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Generalized Eigenvalues
G. W. Stewart

ABSTRACT

In 1985 Elsner established a general bound on the distance between an eigen-
value of a matrix and the closest eigenvalue of a perturbation of that matrix.
In this note, we show that a similar result holds for the generalized eigenvalue
problem.

Let A be a matrix of order n and let A = A+ E be a perturbation of A. Elsner’s
theorem [1] essentially states that if A is an eigenvalue of A, then there is an eigenvalue
A of A satisfying

3 Fin1—L L
A= AL< (1A + 1AD = 127,

where || - || denotes the spectral norm. The theorem is remarkable in several ways. It is
general, requiring no hypotheses about A or A. It puts no restrictions on the size of F.
The bound is completely symmetric in A and A. The ingredients in the bound can be
computed or bounded knowing only ||A|| and ||E||. Finally, it is sharp in the sense that
the exponent L of |E|| is the best possible. The price to be paid for this generality is
that for small £ and for most matrices the bound in unrealistically large — though by
no means unuseful (see [2, 3]).

The purpose of this note is to prove an analogue of Elsner’s theorem for the gen-
eralized eigenvalue problem Az = ABz. Some of the nice features of Elsner’s theorem
will have to go by the board. We will lose some symmetry and we will have to assume
that the pairs (4, B) and (A, B) are regular in the sense defined below.

We will begin by stating the generalized eigenvalue problem in projective form. We
will then discuss the metrics we will use to measure distance between matrix pencils and
their eigenvalues. Next we will introduce a condition that insures that a perturbation
does not destroy regularity. The final preliminary is the introduction of the generalized
Schur decomposition, after which we will state and prove our version of Elsner’s theorem.
More detail on this background material can be found in [4, 5].

We will call a pair (A, B) of nxn matrices a matrix pencil of order n. It is regular if

det(vA — pB) is not identically zero.

If (u,v) # 0 and det(vA — pB) = 0 we will call the set (u,v) = {(tp,7v): 7 € C} an
eigenvalue of the pencil. The advantage of this projective representation is that (1,0),
which represents an infinite eigenvalue of the pencil is placed on an even footing with
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the other eigenvalues. Note for later reference that if (u,r) is an eigenvalue of (A, B),
then there is a nonzero eigenvector z satisfying (vA — uB)z = 0.
To measure the size of matrix (and scalar) pairs we will use the norm

ICE, F)Il = VIE|P? + [1F]?,

where on the right || - || denotes a the spectral norm or Frobenius norm. One reason for
using this norm is the following inequality:

((ax IBE +oF|| < [|(B, F)| "

In fact,
IBE + oF|| < |BIIE] + |all| £
< Va2 +1B2VIE|? + [|[F|?  (by the Cauchy inequality)

= VIEI*+ .

Turning now to eigenvalues, we will measure the distance between the eigenvalues
(u,v) and {(f1,7) by the chordal metric

o — vl
A T TTFRAT &

The utility of this metric is that it, like the projective representation, makes no distinc-
tion between finite and infinite eigenvalue.

We now turn to the preservation of regularity under perturbations. Ideally we would
like to determine the smallest perturbation that makes the pencil in question irregular.
Unfortunately, this is an unsolved problem, and we must be content with a bound on
perturbations that do not destroy regularity. One such bound is the number

A,B) = max omn(BA— aB), 2
WAB) = | max ouin(BA — aB) @)

where omin (X) denotes the smallest singular value of X. To see this, note that if (A, B)
is regular y(A,B) > 0. Now suppose [|(E,F)|| < v and let o and § maximize the
right-hand side of (2). Then by (1), |fE — aF|| < omin(BA — aB), and hence by the
Schmidt-Eckart-Young-Mirsky theorem det[3(A + E) — a(B + F)] # 0, so that the
pencil (A + E, B+ F) is regular.

An important advantage of this measure is that it is insensitive to perturbations in
its arguments. Specifically, it is easy to show that

YA+ E,B+F) 24 B) - (£, F). 3)
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We now introduce the generalized Schur decomposition. Specifically, if (A, B) is
regular, there are unitary matrices U and V such that

URAV =S and U"BV =T

where S and T are upper triangular. The quatities (o;;, 7;) are the eigenvalue of (A, B),
which can be made to appear anywhere on the diagonals of S and 7. An important
consequence of this form is that

Yi = (o3, 7id) [l > v(S,T) = v(4, B). (4)

For if not, we could set o;; = 7; = 0 and render the pencil (A, B) irregular by a
perturbation whose norm is less than (A, B) —a contradiction.
We are now in a position to state and prove our variant of Elsner’s theorem.

Theorem. Let (4, B) and (A,B) = (A + E, B + F) be regular matrix pairs, and let
(u,7) be an eigenvalue of (A, B), then there is an eigenvalue (fi,7) of (A, B) satisfying

)
() ) < IO )

Proof. We may assume without loss of generality that (A, B) is in generalized Schur
form with (a1, 811) = (u,v). Let (fi,) be the eigenvalue of (A, B) that is closest to
(u,v) in the chordal metric, and assume that ||(&,7)|| = 1. Then

|det(PA — aB)| _ |[pan —@bul  [Ponn — bl
v(A, B)" (4, B) ~v(4,B)
> |ua11 — ,uﬂ11| X o x |V04nn - H/Bnn|
4! Tn

= X((O‘HJBU)? (/17’;» X X X((annaﬂnn>7 <M7V>)
= x((ea1, Bu), (i, 7)™

Now let X = (1 --- z,) be a unitary matrix with (#7A — iB)z; = 0. Then by
Hadamard’s inequality
|det(5A4 — iB)| < [(PA — i) x -« x |(7A — iB)n
But
1(7A = iB)z1|| = |[7(A = A) = (B = B)ai]| = [|(PE — iF)z1|| < | (B, F)]l.
On the other hand for ¢ # 1

I(PA = iB)zi|| < [I(A, B)|-
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Consequently we have

(A, B)|I" (B, F)
v(A, B)" ’

x({m, v), (i, 7)™ <

and (5) follows on taking nth roots. m

The proof is along the lines of Elsner’s. As mentioned above we have to restrict
(A, B) and (A, B) to be regular, but there are no restrictions on (E, F). Of course, if
|(E, F)|| < (A, B), then (3) implies that (A, B) is regular.

The chief difference between the two theorems is the appearance of (A4, B) in (5).
Divisors of this kind are common in generalized eigenvalue bounds, and they reflect the
fact that eigenvalues with small 7y; [see (4)] are extremely sensitive to small perturbations
in the pencil. In fact, in the theorem we could replace y(A, B) with min; y; — giving a
potentially sharper bound. Unfortunately, the ; associated with a particular eigenvalue
can change when the eigenvalue is moved to another place in the generalized Schur
decomposition, so that the resulting bound would depend on the vagaries of how the
decomposition was computed.
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