes the upset rate as a covariate.  The final specification uses the 

bonus bid as the dependent variable.  Assuming that sgn(τ) < 0, under assumptions (A1) –

A(4), a negative and statistically significant firm effect is evidence of collusive behavior 

by that particular firm.  Only one firm effect is negative and statistically significant in the 

first specification at the p<0.10 level; two (15) firm effects are negative and statistically 

significant in the (second) third specification.  While this represents minimal evidence of 

collusion (at best less than two percent of the sample of firms), assumption (A2) in 

particular – the absence of a constant term – seems implausible for these data.

Given the restrictiveness of (A2), the final three columns in Table 3 – labeled 

“deviation specification” – present the results obtained from estimating equation (2). 

Again, three cases are considered.  Now, 247 (226) of the 847 firm effects are negative 

and statistically significant at the p < 0.10 level using the total bid as the dependent 

variable and not conditioning (conditioning) on the upset rate; 259 firm effects are 

negative and statistically significant using the bonus bid as the dependent variable.  As a 

result, replacing (A2) with the much less restrictive assumption that D  lies in the open 
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interval bounded by zero and unity gives rise to much stronger empirical evidence 

consistent with anti-competitive behavior by some subset of bidders.47

Table 4 contains results from the conditional independence tests – requiring only 

assumption (A1) – using the three prior specifications from Table 3.48  Across all model 

specifications, we reject the null of conditional independence for 23.4 to 29.6 percent of 

all bidder pairs that submit bids in at least four common auctions. For pairs of firms that 

submit bids in fewer than eight common auctions, these percentages range from 4.1 

percent (for firms that jointly participate in four auctions in our model of the bonus bid) 

to 30.5 percent (for firms that jointly participate in five auctions in our model of the 

bonus bid). For firms that participate in eight or more common auctions, the fraction of 

bidder pairs for which we reject conditional independence ranges from 33.3 percent (for 

the bonus bids of firm pairs with eleven repetitions) to a high of 80 percent (for the total 

bids of firms with ten repetitions).  Thus, relaxing (A2) – (A4) provides empirical 

evidence consistent with collusive behavior.

Table 5 contains the next set of results, obtained from estimating (DGP1) 

replacing Di with iD% , where iD%  is the auction-invariant classification defined in the 

previous section and utilized in Table 2. As in Table 3, we estimate three specifications. 

47 Since our fixed effects estimates are random variables, one would expect approximately five percent of 
the sample (42 of the estimated individual effects) to be negative and significant at the p < 0.10 level in the 
absence of treatment.  However, we observe negative and significant effects for approximately one-third of 
our sample, providing evidence consistent with some non-negligable portion of bidders receiving treatment. 

48 Note, Bajari and Ye (2003) test for conditional independence after estimating a regression model 
equivalent to ours except omitting firm specific effects.  In other words, the authors test for residual 
correlation conditional only on the observables, X, in (1).  We believe that testing for independence 
conditional on firm effects and X represents a more conservative test of collusion as correlation between 
firm pairs that bid together in the same auctions that may otherwise show up in the residuals may instead be 
captured by the fixed effects (Type II error given the null of no collusion).  On the other hand, omission of 
the fixed effects risks mistaking similar firm unobservables for collusion (Type I error given the null).
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In all cases, a negative and statistically significant coefficient on iD%  is evidence of 

collusion. In the two specifications using the total bid as the dependent variable, the 

coefficient on iD%  is positive, and is statistically significant even when the upset rate is 

excluded from the covariate vector. Yet when we examine the bonus bid in the third 

specification, the coefficient of iD% is not statistically significant at conventional levels. 

Nevertheless, the fact that the final specification focusing solely on the bonus bid yields 

the strongest evidence of collusion is consonant with our suspicion that suspected non-

competitive firms tend to participate in higher stakes auctions with larger upset rates.

While the third specification yields a coefficient on iD%  of the ‘correct’ sign if 

collusion is present in the sample, the estimate is not statistically significant at 

conventional levels. However, as noted in Section 2, because iD%  is measured with error, 

the coefficient is attenuated toward zero. To (potentially) improve on the estimate of τ, 

we define a second indicator of collusive firms, iD′%  and provide estimates of equation (3) 

in Table 6. In creating iD′% , we draw upon the theoretical literature that examines the

effect of multimarket contact on firms’ ability to sustain collusion (Bernheim and 

Whinston 1990; Spagnolo 1999; Matsushima 2001). Formally, these models show how 

the strategic linking of markets can increase individual firm profits by relaxing incentive

constraints that would otherwise limit the ability of firms to sustain cooperative 

agreements in a repeated game setting. Intuitively, multi-market contact expands the set 

and severity of credible punishment strategies that deter deviations from a collusive 

arrangement.
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In BC, loggers (Category 1 bidders) interact in the SBFEP auction market and as 

contract laborers for firms that hold long-term tenure licenses. As such, we would expect 

that bidders who interact in both of these markets are more likely to collude.

Unfortunately, our data do not permit us to identify which bidders contract with any 

given tenure holder. Instead, we create an indicator variable that proxies for the 

likelihood that any subset of firms would interact in this labor market and use this proxy 

as a second potential indicator of collusion.

In creating this proxy, we note that the annual allowable cuts (AAC) for tenure 

contracts are heavily concentrated across four major firms: Canadian Forest Products Ltd, 

Slocan Forest Products Ltd, Weyerhaeuser Company Ltd, and West Fraser Mills Ltd. 

While these firms employ a number of full-time loggers, they also outsource for a large 

percentage of any harvest labor needs. As such, we hypothesize that bidders located in a 

district where these firms have a ‘large’ total AAC would be more likely to engage in the 

type of multi-market contact that has been shown to facilitate collusion. Making use of 

GIS tools, we constructed detailed information about the geographic location and AAC 

volume for tenure holdings of these firms. We were able to identify twelve (out of 31) 

districts in the interior region of BC where these four firms have combined AACs of over 

400,000 m3.

To generate data on the geographic location of bidders, we combined information 

from several sources. First, a list of all bidders currently registered to participate in 

SBFEP timber auctions was provided by the MoF. The registration data contained home 

localities for approximately two-thirds of the 1,771 bidders in the initial sample. We 

hand coded the location of all remaining bidders by searching the BC yellow pages 
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(logging firm/companies) or white pages (individual loggers). From these we were able 

to acquire geographic locations for all but roughly 350 bidders. Making use of GIS tools, 

we identified 13 cities located in these 12 districts where there were more than 15 

registered bidders. Thus, our second indicator is a binary variable that equals one for any 

firm located in one of these cities; zero otherwise.

In Table 6, the parameter of interest is the coefficient on the variable indicating 

1i iD D′= =% % .  In this case, all three estimates are positive, with the coefficients in the first 

two specifications gaining statistical significance. These estimates suggest two 

conclusions. First, there is little evidence of collusion. Second, while utilizing iD′%  did 

improve the lower bounds in the first two specifications, the fact that the estimated 

treatment effect switched sign in the third specification indicates that the measurement 

errors associated with iD%  and iD′%  are correlated even conditional on treatment 

assignment. This fact precludes the use of the method of moments estimator of Black et 

al. (2000) to derive consistent point estimates of τ.

In sum, then, if the data are generated according to (DGP1), the methods 

attempting to estimate τ provide empirical evidence consistent with collusion by some 

subset of bidders. Specifically, there is compelling evidence of anti-competitive behavior 

in that a approximately one-third of the firm effects are consistent with collusion in the 

“deviations specification” in Table 3, and the lower bound (in absolute value) estimate of 

τ is negative, albeit statistically insignificant, in Table 5 when analyzing the bonus bid 

using our main hypothesized indicator of anti-competitive firms. Moreover, inference 
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based on the notion of conditional independence strongly suggests the presence of anti-

competitive behavior by an economically meaningful sub-sample of firms.

Case II.

Under (DGP2) the only detection algorithm that is available in the current 

application is the test of exchangeability based on estimation of (5). Since assumption 

(B2) is not met with our data, tests based on estimation of (4) are not feasible. Results 

using the total bid as the dependent variable and excluding the upset rate from the 

conditioning set are presented in Table 7. The primary result of interest is the test for the 

constancy of the coefficient vector across the samples with 1 and 0i iD D= =% %  (i.e., 

suspected colluding and non-colluding firms). Here, we easily reject the null that βnon-

collude = βcollude at the p<0.01 confidence level. Moreover, if we condition on the upset rate 

or utilize the bonus bid as the dependent variable, we continue to reject the null of equal 

coefficients at the p<0.05 level.49 Furthermore, the average predicted markup in bids -

conditioned on observed covariates - is greater for competitively designated firms which 

is consistent with an assumption of “phantom” bidding on the part of some subset of 

cartel bids.  Given the theoretical framework used to conceptualize the bidding behavior 

of firms provided earlier, and assuming assumption (B1) holds, this constitutes further 

evidence of collusion.

Auction-Varying Treatment Assignment

Under (DGP3) the only test for collusion available is to estimate (7) using itD% , the 

auction-varying classification of collusive bids, which was defined previously in the data 

section and used in Table 2. Results are provided in Table 8 for the three specifications 

49 All results not reported are available from the authors upon request.
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used in the earlier tables. In all three specifications, the coefficient on itD%  is positive and 

statistically significant. Since measurement error only attenuates the estimates, this 

provides evidence against the presence of collusion in the data.

To (potentially) reduce the measurement error, Table 9 provides estimates of (8), 

which utilize two mis-measured indicators of auction-varying collusion. Our second 

indicator is a binary variable that equals one for any bid placed in an auction held in one 

of the twelve districts in the interior of British Columbia where Canadian Forest Products 

Ltd, Slocan Forest Products Ltd, Weyerhaeuser Company Ltd, and West Fraser Mills Ltd 

have combined AACs of over 400,000 m3; zero otherwise. Since at least some firms 

place bids in multiple districts, this indicator is not constant across auctions for all firms.

In Table 9, the parameter of interest corresponds to the coefficient on the variable 

indicating 1it itD D′= =% % . These estimates again suggest two conclusions. First, there is 

some, albeit weak, evidence of collusion.  The estimated coefficient on our indicator of 

collusion is negative for our second and third model specifications - with the later 

estimate statistically significant at the p < 0.01 level. Second, the fact that utilizing itD′%

did not improve the lower bounds reported in Table 8 (and even caused the estimated 

treatment effects to switch sign for two of the three specifications) indicates that the 

measurement errors associated with itD%  and itD′%  are once again correlated conditional on 

treatment assignment.

In sum, if the data are generated according to (DGP3), the methods utilized 

provide only modest evidence of collusion in the data. Nonetheless, there is some 

evidence of anti-competitive behavior in that the lower bound (in absolute value) estimate 
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of τ is negative in two of our three specifications and statistically significant in a model 

of bonus bids.

Case IV.

As in Case II, if (DGP4) is assumed to characterize the underlying data, the only 

detection algorithm that is available in the current application is the test of 

exchangeability based on estimation of (10). Since assumption (D2) is not met in our 

data, tests based on estimation of (9) are not feasible. Results using the total bid as the 

dependent variable and excluding the upset rate from the conditioning set are presented in 

Table 10. The primary result of interest is the test for the constancy of the coefficient 

vector across the samples with 1 and 0it itD D= =% %  (i.e., suspected colluding and non-

colluding bids). Here, we easily reject the null that βnon-collude = βcollude at the p<0.01

confidence level; we continue to reject the null of equal coefficients at the p<0.01 level if 

we condition on the upset rate or utilize the bonus bid as the dependent variable. 

Furthermore, the predicted mark-ups of suspected collusive bids are lower on average 

than for the non-collusive sample of bids which is consistent with a model of “phantom”

bidding on the part of some subset of cartel bidders.  Given the theoretical framework 

used to conceptualize the bidding behavior of firms provided earlier, and assuming that 

(D1) holds, this is evidence of collusion, as in Case II.

Distributional Analysis

The final set of results is provided in Table 11.  We report the value of deq and the 

corresponding p-value associated with the null of equality of the distributions for many 

comparisons.  Panels I and II compare unconditional and residual distributions of the total 

bid, where the residual distributions in Panel II are obtained by including the upset rate in 
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the conditioning set in equation (13). Panel III examines the unconditional and residual 

distributions of the bonus bid. In all three panels, we divide the sample into collusive and 

competitive bids via four methods. First, we compare the distribution of bids by firms 

with 1iD =% versus firms with 0iD =% (see Figure 1). Second, we compare the distribution 

of bids by firms with 1i iD D′= =% %  versus all other firms (see Figure 2). Third, we compare 

the distribution of bids for which 1itD =%  versus bids for which 0itD =%  (see Figure 3). 

Finally, we compare the distribution of bids for which 1it itD D′= =% %  versus all other bids 

(see Figure 4).

The basic results are easily summarized: in 16 of the 20 unique comparisons, we 

reject the null of equality of the distributions at the p < 0.05 confidence level.50

However, two of the four exceptions are for comparison of residual distributions of the 

bonus bid using both auction-invariant collusion indicators,  and i iD D′% % , (p=0.434), and 

both auction-varying collusion indicators,  and it itD D′% % , (p=0.160). On the other hand, 

when we utilize only our preferred single auction-invariant and auction-varying 

indicators of collusion, we easily reject the null of equal distributions (p=0.014 and 

p=0.028, respectively). Moreover, analyzing the figures, especially Figure 1 (bottom 

panel), reveals that the distribution of suspected collusive bids lies to the left of the 

corresponding distribution of presumed competitive bids, especially in the upper tail of 

the distribution. This provides some evidence at the distributional level that ‘phantom’

bids are present in the data.

50 The unconditional tests in Panels I and II are identical.
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Summation

Given the difficult nature of the problem – identifying treatment assignment when 

it is unobserved – we pursue several tests based on different underlying structures of the 

data.  Tests based on fixed effects models (Case I), conditional independence (Case I), 

and exchangeability (Cases II and IV) provide empirical evidence consistent with

collusion by some subset of bidders.  The distributional tests (Case V) are also in line 

with these parametric tests, providing further evidence suggestive of collusive behavior.  

While these tests are perhaps most consonant with the underlying theoretical framework, 

their validity clearly hinges on the assumption that the assumed DGP is correctly 

specified.  Tests based on estimating the treatment effect and comparing its sign to the 

assumed negative effect of collusion utilizing mis-measured treatment indicators (Cases I 

and III) are much weaker.  We obtain a mixed set of results – some positive and some 

negative point estimates – with the negative point estimates being statistically significant 

in only a single case (although the estimates do represent lower bounds).  We conclude 

from our application that there is reason to question claims that the SBFEP auctions 

provide an accurate market signal to price timber on other federal lands.

That being the case, we wish to avoid making normative claims concerning the 

current state of the softwood lumber trade dispute.  For example, it is not the purpose of 

this study to assess whether collusion renders the proposed timber pricing system less 

than satisfactory.  Future work should determine whether the evidence of collusion is 

sufficient to undermine the integrity of the proposed timber pricing system and assess the 

performance of this system relative to alternative mechanisms for pricing standing 

timber.
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IV. Conclusion

In light of the increased focus on the cost effectiveness of public policies in both 

the U.S. and abroad, the practical importance of program evaluation has expanded 

rapidly.  In this spirit, program evaluation based on a potential outcomes framework has 

matured to the point that it is now considered an important public policy tool alongside 

more ambitious general equilibrium analyses.  In this study we make use of the program 

evaluation structure, but depart from the traditional approach in order to provide a 

framework to identify the treatment assignment of observations given data on outcomes.  

We view this empirical modeling approach as having numerous economic applications.  

For example, principal-agent problems and detection problems of the sort commonly 

confronting microeconometricians are included in this broad set of applications.  

We showcase our methodology by examining bidder behavior in SBFEP timber 

auctions in British Columbia for the period 1996 – 2000.  Understanding bidder behavior 

in these auctions is integral to the resolution of the U.S.-Canadian softwood lumber 

dispute.  As part of this resolution, British Columbia is to auction off cutting rights on a 

portion of its federal land and then estimate a hedonic price function to determine the 

shadow values of the plot's characteristics.  These shadow values are then to be used to 

price cutting rights on the non-auctioned federal lands.  For this solution to lead to an 

agreement of “changed circumstance” (lifting of the CVD/AD), British Columbia must 

show that this method provides a viable and robust market.  In this sense, it is important 

that collusion does not undermine the integrity of the auctions.  In sum, our findings 

suggest that the observed bidding patterns do not arise from a model of perfectly 

competitive bidding.
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Table 1.  Average Bids by District and Category
District All Auctions Category 1 Only Category 2 Only

# Bids Avg. 
Total 
Bid

Upset 
Rate

# Bids Avg. 
Total
Bid

Upset 
Rate

# Bids Avg. 
Total 
Bid

Upset 
Rate

1 59 $31.27 $27.61 34 $27.20 19.31 21 $37.81 34.16
2 368 43.37 36.03 341 43.48 35.81 18 46.81 44.28
3 494 44.20 33.24 470 44.58 33.29 17 42.78 36.11
4 440 47.75 33.36 402 47.57 32.72 38 49.73 37.30
5 157 57.65 30.81 108 58.77 28.56 49 55.19 33.81
6 225 40.79 25.25 190 41.04 25.73 25 34.30 25.37
7 32 18.71 22.11 22 14.93 14.14 5 23.08 27.44
8 300 20.07 8.89 279 20.25 8.66 14 16.55 11.70
9 176 45.93 40.61 154 46.39 40.65 22 42.78 40.41
10 27 8.67 7.50 13 3.68 4.10 2 2.10 0.25
11 220 51.74 36.66 173 52.40 36.06 22 50.79 38.75
12 341 35.23 18.08 293 32.77 16.71 6 41.37 31.51
13 211 46.48 29.16 139 44.51 26.61 68 50.28 32.71
14 168 43.70 27.01 133 45.32 27.19 31 36.77 26.54
15 268 44.04 28.06 188 45.38 27.07 63 44.15 31.41
16 487 51.59 42.56 434 51.85 43.12 46 50.01 39.67
17 134 28.21 22.29 121 26.73 20.07 10 39.77 35.97
18 225 39.21 21.08 187 39.90 20.43 33 35.90 24.75
19 301 46.23 28.59 255 48.75 29.96 13 35.89 22.61
20 518 34.55 24.19 469 34.32 23.66 43 36.61 26.66
21 357 26.70 21.86 268 26.16 21.56 4 17.02 20.24
22 273 29.69 20.32 250 30.19 21.01 4 26.48 26.87
23 381 35.57 26.66 339 39.48 28.84 11 42.92 40.43
24 251 36.55 26.58 222 36.91 26.06 25 33.12 28.17
25 58 36.15 26.74 58 36.15 26.74 0 - -
26 977 51.05 40.90 846 50.60 39.14 121 54.61 49.80
27 650 52.85 37.50 578 52.57 37.34 72 55.08 38.22
28 453 38.04 14.02 378 37.56 13.33 75 40.45 17.50
29 482 47.67 37.31 438 47.77 36.61 44 46.66 41.30
30 955 47.63 34.52 713 48.53 35.39 114 43.63 31.35
31 370 30.09 19.37 362 30.00 19.20 6 36.66 25.85

Total 10358 8857 997
NOTES: Figures in the table represent the total number of bids, average total bid (upset rate plus bonus bid), and average upset rate 
(reservation price) for each of the 31 regional districts in the interior of British Columbia. Category 1 auctions are limited to loggers; 
Category 2 auctions are designated for small, historic sawmills.
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Table 2. Summary Statistics by Hypothesized Treatment Status
Variable All Bids Auction-Invariant

Classification
Auction-Varying

Classification
Control Treatment Control Treatment

Total Bid ($/m3) 46.416
(17.455)  

44.456
(17.809)

49.214
(16.544)

44.922
(17.683)

51.359
(15.703)

Upset Rate ($/m3) 33.863
(14.923)

31.844
(14.982)

36.747
(14.356)

32.600
(15.033)

38.041
(13.755)

Bonus Bid ($/m3) 12.200
(9.540)

12.256
(9.822)

12.121
(9.124)

11.971
(9.608)

12.957
(9.277)

UTIL: Firm’s Capacity 
  Utilization (%)

0.271
(0.342)

0.227
(0.345)

0.334
(0.327)

0.249
(0.346)

0.343
(0.320)

Fringe Firm (1 = Yes) 0.225
(0.418)

0.378
(0.485)

0.007
(0.083)

0.292
(0.455)

0.005
(0.069)

NCV: Net Cruise Volume 
  (1000s m3)

8.949
(6.841)

8.710
(7.023)

9.291
(6.561)

8.805
(7.016)

9.427
(6.209)

VPH: Volume of Trees (1000s 
  m3 per hectare)

0.272
(0.131)

0.271
(0.43)

0.273
(0.112)

0.270
(0.137)

0.277
(0.110)

LSPI: Average Selling Price 
  Index for Harvested Timber

114.884
(17.952)

115.030
(18.145)

114.676
(17.673)

114.766
(18.151)

115.274
(17.277)

DC:  Development Costs 
  ($/NCV)

1.352
(2.313)

1.446
(2.504)

1.217
(2.002)

1.404
(2.383)

1.179
(2.056)

SLOPE: Weighted Average 
  Slope

15.761
(11.813)

16.674
(12.979)

14.456
(9.770)

16.517
(12.556)

13.260
(8.460)

LNVPT: Log (Estimated Volume 
  Per Tree)

-0.811
(0.538)

-0.781
(0.549)

-0.854
(0.520)

-0.798
(0.548)

-0.855
(0.502)

BWDN: Estimated Volume 
  Blown Down (%)

0.018
(0.099)

0.022
(0.108)

0.013
(0.083)

0.020
(0.104)

0.013
(0.079)

BURN: Estimated Volume 
  Damaged By Fire (%)

0.011
(0.102)

0.017
(0.127)

0.003
(0.048)

0.014
(0.116)

0.001
(0.010)

CY: Estimated Volume to be 
  Harvested by Cable (%)

0.056
(0.207)

0.077
(0.241)

0.027
(0.140)

0.069
(0.228)

0.015
(0.100)

HP: Estimated Volume to be 
  Harvested by Helicopter (%)

0.013
(0.108)

0.019
(0.132)

0.004
(0.058)

0.017
(0.113)

0.0004
(0.011)

HORSE: Estimated Volume to 
  be Harvested by Horse (%)

0.063
(0.241)

0.084
(0.274)

0.034
(0.179)

0.074
(0.259)

0.029
(0.165)

CYCLE: Estimated Cycle Time 
  for Harvested Timber

3.915
(1.790)

3.880
(1.843)

3.965
(1.709)

3.906
(1.854)

3.947
(1.558)

LNB: Log (No. of Bidders) 1.726
(0.518)

1.689
(0.525)

1.778
(0.504)

1.681
(0.527)

1.874
(0.459)

Number of 
  Bids

6353 3736 2617 4878 1475

Number of 
  Firms

847 717 130 720 127

NOTES:  Figures represent sample means; standard deviations in parentheses.
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Table 3.  Auction-Invariant Treatment Model (Fixed Effects Estimation)
Dependent Variable

Level Specification Deviations Specification

Total Bid Total Bid Bonus Bid Total Bid Total Bid Bonus Bid
LSPI 0.252**

(0.011)
0.065**
(0.009)

-0.009
(0.009)

0.252**
(0.011)

0.065**
(0.009)

-0.009
(0.009)

DC -0.546**
(0.063)

-0.172**
(0.052)

-0.019
(0.053)

-0.546**
(0.063)

-0.172**
(0.052)

-0.019
(0.053)

VPH 15.545**
(1.230)

5.889**
(1.029)

1.909
(1.045)

15.545**
(1.230)

5.889**
(1.029)

1.909
(1.045)

NCV 0.091**
(0.023)

0.018
(0.186)

-0.013
(0.019)

0.091**
(0.023)

0.018
(0.186)

-0.013
(0.019)

SLOPE -0.165**
(0.018)

-0.010
(0.015)

0.055**
(0.015)

-0.165**
(0.018)

-0.010
(0.015)

0.055**
(0.015)

LNVPT 9.587**
(0.349)

3.853**
(0.308)

1.459**
(0.297)

9.587**
(0.349)

3.853**
(0.308)

1.459**
(0.297)

BWDN -6.057**
(1.344)

-0.632
(1.110)

1.364
(1.142)

-6.057**
(1.344)

-0.632
(1.110)

1.364
(1.142)

BURN -19.492**
(1.579)

-3.133**
(1.337)

3.524**
(1.341)

-19.492**
(1.579)

-3.133**
(1.337)

3.524**
(1.341)

CY -11.591**
(0.919)

-5.546**
(0.765)

-3.143**
(0.781)

-11.591**
(0.919)

-5.546**
(0.765)

-3.143**
(0.781)

HP -43.146**
(1.599)

-17.667**
(1.406)

-7.258**
(1.359)

-43.146**
(1.599)

-17.667**
(1.406)

-7.258**
(1.359)

HORSE -15.543**
(0.916)

-4.866**
(0.782)

-0.486
(0.779)

-15.543**
(0.916)

-4.866**
(0.782)

-0.486
(0.779)

CYCLE -2.293**
(0.091)

-0.783**
(0.080)

-0.181*
(0.077)

-2.293**
(0.091)

-0.783**
(0.080)

-0.181*
(0.077)

LNB 4.119**
(0.279)

5.147**
(0.230)

5.606**
(0.237)

4.119**
(0.279)

5.147**
(0.230)

5.606**
(0.237)

UTIL -2.119**
(0.418)

-1.945**
(0.344)

-1.973**
(0.355)

-2.119**
(0.418)

-1.945**
(0.344)

-1.973**
(0.355)

Control for
  Upset Rate

No Yes No No Yes No

Year Fixed
  Effects

Yes Yes Yes Yes Yes Yes

Observations 6353 6353 6353 6353 6353 6353
# of Firms 847 847 847 847 847 847

Average # of
Bids per                    
Firm

7.5 7.5 7.5 7.5 7.5 7.5

# Effects 
Neg. & 
Statistically
Significant
(p < 0.10)

1 2 15 247 226 259

R2 0.606 0.769 0.185 0.726 0.815 0.338
NOTES:  Standard errors in parentheses. *(**) indicates significant at the p < 0.05 (0.01) level.
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Table 4.  Percentage of Bidder Pairs Failing Tests of Conditional Independence
Total Bid

(No Upset Rate)
Total Bid

(Control for Upset)
Bonus Bid

4 Repetitions 6.9%
(5 out of 72)

6.9%
(5 out of 72)

4.1%
(3 out of 72)

5 Repetitions 27.8%
(10 out of 36)

22.2%
(8 out of 36)

30.5%
(11 out of 36)

6 Repetitions 29.0%
(9 out of 31)

16.1%
(5 out of 31)

19.3%
(6 out of 31)

7 Repetitions 23.1%
(6 out of 26)

23.1%
(6 out of 26)

26.9%
(7 out of 26)

8 Repetitions 47.6%
(10 out of 21)

42.9%
(9 out of 21)

47.6%
(10 out of 21)

9 Repetitions 66.7%
(8 out of 12)

58.3%
(7 out of 12)

58.3%
(7 out of 12)

10 Repetitions 80%
(8 out of 10)

50%
(5 out of 10)

50%
(5 out of 10)

11 Repetitions 50%
(3 out of 6)

33.3%
(2 out of 6)

33.3%
(2 out of 6)

12+ Repetitions 66.7%
(8 out of 12)

50%
(6 out of 12)

58.3%
(7 out of 12)

All Firm Pairs 29.6%
(67 out of 226)

23.4%
(53 out of 226)

25.7%
(58 out of 226)

NOTES:  Cell entries report the percentage of firm pairings that submit bids which fail to demonstrate conditional independence at the 
p < 0.05 level of significance.  Tests for conditional independence use the Fisher transformation on the estimated residuals from the 
fixed effects auction invariant treatment model (Table 3).  For example, 4.1% of the unique bidder pairs that compete against one 
another in four auctions submit bonus bids that are not conditionally independent. 
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Table 5. Auction-Invariant Treatment Model (Random Effects Estimation): Single 
Hypothesized Treatment Indicator

Dependent Variable
Total Bid Total Bid Bonus Bid

Constant 22.371**
(1.462)

5.492**
(1.188)

-1.176
(1.187)

LNB 4.448**
(0.265)

5.593**
(0.214)

6.011**
(0.219)

UTIL -1.806**
(0.397)

-1.617**
(0.319)

-1.644**
(0.329)

Control for Fringe
  Firms

-1.480**
(0.572)

-0.953**
(0.402)

-0.750*
(0.404)

Collude (1 = Yes) 1.617**
(0.711)

0.021
(0.481)

-0.465
(0.479)

Plot Characteristics Yes Yes Yes
Upset Rate No Yes No
Year Fixed Effects Yes Yes Yes

Total Observations 6353 6353 6353
Average # of Bids
  per Firm

7.5 7.5 7.5

R2 0.623 0.774 0.207
NOTES:  See Table 3.
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Table 6. Auction-Invariant Treatment Model (Random Effects Estimation): Two 
Hypothesized Treatment Indicators

Dependent Variable
Total Bid Total Bid Bonus Bid

Constant 21.591**
(1.489)

5.599**
(1.206)

-0.749
(1.210)

LNB 4.468**
(0.264)

5.590**
(0.214)

6.001**
(0.220)

UTIL -1.842**
(0.397)

-1.627**
(0.320)

-1.637**
(0.329)

Control for Fringe
  Firms

-1.331**
(0.572)

-0.973*
(0.405)

-0.832*
(0.407)

Collude1 = 1,
  Collude2 = 0

0.202
(0.887)

-0.765
(0.603)

-1.054
(0.601)

Collude1 = 0,
  Collude2 = 1

1.506*
(0.675)

-0.263
(0.481)

-0.930
(0.482)

Collude1 = 1,
  Collude2 = 1

4.459**
(0.976)

0.849
(0.665)

-0.356
(0.660)

Plot Characteristics Yes Yes Yes
Upset Rate No Yes No
Year Fixed Effects Yes Yes Yes

Total Observations 6353 6353 6353
Average # of Bids
  per Firm

7.5 7.5 7.5

R2 0.628 0.775 0.207
NOTES:  See Table 3 and text for further details.
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Table 7. Auction-Invariant Treatment Model (Random Effects Estimation): 
Exchangeability Test

Sample
All Firms Non-Colluding 

Firms
Colluding 

Firms

Constant 22.986**
(1.438)

23.058**
(1.837)

20.521**
(2.275)

LSPI 0.275**
(0.009)

0.269**
(0.013)

0.292**
(0.015)

DC -0.658**
(0.059)

-0.746**
(0.071)

-0.474**
(0.105)

VPH 16.324**
(1.183)

13.309**
(1.364)

25.635**
(2.341)

NCV 0.103**
(0.021)

0.107**
(0.027)

0.082**
(0.035)

SLOPE -0.163**
(0.017)

-0.117**
(0.022)

-0.234**
(0.027)

LNVPT 8.462**
(0.325)

7.532*
(0.418)

8.656**
(0.517)

BWDN -7.610**
(1.285)

-5.504*
(1.525)

-13.683**
(2.381)

BURN -20.316**
(1.376)

-19.545**
(1.480)

-23.626**
(3.918)

CY -12.867**
(0.854)

-12.846**
(1.011)

-14.432**
(1.666)

HP -43.804**
(1.350)

-43.094**
(1.499)

-43.586**
(3.316)

HORSE -16.407**
(0.749)

-15.294**
(0.896)

-16.973**
(1.327)

CYCLE -2.350**
(0.084)

-2.187**
(0.110)

-2.662**
(0.129)

LNB 4.447**
(0.265)

4.089**
(0.346)

4.995**
(0.410)

UTIL -1.770**
(0.397)

-1.700**
(0.519)

-2.200**
(0.616)

Control for Fringe Firms -2.039**
(0.517)

-1.578**
(0.599)

-1.999
(2.739)

Year Fixed Effects Yes Yes Yes

Observations 6353 3736 2617
Number of Firms 847 717 130
Average Bids per Firm 7.5 5.2 20.1

R2 0.620 0.622 0.620
Predicted Markup:

upset
ux ˆˆ +β 2.953 3.605 2.009

H0: βnon-collude = 
βcollude

p = 0.00

NOTES:  Dependent variable is total bid.  When the upset rate is included as a regressor, the p-value for the test of exchangeability is 
p=0.02.  When the bonus bid is the dependent variable, the p-value is p=0.02 as well.  See Table 3 for further details.
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Table 8. Auction-Varying Treatment Model (Random Effects Estimation): Single 
Hypothesized Treatment Indicator

Dependent Variable
Total Bid Total Bid Bonus Bid

Constant 23.076**
(1.436)

5.581**
(1.173)

-1.313
(1.171)

LNB 4.299**
(0.267)

5.473**
(0.216)

5.905**
(0.221)

UTIL -1.822**
(0.396)

-1.667**
(0.319)

-1.706**
(0.329)

Control for Fringe 
  Firms

-1.748**
(0.521)

-0.719**
(0.369)

-0.366
(0.372)

Collude (1 = Yes) 1.576**
(0.386)

1.283**
(0.309)

1.149**
(0.318)

Plot Characteristics Yes Yes Yes
Upset Rate No Yes No
Year Fixed Effects Yes Yes Yes

Total Observations 6353 6353 6353
Average # of Bids 
  per Firm

7.5 7.5 7.5

R2 0.623 0.775 0.205
NOTES:  See Table 3 and text for further details.
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Table 9. Auction-Varying Treatment Model (Random Effects Estimation): Two 
Hypothesized Treatment Indicators

Dependent Variable
Total Bid Total Bid Bonus Bid

Constant 20.456**
(1.459)

6.210**
(1.188)

0.812
(1.192)

LNB 4.278**
(0.266)

5.515**
(0.216)

5.944**
(0.220)

UTIL -1.832**
(0.394)

-1.657**
(0.319)

-1.685**
(0.327)

Control for Fringe 
  Firms

-1.668**
(0.509)

-0.730*
(0.369)

-0.428
(0.370)

Collude1 = 1,
  Collude2 = 0

1.961**
(0.601)

1.519**
(0.484)

1.329**
(0.495)

Collude1 = 0,
Collude2 = 1

3.139**
(0.375)

-1.220**
(0.306)

-2.649**
(0.301)

Collude1 = 1,
  Collude2 = 1

4.323**
(0.537)

-0.008
(0.434)

-1.432**
(0.435)

Plot Characteristics Yes Yes Yes
Upset Rate No Yes No
Year Fixed Effects Yes Yes Yes

Total Observations 6353 6353 6353
Average # of Bids 
  per Firm

7.5 7.5 7.5

R2 0.632 0.776 0.220
NOTES:  See Table 3 and text for further details.
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Table 10. Auction-Varying Treatment Model (Random Effects Estimation): 
Exchangeability Tests

Sample
All Bids Non- Colluding 

Bids
Colluding 

Bids

Constant 22.986**
(1.438)

23.162**
(1.608)

19.942**
(3.144)

LSPI 0.275**
(0.009)

0.277**
(0.011)

0.282**
(0.020)

DC -0.658**
(0.059)

-0.706**
(0.066)

-0.545**
(0.130)

VPH 16.324**
(1.183)

15.768**
(1.297)

20.411**
(2.945)

NCV 0.103**
(0.021)

0.095**
(0.024)

0.168**
(0.047)

SLOPE -0.163**
(0.017)

-0.156**
(0.019)

-0.179**
(0.037)

LNVPT 8.462**
(0.325)

7.753**
(0.375)

8.942**
(0.646)

BWDN -7.610**
(1.285)

-6.942**
(1.415)

-12.862**
(3.164)

BURN -20.316**
(1.376)

-20.153**
(1.406)

-45.255*
(23.897)

CY -12.867**
(0.854)

-12.861**
(0.918)

-13.208**
(2.746)

HP -43.804**
(1.350)

-43.673**
(1.392)

-69.830**
(20.737)

HORSE -16.407**
(0.749)

-16.155**
(0.808)

-15.937**
(1.909)

CYCLE -2.350**
(0.084)

-2.351**
(0.095)

-2.418**
(0.176)

LNB 4.447**
(0.265)

4.145**
(0.304)

5.350**
(0.571)

UTIL -1.770**
(0.397)

-1.493**
(0.462)

-3.094**
(0.782)

Control for Fringe Firms -2.039**
(0.517)

-1.806**
(0.532)

-0.908
(4.110)

Year Fixed Effects Yes Yes Yes

Total Observations 6353 4878 1475
Number of Firms 847 846 127
Average Bids per Firm 7.5 5.8 11.6

R2 0.620 0.616 0.631
Predicted Markup:

upset
ux ˆˆ +β 2.953 3.313 1.754

H0: βnon-collude = 
βcollude

p=0.00

NOTES:  Dependent variable is total bid.  When the upset rate is included as a regressor, the p-value for the test of exchangeability is 
p=0.00.  When the bonus bid is the dependent variable, the p-value is p=0.00 as well.  See Table 3 for further details.



86

Table 11. Distribution-Based Treatment Model: Tests of Equality of Bid 
Distributions

Unconditional
Distributions

Residual
Distributions

Treatment Definition

deq p-value deq p-value
I.  Total Bid

Collude = 1 
 (Auction-Invariant Indicator)

4.245 0.000 2.612 0.000

Collude1 = 1, Collude2 = 1
  (Auction-Invariant Indicators)

3.665 0.000 4.410 0.000

Collude = 1 
  (Auction-Varying Indicator)

5.301 0.000 2.565 0.000

Collude1 = 1, Collude2 = 1
  (Auction-Varying Indicators)

6.109 0.000 2.913 0.000

II.  Total Bid

Collude = 1 
  (Auction-Invariant Indicator)

4.245 0.000 1.028 0.104

Collude1 = 1, Collude2 = 1
  (Auction-Invariant Indicators)

3.665 0.000 1.850 0.008

Collude = 1 
  (Auction-Varying Indicator)

5.301 0.000 2.561 0.006

Collude1 = 1, Collude2 = 1
  (Auction-Varying Indicators)

6.109 0.000 1.932 0.028

III.  Bonus Bid

Collude = 1 
  (Auction-Invariant Indicator)

1.231 0.036 1.326 0.014

Collude1 = 1, Collude2 = 1
  (Auction-Invariant Indicators)

0.946 0.394 0.934 0.434

Collude = 1 
  (Auction-Varying Indicator)

2.234 0.000 2.615 0.028

Collude1 = 1, Collude2 = 1
  (Auction-Varying Indicators)

2.496 0.000 1.574 0.160

NOTES:  Residual distributions condition on the same set of control variables as in Tables 3 – 9, where Panel I (II) does not (does) 
condition on the upset rate as well.
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Chapter 3:

Auctions with Resale When Private Values are Uncertain:

Theory and Empirical Evidence51

I.  Introduction

Auctions have a long and storied past.  From the human slave auctions carried out 

in ancient Egypt to the marriage auctions for brides in Asia Minor to the Praetorian 

Guard auctioning off the Roman Empire in A.D. 193, auctions have been used to allocate 

goods and services.  While auctions have certainly served an important purpose 

throughout history and are now used to sell almost anything one can imagine – vintage 

wines, Treasury bills, pollution permits, baseball cards, etc. – economists have only 

recently begun to explore rigorously the theoretical underpinnings of various auction 

formats.  The seminal work is due to Vickrey, who made several contributions – deriving 

the Nash equilibrium bidding strategy for first-price auctions, demonstrating revenue 

equivalence, and proposing the second-price auction as strategically equivalent to the 

English auction – in his 1961 study.52

An extensive literature examining the optimal design and application of auctions 

has since developed.  Our point of departure in this study is to relax the maintained 

assumption that individual valuations are known with certainty at the time of the first-

51 This essay was written with Andreas Lange and John List.  Thanks to Bill Howard who provided the 
Canadian timber auction data.  Also, numerous discussions with several Canadian officials, including, but 
not limited to, Bruce McRae, Michael Stone, and Bill Howard, considerably enhanced this paper.  Larry 
Ausubel, Peter Cramton, Glenn Harrison, Liesl Koch, and Tigran Melkonyan provided useful suggestions 
during the discovery process.  Seminar participants at several universities provided comments that 
improved the manuscript.

52 This third contribution has recently been called into question by Lucking-Reiley (2000), who argues that 
stamp auctioneers were using second price auctions some 65 years before Vickrey’s seminal work.
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price sealed bid auction.53  By relaxing the assumption of known use values and allowing 

secondary (resale) markets, we find ourselves in an environment that is quite common in 

practice.  U.S. Forest Service timber auctions, the procurement of governmental 

contracts, estate auctions, art auctions, FCC auctions and the like all fit in this general 

class of allocation mechanisms.54  Unlike the traditional auction literature that assumes 

independent private values (IPV) that are known with certainty, when bidders have ex 

ante uncertainty about independent private values and anticipate resale opportunities, 

equilibrium bidding strategies are dependent upon option values conveyed from the 

secondary market.  Intuitively, bidder behavior in this case is fundamentally linked to the 

existence and structure of potential resale markets.  

Our study attempts to make both theoretical and empirical advances in this area.  

Theoretically, we advance Haile (2001, 2003) by relaxing the maintained assumption of 

risk-neutral preferences.  With known valuations in the context of a symmetric, IPV first 

price auction, it is well documented that risk-averse agents will submit bids that first-

order stochastically dominate those of risk-neutral counterparts.  In the context of a 

symmetric, common-value auction, it is well documented that risk-averse agents submit 

bids that are first-order stochastically dominated by a risk-neutral counterpart.  Since the 

auction markets considered herein contain features of both common and independent 

53 It is well established in the literature that when bidders receive multi-dimensional or uncertain signals, 
auctions may generate inefficient allocations (Pesendorfer and Swinkels (2000), Jehiel and Moldovanu 
(2001), Goeree and Offerman (2003)).  Efficiency and bidding strategies in such an environment are 
dependent upon the weight individual bidders assign to both the private and common value components of 
a signal and upon the number of participants in a given market. However, this literature has not considered 
the effects of secondary markets. 

54 There is a growing theoretical literature that examines the impacts of such resale opportunities on bidder 
behavior and a seller’s optimal choice of auction format (see, for example, Bikhchandani and Huang 
(1989), Gupta and Lebrun (1999), Haile (2000, 2001, 2003), Troger (2003), and Garratt and Troger 
(2003)).
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private values, we are a priori unable to predict the effects of risk aversion on bidder 

behavior without first developing an extension of extant theory.  By allowing symmetric 

agents with CARA preferences, we derive several testable implications.

Our main empirical objectives are to (i) evaluate the validity of our theoretical 

model of auctions with resale, and (ii) provide empirical evidence of behavior in such 

markets that can aid in the design and implementation of efficient mechanisms for the 

allocation of goods and services.  To achieve these objectives, we combine insights from 

naturally occurring data with insights gained from a controlled laboratory experiment.  

One benefit of our approach is that it enables a comparison of behavior across two 

different environments with varying levels of control and realism.  

Our naturally occurring data are drawn from nearly 3,000 timber auctions (over 

10,000 individual bids) from the Small Business Forest Enterprise Program (SBFEP) for 

the interior region of British Columbia (BC) for the period 1996-2000.  These data can be 

viewed as extending the empirical findings in Haile (2001), who used U.S. timber auction 

data to explore bidding behavior before and after a federal regulation that allowed resale.  

Unlike his temporal identification strategy, our identification rests on static comparisons 

between bidding patterns of two very different bidder groups:  loggers and mills located 

in the BC interior.  While we find evidence consonant with our theoretical predictions 

and in line with Haile’s (2001) findings, we are cautious to make strong inference 

because exact comparisons cannot be unequivocally made.  As in Haile’s (2001) study, 

where several identification assumptions are necessarily imposed, in our case variations 

in the underlying valuations, risk posture, and structure (nature) of secondary markets are 

largely unobserved and therefore may frustrate appropriate inference.  This fact 
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highlights the difficulty of evaluating the impacts of resale on bidder behavior using 

uncontrolled field data.    

One way to approach this quandary is to make use of a laboratory experiment.  By 

studying artificial markets that differ only in whether a secondary market is available, we 

are permitted a unique insight into whether the resale market by itself can lead to such 

predicted consequences.  Experimental methods thus allow us to study the effects of 

resale possibilities that would be difficult to identify in naturally occurring data.  Keeping 

an eye toward designing a laboratory setting that resembles naturally occurring markets 

while maintaining a strong theoretical link, we designed an experiment using the first-

price auction with both a second stage optimal auction (OA) as well as an English auction 

(EA) continuation game of complete information.  This particular design choice allows a 

controlled test of existing theory and a useful benchmark for making inference from field 

data, since the division of surplus on the secondary market in BC most likely lies within 

these two market extremes. 

The lab results are broadly in line with theoretical expectations.  We find that 

experimental subjects submit bids that are significantly higher in markets with resale 

organized by an optimal auction than in those without such opportunity (or with 

secondary markets organized by an EA).  An interesting data pattern not anticipated by 

extant theory is that over lower ranges of the signal space, realized bids are less than the 

risk-neutral theoretical predictions, while over higher ranges of the signal space, realized 

bids are greater than the risk-neutral theoretical predictions.  Yet these tendencies are 

consonant with our theory of bidding by agents with CARA preferences.  
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The remainder of the paper is crafted as follows.  Section II provides an overview 

of the SBFEP auction market and our strategy for identifying resale differences using 

reduced-form bid functions.  Section III develops a theory of bidding by agents with 

CARA preferences in auction markets that parallel our laboratory setting.  Section IV 

discusses the laboratory experiment and results.  Section V concludes.

II. The SBFEP Auction Market

The SBFEP Auction – Background and Predictions

Our naturally occurring data are drawn from nearly 3,000 timber auctions (over 

12,000 individual bids) from the British Columbia SBFEP for the period 1996-2000 – the 

identical data set that BC is using to begin its new pricing approach under the changed 

circumstance agreement for the U.S.-Canadian softwood lumber dispute.55  To examine 

the effects of ex post resale opportunities on bidder behavior, we compare reduced-form 

bid functions across distinct subsets of bidders that face different market conditions.  

SBFEP auctions in BC allocate standing timber of less than 50,000 metric board 

feet cubed (m3) to small logging companies and contractors.  SBFEP timber sales account 

for approximately 13 percent of the harvested timber in the province.  About half of this 

timber is allocated via sealed bid tenders to the highest bidder under section 20 of the 

province’s Forest Act.  These auctions are subdivided into two types: Category 1 and 

Category 2, where Category 1 auctions include only market loggers.  Category 2 auctions 

are open to both registered market loggers and registered owners of processing facilities. 

Category 1 bidders purchase timber cutting rights and sell harvested timber to end 

users.  In the interior of BC almost all harvested timber is sold to either major forest 

55 See Price and List (2004) for a discussion of the solution to the trade dispute.
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license holders or local sawmills.  Ex ante, bidders contract with a prospective buyer to 

arrange an agreement in principle to sell/buy if they win the auction.  The bidders then 

submit bids and the winner consummates the agreement in principle and chooses to lock 

in the stumpage price he bid.  Category 2 bidders purchase timber cutting rights to obtain 

raw materials for their processing operations.  Bidders either process harvested timber or 

trade it to obtain needed materials.  Since processing facilities are actively engaged in the 

ex post buying and selling of harvested logs whereas loggers in the interior contract ex 

ante to deliver all harvest to a given buyer, we believe that resale might enter into the 

bidding strategies of the former but not the latter.  Intuitively, since mills have an outside 

option to sell logs on a spot market whereas loggers do not have such an option, one 

would expect that processing facilities would provide an upper envelope on the observed 

bids of loggers from the interior.  To identify whether this effect holds, we rely upon 

cross sectional variation. 56

Identifying Resale Effects from Reduced-Form Bid Functions

We define a bidding strategy for firm i as a mapping, ( ) [ ] +ℜ→⋅ ttBi ,: , where ti is 

firm i’s expected value with probability and cumulative distribution functions gi(t) and 

Gi(t).  We assume that the distributions gi and Gi are common knowledge, but that the 

expected value ti is known only to firm i.  Further, we assume that all bidders are risk 

neutral and draw values from an identical support, [ ]tt, .  Suppose there exists an 

increasing equilibrium such that Bi(·) is strictly increasing and differentiable on the 

56 In this sense, our identification strategy is much different from Haile (2001), who analyzes individual 
bids from the U.S. timber auctions and makes use of the temporal variation in the imposition of federal 
regulations by examining bids prior to the onset of the regulations that effectively prohibited resale and 
comparing them to bids after the regulations took effect.  
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support ti for all i, then there exists an inverse bid function, ( )⋅iφ , that is also strictly 

increasing and differentiable on the support of bids.  Denote the set of strategies followed 

by other firms as B-i, then the probability that firm i wins the auction is

( ) ( )[ ] ( )[ ]ijjijijjii bGijbtbQ φφ ∏ ≠=≠∀<≡ Pr (1)

Without resale, firm i’s expected profits from participating in the auction are given by

( )[ ] ( ) ( )iiiiiii bQbtBbE −=−,π . (2)

In equilibrium, this imposes a structure on the relationship between a given firm’s bid 

and the probability of that bid winning the auction.  

However, when bidders have resale opportunities, equation (2) must be adjusted 

to reflect expected profits from resale trade. Haile (2003) highlights two opposing effects 

of resale on bidder valuations and hence strategies – the resale seller effect (the option 

value of selling in the resale market) and the resale buyer effect (the option value of 

buying in the resale market).  Intuitively, whenever the resale seller effect dominates, the 

expected value of winning any auction is a combination of an agent’s private use value 

and the expected profits of selling the commodity on the secondary market.  Provided 

that the expected profit of resale is non-zero, this option value leads to higher overall 

bids.  

In the interior of British Columbia, Category 2 bidders trade logs harvested from 

SBFEP auctions at bilaterally negotiated prices.  Since Category 2 mills specialize in 

processing certain types of timber and end products, exchange occurs along specialization 

lines for species that comprise a minority percentage of the total harvested timber on any 

plot.  Further, whenever secondary trade occurs, both the buyer and seller have better 
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information about market prices for processed timber than at the time of bidding in the 

primary auction - trade in timber occurs at the time it is processed whereas bidding in 

auctions occurs months before final production.

As such, we hypothesize that the resale seller effect dominates the resale buyer 

effect for Category 2 bidders.  In such an environment, firm i’s expected profits can be 

rewritten as

( )[ ] ( ) ( )iiiiiii bQbtBbE −=−
',π ,    (2’)

where ii tt ≥'  is a combination of an agent’s private use value (ti) and the expected profits 

of selling the commodity on the secondary market and Qi(bi) is again the probability that 

bidder i wins the auction. The resulting optimal bid strategies differ from those of an 

equivalent first-price auction without resale.  Across all signal (valuation) ranges, bids in 

the former environment weakly dominate those in the latter. 

To identify this comparative static, we employ a general approach that is in the 

spirit of, for example, Porter and Zona (1993, 1999).  We employ reduced-form methods 

to infer the nature of resale effects by differences in bidding patterns across subsets of 

firms facing different outside options.57  Our identification strategy approximates 

equilibrium bidding behavior as a linear function of both observed and unobserved 

auction-specific and firm effects assumed to affect firm i’s valuation and/or probability of 

winning a given auction.  

57 An alternate approach to identifying resale effects would be to employ structural methods similar to those 
developed in Laffont, Ossard, and Vuong (1995) or Guerre, Perrigne, and Vuong (2000).  However, to use 
these methods, we would have to specify the structure of the resale market which is based upon bilateral 
exchange between mills that is unobserved in our data.   
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As the true equilibrium bidding function is unknown in practice, we consider two 

different specifications to approximate observed bidding behavior given by:

ij ij i ijP X Dβ τ ε= + + (3)

( )1 01ij i ij i ij ijP D X D Xβ β ε   = + − +     (3’)

where Pij is the ith bidder’s total bid in auction j.  Xij is a set of regressors underlying the 

ith firm’s valuation for tract j, Di is a dummy variable that equals one for any bid placed 

by a mill in a Category 2 auction; εij = αi + uij; E[αi] = 0, E[αi
2] = σα2, E[αiαk] = 0 for i ≠

k; αi and uij are orthogonal for all i and j.  αi is a random effect assumed to capture 

heterogeneity that would be left uncontrolled in a standard cross-sectional model and uij 

represents private information such as idiosyncratic shocks to the expected valuation for 

firm i in auction j.  

Specification (3) indicates that the effect of resale acts only as an intercept shift 

for mills in Category 2 auction, while (3’) permits the resale effect to enter both the slope 

and intercept terms.  Theoretically, if the resale seller effect dominates for Category 2 

bids, then we would expect that 1 0
ˆ ˆˆ 0 and τ β β> ≠ .  In particular, we should observe that 

the estimated comparative static effect of competition (and any other covariate that is

positively related with it ′ ) on observed bids is smaller for interior Category 1 auctions 

than it is for otherwise equivalent Category 2 auctions generating predicted bids that are 

greater for the latter subset of auctions.    

The SBFEP Auction Data - Empirical Results

We observe 2,671 SBFEP sealed-bid tender first-price auctions conducted in the 

interior of British Columbia for the period January 1996 through December 2002.  These 
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auctions provide more than 10,000 individual bids, from which we eliminate any bids 

submitted in auctions with only a single bidder, any bids submitted in an auction with an 

estimated net cruise volume of less than 1,000 m3, any bids submitted in an auction 

employing a format other than a first-price sealed tender, and any bids submitted by a 

bidder that participates in both Category 1 and Category 2 auctions.  This results in a 

sample of nearly 1,250 firms that submit nearly 5,500 bids.    

To generate the data for the empirical model, we combine information from a 

number of sources.  First, a list of all bidders currently registered to participate in SBFEP 

timber auctions was provided by the Ministry of Forests (MOF) in BC.  This listing was 

used to generate unique identification codes for each bidder in the data set.  Second, the 

MOF provided bid sheets for each of the 2,671 auctions.  The bid sheets provide 

information on (i) the regional office holding and date of the auction, (ii) the estimated 

net cruise volume of timber on the plot, (iii) the announced upset rate for the auction, and 

(iv) the identity and bonus bid per m3 for each participant in the auction.  Finally, the 

MOF provided a database that contains detailed information on the characteristics of each 

plot and the required deadline to complete the harvest of the specified timber.    

We were careful to follow the Canadian hedonic specification when specifying 

our reduced form approximation of the equilibrium bidding function.  Auction covariates 

included in the vector of regressors include:

• UPSET RATE: announced reservation price per m3

• NCV: estimated net cruise volume (divided by 1000)

• VPH: estimated volume of trees per hectare (divided by 1000)

• LNVPT: log of estimated volume per tree
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• LSPI: the average selling price index for timber harvested

• DC: deflated development costs (divided by NCV)

• SLOPE: weighted average slope

• BWDN: estimated percent of volume blown down

• BURN: estimated percent of volume burned

• CY: estimated percent of volume to be extracted via cable

• HP: estimated percent of volume to be extracted via helicopter

• HORSE: estimated percent of volume to be extracted via horse

• UTIL: estimated capacity utilization for firm i – ratio of current backlog of timber 
contracts in m3 to maximum backlog of timber contracts in m3

• CYCLE: estimated cycle time for harvested timber

• LNB: natural log of the number of bidders.

Table 1 provides parameter estimates for equations (3II) and (3III) estimated for different 

subsets of the 5,524 observations.58

Empirical results presented in Table 1 suggest an important difference in the 

behavior of mills versus loggers that are consistent with resale possibilities for the former 

set of bidders.  First, the indicator variable for Category 2 bidders (mills) in Column A 

suggests that such agents submit bids that are ceteris paribus $1.68 greater than those 

submitted by a registered logger in a Category 1 auction with this difference statistically 

significant at the p < 0.05 level.  Second, measured at the sample means using parameter 

58 The number of bidders in SBFEP auctions is likely an endogenous measure.  Taking the number of 
bidders as an exogenous measure is thus somewhat problematic.  However, in the current context, solving 
for endogenous entry using an instrumental variables approach is equally problematic since n affects bids 
directly through equilibrium bidding strategies, a relation with resale prospects, and the correlation of entry 
with unobserved characteristics.  
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estimates from Columns 3 and 4, the estimated marginal effect of adding an additional 

bidder in a Category 2 auction is $2.11 (4.4% increase in the predicted bid) as opposed to 

$0.91 (2.01% increase in the predicted bid) for a Category 1 auction.  Equilibrium 

bidding strategies in auctions with resale are conditioned upon information related to 

other bidders in the market that is absent in the strategy of a firm bidding in a market 

without resale.  Hence, we would expect greater competition in the former case when the 

secondary market institution is an OA continuation game of complete information (or a 

similar analog), as we assume for the Category 2 mills.  This finding is consonant with 

the predictions and analysis employed by Haile (2001) to identify resale effects for U.S. 

timber auctions.  Combined with other parameter estimates in Table 1 (e.g., the estimated 

increase in predicted bids for Category 2 auctions), we take the empirical results to 

suggest that resale opportunities influence bidding in the direction that theory would 

predict.  

III. Risk, Resale, and Bidder Behavior – First-Price Auctions

Although we are able to identify empirical differences across Category 1 and 

Category 2 bidders consistent with comparative static effects of resale opportunities on 

bids, the field data on SBFEP auctions do not allow us to control properly for many 

underlying determinants like the (expected) value from using the good, the division of 

surplus on the resale market, or the risk-posture of the firms. 59  The effects of resale are 

inferred from differences in reduced-form parameters across the subsets of bidders.  

59 For example, there is a possibility that loggers are able to mitigate risk in the field by entering into 
contractual relationships with processors and/or logging companies that Category 2 bidders are unable to 
mitigate.  If so, then one could argue that loggers are less risk averse than are mills.  Hence, it is possible 
that estimated differences in behavior across these two groups are generated by differences in unobserved 
risk posture rather than differences in ex post resale opportunities.
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Our analysis is sensitive to issues of model specification and the interpretation of 

estimated parameters.  In practice, both the “true” underlying model specification and its 

associated interpretation are often unknown and/or unobserved in naturally occurring 

data.  Furthermore, while there is a recent literature (see e.g., Campo et al. 2002 or 

Perrigne 2003) that enables structural estimation of first-price auction models allowing 

for risk aversion, such methods rely upon strong restrictions to identify risk preference.  

To make more powerful inference of whether predicted comparative statics are 

generated by the existence and nature of secondary markets, one can examine behavior in 

a controlled environment.  We follow this line of reasoning and complement the field 

results with lab experiments.  An advantage of our laboratory experiments is that we are 

able to directly control for the secondary market structure, individual valuations, and the 

risk preference of subjects when evaluating the impact of changes in the existence and 

nature of secondary market exchange.  This provides a validity check on model applied to 

the timber auction data as it enables us to examine whether misspecification of individual 

risk preference affects the coherence of the relevant hypotheses tests.  To derive testable 

predictions, we first develop a model that allows risk aversion.60

Consider a first-price auction with resale opportunities with n symmetric, risk-

averse players.  We assume that players are risk averse with constant absolute risk 

60 As noted by Haile (2003), auction markets with resale have components of both common and private 
value auctions.  It is well documented in the experimental literature that in a private value setting risk-
averse agents submit bids that first-order stochastically dominate those of risk-neutral agents.  In common 
value settings, however, this tendency is reversed.  Risk-averse agents in a common value auction submit 
bids that are stochastically dominated by risk-neutral counterparts.  Given the persistence of risk-averse 
behavior on the part of student subjects in the lab, and lacking an a priori theoretical prediction/conjecture 
about the effects of risk aversion on behavior in our setting, it is important to develop such theory to enable 
us to filter out the effects of risk aversion from those of resale opportunity.  Without such theory, empirical 
tests are potentially confounded and do not permit a direct test of our desired treatment effect.
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aversion (CARA=σ ).  That is, the Bernoulli utility function is given by 

( ) exp( ) /z zρ σ σ= − − .  Prior to bidding, each player i receives a signal Xi on her use 

value Ui.  The signals [ , ]∈i l uX x x  are independently and identically distributed 

according to a differentiable and strictly increasing distribution ( )⋅F .  Use values 

[ , ]∈i l uU u u  are assumed to follow the conditional distribution ( | )⋅ iG X , which is 

differentiable with Gu > 0 on the support min max[ ( ), ( )]i iu X u X .  Furthermore, we assume 

that ( | )G u x  is continuous and decreasing in x , i.e., ( | )G u x  stochastically dominates 

( | )G u y  if >x y .61 This implies that both min max( ), ( )u x u x are increasing in x .

We make the following assumption on the probability distributions:

Assumption (A1): log ( | )
d

G u x
du

 is increasing in x.

Note that Assumption (A1) is satisfied in particular for all uniform distributions: 

min

max min

( )
( | )

( ) ( )

−= −
u u x

G u x
u x u x

. Here, 
min

1
log ( | )

( )
= −

d
G u x

du u u x
, which increases in x as 

min ( )u x  is increasing in x.

We consider three different first-prize auctions which differ with respect to the 

resale opportunity:  (i) the reference case (N) in which there is no secondary resale 

market.  (ii) a case where resale is possible and the seller extracts all the surplus in the 

resale market, i.e. the resale market is structured as an optimal auction continuation game 

(R=OA), and (iii) the case in which there is an English auction in the resale market which 

provides the buyer in the resale market with the maximal surplus (R=EA). Under resale, 

the value the bidder places on the commodity in the primary auction market depends on 

61
( | )G u x  is assumed strictly decreasing on the interior of the support.  
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the price at which resale can take place. As discussed in Haile (2003), such prices are 

dependent upon the informational structure and trading institution assumed on the 

secondary market.  By concentrating on the two cases described above, we capture the 

two extreme distributions of surplus between buyer and seller in the secondary market, 

i.e. extreme assumptions on the expected value from winning (and losing) the good. 

Bidder Behavior in Markets without Resale

Without resale opportunity, the distribution of the use value is given by ( | )⋅ iG X .  

A player with signal x  who wins the auction with a bid of b  has expected utility given 

by

(0)
( ) ( | ) ( ) ( | )

( )

(0)
( )

( )

− =

=

∫ ∫u u

l l

u u

u u

N

u b dG u x u dG u x
b

K x
b

ρρ ρρ
ρ
ρ

(1)

where ( )NK x  refers to the expected utility from consuming the good given a signal x . 

Using standard derivation techniques, we obtain the following result:

Proposition 1 [corresponds to Theorem 14 of Milgrom and Weber (1982)]: If no resale 
is possible, the unique differentiable symmetric separating equilibrium bid function 

( )Nb x  is implicitly defined by 

1
1

1 1 1
exp( ( )) ( )

( ( )) ( ) ( )
−

−= − = ∫
l

x
n

N n
N Nx

b x dF z
b x F x K z

σ σρ (2)

Proof: (see Appendix A)

To later discuss the effect of risk-aversion, consider the extreme cases of risk-neutrality 

and infinite risk-aversion which can be derived using l’Hospital’s rule (see Appendix A).  

Under risk neutrality, an optimal bidding function is given by
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1
1

1
( ) ( | ) ( )  for 0

( )
−

−= =∫ ∫u
l l

ux
n

N n
x u

b x udG u z dF z
F x

σ . (3)

For infinitely risk-averse agents, however, bids converge towards the minimal possible 

use value given a signal x, i.e., min( ) ( ) for → →∞Nb x u x σ .  

Bidder Behavior in Auctions with Resale

We first study the case of complete information on a resale market characterized 

by an OA continuation game. That is, we assume that ex post use values are common 

knowledge among players and that the seller extracts the entire surplus by selling to the 

opponent with the highest use value on the resale market whenever such trade is 

profitable. The value of the good to the winner is therefore not given by his own use 

value but by the maximal use value of all players. 

To derive the relevant probability distributions, let us denote the distribution of 

the use value of a single player given that her signal is less than or equal to y as 

( | ) ( )

( | )
( )

=
∫

l

y

x

G u z dF z

M u y
F y

(4)

The distribution of highest use value of an opponent of a player given that y is the 

maximal signal to an opponent is then given by 

2
1( | ) ( | ) ( | ) −= nG u y G u y M u y (5)

Finally, the distribution of highest use value of all players given signal x to one player 

and y being the maximal signal to an opponent is given by

1 1( | , ) ( | ) ( | )=G u x y G u x G u y (6)
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The expected utility of a player with signal x – facing opponents with maximal signal y –

who wins an auction with a bid of b is given by 

1 1

(0)
( ) ( | , ) ( ) ( | , )

( )

(0)
( , )

( )

− =

=

∫ ∫u u

l l

u u

u u

OA

u b dG u x y u dG u x y
b

K x y
b

ρρ ρρ
ρ
ρ

, (7)

where ( , )OAK x y  refers to the expected utility from consuming the good given a signal x , 

where y  is again the maximal signal of all opponents.  Not winning the auction yields a 

payoff of zero.

If an English auction is carried out on the resale market, the second highest use 

value is decisive. Similarly to the OA case, the expected utility from obtaining the good 

given a signal x  and y  being the maximal signal of all opponents can be written as

2( , ) ( ) ( | , )
u

l

u

EA

u

K x y u dG u x yρ= ∫
, (8)

where 2 ( | , )G u x y  is the probability that neither the use value of a player with signal x

nor the second highest use value of opponents whose highest signal is y exceeds u.  This 

probability distribution can be written as 

2 2( | , ) ( | ) ( | )G u x y G u x G u y= (9)

where 2 ( | )G u y  denotes as the distribution of second highest use value of an opponent of 

a player given that y is the maximal signal to an opponent and is given by 

[ ]2 3
2 ( | ) ( | ) ( 2) ( | ) ( | ) 1 ( | )− −= + − −n nG u y M u y n G u y M u y M u y (10)
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If a player does not win the auction, she can acquire the good on the resale market 

if she has the highest use value.  For the English auction, the expected value from losing 

the auction is therefore given by

1 1( ) ( | ) (0) ( | ) ( | )

( , ) (0)

 − +   
=
∫ ∫ ∫u u

l l

u uu

u u u

EA

u z dG z y dG z y dG u x

L x y

ρ ρ
ρ

(11)

Using the definitions of ( , )RK x y  and ( , )RL x y  with { },∈R OA EA  and ( , ) 1=OAL x y , we 

obtain the optimal bids for both types of resale markets.

Proposition 2: [corresponds to Theorem 2 of Haile (2003)]  If the resale market is 
organized via an optimal or English auction, the unique differentiable symmetric 
separating equilibrium bid function ( )Rb x ( { },∈R OA EA )is implicitly defined by 

1 1

1

1

exp ( , ) / ( , ) ( ) ( )
1

( , ) ( )
( ( ))

( , ) ( )

− −

−
−

       =      

∫ ∫
∫ ∫

l

l

l

yz
n n

R Rx
x x n

Rz
nR x

R

x

K y y K y w dF w dF y

L z z dF z
b x

K z y dF y
ρ . (12)

Proof: See Appendix A

The effect of risk-aversion can again be identified by looking at the extreme cases of risk-

neutrality and infinitely risk-averse agents. For risk-neutral agents, l’Hospital’s rule for 

0→σ  yields:

1
11

1
( ) ( | , ) ( )  for 0

( )
−

−= =∫ ∫u
l l

ux
n

OA n
x u

b x udG u z z dF z
F x

σ , (13)

which mimics the optimal bid function derived by Haile (2003) for a first-price auction 

followed by an OA continuation game with complete information (see Appendix A). For 

the English auction continuation we obtain similarly
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1
2 11

1
( ) ( | , ) ( ) ( | ) ( | ) ( )   for 0

( )

u u

l l l l

u ux u
n

EA n
x u u u

b x udG u z z u w dG w z dG u z dF z
F x

σ−
−

 = − − =   ∫ ∫ ∫ ∫ , (14)

which is in line with Haile’s result.

Furthermore, for agents with preferences characterized by infinitely high risk 

aversion, bids converge towards the minimal possible use value given a signal x for both 

continuation games, i.e., min( ) ( ) for → →∞Rb x u x σ  ( { },∈R OA EA ) (see Appendix A).

Implications for Optimal Bidding Strategies: Resale vs. No Resale

For infinitely high risk-aversion and independently of the underlying resale 

market, bids converge towards the minimal possible use value given a signal x, i.e.,

min( ) ( ) ( ) for = = = ∞N Rb x b x u x σ .

Therefore, resale has no effect on bidding strategies if players are infinitely risk averse. 

Hence, since a large majority of agents in the population are risk averse, the differences 

due to the possibility of resale are generally overstated if only risk neutrality is 

considered.62

Further, with a perfectly informative signal min max( ) ( | ) ( )= =∫u
l

u

u

u x udG u x u x  for all 

x , resale also has no effect on optimal bids, independent of the level of risk aversion. To 

see this, note that in such a case ( , ) ( )=RK x y xρ  for >x y  and ( , ) 1=EAL x y . Hence, the 

bidding function (11) reduces to  

62 There are a number of studies that suggest risk aversion on the part of agents in varying contexts.  
Bingswanger (1980) finds levels of relative risk aversion above 0.32 for farmers in rural India.  Estimates 
of relative risk aversion for private value auctions in the lab range from 0.52 to 0.67 (Cox and Oaxaca, 
1996; Goeree et al., 1999).  Campo et al. (2000) estimate relative risk aversion of 0.56 from field data on 
timber auctions.  
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1
1

1 1 1
( )

( ( )) ( ) ( )
l

x
n

n
R x

dF z
b x F x zρ ρ

−
−= ∫ ,

which coincides with the bid function for markets without resale given by (2) with 

( ) ( )NK x xρ= .  The intuition behind this result is that with resale opportunities an agent 

wins the auction only if she receives the highest signal, i.e., she has the largest use value.  

The resale value, therefore, coincides with the use value without resale opportunity.  With 

an imperfectly informative signal, however, resale generally increases bids since the 

expected resale value is not smaller than the expected use value of an agent.

Implications for Optimal Bidding Strategies: The Effect of Risk Aversion

The qualitative effects of risk aversion depend on whether the risk-neutral bids for 

a signal x exceed or equal the minimal use value given by min ( )u x , which depends on the 

specific distributions of use values and signals.  However, using the limiting case of 

infinite risk aversion, the following cases might occur for a treatment { }, ,∈t N OA EA :

1. Under risk neutrality, min( ) ( )>tb x u x : Risk aversion decreases bids for high 

degrees of risk aversion.

2. Under risk neutrality, min( ) ( )<tb x u x : Risk aversion eventually increases bids.

In our experimental markets described below, case 1 is expected to hold for the lower 

range of the signal space whereas case 2 applies to the higher range of the signal space.  

The effects of risk aversion therefore are predicted to qualitatively change over the range 

of signals.  In our experimental markets, we would thus predict a crossing of optimal bid 

functions for both the resale and no-resale treatments for agents that demonstrate high 

levels of risk aversion.  
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Implications for Optimal Bidding Strategies: Minimal Observable Bids

The minimal bids in both resale and no-resale cases are given by the lowest signal 

type.  Note that, using l’Hospital’s rule again, the equilibrium bid functions lead to 

1 1

( ( )) ( )
=

N l N lb x K xρ
and

( , )1

( ( )) ( , )
= R l l

R l R l l

L x x

b x K x xρ .

Unless the signal is perfectly informative at = lX x , we have that ( , ) ( )>R l l N lK x x K x , and 

further that ( , ) 1≤R l lL x x .  Therefore, the smallest observable bid should be higher if 

resale is possible.  In our experimental market, a bidder who receives a signal of X = xl

knows with certainty that his use value will be $10.   Thus bids in all treatments should 

coincide at this lowest signal level.  

IV. Experimental Design and Results 

Experimental Design

A total of 90 subjects participated in our laboratory experiment, which was 

conducted during the Fall 2003 and Spring 2004 semesters at the University of Maryland.  

Each session consisted of two experimental parts: a first-price auction market with or 

without resale opportunity and the Holt and Laury (2002) experimental procedure to elicit 

risk preference.  Each part of the laboratory experiment is described below.     

Part I: The Auction Market        

Each subject’s experience typically followed four steps: (1) consideration of an 

invitation to participate in an experiment, (2) learning the auction rules, (3) actual market 
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participation, and (4) conclusion of the experiment and completion of the Holt and Laury 

(2002) risk-aversion experiment.  In Step 1, undergraduate students from the University 

of Maryland were recruited using e-mail solicitations and flyers hung in academic 

buildings across the campus.  Once the prerequisite number of subjects had responded, a 

second e-mail was sent to each participant inviting them to participate in an experimental 

session to be held at a given date/time.  After subjects were seated in a room, in Step 2 a 

monitor thoroughly explained the experimental instructions and auction rules (included in 

Appendices B and C).  

Before proceeding, a few key aspects of the experimental design should be 

highlighted.  First, all bidders were informed that earnings from the auction experiment 

would be added to earnings from a second, unrelated experiment to determine total 

earnings for the session.  Second, individuals were informed that they would be bidders 

in the experiment.  In each of the 12 rounds (2 practice and 10 that count towards 

earnings), they would be given a bidder’s card that contained a number, known only to 

that bidder, representing a signal of the value of one unit of the fictitious commodity.  

Importantly, all agents were informed that this information was strictly private and that 

both signals and use values would change each round.  They were also informed about 

the number of other bidders in the market (4), that they would bid against the same four 

bidders for all ten rounds, and that agents may have different signals (use values).

Third, the monitor explained how signals were determined in each market period 

and how these signals related to the agent’s final reservation (use) value.  Subjects were 

informed that in each period, they would receive a signal from the interval [$0, $50].  

These signals were determined by adding a random integer generated from a uniform 
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distribution on the interval [-$10, $10] to the agent’s final use value which was itself an 

integer value randomly drawn on the uniform interval [$10, $40].  Several examples 

illustrated the relationship between a given use value and the range of signals that the 

bidder could receive in the first stage, and vice versa.               

Fourth, the monitor explained how earnings were determined.  In the baseline, no 

resale treatment, the highest bidder earns the difference between their end use value and 

their bid.  All other bidders earn zero.  In the resale treatment with OA continuation 

game, the bidder who submits the highest bid earns the difference between the highest 

use value of all bidders and the winning bid.  All other bidders earn zero.  In the resale 

treatment with EA continuation game, the bidder who submits the highest bid receives 

the maximum of her use value and the second highest use value of all participants minus 

her winning bid.  The bidder who does not submit the high bid but has the highest use 

value receives the difference between this value and the second highest use value of all 

other participants.  All other bidders earn zero for the round.  Total earnings for each 

treatment are computed by summing the earnings across the 10 periods.

In the resale treatment with OA continuation game, it was publicly announced 

that following the completion of each round, ownership of the good would be sold to the 

agent with the highest use value in the group at a price equal to her value.  In the resale 

treatment with EA continuation game, it was publicly announced that following the 

completion of each round, ownership of the good would be sold to the agent with the 

highest use value in the group at a price equal to the second highest use value of all 
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agents in the group.63  In the baseline no-resale treatment, several examples were 

provided that illustrated the irrationality of bidding more than $10 above a received 

signal.  In the resale treatments several examples were provided that illustrated the 

workings of the resale market and how prices for resale exchange and earnings for each 

bidder would be determined.64  Fifth, individuals participated in 2 practice rounds of 

bidding to gain experience with the auction market and rules.  

In Step 3, subjects participated in the market.  Each market consisted of 10 rounds 

of bidding that lasted about 3 minutes each.  After each 3-minute period, a monitor 

privately gathered each subject’s bidder card and gave the bidder a second card 

containing the subject’s final use value that was within [-$10, $10] of the original signal.  

Once all bidder cards were collected, a monitor publicly announced all bids and awarded 

the good to the highest bidder.  Final use values were publicly announced and, in the 

resale treatment, ownership of the commodity transferred to the agent with highest use 

value.  

63 Two important features of our experimental design that we should highlight include: i) our choice to limit 
participation on the secondary market to bidders from the primary auction market and ii) our decision to 
execute trades on the secondary market at the theoretical benchmarks for both the OA and EA game of 
complete information.  We elected to limit participation on the secondary market to maintain consistency 
with theory and our naturally occurring data—the interior secondary market for timber in BC is comprised 
of bidders registered to participate in the primary auctions.  We elected to execute trade on the secondary 
market at the theoretical benchmarks to maintain consistency with our conceptual model.  The focus of this 
analysis is on first-stage bidding strategies rather than secondary market exchange.  Allowing the 
endogenous determination of prices on the secondary market would surely have an influence on bidding 
strategies, as it is likely that rents would not be divided on the secondary market as predicated by theory.  
Anticipating this, bidders would adjust first-stage bidding strategies.  We hope that future work analyzes 
behavior in markets where prices are endogenously determined on the secondary market and new 
participants are allowed to enter the second-stage continuation game.

64 An important consideration in designing our auction markets was the issue of bankruptcy and bidder 
behavior.  Theoretically, bankruptcy was not an issue if subjects played the risk-neutral Nash equilibrium.  
However, equilibrium payouts in a number of the periods were low enough to raise concern if subjects 
determined bids with a degree of error.  For reasons outlined in Hansen and Lott (1991), we decided to 
employ an unlimited liability rule and allow subjects to have negative earnings for Part I of the experiment.  
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It should be noted that throughout each session careful attention was given to 

prohibit communications between bidders that could induce collusive outcomes.  Step 4 

concluded the experiment – after subjects completed the Holt and Laury (2002) 

experiment (described in Part II of this section), they were paid their earnings in private.

This simple procedure was followed in each of three treatments, which are 

summarized in Table 2.  Table 2 can be read as follows:  row 1, column 2 of Table 2 

contains treatment NR, denoting a no-resale auction market with 5 bidders, who each 

have unit demand for the good.  Table 3 presents buyer induced values and signals for 

each market period.  All signals were drawn and assigned using the following procedure.  

We first drew 50 integer numbers on the uniform distribution between [$10, $40] using 

Excel’s random number generator.  We added an integer drawn on the uniform 

distribution [-$10, $10] to this number to obtain signal values.  These values were then 

assigned so that unbeknownst to bidders, in each session (i) every bidder received the 

highest signal twice, (ii) each bidder received the highest use value but a lower ordered 

signal, and (iii) resale trade was potentially profitable in half of the periods.

Part II: The Holt-Laury Risk Experiment

Upon completion of Part 1 of the session, instructions and a decision sheet were 

handed out for the second part of the experiment.  This second part was designed to elicit 

subjects’ risk preferences.  In this part of the session, the low-payoff treatment of Holt 

and Laury (2002) was used (see Appendix C for instructions).65  The treatment is based 

65 We elected to use the low-payoff treatment of the Holt and Laury (2002) experiment to measure risk 
preference since the domain of earnings because this treatment [$0.10 to $3.85] approximates the 
equilibrium domain of per period earnings for our auction markets.  We also collected data for a higher-
payoff treatment of the Holt and Laury (2002) experiment, where the domain of earnings [$0.40 to $15.40]
approximates the equilibrium domain of earnings at the session level in our auction markets.  In what 
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on ten choices between paired lotteries.  The paired choices are included in Appendix C.  

The payoff possibilities for Option A, $2.00 or $1.60, are much less variable than those 

for Option B, $3.85 or $0.10, which was considered the risky option.  The odds of 

winning the higher payoff for each of the options increased with each decision, and the 

paired choices are designed to determine degrees of risk aversion.  Holt and Laury (p. 

1649) provide a table that will be used to categorize subjects’ CARA risk preference 

levels based on their ten decision choices.

After the instructions were read and questions were answered, the subjects were 

asked to complete their decision sheets by choosing either A or B for each of the ten 

decisions.  The subjects were instructed that one of the decisions would be randomly 

selected ex post and used to determine their payoffs.  Part of a deck of cards was used to 

determine payoffs, cards 2-10 and the Ace to represent “1”.  After each subject completed 

his or her decision sheet, a monitor would approach the desk and randomly draw a card 

twice, once to select which of the ten decisions to use, and a second time to determine 

what the payoff was for the option chosen, A or B, for the particular decision selected.  

After the first card was selected, it was placed back in the pile, the deck was reshuffled, 

and the second card was drawn.  For example, if the first draw was an Ace, then the first 

decision choice would be used.  Suppose the subject selected A in the first row.  The 

second draw would then be made.  If the Ace was drawn, the subject would win $2.00.  If 

a card numbered 2-10 was drawn, the subject would win $1.60.  The subjects were aware 

that each decision had an equal chance of being selected.  

follows, we report only the empirical results for risk preference based upon individual response to the low-
payoff Holt and Laury (2002) design.  However, all tests and results are robust to the use of response to the 
higher-payoff experiment. 
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After all the subjects’ payoffs were determined, they combined their payoff from 

Part 1 with that of Part 2 to compute their final earnings.  The final payoffs were then 

verified against records maintained by a monitor, and subjects were paid privately in cash 

for their earnings.  Each of the sessions lasted approximately 75 minutes and average 

earnings were roughly $13. 

Theoretical predictions for the laboratory auction markets

Figure 1 provides theoretical predictions for risk-neutral bidders in our 

experimental markets conditioned upon the signal.  Across all but the lowest level of the 

signal space ($0.00), bidders in markets with resale opportunities represented by an OA 

continuation game are predicted to submit bids that are on average higher than those 

submitted by an equivalent bidder in a market without resale options.  These differences 

range from mere pennies for signals less than $5.00 to a maximum of about $3.40 for 

bids submitted in the signal range around $23.66  For signal ranges above $40.00 or below 

$20, the predicted differences in bids between the no-resale and resale treatments are less 

than $2.75.  In resale treatments represented by an EA continuation game, risk-neutral 

bidders are predicted to submit bids that are on average higher than those submitted by an 

equivalent bidder in a market without resale at ranges of our signal space of less than 

$27.00.  For signals larger than $27.00, risk-neutral bidders in our resale treatment with 

EA continuation game are predicted to submit bids that are on average less than those 

submitted by an equivalent bidder in the no-resale treatment.  These differences range 

66 The optimal bid functions were derived numerically.  Using the theory developed in Section III, we first 

calculated ( , )RK x y and ( , )RL x y  on a grid with 0.1 increments.  Using interpolating functions, we then 
solved the respective differential equations.
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from a maximum of $0.70 at a signal of approximately $20.00 to a minimum of $-0.56 at 

a signal of approximately $46.00.     

Experimental Results

Table 4 provides summary statistics for the experimental data.  Entries in Table 4 

are at the period level and include average bid level and its standard deviation, the 

average winning bid and its standard deviation, average resale price, and average 

earnings for the auction winner and resale buyer.  Table 4 can be read as follows: on 

average, in period 1 of the No Resale treatment, subjects submit a bid of $20.84 (standard 

deviation = 9.32) and the average winning bid is $30.77 (standard deviation = 3.17).  

Perusal of the data summary in Table 4 leads to our first two results:

Result 1:  Bids in a first-price auction followed by resale exchange in an OA 
continuation game are greater than those submitted in equivalent markets without 
resale.

Result 2: Bids in a first-price auction followed by resale exchange in an OA 
continuation game are greater than those submitted in equivalent markets with an EA 
continuation game.

These results can be seen most directly by examining both per period average and 

winning bids across our three laboratory treatments.  Across all ten market periods, both 

average and winning bids in the resale treatment with OA continuation game are greater 

than bids in both the baseline, no-resale treatment and the resale treatment with EA 

continuation game.  

Figure 2 provides a comparison of bids submitted in our baseline no-resale 

treatment and our resale treatment with OA continuation game.  The figure illustrates the 

first part of result 1: bids in the resale treatment with OA continuation game are greater 

than those in the baseline no-resale treatment.  Interestingly, these differences are greatest 
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at lower and intermediate ranges of the signal domain.  For signals above $32-35, there is 

no discernable difference in bids across the two treatments.  

Our last piece of evidence to support Results 1 and 2 comes from a random 

effects bid equation:

Bit = v(Zit)+ εit,      (15)

where Bit is the bid of the ith buyer in period t.  The vector Zit includes treatment dummy 

variables, the induced signal received by the agent, the square of this signal, and session 

fixed effects; εit = αi + uit; E[αi] = 0, E[αi
2] = σα2, E[αiαj] = 0 for i ≠ j; αi and uit are 

orthogonal for all i and t.  The random effects αi capture important heterogeneity across 

agents that would be left uncontrolled in a standard cross-sectional model.

Columns A-D in Table 5 present regression results which provide support for 

Results 1 and 2.  For example, parameter estimates in columns A-D suggest that bids in 

the OA treatment are either $3.91 ($5.85) higher than bids in the baseline treatment (the 

omitted categorical variable) depending on whether or not we explicitly control for 

session fixed effects.  As indicated in the table, both of these differences are statistically 

significant at the p < .05 level.  Furthermore, using a Chow test of coefficient equality, 

we find that OA bids are larger than EA bids at the p < .05 level.  As columns A-D show, 

these differences are robust across several different empirical specifications.

Empirical results in Table 5 suggest that baseline bids and EA treatment bids are 

isomorphic.  Yet, when bids are analyzed over ranges of signals less than (greater than) 

$26, where our theory predicts that bids from the EA treatment are predicted to be greater 

than (less than) those submitted in the baseline treatment, we find evidence consonant 

with the theory.  Over lower ranges of the signal space, bids from the EA treatment are, 
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on average, $2.73 larger than those from the baseline treatment, a statistically significant 

difference at the p < 0.05 level.67  Over higher ranges of the signal space, bids from the 

EA treatment average $2.07 less than those from the baseline treatment, with these 

differences statistically significant at the p < 0.05 level.  These data patterns lead to the 

next result:

Result 3:  Over lower (higher) signal ranges, bidders in a first-price auction followed 
by an EA continuation game submit bids that are higher (lower) than those submitted 
by agents in an equivalent baseline market without resale opportunity. 

Figure 3 provides a comparison of bids submitted in the baseline no-resale treatment and 

bids in the resale treatment with EA continuation game which highlights this result.  Over 

the entire signal domain, there is little discernable difference between bids, as suggested 

by the empirical estimates of the pooled data.  At lower ranges of the signal space, 

however, the highest bids from the EA treatment are greater than the highest bids from 

our baseline auction markets.  And, at a higher range of the signal space, the lowest bids 

from the EA treatment are less than the lowest bids from our baseline market.

Combined, these first three results lead to our fourth result:

Result 4:  Differences in bidder behavior across auction markets without resale 
and equivalent auction markets with both an OA and EA continuation game of 
complete information are consistent with the comparative static predictions of 
Haile (2003).

Risk Aversion and Bidder Behavior

Having found general support for the comparative static predictions of Haile 

(2003), we now examine more closely the predictions of the theory by exploring the data 

conditioned upon underlying risk preference.  Figure 4 provides an illustration of bids in 

67 Statistical significance is evaluated using the Mann-Whitney test of significance evaluated at the session 
level.  Test statistics are thus based upon a comparison of average bid levels for signals less than (greater 
than) $26 in each of our six EA sessions versus comparable averages from our six baseline sessions.   
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our baseline no-resale market relative to the theoretical predictions for risk-neutral 

equilibrium bids.  As can be seen from the figure, risk-neutral point predictions do not fit 

the data well.  Over lower ranges of the signal space, realized bids are less than the risk-

neutral theoretical predictions while over higher ranges, realized bids are greater than the 

risk-neutral theoretical benchmarks.  This pattern of behavior is consistent with our 

theoretical model for risk-averse bidders.  Similar patterns, albeit less pronounced, 

emerge for both the OA and EA treatments.  

This raises two important questions for evaluating bidder behavior in auction 

markets.  First, to what extent can such behavior be explained by the underlying risk 

preference of bidders?  There has been considerable debate over the ability of traditional 

theory to account for observed patterns of bidding in experimental first-price, private 

value auctions.68  A number of studies have attempted to recover and infer the level of 

risk-aversion that rationalizes the observed bids of subjects in controlled laboratory 

environments (i.e., Cox and Oaxaca, 1996; Cox, Smith, and Walker, 1985; Goeree et al., 

1999; Harrison, 1990).  In the current study, we directly elicit individual measures of risk 

posture and use this information as a control in estimating observed bidding behavior.  As 

such, we are able to correlate differences in observed bids with variations in risk 

preference across agents.69

Second, to what extent is the coherence of hypothesis tests affected by the 

specification of factors such as the underlying risk preference of bidders typically 

68 See Kagel (1995) or Harrison (1989) for an overview of this debate.

69 Of course, unlike our experimental treatments risk posture should not be regarded as something we can 
exogenously impose on subjects.  Thus, we exercise caution when interpreting the data in that risk posture 
could be systematically related to individual-specific unobservables that cause the data patterns discussed 
below.  
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unobserved by the econometrician?  The theoretical model outlined in Section III 

indicates that the effect of resale on bidding strategies is attenuated by risk aversion.  The 

difference between the bids of a risk averse agent in both the OA and EA treatments and 

the same agent in treatment NR is a decreasing function of any signal greater than $20. 

Incorrectly assuming the risk-preference of agents can thus impact the magnitude of 

estimated resale effects.  For example, models that specify agents as risk neutral will tend 

to underestimate the effect of resale on bids whenever agents are in fact risk averse.  

To evaluate the impact of risk preference on observed bids, we augment equation 

(15) by including an interaction of an individual’s risk preference with his/her signal, the

signal squared, and the treatment dummies.70 Empirical estimates from this model are 

contained in column E in Table 5.  We obtain the following insight from these results:

Result 5: Over all but the lowest range of signals, risk averse agents submits bids that 
greater than a risk-neutral counterpart with this difference increasing in the level of 
individual risk-aversion.

Support for Result 5 can be garnered by examining the marginal effect of our risk proxy 

on realized bids.  For example, in Column E of Table 5 the estimated marginal effect of 

risk preference on realized bids in the baseline treatment is given by [-2.94 + 0.20*Signal 

– 0.002*Signal2].  This marginal effect is strictly positive for any signal greater than $15.  

For any signal greater than $15 in the baseline treatment, the bid of a risk averse agent 

should exceed that of a risk neutral counterpart receiving the same induced signal.  

Similar patterns arise for both the EA and OA treatments.  In the EA (OA) treatment, risk 

70 To proxy each agent’s risk posture, we use the number of safe choices “Lottery A” selected by the agent 
in the Holt-Laury experimental design.  An increase in the number of safe choices represents an increase in 
the individual’s implied risk posture.  For example, an agent who selects option A for the first four choice 
occasions is considered risk neutral whereas an agent who selects option A for the first six choice options 
has CARA risk preference of approximately 0.5.  Figure 5 provides the frequency distribution of the 
implied CARA preference for the 90 subjects in our experiment auctions.
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averse agents submit bids that are greater than a risk-neutral counterpart for any signal 

above $19 ($21).  Our data thus suggest a direct correlation between observed over-

bidding and individual risk preference.      

Having found evidence that risk-aversion is correlated with observed patterns of 

bidding behavior in our experimental auctions, we now turn to examining the influence of 

individual risk preference on our estimated treatment effects.  Our theoretical model 

suggests that increased risk aversion serves to attenuate the effect of resale on observed 

bids.  Perusal of the estimates presented in Table 5 generates a sixth result:

Result 6:  Risk averse agents in both the EA and OA treatments submit bids that are 
conditionally less responsive to induced signals than do risk-averse agents in the 
baseline no-resale treatment.  Models that fail to account for the risk preference of 
agents thus underestimate the effect of resale on bidder behavior.  

The first part of result 6 follows from estimated differences on the coefficients for the 

risk_signal variable and the associated interaction of this variable with the treatment 

dummies (OA_risk_signal and EA_risk_signal).  For example, in Column E of Table 5 

the estimated marginal effect of the signal on realized bids in the baseline treatment is 

given by [risk_preference*(0.20 – 0.002*signal)].  In contrast, the estimated marginal 

effect of the signal on realized bids in our OA treatment is given by 

[risk_preference*(0.14 – 0.002*signal)].  This difference is statistically significant at the 

p < 0.05 level using an F-test.  

The second part of result 6 follows from a comparison of the estimates on the 

treatment dummies in model specifications that control for individual risk preference 

(Columns E and F) with those that do not condition behavior on risk preference (Columns 

A – D).  For example, the estimated treatment effect on the OA dummy variable is at 
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least $7.21 greater in models that explicitly control for individual risk preference with 

this difference statistically significant at the p < 0.05 level.  Hence assuming that agents 

are risk-neutral as in Columns A – D will tend to underestimate the impact of resale 

opportunities on observed bids.  

Our theoretical model is based upon the assumption of homogenous risk 

preference across agents.  However, subjects in our experiment and in many other 

settings demonstrate heterogeneities in risk posture.  An important issue is thus 

evaluating how such variations affect the observed behavior of agents.  To address this 

issue, we calculate the average risk preference for subjects in each session and augment 

equation (15) by including an interaction of the average risk preference with induced 

signal and an interaction of these values with a measure of individual risk preference.  

Empirical estimates from this model are contained in column F in Table 5.  We obtain the 

following insight from these results:

Result 7:  There is an interaction between individual and average risk preference on 
observed bids.  For agents with individual CARA risk posture less than one, bids are 
decreasing (increasing) in the average risk posture of competitors over lower 
(higher) ranges of signals.

Support for result 7 is garnered by examining the marginal effect of average risk 

preference at the session level (Mean Risk) on realized bids.  For example, in column F 

of Table 5, the estimated marginal effect of mean risk on realized bids is given by the 

following:

1.61 0.12 0.01 _
_

NRbid
Signal Ind Risk Signal

Mean Risk

∂ = − + ⋅ − ⋅ ⋅∂
which is positive for a risk-neutral agent – i.e., an agent who selects Option A in the Holt-

Laury experiment for the first four choice occasions – for any signal greater than twenty 
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four.  In fact, for any agent that selects Option A fewer than nine times, this expression is 

positive over some range of the induced signal space.

Although our theory does not consider asymmetric agents, the observed patterns 

of behavior in our experimental markets are consistent with the expected impact of risk-

aversion. Intuitively, a change in risk-posture of any opponent impacts an agent mainly if 

the two receive similar signals.  Over lower ranges of the signal space, an opponent who 

is risk-averse will submit bids that are less than a risk-neutral counterpart.  In reaction, an 

agent can decrease bids over lower signal ranges while keeping constant the chances of

winning the auction.  Over higher ranges of the signal space, the opposite result holds –

risk averse agents submit bids that are greater than a risk-neutral counterpart.  In reaction, 

an agent competing with risk-averse counterparts must increase bids when receiving 

higher signals to hold constant the chances of winning the auction.  

V. Conclusions

Auctions are ubiquitous.  Yet whether and to what extent the introduction of 

secondary resale markets influences bidding behavior when private values are uncertain

remains largely unknown.  We begin by exploring a novel data set that provides insights 

into the importance of the resale effect.  Reduced-form empirical estimates suggest that 

bidding patterns are consistent with theoretical predictions.  Yet, akin to many empirical 

exercises, the strength of inference is attenuated when one considers the set of maintained 

assumptions needed to generate confident conclusions from these field data.   

Our approach to this problem is to make use of a laboratory experiment.  Such an 

effort gives up much of the realism associated with field data, but it permits us to 

investigate whether the resale market by itself can lead to such predicted consequences.  
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We find that extant theory has considerable predictive power, but the accuracy of the 

theory is enhanced if we control for individual risk preferences.  Besides their obvious 

importance normatively, these results have practical policy significance as well.  For 

example, a necessary condition to lift the countervailing duty and anti-dumping ruling 

against Canadian softwood lumber exporters (who export to the U.S.) is that their auction 

markets be robust and not influenced unduly by collusion.  Without a proper 

understanding of the resale opportunities of the various bidders, the modeler may very 

well earmark bidding disparities among certain bidder types as evidence of collusion 

when it is in fact due merely to secondary market considerations.  
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Table 1: Random Effects Regression Estimates: Interior SBFEP Auction Data
Model (3II)
Only Bid in
Cat 1 or 2

Model (3III)
Pooled Data

Model (3III)
Loggers Only

Model (3III)
Mills Only

Constant 4.40**
(1.15)

5.65**
(1.17)

5.90**
(1.19)

1.55
(5.31)

Upset 0.87**
(0.01)

0.82**
(0.01)

0.82**
(0.14)

0.74**
(0.05)

LSPI 0.04**
(0.01)

0.06**
(0.01)

0.06**
(0.01)

0.11**
(0.03)

DC -0.13**
(0.05)

-0.18**
(0.05)

-0.26**
(0.05)

0.97**
(0.20)

VPH_1000 4.07**
(1.07)

5.20**
(1.07)

5.02**
(1.08)

8.13
(5.32)

NCV_1000 -0.02
(0.02)

-0.01
(0.02)

-0.01
(0.02)

-0.06
(0.06)

Slope 0.06**
(0.02)

0.03**
(0.015)

0.04**
(0.02)

-0.06
(0.06)

LNVPT 1.52**
(0.30)

1.85**
(0.30)

1.86**
(0.31)

0.22
(1.19)

Bwdn -0.79
(1.16)

-1.93*
(1.16)

-1.49
(1.17)

-10.91
(6.93)

Burn -3.22*
(1.36)

-3.86**
(1.33)

-3.19**
(1.40)

-11.50**
(4.23)

Cy -2.88**
(0.74)

-3.20**
(0.73)

-3.22**
(0.78)

-1.03
(2.37)

Horse -2.49**
(0.66)

-3.93**
(0.65)

-3.67**
(0.66)

-10.81
(7.15)

Cycle -0.41**
(0.08)

-0.53**
(0.08)

-0.53**
(0.08)

-0.33
(0.43)

LNB 5.63**
(0.24)

5.22**
(0.24)

5.18**
(0.25)

7.81**
(1.29)

Util2 -2.70**
(0.36)

-2.69**
(0.36)

-2.62**
(0.36)

-2.86**
(1.49)

Category 2 1.68**
(0.68)

Buyer Random 
Effects

Yes Yes Yes Yes

# of Firms 1245 1245 1105 140
# of Obs 5524 5524 5148 376

Log Likelihood -20537.2 -19632.73 -18225.7 -1371.3

Predicted Bid 45.69
(16.02)

45.51
(16.19)

48.25
(13.22)

Note:  Cell entries indicate marginal effect of model covariates (see text for description of covariates) on 
total bid level.  
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Table 2:  Experimental Design – Laboratory Markets

Resale Structure Market Summary

No Resale NR
5 bidders

N=30

Resale – OA Continuation:
Resale price = High use 

value

ROA
5 bidders

N=30

Resale – EA Continuation:
Resale price = Second 

highest use value

REA
5 bidders

N=30
Notes:  Each cell represents one unique treatment in which we gathered 
data in different sessions.  For example, “NR” in row 1, column 2, 
denotes that the no-resale treatment had 30 subjects in groups of 5 
competing in auction markets where ex post resale of the commodity 
was prohibited.  No subject participated in more than one treatment. 

Table 3: Bidder Signals and Use Values (in dollars)

Pd. 1 Pd. 2 Pd. 3 Pd. 4 Pd. 5 Pd. 6 Pd. 7 Pd. 8 Pd. 9 Pd. 10

Buyer 
1

36
(29)

9
(19)

25
(26)

36
(37)

14
(13)

14
(21)

44
(39)

32
(24)

40
(33)

23
(17)

Buyer 
2

17
(27)

4
(12)

14
(19)

42
(32)

36
(38)

10
(14)

25
(34)

29
(22)

32
(24)

44
(40)

Buyer 
3

19
(18)

41
(36)

20
(12)

32
(29)

39
(31)

32
(39)

22
(23)

25
(17)

22
(22)

26
(34)

Buyer 
4

12
(10)

34
(26)

38
(37)

26
(20)

29
(28)

34
(34)

18
(22)

29
(39)

21
(17)

23
(25)

Buyer 
5

37
(36)

25
(33)

33
(34)

6
(13)

25
(21)

24
(28)

23
(14)

38
(33)

35
(40)

28
(23)

Notes:  Each cell entry represents the signal received by the bidder in a given period and her induced use 
value (in parentheses).  For example, buyer #1 received a signal of $36.00 and an induced use value of 
$29.00 in market period 1 (column 2, row 2).  Each buyer received the high signal in 2 of the market 
periods and the high use value in 2 of the market periods.  In five of the market periods (4, 5, 6, 8, and 9) 
we would ex ante predict resale exchange, as the agent who received the high signal did not receive the 
high induced use value.  
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Table 4: Mean Performance Measures—Lab Markets
Pd
1

Pd
2

Pd
3

Pd
4

Pd
5

Pd
6

Pd
7

Pd
8

Pd
9

Pd
10

No Resale
Avg. Bid $20.84

(9.32)
$20.07
(12.74)

$24.31
(7.13)

$26.42
(10.02)

$27.68
(8.12)

$22.35
(8.89)

$24.80
(9.56)

$29.51
(3.40)

$28.03
(6.17)

$28.31
(7.36)

Win Bid $30.77
(3.17)

$36.63
(3.07)

$33.00
(3.87)

$35.55
(1.58)

$35.47
(0.82)

$32.23
(2.64)

$37.77
(1.52)

$34.10
(2.14)

$34.15
(1.21)

$37.25
(2.27)

Resale 
Price

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

 OA

Avg. Bid $26.97
(7.49)

$25.86
(9.38)

$30.24
(5.46)

$29.10
(9.97)

$31.80
(6.98)

$30.64
(7.25)

$32.47
(5.38)

$35.57
(2.86)

$33.75
(7.58)

$34.39
(5.41)

Win Bid $35.68
(4.94)

$37.18
(2.55)

$36.92
(3.94)

$36.73
(2.47)

$38.68
(1.22)

$36.55
(2.06)

$38.02
(1.91)

$37.87
(1.52)

$38.15
(1.66)

$39.30
(1.08)

Resale 
Price

$36 $36 $37 $37 $38 $39 $39 $39 $40 $40

EA

Avg. Bid $24.06
(9.72)

$21.55
(12.47)

$24.11
(10.48)

$26.26
(9.31)

$26.69
(7.78)

$22.11
(10.99)

$26.51
(7.86)

$29.63
(6.53)

$26.77
(7.63)

$26.96
(9.27)

Win Bid $35.48
(2.94)

$36.25
(3.97)

$35.25
(4.37)

$36.27
(3.34)

$33.52
(1.54)

$32.00
(3.74)

$34.68
(3.25)

$36.35
(3.48)

$33.17
(1.75)

$34.67
(3.22)

Resale 
Price

$29 $33 $34 $32 $32 $34 $34 $33 $33 $34

Note: Entries in the table provide mean performance measures across our three experimental treatments.  
The data are summarized by period and can be read as follows: in period 1 of the No Resale treatment the 
average bid was $20.84 with a standard deviation of $9.32.  The average winning bid for the round was 
$30.77 with a standard deviation of $3.17.
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Table 5: Random Effects Regression – Lab Bid Levels
Model A Model B Model C Model D Model E Model F

Constant 21.93**
(1.02)

21.75**
(1.66)

3.86**
(1.42)

3.66**
(1.88)

16.44**
(1.68)

8.72*
(4.98)

OA Treatment 5.85**
(0.92)

3.91*
(2.06)

5.85**
(0.88)

3.91**
(1.97)

13.54**
(1.44)

13.06**
(1.41)

EA Treatment 0.23
(0.92)

-2.42
(2.06

0.23
(0.88)

-2.42
(1.97)

6.28**
(1.44)

5.48**
(1.48)

Signal 0.98**
(0.10)

0.98**
(0.10)

Signal2 -0.008**
(0.001)

-0.008**
(0.002)

Risk_Signal 0.20**
(0.02)

0.14**
(0.03)

Risk_Signal2 -0.001
(0.0003)

-0.001**
(0.0003)

OA_Risk_Signal -0.06**
(0.008)

-0.05**
(0.008)

EA_Risk_Signal -0.04**
(0.008)

-0.04**
(0.008)

Signal_MeanRisk 0.12**
(0.01)

Risk_Signal_
MeanRisk

-0.01**
(0.005)

Individual Risk -2.94**
(0.33)

MeanRisk -1.61*
(0.96)

Period Effects Yes Yes Yes Yes Yes Yes
Session Effects No Yes No Yes No No

Sigma_U 2.51 2.07 2.94 2.58 4.49 3.24
Sigma_E 7.93 7.93 5.52 5.52 5.65 5.32
Log Likelihood -3171.53 -3163.68 -2874.89 -2866.39 -2924.98 -2851.86

Note: Cell entries indicate the marginal effect of model covariates (see text for description of covariates) 
on recorded bid level.  For example, in row 2 of Column A the estimated marginal effect of being in the 
OA treatment is an increase of $5.85 on bids, ceteris paribus.
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APPENDIX A.  Theoretical Derivations

In the proofs, we use the following characteristic of stochastic dominance:

Lemma 1: 

For any given strictly increasing function φ  and distributions 1( )H u and 2 ( )H u  on 

min max[ , ]∈u u u , where 1( )H u , which stochastically dominates 2 ( )H u , 

max max

min min

1 2( ) ( ) ( ) ( )>∫ ∫
u u

u u

u dH u u dH uφ φ  whenever the expectation exists.

Proof of Proposition 1 (Optimal bid without resale):
Given an increasing equilibrium bid function ( )⋅Nb , the expected utility of a player with 

signal x  who bids ( )%Nb x  is given by 

1 1

1 1

1
( ) ( ) (1 ( ) ) (0)

( ( ))

1
( ) ( ) (1 ( ) ) (0)

( ( ))

− −

− −

 + −   
 = + −  

∫
%

%%

% %%

l

x
n n

N
N x

n n
N

N

K x dF z F x
b x

K x F x F x
b x

ρρ

ρρ
. (A1)

Shading by a bidder of type x  leads to a tradeoff between earnings and the probability of 

winning the auction. Maximizing the expected utility with respect to %x  and setting =%x x

yields the following differential equation defining an optimal bidding function ( )Nb x :

( )1

1
( ) '1

( ) '
( ( )) ( )

n

n

N N

F x
F x

b x K xρ
−

−  =  
. (A2)

From this expression, we obtain the following implicit definition of the optimal bidding 

function without resale opportunity:

1
1

1 1 1
exp( ( )) ( )

( ( )) ( ) ( )
−

−= − = ∫
l

x
n

N n
N Nx

b x dF z
b x F x K z

σ σρ . (2)
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We must ensure that ( )Nb x  is increasing in x and that the first-order condition describes an 

optimum. For the latter (with standard arguments in Haile 2003 and Milgrom and Weber 1982), it 

is sufficient to show that 
2

( ) 0
∂ = >∂ ∂ %%

EU
x x

x x
 where, EU refers to the expected utility given signal 

x and claiming signal x% .

1
1

1 1

'( ) 0

1 1
( ) 0

( ) ( )

1 1
( ) ( ) 0

( ) ( )

−
−

− −

>
⇔ <

⇔ − <

∫
∫

l

l

N

x
n

n
Nx

x
n n

N Nx

b x

d
dF z

dx F x K z

F x dF z
K x K z

which follows since ( )NK x  is increasing in x  (from Lemma 1).
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Optimal bid for risk-neutral players without resale - Condition (3)
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1
0 0
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0 1

1

1 1
lim ( ) lim log ( )
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Optimal bid for infinitely risk-averse players without resale:
Analogously to the limit 0→σ ,

( )
min 1

2

min

min
1

min

exp( ( ( ))) ( | )
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1
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Lemma 2: 1( | , )G u x y  and 2 ( | , )G u x y  are decreasing in x  and y . 

Proof of Lemma 2:
Since ( | )G u x  is decreasing in x by assumption, the same property follows immediately for 

( | , )iG u x y , i=1,2. To see that ( | , )iG u x x  as defined in (6) and (9) are also decreasing in x,

1

2 3

( | )

( | )
( | ) ( | ) ( | )( 2) ( | )− −

∂
∂

∂ ∂= + −∂ ∂
n n

G u y
y

M u y
G u y M u y G u y n M u y

y y
where both summands are negative since ( | )G u y  and ( | )M u y  are decreasing in y.

Similarly, using ( | ) ( | )≤G u y M u y :

[ ]

[ ]
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4

3

2 4

( | )

( | )( 2) ( | ) (1 ( | ))

( | )
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∂= − −∂
∂+ − + − − − ∂

∂≤ − −∂
∂+ − − ∂

≤

n

n

n

n

G u y
y
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Lemma 3: 2

1

( | )

( | )

G u x

G u x
 is decreasing in u.

Proof: Using the definitions in (5) and (10), we obtain

[ ]2 3
2

2
1

( | ) ( 2) ( | ) ( | ) 1 ( | )( | )

( | ) ( | ) ( | )

1 ( 2)
( 2)

( | ) ( | )
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−
+ − −=
−= + − −

n n

n

M u x n G u x M u x M u xG u x

G u x G u x M u x

n
n

G u x M u x
where the first two terms are decreasing in u.

Lemma 4: 1

1

( | )

'( ) ( | )−∫
l

u

u

G u x

z dG z xρ
 is decreasing in u.
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Proof:
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1 1 1 1
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Lemma 5: Let 1( )uφ  and 2 ( )uφ  be positive and decreasing functions and ( )uµ  a positive 

function on min max[ , ]∈u u u . Then 
max max max max

min min min min

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )>∫ ∫ ∫ ∫
u u u u

u u u u

u u u du u du u u du u u duφ φ µ µ φ µ φ µ  whenever the 

expectations exist.
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( ) ( ) / ( )= ∫
u
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u z z dzφ φ µ . Then we 
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Lemma 6: 
( , )

( , )
OA

OA

K x x

L x x
 is increasing in x. Given (A1), 

( , )

( , )
EA

EA

K x x

L x x
is also increasing in x.

Proof: From Lemma 1 and 2, we know that ( , )RK x y  is increasing in both arguments, whereas 

( , )RL x y  is constant for R=OA and decreases in x but increases in y for R=EA. It remains to 

show that 
( , )

| 0
( , )

EA
y x

EA

K x y

x L x y =
∂ ≥∂ .
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For this, we consider the derivative with respect to x and show that 

( , ) ( , ) ( , ) ( , ) 0EA EA EA EAK x x L x x K x x L x x
x x

∂ ∂− ≥∂ ∂ . Using the definitions of EAK  and EAL  in 

(7), (8), and (11), we have:
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and, therefore,
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We can apply Lemma 5 to the last two summands with 
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φ , where we use (A1), Lemma 3, and Lemma 4 to guarantee the required 

properties Lemma 5. We then obtain:
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0 (Lemma 3,4)
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Proof: In the proof of Lemma 6, equation (A3), we have shown that 
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where 1 1
2 2

ˆ ( | ) (1// ( ) ) ( | ) ( )
l

x
n n

x

G u x F x G u z dF z− −= ∫  denotes the distribution of the second 

highest use value of an opponent given that the maximal signal of an opponent does not 
exceed x. This distribution is given by

2 1
2

ˆ ( | ) ( 1) ( | ) ( 2) ( | )n nG u x n M u x n M u x− −= − − −  

To show the claim, note first that 2 2
ˆ ( | ) ( | )G u x G u x≥  and, in addition
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We therefore obtain:
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which immediately implies the claimed relationship.
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Proof of Proposition 2 (Optimal bid function with resale)
Assuming an increasing bid function ( )⋅Rb , the expected utility of a player with 

signal x  who bids ( )%Rb x  can be written as

1 11
( , ) ( ) ( , ) ( ) (0)
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Differentiating with respect to %x  and setting =%x x  leads to a differential equation for the 

optimal bidding function ( )Rb x :
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which reduces to the following linear equation:
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and H2(x) is given by 
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By a standard solution we thus obtain that an optimal bidding function bR(x) is given by
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for some constant 1c .  Noting that ( ) ( , ) ( )≤ ≤l R uu K x y uρ ρ , there exists a constant 2c

such that 1 2 2( ) ( ) '/ ( ) [ln( ( ) ln( ( )]≤ = − = −∞∫ ∫
l l

x x

l

x x

H z dz c F x F x dz c F x F x . The second 

summand in (A10) therefore vanishes and we arrive at the implicit definition for ( )Rb x :
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To show that ( )Rb x  is the unique differentiable symmetric separating equilibrium, we 
again have to show that 

'( ) 0>Rb x  and 
2

( ) 0
∂ = ≥∂ ∂ %%

EU
x x

x x
.  We have:

( , )1
'( ) 0 ( ) ' 0 ( , ) 0

( ( )) ( ( ))
R

R R
R R

K x x
b x L x x

b x b xρ ρ> ⇔ < ⇔ − >

From Lemma 6 we know that 
( , )

( , )
R

R

K x x

L x x
 is increasing in x. We therefore obtain:

1
1 1

1

1 1

( , )

( ( ))

( , )( ( ) ) '
exp ( , ) / ( , ) ( ) ( ) ( , )

( , ) ( )

( , ) 1 exp ( , ) / ( , ) ( ) ( )

( , )

−
− −

−

− −

 ≤    

   = −      
<

∫ ∫ ∫ ∫
∫ ∫

l l

l

l

l

R

R

yx z n
n n R

R R Rz
nx x x

R

x

x y
n n

R R R

x x

R

K x x

b x

K z z F z
K y y K y w dF w dF y L x x dz

K z y dF y

L x x K y y K y w dF w dF y

L x x

ρ

Further, we have to show: 



146

{

2

1 1

0
0

( )

1 1
( ) ' ( , ) ( ) ( , ) ( , ) ( ( ) ) ' (0)

( ( )) ( ( ))

0

− −

<
>

∂ =∂ ∂
  ∂ ∂ ∂ = + −  ∂ ∂ ∂   

>

∫

%%

14243l

x
n nR R R

R Rx

EU
x x

x x

K K L
x z dF z x x x x F x

b x x b x x x
ρρ ρ  

Optimal auction (R=OA)

The claimed relationship follows immediately as we have already shown that 
1

( ) ' 0
( ( ))

<
Rb xρ

and further that 
1

( , ) 0
( ( ))

OA

R

K
x x

b x xρ
∂ ≤∂  and ( , ) 0OAL

x x
x

∂ =∂ .

English auction (R=EA)
Using (A6), we have to show that 

1

1

0

( , ) ( )
( , ) 1

( , ) ( , ) ( , )
( ( )) ( ( ))

( , ) ( )

l

l

x
nEA

x EA EA EA
EAx

n EA R
EA

x

K
x z dF z

x K x x K L
L x x x x x x

b x b x x x
K x z dF z

ρ ρ

−

−
<

∂
∂   ∂ ∂− > −  ∂ ∂ 

∫
∫ 14444244443

.

Using Lemma 7 we obtain:

1

1

0

( , ) ( )
( , ) 1

( , ) ( , ) ( , )
( ( )) ( ( ))

( , ) ( )

( , )
( , ) ( , )

( , )

0

l

l

x
nEA

x EA EA EA
EAx

n EA EA
EA

x

EA

EA
EA

EA

K
x z dF z

x K x x K L
L x x x x x x

b x b x x x
K x z dF z

K
x x LxL x x x x

K x x x

ρ ρ

−

−
<

∂
∂    ∂ ∂− − −   ∂ ∂   

∂
∂∂≥ − + ∂

≥

∫
∫ 14444244443

 

where the last inequality was proven in Lemma 6.

Optimal bids with resale for extreme CARA-levels : 0lim ( )→ Rb xσ  and lim ( )→∞ Rb xσ :
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from which one obtains the claimed relationships for R=OA and R=EA. The proof for 

→∞σ is follows a similar line.
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Appendix B: Experimental Instructions – OA Resale Treatment

Welcome to Lister’s Auctions!  You have the opportunity to bid in a series of 
experimental auctions today and you can earn cash by participating.  

Auction Rules:
In this auction you will bid against four (4) other people and the person with the highest 
bid is the winner, and pays the amount of their bid for the “fictitious” commodity.  The 
auction is a sealed bid auction so you don’t know the bids of the other participants.  We 
will repeat the auction for 10 rounds.  At the end of the session, your earnings from this 
experiment and another unrelated experiment will be summed and paid to you in cash. 

There are six steps in the auction process, each of which is explained in detail below.  
The six steps include: (i) determining your signal of the value of the fictitious 
commodity, (ii) determining your bid, (iii) determining your use value for the fictitious 
good, (iv) determining the winner, (v) the resale market, and (vi) determining your 
payouts for the round.

1.  Determining your signal of the good’s value:  At the beginning of each period, a 
monitor will hand you a card numbered from zero dollars ($0) to fifty dollars ($50) in 
one dollar ($1) increments.  The value on the card handed to you will be a signal of 
your use value for the fictitious good.  The other bidders in your auction will have 
their signals determined in exactly the same way.  Signals are private and independent 
across buyers, and your signal will change across rounds.  

Signals and Use Values

Use values, V, in each round are drawn from a uniform distribution on the interval 
[10, 40].  That is, every dollar value between 10 and 40 is equally likely to be 
drawn as your use value.  These values are independently drawn for each subject 
and will differ across periods.

The signal you will receive is determined by adding a random number drawn on 
the interval [-10, 10] to your use value.  Again, each dollar value between -10 and 
10 is equally likely to be drawn and added to your use value.  Your first-stage 
signal, S, is hence given by:

numberrandomVS +=
Your signal, S, is thus distributed on the interval [$0, $50].  

Given your signal, you can compute the expected use value.  For example, if you 
were to receive a signal of $30 in the first stage, you know that your final use 
value must lie somewhere in the interval [$20, $40].  Since each of these values is 
equally likely to have been selected as your use value, on average your use value 
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is $30.  However, any value in this range could have been assigned as your use 
value.  

2.  Determining your bid value:  After receiving your signal, you will choose your 
bid value for the fictitious good.  In order to choose your bid, consider how your 
earnings for each period are calculated.  If you are the person with the highest bid you 
are the winner of the auction.  Your earnings are equal to your use value minus your 
bid amount if you have the highest end use value:

Earnings = your good’s use value (V) – your bid

If you are the person with the highest bid but do not have the highest use value, your 
earnings are equal to the highest use value of all participants minus your bid amount:

Earnings = highest use value – your bid

If you are not the high bidder in a round, your earnings for the period are zero.  If 
there is a tie, the winner will be determined by the flip of a coin (if more than two 
people tie we will draw a card to determine the winner).  Your bid can be any amount 
in the range from zero ($0) to forty dollars ($40) in ten cent ($0.10) increments.  

3.  Determining your use value:  Once all bids have been received, a monitor will 
hand you a second slip of paper numbered from ten dollars ($10) to forty dollars 
($40) that gives your final use value, V.  Your use value will lie within 10$± of your 
signal, S.  

4.  Determining the auction winner:  All bids will be publicly announced and 
recorded by a monitor on the blackboard.  Your bid will be compared with those of 
the four other participants in the auction.  The person with the highest bid amount is 
the winner.

5.  The resale market: In the resale market, each participant can see the use values 
for all other participants.  The highest bidder in the auction market will sell the 
“fictitious” commodity to the individual with the highest use value.  In this 
experiment this happens automatically.  The payoff for the winner is the highest use 
value of all participants minus his/her bid amount.  If you did not win the auction, 
your payout for the period will be zero.  The payout for the auction winner can be 
positive even if your bid was greater than your use value.     

6.  Determining your payouts:  If you are the auction winner, you will receive the 
difference between the highest use value and your bid.  If you did not win the auction, 
you receive zero for that period.  Your total earnings for this experiment are the sum 
of your earnings for each of the 10 periods.  

Do you have any questions about the auction process?  
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Appendix C: Experimental Instructions for Risk Aversion Experiment

Record your subject number from the previous part on your decision sheet. Your 
decision sheet shows ten decisions listed on the left.  Each decision is a paired choice 
between OPTION A and OPTION B.  You will make ten choices and record these in the 
final column, but only one of them will be used in the end to determine your earnings.  
Before you start making your ten choices, please let me explain how these choices will 
affect your earnings for this part of the experiment.

We will use part of a deck of cards to determine payoffs; cards 2-10 and the Ace 
will represent “1”.  After you have made all of your choices, we will randomly select a 
card twice, once to select one of the ten decisions to be used, and a second time to 
determine what your payoff is for the option you chose, A or B, for the particular 
decision selected. (After the first card is selected, it will be put back in the pile, the deck 
will be reshuffled, and the second card will be drawn.)  Even though you will make ten 
decisions, only one of these will end up affecting your earnings, but you will not know 
in advance which decision will be used.  Obviously, each decision has an equal chance 
of being used in the end.

Now, please look at Decision 1 at the top.  OPTION A pays $2.00 if the Ace is 
selected, and it pays $1.60 if the card selected is 2-10.  OPTION B yields $3.85 if the 
Ace is selected, and it pays $0.10 if the card selected is 2-10.  The other decisions are 
similar, except that as you move down the table, the chances of the higher payoff for 
each option increase.  In fact, for Decision 10 in the bottom row, the cards will not be 
needed since each option pays the highest payoff for sure, so your choice here is 
between $2.00 or $3.85.

To summarize, you will make ten choices: for each decision row you will have 
to choose between OPTION A and OPTION B.  You may choose A for some decision 
rows and B for other rows, and you may change your decisions and make them in any 
order.  When you are finished, we will come to your desk and pick a card to determine 
which of the ten decisions will be used.  Then we will put the card back in the deck, 
shuffle, and select a card again to determine your money earnings for the OPTION you 
chose for that decision.  Earnings for this choice will be added to your previous 
earnings, and you will be paid all earnings in cash when we finish.

So now please look at the empty boxes on the right side of the record sheet.  You 
will have to write a decision, A or B in each of these boxes, and then the card selection 
will determine which one is going to count.  We will look at the decision that you made 
for the choice that counts, and circle it, before selecting a card again to determine your 
earnings for this part.  Then you will write your earnings in the blank at the bottom of 
the page.
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Are there any questions?  Now you may begin making your choices.  Please do 
not talk with anyone else while we are doing this; raise your hand if you have a 
question.
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Chapter 4:

Using Tontines to Finance Public Goods: Back to the Future?71

tontine:  An annuity scheme wherein participants share certain benefits and on 
the death of any participant his benefits are redistributed among the remaining 
participants; can run for a fixed period of time or until the death of all but one 
participant. Webster's Online Dictionary

I. Introduction

The oldest standing bridge in London (Richmond Bridge), numerous public 

buildings and other municipality projects throughout the U.S., Britain, the Netherlands, 

Ireland, and France, and several wars, including the Nine Years’ War, all share a 

common thread:  they were wholly, or partially, funded by tontines.  The idea of the 

tontine is believed to have originated in 1652, when an expatriate banker, Lorenzo Tonti, 

proposed a new mechanism for raising public funds to Cardinal Mazarin of France.72

Tonti advertised his idea as “A gold mine for the king….a treasure hidden away from the 

realm.”  The salesmanship of Tonti coupled with the difficulties associated with raising 

taxes in seventeenth century France led to an enthusiastic endorsement from King Louis 

XIV.  While the idea, and many affiliated derivatives, prospered as major tools for 

financing public goods for several decades, tontines have since been banned in Britain 

71 This essay was written with Andreas Lange and John List.

72 Similar mechanisms are believed to have been employed in the Roman Empire several centuries earlier.  
Tonti’s mechanism should not be confused with the tontines in Western Africa, which are small, informal 
savings and loan associations similar to ROSCAs (Rotating Savings and Credit Associations).
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and the United States due to the potential incentive for investors to kill one another in 

order to increase their shares.73

In essence, a tontine is a mixture of group annuity, group life insurance, and 

lottery.  While the use and economic operation of each of these components is understood 

as a vehicle for individual investment/leisure, as a means to fund public goods, the 

tontine itself has largely been ignored.  It is well established that relying upon voluntary 

contributions for the provision of public goods generally results in the under provision of 

such goods relative to first-best levels.  Numerous mechanisms have been proposed to 

alleviate the tendency of agents to free-ride (see e.g., Groves and Ledyard 1977; Walker 

1981; Bagnoli and McKee 1991; Varian 1994; Falkinger 1996).  

This study adds to the literature on voluntary provision of public goods by 

formally investigating the performance and optimal design of the tontine as a fundraising 

mechanism for private charities.  It is not our purpose to provide a theoretical model of 

the tontine as a mechanism to finance government debt or to provide a lifetime annuity 

for subscribers.  Rather, our purpose is to provide a model of a variant of the historical 

tontine that can be used by private charities to finance the provision of public goods.  In 

this spirit, we provide information about the history and modeling results of tontines in 

order to encourage usage of the best characteristics of the institution in the future. We 

begin by outlining the conditions that define an optimal tontine—one that maximizes 

total group contribution levels—when symmetric risk-neutral agents have quasi-linear 

preferences.  Properties of tontines are also explored upon relaxation of symmetry and 

73 As an aside, this allure of the tontine has led to a fantastic plot device for detective story writers (the 
interested reader should see, e.g., The Wrong Box by Robert Louis Stevenson, which was made into a film 
in 1966 starring Peter Cook, Dudley Moore, Ralph Richardson, Michael Caine, and Tony Hancock).
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risk neutrality.  We then compare the performance of the tontine to a popular fundraising 

scheme used today:  lotteries (see, e.g., Morgan 2000 and Lange et al. 2004).74

Our main findings are as follows: (i) the optimal for tontine for agents with 

identical valuations of the public good consists of all agents receiving a fixed “prize” 

amount in the first period equal to a percentage of their total contribution, (ii) 

contribution levels in this optimal tontine are identical to those of risk-neutral agents in 

an equivalently valued single prize lottery, (iii) contribution levels for the optimal tontine 

are independent of risk-aversion, and (iv) with sufficient, and plausible, risk-aversion or 

asymmetry in individual valuations of the public good, tontines yield higher contributions 

than the optimal lottery.  Further, one can obtain full participation in the tontine 

mechanism compared to partial participation in the lottery mechanism.  These results 

have clear implications for empiricists and practitioners in the design of private 

fundraising campaigns.  Further, they provide useful avenues for future theoretical work 

on voluntary provisioning of public goods.

We test our theoretical conjectures in a controlled laboratory experiment. The 

laboratory experiment consists of two parts.  The first part of the experiment employs a 

series of experimental treatments to examine the contribution decisions of agents across a 

number of settings.  These treatments compare the outcomes of the voluntary 

contribution mechanism (VCM), the single fixed-prize lottery (SPL) and the optimal 

tontine for agents who have symmetric valuations for the public good, but who may 

differ in revealed risk preference.  The second part of the experiment was designed to 

74 Relatedly, Engers and McManus (2002) and Goeree et al. (2004) explore the use of auctions to raise 
money to finance public goods, and Andreoni (1998) and List and Lucking-Reiley (2002) explore the 
voluntary contributions mechanism with and without announcements of “seed” money.  
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lend insights into subjects’ risk postures using the Holt and Laury (2002) paired lottery 

choice design and link those preferences to behavior in the public goods game.

The experimental results provide mixed support for our theoretical model.  First, 

in contrast with our theoretical predictions, we find that the single prize lottery is a 

superior fundraising mechanism to the optimal tontine.  Contributions in the lottery 

treatment are approximately 42% greater than those recorded in the tontine treatment.

However, as predicted by theory, contributions in the optimal tontine are independent of 

individual risk-aversion whereas contributions in the lottery treatment are strictly 

decreasing in the level of individual risk.  Furthermore, contributions in the optimal 

tontine exceed those of an equally valued VCM.  Finally, we find that free-riding is more 

likely in the lottery treatment than in the optimal tontine.  

The remainder of our study is crafted as follows.  Section II provides a brief 

historical overview of tontines.  Section III describes a theoretical model of the tontine 

and compares the performance of an optimal tontine with that of lotteries.  Section IV 

summarizes the experimental design and results.  Section IV concludes.

II.  Tontines throughout History

Lorenzo Tonti was a Neapolitan of little distinction until his sponsor, Cardinal 

Mazarin of France, who was responsible for the financial health of France, supported his 

position in the court of the French King in the 1650s.  In this position, Tonti proposed a 

form of a life contingent annuity with survivorship benefits, whereby subscribers, who 

were grouped into different age classes, would make a one-time payment of 300 livres to 

the government.  Each year, the government would make a payment to each group 

equaling five percent of the total capital contributed by that group.  These payments 
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would be distributed among the surviving group members based upon each agent’s share 

of total group contributions.  The government’s debt obligation would cease with the 

death of the last member of each group.  Although the plan was supported 

enthusiastically by Louis XIV, Tonti’s plan was rejected by the French Parliament for 

two reasons: (i) the uncertain nature of total government debt obligations and (ii) the 

proposed rate of return was low in comparison with rates on life annuities (Weir, 1989).

While the Netherlands started a successful tontine in 1670, it was not until 1689, when 

France was engaged in the Nine Years’ War, that France offered its first national tontine.  

The design was quite similar to that originally proposed by Tonti.  Later offerings in 

France coincided with peaks in national capital demand during periods of war and were 

generally successful in raising the sought-after capital.  During France’s four major wars 

of this period, national tontine offerings raised approximately 110 million livres from 

around 110,000 individuals. 

Contrary to the relative success enjoyed by France, tontine offerings in England 

often failed to raise the desired capital.  England provided its first national tontine in 

1693; this initial tontine generated but a tenth of the one million pounds set as its goal.  

Yet England did successfully use the tontine to fund many public projects, including 

construction of the Richmond Bridge, claimed to be the oldest standing “London” Bridge.  

Unlike many of the early French tontines, English tontines frequently allowed agents to 

purchase numerous shares.

While the use of tontines to finance government projects was predominately a 

European endeavor, the notion that tontines could be used as a means to finance national 

debt has a historical basis in the U.S as well.  Faced with growing principal liability on 
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national debt, Alexander Hamilton proposed a national tontine in the U.S. in his 1790 

Report Relative to a Provision for the Support of Public Credit (Jennings et al., 1988).  

Hamilton’s proposal was to reduce principal repayments on national debt by converting 

old debt with principal that was repayable at the discretion of the government into debt 

demanding no return on principal.  

The structure of the tontine that Hamilton proposed was inspired by a tontine 

originally proposed by William Pitt in 1789.  The proposed tontine included six age 

classes, and shares in the tontine would be sold for $200 with no limit on the number of 

shares that any agent could purchase.  Individuals could subscribe on their own lives or 

on the lives of others nominated by them.  However, Hamilton proposed a freeze 

component on debt repayment:  the annuities of subscribers who passed away would be 

divided among living subscribers until only twenty percent of the original subscribers 

remained.  Once this threshold was reached, the payments to remaining survivors would 

be frozen for the duration of their lives (Dunbar, 1888).  

Tontine Insurance in the United States

While tontines proper were not used after the eighteenth century, an adaptation of 

the tontine was implemented in the U.S. life insurance market in 1868.  Tontine insurance 

was introduced in 1868 by the Equitable Life Assurance Society of the U.S.  Under 

tontine insurance, premiums served two distinct purposes: (i) provision of standard life 

insurance benefits and (ii) creation of an individual investment fund.  Under tontine 

insurance, policyholders deferred receipt of the dividend payments of standard premium 

insurance policies.  The deferred dividends were pooled and invested by the insurance 

company on behalf of the policyholders for a specified time period.  At the end of this 
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period, the fund plus the investment earnings were divided proportionately among the 

entire active, surviving policyholders.  Investment earnings could be received as either 

cash or as a fully paid life annuity.  Beneficiaries of policyholders that passed away 

before the end of the tontine period received the specified death benefits, but had no 

claim on the tontine fund money (Ransom and Sutch, 1987). 

Conceptually, tontine insurance had several advantages relative to a standard life 

insurance policy.  Policyholders were able to secure life insurance plus create a 

retirement fund.  Survivors could receive a generous rate of return on these investments if 

a large proportion of other group members were to pass away or allow their policy to 

lapse.  Tontine insurance provided an opportunity for young individuals to save for 

retirement by providing a low-risk, high-yield investment fund available on an 

installment plan.  Unfortunately, corruption by the insurance companies led to the 

prohibition of tontine insurance sales by 1906 (Ransom and Sutch, 1987).           

III.  Tontine Theory

To model a tontine as an instrument to fund public goods, we must define the 

utility structure of agents and their probability of survival in a particular period.  For the 

former, we consider n agents 1,...,i n=  whose utility is assumed additively separable in 

monetary wealth and the benefits from the public good:

( )i i iu y h G= + ,

where iy  is a numeraire and G  the provision level of the public good.  We assume ( )ih G

to be increasing and concave ( '( ) 0ih > , ''( ) 0ih ≤ ).75  We make the standard public good 

75 For studies that relax the assumption of utility being dependent upon only the level of the public good 
see Sugden (1982; 1984) and Andreoni (1990); these theories suggest that if one were to rewrite utility such 
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assumption—that it is socially desirable to provide a positive amount of the public good, 

i.e., '(0) 1ii
h >∑

Given an initial endowment w  of wealth (income), the choice facing the agent is 

to determine the amount ib  of wealth to invest in the tontine.  Investment ib  in the tontine 

provides the agent with an uncertain monetary return ix  that is dependent upon her own 

contributions and those of all other members of a group: 

( )i i i iu w x b h G= + − + .

We assume that the tontine pays 0tP ≥  in period t with a total of 
1

0

T

tt
P P

−
= =∑ . 

Payments are covered by the players’ contributions, i.e., the level of public good 

provision equals the total contribution minus the aggregate prize level:

1

1 0

n n

i ti t
G B P b P

−
= == − = −∑ ∑

In each period t, some individuals might die (exit the game).  All survivors 

receive a payment that is determined by their relative contribution level.  That is, for a 

total tontine payment Pt in period t, a surviving player i receives a payment i
t

t

b
P

B
 where 

Bt is the sum of the contributions made by the remaining players in period t. 

We assume that each agent has a perish probability in period t given by tµ  where 

1
1

T

tt
µ= =∑ .  The probability that an agent will die no later than period t is denoted by 

tM  where 
1

t

t ts
M µ==∑ .  The probability of agents’ deaths is i.i.d.  Finally we assume 

that it is a function of both the level of the funds raised and own individual contributions, then the standard 
result of free-riding behavior can be reversed.
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for simplicity that agents are risk-neutral and payments are perfectly substitutable across 

periods.  Denoting the set of k n≤  participating agents (with positive contributions) by 

0S  ( 0#k S= ),76 the ex ante expected utility of a player i is given by

0

1 1

0 0 \ ,#
( ) (1 )

( )

T k l k l i
i i i t t tt l S S i S l

b
EU w b h B P P M M

B B S

− − −
= = ⊆ =

 = − + − + −  − ∑ ∑ ∑ .

We immediately obtain the following equilibrium conditions:

0

0

0

1 1

020 0 \ ,#

1 1

00 0 \ ,#

( )
1 '( ) (1 )      for   

( ( ))

1
1 '( ) (1 )      for   

( )

'( ) (1 )

T k l k l i
i t t tt l S S i S l

T k l k l
i t t tt l S S i S l

l k l
i t t t

i S

B B S b
h B P P M M i S

B B S

h B P P M M i S
B B S

k
k h B P P M M

− − −
= = ⊆ =

− − −
= = ⊆ =

−
∈

 − −− − = − ∈ − 
 − − ≥ − ∉ − 

− − = −

∑ ∑ ∑
∑ ∑ ∑

∑
0

1 1

0 0 , #

1

( )

T k

t l S S S l

l

B B S

− −
= = ⊆ =

 − − − ∑ ∑ ∑
(1)

In the following we will first consider the case of symmetric risk-neutral agents.  Both 

assumptions are relaxed in later sections.

III.1  Tontines for symmetric risk-neutral agents

If all agents value the public good identically ( ( ) ( )ih G h G= ), we can concentrate 

on symmetric equilibria.  Here, all n agents contribute at a level b such that total 

contributions B=nb is given by the symmetric version of first-order condition (1):

1 1

0 0

1
(1 '( )) (1 )

T n l n l
t t tt l

n n l
B h B P P M M

l n l

− − −
= =

   − −− − = −   −  ∑ ∑  . (2)

We now consider the optimal design of a tontine.  In particular, we address the 

question of how an organization—government or private charitable fundraiser—with a 

76 We will later show that all agents participate: k n=  if there is (at least) one t for which 0tP >  and 

0 1tM< < .
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fixed prize budget,
1

0

T

tt
P P

−
==∑ , should allocate this prize money across t ≥ 0 distinct time 

periods so as to maximize total contributions.  We obtain the following result:

Proposition 1 (Optimal tontine—Symmetric risk-neutral agents)

If agents are symmetric and risk-neutral, contributions to the public good using a 
tontine are maximal if all the payments are made in the first period, i.e., before 
anybody has passed away.

Proof of Proposition 1: 

Contributions to the public good are clearly increasing in the right-hand side of the 

equilibrium condition (2).  Thus, we obtain:

1 1

0 0

1 1

0 0

1 1

0 0

1
(1 )

1
(1 )

1
(1 )

1

T n l n l
t t tt l

T n l n l
t t tt l

T n l n l
t t tt l

n n l
P M M

l n l

n n l
P M M

l n l

n n
P M M

l n

n
P

n

− − −
= =

− − −
= =

− − −
= =

   − −−   −  
   − −= −   −  
   −≤ −    

−≤

∑ ∑
∑ ∑
∑ ∑

 

which coincides with the right-hand side if all payments are made before any agent has 

perished, i.e., 0P P= .

The optimal tontine for symmetric agents, therefore, has a simple structure:  All 

agents receive a rebate proportional to their contributions relative to those of the total 

group.  This optimal structure implies that agents are not subject to any risk – all subjects 

receive their payment with certainty.  Given the contribution of all other agents, the 

payoffs for an agent i under the tontine are given by ib
P

B
, where P denotes the prize 

level. 
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The certain payoff is therefore given by ( )− + − + i
i

b
w b h B P P

B
 which can also be 

interpreted as the expected payoff in Morgan’s (2000) risk-neutral one-prize lottery.  All 

of his results therefore apply.  In particular, using his δ -financing rule, the tontine will 

always be carried out and the contributions will increase in the prize level, P, (see 

Morgan 2000, lemma 5).77

Reconsidering the first-order condition for a symmetric equilibrium (2), the 

individual (b ) and the total ( B ) contribution levels for the optimal tontine are given by 

1
                  (1 '( ))

−= − − = n
nb B B h B P P

n
. (3)

Note that the tontine raises a positive amount of money for the public good net of prize 

payments, as 

1
(1 '(0))         '(0) 1

−− > ⇔ >n
P h P nh

n
,

which coincides with the condition for a public good.

We summarize these results as follows:

Proposition 2 (Contribution levels for optimal tontines—Symmetric players)

For symmetric players, the optimal tontine will always be carried out and raises 
contributions in excess of the prize-level P.  The provision level of the public good 
is increasing in P.

Historically, tontines clearly have not reflected the optimal features derived in 

Proposition 1.  In the seventeenth and eighteenth centuries, tontine “prize” payments 

77 The optimal tontine that we study in this paper provides a rebate (subsidy) on individual contributions to 
the public good.  This feature resembles the study relating government subsidies and contributions to a 
public good by Andreoni and Bergstrom (1996).  In their case, however, subsidies are financed by taxes, 
whereas in our model the rebates are taken out of the contribution to the public good.  The provision of the 
public good therefore does not depend on the possibility of enforcing tax payments.  To balance the budget, 
subsidy rates in our model are not exogenously fixed but endogenously given by the individual relative to 
total contributions.
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were made over a long time span.  That is, the tontines differed significantly from the 

optimal tontine in that repayments were made annually to the surviving subscribers 

instead of making all repayments before anybody died.  In the oft-used tontine repayment 

system, however, subscribers could die in any period s (even before any payment was 

received) and thus would forego payments in all periods t > s with positive probability. 

To model this aspect of the mechanism, let us assume that the aggregate prize amount P

is spread evenly across 1T T≤ −%  periods. In other words, /tP P T= %  for 1 t T≤ ≤ % . 

Then, the contributions in equilibrium are given by the first-order condition:

1

1 0

1
(1 '( )) (1 )

T n l n l
t tt l

nP n l
B h B P M M

lT n l

− −
= =
   − −− − = −   −  ∑ ∑%

% , (4)

for which we obtain the following result:

Proposition 3 (Suboptimal tontines – Effect of T%  and n)

Contributions to the public good using a tontine that pays a fixed prize-level in 
1T T≤ −% periods are decreasing in T% . For any given T% , they converge towards 

the contributions to an optimal tontine (or lottery) if the number of (potential) 
participants, n, increases.

Proof of Proposition 3:

In order to show that contributions decrease in T% , it is sufficient to show that the right-

hand sides of (4), 
1

0

1
(1 )

n l n l
t tl

n n l
M M

l n l

− −
=
  − −−  − ∑ , are decreasing in t. As we know that 

tM  increases in t, we must demonstrate that:

( )
( )

1

0

1 1 1

0

! 1
(1 )

! !

! 1
      (1 ) ( ) 0.

! !

n l n l

l

n l n l

l

n n l
M M

M l n l n l

n n l
M M l nM

l n l n l

− −
=

− − − −
=

∂ − −−∂ − −
− −= − − <− −

∑
∑
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It is clear that for ( 1) /n n M− ≤  all the summands are negative.  For ( 1) /n n M− > , 

however, we obtain:

( )
( )

( ) ( )

1 1 1

0

1 1 1

0

2 11
2 0 0

1

! 1
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! !

1 !
(1 ) ( )

! !

(1 ) 1 ( 1)! !
(1 ) (1 )

(1 ) ! 1 ! ! !

1
0.

1

n l n l

l

n l n l

l

n nl n l l n l

l l

n

n n l
M M l nM

l n l n l

n nM n
M M l nM

n nM l n l

n M n n
M M M M

M l n l l n l

n nM
M

M

− − − −
=

− − − −
=

− −− − −
= =

−

− −− −− −
− −≤ − −− −

 − − −= − − − − − − −  
− −= − <−

∑
∑
∑ ∑

 

To prove the convergence result, we compare the right-hand side of the optimal 

tontine with the one that pays in all periods 1 t T≤ ≤ % :

1
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1

1 0

1
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It is therefore sufficient to show that

1

0

1
(1 )

n l n l

l

n
M M

l n l

− −
=
  −  − ∑

converges to zero for all 0 1M≤ <  when n goes to infinity.  This is easily demonstrated 

numerically. 

Proposition 3 highlights that the inefficiency of tontines that pay in later periods is 

less severe when many participants are expected to participate.  As a further feature of 

such tontines, the expected payments in period t , conditional on agent survival, are 

clearly small in the beginning (as the likelihood of others’ survival is high) but increase 
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rapidly toward the terminal period.  As an investment instrument for retirement funds, the 

tontine therefore provides advantages compared to other instruments.  In particular, if one 

relaxes the assumption of risk-neutrality and perfect substitutability across periods, the 

tontine is quite practical economically if agents have decreasing external income (salary, 

pension) and can use the tontine to flatten their temporal payoff streams.

Example 1

We consider contributions to a linear public good when the probability of dying is 

uniformly distributed: 
1

t T
µ =  for all 1 t T≤ ≤ .  Assume that there are 50n =  symmetric 

agents and 50T =  periods.  Figure 1 shows the contribution level to the T% -tontine 

relative to the contribution level to the optimal tontine.  For the 50T =% -tontine, Figure 2 

illustrates the expected payments in period t given survival (payments relative to payment 

in period 1). 
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Figure 1: 

Total contributions as a function of T%  (normalized)

Figure 2: 

Expected payments in period t given survival 

(normalized)

Figure 1 reveals that contributions remain above 90 percent of the optimal levels even if 

one spreads the tontine payment over the whole potential lifespan of agents.  Figure 2 
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shows that expected payments in period t, given that the agent survives until then, 

increase rapidly toward the end of an agent’s lifespan. 

III.2  Tontines and risk-aversion

Lange et al. (2004) have shown that contributions to lotteries are decreasing in the 

level of risk-aversion.  For the optimal tontine, however, players are not exposed to any 

risk.  The optimal tontine is therefore a more efficient instrument for fundraising than any 

lottery.

Proposition 4 (Tontines for risk-averse players)

Individual contributions under the tontine that pays only before any agent has 
died are independent of the risk posture of agents. If agents are risk-averse but 
symmetric with respect to their valuation of the public good, it dominates any 
lottery as a fundraising instrument.

Besides this superiority of tontines for risk-averse agents, a fundraiser does not need any 

prior beliefs over the risk preference of a potential donor pool when designing the 

fundraising instrument.

III.3  Tontines with heterogeneous agents

We have seen in the previous section that the optimal tontine for symmetric risk-

neutral players coincides with a single-prize lottery or—equivalently—a rebate scheme. 

In this section, we consider the performance of tontines for agents with heterogeneous 

valuation of the public good.  Conditions are derived under which the rebate scheme, i.e., 

the degenerate tontine, is optimal. 

Reconsidering the individual first-order conditions (1), first observe that if there is 

(at least) one t for which 0tP >  and 0 1tM< < , all players will contribute.  The intuition 

is that there is a chance that in period t only one agent will survive.  An agent can secure 
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himself this prize 0tP >  by contributing.  More formally, looking at the first-order 

condition for 0i S∉ , the right-hand side is clearly infinite (consider 0 \S S i= ).

Proposition 5 (Participation in tontines): 

If there is period t for which 0tP >  and 0 1tM< < , then all players contribute to the 

tontine. 

Even a slight deviation from the degenerate tontine ( 0P P= ) (alias the rebate scheme) 

towards 00,tP P P> <  can therefore lead to a discontinuous change in participation and 

therefore contribution levels.  In general, we obtain the following result when a tontine 

should pay out part of the prizes in later periods:

Proposition 6 (Tontines—Heterogeneous agents): 

If agents are sufficiently heterogeneous with respect to their valuation of the public good, 

the optimal tontine pays 0tP > for some 0t >  with 0 1tM< < . In particular, if a set 0S

of players participates for 0P P= , then contributions can be increased by changing to 

0tP >  ( 0tP P P+ = )

(i) if k n< , i.e., there is (at least) one agent 0i S∉  who does not contribute if 

0P P= : 

0

1 1
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1 1i j
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H
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−− ≤ − =− −∑
(ii) if k n=  for 0P P=  and 
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where ( ) '( )ii S
H S h∈=∑  and 

0
'( )ii S

H h∈=∑
Proof:

We analyze the tontine that pays tP ε=  and 0P P ε= − .  Here, the first-order conditions 

(1) are given by:
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 (5)

Case 1

Consider first the case in which there is 0i S∉  with 
1

'( )
1i

H
h B P

k

−− < − .  Then there is a 

discontinuity in participation and contribution at 0ε =  when tP ε=  and 0P P ε= − .  We 

therefore study the limit of the first-order conditions (5) from above ( 0ε ) and get 

0 0( ) ( )k S k S>r
, where 0S

r
 is the set for which 0lim ( ) 0i ib bε ε= >r

. Now we have 

0
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0
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ii S

B b
h B P P b
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k S h B P P
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rr rr
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r

from which the claim follows immediately. 

Case 2

Consider now the case in which there is 
1

'( )
1i

H
h B P

k

−− ≥ −  for all i at 0P P= .  Then, the 

first-order conditions (5) also hold for 0P P=  (as all individual first-order conditions (1) 
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hold with equality).  For tP ε=  and 0P P ε= − , we study the derivative of B with respect 

to ε at 0ε = :
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Using the equilibrium conditions
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we obtain the claimed relationship,
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and completes the proof.

We have demonstrated above that the tontine with 0P P=  c o i n c i d e s  w i t h  a  s i n g l e-

p r i z e  l o t t e r y .   L e t  u s  t h e r e f o r e  f i n a l l y  c o m p a r e  t h e  c o n d i t i o n s  i n  P r o p o s i t i o n  5  w i t h  t h o s e  

u n d e r  w h i c h  o n e  c a n  i m p r o v e  u p o n  t h e  s i n g l e-p r i z e  l o t t er y  b y  o f f e r i n g  m u l t i p l e  p r i z e s .   

A s  s h o w n  b y  L a n g e  e t  a l .  ( 2 0 0 4 ) ,  o n e  c a n  i m p r o v e  u p o n  t h e  s i n g l e  p r i z e  l o t t e r y  b y  

p r o v i d i n g  ( a t  l e a s t )  a  s e c o n d  p r i z e  i f :
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On the one hand, we immediately see that one can design a tontine that outperforms any 

lottery if k n<  and 
0
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1 2i S i

k
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−− <− −∑ .  Alternatively, if k n=  and 
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−− >− −∑ , one can increase the contributions to the lottery by offering 

a second prize, but cannot improve upon the degenerate tontine if 
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for all t.  This, for example, would be the case if tM  is close to one for all t.  In such 

cases, the right-hand side of the inequality would be close to zero.

We therefore can summarize our findings in the following Proposition:

Proposition 7 (Tontines vs. lotteries—Heterogeneous agents): 

If agents are risk-neutral and heterogeneous with respect to their valuation of the 

public good, then there exist situations in which appropriately designed tontines 

outperform lotteries and vice versa. 

Note that in real-world applications there will always be agents who have no valuation, or 

only a below average valuation, for specific public goods.  In such cases, one can always 

improve upon a single prize lottery by using a tontine with 0tP >  and 0 1tM< < .  In this 

case all agents will contribute under the tontine. 

III.4  Tontine as a fundraising instrument 

A charity that seeks to fundraise using a literal version of the historical tontine to 

replace lotteries might find the simulation of the “probabilities to die” problematic since 

in each round one must have a random draw for all survivors.  The structure of the tontine 
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can be used, however, to design a fundraising instrument (which we also call tontine) 

whose implementation is quite simple.

For this, we abstract from the independent and identical probabilities of dying 

considered in the previous section.  Instead, sequentially draw one of the k participating 

persons which must leave the game.  That is, in period t the number of players is k-t.  For 

the payments, the sequence of “dying” is decisive.78  Each sequence has the same 

probability given by 1/ !k  if k players contribute.  As in the previous section, a certain 

amount of money is distributed among the remaining players according to their share in 

each period (i.e. before the next person leaves).

Compared to the preceding analysis, we only have to change the probability of a 

certain set S of players having passed away until period t from # #(1 )S n S
t tM M −−  to 
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k
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while all the qualitative results remain valid.  In particular, payments should be made 

before anybody leaves the game ( 0P P= ) if agents have similar valuation of the public 

good.  If agents are sufficiently heterogeneous, one can improve upon this degenerate 

tontine—and possibly upon any lottery—by choosing 0P P< .

78 For example, given identical contributions, a person who leaves last gets the highest payment, the person 
who leaves first receives the lowest payment.



172

To summarize, our theoretical model provides a number of testable hypotheses 

regarding the performance of the tontine as a fundraising mechanism relative to a VCM 

and a single prize lottery.  First, contributions in the optimal tontine (single-prize lottery) 

are greater than those for an equivalent valued VCM.  Second, contributions in the 

tontine are independent of individual risk-preference since an agent receives a private

return on any contribution to the public good with certainty.  Finally, the optimal tontine 

dominates the single prize lottery as a fundraising mechanism when agents are risk-

averse and have symmetric valuations for the public good.  

IV.  Experimental Design and Results

We design an experiment that is closely linked with our theoretical model to 

examine these three conjectures – Table 1 provides a design summary.  We begin with 

the traditional control treatment that induces symmetric MPCR’s across agents in a 

voluntary contribution mechanism (denoted VCM).  We cross this treatment with 

comparable single-prize (denoted SPL) and optimal tontine (denoted OT) treatments, 

leading to a total of 3 treatments.79

All treatments were conducted at the University of Maryland—College Park.  The 

experiment consisted of multiple sessions held on separate days with different subjects.  

Each session consisted of two parts, the first to gather information on individual 

contribution decisions across the various treatments.  The second part was included to 

gather information on individual risk postures.  We describe, in turn, each part of the 

session.

79 The data for the FPL and VCM treatments come from the symmetric single prize lottery and symmetric 
VCM in Lange et. al (2005).  The data for the OT treatment were collected for the current study.
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Part 1:

The first part of the experiment was designed to compare contribution levels 

across the single fixed-prize lottery, the optimal tontine, and the voluntary contribution 

mechanism.  The voluntary contribution mechanism treatment and the single fixed-prize 

lottery treatment followed the instructions from Morgan and Sefton (2000) to enable 

direct comparison.  Table 1 summarizes the key features of our experimental design and 

the number of participants in each treatment.  Subjects were recruited on campus using 

posters and emails that advertised subjects could “earn extra cash by participating in an 

experiment in economic decision-making.”  The message stated that students would be 

paid in cash at the end of the session and that sessions generally take less than an hour 

and a half.  The same protocol was used to ensure that each session was run identically.    

Each subject was seated at linked computer terminals that were used to transmit 

all decision and payoff information.  All sessions were programmed using the software 

toolkit z-Tree developed by Fischbacher (1999).  The sessions each consisted of 12 

rounds, the first two being practice.  The subjects were instructed that the practice rounds 

would not affect earnings.  Once the individuals were seated and logged into the 

terminals, a set of instructions and a record sheet were handed out.  The subjects were 

asked to follow along as the instructions (included in Appendix A) were read aloud.  

After the instructions were read and the subjects’ questions were answered the first 

practice round began.  

At the beginning of each round subjects were randomly assigned to groups of 

four.  The subjects were not aware of whom they were grouped with, but they did know 

that the groups changed every round.  Each round the subjects were endowed with 100 
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tokens.  Their task was simple: decide how many tokens to place in the group account 

and how many to keep in their private account.  The decision was entered in the computer 

and also recorded on the record sheet.  When all subjects had made their choice, the 

computer would inform them of the total number of tokens placed in their group account, 

the number of points from the group account and the private account, as well as any 

bonus points that were earned.  The payoff for the round was determined by summing the 

points from the group account, points from the private account, and any bonus points 

received.  Once each of the subjects had recorded all of this information on their record 

sheets, the next round would begin.  

The points for each round were determined as follows.  For all sessions, subjects 

received 1 point for each token placed in their private account.  They were awarded 0.3 

points for each token placed in the group account by themselves and the other members 

of their group. Additionally, each session had a different method for earning bonus 

points.  

We follow Morgan and Sefton (2000) by adding the value of the prize (80 tokens) 

to the group account in the VCM, which makes the VCM treatment comparable to the 

SPL and OT treatments.  Therefore, in the voluntary contribution mechanism session, all 

subjects, regardless of their contributions to the group account, earned 24 bonus points, 

which represent the 80 tokens placed in the group accounts.  In the single fixed-prize 

lottery sessions, group members competed for a lottery prize of 80 points.  Each subject’s 

chance of winning the prize was based on his or her contribution to the group account 

compared to the aggregate number of tokens placed in the group account by all group 

members.  For the optimal tontine session, group members competed for an 
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endogenously determined share of the 80 bonus points.  As in the single fixed-prize 

lottery sessions, subjects’ share of the bonus was equal to his or her contribution to the 

group account compared to the aggregate number of token placed in the group account by 

all group members.  Hence, any individual that contributed to the group account was 

guaranteed to receive some bonus points.  

At the end of the last round, one of the non-practice rounds was chosen at random 

as the one that would determine earnings.  Subjects were paid $1.00s for every 15 points 

earned.  They recorded their earnings for Part 1 of the session and prepared for Part 2. 

Part 2

The second part of the experiment was designed to lend insights into subjects’ 

risk postures and link those preferences to behavior in the public goods game described 

above. Attempting to measure risk postures in one game and applying them to more 

closely explore behavior in another is not novel to this study.  Previous authors have 

attempted this approach with varied success.  There are issues with such an approach 

even if “successful,” including whether risk preferences are stable across games, over 

time, etc.  Yet, because risk posture is not exogenously imposed on players (such as 

MPCR’s are induced in the public goods game) an important caveat must be placed on 

the results from such an exercise. 

In this part of the session, the low-payoff treatment of Holt and Laury (2002) was 

replicated with all values multiplied by a factor of four (see Appendix B for 

instructions).80  In each of the eleven sessions this part was conducted in an identical 

80 The payoffs for the Holt and Laury experiment were multiplied by a factor of four so that the domain of 
earnings from this experiment ($0.40, $15.40) would correspond with the domain of potential earnings 
from the public goods game ($1.20, $29.33).  
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manner.  The treatment is based on ten choices between paired lotteries.  The paired 

choices are included in the appendix.  The payoff possibilities for Option A, $8.00 or 

$6.40, are much less variable than those for Option B, $15.40 or $0.40, which was 

considered the risky option.  The odds of winning the higher payoff for each of the 

options increase with each decision.  In the first decision, there is only a 1/10 chance of 

winning the higher payoff, so only the most risk-loving individuals should choose Option 

B.  The expected payoff difference for choosing Option A is $4.66.  As the probabilities 

of winning the higher payoff increase, individuals should cross over to Option B.  The 

paired choices are designed such that a risk-neutral individual should choose Option A 

for the first four decisions and then switch to Option B for the remaining six decisions.  

The paired choices are also designed to determine degrees of risk aversion.  

Upon completion of Part 1 of the session, instructions and a decision sheet were 

handed out.  After the directions were read and questions were answered, the subjects 

were asked to complete their decision sheets by choosing either A or B for each of the ten 

decisions.  The subjects were instructed that one of the decisions would be randomly 

selected ex post and used to determine their payoffs.  Part of a deck of cards was used to 

determine payoffs, cards 2-10 and the Ace to represent “1”.  After each subject completed 

his or her decision sheet, a monitor would approach the desk and randomly draw a card 

twice, once to select which of the ten decisions to use, and a second time to determine 

what the payoff was for the option chosen, A or B, for the particular decision selected.  

After the first card was selected, it was placed back in the pile, the deck was reshuffled, 

and the second card was drawn.  For example, if the first draw was an Ace, then the first 
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decision choice would be used, and the subject’s decision, A or B would be circled.  

Suppose the subject selected A for the first decision.  The second draw would then be 

made to determine the subject’s payment.  If the Ace were drawn, the subject would earn 

$8.00.  If cards 2-10 were drawn the subject would earn $6.40.  The subjects were aware 

that each decision had an equal chance of being selected.  

After all the subjects’ payoffs were determined, they combined their payoff from 

Part 1 with that of Part 2 to compute their final earnings.  The final payoffs were then 

verified against the computer records, and subjects were paid privately in cash for their 

earnings.  Each of the sessions took approximately 75 minutes.    

Experimental Results

Our experimental design enables us to test a number of theoretical predictions 

regarding contribution levels across our various treatments.  We craft the results 

summary by first pooling the data across subjects of all risk postures, but later explore the 

effects of risk preference on contribution schedules.  This approach permits a comparison 

of our results with the voluminous public goods literature, which implicitly assumes risk 

neutrality, and therefore represents joint hypothesis testing in some cases.

Our first hypothesis is that the lottery and tontine treatments introduce a 

compensating externality that serves to attenuate the tendency to “free-ride”.  This 

hypothesis is directly testable using our experimental data and implies that:

H1a: Mean contributions in the FPL sessions are greater than mean 

contributions in the VCM sessions.  

H1b: Mean contributions in the OT session are greater than mean contributions 

in the VCM sessions.
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Table 2 provides mean contribution levels for our experimental data and Figures 3 and 4

provide a graphical depiction of the data.  As can be seen in the table and the figures, 

contribution levels in the lottery and tontine treatment are greater than those in the VCM 

treatment.  Mean contribution levels in the FPL (OT) treatment were 42.18 tokens (29.63 

tokens) respectively.  Mean contribution levels in the VCM treatment were 22.85 tokens.  

The difference in mean contributions for the FPL and VCM treatment is statistically 

significant at the p < 0.01 level using a Mann-Whitney test of significance.  The 

difference in mean contributions between the OT and VCM treatments is statistically 

significant at the p < 0.10 level using.81  These data generate our first result:

Result 1: Both the single-prize lottery and optimal tontine are superior 
fundraising mechanisms than the voluntary contribution mechanism.

The first part of result 1 replicates previous findings in the experimental literature about 

the dominance of the charitable lottery as a fundraising mechanism (e.g., Morgan and 

Sefton, 2000; Dale, 2004).  The second part of result 1 is novel to the literature.  

A second testable implication of hypotheses 1a and 1b is that agents are less-

likely to “free-ride” and contribute nothing to the group account in the lottery treatment 

and the optimal tontine than in the VCM treatment.  Further, since the tontine is predicted 

to induce full participation whereas the lottery does not ensure participation by all agents, 

we would expect a lower tendency for agents to “free-ride” in the OT treatment than the 

SPL treatment.  

81 The unit of observation for the Mann-Whitney test is the average contribution level for each agent.  Since 
groups are randomly rematched in each period, the average contribution level for agents within a treatment 
should be independent observations.
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To examine whether the tendency to strongly free-ride is attenuated by the lottery 

incentives, we estimate a random effects probit model.  In estimating the model, we make 

use of Butler and Moffit’s (1982) random effects probit specification:

       [0,1]it it it itT X e e Nβ ′= + �

where itT  equals unity if agent i donated zero in period t, and equals zero otherwise, and 

itX  are model covariates.  We specify it is ie u α= + , where the two components are 

independently and normally distributed with mean zero.  It follows that the variance of 

the disturbance term ite  is 2 2Var( )it ue ασ σ= + .  By construction, the individual random 

effects iα  will capture important heterogeneity across subjects that would be left 

uncontrolled in a standard cross-sectional model.  The vector itX  includes treatment 

dummies, a one-period lagged value of the donations for agent i, and controls for period 

effects.

Table 3 provides empirical results for our estimated random effects probit model.  

Testing the hypothesis that individuals are less likely to strongly free-ride in our lottery 

and optimal tontine treatments is equivalent to testing the following set of hypotheses:

H2: ˆ ˆ 0OT SPLβ β< <

Results from our model support this hypothesis.  As indicated in columns 2 and 3 of 

Table 3, the estimated coefficients on the lottery and optimal tontine treatment indicators 

are each negative and statistically significant at the p < 0.05 level.  These negative 

coefficient estimates suggest that conditioned on underlying model covariates, 

individuals in the lottery (tontine) treatment are less likely to contribute zero than agents 

in an equivalent VCM.  These findings generate our next result:
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Result 2: The introduction of a charitable lottery or tontine attenuates the 
tendency of agents to “strongly free-ride”, i.e. increases the number of 
contributing agents, with the optimal tontine inducing greater participation than 
the single-prize lottery.

Further support for Result 2 is provided by t-tests comparing the estimated parameter 

values for the lottery (tontine) treatment with the parameters for the equivalent VCM 

treatment.  The estimated coefficients for both the single prize lottery and optimal tontine 

are smaller than the associated parameter for the VCM (the constant term in the 

regression) at the p < 0.05 level of significance.  Furthermore, parameter estimates are 

consistent with our prediction that strong free-riding incentives are lower in the optimal 

tontine treatment compared to the single-prize lottery treatment.  Agents in the optimal 

tontine are approximately 3.45 percent less likely to free-ride than are agents in the 

single-prize lottery with this difference statistically significant at the p < 0.05 level.82

Tontines, Lotteries, and Risk Aversion

The above analysis follows the spirit of the literature in that all agents are pooled 

and a series of hypotheses are tested jointly—risk assumptions and direction of treatment 

effects.  We can examine our data at a level deeper based on our theoretical predictions 

and subjects’ revealed risk preference in Part II of our experiment.  Risk preferences, 

summarized in Figure 5, are based on the number of safe choices “Option A” selected by 

the agent in the Holt/Laury experimental design.  Under the basic Holt/Laury design, an 

increase in the number of safe alternatives selected by an agent implies an increase in his 

implied risk preference.

82 Estimated probabilities are evaluated at the mean value for one-period lagged donations in each of the 
treatments respectively.  These mean values are 42.18 tokens in the single-prize lottery and 29.63 tokens in 
the optimal tontine.
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Our theory provides two testable implications of risk aversion on contributions in 

our experimental treatments; (i) contributions in the optimal tontine are independent of 

individual risk preference, and (ii) contributions in the single prize lottery are strictly 

decreasing in the level of risk aversion.  To evaluate these hypotheses, we estimate a 

linear random effects regression model of individual contribution levels:

Cit = v(Zit)+ εit,

where Cit is the contribution level of the ith agent in period t.  Zit includes treatment 

dummy variables, the interaction of the treatment indicators with the number of safe 

alternatives agent i selected in the Holt-Laury experiment (a proxy for individual risk-

preference), one-period lagged values for individual contribution levels, and controls for 

the experimental round; εit = αi + uit; E[αi] = 0, E[αi
2] = σα2, E[αiαj] = 0 for i ≠ j; αi and 

uit are orthogonal for all i and t.  The random effects αi capture important heterogeneity 

across agents that would be left uncontrolled in a standard cross-sectional model.

Table 4 provides results for this model across two different specifications.  

Testing the theoretical conjectures that contributions in the optimal tontine are 

independent of risk-preference and contributions in the single-prize lottery are strictly 

decreasing in individual risk-preference is equivalent to testing the following hypothesis:

H3: _ _
ˆ ˆ0, 0Risk Tontine Risk Lotteryβ β= <

Results from this model provide support for this hypothesis.  Across both model 

specifications (Columns 1 and 2), the estimated coefficient on the interaction of risk 

preference and the tontine indicator is statistically insignificant.  However, the estimated 

coefficient on the interaction of risk preference and the indicator for the single-prize 

lottery is negative and significant at the p < 0.05 level in both specifications suggesting 
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that lottery contributions are decreasing in the level of individual risk aversion.  

Combined, this leads to our third result:

Result 3: Contributions in the optimal tontine (single-prize lottery) are 
independent of (strictly decreasing in) individual risk preference.

One additional result presented in Tables 2 and 4 not predicted by our theory is the 

superiority of the single prize lottery as a fundraising mechanism even when agents are 

risk-averse.  The theoretical model presented in Section III suggests that risk-averse 

agents should strictly prefer the optimal tontine to the single-prize lottery.  However, 

observed contribution levels in our single-prize lottery treatment strictly dominate those 

observed in treatment OT despite the fact that a non-trivial percentage of the agents in 

each treatment are characterized as risk-averse using the Holt-Laury experimental 

procedure.   

IV.  Concluding Remarks

This article provides a theoretical exploration of tontines, a popular method of 

financing public goods that was introduced more than three centuries ago.  Even though 

tontines were once quite popular—the name “tontine” remains prominently displayed on 

several publicly funded projects around the world—little is known about their formal 

structure and whether it would be apropos to reintroduce tontines today.  

In this study, we highlight the best characteristics of the tontine that might be 

utilized in future fundraising drives by deriving the optimal tontine and formally linking 

the tontine to a popular modern fundraising scheme used by both government and 

charitable fundraisers: lotteries.  We show that the optimal tontine generates contributions 

that are equivalent to those under a single prize lottery when agents are symmetric and 
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risk neutral.  For symmetric risk-averse agents, contributions under the optimal tontine 

strictly dominate contributions raised under any lottery type.  Further, the design of an 

optimal tontine is independent of underlying risk posture and generates contributions that 

weakly dominate those of any lottery.  If agents are sufficiently asymmetric, tontines 

yield higher contribution levels than the optimal lottery—having a chance of being the 

only survivor in a period with positive payment provides incentives for all players to 

contribute.  If a fundraiser also seeks a high participation rate in order to collect the 

names of potential contributors for future fundraising drives, then the tontine has an 

additional “hidden” advantage in that it maximizes participation rates.  

We test our theory using a series of laboratory treatments and find evidence in 

favor of many of our theoretical predictions.  Perhaps most importantly, contribution 

levels under both the single-prize lottery dominate and tontine dominate those of the 

VCM.  Moreover, we find that risk posture is a critical component determining the 

performance of the single prize lottery but has no influence on contribution levels in the 

optimal tontine.  One finding inconsistent with our theoretical predictions is the 

dominance of the single-prize lottery as a fundraising mechanism even when some subset 

of agents are risk-averse.  This finding warrants additional research and may suggest a 

behavioral aspect of the charitable lottery not considered in extent theory.    

While this article has addressed the performance of tontines as a fundraising 

mechanism, there are a number of outstanding issues.  For example, under the optimal 

tontine each agent receives a positive monetary payment with certainty.  The ex post

allocation of wealth is thus more equitable than that which results from any k-prize 

lottery.  Given that inequality-averse preferences have been found to be prevalent among 
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agents in laboratory experiments (see, e.g., Fehr and Schmidt, 1999; Bolton and 

Ockenfels, 2000), there are reasons to suspect that contribution levels under a tontine 

would exceed even those predicted by our model.  We hope that future work examines 

this issue in greater detail and evaluates the performance of tontines in the laboratory and 

in the field.      
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Table 1: Experimental Design

Session 1 Session 2

VCM

MPCR = 0.30
Endowment = 100

N = 20 Subjects
10 Rounds

200 Observations

SPL

MPCR = 0.30
Endowment = 100

Prize = 80

N = 20 Subjects
10 Rounds

200 Observations

N = 16 Subjects
10 Rounds

160 Observations

OT

MPCR = 0.30
Endowment = 100

Prize = 80

N = 16 Subjects
10 Rounds

160 Observations

Note: Cell entries provide the experimental design and parameters for each treatment.  For example, in the 
VCM treatment the MPCR = 0.30 and the subjects were endowed with 100 tokens.  In this treatment there 
was one session of 20 subjects that lasted for 10 rounds.

Table 2: Experimental Results - Mean Contribution Levels by Treatment

All Periods Pooled First Five Periods Last Five Periods

VCM 22.85 Tokens
(31.11)

32.35 Tokens
(34.29)

13.34 Tokens
(24.24)

SPL 42.18 Tokens
(20.30)

45 Tokens
(33.40)

40.29 Tokens
(32.16)

OT 29.63 Tokens
(32.82)

30.76 Tokens
(21.06)

28.5 Tokens
(19.99)

Note: Cell entries provide the mean and standard deviation for each treatment.  For example, in the VCM-
treatment the average token contribution was 22.85 with a standard deviation of 31.11 tokens.  
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Table 3: Random Effects Probit of Free-Riding Behavior

Tit = 1 if 
agent i free-rides in period t

Tit = 1 if 
agent i free-rides in 

period t

Constant -0.24
(0.25)

-0.79**
(0.34)

SPL Treatment -1.11**
(0.31)

-1.16**
(0.32)

Optimal Tontine Treatment -1.71**
(0.41)

-1.76**
(0.43)

1-Period Lagged Donation -0.007**
(0.003)

-0.005*
(0.003)

Round 0.08**
(0.03)

Log Likelihood -221.82 -225.96
# of Observations 639 639
# of Agents 71 71

** Denotes statistically significant at the p < 0.05 level.
* Denotes statistically significant at the p < 0.10 level.

Note: Cell entries provide parameter estimates from a random effects probit model where Tit = 1 
if agent I contributed zero to the public good in period t.  For example, the negative and 
significant coefficient on the symmetric single prize lottery treatment dummy variable suggests 
that, relative to the VCM, agents in this treatment are less likely to free-ride in any given period.
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Table 4: Random Effects Regression Model – Individual Contribution Levels

Specification A Specification B

Constant 16.53**
(7.93)

25.15**
(8.33)

Optimal Tontine Treatment -2.81
(12.18)

-3.02
(12.09)

SPL Treatment 20.75**
(10.07)

21.25**
(10.01)

Risk_OT 0.46
(1.34)

0.46
(1.34)

Risk_SPL -2.16*
(1.13)

-2.25**
(1.12)

Risk_VCM -0.81
(1.37)

-0.86
(1.37)

1-Period Lagged Donations 0.38**
(0.04)

0.37**
(0.04)

Round -1.32**
(0.42)

R-squared 0.24 0.25
# of Observations 639 639
# of Groups 71 71

** Denotes statistical significance at the p < 0.05 level
* Denotes statistical significance at the p < 0.10 level

Note: Cell entries provide marginal effects from a linear random effects regression on individual 
contribution levels.
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Figure 3: Average Contribution Levels by Period
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Figure 4: Average Contribution Levels by Individual
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Note: The figures summarize average contribution levels by period and across individual for each 
of the experimental treatments.
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Figure 5: Frequency Distribution of Risk Preference – by Treatment
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Note:  The figure provides the frequency of the number of safe choices (Option A) in the 
Holt/Laury experiment for agents in each of our three experimental treatments.  An increase in 
the number of safe choices is associated with an increase in the implied level of risk preference.  
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Appendix A.  Instructions—Part 1

General Rules
This is an experiment in economic decision making.  If you follow the instructions carefully and 

make good decisions you can earn a considerable amount of money.  You will be paid in private and in 
cash at the end of the session.  

It is important that you do not talk, or in any way try to communicate, with other people during 
the session.  If you have a question, raise your hand and a monitor will come over to where you are sitting 
and answer your question in private.  

The experiment will consist of 12 rounds.  The first 2 rounds will be practice.  In each round, you 
will be randomly assigned to a group of 4 people.  These groups will change each round.  You will not 
know which of the other people in the room are in your group and the other people in the session will not 
know with whom they are grouped, in any round.  

In each round, you will have the opportunity to earn points.  At the end of the session, one of the 
non-practice rounds will be randomly selected and you will be paid in cash an amount that will be 
determined by the number of points you earn during the randomly selected round.  

Description of each round
At the beginning of the first trial a subject number will be given on your terminal.  Record that 

number on your record sheet.  Each round you will be given an endowment of 100 tokens.  At the 
beginning of each round, the computer will prompt you to enter the number of tokens you want to 
contribute to the group account.  Enter a whole number between 0-100, record the number in column (b) 
on your record sheet, and click continue.  Any tokens you do not place in your group account are placed 
in your private account.  Once your decision is recorded, it cannot be changed.  After everyone in your 
group has recorded their decisions, a screen will appear informing you of the number of tokens 
contributed to the group account by all group members, whether any bonus points have been earned, and 
your profit for the round.  Record the information from that screen onto your record sheet as follows:

Tokens in Private Account: Column A
Your Contribution to Group Account: Column B
Total Tokens in Group Account:                    Column C
Private Account Points: Column D
Group Account Points:  Column E
Bonus Points:  Column F
Profit for Round:  Column G

Once everyone has recorded his or her information, the next round will begin.

How earnings are determined

VCM:
The number of points you earn in the round will be determined as follows.  For each token placed in your 
private account you will earn 1 point.  This amount is recorded in column (d) on your record sheet.  You 
will receive 0.3 points for each token placed in your group account by you and the other people in your 
group.  The group account points are recorded in column (e) on your record sheet.  In addition, in each 
round you will also receive 24 bonus points regardless of how you and the other people in your group 
place your tokens.  This amount is recorded in column (f).  Your profit for the round is computed by 
summing the private account points, the group account points and the bonus points.  This total is recorded 
in column (g) on the record sheet.  
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SPL:
The number of points you earn in the round will be determined as follows.  For each token placed in your 
private account you will earn 1 point.  This amount is recorded in column (d) on your record sheet.  You 
will receive .3 points for each token placed in your group account by you and the other people in your 
group.  The group account points are recorded in column (e) of the record sheet.  

In addition, in each round you have the chance to win 80 bonus points.  At the end of each round 
a lottery will be drawn.  Your odds of winning the lottery are determined by how much you contributed to 
the group account in that round.  Specifically, your chances of winning the bonus points will be equal to 
the number of tokens you place in the group account, divided by the total number of tokens placed in the 
group account by you and the other people in your group.  For example, if you place 30 percent of the 
tokens into the group account, you will have a 30 percent chance of winning the bonus.  If no tokens are 
placed in the group account, each member of the group will have an equal chance of winning the bonus.  
Record any bonus points earned in column (f) on your record sheet.  Your profit for the round is 
computed by summing the private account points, the group account points and the bonus points.  This 
total is recorded in column (g) on the record sheet.  

OT:
The number of points you earn in the round will be determined as follows.  For each token placed in your 
private account you will earn 1 point.  This amount is recorded in column (d) on your record sheet.  You 
will receive 0.3 points for each token placed in your group account by you and the other people in your 
group.  The group account points are recorded in column (c) of the record sheet.

In addition, at the end of each round you will receive a share of 80 bonus points.  Your share of 
the bonus points is determined by how much you contributed to the group account in that round.  
Specifically, your share of the bonus points will be equal to the number of tokens you place in the group 
account, divided by the total number of tokens placed in the group account by you and the other people in 
your group.  For example, if your contribution is 50 percent of the total tokens placed in the group 
account, you will receive 50 percent of the bonus (40 points).  If no tokens are placed in the group 
account, each member of the group will receive an equal share of the bonus.  Record any bonus points 
earned in column (f) on your record sheet.  Your profit for the round is computed by summing the private 
account points, the group account points, and the bonus points.  This total is recorded in column (g) on the 
record sheet.

At the end of the session we will draw a ticket from the box.  In the box there is a numbered ticket for 
each round played (1-10).  The number on the ticket that is drawn will determine the round for which you 
will be paid.  Record the selected round and then your profit for that round in the space provided at the 
bottom of the record sheet.  You will receive $1.00 in cash at the end of the session for every 15 points 
you earn in that round.  This amount is recorded in the space titled earnings.  
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Appendix B. Instructions—Part II (Risk Aversion Measures)
Record your subject number from the previous part on your decision sheet. Your decision sheet 

shows ten decisions listed on the left.  Each decision is a paired choice between OPTION A and OPTION 
B.  You will make ten choices and record these in the final column, but only one of them will be used in 
the end to determine your earnings.  Before you start making your ten choices, please let me explain how 
these choices will affect your earnings for this part of the experiment.

We will use part of a deck of cards to determine payoffs; cards 2-10 and the Ace will represent 
“1”.  After you have made all of your choices, we will randomly select a card twice, once to select one of 
the ten decisions to be used, and a second time to determine what your payoff is for the option you chose, 
A or B, for the particular decision selected. (After the first card is selected, it will be put back in the pile, 
the deck will be reshuffled, and the second card will be drawn).  Even though you will make ten 
decisions, only one of these will end up affecting your earnings, but you will not know in advance which 
decision will be used.  Obviously, each decision has an equal chance of being used in the end.

Now, please look at Decision 1 at the top.  OPTION A pays $8.00 if the Ace is selected, and it 
pays $6.40 if the card selected is 2-10.  OPTION B yields $15.40 if the Ace is selected, and it pays $0.40 
if the card selected is 2-10.  The other Decisions are similar, except that as you move down the table, the 
chances of the higher payoff for each option increase.  In fact, for Decision 10 in the bottom row, the 
cards will not be needed since each option pays the highest payoff for sure, so your choice here is between 
$8.00 or $15.40.

To summarize, you will make ten choices: for each decision row you will have to choose 
between OPTION A and OPTION B.  You may choose A for some decision rows and B for other rows, 
and you may change your decisions and make them in any order.  When you are finished, we will come to 
your desk and pick a card to determine which of the ten Decisions will be used.  Then we will put the card 
back in the deck, shuffle, and select a card again to determine your money earnings for the OPTION you 
chose for that Decision.  Earnings for this choice will be added to your previous earnings, and you will be 
paid all earnings in cash when we finish.

So now please look at the empty boxes on the right side of the record sheet.  You will have to 
write a decision, A or B in each of these boxes, and then the card selection will determine which one is 
going to count.  We will look at the decision that you made for the choice that counts, and circle it, before 
selecting a card again to determine your earnings for this part.  Then you will write your earnings in the 
blank at the bottom of the page.

Are there any questions?  Now you may begin making your choices.  Please do not talk with 
anyone else while we are doing this; raise your hand if you have a question.

Decision Sheet

OPTION A OPTION B DECISION

1/10 of $8.00, 9/10 of $6.40 1/10 of $15.40, 9/10 of $0.40

2/10 of $8.00, 8/10 of $6.40 2/10 of $15.40, 8/10 of $0.40

3/10 of $8.00, 7/10 of $6.40 3/10 of $15.40, 7/10 of $0.40

4/10 of $8.00, 6/10 of $6.40 4/10 of $15.40, 6/10 of $0.40

5/10 of $8.00, 5/10 of $6.40 5/10 of $15.40, 5/10 of $0.40

6/10 of $8.00, 4/10 of $6.40 6/10 of $15.40, 4/10 of $0.40

7/10 of $8.00, 3/10 of $6.40 7/10 of $15.40, 3/10 of $0.40

8/10 of $8.00, 2/10 of $6.40 8/10 of $15.40, 2/10 of $0.40

9/10 of $8.00, 1/10 of $6.40 9/10 of $15.40, 1/10 of $0.40

10/10 of $8.00, 0/10 of $6.40 10/10 of $15.40, 0/10 of $0.40
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