UNDERGRADUATE REPORT

Simulations of Robotic Pursuit Using Matlab and Simulink

by Joshua Lioi
Advisor:

UG 2006-11

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

Simulations of Robotic Pursuit
Using Matlab and Simulink

JoshualLioi
ISR REU Program
Summer 2006

Advisors:
Dr. P. S. Krishnaprasad
P. Vishwanada Reddy

Abstract

A pursuit curve is the path one creature takes while following another, and these can be used to
model predator/prey chases, missiles homing in on a target, or even robot movement during a
rendezvous. This paper will focus on the mathematical modeling and subsequently the
simulation of these curves in Matlab’s Simulink. Two other students who were working in the
lab interacted directly with the robots, and in particular, they worked with experimental robotic
pursuit. Using the Cricket system, which works like an indoor GPS, the robots in the Intelligent
Servosystems Lab can communicate their locations to one another, and then run pursuit
protocols. The Matlab programs, though idealized, are successfully able to simulate the realistic
trials of robotic pursuit.

1. Introduction

As the name implies, the Intelligent Servosystems Laboratory is concerned with what
could be called “smart robots.” A servosystem is another word for a mechanism that can manage
itself through feedback. At the same time, the word “intelligent” refers to intelligent control,
which is a set of protocols a robot uses to navigate, problem solve, or even learn in a manner of
speaking. One major aspect of intelligent control from the recent past is that of robot formations,
also called swarms. In order to make such robots work efficiently, they must have control laws
in place that allow them to move together or follow one another without colliding®. This paper
describes simulations of pursuit laws that robots could utilize in rendezvous or swarming
situations. These could also be used to model more aggressive attack or shadowing strategies
that unmanned military robots could use in the future. Although the simulations involve only
two or three robots at atime, they could also be expanded to better model larger swarms.

1.1 Robots Modelled

The mgjority of the robots in the lab are wheeled, so they can only control their tangential
speed and angular velocity. However, a robot has three variable values, or generalized
coordinates of the system, which describe its location: X, y, and orientation angle. This implies
that the wheeled robots are nonholonomic, meaning that there are fewer controlled inputs than
generalized coordinates’. These wheeled robots can use various systems to navigate and
determine their location; systems such as ultrasound sensors, microphones for sound localization,
and onboard GPS are afew examples.

1.2 Cricket System

A more recently implemented system used in the lab is the Cricket system, which is the

most closely related to my project. Each robot has two Cricket beacons on it that send out

ultrasound and RF pulse signals at regular intervals. Ten equally spaced Cricket listeners on the
ceiling map out a coordinate system and receive the RF pulse and the ultrasound signals from the
robot’s beacons. The listener units then bounce the signal packet back, along with their 1D
number. When a robot acquires the return signal packet from a listener, it can calculate the
horizontal distance between the two beacons based on the time difference between the RF pulse
and the slower ultrasound signal. By using signals from multiple listeners each second, a robot
can easily use triangulation to approximate its location in the Xy coordinates and its orientation in
the lab®. The pursuit simulations are based on the wheeled robots in the lab that utilize the
Cricket system.

1.3 Classical Pursuit

To understand more advanced methods of pursuit, one must first learn what pursuit is and
how it started. What is now called “classical pursuit” was first studied by Pierre Bouger in 1732.
Classical pursuit involves two moving particles: one of which (pursued or prey) moves aong a
known curve, while another particle (pursuer or predator) follows the first. The pursuer aways
has an instantaneous velocity pointed directly toward the pursued, and the path that the pursuer
traces out is called a pursuit curve. Since then much has been analyzed about the pursuit curve,
including the logarithmic shape that the predator traces out and the total time before a capture
occurs’. A more physical example of a pursuit curve would be the trajectory of a torpedo or
missile, when the projectile tracks a target by moving towards it at al times. However, it can be
concluded that this might not be the most efficient trgjectory, and a strategy that leads a target
would be more likely to succeed. In fact, with classical pursuit a predator can only overtake the
prey if its velocity is more than that of the prey®. The greatest contribution that classical pursuit

can make to swarmsis the “bugs problem,” which is directly related to rendezvous.

1.4 Bugs Problem

The bugs problem, also known as the mice or dogs problem, was first considered in 1877
by Eduard Lucas. He analyzed what trgjectories would occur if three dogs started out at the
points of an equilateral triangle, and then each dog chased the next one counterclockwise to
itself. Henri Brocard provided his analysis a few years later and determined that the dogs would
trace out the logarithmic spiral of classica pursuit, and that all dogs/mice would meet
simultaneously at the Brocard point of the triangle®. Analysis was later expanded to regular n-
polygons and even irregular n-polygons, instead of just the equilateral triangle case. Further
examination discovered that the simultaneous meeting always occurs in non-collinear triangles,
but not for other polygons where premature head-on collisions can occur’. The final important
note that concerns us is the idea of relative speeds for irregular triangles. Figure 1 shows an

example of an irregular triangle with bugs at each point chasing counterclockwise. Klamkin and

Figure 1. Bugs
problem triangle with
counterclockwise
pursuit®

Newman derive speeds based on ratios of side lengths that will allow the three bugs to converge
simultaneously at the Brocard point, regardless of the shape of the initia triangle, excluding all

collinear cases. The speeds for each bug would be

where a, b, and c are the side lengths of the triangle as shown in Figure 1, and n is any scalar
constant®. Although useful later, the bugs problem is still referring to classical pursuit and does
not account for the nonholonomicity of the robots, and so another type of pursuit is necessary.

1.5 Cyclic Pursuit

Marshall, Broucke, and Francis consider a dlightly different bugs problem by adding a
constraint to each bug so that they can only move like a unicycle, which correlates directly to our
nonholonomic robots. The unicycles could not perform classical pursuit, as they require time to
orient themselves so that they are facing their prey. The traditional feedback law for modeling
such a nonholonomic vehicle is by using simultaneous differential equations for each of the

generalized coordinates, as follows where x and y determine position, 6 describes the orientation,

X cos(d) O
y|=| sin@) o [”}
0 o 1|t“

while u and ® are the control inputs of tangential speed and angular velocity, respectively.
However, this equation simply describes the motion of one vehicle and does not account for the
pursuit laws needed. To remedy this, Marshall, Broucke, and Francis define aternative
coordinates that determine the location of vehicle i based on its position relative to its prey

(vehicle i+1). As can be seen in Figure 2, the new generalized variables are a, f, and r. The

Figure 2: Alternative
Coordinates for cyclic
pursuit strategy®

variable r; is simply the Euclidean distance between the i and i+1 vehicles, and o; is the
difference in radians between the pursuer’s current heading and the heading it would have in a
classical pursuit situation. Unfortunately, B is defined, somewhat awkwardly, as the angle
between the prey’s current heading and the reverse vector of the predator’s heading. Marshall,
Broucke, and Francis also derived the equations analogous to the traditional feedback law which
use the alternative coordinates, and thus the cyclic pursuit equations are defined as

fi =V, c08(¢%) ~ Vi, COS(e; + /)
= [y sin(a) +v,,8n(@ +)] -

B=w-a,

In order to automate the control inputs, they suggest making each vehicle's angular velocity
proportional to the current value of a (®; = k*a; where k is a constant). This means that a vehicle
will turn more sharply when its heading is significantly different from the direction towards its
prey®. This system of feedback will henceforth be referred to simply as “cyclic pursuit.” Cyclic
pursuit is the direct nonholonomic analogy to classical pursuit, and it is employed in many of the
robot simulations for pursuit and rendezvous. However, a more sophisticated method of pursuit
isalso considered, which is called motion camouflage.

1.6 Motion Camouflage

Motion Camouflage is a pursuit strategy first observed in insects such as dragonflies and
hoverflies, and later in the attack patterns of bats. This elaborate technique alows animal (called
the shadower) to trick another creature (called the shadowee) into thinking it remains still, even
while both are moving continuously. The key to this pursuit lies in the predator/shadower
deceiving the prey’s optic flow, which is the ability to discern movement with the eyes’.

Consider the example where you are driving and you observe a car parked on the side of the

road; as you approach it, you perceive the car moving further away from the center of your
vision until you travel past it, and this observation is done by optic flow. Now consider driving
the same speed as a car next to you; the other car appears to be stationary even though both cars
are moving, which is the idea behind motion camouflage.

There are two varieties of motion camouflage: one is for the shadower to move such that
it appears stationary relative to some object in the background, while the other is to appear
stationary relative to a point at infinity, meaning that the shadower “aways appears to be at the
same bearing’!®. This second style of motion camouflage is the one considered in the
simulations of the robots, and it is the same method that bats use to quickly close in on prey
when hunting. The simulation of the robots is based primarily on Dr. Krishnaprasad’'s model,
and the same constraints are used. The predator moves with tangential speed always equal to
one, while the prey has a speed between zero and one, and any reasonable angular velocity.

Then the angular velocity of the predator is determined to be

L

w, = W-% with W=r, —

where r, is the vector from the origin to the predator, r is the vector from the prey to the predator
(so that |r| is the distance between the two), and n is a constant called the gain. Also, the
perpendicular symbol (4) here means to rotate a vector counterclockwise by n/2 radians. A
larger value of the gain variable allows a pursuer to achieve motion camouflage, even when it
must estimate the prey’s angular velocity'®. Implementing these equations allows simulations to
be created for robot movement of this kind, and with sufficient onboard sensors a robot could

actually attain a motion camouflage pursuit strategy.

2. Modeling M ethods

Although accurate simulations of realistic robot pursuit were the initial goa of this
project, the ideal cases were primarily the ones modeled. The robots will aways have some
error in the measurement of their positions, but with sufficient onboard sensors and
approximation algorithms, the ideal cases could be nearly attainable. In addition, these ideal
simulations could act as a control variable when compared to the experimental pursuit tests run
by two other students with whom | collaborated, Hosam Haggag and Golbarg Mehragi.

2.1 Matlab and Smulink

Matlab is generally considered to be a great tool in mathematical computation, and it
served the simulation purposes rather well. In conjunction with Matlab, | aso worked with
Simulink, an extension of Matlab which is capable of modeling and analyzing dynamic systems
with relative ease. Although | had never used Simulink before, it was fairly easy to learn the
basics through various tutorials. Unfortunately, Simulink is lacking in its graphing capabilities,
so | later incorporated Matlab functions with commands that called my Simulink models and did
the graphing. This became an excellent and rather user-friendly approach to the simulations.
Following are descriptions of each of the models | created and how they evolved as | modified
and improved them.

2.2 Classical Pursuit

Classical pursuit simulations seemed like the easiest place to begin, asit was also the first
pursuit strategy | learned. These were primarily just practice for the more advanced versions of
pursuit. | created two versions of the Simulink model; practicel v2.mdl had the prey particle
moving along a line, which was designated by the constants in the model, while practice2.mdl

instead had the prey move in circular or liptical patterns centered at zero (See Appendix A).

By changing the constant or gain values, the prey’s movement changed. The “X & y solver”
subsystem determined the predator’s movement using fairly simple equations that solved based
on parametric expressions of the x and y movements of the prey, caled p & q respectively™. In
order to work with these models more easily, a simple Matlab function, called pursuitgraph.m,
was created that could alter the initial xy position of the predator and set the value of the relative
speed, which is the ratio of predator speed to prey, with a value of one corresponding to equal
speeds. These models were simplistic, but they provided an excellent start for the more
complicated models.

2.3 Robot Movement

In order to try and implement robotic pursuit, basic robot movements had to first be
modeled. Using the traditional nonholonomic feedback laws, a smple Simulink model
(robotmove.mdl) was built that could graph the movement of a robot based on speed and angular
velocity values®. However, this model was cumbersome and difficult to utilize, so | refined it by
creating a Matlab function called interactrobot.m that could call the robotmove.mdl model (See
Appendix B). The interactrobot.m code included a loop which alowed for changes of the
robot’s speed and angular velocity each second (previous values could be repeated to have the
robot continue along the same curve), and these values could be entered by the user easily. As
an experiment to approach robotic pursuit, the robotmove2.mdl Simulink model was produced,
in conjunction with a separate Matlab function called interactrobot2 (See Appendix C). The
robotmove2.mdl model was simply a juxtaposition of the robotmove.mdl and practice2.mdl
models, in that the “x & y solver” block was attached to robotmove.mdl. Subsequently, this
allowed for user-input speed and angular velocities of the prey robot and derived the movement

of aclassical pursuit predator following the robot. This had very little real world significance,

but there was a predator/prey pursuit with at least the prey moving as one of the robots would,
which was a step closer to ssimulating the robots' motions.

2.4 Cyclic Pursuit

To attain a better pursuit representation, the initial thought was to ssmply add constraints
to the classical solver that would prevent the predator from turning too sharply. However, this
idea was quickly dismissed as impossible after a few modification attempts. Shortly thereafter, |
found the paper on cyclic pursuit by Marshal, Broucke, and Francis and made the
cyclerobotmovemdl model using their concepts (See Appendix D). Retaining the same
nonholonomic control for the prey (seen in the Prey Solver subsystem), | implemented a
different solver for the predator that used the cyclic equations. Again, the predator was given a
relative speed, which is accounted for in the gain block titled “rel speed (c).” As previously
discussed, there was aso the quantity k to account for in the angular velocity ratio of w=Ka,
which is done in the “rel ang speed (k)" block®. As before, a corresponding Matlab function
called cyclicrobot.m, was also constructed, including the loop where the prey’s controls can be
changed by the user. The only substantial change this code required was transformations for the
relative coordinates of a, B, and r from X, y, and 6. Marshall, Broucke, and Francis used only
random initial positions, but positioning of the robots in the simulation was important, so | had to
discern these transformations and use them to convert both ways (See lines 18-21 and 59-60 of
cyclicrobot.m). This successfully simulated cyclic pursuit of a pursuer robot following a user-
controlled pursuee.

The next step taken was a modification of these models to create robotpursuit.mdl and
cyclicrobotpursuit.m, which better approximated the Robot Pursuit experiments done by Hosam

Haggag and Golbarg Mehrael (See Appendix E). These tests were to have arobot go to a target

location, and constants were used for speed and angular velocity of the predator, so this change
had to be made in the models. The pursued was made to remain still in this code and the
predator had to follow the constraints set in the Robot Pursuit tests. Also, stopping criteria were
introduced as the user-inputs for the prey were removed. The cyclicrobotpursuit.m/
robotpursuit.mdl modeling was very successful in providing an ideal case comparison for
Haggag and Mehraei’ s Robot Pursuit trials.

2.5 Mice/Bugs Problem

Having simulated two robots fairly well, | hoped to create an aternate version of the bugs
problem, in which each bug was actually a nonholonomic wheeled robot. For the sake of
comparison, | had to create code for the classical version of the bugs problem. Initiadly, | began
trying to ater robotmove2.mdl and add another predator to follow the first, but the prey was still
arobot, so | had to find another route. Starting over with just the “x & y solver” block, | made a
concise Simulink model called micesolver.mdl which worked perfectly for the mice/bugs
problem (See Appendix F). | then worked with a Matlab function called classicmice.m to try and
implement a system for calling the micesolver model. Unfortunately, classicmicem was
insufficient and it went through various iterations until it was perfected in classicmice_v4.m (See
Appendix F).

Initially 1 set an amount of time for the ssimulation to run, but later improved it with a
loop similar to the interactrobot.m idea. This loop was different, in that no user-inputs were
needed and the user could simply press enter to continue with the simulation or type “quit” when
they were finished. In addition, classicmicem only worked for the equilateral triangle and the
relative speeds discovered later had to be included®. In order to verify that the three mice met at

the Brocard point, | implemented an algorithm to plot this point for any given triangle®. For

ease, | based the algebra on triangles with one side aong the positive x-axis and beginning at the
origin; thisway all the angles were less cumbersome to calculate. After this was accomplished,
classicmice_v4.m depicted the bugs problem flawlessly.

2.6 Robot Mice/Bugs Problem

While working on the classical version of the bugs problem, | was aso undertaking the
task of creating a parallel simulation where each bug moved as the robots do. The first attempt
was to ssimply add another predator solver to the cyclerobotmove.mdl model, but this proved
impossible as the second predator’s location was lost because of the relative coordinates
involved®. As before, the cyclerobotmove models went through various versions until it was
perfected with cyclerobotmove6.mdl (See Appendix G). An approximation of the second
predator’ s movement was first implemented but it was found to be insufficient. Eventually, the
prey was made to imitate the other robots, which allowed the equilateral triangle case to be
simulated, but any other triangle was impossible. Finaly, by solving for the prey’s movement
through first the cyclic pursuit predator solver and then the traditional robot movement solver,
the prey acted like a predator and the positions were not lost due to too many relative
coordinates. For each attempt at this simulation, there were also successive versions of
robotmice.m until it too was finalized with robotmice v6.m (See Appendix G). The code plots
the Brocard point, just as the classicmice_v4.m does, and the relative coordinate transformations
of cyclicrobot.m are also present (lines 34-49 and 87-92). These perfected versions ultimately
provided a smulation analogous to the classical case, and the two styles of the bugs problem

could be compared.

2.7 Motion Camouflage

After thoroughly studying Dr. Justh and Dr. Krishnaprasad’ s equations governing motion
camouflage, | was ready to implement it for the robots. For this ssimulation, | returned to a
situation involving only two robots, similar to the cyclerobotmove.md model. The traditional
feedback laws were again implemented for the shadowee robot and the shadower also used them,
except that the angular velocity had to be derived via the equations. After learning how to
represent vectors in Simulink, 1 was able to assemble the motioncamouflage model (See
Appendix H). The model is a fairly direct execution of the control laws, except that | had to
devise a way of rotating the vector by pi/2 radians, which involved using the atan2 Matlab
function and then finding the components after subtraction'®. In order to analyze this model
more easily, a corresponding Matlab function was created. MotionCamoRobot.m works very
similarly to cyclicrobot.m except that the predator always has unit speed, and the gain variable
had to be set in the model. The same user-input loop returned and alowed for better control of
the predator. The fina touch was to periodically plot a line connecting the two robots (line57);
the predator works to make these green lines paralel as he moves, since it wants to be at the
same bearing relative to the shadowee at al times'™®. With this model created, a true simulation

of wheeled robots performing a motion camouflage strategy could be analyzed.

3. Discussion

Even though the goa was to simulate realistic robot movement, | decided that | also
wanted to compare and contrast some of the types of pursuit. For example, classical pursuit is
entirely implausible in practice, but it serves as an excellent comparison, especially for cyclic

pursuit. Although a robot can’t orient itself to be facing the prey at every given instant due to

movement constraints, in cyclic pursuit it attempts to do just that. Subsequently, comparisons
yielded some interesting results, especialy in the mice problem. Also, based on the simulations,
motion camouflage does not seem to work well on its own when applied to the robots. Generally
insects and bats seem to use this unique strategy in nature, but a robot can ssmply not travel with
the same maneuverability. However, comparisons with this strategy are still interesting and
some conclusion can be made that would allow motion camouflage to be useful for robots in
conjunction with other strategies.

3.1 Sraight Line Pursuit

The classical case of the prey moving on a straight line was thoroughly analyzed by
Arthur Bernhart, and it serves as an excellent comparison for these simulations’. Asaclassica
pursuit predator automatically orients itself to be facing toward the prey from the beginning, |
decided to make the robot versions face the same way for the purpose of the first comparison.
Below are figures 3 and 4 which have the prey moving in a straight line along the x-axis,

Figure 3: Straight Line Classical Pursuit

25+

Figure 4. Straight Line Cyclic Pursuit

Prey || 25F u : 3
Predator]
Predator

Y Coordinate
Y Coordinate

05+ E 0af

o 0

05t 0ar

L L L L L L L L . .

0 05 1 1.5 2 25 3 35 4 i 05 1 15 2 25 3 35 4
X Coordinate X Coordinate

beginning at the origin, while the predator begins at the point (0,2) and is turned toward the
negative y direction (facing the prey). As can be seen, the cyclic version is very similar to the
classical, except that the predator overshoots the prey’s tragjectory because of the turning

limitations of the robot. Also, the prey has unit speed for the whole simulation, while a value of

1.2 is set for the predator’s relative speed; the angular speed gain (k) is set to avalue of two. A

similar test of the motion camouflage pursuit strategy can be seen below in figure 5, although it

is dightly different. The velocities are different for this test, as the prey has a speed of 0.8 and

Figure 5: Straight Line Motion Camouflage

Prey
Predator

Y Coordinate

I
] 1

1
2

1
3

I
4

1
5

1
G

X Coordinate
the predator has unit speed. The green lines connect the current positions of the robots at regular

I I
7 &}

1
9

intervals, and since the predator wants to keep the same bearing in the eyes of the prey, these

lines are close to parallel. However, one can see that the robot overtakes the prey more slowly

under this strategy, which is evidence for its difficulty in using motion camouflage. A better

comparison of cyclic pursuit versus motion camouflage is shown in figures6 and 7. The starting

positions are the same as the previous examples, except that the predator is facing the positive x-

Figure 6 Parallel Linear Pursuit {(Cyclic)

2481

Y Coordinate

T
Prey
Predatar

L&F

. . . | .
0 ns 1 15 2 25
X Coordinate

1
3

L
35

I
4

4.5

Y Coordinate

Figure 7. Parallel Lingar Pursuit (Motion Camouflage)

05

Prey
Predataor]

L
0 05

. . . . |
1 15 2 25 3
X Coordinate

axis, meaning that the two robots are initially moving paralel to one another. In this particular

situation, the robot following motion camouflage actualy does reach the prey first, so motion
camouflage can be the time optimal strategy for constrained systems when used appropriately.

3.2 Circular Pursuit

Another traditional arrangement for pursuit is when the prey is moving along a circular
path and the predator beginsin the center of the circle, facing the prey. Below are graphs of the

simulations for both the classical and cyclic versions of this configuration (Figures 8 and 9). In

Figure 8: Classical Pursuit - Circle Figure 9: Cyclic Pursuit - Circle

Prey

Prey
Predator

Predator

Y Coordinate
[

Y Coordinate
o

25 2 45 -u}_fcootllrdmatcl; 16 2 25 25 2 a5 4 35 o s 15 2 25
both cases, the prey starts at the point (2,0) and is oriented toward the pcgs;;?\je y direction, while
the predator is facing toward the prey (positive x direction) and is initially located at the origin.
As before, the predator overshoots the prey’s trgjectory and compensates to correct itself. Also,
the predator and prey swiftly become collinear in the classical trial while the cyclic version never
guite accomplishes that. After seeing the linear examples, thisislargely what would be expected
from these pursuit laws. The motion camouflaging robot does not seem to work very well in the
circular case, as can be seen in figure 10 on the next page. In its attempts to remain at the same
bearing from the prey, the predator ends up moving very far away from itstarget. Allowing the

simulation to run further only increased the distance between them, though the predator always

tried to get back to the point where the green lines were parallel. This failing of motion

camouflage is due either to a problem in the model that must be improved, or the inability of

these robots to utilize this strategy.

Figure 10 Maotion Camouflage - Circle

T
Prey
Predator

Y Coordinate

= .
T T

3.3 Mice/Bugs Problem

1 1
2 5

K Coordinate

A much more interesting network of predators to consider is the mice problem, in which

every entity involved is both predator and prey. Accordingly, this makes an excellent framework

for multi-robot rendezvous experiments. Historically, the mice problem was first considered in

the case for the equilateral triangle, and my analysis began there as well®. Included below are

figures 11 and 12, which portray the equilateral triangle case for the mice problem in classical

Y Coordinate

448+

3ar

248+

05

Figure 11: Classic Mice - Equilateral Triangle

* Brocard Paint ||

Predatort
Predator

Predator3

ol

0

1
1

1
2

3
X Coordinate

L
)

L
L) B

Y Coordinate

Figure 12: Cyclic Mice - Equilateral Triangle

* Brocard Paint ||
Predatort
Predator

Predator3

X Coordinate

and cyclic pursuit, respectively. All of the “mice” involved have the same speed and they begin

at the points of an equilateral triangle with a side length of six. As is expected, the classica
pursuit version has all three mice converge smultaneously at the Brocard Point. Although the
cyclic version is different, there are some striking similarities to the classical; while the robots do
not meet at the Brocard point, they converge to a circular path centered at this point. Having
seen this, | was curious if it remained true for other arbitrary triangles, and after finding the
relative speeds required | immediately analyzed other cases®. Figures 13 and 14 depict the mice
problem for classical and cyclic pursuit using an arbitrary triangle with points located at (0,0),

(5,0), and (8,4). Again, the classical instance converges with a simultaneous meeting at the

Figure 14: Cyclic Mice - Arbitrary Triangle

Figure 13: Classic Mice - Abitray Triangle

% Brocard Point % Brocard Point
Predatart Predatart
Predatar2 Predatar2
Predator3 Predator3

Y Coordinate
]

Y Coordinate
[xe]

-1 C 1 1 1 1 1 1 1 1 -1 C 1 1 1 1 1 1 1
0 1 2 3 4 5 5 7 g 1 2 3 4 5 5 7 g
X Coordinate X Coordinate

Brocard point, while the cyclic version looks somewhat different. The three robots converge to

circles, but each is of different radius; however, intuition states that this difference is due entirely
to the relative speeds, which are unequal. Thus, the mice problem is represented and the Brocard
point remains central to convergence, even in the cyclic case. Unfortunately, due to time
constraints, | was unable to implement a mice problem model that utilized motion camouflage.

3.4 Collaboration

Though | was unable to complete the mice problem comparison, | was able to collaborate
with Haggag and Mehraei on their tests. They were working on pursuit problems as well, but in

the experimental sense instead of in simulation. This alowed us to compare our results

successfully, but required a fair amount of adjustments to the preexisting cyclic pursuit model.

After the alterations were complete, we produced results like those in figure 15. The two robots

Figure 15: Collaboration Pursuit Test
250 T T T T

200+

150

100+

a0t

oF

Y Coordinate

S0

Experimental Genghis
-100 o 8

Experimental Lola

Sirmulated Genghis
Simulated Lola

-180

_2DD 1 1 1 1 1 1
-120 -100 -80 60 -40 -20 0 20

H Coordinate
involved are called Genghis and Lola, and they were made to pursue one another under the same

protocol from various starting positions around the room. Then, using their starting positions, |
simulated the same situation and we superimposed the graphs to compare. According to this, the
simulations are an excellent approximation for the experimental results. The only delineation is
that Genghis turned more sharply than expected, but this was due to its battery being low,
meaning that its forward speed was not as high as it should have been. Overall, the simulations
and experiments coincided and further study could be done with more robots, or other pursuit

strategies.

4. Conclusion

By studying various types of pursuit, | was able to implement a variety of simulation
models for theoretical classical pursuit and more redlistic variants involving the robots.
Comparisons could then be made between the versions and even between the different strategies

of cyclic pursuit and motion camouflage for the robots. There was also a successful

collaboration that simulated a genuine rendezvous test with the robots. Given more time, | would
like to further study the motion camouflage model to determine if thereisan error init or if it is
simply difficult for these mobile robots to implement it perfectly. There are also minor
modifications that could make some of the smulations run more smoothly. As an example,
having a time input for the cyclic pursuit models to dictate an amount of time for the given
controls to be performed would make things less tedious for the user. Also, stopping criteria
could be changed to mimic the cyclicrobotpursuit.m code by automatically stopping when the
robots reach a certain range from one another. This project could be the basis for further study
by modeling even more pursuit strategies, and ultimately these pursuit strategies could be
implemented on the robots for comparison. Another improvement would be to make the
simulations less ideal by adding “noise” to simulate the statistical inaccuracy of the robot
position measurements. These accomplishments could be used to further the study of
rendezvous for swarms and also implement pursuit strategies for military application. By
combined cyclic pursuit and motion camouflage, a robot or unmanned aeria vehicle could spy
and even attack more effectively. Even missiles and other targeting projectiles could benefit

from using motion camouflage to make their trgjectories more optimal.

References

1) Institute for Systems Research University of Maryland. (2002). A Smple Control Law for
UAV Formation Flying (TR 2002-38). College Park: ISR.

2) Holonomic. Retrieved August 3, 2006, from Wikipedia: The Free Encyclopedia Web
site: http://en.wikipedia.org/wiki/Holonomic

3) Kushleyev, A, Young, T. (2005) “Cricket as a Positioning System for Control
Applications’. Merit Program Summer Research Paper

4) Pursuit Curve. Retrieved June 20, 2006, from Wolfram MathWorld Web site:
http://mathworld.wolfram.com/PursuitCurve.html

5) Mungan, C. E. (2005). “A Classic Chase Problem Solved from a Physics Perspective’.
Eur. J. Phys. 26, 985-990.

6) Marshal, J. A., Broucke, M. E., Francis, B. A. (2004). “Formations of Vehiclesin Cyclic
Pursuit”. IEEE Trans. Automat. Contr. 49, 1963-1974.

7) Behroozi, F., Gagnon, R. (1979). “Cyclic Pursuit in aPlane”. J. Math. Phys. 20, 2212-
2216.

8) Klamkin, M. S., Newman, D. J. (1971). “Cyclic Pursuit or ‘ The Three Bugs Problems’”.
Amer. Math. Monthly 78, 631-639.

9) Mizutani A., Chahl, J. S., Srinivasan, M. V. (2003). “Motion Camouflage in Dragonflies”.
Nature 423, 604.

10) Justh, E. W., Krishnaprasad, P. S. (2006). “ Steering Laws for Motion Camouflage”.
Proc. R Soc. A FirstCite Early Online Publishing.

11) Kunda, J. Myers, M. (2003). Pursuit Curves. Retrieved June 20, 2006, Web site:
http://oxygen.fvce.edu/~dhicketh/M ath222/spring03proj ects/M arkJohn/newpursi ut.htm

12) Brocard Points. Retrieved August 3, 2006, from Wolfram MathWorld Web site:
http://mathworld.wolfram.com/BrocardPoints.html

Appendix A
pursuitgraph.m
practicel v2.mdl

practice2.mdl

8/8/06 11:41 AM X:\labs\isl\Projects\Summer2006\jlioi\pursuitgraph.m 1. 6Ff

function pursuitgraph(StopTime,relspeed,initialx,initialy)

% This function will call the classical linear pursuit simulink model
(practicel v2, practice2) and graph the encounter on an xy

@ 0 R W N
o

% plane where the pursued is in red and the pursuer is in blue
%
% Inputs: StopTime - end of simulation (start is 0.0)
% value - relative speed of pursuer versus pursued
9% initialx - initial x position of pursuer
10 % initialy - initial y position of pursuer
11 -%
12 %
13

14 set_param('practice2’', 'StopTime',num2str(StopTime));

15 set_param('practice2/k', 'value' ,num2str (relspeed));

16 set_param('practice2/x & y solver/Integrator (x)','initial',6 num2str (initialx));
17 set_param('practice2/x & y solver/Integrator (y)','initial',num2str(initialy));
18 t = 0:0.05:StopTime;

12 [t,x,¥] = sim('practice2',t);

20 pIoEvii, 1) L2 Bl Sl o3,y 4)5 e

21 axis equal;

22 legend('Prey’, 'Predator');

23

24 end

JBAI0S A X

bgd

Ll

| =1p/dp

32910

A

il i =03

L =Ip/bp

Wwejsuon

0

/NP =D

wrydesBynsind Aq pajjeo si japowl Siy |
‘Alesuy) Buinow Asid eyl yum unsind [Balsse|d sjepop

Zn Leanoeud

() Joyealiziug

IRp

U s

(2 pvn) + Z . [Ipidp)
£ litp) Jubs oy [e} +
2 (ipp}] ubs

o=

*

-
]

=

I Y

1A} amesfay)

B

¥

[EviA-B)
+Zvix-d)]uks

Jan|os A x g ga Leonorad

bgd

£

12A)05 A g X

L

i
bzd

00|

(3} 509 = 1pydp (d) uen (d
PP (g NT SO0

(1) ws - =p/bp {b) ueg b
NP g NT us et

wrydesBynsind Ag pa|en s [BPoW S|y L S5l Jo B B U
Buinow Azusd 21 wyiws nsind 20155212 salgnWIg

zaaoesd

Appendix B
interactrobot.m

robotmove.mdl

a/6/06 11:44 BM X:\labs\isl\Projects\Summerz0geijlioi\inceractrehor.m

1 function interactrobot(ini_x,ini_vy,ini_ theta)

2

3 % This funcrtion calls the robotmove simulink model to chart how the robot
4 % will move cover time. In addition this function will allow user changes to
5 % the values of omega and u during thes simalation.

6 %

7 % Inputs: ini x initial x position of robat

4 % ini_v - initial y position of robot

9% ini theta - initial angle aof rchot
10 %
11
12 start = [ini_x,ini y,ini_ thetal:

13 check = Lrue;
14 begintims = 07
15 angles = 0;

18 %enter starting robot paramsters
1% disp({'Enter the word "quit" at prompt to end simulation’);

20 u = input{'Enter robot''s speedin','s'};

21 if(strompifu, 'quit') == Ltrue)

22 check = false;

23 end %if

24 if{check == true)

25 w = input {'Enter robot''s angular velocity\n','s');

26 if (strempi (w, 'quit'} == true}

27 check = false;

28 end %if

23 hold cn;

30 end %if

31

32

33 %loop for movement

34 while [check == true)

35 t = begintime:0.1: (begintime+l};

38 set_param('robotmove', 'StartTime', num2str (begintime]);
a7 set_param{'robotmove', 'StopTime', num2str(begintimes1)};
ag set_param('robotmove/u', 'value',u);

ag set_param{’'robobmove/w', 'value',wi;

40 get_param{'robotmove/angle', 'value', num2str (angle)) ;

41 set_param{'robotmove/Integrater (x)!','initial',num2stristazrt{l))};
4z a2t _param{'robotmove/Integrator {y)','initial’' , num2stristart(2}));
a3 gat_param('robotmove/Integrator {(theta)','initial’,numZstristart{3)]};
44 [c.x.¥] = sim{'robotmove', t);

45 start = [y{end,1),y(end,2),yl{end,3}];

46 Blot{vi{: 1), vi:,2),'b1"};

47

4B ¥user enters new values

49 u = input('Enter rcbot''s speedin','s'):

50 if{gtrompd {u, 'quic'}) == true)

g1 check = false;

52 and %if

B/a/06 11:44 AM H:\labs\isl\Projects)Summer20oe’jlini\interactrobot.m

2 of 2

if (check == trues]
W = inpur('Enter robot''s angular velacity\n','s'};

if (strempifw, 'quit!] == true]
check = false;
end %if
and %if

angle = ylend,3);
begintime = begintime+l;

end %while
hold off;

cloee;

end ¥interactrochot

SETD!

albue

L'l
(eou) JoreiBayu !
g
I & L0
(1.mjuis 1
() JoyeiBequ) {1,m)uis,n us | % e
s |q o e =0
b X L
{(1.M)s02
500
(%) JoyeiBaqu (1.M}509.n <
n
5
T X
L b

{Wwriogonosalul UoNoUNy GEjEW SUY3 WOl Pa||ED SI [2PoLL SIYL)

JUNTI0E OjUl Uaye: uay) s UonEuaL))
‘|SpOW DILLOUO[OLUOU JISSE[0 8l Uo pased
jogod 8|buls B 10 JusWwSAoW JISE] Y] SBJB|NLUIS [BPOW SILL

SA0LLIOGOL

Appendix C
interactrobot2.m

robotmove2.mdl

8/8/06 11:45 AM X:\laba\isl%Projects\Summer2006\jlicil\interactrobokb2.m 1 of

03 =1 T N o L B

D

11
H i
13
14
15
16
17
18
13
20
21
o

@

23
24
25
28
27
28
29
30
31
32
43
34
as
ig
37
38
39
40
41
4z
43
a4
45
46
47
48
49
50
51

32

function interactrcbotZ(ini_p,ini_g,ini_theta,ini_x,ini_y)

% This function calls the robotmove simulink medel to chart how the robot
% will move over time. In addition this functicn will allow user changes to
% the values of omega and u during the simulaticn. Alsc has a point

% particle following the robot in the classical pursuit fashion

L

% Inputs: ini p - initial = position of prey rchot

% ini_g - initial ¥ position of prey rcbot

% ini_theta - initial angle of prey robot

¥ ini_x initial x position of predator rocbot

% ini y - initial y position of predator robot

%

start = [ini_p,ini_g,ini_theta,ini_x,ini_y];

check = krue;

begintime = 0;

enkter starting robot parameters
disp('Bnter the word "guit" at any prompt to end simulation');

u = input{'Enter rcbot''s apeedin','s'};
if[strcmpl {u, 'guit') == true)

check = false;
end %if

if {check == true)

w = input ('Enter robot''s angular velocity\n','s');

if (ptrompi (w, 'guit') == true)
check = false;
end %if
hold ong
end %if
set_param('robotmovez/k', "value!' ,num2str{l.0));

$loop for movement
while{check == true)

seb_param!'rocbotmovel', 'StartTime', numZstr (begintime))
aat_pavami'robotmove?', 'StopTime', numZstr (begintime+l));
set_paraml'rcbotmove2/u', 'value',u);
set_paraml'rcbotmoveZ/w', 'value',w);

set_param('rcbotmoveZ/Integrator (p)','initial' num2scr{start{i}));
sel_param{'robotmoveZ/ Integrator {(g)','initial',num2scri{scarc(2)}};
5et_puram('rcbotmoveZ[Iutegrator (theta) ', 'initial',num2stristart (3} 1) ;

set_pﬂram('robotmovczfx & y selver/integrator (x}','initial’',num2Zstr(start(4)});
set_parami'robotmove2/x & y scolver/Integratar (y}','initial',num2Zstristart(s)});
t = begintime:0.05: {(begintime+1);

[c,®.v] = sim{'robotmove2' L),

start = [y{end,1),ylend,2) .y{end,3}, v(end, 4),y(end,5)];

plotty{:,1),v(:,2), 'bLl',v{:,4),v(:,5),'c');

axis equal;

pause(0.01);

a/8/06 11:45 AM X:\laks\isl\Frojecte'\Summer2006%ilicilinteractrobot2.m 2 of 2

53

54 Fuser enters naw valuss

55 u = input ("Enter robot''s speedin', 'a'};
55 if (strempi (u, 'quit') == true}

57 chaeck = false;

58 end %if

Eg if (check == true}

60 w = input{'Enter rchot''s angular veloccityi\n','s');
61 if (strempi(w, 'quit') == true)

62 check = false;

53 end %if

=0 aend %if

&5

(o153 kbegintime = begintime+l;

57 end ¥while

58

69 hold off;

70 closer

71

72 end %interactrobot2

z %

(B e |
g

<=

Ja0s £

{nMus

(B speraBagu)

L

bgd

&
L

(d} Joyetimpu) {1,mE00,0

B sl ®

{wZrmgonaesisy) UogsUNy QEE BUS WG P 5| [Ppow si))
anclu-aasn S Ao ayg) jo uswsscw
2u] PoyAW INsnd [BASSED AU L Aaped @ e s0e aojepad By ng
1000 & Eg 51 A Sl BUBLM JUSWUSAOLE [nEind SSEINws [P Sng|

Zarounono

{8} syzaBaup

e

5

i 2. Uipn)
2. (1pidn) | uba , y [2x (10jon] +
ucrssaudie i —=% Z v [1picp)] pbs
« [® |2
g

AN

Fp

A

[Zwif-B)+
Zufx-diJubs s

2, h-t)
+2 v (x-d)]ubs

NS A g X gEnowogol

Appendix D
cyclicrobot.m

cyclerobotmove.mdl

4/8/06 11:45 AM X:\labshisl\Projects\Summer200&\jlici‘\cyclicrobot.m 1 of

1 function cyclicrobot (preyx,preyy,preytheta,predx, predy, predtheta)

2

3 % This function calls the ecyeclicrobotmove simulink modsl te chark how a
4 % pair of robots will move in a predator/prey situation. This model

5 % accounts for orientation in both predator and prey robots. In addition
6 % this function will allow user changes to the values of omega and u during
7 % the simulation.

g %

9 % Inputs: preyx - initial x pesitien of prey robot
10 % preyy - initial y position of prey robot

11 % preytheta - initial orientation (angle} of prey robot
12 % pradx - initial = position of predator robot
13 % predy - initial ¥ position of predator robot
14 % predtheta - initial orientation (angle)] of pred robot

15 % {-pi <= predtheta < pi)

16 %

17

16 ini_r = sgrt! (preyx-predx}”2 + (preyy-predy)”®z);

e
{is]

ini beta = predtheta - preytheta - pi:
phi = atan2{preyy-predy,preyx-predx);

B
=

21 ini_alpha = phi - predtheta;

22

23

24 start = [preyx,preyy,preytheta,ini r,ini _alpha,ini_beta];

25 check = true;
26 begintime = 0;

28 %enter starting prey robob parametsar
29 disp('Enter the word "guit" at any prompt to end simulation');
30 u = inpuk ("Enter prey robot!'s speed\n','s');

31 if(strompi(u, 'quit'] == true)

32 check = false;

33 end %if

34 if (check == true)

iB w = inpukt{'Enter prey robot''s angular velocity\n','s'}:

ig if (strompl {w, "gquit') == true]

17 check = false;

a8 end %if

39 hold ong

40 end %if

41

42 get_param(’'cyclerobotmove/rel speed (c)', 'Gain’,num2str{l.1});

431 set param('cyclerobotmove/rel ang speed (k)','value',numastr{2));
44

45 while (check == true)

46 get_param('cyclerobotmove', 'StartTime' , num2aty (begintime)) ;
47 set_param('cyclerobotmove', 'StopTime' , num2str {begintime+1});
48 sebt_parami'cyclerobotmove/preyu', 'value' ul;

49 set_parami'cyclercbotmove/preyw', 'value',w);

50 get_parvam('cyclercbotmove,/Prey Solver/Integratar (preyx)','initial',num2str(starce
{11} }s

51 set_parami'cyclerobetmove/Prey Sclwver/Integrator (preyy)','initial' num2str(starte

B/B/06 11:45 aM X:\labs\isl\Projecta\Summerzeoshjlinitcyvelicrobeot.m 2of -2

(2111

52 get_ param{'cyclercbotmove/Prey Solwver/Integrator (theta)', 'initial',num2str(starty
R IR

53 set param('cyclerchotmove/Integrator (r)','initial!, num2str(start{d4}));
54 seb_param! 'cyclercbotmove/Integrator (alpha)','initial',num2stri{start(5}}i:
55 set_param('cyclercbotmove/Integrator (beta)','initial',numZstristarc(6)));
g6 t = begintime:0.05: (begintime+1l};

57 [t.x,¥] = sim{'cyclerobotmove!', t};

58 start = [ylend,l},y{end;2)},y¥(end,3),y(end, 4),vlend,5) ,yv{end,61];

[55=] predxdata = y(:,1) + (yl{:,4) *cogly{:,5)+y{:,8)+y{(:,3)));

60 predydata = v(:,2) + (yi{:,4).*sin(y{:,58)+y{:,68)+v{:,3)})):

61 ploti{vi{:,1),v{:,2},'bl", predxdata,predydata, "x')};

82 axis egual;

53 pause(0.01);

&4

55 tuser enters new values

12 u = input (!'Enter robot''s speedin',’'s'});

a7 i1f(strempi (v, "quit'} == true}

&8 check = false;

63 end ¥if

70 if (check == true}

71 w = input {'Enter robot''s angular velocity\n',6's'});

72 if {strcmpi(w, 'gquit') == brue)

73 check = false;

T4 end %if

ez end %if

¥

77 begintime = begintime+l;

78 end ¥while

74

B0 hold off;

Bl close;

B2

83 end %cyclicrobot

1) paads s

e il
_]

T e
I
(eyde) s (i
5 ipai + 300 Budie J_A| =
eljfjepasd [eudie} JojEB=y < . |
] {Ewqsmydi) us n
(E980+Eyd]El U)s
[T Byle
i_jn_m_ = {sudel soa
3 <] =03

(4} soumsBa)

(mageeydie) oz n
B8 BUYNE) S0

| et
: " .
spand

i
EYdE.Y _|
s Y s “ 4} pasds Due @1
=

]

{mza) soiefiaim
e T 2

(e u‘|_ s faud
— ETLETh L

aid

Z Ahead

LT

wd
QAL

a0 0Uo1EAD LONDUNG GEEW BLY LLIOW DOJIES S @Rt S}

“3EEN AU ANy & jualn o &R Sy sy
B[100G ULID) PEINEIDE S UDDELBLG
1neqe saded SIIUEL BU) LD PESEG S1HA0W SIL|L

SRILOGNHIAD

ejafiald

(=1auy) JoyeiBayu)

Ce

Aaid

haud

(mjurs
(Afaud) 1oye1Bayu) (1Mjuls,n _|I uis legf——
s <4
T i X A
{1.Mm)500
(xAa1d) 101218870 {1.m)s02,n i 5
s
I | X <

nAazud

lanog Asld [anouwoqolaaio

Appendix E
cyclicrobotpursuit.m

robotpursuit.mdl

B/8/06 11:46 AM X:‘\labsa\isgl\Projects'\Summer2C006\jlici\eyelicrobotpursuit.m 1o

y
]

1 function cyclicrobotpursuit (predlx,predly,predlitheta, pred2x,pred2y,preditheta)
2
3 % This functicn calls the cyclicrobeotmove simulink model to chart how a
4 % palr of robots will move in a mice problem bLype of situation. This model
5 % accounts for orientation in both predator and prey robots. and both
6 % robots are predators in a senze
7 %
B % Inputs: predlx - initial x positicn of predl robot
3 % predly - initial v position of predl robot
10 % preditheta - initial erientation langle) of predl rokot
11 % predzx - initial = position of pred2 robkot
12 % prediZy - initial y position of pred2 robot
13 % pred2theta - initial orientation f{angle) of pred2 robot
14 %
L5
16 ini_r = sgrt{ (predix-pred2x)”2 + (predly-pred2y)™2);:
17 ini_predlbeta = predltheta - pred2theta - pi;
18 ini_pred2beta = predztheta - predltheta - pi;
19 phil = atan2 (pred2y-predly,predix-predlx};
20 phi2 = atan2 (predly-pred2y, predlx-pred2x);
21 ini_predlalpha = phil - prediltheta;
22 ini_pred2alpha = phi2 - pred2theta;
23
24
25 start = [predlx,predly,pradltheta,ini_r,ini predlalpha,ini predilbeta, ...
26 ini_r,ini predZalpha,ini_pred2betal ;
27 check = true;
28 begintime = 0;
2% hold onr
10 set_param('robotpursult/robot speed', 'walue', num2stri{S));
31
32
33 while (check == Erue}
4 set_param{'robotpursuit', 'StartTime' ,num2str (begintime));
15 set_param|'robotpursuit', 'StopTime’' ,num2str (beginkime+1));
36
37 set_param{'robotpursuit/Predl Solwver/Integrator (predix)!,'initial',numzstristarte
(1)r):
g set param('rohotpursuit/Predl Solver/Inktegrator {predly}','initial',num2stristarte
{2})¢
e set_param('robotpursuit/Predl Solver/Integrator (theta)','inikbial',numZstr(starte
£3b})¢
40 set_param|'robotpursuit/Predl Solverl/Integrator (r)','initial’',num2str(startid4l});
41 set_param('robotpursuit/Predl Solverl/Integrator (alpha) ', 'initial’',num2stristarte
{511);:
42 set_param('robotpursuit/Predl Solverl/Integrator (beta)','initial!,numZstr{starty¥
(611}
4% get_param('robotpursuit/fred2 Solver/Integrator (r)','initial’', num2str{start(7)));
44 set_param('robotpursuit/Pred2 Solver/Integrator (alpha)','initial',num2str{starte
(8111;
45 get_param{'robotpursuit/Pred? Solver/Integrator (beta)', 'initial',numZstr(starcy

(3)));

B/B/06 11:46 BM ¥:‘\labs\isl\Procjects\Summer2006%jlioitcvelicrobotpursuit.m 2 of 2

46 if abs(start({5)) = D.0B726485

47 set_param('robotpursuit/predl w','value', num2str{0));

48 else

459 if atartc(s} > 0O

50 set_param('rcbotpursuit/predl w','value' , num2str(0.1});
jak else

52 get_param('robotpursuit/predl w', 'value' num2str{-0.1));
53 end

54 end

L if abs{starc(B)} < 0.0872665

58 set param('robotpursuit/pred2 w', 'value',numZstr(0)};

57 else

58 if starcif) = 0

59 set_param{'robotpursuit/pred2 w', 'value' numZstri0.1));
;1) else

61 set_param{'robotpursuit/pred2 w', 'value' K num2str(-0.1)};
52 end

63 end

4 t = begintime: (begintime+1];

65 [t,x,¥] = sim{'rcbotpursuit’',t);

66 start = [ylend,1l),y(end,2),ylend,3),ylend, 4], ,y(end,5) ,yviend, &),y (end, 7} ,y(end, 8] ,y¥
(end,21];

67 pred2xdata = yi{:,1) + (y{:,7l.*cos(v{:,8)+¥{:,8)+y(:,3)));

f3:] pred2vdata = y(:,2) + (y({:,7).*sin(y{:,8)+y{:,8)+v{:,30));

&9 plot{y{:,1},.v{:,2}, 'bl"', pred2xdata,pred2ydata, 'r', 'LineWwidth', 2} ;
70 for count = 1l:length(predzxdata)

71 if dist2d{y(count,l),ylcount,2), predixdata{count) ,pred2ydataicount)} =< 10
72 check = falee;

73 end

74 end

75 pause (0.01);

76

il begintime = begintime+l;

78 end %while

79

80 hold off;

81 close;

az

83 end %cyclicrobotpursuit

a4

85 % -- s m s s ===
86 function d = dist2d(xl,vl,x2,y2}
a7

88 d = sgro{(x2-x1) "2+ {y2-v1)™*2);
a5

50 end %¥distzd

ejagepad

eydiezpaid

BA0S Zhald
mzpand
mfiaud L
enxzpasd
paads 1000 |of
Bldezpaid m zpaud
mpaad g Lo-
Jzpsud

LiaAj0g |Lpaid

Janjog Lpaid

ey} pasd mpald e

AL paud

w Ll wfaad
Zegpad

paads jogol
eydieLpaid
Jppasd mpaid

i

e

L paid

b0

paads Joqou

x,paid nippasd b

(Wwinsindyogeaooia uogoun) geEW a4Y) WoJ) PS||eD S |spow sy)

"Uiaung gelER ey ybno gy
peuaiua oue s|enuoD Iy 1eelys|y pue BelSel Ag suop sjew
PLOM [2B) BU) B1R|nLUS o) insind 21242 SIS0 [BPOW S L

unsandjogos

g

ejayy|.paid

(ejaL)) JojeibBayu

Ml paid

(e)

fypaid

(LMuis

_| ws |ff—0n

¥ paid

T

C =

(ALpaid) JoeiBa {1, mluis,n
g o
T [X <
(x| paid) JojeiBaju| (1.m)s00,n
g
T X g

{(1,m)s00

mSA‘|

)

nippaid

18A[0S Lpald [Insindjogol

Cr)

paads oo

e} 10jeisau
eydiezpand (Eydie}]
&

2

B u -

Mpad + 100 ey

(1) sopeabiay)

(Epa+Eydie) us n

(RydiR) ws A

{eEg+eydEisoon

(eydie) soo &

_.Auu...[A {eudie) uis
Fﬂ uz
(eeg+eydis) wis
ug
{evdie) soa
o
[EaqeeudE) soo

(el anesbew)

JBAUS Fpald jimsndogm

]

10p Eeg n H u

F Y

|
2

£

E 0

E L

Appendix F
classicmice v4.m

micesolver.mdl

B/B/06 11:47 AM X:\labs‘\isl\Projects\Summer200&\jlioil\classicmice v4.m 1 of 2
1 function classicmice w3 (xl,yl,x2, ¥2,x3,v3)
2
3 % This function calls the micesolver simulink medel to simulate the
4 ¥ Mice Problem. This model utilizes classical pursuit modelling. It also
5 % adds relative speeds for all three mice, go it works for more than just
6 % the equilateral case
7 ¥
BE ¥ Imputs: =1 = % position of first particle
9 % vl = y position of [irst particle
10 % %2 = x position of second particle
11 % y2 = y position of second particle (must be zero)
12°% %3 = x position of third particle (must be zero}
13 % ¥3 = y position of third particle [must ke zera)
14 %
15
1& check = true;
17 begintime = 0;
18 start = [x1,yl,x2,y2,x3,y3];
1%
20
21 %triangle information
22 a = dist2d{xl,v1l,x2,¥2);
23 b = dist2d({=x3,y3,x1,¥y1};
24 ¢ = disc2d(x3,y3 , x2,¥2);
25 8 = (at+b+c)/2;
26 area = sqgrid{s*is-al*(s-bi*{5-c));
27 angle = atan(({4*area}/(a"2+b"2+272));
28 k = (2%area)/(({c*a) /b)) la*b) /el+{(b*a) fa)};
2% brocardy = (k*b)/a;
30 brocardx = brocardy/tan{angle};
31 held on;
32 plot{brocardx,brocardy, 'kp');
5
34 Frelative speeds
15 predlspeed = k¥ {a/c);
1§ pred2speed = k*(c/bl;
27 predispeed = k¥*(h/al;
38 set_param('micesclver/predlsclver/predl speed', 'walus', numZstr (predlspeed)),
35 set param('micesclver/pred2solver/pred? speed', 'valus', numZstr (predispeed));
40 set_param('micesclver/predisolver/predi speed', 'value', num2setr (predispeed));
41
42 while (check == true}
473 sel _param{'micesclver', 'StartTime',num2str {begintime));
14 sel param{'micesolver', 'StopTims' ,numZstr (begintimesl)) ;
45 setﬂparam{'micesolverfpredlsolver/Iu:cgrator (x) ', "initial’' ,num2stri{start(1))];
46 set_param{’'micesolver/predlsolver/Integrator (v)','initial',num2stristarc(2)));
47 set_param{'micesolver/pred2solver/Integrator (x)','initial' num2scr{start(3)));
48 set_param{'micesolver/prediZsolver/Integrator (yv)','initial',numZetri{starc(4)));
45 set_param('micesolver/predisolver/Integrator (x)','initial',num2str(start(5)));
50 se:_param('micesolver/predEsolver/Integrator [v)','initial' aum2stristart(s)));
51 t = begintime:0.05:begintime+l;
52 [t,%x,¥] = sim{'micescolver' t);

g/8/06 11:47 AM X:\labs\isl\Projects\Summer200&6\jlici\classicmice va.m

2 0of 2

start = [yilend.l),yv(end,2) ,ylend,3),y(end, 4),y{end,5) ,yiend,&)];
plot(y(:, 1), ¥{:,2), "Dl vl 3}, ¥ (4], 'e" v{:,5),¥{:,6},'g"):
axis equal;
response = input {('type "'quit'' to end the simulationi\n','s'):
if (strompl(regponse, 'guit') == true)
check = false;
end %if
begintime = begintime+l;
end fwhile
hold off;

closa;

66 end % clagsicmice w4

58
&9
T0
71
72

a5

T4

function d = dist2d(xl,vl,x2,y2
d = sqre{(x2-x1) 2+ (v2-v1) *2};

end %distz2d

AL paid

Janjos) paid

X|Lpald

Aepaud

;

Janjosgpaad

e

]

=
2
o

=

Zpaud

Janoszpaud

g

xgpaid

(LWwrga™ BoiwDIsSEID UOIOUNY qEIELU B} LU0 PI||ED 51 [2PoLU SIYL)

uonauny qefiel au
L0} paliajsuen uaneLwiopul Jsyjo pue spasds aajejal
au Buisn sjBuein Aue Joj yJom UeD "ws|gold aony sy ajenuns
0] s12Aj0s Ynsind [edisse sieledes sasn |9poW SiY |

Janjosaonu

{4} JeneBaquy

In#p

pep

F Y

paads |pasd

[y

[Zwih-b]a [2.(A-b}
Ty lx-d)Iubsy g + 2 (- 0)) ubs

Jawos ypead §asaossow

I:L@U

Appendix G
robotmice v6.m

cyclerobotmove6.mdi

8/E/06 11:4% AM X:\labs\igl\Projects\Summer200&%jlioilrobotmice vE.m 1 of

1 function robotmice wve (predlx,predly,predix, prediy, predix, prediy)

2

3 % Thig function calls the cyclicrobotmoved simulink model to chart how
4 % three robots will move in a pursuit situation {Mice Problem). This model
5 % accounts for orientation in all three robots. {(this model improves on
6 % robotmice v5 by adding in relative speeds for the three robots)

T

8 % Inputs: predlx - initial x position of predl robot

9 % predly - initial vy position of predl rchbot

10 % predlx - initial ® pogition of predi rchot

11 % pred2y - initial y position of pred2 robot (must be zero)
12 % predix - initial x positicn of predl robot (must be zero)
13 % prediy - initial vy positicn of predl robot (must be zero)
14 %
15

18 check = trus;
17 begintime = 0;

19 %triangle informaticn

20 preditheta = 0;

21 preditheta atanz (predly-pred2y,predlx-pred2x] ;

22 predltheta = -pi + atanZ (predly-pred3y,predix-predix);
23 a = dist2dipredlx,predly,predZx, pred2y);

24 b = dist2d{predix,pred3y, predlx, predly)

25 ¢ = dist2d{predix,prediy,pred2x, preday);

26 8 = la+b+c)/2;

27 area = sqrt(s*{s-a)l*is-b)*{s-c});

2B angle = atanl (4®area)/(a"2+b*2+c"2)};

29 k = (2*areal/({{c*a)/bl+{(a*b)i/c)+{(b*c)/al);

30 brocardy = (k*b)/a;

31 brocardx = brocardy/tanlangle);

32

33

34 %fdetermine all initial ceonditions (r wvalues first)

35 ini_predlr = sgrt({(predix-predlx)”2 + {pred3iy-prediy)”®z }
36 ini_pred2r = sqrt((predlx-pred2x)®2 + {(predly-predzy)®z };:
37 ini_predir = sqgrt((pred2x-predix)®2 + {pred2y-pred3y)®2 }
1B %now beta walues

12 ini_ predlbeta = predlitheta - preditheta + pi;

40 ini predibeta = pred2theta - preditheta - pi;

41 ini_pred3ibeta = -pred3theta - predztheta - pi;

42 %now phi values {(used to find alpha)

43 phil = atan2 (prediy-predly,predix-predix);

44 phiz = atan2 (prediy-pred2y,predix-predax):

45 phid = atan2 (prediy-prediyv,pred2x-pradax);

46 %and last are the alpha values

47 ini_predialpha = phil - prediltheta;

48 ini predZalpha = phi2 - predztheta;

4% ini_pred3alpha = phi3 - pred3theta;

50¢

51 start = [predlx,predly,pradltheta,...

52 ini_predlr,ini predlalpha,ini_ predilbeta, ...

B/8/06 11:49 AM

H:\labshisl\Projects)\ Summer2006hjlioilrobotmice vE.m

2 of 3

53 ini_pred2r,ini_pred2alpha, ini_pred2beta, ...
54 ini_pred3r,ini_pred3alpha,ini_predibeta];
55

56

57 #yelative spead

58 predlspeed = k*{a/c};

59 predZspesd = k¥*{c/b);

60 predispesd = k*(bfa);

set_param['Cyclﬂrnhotmovesfpredﬂ spead', 'value' , numistripredlspesd))
set_param{'cyclerohotmoveé}pred? spead', 'valus' num2styr (prediZapesd)) ;

653 set_param{'cyclerchatmoves/predi speed', 'value' num2str({pradispeed));

a4 Ret_param{'cyc;arabo:moveﬁ/rel ang speed (k)','value',num2stril));

&h

66 hold on;

87 plot (brocardx, brocaxrdy, 'kp'):

[=%:

69 while {check == true)

70 set_param('cyclerobotmoves', 'StartTime’' , num2str (begintimel };

71 set_param{'cyclerobotmoves', 'StopTime! ,num2str (begintime+1));

ki get_param('cyclerobotmoves,/Predl Sclver/Integrater (predlx)','initial',num2stry
(start{1}));

73 set_param('cyclercbotmoves,/FPredl Sclver/Integrator (predly)','initial', numlstry
{start {2}));

T4 get param('cyclerohotmoves/Predl Sclver/Integrator (theta)', 'initial', num2str¥

(start{3)1}};

25 set_param('cyclerobotmoves, Predl
(4)))2

Kl set_param('cyclerohotmoves/Predl
[starc(5))};

77 set_param('cyclercbhoatmoves/Predl

[starc(a))};

Bolverl/Integrator
Solverl/Integrator
Solverl/Integrator
Solver/Integrator
Solver/Integrator
Solver/Integrator
Solver/Integrator
Salver/Integratar

Solver/Integrator

78 get_param{'cyclerchotmoves,/ Pradl
(73304

s set_param{'cyclercbotmoves/Pred2
(start(8))});

&0 set_param{'cyclerchotmoves,/Pred2
(233

a1 set_parami'cyclerchotmoved/Pred3
{10333 ;

82 geb_param('cyclerchbotmoves/Pradl
{etart (11}));

83 set_param('oyclerabotmoves/Predl
(12});

a4 £t = begintime:0.05: (begintime+l);
as [t,x,¥] = sim('cyclercbhbotmoves' t);
a6 start

tend, 9,y (end, 10) ,v{end, 11) .y {end,12}];

87 pred2xdata = y¥{:,1) +

B8 pred2ydata = y{:.2) +

69 pred2phi =

50 thetavalues = pred2phi - y(:,8);
Ll

{r) ", 'initial', num2str(starte
(alpha) ', 'initial',numZstre
{beta})', 'initial ', num2stre
{r}','initial"',numdstri{start ¥
falpha} ', 'initial' , num2stry
(beta) ', 'initial' ,num2str(start¥

(r)','initial’ num2Zstristart¥

(a

lpha) ', 'initial',num2stre

(betal ', 'initial', , numdstr (start ¥

[v{end, 1}),ylend, 2),y(end,3) ,vi{end, 4} ,ylend, 5], ¥ lend,6) ,yilend, 7) ,yiend, 8) ,v¥
(yfs, 7). *cos{y(:, 8 +v(:2,9 4w (=,3)));

ty{: 7} *ein(y(:,8)+y(:,9) 4y (2,3)));

atanz (y{:,2)-predzydata,v(:,1l}-pred2xdata)l;

predixdata = pred2xdata + (y(:,10}.*cosi{yi:,11)+y{:,12}+thetavalueas));

B/8/06 11:4% AM X:\labs‘\isl\Projects\Summer200&Yjlicitrobotmice vé.m

3 oaf 3

100
101
102
103
104
105
108
o7
104
102
110
111
112
113

pred3ydata = predZydata + (y({:,10) . *sini{y(:,11)+y{:,12) +thetavaluss));

plot[yt:,lJ,yt:,?],'bl',predExdata,predZydata,'r',predlxdata,prod3yda:a,'g'

axis equal;
regponse = input({'type ''qguit'' to end the simulationi\n', 's');

if {strcmpi (response, 'quit!'] == true)
check = false;
end %if

begintims = begintime+1;
end %while

hald off;
closer

end %robotmice_ve

e e e L S e e e S e e O B S R U e it L
funetion d = dist2a{xl,y1l,x2,v2}

d = sgrtl(x2-x1) "2+ (y2-y1)*2};

end %dist2d

Vi

eiey L pad

(3} peeds Gue |2

(2)«

AL peud

(e

x| peud

eydiegpaud
S80S Epaud pasds gpaud
g pssd paads gpaud | =
Jepaid o D
@A|_|’ sydiegread (4) paads Sue g paads gpaid
sppeud paads Zpaud | -
gpqepad mzpesd g
ejageped
JBMDS Zpald
eydiezpesd azpaad peeds grad L
@n eydiezpaud () peads Buc (2 e
Jgpaud mipad Lo
szpasd ol
H_ EpEazRaid paads | paod
ejagzpad
e
eydie| paud
T Laniog Lpaig
eydjey paud peads gpaud |
4 paud il
(v e Jipaud mepad |of
=12q| paud =g Lpaid {4} paads BUB |51
9 et
ﬂ]bi sy pald poacs Lpud (e
AANOE LRl
B pad e e L
Avpaud paads | paid
xipasd nipad 0=

D, =

(Wonioun) QEJEW AT 90IWI000) SU} Ag payed S| [Epow sy |)

“|lEes SE S5RD EASSE PRy S4) O PAUECDUL0T B UED PUE LCHOW
;A S 10) pals|diuos Mol s wsgood B By) Juneoe
oju) UAYE] Ale spaads aneR Aessasal |y agoud sonu

B} J0 UQIEIEA D)[5K0 SU 10} SyI0M ABIRINDIE [3POLU S|

QIACUOGCIS 24D

gjauy})paid

(ejoul) JojeiBay

mpaid

e

(£ Lpaud) JojeiBay)

Kpaid

e : e

(% 1paid) Jojeibay)

y l—

x| paud

Co— § f—

(3mjuis
:.i:ﬁ%A _| us |g— 4
X
{1.m)s00
(L.m)s00,n Y e
* e

nypaud

180G | pald / ganowjogolapko

panmds | paad

D

paacs gpid

(Fudhe} ws »

(O
{EEgeEYdIE) ws n

{eyds) uis

us _u..

L

(E130+BYCJE] WIS

[Engel|iE] 503 A

{1} JmEIGEI|

izpaid

(=acrEydie] 52 n

uis

{evdie) soa

[
F 3

(E1ag+2UE] S0

oz patd

Eagzpesd

(O

{Zag) Joyeabag

18005 0k | 990 0WICUIEAD

L=

i,y _|
[~ |e

)

() peeds bu= =1

Appendix H
M otionCamoRobot.m

motioncamouflage.mdl

8/8/06 11:49 AM X:\labs\isl\Projects\Summer2006\jlici\MctionCamoRobot .m

1 of 2

1 function MotionCamoRobot (preyx,preyy,preytheta,predx,predy,predthetal

Z

3 &% This function calls the motioncamouflage simulink model to chart how a
4 % pair of robots in a predator/prey situation would move if the predator
& & robot follows a motion camouflage control scheme. This model fully

& % accounts for orientation in both robots, In addition this function will
7 % allow user changes to the wvalues of speed and angular wvelocity (for the
8 % prey} during the simulation.

9 %

10 & Inputs: preyx - initial x position of prey robot

11 % preyy - initial y position of prey robot

12 % preytheta - initial orientation {angle) of prey robot

13 % predx - initial x poesition of predator rcocbhbot

14 % predy - initial vy position of predator robot

15 % predtheta - initial orientation {angle) of pred robot

16 %

17

18 ini_rvector = [predx-preyx,prady-preyyl;

19

20 start = [preyx,preyy,preytheta,predx,predy,predtheta,ini_rvector];

21 check = true;

22 begintime = 0;

23

24 %enter starting prey robot parameters :

25 digp('Enter the word "quit" at any prompt to end simulation'):

26 u = input{'Enter prey robot''s speedin','s');

27 iffetrompi (u, 'quit') == true)

248 check = false;

2% end %if

30 if{check == true)

a1 w = input{'Enter prey rocbot''s angular velecity\n','s!');

a2 if {strompi{w, 'guit'}) == true)

33 check = false;

34 end %if

35 hold on;

36 end %if

37

38 set_param('motioncamouflage/Mu', 'value', num2str(0.5));

a8

40 while (check == true) ;

41 set param{'motioncamcuflage', 'StartTime’ ,num2str (begintime));

43 set_param{'moctioncamouflage', 'StopTime ', num2str (begintime+1)) ;

43 set param{'motioncamouflage/prey speed', 'value',u);

44 set_param{'motioncamcuflage/pred speed’, 'value' ,num2stril));

45 set_param{'motioncamcuflage/preyw’, 'value’ ,wl;

16 set_param{'motioncamcuflage/Prey Solver/Integrator (preyx)','inicial®
{L})h:

a7 set param('motioncamouflage/Prey Solver/Integrator {preyy)','initial!’
(201

48 set_param{'motioncamcouflage/Frey Scolver/Integrator (theta)', 'initial’
(200}

a9 set param{'motioncamouflags/Pred Solver/Integrator (predx)','initial'

Jnum2atr(start ¢

(num2str (start &

JoumZstr (start ¥

Jaum2str (start ¢

8/8/06

11:45 BM X:\labs\isl\Projects'\Summer2006%jlioil\MotionCamoRobok.m 2 of 2

(411}

50 set_param{'motioncamouiflage/Pred Solver/Integrator (predy)','initial!,num2str{starce
5)1):

Loyl get param('moticncamouflage/Pred Sclver/Integrator (theta)','initial',numZetristart¥
[6))1;

52 set_param('moticoncamouflage/Integrator (r)','initial',num2str{start(7)));
53 t = begintime:0.05: (begintime+1};

54 [t.%x,¥] = s3im('motioncamouflage’ t};

55 start = [ylend,1},v(end, 2},ylend,3),y(end, 4} ,y(end,5),viend, 8),y{end, 717 ;
5& plot{y(: 1) ,¥(:,2), 'bB1 ;ylz,4) ;3{=,5),"'c");

57 plot {[gtart(l) ,starc (4)], [start{2),start(5)]1,'g"};

58 axis egual;

59 pause (0.01};

all

[Fuser enters new values

62 u = input('Enter robob''s speed\n','s'});

&3 if(strompiiu, 'quit') == true)

64 check = false;

&5 end ¥if

;13 if [check == true)

67 w = input ('Enter robot''s angular velogityhn','s'};

68 if (strompi (w, 'guit') == Erus)

3 check = false;

70 end %if

7 end ®if

[

73 begintime = begintime+l;

74 end %while

TS

76 hold off;

77 close;

T8

79 end %MoticonCamoRobot

(2 =y JANES Pald

BRI il
Apaxd
_ wpaxd wpad

paeds poud

zad

(Egaphaud) ups

(g pad) uis

..Em._._umi"_ 500

ujs _.l|
]
— [B1yptad) soz
o)

L)
= ETET —

e b i wdoid

#faud Exiyifand " AIH

e Rsi pesds Az

S LT | P E— —
wfzud B

{UDIZUN WIEaRAWETUONDA B4 A PSIIED 51 [POL S}

Apmopa senbue
5 1Epaud BUY 0y JdE0ND (RN Bk §EAKDE [EUOTE L UoHoung geREpy
2y uBneAR JSEn Sy A PRISILE B0 UED A DAy iy Sj0dU0S
“8joqas syy Jop Adepens aBEInOWeD UO(ICLW BUE SHIBJMUIS [FRAW S)

afierawesuonous

ejaupasd

(eyey)) Jojeubaju

MpaJd

C

fpaad

xpaud

b)

(mpuis
(Apaud) JojeiBau) (1.muis,n _|| us |g—«
il i
b X ‘
(1,m)s00
500 |ff—
(xpa.d) Joie1Ba3y) {1,m)s00,n
3
T B ® <

npaid

lanjog pald ; ebepnoweouanow

