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Fusarium graminearum and Puccinia triticina are common wheat pathogens in the 

Mid-Atlantic region, causing Fusarium head blight (FHB) and leaf rust, respectively.  

Both diseases can cause serious yield losses in epidemic conditions and can be 

controlled by breeding resistant cultivars.   MD01W233-06-1 is an adapted soft red 

winter wheat (SRWW) breeding line with previously uncharacterized “native” FHB 

resistance.  SS8641 is an FHB-susceptible SRWW cultivar that has the leaf rust 

resistance gene Lr37 and an additional unidentified source of resistance.  These 

parents were used to generate a doubled haploid mapping population to map their 

resistance to these diseases.  Four FHB resistance quantitative trait loci (QTL) were 

mapped to chromosomes 3B (3 QTL) and 1A (1 QTL).  Several QTL in SRWW have 

been mapped to these regions.  Two leaf rust resistance QTL were mapped to 

chromosomes 2A, the same location as Lr37, and 5B, known to contain Lr18, 

previously unreported in either parent.  
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Chapter 1: Literature Review 

Introduction 

Since its domestication 10000 years ago, wheat (Triticum aestivum L. ssp. 

aestivum) has become a major human staple.  Today, it is the most widely cultivated 

crop, providing the main source of dietary calories to 35 percent of the global 

population (McCorriston, 2012).  As with any plant, wheat can be affected by a 

variety of pathogens, pests, and abiotic stresses.  Mitigating the harmful effects of 

these threats is a main goal of plant breeding, allowing crops to reach their full yield 

potential. Wheat is regularly attacked by fungal pathogens. In the Mid-Atlantic region 

of the United States, two of the most destructive are Fusarium graminearum Schwabe 

and Puccinia triticina Eriks., causal agents of wheat Fusarium head blight (FHB) and 

leaf rust, respectively.  FHB is a destructive pathogen with a wide host range, 

including common wheat, durum wheat (T. turgidum L. ssp. durum), barley 

(Hordeum vulgare L.), and maize (Zea mays L.).  FHB affects developing grains, 

causing reduced grain fill and the formation of shriveled white- to pink-colored 

“tombstones.” FHB reduces test weight, and is capable of causing yield losses as high 

as 70% (Pirgozliev et al., 2003). F. graminearum is also associated with the 

production of mycotoxins.  The most significant mycotoxin produced by F. 

graminearum in the United States is deoxynivalenol (DON), or vomitoxin (Goswami 

& Kistler, 2004).  DON accumulates in seeds on infected wheat spikes, rendering 

them unsuitable for human consumption and livestock feed. The Food and Drug 

Administration has issued guidelines for the concentration of DON allowable for 
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human and livestock consumption, with 1ppm DON allowable on wheat products for 

human consumption, 10ppm for cattle and chickens, and 5ppm for swine and other 

animals (FDA, 2010).  Together, yield losses and DON accumulation can have major 

economic impacts. In the 1990s alone, FHB epidemics caused losses estimated at $3 

billion for wheat and barley farmers (Windels, 2000).  In the Mid-Atlantic region, 

there have been destructive epidemics since 2000, with the 2003 epidemic causing 

$13.6 million in losses in Maryland, Virginia and North Carolina (Cowger & Sutton, 

2005). 

Leaf rust is another major fungal pathogen affecting wheat worldwide. This 

fungus can infect leaves of wheat at any growth stage, producing orange-brown-

colored pustules, asexual spore-producing structures called uredinia, leading to the 

common name for this pathogen: brown rust. Leaf rust is capable of causing yield 

losses up to 50%, though this is largely dependent on host growth stage at infection 

(Huerta-Espino et al., 2011).  Leaf rust is a persistent problem for wheat agriculture in 

all major wheat growing regions of the United States and around the world.   

Fusarium Head Blight of Wheat 

Causal Agent Taxonomy 

Until recently, the causal agent F. graminearum was widely accepted to be a 

single species.  With the advent of whole genome sequencing, phylogenetic studies 

have revealed numerous species of FHB causal agents based in large part on 

geographic distribution. There are over a dozen species comprising what is now 

referred to as the F. graminearum species complex (or sensu lato) ( O’Donnell, et al., 

2000; O’Donnell, et al., 2004; Aoki, et al., 2012).  There have been reports of several 
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native FHB causal agents in the United States including, F. graminearum sensu 

stricto, F. louisianense, and F. gerlachii, the latter two being found in isolated regions 

(Starkey et al., 2007; Sarver et al., 2011).  Additionally, the Asian-centered species F. 

asiaticum has recently been isolated from wheat in several parishes of Louisiana 

(Gale et al., 2011).  F. graminearum sensu stricto (which will hereafter be referred to 

as F. graminearum) represents nearly 100% of FHB causal agents in the United 

States and can be found in major wheat producing regions around the world (Aoki et 

al., 2012). 

Life Cycle  

Fusarium graminearum (teleomorph Gibberella zeae [Schwein.] Petch) is an 

ascomycete with a complex life cycle, living as a facultative saprophyte with both 

sexual and asexual reproductive strategies.  FHB is a polycyclic disease, it is 

homothallic in nature with the compatible mating type genes in the same genome 

(Kim et al., 2012), allowing sexual reproduction to occur without outcrossing 

(Cavinder et al., 2012).  Successful sexual reproduction on crop residue produces 

black, pear-shaped perithecia, which contain ascospores, the primary source of 

inoculum (Dill-Macky & Jones, 2000).  F. graminearum overwinters on residue until 

the spring (Fernando, 1997). Perithecia can form at temperatures above 3°C and 

produce ascospores above 10°C, with an optimum temperature range for ascospore 

production between 15-20°C (Xu & Nicholson, 2009).  Ascospores are released 

during rain events or humid conditions and are carried by wind to exposed wheat 

spikes, where they germinate and begin the parasitic stage of the lifecycle. 
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In addition to sexually-produced ascospores, F. graminearum established on 

host tissues can sporulate asexually, producing macroconidia as a secondary source of 

inoculum. Macroconidia are produced in large orange- or pink-colored masses called 

sporodochia, a tell-tale sign of FHB infection.  Macroconidia are primarily splash-

dispersed by rain, contributing to local spread of the disease, although there have 

been reports of long-range wind distribution ( Fernando et al., 1997; Doohan et al., 

2003; Gilbert & Fernando, 2004).  

Infection Biology 

After landing on the floral tissues of the wheat spike, the hyphae of 

germinating ascospores or macroconidia proceed to invade the host. Infection can 

occur through a passive route via dehiscent anthers and stomata (Pritsch et al., 2000; 

Bushnell, 2001) or by direct penetration of vulnerable tissues within the floret 

(Rittenour & Harris, 2010).  It has been reported that F. graminearum is a 

hemibiotroph, with both biotrophic and necrotrophic stages of pathogenesis.  After 

invading dehiscent anthers or stomata of glumes or florets, hyphae proliferate within 

the apoplast of the floral tissues (Brown et al., 2010).  Hyphal growth progresses from 

the initial site of infection, spreading through the spikelet and entering the rachis, 

moving up and down the spike.  Behind this infection front, hyphae penetrate host 

cells, creating visible symptoms several days after initial infection (Brown et al., 

2010). F. graminearum colonizes vascular tissues and grows laterally to the 

epidermal cells which are then ruptured, allowing the development of aerial mycelia 

and sporodochia.  The necrosis of tissue gives infected spikes a prematurely bleached 

appearance.   
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DON plays an important role in the infection biology of F. graminearum.  

Biosynthesis of DON and other trichothecenes is controlled by the TRI gene pathway 

which consists of 15 genes (Proctor et al., 2009).  DON functions as a virulence factor 

(Proctor et al., 1995; Desjardins et al., 1996), with greatest TRI gene expression at the 

biotrophic infection front (Brown et al., 2011).  DON binds to the 60S subunit of 

eukaryotic ribosomes, inhibiting protein synthesis and causing ribotoxic stress 

response which induces apoptosis (Pestka, 2007; Boenisch & Schäfer, 2011). This 

protein synthesis mechanism is responsible for the mycotoxic effects in animals as 

well (Pestka, 2007; Sobrova et al., 2010; Arunachalam & Doohan, 2013).  While 

DON production has been found to be important in F. graminearum pathogenicity in 

wheat, it is not the only factor that contributes to virulence. Baldwin et al. (2010) 

demonstrated topoisomerase I (Top1) mutant strains of F. graminearum produced 

limited visible symptoms after inoculation, suggesting there are other virulence genes 

involved in pathogenicity. Brown et al. (2012) evaluated the secretome of F. 

graminearum during infection of wheat spikes, identifying 171 secreted proteins that 

are believed to be involved in the degradation of wheat cuticle, cellulose, 

hemicelluloses, lignin, callose, pectin, lipids, starches, proteins, and choline, all of 

which may be implicated in cell penetration after biotrophic colonization of head 

tissues, although specific mechanisms have yet to be elucidated.  

Management Strategies 

With a host range that includes maize (Zea mays L.) and the capability of 

living as a saprophyte on crop residues, F. graminearum has become an emerging 

problem in US wheat production in recent decades. A large-scale shift in the US to 
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no-till cultural practices (Horowitz et al., 2010) and the prevalence of wheat-after-

maize crop rotations has been responsible for the increased frequency of FHB 

epidemics (Dill-Macky & Jones, 2000; Windels, 2000; Cowger & Sutton, 2005). 

Control of this pathogen is difficult, with no one solution fully solving the problem. 

Management strategies include cultural practice selection, fungicide application, 

biological control, and selection of resistant cultivars. 

One strategy to control FHB is through cultural practices, namely tilling of the 

soil prior to planting. This incorporates the saprophytic F. graminearum inoculum 

growing on crop residues into the soil, where it is a poor competitor against other soil 

microbes (Leplat et al., 2013).  Studies examining the efficacy of tilling in lowering 

DON accumulation in wheat grain have reported reductions in the range of 65-70% 

compared to worst case scenarios (no-till planting a susceptible cultivar following 

maize without fungicide applications) (Beyer et al., 2006; Blandino et al., 2012).  

While this can be an effective means of suppressing FHB, many US farmers have 

shifted to no till.  Maryland in particular has been eager to encourage no-till practices 

in order to protect the ecology of the Chesapeake Bay, while small grains acreage has 

increased due to state subsidies for planting cover crops to mitigate nitrification of the 

Bay. These factors preclude tilling as a management tool in this context and promote 

a cropping system that is more vulnerable to FHB epidemics.  

Fungicide application is another management strategy for control of FHB in 

wheat.  Triazole fungicides applied at anthesis are recommended for control of FHB.  

First developed in 1976, triazoles are locally systemic fungicides that act as ergosterol 

biosynthesis inhibitors, producing aberrant intermediate products, which then 
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accumulate around fungal hyphae, inhibiting further growth (Fera et al., 2009).  

While initially considered ineffective in controlling FHB symptoms and DON 

accumulation (Milus & Parsons, 1994), improved fungicide chemistry and application 

techniques have produced several effective options.  As of 2013 there are 5 triazole 

fungicides labeled for use to control FHB. These are Prosaro (prothioconazole +  

tebuconazole), Caramba (metconazole), Tilt (propiconazole), Proline 

(prothioconazole), and Folicur (tebuconazole) (North Central Regional Committee on 

Management of Small Grain Diseases, 2013).  Triazole fungicides applied at the 

proper time can generally achieve 50-60% reductions in FHB severity and DON 

accumulation (Beyer et al., 2006; US Wheat & Barley Scab Initiative, 2009; Blandino 

et al., 2012).  Timing of fungicide application is critical for effective FHB control.  

Application at anthesis is most effective for preventing the spread of FHB infection, 

while later applications (approximately 20 days after anthesis) has been shown to 

reduce mycotoxin accumulation without improving visible symptoms (Yoshida et al., 

2012).   

With the difficulty in timing application of fungicides, the best way to control 

FHB is to plant wheat cultivars with genetic resistance.  Selection of resistant 

cultivars has long been recognized as a major management strategy for FHB 

(Dickson, 1942).  Resistance to FHB is inherited in a quantitative fashion and is 

characterized as either passive or active resistance. Passive resistance is largely 

controlled by agronomic and phenological traits.  For example, tall plant height and 

loose spikelet density spike morphology can hinder access to the FHB inoculum and 

flowering in conditions unfavorable to ascospore discharge (disease escape) 
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(Mesterhazy, 1995).  Active resistance mechanisms depend on host physiological 

resistance to F. graminearum, with 5 types of resistance being identified.  These types 

are defined based on different traits and stages of infection. Resistance to the initial 

establishment of an infection is referred to as Type I resistance, while Type II 

resistance is defined as the resistance to spread of FHB after initial infection 

(Schroeder & Christensen, 1963).  Type III refers to mycotoxin resistance (Miller & 

Wang, 1988).  Types IV and V refer to resistance to infection of the kernel and 

tolerance, respectively (Mesterházy et al., 1999).  Operating with this framework, 

numerous sources of genetic resistance have been characterized. 

Many sources of FHB resistance have been found, with quantitative trait loci 

(QTL) mapped to every chromosome of the wheat genome (Buerstmayr et al., 2009).  

The most prominent sources of genetic resistance have been derived from Chinese 

cultivars with Sumai 3 and its derivative Ning 7840 providing Fhb1, a major 

quantitative trait locus (QTL) on the short arm of chromosome 3B, which explained 

over 40% of the FHB resistance in the population in which it was mapped (Anderson 

et al., 2001).  Additionally, FHB resistance has also been identified in the Brazilian 

cultivar Frontana, which has been used by the International Center for Maize and 

Wheat Breeding (CIMMYT) (Magliano et al., 2013).   Breeding exotic FHB-resistant 

cultivars with US winter wheat cultivars generally introduces undesirable 

characteristics for agronomic and end-use quality traits (Anderson, 2007; McCartney 

et al., 2007).  This problem has spurred the search for “native” resistance to FHB 

within US wheat classes that will be adapted to local environments and present less of 

a barrier in development of new cultivars. 
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The soft red winter wheat (SRWW) class has several sources of characterized 

FHB resistance, such as Ernie ( McKendry et al., 1995; Liu et al., 2005; Liu et al., 

2007; Liu et al., 2013)  Other moderately resistant cultivars reported include 

McCormick (Griffey, 2005), Truman (McKendry et al., 2005), Bess (McKendry et 

al., 2007), Roane (Griffey et al., 2001), Tribute (Griffey et al., 2005), and Jamestown 

(Griffey et al., 2010).  FHB resistance from McCormick has not yet been 

characterized. The breeding line MD01W233-06-1, derived from a cross between 

McCormick and Choptank, has also been reported as FHB resistant in FHB-

inoculated field nurseries (Costa et al., 2010).  The objective of this study was to 

characterize and map the US native resistance of MD01W233-06-1.  Mapping this 

source of resistance may provide wheat breeders with molecular tools to incorporate 

this source of FHB resistance into their breeding programs.  

  

Leaf Rust of Wheat 

Causal Agent: Taxonomy and Life Cycle 

 Leaf rust, or brown rust, is an important, global threat to wheat production.  In 

contrast to FHB, leaf rust has but a single causal agent, the basidiomycete Puccinia 

triticina Eriks., and derives its nutrition from its host in a biotrophic manner.  Within 

P. triticina, there are strains with very specific host ranges, termed formae speciales.  

P. triticina f. sp. tritici affects common wheat, durum wheat (T. turgidum L. ssp. 

durum), emmer wheat (T. turgidum L. ssp. dicoccum), triticale (x Triticosecale), and 

several Aegilops L. species and other wild wheat relatives (Bolton et al., 2008).  Leaf 

rust is further classified within P. triticina f. sp. tritici based on physiologic 
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specialization with the host range.  These specializations are termed races and are 

defined by pathogenicity (virulence versus avirulence) to hosts with known sources of 

genetic resistance (Huerta-Espino et al., 2011).  P. triticina affects wheat in all 

regions where it is produced.  Although it not as devastating a disease as related 

species like stem rust (P. graminis Pers.) as it normally causes yield losses under 

10%, leaf rust  epidemics can be severe when conditions are favorable, causing yield 

losses as high as 30-50% (Pretorius et al., 1988; Roelfs et al., 1992; Huerta-Espino et 

al., 2011).   

The cereal rusts have heteroaecious lifecycles, involving both sexual and 

asexual reproductive stages on separate host species.  The life cycle begins with telia 

on the primary cereal host tissue.  Telia form near the end of the cereal host lifecycle 

and produce teliospores.  Teliospores can survive the summer and begin producing 

basidiospores by meiosis in the autumn.  Basidiospores are wind-dispersed and 

establish infection on the alternate host, in the case of leaf rust the alternate hosts 

include common meadow-rue (Thalictrum speciosissimum L.) and Isopyrum 

fumarioides L. (Roelfs et al., 1992; Bolton et al., 2008).   

After infection of the alternate host, sexual reproduction can occur.  P. 

triticina mycelia form specialized structures called pycnia on the upper side of the 

alternate host leaves, which produce haploid sexual spores called pycniospores.  

pycniospores are splashed or transported by insects to another pycnium, where they 

encounter receptive hyphae. After successful fertilization with a receptive hypha of a 

compatible mating type, dikaryotic hyphae will proliferate and form aecia on the 

underside of the leaf. Aecia produce aeciospores, which are then dispersed by the 
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wind and infect the cereal primary host.  After infection of the cereal host, uredinia, 

or pustules, bearing urediniospores form on the upper surface of the leaves. When the 

cereal host approaches physiological maturity, P. triticina produces telia structures 

which begin the cycle again (Roelfs et al., 1992; Bolton et al., 2008).  

Epidemiology and Infection Biology 

While the life cycles of Puccinia sp. are complex involving 5 different spore 

stages, alternate hosts are not found in many wheat producing regions of the world, 

preventing sexual reproduction in wild populations. Instead, reproduction is clonal, 

with the disease cycle consisting of successive generations of uredinia producing 

urediniospores exclusively on the primary cereal host (Goyeau et al., 2007).  The 

absence of the alternate host precludes not only sexual reproduction, but also 

overwintering in wheat-producing regions with cold winters, such as the Mid-Atlantic 

United States.  In North America, rust epidemics normally begin in the southern US 

or Mexico. Urediniospores from the south are wind dispersed further north in 

successive stages as the wheat matures and temperatures rise with the advance of 

summer (Roelfs, 1989).  In some instances, leaf rust can over winter as mycelium on 

volunteer wheat (Eversmeyer & Kramer, 2000).  In most years, leaf rust can be found 

in the Gulf of Mexico coastal states in February, spreading to other regions of the 

southeastern US.  By mid-May leaf rust can be found throughout the eastern US and 

southern Great Plains regions, with subsequent spread throughout the northern Great 

Plains completed by the end of July (Kolmer et al., 2007).  

When a urediniospore lands on a wheat leaf, germination is induced by 

environmental conditions.  The spores require high humidity, free water on the leaf 
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surface, and temperatures around 20°C to initiate germination.  In suitable conditions 

infection can occur within 8 hours (Kolmer et al., 2009).  Upon germination, a germ 

tube hypha will grow laterally across the leaf surface until it encounters a stoma.  

When over a stoma, the germ tube will produce appressorium that begins the 

infection process.  The appressorium produces a penetration peg, which is forced 

between the closed guard cells.  Once inside, hyphae grow toward the mesophyll 

cells.  Upon contacting a mesophyll cell, another penetration peg is produced, which 

will invade the host cell and produce a haustorium, the primary feeding structure of P. 

triticina.  With a source of nutrition, the hyphae proliferate and invade other 

mesophyll cells, producing a mycelial network. Uredinia are produced within 7-10 

days, releasing more urediniospores that can begin new infections (Bolton et al., 

2008).  Spore production is continuous, with the rate of sporulation highly dependent 

on host growth stage and immune response and environmental conditions.  Each 

uredinium is capable of producing hundreds to thousands of urediniospores per day 

(Eversmeyer & Kramer, 2000). 

Host Resistance 

While triazole and strobilurin fungicides can be used to control leaf rust, their 

application can be expensive and have negative environmental impacts (Osborne & 

Stein, 2009).  Breeding resistant cultivars is the best strategy for leaf rust 

management and has largely relied on the identification of and selection for leaf rust 

resistance (Lr) genes.  The first leaf rust resistance in wheat was described by Mains 

et al. (1926), with the first Lr gene being designated by Ausemus (1946).  Since then, 

over 60 Lr genes have been designated (Cereal Disease Laboratory, 2013).  Wheat 
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leaf rust resistance genes are classified into 2 categories: seedling resistance genes 

and adult plant resistance (APR) genes.   

Seedling resistance can be manifested in the seedling growth stages, although 

it can also be expressed in adult plants (Bhavani et al., 2011).  Many of these genes 

have been shown to have race specificity, operating on  a gene-for-gene relationship 

with P. triticina (Kolmer, 1996).  In this system there is an avirulence (avr) gene in 

the pathogen corresponding to the resistance gene in the host, the gene-for-gene 

hypothesis (Flor, 1971).  To date, 3 seedling resistance Lr genes have been cloned 

and characterized.  Lr1, Lr10, and Lr21 have all been found to belong to the coiled 

coil nucleotide binding site leucine-rich repeat (CC-NBS-LRR) plant resistance gene 

family (Cloutier et al., 2007).   The targets for these genes are not well understood 

and to date no P. triticina avr genes have been cloned.  When deployed alone, 

seedling resistance Lr genes tend to last only a few years before mutations 

accumulated in avr genes alter the interaction of Lr-avr, allowing leaf rust to 

overcome host resistance.  The clonal nature of P. triticina reproduction and 

extensive varietal monoculture in wheat cultivation make this threat more 

pronounced. 

Adult plant resistance is manifested after emergence of the flag leaf.  APR 

genes are also known as partial resistance or slow rusting genes.  They are largely 

race non-specific (Caldwell, 1968).  The slow rusting genes reduce the number and 

size of uredinia and lengthen the latent period before uredinia are formed (Kuhn et al., 

1978).  Furthermore, several APR genes have been found to have pleiotropic effects, 

conferring resistance to other rusts and fungal pathogens (Spielmeyer et al., 2013) To 
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date four APR genes have been described: Lr34, Lr46, Lr67, and Lr68 (Singh et al., 

1998; Lagudah et al., 2009; Hiebert et al., 2010; Herrera-Foessel et al., 2012).  Of 

these, Lr34 has been cloned and is predicted to be an ATP binding cassette 

transporter, though its substrate remains unknown (Krattinger et al., 2009).  While 

APR genes can provide durable resistance there is still a risk of the development of 

virulent races with overreliance on a single gene of resistance.   

The best breeding strategy to control leaf rust is to pyramid, or stack, multiple 

Lr genes within a single cultivar.  While phenotypic selection for multiple sources of 

resistance can be difficult, the advent of DNA markers has allowed the application of 

marker assisted selection (MAS) in breeding for leaf rust resistance (Vida et al., 

2009) and many other traits.  MAS relies on genetic mapping of traits of interest and 

the development of tightly linked diagnostic markers for use in selection.  The 

objective of this study was to map leaf rust resistance in the soft red winter wheat 

SS8641, which has been postulated to have Lr37 and an additional source of 

resistance.  Identifying this potentially novel source may provide a new Lr gene with 

diagnostic markers for use by US wheat breeders.  

 

 

 

 

 

 14 
 



 

Chapter 2: Mapping Fusarium Head Blight Resistance QTL 

 

Introduction 

Fusarium head blight (FHB) or wheat scab caused by Fusarium graminearum 

Schwabe poses a major threat to wheat (Triticum aestivum L. ssp. aestivum) 

production in the United States and abroad.  FHB infects wheat spikes and can cause 

reduced grain fill, production of low-quality “scabby” kernels or “tombstones”, and 

accumulation of deoxynivalenol (DON) and other trichothecene mycotoxins.  FHB 

infection reduces grain yield and quality and leads to the accumulation of DON in 

diseased kernels.  F. graminearum is also a pathogen of maize (Zea mays L.) and can 

survive as a saprophyte on crop residues left in the field to infect subsequent crops.  

Historically, conventional tillage practices reincorporated these residues into the soil, 

suppressing FHB inoculum in the process.  In recent decades, there has been a shift 

away from conventional tillage, with 35.5% of US cropland sown with no-till 

practices (Horowitz et al., 2010).  The prevalence of decreased tillage practices that 

leave F. graminearum inoculum on the surface and cropping systems with wheat 

planted after maize is extremely conducive to FHB infection, leading to regional 

epidemics causing estimated economic losses as high as $3 billion from 1990 to 2000 

(Windels, 2000).   

The main FHB control strategies for this cropping system are spraying with 

triazole fungicides and planting of wheat cultivars with moderate resistance. Triazole 

fungicides have been found to be the most effective means of chemical control but are 
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still incapable of suppressing disease completely in a conducive environment with a 

susceptible wheat cultivar (Mesterházy et al., 2003).  The single most effective 

strategy for control has been the development and deployment of resistant cultivars 

(Beyer et al., 2006).  FHB resistance is inherited as a quantitative trait, with many loci 

contributing to the resistance phenotype.  Many quantitative trait loci (QTL) have 

been identified (Buerstmayr et al., 2009).  The most significant and consistent QTL 

identified is Fhb1 on chromosome 3BS.  Fhb1 was identified in the Chinese spring 

wheat cultivar Sumai 3 and its derivative Ning 7840, explaining over 40% of the FHB 

resistance in the population in which it was mapped (Anderson et al., 2001).  While 

this major QTL has been an important source of FHB resistance, incorporating this 

exotic material into US wheat breeding programs has been challenging, due to the 

unintended introduction of unfavorable traits (Brown-Guedira et al., 2008).  Recent 

breeding efforts in the US have sought to identify “native” resistance in adapted 

germplasm that will supplement known exotic FHB resistance QTL. Soft red winter 

wheat (SRWW) is grown east of the Mississippi River, often following maize, faces a 

significant threat from FHB.  Native resistance has been identified and characterized 

in several  SRWW cultivars including Ernie (McKendry et al., 1995; Liu et al., 2005; 

Liu et al., 2007; Liu et al., 2013) and Massey ( Liu et al., 2013). Other moderately 

resistant cultivars reported include McCormick (Griffey, 2005), Truman (McKendry 

et al., 2005), Bess (McKendry et al., 2007), Roane (Griffey et al., 2001), Tribute 

(Griffey et al., 2005), and Jamestown (Griffey et al., 2010).  FHB resistance from 

McCormick has not yet been characterized.  The SRWW breeding line MD01W233-

06-1 was derived from a cross of McCormick and Choptank.  This line has been 
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shown to have superior FHB resistance in the field and is reported to lack the alleles 

associated with Fhb1 and other known resistance QTL (Costa et al., 2010). The 

objective of this experiment was to map the source of FHB resistance in MD01W233-

06-1 using a doubled haploid mapping population derived from the F1 cross of 

MD01W233-06-1 and SS8641, a highly susceptible SRWW cultivar.  Both parents of 

the mapping population have been bred for the eastern US.  Markers associated with 

any resistance QTL identified from this work will be immediately applicable to the 

region and supplement current breeding resources in SRWW. 

Materials and Methods 

Plant Materials 

 A soft red winter wheat doubled haploid (DH) mapping population of 135 

lines was developed by Dr. J. Paul Murphy of North Carolina State University in 

2009 using the wheat x maize wide cross method.  The population was generated 

from F1 progeny from the cross MD01W233-06-1 (Hereafter referred to as MD233; 

pedigree=McCormick/Choptank) by the Southern States (SS) 8641 (pedigree=GA 

881130/2*GA 881582), made in the greenhouse at the University of Maryland, 

College Park.   MD01W233-06-1 was selected as the resistant parent based on prior 

data demonstrating resistance to FHB and the absence of known FHB resistance QTL 

(Costa et al., 2010).  SS8641 is highly susceptible to FHB. During initial seed 

increases and preliminary genotyping, DH lines with extremely late heading dates and 

heterozygous marker genotypes were eliminated from the population, reducing the 

number of DH lines to a total of 124. 
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Phenotypic Evaluation for FHB Resistance 

 
Greenhouse Experiment 

In winter 2011, the DH population and parents were grown in the greenhouse 

at the University of Maryland College Park for a single-floret inoculation experiment 

to assess types II (spread) and III (DON) resistance to FHB.  An isolate of F. 

graminearum was generously provided by Dr. David Van Sanford of University of 

Kentucky.  Inoculum preparation, inoculation, and phenotypic evaluation for severity 

(SEV), percentage of Fusarium-damaged  kernels (FDK), and DON content were 

conducted as described in Kang et al., (2011).  DON analysis was performed by Dr. 

Yanhong Dong at the University of Minnesota, St. Paul according to the protocol 

followed by Fuentes et al. (2005).   

 

Field Experiments 

 

To evaluate types I (initial infection), II, and III resistance, the DH population 

and parents were grown in inoculated field nurseries.  The population was evaluated 

in spring of 2011 and 2012 at the University of Maryland Lower Eastern Shore 

Research and Education Center in Salisbury, MD and Cunningham Research and 

Extension Center in Kinston, NC.  The DH lines and parents were planted in 1.2m 

single-row plots in randomized complete block designs.  In Salisbury, 3 blocks were 

planted, while in Kinston, space limitation allowed only 2 blocks to be planted.  In 

Salisbury, corn spawn F. graminearum inoculum (generously provided by Dr. 

Arvydas Grybauskas of University of Maryland) was spread around the plots 
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approximately a month before heading date.  In Kinston, plots were spray inoculated 

with F. graminearum conidia suspension at the start of anthesis (Feekes 10.5).  Plots 

in all locations were evaluated for incidence (INC) of FHB (percentage of heads with 

FHB symptoms, a measure of type I resistance), and severity of FHB (percentage of 

head with FHB symptoms, a measure of type II resistance).  Plots in Salisbury were 

also evaluated for heading date and height after flowering (Feekes 11).  At full 

maturity (Feekes 11.3), a random sample of spikes from each plot was collected and 

threshed.  FDK was determined based on a subsample of 200 kernels that were used 

to estimate DON.  In both the 2011 and 2012 field seasons, plots at Kinston were 

inoculated before all DH lines were at flowering (Feekes 10.5).  Those lines that 

could not be inoculated were discarded, so as to prevent conflation of resistance and 

disease escape. At this location, data was collected for 115 lines in 2011 and 102 lines 

in 2012. 

 

DNA extraction and Marker Analysis 

A set of the 124 DH lines and parents lines were planted in 96-cell planting 

trays to collect leaf tissue for DNA extraction.  Tissue samples were cut from 

seedlings at the 2-leaf stage for DNA extraction.  DNA extraction was performed as 

described in Kang et al. (2011) by Dr. Gina Brown-Guedira at the USDA Eastern 

Small Grains Genotyping Lab in Raleigh, NC. The population was screened with 29 

short sequence repeat (SSR) markers as described in Kang et al. (2011) by Dr. 

Brown-Guedira.  SSRs were selected from Roder et al. (1998), Somers et al. (2004), 

and Song et al. (2005) including: wmc474, wmc471, gwm272, gwm11, barc170, 
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barc45, wmc496, barc164, wmc273, barc163, barc101, wmc278, barc100, barc12, 

barc80, barc10, barc28, barc127, barc147, barc137, gdm136, barc59, gwm111, 

gwm149, gwm260, gwm261, gwm282, gwm304, and gwm319.  The population was 

then genotyped using the wheat 9K iSelect Beadchip Assay, with the assay performed 

as described in Cavanagh et al. (2013) by Dr. Shiaoman Chao at the USDA Northern 

Central Small Grains Genotyping Lab in Fargo, ND.  SNP genotyping calls were 

made using GenomeStudio v2011.1 software (Illumina, San Diego, CA) as described 

in Cavanagh et al. (2013) by Dr. Brown-Guedira.  The population was also genotyped 

using KASP (Kompetitive Allele Specific PCR) assays (LGC Genomics, Middlesex, 

UK).  KASP markers were selected from markers designed by the regional 

genotyping labs (IWB49398, TaPpdDD001, sbv5D_6060) and selected markers from 

Wilkinson et al. (2012) including BS00081724, BS00024094, BS00021850, 

BS00024015, BS00022436, BS00023944, BS00047797, BS00064002, BS00024118, 

BS00117841, BS00098495, BS99999954, BS00065928, BS99999957, BS00036421, 

BS99999964, BS00024014, BS99999971, BS00122945, BS99999998, and 

BS00022283.  In addition to molecular markers, the population segregates for 

coleoptile color, a morphological marker. SS8641 has a green coleoptile and MD233 

has a red coleoptile.  The population was evaluated for this trait after emergence of 

coleoptiles, prior to emergence of the first true leaf. 

Linkage Mapping 

2091 SNPS (from 9k and selected KASP markers), 21 SSR markers, and the 

Rc-D1 (red coleoptile) morphological markers were used for initial linkage map 

construction. Linkage analysis was performed using ICIMapping v.3.3 (Wang, 2013) 
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using the Kosambi mapping function. Chi square test for goodness of fit was used to 

detect segregation distortion for all markers, using the 1:1 ratio expected in a doubled 

haploid mapping population, with markers with p-values less than 0.05 declared 

distorted.  Mapping was performed in a stepwise fashion. In the initial map, all 2116 

polymorphic markers that exhibited no segregation distortion markers were step 

included, using a LOD threshold for group of 6.0, the RECORD ordering algorithm, 

and the default rippling parameters. In the second step, existing linkage groups were 

anchored to wheat chromosomes using  published data (Roder et al., 1998; Khlestkina 

et al., 2002; Somers et al., 2004; Carollo et al., 2005; Wilkinson et al., 2012; 

Cavanagh et al., 2013).  Linkage analysis was performed a second time, using the 

anchoring information and the same parameters described above.  For the third step, 

cosegregating markers were removed from the map, with a single marker representing 

each bin, linkage analysis was performed with the remaining 124 markers, again with 

the same parameters.   

 
Statistical analysis and QTL mapping 
 

PROC CORR of SAS version 9.3 (SAS Institute, Cary, NC) was used to 

calculate Pearson’s correlation coefficients. PROC GLM was used to calculate least 

square (LS) means for each phenotypic trait, which were then used for QTL mapping.  

QTL mapping was performed with the ICIM-ADD mapping method of ICIMapping 

version 3.3 (J. Wang, 2013).  Default mapping parameters were used with LOD 

significance threshold of 3.0.  
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Results 

Phenotypic Traits 

Phenotypic evaluation FHB (INC, SEV, FDK, DON) and agronomic traits 

(heading date and height) showed variation among the DH lines (Table 1).  

Comparisons of the parents for each trait in each environment showed significant 

differences (p<0.05) between MD233 and SS8641 for all but 3 traits (heading date in 

Salisbury in 2011, plant height in Salisbury in 2012, and FHB incidence in Kinston in 

2012).  MD01W233-06-1 had consistently lower FHB symptoms and DON 

concentration than SS8641 across all environments.  DH lines showed transgressive 

segregation with the means of DH lines over- and outperforming parental means.  

This occurred for all traits in every environment.  In 2011 in Kinston, SS8641 had 

100% severity, preventing detection of transgressive segregants.  In this same 

environment, SS8641 DON concentration was greater than the DH line range.  

Pearson correlation coefficients for each trait in each environment were calculated 

(Table 2).  Heading dates measured in Salisbury in 2011 and 2012 had significant 

correlations with all traits except FHB traits measured in the greenhouse inoculation 

experiment.  Heading dates in 2011 were highly correlated with heading dates, FDK, 

and DON from Salisbury in 2012 (r=0.90, 0.74, and 0.80, respectively).  Heading 

dates in 2012 were also highly correlated with FDK and DON from Salisbury in 2012 

(r=0.71 and 0.79, respectively).  FDK and DON were highly correlated in 4 of 5 

environments.  In 2011, FDK and DON were highly correlated in both Salisbury 

(r=0.80) and Kinston (r=0.93) field experiments and in the single-floret inoculation 

greenhouse experiment (r=0.81). In Kinston in 2012 there was also a highly 
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significant correlation between FDK and DON (r=0.76).  Greenhouse FHB ratings 

were not highly correlated with field disease ratings, but were highly correlated to 

each other, with severity correlating to FDK (r=0.81) and DON (r=0.78).   

Genetic Linkage Map 

There were 8686 potential markers for linkage map construction.  After 

removing unsuccessful and monomorphic markers and testing for segregation 

distortion, 2116 markers (2091 SNP, 21 SSR, and Rc-D1) were used for initial 

linkage map construction.  Markers mapped to 37 linkage groups, which were then 

anchored using published consensus maps and reanalyzed, with unanchored makers 

mapping to linkage groups based on LOD threshold.  The subsequent map had 26 

linkage groups, 21 corresponding to respective wheat chromosomes with at least 1 

marker in each group.  Many markers cosegregated, mapping to the same genetic 

location.  A single marker was chosen to represent each locus, leaving 254 

informative loci.  A final round of linkage analysis with only the unique loci revealed 

a map with 26 linkage groups, corresponding to each wheat chromosome (Table 3) 

with 5 single unanchored markers. The map spanned 2334.3cM with an average 

distance of 9.4cM between markers.   

QTL Analysis 

A total of 52 significant loci were detected for the 23 traits analyzed.  There 

were 5 regions on 3 chromosomes where QTL for a trait were mapped from multiple 

environments (Table 4).  LOD scores for significant QTL ranged from 3.0 to 19.5, 

with R2 values ranging from 6.5 to 45.2%.  The only major QTL (R2>30%) were 
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associated with heading date in Salisbury from 2011 (R2=45.2%) and 2012 

(R2=43.5%).   

One QTL on the short arm of chromosome 1A (1AS) mapped from 0-1cM 

(Figure 1), between the SSR marker wmc496 and IWA7021 (SNP index from 9K 

iSelect Beadchip Assay), which mapped 2.46cM apart. A total of 8 QTL mapped to 

this region, including repeated QTL for FHB severity from Kinston in 2011 (additive 

value=8.4%) and 2012 (additive value=6.1%), DON concentration from Salisbury in 

2011 (additive value=0.8ppm) and 2012 (additive value=4.5ppm) and from Kinston 

in 2011 (additive value=7.4ppm), and FHB incidence from Kinston (additive 

value=6.6%) and Salisbury in 2012 (additive value=8.6%).   

On chromosome 3B, there were 3 regions that had QTL for FHB-related traits 

across environments (Figure 2). There were repeated QTL for FDK that mapped 

between IWA2493 and IWA3426 from 37-40cM: from Kinston in 2011 (additive 

value=5.8%) and the greenhouse (additive value=6.2%).  On the long arm of 

chromosome 3B (3BL), 9 QTL mapped to a region between barc164 and IWA1683, 

spanning from 63-66cM.  There were 3 QTL for FHB severity with additive values 

ranging from 3.6 to 9.5%.  There were another 3 QTL in this region for FDK with 

additive values ranging from 1.4 to 7.4%.  There were 2 QTL for DON concentration 

at the same locus from Salisbury and Kinston in 2011 (additive values of 0.9 and 

5.8ppm, respectively). On 3BL at 89cM, 2 QTL for FHB incidence from Salisbury in 

2011 and Kinston in 2012 mapped between IWA8043 and IWA786 (additive values 

of 6.0 and 6.3%, respectively).  
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Another region on the short arm of chromosome 2D (2DS) between 

TaPpdDD001 (a KASP marker diagnostic for the photoperiod sensitivity gene Ppd-

D1) and IWA3248 had repeated QTL for DON and heading date.  Additive values for 

DON QTL were -6.9% and -3.1% from Salisbury and Kinston, respectively, in 2012.  

 

Discussion 

Mapping sources of US native FHB resistance is an important focus of 

breeding SRWW and other wheat classes.  Crossing with exotic, unadapted 

germplasm has led to introduction of unfavorable agronomic and quality traits 

(Brown-Guedira et al., 2008), and breeding efforts have relied heavily on a few major 

effect QTL with use of DNA markers for marker assisted selection (Anderson, 2007). 

This study was designed to map US native resistance in the SRWW germplasm 

MD233.  The DH population of 124 lines derived from the F1 progeny from the cross 

MD233 by SS8641 was evaluated for resistance to FHB in four inoculated field 

environments and a single-floret inoculation greenhouse experiment.  For all 

measures of FHB disease (incidence, severity, FDK, and DON concentration), 

MD233 was consistently significantly (except in the case of incidence measured in 

Kinston in 2012) lower in disease symptoms than the susceptible parent SS8641, 

suggesting that MD233 was likely to be the source of genetic resistance in the DH 

lines, as was expected based on resistance reported in Costa et al. (2010).   

There were three consistent QTL for FHB and agronomic traits.  The QTL on 

2DS showed negative additive values for heading in both years at Salisbury, FDK, 

DON, and plant height in 2012 at Salisbury, and for DON at Kinston in 2012.  The 

 25 
 



 

negative additive values indicate that SS8641 contributed to the earlier heading, 

shorter height, and lower FDK and DON concentrations reported at this locus.  These 

additive values suggest resistance alleles from SS8641.  However, FDK and DON 

from Salisbury in 2012 were highly correlated with heading date in both 2011 and 

2012 Salisbury field experiments.  Additionally, one of the flanking markers of all the 

QTL reported is TaPpdDD001, a KASP marker developed for detecting the Ppd-D1 

gene, conditioning photoperiod response, suggesting that variation in heading date in 

the DH lines may be explained by photoperiod response.  While it is possible that a 

closely linked gene could condition susceptibility to FHB in MD233, the correlation 

of heading date with FHB resistance has long been recognized (Mesterhazy, 1995; 

Gervais et al., 2003; Somers et al., 2003).  Colocalization of the FHB symptom QTL 

with QTL for heading date in multiple locations suggests that this may be a locus 

associated with passive resistance, with earlier plants having the SS8641 allele 

escaping FHB-conducive environmental conditions and appearing to be resistant.  

On the short arm of chromosome 1A (AS) repeated QTL were detected for 

severity, incidence, DON concentration, and also a single QTL for FDK.  All QTL 

were flanked by wmc496 and IWA7021 and mapped between 0 and 1cM.  The 

additive values for these traits were all positive, indicating that MD233 alleles were 

associated with the more resistant phenotype for these traits. There were no QTL 

found for heading date or height in this region.  Other studies have similarly reported 

FHB resistance QTL on chromosome 1A.  Schmolke et al. (2008) reported coincident 

QTL for FHB resistance and plant height on chromosome 1A in the G16-92/Hussar 

recombinant inbred line population (RIL).  In their study, the linkage group for 1A 
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consisted only of amplified fragment length polymorphism markers (AFLP), which 

prevents identifying the arm of the chromosome associated with the QTL for 

comparison with the QTL identified on 1AS. The FHB resistance QTL on 1A mapped 

to the same location as a QTL for plant height.  Jiang et al. (2007) were the first to 

report a QTL for FHB resistance specifically on 1AS in the Veery/CJ 9306 RIL 

population, with the resistant parent, CJ 9306 contributing resistance alleles.  This 

QTL mapped to a 15cM region between the SSR markers wmc024 and barc148, 

which mapped to the proximal end of 1AS at 48 and 56cM, respectively, according to 

the Somers et al. (2004) microsatellite consensus map. Unfortunately, wmc496, 

which was linked to the 1AS QTL found in this experiment, was not included in the 

Somers et al. (2004) map, preventing a comparison of the positions of these QTL. 

Another QTL for FHB resistance has been reported on 1AS in the Becker/Massey 

RIL population (Liu et al., 2013).  This study used Diversity Arrays Technology 

(DArT) markers combined with SSRs for linkage map construction.  A QTL for FHB 

resistance conferred by the Massey allele was detected in a single environment with a 

peak LOD score at 36.5cM on 1AS and designated Qfhs.vt-1AS.  Precise position 

comparison beyond chromosome arm is difficult due to lack of common markers in 

both maps.    

Another three QTL were identified on chromosome 3B.  The linkage map for 

3B included two SSR markers reported in the Somers et al. (2004) map: barc147 and 

barc164, which mapped to 7cM (3BS) and 70cM (3BL), respectively, on the 

consensus map.  In this study, these SSR mapped to 4.0cM and 57.8cM, respectively. 

One QTL for FDK in Kinston in 2011, FDK from the greenhouse experiment, and 
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FHB severity from Salisbury in 2012 spanned 37-40cM, mapping between the SSR 

anchors.  This QTL could potentially be on either arm of the chromosome, as there is 

no reference point for the centromere.  FHB resistance has been associated with 3BS, 

with Fhb1, a QTL derived from Chinese spring wheat Sumai 3 representing the most 

important source of genetic resistance to FHB.  Additional sources of resistance have 

been found on 3B from the SRWW cultivar Ernie (Liu et al., 2007; Abate et al., 2008; 

Liu et al., 2013) and Massey (Liu et al., 2013). 

Costa et al. (2010) tested MD233 with diagnostic markers for the QTL 

mapped in Ernie and Fhb1. They found that it lacked the allele associated with the 3B 

QTL from both sources.  While MD233 is not thought to have these common sources 

of FHB resistant on 3B, other QTL have been mapped to this same chromosome. 

Löffler et al. (2009) and Liu et al. (2009) performed meta-QTL analyses, aligning 

QTL from multiple studies on a single map using shared markers as reference points.  

Liu et al. (2009) found 3 regions on 3B with QTL conferring FHB resistance.  The 

region centered on Fhb1, mapping to 0-21.6cM between the SSR markers fba311 and 

gwm493. QTL associated with types I, II, III, and IV resistance were mapped to the 

same region from Asian wheat cultivars including Sumai 3, Ning 7840, and 

Wangshuibai. The SSR marker barc147 also falls in this region on 3BS, which was 

not a flanking marker for the QTL identified in this study, suggesting that the 

resistance from MD233 is not derived from Fhb1 or another QTL on the distal end of 

3BS.   

Liu et al. (2009) reported another region with QTL of type II and III resistance 

from Wangshuibai mapped from 65.3-71.2cM anchored near the centromere between 
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SSR gwm285 and fab214.  A third region showed QTL for types II, III, and IV FHB 

resistance from SRWW cultivars Ernie and Massey, Chinese spring cultivar 

Wangshuibai, as well as the European winter wheat cultivars Arina and Apache.  This 

region mapped between fab214 and barc344, spanning from 71.2-85.3cM.  Barc164 

mapped in this region as well, which was reported on the proximal end of 3BL 

(Somers et al., 2004).  Barc164 was also the left flanking marker for the QTL mapped 

between 63-66cM in this study that was associated primarily with types II (severity), 

III (DON), and IV (FDK) resistance.  Liu et al. (2013) reported a QTL for type II 

resistance in the same region named Qfhb.vt-3BL which mapped between DArT 

marker wPt4048 and barc164.  This may be the same QTL found in my study.  

A third QTL was mapped about 20cM toward the distal end of 3BL at 89cM 

between the markers IWA8043 and IWA786.  MD233 alleles contributed type I 

resistance with significant QTL for incidence in Salisbury, 2011 and Kinston, 2012 

(additive values 6.0% and 6.3%, respectively).  Figure 1 suggests that this QTL is 

separate from the QTL at 63-66cM.  Paillard et al. (2004) similarly reported a QTL 

for type II FHB resistance between Qfhb.vt-3BL and the distal end of 3BL. QFhs.fal-

3BL was detected in 2 environments, mapping to 78cM, between the flanking SSR 

markers cfa2134b and gwm131b, with resistance alleles contributed by the resistant 

parent Arina. These flanking markers mapped to a region between 75-78cM on the 

microsatellite consensus map (Somers et al., 2003).  
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Conclusions 

A total of 5 QTL that were repeated across environments mapped to three 

chromosomes in the DH population.  No QTL were identified in the region associated 

with Fhb1, validating that MD233 does not have this source of exotic FHB resistance.  

QTL on 2DS were not meaningful in the context of providing active host resistance, 

the QTL for resistance to DON conferred by SS8641alleles colocalized with QTL for 

heading date and a diagnostic SNP marker for Ppd-D1.  QTL on 1AS and 3B mapped 

to regions previously reported in other mapping populations. While no novel QTL 

have been identified, there may be an important contribution in breeding for FHB 

resistance by identifying better markers for disease resistance in SRWW.  Previous 

studies reporting QTL at these locations have largely relied on microsatellites, 

AFLPs, and DArT-platform SNP markers.  Integration of the publicly available 9K 

iSelect Beadchip Assay and KASP markers may provide reliable markers for use with 

marker assisted selection, in contrast to the relatively few SSRs and proprietary DArT 

markers.  
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Tables and Figures 

Table 1: Mean parent values, doubled haploid population means, and ranges for 
FHB disease and related agronomic trait ratings.  Incidence, severity, FDK, and 
DON and were evaluated in Salisbury, MD and Kinston, NC in 2011 and 2012.  
Heading date and height were measured in Salisbury, MD field experiments.  
Severity, FDK, and DON were measured in a greenhouse single-floret inoculation 
experiment in College Park, MD in 2011.  
 

Trait Year Location MD01W233-06-1 SS8641 DH Mean Range 
Heading Date 
(Julian Days) 2011 Salisbury, MD 124.5 125 125.3 122.3 - 131.7 

 2012 Salisbury, MD 143.2 138.3*** 143.1 135.3 - 157.3 
Height (cm) 2011 Salisbury, MD 95.9 101.6** 94.5 67.7 - 108.4 

 2012 Salisbury, MD 87.2 84.9 83.2 67.7 - 98.2 
Incidence (%) 2011 Salisbury, MD 24.6 66.7*** 33.1 6.7 - 80 

  Kinston, NC 95 100* 96.8 75 - 100 

 2012 Salisbury, MD 20.4 72.5*** 36.6 6.7 - 86.7 

  Kinston, NC 44.1 55.5 50.8 12.6 - 94.7 
Severity (%) 2011 Salisbury, MD 4.3 35.3*** 12.5 1.7 - 50 

  Kinston, NC 28.8 97.5*** 61 14.8 - 100 

  College Park, MD 21.3 88.7*** 57.2 11 - 100 

 2012 Salisbury, MD 12.1 64.2*** 23.1 6.7 - 66.7 

  Kinston, NC 20.1 75.6*** 33.6 7.5 - 95 
FDK (%) 2011 Salisbury, MD 2.9 16.5** 5.7 0.8 - 24.2 

  Kinston, NC 10.3 10.3*** 20.5 2.1 - 89.3 

  College Park, MD 27.1 90.9*** 52.5 9.3 - 91.3 

 2012 Salisbury, MD 11.8 40.9*** 23.2 2.7 - 81.3 

  Kinston, NC 7.6 37.3*** 26 4.3 - 97.3 
DON (ppm) 2011 Salisbury, MD 1.5 10** 3.4 0.1 - 13.2 

  Kinston, NC 10.9 110.3*** 26 3 - 97.3 

  College Park, MD 21.1 363.8** 126.9 2.5 - 529.2 

 2012 Salisbury, MD 6.7 23*** 16.9 1.8 - 108.3 
    Kinston, NC 10.2 26.7** 13.1 3.7 - 38.7 
*Mean values of MD233 and SS8641 significantly different at p=0.05 
**Mean values of MD233 and SS8641 significantly different at p=0.01 
***Mean values of MD233 and SS8641 significantly different at p<0.0001 
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Table 2: Correlation coefficients of phenotypic traits. Correlations from Salisbury, 
MD and Kinston, NC field experiments and greenhouse (GH) inoculation experiment 
in 2011 and 2012. FHB incidence (INC), severity (SEV) Fusarium damaged kernel 
(FDK), deoxynivalenol concentration (DON), heading date (Hd), and height (ht) were 
analyzed. Coefficients appear in color coded boxes, with blue and red indicating 
higher and lower correlation, respectively. Below each coefficient is the associated p-
value.  

 
 

 Trait 2011 
MD-Hd 

2011 
MD-
INC 

2011 
MD-
SEV 

2011 
MD-Ht 

2011 
MD-
FDK 

2011 
MD-
DON 

2011 
NC-
INC 

2011 
NC-
SEV 

2011 
NC-
FDK 

2011 
NC-
DON 

2012 
MD-Hd 

2012 
MD-Ht 

2012 
MD-
INC 

2012 
MD-
SEV 

2012 
MD-
FDK 

2012 
MD-
DON 

2012 
NC-
INC 

2012 
NC-
SEV 

2012 
NC-
FDK 

2012 
NC-
DON 

2011 
GH-
SEV 

2011 
GH-
FDK 

2011MD-INC -0.23                                           

 0.01                                           
2011MD-SEV -0.21 0.87                                         

 0.02 <.0001                                         
2011MD-Ht 0.2 -0.47 -0.47                                       

 0.03 <.0001 <.0001                                       
2011MD-FDK 0.43 0.45 0.47 -0.36                                     

 <.0001 <.0001 <.0001 <.0001                                     
2011MD-DON 0.47 0.48 0.5 -0.24 0.8                                   

 <.0001 <.0001 <.0001 0.01 <.0001                                   
2011NC-INC 0.19 0.23 0.24 -0.18 0.22 0.29                                 

 0.04 0.02 0.01 0.06 0.02 0                                 
2011NC-SEV 0.12 0.5 0.5 -0.22 0.38 0.5 0.63                               

 0.19 <.0001 <.0001 0.02 <.0001 <.0001 <.0001                               
2011NC-FDK 0.27 0.46 0.55 -0.27 0.52 0.57 0.4 0.63                             

 0 <.0001 <.0001 0 <.0001 <.0001 <.0001 <.0001                             
2011NC-DON 0.4 0.39 0.45 -0.19 0.54 0.59 0.42 0.67 0.93                           

 <.0001 <.0001 <.0001 0.05 <.0001 <.0001 <.0001 <.0001 <.0001                           
2012MD-Hd 0.9 -0.25 -0.25 0.27 0.34 0.37 0.2 0.03 0.15 0.26                         

 <.0001 0.01 0 0 0 <.0001 0.03 0.74 0.11 0.01                         
2012MD-Ht 0.4 -0.45 -0.45 0.63 -0.14 -0.11 -0.16 -0.31 -0.22 -0.14 0.44                       

 <.0001 <.0001 <.0001 <.0001 0.11 0.21 0.1 0 0.02 0.13 <.0001                       
2012MD-INC 0.4 0.38 0.41 -0.08 0.55 0.53 0.42 0.52 0.49 0.54 0.35 0.03                     

 <.0001 <.0001 <.0001 0.37 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.76                     
2012MD-SEV 0.14 0.38 0.38 -0.1 0.39 0.42 0.35 0.46 0.53 0.53 0.12 -0.01 0.55                   

 0.12 <.0001 <.0001 0.29 <.0001 <.0001 0 <.0001 <.0001 <.0001 0.19 0.9 <.0001                   
2012MD-FDK 0.74 0.15 0.18 0.07 0.61 0.62 0.41 0.5 0.63 0.69 0.71 0.19 0.73 0.49                 

 <.0001 0.11 0.04 0.43 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.04 <.0001 <.0001                 
2012MD-DON 0.8 -0.03 0 0.21 0.52 0.57 0.31 0.36 0.45 0.56 0.79 0.25 0.58 0.37 0.91               

 <.0001 0.71 0.96 0.02 <.0001 <.0001 0 <.0001 <.0001 <.0001 <.0001 0.01 <.0001 <.0001 <.0001               
2012NC-INC 0.33 0.52 0.5 -0.19 0.48 0.57 0.37 0.52 0.43 0.44 0.26 -0.09 0.62 0.44 0.63 0.58             

 0 <.0001 <.0001 0.06 <.0001 <.0001 0 <.0001 <.0001 <.0001 0.01 0.35 <.0001 <.0001 <.0001 <.0001             
2012NC-SEV 0.21 0.57 0.65 -0.37 0.54 0.57 0.33 0.52 0.63 0.59 0.07 -0.27 0.64 0.53 0.67 0.48 0.66           

 0.04 <.0001 <.0001 0 <.0001 <.0001 0 <.0001 <.0001 <.0001 0.51 0.01 <.0001 <.0001 <.0001 <.0001 <.0001           
2012NC-FDK 0.22 0.55 0.68 -0.47 0.62 0.63 0.32 0.5 0.64 0.6 0.1 -0.31 0.54 0.4 0.6 0.45 0.56 0.76         

 0.03 <.0001 <.0001 <.0001 <.0001 <.0001 0 <.0001 <.0001 <.0001 0.3 0 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001         
2012NC-DON 0.48 0.42 0.37 -0.25 0.48 0.55 0.31 0.37 0.39 0.42 0.52 0.07 0.61 0.32 0.71 0.7 0.58 0.43 0.55       

 <.0001 <.0001 0 0.01 <.0001 <.0001 0 0 <.0001 <.0001 <.0001 0.5 <.0001 0 <.0001 <.0001 <.0001 <.0001 <.0001       
2011GH-SEV -0.07 0.36 0.42 -0.21 0.18 0.31 0.08 0.32 0.4 0.33 -0.15 -0.19 0.27 0.37 0.19 0.07 0.37 0.56 0.38 0.25     

 0.46 <.0001 <.0001 0.02 0.04 0 0.42 0 <.0001 0 0.09 0.04 0 <.0001 0.04 0.47 0 <.0001 0 0.01     
2011GH-FDK 0.09 0.39 0.45 -0.24 0.29 0.42 0.19 0.45 0.51 0.47 0.03 -0.23 0.39 0.4 0.34 0.24 0.41 0.57 0.46 0.29 0.81   

 0.31 <.0001 <.0001 0.01 0 <.0001 0.04 <.0001 <.0001 <.0001 0.77 0.01 <.0001 <.0001 0 0.01 <.0001 <.0001 <.0001 0 <.0001   
2011GH-DON 0.04 0.41 0.48 -0.24 0.35 0.44 0.1 0.36 0.55 0.49 -0.03 -0.2 0.33 0.41 0.28 0.17 0.32 0.55 0.45 0.25 0.78 0.8 

  0.68 <.0001 <.0001 0.01 <.0001 <.0001 0.3 <.0001 <.0001 <.0001 0.7 0.03 0 <.0001 0 0.06 0 <.0001 <.0001 0.01 <.0001 <.0001 
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Table 3: Linkage group composition. Linkage groups with the number of markers 
in each group and the length of each group in centiMorgans (cM) 

Chromosome Number of Markers Length (cM) 
1A 10 71.2 
2A 18 178.3 
3A 17 150.5 
4A 13 199.0 
5A 18 175.4 
6A 9 110.9 
7A 18 169.2 
1B 17 112.1 
2B 17 111.6 
3B 15 144.8 
4B 13 70.3 
5B 15 115.3 
6B 17 118.3 
7B 11 143.0 
1D 8 74.1 
2D 10 93.8 
3D 2 66.4 
4D 1 0.0 
5D 6 113.5 
6D 4 79.3 
7D 5 37.3 
Total 249 2334.3 
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Table 4: Significant QTL positions, with flanking markers, LOD scores, R2 
values and additive effects.  FHB incidence and severity, FDK, DON concentration 
were measured in the field in Salsibury, MD and Kinston, NC in 2011 and 2012. 
Plant height and heading date were also evaluated in Salisbury.  Severity, FDK and 
DON were evaluated in a single floret inoculation experiment performed in a 
greenhouse at College Park, MD. 
Trait Environment Year Chromosome Position 

(cM) 
Left Flanking 

Marker 
Right Flanking 

Marker LOD R² 
(%) 

Additive 
Effect 

Severity Kinston, NC 2011 1AS 0 wmc496 IWA7021 5.3 14.0 8.4 

Severity Kinston, NC 2012 1AS 0 wmc496 IWA7021 4.2 10.9 6.1 

DON Salisbury, MD 2011 1AS 0 wmc496 IWA7021 4.7 11.3 0.8 

DON Kinston, NC 2011 1AS 0 wmc496 IWA7021 6.4 17.2 7.4 

DON Salisbury, MD 2012 1AS 0 wmc496 IWA7021 4.0 7.6 4.5 

Incidence Kinston, NC 2012 1AS 0 wmc496 IWA7021 3.4 11.3 6.6 

Incidence Salisbury, MD 2012 1AS 1 wmc496 IWA7021 6.3 15.2 8.6 

FDK Salisbury, MD 2012 1AS 1 wmc496 IWA7021 7.4 12.2 5.3 

          
FDK Kinston, NC 2011 3B 37 IWA2493 IWA3426 3.9 17.2 5.8 

FDK College Park, MD 2011 3B 38 IWA2493 IWA3426 4.2 11.7 6.2 

Severity Salisbury, MD 2012 3B 40 IWA2493 IWA3426 3.1 9.9 3.8 

          

Height Salisbury, MD 2012 3BL 57 IWA4575 barc164 3.7 9.5 -1.7 

Severity Kinston, NC 2011 3BL 63 barc164 IWA1683 6.1 17.7 9.5 

Severity Salisbury, MD 2011 3BL 66 barc164 IWA1683 4.2 14.6 3.6 

Severity Kinston, NC 2012 3BL 66 barc164 IWA1683 5.1 13.4 6.8 

FDK Salisbury, MD 2011 3BL 66 barc164 IWA1683 6.1 14.6 1.4 

FDK Salisbury, MD 2012 3BL 66 barc164 IWA1683 4.3 6.5 3.9 

FDK Kinston, NC 2012 3BL 66 barc164 IWA1683 4.9 20.1 7.4 

DON Salisbury, MD 2011 3BL 66 barc164 IWA1683 5.3 13.0 0.9 

DON Kinston, NC 2011 3BL 66 barc164 IWA1683 4.1 10.4 5.8 

Incidence Salisbury, MD 2012 3BL 66 barc164 IWA1683 5.0 11.7 7.6 

          

Incidence Salisbury, MD 2011 3BL 89 IWA8043 IWA786 4.8 16.6 6.0 

Incidence Kinston, NC 2012 3BL 89 IWA8043 IWA786 3.0 10.2 6.3 

          
DON Salisbury, MD 2012 2DS 47 TaPpdDD001 IWA3248 8.4 17.9 -6.9 

Height Salisbury, MD 2012 2DS 49 TaPpdDD001 IWA3248 6.3 18.5 -2.3 

FDK Salisbury, MD 2012 2DS 49 TaPpdDD001 IWA3248 9.8 17.6 -6.4 

Heading Salisbury, MD 2012 2DS 49 TaPpdDD001 IWA3248 18.7 43.5 -4.5 

Heading Salisbury, MD 2011 2DS 50 TaPpdDD001 IWA3248 19.5 45.2 -1.7 

DON Kinston, NC 2012 2DS 62 TaPpdDD001 IWA3248 6.0 20.1 -3.1 

*Positive and negative additive effects indicate resistance contributed by MD01W233-06-1and SS8641 
alleles, respectively. 
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Figure 1: Chromosome 1A linkage group with LOD score plot. The 
black arrow indicates QTL with resistance alleles contributed by 
MD01W233-06-1. 
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Figure 3:  

 

Figure 2: Chromosome 3B linkage group with LOD score plot. The 
black arrows indicate QTL with resistance alleles contributed by 
MD01W233-06-1. 
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Chapter 3: Mapping Leaf Rust Quantitative Resistance  

 

Introduction 

Leaf rust (Puccinia triticina f. sp. tritici Eriks.) is a common foliar pathogen 

of wheat (Triticum aestivum L. ssp. aestivum).  This fungus was responsible for $350 

million in losses in the US alone from 2000-2004 (Huerta-Espino et al., 2011).  Yield 

reductions in susceptible cultivars typically range from 5-15% depending on host 

growth stage at time of initial infection (Kolmer, 1996), although losses as high as 

50% have been reported (Huerta-Espino et al., 2011).  Like other rusts, P. triticina 

has a complex life cycle, relying on wheat as its primary host and meadow rue 

(Thalictrum speciosissimum L.) as its alternate host, on which the sexual stages of 

reproduction occur (Bolton et al., 2008).  The absence of suitable alternate hosts 

outside of Eurasia eliminates sexual reproduction for the lifecycle of P. triticina, and 

reproduction occurs clonally, with successive generations of asexual spore production 

on wheat plants (Ordoñez & Kolmer, 2009).  Mutation occurs frequently, giving rise 

to new physiological races of leaf rust, defined by their virulence to known wheat leaf 

rust resistance genes (Lr genes).  Leaf rust can be controlled with fungicides, 

although planting resistant cultivars is a more environmentally sustainable and 

economically practical management strategy. 

Over 60 Lr genes have been identified (Cereal Disease Laboratory, 2013), the 

majority of which confer seedling resistance.  Seedling resistance Lr genes normally 

behave in a gene-for-gene relationship with a complementary leaf rust avirulence 

(avr) gene.  Mutations in avr genes can alter the interaction between Lr and avr 
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genes, producing new leaf rust races with virulence to previously effective Lr genes. 

In this way, Lr1, Lr2a, Lr9, Lr17, Lr22, Lr24, Lr26, and Lr41 have become 

ineffective in many US wheat growing regions (Kolmer et al., 2009).  Breeders rely 

on identifying new Lr genes and pyramiding multiple Lr genes within the same 

cultivar to make leaf rust resistance more robust and durable.   

The objective of this study was to map an unknown source of leaf rust 

resistance in the doubled haploid mapping population derived from the F1 cross of 

MD01W233-06-1 and SS8641.  MD01W233-06-1 has been postulated to have Lr1 

and Lr24 (Costa et al., 2010), while SS8641 has been postulated to have Lr37 and an 

additional, unknown source of resistance (Cereal Disease Laboratory, 2014).  

Mapping this potentially novel source of resistance will provide breeders with 

markers for selection in germplasm adapted to the US soft red winter wheat growing 

region.   

Materials and Methods 

Plant Materials 

A soft red winter wheat doubled haploid (DH) mapping population of 135 

lines was developed from F1 progeny of the cross MD01W233-06-1 (hereafter 

referred to as MD233; pedigree: McCormick/Choptank) and Southern States (SS) 

8641 (pedigree: GA 881130/2*GA 881582), made in the greenhouse at the University 

of Maryland, College Park.   The population was made by Dr. J. Paul Murphy of 

North Carolina State University in 2009 using the wheat x maize wide cross method.  

The population was initially designed to map Fusarium head blight resistance, with 

MD233 as the resistant parent.  In early field experiments, DH lines showed 
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segregation for resistance to leaf rust in the field.  During initial seed increases and 

preliminary genotyping, DH lines with extremely late heading dates and heterozygous 

marker genotypes were eliminated from the population, reducing the number of DH 

lines to a total of 124. 

Phenotypic Evaluation for Leaf Rust Field Resistance 

The population was evaluated in both field and greenhouse experiments.  The 

population was planted over 4 locations over the 2011-2012 and 2012-2013 field 

seasons.  In 2011-2012, the population was evaluated at the University of Maryland 

Lower Eastern Shore Research and Education Center in Salisbury, MD; at the 

Louisiana State University Central Research Station in Baton Rouge, LA, and in 

experimental fields of DONMARIO Semillas® in Nueve de Julio, Buenos Aires, 

Argentina.  In 2012-2013, the population was evaluated again in Baton Rouge, and at 

the North Carolina State University Vernon G. James Research and Extension Center 

in Plymouth, NC.  The DH lines and parents were planted in 1.2m single-row plots in 

randomized complete block designs.  In Salisbury and Nueve de Julio, 3 blocks were 

planted, while in Baton Rouge and Plymouth, space limitation allowed only 2 blocks 

to be planted.  Plots were infected with natural inoculum and were evaluated after 

heading and before physiological maturity for leaf rust symptoms.  A quantitative 

scale (0-4) as described by (Chu et al., 2009) was used to measure leaf rust severity.  

In Baton Rouge in 2012, leaf rust severity was measured using a 0-100% modified 

Cobb’s scale (Peterson et al., 1948). 
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Phenotypic Evaluation for Seedling Resistance 

 The population and parents were also evaluated for seedling resistance at the 

Cereal Disease Laboratory in St. Paul, MN.  Screening was performed by Dr. James 

Kolmer using isolates of leaf rust races BBBD (Race 1) and TNRJ as described in 

Oelke and Kolmer (2004).  Infection types were evaluated as described in Long and 

Kolmer (1989) and classified as having either a susceptible or a resistant host 

response.  

DNA Extraction and Marker Analysis 

The DH population and parents were planted in 96-cell planting trays to 

collect leaf tissue for DNA extraction.  Tissue samples were cut from seedlings of the 

124 DH lines and parents at the 2-leaf stage.  DNA extraction was performed as 

described in Kang et al. (2011) by Dr. Gina Brown-Guedira at the USDA Eastern 

Small Grains Genotyping Lab in Raleigh, NC. The population was screened with 

twenty-nine short sequence repeat (SSR) markers as described in Kang et al. (2011) 

by Dr. Brown-Guedira.  The SSRs, listed in the previous chapter, were selected from 

Roder et al. (1998), Somers et al. (2004), and Song et al. (2005).  The 9K iSelect 

Beadchip Assay was used to genotype the population and parents with the assay 

performed as described in Cavanagh et al. (2013) by Dr. Shiaoman Chao at the 

USDA Northern Central Small Grains Genotyping Lab in Fargo, ND.  SNP 

genotyping calls were made using GenomeStudio v2011.1 software (Illumina, San 

Diego, CA) as described in Cavanagh et al. (2013) by Dr. Brown-Guedira.  The 

population was also genotyped using KASP (Kompetitive Allele Specific PCR) 

assays (LGC Genomics, Middlesex, UK).  KASP markers were selected from 
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markers designed by the regional genotyping lab (IWB49398, TaPpdDD001, 

sbv5D_6060) and selected markers listed in the previous chapter from Wilkinson et 

al. (2012).  In addition to molecular markers, the population segregated for coleoptile 

color, a morphological marker. MD233 has a red coleoptile, while SS8641 has a 

green coleoptile.  The population was evaluated for this trait after emergence of 

coleoptiles and prior to emergence of the first true leaf. 

Linkage Mapping 

2091 SNPS (from 9k and selected KASP markers), 21 SSR markers, and the 

Rc-D1 (red coleoptile) morphological markers were used for initial linkage map 

construction. Linkage analysis was performed using ICIMapping v.3.3 (Wang, 2013) 

using the Kosambi mapping function.  Initial map construction incorporated the 2116 

polymorphic markers using a LOD threshold for group of 6.0, the RECORD ordering 

algorithm, and the default rippling parameters.  Linkage groups in the initial map 

were anchored to wheat chromosomes using  published data (Roder et al., 1998; 

Khlestkina et al., 2002; Somers et al., 2004; Carollo et al., 2005; Wilkinson et al., 

2012; Cavanagh et al., 2013).  With the same mapping parameters described above, 

linkage analysis was performed a second time with anchoring information included.  

Cosegregating markers were then removed from the map, with a single marker 

representing each bin.  Linkage analysis was subsequently performed with the 

resultant 124 markers, again with the same parameters.   

Data Analysis and QTL Mapping 

PROC GLM and PROC CORR of SAS version 9.3 (SAS Institute, Cary, NC) 

were used to calculate least square (LS) means and Pearson correlation coefficients, 
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respectively. PROC FREQ was used to perform Chi-square tests for goodness of fit of 

the seedling host response ratios. Ratios of resistant to susceptible DH lines were 

compared to expected segregation ratios for single-gene (1:1) and 2-gene (3:1) 

hypotheses.  QTL mapping was performed using LS means with the ICIM-ADD 

mapping method of ICIMapping version 3.3 (Wang, 2013).  Default mapping 

parameters were used with a LOD significance threshold of 3.0.  

Results 

Phenotypic Data 

The population showed variation for leaf rust in all experiments (Table 5).  

Comparisons of the parents for each trait in each environment showed significant 

differences (p<0.01) between MD233 and SS8641 in Salisbury and Baton Rouge in 

2012.  With only 2 locations showing significant differences between the parents, DH 

lines showed transgressive segregation for leaf rust resistance in every environment. 

Pearson correlation coefficients for each trait in each environment were calculated 

(Table 2).  Correlations for all traits were highly significant (p<0.0001).  Leaf rust 

severities from Salisbury in 2012 were strongly correlated with those in Baton Rouge 

(r=0.83) and Plymouth (r=0.82) in 2013.  These locations were also highly correlated 

(r=0.82).  In general, the field locations were highly correlated with each other 

(0.58<r<0.83).  The parents segregated for reaction to TNRJ, but both were resistant 

to BBBD.  Seedling reaction types using single leaf rust isolates were analyzed for 

goodness of fit using the Chi-square test.  The population did not fit the segregation 

ratio for resistance controlled by a single gene (1:1 resistant to susceptible) for either 

isolate.  The DH lines did fit the segregation ratio for resistance controlled by two 
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genes (3:1 resistant to susceptible) for TNRJ, indicating two Lr genes may be 

responsible for segregation of resistance to leaf rust in this population. 

Linkage Analysis 

From the 8686 potential markers for linkage map construction, 2116 markers 

(2091 SNP, 21 SSR, and Rc-D1) were found to be polymorphic, with genotypes 

segregating in the expected 1:1 ratio.  These were used for initial linkage map 

construction. These markers formed 37 linkage groups.  SSR and SNP consensus 

maps were used to anchor these linkage groups to wheat chromosomes. These were 

reanalyzed, with unanchored makers mapping to linkage groups based on LOD 

threshold.  The subsequent map had 26 linkage groups, 21 corresponding to 

respective wheat chromosomes with at least 1 marker in each group.  There were 

many cosegregating markers, with multiple markers mapping to the same position.  A 

single marker was chosen to represent each position 254 markers.  A final round of 

linkage analysis with the unique loci revealed a map with 26 linkage groups, again 

corresponding to each chromosome (Table 3) with 5 single unanchored markers. The 

map spanned 2334.3cM with an average distance of 9.4cM between markers.   

QTL Mapping 

QTL analysis revealed 10 significant loci mapping to 2 distinct regions on the 

short arm of chromosome 2A (2AS) and the long arm of chromosome 5B (5BL).  The 

QTL on 2AS was associated with leaf rust measured in all environments.  The QTL 

detected mapped to the distal end of 2AS, between the flanking markers IWA3699 

and IWA1563 at 0cM.  QTL had high LOD scores, ranging from 5.82 for resistance 

measured in Baton Rouge in 2012 to a LOD score of 18.35 for resistance to leaf rust 
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in Salisbury 2012.  R2 values ranged from 14.01% to 44.78%.  The QTL on 2AS had 

negative additive effects in every environment, indicating that l the SS8641 allele had 

contributed to lower leaf rust severity than the MD233 allele. 

A QTL on 5BL was associated with leaf rust resistance in all environments.   

All additive effects for this QTL were again negative, indicating the SS8641 allele 

contributed resistance. The QTL spanned the distal end of 5BL from 95cM to 114cM.  

Leaf rust resistance from Baton Rouge in 2012 and Plymouth in 2013 both mapped to 

95cM between IWA3972 and barc59, with LOD scores of 3.45 and 9.95, 

respectively.  Resistance from Baton Rouge in 2012 mapped to 101cM, between 

barc59 and IWA936, with a LOD score of 12.05.  Resistance measured in Salisbury 

mapped between IWA936 and IWA37, to 106cM. The Salisbury resistance QTL had 

a LOD score of 6.81 and R2 of 13.79%.  Resistance from Nueve de Julio mapped 

between IWA37 and IWA22 at 114cM.  LOD score for the Nueve de Julio resistance 

was 17.53 and R2 of 41.16%.   

Discussion 

The objective of this study was to map a novel source of resistance to leaf rust 

in the doubled haploid mapping population derived from the F1 cross of MD233 by 

SS8641.  This population was originally designed to map Fusarium head blight 

resistance, with MD233 contributing the resistant phenotype, and SS8641 the 

susceptible.  Costa et al. (2010) reported that MD233 was postulated to have Lr1 and 

Lr24/Sr24, showing resistance to all leaf rust races evaluated (QFCS, QTHJ, RCRS, 

RKQQ, TPMK, TTTT, TTKSK, TTKST, and TTTSK), except for race TNRJ which 

has reported virulence for resistance genes Lr1, 2a, 2c, 3, 3ka, 9, 10, 11, 14a, 24, and 
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30.  SS8641 was postulated to have Lr37 and unknown additional sources of 

resistance (Cereal Disease Laboratory, 2014).   

Inoculation of seedlings with TNRJ and BBBD revealed two important pieces 

of information.  First, MD233 was again found to be susceptible to TNRJ, confirming 

previous results from Costa et al. (2010).  Additionally, evaluation of reaction type 

(resistant or susceptible) in the population that indicated resistance to BBBD and 

TNRJ was not controlled by a single gene.  The reaction type ratio of the DH lines did 

obey the 3:1 ratio for resistance suggesting that resistance is controlled by two genes 

for TNRJ.   

 Three Lr genes have been postulated in the parents of the population, with 

MD233 contributing Lr1 and Lr24 and SS8641 contributing Lr37 and an additional 

unidentified source of resistance.  As shown in Table 5, neither parent was 

particularly susceptible to leaf rust in field experiments with natural inoculum.  Lr1 

has been mapped to chromosome 5D, cloned, and characterized as having coiled coil 

(CC), nucleotide-binding site (NBS), and leucine-rich-repeat (LRR) motifs (Cloutier 

et al., 2007).  No QTL mapped to chromosome 5D in my study.  Furthermore, 

Kolmer et al. (2009) reported Lr1 has been rendered ineffective due to widespread 

deployment of this gene and subsequent development of virulent races.  Taken 

together, these results suggest the segregating resistance in this population is not 

conferred from Lr1. 

 Lr24 was originally derived from tall wheatgrass (Thinopyrum ponticum 

(Podp.) Barkworth & D. R. Dewey), the result of a natural translocation from 

wheatgrass which was mapped to the distal end of the long arm of wheat chromosome 
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3D (Schachermayr et al., 1995).  Kolmer et al. (2009) also reported Lr24 has been 

rendered ineffective in much of US wheat production. Additionally, Kolmer et al. 

(2008) specifically noted that leaf rust races were virulent to Lr24 in the SRWW 

McCormick (one of the parents of MD233).  There were no QTL for leaf rust 

resistance found on 3D in my study.  This evidence, coupled with the reported 

widespread ineffectiveness of Lr24 in the SRWW-growing region, suggests this gene 

is not responsible for segregation of leaf rust resistance in this population.  

 A significant QTL on chromosome 2AS was mapped between IWA3699 and 

IWA1563 from 0-1cM.  The additive effects for the leaf rust resistance within this 

QTL were negative in every environment tested, indicating that resistance was 

conferred by the SS8641 alleles at this locus.  Lr11, Lr17, Lr37, and Lr65 have all 

been mapped to chromosome 2AS (Cereal Disease Laboratory, 2013).  Of these, Lr37 

has been postulated to confer resistance in SS8641.  Lr37 is derived from Aegilops 

ventricosa (Zhuk.) Chennav located on the 2NS/2AS translocation, which has been 

mapped to the distal end of 2AS (Błaszczyk et al., 2004; Helguera et al., 2003).  Lr11 

and Lr17 have been reported as largely ineffective to virulent races of P. triticina 

(Kolmer et al., 2009).  Y. Wang et al. (2010) and Mohler et al. (2012)  mapped Lr65, 

originally derived from spelt (Triticum aestivum L. ssp. spelta),  to the distal end of 

2AS.  Direct comparison of these gene locations was not possible due to lack of 

markers common to both maps.  However, Lr37 has been a reliable source of 

resistance throughout the southeastern US due to selection specifically for this gene 

based on reliable PCR markers (Helguera et al., 2003) and long term effectiveness of 
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this gene in combination with Lr genes (Goyeau & Lannou, 2011), suggesting that 

Lr37 conferred resistance at the 2AS QTL in this population.  

A significant QTL was found on chromosome 5BL with additive effects 

indicating the resistant alleles were contributed by SS8641.  This QTL was associated 

with leaf rust resistance from all environments, mapping between IWA3972 and 

IWA22 from 95-114cM.   To date there has been one Lr gene reported on 5BL. Lr18 

was derived from Triticum timopheevii (Zhuk.) (Friebe et al., 1996).  Leonova et al. 

(2011) mapped leaf rust resistance in several mapping populations with T. aestivum-

T. timopheevii introgression lines used as the resistant parents.  Resistance was 

mapped to QTL that mapped to chromosomes 1AL, 2AL, and 5BL, explaining 8.0, 

11.5, and 64% of the phenotypic variation for leaf rust resistance.  Their study 

mapped a leaf rust resistance QTL to the same region as Lr18, temporarily designated 

LrTt2, as it was unclear if this locus was the same allele for Lr18 or a novel allele.  It 

has been reported that Lr18 is deployed in SRWW cultivars in the southeastern US 

(Kolmer et al., 2009), with 15.1% of P. triticina isolates collected in 2007 showing 

virulence to this gene.  The resistance QTL on 5BL in my study may be due to the 

previously unreported presence of Lr18 in SS8641 or a novel gene.  Precise 

comparison of the location within 5BL was not possible due to a lack of common 

markers in these two populations.  
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Conclusions 

Two QTL for leaf rust resistance that were repeated across environments 

mapped to wheat chromosomes 2AS and 5BL in the DH population.  There have been 

several reported Lr genes in these regions.  Lr37, the postulated source of resistance 

from SS8641, has been mapped to 2AS. However, Lr18 is the only Lr gene 

previously mapped to 5BL, and has not been postulated to be in either parent.  This 

suggests the 5BL QTL is an allele of Lr18, previously unreported in either parent, or 

may be a novel gene mapping to the same region.   
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Tables and Figures 

 
Table 5: Mean parent values, doubled haploid population means, and ranges for 
leaf rust resistance.  Leaf rust restance was evaluated in field experiments with 
natural inoculum on a 0-4 scale  in Salisbury, MD; Baton Rouge, LA; and Nueve de 
Julio, Argentina in 2012 and in Plymouth, NC and Baton Rouge, LA in 2012Leaf rust 
severity was rated on a 0-100% scale in Baton Rouge in 2012. 
 

Location Year MD01W233-06-1 SS8641 DH Mean DH Range 

Baton Rouge, LA 2012 22.50 0.00* 14.25 0 - 80 

Nueve de Julio, Buenos 
Aires, Argentina 2012 0.50 0.50 1.40 0 - 4 

Salisbury, MD 2012 0.53 0.25* 1.17 0 - 4 

Baton Rouge, LA 2013 0.56 0.00 1.06 0 - 4 

Plymouth, NC 2013 0.56 0.38 1.39 0 - 4 
*Mean values of MD233 and SS8641 significantly different at p=0.01 
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Table 6: Correlation coefficients of leaf rust resistance. Correlations for leaf rust 
resistance ratings from Salisbury, MD; Baton Rouge, LA; Nueve de Julio, Argentina; 
and Plymouth, NC field experiments. 

 

 
 
 
 

 
  

Salisbury 
2012 

Baton Rouge 
2013 

Plymouth 
2013 

Baton Rouge 
2012 

Baton Rouge 
2013 0.83*    

Plymouth 2013 0.84 0.82   

Baton Rouge 
2012 0.69 0.68 0.59  

Nueve de Julio 
2012 0.70 0.76 0.77 0.52 

*All correlation coefficients were significant (p<0.0001) 
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Table 7: Single isolated seedling screening reaction type qualitative analysis. 
Reaction types from the parents and doubled haploid line inoculated with leaf rust 
isolates BBBD and TNRJ.  Lines were rated as resistant (R) or susceptible (S).  Chi 
square test for goodness of fit was performed to test 1-gene or 2-gene hypotheses.  

 
* χ² statistic significant at p<0.0001 
 
 
 
 
 
 
 

 Reaction Type DH Reaction Types χ² p-value 

Isolate MD01W233-06-1 SS8641 R S 1 gene (1:1) 2 gene (3:1) 

BBBD R R 113 11 * * 

TNRJ S R 89 31 * 0.41 
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Chr. Position 
(cM) Year Location Left Flanking 

Marker Right Flanking 
Marker LOD R² (%) Additive 

Value 
2AS 0 2012 Salisbury, MD IWA3699 IWA1563 18.35 44.78 -0.76 
2AS 0 2012 Baton Rouge, LA IWA3699 IWA1563 5.82 15.83 -6.93 
2AS 0 2012 Nueve de Julio, 

BA IWA3699 IWA1563 7.31 14.01 -0.49 
2AS 0 2013 Plymouth, NC IWA3699 IWA1563 11.56 25.35 -0.62 
2AS 0 2013 Baton Rouge, LA IWA3699 IWA1563 9.94 21.37 -0.59 

         
5BL 95 2012 Baton Rouge, LA IWA3972 barc59 3.45 8.98 -5.18 
5BL 95 2013 Plymouth, NC IWA3972 barc59 9.95 21.16 -0.56 
5BL 101 2013 Baton Rouge, LA barc59 IWA936 12.05 27.39 -0.66 
5BL 106 2012 Salisbury, MD IWA936 IWA37 6.81 13.79 -0.42 
5BL 114 2012 Nueve de Julio, 

BA IWA37 IWA22 17.53 41.16 -0.85 

*Positive and negative additive effects indicate resistance contributed by MD01W233-06-1and 
SS8641 alleles, respectively. 

Table 8: Significant QTL positions, with flanking markers, LOD scores, R2 
values and additive effects.  Leaf rust restance was evaluated in field experiments 
with natural inoculum on a 0-4 scale  in Salisbury, MD; Baton Rouge, LA; and Nueve 
de Julio, Argentina in 2012 and in Plymouth, NC and Baton Rouge, LA in 2012.  
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Figure 3: Chromosome 2A linkage group with LOD score plot. A 
black arrow indicates QTL associated with resistance alleles 
contributed by SS8641. 
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Figure 4: Chromosome 5B linkage group with LOD score plot. A black 
arrow indicates QTL associated with resistance alleles contributed by 
SS8641. 
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