
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

UNDERGRADUATE REPORT

Simulations of Robotic Pursuit Using Matlab and Simulink

by Joshua Lioi
Advisor:

UG 2006-11

Simulations of Robotic Pursuit

 Using Matlab and Simulink

Joshua Lioi

ISR REU Program

Summer 2006

Advisors:

Dr. P. S. Krishnaprasad

P. Vishwanada Reddy

Abstract

A pursuit curve is the path one creature takes while following another, and these can be used to

model predator/prey chases, missiles homing in on a target, or even robot movement during a

rendezvous. This paper will focus on the mathematical modeling and subsequently the

simulation of these curves in Matlab’s Simulink. Two other students who were working in the

lab interacted directly with the robots, and in particular, they worked with experimental robotic

pursuit. Using the Cricket system, which works like an indoor GPS, the robots in the Intelligent

Servosystems Lab can communicate their locations to one another, and then run pursuit

protocols. The Matlab programs, though idealized, are successfully able to simulate the realistic

trials of robotic pursuit.

1. Introduction

 As the name implies, the Intelligent Servosystems Laboratory is concerned with what

could be called “smart robots.” A servosystem is another word for a mechanism that can manage

itself through feedback. At the same time, the word “intelligent” refers to intelligent control,

which is a set of protocols a robot uses to navigate, problem solve, or even learn in a manner of

speaking. One major aspect of intelligent control from the recent past is that of robot formations,

also called swarms. In order to make such robots work efficiently, they must have control laws

in place that allow them to move together or follow one another without colliding1. This paper

describes simulations of pursuit laws that robots could utilize in rendezvous or swarming

situations. These could also be used to model more aggressive attack or shadowing strategies

that unmanned military robots could use in the future. Although the simulations involve only

two or three robots at a time, they could also be expanded to better model larger swarms.

1.1 Robots Modelled

The majority of the robots in the lab are wheeled, so they can only control their tangential

speed and angular velocity. However, a robot has three variable values, or generalized

coordinates of the system, which describe its location: x, y, and orientation angle. This implies

that the wheeled robots are nonholonomic, meaning that there are fewer controlled inputs than

generalized coordinates2. These wheeled robots can use various systems to navigate and

determine their location; systems such as ultrasound sensors, microphones for sound localization,

and onboard GPS are a few examples.

1.2 Cricket System

A more recently implemented system used in the lab is the Cricket system, which is the

most closely related to my project. Each robot has two Cricket beacons on it that send out

ultrasound and RF pulse signals at regular intervals. Ten equally spaced Cricket listeners on the

ceiling map out a coordinate system and receive the RF pulse and the ultrasound signals from the

robot’s beacons. The listener units then bounce the signal packet back, along with their ID

number. When a robot acquires the return signal packet from a listener, it can calculate the

horizontal distance between the two beacons based on the time difference between the RF pulse

and the slower ultrasound signal. By using signals from multiple listeners each second, a robot

can easily use triangulation to approximate its location in the xy coordinates and its orientation in

the lab3. The pursuit simulations are based on the wheeled robots in the lab that utilize the

Cricket system.

1.3 Classical Pursuit

 To understand more advanced methods of pursuit, one must first learn what pursuit is and

how it started. What is now called “classical pursuit” was first studied by Pierre Bouger in 1732.

Classical pursuit involves two moving particles: one of which (pursued or prey) moves along a

known curve, while another particle (pursuer or predator) follows the first. The pursuer always

has an instantaneous velocity pointed directly toward the pursued, and the path that the pursuer

traces out is called a pursuit curve. Since then much has been analyzed about the pursuit curve,

including the logarithmic shape that the predator traces out and the total time before a capture

occurs4. A more physical example of a pursuit curve would be the trajectory of a torpedo or

missile, when the projectile tracks a target by moving towards it at all times. However, it can be

concluded that this might not be the most efficient trajectory, and a strategy that leads a target

would be more likely to succeed. In fact, with classical pursuit a predator can only overtake the

prey if its velocity is more than that of the prey5. The greatest contribution that classical pursuit

can make to swarms is the “bugs problem,” which is directly related to rendezvous.

1.4 Bugs Problem

 The bugs problem, also known as the mice or dogs problem, was first considered in 1877

by Eduard Lucas. He analyzed what trajectories would occur if three dogs started out at the

points of an equilateral triangle, and then each dog chased the next one counterclockwise to

itself. Henri Brocard provided his analysis a few years later and determined that the dogs would

trace out the logarithmic spiral of classical pursuit, and that all dogs/mice would meet

simultaneously at the Brocard point of the triangle6. Analysis was later expanded to regular n-

polygons and even irregular n-polygons, instead of just the equilateral triangle case. Further

examination discovered that the simultaneous meeting always occurs in non-collinear triangles,

but not for other polygons where premature head-on collisions can occur7. The final important

note that concerns us is the idea of relative speeds for irregular triangles. Figure 1 shows an

example of an irregular triangle with bugs at each point chasing counterclockwise. Klamkin and

Newman derive speeds based on ratios of side lengths that will allow the three bugs to converge

simultaneously at the Brocard point, regardless of the shape of the initial triangle, excluding all

collinear cases. The speeds for each bug would be

 a b c

b c a
v n v n v n

a b c
= = =

Figure 1: Bugs
problem triangle with
counterclockwise
pursuit8

where a, b, and c are the side lengths of the triangle as shown in Figure 1, and n is any scalar

constant8. Although useful later, the bugs problem is still referring to classical pursuit and does

not account for the nonholonomicity of the robots, and so another type of pursuit is necessary.

1.5 Cyclic Pursuit

 Marshall, Broucke, and Francis consider a slightly different bugs problem by adding a

constraint to each bug so that they can only move like a unicycle, which correlates directly to our

nonholonomic robots. The unicycles could not perform classical pursuit, as they require time to

orient themselves so that they are facing their prey. The traditional feedback law for modeling

such a nonholonomic vehicle is by using simultaneous differential equations for each of the

generalized coordinates, as follows where x and y determine position, θ describes the orientation,

while u and ω are the control inputs of tangential speed and angular velocity, respectively.

However, this equation simply describes the motion of one vehicle and does not account for the

pursuit laws needed. To remedy this, Marshall, Broucke, and Francis define alternative

coordinates that determine the location of vehicle i based on its position relative to its prey

(vehicle i+1). As can be seen in Figure 2, the new generalized variables are α, β, and r. The

cos() 0

sin() 0

0 1

x
u

y

θ
θ

ω
θ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

&
&

Figure 2: Alternative
Coordinates for cyclic
pursuit strategy6

variable ri is simply the Euclidean distance between the i and i+1 vehicles, and αi is the

difference in radians between the pursuer’s current heading and the heading it would have in a

classical pursuit situation. Unfortunately, βi is defined, somewhat awkwardly, as the angle

between the prey’s current heading and the reverse vector of the predator’s heading. Marshall,

Broucke, and Francis also derived the equations analogous to the traditional feedback law which

use the alternative coordinates, and thus the cyclic pursuit equations are defined as

1cos() cos()i i i i i ir v vα α β+= − +&

[]1

1
sin() sin()i i i i i i iv v

r
α α α β ω+= + + −&

1i i iβ ω ω += −&

In order to automate the control inputs, they suggest making each vehicle’s angular velocity

proportional to the current value of α (ωi = k*αi where k is a constant). This means that a vehicle

will turn more sharply when its heading is significantly different from the direction towards its

prey6. This system of feedback will henceforth be referred to simply as “cyclic pursuit.” Cyclic

pursuit is the direct nonholonomic analogy to classical pursuit, and it is employed in many of the

robot simulations for pursuit and rendezvous. However, a more sophisticated method of pursuit

is also considered, which is called motion camouflage.

1.6 Motion Camouflage

 Motion Camouflage is a pursuit strategy first observed in insects such as dragonflies and

hoverflies, and later in the attack patterns of bats. This elaborate technique allows animal (called

the shadower) to trick another creature (called the shadowee) into thinking it remains still, even

while both are moving continuously. The key to this pursuit lies in the predator/shadower

deceiving the prey’s optic flow, which is the ability to discern movement with the eyes9.

Consider the example where you are driving and you observe a car parked on the side of the

road; as you approach it, you perceive the car moving further away from the center of your

vision until you travel past it, and this observation is done by optic flow. Now consider driving

the same speed as a car next to you; the other car appears to be stationary even though both cars

are moving, which is the idea behind motion camouflage.

There are two varieties of motion camouflage: one is for the shadower to move such that

it appears stationary relative to some object in the background, while the other is to appear

stationary relative to a point at infinity, meaning that the shadower “always appears to be at the

same bearing”10. This second style of motion camouflage is the one considered in the

simulations of the robots, and it is the same method that bats use to quickly close in on prey

when hunting. The simulation of the robots is based primarily on Dr. Krishnaprasad’s model,

and the same constraints are used. The predator moves with tangential speed always equal to

one, while the prey has a speed between zero and one, and any reasonable angular velocity.

Then the angular velocity of the predator is determined to be

P

r
W

r
ω µ

⊥⎡ ⎤⎛ ⎞
⎢ ⎥= ⋅⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

v

v p

r r
with W r r

r r

⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

v v
v v& &v v

where rp is the vector from the origin to the predator, r is the vector from the prey to the predator

(so that |r| is the distance between the two), and µ is a constant called the gain. Also, the

perpendicular symbol (┴) here means to rotate a vector counterclockwise by π/2 radians. A

larger value of the gain variable allows a pursuer to achieve motion camouflage, even when it

must estimate the prey’s angular velocity10. Implementing these equations allows simulations to

be created for robot movement of this kind, and with sufficient onboard sensors a robot could

actually attain a motion camouflage pursuit strategy.

2. Modeling Methods

 Although accurate simulations of realistic robot pursuit were the initial goal of this

project, the ideal cases were primarily the ones modeled. The robots will always have some

error in the measurement of their positions, but with sufficient onboard sensors and

approximation algorithms, the ideal cases could be nearly attainable. In addition, these ideal

simulations could act as a control variable when compared to the experimental pursuit tests run

by two other students with whom I collaborated, Hosam Haggag and Golbarg Mehraei.

2.1 Matlab and Simulink

Matlab is generally considered to be a great tool in mathematical computation, and it

served the simulation purposes rather well. In conjunction with Matlab, I also worked with

Simulink, an extension of Matlab which is capable of modeling and analyzing dynamic systems

with relative ease. Although I had never used Simulink before, it was fairly easy to learn the

basics through various tutorials. Unfortunately, Simulink is lacking in its graphing capabilities,

so I later incorporated Matlab functions with commands that called my Simulink models and did

the graphing. This became an excellent and rather user-friendly approach to the simulations.

Following are descriptions of each of the models I created and how they evolved as I modified

and improved them.

2.2 Classical Pursuit

 Classical pursuit simulations seemed like the easiest place to begin, as it was also the first

pursuit strategy I learned. These were primarily just practice for the more advanced versions of

pursuit. I created two versions of the Simulink model; practice1_v2.mdl had the prey particle

moving along a line, which was designated by the constants in the model, while practice2.mdl

instead had the prey move in circular or elliptical patterns centered at zero (See Appendix A).

By changing the constant or gain values, the prey’s movement changed. The “x & y solver”

subsystem determined the predator’s movement using fairly simple equations that solved based

on parametric expressions of the x and y movements of the prey, called p & q respectively11. In

order to work with these models more easily, a simple Matlab function, called pursuitgraph.m,

was created that could alter the initial xy position of the predator and set the value of the relative

speed, which is the ratio of predator speed to prey, with a value of one corresponding to equal

speeds. These models were simplistic, but they provided an excellent start for the more

complicated models.

2.3 Robot Movement

 In order to try and implement robotic pursuit, basic robot movements had to first be

modeled. Using the traditional nonholonomic feedback laws, a simple Simulink model

(robotmove.mdl) was built that could graph the movement of a robot based on speed and angular

velocity values6. However, this model was cumbersome and difficult to utilize, so I refined it by

creating a Matlab function called interactrobot.m that could call the robotmove.mdl model (See

Appendix B). The interactrobot.m code included a loop which allowed for changes of the

robot’s speed and angular velocity each second (previous values could be repeated to have the

robot continue along the same curve), and these values could be entered by the user easily. As

an experiment to approach robotic pursuit, the robotmove2.mdl Simulink model was produced,

in conjunction with a separate Matlab function called interactrobot2 (See Appendix C). The

robotmove2.mdl model was simply a juxtaposition of the robotmove.mdl and practice2.mdl

models, in that the “x & y solver” block was attached to robotmove.mdl. Subsequently, this

allowed for user-input speed and angular velocities of the prey robot and derived the movement

of a classical pursuit predator following the robot. This had very little real world significance,

but there was a predator/prey pursuit with at least the prey moving as one of the robots would,

which was a step closer to simulating the robots’ motions.

2.4 Cyclic Pursuit

 To attain a better pursuit representation, the initial thought was to simply add constraints

to the classical solver that would prevent the predator from turning too sharply. However, this

idea was quickly dismissed as impossible after a few modification attempts. Shortly thereafter, I

found the paper on cyclic pursuit by Marshall, Broucke, and Francis and made the

cyclerobotmove.mdl model using their concepts (See Appendix D). Retaining the same

nonholonomic control for the prey (seen in the Prey Solver subsystem), I implemented a

different solver for the predator that used the cyclic equations. Again, the predator was given a

relative speed, which is accounted for in the gain block titled “rel speed (c).” As previously

discussed, there was also the quantity k to account for in the angular velocity ratio of ω=kα,

which is done in the “rel ang speed (k)” block6. As before, a corresponding Matlab function

called cyclicrobot.m, was also constructed, including the loop where the prey’s controls can be

changed by the user. The only substantial change this code required was transformations for the

relative coordinates of α, β, and r from x, y, and θ. Marshall, Broucke, and Francis used only

random initial positions, but positioning of the robots in the simulation was important, so I had to

discern these transformations and use them to convert both ways (See lines 18-21 and 59-60 of

cyclicrobot.m). This successfully simulated cyclic pursuit of a pursuer robot following a user-

controlled pursuee.

The next step taken was a modification of these models to create robotpursuit.mdl and

cyclicrobotpursuit.m, which better approximated the Robot Pursuit experiments done by Hosam

Haggag and Golbarg Mehraei (See Appendix E). These tests were to have a robot go to a target

location, and constants were used for speed and angular velocity of the predator, so this change

had to be made in the models. The pursued was made to remain still in this code and the

predator had to follow the constraints set in the Robot Pursuit tests. Also, stopping criteria were

introduced as the user-inputs for the prey were removed. The cyclicrobotpursuit.m/

robotpursuit.mdl modeling was very successful in providing an ideal case comparison for

Haggag and Mehraei’s Robot Pursuit trials.

2.5 Mice/Bugs Problem

 Having simulated two robots fairly well, I hoped to create an alternate version of the bugs

problem, in which each bug was actually a nonholonomic wheeled robot. For the sake of

comparison, I had to create code for the classical version of the bugs problem. Initially, I began

trying to alter robotmove2.mdl and add another predator to follow the first, but the prey was still

a robot, so I had to find another route. Starting over with just the “x & y solver” block, I made a

concise Simulink model called micesolver.mdl which worked perfectly for the mice/bugs

problem (See Appendix F). I then worked with a Matlab function called classicmice.m to try and

implement a system for calling the micesolver model. Unfortunately, classicmice.m was

insufficient and it went through various iterations until it was perfected in classicmice_v4.m (See

Appendix F).

Initially I set an amount of time for the simulation to run, but later improved it with a

loop similar to the interactrobot.m idea. This loop was different, in that no user-inputs were

needed and the user could simply press enter to continue with the simulation or type “quit” when

they were finished. In addition, classicmice.m only worked for the equilateral triangle and the

relative speeds discovered later had to be included8. In order to verify that the three mice met at

the Brocard point, I implemented an algorithm to plot this point for any given triangle12. For

ease, I based the algebra on triangles with one side along the positive x-axis and beginning at the

origin; this way all the angles were less cumbersome to calculate. After this was accomplished,

classicmice_v4.m depicted the bugs problem flawlessly.

2.6 Robot Mice/Bugs Problem

 While working on the classical version of the bugs problem, I was also undertaking the

task of creating a parallel simulation where each bug moved as the robots do. The first attempt

was to simply add another predator solver to the cyclerobotmove.mdl model, but this proved

impossible as the second predator’s location was lost because of the relative coordinates

involved6. As before, the cyclerobotmove models went through various versions until it was

perfected with cyclerobotmove6.mdl (See Appendix G). An approximation of the second

predator’s movement was first implemented but it was found to be insufficient. Eventually, the

prey was made to imitate the other robots, which allowed the equilateral triangle case to be

simulated, but any other triangle was impossible. Finally, by solving for the prey’s movement

through first the cyclic pursuit predator solver and then the traditional robot movement solver,

the prey acted like a predator and the positions were not lost due to too many relative

coordinates. For each attempt at this simulation, there were also successive versions of

robotmice.m until it too was finalized with robotmice_v6.m (See Appendix G). The code plots

the Brocard point, just as the classicmice_v4.m does, and the relative coordinate transformations

of cyclicrobot.m are also present (lines 34-49 and 87-92). These perfected versions ultimately

provided a simulation analogous to the classical case, and the two styles of the bugs problem

could be compared.

2.7 Motion Camouflage

 After thoroughly studying Dr. Justh and Dr. Krishnaprasad’s equations governing motion

camouflage, I was ready to implement it for the robots. For this simulation, I returned to a

situation involving only two robots, similar to the cyclerobotmove.mdl model. The traditional

feedback laws were again implemented for the shadowee robot and the shadower also used them,

except that the angular velocity had to be derived via the equations. After learning how to

represent vectors in Simulink, I was able to assemble the motioncamouflage model (See

Appendix H). The model is a fairly direct execution of the control laws, except that I had to

devise a way of rotating the vector by pi/2 radians, which involved using the atan2 Matlab

function and then finding the components after subtraction10. In order to analyze this model

more easily, a corresponding Matlab function was created. MotionCamoRobot.m works very

similarly to cyclicrobot.m except that the predator always has unit speed, and the gain variable

had to be set in the model. The same user-input loop returned and allowed for better control of

the predator. The final touch was to periodically plot a line connecting the two robots (line57);

the predator works to make these green lines parallel as he moves, since it wants to be at the

same bearing relative to the shadowee at all times10. With this model created, a true simulation

of wheeled robots performing a motion camouflage strategy could be analyzed.

3. Discussion

 Even though the goal was to simulate realistic robot movement, I decided that I also

wanted to compare and contrast some of the types of pursuit. For example, classical pursuit is

entirely implausible in practice, but it serves as an excellent comparison, especially for cyclic

pursuit. Although a robot can’t orient itself to be facing the prey at every given instant due to

movement constraints, in cyclic pursuit it attempts to do just that. Subsequently, comparisons

yielded some interesting results, especially in the mice problem. Also, based on the simulations,

motion camouflage does not seem to work well on its own when applied to the robots. Generally

insects and bats seem to use this unique strategy in nature, but a robot can simply not travel with

the same maneuverability. However, comparisons with this strategy are still interesting and

some conclusion can be made that would allow motion camouflage to be useful for robots in

conjunction with other strategies.

3.1 Straight Line Pursuit

The classical case of the prey moving on a straight line was thoroughly analyzed by

Arthur Bernhart, and it serves as an excellent comparison for these simulations4. As a classical

pursuit predator automatically orients itself to be facing toward the prey from the beginning, I

decided to make the robot versions face the same way for the purpose of the first comparison.

Below are figures 3 and 4 which have the prey moving in a straight line along the x-axis,

beginning at the origin, while the predator begins at the point (0,2) and is turned toward the

negative y direction (facing the prey). As can be seen, the cyclic version is very similar to the

classical, except that the predator overshoots the prey’s trajectory because of the turning

limitations of the robot. Also, the prey has unit speed for the whole simulation, while a value of

1.2 is set for the predator’s relative speed; the angular speed gain (k) is set to a value of two. A

similar test of the motion camouflage pursuit strategy can be seen below in figure 5, although it

is slightly different. The velocities are different for this test, as the prey has a speed of 0.8 and

the predator has unit speed. The green lines connect the current positions of the robots at regular

intervals, and since the predator wants to keep the same bearing in the eyes of the prey, these

lines are close to parallel. However, one can see that the robot overtakes the prey more slowly

under this strategy, which is evidence for its difficulty in using motion camouflage. A better

comparison of cyclic pursuit versus motion camouflage is shown in figures 6 and 7. The starting

positions are the same as the previous examples, except that the predator is facing the positive x-

axis, meaning that the two robots are initially moving parallel to one another. In this particular

situation, the robot following motion camouflage actually does reach the prey first, so motion

camouflage can be the time optimal strategy for constrained systems when used appropriately.

3.2 Circular Pursuit

 Another traditional arrangement for pursuit is when the prey is moving along a circular

path and the predator begins in the center of the circle, facing the prey. Below are graphs of the

simulations for both the classical and cyclic versions of this configuration (Figures 8 and 9). In

both cases, the prey starts at the point (2,0) and is oriented toward the positive y direction, while

the predator is facing toward the prey (positive x direction) and is initially located at the origin.

As before, the predator overshoots the prey’s trajectory and compensates to correct itself. Also,

the predator and prey swiftly become collinear in the classical trial while the cyclic version never

quite accomplishes that. After seeing the linear examples, this is largely what would be expected

from these pursuit laws. The motion camouflaging robot does not seem to work very well in the

circular case, as can be seen in figure 10 on the next page. In its attempts to remain at the same

bearing from the prey, the predator ends up moving very far away from its target. Allowing the

simulation to run further only increased the distance between them, though the predator always

tried to get back to the point where the green lines were parallel. This failing of motion

camouflage is due either to a problem in the model that must be improved, or the inability of

these robots to utilize this strategy.

3.3 Mice/Bugs Problem

 A much more interesting network of predators to consider is the mice problem, in which

every entity involved is both predator and prey. Accordingly, this makes an excellent framework

for multi-robot rendezvous experiments. Historically, the mice problem was first considered in

the case for the equilateral triangle, and my analysis began there as well6. Included below are

figures 11 and 12, which portray the equilateral triangle case for the mice problem in classical

and cyclic pursuit, respectively. All of the “mice” involved have the same speed and they begin

at the points of an equilateral triangle with a side length of six. As is expected, the classical

pursuit version has all three mice converge simultaneously at the Brocard Point. Although the

cyclic version is different, there are some striking similarities to the classical; while the robots do

not meet at the Brocard point, they converge to a circular path centered at this point. Having

seen this, I was curious if it remained true for other arbitrary triangles, and after finding the

relative speeds required I immediately analyzed other cases8. Figures 13 and 14 depict the mice

problem for classical and cyclic pursuit using an arbitrary triangle with points located at (0,0),

(5,0), and (8,4). Again, the classical instance converges with a simultaneous meeting at the

Brocard point, while the cyclic version looks somewhat different. The three robots converge to

circles, but each is of different radius; however, intuition states that this difference is due entirely

to the relative speeds, which are unequal. Thus, the mice problem is represented and the Brocard

point remains central to convergence, even in the cyclic case. Unfortunately, due to time

constraints, I was unable to implement a mice problem model that utilized motion camouflage.

3.4 Collaboration

 Though I was unable to complete the mice problem comparison, I was able to collaborate

with Haggag and Mehraei on their tests. They were working on pursuit problems as well, but in

the experimental sense instead of in simulation. This allowed us to compare our results

successfully, but required a fair amount of adjustments to the preexisting cyclic pursuit model.

After the alterations were complete, we produced results like those in figure 15. The two robots

involved are called Genghis and Lola, and they were made to pursue one another under the same

protocol from various starting positions around the room. Then, using their starting positions, I

simulated the same situation and we superimposed the graphs to compare. According to this, the

simulations are an excellent approximation for the experimental results. The only delineation is

that Genghis turned more sharply than expected, but this was due to its battery being low,

meaning that its forward speed was not as high as it should have been. Overall, the simulations

and experiments coincided and further study could be done with more robots, or other pursuit

strategies.

4. Conclusion

 By studying various types of pursuit, I was able to implement a variety of simulation

models for theoretical classical pursuit and more realistic variants involving the robots.

Comparisons could then be made between the versions and even between the different strategies

of cyclic pursuit and motion camouflage for the robots. There was also a successful

collaboration that simulated a genuine rendezvous test with the robots. Given more time, I would

like to further study the motion camouflage model to determine if there is an error in it or if it is

simply difficult for these mobile robots to implement it perfectly. There are also minor

modifications that could make some of the simulations run more smoothly. As an example,

having a time input for the cyclic pursuit models to dictate an amount of time for the given

controls to be performed would make things less tedious for the user. Also, stopping criteria

could be changed to mimic the cyclicrobotpursuit.m code by automatically stopping when the

robots reach a certain range from one another. This project could be the basis for further study

by modeling even more pursuit strategies, and ultimately these pursuit strategies could be

implemented on the robots for comparison. Another improvement would be to make the

simulations less ideal by adding “noise” to simulate the statistical inaccuracy of the robot

position measurements. These accomplishments could be used to further the study of

rendezvous for swarms and also implement pursuit strategies for military application. By

combined cyclic pursuit and motion camouflage, a robot or unmanned aerial vehicle could spy

and even attack more effectively. Even missiles and other targeting projectiles could benefit

from using motion camouflage to make their trajectories more optimal.

References

1) Institute for Systems Research University of Maryland. (2002). A Simple Control Law for
UAV Formation Flying (TR 2002-38). College Park: ISR.

2) Holonomic. Retrieved August 3, 2006, from Wikipedia: The Free Encyclopedia Web

site: http://en.wikipedia.org/wiki/Holonomic

3) Kushleyev, A, Young, T. (2005) “Cricket as a Positioning System for Control

Applications”. Merit Program Summer Research Paper

4) Pursuit Curve. Retrieved June 20, 2006, from Wolfram MathWorld Web site:

http://mathworld.wolfram.com/PursuitCurve.html

5) Mungan, C. E. (2005). “A Classic Chase Problem Solved from a Physics Perspective”.

Eur. J. Phys. 26, 985-990.

6) Marshall, J. A., Broucke, M. E., Francis, B. A. (2004). “Formations of Vehicles in Cyclic

Pursuit”. IEEE Trans. Automat. Contr. 49, 1963-1974.

7) Behroozi, F., Gagnon, R. (1979). “Cyclic Pursuit in a Plane”. J. Math. Phys. 20, 2212-

2216.

8) Klamkin, M. S., Newman, D. J. (1971). “Cyclic Pursuit or ‘The Three Bugs Problems’”.

Amer. Math. Monthly 78, 631-639.

9) Mizutani A., Chahl, J. S., Srinivasan, M. V. (2003). “Motion Camouflage in Dragonflies”.

Nature 423, 604.

10) Justh, E. W., Krishnaprasad, P. S. (2006). “Steering Laws for Motion Camouflage”.

Proc. R. Soc. A FirstCite Early Online Publishing.

11) Kunda, J. Myers, M. (2003). Pursuit Curves. Retrieved June 20, 2006, Web site:

http://oxygen.fvcc.edu/~dhicketh/Math222/spring03projects/MarkJohn/newpursiut.htm

12) Brocard Points. Retrieved August 3, 2006, from Wolfram MathWorld Web site:

http://mathworld.wolfram.com/BrocardPoints.html

Appendix A

pursuitgraph.m

practice1_v2.mdl

practice2.mdl

Appendix B

interactrobot.m

robotmove.mdl

Appendix C

interactrobot2.m

robotmove2.mdl

Appendix D

cyclicrobot.m

cyclerobotmove.mdl

Appendix E

cyclicrobotpursuit.m

robotpursuit.mdl

Appendix F

classicmice_v4.m

micesolver.mdl

Appendix G

robotmice_v6.m

cyclerobotmove6.mdl

Appendix H

MotionCamoRobot.m

motioncamouflage.mdl

