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Recently, spatial databases have attracted increasing interest in the database
field. Because of the volume of the data with which they deal with, the per-
formance of spatial database systems’ is important. The R-tree is an efficient
spatial access method. It is a generalization of the B-tree in multidimensional
space. This thesis investigates how to improve the performance of R-trees. We
consider both parallel I/O and centralized architectures.

For a parallel I/O environment we propose an R-tree design for a server with
one CPU and multiple disks. On this architecture, the nodes of the R-tree are
distributed between the different disks with cross-disk pointers ( ‘Multiplexed R-
tree’). When a new node is created we have to decide on which disk it will be
stored. We propose and examine several criteria for choosing a disk for a new

node. The most successful one, termed ’Proximity Index’ or PI, estimates the



similarity of the new node to other R-tree nodes already on a disk and chooses
the disk with the least degree of similarity.

For a centralized environment, we propose a new packing technique for R-
trees for static databases. We use space-filling curves, and specifically the Hilbert
curve, to achieve better ordering of rectangles and eventually to achieve better
packing. For dynamic databases we introduce the Hilbert R-tree, in which every
node has a well defined set of sibling nodes; we can thus use the concept of local
rotation [47]. By adjusting the split policy, the Hilbert R-tree can achieve a

degree of space utilization as high as is desired.
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Chapter 1

Introduction

Databases of the near future will be required to support non-traditional data
types, such as spatial objects [71]. Multimedia databases [54], Geographical
Information Systems (GIS) [66], and medical databases [4] are examples of
databases receiving increasing attention. Handling spatial and multidimensional
objects is a common requirement among these databases. For example, in multi-
media databases we should be able to store images [5], voice [56], video [62] etc.
In GIS, maps contain multidimensional points, lines, and polygons all of which
are new data types. Another example of such non-traditional data types can be
found in medical databases which contain 3-dimensional brain scans (e.g. PET
and MRI studies); in these databases we want to ask a query such as “display the
PET studies of 40-year old females that show high physiological activity inside
the hippocampus” where high activity corresponds to high glucose consumption.
Temporal databases fit easily in the framework, since time can be considered as
one more dimension [48, 50]. Multidimensional objects appear even in tradi-
tional databases, where a record with & attributes corresponds to a point in the
k-d space.

In the above applications, one of the most typical queries is the range query:



Given a rectangle in k-d space, retrieve all the elements that intersect it. A
special case of the range query is the point query or stabbing query, where the
query rectangle degenerates to a point. Spatial join is an important query which
is also expensive to compute. It is used to combine spatial objects of two sets
according to some spatial properties. For example, consider two spatial relations
that define the borders of lakes and counties. The query “give me a list of counties
and all the lakes in them” is an example of a spatial join query. Other queries
of interest include the nearest neighbor queries [6]. The query “find the nearest
lake to Prince Georges county” is an example of a nearest neighbor query.

Several spatial access methods approximate objects with, for example, their
minimum bounding rectangle (MBR), (or circle, or ellipse, etc.). Range queries
are also approximated by their MBR'’s, requiring a post-processing step to dis-
card the false alarms. We focus on the first step, that is, on how to organize
efficiently a large set of multidimensional rectangles for range queries. This is
one of the major goals of this thesis.

The second goal is to examine issues of declustering and data partitioning.
All the above applications have a common property in that they deal with huge
amounts of data. With the increase in the volume of data, the response time
of the range query increases. Also, the data itself eventually will not fit on one
disk. One way to relieve these problems is to distribute the data carefully on
more than one unit so that the data can be retrieved and searched in parallel
(e.g. [43, 69]).

The remainder of the thesis is organized as follows: Chapter 2 presents some
of the related work on spatial indexing. In Chapter 3, we present the Multiplexed

[/O R-tree. In Chapter 4, we present two new R-tree designs based on the Hilbert



curve for a centralized environment. Chapter 5 gives some concluding remarks

and directions for future research.



Chapter 2

Survey

In this chapter we present a classification of older spatial access methods, a
survey of declustering methods, and a survey of analysis of R-trees. A recent
survey can be found in [67]. Several spatial access methods have been proposed.
For the purpose of this dissertation, we provide the following mean of classifying
the structures.

1) Methods that are designed for storing multidimensional points only. These
methods are called Point Access Methods (PAM) — e.g., Grid files [35], LSD
tree [34], buddy tree [68], and DOT [20]. One way to use PAM for storing
non-point objects is to transform the objects to points in higher-dimensional
space [35]. For example, rectangles in two-dimensional space can be transformed
to points in four-dimensional space by using the x,y coordinates of two opposite
corners. Other transformations are also possible, such as using the coordinate of
the center and the extent values along the x and y axes. This technique however,
has drawbacks, for example, the mapping from the original space into the point
space may result in a skewed point distribution and may thus adversely affect

the search performance.

2) Methods for spatial objects ‘Spatial Access Method’ or (SAM) : Other in-



dexes are designed to store points as well as non-point objects — e.g., Quadtree [28]
[3], R-tree [32, 7, 44, 41, 16], Z-order [60], R*-tree [70], and Cell tree [31].

In this thesis, we concentrate on R-tree like-structures.

2.1 Point Access Methods (PAMS)

PAM are designed to handle multidimensional points. Non-point objects can be
transformed to points in higher dimensional space before being stored. Several
PAM have been proposed. We can divide them into hierarchical structures such

as the K-D-B tree [63] and non-hierarchical structures such as Grid files [55] and

their variants.

2.1.1 Hierarchical Structures

The k-d tree [8] is a generalization of the binary search tree for multi-dimensional
points. At each level a different attribute (or key) value is tested to determine
the direction in which a branch is to be made. The k-d tree is a main memory-
based structure; it was the inspiration of several disk-based data structures such
as the K-D-B tree and the LSD tree.

Henrich et al. [34] proposed the Local Split Decision (LSD) tree. Its directory
structure is similar to that of the k-d tree [8]. It partitions the data space into
pairwise disjoint cells. The cutting boundaries may occur at arbitrary positions.
Henrich also introduced an algorithm for paging a multi-dimensional binary tree.
The LSD tree can store only multi-dimensional points. K-dimensional intervals
are transformed into points in a 2k-dimensional space.

The K-D-B tree of Robinson [63] is one of the first multidimensional indexes



proposed for secondary storage. It combines the properties of the k-d tree [8] and
the Bt-tree. Each time an overflow occurs, the search space is partitioned into
two disjoint rectangular subspaces along one axis. Like the B-tree, the K-D-B
tree is a balanced tree; that is, all paths to leaves of the tree are equal in length.
All data is stored in leaf nodes. The internal nodes containing only entries
which direct the search. When a non-leaf node is split, the split may propagate
downwards; the structure thus does not guarantee minimum space utilization.
To avoid this problem several variants have been proposed, including the Buddy
tree [68] and the hB-tree [52].

Seeger and Kriegel [68] proposed the Buddy tree, which is similar to the K-D-
B tree [63]. They avoided some of the drawbacks of the K-D-B tree, such as the
downward split, by using a partitioning schema similar to the buddy system [47].
The buddy tree stores the MBR of the data in each node in order to better prune
the search space.

Lomet and Salzberg [52] suggested a variant of the K-D-B tree called the
hB-tree, which exhibts the following distinctions. Index nodes are organized as
a k-d tree to improve the intra-node search response. When a node overflows, it
is not necessarily split into two rectangular k-dimensional regions (bricks), but
rather divides into “holey” bricks, or bricks from which smaller bricks have been
removed. Because of this, hB-trees can avoid the downward split propagation
that occurs in K-D-B tree. The hB-tree guarantees at least 33% node utilization.

The BANG file [24] of Freeston is a grid file type (Grid files are explained in
the next section), but its directory is organized as a tree structure (as opposed
to a multi-dimensional array as in Grid files). As in the B-tree, the updates and

splits propagate upwards through the tree, thus balancing the tree.



2.1.2 Non-hierarchical Structures

Nievergelt’s Grid file [55] is a non-hierarchical index structure for data charac-
terized by several keys or attributes. The records can be represented as points
in a multi-dimensional space formed by the Cartesian product of the domains of
the keys. The space is divided into a grid; each grid cell is stored in a disk page
and contains b records (points) at most. A multi-dimensional array (‘directory’)
is used to map grid cells to the corresponding pages on the disk. The directory
may reside on the disk. A set of one-dimensional arrays called linear scales are
used to store the partition points along each attribute. They enable access to
the appropriate grid cells by aiding the computation of cell addresses as deter-
mined by the value of the relevant attributes. The linearscales are kept in main
memory. When a page overflows, the corresponding grid cell has to split; the
directory may grow. Similarly, when deletions occur, grid cells can be merged.
The grid file guarantees that any record can be retrieved (exact match query)
with two disk accesses, one for the directory and one for the data.

Tamminen’s EXCELL [72] is similar to the grid file. It is based on a regular
decomposition of the space, and it requires a grid directory; however, all grid
cells are of the same size. The main difference between the grid file and EXCELL
is that when a data page overflows, the grid file splits only the corresponding
directory cell. In contrast, the EXCELL method splits all directory cells and
results in a doubling of the size of the grid directory. As a result, the sizes of the
direcory cells are the same. In contrast, the directory cells of the grid file are
not necessarily of the same size. Because the directory cells are all of the same
size, EXCELL does not require a set of linear scales to access the grid directory,

as does the grid file.



For a data set with correlated attributes, the index size increases and becomes
sparse and thus the search performance degrades. Hinrichs and Nievergelt [35]
suggested using the grid file after a rotation of the axes. The rotation is necessary
in order to avoid non-uniform distribution of points, which would lead to poor
grid file performance. Faloutsos and Rego [19] proposed dividing the address
space into triangular cells (as opposed to rectangular one as in the grid files) in
order to better handle the correlated data and non-point geometric objects.

The standard grid files achieve about 70% storage utilization. Hutflesz
et al. [38] proposed the ‘Twin Grid File’ which achieves roughly 90% storage
utilization. The basic idea is to use two grid files instead of one as in the stan-
dard Grid file. A new point is inserted in either file in such a way as to avoid
node splits as much as possible. They showed experimentally that the storage
gain is obtained at no extra cost and that range queries can be answered in twin

grid files at least as fast as in the standard grid file.

2.2 Spatial Access Methods

In this section we present spatial access methods that are designed to handle

point as well as non-point spatial objects.

2.2.1 Quadtree-based Methods

The quadtree is a hierarchical data structure based on a recursive decomposition
of the space [23]. Quadtrees are used for points, as in the point quadtree [23],
the MX quadtree, and the PR quadtree [57, 65]; for rectangles, as in the MX-

CIF [45, 1]; and for lines, as in the PMR quadtree. The decomposition may



be regular (e.g. the PR quadtree) or irregular (e.g. point quadtree). “Irregu-
lar” decomposition means that the decomposition is driven by the data: Splits
occur at each data point, which is represented as a node in the tree. In “reg-
ular” decomposition, the space is decomposed into quadrants of the same size.
Orenstein [57] proposed a k-d trie which is similar to the PR quadtree but uses
binary trees instead of quadtrees. Octrees [37, 39] are the extension of quadtrees
in three-dimensional space. A detailed survey of the quadtree and its variants
can be found in [67].

Gargantini [28] proposed a disk-resident quadtree called the linear quadtree.
Spatial objects are divided into quadtree blocks, whose z-order (Morton key)
is used as the primary key for a BT-tree [1] organization. Equivalently, Oren-
stein [60, 58] proposed the Z-order which divide the spatial object into rectangu-
lar blocks and store them in any PAM. In order to avoid an excessive number of
elements, Orenstein also studied the trade-off between the number of elements
that cover the spatial object (amount of redundancy introduced) and the amount
of extra space they cover [59].

The Z-order is a member of a family of curves called ‘space-filling curves’. One
of their characteristics is to pass by every point in the space exactly once. Other
space-filling curves such as the Hilbert and Gray codes can be used to linearize
the multi-dimensional space and to store the data in a PAM [21]. In [21, 40]
they experimentally showed that the Hilbert curve achieves the best clustering

among other methods.



2.2.2 R-tree-based Methods

One of the most characteristic approaches in spatial access methods is the R-
tree proposed originally by Guttman [32]. It is an extension of the B-tree for
multi-dimensional objects. The R-tree is a balanced structure, and it maintains
at least 50% space utilization. A geometric object is represented by its minimum
bounding rectangle (MBR). Non-leaf nodes contain entries of the form (ptr,R)
where ptr is a pointer to a child node in the R-tree; R is the MBR that covers
all rectangles in the child node. Leaf nodes contain entries of the form (obj-
id, R), where obj-id is a pointer to the object description, and R is the MBR
of the object. The R-tree allows father nodes to overlap. In this way, the
R-tree can guarantee good space utilization and remain balanced. Figure 2.1

illustrates data rectangles (in black) organized in an R-tree with fanout value

Figure 2.1: Data (dark rectangles) organized in an R-tree. Fanout=3.

of three. Figure 2.2 shows the file structure for the same R-tree, where nodes

10
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Figure 2.2: The file structure for the R-tree in Figure 2.1 (fanout=3).

[

correspond to disk pages. On the other hands, excessive overlaps of the father
nodes penalizes the search performance. The worst case for the search is to
retrieve the whole tree, but this rarely happens with practical datasets.

The R-tree is a dynamic structure in the sense that insertions and deletions
may be intermixed with queries; the tree grows and shrinks accordingly. When
a node overflows as a result of an insertion, a split occurs to create two nodes,
each of which is half full. The split may propagate up the tree until the root is
split, in which case the tree grows by one level. Guttman originally proposed
three splitting algorithms, the linear split, quadratic split, and the exponential
split. Their names reflect their complexity; among the three, the quadratic split
is the one that achieves the best trade-off between splitting time and search
performance.

The R-tree inspired much subsequent work, the main focus of which was to
improve the search time. A packing technique proposed by Roussopoulos [64]
minimizes the overlap between different nodes in the R-tree for static data. That
is their R-tree does not support insertion nor deletion; once the R-tree is built, it
is breezed. The idea is to sort the data on the either x or y coordinate of one of

the corners of the rectangles. The sorted list of rectangles is scanned; successive

11



rectangles are assigned to the same R-tree leaf node until the node is full; a new
leaf node is then created and the scanning of the sorted list continues. Thus, the
nodes of the resulting R-tree will be fully packed, with the possible exception of
the last node at each level. The utilization is thus ~ 100%. Their experimental
results on point data showed that their packed R-tree performs much better than
does the linear split R-tree for point queries. Sellis et al. [70] proposed the R*-
tree that avoids the overlap between non-leaf nodes of the tree by clipping data
rectangles that cross node boundaries. In this model there is therefore only one
path to the data in a given region as opposed to the multiple paths of Guttman’s
R-tree. The trade-off is that for a specific data object there might be more than
one entry in the RT-tree, and there can thus be more levels in the search path
than in that of an equivalent R-tree. Also, a non-leaf node split in the R*-tree
might cause a downward split propagation. When splits propagate downwards,
there is no way to guarantee a minimum number of entries per node. Beckman
et al. proposed the R*-tree [7]. Their experiment showed that it gives better
performance than other R-tree variants. The main idea in their proposal is the
concept of forced re-insert, which is analogous to the deferred-splitting in B-trees.
When a node overflows, some of its children are deleted and re-inserted, usually
resulting in a better-structured R-tree. Beckman et al. also introduced a new
splitting and a new insertion algorithm. These algorithms take into consideration
not only the area as in Guttman’s R-tree, but also the perimeter and the overlap
of the directory rectangles.

Gunther’s Cell tree [31] is an extension of the BSP tree [26, 25] for secondary
storage. It divides the search space into disjoint polyhedron cells. The data are

organized in a hierarchical structure. The interior nodes correspond to nested

12



hierarchy of convex polyhedra. Jagadish [41] suggested the use of polygonal
bounding instead of rectangular bounding of the spatial objects. He showed
that the benefit, in terms of better selectivity due to improved bounding, is
significant for the first few dimensions; however, the incremental benefit of an
added dimension goes down as more dimensions are added.

R-trees can also be used for spatial join queries. Brinkhoff et al. [11, 10]
studied spatial join processing when two R-trees are available. Their primary
idea is the use of several (typically three) filter steps. In the first step, the
spatial join is performed on the minimum bounding rectangles (MBR’s) of the
objects. In the second step, they use a geometric filter that better approximates
the object. In the last step, the join predicate is checked for all remaining
candidates using the exact match geometry. They used several algorithms for
each filter step. For the last step, they decomposed the polygonal objects into
sets of trapezoids. Fach object is organized in a memory resident tree. They have
shown experimentally that using their approach improves the total execution
time of the spatial join by a factor of more than three over the straightforward
approach.

For the case in which we have one dataset with an R-tree index and another
dataset without such an index, Lo and Ravishankar [51] suggested to build an
R-tree like structure called a seeded tree for the second data set at the join time.
Using some parameters from the first R-tree, they build the seeded tree in such

a way to minimize the join cost.
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2.3 Distributed Spatial Indexing

Much work has been done on methods for organizing traditional file structures
on multi-disk or multi-processor machines. For the B-tree, Pramanic and Kim
proposed the PNB-tree [61], which uses a ‘super-node’ (‘super-page’) scheme on
synchronized disks. Seeger and Larson [69] proposed an algorithm to distribute
the nodes of the B-tree on different disks. Their algorithm takes into account
not only the response time of the individual query but also the throughput of
the system.

A large number of methods have been proposed to decluster the Cartesian
product files (i.e. Grid files). These methods can be grouped into two classes: In
the first class, the methods are designed for partial match queries. Methods in
this class include the Disk Modulo family [13], the field-wise exclusive OR (FX)
method [46], methods using error correcting codes (ECC) [17], and methods
using minimum spanning trees [22]. In the second class, the methods are designed
for range queries: e.g., HCAM [15] and MAGIC [29]. In HCAM [15] the Hilbert
curve is used to impose linear order on the buckets in a multi-dimensional space,
and then to traverse this sorted list of buckets, assigning each bucket to the disk
in round-robin fashion. In MAGIC [29], it is assumed that the access pattern
is known, and the size of the bucket is calculated in order to balance the loads
at the units. Also, the number of processors activated per query is restricted in

order to minimize the overhead imposed by parallelism.
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Chapter 3

Multiplexed 1/O R-trees

3.1 Introduction

In this chapter we study the problem of improving the search performance using
parallel I/O architectures such as multiple disk units. There are two main reasons

for using multiple disks as opposed to a single disk:

(a) Spatial database applications are mostly I/O bound. Our measurements
on a DEC station 5000 showed that the CPU time to process an R-tree
page, once brought in core, is 0.12 msec. This is 156 times smaller than the
average disk access time (20 msec). Therefore it is important to parallelize

the 1/0O operation.

(b) The second reason for using multiple disk units is that several of the above
applications involve huge amounts of data, which do not fit in one disk.
For example, NASA expects 1 Terabyte (=10'?) of data per day; this
corresponds to 10'¢ bytes of satellite data per year. Geographic databases
can be large; for example, the TIGER database mentioned above is 19

Gigabytes. Historic and temporal databases tend to archive all the changes
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and tend to grow quickly in size.

The target system is intended to operate as a server, responding to range queries
of concurrent users. Our goal is to maximize the throughput, which translates

into the following two requirements:

‘minLoad’” Queries should touch as few nodes as possible, imposing a light load
on the I/O sub-system. As a corollary, queries with small search regions

should activate as few disks as possible.

‘uniSpread’ Nodes that qualify under the same query should be distributed over
the disks as uniformly as possible. As a corollary, queries that retrieve

much data should activate as many disks as possible.

The proposed hardware architecture consists of one processor with several disks
attached to it. Multi-processor architectures are still under study [49]

On this architecture, we will distribute the nodes of a traditional R-tree. We
propose and study several heuristics in order to determine how to choose a disk
on which to place a newly created R-tree node. The most successtul heuristic,
based on the ‘proximity index’, estimates the similarity of the new node with the
other R-tree nodes already on a disk, and chooses the disk with content having
the least degree of similarity. Experimental results have shown that our scheme
consistently outperforms other heuristics.

The rest of this chapter is organized as follows. Section 3.2 proposes the
‘multiplexed” R-tree as a way to store an R-tree on multiple disks. Section
3.3 examines alternative criteria for choosing a disk for a newly created R-tree
node. It also introduces the ‘proximity’ measure and derives the formulas for

it. Section 3.4 presents experimental results and observations. Section 3.5 gives
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some concluding remarks.

3.2 Alternative Designs

The underlying file structure is the R-tree. Given that, our goal is to design
a server for spatial objects on a parallel architecture in order to achieve high
throughput under concurrent range queries.

The first step is to select the hardware architecture. For the reasons men-
tioned in the introduction, we propose a single processor with multiple disks
attached to it. The next step is to decide how to distribute an R-tree over multi-
ple disks. There are three major approaches: (a) d independent R-trees, (b) Disk
stripping (or ‘super-nodes’, or ‘super-pages’), and (c) the ‘Multiplexed’ R-tree,
or MUX R-tree for short, which we describe and propose later. We examine the

three approaches qualitatively:

3.2.1 Independent R-trees

In this scheme we can distribute the data rectangles among the d disks and build
a separate R-tree index for each disk. This works primarily for unsynchronized
disks. The performance will depend on how we distribute the rectangles over
the different disks. There are two major approaches:

Data Distribution. The data rectangles are assigned to the different disks
in a round robin fashion, or through the use of a hashing function. The data
load (number of rectangles per disk) will be balanced. However, this approach
violates the minimum load (‘minLoad’) requirement: even small queries will

activate all the disks.
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Space Partitioning. In this method the space is divided into d partitions,
and each partition is assigned to a separate disk. For example, for the R-tree of
Figure 3.1, we could assign nodes 1, 2, and 3 to disks A, B, and C, respectively.
The children of each node follow their parent on the same disk. This approach
will activate few disks on small queries, but it will fail to engage all disks on

large queries, thus violating the uniform spread (‘uniSpread’) requirement.

3.2.2 Super-nodes

In this scheme we have only one large R-tree, with each node (=‘super-node’)
consisting of d pages; the i-th page is stored on the i-th disk (¢ = 1,...,d). To
retrieve a node from the R-tree, we read in parallel all d pages that constitute
this node. In other words, we ‘stripe’ the super-node on the d disks, using
page-striping [27]. Almost identical performance will be obtained with bit- or
byte-level striping.

This scheme can work both with synchronized and unsynchronized disks.
However, this scheme violates the ‘minimum load’ requirement: regardless of

the size of the query, all the d disks become activated.

3.2.3 Multiplexed (MUX) R-tree

In this scheme we use a single R-tree, with each node spanning one disk page.
Nodes are distributed over the d disks, with pointers across disks. For example,
Figure 3.2 shows one possible multiplexed R-tree, corresponding to the R-tree
of Figure 3.1. The root node is kept in main memory while other nodes are
distributed over the disks A, B, and C. For the multiplexed R-tree, each pointer

contains a disk_id in addition to the page_id of the traditional R-tree. However,

18



J
1
Root
/
o
/ —
I/
_________________ 3
LR TE Qn !
7 ] |
I |
L | !
QS I I
| 9 I
| )

1 | 1 ! 3 |
| | |
I '
| 10 |
| |

| |
4 I, | I
5 : | 12 I
E L i

Ee
0 .
0 1

Figure 3.1: Data (dark rectangles) organized in an R-tree. Fanout=3. Dotted

rectangles indicate queries.

the fanout of the node is not affected because the disk_id can be encoded within
the four bytes of the page_id.

Notice that the proposed method fulfills both requirements (minlLoad and
uniSpread): For example, from Figure 3.2, we see that the ‘small’ query Qs of
Figure 3.1 will activate only one disk per level (disk B, for node 2, and disk A,
for node 7), fulfilling the minimum load requirement. The large query @; will
activate almost all the disks in every level (disks B and C at level 2, and then
all three disks at the leaf level), fulfilling the uniform spread requirement.

Thus, with a careful node-to-disk assignment, the MUX R-tree should out-
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Disk A Disk B Disk C

Figure 3.2: An R-tree stored on three disks.

perform both the methods that use super-nodes as well as the ones that use d
independent R-trees. Our goal now is to find a good heuristic for assigning nodes
to disks.

By its construction, the multiplexed R-tree fulfills the minimum load require-
ment. To meet the uniform spread requirement, we must find a good heuristic for
assigning nodes to disks. In order to measure the quality of such heuristics, we
shall use the response time as a criterion; response time is calculated as follows.

Let R(q) denote the response time for the query ¢. We must first discuss
how the search algorithm operates. Given a range query ¢, the search algorithm
needs a queue of nodes, which is manipulated as follows:

Algorithm 1: Range Search
S1. Insert the root node of the R-tree in the processing queue.
S2. While (more nodes in queue)

e Pick the next node n from the processing queue.

e Process node n by checking for intersections with the query rectangle.
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If this is a leaf node, print the results; otherwise, send a list of requests
to some or all of the d disks, in parallel and insert their node-id’s into

the FIFO queue

Since the CPU is much faster than the disk, we assume that the CPU time
is negligible (=0) compared to the time required by a disk to retrieve a page.
Thus, the measure for the response time is the time (in terms of number of disk
accesses) required by the latest disk to finish servicing the query. The ‘disk-time’
diagram helps visualize this concept better. Figure 3.3 presents the ‘disk-time’
diagram for the query @); of Figure 3.1. The horizontal axis is time, which is
divided into slots. The duration of each slot is the time for a disk access and is
considered constant. The diagram indicates when each disk is busy, as well as
the page it is seeking, during each time slot. Thus, the response time for (), is
2, while its load L(Q;)= 4, because @); retrieved four pages total.

As another example, the ‘huge’ query ()1, of Figure 3.1 results in the disk-time
diagram of Figure 3.4, with response time R(Q)),)=3, and a load of L(Q))=T.

page access time

-

Disk A _

Disk B |}

DikC [—

1 2 3 time

Figure 3.3: Disk-Time diagram for the large query Q).

Given the above examples, we have the following definition for the response

time:
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Figure 3.4: Disk-Time diagram for the huge query Q5.

Definition 1 (Response Time) . The response time R(q) for a query ¢ is the

response time of the latest disk in the disk-time diagram.

3.3 Disk Assignment Algorithms

The problem we examine in this section is how to assign nodes to disks within
the Multiplexed R-tree framework. The goal is to minimize the response time
and to satisfy the requirement for uniform disk activation (‘uniSpread’). As
discussed before, the minimum load requirement is fulfilled.

When a node (page) in the R-tree overflows, it is split into two nodes. One
of these nodes, say, Ny, has to be assigned to another disk. If we carefully select
this new disk we can improve the search time. Let diskOf() be the function
that maps nodes to the disks in which they reside. Ideally, we should consider
all the nodes that are on the same level with Ny, before we decide where to store
Ny. Such consideration, however, would require too many disk accesses. Thus,
we consider only the sibling nodes Ny,..., Ng, that is, the nodes that have the

same father Nygper as Ng. Accessing the father node comes at no extra cost,
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because we have to bring it into main memory anyway to insert Ny. Notice that
we do not need to access the sibling nodes Ny, ..., N; because all the information
we need about them (extent of MBR and disk of residence) are recorded in the
father node.

Thus, the problem can be informally abstracted as follows:

Problem 1: Disk assignment

Given a node (= rectangle) Ny, a set of nodes Ny,..., Nj and the assignment

of nodes to disks (diskOf() function)

Assign Ny to a disk in such a way as to maximize the response time on range

queries.
There are several criteria that we have considered:

Data balance: Ideally, all disks should have the same number of R-tree nodes.
It a disk has many more pages than do other disks, it is more likely to

become a ‘hot spot’ during query processing.

Area balance: Since we are storing not only points but also rectangles, the area
of the pages stored on a disk is another factor. A disk that covers a larger

area than the rest is again more likely to become a hot spot.

Proximity: Another factor that affects the search time is the spatial relation
between the nodes that are stored on the same disk. If two nodes intersect,
or are close to each other, they should be stored on different disks to

maximize parallelism.

We can not satisfy all these criteria simultaneously because some of them may

conflict. We now describe some heuristics, each of which attempts to satisfy
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one or more of the above criteria. In Section 3.4 we compare these heuristics

experimentally.

Round Robin (‘RR’). When a new page is created by splitting, this criterion
assigns it to a disk in a round robin fashion. Without deletions, this scheme
achieves perfect data balance. For example, in Figure 3.5, RR will assign

Ny to the least populated disk, that is, disk C.

Minimum Area (‘MA”). This heuristic tries to balance the area of the disks:
When a new node is created, the heuristic assigns it to the disk that has
the smallest area covered. For example, in Figure 3.5, MA would assign
Np to disk A, because the light gray rectangles Ny, N3, Ny and Ng of disk

A have the smallest combined area.

N tather
|:| Disk A
N7
N Disk B
Ng 8 [ |
—/
. Disk C
Ng N4|:|
N3
| ]
N2
N
1
— No

Figure 3.5: Node Ny is to be assigned to one of the three disks.

Minimum Intersection (‘MI”). This heuristic tries to minimize the overlap of

nodes that belong to the same disk. Thus, it assigns a new node to a disk,
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such that the new node intersects as little as possible with the other nodes

on that disk. Ties are broken using one of the above criteria.

Proximity Index (‘PI’). This heuristic is based on the prozimity measure, which
we describe in detail in the next subsection. Intuitively, this measure
compares two rectangles and assesses the probability that they will be
retrieved by the same query. As we shall soon see, this procedure is related
to the Manhattan (or city-block or ;) distance. Rectangles with high
proximity (i.e., intersecting, or close to each other) should be assigned
to different disks. The proxzimity indexr of a new node Ny and a disk D
(which contains the sibling nodes Ny, ..., Nj) is the proximity of the most
‘proximal’ node to Ny. A metric for the proximity index (as a function of

the proximity measure) is explained in the next section.

The algorithm works as follows: It calculates the proximity index between
the new node Ny and each of the available disks. Then it assigns node N
to the disk with the lowest proximity index, i.e., to the disk with the least
similar nodes with respect to Ny. Ties are resolved using the number of
nodes (data balance): Ny is assigned to the disk with the fewest nodes. For
the setting of Figure 3.5, PI will assign Ny to disk B because it contains
the most remote rectangles (least Proximity Index). Intuitively, disk B is

the best choice for Ng.

Although favorably prepared, the example of Figure 3.5 indicates that PI
should perform better than the rest of the heuristics. Next we show how to

calculate exactly the ‘proximity measure’ of two rectangles.
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3.3.1 Proximity Measure

Whenever a new R-tree node Nj is created, it should be placed on the disk that
contains nodes (= rectangles) that are as dissimilar to Ny as possible. Here
we try to quantify the notion of similarity between two rectangles. The pro-
posed measure can be trivially generalized to hold for hyper-rectangles of any
dimensionality. For clarity, we examine one- and two- dimensional spaces first.

Intuitively, two rectangles are similar if they qualify often under the same
query. Thus, a measure of similarity of two rectangles R and S is the proportion

of queries that retrieve both rectangles. Thus,
proximity( R, S) = Prob { a query retrieves both R and S }

or, formally

. #of queries retrieving both — |q|
proximity(R,S) = , = —
total# of queries Q|

(3.1)

To avoid complications with infinite numbers, let us assume during this subsec-
tion that our address space is discretized, with very fine granularity. (The case
of a continuous address space will be the limit for infinitely fine granularity).
Based on the above definition, we can derive the formulas for proximity, given
the coordinates of the two rectangles R and S. To simplify the presentation, let

us consider the one-dimensional case first.

One-d Case

Without loss of generality, we can normalize our coordinates, and assume that
all our data segments lie within the unit line segment [0,1]. Consider two line

segments R and S where R=(7rsarty Tend) and S=(Sstart, Send)-
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If we represent each segment X as the point (2siare, Tend), the segments R
and S are transformed into two-dimensional points [35] as shown in Figure 3.6.

In the same Figure, the area within the dashed lines is a measure of the number
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Figure 3.6: Mapping line segments to points.

of all the possible query segments, ie, queries whose size is < 1 and who intersect
the unit segment. There are two cases to consider, depending on whether R and
S intersect or not. Without loss of generality, we assume that R starts before S

(i.e., Tstart S Sstart)-

(a) R and S intersect. Let ‘I’ denote their intersection, and let ¢ be its length.
Every query that intersects ‘I’ will retrieve both segments R and S. The
total number |@| of possible queries is proportional to the trapezoidal area

within the dashed lines in Figure 3.6; its area is

(2x2—-1x1) 3

Q] = 5 =5 (3.2)

The total number of queries |¢| that retrieve both R and S is proportional

to the shaded area of Figure 3.7
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Figure 3.7: Intersecting line segments; the shaded area contains all the segments

that intersect R and S.

1
ol = (146)° 62 = £ x (142 x6) (33)
Thus, for intersecting segments R and S we have

1
proximity(R,S) = % =3 X (142 x96) (3.4)
where ¢ is the length of the intersection

(b) R and S are disjoint, with distance A between them (see Figure 3.8). In
this case, a query has to cover the segment (7,4, Sstart), in order to retrieve

both segments. The number of such queries is proportional to the shaded
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Figure 3.8: Disjoint line segments; the shaded area contains all the segments

that intersect R and S.

area in Figure 3.8.b; its area is given by

1

¢=5x (1—-A)? (3.5)

and the proximity measure for R and S is

_lal LAy (3.6)

proximity(R,S) = Gk

Notice that the two formulas agree when R and S just touch: in this case,

6 =A =0 and the proximity is 1/3.

N-d Case

For the 2-d case, the previous formulas can be generalized by assuming uni-

formity and independence: Let R and S be two data rectangles, with R,, R,
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denoting the = and y projections of R. A query X will retrieve both R and
S if and only if (a) its x-projection X, retrieves both R, and S, and (b) its
y-projection X, retrieves both R, and 5.

Since the = and y sizes of the query rectangles are independent, the fraction
of queries that meet both of the above criteria is the product of the fractions for
each individual axis; i.e., the proximity measure proximity,() in two dimensions

is given by:
proximitys (R, S) = provimity( Ry, Sy) x prorimity(R,, S,) (3.7)

The generalization for n-dimensions is straightforward:

proximity,(R,S) = ﬁproximity(]%i, Si) (3.8)
i=1
where R; and S; are the projections on the i-th axis, and the prozimity() function
for segments is given by Eqgs. 3.4 and 3.6.
The proximity indexr measures the similarity of a rectangle Ry to a set of
rectangles R = {Ry,..., Rr}. We need this concept to assess the similarity of
a new rectangle Ry and a disk D containing the rectangles of the set R. The

proximity index is the proximity of the most similar rectangle in R. Formally:

proximityIndex( Ry, R) = max proximity,(Ro, R;) (3.9)

7

where R; € R, and n is the dimensionality of the address space.
In Figure 3.9, we calculate the proximity measure between Ny and each of its
siblings, namely N5, N7, and Ng and then pick the largest proximity measure as

a value for the proximity index between Ny and disk A (= 0.15 in this example).
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N father

. Disk A

Figure 3.9: The proximity index between the node Ny and the set { V5, N-, Ng}.

The numbers next to the solid arrows show the proximity measure.

3.3.2 Observations

As we can see, the proximity measure can take any real value in the range [0, 1]
with its value increasing with the similarity between the two rectangles. Next,
we present some arithmetic examples to illustrate that the proximity measure be-
haves as intuitively expected. As before, a one-dimensional segment X is repre-
sented by its starting and ending coordinate [ gqy¢, Teng]. In the one-dimensional

case we have

e proximity([0,0],[1,1])=0, which says that the two extreme points have the

minimum possible proximity.
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Figure 3.10: (a) Two equal line segments R, S (length(R) = 0.2) moving toward

each other (b) Proximity index(R, S) values as a function of their distance A.

o provimity([z,x + 0], [x,x + 6]) = (1 + 26)/3, that is, the proximity of a
segment with itself increases with the size of the segment, reaching the

maximum value of 1 when the segment covers the whole space

e the proximity measure is 1/3 for two segments that touch in a point; it
is larger for two intersecting segments, depending on the length of the

intersection; it is <1/3 for non-intersecting segments, depending on their

distance.

Figure 3.10 shows how the proximity index value changes in one-dimensional
space. R and S are two line segments (one-dimensional rectangles) of length
0.2 each. At the beginning, they are placed at the two opposite ends of the

space. Figure 3.10(b) shows the proximity index values between R and S as
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they move toward each others. When R and S are separate from each other (no
intersection), the separation is measured by the distance between the edges of
R and S and is represented by positive values. On the other hand, when R and
S intersect, the length of the intersection represented as a negative distance in
Figure 3.10(b). Note that the proximity index decreases quadratically with the
increase in the distance between the non-intersecting segments while it increases
linearly with increasing the overlap region for the intersecting segments.

In the two-dimensional case, the proximity measure is better than the (inverse

of) the Manhattan distance:

e For overlapping rectangles, the Manhattan distance is zero, regardless of
the area of overlap. On the contrary, the proximity measure takes into

account not only the area, but the perimeter of the intersection as well.

e For disjoint rectangles, the Manhattan distance ignores the relative posi-
tion of the rectangles. For example, in Figure 3.11, the rectangles R and
T have the same Manhattan distance from the rectangle S. Intuitively, R
is ‘more similar’ to S than T is to S. The proximity measure reflects this

fact: proximitys(R, S)= 0.126 > 0.09=prozimity>(T,S).

In conclusion, the behavior of the proximity measure completely agrees with
our intuition: It related to the inverse Manhattan distance of two objects; in
addition, it takes into account the relative position of the objects, and it handles

overlapping objects correctly.
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Figure 3.11: Example illustrating the accuracy of the proximity index over the

Manhattan distance.

3.4 Experimental Results

To assess the merit of the proximity index heuristic over the other heuristics,
we ran simulation experiments on two-dimensional rectangles. We augmented
the original R-tree code with some routines to handle the multiple disks (e.g.,
‘choose_disk()’, ‘proximity()’, etc.) The code is written in C under Ultrix and
the simulation experiments ran on a DECstation 5000. We used both the linear
and the quadratic splitting algorithm of Guttman [32]. The quadratic algorithm
resulted in better R-trees, i.e., R-trees with smaller father nodes. The exponen-
tial algorithm was very slow and was not used. Unless otherwise stated, all the
results we present are based on R-trees that used the quadratic split algorithm.

In our experiments we assume that
e all D disk units are identical.

o the page access time is constant.
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Symbols

Definitions

D
diskOf()

L(q)
N

p

proximity,()

average area of a data rectangle

data density (‘cover quotient’)

number of disks

maps nodes to disks

‘Load’: total number of pages touched by query ¢
number of data rectangles

size of a disk page in Kbytes

proximity of two n-d rectangles

side of a query rectangle

response time for query ¢ (in disk accesses)
relative response time (compared to PI)

speed-up

Table 3.1: Summary of symbols and definitions.
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o the first two levels of the Multiplexed R-tree (the root and its children) fit
in main memory. The required space is of the order of 100 Kb, which is a

modest requirement even for personal computers.

o the CPU time is negligible. As discussed before, the CPU is two orders
of magnitude faster than the disk. Thus, for the number of disks we have
examined (1-25 disks), the delay caused by the CPU is negligible. In the
following experiments, we use the number of disk accesses as a measuring

unit for the query response time.

Without loss of generality, the address space was normalized to the unit square.
There are several factors that affect the search time. We used real data as well
as synthetic data. The reason for using synthetic data is that we have better
control over the several parameters that characterize the data set. One real data
set comes from the TIGER files (Bureau of Census). It consists of 39,717 line
segments, representing the roads of Montgomery County in Maryland. Using the
minimum bounding rectangles of the segments, we obtained 39,717 rectangles,
with data density 7 = 0.35. We refer to this dataset as the ‘MG County’ dataset.
Another dataset, which came from NASA, consists of 11,284 observation points
from the International Ultraviolet Explorer (IUE) satellite. We refer to this
dataset as the TUE’ dataset. It is important to note that these data sets are

non-uniform and highly skewed. We studied the following input parameters:
The number of disks D: It ranged from 5-25.

The total number of data rectangles N: It ranged from 11,000 to 200,000

rectangles.
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The size of queries ¢s X ¢s:  The query side ¢, ranged from 0 (point queries) to
0.25.

The page size p: It ranged from 1Kb to 4Kb.

Another important factor, which is derived from N and the average area a of
the data rectangles, is the “data density” 7 (or “cover quotient”) of the data
rectangles. This is the sum of the areas of the data rectangles in the unit square,
or equivalently, the average number of rectangles that cover a randomly selected
point. Mathematically: 7 = N x a. For the selected values of NV and «a, the data
density ranges from 0.25 to 2.0.

The synthetic data rectangles were generated as follows: Their centers were
uniformly distributed in the unit square; their & and y sizes were uniformly
distributed in the range [0,max], where maxz = 0.006

The query rectangles were squares with side ¢;. Their centers are uniformly
distributed in the unit square. For every experiment, 100 randomly generated
queries were asked and the results were averaged. Data or query rectangles that
were not completely inside the unit square were clipped. The proximity index
heuristic performed very well in our experiments and is therefore the proposed
approach.

In the following subsections, we present: (a) A comparison among the node-
to-disk assignment heuristics (MI, MA, RR and PI); recall that they are all
within the Multiplexed R-tree framework. (b) A comparison of the proximity
index versus Round Robin. (¢) A comparison of the MUX R-tree + PI versus

the super-node method. (d) A study of the speed-up achieved by PI.
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3.4.1 Comparison of the Disk Assignment Heuristics

Montgomery County data set, page size = 4k, no disks= 10
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Figure 3.12: Comparison among all heuristics (PI,MI,RR and MA) — Real Data
— TIGER file.

In this section we compare the real response time for each of the four heuristics
(RR, MI, MA, PI), as a function of the relative query size ¢;. Figures 3.12- 3.14
plots the response time (in terms of the number of disk accesses) as a function
of the size of the query side. In Figure 3.12 we used the MG County dataset that
represents the roads of Montgomery County, Maryland. Figure 3.13 shows the
same experiment carried over the [UF dataset. In addition to the real datasets
we used the synthetic dataset; Figure 3.14 consists only of rectangles with the
following parameters : N=25,000 7=0.26, D=10, p=4.

Figures 3.12 - 3.14 show that the proximity index (PI) heuristic performs
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better than other heuristics.  This behavior is typical for other real datasets

IUE data set, page size = 2k, nodisks=7
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Figure 3.13: Comparison among all heuristics (PI,MI,RR and MA) — Real Data
— [UE data set.

which we used and was consistent over several combinations of parameter values
(for synthetic data) : p=1,2,4 Kb; 7=0.5,1,2; D=5,10,20. The main observation
is that PI and MI, the two heuristics which take the spatial relationships into
account, perform the best. Round Robin is the next best, while the Minimum
Area heuristic demonstrates the worst performance.

Comparing the MI and PI heuristics, we see that MI performs as well as the
proximity index heuristic for small queries; for larger queries, the proximity index
wins. The reason is that MI may assign the same disk to two non-intersecting

rectangles that are very close to each other.
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Data density = 0.25, page size = 4k, no disks= 10
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Figure 3.14: Comparison among all heuristics (PI,MI,RR and MA) — Rectangles
Only.

3.4.2 Proximity Index Versus Round Robin

Here we study the savings that the proposed heuristic PI can achieve over the
RR. The reason we have chosen RR is because it is the simplest heuristic to
design and implement. We show that the extra effort to design the PI heuristic
pays off consistently.

To make the comparison easier, in this subsection we normalize the response
time of the different heuristics to that of the proximity index and plot the ratios
of the response times. Figure 3.15 plots the response time of RR relative to PI
as a function of the query size ¢;. The number of disks is D=10, the data density

is 7=0.26 and the page size p varied, with values of 1, 2 and 4Kb. We conclude

40



Data density=0.26, # rect=25k, # disks=10
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Figure 3.15: Relative response time (RR over PI) vs. query size for different

page sizes.

that the gains of PI increase with increasing page size. This is because the
PI heuristic considers only sibling nodes (nodes under the same father); with a
larger page size, the heuristic takes more nodes into account and therefore makes
better decisions.

Figure 3.16 illustrates the effect of the data density on the relative gains of
PI over RR. The page size p was fixed at 4Kb; the data density varied (7=0.26,
0.5, 1 and 2). Everything else was the same as in Figure 3.15. The main

observation is that R(q) decreases with the data density 7. This is explained
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Figure 3.16: Relative response time (RR over PI) vs query size for different data

densities.

as follows: For large 7, there are more rectangles in the vicinity of the newly
created rectangle. With constant number of disk units, the probability that two
rectangles retrieved by constant query size from the same disk increases. To
improve the performance in this case, we need to take more sibling nodes into
account in the disk assignment algorithm (by increasing the node size) and use
more disk units.

An observation common to both Figures is that r(¢) peaks for medium size
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queries. For small queries, the number of nodes to be retrieved is small, leaving
little room for improvement. For huge queries, almost all the nodes need to be
retrieved, in which case the data balance of RR achieves good results.

We ran experiments with the linear split algorithm of the R-tree. The PI
heuristic outperformed the RR consistently, with smaller relative gains, how-
ever. The peak gain was &20-30%, instead of the 30-60% that we achieved in
Figures 3.15 and 3.16. This difference occurs because the proximity index an-
ticipates that most of the nodes that are close to the new node will be under
the same father. Linear splitting, however, does not pack nodes together as well
as does quadratic splitting. As a result, in the linear splitting R-tree, many
nodes that are close to the new node will not be considered by the PI algorithm

because they are not siblings.

3.4.3 Comparison with the Super-node Method

In order to justify our claims about the advantages of the Multiplexed (‘MUX?)
R-tree over the super-node method, we compared the two methods with respect
to the two requirements, ‘uniSpread’ and ‘minLoad’. The measure for the first
requirement is the response time R(q); the measure for the second is the load
L(q). We present graphs with respect to both measures.

Figure 3.17 compares the response time of the Multiplexed R-tree (with PI)
against the super-node method. Notice that the difference in performance in-
creases with the query size ¢;. In general, the Multiplexed R-tree outperforms
the super-node scheme for large queries. The only situation where the super-
node scheme performs slightly better is when there are many disks D and the

query is small. This phenomenon occurs because, since D is large, the R-tree
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Figure 3.17: Response time vs. query size for Multiplexed R-tree with PI, and
for super-nodes (D=5 disks).

with super-nodes has fewer levels than does the Multiplexed R-tree; in addition,
since the query is small, the response time of both trees is bounded by the height
of the respective tree. However, this is exactly the situation where the super-
node method violates the ‘minimum load’ requirement, imposing a large load on
the 1/0O sub-system and paying penalties in throughput. In order to gain insight
into the effect on the throughput, we plot the ‘load’ for each method with various
parameter values. Recall that the load L(¢) for a query ¢ is the total number of
pages touched (1 super-page counts as D simple pages). Figure 3.18 shows the
results for the same setting as before (Figure 3.17). The Multiplexed R-tree im-

poses a much lighter load: for small queries, its load is two to three times smaller
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Data density = 2, # rect = 100k
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Figure 3.18: Total number of pages retrieved (load), vs. query size ¢s — D=5.

than the load of the super-node method. Interestingly, the absolute difference
increases with the query size.

The conclusion of the comparisons is that the proposed method has better
response time than the super-node method, at least for large queries. In addition,
the proposed method will lead to higher throughput because it tends to impose
lighter loads on the disks. Both results agree with our intuition and indicate that

the proposed method will offer a higher throughput for a spatial object server.

3.4.4 Speed-up

The standard measure of the efficiency of a parallel system is the speed-up s,

which is defined as follows: Let Ry(q) be the response time for the query ¢ on a
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system with D disks. Then:
_ Ri(q)
Ra(q)

In this subsection we examine exclusively the Multiplexed R-tree method with

S

(3.10)

the PI heuristic because it seems to offer the best performance. Figure 3.19
shows the speed-up for data density 7=2, page size p=4Kb and for query side
size q, ranging from 0 to 0.25. The speed-up is high, e.g., 84% of the linear speed-
up (for ¢;=0.25). It achieves even higher values for smaller D. Moreover, the
speed-up increases with the size of the query, apparently because larger queries
can take better advantage of more disks.

Conversely, small queries reach a plateau in their speed-up curve. The smaller
the query size, the sooner the speed-up reaches the plateau. Figure 3.20 provides
the explanation pictorially. It shows the actual response times versus the number
of disks D for the very same setting. Notice that all curves approach the optimal
bound, namely, the number of levels of the tree that are not in core. A small
query will reach this bound quickly for a small D. Thus, the flattening of the
speed-up curves means that the respective queries enjoy minimal response time.

Finally, in Figure 3.21 we show how speed-up is affected by data density. The
query size is fixed at ¢;=0.25 and everything else remain the same. Increasing
7 yields higher speed-ups exactly because the query retrieves more nodes and is

therefore more amenable to parallelism.

3.5 Discussion

Using R-trees as the underlying file structure, we have studied alternative designs

for a spatial object server, We focused on rectangular range queries. Qur goal is
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Figure 3.19: Speed-up of the Multiplexed R-tree vs. number of disks with data

density = 2.

to maximize the parallelism for large queries, while at the same time engaging

as few disks as possible for small queries. To achieve these goals, we propose

e a hardware architecture with one CPU and multiple disks; this architec-
ture is simple, effective and inexpensive. It has no communication costs;
it requires inexpensive, general-purpose components; it can easily be ex-
panded (by simply adding more disks); and it can easily take advantage of

large buffer pools.
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Figure 3.20: Response time of the Multiplexed R-tree vs. number of disks for
different query sizes.

e a software architecture (termed ‘Multiplexed’ R-tree). It operates exactly

like a single-disk R-tree, the only difference being that its nodes are care-
fully distributed over the D disks.

Intuitively, this approach should be
better than the super-node approach and the “independent R-trees” ap-

proach with respect to throughput.
e the “proximity index” (PI) criterion, which decides how to distribute the

nodes of the R-tree on the D disks. Specifically, it tries to store a new

node on that one disk that contains nodes as dissimilar to the new node
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Figure 3.21: Speed-up of the Multiplexed R-tree vs. number of disks with query

size = (.25.

as possible.

Extensive simulation experiments show that the PI criterion consistently out-

performs other criteria (round robin and minimum area), and that it performs

data density=0.5

# disks

approximately as well or better than the minimum intersection criterion.

A comparison with the super-node (= disk striping) approach shows that

the proposed method offers a better response time for large queries and that it

imposes a lighter load, leading to higher throughput.
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With respect to speed-up, the proposed method can achieve near-linear speed-
up for large queries. Thus, the multiplexed R-tree with the PI heuristic seems

to be the best method for implementing a spatial object server.
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Chapter 4

Hilbert R-trees

4.1 Introduction

In this chapter, we introduce two new spatial indexes based on space-filling
curves. The first index is suitable for the static database in which updates are
very rare or in which there are no updates at all. The nodes of the resulting
R-tree will be fully packed, with the possible exception of the last node at each
level. Thus, the utilization is ~ 100%; we call this structure a Static Hilbert
R-tree. The second index supports insertions and deletions and is suitable for a
dynamic environment; we call it a Dynamic Hilbert R-tree.

For the static environment, we design and study several heuristics for building
the R-tree bottom-up. Most of these heuristics are based on space-filling curves,
and specifically on the Hilbert curve. The difficult step is to sort the rectangles
in some meaningful way; once this is done, we scan them, assigning each group
of C rectangles to a leaf page of the R-tree (where C' stands for the capacity
of the disk page). We report experiments from two-dimensional data, although
our method can handle higher dimensionalities. The experimental results show

that the most effective of our heuristics is the one that sorts the data rectangles
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according to the Hilbert value of their centers (‘2D-¢’ heuristic). This heuristic
consistently outperforms all the known R-tree variants, namely, the quadratic-
split R-tree and the R*-tree, as well as the method proposed by Roussopoulos
and Leifker [64], which is the only method of R-tree packing known up to now.
For the dynamic case, we propose an efficient indexing method for spatial
data; this method is called the Dynamic Hilbert R-tree or simply “Hilbert R-
trees.” Qur proposed indexing scheme combines the best characteristics of the
R-tree and the B*-tree. The Hilbert R-tree uses a simple insertion and splitting
algorithms similar to those used in the B*-tree. A new data rectangle is inserted
into the tree according to its place on the Hilbert curve that passes through all
the data in the space. Unlike other dynamic R-tree variants which have about
70% space utilization [7], the Hilbert R-tree can demonstrate much higher space
utilization. When a node overflows, it refrains from splitting. If the left sibling is
not full, the overflowing node pushes some of its entries to it. If the left sibling is
full, the two nodes are split into three nodes. This idea is known as local rotation
[47]. Moreover, the overflowing node can refrain from splitting unless s of the
sibling nodes are full. Thus, by varying the parameter ‘s’ (splitting policy), the
Hilbert R-tree trade off insertion cost for search speed and higher utilization.
The rest of this chapter is organized as follows. Section 4.2 describes our
proposed heuristics for building the static Hilbert R-tree. Section 4.3 describes
the Dynamic Hilbert R-tree. In section 4.4, we introduce the analytical formula
for computing the average response time for a given R-tree instance, given some
information about the minimum bounding rectangles of its nodes. Section 4.5
presents our experimental results, which verify the validity of the analytical

formula and compare the proposed methods (namely the Static and Dynamic
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Hilbert R-trees) with other R-tree variants. Section 4.6 gives the conclusions

and directions for future research.

4.2 Static Version — Ordering Rectangles

Method name

Description

2D-c
4D-zy

4D-cd

2Dz-c

lowx packed R-tree [64]

sorts on the 2d-Hilbert value of the centers (c;,cy)
sorts on the 4-d Hilbert value of the two corners,
i.e., (low,,low,, high,, high,)

sorts on 4-d Hilbert value of the center and
diameters, i.e., (¢, ¢y, dy, dy)

sorts on the z-value of the center (c,,c,)

sorts on the x coordinate of the lower left corner

linear-split R-tree [32]

quadratic-split R-tree [32]

R*-tree [7]

Guttman’s R-tree with linear split
Guttman’s R-tree with quadratic split

R-tree variant, better packing, forced reinsert

Table 4.1: List of methods - the proposed ones are in italics.

We assume that the data are static, or that the frequency of modification

is low. Our goal is to design a simple heuristic for constructing an R-tree with

100% space utilization, which, at the same time, will have as good response time

as possible. For a static environment, Roussopoulos and Leifker [64] proposed a

method for building a packed R-tree that achieves (almost) 100% space utiliza-

tion. The idea is to sort the data on the x or y coordinate of one of the corners
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of the rectangles. The sorted list of rectangles is scanned; successive rectangles
are assigned to the same R-tree leaf node until that node is full; a new leaf node
is then created and the scanning of the sorted list continues. Thus, the nodes of
the resulting R-tree will be fully packed, with the possible exception of the last
node at each level. Thus, the utilization is ~ 100%. Higher levels of the tree
are created in a similar way. Their experimental results on point data showed
that their packed R-tree performs much better than does the linear split R-tree
for point queries. In our experiments (Section 4.5), their packed R-tree outper-
formed the quadratic split R-tree and the R*-tree as well for point queries on
point data. However, the method does not perform that well for region queries
and/or rectangular data.

We shall refer to the Roussopoulos and Leitker’s method as the lowz packed
R-tree. In our implementation of their method, we sort the rectangles according
to the @ value of the lower left corner (‘lowz’). Sorting on any of the other three
values gives similar results; thus our implementation does not impose an unfair
disadvantage to the lowz packed R-tree. The fact that the lowz packed R-tree
performs worse than do dynamic designs (e.g. R*-tree) compels us to compare
our new packing methods with both Static and Dynamic designs, including the
lowz packed R-tree, the Guttman R-tree, and the R*-tree. Figures 4.1 and 4.2
highlight the problem of the lowz packed R-tree. Figure 4.2 shows the leaf nodes
of the R-tree that the lowz packing method will create for the points of Figure
4.1. The fact that the resulting father nodes cover little area explains why the
lowz packed R-tree achieves excellent performance for point queries; the fact that
the fathers have large perimeters (in conjunction with the ramification of Eq. 4.3

which is given in Section 4.4), explains the degradation of performance for region
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queries. Intuitively, the packing algorithm should ideally assign nearby points
to the same leaf node. Ignorance of the y-coordinate by the lowz packed R-tree

tends to violate this empirical rule.
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Figure 4.1: 200 points uniformly distributed.

In order to cluster the data better than can be done by the lowz packed
R-trees, we propose the use of space-filling curves and specifically, the Hilbert
curve.

A space-filling curve visits all the points in a k-dimensional grid exactly once
and never crosses itself. The Z-order (or Morton key order, or bit-interleaving,
or Peano curve), the Hilbert curve, and the Gray-code curve [14] are examples of
space-filling curves. In [21], it was shown experimentally that the Hilbert curve
achieves the best clustering of the above three methods.

We now provide a brief introduction to the Hilbert curve. The basic Hilbert
curve on a 2x2 grid, denoted by Hj, is shown in Figure 4.3. To derive a curve

of order 7, each vertex of the basic curve is replaced by the curve of order ¢ — 1,

)



100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00
0.00
-5.00

o
S
8
N
S
S
8
I
S
S
8
2
3
S
8
8
8
.
8
8

Figure 4.2: MBR of nodes generated by the ‘lowx packed R-tree” algorithm.

which may be appropriately rotated and/or reflected. Figure 4.3 also shows
the Hilbert curves of order two and three. When the order of the curve tends
to infinity, like other space-filling curve, the resulting curve is a fractal, with a
fractal dimension of two [53]. The Hilbert curve can be generalized for higher
dimensionalities. Algorithms for drawing the two-dimensional curve of a given
order can be found in [30], [40]. An algorithm for higher dimensionalities is given
in [9].

The path of a space-filling curve imposes a linear ordering on the grid points;
this path may be calculated by starting at one end of the curve and following
the path to the other end. The actual coordinate values of each point can be
calculated. However, for the Hilbert curve this is much harder than, for example,
for the Z-order curve. Figure 4.3 shows one such ordering for a 4 x 4 grid (see
curve H3). For example, the point (0,0) on the Hy curve has a Hilbert value of

0, while the point (1,1) has a Hilbert value of 2.

56



5 6 9 10 ‘ |_| I ‘_|_|_
4 Z 8 11 —| |—:\ |:
I L N W
L L
0 3 5 . 14 15
H, H, H,

Figure 4.3: Hilbert curves of order 1, 2 and 3.

Having discussed this preliminary material, we are in a position now to de-
scribe the proposed methods. Exploiting the good clustering that the Hilbert
curve can achieve, we impose a linear ordering on the data rectangles and then
traverse the sorted list, assigning each set of ' rectangles to a node in the R-tree.
The final result is that the set of data rectangles on the same node will be close
to each other in the linear ordering, and most likely in the native space; thus the
resulting R-tree nodes will have smaller areas. Figure 4.3 illustrates the intuitive
reasons why our Hilbert-based methods will result in good performance. The
data is composed of points (the same points as given in Figures 4.1 and 4.2).
We see that, by grouping the points according to their Hilbert values, the MBRs
of the resulting R-tree leaf nodes tend to be small square-like rectangles. This
indicates that the nodes will likely have small area and small perimeters. Small
area values result in good performance for point queries; small area and small
perimeter values lead to good performance for larger queries. Eq. 4.3 confirms
the above claims.

We studied several methods for sorting the data rectangles. All of them use
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Algorithm Hilbert-Pack:
(packs rectangles into an R-tree)
Step 1. Calculate the Hilbert value for each data rectangle
Step 2. Sort data rectangles on ascending Hilbert values
Step 3. /* Create leaf nodes (level [=0) */
While (there are more rectangles)
generate a new R-tree node
assign the next (' rectangles to this node
Step 4. /* Create nodes at higher level (141) */
While ( there are > 1 nodes at level [)
sort nodes at level [ > 0 on ascending
creation time

repeat Step 3

Figure 4.4: Pseudo-code of the packing algorithm.
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the same algorithm (see Figure 4.4) to build the R-tree. The only point at which
the proposed Hilbert-based methods distinguish themselves from each other is in
the way they compute the Hilbert value of a rectangle. We examine the following

alternatives:

4d Hilbert through corners (‘4D-xy’): Each data rectangle is mapped to
a point in four-dimensional space formed by the lower left corner and the
upper right corner, namely (lowx, lowy, highx, highy). The Hilbert value

of this four-dimensional point is the Hilbert value of the rectangle.

4-d Hilbert through center and diameter(‘4D-cd’): Each data rectangle
is mapped to the four-dimensional point (¢, ¢y, d;, d,) where ¢, ¢, are the
coordinates of the center of the rectangle and d,, d, the ‘diameters’ or sides
of the rectangle. As in 4D-xy, the Hilbert value of this four-dimensional

point is the Hilbert value of the rectangle.

2-d Hilbert through Centers Only (‘2D-c’): Each data rectangle is rep-
resented by its center only; the Hilbert value of the center is the Hilbert

value of the rectangle.

For the sake of comparison, we also examined a method that uses the Peano
curve, or ‘z-ordering’, despite the fact that the z-ordering achieves inferior clus-
tering compared to the Hilbert curve [21]. The z-value of a point is computed
by bit-interleaving the binary representation of its x and y coordinates. For
example, in Figure 4.5, the point (0,0) has a z-value of 0, while the point (1,3)

has a z-value of 7.

Z-order through Centers only (‘2Dz-c’): The value of the rectangle is the

z-value of its center.
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Figure 4.5: Peano (or z-order) curve of order 3.

Table 4.1 gives a list of the methods we compared, along with a brief de-
scription of each. The new methods are in italics; R-tree methods for static
environments are above the double horizontal line; the other methods can be

applied for dynamic environments as well.

4.3 Design of (Dynamic) Hilbert R-trees

In this section we introduce the ‘Dynamic Hilbert R-tree’ (or simply ‘Hilbert
R-tree’) and discuss algorithms for searching, insertion, deletion, and overflow
handling. The performance of R-trees depends on the quality of the algorithm
that clusters the data rectangles on a node. We propose the use of space-filling
curves, and specifically the Hilbert curve, to impose a linear ordering on the data
rectangles.

The Hilbert value of a rectangle needs to be defined. A good choice is the
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following:

Definition 2 : The Hilbert value of a rectangle is defined as the Hilbert value

of its center.

4.3.1 Description

The goal is to create a tree structure that can
e behave like an R-tree on search.

e support local rotation on insertion, using the Hilbert value of the inserted

data rectangle as the primary key.

These goals can be achieved as follows: for every node n of our tree, we store
(a) its MBR, and (b) the Largest Hilbert Value (LHV) of the data rectangles
that belong to the subtree with root n.

Specifically, the Hilbert R-tree has the following structure. A leaf node con-

tains at most () entries each of the form
(R, objid)

where () is the capacity of the leaf, R is the MBR of the real object (2100 , high » Yiow s Yhigh ),
and 0bj — ud is a pointer to the object description record. The main difference
between the Hilbert R-tree and the R*-tree is that nonleaf nodes also contain in-
formation about the LHVs. Thus, a non-leaf node in the Hilbert R-tree contains

at most (), entries of the form

(R, ptr, LHV)
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where (', is the capacity of a non-leaf node, R is the MBR that encloses all the
children of that node, ptr is a pointer to the child node, and LHV is the largest
Hilbert value among the data rectangles enclosed by R. Notice that since the
non-leaf node picks one of the Hilbert values of the children to be the value of its
own LHYV, we never calculate or use the Hilbert values of the MBR of non-leaf
nodes. Figure 4.6 illustrates some rectangles organized in a Hilbert R-tree. The
Hilbert values of the centers are the numbers near the ‘x’ symbols (shown only
for the parent node ‘II’). The LHV’s are in [brackets]. Figure 4.7 shows how the
tree of Figure 4.6 is stored on the disk; the contents of the parent node ‘II" are
shown in more detail. Every data rectangle in node ‘I’ has a Hilbert value <33;

everything in node ‘II” has a Hilbert value greater than 33 and <107, etc.

(100, 100)
(30,75) L (5L75) , (55,75)
« X[98]
[92] | (35,65)
(2d:60)
[107] (55}50)
' (35,40) Ny i (80,40)
[107]
(20,38) “5:39)
[206]
[33]
(50,10)
(3,5
(0,0

Figure 4.6: Data rectangles organized in a Hilbert R-tree (Hilbert values and
LHV’s are in brackets).
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data Hilbert vdlues <= 33
|

data Hilberfvalues <= 107

data Hilbert valugs <= 206

XL YL XH YH

£ )4
xXH YH| XL YL XH YH XL YL XH YH| [XL YL XH YH||{XL YL XH YH

20 60 30 75|35 65 51 75[|45 35 55 50

XL YL<

Figure 4.7: The file structure for the Hilbert R-tree.

Before we continue, we list some definitions. A plain R-tree splits a node on

overflow, creating two nodes from the original one. We call this policy a I-to-2

splitting policy. We propose to defer the split, waiting until two nodes split into

three. Note that this is similar to the B* — tree split policy. We refer to this

method as the 2-to-3 splitting policy. In general, we can have an s-to-(s+1)

splitting policy; we refer to s as the order of the splitting policy. To implement

the order-s splitting policy, the overflowing node tries to push some of its entries

to one of its s — 1 siblings; if all of them are full, then we have an s-to-(s+1)

split. We refer to the s — 1 siblings as the cooperating siblings of a given node.

Next, we describe in detail the algorithms for searching, insertion, and over-

flow handling.

4.3.2 Searching

The searching algorithm is similar to the one used in other R-tree variants.

Starting from the root, it descends the tree and examines all nodes that intersect

the query rectangle. At the leaf level, it reports all entries that intersect the query
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window w as qualified data items.

Algorithm Search(node Root, rect w):

S1. Search nonleaf nodes:
Invoke Search for every entry whose MBR intersects the
query window .

S2. Search leaf nodes:
Report all entries that intersect the query window w as

candidates.

4.3.3 Insertion

To insert a new rectangle r in the Hilbert R-tree, the Hilbert value A of the
center of the new rectangle is used as a key. At each level we choose the node
with the minimum LHV of all its siblings. When a leaf node is reached, the
rectangle r is inserted in its correct order according to h. After a new rectangle

is inserted in a leaf node N, AdjustTree is called to fix the MBR and LHV

values in the upper-level nodes.

Algorithm Insert(node Root, rect r):

/* Inserts a new rectangle r in the Hilbert R-tree. h is the

Hilbert value of the rectangle. */

I1. Find the appropriate leaf node:
Invoke ChooseLeaf(r, h) to select a leaf node L in which to
place r.

12. Insert v in a leaf node L:
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If L has an empty slot, insert r in L in the
appropriate place according to the Hilbert order and return.
If L is full, invoke HandleOverflow(L,r), which
will return new leaf if split was inevitable.
[3. Propagate changes upward:
Form a set S that contains L, its cooperating siblings
and the new leaf (if any).
Invoke AdjustTree(S).
4. Grow tree taller:
If node split propagation caused the root to split, create

a new root whose children are the two resulting nodes.

Algorithm ChooseLeaf(rect r, int h):
/™ Returns the leaf node in which to place a new rectangle r. */
Cl. Initialize:
Set N to be the root node.
C2. Leaf check:
If N is a leaf, return V.
C3. Choose subtree:
If N is a non-leaf node, choose the entry (R, ptr, LHV)
with the minimum LHV value greater than h.
C4. Descend until a leaf is reached:

Set NV to the node pointed by ptr and repeat from C2.
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Algorithm AdjustTree(set S):
/* S is a set of nodes that contains the node being updated, its
cooperating siblings (if overflow has occurred) and the newly
created node NN
(if split has occurred).
The routine ascends from the leaf level towards the root, adjusting MBR
and LHV of nodes that cover the nodes in S.
It propagates splits (if any). */
Al. If root level is reached, stop.
A2. Propagate node split upward
Let N, be the parent node of N.
If N has been split, let NN be the new node.
Insert NN in N, in the correct order according to its Hilbert
value if there is room. Otherwise, invoke
HandleOverflow(N,, NN).
If N, is split, let PP be the new node.
A3. Adjust the MBR’s and LHV’s in the parent level:
let P be the set of parent nodes for the nodes in S.
Adjust the corresponding MBR’s and LHV’s of the nodes in P
appropriately.
Ad. Move up to next level:
Let S become the set of parent nodes P, with
NN = PP, if N, was split.

repeat from Al.
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4.3.4 Deletion

In the Hilbert R-tree we do NOT need to re-insert orphaned nodes whenever a
father node underflows. Instead, we borrow keys from the siblings or we merge an
underflowing node with its siblings. We are able to do so because the nodes have
a clear ordering (according to Largest Hilbert Value, LHV); in contrast, in R-
trees there is no such concept concerning sibling nodes. Notice that for deletions

we need s cooperating siblings, while for insertion we need s — 1 siblings.

Algorithm Delete(r):
D1. Find the host leaf:
Perform an exact match search to find the leaf node L
that contains r.
D2. Delete r :
Remove r from node L.
D3.1f L underflows
borrow some entries from s cooperating siblings.
if all the siblings are ready to underflow,
merge s + 1 to s nodes,
adjust the resulting nodes.
D4. Adjust MBR and LHV in parent levels.
form a set § that contains L and its cooperating

siblings (if underflow has occurred).

invoke AdjustTree(S).
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4.3.5 Overflow Handling

The overflow handling algorithm in the Hilbert R-tree treats the overflowing
nodes either by moving some of the entries to one of the s — 1 cooperating

siblings or by splitting s nodes into s + 1 nodes.

Algorithm HandleOverflow(node N, rect r):

/* return the new node if a split occurred. */

H1. Let € be a set that contains all the entries from N
and its s — 1 cooperating siblings.

H2. Add r to &.

H3. If at least one of the s — 1 cooperating siblings is not full,
distribute £ evenly among the s nodes according to
Hilbert values.

H4.1f all the s cooperating siblings are full,
create a new node NN and
distribute £ evenly among the s + 1 nodes according

to Hilbert values.

return NN.

4.4 Analytical Formula for the Response Time

In this section we introduce an analytical formula for evaluating the average
response time for a query of size ¢, X g, as a function of the geometric charac-
teristics of a given instance of an R-tree. This means that once we have built

the R-tree we can estimate the average response time of the query ¢, x ¢, with-
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Symbols

Definitions

P page size, in bytes
C page capacity
(max. number of rectangles per page)
P(q:,qy) | avg. pages retrieved by a ¢, x ¢, query
Ny number of data rectangles
N number of tree nodes
T density of data
n; node ¢ in the R-tree
Ny length of node 2 in x direction
Ny length of node 2 in y direction
L, sum of x-sides of all nodes in the tree
L, sum of y-sides of all nodes in the tree
TotalArea | sum of areas of all nodes in the tree
Gz length of the query in x direction
Qy length of the query in y direction
Table 4.2: Summary of symbols and definitions.
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out generating random queries and then computing the average and variance of
their response times. In this discussion we assume that queries are rectangles
uniformly distributed over the unit square address space. Without loss of gen-
erality we consider a two-dimensional space. The same idea can be generalized
to higher dimensions.

The response time of a range query is primarily affected by the time required
to retrieve the nodes touched by the query plus the time required by the CPU
to process the nodes. Since the CPU is much faster than the disk, we assume
that the CPU time is negligible (=0) compared to the time required by a disk
to retrieve a page. Thus, the measure for the response time is approximated by
the number of nodes (pages) that will be retrieved by the range query.

The next lemma forms the basis for the analysis:

Lemma 1 If the node n; of the R-tree has an MBR of n;, X n;,, then the
probability DA(n; »,n;,) that this node will contribute one disk access to a point

query is

DA(n;z,niy) = Prob(point query retrieves node n;)

= Njg*N4y (41)

DA() is the expected number of disk accesses that the specific node will con-
tribute in an arbitrary point query. Notice that the level of the node in the
R-tree is immaterial.

Proof: Since we assume that the (point) queries are uniformly distributed in
the address space and the address space is the unit square. The probability that
a random point fall within the rectangle (n;.,n;,) is the area of the rectangle

Niz X Ny
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The next two lemmas calculate the expected number of disk accesses for point

and rectangular queries respectively.

Lemma 2 (Point query) For a point query, the expected number of disk ac-

cesses P(0,0) s given by
N
P(O, 0) == Z NGz X Ty (42)
=1

Proof: Every node n; in the R-tree is represented in the native space by its
minimum bounding rectangle (MBR) of size say, n; ., ni, in the x, y direction
respectively. Given Lemma 1, each node of the R-tree contributes DA() disk
accesses; to calculate the average number of disk accesses resulting from all the
nodes of the R-tree, we have to sum Eq. 4.1 over all the nodes.

Similar analysis was done independently in ??.

@ (b)

Figure 4.8: (a) Original nodes along with rectangular query ¢, x ¢,; (b) Extended

nodes with point query ().

Lemma 3 (Rectangular query) For a rectangular query g, X q,, the expected

number of disk accesses P(qy,qy) is given by

N N
P(¢z,qy) = Z Mg * Niy + @y X Z Nz
=1 =1
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N
+q, * Z niy + N * g * g, (4.3)

=1

Proof: A rectangular query of size ¢, x ¢, is equivalent to a point query, if
we ‘inflate’ the nodes of the R-tree by ¢, and ¢, in the x- and y-directions
respectively (equivalently, the node can be inflated by ¢, /2 along the x direction
from the two ends and by ¢,/2 along the y direction from the two ends). Thus,
the node n; with size n; , x n; ,, behaves like a node of size (n; ;+ ¢z) X (N, + qy)-
Figure 4.8 illustrates the idea: Figure 4.8(a) shows a range query ¢, x ¢, with
the upper-left corner at (); this query is equivalent to a point query anchored at
() as long as the data rectangles are ‘inflated” as shown by the dotted lines in

Figure 4.8(b). Applying (Eq. 4.2) on Figure 4.8(b) we obtain:

N
P(qerqy) =D (niw+¢) * (niy + qy) (4.4)

=1

which after trivial mathematical manipulations gives (Eq. 4.3).

Notice that Lemma 3 gives

PGz, qy) =

TotalArea + q, * Ly, + q, * L, + N % q, % q, (4.5)

where Total Area = P(0,0) is the sum of all the areas of the nodes of the tree,
and L, L, are respectively the sums of @ and y extents of all nodes in the R-tree.
There are several comments and observations with respect to the above for-

mulas:

e The formulais independent of the details of the R-tree creation /insertion/split

algorithms; 1t holds for packed R-trees, for R*-trees, etc.

o Notice that Eq. 4.3 for range queries reduces to Eq. 4.2 for point queries

it ¢, = g, = 0, as expected.
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Figure 4.9: MBR of nodes generated by 2D-c (2-d Hilbert through centers) for

200 random points.

o The last equation illustrates the importance of minimizing the perimeter of
the R-tree nodes, in addition to the area. The larger the queries, the more
important the perimeter becomes. This explains why the lowr packed
R-tree performs well for point queries (¢, = ¢, = 0), but not so well for
larger queries. The nodes produced by the lowz packed R-tree (Figure 4.2)
have small areas but large perimeters. Figure 4.9 shows the leaf nodes
produced by the ‘2D-c¢’ Hilbert packing method for the set of points given

in Figure 4.1. Notice that the resulting nodes have smaller perimeters.

o Eq. 4.3 has theoretical as well as practical value: From a practical point
of view, it can assist with the cost estimation and query optimization for
spatial queries [3]: Maintaining only a few numbers about the R-tree (total
area, total perimeter), a query optimizer can make a good estimate of the

cost of a range query. Moreover, researchers working on R-trees can use
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Eq 4.3 to avoid issuing queries in their simulation studies. This eliminates
one randomness factor (the query), leaving the generation and insertion

order of the data as random variables.

4.5 Experimental Results

To assess the merit of our proposed Hilbert R-trees, we implemented both the
static and the dynamic Hilbert R-trees and ran experiments on a two dimensional
space. The methods were implemented in C under UNIX. We compared our
methods against the quadratic-split R-tree, the R*-tree, and the lowz R-tree.
Since the CPU time required to process the node is negligible, we based our
comparison on the number of nodes (=pages) retrieved by range queries.
Without loss of generality, the address space was normalized to the unit
square. There are several factors that affect the search time; we studied the

following ones:

Data items: points and/or rectangles and/or line segments (represented by

their MBRs)
File size: ranged from 10,000 to 100,000 records.

Query area (., = ¢ X ¢y: ranged from 0 to 0.3 of the area of the address

space.

Recall that the ‘data density’ 7 (or ‘cover quotient’) of the data rectangles is
the sum of the areas of the data rectangles in the unit square, or equivalently,
the average number of rectangles that cover a randomly selected point. Math-

ematically: 7 = N x a. For the selected values of N and a, the data density
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ranges from 0.25 to 2.0.
To compare the performance of our proposed structures we used five data
files that contained different types of data: points, rectangles, lines, or mixed.

Specifically, we used:

A) Real Data: we used real data from the TIGER system of the U.S. Bureau
of Census. These were the same files that we used before. We repeat their
description for convenience. An important observation is that the data in

the TIGER datasets follow a highly skewed distribution.

‘MGCounty’ : This file consists of 39,717 line segments representing the
roads of Montgomery County in Maryland. Using the minimum
bounding rectangles of the segments, we obtained 39,717 rectangles,
with data density 7 = 0.35. We refer to this dataset as the ‘MG-

County’ dataset.

‘LBeach’ : This file consists of 53,145 line segments representing the roads
of Long Beach, California. The data density of the MBRs that cover
these line segments is 7 = 0.15. We refer to this dataset as the

‘LBeach’ dataset.

B) Synthetic Data: The reason for using synthetic data is that we can con-
trol the parameters (data density, number of rectangles, ratio of points to

rectangles, etc.).

‘Points’ : This file contains 75,000 uniformly distributed points.

‘Rects’ : This file contains 100,000 rectangles, no points. The centers of
the rectangles are uniformly distributed in the unit square. The data

density is 7 = 1.0
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‘Mix’ : This file contains a mix of points and rectangles; specifically 50,000

points and 10,000 rectangles; the data density is 7 = 0.029.

The query rectangles were squares with side ¢;; their centers were uniformly
distributed in the unit square. For each experiment, 200 randomly generated
queries were asked and the results were averaged. The standard deviation was
very small and is not even plotted in our graphs. In the following subsections
we present two groups of experiments to evaluate our methods in a static and in

a dynamic environment respectively.

4.5.1 Static Hilbert R-trees

Here we evaluate the performance of our Hilbert R-tree for a static environment.
In the following subsections we present experiments (a) verifying (Eq. 4.3) for the
response time; (b) comparing the response time of the best of our methods (2D-
c¢) with the response time of older R-tree variants (dynamic or static); and (c)
comparing all proposed packing schemes against each other in order to pinpoint

the best.

Verifying the formula for the response time

In the previous section we introduced a probabilistic model for the R-tree
under rectangular range queries. Equation 4.3 gives an estimate for the number
of pages retrieved by a query of size ¢, X ¢,. In this section we introduce exper-
imental results to show how far our estimate is from the experimental values.

Table 4.3 shows the number of pages retrieved as a function of the query
size (area). We carried out many experiments to compare the formula with

the simulation results. For each query size, 50 random queries are generated.
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query area Exper. nodes/query Theor. (Eq. 4.3)
Qarea || aveg.(pages/query) | std. dev. || pages/query
0.00000 3.88 0.86 3.75
0.00001 4.06 1.00 4.12
0.00027 5.84 1.24 5.95
0.00333 9.00 1.35 9.01
0.01333 16.94 1.91 17.67
0.08333 63.18 4.14 64.07
0.11111 208.20 7.41 209.45

Table 4.3: Verifying (Eq. 4.3); theoretical vs. experimental response time

(pages/query).

The average and standard deviation are calculated, and compared with the one
derived analytically. In Table 4.3, we use the area (),,., as the measure of the
size of queries. Column 2 shows the response time in terms of the number of disk
accesses measured experimentally for the different query sizes in Column 1. The
standard deviation in the experimental response time (due to the randomness in
the query) is shown in Column 3. Column 4 shows the response time (in terms
of the number of page accesses) as estimated by (Eq. 4.3). The data file contains
75k points. Notice that the formula matches the experimental results extremely
well. The difference between the estimated number of pages retrieved by a
query and the experimental value is less than one standard deviation. For this
experiment, the R-tree was built using the Hilbert 2D-c packing heuristic. We
also experimented with the following R-tree structures: R*-tree, lowz packed R-

tree, quadratic split R-tree, 4D-cd packed R-tree, and 4D-xy packed R-tree. We
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obtained similar results in all cases which we do not show, because they provide
no additional information. These results are typical for several combinations of
parameter values (p = (1Kb —4Kb),7 = (0.25 — 1)) and several datasets (e.g.
datasets consisting of both points and rectangles, etc.). In all the results we
present throughout the rest of Section 4.5.1, we used (Eq. 4.3) to calculate the
number of pages retrieved by a query.

Montgomery County, MD: 39,717 line segments
Pages Touched

220.00 Hilbert 2D-c

210.00 p Retree .
200.00 — . Retree’q- sP'.' v
190.00 .
180.00
170.00
160.00
150.00
140.00
130.00
120.00
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00

10.00 =
0.00

Qarea x 103
0.00 50.00 100.00 150.00 200.00 250.00

Figure 4.10: Hilbert 2D-c packed R-tree vs. other R-tree variants; ‘MGCounty’

dataset — real data.

Comparison of 2D-c Hilbert packed R-tree vs. older R-tree variants

In this section we introduce experimental results to compare the performance of
the Hilbert 2D-c packed R-tree versus other R-tree variants. In our experiments

we focused on the rectangular range queries. The page size p = 1Kb. Fig-
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TIGER: Long Beach, CA : 53,145 line segments
Pages Touched

420.00 Hilbert 2D-c
400.00
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360.00
340.00
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220.00
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120.00
100.00
80.00
60.00
40.00
20.00
0.00

-20.00 Qareax 10-3
0.00 50.00 100.00

Figure 4.11: Hilbert 2D-c packed R-tree vs. other R-tree variants; ‘LBeach

dataset’ — real data.
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Figure 4.12: Hilbert 2D-c packed R-tree vs. other R-tree variants; ‘Mix’ dataset

— synthetic data.
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Figure 4.13: Hilbert 2D-c packed R-tree vs. other R-tree variants; ‘Rects’ dataset

— synthetic data.
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ures 4.10- 4.13 plot the average number of pages retrieved as a function of QQarea
(= query area = ¢, X q,). We show that the 2D-c packing method gives better
response times than do older R-tree variants. The fact that the lowz packed
R-tree performs worse than do dynamic designs (such as R*-tree) compelled us
to compare our new packing methods with both static and dynamic designs,
namely the lowx packed R-tree, the Guttman R-tree with quadratic split, and
the R*-tree. In our plots we omit the results of the linear-split R-tree, because
the quadratic-split R-tree consistently outperformed it. The exponential-split R-
tree was very slow in building the tree, and it was not used. For the R*-tree, the
percentage of nodes to be deleted in case of node overflow in the forced reinsert
algorithm is set to the recommended value of 30% [7]. To avoid cluttering the
plots, we only plot the best of our proposed algorithms, namely the one using
the ‘2D-c¢” heuristic. The detailed results for the other Hilbert-based packing
algorithms are presented in the next subsection.

Figures 4.10- 4.13 plot the number of pages retrieved by a range query (from
Eq. 4.3) as a function of the area of the query. In each graph we show four curves
for the following R-tree variants: the Hilbert 2D-c packed R-tree (“Hilbert 2D-
¢”), the R*-tree, the quadratic split R-tree of Guttman (“R-tree ’q-split”’), and
the lowx packed R-tree (“lowx”). Figures 4.10 and 4.11 show the results for the
TIGER data sets, which represent the roads of Montgomery County of Maryland
and the roads of Long Beach of California respectively. Figure 4.12 shows the
results for "Mix’ data set. The fourth set (Figure 4.13) is the 'Rects’ data set.

A common observation is that, for point queries, all methods perform al-
most the same, with small differences. However, for slightly larger queries, the

proposed 2D-c Hilbert packed R-tree is the clear winner. The performance gap
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increases with the area of the queries.

The second important observation is that the performance gap seems to in-
crease with the skewness of the data distribution: for the TIGER data sets, the
proposed method achieves up to 36% improvement over the next best method
(R*-tree), and up to 58% improvement over the lowz packed R-tree. One might
expect that the Hilbert R-tree would perform better because of its high space
utilization (almost 100%). But since the performance of the static lowz packed
R-tree (100% space utilization) is worse than the performance of the dynamic
designs (e.g., quadratic split R-tree and the R*-tree), we ascribe the good per-
formance of our proposed methods not only to the higher space utilization but
also to the good clustering property of the Hilbert curve.

Moreover, the difference between the R*-tree and the quadratic split R-tree
is even smaller when real data are used. The R*-tree performs better than the
quadratic split R-tree for the following reasons. First, the R*-tree algorithms take
into account the area and perimeter of the resulting nodes, while, the quadratic
split R-tree tries to minimize the area only. Note that these empirical results
conform with our analysis (Equation 4.3), which shows that the response time
of the rectangular queries depends on the area and the perimeter of the R-tree
node. Second, the R*-tree employs the concept of “forced reinsert” when a node

overflows; this factor helps in reorganizing the tree occasionally.

Comparison of Hilbert-based packing schemes

Here we compare all the packing heuristics that we have introduced in this pa-
per, namely 2D-c , 4D-xy, 4D-cd and the only heuristic that uses the z-ordering,

2Dz-c. Table 4.1 contains a list of these methods, along with a brief description.

83



query area || Hilbert | Hilbert | Hilbert

Qarea 2D-c 4D-cd | 4D-xy

0.000000 3.74 5.10 7.04
0.000278 5.60 7.28 9.26
0.001111 8.22 10.24 12.04
0.004444 15.20 17.84 20.32
0.111111 169.76 | 177.06 | 180.54

Table 4.4: Comparison (disk accesses/query) of different schemes which use the
Hilbert order.

Table 4.4 gives the response time versus the query area for all of these
heuristics that use the Hilbert order. The (synthetic) data file consists of 50K
points and 10K rectangles. The page size p = 1Kb. The differences between the
alternative methods are small. However, from Table 4.4 we see that (2D-c) does
better, especially for large queries. The next best method is the (4D-cd), which
uses a 4-d Hilbert curve on the parameter space (center-x, center-y, diameter-x,
diameter-y). The last contender is the 4D-xy.

For the same setting, Table 4.5 compares the 2D-c heuristic, which sorts the
data according to the 2d Hilbert-value of the centers of the data rectangles and
the 2Dz-c heuristic, which sorts according to the two-dimensional z-value of the
center. Table 4.5 shows that the 2D-c which uses the Hilbert order, always per-
forms better than the 2Dz-c which uses the z-order. In our experiments, we only
compared the clustering property of the Hilbert and the z-order curves. For the
comparison to be fair, other properties need to be compared; such a comparison

would include the cost of calculating the code, the cost of reversing the code and
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query area || Hilbert | Z-order
Qarea 2D-c 2Dz-c

0.000000 3.74 5.98
0.000278 5.60 8.64
0.001111 8.22 11.48
0.004444 15.20 20.28
0.111111 169.76 | 183.56

Table 4.5: Schema that uses Hilbert order vs. one that uses z-order (disk ac-

cesses/query).

other properties which are important for image processing algorithms (such as
admissibility [12]), which are out of the scope of this thesis. In our application,
the cost of calculating the Hilbert value is small. Also, we only need to compute
the Hilbert value ONCE on insertion; and NEVER on search.

The relative ranking of the methods was the same for every dataset we tried;

we omit the results because they provide no new information.

4.5.2 Dynamic Hilbert R-trees

Here we evaluate the performance of the proposed Hilbert R-tree in a dynamic en-
vironment. We compare the Hilbert R-tree to the original R-tree (quadratic split)
and the R*-tree. Next we present experiments that (a) compare our method
against other R-tree variants, (b) show the effects of the different split policies

on the performance of the proposed method, and (c¢) evaluate the insertion cost.
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50k points and 10k rectangles; 2-to-3 split policy
Pages Touched

Hilbert R-tree (2-to-3 split)
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0.00 50.00 100.00 150.00 200.00 250.00

Figure 4.14: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;

‘Mix’ dataset.

Comparison of the Hilbert R-tree vs. other R-tree variants

In this section we compare our Hilbert R-tree ‘2-to-3’ split with the R*-tree
and the quadratic split R-tree. We present experiments with all five datasets,
namely: ‘Mix’, ‘Rects’, ‘Points’, ‘MGCounty’, and ‘LBeach’ (see Figures 4.14 -
4.18, respectively). In all these experiments, we used the ‘2-to-3’ split policy
for the Hilbert R-tree. In each experiment we plot the average number of page
accesses per query as a function of the area of the query rectangle. For each
query size we ask 50 random queries and calculate the average number of nodes
touched per query.

In all the experiments, the Hilbert R-tree gives the best performance and is
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100k rectangles; 2-to-3 split policy
Pages Touched
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Figure 4.15: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;

‘Rects’ dataset.
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75k points; 2-to-3 split policy
Pages Touched
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Figure 4.16: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;

‘Points’ dataset.
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Montgomery County: 39,717 line segements; 2-to-3 split policy
Pages Touched

380.00 Hilbert R-tree (2-to-3 split)
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Figure 4.17: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;

‘MGCounty’ dataset.
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L ong Beach: 53,145 line segements; 2-to-3 split policy
Pages Touched
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Figure 4.18: Dynamic Hilbert R-tree (2-to-3 split) vs. other R-tree variants;

‘I.Beach’ dataset.
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followed by the R*-tree. The good performance of the Hilbert R-tree ‘2-to-3’
split is due to the good clustering property of the Hilbert curve and the higher
space utilization (/& 83%) achieved by the ‘2-to-3” split policy. The good space
utilization is not a sufficient condition for the good performance simply because
the lowz packed R-tree, which has 100% space utilization, performs worse than
the R*-tree and the quadratic split R-tree. Note also that the performance of
the three R-tree variants is comparable for point queries (Qarea = 0). In the
light of Equation 4.3, we can make the following observation: The total areas of
the nodes of the three R-tree structures, namely the Hilbert R-tree, the R*-tree,
and the quadratic split R-tree, are approximately equal; this is why all three R-
tree structures give similar response times when Qarea=0. The three structures
differ, however, in total perimeter. The Hilbert R-tree gives the smallest total
perimeter. Note that the perimeter term appears and becomes dominant for
non-point queries (Qarea > 0). Also, the perimeter term is the one that gives
the edge to the R*-tree over the quadratic split R-tree. As we mentioned earlier,
the split algorithm for the R*-tree minimizes the areas and the perimeters of the
resulting nodes, while the quadratic split R-tree minimizes the area only.

In all the given experiments, the Hilbert R-tree is the clear winner, achieving
up to 28% savings in response time over the next best contender (the R*-tree).
This maximum gain is achieved for the '"MGCounty’ dataset (Figure 4.17). It is
interesting to note that the performance gap is larger for the real data, whose
main difference from the synthetic one is that it is skewed, as opposed to uniform.

Thus, we can conjecture that the skewness of the data favors the Hilbert R-tree.
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The Effect of the Split Policy on Performance

Montgomery County: 39717 line segements;, different split policies
Pages Touched

380.00 (2-to-3 split)
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Figure 4.19: The effect of the split policy on the query retrieval time of the

Dynamic Hilbert R-tree.

This section shows how the increase in the split policy affects the performance of
the Hilbert R-tree. Intuitively, with the good clustering property of the Hilbert
R-tree, we expect the total area and perimeter of the resulting R-tree nodes to
decrease with increasing space utilization. Consequently, the number of nodes
retrieved by a query is expected to decrease. One would, of course, expect the
insertion cost to increase with increasing the split policy (see Section 4.5.2).
Figure 4.19 shows the response time as a function of the query size for the 1-to-
2, 2-to-3, 3-to-4 and 4-to-5 split policies. The corresponding space utilizations

were 65.5%, 82.2%, 89.1%, and 92.3% respectively. For comparison, we also
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plot the response times (in terms of the number of disk accesses) of the R*-tree.
As expected, the response time for the range queries improves with the average
node utilization. However, there seems to be a point of diminishing returns as
s increases. For this reason, we recommend the ‘2-to-3’ splitting policy, which
strikes a balance between insertion speed (which deteriorates with s) and search
speed, which improves with s.

It is interesting to note that even with the simple 1-to-2 splitting policy (i.e.,
no rotation), the Hilbert R-tree performs better than the quadratic split R-tree
and at least as well as the R*-tree. With the recommended 2-to-3 splitting policy,
the Hilbert R-tree clearly does better than the R*-tree and the quadratic split

R-tree.

Insertion Cost

The higher space utilization in the Hilbert R-tree comes at the expense of higher
insertion cost. As we employ a higher split policy, the number of cooperating
siblings need to be inspected at overflow increases. We show that the ‘2-to-3’
policy is a good compromise between the performance and the insertion cost. In
this section we present experimental results which compare the insertion cost of
the Hilbert R-tree ‘2-to-3’ split with the insertion cost in the R*-tree. Also, we
show the effect of the split policy on the insertion cost. The cost is measured by
the number of disk accesses per insertion.

Table 4.6 shows the insertion cost of the Hilbert R-tree and of the R*-tree
for the five different datasets. The main observation here is that there is no
clear winner in the insertion cost. Although the R*-tree does not employ local

rotation as does the Hilbert R-tree, it has insertion cost comparable to that of
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(disk accesses)/insertion

dataset Hilbert R-tree | R* — tree
(2-to-3 split)

MGCounty 3.55 3.10
LBeach 3.56 4.01
Points 3.66 4.06
Rects 3.95 4.07

Mix 3.47 3.39

Table 4.6: Comparison of insertion cost between the Hilbert R-tree with ‘2-to-3’

split and the R*-tree; disk accesses per insertion (average over all datasets).

split policy || (disk accesses)/insertion
1-to-2 3.23
2-to-3 3.55
3-to-4 4.09
4-to-5 4.72

Table 4.7: The effect of the split policy on the insertion cost of the Hilbert R-tree

‘2-to-37 split; MGCounty dataset.
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the Hilbert R-tree. This is because the R*-tree employs the ‘forced reinsert’
technique. When a new data rectangle is inserted into the R*-tree, the first
overflow on each level will be treated by deleting 30% of the entries of the
overflowing node and by reinserting them in the tree. Note that more than one
overflows might take place as a result of one insertion. The number of times
the forced reinsert is performed is unpredictable, and it even depends on the
insertion order of the data rectangles. This means that the insertion cost in the
R*-tree might differ for the same data set if the insertion order is changed. This
also explains the significant difference in the insertion cost for ‘MGCounty’ and
‘LBeach’ in the R*-tree although both datasets represent roads in two counties
and both have the same insertion cost under the Hilbert R-tree. In contrast,
the insertion cost in the Hilbert R-tree is less dependent on the insertion order
and depends rather on the split policy. Since the R*-tree reinserts 30% of the
overflowed node, we expect that the gap between the insertion cost of the R*-tree
and that of the Hilbert R-tree would increase with increasing node size.

Table 4.7 shows the effect of increasing the split policy in the Hilbert R-tree
on the insertion cost for the MGCounty dataset. As expected, the insertion
cost increases monotonically with the order s of the split policy. This is simply
because the number of cooperating siblings s — 1 that will be retrieved when an

overflow occurs increases with increasing split policy.

4.6 Discussion

In this chapter we designed and implemented a new R-tree variant which out-

perform all previous R-tree methods in rectangular query retrieval. The major
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idea is to introduce a method for achieving ‘good’ ordering among rectangles.
We introduced two variants of the Hilbert R-tree for static and dynamic envi-
ronments.

For static databases, our algorithms exploit the good clustering properties
of the Hilbert curve. We proposed several schemes for sorting the data rectan-
gles before grouping them into R-tree nodes. We performed experiments using
these methods and the most promising competitors; our conclusion is that the
proposed algorithms result in better R-trees. Specifically, the most successful
variation (2D-c¢ = 2-d Hilbert curve through centers) consistently outperforms
the best dynamic methods, namely, the R*-trees and the quadratic split R-trees,
as well as the only previously known static method (lowz packed R-tree). More
importantly, the performance gap seems to be wider for real, skewed data dis-
tributions. We also showed that the insertion cost is not penalized as one might
expect.

For the dynamic environment we introduced the Dynamic Hilbert R-tree. By
simply defining an ordering, the R-tree structure is amenable to local rotation;
this fact allows the utilization to approach the 100% mark as closely as we want.
Better packing results in a shallower tree and a higher fanout. If the ordering
happens to be ‘good’, that is, happens to group similar rectangles together, then
the R-tree will also have nodes with small MBRs, and eventually, fast response
times.

With this considerations in view, we designed in detail and implemented the
Hilbert R-tree, a dynamic tree structure that is capable of handling insertions
and deletions. Experiments on real and synthetic data showed that the proposed

Hilbert R-tree with the '2-to-3” splitting policy consistently outperforms all other
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R-tree methods in rectangular query retrieval with up to 28% savings over the
best competitor (the R*-tree).

Moreover we provided an analytical formula (Eq. 4.3) to estimate the re-
sponse time of an already built R-tree. From a practical point of view, it can
help a query optimizer [33, 2] give a good estimate for the cost of an R-tree
index. Moreover, it makes the simulation analysis of R-trees easier and more

reliable, eliminating the need to ask queries.
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Chapter 5

Conclusions — Future Work

In this dissertation we have studied how to improve the performance of spa-
tial indexing methods and specifically of R-trees under both parallel 1/O and
centralized environments.

For a parallel 1/O environment we proposed a parallel [/O R-tree design for
a server with one CPU and multiple disks. On this architecture, the nodes of
the R-tree are distributed between the different disks with cross-disk pointers
(‘Multiplexed R-tree’). When a new node is created, we have to decide on which
disk it will be stored. We proposed and examined several criteria for choosing a
disk for a new node. The most successful one, termed ‘Proximity Index’ or PI,
estimates the similarity of the new node with the other R-tree nodes already on a
disk and chooses the disk with the least degree of similarity. Our experiments on
real data showed that our PI scheme consistently outperforms all other heuristics
for node-to-disk assignments, with 55% gains over the Round Robin one.

For a centralized environment, we proposed a new packing technique for
R-trees for static databases. We used space-filling curves and specifically the
Hilbert curve to achieve better ordering of rectangles and eventually better pack-

ing. Our method achieves better performance than other packing algorithms and
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all other R-tree variations. For dynamic databases we introduced the Hilbert R-
tree, in which every node has a well-defined set of sibling nodes; we can thus im-
plement the concept of local rotation. By adjusting the split policy, the Hilbert
R-tree can achieve as high a degree of utilization as desired. In contrast, the
R-tree/R*-tree has no control over utilization, typically achieving only 50% to

70%.

Future research directions include the following:

e Extension of Parallel I/O R-tree structures on shared-nothing multicom-
puters: This architecture consists of several computers (e.g. , worksta-
tions), each one with its own memory and I/O system. The main advan-
tage of shared-nothing multicomputers is that they can be scaled up to
hundreds and probably thousands of computers that do not interfere with
one another. This environment differs from the multi-disk environment in
two aspects: 1) the number and volume of messages becomes an issue, and
2) the setup time (= time to initiate a query on a processor) can not be
neglected. Of course, the total setup time increases with the number of
processors involved in the query. For a system consisting of thousands of
processors, the setup time for executing a query in parallel will constitute

a substantial amount of the query execution time.

e Finally, there are many interesting problem to be studied in multimedia
indexing. One of the promising areas of research is the indexing of ob-
jects to answer “similarity” queries. For example, in multimedia databases
with audio (voice, music), video, etc., users might want to retrieve similar
objects, such as music scores or video clips. One way to handle the prob-

lem is to map the objects into some feature space as multi-dimensional
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points [18, 42], and subsequently to organize them in a SAM.
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