

ABSTRACT

Title of Thesis: PERFORMANCE ANALYSIS OF AN APPLICATION-LEVEL

MECHANISM FOR PREVENTING SERVICE FLOODING IN

THE INTERNET

Degree Candidate: Zubair Baig

Degree and Year: Master of Science, 2003

Thesis directed by: Dr. Virgil D. Gligor

Department of Electrical and Computer Engineering

One of the most impacting technological developments during

the last few years has been the emergence of the Internet. With

rapid growth of the Internet, it is becoming increasingly diffi-

cult to provide the necessary services to all users within a des-

ignated time period. As the gap between the network-line and

application-server rates is growing, it is getting easier to launch

Distributed Denial of Service (DDoS) attacks against services

on the Internet, and remain undetected within the network. Gli-

gor’s rate control scheme is a novel mechanism for providing

strong access guarantees to clients for accessing public ser-

vices, by generating and enforcing simple user-level agree-

ments on dedicated special purpose servers.

This thesis studies the results obtained from simulations, when

this rate control scheme is applied to two kinds of networks,

namely, Content Distribution Networks, and Domain Name

Server-based networks. In particular, the server utilization, and

client waiting times were studied with the aim of finding

bounds on parameters that improve server performance, and of

providing clients with reasonable maximum waiting times to

service.

PERFORMANCE ANALYSIS OF AN APPLICATION-LEVEL MECHA-

NISM FOR PREVENTING SERVICE FLOODING IN THE INTERNET

by

Zubair Baig

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2003

Advisory Committee:

Professor Virgil D. Gligor, Chairman/Advisor
Professor Manoj Franklin
Professor Charles B. Silio

© Copyright by
Zubair Baig

2003

ii

ACKNOWLEDGEMENTS

I am extremely grateful to my advisor, Dr. Virgil D. Gligor, for giving me

the opportunity to work with him during the past year. He spent many

hours advising and guiding me at every stage of the thesis. His invaluable

efforts have helped mature my way of thinking and have made me a more

dedicated researcher and engineer.

I would also like to thank my parents for their many sacrifices, love, and

unconditional support all along. I thank Dr. Charles B. Silio, Jr. and Dr.

Manoj Franklin for reading this thesis and being part of my thesis commit-

tee. Finally, I extend my thanks to my colleagues, especially, Aamer Jaleel,

Rakesh Bobba, and Farshad Bahari for their support, and hallway guid-

ances, that helped me reach this stage of my academic efforts.

iii

TABLE OF CONTENTS

List of Figures ... iv

CHAPTER 1:
Introduction ..1

CHAPTER 2:
Related Work ..7

CHAPTER 3:
Rate Control Scheme with Maximum Waiting Time Guaran-
tees..16

CHAPTER 4:
Simulation Analysis ..23

4.1 Rate Control Scheme applied to CDNs 23
4.1.1 Working of CDNs ... 24

4.1.2 Simulation Experiment ... 25

4.1.3 Results and Observations.. 27

4.2 Rate Control Scheme applied to DNS Root Name Servers 39
4.2.1 DNS Name Resolution Scheme... 39

4.2.2 Simulation Experiment .. 41

4.2.3 Results and Observations.. 42

CHAPTER 5:
Conclusions and Future Work ..54

APPENDIX A:
The Simulator ...57

BIBLIOGRAPHY...72

LIST OF FIGURES

Fig. 2.1 ---- Flooding-based DDoS Attacks: Direct and Reflector.......... 9

Fig. 2.2 ---- Honeypots for Protection against DDoS Attacks............... 12

Fig. 3.1 ---- Rate Control Scheme.. 17

Fig. 4.1 ---- Server Utilization vs. l.. 34

Fig. 4.2 ---- Server Utilization vs. l.. 35

Fig. 4.3 ---- Server Utilization vs. l.. 35

Fig. 4.4 ---- Server Utilization vs. l.. 36

Fig. 4.5 ---- Average Waiting Time vs. l .. 36

Fig. 4.6 ---- Average Waiting Time vs. l .. 37

Fig. 4.7 ---- Average Waiting Time vs. l .. 37

Fig. 4.8 ---- Average Waiting Time vs. l .. 37

Fig. 4.9 ---- Average Waiting Time vs. Client Population 38

Fig. 4.10 ---- Average Waiting Time vs. Client Population 38

Fig. 4.11 ---- Average Waiting Time vs. Client Population 38

Fig. 4.12 ---- Average Waiting Time vs. Client Population 39
iv

Fig. 4.13 ---- Impact of δr variation on the server utilization................. 43

Fig. 4.14 ---- Access window allocation to clients 46

Fig. 4.15 ---- Server Utilization vs. l.. 49

Fig. 4.16 ---- Server Utilization vs. l.. 49

Fig. 4.17 ---- Server Utilization vs. l.. 50

Fig. 4.18 ---- Server Utilization vs. l.. 50

Fig. 4.19 ---- Average Waiting Time vs. l .. 51

Fig. 4.20 ---- Average Waiting Time vs. l .. 51

Fig. 4.21 ---- Average Waiting Time vs. l .. 52

Fig. 4.22 ---- Average Waiting Time vs. l .. 52

Fig. 4.23 ---- Average Waiting Time vs. l .. 53

Fig. 4.24 ---- Average Waiting Time vs. l .. 53
v

Chapter 1

Introduction

One of the most significant technological developments during the last few

years has been the emergence of the Internet. With rapid growth of the

Internet, it is becoming increasingly difficult to provide the necessary ser-

vices to all users within a designated time period. As the gap between the

network-line and application-server rates is growing, it is getting easier to

launch Distributed Denial of Service (DDoS) attacks against services on

the Internet, and remain undetected within the network. The end-to-end

argument suggests that simple functions that are common to all applica-

tions be performed by network computers (e.g., routers), and complex

functions required by fewer applications be implemented in end-servers

[16]. With hardware performance improving day by day, network line rates

tend to go higher, whereas, complex end-server applications and operating

system features offset equivalent improvements at the end-system level [9].
1

During a DDoS attack, a server is repeatedly sent requests from numer-

ous machines, typically called “zombies”, that are controlled by a master

process. The master process will trigger a ‘go’ signal to launch an attack

against the victim server in hope of flooding the server with an unusually

high number of requests, and cause the server to crash. The server is thus

unable to process any further requests until further action is taken to restore

its state [17].

Extensive work has been done to provide solutions to the DDoS problem

at the transport layer and below of an open network, as presented in Chap-

ter 2. However, assuming all attacks at and below the transport layer are

taken care of, the threat of a potential attack against publicly accessible

application services still remains imminent. The main reason for this threat

is the exceeding demand for services for the same server capacity, and

lower server throughput as compared to the network line rate, thus making

the victims more susceptible to an attack. The flooding-based attacks of

February 2000 against the public service of Yahoo!, Ebay, and E*trade, as

well as the January 2001 attacks against Microsoft’s name servers had sta-

tistics that clearly showed no unusual network traffic, however the servers

were incapacitated as the service demand exceeded their respective capaci-

ties [15].
2

The DDoS attacks against the root DNS servers during October 2002

were launched simultaneously from various attacking points on the Inter-

net, and targeted all the thirteen root DNS servers. Only four of them with-

stood the attack. The attack lasted for about an hour, during which DNS

was disabled. The financial losses incurred due to such attacks can be very

high, as all servers, including e-commerce servers, frequently rely on root

DNS services for timely completion of transactions [17].

Gligor’s Rate Control Scheme

The rate control scheme proposed by Gligor in [9] is a novel mechanism

for providing access guarantees to clients for accessing public services, by

generating and enforcing simple user-level agreements on dedicated special

purpose servers. These servers cannot be flooded, as they operate at the

peak network line rate of the front-end network access points (e.g. edge

routers). The scheme also uses the CAPTCHA[23] technique, which is a

reverse Turing test for controlling the client proliferation on adversary-con-

trolled machines, but only to decrease the waiting time to service for legiti-

mate clients.

When active (during peak traffic), an exception is raised by the server’s

request Verifier, directing the client’s proxy to a special purpose server,

called the rate control server (RCS), to obtain a valid ticket containing a
3

time window during which its request will be processed, and an access

count (wopt) specifying the number of accesses allowed. The client then

has to approach a ticket Verifier (dedicated server) that checks the validity

of all requests, and mediates access to the server. In addition to checking

the ticket validity, the Verifier also keeps track of the number of times the

client has already accessed the service during the current time slot, so as to

confirm client eligibility for service access. Within a particular time win-

dow, per client information regarding the number of times a client has

already visited the server is kept, in order to enforce the agreement (time

window, number of accesses) initially made between the client and the

server [9].

The rate control scheme explained in detail in Chapter 3 thus controls the

client request rate to the application server, thwarting the chances of a

flooding attack. In addition, flash crowds (unusually high pikes in traffic

during peak hours caused by legitimate clients) are also taken care of by the

scheme, thus not letting the server be overwhelmed by requests at any

given time [9].

Contributions of the Thesis

Simulations were carried out to analyze the performance of the rate con-

trol scheme when applied to two classes of servers, namely, Content Distri-
4

bution Networks (CDNs), and Domain Name Server (DNS)-based

networks. The experiment consisted of simulating a large network with

parameters obtained from statistics of these networks, and analyzing the

server utilization and client waiting times. In addition, server behavior for

varying client populations was also studied.

The simulation experiment confirmed our expectations in the following

three areas:

1. Variations in the number of clients affects the client waiting time; e.g.,

small request-interarrival times during an attack suggest that clients arrive

to the RCS at about the same time, and are provided with server accesses

within time windows well ahead into the future. Simulation results showed

that the average waiting time varies proportionally with increase in the

number of clients.

2. Increases in the maximum inter-request time between two consecutive

requests to the application server by the same client (δr) leads to higher

waiting times for clients. Results obtained from the simulation confirm the

expected behavior, namely that higher values of δr resulted in higher wait-

ing times as compared to lower values. The results also helped us place a

bound on the value of δr for the experimented servers namely, CDN and

DNS, so as to provide clients with more reasonable maximum waiting

times to service.
5

3. The average number of accesses for a protocol, Ar, also has a direct

impact on the server utilization, with higher values leading to lower server

utilization as compared to lower values. The results obtained from the sim-

ulations confirmed that with higher Ar server utilization is low, as com-

pared to lower values, as is explained in Chapter 4.

Thesis Outline

Chapter 2 reviews prior work in the area of DDoS, and gives a brief

explanation of schemes that have been proposed to solve this problem at

various levels. Chapter 3 explains the detailed working of the rate control

scheme. The analysis of the results obtained when the rate control scheme

is implemented in two different server networks, namely, CDN and DNS, is

given in Chapters 4, 5. Concluding remarks, with future directions for

research are given in Chapter 6.
6

Chapter 2

Related Work

Denial of Service (DoS) attacks aim to deny clients access to service pro-

vided by the victim (server, router, or the network). Attackers either exploit

weaknesses in the system, for which patches are later issued upon discov-

ery of the attack, or the victim is forced to undertake computationally

intensive tasks, such as exponentiation with large integers for Diffie-Hell-

man key exchanges [6].

In contrast, flooding-based attacks, do not rely on any particular network

or system weaknesses. Instead, they tend to exploit the asymmetry that

exists between the network and the victim by amassing a large clan of hosts

to simultaneously send useless packets towards the victim, leading to a

flood of requests at the victim’s end. The intensity of the traffic is high

enough to jam or crash either the victim, or its network. Launching a flood-

ing attack has become relatively easy today owing to the free availability of

a number of tools for carrying out such attacks, such as Trinoo, Trib Flood
7

Network 2000, and Stacheldraht. These tools allow the attacking host to

install patches of the attack program on innocent agents, aka. “zombies”.

The program is tuned to launch an attack against a particular victim at a

particular time. Thus, the victim is flooded with requests coming in from

all directions at an enormously high magnitude [6][22].

Broadly speaking, DDoS attacks can be classified into two categories:

1. Direct Attacks: In a direct attack, the attacker arranges to send a large

number of attack packets directly to the victim. SYN flooding is the most

common attack case, in which TCP SYN packets are sent to the victim’s

server port. The victim will respond by sending back a SYN-ACK response

to the source address of the packet. Since the source address of the packet

was spoofed, the victim will not receive the third message of the 3-way

handshake required for connection establishment in TCP. Thus the number

of half open connections at the victim’s end consume all the available

memory, forcing the victim to deny service to subsequent clients (including

legitimate clients) [6].

2. Reflector Attacks: In a reflector attack, intermediate nodes (reflectors),

are used as innocent attack launchers. The attacker sends packets with

source addresses set to the victim’s address. Without realizing that the

packets had spoofed source addresses, the reflectors send the response to
8

the requests to the victim. As a result, the victim’s link is flooded with

responses to reflected packets [6].

Figure 2.1: Flooding-based DDoS attacks: a) direct b) reflector. [6]

As can be seen from the two types of attacks depicted above, the attacker

manages to used spoofed network addresses to flood the victim with use-

less packets. The solution to this problem is to place routers with capabili-

ties of filtering packets launched from within their local networks, with

spoofed IP addresses, and track down potential attackers.

Filtering-based approach

In [6], Chang proposes a 3-tier approach for tackling the DDoS problem,

namely:

a) Attack prevention and preemption (before the attack).

b) Attack detection and filtering (during the attack).

A

V

R

A

R

V

(a) (b)

R = R eflector

V = V ictim

A = A tta ck er
9

c) Attack source traceback and identification (during and after the

attack).

The author goes on to explain that attack preemption can be done by

ensuring that hosts are secured against master and agent implants, that may

secretly involve the host into the attack. Attack must be detected, and IP

traceback must be done in order to discover the attack sources. After identi-

fying the attack sources, appropriate filtering must be done in order to scan

and rid the network of attack packets. However, it is not guaranteed that all

packets dropped were attack packets, and in the process legitimate users

may be denied service.

Dedicated Application-based Detection Approach

In [7], Elliott suggests host-specific security agents to be installed in

hosts on different platforms, to ensure prevention of a local system from

becoming a zombie agent. The proactive security agent automatically

audits systems, continually finding problems, and fixing them. A security

agent must be designated in an organization, who regularly takes the fin-

gerprint of the host machine, and ensures that the key system files haven’t

changed. If any system changes have been made by the attacker, the auditor

is authorized to fix the application which was either newly installed, or an

existing application was altered.
10

In [11], Kashiwa et al. suggest an active shaping-based approach for tack-

ling the DDoS problem. In their method, program modules called Active

Components (ACs) are loaded into the network nodes, which may be rout-

ers, to implement application-level functions to detect, backtrack, and

defend against attacks at the network level. They suggest an algorithm for

detection of the attack, which heavily relies on traffic characteristics before

taking any decisions. The AC watches the amount of traffic during a given

time period, and if it exceeds the throughput threshold, it concludes that an

attack is in progress, and creates suspicious signatures for the “attack”

packets. The attack packets are classified either by the front-end router of

the attacker, which figures out malicious packets by looking at the spoofed

source address, or by the local AC, which looks at unusually high traffic

received from specific hosts. These hosts are blacklisted, and further

requests from them are considered to be a part of the attack, and thus

dropped.

One of the main areas of concern for this approach is the probability of

legitimate packets being dropped. These packets may be arising from cli-

ents, who are unknowingly involved in a flash crowd at the server end, and

thus may be denied service because of the false assumptions made by the

AC.
11

Dedicated Network-based Detection Approach

In [22], Weiler proposes a honeypot mechanism to lure the attackers into

a fantasy world, considered to be a honeypot, which is a mock network,

while protecting the actual network behind a firewall. This is a two-

pronged approach; Firstly, to defend the operational network from a DDoS

attack, Secondly, to trap the attacker for possible legal action against

him/her.

Figure 2.2: Honeypots for protection against DDoS attacks

As can be seen in the above figure, the attacker is lured by the honeypot,

and is made to believe that he has successfully infiltrated and compromised

an actual client to become a slave, however in reality, he’s gotten himself

into a trap, and can be traced. Services, such as FTP, Email, HTTP, are situ-

Honeypot LAN

Internet

Demilitarized
Zone

Servers
Firewall
12

ated in a “demilitarized” zone, and can be accessed from the outside world.

The local network is in another zone, protected by a firewall, which is regu-

larly updated. Client signatures are employed to detect an attack, and for-

ward subsequent requests to the honeypot rather than the actual clients

[22].

The scheme proposes a novel trap for attackers, but doesn’t provide any

mechanism of guaranteeing that clients that are considered to be attackers

are actually so, and thus there exists a non-zero probability of denying ser-

vice to legitimate clients.

Anomaly Detection

Management Information Base (MIB) traffic variables were used to study

anomalies in traffic patterns, and detect attacks in progress in [5]. These

variables are regularly observed for unusual changes in their values at the

Network Monitoring System (NMS) level. Unusual patterns in traffic are

considered as attacks in progress, and necessary action is taken to prevent

the server from being flooded.

The decision as to whether a particular flow is an attack or not cannot be

taken at the network level, as the clients are not aware of the secret filtering

policies, as well as upper limit rates at which, say, ping packets can be sent
13

to the front-end router before crashing it. Thus anomaly detection cannot

be considered as a strong solution to the DDoS attack problem.

Client-Puzzle based Service Guarantees

Client puzzles require that each client solve a puzzle as proof of work to

accompany its request to the server. The server decides whether to process

the clients request or not only after receiving the appropriate proof of work.

The strength k of the puzzle is either determined by the client or by the

server depending on the scheme. Certain servers may preempt queued

requests from clients that solved simpler puzzles, with requests from cli-

ents accompanying solutions to more complex puzzles [21]. The server

scheduler checks the puzzle solutions at the network-line rate. Client

requests that either solved the puzzle incorrectly, or not at all, are dropped.

In spite of these drops, if the client-request arrival rate is still high at puzzle

level k, the server drops the extra requests, and expects clients whose

requests where dropped to bid with a higher-strength puzzle, say k+1 [9].

Typical client puzzles use crypto-hash functions, where the output of the

hash function is between 128 and 160 bits for k between 1 and 64 bits.

Thus, the puzzle computation cost to the client is exponential in k. In [2],

the client challenge puzzle is to find a hash function output with k consecu-

tive zeroes in the high-order bits.
14

Puzzles have the advantage of being stateless, as the server does not have

to store any per-client information locally for deciding to give access to the

clients, however, they are ineffective in the role of user agreements for pre-

venting DDoS attacks, as they combine weak service-access guarantees

with high request overheads. There is no way of distinguishing between

good and bad clients based on the same puzzle difficulty level, and there is

a weak guarantee that inspite of solving a series of puzzles with increasing

difficulty levels, a client may be provided with service [9].

In addition, when adversaries with unknown computation power are

present in the open network, client puzzles do not strongly guarantee

access to legitimate clients even after say r retries with varying levels of

puzzle difficulty. As can be seen from above, client puzzles do not provide

strong access guarantees to legitimate clients during the event of a DDoS

attack.
15

Chapter 3

Rate Control Scheme with Maximum Waiting
Time Guarantees

The rate control service (RCS) simulated in this thesis is application-spe-

cific, and ensures that the aggregate rate of request generation of the total

client population does not exceed the maximum processing rate of the

application server, given by L/τ = S, during any time interval τ or larger,

where L is the queue length at the application server, and S is the applica-

tion server processing rate (requests/sec). When the rate control scheme is

in operation during heavy traffic periods, clients have to obtain a valid

ticket from the RCS in order to access the application service either once,

or multiple times within a single time window, depending on the type of

service (e.g. Authentication, Naming, Email) being accessed. Clients are

allowed to place their respective requests within these time windows, and

are guaranteed a maximum waiting time to service within the upper limit of

the window [9].
16

Figure 3.1: Rate Control Scheme

Ticket Issuance

A client request for a ticket contains the following parameters - number

of accesses desired, the source IP address from which the requests will be

issued, the start time of the window in which the requests will be issued, ts,

the number of accesses desired, and the maximum interval between two

consecutive requests, δr, if the client wants to access the service multiple

number of times. The RCS verifies that the number of accesses desired and

δr are consistent with the server-access protocol, and that ts is within the

ticket postdating time allowed, so that tickets with requested start times

very long into the future are not issued. If these checks pass, the server

Rate
Control
Server

Ticket
Verifier

Service

1. Request Cookie

CAPTCHA Challenge Response

2. Cookie

3. Request Ticket, Cookie

 4. Ticket

5. Request, Ticket

Clients
17

issues the ticket, and a message authentication code (MAC) accompanying

it. [9]

The ticket contains the following parameters:

(1) Start time (ti); (2) End time (ti+1); (3) Maximum number of accesses,

wopt; (4) The source IP address for the request; (5) Time of ticket issue

(tRCS). The start time is set to be ti = tw + ∆, where tw > ts is the first time

window available at the application server for issuance of a request. The

time of ticket issue at the RCS, tRCS, allows the client to synchronize with

the time at the verifier. The communication delay ∆ ensures that the ticket

is valid upon receipt by the client, and tw > ts ensures that the client has

time to issue a request. The window end time is given by: ti+1= ti + wopt (τ

+ 2∆ + δr), where the network delay ∆ is for the client request to reach the

verifier, for request processing in the worst case time period of τ, and for

ticket validity before the next access, ∆ + δr. The verifier maintains a cache

of tickets seen within the current time window, and the number of accesses

already availed by each ticket, to strictly implement the access agreement

made earlier with the clients.

Ticket Usage and Integrity

Upon receiving the ticket, clients may send their requests to the ticket

verifier along with their tickets for verification purposes, and if verification
18

is successful, their requests are forwarded to the application service. The

verifier usually sits between the front-end router and the application server

in the server network, and is time synchronized with the RCS. Both the ver-

ifier and the RCS share a symmetric key. The RCS uses the key to generate

MAC for each ticket, and the verifier uses the key to verify the authenticity

of the ticket. The MAC ensures that the ticket integrity is maintained, and

that it is not tampered with on the way.

The computation of the MAC could be done in many ways using the

shared secret key, and thus it is not possible for anyone without the knowl-

edge of the key to compute the correct MAC. In order to manipulate the

values or parameters in the ticket to increase the number of accesses, or to

change the source IP address given in the ticket, the MAC has to be recom-

puted with the correct shared secret key, and since only the verifier and the

RCS have access to the secret key, no third party can compute a new MAC

with the same shared key. Therefore, any modification to the ticket is easily

detectable at the ticket verifier by the verification of the MAC accompany-

ing the ticket and the request. MAC computation is the most time consum-

ing task performed, however, it can be performed in parallel, at rates much

faster than the network line rate. In addition, the size of the ticket is very

small (< 1 KB), and thus the computation will not take much time.
19

Session Cookie

The RCS and the verifier ensure that the aggregate request rate doesn’t

exceed the server’s throughput, by issuing tickets in accordance with the

server processing rate, however, an adversary can start a large number of

clients on a number of different machines to obtain valid tickets, and either

abstain from placing their respective requests in the allotted time slots to

lead to an underutilization of resources at the server end, or to push legiti-

mate clients further off into the future before service is provided to them,

thus increasing their MWT beyond reasonable values. In order to prevent

uncontrolled client proliferation by an adversary, the scheme requires that

each ticket request from a client be accompanied by a cryptographic cookie

attesting that the client has a human user behind it. The client must pass the

reverse Turing test (or CAPTCHA [1][9]) in order to prove so and obtain a

cookie, similar in structure to a ticket, and containing the following: (1)

start time; (2) end time; (3) list of IP addresses from which ticket requests

can be issued; (4) tRCS; (5) MAC for the cookie. The time window of the

cookie is ideally equivalent to a login session, and thus the reverse Turing

test is required only once at the beginning of the session [9].
20

How many accesses to give?

The number of accesses to be provided to a client during a time window,

wopt, has a significant impact on both the performance of the system, as

well as the client perceived waiting time. If a single access is allowed, the

communication cost for the clients increases owing to the more number of

visits to the RCS for tickets. In contrast, if all accesses are given within a

single window, unused tickets by adversary’s clients could decrease server

utilization due to reserved but unused time windows (underutilization

attack). The optimal window size is computed as a tradeoff between the

server under-utilization and the number of requests to the RCS [9]. Letting

c1 to be the unit cost of a round trip to the RCS, c2 the unit cost of lost

server utilization due to abstinence from placing requests by illegitimate

clients, Ar the access count per application, and l the percentage of legiti-

mate clients in the system, , the optimal window size in terms of the

access count can be computed as a minimization of the total cost:

Ctotal = Cclient + Cserver.= c1Ar/wopt + c2(1-l) wopt.

Setting , the optimal window size is given by:

where,

0 l 1<≤

wd
d

Ctotal 0=

wopt
c1.Ar

c2. 1 l)–()
--------------------------=

1 wopt min Ar L,()≤ ≤
21

Wopt and its significance

As can be seen from the formula given above to compute wopt, the value

of wopt increases considerably with increasing value of l, for fixed Ar,

c1/c2. There are four different combinations of wopt and interarrival times

(t), that have varying implications in the study:

1. High l and High t imply greater percentage of legitimate clients, arriv-

ing after considerably long intervals of time (not a flash crowd).

2. High l and Low t imply a Flash Crowd of legitimate clients arriving at

very short spans of time.

3. Low l and Low t imply a Distributed Denial of Service (DDoS) attack,

with greater percentage of illegitimate clients, arriving at shorter intervals

of time, in order to flood the server, and incapacitate it from serving legiti-

mate clients.

4. Low l and High t imply a greater percentage of illegitimate clients,

arriving after longer spans in time (not a DDoS attack).
22

Chapter 4

Simulation Analysis

4.1 Rate Control Scheme applied to CDNs

Content Distribution Networks (CDNs) are widely popular distributed

systems on the Internet that distribute client requests to an appropriate

server based on a number of factors; viz., server load, network proximity,

cache locality, so as to minimize the load on the system, and to reduce the

client perceived response time (latency). With exponential growth in the

usage of the Internet and a lack of proportional growth of server resources,

resources tend to get exhausted more often, and are more vulnerable to

flooding-based attacks, such as DDoS. Even if a system is not under attack,

it may be that the server resources are exhausted due to “flash crowds”,

which may be caused by lots off legitimate clients who unknowingly place

their requests at very short time intervals, thus flooding the server, and

bringing it to down to an irrecoverable state.
23

4.1.1 Working of CDNs

Content Distribution Networks (CDNs), geographically distribute server

surrogates that cache pages, instead of placing them all within the same

subnet. Thus, a client requesting the same page twice may be led to a dif-

ferent server each time. The aim of this content distribution is to reduce the

client perceived latencies, by redirecting clients to appropriate servers

based on their geographical locations, server surrogate load, and other fac-

tors, which may include priority to important clients. Several algorithms

were proposed [20] for deciding the distribution of client requests. Some of

them are:

1. Modulo Hashing: The URL is hashed to a number modulo the number

of servers. The resultant value is the server number, which is given to the

client.

2. Consistent Hashing: The URL is hashed to a number in a large, circu-

lar space, as are the names of the servers. The URL is assigned to the server

that lies closest on the circle on its hash value. If a server node fails, the

load is shifted to its neighbors.

3. Highest Random Weight: A list is generated by hashing the URL and

the server’s name, and sorting the results. Each URL then has a determinis-
24

tic order to access the set of servers, and this list is traversed until a suitably

loaded server is found.

4. Dynamic Replication with Network Proximity: The effective load on a

server is multiplied with the distance between the client and the closest

server, and the appropriate server is selected to provide service to the client.

The average number of requests per second handled by a typical CDN

server is 600 [20].

Considering the wide ranging impact that a DDoS attack can have on a

CDN network, owing to the extent of usage of such a network, we decided

to run simulations by implementing the rate control scheme described ear-

lier to CDNs, with parameters closely resembling many CDNs widely

deployed on the Internet today.

4.1.2 Simulation Experiment

Simulations were carried out to analyze the performance of the server,

and the client waiting times, when the rate control scheme is implemented

in a CDN. The front-end router processing rate operates at the ticket gener-

ation + processing rate of the rate control server, so as not to flood the rate

control server at any time. The simulator was written in C, and was run for

different client populations, with exponential traffic arrival rate to the rate

control server.
25

Assumptions

The following assumptions were made for the simulations:

1. The counter values (wopt) given to individual clients based upon their

requests, were decided as follows:

, where,

c1: unit cost of communication = 200 ms

c2: unit cost of computation = 16, 1000 ms

Ar: access count per application = 6-60

l: percentage of legitimate clients in the system

δr: maximum inter-request delay requested by a client = 3-30 ms [14]

2. Clients were assumed to have independent, non-overlapping windows

of time at the Application Server, during which they may place their

requests.

3. Time window computation was done as follows:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr)

4. The traffic arrival process at the RCS was poisson, with exponential

interarrival times.

5. The Verifier rejects requests that are not eligible to fall within the cur-

rent time window.

6. Server Rate = 600 reqs/sec [20]; ∆ = 200 msec [24][25][26]; L= 1024;

τ = L/S

1 wopt min Ar L,()≤ ≤ wopt
c1 Ar•

c2 1 l)–()•
----------------------------=
26

The unit costs of communication, computation, namely, c1 and c2, were

taken as network communication latency to the RCS, and computation

delay at the application server, respectively. For CDNs, the communication

latency is on average 200 ms [24][25][26], and the computation latency

may range from 200 ms to 1000 ms [27][28][29]. The value of Ar, which is

the average access count required by a client per application was taken at

two boundary values: 6, 60 [30][31][32][33]. Usually clients have varying

request patterns, but on average very few clients exceed sixty accesses to

the CDN server during any session. The interarrival time (t), was taken to

be in the range 0.01 ms to 200 ms, where 0.01 ms is the case of a typical

DDoS attack [34][35], during which attempts are made to fully flood the

server with large number of requests originating at short spans of time.

t=200 ms is the typical interarrival time to the server during normal opera-

tion.

Note: For t=200 ms, the rate control scheme is not required, as requests

are coming in at a rate lower than maximum server rate.

4.1.3 Results and Observations

Due to the randomness in the arrival process to the RCS, 100 samples

were taken at each plot value, and a 95% confidence interval was built at

each point on the plot. Assuming that the sample mean of n (=100) obser-
27

vations is Y, the random variable Y is normalized by the transformation:

, where, σ is the population variance computed for the differ-

ent plot values. Z has a standard normal distribution, and by letting zα/2

denote the upper α/2 X 100 percentile of the standard normal distribution,

where α = 0.5, we obtain:

, where

the random interval is the confidence interval, and 1- α is

the confidence level. For the experiment, we took the value of the confi-

dence interval to be 0.95 i.e. we are 95% confident that the actual mean lies

in the confidence interval calculated, for which z0.025 = 1.96 [13].

Due to the deterministic nature of the server utilization and the waiting

times, and owing to its direct dependence on the parameter values, in par-

ticular on the value of l, the confidence intervals turned out to be at a small

range of less than 1% deviation from the mean values, and thus did not

overlap, as can be seen in the plotted graphs.

Utilization

1. The application server utilization was observed to be lower (~7%) for

δr = 30 seconds, as compared to the case with δr = 3 seconds, where the uti-

lization is almost 50% for larger values of l, as can be seen in Figures 4.1,

4.2, 4.3 and 4.4. This behavior is caused by the fact that the value of δr has

Z
Y µ–() n

σ
-------------------------=

P Y z0.5α
σ
n

-------•– µ Y z0.5α
σ
n

-------•–≤ ≤ 1 α–=

Y z0.5α
σ
n

-------•±
28

a direct relation with the time window size. Thus, increasing values of δr

lead to larger time windows for the clients to place their requests in, and

considering the fact that the number of accesses (wopt), is the same for

both the cases, the server utilization went down for increasing δr.

This phenomenon can be verified from Figures 4.1, 4.2, 4.3 and 4.4,

where the server utilization is steadily increasing for increasing values of l,

and is better for δr=3 seconds, than for δr=30 seconds. For increasing val-

ues of l, the wopt value increases, and since increasing l implies increase in

the population of legitimate users, fewer users (1-l), abstain from placing

their requests in the allotted time slots for causing an underutilization

attack against the server resources. Thus, the server utilization steadily

increases with increase in the value of l.

2. During the event of a “flash crowd” (i.e., high l and low t), the utiliza-

tion of the server was roughly 50-70%, as can be seen in Figures 4.1, 4.2,

4.3 and 4.4. This shows that the rate control scheme never allows the

demand to the application server to exceed capacity at any time, and at the

same time ensures reasonably good utilization. In this case, the high l and

low t imply majority legitimate clients, who actually place their respective

requests during the allotted time slots, and arrive at the server at short time

interarrivals.
29

3. A DDoS attack (i.e., low l and low t) against the server is defined as an

underutilization attack, which may occur when a number of illegitimate cli-

ents request for tickets to the rate control server, and when provided with

tickets, abstain from utilizing their respective time slots at the application

server. Owing to this, the application server remains underutilized during

those particular time slots, and hence the server utilization drops. The rate

control scheme adjusts to this case by reducing the value of wopt, and

hence reducing the overall time at the server, during which it remains idle

due to the attack. As we can see from Figures 4.1, 4.2, 4.3 and 4.4, the uti-

lization of the server remains around 5% even during the case where l=0.1

(90% of the clients are illegitimate), thus showing that the attackers do not

fully succeed in their attempt to cause an underutilization attack.

Average Waiting Time

The average waiting time perceived by the clients is directly proportional

to the value of δr, with higher values of δr leading to higher waiting times,

and vice versa. The individual time windows assigned to the clients

increase in size with increasing value of δr, thus pushing subsequent clients

further off into the future before service is provided to them. Therefore, as

can be seen in Figures 4.5, 4.6, 4.7 and 4.8, the waiting time is very high

for δr=30 seconds, and much lower for δr=3 seconds.
30

For increasing values of Ar, the waiting time increases as well, and again

this is due to the direct proportionality of the value of Ar to the value of

wopt, with higher Ar leading to larger optimal window sizes (accesses), and

thus larger time windows, thus in turn pushing subsequent clients further

off into the future before service is provided to them.

The following observations were made from the results:

1. For c1/c2 = 200/16, the waiting time was around 10-40 seconds for

δr=3 sec, Ar =6, and for Ar=60 with other parameters remaining the same,

the waiting time went up to 100-900 seconds. Varying value of Ar has a sig-

nificant impact on the per-client average waiting time. This is because for

larger values of Ar (60 in this case), the per-client accesses provided are

higher, and thus larger time windows are reserved for clients at the applica-

tion server; consequently, subsequent clients have to wait for longer time

periods, before being provided service.

2. Increasing value of δr also has a significant impact on the waiting time,

with higher values of δr leading to higher waiting times compared to lower

values. This behavior is due to the fact that the time window provided to

clients increases with increase in the value of δr, and thus larger time win-

dows are provided to clients to place their requests in, and hence subse-

quent clients have to wait for longer before service is provided to them.
31

3. For c1/c2 = 200/1000, the waiting time is lower, as compared to c1/c2

= 200/16, as can be seen in Figures 4.5, 4.6, 4.7 and 4.8. Higher value of c2

implies that server side computation is more expensive than the communi-

cation delay to the rate control server, and hence it can prove expensive to

lose it. The wopt (accesses) value provided to clients is lower for c2=1000,

as compared to c2=16, due to the inverse proportionality between wopt and

c2, as can be seen from the formula for computation of wopt. Thus, for

higher c2 (=1000 in this case), the wopt value is lower, and hence clients

are provided with smaller time windows for placing their respective

requests, and therefore, subsequent clients do not have to wait for long

before service is provided to them.

4. During a DDoS attack (i.e., low l and low t =0.01, 1 ms), as can be seen

in Figures 4.5, 4.6, 4.7 and 4.8, the average waiting time is around 100 sec-

onds for c1/c2=200/16, δr=3 sec, and Ar=60, and is around 20 seconds for

c1/c2=200/1000. The waiting time is even better for the case with Ar=6,

with c1/c2=200/16 giving a waiting time of around 15 seconds, and

c1/c2=200/1000 giving a waiting time of 10 seconds. This shows that for

systems where the waiting time is critical, the cost of computation may be

increased beyond the communication cost, or the average number of

requests given per client may be brought down to say Ar=6, rather than

having a large value for it. In addition, δr<=3 seconds is a reasonable value
32

for the maximum interrequest delay for a particular client, as in Figures

4.7, 4.8 we can see enormously high waiting times for cases with δr=30

seconds.

5. During the event of a “flash crowd” (i.e., high l and low t), the waiting

time is around 600-800 seconds for c1/c2=200/16, δr=3 seconds, Ar=60,

and is around 50-90 seconds for the same parameters, but for Ar=6, as can

be seen in Figure 4.5. For the case with c1/c2=200/1000, δr=3 seconds,

Ar=60, the waiting time is around 100-180 seconds, and for the same

parameters but with Ar=6, the waiting time is around 50 seconds. This

result further strengthens our argument for placing an upper limit on the

value of Ar, used for computation of the optimal window size (wopt), with

higher Ar leading to very high waiting times, and lower values providing

reasonable waiting time guarantees to the clients, before actual service is

provided to them. Again, for the case with δr=30 seconds, we have

obtained very high values for the waiting times, and thus it may not be con-

sidered as an implementation case.

Effect of Variations of Number of Clients on Utilization, Waiting Time

The server utilization remains the same for variations in the value of N,

the number of clients. This is because neither the time window size, nor the
33

wopt value, that are provided to the individual clients are affected by the

client population.

The client waiting time is severely impacted by variations in the client

population. Due to the relatively small interrequest delays at the rate con-

trol server, we have clients coming in more or less at the same time, and for

larger populations, this means that the per-client waiting time goes up with

the client population, as is evident from Figures 4.9, 4.10, 4.11 and 4.12,

where we have a steady increase in the waiting time with increase in the

client population.

Figure 4.1: Server utilization vs. l

Im pact of variation of 't', Delta-r on utilization
Utilization vs . 'l' C1/C2 = 200/16 Ar = 6 Num Clients = 10000

Server Rate = 600 reqs/sec

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
t=1 ms, Delta-r=30 sec t=0.01 ms, Delta-r=30 sec
34

Figure 4.2: Server utilization vs. l

Figure 4.3: Server utilization vs. l

Impact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 200/16 Ar = 60 Num Clients = 10000

Server Rate = 600 reqs/sec

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)
t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
t=1 ms, Delta-r=30 sec t=0.01 ms, Delta-r=30 sec

Impact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 200/1000 Ar = 6 Clients = 10000

Server Rate = 600 reqs/sec

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
t=1 ms, Delta-r=30 sec t=0.01 ms, Delta-r=30 sec
35

Figure 4.4: Server utilization vs. l

Figure 4.5: Average Waiting Time vs. l

Im pact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 200/1000 Ar = 60 Clients = 10000

Server Rate = 600 reqs/sec

0
10
20
30
40
50
60
70
80
90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)
t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
t=1 ms, Delta-r=30 sec t=0.01 ms, Delta-r=30 sec

Impact of variation of 't', Delta-r on W.T (sec)
W.Time vs. 'l' C1/C2 = 200/16 Num Clients = 10000

Server Rate = 600 reqs/sec, Delta-r = 3 sec

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

t=1 ms Ar=6 t=0.01 ms Ar=6 t=1 ms Ar=60 t=0.01 ms Ar=60
36

Figure 4.6: Average Waiting Time vs. l

Figure 4.7: Average Waiting Time vs. l

Figure 4.8: Average Waiting Time vs. l

Im pact of variation of 't', Delta-r on W.Time
W.Time vs. 'l' C1/C2 = 200/1000 Ar = 6 Clients = 10000

Server Rate = 600 reqs/sec Delta-r = 3 sec

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e

W
ai

ti
n

g
 T

im
e

(s

e
c)

t=1 ms Ar=6 t=0.01 ms Ar=6 t=1 ms Ar=60 t=0.01 ms Ar=60

Im pact of variation of 't', Delta-r on W.T (sec)
W.Time vs. 'l' C1/C2 = 200/16 Num Clients = 10000

Server Rate = 600 reqs/sec, Delta-r = 30 sec

0

2000

4000

6000

8000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

t=1 ms Ar=6 t=0.01 ms Ar=6 t=1 ms Ar=60 t=0.01 ms Ar=60

Im pact of variation of 't', Delta-r on W.Tim e
W.Tim e vs. 'l' C1/C2 = 200/1000 Ar = 6 Cl ients = 10000

Server Rate = 600 reqs/sec Delta-r = 30 sec

0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

T
im

e
 (

s
e

c)

t=1 ms Ar=6 t=0.01 ms Ar=6 t=1 ms Ar=60 t=0.01 ms Ar=60
37

Figure 4.9: Average Waiting Time vs. Client Population

Figure 4.10: Average Waiting Time vs. Client Population

Figure 4.11: Average Waiting Time vs. Client Population

Im pact of variation of 't', Delta-r on W.T(sec)
W. Tim e vs. N C1/C2 = 200/1000 Ar = 6

Server Rate = 600 reqs/sec

0

200

400

600

800

10000 30000 50000 100000
Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

T
im

e
 (

s
e

c)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec

Im pact of variation of 't', Delta-r on W.T(sec)
W. Tim e vs. N C1/C2 = 200/16 Ar = 60

Server Rate = 600 reqs/sec

0
10000

20000
30000
40000

50000
60000

10000 30000 50000 100000

Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

 T
im

e
(s

e
c)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec

Im pact of variation of 't', Delta-r on W.T(sec)
W. Time vs. N C1/C2 = 200/16 Ar = 6

Server Rate = 600 reqs/sec

0
500

1000
1500
2000
2500
3000

10000 30000 50000 100000
Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
38

Figure 4.12: Average Waiting Time vs. Client Population

4.2 Rate Control Scheme applied to DNS Root Name
Servers

The Domain Name System, DNS, translates domain names to IP

addresses. The data used for this mapping is stored in a tree-structured dis-

tributed database, where each name server is responsible for its portion of

the hierarchy. The Root Name Servers are located at the root of this tree,

and play a major role in name resolution at the high levels [3][8].

4.2.1 DNS Name Resolution Scheme

DNS specifications are most popularly implemented using the Berkeley

Internet Name Domain (BIND) software. The process of name resolution is

Im pact of variation of 't', Delta-r on W.T(sec)
W. Time vs. N C1/C2 = 200/1000 Ar = 60

Server Rate = 600 reqs/sec

0

2000

4000

6000

8000

10000

10000 30000 50000 100000
Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

t=1 ms, Delta-r=3 sec t=0.01 ms, Delta-r=3 sec
39

completely transparent to the end user, however, it may lead to unusually

long delays before the user may be given access to the service [8].

Initially, the client (end user application) in a given local area network

sends a request for host name resolution to the local name server. The local

name server looks up the name in its local cache, if found, returns the

address to the client. In the case when the name is not present in the local

cache, the local name server recursively follows referrals until it gets an

answer. The root of the tree contains the root servers, which are responsible

for name resolution of top level domain (.com, .net, .edu etc.) servers.

DNS root name servers are a key center to most activities on the Internet,

as local name servers frequently need to update their respective caches with

name to IP-address mappings by sending requests to the DNS root name

servers. Therefore, if the root name servers come under a DDoS attack,

they may be incapacitated from providing regular and timely services to

their respective clients, as is evident from the October 21st, 2002 attack

[17], during which, nine of the thirteen root name servers were temporarily

flooded with requests originating from spoofed IP addresses, thus disabling

them from providing any further service for about an hour.

Due to the significance of the problem, we decided to carry out experi-

ments examining the performance of the servers, and client waiting times,

when the RCS scheme explained earlier, is integrated into the DNS system.
40

4.2.2 Simulation Experiment

We carried out simulations to mimic the behavior of a distributed client-

server system, when the Rate Control Scheme was implemented in the sys-

tem. The simulator was written in C, and was run for different client popu-

lations, generating requests for service to the RCS.

Assumptions

The following assumptions were made before carrying out the simulations:

1. The counter values (wopt), which are given to individual clients based

upon their requests, are decided as follows:

, where,

c1: unit cost of communication = 1

c2: unit cost of computation = 10

Ar: access count per application = 6 [36][37]

l: percentage of legitimate clients in the system

δr: maximum inter-request delay requested by a client = 90 ms [41].

2. Clients are assumed to have independent, non-overlapping windows of

time at the Application Server, during which they may place their requests.

3. Time window computation is done as follows:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr)

4. The traffic arrival process at the RCS is poisson, with exponential

interarrival times.

1 wopt min Ar L,()≤ ≤ wopt
c1 Ar•

c2 1 l)–()•----------------------------=
41

5. The Verifier rejects requests that are not eligible to fall within the cur-

rent time window.

6. Server Rate = 5000 or 12000 reqs/sec [38][39]; ∆ = 81 msec [40]; L=

1024; τ = L/S

DNS computation service time is more valuable to lose as compared to

the communication delay, as there are many mission-critical, as well as

real-time operating clients waiting in anticipation of being provided access

to the naming service within a guaranteed time period. Therefore, the ratio

c1/c2 was selected to be 1/10, implying that the server-side computation in

the DNS environment is 10 times more expensive to lose as compared to

the communication delay to the RCS. This ratio of the two costs gives a

strict lower bound on the value of wopt, and further changes in the values

of l (percentage of legitimate clients) lead to higher values of wopt, but not

crossing the upper bound given by: Min(Ar, L).

4.2.3 Results and Observations

As with the case for the CDNs, the confidence interval for the various plot

points was taken at 95%, and the results showed less than 1% deviation

from the resulting mean, and thus did not overlap with adjacent curves.
42

Utilization

1. For higher values of δr = 1sec (the maximum per-client interrequest

time), the time window size (ti - ti+1), that was given to the clients, based

on the following formulae

ti = tw + ∆, and

ti+1 = ti + w(τ + 2∆ + δr)

was higher, as compared to cases with δr = 1ms - 90 ms. The reason being

that, for higher δr, clients are provided with larger time windows to place

the same number of requests as in the case with lower δr, thus leading to a

lower utilization at the application server, as is seen in Figures 4.15, 4.16,

4.17 and 4.18.

In Figure 4.13, the upper case shows the situation, where the time win-

dow size provided to the clients is larger owing to the higher δr requested,

and the Utilization is 20/(10*Server rate). In the lower case, the Utilization

is 20/(5*Server rate), thus showing the better utilization for lower δr‘s.

Figure 4.13: Impact of δr variation on the server utilization

5

0 10

5 5 5

0 5

5

5 5 5
43

2. During the event of a “flash crowd” (i.e., high l and low t), the utiliza-

tion of the server was roughly 12% for server rate (S) = 5000 reqs/sec, and

around 5% for S = 12000 reqs/sec, which are both below the maximum

server capacity, thus displaying the working of the rate control mechanism

in disallowing any type of flooding that may take place at the application

server during peak traffic hours by majority legitimate clients (l ~1 implies

majority legitimate clients).

Note: The utilization is much higher for lower server rates, as compared

to higher rates for the same number of accesses (wopt), due to the inverse

proportionality between server utilization and the server rate (by defini-

tion).

3. During the event of a DDoS attack (i.e., low l and low t), the utilization

still remains above zero (seen in Figures 4.15, 4.16, 4.17 and 4.18), as the

wopt size shrinks for lower values of l, thus disallowing illegitimate clients

from being successful in their attempt to cause an under-utilization attack

at the server, by abstaining from placing requests in their respective time

slots at the application server. The low value of wopt leads to smaller time

window sizes, and thus illegitimate clients, who are trying to launch an

underutilization attack will not be successful to the extent they would have

been in the case with larger time windows.
44

The ideal DDoS attack situation is when we have the attackers coming to

the RCS with high frequency (low l with low t), and requesting tickets with

a very high δr, thus making the RCS provide time windows much larger

than normal. These big time windows will most certainly lead to a severe

underutilization at the server, as clients will be provided with the same

number of accesses (wopt), but with larger time windows, as is seen in Fig-

ures 4.15, 4.16, 4.17 and 4.18. The solution to this problem is to place an

upper bound on the value of δr, which the clients may request. From Fig-

ures 4.15, 4.16, 4.17, 4.18, it is evident that the utilization is better for

δr=1ms, and is reasonable for δr=90 ms, which is the also the usual average

that may be requested by clients in the DNS service, as compared to cases

with δr=1 sec. Therefore, the condition 1 < δr < 90 msec, must be placed on

the value of δr, in order to ensure better resistance to the DDoS underuti-

lization attack against DNS root name servers.

Average Waiting Time

The average client waiting time to service is directly proportional to δr.

For higher values of δr, the time window provided to the clients is larger,

and thus subsequent clients are pushed off further into the future before ser-

vice is provided to them. This higher waiting time is observable in the DNS

rate control scheme, where the average interarrival times are less than a
45

millisecond, unlike other services, where the average interarrival times are

higher, and thus waiting times may be lower. Owing to this low interarrival

time in the DNS setup, the larger the client population, the higher the aver-

age waiting time. This behavior takes place due to the fact that a larger

number of clients are coming in to the RCS to request for tickets, with

more or less the same arrival time, and they are provided with time win-

dows well ahead into the future. Thus the average waiting time per client

goes up substantially with the total population.

Figure 4.14: Access window allocation to clients

The following observations can be made from the results:

1. For higher δr (~1sec), with client population of 10K, the average wait-

ing time was between 45-100 seconds, as compared to cases with δr= 90

ms and δr= 1ms, where the average waiting time was between 8-20 sec-

onds, as is seen in Figures 4.19 and 4.20. The reason for such a long wait-

ing period is that δr has a direct impact on the time window sizes given to

RCS

Clients requesting tickets at very small intervals.

Time windows at the Application Server
46

individual clients, during which they may place their requests, as is seen in

the time window computation formulae below:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr)

Thus, with higher values of δr, the clients are provided with larger

time windows to place their requests in, and hence subsequent client

requests are pushed off further into the future, before service is provided to

them.

2. During the event of a “flash crowd” (i.e., high l and low t), the average

waiting time stays below 20 seconds for cases with . Thus it is

advisable to place an upper bound on the value of δr, that may be requested

by a client, so as to reduce the waiting time to service for subsequent cli-

ents. Clients who may not be able to place their requests during the time

window provided to them due to the smaller δr value may re-issue a request

for a ticket to the RCS, for subsequent accesses.

3. During the event of a DDoS attack (i.e., low l and low t), for higher

values of δr (~1sec), which typically is the case during an underutilization

attack, the average waiting time was around 45 seconds, as is seen in Fig-

ure 4.19 and 4.20, whereas for lower δr, the waiting time was between 8-10

seconds, which again suggests that the system designer place an upper

0 δr 90ms< <
47

bound on the requested value of δr. So we may again conclude that δr must

lie in the following range: 0 < δr < 90.

Effect of Variations of Number of Clients on Utilization, Waiting Time

The server utilization remains the same for variations in the number of

clients (N). This is because neither the time window size, nor the wopt

value provided to the individual clients are affected by N. Therefore, having

20 requests in 20 seconds, or having 40 requests in 40 seconds give the

same server utilization.

The client waiting time is severely impacted by variations in the client

population. The small interarrival times of the DNS system (~0.86 ms, 0.03

ms), imply that a large number of clients are requesting tickets from the

RCS in a back to back fashion, and are provided with time intervals pushed

off well into the future. Thus the per-client average waiting time goes up

substantially, as is evident from Figures 4.23 and 4.24, where for l=0.1,

δr=1 ms and N=100K, the average waiting time is around 100 seconds, and

for l=0.9 and other factors remaining the same, the waiting time is around

200 seconds. Again, Figures 4.23 and 4.24 show a very high waiting time

for cases with δr= 1sec, thus further strengthening our earlier suggestion

for placing an upper limit on the value of δr for the DNS system.
48

Figure 4.15: Server Utilization vs. l

Figures 4.16: Server Utilization vs. l

Impact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 10000

Server Rate = 12000 reqs/sec

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec

Impact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 10000

Server Rate = 5000 reqs/sec

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec
49

Figure 4.17: Server Utilization vs. l

Figure 4.18: Server Utilization vs. l

Impact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 100K

Server Rate = 12000 reqs/sec

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec

Im pact of variation of 't', Delta-r on utilization
Utilization vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 100K

Server Rate = 5000 reqs/sec

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

U
ti

liz
at

io
n

 (
%

)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec
50

Figure 4.19: Average Waiting Time vs. l

Figure 4.20: Average Waiting Time vs. l

Impact of variation of 't', Delta-r on W.T(sec)
W. Time vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 10000

Server Rate = 12000 reqs/sec

0
20
40
60

80
100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

 T
im

e
(s

ec
)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec

Impact of variation of 't', Delta-r on W.T(sec)
W. Time vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 10000

Server Rate = 5000 reqs/sec

0
20
40
60

80
100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

 T
im

e

(s
e

c)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec
51

Figure 4.21: Average Waiting Time vs. l

Figure 4.22: Average Waiting Time vs. I

Impact of variation of 't', Delta-r on W.T(sec)
W. Time vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 100K

Server Rate = 12000 reqs/sec

0

200

400

600
800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

 T
im

e

(s
e

c)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec

Impact of variation of 't', Delta-r on W.T(sec)
W. Time vs. 'l' C1/C2 = 0.83/10 Ar = 6 Num Clients = 100K

Server Rate = 5000 reqs/sec

0
200

400
600
800

1000

1200
1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
l

A
ve

ra
g

e
 W

ai
ti

n
g

 T
im

e

(s
e

c)

t=0.86 ms, Delta-r=1 ms t=0.86 ms, Delta-r=90 ms
t=0.03 ms, Delta-r=1 ms t=0.03 ms, Delta-r=90 ms
t=0.86 ms, Delta-r=1 sec t=0.03 ms, Delta-r=1 sec
52

Figure 4.23: Average Waiting Time vs. Client Population

Figure 4.24: Average Waiting Time vs. Client Population

Impact of variation of 't', Delta-r on W.T(sec)
W. Time vs. Client Population C1/C2 = 0.83/10 Ar = 6 l = 0.1

Server Rate = 12000 reqs/sec

0

100

200

300

400

500

10000 30000 50000 100000
Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

Delta-r=1 ms Delta-r=90 ms Delta-r=1 sec

Im pact of variation of 't', Delta-r on W.T(sec)
W. Time vs. Client Population C1/C2 = 0.83/10 Ar = 6 l = 0.9

Server Rate = 12000 reqs/sec

0

500

1000

1500

10000 30000 50000 100000

Client Population

A
ve

ra
g

e
 W

ai
ti

n
g

T

im
e

 (
s

e
c)

Delta-r=1 ms Delta-r=90 ms Delta-r=1 sec
53

Chapter 5

Conclusions and Future Work

With the ever expanding gap between the network line rate, and the server

throughput, user-level agreements have to be imposed in order to check on

the load imposed on the server, be it a DNS root name server, or a CDN

server. This thesis evaluated the performance of a novel rate control mecha-

nism to control the traffic arrival rate to two types of servers, namely, DNS

root name servers, and CDN servers. In particular, the application server

utilization, and the client waiting times were studied for variations in the

input parameters: c1, c2, Ar, l, δr.

The results obtained from the simulations were at par with our expecta-

tions:

1. Increasing client population led to increase in the per-client waiting

time, however, the server utilization remained unaffected.
54

2. Increasing values of the maximum interrequest time requested by a cli-

ent, δr, led to increase in the per-client waiting time, and lower server utili-

zation.

3. Increasing values of the average number of requests used for wopt

computation, Ar, led to an increase in the per-client waiting time, and lower

server utilization.

The following bound is suggested to be placed on the value of δr, so as to

give reasonable waiting time guarantees to the clients.

- CDN Network: 0 < δr < 3 sec.

- DNS Network: 0 < δr < 90 msec.

The values of the parameters that characterize applications such as the

average number of accesses required, Ar, and the maximum interrequest

delay, δr, and not just the communication and computation delays vary

greatly from one network to another. Thus, the system designer must

choose appropriate values of these application parameters before deciding

on the optimal number of accesses, and time window sizes to be given to

individual clients. This is the case because both the client waiting time, as

well as the server utilization are affected by these values.
55

Future Work

The simulation done in this thesis involved independent non-overlapping

time windows, during which clients were expected to place their requests.

However, overlapping time windows may be experimented with, and

results may be obtained for analysis and comparison with the current

results. This would enable us to concretize the bounds we have decided

upon for certain parameters.

Considering the rising usage of wireless networks, the application of the

rate control scheme simulated in this thesis to wireless networks has to be

studied with extensive simulations. The results obtained will allow us to

study the impact this scheme would have on the behavior of wireless net-

work servers, as well as the client waiting time guarantees.

As all resources that become very common, wireless networks will face

the same problems in security, as faced by wireline networks today, includ-

ing DDoS attacks. Thus, it is essential to provide solutions to such prob-

lems based on empirical analysis already done, including work done in this

thesis.
56

Appendix A

The Simulator

/* Author: Zubair Baig

This program models the rate control server soln. for the DDoS problem

proposed by Dr. V.D.Gligor. The arrival process of the requests from the

clients to the Rate Control Server is Poisson, with exponential interarrival

times(as per definition). The tickets granted to the clients contain ti, ti+1

values.

 ti = Delta + first available time window.

 ti+1 = ti + w(Tau + 2*Delta + Deltar)

Number of accesses granted (w) depends on the value of wopt.

We are considering the case with single client per window.

The value of 'l' will decide the arrival of requests at the Verifier(Appl.

Server), and thus the utilization.
57

The service time at the server is exponential with average time equal to

some number.

We will record the total time the client has to wait before getting the ser-

vice.We will also check the utilization of the app. server

We will also record the avg. number of visits per client to the RCS.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define NUM_CLIENTS 10000

#define APP_SERVER_RATE 600

/* ALWAYZ USE MILLISECONDS AS UNITS.........!!!!!!!!!!!!!!!!!*/

const double AVG_INTERARRIVAL_TIME= 0.01;

 /* Interarrival time at RCS (msecs)*/

const double AVG_SERVICE_TIME= 100.0; /* Service time at the

appl. server (msecs)*/

const double MAC_PROC = 0.0;
58

const int AR_MAX = 6;/* Ar upper limit */

const int AR_MIN = 1; /* Ar lower limit */

typedef struct RCS_ticket{

int client_id;

double arrival_time; /* Arrival time to the TGS */

double ti; /* Tx */

double ti1;/* Ty */

int num_reqs; /* # of Requests for tickets made by client */

double ctr; /* Max. number of requests given to client */

double deltar; /* Max. time between 2 consecutive reqs to the app.

server */

int come_again;

} RCS_ticket;

RCS_ticket rcs_ticket[NUM_CLIENTS];

double interarrival_time[NUM_CLIENTS];

double simulation_time = 0.0;

const double DELTAR = 30000.0;/* Max. gap between 2 consecutive

requests.(in msecs) */

const double DELTA = 200.0; /* Network delay (in msecs) */

const double Ar = 6.0;

const double C1 = 200.0;

const double C2 = 1000.0;
59

const int L=1024;

int TAU;

FILE *fd1;

/* Computing the value of Wopt for different values of paramters */

/* This function computes the interarrival time between consecutive

requests

to the RCS */

double expon_interarrival(void)

{

int value;

double random_Y;

double arrival_time;

double result;

int cnt;

value = rand() % 100;

random_Y = (double)value/100.0;

if (random_Y == 0.0)

random_Y = 0.01;

arrival_time = -(log(random_Y)/(1.0/AVG_INTERARRIVAL_TIME));
60

result = arrival_time ;

if (result == 0.0)

result = 0.0;

/*if (result > 100.0)

result = rand() % 100;

printf("Interarrival time is %f\n\n",result);

*/

return (result);

} /* End of function */

/* This function computes the interarrival time between consecutive

requests

to the RCS */

double expon_service(void)

{

int value;

double random_Y;

double service_time;

double result;

int cnt;

value = rand() % 100;
61

random_Y = (double)value/100.0;

if (random_Y == 0.0)

random_Y = 0.01;

service_time = -(log(random_Y)/(1.0/AVG_SERVICE_TIME));

result = service_time ;

if (result == 0.0)

result = 0.0;

/*if (result > 100.0)

result = rand() % 100;

*/

printf("Service time is %f\n\n",result);

return (result);

} /* End of function */

/**/

/* This function emulates a normal web server with no Rate Control

Mechanism implemented */

void normal_server(void)

{

62

double total_ctrs;

double total_time;

}/* End of function */

/**/

/* This function computes the utilization at the appl. server, # of visits on

avg. per client

to the RCS, as well as the Avg. Waiting Time for each client before get-

ting the service. */

void compute(double l, double Wopt)

{

double total_time=0.0, total_ctrs=0.0;

double legitimate_clients;

int cnt,cnt2;

double waiting_time=0.0;

double waiting[NUM_CLIENTS];

double num_visits = 0.0;

TAU = L/APP_SERVER_RATE;

legitimate_clients = l * (double) NUM_CLIENTS;

/* Computing the Utilization at the Server */

for (cnt=0;cnt<(int)legitimate_clients;cnt++)

{

63

 total_time += (rcs_ticket[cnt].ti1 - rcs_ticket[cnt].ti);

 total_ctrs += rcs_ticket[cnt].ctr;

}

if (total_time == 0.0)

{printf("0\t");

fprintf(fd1,"0\t");

}

else

{fprintf(fd1,"%0.3f\t",total_ctrs*100000.0/((double)APP_SERVER_RATE*total_time));

}

/* Computing the Avg. Waiting Time per client */

for (cnt=0;cnt <NUM_CLIENTS;cnt++)

{

 waiting_time += (rcs_ticket[cnt].ti - rcs_ticket[cnt].arrival_time);

waiting[cnt] = waiting_time;

}

fprintf(fd1," %0.3f\t",waiting_time/(1000.0*(double)NUM_CLIENTS));

/* Computing the Average number of visits to the RCS per client */

for (cnt=0;cnt<NUM_CLIENTS;cnt++)

{

if((double)rcs_ticket[cnt].num_reqs <= rcs_ticket[cnt].ctr)

num_visits +=1.0;

else

 num_visits += (double)rcs_ticket[cnt].num_reqs/rcs_ticket[cnt].ctr;

}

64

printf(" %d\n",(int)num_visits/NUM_CLIENTS);

fprintf(fd1," %d\n",(int)num_visits/NUM_CLIENTS);

printf("\n\n\n");

/**************/

/****** Repeating the simulations 100 times */

for (cnt2=0;cnt2<10;cnt2++)

{

 printf("\n\n");

 printf("\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

 fprintf(fd1,"\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

fprintf(fd1," %0.2f\t%0.2f\t",l,Wopt);

 for (cnt=0;cnt<NUM_CLIENTS;cnt++)

 {

 interarrival_time[cnt] = expon_interarrival(); /* Computing the inter-

arrival time for the clients*/

 rcs_ticket[cnt].arrival_time = simulation_time + interarrival_time[cnt];

 simulation_time += interarrival_time[cnt]; /* Total time for simula-

tion */
65

 rcs_ticket[cnt].num_reqs = rand() % AR_MAX; /* Each client

makes a req. for random # of w */

 while(rcs_ticket[cnt].num_reqs <AR_MIN)

rcs_ticket[cnt].num_reqs++;

} /* End of for loop */

/* Providing the ti..ti+1 values to the clients */

 for (cnt=0;cnt<NUM_CLIENTS;cnt++)

 {

 rcs_ticket[cnt].ti = rcs_ticket[cnt].arrival_time + MAC_PROC +

DELTA;

 } /* End of for */

 rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((double)TAU

+ 2.0*DELTA + DELTAR);

/* Checking for overlap */

 if (cnt != 0)

 {

 if (rcs_ticket[cnt].ti < rcs_ticket[cnt-1].ti1)

rcs_ticket[cnt].ti = rcs_ticket[cnt-1].ti1;

 }

/* Computing the Utilization at the Server */

for (cnt=0;cnt<(int)legitimate_clients;cnt++)

{

 total_time += (rcs_ticket[cnt].ti1 - rcs_ticket[cnt].ti);
66

 total_ctrs += rcs_ticket[cnt].ctr;

}

if (total_time == 0.0)

{printf("0\t");

fprintf(fd1,"0\t");

}

else

{printf("%0.3f\t",total_ctrs*100.0/((double)APP_SERVER_RATE*total_time));

fprintf(fd1,"%0.3f\t",total_ctrs*100000.0/((double)APP_SERVER_RATE*total_time));

}

/* Computing the Avg. Waiting Time per client */

for (cnt=0;cnt <NUM_CLIENTS;cnt++)

{

 waiting_time += (rcs_ticket[cnt].ti - rcs_ticket[cnt].arrival_time);

waiting[cnt] = waiting_time;

}

printf(" %0.3f\t",waiting_time/(double)NUM_CLIENTS);

fprintf(fd1," %0.3f\t",waiting_time/(1000.0*(double)NUM_CLIENTS));

/* Computing the Average number of visits to the RCS per client */

for (cnt=0;cnt<NUM_CLIENTS;cnt++)

{

if((double)rcs_ticket[cnt].num_reqs <= rcs_ticket[cnt].ctr)

num_visits +=1.0;

else

 num_visits += (double)rcs_ticket[cnt].num_reqs/rcs_ticket[cnt].ctr;
67

}

printf(" %d\n",(int)num_visits/NUM_CLIENTS);

fprintf(fd1," %d\n",(int)num_visits/NUM_CLIENTS);

printf("\n\n\n");

}

} /* End of function Compute */

/**/

/* Function Main */

int main (void)

{ int cnt,cnt2;

 double l,Wopt;

fd1 = fopen("rcs_results_12_02_deltar.txt","aw");

srand(time(0));

 for (cnt=0;cnt<NUM_CLIENTS;cnt++)

 {

 rcs_ticket[cnt].client_id = cnt;

 rcs_ticket[cnt].deltar = DELTAR; /* Constant value */

interarrival_time[cnt] = expon_interarrival(); /* Computing the interar-

rival time for the clients*/

 rcs_ticket[cnt].arrival_time = simulation_time + interarrival_time[cnt];

 simulation_time += interarrival_time[cnt]; /* Total time for simula-

tion */
68

 rcs_ticket[cnt].num_reqs = rand() % AR_MAX; /* Each client

makes a req. for random # of w */

 while(rcs_ticket[cnt].num_reqs <AR_MIN)

rcs_ticket[cnt].num_reqs++;

} /* End of for loop */

/* Providing the ti..ti+1 values to the clients */

 for (cnt=0;cnt<NUM_CLIENTS;cnt++)

 {

 rcs_ticket[cnt].ti = rcs_ticket[cnt].arrival_time + MAC_PROC +

DELTA;

 } /* End of for */

TAU = L*1000/APP_SERVER_RATE;

printf("\n");

printf("C1 = %0.1f msecs\n", C1);

printf("C2 = %0.1f msecs\n", C2);

printf("Ar = %0.1f\n", Ar);

printf("t = %0.3f msecs\n", AVG_INTERARRIVAL_TIME);

printf("Server Rate = %d reqs/sec\n",APP_SERVER_RATE);

printf("Queue length= %d reqs\n",L);

printf("TAU = %d msecs\n",TAU);

fprintf(fd1,"/*************************\n");

fprintf(fd1,"\n");

fprintf(fd1,"C1 = %0.1f msecs\n", C1);

fprintf(fd1,"C2 = %0.1f msecs\n", C2);
69

fprintf(fd1,"Ar = %0.1f\n", Ar);

fprintf(fd1,"t = %0.3f msecs\n", AVG_INTERARRIVAL_TIME);

fprintf(fd1,"Server Rate = %d reqs/sec\n",APP_SERVER_RATE);

fprintf(fd1,"Queue length= %d reqs\n",L);

fprintf(fd1,"TAU = %d msecs\n",TAU);

/* This for loop will execute for diff. values of l (% of legitimate clients)

*/

/**/

printf("\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

 fprintf(fd1,"\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

 for (l = 0.0; l <0.9; l += 0.1)

 {

Wopt = sqrt ((Ar * C1)/(C2 * (1.0-l)));

/*Assigning the value of ctr to the individual clients */

for (cnt=0; cnt<NUM_CLIENTS; cnt++)

{

 if(rcs_ticket[cnt].num_reqs < (int)Wopt)

 rcs_ticket[cnt].ctr = (double)rcs_ticket[cnt].num_reqs;

 else

 rcs_ticket[cnt].ctr = Wopt;

rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((double)TAU

+ 2.0*DELTA + DELTAR);

/* Checking for overlap */
70

 if (cnt != 0)

 {

 if (rcs_ticket[cnt].ti < rcs_ticket[cnt-1].ti1)

rcs_ticket[cnt].ti = rcs_ticket[cnt-1].ti1;

 }

}

 rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((dou-

ble)TAU + 2.0*DELTA + DELTAR);

printf(" %0.2f\t%0.2f\t",l,Wopt);

fprintf(fd1," %0.2f\t%0.2f\t",l,Wopt);

 /* Calll the function 'compute' to find out the utilization, #of visits,

waiting time */

 /*************************************/

compute(l,Wopt);

 }

fclose(fd1);

/************************************/

/* Checking the behaviour of a normal server with M/M/1 */

normal_server();

} /* End of Main */
71

BIBLIOGRAPHY

[1] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA: Using

Hard AI Problems for Security,” Advances in Cryptography - EUROC-

RYPT 2003, Warsaw, Poland, May 2003.

[2] T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant Authentication

with Client Puzzles,” Proc. of the 8th International Security Protocols

Workshop, Cambridge, U.K., April 2000, LNCS vol. 2133, Springer Ver-

lag, pp. 170-178.

[3] N. Brownlee, K. Claffy, and E. Nemeth, “DNS Root/g TLD Perfor-

mance Measurements”, USENIX LISA, San Diego, CA. December 2001.

[4] N. Brownlee, K. Claffy, and E. Nemeth, “DNS Measurements at the

Root Server”, Proc. of Globecom, San Antonio, TX. November 2001.

[5] J. Cabrera, L. Lewis, X. Qin, W. Lee, R. Prasanth, B. Ravichandran, and

R. Mehra, “Proactive Detection of Distributed Denial of Service Attacks

using MIB Traffic Variables - A Feasibility Study,” Proc. of the 7th
72

IFIP/IEEE International Symposium on Integrated Network Management,

Seattle, WA, May 2001.

[6] R. K. C Chang, “Defending against Flooding-Based Distributed Denial-

of-Service Attacks: A Tutorial,” IEEE Communications Magazine, pp. 42-

51, October 2002.

[7] J. Elliott, “Distributed Denial of Service Attacks and the Zombie Ant

Effect,” IT Pro, pp. 55-57, March/April 2000.

[8] M. Fomenkov, K. Claffy, B. Huffaker, and D. Moore, “Macroscopic

Internet Topology and Performance Measurements from the DNS Root

Name Servers”, USENIX LISA, San Diego, CA. December 2001.

[9] V. D. Gligor, “Guaranteeing Access in Spite of Distributed Service-

Flooding Attacks”, Proc. of the International Workshop on Security Proto-

cols, Sidney Sussex College, Cambridge, U.K., April 2003.

[10] M. Kaeo, “Designing Network Security,” Cisco Press, 1999.

[11] D. Kashiwa, E. Chen, and H. Fuji, “Active Shaping: A Countermea-

sure against DDoS Attacks,” Proc. of the 2nd European Conference on

Universal Multiservice Networks, Colmar, France, April 2002.

[12] C. Kaufman, R. Perlman, and M. Speciner, “Network Security: Private

Communication in a Public World,” Prentice Hall, 2002.

[13] H. Kobayashi, “Modeling and Analysis: An Introduction to System

Performance Evaluation Methodology,” Addison-Wesley, 1978.
73

[14] A. Kobsa, J. Fink, “Performance Evaluation of User Modeling Servers

Under Real World Workload Conditions,” Proc. of the 9th International

Conference on User Modeling, Johnstown, PA, 2003.

[15] D. Moore, G. Voelker, and S. Savage, “Inferring Internet Denial of

Service Activity,” Proc. of 2001 USENIX Security Symposium, Washing-

ton D.C, August 2001.

[16] J. H. Saltzer, D. P. Reed, and D. D. Clark, “ End-to-End Arguments in

System Design,” ACM Transactions on Computer Systems, Vol.2, Nov.

1984.

[17] W. F. Slater, “The Internet Outage and Attacks of October 2002”,

Available: http://www.ISOC-Chicago.org, Nov. 7, 2002.

[18] W. Stallings, “High-Speed Networks: TCP/IP and ATM Design Princi-

ples,” Prentice Hall, 1998.

[19] A. S. Tanenbaum, “Computer Networks,” Prentice Hall, 2003.

[20] L. Wang, V. Pai, and L. Peterson, “The Effectiveness of Request Redi-

rection on CDN Robustness”, Proc. of the 5th Symposium on OS Design

and Implementation (OSDI), Boston, Mass. December 2002.

[21] X. Wang and M. Reiter, “Defending Against Denial-of-Service

Attacks with Puzzle Auctions,” Proc. of IEEE Symposium on Security and

Privacy, Berkeley, CA, May 2003.
74

[22] N. Weiler, “Honeypots for Distributed Denial of Service Attacks,”

Proc. of the 11th IEEE International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 2002.

[23] J. Xu, R. Lipton, and I. Essa, “Hello, Are You Human,” Technical

Report, Georgia Institute of Technology, November 2000.

[24] http://www.netapp.com/ftp/netcache_siebel7.pdf;

Verified on: 11/17/03.

[25] http://www.cs.cmu.edu/~srini/15-744/F02/readings/PM95.ps.gz;

Verified on: 11/17/03.

[26] http://research.microsoft.com/~lilic/papers/pub/dimacs.ps;

Verified on: 11/17/03.

[27]http://npmv5.solarwinds.net/NetPerfMon/NodeDetails.Asp?

NodeID=32; Verified on: 11/17/03.

[28] http://www.webhostselect.com; Verified on: 11/17/03.

[29]http://www.cs.brandeis.edu/~mfc/cs120/asst2.txt;

Verified on: 11/17/03.

[30] http://www.cyberspace.org/stats/httpd030621.html;

Verified on: 11/17/03.

[31] http://stats.gseis.ucla.edu/gseis; Verified on: 11/17/03.

[32] http://www.dent.ucla.edu/stats/0203.html; Verified on: 11/17/03.

[33] http://www.utas.edu.au/stats/results.html; Verified on: 11/17/03.
75

[34] http://iwi.com/Pubs/dos.html; Verified on: 11/17/03.

[35] http://downloads.securityfocus.com/library/oliver.pdf;

Verified on: 11/17/03.

[36] http://www.caida.org/~kkeys/dns/2002-08-14/; Verified on: 11/17/03.

[37] http://www.caida.org/~kkeys/dns/2002-10-21/; Verified on: 11/17/03.

[38]http://www-1.ibm.com/servers/eserver/pseries/news/pressreleases/

2000/apr/network_solutions.html; Verified on: 11/17/03.

[39]http://www.caida.org/outreach/presentations/ietf0112/dns.damage.htm

Verified on: 11/17/03.

[40] http://www.cymru.com/DNS/dns01.html; Verified on: 11/17/03.

[41]http://www.usenix.org/publications/library/proceedings/ usits99/ full_

papers/lefebvre/lefebvre_html/; Verified on: 11/17/03.
76

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	List of Figures iv
	CHAPTER 1: Introduction 1
	CHAPTER 2: Related Work 7
	CHAPTER 3: Rate Control Scheme with Maximum Waiting Time Guarantees 16
	CHAPTER 4: Simulation Analysis 23
	CHAPTER 5: Conclusions and Future Work 54
	APPENDIX A:
	The Simulator 57
	BIBLIOGRAPHY 72

	LIST OF FIGURES
	Chapter 1
	Introduction
	Gligor’s Rate Control Scheme
	Contributions of the Thesis
	Thesis Outline
	Chapter 2
	Filtering-based approach
	Dedicated Application-based Detection Approach
	Dedicated Network-based Detection Approach
	Anomaly Detection
	Client-Puzzle based Service Guarantees
	Chapter 3
	Rate Control Scheme with Maximum Waiting Time Guarantees
	Ticket Issuance
	Ticket Usage and Integrity
	Session Cookie
	How many accesses to give?
	Wopt and its significance
	Chapter 4

	Simulation Analysis
	4.1 Rate Control Scheme applied to CDNs
	4.1.1 Working of CDNs
	4.1.2 Simulation Experiment
	Assumptions

	4.1.3 Results and Observations
	Utilization
	Effect of Variations of Number of Clients on Utilization, Waiting Time

	4.2 Rate Control Scheme applied to DNS Root Name Servers
	4.2.1 DNS Name Resolution Scheme
	4.2.2 Simulation Experiment
	Assumptions

	4.2.3 Results and Observations
	Utilization
	Average Waiting Time
	Effect of Variations of Number of Clients on Utilization, Waiting Time
	Chapter 5
	Future Work

	Appendix A
	The Simulator

