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An Elsner-Like Perturbation Theorem forGeneralized EigenvaluesG. W. StewartABSTRACTIn 1985 Elsner established a general bound on the distan
e between an eigen-value of a matrix and the 
losest eigenvalue of a perturbation of that matrix.In this note, we show that a similar result holds for the generalized eigenvalueproblem.Let A be a matrix of order n and let ~A = A + E be a perturbation of A. Elsner'stheorem [1℄ essentially states that if � is an eigenvalue of A, then there is an eigenvalue~� of ~A satisfying j~�� �j � (kAk+ k ~Ak)1� 1n kEk 1n ;where k � k denotes the spe
tral norm. The theorem is remarkable in several ways. It isgeneral, requiring no hypotheses about A or �. It puts no restri
tions on the size of E.The bound is 
ompletely symmetri
 in A and ~A. The ingredients in the bound 
an be
omputed or bounded knowing only kAk and kEk. Finally, it is sharp in the sense thatthe exponent 1n of kEk is the best possible. The pri
e to be paid for this generality isthat for small E and for most matri
es the bound in unrealisti
ally large|though byno means unuseful (see [2, 3℄).The purpose of this note is to prove an analogue of Elsner's theorem for the gen-eralized eigenvalue problem Ax = �Bx. Some of the ni
e features of Elsner's theoremwill have to go by the board. We will lose some symmetry and we will have to assumethat the pairs (A;B) and ( ~A; ~B) are regular in the sense de�ned below.We will begin by stating the generalized eigenvalue problem in proje
tive form. Wewill then dis
uss the metri
s we will use to measure distan
e between matrix pen
ils andtheir eigenvalues. Next we will introdu
e a 
ondition that insures that a perturbationdoes not destroy regularity. The �nal preliminary is the introdu
tion of the generalizedS
hur de
omposition, after whi
h we will state and prove our version of Elsner's theorem.More detail on this ba
kground material 
an be found in [4, 5℄.We will 
all a pair (A;B) of n�n matri
es a matrix pen
il of order n. It is regular ifdet(�A� �B) is not identi
ally zero.If (�; �) 6= 0 and det(�A � �B) = 0 we will 
all the set h�; �i = f(��; ��) : � 2 C g aneigenvalue of the pen
il. The advantage of this proje
tive representation is that h1; 0i,whi
h represents an in�nite eigenvalue of the pen
il is pla
ed on an even footing with1



2 Elsner's theorem for matrix pen
ilsthe other eigenvalues. Note for later referen
e that if h�; �i is an eigenvalue of (A;B),then there is a nonzero eigenve
tor x satisfying (�A� �B)x = 0.To measure the size of matrix (and s
alar) pairs we will use the normk(E;F )k =pkEk2 + kFk2;where on the right k � k denotes a the spe
tral norm or Frobenius norm. One reason forusing this norm is the following inequality:maxk(�;�)k=1 k�E + �Fk � k(E;F )k: (1)In fa
t, k�E + �Fk � j�jkEk + j�jkFk�pj�j2 + j�j2pkEk2 + kFk2 (by the Cau
hy inequality)=pkEk2 + kFk2:Turning now to eigenvalues, we will measure the distan
e between the eigenvaluesh�; �i and h~�; ~�i by the 
hordal metri
�(h�; �i; h~�; ~�i) = j�~� � �~�jk(�; �)kk(~�; ~�)k :The utility of this metri
 is that it, like the proje
tive representation, makes no distin
-tion between �nite and in�nite eigenvalue.We now turn to the preservation of regularity under perturbations. Ideally we wouldlike to determine the smallest perturbation that makes the pen
il in question irregular.Unfortunately, this is an unsolved problem, and we must be 
ontent with a bound onperturbations that do not destroy regularity. One su
h bound is the number
(A;B) = maxk(�;�)k=1 �min(�A� �B); (2)where �min(X) denotes the smallest singular value of X. To see this, note that if (A;B)is regular 
(A;B) > 0. Now suppose k(E;F )k < 
 and let � and � maximize theright-hand side of (2). Then by (1), k�E � �Fk < �min(�A � �B), and hen
e by theS
hmidt{E
kart{Young{Mirsky theorem det[�(A + E) � �(B + F )℄ 6= 0, so that thepen
il (A+E;B + F ) is regular.An important advantage of this measure is that it is insensitive to perturbations inits arguments. Spe
i�
ally, it is easy to show that
(A+E;B + F ) � 
(A;B)� k(E;F )k: (3)



Elsner's theorem for matrix pen
ils 3We now introdu
e the generalized S
hur de
omposition. Spe
i�
ally, if (A;B) isregular, there are unitary matri
es U and V su
h thatUHAV = S and UHBV = Twhere S and T are upper triangular. The quatities h�ii; �iii are the eigenvalue of (A;B),whi
h 
an be made to appear anywhere on the diagonals of S and T . An important
onsequen
e of this form is that
i � k(�ii; �ii)k � 
(S; T ) = 
(A;B): (4)For if not, we 
ould set �ii = �ii = 0 and render the pen
il (A;B) irregular by aperturbation whose norm is less than 
(A;B)|a 
ontradi
tion.We are now in a position to state and prove our variant of Elsner's theorem.Theorem. Let (A;B) and ( ~A; ~B) = (A + E;B + F ) be regular matrix pairs, and leth�; 
i be an eigenvalue of (A;B), then there is an eigenvalue h~�; ~�i of ( ~A; ~B) satisfying�(h�; �i; h~�; ~�i) � kAk1� 1n k(E;F )k 1n
(A;B) : (5)Proof. We may assume without loss of generality that (A;B) is in generalized S
hurform with h�11; �11i = h�; �i. Let h~�; ~�i be the eigenvalue of ( ~A; ~B) that is 
losest toh�; �i in the 
hordal metri
, and assume that k(~�; ~�)k = 1. Thenjdet(~�A� ~�B)j
(A;B)n = j~��11 � ~��11j
(A;B) � � � � � j~��nn � ~��nnj
(A;B)� j~��11 � ~��11j
1 � � � � � j~��nn � ~��nnj
n= �(h�11; �11i; h~�; ~�i)� � � � � �(h�nn; �nni; h~�; ~�i)� �(h�11; �11i; h~�; ~�i)n:Now let X = (x1 � � � xn) be a unitary matrix with (~� ~A � ~� ~B)x1 = 0. Then byHadamard's inequalityjdet(~�A� ~�B)j � k(~�A� ~�B)x1k � � � � � k(~�A� ~�B)xnkBut k(~�A� ~�B)x1k = k[~�(A� ~A)� ~�(B � ~B)x1℄k = k(~�E � ~�F )x1k � k(E;F )k:On the other hand for i 6= 1 k(~�A� ~�B)xik � k(A;B)k:



4 Elsner's theorem for matrix pen
ilsConsequently we have �(h�; �i; h~�; ~�i)n � k(A;B)kn�1k(E;F )k
(A;B)n ;and (5) follows on taking nth roots.The proof is along the lines of Elsner's. As mentioned above we have to restri
t(A;B) and ( ~A; ~B) to be regular, but there are no restri
tions on (E;F ). Of 
ourse, ifk(E;F )k < 
(A;B), then (3) implies that ( ~A; ~B) is regular.The 
hief di�eren
e between the two theorems is the appearan
e of 
(A;B) in (5).Divisors of this kind are 
ommon in generalized eigenvalue bounds, and they re
e
t thefa
t that eigenvalues with small 
i [see (4)℄ are extremely sensitive to small perturbationsin the pen
il. In fa
t, in the theorem we 
ould repla
e 
(A;B) with mini 
i|giving apotentially sharper bound. Unfortunately, the 
i asso
iated with a parti
ular eigenvalue
an 
hange when the eigenvalue is moved to another pla
e in the generalized S
hurde
omposition, so that the resulting bound would depend on the vagaries of how thede
omposition was 
omputed.Referen
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