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During my Ph.D., I developed several computational approaches to advance precision medicine 

for cancer prevention and treatment. My thesis presents three such approaches addressing these 

emerging challenges by analyzing large-scale cancer omics data from both pre-clinical models 

and patients datasets. 

 

In the first project, we studied the cancer risk associated with CRISPR-based therapies. 

Therapeutics based on CRISPR technologies (for which the chemistry Nobel prize was awarded 

in 2020) are poised to become widely applicable for treating a variety of human genetic diseases. 

However, preceding our work, two experimental studies have reported that genome editing by 

CRISPR–Cas9 can induce a DNA damage response mediated by p53 in primary cells hampering 

their growth. This could lead to an undesired selection of cells with pre-existing p53 mutations. 

Motivated by these findings, we conducted the first comprehensive computational and 

experimental investigation of the risk of CRISPR-induced selection of cancer gene mutants 

across many different cell types and lineages. I further studied whether this selection is 



 

 

dependent on the Cas9/sgRNA-delivery method and/or the gene being targeted. Importantly, we 

asked whether other cancer driver mutations may also be selected during CRISPR-Cas9 gene 

editing and identified that pre-existing KRAS mutants may also be selected for during CRISPR-

Cas9 editing. In summary, we established that the risk of selection for pre-existing p53 or KRAS 

mutations is non-negligible, thus calling for careful monitoring of patients undergoing CRISPR-

Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. 

 

In the second project, we aimed to delineate some of the molecular mechanisms that may 

underlie the observed differences in cancer incidences across cancer patients of different 

ancestries, focusing mainly on lung cancer. We found that lung tumors from African American 

(AA) patients exhibit higher genomic instability, homologous recombination deficiency, and 

aggressive molecular features such as chromothripsis. We next demonstrated that these 

molecular differences extend to many other cancer types. The prevalence of germline 

homologous recombination deficiency (HRD) is also higher in tumors from AAs, suggesting that 

at least some of the somatic differences observed may have genetic origins. Importantly, our 

findings provide a therapeutic strategy to treat tumors from AAs with high HRD, with agents 

such as PARP and checkpoint inhibitors, which is now further explored by our experimental 

collaborators. 

 

In the third project, we developed a new computational framework to leverage single-cell 

RNA-seq from patients’ tumors to guide optimal combination treatments that can target multiple 

clones in the tumor. We first showed that our predicted viability profile of multiple cancer drugs 

significantly correlates with their targeted pathway activity at a single-cell resolution, as one 



 

 

would expect. We apply this framework to predict the response to monotherapy and combination 

treatment in cell lines, patient-derived-cell lines, and most importantly, in a clinical trial of 

multiple myeloma patients. Following these validations, we next charted the landscape of 

optimal combination treatments of the existing FDA-approved drugs in multiple myeloma, 

providing as a resource that could be used to potentially guide combination trials. 

 

Taken together, these results demonstrate the power of multi-omics analysis of cancer 

data to identify potential cancer risks and a strategy to mitigate, to shed light on molecular 

mechanisms underlying cancer disparity in AA patients, and point to possible ways to improve 

their treatment, and finally, we developed a new approach to treat cancer patients based on 

single-cell transcriptomics of their tumors.  
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Chapter 1: Higher prevalence of homologous recombination deficiency 

in tumors from African Americans versus European Americans 

To improve our understanding of longstanding disparities in incidence and mortality in lung 

cancer across ancestry, we performed a systematic comparative analysis of molecular features in 

tumors from African Americans (AAs) and European Americans (EAs). We find that lung 

squamous cell carcinoma tumors from AAs exhibit higher genomic instability—the proportion of 

non-diploid genome—aggressive molecular features such as chromothripsis and higher 

homologous recombination deficiency (HRD). In The Cancer Genome Atlas, we demonstrate 

that high genomic instability, HRD, and chromothripsis among tumors from AAs are found 

across many cancer types. The prevalence of germline HRD (that is, the total number of 

pathogenic variants in homologous recombination genes) is higher in tumors from AAs, 

suggesting that the somatic differences observed have genetic ancestry origins. We also identify 

AA-specific copy-number-based arm-, focal- and gene-level recurrent features in lung cancer, 

including higher frequencies of PTEN deletion and KRAS amplification. These results highlight 

the importance of including under-represented populations in genomics research.  
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Introduction 

In the United States (US), African Americans (AAs) have the highest cancer incidence and 

lowest survival across multiple cancer types 1. The reasons for these persistent trends are not 

clear. Our current understanding of the molecular mechanisms of tumorigenesis is primarily 

from analyses of tumors derived from European ancestry patients, including The Cancer Genome 

Atlas (TCGA) where only 8.5% of samples are from AAs. This raises a question about whether 

there are differences in tumor evolution and molecular features by genetic ancestry. Recently, 

Yuan et al. compared somatic copy number alteration (SCNA)-based genomic instability (GI) 

across genetic ancestry in TCGA and found that invasive breast carcinoma (BRCA), head and 

neck squamous cell carcinoma (HNSC), and uterine corpus endometrial carcinoma (UCEC) 

tumors from AAs had significantly increased GI compared with tumors from European 

Americans (EAs) 2. Further, recent work demonstrated that the African pan-genome contains 

numerous large insertions—whose total length comprises ~10% of the genome—that are not 

present in the current human reference genome (GRCh38) 3, which was primarily derived from a 

small number of individuals, primarily of European descent 4. Together these data highlight the 

need for studies specifically investigating the molecular landscape of cancer in minority and 

under-represented populations. 

Lung cancer, the second most common cancer in the US and the leading cause of cancer-related 

death 5, has persistent disparities in both incidence and mortality. AAs have the highest lung 

cancer incidence and mortality rates when compared with other racial or ethnic groups 1,6. These 

disparities persist even after considering tobacco smoking exposure, the strongest risk factor for 

lung cancer development 6. 
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Population-specific molecular patterns in tumor biology and cancer genomics have been reported 

in recent years 7-10 with limited power and coverage. Here, we systematically identified ancestry-

specific genome-wide copy number features in a racially balanced (EA and AA) cohort of 222 

lung tumors. Our analysis reveals higher GI and homologous-recombination deficiency (HRD) in 

LUSC tumors from AAs compared with EAs. This suggests an ancestry-associated disparity in 

deficiency of the HR-pathway, which we confirmed by finding a higher prevalence of germline 

HRD in AA compared with EA patients in LUSC. In the TCGA cohort, we further found the 

increased GI, HRD, and chromothripsis (CHTP) among AAs across multiple cancer types and 

pan-cancer. Further, we identify ancestry-specific arm, focal, and gene-level features in LUAD 

and LUSC. Our results highlight the importance of including minority and under-represented 

populations in cancer genomics research and may have therapeutic implications. 

  

Results 

LUSC tumors from African Americans have higher GI and HRD 

We generated genome-wide copy number profiles of 222 non-small cell lung cancer tumor 

samples from the NCI-MD study (105 LUAD [AA=63, EA=42] and 117 LUSC [AA=63, 

EA=54] (Supp Table 1) using the OncoScan platform 11, which provides comprehensive 

coverage of 50–100 kb copy number resolution in cancer genes and 300 Kb across the rest of the 

genome. Sample characteristics for the patients in this study are shown in Supp Table 1. 

Based on these copy-number alterations profiles, we first quantified GI—defined as the 

proportion of the genome with non-diploid copy number—for each sample. We found that LUSC 

tumors from AAs had significantly higher GI compared with EAs (Figure 1A-top panel; 
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Wilcoxon Rank-Sum (shortened to ‘Wilcoxon’ henceforth) P<6E-03). In contrast, we did not 

find significantly higher GI in lung adenocarcinoma (LUAD) in AAs (Figure 1A-middle panel). 

We tested the hypothesis that higher GI across tumors from AAs is due to a higher prevalence or 

extent of HRD, which was previously identified as a key contributor to GI in cancer 12. We 

quantified HRD in tumors using four independent measures of HRD: Loss of heterozygosity 

(LOH), which is the number of LOH segments 13,14; telomere allelic imbalance (AIL), which is 

the number of regions of allelic imbalance that extend to one of the sub-telomeres but do not 

cross the centromere; large-scale state transitions (LST), which is the number of breakpoints 

between regions longer than 10 Mb after filtering out regions shorter than 3 Mb 13 and lastly, the 

sum of these three features. All four scores are scaled within the range of 0 to 1. In the NCI-MD 

study, we observed a strong positive correlation between GI and HRD across the whole cohort 

for all four features (P<2E-16 for all; Spearman Rho=0.64 for LOH, 0.31 for LST, 0.44 for AIL, 

0.51 for the sum), where, in AA tumors, the correlation observed is stronger than in EA tumors 

(Spearman Rho for AA=0.57, for EA=0.48, P<2.2E-16 for both) (Supp Table 2). Next, we 

observed significantly higher HRD in AAs with LUSC (FDR adjusted P-value<2E-04 for LOH, 

Figure 1B-top panel; <2.0E-02 for LST; <3.9E-02 for AIL; P<7.1E-03 for net sum), but not 

LUAD, which is consistent with our GI-based findings outlined above (Figure 1B-middle panel). 

This suggests that HRD contributes to the ancestry-specific pattern of higher GI burden in LUSC 

among AAs. 

To account for potential confounding factors, we performed multivariate linear regression to 

model separately GI and HRD in the NCI-MD cohort as a function of ancestry adjusting for 

tumor stage, patient age, sex, smoking status, pack-years of cigarettes and tumor purity. Here, we 

found AA ancestry strongly positively associated with GI and HRD in LUSC, but not LUAD, 
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consistent with our previous observations (LUSC: FDR<3E-02 and FDR <5.35E-05, 

respectively, LUAD: FDR< 0.24 and FDR<0.09, respectively, Supp Table 3). 

We initially determined ancestry by self-report; however, it is possible that miss-report could 

have confounded our results 15. Therefore, we inferred ancestry in an unsupervised manner via 

principal component analysis (PCA) of ancestry-informative SNPs (Methods) followed by 

classification of the first two PCs via support vector classification (SVC), which identified two 

classes of ancestry. We found that inferred ancestry class is concordant with self-reported 

ancestry for 98.6% of subjects; four samples were potentially misclassified (Supp Table 3, 

Column B). We removed these samples and repeated the analyses above and found consistent 

results with comparable significance (higher GI and LOH-HRD in LUSC among AAs with 

Wilcoxon P<6E-03 and P<2E-04). 

To validate the relationship between GI and the extent of HRD that we found in the NCI-MD 

cohort, we quantified GI and HRD using the four signatures described above in the TCGA 

cohort. Both GI and HRD were higher in tumors from AAs compared with EAs in LUSC, but the 

differences did not reach statistical significance (Figure 1A-B, bottom Panel). This could be due 

to the limited number of AA tumor samples in TCGA (29 AA compared with 346 EA), which is 

supported by a power analysis of TCGA samples across ancestry (Methods). 

  

Lung tumors from African Americans have more frequent complex structural variants 

The observed deficiencies in DNA damage repair related with GI in LUSC prompted us to chart 

the landscape of complex structural variants recently reported to be related with HRD 16. We 

studied chromothripsis (CHTP), which was first described as a catastrophic event that leads to 

chromosome shattering and tens to hundreds of simultaneously acquired oscillatory copy number 
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aberrations on one chromosome 17,18. Therefore, we represented CHTP as a binary variable 

indicating presence/absence. Using the classical definition, i.e., many oscillatory copy number 

events clustered on a chromosome (Methods) 19, tumor samples with CHTP had significantly 

higher HRD than samples without CHTP (Wilcoxon P<9E-04) in the NCI-MD lung cancer 

cohort (Supp Table 2). Further, we observed higher frequency of CHTP in tumors from AAs 

compared with EAs in LUSC (Figure 1C-Top panel, P<0.12, OR=1.24) and in LUAD, but to a 

weaker extent (Figure 1C-Middle panel, P<0.49, OR=1.15). These patterns are consistent when 

adjusted for age, sex stage, smoking status and pack-years of cigarettes (multivariate regression 

P for ancestry<2.8E-03, Supp Table 3). The same result held qualitatively when an alternative 

quantification of CHTP, defined by the allowance for two oscillation states in the affected 

region, was used (Methods) (Supp Table 2- Column AD). Next, we quantified CHTP in the 

TCGA-LUSC cohort and observed a consistent pattern of higher frequency in tumors from AA 

(Figure 1C-bottom panel, P<0.12, OR=1.45). We further analyzed the chromosome frequency 

distribution of CHTP, which varied by histological subtype and ancestry. 
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Figure 1: Differences in GI, HRD and chromothripsis across AA and EA lung cancer 

patients from the NCI-MD and TCGA cohort. (A) Genomic instability, (B) homologous 

recombination deficiency and (C) chromothripsis are quantified and presented stratified by 

genetic ancestry in LUSC (top, n=105 patients (AA=63, EA=42)) and LUAD (middle, and 

n=117 patients (AA=63, EA=54)) samples from the NCI-MD cohort and LUSC from the TCGA 



 

8 

cohort (bottom, and n=375 patients (AA=29, EA=346)). LUAD denotes lung adenocarcinoma 

and LUSC denotes lung squamous cell carcinoma. Significance for comparison of medians in A) 

and B) is calculated via one-sided Wilcoxon rank-sum tests and significance for comparison of 

frequency in C) is calculated via one-sided Fisher’s exact test. The violin plots in A) and B) 

show the data distribution where the center line denotes the median, the box indicating the 

interquartile range and the black line represents the rest of the distribution, except for points that 

are determined to be “outliers” using a method that is a function of the interquartile range, as in 

box plots. 

 

The landscape of arm- and focal-level SNCAs in AA and EA lung cancer 

To identify SCNA-based ancestry-specific features in detail, we examined population-specific 

SCNA profiles in lung cancer for chromosome arm- and focal- level (shorter than half a 

chromosome arm) events in the NCI-MD study where statistical power for both populations was 

available. Further support for key observations was demonstrated in TCGA. Recurrent arm-level 

and focal-level SCNA events were identified for both populations separately using GISTIC 20 

(Methods, FDR<0.1) and used to map genome-wide SCNA across histology and ancestry 

(Figure 2, Supp Tables 4-5). 

For each chromosome arm, the alteration frequency and the recurrence significance by 

ancestry for both amplifications and deletions were plotted for patients in the NCI-MD cohort 

(Figure 2). We identified known cancer-specific arm-level SCNA events, including amplification 

of 3q and 5p and deletion of 3p 21, in both populations (Supp Tables 4-5). Similarly, 19p 

deletion, a molecular signature of LUAD, was recurrent in EAs and AAs at similar frequencies 

of ~45% (Figure 2, Supp Table 5). Recurrent population-specific arm-level SCNA differences 
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were observed, including 4p and 4q arm level deletions in LUSC and 7p and 7q amplifications in 

LUAD, both occurred at higher frequency in AAs compared with EAs. These observations were 

replicated in TCGA (Figure 2). 

 

Figure 2: Characterization of arm-level SCNA events across EA and AA lung cancer in the 

NCI-MD cohort. Frequency distribution of aberrant SCNA events on autosomal chromosome 

arms in LUAD and LUSC for the NCI-MD and TCGA cohorts (LUSC n=375 patients [AA=29, 

EA=346], LUAD n= 432 patients [AA=51, EA=381]). The diagonal dashed line represents equal 

AA and EA frequencies, with points falling away from this line indicating chromosome arms 

with alteration frequency differences between populations. A color code is provided to denote 

population-specific recurrent SCNA events with statistical significance. Del=deletion, 

amp=amplification. Statistical significance of recurrence was computed via GISTIC, which 

provides arm-level FDR-corrected significance with a threshold of 0.1. 

To visualize genome-wide focal-level SCNA events across populations, including co-occurrence 

and mutual-exclusivity, we created an SCNA map showing genome-wide SCNA frequency 
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distributions for both LUSC and LUAD in the NCI-MD cohort (Figure 3-left panel). The 

overlaps in recurrent focal regions among EAs and AAs were 59% and 70% for LUAD and 

LUSC, respectively (Figure 3-left panel). Further, we observed population-specific patterns of 

co-occurring and mutually exclusive SCNA events (Figure 3-left panel). To identify potential 

novel AA-specific copy number-driven focal-level regions, we selected high-confidence 

recurrent focal-level regions from GISTIC that met the following criteria; 1) alteration frequency 

greater than 5% in AAs, 2) frequency at least two times higher in AAs than EAs 3) recurrent 

only in AAs and 4) no recurrent peak of the same type (amplification or deletion) was present in 

EAs within the region or an extended additional 10% on both sides of the region length. We 

identified eight potential AA-specific potential driver regions. The top hit ranked by significance 

is a 22q11.23 deletion in LUSC (Figure 3-right panel) with a frequency of 27% in AAs and 13% 

in EAs. Following a previous study 22-24, we tested whether this deletion event is somatic or 

germline by profiling matched-normal tissue samples with genome-wide copy number; we 

observed that 2/5 normal samples from AAs also have a deletion of 22q11.23, suggesting that 

this event could be germline (Supp Table 6). This 22q11.23 region deleted in LUSC is disjointed 

from the nearby region on 22q11.21 that is hemizygously deleted in DiGeorge syndrome 23-24. 

The region with the second-highest fold change in alteration frequency in LUSC, 12p12.1 

(Figure 3-right panel), is a short region including KRAS and is discussed in detail in the next 

section. Thirdly, common to both LUAD and LUSC, the 20p12.1 region is deleted >4 times as 

often in AAs compared to EAs. This region includes the genes FLTR3 and MACROD2. 

We also identified several SCNA events previously linked with AA ancestry in cancer and 

assessed the relationship between copy number and gene expression (Supp Tables 7-10). We 

observed an AA-specific amplification of the oncogene KAT6A in LUAD, which was previously 
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observed in 24. We also identified a recurrent deletion of 4q35.2 extending to the telomere in 

LUSC that includes FBXW7, previously shown to be deleted in colorectal cancer and triple-

negative breast cancer among AAs 25,26 (Supp Table 7). In LUAD, a region in near 8q24 was 

significantly recurrently amplified in AAs only (frequency=33% and 18% in AAs and EAs, 

respectively). Within a sub-region, 8q24.21, the PVT1 copy number profile was significantly 

associated with expression (P<7E-03), while in 8q24.3, HSF1, DGAT1, and BOP1 copy number 

were also significantly associated with gene expression (P<7E-03) (Supp Tables 8 & 10). 

  

 

Figure 3: Global SNCA map across EA and AA lung cancer in the NCI-MD cohort. 

Segmental deletions and amplifications are shown in blue and green, respectively in the left 

panel circos plot. In this plot, the top 50 (|Pearson-Rho| > 0.50) highly positively (co-occurring) 

and negatively (mutually exclusive) correlated copy number segment pairs are connected with 
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yellow and blue arcs, respectively. The overlap and unique recurrent regions between AAs and 

EAs in LUSC and LUAD are shown via Venn diagrams at the top and bottom. Steps provided in 

the central box are used to identify SNCA-driven AA-specific potential-driver regions, where the 

list of regions passing these steps are provided with corresponding frequency in AAs and EAs on 

the right via bar plots for LUAD and LUSC. Recurrence significance for each focal region was 

computed via GISTIC in AAs and EAs separately with an FDR-corrected significance threshold 

of 0.1. 

 

The landscape of driver genes SCNAs in AA and EA lung cancer 

We analyzed the recurrence and alteration frequency of known lung cancer driver genes mined 

from the cancer gene census of COSMIC (Figure 4A). We identified population-specific SCNA 

patterns of drivers (Figure 4A) significantly correlated with gene expression (Figure 4B and 

Figures S3-4). In LUSC, one of the key cancer driver genes, KRAS, is amplified in both 

populations but is significantly recurrent (FDR<0.1, Methods) and has a higher frequency in 

AAs (KRAS amp frequency: 23% in EAs compared to 51% in AAs, Figure 4). Similarly, PTEN 

deletion is significantly recurrent and more frequent in AAs (PTEN del frequency: 32% in EAs 

compared to 53% in AAs, Figure 4). Another key driver, CDKN2A, was recurrently deleted in 

both populations, but the frequency was 35% in AAs compared with 64% in EAs (Figures 4A). 

These three population-specific patterns in frequency were also observed in TCGA. 
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 Figure 4: Landscape of SCNA of lung cancer drivers across EA and AA lung cancer in the 

NCI-MD cohort. (A) Amplification and deletion frequency of lung cancer driver genes across 

population and histology. Recurrence significance for each gene was computed via GISTIC in 

AAs and EAs separately with an FDR-corrected significance threshold of 0.1. The diagonal 

dashed line denotes the null line with points falling away from this line indicating chromosome 

arms with alteration frequency differences across populations. A color code at the top of panel 

4A is provided to denote gene-level population-specific statistically significant recurrent SCNA 

events, where a gene name being in black implies no statistically significance SCNA recurrence 

in either population. Del=deletion, amp=amplification. (B) Effect of copy number changes on 

expression profile (n=91 patients) of drivers with population-specific patterns. Here, at the top of 

each panel, we have provided the corresponding gene name, with the two-sided Spearman 

significance (P) and Rho (ρ) of the mRNA expression of the gene and its SCNA profile. Only 



 

14 

genes significantly correlated with expression are plotted (P<0.01 & Spearman Rho>0.2). Here, 

the centerline denotes the median, the box indicating the interquartile range, and the black line 

represents the rest of the distribution, except for points that are determined to be “outliers” using 

a method that is a function of the interquartile range, as in box plots. 

 

A pan-cancer survey of GI, HRD, and chromothripsis in AA vs EA tumors 

To determine whether a higher prevalence of aggressive molecular features, including GI, HRD, 

and CHTP, extends to other cancer types, we mined TCGA SCNA profiles of 6,492 tumor 

samples with available self-reported ancestry from AAs and EAs originating from 23 tumor 

types (Supp Tables 11 & 12). Consistent with previous observations 3, we initially observed an 

overall significantly higher GI burden in AA tumors (pan-cancer Wilcoxon P<6.9E-07, Figure 

5A). These differences were most significant in breast (BRCA), head and neck (HNSC), stomach 

adenocarcinoma (STAD), cervical squamous cell carcinoma, and endocervical adenocarcinoma 

(CESC) cancers, with a general trend towards higher GI burden in 17 out of the 23 cancer types. 

We repeated this analysis separately for SNCA-loss and -gain-based GI and observed a 

consistent pattern ( Methods). 

We quantified HRD using the four measures previously used, i.e., LOH, TIL, LST and 

normalized sum of the three and observed a strong correlation between GI and HRD in pan-

cancer (P<2E-16 for all; Spearman Rho=0.56, Spearman Rho=0.47 for LST, 0.60 for AIL, 0.58 

for sum) and cancer type-specific analyses (Supp Table 13), where, in AA tumors, the 

correlation observed is stronger than in EA tumors for both pan-cancer (LOH-based measure: 

Rho for AA=0.57, for EA=0.48, P<2.2E-16 for both; AIL-based measure: Rho for AA=0.66, for 

EA=0.60, P<2.2E-16 for both; LST-based measure: Rho for AA=0.51, for EA=0.47, P<2.2E-16 
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for both) and cancer type-specific analyses (Supp Table 13). Moreover, HRD is significantly 

higher in AAs in pan-cancer for all four measures (Wilcoxon P<1.5E-02; P<7.7E-02 for LST; 

P<2.2E-02 for AIL; P<1.9E-02 for sum). This further suggests that HRD contributes to the 

ancestry-specific pattern of higher GI burden in AAs across cancer types. 

When analyzed by specific cancer type, we find that BRCA and HNSC have significantly 

higher HRD across all four measures in AAs compared with EAs (Table S12). A trend towards 

increased HRD among AAs was observed in 11 out of 17 cancer types where increased GI was 

also observed. The remaining six cancer types had an inverse trend, including KIRP and KIRC, 

which have significantly lower GI and HRD. We confirmed these results by quantifying HRD 

using a somatic mutation profile-based signature 27, i.e., mutational signature (mutSig) 3. This 

signature is typified by a C>G/A transversion and is strongly associated with HRD 27-29. We 

leveraged the mSignatureDB database where mutation signatures are profiled 27 on 7,042 tumors 

from 30 different cancer types and found the mutSig 3 contributions to be higher in tumors from 

AAs compared with EAs in pan-cancer (Wilcoxon P<1E-03). Testing each cancer type 

specifically for a higher mutSig 3 in AAs, we found that BRCA and HNSC have a higher 

prevalence of this HRD-related signature, which is consistent with the SNCA hallmarks-based 

quantification of HRD described above (Wilcoxon, P<0.01 and P<0.10, respectively). We 

additionally performed a multivariate regression modeling GI and HRD in pan-cancer as a 

function of ancestry adjusting for stage, sex, age and smoking status in TCGA samples, and 

found AA ancestry strongly positively associated with these genomic features, i.e. higher GI 

(FDR<2.2E-07) and HRD (FDR <4.5E-06 for LOH, <7.8E-07 for AIL, <3.8E-05 for LST, <2E-

01 for mutSigs3) (Supp Table 3). 
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Similar to the NCI-MD cohort, we tested for possible confounding by mislabeled self-

reported race. We accessed genotype information of 906,600 SNPs in matched PBMCs that were 

downloaded from the controlled access part of TCGA (Methods) and inferred unsupervised 

ancestry (Methods). The overall concordance of our computed inferred ancestry with self-

reported ancestry is high (94.7%). Using this inferred ancestry, we removed the possibly 

misclassified samples and repeated the above analysis, with consistent significant results. 

Next, we quantified CHTP in TCGA samples and observed that tumor samples with 

CHTP have significantly higher HRD than samples without CHTP (Wilcoxon P<3.2E-10, for all 

five HRD markers) in both pan-cancer and cancer type specifically. Consistently, we observed a 

higher frequency of CHTP in tumors from AAs compared with EAs in pan-cancer samples 

(Figure 5C, Fisher’s one-sided test P<0.028, odds ratio (OR)=1.25) and in LUSC samples from 

TCGA (Figure 5C, P<0.11, OR=1.4). These patterns were consistent when adjusted for age, sex, 

and stage across both cohorts (multivariate regression P for ancestry <2.8E-03) and further when 

another CHTP definition was used (Methods). Similar to the NCI-MD cohort, we observed 

chromosome enrichment of CHTP on chromosome 12 among AAs in LUSC (Extended Data 

Figure 2). 
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Figure 5: Landscape of GI, HRD, and chromothripsis across AA and EA pan-cancer in the 

TCGA cohort. (A) Genomic instability, (B) homologous recombination (HR) deficiency, and 

(C) chromothripsis is quantified and provided across genetic ancestry in pan-cancer TCGA 

samples (n=6,256 patients [AA=692, EA=5,563]). Similar to Figure 1, significance for 

comparison of medians in A) and B) was calculated via one-sided Wilcoxon rank-sum tests, and 

significance for comparison of frequency in C) was calculated via one-sided Fisher’s exact test. 

The violin plot shows the data distribution where the centerline denotes the median, the box 

indicating the interquartile range, and the black line represents the rest of the distribution, except 

for points that are determined to be “outliers” using a method that is a function of the 

interquartile range, as in box plots. 

  

AA tumors have a higher germline prevalence of HRD 

Given the higher prevalence of HRD in AA tumors across LUSC and pan-cancer, we asked 

whether the increase of HRD in tumors could be driven by germline factors? We accessed the 

TCGA database of germline pathogenic variants across 10,389 adult-tumors 30. This study 30 

performed whole-exome sequencing on PBMCs and then cataloged pathogenic variants 

(Methods). Using this dataset, we first counted the total number of pathogenic variants in HR-
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genes (Supp Table 14) in each patient and defined it as germline HRD. Next, we asked whether 

AA patients have a higher extent of germline HRD than EA patients. In TCGA pan-cancer and 

LUSC, but not LUAD, we found that AAs had significantly higher germline HRD than EAs 

(Figure 6-left panel, OR=1.2; P<0.02 for pan-cancer; Figure 6-right panel, OR=6; P<8E-04 for 

LUSC; Extended Data Figure 10, P<0.23 for LUAD). Repeating this analysis in LUSC patients 

for individual genes of the HR pathway, we found predicted pathogenic variants in canonical 

HR-pathway genes BRCA1, BRCA2, and POLD1 to be enriched in AAs (Supp Table 14) 

(hypergeometric P<0.15, 0.01, 0.08, respectively). Similarly, in pan-cancer we found predicted 

pathogenic variants of BARD1, FANCM, BRIP1, PALB2, POLD1, and BRCA2 to be more 

enriched in AA patients (P<0.06, 0.12, 0.12, 0.19, 0.2, 0.25, respectively). Since some of these 

genes are mutated in hereditary predisposition syndromes it is possible that AAs in TCGA have a 

higher incidence of such syndromes. However, the known syndromes do not necessarily match 

the observed LUSC cancer type. BRCA2 mutations most commonly predispose to breast and 

ovarian cancers, although there is some evidence of association with lung cancer 31. Mutations in 

POLD1 have been associated with colorectal cancer 32, but not lung cancer, to our knowledge. 

We also found BLM and RECQL predicted pathogenic variants to be more enriched in EA 

patients (P<0.06, 0.22). 
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Figure 6: Landscape of germline HRD across EA and AA pan-cancer and LUSC TCGA 

cohort. Prevalence of germline HRD in AAs and EAs calculated using total frequency of 

germline pathogenic variants in HR-pathways genes in pan-cancer (left, total n=8,920 patients 

[AA=919, EA=8,001]) and LUSC (right, total n=382 patients [AA=31, EA=351]). Significance 

for comparison of the frequency of germline HRD was calculated via one-sided Fisher’s exact 

test where exact p-value values are provided. 

  

Discussion 

Here, we mapped molecular features of tumors from EAs and AAs across many cancer types, 

with greater depth and power in lung cancer. We observed that consistent with previous reports 2, 

GI is higher in AAs across multiple cancer types. This higher GI is unlikely to be related to the 
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recently identified unmapped 10% of the genome that is found in populations of African ancestry 

3 as we found both copy number gain- and copy number loss-based GI to be higher in AAs. We 

hypothesized, and confirmed, that this higher GI is likely due to a higher prevalence of HRD in 

tumors from AAs. We also identified a significantly higher prevalence of mutational signature 

3—closely associated with HRD 27-29—among a wide range of tumors from AAs (Extended Data 

Figure 8). We further show that tumors from AAs have a higher frequency of aggressive 

molecular features, including structural variants. HRD was not uniformly higher among AAs in 

some cancers, including KIRP and KIRC, where HRD was significantly lower. 

Higher SNCA-based GI and HRD in tumors from AAs raises the question of whether underlying 

defective DNA repair mechanisms could drive this observation. While HRD has been linked 

with germline and somatic mutations in BRCA1/2 33, no striking differences in the somatic 

mutation frequencies of these genes have been demonstrated in cancer between EAs and AAs 

2,34. To investigate whether the increased HRD could be driven by a germline event, we analyzed 

germline pathogenic variants 30 and identified a higher proportion of HRD-related pathogenic 

variants among AAs compared with EAs, suggesting that GI/HRD events and tumor evolution 

could be shaped by these features. The observation that several cancer types occur at an earlier 

age among AAs 35 and evidence that germline pathogenic events are associated with early-onset 

disease 30 are consistent with these data. 

Higher HRD in LUSC and many other cancer types suggests that these tumors could respond to 

PARP inhibitors and that perhaps, AAs may be more likely to respond. Most trials do not report 

and/or are not powered to compare differences in response by ancestry group. PARP inhibitors 

are not commonly used in lung cancer treatment, though in combination with chemotherapy they 

have shown promising efficacy in both cell lines 36 and a clinical trial 37. In the latter, the benefit 
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from the combination treatment was primarily restricted to LUSC tumors. Further, a recent 

retrospective analysis of clinical trial data found that response to platinum compounds and 

survival was significantly better in patients with hallmarks of HRD 38. Thus, future preclinical 

and clinical studies could include biomarkers of HRD either in the study design or as a covariate 

in the data analysis. 

We next identified multiple ancestry-specific chromosome alterations with unknown 

relevance, including chromosomes 7p and 7q (AA frequency twice than EA). We also observed 

ancestry-specific patterns of co-occurrence and mutually exclusive events and recurrent focal 

region alterations. Further, only one out of eight potential AA-specific driver regions identified 

in this study have previously known driver genes (i.e., KRAS). Next, we found AA-specific 

recurrent alterations previously linked with ancestry disparities in other cancer types 39-41, 

including focal deletion of 4q35.2 comprising FBXW7, and amplification of oncogene KAT6A 42 

(18% in AA vs. 0% in EA).  

 

In summary, we have identified population differences in molecular features, including GI, 

HRD, and CHTP. As these features are related to therapy response 13,43,44, our findings could 

have therapeutic implications. We also find higher GI and HRD in LUSC among African 

Americans and highlight some granular differences at the SNCA level in canonical lung cancer 

genes, such as CDKN2A, KRAS, and PTEN. As our study used the same platform to compare 

SCNA events across EAs and AAs, it largely removes the possibility that technical artifacts 

could confound our observations. Defining these differences in both genome-wide and more 

focal regions highlights distinct differences in lung tumor biology between AAs and EAs and 

supports recent work showing that inherited variants and thereby, genetic ancestry, can shape 
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tumor evolution at a molecular level and influence the somatic nature of a tumor 45. Finally, our 

work highlights the importance of including under-represented populations in balanced genomic 

studies of molecular patterns and cancer evolution. 
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Methods 

Statistics & reproducibility                                                                                             

While generating genome-wide copy number profiles of NCI-MD via OncoScan, two aliquots 

from the same sample were used to test the reproducibility of the assay for three samples by the 

company (available on reasonable request). In the NCI-MD study design, no statistical method 

was used to predetermine sample size. In the additional cohort, TCGA, we mined copy number 

profile of samples publicly available and excluded cancer types with less than five tumor 

samples with AA ancestry to provide a minimum statistical power. The experiments were not 

randomized. The investigators were not blinded to allocation during experiments and outcome 

assessment though samples were run on the OncoScan assay in a blinded manner. 

The processed tables to reproduce our figures and conclusions are provided (Data 

availability). In this work, we used non-parametric tests using R, including Wilcoxon rank-sum 

tests to compare the difference in medians, Fisher’s tests to compare frequency, and Spearman’s 

correlation, with an FDR-corrected P threshold of <0.1 indicating statistical significance. 

Wherever GISTIC was used, the FDR-corrected significance threshold of < 0.1 was applied to 

identify significantly recurrent regions. While identifying chromothripsis, the distance between 

events on a chromosome is compared to the overall distance between events in the samples to 

identify clustered events using an FDR-corrected P threshold of <0.1. 

  



 

28 

Samples preparation and processing 

Sample characteristics 

Patients living in the Baltimore metropolitan area with histologically confirmed cases of lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were prospectively 

recruited to the ongoing NCI-MD Case-Control Study 46. Institutional Review Boards 

at seven participating Baltimore hospitals and the NCI approved the 

study with written informed consent obtained from all patients. All 

samples were collected from an NCI IRB-approved study. We 

conducted a retrospective study of eligible participants that self-

reported as AA or EA, with non-Hispanic ethnicity. Additional 

clinical and sociodemographic data for each patient were obtained 

from medical records and pathology reports. Macro-dissected 

primary lung tumor tissues were obtained from patients directly 

after surgical removal. Samples were placed in collection tubes, 

flash-frozen, and stored at −80°C until the OncoScan analyses were 

performed. Sample characteristics for the patients in which tumor 

DNAs were extracted can be found in Supp Table 1 (n=142 AA, 108 EA). 

  

DNA extraction 

DNA was extracted from fresh frozen micro-dissected primary lung tumor tissues using the 

Qiagen DNeasy Blood and Tissue kit spin-column procedure according to the manufacturer's 
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protocol (Qiagen, Valencia, CA). Isolated primary lung tumor DNAs were initially quantified 

using a DS-11 spectrophotometer (DeNovix, Wilmington, DE). Subsequent Qubit fluorometer 

analyses were performed to assess DNA integrity and ensure the presence of intact double-

stranded DNA of all samples (Invitrogen, Carlsbad, CA). DNA with an A260/A280 ratio 

between 1.8 and 2.0, a minimum concentration of 12 ng/µL, and a total concentration of 80 ng 

was used for further analysis. 

  

Preprocessing of raw files 

Genome-wide copy number analysis and data quality control 

DNA samples were sent for genome-wide copy number analysis using the Affymetrix OncoScan 

copy number array and run according to suggested manufacturer protocols. The OncoScan array 

is based on molecular inversion probe technology and provides comprehensive high-resolution 

copy number detection across the genome and at pan-cancer driver genes. OncoScan 

fluorescence array intensity (CEL) files were converted to OSCHP files using the hg19 reference 

(OncoScan_CNV.Ref103.na33.r1.REF_MODEL reference file included with the Affymetrix 

OncoScan Console software, version 1.3). Manual re-centering of samples was performed by 

adjusting the TuScan log2 R using the OncoScan Console. Clonality analysis was performed with 

the Affymetrix OncoClone Composition tool. 

  

Segmentation of NCI-MD and TCGA intensity files 

For these samples, the Chromosome Suite Analysis (CHAS) was used for segmentation of 

intensity files at the default hyperparameters for output of segments with their copy number, 
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log2R, and B-Allele frequency (BAF) information. For TCGA samples, Level 3 segmented files 

were retrieved from the firehose pipeline where a consistent version of reference (hg19) was 

used. 

  

Quantifying GI, HRD, and Chromothripsis 

Quantification of GI 

Taking the output of segmentation results from the above for every sample in NCI-MD where we 

have copy number information for each segment, GI was defined by the ratio of the total length 

of regions with copy number other than two to a constant of 3.3E9, based on previous studies 

47,48. We repeated this calculation for TCGA samples where we only selected cancer types with 

at least five AA samples. 

  

Quantification of HRD 

We identified five independent signatures to define somatic-level HRD (somatic HRD) across 

tumor samples, where four use copy number profiles and one uses the mutation profile of the 

tumor. We also used one signature to identify germline-level HRD (germline HRD) using 

germline variants in blood samples of the patients (detailed methods below). Here, we have 

described each one of them in detail. 

  



 

31 

I. Somatic HRD quantification 

Based on loss of heterozygosity (LOH) regions Using the output of allele-specific segmentation, 

we identified and calculated a total sum of the number of LOH events, segments with only one 

allele, in each sample. Then, we normalized the value to be in the range [0,1] and termed it as 

LOH-HRD 13,14 . 

Based on telomere allelic imbalance (AIL) regions Again using the output of segmentation, we 

identified and counted the sum of regions with allelic imbalance, an unequal allele copy number, 

and extension to a sub-telomere without crossing the centromere. Again, we normalized the sum 

to be in the range [0,1] and termed the normalized sum as AIL-HRD. 

Based on large-scale state transitions (LST) regions Here also, using the output of allele-specific 

segmentation, we identified and counted the total number of breakpoints between regions longer 

than 10 Mb after filtering out regions shorter than 3 Mb 13. Again, we normalized the breakpoint 

counts to be in [0,1] and termed it as LST-HRD. 

We defined the fourth method as (LOH-HRD+AIL-HRD+LST-HRD)/3, scaled to 0-1, for each 

sample. The division by 3 puts the value in the range [0,1]. These four signatures were quantified 

and used in both NCI-MD and TCGA samples. 

Exposures for each sample, the proportion of mutations assigned to mutation signature 3, known 

to be associated with HRD, was mined from mSignatureDB 49, a database of mutation signatures 

for more than 15,000 tumor samples from more than 73 projects, where only TCGA samples are 

considered for calculations. 
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II. Germline HRD quantification 

Using the predicted pathogenic germline variants information in patients from TCGA 30, we 

calculated the total number of pathogenic variants in HRD-genes in each sample (Supp Table 14) 

and performed a Fisher’s exact test to identify whether AAs in comparison to EAs have a 

significantly higher frequency of pathogenic variants. We repeated this analysis for each HRD 

gene as well. 

  

Purity and ploidy calculation 

Using the OncoClone tool provided by Affymetrix, which uses the algorithm ASCAT 50, we 

computed the purity and ploidy of samples from the NCI-MD cohort (Supp Table 2). Further, 

intratumor heterogeneity (ITH) was calculated using TuScan algorithm, a further extension of 

OncoClone. 

                                                           

Accessing variant calls of TCGA patients’ blood samples from dbGAP 

TCGA collection includes non-tumor biospecimen (blood samples were preferred if available, or 

adjacent non-tumor) for 10,224 patients with informed consent under the authorization of local 

institutional review boards of the sequence where whole-exome sequencing was performed 30. 

We requested permission for these data from the database of Genotypes and Phenotypes (dbGaP) 

and after receiving permission, downloaded the variants from the controlled access part of the 

TCGA portal. 
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Quantification of chromothripsis 

With an aim to identify whether an autosomal chromosome had undergone chromothripsis using 

SNCA profile data, we used four copy number based-hallmark traits of regions that underwent 

chromothripsis. Some of these hallmarks of chromothripsis have undergone an evolution since 

the first description, hence we used two partially overlapping hallmarks to identify 

chromothripsis based on the conventional 20 and an alternative more recent 51,52 description. 

Chromosomes that had all four hallmark properties were considered to have undergone 

chromothripsis. 

We modeled the four hallmarks of chromothripsis via two tests for each sample. First, we 

filtered for chromosomes with significantly more events than the sample’s background, derived 

from all other autosomes. Specifically, a chromosome must have a higher number of copy 

number events than the median number of copy number events per chromosome in the sample. 

Second, for every chromosome that passed the first test, the distance between the event 

breakpoints on the chromosomes should be significantly lower than the background distribution 

of copy number event breakpoints within the rest of the chromosomes. To this end, we tested 

whether the distances between the breakpoints of events of a given chromosome were lower than 

the background distribution of distances between the breakpoints of events on the rest of the 

chromosomes. If not, we removed the terminal event with a higher breakpoint distance from the 

penultimate and repeated the above step. 

The above iteration was repeated for a chromosome until we found a region with greater 

than five events with significantly lower breakpoint distance (clustered, FDR-corrected P<0.1), 

and the region comprised only one type of copy number event (oscillatory copy number state). 

We repeated the above steps with a single modification to model and detect CHTP based on the 
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recent definition, wherein a CHTP region can have two oscillatory copy number states or two 

types of copy number events. 

  

Association of copy number change with expression 

For this study, total RNA sequencing was performed for 56 out of 222 samples with SNCA 

profiles (31 LUAD & 25 LUSC). The association of copy number with expression was 

calculated via a one-tailed Wilcoxon rank-sum test, where samples were divided into two 

categories by thresholding on the median gene copy number to test, in a genome-wide fashion 

for each gene, whether samples with copy number higher than the gene median copy number in 

the cohort has expression significantly higher than the rest of the samples. 

  

Focal and arm events by GISTIC 

Generating a copy number map with focal-, arm- level events via GISTIC 

The GISTIC algorithm was used to find recurrent regions of amplification, deletion, or LOH 

from the segmented file generated from CHAS. We used the following hyperparameter 

configuration throughout the study to find recurrent regions “-genegistic 1 -smallmem 1 -broad 1 

-brlen 0.5 -conf 0.90 -armpeel 1 -savegene 1”. Based on this configuration, a gene GISTIC 

algorithm was used where arm level events are defined as aberrant regions with at least the 

length of half an arm, and regions below this threshold are defined as focal. The confidence level 

used to calculate the region was 0.90 and the q-value was the default of 0.25. 
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Unsupervised ancestry inference via principal component analysis (PCA) for NCI-MD cohort 

Genotypes for 217,611 SNPs were generated from OncoScan OSCHP file via apt-tools for the 

samples from the NCI-MD cohort. We identified 46,217 SNVs variants likely to be ancestry-

associated and not somatically acquired that are found to be present in at least 25% of the AAs or 

EAs in our cohort. In this matrix, where each row represents a patient and each column 

represents a SNP, we performed a PCA with rank two, constraining the number of principal 

components (PC) to two (Extended Data Figure 1). Next, we performed a classification using the 

two PCs using support vector classification (SVC) with a linear kernel to identify two classes. 

The predominant self-reported race in the class is assigned to be its identity. These two classes 

were then tested for concordance with self-reported ancestry. 

  

Unsupervised ancestry inference via principal component analysis (PCA) for TCGA cohort 

         Genotype information of 906,601 SNPs from the SNP6 array performed on matched 

PBMC samples of TCGA patients called using BirdSeed, a SNP genotyping algorithm, were 

downloaded. We requested permission for these data from dbGaP and, after receiving 

permission, downloaded the variants from the controlled access part of the TCGA portal. To 

infer ancestry, methods similar to NCI-MD were employed, where after removing low-variance 

SNPs, we inferred 300,000 SNPs likely to be ancestry-associated that are found to be present in 

at least 25% of the AAs or EAs in our cohort. Following the methods described above for NCI-

MD, we identified two classes of ancestry. 
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Statistical power analysis of TCGA samples from various populations 

We observed a negative correlation between the FDR-corrected significance for AAs having 

higher GI and the proportion of AA samples included per cancer type, which was higher than 

expected when permuted a million times. (Spearman Rho=-0.34, P<0.15; empirical P<1E-04), 

suggesting that under-representation of samples from AAs is a limiting factor in terms of 

statistical power when comparing these two populations in certain tumor types in TCGA. 

  

SNCA-gain and -loss based genomic instability (GI) analysis 

For TCGA Pan-Cancer 

We calculated SNCA-gain and SNCA-loss based GI and consistently observed both GI measures 

to be higher in AAs (Wilcoxon rank-sum P<5.2E-06 and P<1.5E-06). Further, the trend of higher 

GI was observed in 16 out of 23 cancer types for both SNCA-gain based and SNCA-loss based 

GI (Extended Figure 2A-B). 

For NCI-MD LUSC 

SNCA-gain and SNCA-loss based GI is calculated for LUSC from the NCI-MD cohort. We 

observed only SNCA-loss (Wilcoxon P<4.5E-06) and not SNCA-gain (Wilcoxon P<0.34) to be 

significantly higher in AAs (P<4.5E-06 and <0.34, respectively). 

  

Qualitative characterization of NCI-MD cohort tumor samples 

Purity—the percentage of the tumor cell fraction within a sample—was successfully resolved in 

194 out of 222 samples (Supp Table 2) where the mean purity was 34%. LUSC tumor samples 



 

37 

(38.5% mean purity) had a significantly higher (Wilcoxon P<0.009) purity than LUAD (30.5%), 

consistent with the purity differences observed TCGA. The overall mean ploidy was 2.22. 

  

Arm-level aberration frequency negatively correlated with the number of genes present on the 

chromosome arm (NCI-MD) 

Broad level events across chromosome arms were quantified and plotted against the number of 

proteins expressing genes. We observed a general trend of negative correlation between the 

frequency of an aberration on a chromosome arm and the number of genes present on the same 

arm (median Spearman Rho=0.41). 

  

Data availability 

Human TCGA cohort mutation data were derived from the publicly available mSignatureDB 

database: [http://tardis.cgu.edu.tw/msignaturedb/]. For the corresponding samples, copy number 

profiles, Level 3 segmented files were retrieved from the firehose pipeline 

[https://gdac.broadinstitute.org/] where a consistent version of reference (hg19) was used. The 

NCI-MD data were derived from patients enrolled in the ongoing NCI-MD Case-Control Study 

and all relevant data in this work is available on reasonable request, except for the TCGA 

pathogenic variant calls that required dbGaP controlled access and any sequence information that 

would make it possible to identify study subjects. Anonymized Level 3 segmented files for each 

sample, in addition of the raw files for copy number profiles of the NCI-MD patients and their 

corresponding expression profile, are deposited in dbGAP. 

  



 

38 

Code availability 

We used open source R v3.6 throughout our work to generate figures. Wherever required, 

commercially available Adobe illustrator 23.0.3 (2019) was used to create figure grids. All the 

scripts for analysis and reproducing figures and panels are built in-house and are provided on 

github here: https://github.com/sanjusinha7/Scripts_MolCharAAvsEA. 
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Chapter 2: A systematic genome-wide mapping of oncogenic mutation-

selection during CRISPR-Cas9 genome editing 
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Abstract 

Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage 

response mediated by p53 in primary cells hampering their growth. This could lead to a selection 

of cells with pre-existing p53 mutations. In this study, employing an integrated computational 

and experimental framework, we systematically investigated the possibility of selection of 

additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the 

previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next 

demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited 

cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These 

selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 

delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. 

The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in 

cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based 

editing for clinical therapeutics for pre-existing p53 and KRAS mutations.  

 

Introduction  

CRISPR enables targeted gene-disruption and editing, a powerful technology that expands our 

understanding of fundamental biological processes1. Beyond its impact on biological research, 

CRISPR-based approaches have been considered for various applications in medicine, from 

reparative editing of primary cells to the development of new strategies to treat a variety of 

genetic diseases, including cancer. However, several clinical trials based on CRISPR technology 

https://paperpile.com/c/50sIpu/xnIY
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have been deferred due to significant potential risks, including off-target effects2,3,4, generation 

of unexpected chromosomal alterations5 and potential immunogenicity6. Other studies have 

demonstrated that double stranded breaks (DSBs) induced during CRISPR-Cas9-based gene 

knockout (CRISPR-KO) can lead to DNA damage response, whose level is associated with the 

copy number of the targeted gene7–10. 

Recent studies have shown that the DNA damage response following CRISPR-KO can be 

mediated by p53, a tumor-suppressor gene mutated in over 50% of all human cancers11,12. 

Genome-wide CRISPR screening in immortalized human retinal pigment epithelial (RPE1) 

cells12 revealed that a p53-mediated DNA damage response, followed by cell cycle arrest, is 

induced upon generation of DSBs by the Cas9 endonuclease, favoring the survival of cells that 

have inactivated the p53 pathway. Most recently, a study showed that exogenous expression of 

Cas9 can also activate this p53-mediated DNA damage response13. While these studies indicate 

that CRISPR-Cas9 genome editing techniques may select for p53 mutated cells 11,12,13, several 

outstanding questions remain unaddressed: First, since most of these p53 studies have involved 

only a small number of primary or stem cells11,12, it is unclear whether p53 selection can happen 

broadly across multiple different cell types including transformed cancer cells. Second, it is not 

clear whether stronger p53 selection can happen when certain genes or parts of the genome are 

targeted, or the level of selection is more homogenous regardless of the genes being edited. And 

finally, it remains to be investigated whether this selection is limited to p53 only or that other 

cancer driver genes can also be selected for during CRISPR-Cas9 genome editing. 

To address these questions, here we employ a computational framework coupled with 

experimental validations to conduct a comprehensive evaluation of each cancer driver mutation 

selection associated with CRISPR-Cas9. We first demonstrate that CRISPR-KO-induced mutant 

https://paperpile.com/c/50sIpu/0JUi
https://paperpile.com/c/50sIpu/yQlI+wrBX
https://paperpile.com/c/50sIpu/HXdt
https://paperpile.com/c/50sIpu/4VN9
https://paperpile.com/c/50sIpu/EuYA+PnKu+U7bA+BbJF
https://paperpile.com/c/50sIpu/JWbw+pZiG
https://paperpile.com/c/50sIpu/pZiG
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p53 selection can be observed in transformed and non-transformed cells of diverse lineages via 

both lentivirus and ribonucleoprotein-based Cas9 delivery. More importantly, we systematically 

characterized mutation selection in other cancer driver genes during CRISPR-Cas9 identifying 

that KRAS mutants can also be selected for, as demonstrated in large-scale genetic screens and 

Cas9-expressing cell lines. We further identified the underlying pathways that are likely to 

mediate this selection. 

Results 

CRISPR-Cas9 gene-knockouts selects for p53 mutations in a vast variety of transformed and 

non-transformed cell types  

We first sought to address two important gaps in our understanding of CRISPR-KO-

driven mutant p53 selection – firstly, we wanted to investigate whether this selection generalizes 

across cell types. Secondly, we wanted to understand what type of sgRNAs, genes and gene-

networks drive this selection. We analyzed the DepMap15 genome-wide gene essentiality data 

across 248 cancer cell lines (Table S1), where both CRISPR-Cas9 (AVANA10) and shRNA-based 

(Achilles15) genetic screens were conducted. We searched for genes whose CRISPR-Cas9-based 

knockout (CRISPR-KO) reduced cell viability more (i.e. more essential) in p53-wildtype (WT; 

N=75) than p53-mutant (N=173) cell lines, but do not exhibit such differential essentiality in the 

shRNA-based screens (Methods). The KO of such genes may select for p53 mutants specifically 

during CRISPR-Cas9 editing. In the CRISPR-Cas9 screen, we find many more genes (981) that 

are more essential in p53-WT vs p53-mutant cell lines, compared to the genes that are more 

essential in p53-mutant cells (237 genes). In contrast, the numbers of such differentially essential 

genes in the shRNA screens were balanced (~1500 each). Such significantly different patterns 
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between CRISPR-Cas9 and shRNA screens (Figure 1a left panel, Chi-squared test P<1.4E-284) 

points to a bias that knockout/knockdown of a gene is more likely to impair the fitness of p53-

WT cells specifically with CRISPR-Cas9 but not with shRNA. Potential confounding factors 

including gene copy number, functional impact of p53 variants and phenotype difference 

between gene knockout/knockdown are discussed and controlled for in this analysis (Supp. Note 

1, Figure S1). 

Among the 981 genes that are more essential in p53-WT cells with CRISPR-KO, 861 

genes (87%) do not exhibit this differential essentiality in shRNA screens. We hence termed 

these CRISPR-specific differentially essential positive (CDE+) genes (Figure 1a right panel; 

genes listed in Table S2A). We find that these CDE+ genes are preferentially located in 

chromosomal bands containing common fragile sites (CFSs; hypergeometric P<2.3E-4, Figure 

1b, Table S3), which are prone to replicative stress, fork collapse and DNA breaks that cause 

genomic instability16. As CRISPR-KO could induce kilobase-scale structural alterations near the 

targeted site17, this finding suggests that CRISPR-targeting near CFSs may enhance DNA 

damage, promote the p53-dependent cell death response and provide a selective advantage to p53 

mutant cells. The sgRNAs of the CDE+ genes also tend to target highly accessible chromatin 

(hypergeometric P<0.02; Methods), thus inducing a strong damage response as recently 

reported18. The top pathways enriched within CDE+ genes include DNA damage response, DNA 

repair and Fanconi anemia (FA; hypergeometric test adjusted P<0.01, Table S2B). This is 

consistent with the recent report that the FA pathway is involved in repairing Cas9-induced DNA 

double-strand breaks (DSBs)19 and that their KO may further enhance DNA damage.  

Analogous to CDE+, we defined CDE- genes, which are more essential in p53-mutant (vs 

WT) cells with CRISPR-KO, but not showing such difference in shRNA screens (185 genes, 

https://paperpile.com/c/50sIpu/B3Oq
https://paperpile.com/c/50sIpu/py2S
https://paperpile.com/c/50sIpu/hEsN
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right panel of Figure 1a). CDE- genes are involved in cellular processes that engage p53, 

including mitotic checkpoints, DNA replication and cell cycle (Table S2B, Figure 1d, 

hypergeometric test adjusted P<0.1), with the top hit being the key cell cycle regulator 

CDKN1A11,12 (a.k.a. p21, Wilcoxon rank-sum P<1.85E-08, Figure 1c). Transiently inhibiting 

CDE- genes during CRISPR-KO may mitigate p53 mutation selection and could be of interest 

from a translational point of view. Top CDE+/- genes are highlighted in Figure 1c. We repeated 

this CDE+/- identification process using an independent CRISPR-Cas9 screen in 326 cancer cell 

lines20 and observed concordant results (Supp. Note 2, Figure S2). 
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Figure 1.  A genome wide view of p53-mutant selection. (a) Upper panel: number of genes 

whose essentiality is significantly associated with p53 mutation status in CRISPR and shRNA 

screens (one sided Wilcoxon rank-sum has been performed with FDR threshold of 0.1). Lower 

panel: the definition of CDE+ and CDE- genes. (b) Enrichment of p53 CDE+ genes in common 

fragile sites (CFSs). The x-axis denotes the chromosomal position; the scatter plot (y-axis on the 

left-hand side) shows the difference of median post-CRISPR-KO cell viability values in p53 

mutant vs p53 WT cell lines for p53 CDE+ genes (red dots) and all other genes (grey dots); the 

density plot (colored orange, y-axis on the right-hand side) shows the fraction of p53 CDE+ 

genes among all genes per DNA segments of 10 Mbp along the genome; the vertical blue bars 

indicate the chromosomal bands of CFSs, and prominent sites where peaks of high CDE+ gene 

density coincide with CFSs are marked by arrows on the top. (c) The distribution of predicted 

level of CRISPR-Cas9 p53-mutant selection across the genome. Significant CDE+ genes that are 

part of FA pathway are marked in red and significant CDE- genes that are part of cell cycle 

regulation in blue. (d) Visualization of the pathways enriched for p53 CDE- genes where 

significance is calculated using the GSEA method as implemented in the R package fgsea [21]. 

Only significantly enriched pathways (FDR<0.1) specific to CRISPR (and not in genes showing 

differential essentiality in the shRNA screens are shown). Pathways are depicted as nodes whose 

sizes correlate with pathway lengths and colors represent enrichment significance (the darker, the 

more significant). Pathway nodes are connected and clustered based on their functional 

similarities, and higher-level functional terms are given for each of the clusters (Methods). For 

clarity, only the largest clusters are shown. 

We next performed our own CRISPR-Cas9 essentiality screen, employing CRISPRi-

based essentiality screens as a control in a pair of p53-isogenic MOLM13 leukemia cell lines 
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(WT and p53 R248Q mutant). We used a deep (10 guides per gene) and focused sgRNA library 

targeting top p53 CDE+ and CDE- genes (Methods; Figure 2a, details in Supp. Note 10, Table 

S4). Here, we observed in the CRISPR-Cas9 screen that the CDE+ genes are more essential in 

p53-WT vs mutant cell, and vice versa for the CDE- genes (Wilcoxon signed-rank test P<0.08 

and P=0.03 for CDE+/- genes respectively). Reassuringly, we do not see such differential 

essentiality in the CRISPRi screens (Wilcoxon signed-rank P=0.32 and 0.29; Top 10% CDE+/- 

genes are depicted in Figure 2b). 

To further assess whether such selection effects can be observed in non-transformed 

cells, we next tested and observed that indeed our p53 CDE+ genes have a higher essentiality in 

WT vs isogenic-mutant cells in published CRISPR-Cas9 [12] but not shRNA [47] genome-wide 

screens performed in non-transformed RPE1 cells (Figure S3, screens quality control discussed 

in Supp. Note 9 and Figure S4). This finding is further confirmed by mining seven CRISPR-KO 

genome-wide screens22, including two p53-null and five p53-WT RPE1 cells screens (Figure S5, 

Supp. Note 3). 
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Figure 2.  Validation of p53 CDE genes in isogenic MOLM13 cell lines via pooled CRISPR 

screens. (a) A flowchart showing the experimental procedure of CRISPR-KO and CRISPRi 

screening of pooled p53 CDE+/- genes in a pair of p53-isogenic MOLM13 cell lines. See 

Methods for details. (b) The day 30 to day 0 fold-change (converted to rank) of reads 

corresponding to the sgRNAs for p53 CDE+ genes (upper panel) and CDE- genes (lower panel), 

in p53 WT MOLM13 cells (gray boxes) vs the isogenic p53 mutant cells (red boxes) for the 

CRISPR-KO and CRISPRi screenings, respectively. The bottom P values are for Wilcoxon 

signed-rank tests comparing p53 WT and mutant cells, the upper ones are P values of non-

parametric tests comparing the difference of p53 mutant and WT rank values between CRISPR-

KO and CRISPRi experiments. In the boxplots, the center line, box edges and whiskers denotes 

the median, interquartile range and the rest of the distribution in respective order, except for 

points that were determined to be outliers using a method that is a function of the interquartile 

range, as in standard box plots. 
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A competition assay shows selection for p53 mutant over wildtype cells following CRISPR-Cas9 

knockout of CDE+ genes 

To test whether the CRISPR-KO of CDE+ genes leads to selection of p53 mutant cells in 

a competitive setting23-25, we silenced the top five predicted CDE+ genes using CRISPR-Cas9 

and CRISPRi in the p53-isogenic MOLM13 cells (Methods). Following a lentiviral sgRNA 

transduction, the WT and mutant cells were mixed at an initial ratio of 95:5, and monitored by 

flow cytometry for up to 25 days (illustrated in Figure 3a; Table S5A). Silencing 2/5 CDE+ 

genes (NDUFB6 and NDUFB10) induced a strong progressive p53 mutant enrichment of up to 

five folds over WT at day 25 specifically in CRISPR-KO, across several independent sgRNAs 

and not for NTC (Figure 3b, blue lines). No inverse enrichment in p53 WT cells was observed 

in the competitive assays involving the three other CDE+ genes (Figure S6). We observed that 

sgRNAs targeting NDUFB6 induced significantly higher DNA damage compared to NTC-

treated cells specifically in p53 WT cells (Figure S7, despite editing efficiency being higher in 

the mutant cells as shown in Figure 4c), demonstrating that the DNA damage was not just due to 

Cas9 expression. This may partly explain their selective competitive advantage upon the CDE+ 

gene KO. Testing the robustness of this competitive selection advantage for p53 mutant cells, we 

repeated the CRISPR-KO competitive assay for a larger number of 18 top CDE+ genes with up 

to 4 unique sgRNAs per gene and monitored the assay up to 15 days (Table S5B). Using the 

non-targeting sgRNA as a baseline, we observed the competitive outgrowth of p53 mutant cells 

for 15 out of 28 sgRNAs and 10 out of 18 CDE+ genes tested (Figure 3c). 
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Figure 3. Selection for p53 mutant cells under CRISPR-Cas9 knockout of CDE+ genes in a 

co-culture of p53 WT/mutant cells. (a) An illustration showing the experimental design of the 

competition assay where isogenic p53 WT/mutant MOLM13 cell lines were mixed with a ratio 

of 5:95 and top p53 CDE+ genes were knocked out by CRISPR-Cas9. Population ratio was 

monitored for 25 days at a five-day interval starting from the day of sgRNA transduction. (b) 
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Change in the percentage of p53 mutant cells in the p53 mutant-WT cells (Y-axis) co-culture 

with time (X-axis, number of days in co-culture), under the CRISPR-KO or CRISPRi of 

individual selected top p53 CDE+ genes or with non-targeting control sgRNA. The p-values are 

calculated using two-sided Wilcoxon Rank Sum tests. (c) The difference of the percentage of 

p53 mutant cells between Day 15 and Day 0 in co-culture (Y-axis), under the CRISPR-KO of a 

larger set of top p53 CDE+ genes (X-axis, by individual sgRNAs, specified by number suffixes 

after gene symbols). Error bars represent standard error across replicates for each sgRNA. The 

horizontal dashed line represents the value for non-targeting control sgRNA (NTC). 

p53 mutation selection phenomena extends to transient knockout and primary cells 

We next asked whether our top CDE+ genes may also select for p53 mutants under 

CRISPR-Cas9 transient knockout. We delivered Cas9 and the sgRNA as a ribonucleoprotein 

(RNP). We observed that upon Cas9-RNP mediated transfection of a sgRNA targeting our top 

CDE+ gene from our pooled and competition assays, NDUFB6 (see Methods), there was a 

higher loss of edited cells in the p53 WT vs isogenic p53 mutant MOLM13 cells over 10 days of 

culture, as measured by change in ICE scores (Figure 4a top panel). Using an orthogonal 

method of proliferation monitoring by dye-dilution26, we observed that there was a progressive 

slowing down in cell proliferation of p53 WT, but not p53 mutant MOLM13 cells upon Cas9-

RNP based KO of NDUFB6 vs respective non-targeting controls (Figure 4b,c). Similar to the 

lentiviral system, this is likely due to the DNA damage induced by the NDUFB6 sgRNA 

compared to the Cas9 only or Cas9 with NTC controls in p53 WT cells (Figure 4b and S8). We 

repeated this transient knockout in non-transformed cells (RPE1) and consistently observed an 

increased loss of edited p53 WT over p53 mutant cells (Figure 4a, bottom panel). Notably, we 
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also observed a selection of p53 mutant over WT in patient tumors profiles (TCGA) based on the 

copy number alteration patterns of CDE+ genes (details in Supp. Note 11A). 

 

Figure 4: Transient knockout in both MOLM13 and RPE1 leads to preferential loss of p53 

WT over mutant cells. (a) The editing efficiency of NDUFB6 around the sgRNA cut site was 
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determined in p53 mutant and wildtype isogenic pair of MOLM13 (top panels, transformed cells) 

and RPE1 cells (bottom panels, primary cells) using ICE protocol (see Methods) at day 0 

(orange) and day 10 (green) after Cas9-RNP-sgRNA nucleofection. Differences in day 0 

compared to day 10 editing efficiency can be used as a measure of relative fitness of edited 

compared to non-edited cells. The p-values are calculated using two-sided Wilcoxon Rank Sum 

tests. In the boxplots, the center line, box edges and whiskers denote the median, interquartile 

range and the rest of the distribution in respective order, except for points that were determined 

to be outliers using a method that is a function of the interquartile range, as in standard box plots. 

(b) DNA damage is quantified from gamma H2AX staining images and measured by gH2AX 

staining in p53 wildtype MOLM13 cells with no Cas9 , Cas9 +  sgRNA for a non-targeting 

control (NTC) or NDUFB6. gH2AX foci (y-axis) in all three conditions (x-axis) are enumerated 

in the violin plot. (c) Mean fluorescence intensity of the CellTrace™️ dye (APC) in MOLM13 

p53 mutant (top panel) vs wildtype cells (bottom panel) is shown for NTC (light blue) or 

NDUFB6 targeting sgRNAs (dark blue). CellTrace™️ APC fluorescence is inversely correlated 

with proliferation. The error bars denote standard error (mean +/- standard deviation) across 

three replicates. The p-values are calculated using a two-sided t-test given a small number of data 

points (n=3). (d) Proliferative effects of NDUFB6 editing in RNP-transfected p53 mutants 

compared to wildtype cells. A histogram of MOLM13 p53 wildtype (top panel) cells transfected 

with an NTC or a NDUFB6 sgRNA are shown with the fluorescence intensity of the CellTrace™️ 

dye (APC) on the x-axis. Similarly, MOLM13 p53 mutant cells are plotted in the bottom panel. 

KRAS mutant cell lines exhibit selection advantage in large-scale genetic screens 

To determine whether additional cancer driver mutations may be selected for following 

CRISPR-KO, we focused on a list of 61 cancer driver genes from Vogelstein et al.27 that are 

https://paperpile.com/c/50sIpu/75Yi


 

53 

mutated in at least 10 of the cell lines screened in the AVANA10 and Achilles15 datasets. For 

each of these cancer genes, we identified the differentially essential genes between its WT and 

mutant cell lines in the CRISPR-Cas9 (AVANA) and shRNA (Achilles) screens, as described 

above for p53. We ranked the cancer genes by the significance of skewness in the numbers of 

differentially essential genes from CRISPR-Cas9 vs shRNA screens similar to that shown in 

Figure 1a for p53 (with Fisher’s exact tests, Methods; results shown in Figure 5a and Table 

S6). The mutants of these genes may be selected for during CRISPR-KO, as their WT cells are 

overall more vulnerable during CRISPR-KO compared to the mutants. We term these genes 

“(potential) CRISPR-selected cancer drivers'' (CCDs). The top significant CCD in addition to 

p53 is the oncogene KRAS. Like for p53, potential confounding factors including copy number 

were controlled for (Supp. Note 1, Figure S1b), and there is no significant correlation between 

the mutation profiles of KRAS and p53 (Fisher’s test P=0.67), suggesting that KRAS might be a 

CCD independent of p53. We thus next focused on investigating the selection of mutant KRAS as 

another major CCD. 

KRAS is a major oncogene whose gain of function mutation is known to activate various 

DNA repair pathways and may override the trigger of cell death upon DNA damage28,29, 

supporting its role as a CCD. We computationally identified the CDE+ and CDE- genes of KRAS 

in a similar way described above for p53 (Figure 5b, Table S2A). KRAS has high numbers of 

CDE+/- genes, while only very few KRAS mutation-associated genes are identified in the shRNA 

screen. The predicted median mutant selection levels are comparable to those of p53 (Supp. 

Note 4), i.e. the CRISPR-KO of its CDE+ genes is likely to drive comparable levels of mutant 

selection as the KO of the CDE+ genes of p53. Fourteen genes are CDE+ genes of both p53 and 

KRAS, and thus their CRISPR-KO may impose considerable selection for both KRAS and p53 

https://paperpile.com/c/50sIpu/lO16+mtU2
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mutants (Table S2A). Consistent with the knowledge of downstream pathways regulated by 

activated KRAS28,29, its CDE- genes are significantly enriched for DNA DSB repair pathways 

(FDR<0.02, Methods, visualized in Figure 5c, Table S2E).  

 

 

Figure 5. Large-scale genetic screening identifies KRAS as a second major cancer driver 

whose mutation can be potentially selected for by CRISPR-Cas9. (a) A scatter plot showing 

the number of identified CDE+ genes (X-axis) and the negative log10-transformed P values of 

Fisher’s exact test (Y-axis) testing for the imbalance in the number of differentially essential 

https://paperpile.com/c/50sIpu/lO16+mtU2
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genes in CRISPR and shRNA screens for the 61 major cancer driver genes from Vogelstein et 

al.27. p53 and KRAS are identified as the top two significant cancer genes with the higher number 

of CDE+ genes. (b) The number of genes whose essentiality is significantly associated with 

KRAS mutational status in CRISPR and shRNA screens (one sided Wilcoxon rank-sum has been 

performed with FDR threshold of 0.1). (c) Visualization of pathways enriched for KRAS CDE- 

genes where significance is calculated using the GSEA method as implemented in the R package 

fgsea21 . Only significant pathways (FDR<0.1) specific to CDE and not to the genes showing 

differential essentiality in the shRNA screens are included. Pathways are shown as nodes whose 

sizes correlate with pathway lengths and colors represent the significance of their enrichment 

(the darker the more significant). Pathway nodes are connected and clustered based on their 

functional similarities, and higher-level functional terms are given for each of the clusters 

(Methods). For clarity, only the largest clusters are shown.  

Similar to p53, we next performed our own CRISPR-Cas9 and a control CRISPRi gene 

essentiality screens, but on a smaller scale, in a pair of isogenic KRAS WT and KRAS G12D 

mutant MOLM13 cell lines using a sgRNA library targeting top KRAS CDE+ and CDE- genes 

(details in Supp. Note 10, Table S7). Here, we observed that the KRAS CDE+ genes are more 

essential in WT than mutants and vice versa for CDE- genes specifically in CRISPR-Cas9 

screens (Wilcoxon signed-rank test P<0.074 and P<0.042 for CDE+/- respectively, Figure 6a 

left panel), but not in CRISPRi screens (Wilcoxon signed-rank P<0.22 and P<0.49; Figure 6a 

right panel). Similar results were obtained from analyzing published genome-wide CRISPR-

Cas930 and shRNA genetic screens31 performed in a different pair of KRAS isogenic cell lines 

(WT and G12D mutation in DLD1 cell line; Figure 6b). Similar to p53, we also observed a 
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selection of KRAS mutants in patient tumor profiles (TCGA32) based on the copy number 

alteration patterns of its CDE+ genes (details in Supp. Note 11B). 

A competition assay shows selection for KRAS mutant over wildtype cells following CRISPR-

Cas9 knockout of KRAS CDE+ genes 

To test whether, like the p53 case, CRISPR-KO of KRAS CDE+ genes can confer a 

selective advantage to KRAS mutant over WT cells in co-culture, we conducted a similar 

competition assay using a pair of WT and KRAS G12D mutant isogenic MOLM13 cell lines. As 

in the experiment for p53, we mixed the WT and KRAS mutant cells at an initial ratio of 95:5 

following KRAS CDE+ sgRNA transduction and monitored the population for 15 days to track 

the percentage of KRAS mutant cells (TdTomato+) with flow cytometry (Methods; Table S8). A 

total of 10 KRAS CDE+ genes were tested, in addition to a non-targeting control (NTC). In the 

control group, the KRAS mutant cell fraction decreased with time, indicating that the mutant cells 

have lower baseline fitness levels than the WT cells. In comparison, in 8 out of 10 CDE+ genes 

tested, there is a gain in fitness of the mutant cells (Figure 6c; Methods), testifying that even 

though the KRAS mutant cells have a lower baseline fitness level, the CRISPR-KO of the 

majority of CDE+ genes can enhance their fitness and in a subset of cases lead to selective 

outgrowth of KRAS mutant over WT cells in a mixed population. 

Cas9 expression in cancer cell lines selects for KRAS mutations 

Multiple studies have reported a higher editing efficiency of Cas9 in p53 mutated versus 

p53 WT cell lines11,12,14,13. We first asked if this may also extend to KRAS as an equally 

important CCD. Analyzing induced exogenous Cas9 activity in 1601 cancer cell lines from 

DepMap (1375 and 226 KRAS WT and mutant, respectively)10, we find that, like p53, Cas9 
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activity is significantly higher in KRAS mutant cells than in KRAS WT cells (P=2.9E-05, Figure 

6d; Methods). We repeated the above analysis modeling Cas9 activity vs KRAS status adjusting 

for p53 status in a linear model, yielding concordant findings (P=2.43E-04). Importantly, across 

all the 61 cancer driver genes we analyzed above from Vogelstein et al.27, KRAS and p53 are the 

only ones showing such a significant difference in Cas9 activity between WT and mutant cells 

after FDR correction (FDR=9.1E-04 for KRAS & 7.1E-06 for p53, Figure 6e). This further 

shows that in addition to p53, KRAS WT status can also hamper the efficiency of CRISPR-Cas9. 

 Based on the above findings and a recent report13 of selection for p53 mutant due to DNA 

damage upon Cas9 expression (without sgRNA), we asked whether DNA damage induced by 

Cas9 alone can also lead to a mutation selection of KRAS and/or other cancer drivers. To this 

end, we re-analyzed deep sequencing profiles from 42 Cas9-expressed vs matched parental (i.e. 

without Cas9) cell lines (Methods) from Enache et al.13, and identified a total of 9 cases 

involving 5 unique KRAS mutations, occurring in 7 different cell lines with moderate to high 

Cas9 activity (Methods). Seven out of these 9 cases show increased mutant allele frequency after 

induced Cas9 expression (Wilcoxon signed rank test P=0.027, Figure 6f). Four of the 5 KRAS 

mutations are missense mutations; the other mutation is an intronic mutation occurring 100bp 

from the splicing site. This mutation is not present in the parental cell lines but emerges 

independently after Cas9 expression in four different cell lines. While the results suggest that 

CRISPR-Cas9 may select for KRAS mutations, the functional role of these mutations needs to be 

interpreted with caution. Among the 61 cancer driver genes from Vogelstein et al.27, KRAS is a 

top gene (ranked the second) along with p53 (ranked fourth) that show significant mutant sub-

clonal expansion (Figure 6g). Notably, the top genes identified to be involved in mutant sub-
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clonal expansions have a significant overlap with our previously identified top CCD genes 

(Fisher’s exact test P=0.04). 
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Figure 6. Beyond p53: experimental evidence identifying KRAS as another major cancer 

driver whose mutation can be potentially selected for by CRISPR-Cas9. (a) CRISPR-Cas9 

and CRISPRi screens of the top KRAS CDE gene knockouts were performed in isogenic 

MOLM13 and MOLM13-KRAS-G12D cell lines. The box plot shows the trend that the sgRNAs 

of the KRAS CDE+ genes are more depleted in KRAS WT cells vs KRAS mutant cells and vice 

versa for KRAS CDE- genes in CRISPR-Cas9 screens, but there is no such trend in the CRISPRi 

screens. The P values shown are of one-tailed Wilcoxon signed-rank tests. (b) Analysis of 

published genome-wide CRISPR-Cas9 and shRNA screens in KRAS-isogenic DLD1 cell line. 

The box plot shows the trend that the CRISPR-KO of KRAS CDE+ genes reduces cell viability 

more in KRAS WT cells than KRAS mutant cells, while there is no such trend in the shRNA 

screen. The P values of one-tailed Wilcoxon signed-rank tests are shown. (c) The difference in 

the percentage of KRAS mutant cells between Day 15 and Day 0 in co-culture (Y-axis), under the 

CRISPR-KO of different KRAS CDE+ genes (X-axis). Error bars represent standard error. NTC: 

non-targeting control sgRNA. (d) A box plot showing the comparison of stable Cas9 activity 

measured via GFP reporter assay10 in 1375 WT vs 226 KRAS mutant cancer cell lines, Wilcoxon 

rank-sum test P value 5.5E-05. (e) A scatter plot showing the difference in Cas9 activity between 

cell lines with a driver WT vs mutant for each driver (effect size, X-axis) and a corresponding 

Wilcoxon two-side significance for this difference (negative log10-P value, Y-axis). (f) The 

change in mutant allele frequency (X-axis) of the KRAS mutations detected in different cell lines 

(cell line-mutation pair on the Y-axis) after induced Cas9 expression, compared to the 

corresponding parental cell lines, based on data from Enache et al.13. The starts and ends of 

arrows correspond to the mutant allele frequencies in the parental and the Cas9-expressed cell 

lines, respectively. Cases of increased allele frequency are colored in red, and those with 
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decreased frequency are colored in blue. (g) A scatter plot showing the median change in mutant 

allele frequency after induced Cas9 expression across all cell lines in Enache et al.13 (X-axis) and 

the corresponding Wilcoxon signed rank test significance (negative log10-P value, Y-axis) for 

the 61 major cancer driver genes from Vogelstein et al.27. The p-values are calculated using two-

sided Wilcoxon Rank Sum tests unless not specified otherwise. In the boxplots of panels a, b and 

d, the center line, box edges and whiskers denotes the median, interquartile range and the rest of 

the distribution in respective order, except for points that were determined to be outliers using a 

method that is a function of the interquartile range, as in standard box plots. 

KRAS mutant cells downregulate G2M checkpoint pathway in response to Cas9 induction 

To investigate the mechanism underlying the potential selective advantage of KRAS 

mutant vs WT cells during CRISPR-KO, we analyzed gene expression data of 163 pairs of 

parental (without Cas9) and the corresponding Cas9-expressed cell lines (138 KRAS WT, 25 

KRAS mutant)13, and identified the pathways that are differentially regulated upon Cas9 

expression between KRAS WT and mutant cells (i.e. up/down-regulated in KRAS mutant but 

inversely or non-significantly regulated in KRAS WT cells; Figure S9a, Supp. Note 5 & Figure 

S10 for p53). A major differentially regulated pathway was G2M checkpoint with the highest 

difference in the normalized enrichment score (Figure S9b), which is strongly downregulated 

(rank 2/50) in KRAS mutants but strongly upregulated in KRAS WT cells (4/50). This is a 

canonical pathway that serves to prevent the cells with genomic DNA damage from entering 

mitosis (M-phase) and thus its downregulation in KRAS mutant cells may provide them with a 

proliferative advantage [51]. Another top pathway, E2F Targets, which primarily regulates G1/S 

transition and DNA replication was also found to be downregulated in KRAS mutant cells but 

upregulated in KRAS WT cells upon Cas9 expression (Figure S9b). Thus, Cas9-induction may 
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similarly underlie the selective advantage of KRAS mutant cells by selectively activating cell 

cycle checkpoint pathways in response to DNA damage. 

Discussion  

In this study, we systematically investigated the possibility of selection of pre-existing 

cancer driver mutations during CRISPR-Cas9 gene editing. First, we confirmed and extended 

upon previous findings that selection11,12,13 of pre-existing p53 mutations by CRISPR-Cas9 can 

happen, showing it in a large set of transformed and non-transformed cell lines. We identified the 

specific CDE+ genes whose CRISPR-KO is likely to mediate such selection, and further tested 

and validated some of these predictions in new screens and competitive assays that we have 

performed. After studying and validating our integrated computational and experimental pipeline 

in the known case of p53, we turned to apply it to study a collection of major cancer driver 

genes, and discovered that KRAS is another major cancer driver gene whose pre-existing mutants 

have a selective advantage during CRISPR-Cas9 gene editing. We demonstrated the selective 

advantage of KRAS  mutant cells performing a CRISPR-KO/CRISPRi screen in isogenic cells 

with pooled CDE+ gene-targeting sgRNAs, and further in competition assays during the 

CRISPR-KO of top predicted KRAS CDE+ genes. We also observed that KRAS WT cells have 

lower Cas9 activity and thus a lower editing efficiency, similar to that observed for p53, which 

may limit CRISPR-mediated gene-editing in such cells26. Analyzing recently published KRAS 

screens, we also find a subclonal expansion of KRAS mutant cancer cells following Cas9 

expression. Finally, our study also shows that the introduction of the Cas9 protein downregulates 

the G2M checkpoint and E2F targets in KRAS mutant, but not KRAS WT cells, which may confer 

selective advantage to KRAS-mutant cells. 
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Multiple factors can contribute to the identity of CDE+ genes, including involvement in 

DNA repair and cell cycle pathways, being located in chromosomal fragile sites or highly 

accessible chromatin regions, supporting that their CRISPR-KO can lead to augmented DNA 

damage. We find that these factors can together account for up to 15% of our CDE+ genes. We 

also observed that a gene targeted by highly off-target guides can also lead to high DNA damage, 

which reassuringly only accounts up to 10% of the CDE+ genes (details in Supp. Note 6). Taken 

together, these three putative mechanisms can explain about 25% of the CDE+ genes we have 

identified, however the mechanisms underlying the rest are yet open to further studies. 

Overall, our results point to a need for accounting for CDE effects in the analysis of 

dependencies in CRISPR screens. More importantly, our studies point to the need for careful 

selection of sgRNAs for therapeutic genome editing, and recommend cautionary monitoring of 

KRAS status in addition to that of p53 during therapies utilizing CRISPR-Cas9. Lastly, in the 

publicly available CRISPR-Cas9 screens that we have analyzed, the current small numbers of 

cell lines with mutations in other cancer drivers, such as VHL, limits our ability to reliably 

determine whether these cancer genes could also be selected during CRISPR-Cas9 genome 

editing. The investigation of the latter thus awaits specifically designed screens in designated 

isogenic cell-lines.  

Methods 

CRISPR and shRNA essentiality screen data 

We obtained CRISPR-Cas9 essentiality screen (or dependency profile) data in 436 cell 

lines from Meyers et al.10 for 16,368 genes, whose expression, CNV and mutation data are 

available via CCLE portal33. We obtained the shRNA essentiality screen data in 501 cell-lines 

https://paperpile.com/c/50sIpu/BbJF
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from DepMap portal34 for 16,165 genes, whose expression, CNV and mutation data is available 

publicly via CCLE portal33. The 248 cell-lines and 14,718 genes that appear in both datasets 

were used in this analysis (Table S1). For mutation data, only non-synonymous mutations were 

considered. Synonymous (silent) mutations were removed from the pre-processed MAF files 

downloaded from CCLE portal33. 

Identifying CRISPR specific differentially essential genes of a potential CRISPR-selected cancer 

driver  

For a given CCD (e.g. p53 or KRAS), we checked which gene’s essentiality (viability 

after knockout) is significantly associated with the mutational status of the CCD using a 

Wilcoxon rank sum test in the CRISPR and shRNA datasets, respectively (FDR<0.1). CRISPR-

specific differentially essential positive (CDE+) genes are those whose CRISPR-KO is 

significantly more viable when the CCD is mutated while their shRNA silencing is not, whereas 

analogously CDE- genes are those whose CRISPR-KO is significantly more viable when the 

CCD is WT while their shRNA silencing is not. We filtered out any candidate CDE genes whose 

copy number was also significantly associated with the given mutation to control for potentially 

spurious associations coming from copy number (we removed genes showing significant 

association (FDR<0.1)) – the exact procedure used is described below in the section titled 

“Identifying potential CRISPR-selected cancer drivers”). 

Identifying CDEs considering functional impact of mutations  

Out of a total of 248 cell lines that we analyzed, 173 cell lines (69.7%) have p53non-

synonymous mutations. In addition to identifying CDEs by considering all non-synonymous 

mutations, we additionally employed a more conservative approach where we aimed to consider 
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only p53 loss-of-function (LOF) mutations in the CDE identification process. To this end, we 

considered a mutation to be LOF if it was classified as non-sense, indel, frameshift, or among the 

4 most frequent non-functional hotspot mutations (R248Q, R273H, R248W and R175H within 

the DNA-binding domain, determined as pathogenic by COSMIC35). Using this definition we 

obtained new mutation profiles for p53 and identified CDE genes via the same method described 

in the section titled “Identifying CRISPR specific differentially essential genes of a potential 

CRISPR-selected cancer driver”. We repeated a similar process with the top three known gain-

of-function hotspot mutation variants of KRAS. 

Identifying potential CRISPR-selected cancer drivers of CRISPR-KO 

To identify additional CCD genes like p53, we considered 121 cancer driver genes 

identified by Vogelstein et al.27, whose nonsynonymous mutation is observed in at least 10 cell 

lines (N=61). We determined whether each of these genes is a CCD as follows: for each of the 

61 candidate genes, we tested  the association between the essentiality of each of genes in the 

genome (reflected by post-KO cell viability) with the mutational status of the candidate CCD 

gene using a Wilcoxon rank sum test. We then counted the number of genes, whose essentiality 

is: (i) significantly positively associated with the candidate CCD mutational status (FDR-

corrected p-value<0.1, median essentiality of WT>mutant of the cancer gene), (ii) significantly 

negatively associated with the candidate CCD mutational status (FDR-corrected p-value<0.1, 

median essentiality of WT<mutant of the cancer gene), and (iii) not associated (FDR-corrected 

p-value>0.1) with the candidate CCD mutation status; we performed this computation separately 

for the CRISPR and the shRNA screens, respectively. This computation results in a 3-by-2 

contingency table for each candidate CCD gene. We then checked whether the distribution of the 

above three counts in the CRISPR dataset significantly deviates from that in the shRNA dataset 

https://paperpile.com/c/50sIpu/75Yi
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via a Fisher’s exact test on the contingency table.  If each of the values in the contingency table 

was greater than 30, we used the chi-squared approximation of the Fisher’s exact test. We further 

filtered out any candidate CDE genes whose copy number was also significantly associated with 

the given mutation to control for potentially spurious associations coming from copy number (we 

removed genes showing significant association (FDR<0.1)). We performed this procedure for all 

61 candidate genes one by one and selected those with FDR corrected Fisher’s exact test <0.1. 

We further filtered out the candidate CCD whose mutation profile is correlated with p53 

mutation profile via a pairwise Fisher test of independence (FDR<0.1). We finally report the 

CCD genes that have a substantial number of CDE+ genes (N>300). 

Pathway enrichment analysis of CDE+/CDE- genes 

We analyzed the CDE+/CDE- genes of each of the CCDs for their pathway enrichment 

with annotations from the Reactome database36 in two different ways. First, we tested for 

significant overlap between our CDE genes with each of the pathways with hypergeometric tests 

(FDR<0.1). Second, we ranked all the genes in the CRISPR-KO screen by the differences in 

their median post-KO cell viability values in mutant vs WT cells, and the standard GSEA 

method21 was employed to test whether the genes of each Reactome pathway have significantly 

higher or lower ranks vs the rest of the genes (FDR<0.1). We repeated the GSEA analysis with 

the genes ranked by differential post-KD cell viability in the shRNA screen, and only reported 

significant pathways specific to CRISPR but not shRNA screens. We confirmed that for p53, the 

GSEA method was able to recover the top significant pathways identified by the hypergeometric 

test (e.g. those in Figure 1d), although extra significant pathways were identified (Table S2). 

For p53 and KRAS CDE- genes respectively, the enriched pathways were clustered based on the 
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Jaccard index and the number of overlapping genes with Enrichment Map37, and the largest 

clusters were visualized as network diagrams with Cytoscape38. 

To study the potential enrichment of CDE genes in common fragile sites (CFSs), we 

obtained chromosomal band locations of CFS16, and defined the CFS gene set as the set of all 

genes located within these chromosomal bands (obtained from Biomart39). We tested for a 

significant overlap between our CDE genes and the CFS gene set with a hypergeometric test, and 

also confirmed the lack of significant overlap with the corresponding shRNA-DE genesets. 

Similarly, for the common highly accessible chromatin (HAC) regions, we obtained a list of 

these regions defined by a consensus of DNAsel and FAIRE across seven different cancer cell 

lines from a previous study40. Next, we identified sgRNAs which are expected to target such 

HAC regions (see Calculating off-target scores section) and ranked genes based on the number 

of targeting such sgRNAs. Taking the top genes equal to the number of p53 CDE+ genes, we 

computed the enrichment for p53 CDE+ genes via a hypergeometric test. 

Testing the clinical relevance of copy number alterations of the p53 or KRAS CDE genes 

We tested the hypothesis that copy number alterations in CDE+ genes (as a possible 

surrogate for the number of DSBs in these genes) can reduce the fitness of the CCD (p53 or 

KRAS) WT tumors with patient data. The cancer genome atlas (TCGA)32 data of somatic copy 

number alteration (SCNA) and patient survival of 7.547 samples in 26 tumor types were 

downloaded from the UCSC Xena browser (https://xenabrowser.net/). In these tumor types p53 

is mutated in more than 5% of the samples. For each sample, the copy number alterations 

(genomic instability, GI) of a given set of genes, which quantifies the relative amplification or 

deletion of genes in a tumor based on SCNA was computed as follows41: 

https://paperpile.com/c/50sIpu/SEet
https://paperpile.com/c/50sIpu/niZT
https://paperpile.com/c/50sIpu/B3Oq
https://paperpile.com/c/50sIpu/rZzi
https://xenabrowser.net/
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where si is the absolute log ratio of SCNA of gene i in a sample relative to normal control, and 

I() is the indicator function. Wilcoxon rank-sum test was then used to test whether the GI of 

CDE+ geneset is significantly lower than that of control non-CDE genes in CCD-WT but not in 

CCD-mutant tumors. Further, we tested if higher absolute levels of SCNA of the CDE+ genes 

are associated with increased rate of CCD (p53 or KRAS) mutation accumulation with cancer 

stage, as this would further testify that such amplification/deletion events in the CDE+ genes can 

drive the selection for CCD mutants. To this end, the following logistic regression model was 

used to identify the genes whose high absolute SCNA computed as above is associated with 

higher rate of CCD mutation accumulation with cancer stage, while controlling for cancer type 

and overall mutation load: 

logit(P(CCD)) =β0 + ∑k βcaner_type
k cancer_typek + βmutation_load mutation_load + βGI GIi + βstage 

stage + βinteract GIi * stage 

where CCD denotes the binary CCD mutational status of the patient, logit(P(CCD)) is the logit 

function of the probability of the CCD being mutant; cancer_typek is the dummy variable for the 

category of the kth cancer type; GIi denotes the absolute value of SCNA levels of the given gene i 

as computed above; GIi * stage is the interaction term between the GI of gene i and cancer stage, 

that latter is made into a binary variable whose value is 0 for early stages (I and II) and 1 for late 

stages (III and IV). We tested the enrichment of CDE+ genes among the genes whose high 

absolute SCNA levels are significantly associated with higher rate of CCD mutation 

accumulation with cancer stage (i.e. genes with significantly positive βinteract coefficients in the 

above model) using a hypergeometric test.  
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Constructs and stable cell lines 

MOLM13 cells were obtained from DSMZ (Cat. ACC-554) and maintained in RPMI-

1640 medium (Life Technologies, Carlsbad, CA) supplemented with 10% v/v heat-inactivated 

fetal bovine serum (Sigma-Aldrich, Saint Louis, MI), 2 mM L-Glutamine (LifeTechnologies) 

and 100 U/mL penicillin/streptomycin (LifeTechnologies). p53 R248Q was PCR amplified from 

a bacterial expression plasmid (kind gift of Dr. Shannon Lauberth, UCSD) and KRASG12D the 

pBabe-KRASG12D plasmid (Addgene plasmid 58902, from Dr. Channing Der) using the Kappa 

Hi-fidelity DNA polymerase (Kappa Biosystems). These PCR amplicons were separately cloned 

into the MSCV-IRES-tdTomato (pMIT) vector (a kind gift from Dr. Hasan Jumaa, Ulm) using 

Gibson Assembly. We first generated high-efficiency Cas9-editing MOLM13 leukemia cells by 

transducing these cells with the pLenti-Cas9-blasticidin construct (Adggene plasmid 52962 - 

from Dr. Feng Zhang) and selecting stable clones using flow-sorting. Clones were then tested for 

editing efficiency by performing TIDE analysis42. These MOLM13-Cas9 cells were then 

transduced retrovirally with the pMIT-p53R248Q or pMIT-KRASG12D mutants and sorted for 

tdTomato using flow-cytometry (LSR Fortessa, BD Biosciences) to generate isogenic mutant 

MOLM13-Cas9 cell lines. Immortalized hTERT RPE1 cells were obtained from ATCC® (Cat. 

CRL-4000™️) and maintained in DMEM-F12 medium (Life Technologies, Carlsbad, CA) 

supplemented with 10% v/v heat-inactivated fetal bovine serum (Sigma-Aldrich, Saint Louis, 

MI), 2 mM L-Glutamine (LifeTechnologies) and 100 U/mL penicillin/streptomycin 

(LifeTechnologies). 
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Generation of pooled sgRNA libraries 

For pooled library cloning, 10 sgRNAs per gene were designed using the gene 

perturbation platform (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) 

Genetic Perturbation Platform.  Guides targeting p53 CDE+ and CDE- genes were synthesized as 

pools using array-based synthesis and cloned in the Lentiguide puro vector (Addgene plasmid 

52963 - kind gift from Dr. Feng Zhang) using Golden Gate Assembly.  In each assay, we have 

used ~240 unique non-targeting sgRNAs and 49 not expressing non-essential genes. A similar 

approach was used for the KRAS CDE libraries.  

Pooled sgRNA library screen 

30 million MOLM13-Cas9 cells or their isogenic MOLM13-p53 or KRAS mutant 

counterparts were transduced with the pooled CDE library virus in RPMI medium supplemented 

with 10% fetal bovine serum, antibiotics and 8 μg/ml polybrene. The medium was changed 24 

hours after transduction to remove the polybrene and cells were plated in fresh culture medium. 

48 hours after transduction, puromycin was added at a concentration of 1 μg/ml to select for cells 

transduced with the sgRNA library. Puromycin was removed after 72 hours and then cells were 

cultured for up to 30 days. 7 days after transduction, approximately 4 million cells were 

collected, and genomic DNA was prepared for the time zero (T0) measurement and also from 

time 30 (T30). Genomic DNA from these cells was used for PCR amplification of sgRNAs and 

sequenced using a MiSeq system (Illumina). Fold depletion or enrichment of sgRNAs from the 

NGS data was calculated using PinAplPy software43.  

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design
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CDE+/- genes identified in isogenic experiments 

 From the read counts per million for each sgRNA at Day 0 and Day 30 from the above 

pooled CRISPR screens across two replicates, we removed all the sgRNAs with read count < 20 

at Day 0. We calculated an average fold change (FC) of reads from Day 0 to Day 30. For each 

sgRNA, we calculated this FC-rank difference in p53 WT vs mutant in both CRISPR-KO and 

CRISPRi screens. For consistent comparison with AVANA, we only considered sgRNAs used in 

both libraries. The top and bottom genes are differentially essential (DE) from each screen. 

Taking the top ranked genes based on the difference of this score in two screens, we identify the 

CDE+ and CDE- genes.  

CRISPR Competition experiments 

sgRNAs were cloned using standard cloning protocols and lentiviral supernatants were 

made from these sgRNAs in the 96-well arrayed format. 100,000 MOLM13 cells or tdTomato-

positive isogenic mutants were plated in a 96 well pate and transduced with the sgRNA viral 

supernatants by spinfection with polybrene-supplemented medium. After selection of sgRNA 

transduced cells with puromycin for 48 hours, sgRNA transduced MOLM13 cells or mutants 

were mixed together in a ratio of 95:5 respectively, and the percentage of p53 WT or p53 mutant 

cells was monitored progressively up to 25 days using high-throughput flow-cytometry as 

described previously23.  

Quality control of publicly mined genetic screens used in the study 

 We first obtained gold-standard essential and non-essential geneset from Hart et al.44 . To 

test the quality of each genetic screen we computed an area under the precision-recall curve 
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(AUPRC) using the average logFC across replicates and cell lines. In this study, we only 

considered the genetic screens with an AUROC > 0.6 (random model AUPRC=0.5). We also 

employed this method to test the quality of our in-house generated genetic screens. 

CRISPR-Cas9 Ribonucleoprotein transfection experiments 

We generated sgRNAs by in vitro transcription using the HiScribe™️ T7 Quick High Yield RNA 

Synthesis Kit (New England Biolabs, Beverley, MA) and performed the Ribonucleoprotein 

(RNP) complex formation using TrueCut Cas9 Protein v2 (ThermoFisher Scientific, Waltham, 

MA) according to published protocols45. MOLM13 cells without Cas9 and expressing pMIT-

p53R248Q or pMIT-KRAS were generated as described in the Constructs and stable cell lines 

section. 1M cells were transfected with NFDUFB6 sgRNA or NTC sgRNA in triplicates with 

1mg of Cas9 and 1mg of RNA in 10 ml of Buffer R using the Neon™️ transfection system 

(ThermoFisher Scientific; 1500V, 20 ms, single pulse). Cells were maintained in culture for 48 

hours before harvest for imaging, dye-dilution and editing estimation assays. For NDUFB6 and 

NTC editing estimation, we used the Synthego Performance Analysis ICE tool according to the 

instructions, using un-transfected parental MOLM13 samples as controls and samples from 48 

hours post-transfection as the Day 0 initial timepoint and Day 10 as a final time point, in 

triplicates. For RPE1 experiments, mutant cells with p53R248Q or pMIT-KRAS similarly and 

transfections were performed using Lipofectamine™️ CRISPRMAX™️ Cas9 Transfection 

Reagent (ThermoFisher Scientific) according to the manufacturer’s instructions for 12-well plate 

format, in triplicates. Cell harvesting time-points were similar to those of MOLM-13.  
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Dye-dilution experiments 

We used the CellTrace™️ Violet Cell Proliferation Kit (ThermoFisher Scientific) to stain 

MOLM13-WT and MOLM13-p53 mutant cells transfected with Cas9 RNP complexed with 

NTC or NDUFB6 RNA, according to the manufacturer’s instructions. Cells were maintained in 

culture in the dark and assayed by flow cytometry using the LSR Fortessa every 2 days for 14 

days. FCS files were analyzed using FlowJo software.  

Analysis of γ-H2AX foci in MOLM13-Cas9 and MOLM13-p53 mutant cells 

            MOLM13-WT and MOlM13-p53 mutant cells were left untreated or treated with 1μM 

doxorubicin for 2 h at 37°C 5% CO2, which served as negative and positive controls for DNA 

damage mediated γ-H2AX foci formation, respectively. MOLM13-WT and MOLM13-p53 

mutant cells transfected with Cas9 RNP complexed with NTC or NDUFB6, and negative control 

cells were pelleted at 400g for 5 min at 4°C, washed two times in PBS and fixed in 4% 

paraformaldehyde in PBS for overnight at 4°C. The cells were washed two times in PBS and 

permeabilized in 0.25% triton X-100 in PBS for 5 min at room temperature. Following two 

washes with PBS, the cells were incubated in blocking buffer (3% BSA in PBS) for 30 min at 

room temperature and subsequently incubated with APC conjugated H2AX phospho (Serine 

139) antibody (BioLegend; Cat # 613415) at an antibody dilution of 1:200 in blocking buffer for 

overnight at 4°C in dark. Cells were washed two times with PBS and resuspended in 150 μl PBS. 

Cell suspensions were spotted on poly-lysine coated glass slides using cytospin (Cytospin 4; 

Thermo Scientific) centrifugation at 800 rpm for 4 min. Coverslips were mounted onto the slides 

using ProLong Gold antifade reagent with DAPI (Invitrogen) and cured for overnight at room 

temperature in dark. Slides were imaged in Nikon A1R HD confocal microscope. Sequential z-
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sections were imaged using a 60x oil objective and maximum projection images were obtained 

using the Nikon NIS-Elements platform. 

Cas9 activity in cancer cell lines with KRAS (or other cancer driver) WT vs mutant 

We downloaded the exogenous Cas9 activity of 1601 cancer cell lines from DepMap 

portal and their KRAS mutation status considering only non-synonymous variants profiled using 

whole exome sequencing (1375 and 226 KRAS WT and mutant, respectively)15. We tested 

whether the Cas9 activity is higher in KRAS mutant vs KRAS WT cell lines using one-sided 

wilcoxon rank-sum test. We repeated this process for each cancer driver gene and used the FDR 

corrected significance to rank them in addition to the fold change of Cas9 expression. 

Subclonal expansion of KRAS mutant in parent vs high Cas9-expressed cell lines  

 We downloaded the deep targeted sequencing of cancer driver genes performed on 42 

parental and matched Cas9-expressed cancer cell lines from Enache et al.13. In this analysis, we 

discarded the cell lines with <20% Cas9 activity and thus low DNA damage. We asked whether 

mutant allele frequency of a cancer driver (e.g. KRAS) significantly increased in Cas9-expressed 

cell lines compared to matched parental cell lines using Wilcoxon signed-rank test. In this 

analysis, we have considered both intronic and exonic variants provided from sequencing. 

Analysis of differentially expressed pathways in KRAS wildtype and mutant cells in response to 

Cas9 induction 

Gene expression profiles of 163 pairs of parental (without Cas9) and the corresponding 

Cas9-expressed cell lines (138 KRAS WT, 25 KRAS mutant) were obtained from Enache et al.13. 

Differential expression analysis between the Cas9-expressed cells and the parental cells was 
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performed for the KRAS WT and mutant cells separately, and GSEA analysis21 (genes ranked by 

logFC) was performed to identify the hallmark pathways from MSigDB46. We next identified 

pathways that are differentially regulated upon Cas9 expression between KRAS WT and mutant 

cells. These include the pathways that are up-regulated in the KRAS mutant cells but down-

regulated or non-significantly altered in the KRAS WT cells, and vice versa. The pathways are 

ranked by the difference of normalized enrichment score in WT vs mutant cells. This analysis is 

performed using the fgsea R package21. 

Data and Code availability Statement 

We have provided the scripts and data from both previously published and in-house 

screens, in their raw and processed form to reproduce each step of results and plots in a GitHub 

repository which can be accessed here: https://github.com/ruppinlab/crispr_risk 
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Chapter 3: Designing optimal combination treatment targeting the clonal 

architecture of the tumor using scRNA-seq 

Abstract 

A combination treatment designed to target the multiple clones of a patient’s tumor could 

decrease the likelihood of resistant emergence. The ability to learn and predict the response of a 

drug at a single-cell resolution could help to design such optimal combinations. A lack of large-

scale patients’ datasets with single-cell (sc) expression hinders our ability to build such models. 

To overcome this limitation, we built a precision oncology framework for personalized single-

cell expression-based planning for treatments in oncology (PERCEPTION) that utilizes large-

scale drug screens in cancer cell lines and matched bulk and single-cell transcriptome profiles to 

build response models that can be translated to patients. We first showed that our predicted 

viability profile of multiple drugs with known mechanisms of action strongly correlates with the 

targeted pathway activity at a single-cell resolution, demonstrating our ability to predict at this 

resolution. We next predict response to monotherapy and combination treatment in three 

independent screens performed across cancer cell lines and patient-tumor-derived cell lines using 

their sc-expression profiles. Translating to the clinical context, we successfully stratify 

responders of combination therapy in a multiple myeloma clinical trial using the tumor’s sc-

expression profile. For individuals in this trial, we next find the optimal combination treatments 

(pairs and triplets) from the existing FDA-approved drugs set, where the pair of gefitinib and 

niraparib, an EGFR and a PARP inhibitor, is one of the top candidates. In sum, we provide a 

first-of-its-kind framework to utilize the tumor’s sc-expression to identify responders to 

combination therapy or to design an optimal combination for an individual patient.  
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Introduction 

Tumors are typically heterogeneous and composed of numerous different clones, making 

treatments targeting multiple clones more likely to diminish the likelihood of resistance 

emerging due to clonal selection, enhancing the overall patient’s response (Castro et al. 2021). 

Bearing this goal in mind, large-scale combinatorial pharmacological screens in patient-derived 

cell lines, xenografts, and organoids have given rise to numerous combination treatment 

candidates (Wensink, et al. 2021, Yao et al. 2020, de Witte et al. 2020). However, these studies 

are limited by the large number of combinations that are needed to be tested in various genomic 

contexts and thus, there is a need for in silico methods to narrow down the search space.  

 

The characterization of the tumor microenvironment via single-cell omics has already led 

to countless important insights regarding the complex network of tumor-immune interactions 

involving many different cell types (Castro et al. 2021). It also offers a promising way to learn 

and predict drug response at a single-cell resolution. The latter, if successful, could guide the 

design of drug combinations that target multiple tumor clones disjointly (Shalek et al 2017, 

Adam et al 2020 & Zhu et al 2017). However, building such predictors of drug response at a 

single cell (SC) resolution is very challenging due to the paucity of large-scale preclinical or 

clinical training datasets. Previous efforts have been primarily restricted to pre-clinical models in 

just a few cell lines (Kim et al 2016, Suphavilai et al 2020). Yet, efforts to identify biomarkers of 

response and resistance at the patient level using single-cell expression are rapidly emerging for 

both targeted- and immuno- therapies (Cohen et al 2021, Ledergor et al 2018, Sade-Feldman et 

al 2018).  
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Aiming to address this challenge systematically, here we present a precision oncology 

framework for PERsonalized single-Cell Expression-based Planning for Treatments In 

ONcology (PERCEPTION) that builds upon the recent availability of large-scale 

pharmacological screens and SC expression data in cancer cell lines to construct machine 

learning based predictors of SC drug response. First, using these predictors, we show that the 

predicted viability for drugs with known mechanisms of action correlates with the pathway 

activity it is targeting at a single-cell resolution. Second, we show that the SC-based models can 

successfully predict the response to single and combination treatments in three independent 

screens performed in cancer and patient-tumor-derived cell lines based on their SC-expression 

profiles. Thirdly, we show that SC-based models successfully stratify responders to combination 

therapy in a multiple myeloma clinical trial based on their tumor’s SC-expression data. Finally, 

we identify combination treatments (pairs and triplets) of existing FDA-approved oncology 

drugs that kill tumor clones as effectively as possible.  

Results 

Overview of PERCEPTION 

To predict patients' response to a therapy using their tumor’s single-cell SC-expression profile, 

we built a machine learning pipeline called PERCEPTION (Figure 1A, detailed description 

is provided in Methods). PERCEPTION builds drug response models from large-scale 

pharmacological screens performed in cancer cell lines where bulk and SC-expression are 

available. As there is currently a paucity of large-scale matched response and single-cell data 

either in pre-clinical or patients, we designed a prediction pipeline that first is trained on large-

scale bulk-expression profiles of cancer cell lines and then, in a second step, its performance is 
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further optimized by tuning the available SC-expression profiles of cancer cell lines. To this end, 

we mined bulk-expression (Ghandi et al 2020) and drug response profiles (PRISM) of 100s of 

different cancer cell lines (N=488, Table S1) from the DepMap database (Tsherniak. et al 

2017). The SC-expression profiles of these cell lines (N=205, Table S1) are obtained from 

Kinker et al. 2020. Drug efficacy is measured via area under the curve (AUC) viability-dosage 

curve, where lower AUC values indicate increased sensitivity to treatment (Table S1). Briefly, 

for a given drug X, PERCEPTION performs the following two steps: 1. It first builds a 

regularized linear response prediction model from the bulk expression and drug response data 

available for ~300 cancer cell lines. 2. In the second step, the hyperparameters of 

PERCEPTION were tuned further to maximize its ability to predict the response from SC-

expression data i.e. ~160 cancer cell lines with matched SC-expression and response to the drug. 

The output of our pipeline is a response model and a quantification of its predictive accuracy 

from SC-expression in never seen before leave-one-out test data.  

Illustration of  PERCEPTION’s ability to predict viability at single-cell resolution via two 

case studies 

To visualize PERCEPTION’s ability to predict cell killing at single-cell resolution, we examined 

our predicted killing for two drugs, where the mechanism of action pathway of the drug is well 

characterized (Nutlin-3 and Erlotinib). We applied the PERCEPTION pipeline described above 

to build SC-based predictors for these two drugs and studied them further, as follows. 

 

   The first case involves the canonical antagonist, Nutlin-3, whose mechanism of killing 

involves the inhibition of the interaction between MDM2 and tumor suppressor p53; thus, 
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MDM2 high activity is a known response biomarker to nutlin-3 treatment (Arya et al. 2010). Via 

PERCEPTION, we built a response model for Nutlin-3, whose correlation with the observed 

response at the bulk expression was 0.598, P=1.2E-16, (with MDM2 expression being one top-

ranked predictive features). We predicted the killing post its treatment for 3566 single cells 

across nine p53 wild-type lung cancer cell lines. Across these single-cells, we observed that that 

the predicted killing after nutlin-3 treatment and MDM2 expression are strongly correlated 

across the individual cells screened (Pearson Rho= 0.50, P<2E-16, as visualized in Figure 1D), 

as expected. We also find that we can identify sub-clones with pre-existing nutlin-3 resistance 

(Figure 1D-arrow highlight). In the second case, we repeated this analysis to study and 

visualize PERCEPTION’s ability to predict the response to erlotinib, which targets the gain-of-

function mutation in epidermal growth factor (EGFR) and is mainly used to treat lung cancer 

patients with activating EGFR mutations. We found that individual cells with low EGFR 

pathway activity signature are predicted to be resistant to this treatment, as expected, and that the 

predicted and observed killing levels are correlated across individual cells (Pearson Rho= 0.42, 

P<2E-16) as visualized in  Figure 1E. Analogous findings for other EGFR inhibitors developed 

more recently than erlotinib are provided in Extended Figure 1B. 

Testing PERCEPTION predictions for FDA approved drugs 

We applied PERCEPTION to build SC predictors of response for 133 U.S FDA-approved 

oncology drugs available in the drug screen (PRISM) (Table S2). The predictive performances 

for these drugs are provided in Figure 1B. We defined models as predictive if the Spearman 

correlation between their predicted vs observed viability was greater than 0.3. This threshold was 

chosen as it corresponds to the mean cross-screen replicate correlation observed among three 

major pharmacological screens (average cross-platform correlation across GDSC, CTD & 
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PRISM ~ 0.30 (Corsello et al. 2020)). We were able to build models for 33% (44 out of 133 

drugs, Table S2) of the total drugs tested whose prediction accuracy exceeds this threshold 

(Figure 1B). Studying the predictive accuracy of these 44 predictive models in a cross-validation 

manner for different transcriptomics inputs, including  SC, bulk, and pseudo-bulk-expression 

(generated by summing up the gene-mapped reads across single cells, Methods), reassuringly we 

find that the predictive performance based on SC-expression is comparable to that obtained using 

bulk-expression or pseudo-bulk (Figure 1C).  
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Figure 1. PERCEPTION-based precision oncology framework. (A) The PERCEPTION 

precision oncology framework is composed of two steps: (i) Build response models using 
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large-scale drug screens performed on cancer cell lines and matched bulk-expression. 

(ii) Refine the model parameters i.e., number of features by utilizing sc-expression in 

cancer cell lines to enable our model for the usage of sc-expression. (B) The number of 

predictive models for FDA-approved drugs for cancer generated by PERCEPTION during 

cross-validation (y-axis) when sc-expression (blue), bulk-expression (red), and pseudo-bulk are 

used for a Pearson correlation threshold (x-axis, Predictability) (C) The distribution of 

predictive performance (x-axis) of drugs with a predictive model, defined by Pearson Rho>0.3. 

In the boxplots, the center line, box edges, and whiskers denote the median, interquartile range, 

and the rest of the distribution, respectively, except for points that were determined to be outliers 

using a method that is a function of the interquartile range, as in standard box plots. D) In the 

left-most panel, killing a canonical MDM2 antagonist, Nutlin-3 and expression of MDM2 are 

provided for every single cell (each point) in the top and bottom tSNE plot, respectively. The 

intensity of the color denotes the extent of killing in the left panel and MDM2 expression in the 

right pane, where the respective legends are provided. In this panel, we provide 3566 single-

cells from nine p53 WT lung cancer cell lines. The tSNE clustering is performed using the 

expression profile of all the genes. 

PERCEPTION predictive performance in an independent large-scale GDSC drug screen 

We next tested the performance of our models on an independent screen, GDSC (Garnett 

et al. 2012). To this end, we first identified drugs shared between the PRISM and GDSC 

screens (N=191, Table S3, quality control and model building steps in Methods). We 

were able to build PRISM-based predictive models for 16 of these common drugs. The 

mean correlation between experimental viability reported in GDSC vs PRISM (screen 
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concordance) across  80 shared cell lines serving as an unseen testing set was 0.44. For 

the same testing set, the mean correlation between the predicted vs observed viability in 

0.38 and 0.28 in PSISM and GDSC, respectively (Figure 2A). As expected, the 

prediction performance of a model in the GDSC test set is correlated with the 

concordance between the drug’s viability profiles in GDSC and PRISM datasets (Pearson 

Rho=0.49, P=5.89E-02; Figure 2B, Table S4). As the range of predicted values is 

smaller than observed (Extended Figure 2), we use a scaled predicted AUC (z-score) in 

further analyses reported below. 

Figure 2: PERCEPTION’s performance in the GDSC screen. (A) The correlation 
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measure via Pearson Rho (y-axis) comparing “GDSC vs PRISM”, “PRISM vs 

PERCEPTION”, and “GDSC vs PERCEPTION”. Drug response predictions were 

performed at a single-cell resolution and the cell line level response (mean response 

across single cells) was used to compare. (B) Relationship between the concordance in 

“GDSC vs PRISM” (green) and “GDSC vs PERCEPTION” (orange) across 16 drugs. 

These are the drugs with pharmacological screens in both PRISM and GDSC platforms 

and that have a substantial positive correlation between their AUC values (cor > 0.3 and 

p-value < 0.5 in cell lines excluding the above 80 cell lines). The size of the dots 

represents the Pearson correlation-based p-value in -log10 scale. The drugs are ordered 

on the x-axis from left to right in the decreasing order of their correlation between GDSC 

and PRISM responses. 

SC-based PERCEPTION models prediction of monotherapy and combination response in 

a lung cancer cell lines screen  

To study PERCEPTION in another independent screen, we tested its predictive 

performance in a recent drug screen in lung cancer cell lines (Nair et al. 2021). We focused on 

cancer 40 drugs that are FDA-approved or in clinical trials for which we could build predictive 

PERCEPTION models. We assessed their predictive performance vs drug screen data measured 

for monotherapy and two-drug combinations of 14 of these drugs (whose viability profiles 

passed quality control)  across 21 lung cancer cell lines in five dosages (Table S5, methods, 

Supp Note 1). Matched SC-expression was mined for these lung cancer cell lines from Kinker et 

al. 2020, including about 300 cells per cell line. 
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Given this data, we used the PERCEPTION models to predict the response to each drug 

in each cell line by computing the mean predicted viability across all the single cells of that from 

a cell line. The predicted viability is significantly higher in resistant vs sensitive cell lines 

(Figure 3A, top vs bottom 33% cell lines ranked by viability, Wilcoxon rank-sum P=2E-06, 

FC=1.53),  and can stratify responders vs non-responders (ROC-AUC = 0.72, Figure 3B). The 

predictive performance of high-confidence screen results (see Methods) is considerably higher 

(AUC=0.88, Figure 3C-blue curve, FC=1.95, Figure 3B-right panel). The overall mean 

Pearson correlation between predicted vs observed viability for these drugs is 0.33; P<7.4E-09 

(Extended Figure 3A). Detailed drug level comparisons between observed vs predicted viability 

are provided in Extended Figure 3B.  

 

We next tested PERCEPTION’s ability to predict the response to 42 combinations of 

these 14 drugs studied in this screen (Table S5). A combination response in a given cell line was 

predicted by adopting the independent drug action (IDA) model across all the single cells from 

that cell line (Ling et al. 2020) i.e. the combination response of two drugs is simply the effect of 

the single most effective drug in the combination (Supp Note 2). The predicted combination 

viability is significantly higher in resistant vs sensitive cell lines (Wilcoxon rank-sum P=8.3E-

03, FC=1.54, Figure 3D) and can stratify the responders vs nonresponders (AUC=0.69, # of 

resistant data points=28, # of sensitive data points=24, Figure 3E). Like in the monotherapies 

case, the observed effect size is considerably higher when considering only high-confidence 

screen results (P<8.8E-03, FC=1.77, Figure 3D-right panel, AUC=0.87, Figure 3E-blue curve, 

Pair-level comparison between observed vs predicted are provided in Extended Figure 3D). 
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Taken together, these results to the ability of PERCEPTION models to predict single and 

combination therapies in independent screens without any further training. 

 

 

Figure 3: PERCEPTION’s predicted response successfully stratifies resistant vs sensitive 

lung cancer cell lines to monotherapy and combination response. A) Illustration of our method 

defining sensitive and resistant cell lines for treatment from viability profile, where for each drug 
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the top and bottom 33% of the cell lines ranked by viability in ascending order are defined as 

sensitive and resistant, respectively. B) The predicted viability from PERCEPTION (x-axis) for 

top vs bottom 33 % cell lines defined as resistant (N=72) vs sensitive (N=84) cell lines, 

considering all the data points (left panel) or only high-confidence points (right panel) via a 

standard boxplot. A respective significance computed using a one-tailed Wilcoxon rank-sum test 

is provided. C) A receiving operator curve is plotted showing the relationship between sensitivity 

and specificity, where the area under the curve denotes the power of stratification. The colors of 

the curves - black and blue, represent whether all data points or only high-confidence data 

points are used, respectively. The area under this curve is provided at the right corner and 

similarly color-coded. The area under the dashed diagonal line denotes a random-model 

performance. Like B) and C), panel D) and E), respectively shows our ability to predict 

combination viability (# of resistant data points=28, # of sensitive data points=24). 

SC-based PERCEPTION prediction in patient-derived Head and Neck cancer cell lines  

To test the ability of our models to predict response in patient-derived cell lines (PDC), 

we used SC-expression of head and neck cancer cell lines derived from five different patients 

treated with eight different drugs at two concentrations (Table S6), with both monotherapy and 

combination therapy (Suphavilai et al. 2020). We were able to build predictive PERCEPTION 

response models for 4 out of the 8 drugs (docetaxel, epothilone-b, gefitinib, and vorinostat; 

Pearson Rho threshold > 0.25). For monotherapy treatments, the predicted viability is 

significantly higher in resistant vs sensitive cell lines (N=16 each, Figure 4A), with an AUC of 

0.64 (Figure 4B). The predicted viability is correlated with the observed viability (Pearson 

Rho=0.46; P<0.03, Extended Figure 5A), and individual drug-level correlations are provided in 

Extended Figure 4C. Higher predicted viability in resistant cell lines is also observed for 
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combination treatments (Figure 4C), with an AUC of 0.86 (Figure 4D). The predicted viability 

after gefitinib treatment is illustrated at a single-cell resolution in Figure 4E. The predicted vs 

experimental correlations obtained for all data points and drug levels are provided in Extended 

Figure 4B, D. These results demonstrate the ability of PERCEPTION models to predict response 

in patient-derived single cells.  
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Figure 4: Prediction monotherapy and combination response in patient-derived cell lines. 

(A) The predicted viability from PERCEPTION in resistant (n=16) vs sensitive (n=16) cell lines. 

(B) ROC curves depicting the prediction power (sensitivity and specificity) of the predicted 

viability to stratify resistant vs sensitive cell lines. The area under this curve is provided at the 

right corner and denotes overall model prediction power. The area under the dashed diagonal 

line denotes a random-model performance. In (C) and (D), we repeated the analysis for 

combination treatment (Number of resistant vs sensitive cell lines=12 vs 12). The boxplots 

provided are standard and the significances are computed using the one-tailed Wilcoxon rank-

sum test. E) Viability after treatment with gefitinib, a canonical EGFR mutation inhibitor, and 

activity of the EGFR pathway is provided for every single cell (each point) in the left and right 

UMAP plot, respectively. The intensity of the dot color denotes the EGFR pathway activity in the 

left panel and viability in the right panel, where the respective legends are provided. In this 

panel, we analyze 1116 single-cells from 5 PDCs. The UMAP clustering is performed using the 

expression profile of all the genes.  

PERCEPTION Prediction of combination treatment response in a Multiple myeloma 

clinical trial 

We turn to test the ability of PERCEPTION models to predict patients’ responses based 

on SC transcriptomics from their tumors, our main goal. Performing a literature search for 

clinical trials of targeted or chemotherapy that report both patient’s tumor SC-expression data 

and response labels, we found one such dataset with 41 multiple myeloma patients. The cells 

were clustered in the original paper to three clones (median) based on their expression profiles. 

These patients were treated with a DARA–KRD combination of four drugs - daratumumab, 
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carfilzomib, lenalidomide, and dexamethasone (Cohen et al. 2021). SC-expression and response 

labels were available for 28 of these patients, whose pretreatment sub-clonal distribution is 

shown in Figure 5A. Patient response was measured via tumor size estimates in radiological 

images.  

 

We built PERCEPTION response models for two out of four of these drugs (carfilzomib 

and lenalidomide) whose response profiles are available in either PRISM or CTD. Using these 

models, we predicted a combination response in a given patient via the following two steps. We 

first predicted the combination response for each clone of a patient using their average 

expression profile. We observed that the response observed in the most resistant clone of a 

patient best stratifies the responders vs non-responder patients (P<1.9.E-03, Figure 5C). 

Therefore, the predicted response of a patient is the response of the most resistant clone available 

(Methods). The resulting predicted response of a patient can successfully stratify the responders 

vs non-responders with an AUC of 0.827 (Figure 5D). In comparison, repeating the above 

analysis using pseudo-bulk expression (computed here as a mean expression over all the cells in 

the tumor)  yields an AUC of 0.56, testifying to the marked benefit of harnessing SC data from 

patients' tumors to predict their response. 
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Figure 5: PERCEPTION stratifies responders vs non-responders of the combination DACA-

KRD therapy regime in multiple myeloma patients. A) Distribution of abundance of malignant 



 

98 

sub-clones (y-axis) in each multiple myeloma patient (x-axis) in the trial identified using sc-

expression, where the color code for the sub-clones is provided at the top. One-tailed Wilcoxon 

rank-sum p-value denoting the significance of the higher median predicted viability in resistant 

cell lines. B) Predicted viability of the combination (z-score) at a clonal level for each patient 

where response status is provided at the top-strip of each facet. The left to right order of patients 

is the same as in panel A. C) The predicted combination response in 28 multiple myeloma 

patients stratified by responders vs non-responders status. D) Receiver Operating curve based 

on predicted combination response shows the relationship between specificity (x-axis) and 

sensitivity (y-axis) is provided. The area under this curve, provided at the right bottom corner, 

denotes the stratification power to distinguish responders vs non-responders. 

Charting the drug combinations landscape of FDA-approved drugs in multiple myeloma 

After showing PERCEPTION’s ability to stratify myeloma patients to the DARA–KRD 

treatment, we next study its application for identifying combination treatments of FDA-approved 

cancer drugs for the multiple myeloma patients studied in the above trial that targets multiple 

clones in the tumor disjointly and thus, have a low likelihood for resistance emergence (Figure 

6A). To this end, we first identified the set of FDA-approved cancer drugs that have predictive 

PERCEPTION models (N=44). We then searched for drug combinations that kill disjoint sets of 

clones in the tumor i.e. those that achieve maximal tumor coverage and killing (Figure 6A). We 

began with combinations of two drugs (946 possible pairs), ranking every pair by a score 

denoting the extent of their disjoint killing, termed its Improvement Score (IS).  This score 

quantifies the fold increase in killing compared to expected (Methods, Figure 6B) predicted to 

be induced by the specific combination. Out of the 946 possible combinations scanned, 842 pairs 

show no improvement over the expected (Methods). The remaining combinations, with 
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Improvement score > 1, termed effective, are shown in Figure 6B. The extent of the killing of 

different tumor clones by a few top-ranked effective combinations is shown in Figure 6C 

including our top-ranked combination hit of gefitinib & ponatinib, an EGFR inhibitor, and a 

canonical BCR-ABL inhibitor, respectively (IS = 2.57, Empirical P value = 1E-04). Another top 

combination pair with the high improvement score is vinblastine and sunitinib (Improvement 

score = 1.55, Empirical P value = 1E-04), a tubulin polymerization and multi-targeted receptor 

tyrosine kinase inhibitor, respectively.  

 

Analogously, we next looked for all possible triplets of drug combinations (Figure 6D, 

N=13,244), where our top hits include the combination of etoposide + midostaurin + ponatinib 

(Improvement score = 2.09, Empirical P value = 1E-04) and etoposide + niraparib + ponatinib 

(Improvement score = 1.95, Empirical P value = 1E-04) (Figure 6E). This method can be 

utilized for optimal combination design targeted multiple clones in multiple myeloma patients 

where combinations with high improvement scores. 
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Figure 6: Identify optimal drug combinations for multiple myeloma patients. A) Overview of 

our method: Given a patient with multiple myeloma composed of three clones, our goal is to find 
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a drug combination that can disjointly kill separate clones, and thus their combination treatment 

can kill all the clones present and could be an optimal combination. B) For each pair (x-axis), a 

median improvement score (y-axis) is computed i.e. fold decrease of predicted viability 

compared to the baseline. Here, an improvement score is provided for 94 pairs where this score 

is >1. For each pair, the proportion of patients (N=12) where this score is greater than 1 is 

denoted by the intensity of the color, where the legend is provided at the top. Top pairs are 

labeled. C) Disjoint killing of clones is visualized using viability profile at a clone level for the 

top pairs from panel C. This is provided separately for each patient (a facet) where the intensity 

of the color denotes the viability after the treatment for each clone (x-axis) of a given drug (y-

axis) where the legend is provided on the right. Panel D) and E) are analogous to panel B) and 

C), respectively, but for drug triplets. 

Discussion 

We present a framework to build drug response models to predict the drug response in cancer 

cells at single-cell resolution and demonstrate its application to predicting response to 

monotherapy and combination treatment at the level of cell lines, patient-derived-cell lines, and a 

clinical trial of multiple myeloma. The power of our analysis is limited by the availability of sc-

expression patients’ datasets with response labels. Consequently, we expect that our model 

would further refine and improve as such datasets would become more available. The current 

response signatures identified by PERCEPTION are pan-cancer and could be further refined by 

considering cancer type-specific cell lines, whenever a reasonable number of cell lines become 

available. We note that the quality of our response model would depend on the quality of the sc-

expression profiles available e.g., depth, high drop-out rates, etc., and likely negatively impact 

our performance. To note, we chose not to impute our data after considering the recent progress 
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on the subject concluding that unexpected high-dropouts are limited to non-UMI-based sc-

expression methods and likely due to biological variation (Svensson et al. 2020, Cao et al. 

2021). The lack of toxicity and side effects screens in normal cells hindered us from learning 

these phenotypes. More availability of such screens in the future may enable our models to 

predict response to drugs in both tumor and normal cells and thus refine our combinations 

considering their toxicity as well. In summary, this study is the first to harness the high 

resolution of information from scRNA-seq technology to build drug response models that can be 

translated to clinical context to identify responders to combination therapy or design an optimal 

combination for an individual patient. 

 

Methods 

Data collection 

  We first collected the bulk-transcriptomics and drug response profiles generated in cancer 

cell lines curated in the DepMap (Tsherniak et al. 2017) consortium from Broad Institute 

(version 20Q1, https://depmap.org/portal/download/). The drug response is measured via area 

under the viability curve (AUC) across eight dosages and measures via a sequencing technique 

called PRISM (Corsello et al. 2020). In total, we mined 488 cancer cell lines with both bulk-

transcriptomics and drug response profiles. We next mined sc-expression of 205 cancer cell lines 

(280 cells per cell line) generated in Kinker et al. 2020 from the Broad Single-cell Portal 

(https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-

heterogeneity#study-download). The metadata, identification, and clustering information were 

also mined from the same portal. 

https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download
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The PERCEPTION pipeline 

For each FDA-approved drug (N=133), we run the following steps to build a response 

model. Step 1: Learn from Bulk A. Identifying gene bulk-expression features correlated with 

viability profile: We first divided cell lines available to us into two sets, where the first set is 

used in step 1 and set 2 is used in step 2. We chose the cell lines where sc-expression is not 

available (N=318) and available (N=170) as sets A and B, respectively. Considering the first set 

of cell lines, we computed a Pearson correlation strength between the expression of each gene 

and for a query drug d. We considered this score as a measure of information in a gene 

expression profile and ranked each gene based on the correlated magnitude. B. Build models: 

Considering the top X gene expression features (where X is a hyperparameter optimized later) 

ranked based on the above-calculated correlation magnitude, we built a linear model regularized 

via the elastic net in five-fold cross-validation. Step 2: Optimize using sc-expression. A. 

Hyperparameter Optimization using sc-expression: We built the above model using a Bayesian-

like grid of various X values (range 10-500), where the model with the best performance using 

sc-expression input of 169 cell lines (left one out for testing) is chosen. B. Performance in Cross-

Validation: In the left-out cell line, which has not been used in either model building or 

hyperparameter optimization, we perform the error estimation. The error estimation is done by 

repeating the above steps for 170 times, wherein each instance a different cell line is left out. The 

final predicted values in this leave-one-out testing are compared to observed values via Pearson 

Correlation.  
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Quality control of in-house pharmacological screen by comparing them to existing screens 

To test the quality of our in-house screen generated, we compared our screen to a 

previous high-quality screen from Broad and Sanger Institute, PRISM (Corsello et al. 2020). 

Specifically, we leveraged the fact that screens for these drugs are also performed in the same 

cell lines, at least their monotherapy. For each drug, we computed a correlation between our in-

house screen and PRISM in matched cell lines. We reasoned that the drugs with correlated 

profiles in the two screens (Pearson Rho>0.3) are consistent across the two screens suggesting 

that they are high quality. Independently, we note that the concordance score of drugs’ response 

profile across screens is correlated with our predictive performance (Pearson Rho>0.39; 

P<0.019, Extended Figure 2A), suggesting that our model is capturing the robust signal across 

screens of these drugs. 

 

Cross-platform comparison of PERCEPTION performance 

The pharmacological drug screens performed by PRISM and GDSC studies are based on 

two independent platforms. The GDSC data was downloaded from the DepMap portal 

(Downloaded: April 15, 2020, https://depmap.org/portal/download/). To compare the 

performance of PERCEPTION across two independent screening platforms and test if the 

expression signature captured by our drug response models can be translated across the 

domains: 1. Of the 347 cell lines in common with drug response in GDSC and PRISM, 

there are 120 cell lines with sc-expression data. We selected at random 80 cancer cell 

lines with sc-expression data and pharmacological screens in GDSC and PRISM, 2. We 

considered all the drugs (N=191) which were screened in both PRISM and GDSC, from 

https://depmap.org/portal/download/
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which we selected a subset of drugs (N=28) with a concordant response between PRISM 

and GDSC (Pearson rho > 0.3 and p-value < 0.05; at least 20 cell lines with responses per 

drug in both GDSC and PRISM) in the 267 cell lines in common between the two screen 

excluding the cell lines in the testing set. 3. For each of the selected drugs we ran the 

PERCEPTION pipeline, in Step 2 of the pipeline the parameters were optimized on sc-

expression of 90 cell lines (excluding the 80 test cell lines) instead of the default 170 cell 

lines. 4. Finally, we applied the resulting response models to the testing dataset and 

compared the predicted AUC values to the experimental response from GDSC and 

PRISM. We used the Pearson correlation coefficient as the measure to compare the 

performance between the screens and predicted responses. 

 

Generating models for PDC cell lines 

The single-cell expression of the five HNSC patient-derived cell lines and their treatment 

response for eight drugs and combination therapy at two different dosages obtained from 

Suphavilai et al. 2020. For these drugs, PERCEPTION was unable to build drug response models 

using PRISM screens. Therefore, we incorporated two main changes to the PERCEPTION 

pipeline: 1. drug response from GDSC screens (response from > ~800 cell lines for these drugs) 

were used to build models, 2. the expression levels of all the genes in the cancer cell line datasets 

were not found in the PDC sc-expression datasets and the frequency of dropouts in the PDC 

dataset is higher— ~3500 genes have > 75% non-zero counts across all the cells in all five 

patients, as a result only the top 3000 genes which are common in both datasets and with fewer 

dropouts across all five patients are considered in the pipeline. For the drugs for which 
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PERCEPTION was able to build models, we applied the models on the PDC cell lines and 

obtained the predictions for each individual cell. The patient-level monotherapy response for a 

given drug is represented by the mean response of all the cells included in a patient’s PDC 

sample. In the case of drug combinations, for a given cell, its combination response was the 

minimum among the two drug responses for the cell. The patient-level combination response was 

represented by the mean of the combined response of all the cells in a patient's PDC sample. 

Data availability 

The entire collection of the processed datasets used in this manuscript, including pre-clinical 

models of cancer cell lines and PDCs, can be accessed via a ZENODO repository which could be 

provided upon request or upon publication. 

Code availability 

We used open-source R version 4.0 to generate the figures. Wherever required, commercially 

available Adobe Illustrator 23.0.3 (2019) was used to create the figure grids. All of the scripts for 

analysis and figure production were built in-house and will be provided upon publication. 
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Conclusion 

 

In this thesis, I provide an overview of the three computational approaches I developed during 

my Ph.D. to advance precision medicine for cancer prevention and treatment. The common axis 

among these three efforts is that we analyze large-scale cancer omics data from both pre-clinical 

models and patients datasets to generate the initial hypothesis and guide the study. 

 

 We leveraged large-scale genetic screens in cancer cell lines to identify the cancer risk 

associated with CRISPR-based therapies i.e. an undesired selection of cells with pre-existing p53 

and KRAS mutations and thus calling for carefully monitoring patients undergoing CRISPR-

Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations.  

 

 We integrated publicly available and our own generated large-scale omics data from 

African American and European American cancer patients to delineate some of the molecular 

mechanisms that may underlie the observed differences in cancer incidences across cancer 

patients from these two ancestries. Focusing mainly on lung cancer, we found that lung tumors 

from African American (AA) patients exhibit higher genomic instability, homologous 

recombination deficiency, and aggressive molecular features such as chromothripsis. These 

molecular differences extend to other cancer types. We also showed that these somatic 

differences observed may have genetic origins by comparing germline variants from patients of 

these two ancestries. This provides a therapeutic unique strategy to treat tumors from an ancestry 

(AAs) with high HRD using PARP and checkpoint inhibitors. 
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 Finally, I presented a computational framework to use single-cell RNA-seq from patients’ 

tumors to find combination treatments that can target multiple clones in the tumor disjointly. 

Using this framework, we predict the response to monotherapy and combination treatment in cell 

lines, patient-derived-cell lines, and in a clinical trial of multiple myeloma patients and chart the 

landscape of optimal combination treatments of the existing FDA-approved drugs in multiple 

myeloma. 

 

In summary, we demonstrate the power and wide range of applications of multi-omics 

analysis to identify cancer risks associated with genetic editing and strategies to overcome it, to 

delineate molecular mechanisms contributing to the cancer disparity in AA patients, and a 

treatment strategy based on that, and finally, we built a framework based on single-cell 

transcriptomics of tumors to stratify responders and guide combination treatment. 
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