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rapid growth of the Internet, it is becoming increasingly diffi-

cult to provide the necessary services to all users within a des-

ignated time period. As the gap between the network-line and 

application-server rates is growing, it is getting easier to launch 

Distributed Denial of Service (DDoS) attacks against services 

on the Internet, and remain undetected within the network. Gli-

gor’s rate control scheme is a novel mechanism for providing 



strong access guarantees to clients for accessing public ser-

vices, by generating and enforcing simple user-level agree-

ments on dedicated special purpose servers. 

This thesis studies the results obtained from simulations, when 

this rate control scheme is applied to two kinds of networks, 

namely, Content Distribution Networks, and Domain Name 

Server-based networks. In particular, the server utilization, and 
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bounds on parameters that improve server performance, and of 

providing clients with reasonable maximum waiting times to 

service.
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Chapter 1

Introduction

One of the most significant technological developments during the last few 

years has been the emergence of the Internet. With rapid growth of the 

Internet, it is becoming increasingly difficult to provide the necessary ser-

vices to all users within a designated time period. As the gap between the 

network-line and application-server rates is growing, it is getting easier to 

launch Distributed Denial of Service (DDoS) attacks against services on 

the Internet, and remain undetected within the network. The end-to-end 

argument suggests that simple functions that are common to all applica-

tions be performed by network computers (e.g., routers), and complex 

functions required by fewer applications be implemented in end-servers 

[16]. With hardware performance improving day by day, network line rates 

tend to go higher, whereas, complex end-server applications and operating 

system features offset equivalent improvements at the end-system level [9].
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During a DDoS attack, a server is repeatedly sent requests from numer-

ous machines, typically called “zombies”, that are controlled by a master 

process. The master process will trigger a ‘go’ signal to launch an attack 

against the victim server in hope of flooding the server with an unusually 

high number of requests, and cause the server to crash. The server is thus 

unable to process any further requests until further action is taken to restore 

its state [17].

Extensive work has been done to provide solutions to the DDoS problem 

at the transport layer and below of an open network, as presented in Chap-

ter 2. However, assuming all attacks at and below the transport layer are 

taken care of, the threat of a potential attack against publicly accessible 

application services still remains imminent. The main reason for this threat 

is the exceeding demand for services for the same server capacity, and 

lower server throughput as compared to the network line rate, thus making 

the victims more susceptible to an attack. The flooding-based attacks of 

February 2000 against the public service of Yahoo!, Ebay, and E*trade, as 

well as the January 2001 attacks against Microsoft’s name servers had sta-

tistics that clearly showed no unusual network traffic, however the servers 

were incapacitated as the service demand exceeded their respective capaci-

ties [15].
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The DDoS attacks against the root DNS servers during October 2002 

were launched simultaneously from various attacking points on the Inter-

net, and targeted all the thirteen root DNS servers. Only four of them with-

stood the attack. The attack lasted for about an hour, during which DNS 

was disabled. The financial losses incurred due to such attacks can be very 

high, as all servers, including e-commerce servers, frequently rely on root 

DNS services for timely completion of transactions [17].

Gligor’s Rate Control Scheme

The rate control scheme proposed by Gligor in [9] is a novel mechanism 

for providing access guarantees to clients for accessing public services, by 

generating and enforcing simple user-level agreements on dedicated special 

purpose servers. These servers cannot be flooded, as they operate at the 

peak network line rate of the front-end network access points (e.g. edge 

routers). The scheme also uses the CAPTCHA[23] technique, which is a 

reverse Turing test for controlling the client proliferation on adversary-con-

trolled machines, but only to decrease the waiting time to service for legiti-

mate clients.

When active (during peak traffic), an exception is raised by the server’s 

request Verifier, directing the client’s proxy to a special purpose server, 

called the rate control server (RCS), to obtain a valid ticket containing a 
3



time window during which its request will be processed, and an access 

count (wopt) specifying the number of accesses allowed. The client then 

has to approach a ticket Verifier (dedicated server) that checks the validity 

of all requests, and mediates access to the server. In addition to checking 

the ticket validity, the Verifier also keeps track of the number of times the 

client has already accessed the service during the current time slot, so as to 

confirm client eligibility for service access. Within a particular time win-

dow, per client information regarding the number of times a client has 

already visited the server is kept, in order to enforce the agreement (time 

window, number of accesses) initially made between the client and the 

server [9]. 

The rate control scheme explained in detail in Chapter 3 thus controls the 

client request rate to the application server, thwarting the chances of a 

flooding attack. In addition, flash crowds (unusually high pikes in traffic 

during peak hours caused by legitimate clients) are also taken care of by the 

scheme, thus not letting the server be overwhelmed by requests at any 

given time [9].

Contributions of the Thesis

Simulations were carried out to analyze the performance of the rate con-

trol scheme when applied to two classes of servers, namely, Content Distri-
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bution Networks (CDNs), and Domain Name Server (DNS)-based 

networks. The experiment consisted of simulating a large network with 

parameters obtained from statistics of these networks, and analyzing the 

server utilization and client waiting times. In addition, server behavior for 

varying client populations was also studied.

The simulation experiment confirmed our expectations in the following 

three areas:

1. Variations in the number of clients affects the client waiting time; e.g., 

small request-interarrival times during an attack suggest that clients arrive 

to the RCS at about the same time, and are provided with server accesses 

within time windows well ahead into the future. Simulation results showed 

that the average waiting time varies proportionally with increase in the 

number of clients.

2. Increases in the maximum inter-request time between two consecutive 

requests to the application server by the same client (δr) leads to higher 

waiting times for clients. Results obtained from the simulation confirm the 

expected behavior, namely that higher values of δr resulted in higher wait-

ing times as compared to lower values. The results also helped us place a 

bound on the value of δr for the experimented servers namely, CDN and 

DNS, so as to provide clients with more reasonable maximum waiting 

times to service.
5



3. The average number of accesses for a protocol, Ar, also has a direct 

impact on the server utilization, with higher values leading to lower server 

utilization as compared to lower values. The results obtained from the sim-

ulations confirmed that with higher Ar server utilization is low, as com-

pared to lower values, as is explained in Chapter 4.

Thesis Outline

Chapter 2 reviews prior work in the area of DDoS, and gives a brief 

explanation of schemes that have been proposed to solve this problem at 

various levels. Chapter 3 explains the detailed working of the rate control 

scheme. The analysis of the results obtained when the rate control scheme 

is implemented in two different server networks, namely, CDN and DNS, is 

given in Chapters 4, 5. Concluding remarks, with future directions for 

research are given in Chapter 6.
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Chapter 2

Related Work

Denial of Service (DoS) attacks aim to deny clients access to service pro-

vided by the victim (server, router, or the network). Attackers either exploit 

weaknesses in the system, for which patches are later issued upon discov-

ery of the attack, or the victim is forced to undertake computationally 

intensive tasks, such as exponentiation with large integers for Diffie-Hell-

man key exchanges [6].

In contrast, flooding-based attacks, do not rely on any particular network 

or system weaknesses. Instead, they tend to exploit the asymmetry that 

exists between the network and the victim by amassing a large clan of hosts 

to simultaneously send useless packets towards the victim, leading to a 

flood of requests at the victim’s end. The intensity of the traffic is high 

enough to jam or crash either the victim, or its network. Launching a flood-

ing attack has become relatively easy today owing to the free availability of 

a number of tools for carrying out such attacks, such as Trinoo, Trib Flood 
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Network 2000, and Stacheldraht. These tools allow the attacking host to 

install patches of the attack program on innocent agents, aka. “zombies”. 

The program is tuned to launch an attack against a particular victim at a 

particular time. Thus, the victim is flooded with requests coming in from 

all directions at an enormously high magnitude [6][22].

Broadly speaking, DDoS attacks can be classified into two categories:

1. Direct Attacks: In a direct attack, the attacker arranges to send a large 

number of attack packets directly to the victim. SYN flooding is the most 

common attack case, in which TCP SYN packets are sent to the victim’s 

server port. The victim will respond by sending back a SYN-ACK response 

to the source address of the packet. Since the source address of the packet 

was spoofed, the victim will not receive the third message of the 3-way 

handshake required for connection establishment in TCP. Thus the number 

of half open connections at the victim’s end consume all the available 

memory, forcing the victim to deny service to subsequent clients (including 

legitimate clients) [6].

2. Reflector Attacks: In a reflector attack, intermediate nodes (reflectors), 

are used as innocent attack launchers. The attacker sends packets with 

source addresses set to the victim’s address. Without realizing that the 

packets had spoofed source addresses, the reflectors send the response to 
8



the requests to the victim. As a result, the victim’s link is flooded with 

responses to reflected packets [6].

Figure 2.1: Flooding-based DDoS attacks: a) direct b) reflector. [6]

As can be seen from the two types of attacks depicted above, the attacker 

manages to used spoofed network addresses to flood the victim with use-

less packets. The solution to this problem is to place routers with capabili-

ties of filtering packets launched from within their local networks, with 

spoofed IP addresses, and track down potential attackers.

Filtering-based approach

In [6], Chang proposes a 3-tier approach for tackling the DDoS problem, 

namely:

a) Attack prevention and preemption (before the attack).

b) Attack detection and filtering (during the attack).
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c) Attack source traceback and identification (during and after the 

attack).

The author goes on to explain that attack preemption can be done by 

ensuring that hosts are secured against master and agent implants, that may 

secretly involve the host into the attack. Attack must be detected, and IP 

traceback must be done in order to discover the attack sources. After identi-

fying the attack sources, appropriate filtering must be done in order to scan 

and rid the network of attack packets. However, it is not guaranteed that all 

packets dropped were attack packets, and in the process legitimate users 

may be denied service.

Dedicated Application-based Detection Approach

In [7], Elliott suggests host-specific security agents to be installed in 

hosts on different platforms, to ensure prevention of a local system from 

becoming a zombie agent. The proactive security agent automatically 

audits systems, continually finding problems, and fixing them. A security 

agent must be designated in an organization, who regularly takes the fin-

gerprint of the host machine, and ensures that the key system files haven’t 

changed. If any system changes have been made by the attacker, the auditor 

is authorized to fix the application which was either newly installed, or an 

existing application was altered.
10



In [11], Kashiwa et al. suggest an active shaping-based approach for tack-

ling the DDoS problem. In their method, program modules called Active 

Components (ACs) are loaded into the network nodes, which may be rout-

ers, to implement application-level functions to detect, backtrack, and 

defend against attacks at the network level. They suggest an algorithm for 

detection of the attack, which heavily relies on traffic characteristics before 

taking any decisions. The AC watches the amount of traffic during a given 

time period, and if it exceeds the throughput threshold, it concludes that an 

attack is in progress, and creates suspicious signatures for the “attack” 

packets. The attack packets are classified either by the front-end router of 

the attacker, which figures out malicious packets by looking at the spoofed 

source address, or by the local AC, which looks at unusually high traffic 

received from specific hosts. These hosts are blacklisted, and further 

requests from them are considered to be a part of the attack, and thus 

dropped. 

One of the main areas of concern for this approach is the probability of 

legitimate packets being dropped. These packets may be arising from cli-

ents, who are unknowingly involved in a flash crowd at the server end, and 

thus may be denied service because of the false assumptions made by the 

AC.
11



Dedicated Network-based Detection Approach

In [22], Weiler proposes a honeypot mechanism to lure the attackers into 

a fantasy world, considered to be a honeypot, which is a mock network, 

while protecting the actual network behind a firewall. This is a two-

pronged approach; Firstly, to defend the operational network from a DDoS 

attack, Secondly, to trap the attacker for possible legal action against 

him/her.

Figure 2.2: Honeypots for protection against DDoS attacks

As can be seen in the above figure, the attacker is lured by the honeypot, 

and is made to believe that he has successfully infiltrated and compromised 

an actual client to become a slave, however in reality, he’s gotten himself 

into a trap, and can be traced. Services, such as FTP, Email, HTTP, are situ-

Honeypot LAN 

Internet 

Demilitarized 
Zone 

Servers 
Firewall 
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ated in a “demilitarized” zone, and can be accessed from the outside world. 

The local network is in another zone, protected by a firewall, which is regu-

larly updated. Client signatures are employed to detect an attack, and for-

ward subsequent requests to the honeypot rather than the actual clients 

[22].

The scheme proposes a novel trap for attackers, but doesn’t provide any 

mechanism of guaranteeing that clients that are considered to be attackers 

are actually so, and thus there exists a non-zero probability of denying ser-

vice to legitimate clients.

Anomaly Detection

Management Information Base (MIB) traffic variables were used to study 

anomalies in traffic patterns, and detect attacks in progress in [5]. These 

variables are regularly observed for unusual changes in their values at the 

Network Monitoring System (NMS) level. Unusual patterns in traffic are 

considered as attacks in progress, and necessary action is taken to prevent 

the server from being flooded. 

The decision as to whether a particular flow is an attack or not cannot be 

taken at the network level, as the clients are not aware of the secret filtering 

policies, as well as upper limit rates at which, say, ping packets can be sent 
13



to the front-end router before crashing it. Thus anomaly detection cannot 

be considered as a strong solution to the DDoS attack problem.

Client-Puzzle based Service Guarantees 

Client puzzles require that each client solve a puzzle as proof of work to 

accompany its request to the server. The server decides whether to process 

the clients request or not only after receiving the appropriate proof of work. 

The strength k of the puzzle is either determined by the client or by the 

server depending on the scheme. Certain servers may preempt queued 

requests from clients that solved simpler puzzles, with requests from cli-

ents accompanying solutions to more complex puzzles [21]. The server 

scheduler checks the puzzle solutions at the network-line rate. Client 

requests that either solved the puzzle incorrectly, or not at all, are dropped. 

In spite of these drops, if the client-request arrival rate is still high at puzzle 

level k, the server drops the extra requests, and expects clients whose 

requests where dropped to bid with a higher-strength puzzle, say k+1 [9].

Typical client puzzles use crypto-hash functions, where the output of the 

hash function is between 128 and 160 bits for k between 1 and 64 bits. 

Thus, the puzzle computation cost to the client is exponential in k. In [2], 

the client challenge puzzle is to find a hash function output with k consecu-

tive zeroes in the high-order bits. 
14



Puzzles have the advantage of being stateless, as the server does not have 

to store any per-client information locally for deciding to give access to the 

clients, however, they are ineffective in the role of user agreements for pre-

venting DDoS attacks, as they combine weak service-access guarantees 

with high request overheads. There is no way of distinguishing between 

good and bad clients based on the same puzzle difficulty level, and there is 

a weak guarantee that inspite of solving a series of puzzles with increasing 

difficulty levels, a client may be provided with service [9]. 

In addition, when adversaries with unknown computation power are 

present in the open network, client puzzles do not strongly guarantee 

access to legitimate clients even after say r retries with varying levels of 

puzzle difficulty. As can be seen from above, client puzzles do not provide 

strong access guarantees to legitimate clients during the event of a DDoS 

attack.
15



Chapter 3

Rate Control Scheme with Maximum Waiting 
Time Guarantees

The rate control service (RCS) simulated in this thesis is application-spe-

cific, and ensures that the aggregate rate of request generation of the total 

client population does not exceed the maximum processing rate of the 

application server, given by L/τ = S, during any time interval τ or larger, 

where L is the queue length at the application server, and S is the applica-

tion server processing rate (requests/sec). When the rate control scheme is 

in operation during heavy traffic periods, clients have to obtain a valid 

ticket from the RCS in order to access the application service either once, 

or multiple times within a single time window, depending on the type of 

service (e.g. Authentication, Naming, Email) being accessed. Clients are 

allowed to place their respective requests within these time windows, and 

are guaranteed a maximum waiting time to service within the upper limit of 

the window [9].
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Figure 3.1: Rate Control Scheme

Ticket Issuance 

A client request for a ticket contains the following parameters - number 

of accesses desired, the source IP address from which the requests will be 

issued, the start time of the window in which the requests will be issued, ts, 

the number of accesses desired, and the maximum interval between two 

consecutive requests, δr, if the client wants to access the service multiple 

number of times. The RCS verifies that the number of accesses desired and 

δr are consistent with the server-access protocol, and that ts is within the 

ticket postdating time allowed, so that tickets with requested start times 

very long into the future are not issued. If these checks pass, the server 
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issues the ticket, and a message authentication code (MAC) accompanying 

it. [9]

The ticket contains the following parameters: 

(1) Start time (ti); (2) End time (ti+1); (3) Maximum number of accesses, 

wopt; (4) The source IP address for the request; (5) Time of ticket issue 

(tRCS). The start time is set to be ti = tw + ∆, where tw > ts is the first time 

window available at the application server for issuance of a request. The 

time of ticket issue at the RCS, tRCS, allows the client to synchronize with 

the time at the verifier. The communication delay ∆ ensures that the ticket 

is valid upon receipt by the client, and tw > ts ensures that the client has 

time to issue a request. The window end time is given by: ti+1= ti + wopt (τ 

+ 2∆ + δr), where the network delay ∆ is for the client request to reach the 

verifier, for request processing in the worst case time period of τ, and for 

ticket validity before the next access, ∆ + δr. The verifier maintains a cache 

of tickets seen within the current time window, and the number of accesses 

already availed by each ticket, to strictly implement the access agreement 

made earlier with the clients. 

Ticket Usage and Integrity

Upon receiving the ticket, clients may send their requests to the ticket 

verifier along with their tickets for verification purposes, and if verification 
18



is successful, their requests are forwarded to the application service. The 

verifier usually sits between the front-end router and the application server 

in the server network, and is time synchronized with the RCS. Both the ver-

ifier and the RCS share a symmetric key. The RCS uses the key to generate 

MAC for each ticket, and the verifier uses the key to verify the authenticity 

of the ticket. The MAC ensures that the ticket integrity is maintained, and 

that it is not tampered with on the way. 

The computation of the MAC could be done in many ways using the 

shared secret key, and thus it is not possible for anyone without the knowl-

edge of the key to compute the correct MAC. In order to manipulate the 

values or parameters in the ticket to increase the number of accesses, or to 

change the source IP address given in the ticket, the MAC has to be recom-

puted with the correct shared secret key, and since only the verifier and the 

RCS have access to the secret key, no third party can compute a new MAC 

with the same shared key. Therefore, any modification to the ticket is easily 

detectable at the ticket verifier by the verification of the MAC accompany-

ing the ticket and the request. MAC computation is the most time consum-

ing task performed, however, it can be performed in parallel, at rates much 

faster than the network line rate. In addition, the size of the ticket is very 

small (< 1 KB), and thus the computation will not take much time.
19



Session Cookie

The RCS and the verifier ensure that the aggregate request rate doesn’t 

exceed the server’s throughput, by issuing tickets in accordance with the 

server processing rate, however, an adversary can start a large number of 

clients on a number of different machines to obtain valid tickets, and either 

abstain from placing their respective requests in the allotted time slots to 

lead to an underutilization of resources at the server end, or to push legiti-

mate clients further off into the future before service is provided to them, 

thus increasing their MWT beyond reasonable values. In order to prevent 

uncontrolled client proliferation by an adversary, the scheme requires that 

each ticket request from a client be accompanied by a cryptographic cookie 

attesting that the client has a human user behind it. The client must pass the 

reverse Turing test (or CAPTCHA [1][9]) in order to prove so and obtain a 

cookie, similar in structure to a ticket, and containing the following: (1) 

start time; (2) end time; (3) list of IP addresses from which ticket requests 

can be issued; (4) tRCS; (5) MAC for the cookie. The time window of the 

cookie is ideally equivalent to a login session, and thus the reverse Turing 

test is required only once at the beginning of the session [9].
20



How many accesses to give?

The number of accesses to be provided to a client during a time window, 

wopt, has a significant impact on both the performance of the system, as 

well as the client perceived waiting time. If a single access is allowed, the 

communication cost for the clients increases owing to the more number of 

visits to the RCS for tickets. In contrast, if all accesses are given within a 

single window, unused tickets by adversary’s clients could decrease server 

utilization due to reserved but unused time windows (underutilization 

attack). The optimal window size is computed as a tradeoff between the 

server under-utilization and the number of requests to the RCS [9]. Letting 

c1 to be the unit cost of a round trip to the RCS, c2 the unit cost of lost 

server utilization due to abstinence from placing requests by illegitimate 

clients, Ar the access count per application, and l the percentage of legiti-

mate clients in the system, , the optimal window size in terms of the 

access count can be computed as a minimization of the total cost: 

Ctotal = Cclient + Cserver.= c1Ar/wopt + c2(1-l) wopt.

Setting , the optimal window size is given by: 

where,  

0 l 1<≤

wd
d

Ctotal 0=

wopt
c1.Ar

c2. 1 l )–( )
--------------------------=

1 wopt min Ar L,( )≤ ≤
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Wopt and its significance

As can be seen from the formula given above to compute wopt, the value 

of wopt increases considerably with increasing value of l, for fixed Ar, 

c1/c2. There are four different combinations of wopt and interarrival times 

(t), that have varying implications in the study:

1. High l and High t imply greater percentage of legitimate clients, arriv-

ing after considerably long intervals of time (not a flash crowd).

2. High l and Low t imply a Flash Crowd of legitimate clients arriving at 

very short spans of time.

3. Low l and Low t imply a Distributed Denial of Service (DDoS) attack, 

with greater percentage of illegitimate clients, arriving at shorter intervals 

of time, in order to flood the server, and incapacitate it from serving legiti-

mate clients.

4. Low l and High t imply a greater percentage of illegitimate clients, 

arriving after longer spans in time (not a DDoS attack).
22



Chapter 4

Simulation Analysis

4.1 Rate Control Scheme applied to CDNs

Content Distribution Networks (CDNs) are widely popular distributed 

systems on the Internet that distribute client requests to an appropriate 

server based on a number of factors; viz., server load, network proximity, 

cache locality, so as to minimize the load on the system, and to reduce the 

client perceived response time (latency). With exponential growth in the 

usage of the Internet and a lack of proportional growth of server resources, 

resources tend to get exhausted more often, and are more vulnerable to 

flooding-based attacks, such as DDoS. Even if a system is not under attack, 

it may be that the server resources are exhausted due to “flash crowds”, 

which may be caused by lots off legitimate clients who unknowingly place 

their requests at very short time intervals, thus flooding the server, and 

bringing it to down to an irrecoverable state.
23



4.1.1 Working of CDNs

Content Distribution Networks (CDNs), geographically distribute server 

surrogates that cache pages, instead of placing them all within the same 

subnet. Thus, a client requesting the same page twice may be led to a dif-

ferent server each time. The aim of this content distribution is to reduce the 

client perceived latencies, by redirecting clients to appropriate servers 

based on their geographical locations, server surrogate load, and other fac-

tors, which may include priority to important clients. Several algorithms 

were proposed [20] for deciding the distribution of client requests. Some of 

them are:

1. Modulo Hashing: The URL is hashed to a number modulo the number 

of servers. The resultant value is the server number, which is given to the 

client.

2. Consistent Hashing: The URL is hashed to a number in a large, circu-

lar space, as are the names of the servers. The URL is assigned to the server 

that lies closest on the circle on its hash value. If a server node fails, the 

load is shifted to its neighbors.

3. Highest Random Weight: A list is generated by hashing the URL and 

the server’s name, and sorting the results. Each URL then has a determinis-
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tic order to access the set of servers, and this list is traversed until a suitably 

loaded server is found. 

4. Dynamic Replication with Network Proximity: The effective load on a 

server is multiplied with the distance between the client and the closest 

server, and the appropriate server is selected to provide service to the client.

The average number of requests per second handled by a typical CDN 

server is 600 [20].

Considering the wide ranging impact that a DDoS attack can have on a 

CDN network, owing to the extent of usage of such a network, we decided 

to run simulations by implementing the rate control scheme described ear-

lier to CDNs, with parameters closely resembling many CDNs widely 

deployed on the Internet today.

4.1.2 Simulation Experiment

Simulations were carried out to analyze the performance of the server, 

and the client waiting times, when the rate control scheme is implemented 

in a CDN. The front-end router processing rate operates at the ticket gener-

ation + processing rate of the rate control server, so as not to flood the rate 

control server at any time. The simulator was written in C, and was run for 

different client populations, with exponential traffic arrival rate to the rate 

control server. 
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Assumptions

The following assumptions were made for the simulations:

1. The counter values (wopt) given to individual clients based upon their 

requests, were decided as follows:

, where,

c1: unit cost of communication = 200 ms 

c2: unit cost of computation = 16, 1000 ms 

Ar: access count per application = 6-60

l: percentage of legitimate clients in the system

δr: maximum inter-request delay requested by a client = 3-30 ms [14]

2. Clients were assumed to have independent, non-overlapping windows 

of time at the Application Server, during which they may place their 

requests.

3. Time window computation was done as follows:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr) 

4. The traffic arrival process at the RCS was poisson, with exponential 

interarrival times.

5. The Verifier rejects requests that are not eligible to fall within the cur-

rent time window.

6. Server Rate = 600 reqs/sec [20]; ∆ = 200 msec [24][25][26]; L= 1024; 

τ = L/S

1 wopt min Ar L,( )≤ ≤ wopt
c1 Ar•

c2 1 l )–( )•
----------------------------=
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The unit costs of communication, computation, namely, c1 and c2, were 

taken as network communication latency to the RCS, and computation 

delay at the application server, respectively. For CDNs, the communication 

latency is on average 200 ms [24][25][26], and the computation latency 

may range from 200 ms to 1000 ms [27][28][29]. The value of Ar, which is 

the average access count required by a client per application was taken at 

two boundary values: 6, 60 [30][31][32][33]. Usually clients have varying 

request patterns, but on average very few clients exceed sixty accesses to 

the CDN server during any session. The interarrival time (t), was taken to 

be in the range 0.01 ms to 200 ms, where 0.01 ms is the case of a typical 

DDoS attack [34][35], during which attempts are made to fully flood the 

server with large number of requests originating at short spans of time. 

t=200 ms is the typical interarrival time to the server during normal opera-

tion.

Note: For t=200 ms, the rate control scheme is not required, as requests 

are coming in at a rate lower than maximum server rate.

4.1.3 Results and Observations

Due to the randomness in the arrival process to the RCS, 100 samples 

were taken at each plot value, and a 95% confidence interval was built at 

each point on the plot. Assuming that the sample mean of n (=100) obser-
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vations is Y, the random variable Y is normalized by the transformation: 

, where, σ is the population variance computed for the differ-

ent plot values. Z has a standard normal distribution, and by letting zα/2 

denote the upper α/2 X 100 percentile of the standard normal distribution, 

where α = 0.5, we obtain: 

, where

the random interval  is the confidence interval, and 1- α is 

the confidence level. For the experiment, we took the value of the confi-

dence interval to be 0.95 i.e. we are 95% confident that the actual mean lies 

in the confidence interval calculated, for which z0.025 = 1.96 [13].

Due to the deterministic nature of the server utilization and the waiting 

times, and owing to its direct dependence on the parameter values, in par-

ticular on the value of l, the confidence intervals turned out to be at a small 

range of less than 1% deviation from the mean values, and thus did not 

overlap, as can be seen in the plotted graphs.

Utilization

1. The application server utilization was observed to be lower (~7%) for 

δr = 30 seconds, as compared to the case with δr = 3 seconds, where the uti-

lization is almost 50% for larger values of l, as can be seen in Figures 4.1, 

4.2, 4.3 and 4.4. This behavior is caused by the fact that the value of δr has 

Z
Y µ–( ) n

σ
-------------------------=

P Y z0.5α
σ
n

-------•– µ Y z0.5α
σ
n

-------•–≤ ≤ 1 α–=

Y z0.5α
σ
n

-------•±
28



a direct relation with the time window size. Thus, increasing values of δr 

lead to larger time windows for the clients to place their requests in, and 

considering the fact that the number of accesses (wopt), is the same for 

both the cases, the server utilization went down for increasing δr. 

This phenomenon can be verified from Figures 4.1, 4.2, 4.3 and 4.4, 

where the server utilization is steadily increasing for increasing values of l, 

and is better for δr=3 seconds, than for δr=30 seconds. For increasing val-

ues of l, the wopt value increases, and since increasing l implies increase in 

the population of legitimate users, fewer users (1-l), abstain from placing 

their requests in the allotted time slots for causing an underutilization 

attack against the server resources. Thus, the server utilization steadily 

increases with increase in the value of l. 

2. During the event of a “flash crowd” (i.e., high l and low t), the utiliza-

tion of the server was roughly 50-70%, as can be seen in Figures 4.1, 4.2, 

4.3 and 4.4. This shows that the rate control scheme never allows the 

demand to the application server to exceed capacity at any time, and at the 

same time ensures reasonably good utilization. In this case, the high l and 

low t imply majority legitimate clients, who actually place their respective 

requests during the allotted time slots, and arrive at the server at short time 

interarrivals.
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3. A DDoS attack (i.e., low l and low t) against the server is defined as an 

underutilization attack, which may occur when a number of illegitimate cli-

ents request for tickets to the rate control server, and when provided with 

tickets, abstain from utilizing their respective time slots at the application 

server. Owing to this, the application server remains underutilized during 

those particular time slots, and hence the server utilization drops. The rate 

control scheme adjusts to this case by reducing the value of wopt, and 

hence reducing the overall time at the server, during which it remains idle 

due to the attack. As we can see from Figures 4.1, 4.2, 4.3 and 4.4, the uti-

lization of the server remains around 5% even during the case where l=0.1 

(90% of the clients are illegitimate), thus showing that the attackers do not 

fully succeed in their attempt to cause an underutilization attack.

Average Waiting Time

The average waiting time perceived by the clients is directly proportional 

to the value of δr, with higher values of δr leading to higher waiting times, 

and vice versa. The individual time windows assigned to the clients 

increase in size with increasing value of δr, thus pushing subsequent clients 

further off into the future before service is provided to them. Therefore, as 

can be seen in Figures 4.5, 4.6, 4.7 and 4.8, the waiting time is very high 

for δr=30 seconds, and much lower for δr=3 seconds. 
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For increasing values of Ar, the waiting time increases as well, and again 

this is due to the direct proportionality of the value of Ar to the value of 

wopt, with higher Ar leading to larger optimal window sizes (accesses), and 

thus larger time windows, thus in turn pushing subsequent clients further 

off into the future before service is provided to them.

The following observations were made from the results:

1. For c1/c2 = 200/16, the waiting time was around 10-40 seconds for 

δr=3 sec, Ar =6, and for Ar=60 with other parameters remaining the same, 

the waiting time went up to 100-900 seconds. Varying value of Ar has a sig-

nificant impact on the per-client average waiting time. This is because for 

larger values of Ar (60 in this case), the per-client accesses provided are 

higher, and thus larger time windows are reserved for clients at the applica-

tion server; consequently, subsequent clients have to wait for longer time 

periods, before being provided service.

2. Increasing value of δr also has a significant impact on the waiting time, 

with higher values of δr leading to higher waiting times compared to lower 

values. This behavior is due to the fact that the time window provided to 

clients increases with increase in the value of δr, and thus larger time win-

dows are provided to clients to place their requests in, and hence subse-

quent clients have to wait for longer before service is provided to them.
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3. For c1/c2 = 200/1000, the waiting time is lower, as compared to c1/c2 

= 200/16, as can be seen in Figures 4.5, 4.6, 4.7 and 4.8. Higher value of c2 

implies that server side computation is more expensive than the communi-

cation delay to the rate control server, and hence it can prove expensive to 

lose it. The wopt (accesses) value provided to clients is lower for c2=1000, 

as compared to c2=16, due to the inverse proportionality between wopt and 

c2, as can be seen from the formula for computation of wopt. Thus, for 

higher c2 (=1000 in this case), the wopt value is lower, and hence clients 

are provided with smaller time windows for placing their respective 

requests, and therefore, subsequent clients do not have to wait for long 

before service is provided to them.

4. During a DDoS attack (i.e., low l and low t =0.01, 1 ms), as can be seen 

in Figures 4.5, 4.6, 4.7 and 4.8, the average waiting time is around 100 sec-

onds for c1/c2=200/16, δr=3 sec, and Ar=60, and is around 20 seconds for 

c1/c2=200/1000. The waiting time is even better for the case with Ar=6, 

with c1/c2=200/16 giving a waiting time of around 15 seconds, and 

c1/c2=200/1000 giving a waiting time of 10 seconds. This shows that for 

systems where the waiting time is critical, the cost of computation may be 

increased beyond the communication cost, or the average number of 

requests given per client may be brought down to say Ar=6, rather than 

having a large value for it. In addition, δr<=3 seconds is a reasonable value 
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for the maximum interrequest delay for a particular client, as in Figures 

4.7, 4.8 we can see enormously high waiting times for cases with δr=30 

seconds.

5. During the event of a “flash crowd” (i.e., high l and low t), the waiting 

time is around 600-800 seconds for c1/c2=200/16, δr=3 seconds, Ar=60, 

and is around 50-90 seconds for the same parameters, but for Ar=6, as can 

be seen in Figure 4.5. For the case with c1/c2=200/1000, δr=3 seconds, 

Ar=60, the waiting time is around 100-180 seconds, and for the same 

parameters but with Ar=6, the waiting time is around 50 seconds. This 

result further strengthens our argument for placing an upper limit on the 

value of Ar, used for computation of the optimal window size (wopt), with 

higher Ar leading to very high waiting times, and lower values providing 

reasonable waiting time guarantees to the clients, before actual service is 

provided to them. Again, for the case with δr=30 seconds, we have 

obtained very high values for the waiting times, and thus it may not be con-

sidered as an implementation case.

Effect of Variations of Number of Clients on Utilization, Waiting Time

The server utilization remains the same for variations in the value of N, 

the number of clients. This is because neither the time window size, nor the 
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wopt value, that are provided to the individual clients are affected by the 

client population. 

The client waiting time is severely impacted by variations in the client 

population. Due to the relatively small interrequest delays at the rate con-

trol server, we have clients coming in more or less at the same time, and for 

larger populations, this means that the per-client waiting time goes up with 

the client population, as is evident from Figures 4.9, 4.10, 4.11 and 4.12, 

where we have a steady increase in the waiting time with increase in the 

client population.

Figure 4.1: Server utilization vs. l
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Figure 4.2: Server utilization vs. l

Figure 4.3: Server utilization vs. l
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Figure 4.4: Server utilization vs. l

Figure 4.5: Average Waiting Time vs. l
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Figure 4.6: Average Waiting Time vs. l

Figure 4.7: Average Waiting Time vs. l

Figure 4.8: Average Waiting Time vs. l
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Figure 4.9: Average Waiting Time vs. Client Population

Figure 4.10: Average Waiting Time vs. Client Population

Figure 4.11: Average Waiting Time vs. Client Population
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Figure 4.12: Average Waiting Time vs. Client Population
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completely transparent to the end user, however, it may lead to unusually 

long delays before the user may be given access to the service [8]. 

Initially, the client (end user application) in a given local area network 

sends a request for host name resolution to the local name server. The local 

name server looks up the name in its local cache, if found, returns the 

address to the client. In the case when the name is not present in the local 

cache, the local name server recursively follows referrals until it gets an 

answer. The root of the tree contains the root servers, which are responsible 

for name resolution of top level domain (.com, .net, .edu etc.) servers.

DNS root name servers are a key center to most activities on the Internet, 

as local name servers frequently need to update their respective caches with 

name to IP-address mappings by sending requests to the DNS root name 

servers. Therefore, if the root name servers come under a DDoS attack, 

they may be incapacitated from providing regular and timely services to 

their respective clients, as is evident from the October 21st, 2002 attack 

[17], during which, nine of the thirteen root name servers were temporarily 

flooded with requests originating from spoofed IP addresses, thus disabling 

them from providing any further service for about an hour.

Due to the significance of the problem, we decided to carry out experi-

ments examining the performance of the servers, and client waiting times, 

when the RCS scheme explained earlier, is integrated into the DNS system.
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4.2.2 Simulation Experiment

We carried out simulations to mimic the behavior of a distributed client-

server system, when the Rate Control Scheme was implemented in the sys-

tem. The simulator was written in C, and was run for different client popu-

lations, generating requests for service to the RCS. 

Assumptions

The following assumptions were made before carrying out the simulations:

1. The counter values (wopt), which are given to individual clients based 

upon their requests, are decided as follows:

, where,

c1: unit cost of communication = 1

c2: unit cost of computation = 10

Ar: access count per application = 6 [36][37]

l: percentage of legitimate clients in the system

δr: maximum inter-request delay requested by a client = 90 ms [41].

2. Clients are assumed to have independent, non-overlapping windows of 

time at the Application Server, during which they may place their requests.

3. Time window computation is done as follows:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr)

4. The traffic arrival process at the RCS is poisson, with exponential 

interarrival times.

1 wopt min Ar L,( )≤ ≤ wopt
c1 Ar•

c2 1 l )–( )•----------------------------=
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5. The Verifier rejects requests that are not eligible to fall within the cur-

rent time window.

6. Server Rate = 5000 or 12000 reqs/sec [38][39]; ∆ = 81 msec [40]; L= 

1024; τ = L/S

DNS computation service time is more valuable to lose as compared to 

the communication delay, as there are many mission-critical, as well as 

real-time operating clients waiting in anticipation of being provided access 

to the naming service within a guaranteed time period. Therefore, the ratio 

c1/c2 was selected to be 1/10, implying that the server-side computation in 

the DNS environment is 10 times more expensive to lose as compared to 

the communication delay to the RCS. This ratio of the two costs gives a 

strict lower bound on the value of wopt, and further changes in the values 

of l (percentage of legitimate clients) lead to higher values of wopt, but not 

crossing the upper bound given by: Min(Ar, L). 

4.2.3 Results and Observations

As with the case for the CDNs, the confidence interval for the various plot

points was taken at 95%, and the results showed less than 1% deviation

from the resulting mean, and thus did not overlap with adjacent curves.
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Utilization

1. For higher values of δr = 1sec (the maximum per-client interrequest 

time), the time window size (ti - ti+1), that was given to the clients, based 

on the following formulae

ti = tw + ∆, and

ti+1 = ti + w(τ + 2∆ + δr)

was higher, as compared to cases with δr = 1ms - 90 ms. The reason being 

that, for higher δr, clients are provided with larger time windows to place 

the same number of requests as in the case with lower δr, thus leading to a 

lower utilization at the application server, as is seen in Figures 4.15, 4.16, 

4.17 and 4.18.

In Figure 4.13, the upper case shows the situation, where the time win-

dow size provided to the clients is larger owing to the higher δr requested, 

and the Utilization is 20/(10*Server rate). In the lower case, the Utilization 

is 20/(5*Server rate), thus showing the better utilization for lower δr‘s.

Figure 4.13: Impact of δr variation on the server utilization
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2. During the event of a “flash crowd” (i.e., high l and low t), the utiliza-

tion of the server was roughly 12% for server rate (S) = 5000 reqs/sec, and 

around 5% for S = 12000 reqs/sec, which are both below the maximum 

server capacity, thus displaying the working of the rate control mechanism 

in disallowing any type of flooding that may take place at the application 

server during peak traffic hours by majority legitimate clients (l ~1 implies 

majority legitimate clients).

Note: The utilization is much higher for lower server rates, as compared 

to higher rates for the same number of accesses (wopt), due to the inverse 

proportionality between server utilization and the server rate (by defini-

tion).

3. During the event of a DDoS attack (i.e., low l and low t), the utilization 

still remains above zero (seen in Figures 4.15, 4.16, 4.17 and 4.18), as the 

wopt size shrinks for lower values of l, thus disallowing illegitimate clients 

from being successful in their attempt to cause an under-utilization attack 

at the server, by abstaining from placing requests in their respective time 

slots at the application server. The low value of wopt leads to smaller time 

window sizes, and thus illegitimate clients, who are trying to launch an 

underutilization attack will not be successful to the extent they would have 

been in the case with larger time windows.
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The ideal DDoS attack situation is when we have the attackers coming to 

the RCS with high frequency (low l with low t), and requesting tickets with 

a very high δr, thus making the RCS provide time windows much larger 

than normal. These big time windows will most certainly lead to a severe 

underutilization at the server, as clients will be provided with the same 

number of accesses (wopt), but with larger time windows, as is seen in Fig-

ures 4.15, 4.16, 4.17 and 4.18. The solution to this problem is to place an 

upper bound on the value of δr, which the clients may request. From Fig-

ures 4.15, 4.16, 4.17, 4.18, it is evident that the utilization is better for 

δr=1ms, and is reasonable for δr=90 ms, which is the also the usual average 

that may be requested by clients in the DNS service, as compared to cases 

with δr=1 sec. Therefore, the condition 1 < δr < 90 msec, must be placed on 

the value of δr, in order to ensure better resistance to the DDoS underuti-

lization attack against DNS root name servers.

Average Waiting Time

The average client waiting time to service is directly proportional to δr. 

For higher values of δr, the time window provided to the clients is larger, 

and thus subsequent clients are pushed off further into the future before ser-

vice is provided to them. This higher waiting time is observable in the DNS 

rate control scheme, where the average interarrival times are less than a 
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millisecond, unlike other services, where the average interarrival times are 

higher, and thus waiting times may be lower. Owing to this low interarrival 

time in the DNS setup, the larger the client population, the higher the aver-

age waiting time. This behavior takes place due to the fact that a larger 

number of clients are coming in to the RCS to request for tickets, with 

more or less the same arrival time, and they are provided with time win-

dows well ahead into the future. Thus the average waiting time per client 

goes up substantially with the total population.

Figure 4.14: Access window allocation to clients

The following observations can be made from the results:

1. For higher δr (~1sec), with client population of 10K, the average wait-

ing time was between 45-100 seconds, as compared to cases with δr= 90 

ms and δr= 1ms, where the average waiting time was between 8-20 sec-

onds, as is seen in Figures 4.19 and 4.20. The reason for such a long wait-

ing period is that δr has a direct impact on the time window sizes given to 

 

RCS 

Clients  requesting tickets at very small intervals. 

Time windows at the Application Server 
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individual clients, during which they may place their requests, as is seen in 

the time window computation formulae below:

ti = tw + ∆

ti+1 = ti + w(τ + 2∆ + δr)

Thus, with higher values of δr, the clients are provided with larger 

time windows to place their requests in, and hence subsequent client 

requests are pushed off further into the future, before service is provided to 

them. 

2. During the event of a “flash crowd” (i.e., high l and low t), the average 

waiting time stays below 20 seconds for cases with . Thus it is 

advisable to place an upper bound on the value of δr, that may be requested 

by a client, so as to reduce the waiting time to service for subsequent cli-

ents. Clients who may not be able to place their requests during the time 

window provided to them due to the smaller δr value may re-issue a request 

for a ticket to the RCS, for subsequent accesses.

3. During the event of a DDoS attack (i.e., low l and low t), for higher 

values of δr (~1sec), which typically is the case during an underutilization 

attack, the average waiting time was around 45 seconds, as is seen in Fig-

ure 4.19 and 4.20, whereas for lower δr, the waiting time was between 8-10 

seconds, which again suggests that the system designer place an upper 

0 δr 90ms< <
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bound on the requested value of δr. So we may again conclude that δr must 

lie in the following range: 0 < δr < 90.

Effect of Variations of Number of Clients on Utilization, Waiting Time

The server utilization remains the same for variations in the number of 

clients (N). This is because neither the time window size, nor the wopt 

value provided to the individual clients are affected by N. Therefore, having 

20 requests in 20 seconds, or having 40 requests in 40 seconds give the 

same server utilization.

The client waiting time is severely impacted by variations in the client 

population. The small interarrival times of the DNS system (~0.86 ms, 0.03 

ms), imply that a large number of clients are requesting tickets from the 

RCS in a back to back fashion, and are provided with time intervals pushed 

off well into the future. Thus the per-client average waiting time goes up 

substantially, as is evident from Figures 4.23 and 4.24, where for l=0.1, 

δr=1 ms and N=100K, the average waiting time is around 100 seconds, and 

for l=0.9 and other factors remaining the same, the waiting time is around 

200 seconds. Again, Figures 4.23 and 4.24 show a very high waiting time 

for cases with δr= 1sec, thus further strengthening our earlier suggestion 

for placing an upper limit on the value of δr for the DNS system.
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Figure 4.15: Server Utilization vs. l

Figures 4.16: Server Utilization vs. l

Impact of variation of 't', Delta-r on utilization
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Figure 4.17: Server Utilization vs. l

Figure 4.18: Server Utilization vs. l
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Figure 4.19: Average Waiting Time vs. l

Figure 4.20: Average Waiting Time vs. l
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Figure 4.21: Average Waiting Time vs. l

Figure 4.22: Average Waiting Time vs. I
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Figure 4.23: Average Waiting Time vs. Client Population

Figure 4.24: Average Waiting Time vs. Client Population
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Chapter 5

Conclusions and Future Work

With the ever expanding gap between the network line rate, and the server 

throughput, user-level agreements have to be imposed in order to check on 

the load imposed on the server, be it a DNS root name server, or a CDN 

server. This thesis evaluated the performance of a novel rate control mecha-

nism to control the traffic arrival rate to two types of servers, namely, DNS 

root name servers, and CDN servers. In particular, the application server 

utilization, and the client waiting times were studied for variations in the 

input parameters: c1, c2, Ar, l, δr. 

The results obtained from the simulations were at par with our expecta-

tions:

1. Increasing client population led to increase in the per-client waiting 

time, however, the server utilization remained unaffected.
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2. Increasing values of the maximum interrequest time requested by a cli-

ent, δr, led to increase in the per-client waiting time, and lower server utili-

zation.

3. Increasing values of the average number of requests used for wopt 

computation, Ar, led to an increase in the per-client waiting time, and lower 

server utilization.

The following bound is suggested to be placed on the value of δr, so as to 

give reasonable waiting time guarantees to the clients.

- CDN Network: 0 < δr < 3 sec.

- DNS Network: 0 < δr < 90 msec.

The values of the parameters that characterize applications such as the 

average number of accesses required, Ar, and the maximum interrequest 

delay, δr, and not just the communication and computation delays vary 

greatly from one network to another. Thus, the system designer must 

choose appropriate values of these application parameters before deciding 

on the optimal number of accesses, and time window sizes to be given to 

individual clients. This is the case because both the client waiting time, as 

well as the server utilization are affected by these values.
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Future Work

The simulation done in this thesis involved independent non-overlapping 

time windows, during which clients were expected to place their requests. 

However, overlapping time windows may be experimented with, and 

results may be obtained for analysis and comparison with the current 

results. This would enable us to concretize the bounds we have decided 

upon for certain parameters.

Considering the rising usage of wireless networks, the application of the 

rate control scheme simulated in this thesis to wireless networks has to be 

studied with extensive simulations. The results obtained will allow us to 

study the impact this scheme would have on the behavior of wireless net-

work servers, as well as the client waiting time guarantees. 

As all resources that become very common, wireless networks will face 

the same problems in security, as faced by wireline networks today, includ-

ing DDoS attacks. Thus, it is essential to provide solutions to such prob-

lems based on empirical analysis already done, including work done in this 

thesis.
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Appendix A

The Simulator

/*  Author: Zubair Baig

This program models the rate control server soln. for the DDoS problem 

proposed by Dr. V.D.Gligor. The arrival process of the requests from the 

clients to the Rate Control Server is Poisson, with exponential interarrival 

times(as per definition). The tickets granted to the clients contain ti, ti+1 

values.

   ti = Delta + first available time window.

   ti+1 = ti + w(Tau + 2*Delta + Deltar)

Number of accesses granted (w) depends on the value of wopt.

We are considering the case with single client per window.

The value of 'l' will decide the arrival of requests at the Verifier(Appl. 

Server), and thus the utilization.
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The service time at the server is exponential with average time equal to 

some number.

We will record the total time the client has to wait before getting the ser-

vice.We will also check the utilization of the app. server 

We will also record the avg. number of visits per client to the RCS.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define NUM_CLIENTS 10000

#define APP_SERVER_RATE 600

/* ALWAYZ USE MILLISECONDS AS UNITS.........!!!!!!!!!!!!!!!!!*/

const double AVG_INTERARRIVAL_TIME= 0.01;

                                        /* Interarrival time at RCS (msecs)*/

const double AVG_SERVICE_TIME= 100.0;   /* Service time at the 

appl. server (msecs)*/

const double MAC_PROC = 0.0;   
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const int AR_MAX = 6;/* Ar upper limit */

const int AR_MIN = 1; /* Ar lower limit */

typedef struct RCS_ticket{

int client_id;

double arrival_time; /* Arrival time to the TGS */

double ti; /* Tx */

double ti1;/* Ty */

int num_reqs;   /* # of Requests for tickets made by client */

double ctr;        /* Max. number of requests given to client */

double deltar;     /* Max. time between 2 consecutive reqs to the app. 

server */

int come_again;

} RCS_ticket;

RCS_ticket rcs_ticket[NUM_CLIENTS];

double interarrival_time[NUM_CLIENTS];

double simulation_time = 0.0;

const double DELTAR = 30000.0;/* Max. gap between 2 consecutive 

requests.(in msecs) */

const double DELTA  = 200.0;        /* Network delay (in msecs) */

 

const double Ar = 6.0;

const double C1 = 200.0;

const double C2 = 1000.0;
59



const int L=1024;

  

int TAU;

FILE *fd1;

/* Computing the value of Wopt for different values of paramters */

/* This function computes the interarrival time between consecutive 

requests

to the RCS */

double expon_interarrival(void)

{

int value;

double random_Y;

double arrival_time;

double result;

int cnt;

value = rand() % 100;

random_Y = (double)value/100.0;

if (random_Y == 0.0)

random_Y = 0.01;

arrival_time = -(log(random_Y)/(1.0/AVG_INTERARRIVAL_TIME));
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result = arrival_time ;

if (result == 0.0)

result = 0.0;

/*if (result > 100.0)

result = rand() % 100;

printf("Interarrival time is %f\n\n",result);

*/

return (result);

}   /* End of function */

/* This function computes the interarrival time between consecutive 

requests

to the RCS */

double expon_service(void)

{

int value;

double random_Y;

double service_time;

double result;

int cnt;

value = rand() % 100;
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random_Y = (double)value/100.0;

if (random_Y == 0.0)

random_Y = 0.01;

service_time = -(log(random_Y)/(1.0/AVG_SERVICE_TIME));

result = service_time ;

if (result == 0.0)

result = 0.0;

/*if (result > 100.0)

result = rand() % 100;

*/

printf("Service time is %f\n\n",result);

return (result);

}   /* End of function */

/**********************************************/

/* This function emulates a normal web server with no Rate Control 

Mechanism implemented */

void normal_server(void)

{
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double total_ctrs;

double total_time;

}/* End of function */

/**********************************************/

/* This function computes the utilization at the appl. server, # of visits on 

avg. per client

to the RCS, as well as the Avg. Waiting Time for each client before get-

ting the service. */

void compute(double l, double Wopt)

{

double total_time=0.0, total_ctrs=0.0;

double legitimate_clients;

int cnt,cnt2;

double waiting_time=0.0;

double waiting[NUM_CLIENTS];

double num_visits = 0.0;

TAU = L/APP_SERVER_RATE;

legitimate_clients = l * (double) NUM_CLIENTS;

/* Computing the Utilization at the Server */

for (cnt=0;cnt<(int)legitimate_clients;cnt++)

{
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   total_time += (rcs_ticket[cnt].ti1 - rcs_ticket[cnt].ti);

   total_ctrs += rcs_ticket[cnt].ctr;

}

if (total_time == 0.0)

{printf("0\t");

fprintf(fd1,"0\t");

}

else

{fprintf(fd1,"%0.3f\t",total_ctrs*100000.0/((double)APP_SERVER_RATE*total_time));

}

/* Computing the Avg. Waiting Time per client */

for (cnt=0;cnt <NUM_CLIENTS;cnt++)

{

 waiting_time += (rcs_ticket[cnt].ti - rcs_ticket[cnt].arrival_time);

waiting[cnt] = waiting_time;

}

fprintf(fd1," %0.3f\t",waiting_time/(1000.0*(double)NUM_CLIENTS));

/* Computing the Average number of visits to the RCS per client */

for (cnt=0;cnt<NUM_CLIENTS;cnt++)

{

if((double)rcs_ticket[cnt].num_reqs <= rcs_ticket[cnt].ctr)

num_visits +=1.0;

else

   num_visits += (double)rcs_ticket[cnt].num_reqs/rcs_ticket[cnt].ctr;

}
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printf("  %d\n",(int)num_visits/NUM_CLIENTS);

fprintf(fd1,"  %d\n",(int)num_visits/NUM_CLIENTS);

printf("\n\n\n");

/**************/

/****** Repeating the simulations 100 times */

for (cnt2=0;cnt2<10;cnt2++)

{

 printf("\n\n");

 printf("\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

  fprintf(fd1,"\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

fprintf(fd1," %0.2f\t%0.2f\t",l,Wopt);

 for (cnt=0;cnt<NUM_CLIENTS;cnt++)

  {

     interarrival_time[cnt] = expon_interarrival();    /* Computing the inter-

arrival time for the clients*/

   

   rcs_ticket[cnt].arrival_time = simulation_time + interarrival_time[cnt];

  

   simulation_time += interarrival_time[cnt];        /* Total time for simula-

tion */
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   rcs_ticket[cnt].num_reqs = rand() % AR_MAX;      /* Each client 

makes a req. for random # of w */

   while(rcs_ticket[cnt].num_reqs <AR_MIN)

rcs_ticket[cnt].num_reqs++;

}     /* End of for loop */

/* Providing the ti..ti+1 values to the clients */

  for (cnt=0;cnt<NUM_CLIENTS;cnt++)

  {

   rcs_ticket[cnt].ti = rcs_ticket[cnt].arrival_time + MAC_PROC + 

DELTA;

   }      /* End of for */

 

 rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((double)TAU 

+ 2.0*DELTA + DELTAR);

/* Checking for overlap */

 if (cnt != 0)

 {

   if (rcs_ticket[cnt].ti < rcs_ticket[cnt-1].ti1)

rcs_ticket[cnt].ti = rcs_ticket[cnt-1].ti1; 

  }

/* Computing the Utilization at the Server */

for (cnt=0;cnt<(int)legitimate_clients;cnt++)

{

   total_time += (rcs_ticket[cnt].ti1 - rcs_ticket[cnt].ti);
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   total_ctrs += rcs_ticket[cnt].ctr;

}

if (total_time == 0.0)

{printf("0\t");

fprintf(fd1,"0\t");

}

else

{printf("%0.3f\t",total_ctrs*100.0/((double)APP_SERVER_RATE*total_time));

fprintf(fd1,"%0.3f\t",total_ctrs*100000.0/((double)APP_SERVER_RATE*total_time));

}

/* Computing the Avg. Waiting Time per client */

for (cnt=0;cnt <NUM_CLIENTS;cnt++)

{

 waiting_time += (rcs_ticket[cnt].ti - rcs_ticket[cnt].arrival_time);

waiting[cnt] = waiting_time;

}

printf(" %0.3f\t",waiting_time/(double)NUM_CLIENTS);

fprintf(fd1," %0.3f\t",waiting_time/(1000.0*(double)NUM_CLIENTS));

/* Computing the Average number of visits to the RCS per client */

for (cnt=0;cnt<NUM_CLIENTS;cnt++)

{

if((double)rcs_ticket[cnt].num_reqs <= rcs_ticket[cnt].ctr)

num_visits +=1.0;

else

   num_visits += (double)rcs_ticket[cnt].num_reqs/rcs_ticket[cnt].ctr;
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}

printf("  %d\n",(int)num_visits/NUM_CLIENTS);

fprintf(fd1,"  %d\n",(int)num_visits/NUM_CLIENTS);

printf("\n\n\n");

}

} /* End of function Compute */

/**********************************************/

/* Function Main */

int main (void)

{ int cnt,cnt2;

  double l,Wopt;

 

fd1 = fopen("rcs_results_12_02_deltar.txt","aw");

srand(time(0));

  for (cnt=0;cnt<NUM_CLIENTS;cnt++)

  {

   rcs_ticket[cnt].client_id = cnt;

   rcs_ticket[cnt].deltar = DELTAR;                  /* Constant value */

interarrival_time[cnt] = expon_interarrival();    /* Computing the interar-

rival time for the clients*/

   

   rcs_ticket[cnt].arrival_time = simulation_time + interarrival_time[cnt];

   simulation_time += interarrival_time[cnt];        /* Total time for simula-

tion */
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   rcs_ticket[cnt].num_reqs = rand() % AR_MAX;      /* Each client 

makes a req. for random # of w */

   while(rcs_ticket[cnt].num_reqs <AR_MIN)

rcs_ticket[cnt].num_reqs++;

}     /* End of for loop */

/* Providing the ti..ti+1 values to the clients */

  for (cnt=0;cnt<NUM_CLIENTS;cnt++)

  {

   rcs_ticket[cnt].ti = rcs_ticket[cnt].arrival_time + MAC_PROC + 

DELTA;

   }      /* End of for */

TAU = L*1000/APP_SERVER_RATE;

printf("\n");

printf("C1          = %0.1f msecs\n", C1);

printf("C2          = %0.1f msecs\n", C2);

printf("Ar          = %0.1f\n", Ar);

printf("t           = %0.3f msecs\n", AVG_INTERARRIVAL_TIME);

printf("Server Rate = %d reqs/sec\n",APP_SERVER_RATE);

printf("Queue length= %d reqs\n",L);

printf("TAU         = %d msecs\n",TAU);

fprintf(fd1,"/*************************\n");

fprintf(fd1,"\n");

fprintf(fd1,"C1          = %0.1f msecs\n", C1);

fprintf(fd1,"C2          = %0.1f msecs\n", C2);
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fprintf(fd1,"Ar          = %0.1f\n", Ar);

fprintf(fd1,"t           = %0.3f msecs\n", AVG_INTERARRIVAL_TIME);

fprintf(fd1,"Server Rate = %d reqs/sec\n",APP_SERVER_RATE);

fprintf(fd1,"Queue length= %d reqs\n",L);

fprintf(fd1,"TAU         = %d msecs\n",TAU);

/* This for loop will execute for diff. values of l (% of legitimate clients) 

*/

/****************************************/

printf("\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

  fprintf(fd1,"\n l\tWopt\tUtil(%%)\t W.T(msec)\t# visits\n");

  for (l = 0.0; l <0.9; l += 0.1)

  {

Wopt = sqrt ( (Ar * C1)/(C2 * (1.0-l)));

/*Assigning the value of ctr to the individual clients */

for (cnt=0; cnt<NUM_CLIENTS; cnt++)

{

  if(rcs_ticket[cnt].num_reqs < (int)Wopt)

   rcs_ticket[cnt].ctr = (double)rcs_ticket[cnt].num_reqs;

          else

   rcs_ticket[cnt].ctr = Wopt;

rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((double)TAU 

+ 2.0*DELTA + DELTAR);

/* Checking for overlap */
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 if (cnt != 0)

 {

   if (rcs_ticket[cnt].ti < rcs_ticket[cnt-1].ti1)

rcs_ticket[cnt].ti = rcs_ticket[cnt-1].ti1; 

  }

}

  rcs_ticket[cnt].ti1 = rcs_ticket[cnt].ti + rcs_ticket[cnt].ctr*((dou-

ble)TAU + 2.0*DELTA + DELTAR);

printf(" %0.2f\t%0.2f\t",l,Wopt);

fprintf(fd1," %0.2f\t%0.2f\t",l,Wopt);

       /* Calll the function 'compute' to find out the utilization, #of visits, 

waiting time */

       /*************************************/

compute(l,Wopt);

 }

fclose(fd1);

/************************************/

/* Checking the behaviour of a normal server with M/M/1 */

normal_server(); 

} /* End of Main */
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