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The Standard Model (SM) of particle physics, in spite of being spectacularly

successful in describing the low-energy physics, cannot be a complete theory of

Nature. There are a number of experimental as well as theoretical reasons to believe

that there must be some new physics not far above the electroweak scale. This TeV-

scale new physics beyond the SM is of enormous current interest as the Large Hadron

Collider (LHC) presents an unprecedented opportunity to explore this energy range

and shed light on some of the unresolved puzzles of fundamental physics. Although

it is not yet clear which new physics scenario is preferred by Nature, supersymmetry

is certainly believed to be one of the strongest candidates.

In this work, we propose a Left-Right extension of the Minimal Supersym-

metric Standard Model (MSSM) to explain the observed non-zero neutrino masses

by the inverse seesaw mechanism. We show that apart from preserving the nice

features of MSSM (e.g. gauge coupling unification, radiative electroweak symmetry



breaking, dark matter), this framework provides a natural realization of the res-

onant leptogenesis mechanism to explain the matter-antimatter asymmetry in the

universe, and also provides a natural inelastic dark matter candidate, all linked to

the small Majorana mass of the neutrinos. We further show that the collider tests

of the inverse seesaw mechanism and the related phenomenology are much more

feasible compared to the canonical seesaw, thus extending the scope of the LHC

physics search to the neutrino sector as well as to cosmology. We also prove that

this TeV-scale scenario can be successfully embedded into a Supersymmetric Grand

Unified Theory framework consistent with the proton decay constraints.
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Chapter 1

Introduction

All the macroscopic forms of matter in our Universe can be traced back to a

few basic building blocks of Nature interacting by four fundamental forces: strong

(or nuclear), electromagnetic, weak and gravitational 1. A mathematical frame-

work [1] that describes all the interactions between these fundamental constituents

of Nature at the quantum level, except gravity (which is yet to be properly formu-

lated as a quantum phenomenon), is known as the Standard Model (SM) of particle

physics [2, 3]. Since the SM explains most of the experimentally observed phenom-

ena with rather high accuracy, it now serves as the starting point in the study of

elementary particle physics. Except for one (the Higgs mass), all the parameters of

the SM have been determined experimentally to an extremely high degree of accu-

racy over the last three decades or so, in the precision measurements at the Large

Electron-Positron (LEP) collider [4], the proton-antiproton collider (Tevatron) [5],

and even substantially improved measurements, along with a conclusive proof of

the Higgs, are expected from the ongoing experiments at the Large Hadron Collider

(LHC) [6]. However, there are strong conceptual as well as experimental indications

for the existence of new physics beyond the SM, and much of the current research

in elementary particle physics is devoted to exploring this new territory.

1Gravity is by far the weakest force and is important for macroscopic objects but negligible for

nuclear and sub-nuclear particles unless the distance scale is very small (∼ 10−33 cm).

1



In this chapter, we will start with a brief description of the main features of

the SM, and discuss the main reasons for going beyond this minimal framework.

This will also be the starting point for us in building an extension to the minimal

framework in order to address some of the issues raised here.

1.1 The Standard Model

The SM is a non-Abelian Yang-Mills gauge theory [7] based on the gauge group

SU(3)c × SU(2)L × U(1)Y , with the electroweak sector, SU(2)L × U(1)Y , sponta-

neously broken to U(1)em [8] by a complex scalar field, while the color sector, SU(3)c,

remains unbroken and is described by Quantum Chromodynamics (QCD) [9, 10].

1.1.1 Particle Content

The fundamental gauge interactions in the SM are mediated by gauge fields

corresponding to spin-one bosons. In the electroweak sector, we have the field Bµ

corresponding to the hypercharge generator Y of the Abelian group U(1)Y and the

three fields W a
µ which correspond to the generators ta (with a = 1, 2, 3) of the non-

Abelian group SU(2)L, satisfying the commutation relation [ta, tb] = iεabctc where

εabc is the anti-symmetric Levi-Civita tensor; these generators are in fact equivalent

to the three 2 × 2 Pauli matrices: ta = τa

2
. In the strong interaction sector, there

is an octet of gauge boson fields, GA
µν (with A = 1, . . . , 8), called gluons, which

correspond to the eight generators of the SU(3)c group, satisfying the commutation

relations [TA, TB] = ifabcTC with tr(TATB) = 1
2
δAB and fABC being the structure

2



constants of the SU(3)c group [11]; these generators are equivalent to the eight 3×3

Gell-Mann matrices: TA = λA

2
. Note that because of the non-Abelian nature of

the SU(2) and SU(3) groups, there are self-interactions between their gauge fields

Wµ and Gµ respectively, leading to triple and quartic gauge boson couplings. The

precision measurement [4, 5] of these couplings provides a strong evidence for the

underlying gauge structure of the SM (for recent results, see e.g. Ref. [12]).

The elementary building blocks of matter are spin-half particles (fermions),

called quarks and leptons, which come in three generations in the SM. In order to

have the experimentally determined chiral structure for the weak interactions [13],

the left- and right-handed components of quark and lepton fields are assigned to dif-

ferent representations of the electroweak gauge group: the left-handed (LH) fermions

fL are in weak iso-doublets, while the right-handed (RH) fermions fR are in weak

iso-singlets, with weak iso-spin I3L,3R
f = ±1

2
, 0 respectively for fL,R = 1

2
(1∓ γ5) f ,

where γ5 is the product of all the Dirac γ-matrices. The electric charge of the

fermion in units of the proton charge +e is given by Qem = I3L + Y
2
, where Y is the

U(1)Y hypercharge.

The gauge quantum numbers of the SM fields are summarized in Table 1.1.

It can be seen that for these quantum number assignments of fermions,
∑

f Q
f
em =

∑
f Yf = 0 which ensures the cancellation of chiral anomalies [14] within each gener-

ation, and thus, preserving [15] the renormalizability of the electroweak theory [16].

The basic SM Lagrangian, invariant under the local SU(3)c×SU(2)L×U(1)Y

3



Field Content SU(3)c SU(2)L U(1)Y

GA 8 1 0

Gauge Wa 1 3 0

B 1 1 0

Lepton Li =



νL

eL




i

1 2 −1

eRi
1 1 −2

Quark Qi =



uL

dL




i

3 2 1
3

uRi
3 1 4

3

dRi
3 1 −2

3

Scalar Φ =



φ+

φ0


 1 2 1

Table 1.1: The field content (gauge, fermion and and scalar fields) of the SM along

with the gauge quantum numbers. Here i = 1, 2, 3 denotes the generation index; in

other words, ei = e, µ, τ ; ui = u, c, t and di = d, s, b respectively. A = 1, · · · , 8 for

the 8 gluons fields and a = 1, 2, 3 for the weak gauge bosons. Each of the particles

has an associated anti-particle, with the same mass and spin, but opposite charge.

gauge transformation, involving the gauge bosons and matter fermions is given by

Lgauge + Lmatter = −1

4
GA

µνG
µν
A − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν
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+i
[
L̄i 6DLi + iēRi

6DeRi
+ Q̄i 6DQi + ūRi

6DuRi
+ d̄Ri

6DdRi

]
, (1.1)

where 6D ≡ Dµγ
µ (γµ are the Dirac γ-matrices) and Dµ is the covariant derivative

through which the matter fields f minimally couple to the gauge fields Gµ,Wµ, Bµ:

Dµf ≡
(
∂µ − ig3

λA

2
GA

µ − ig2
τa
2
W a

µ − ig1
Y

2
Bµ

)
f, (1.2)

where g3, g2 and g1 are the coupling constants of SU(3)c, SU(2)L and U(1)Y respec-

tively. The field strengths in Eq. (1.1) are given by

GA
µν = ∂µG

A
ν − ∂νG

A
µ + g3fABCG

B
µG

C
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2εabcW

b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ (1.3)

1.1.2 Higgs Mechanism and Particle Masses

In Eq. (1.1), all the fermion and gauge fields are massless. The simplest way to

generate the gauge boson and the fermion masses without violating the local gauge

invariance is by the Higgs mechanism of spontaneous symmetry breaking [17]. In this

mechanism, a complex SU(2)L doublet scalar field Φ is introduced (see Table 1.1)

and the following invariant terms are added to the SM Lagrangian given by Eq. (1.1):

LHiggs = (DµΦ)†(DµΦ)− µ2
ΦΦ†Φ− λΦ(Φ†Φ)2. (1.4)

For µ2
Φ < 0, the neutral component of the doublet field Φ acquires a non-zero vacuum

expectation value (vev),

〈Φ〉 =
1√
2




0

v


 with v =

√
−µ

2
Φ

λΦ

, (1.5)
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thus spontaneously breaking the electroweak symmetry SU(2)L×U(1)Y to U(1)em.

In this process, three of the four degrees of freedom of the doublet scalar field are

absorbed by three linear combination of the electroweak gauge fields to form their

longitudinal polarization and to acquire masses, whereas the fourth field, corre-

sponding to the unbroken U(1) symmetry still remains massless. We identify this

massless mode as the photon (A) which is the mediator of the long-range electro-

magnetic interaction, whereas the three massive modes are the W± and Z vector

bosons which mediate the short-range weak interaction. In terms of the original

fields W a
µ , Bµ:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), Zµ =

g2W
3
µ − g1Bµ√
g2
2 + g2

1

, Aµ =
g1W

3
µ + g2Bµ√
g2
2 + g2

1

(1.6)

and the corresponding masses are

mW =
1

2
vg2, mZ =

1

2
v
√
g2
2 + g2

1, mA = 0 (1.7)

Now the fermion masses can also be generated using the same scalar field Φ

with hypercharge Y = 1, and its iso-doublet, Φ̃ = iτ2Φ
∗ with Y = −1, by introducing

the following Yukawa interaction Lagrangian:

LYukawa = −yeij
L̄iΦeRj

− ydij
Q̄iΦdRj

− yuij
Q̄iΦ̃uRj

+ h.c., (1.8)

and after Φ gets the vev, the corresponding fermion mass matrices are given by

Me =
vye√

2
, Md =

vyd√
2
, Mu =

vyu√
2

(1.9)

Note that since the neutrinos do not have a right-handed counterpart, Mν = 0 in

the SM.
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After three of the four degrees of freedom of the scalar field Φ are absorbed

by the gauge fields, the remaining one is called the Higgs boson (h). In the unitary

gauge, the neutral component of the field Φ is given by

Φ(x) =
1√
2




0

v + h(x)


 , (1.10)

and from the Lagrangian given by Eq. (1.4), we obtain

Lh =
1

2
(∂µh)(∂µh)− λΦv

2h2 − λΦvh
3 − λΦ

4
h4, (1.11)

from which we can read off the Higgs mass:

mh =
√

2λΦv2 =
√
−2µ2

Φ (1.12)

1.1.3 Electroweak Interactions

It is more convenient to express the interactions in terms of the physical eigen-

states. Eqs. (1.6) for the field rotation which lead to the physical gauge bosons define

the electroweak mixing angle (Weinberg angle):



Zµ

Aµ


 =




cos θW − sin θW

sin θW cos θW






W 3

µ

Bµ


 , (1.13)

with sin θW = g1√
g2
2+g2

1

and mW = mZ cos θW . The covariant derivative, Eq. (1.2), in

terms of the physical fields is given by

Dµf ≡
(
∂µ − ig3

λA

2
GA

µ − i
g2√
2

(
W+

µ t
+ +W−

µ t
−)

−i g2

cos θW

Zµ

(
t3 − sin2 θWQf

)
− ieQfAµ

)
f (1.14)
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where t± = t1 ± it2 and the electric charge e = g2 sin θW = g1 cos θW so that the

matching condition for couplings is satisfied at the electroweak breaking scale:

1

g2
2

+
1

g2
1

=
1

e2
(1.15)

Using the fermionic part of the Lagrangian in Eq. (1.1), now written in terms

of the physical fields, Eq. (1.14), we can write the neutral- and charged-current

interactions as

Lneutral = −e∑

f

Qf f̄γ
µfAµ − g2

cos θW

∑

f

f̄γµ

[
I3L
f

(1− γ5)

2
−Qf sin2 θW

]
fZµ,

Lcharged = − g2√
2

∑

f

[
f̄uγ

µ (1− γ5)

2
VCKMfdW

+
µ + f̄νγ

µ (1− γ5)

2
f`W

+
µ + h.c.

]
(1.16)

where fu(d), fν(`) are the up (down) -type fermions of weak isospin I3L
f = +(−)1

2
.

Note that we have introduced a unitary matrix VCKM in the charged-current inter-

action for quarks; this is because for more than one generation case, the current

eigenstates for quarks are not identical to the mass eigenstates2. If we start with

the u-type quarks in their mass eigenstates, the down-type quark mass eigenstates

d are connected to their flavor eigenstates d′ by the unitary transformation




d′

s′

b′




= VCKM




d

s

b




=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b




(1.17)

where VCKM is a 3 × 3 unitary matrix, known as the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [18]. It can be parameterized by three mixing angles and one CP -

2There is no analogous mixing matrix for the lepton sector since in the SM, the neutrinos are

assumed to be massless.
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violating phase [19], or by four real parameters [20]:

VCKM =




1− 1
2
λ2 λ Aλ3 (ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O(λ4) (1.18)

Defining ρ̄ = ρ
(
1− 1

2
λ2 + · · ·

)
and similarly for η̄, we note that

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗
cb

(1.19)

which is phase-convention independent, and ensures that the CKM matrix given

by Eq. (1.18) is unitary to all orders in λ. The unitarity of VCKM ensures that the

neutral currents are diagonal in both mass and flavor bases; this is necessary for

explaining the natural absence of flavor changing neutral currents (FCNC) at the

tree-level in the SM, also known as the Glashow-Illiopoulos-Maiani (GIM) suppres-

sion mechanism [21].

1.1.4 Parameters of the SM

The SM has 18 parameters3: masses of the six quarks and three charged

leptons, three quark mixing angles and one phase, three gauge coupling constants,

Higgs quadratic coupling and self-coupling strengths None of these parameter values

are predicted by the model, and they must be determined from experiments. The

current experimental values of these parameters are summarized in Table 1.2 [22].

In the scalar sector, there are two parameters in the SM, namely µΦ and λΦ

in Eq. (1.4), or equivalently, the Higgs vev v in Eq. (1.5) and the Higgs mass in

3Sometimes, the phase θQCD in the CP -violating term added to the QCD Lagrangian is con-

sidered to be an additional parameter which is assumed to be zero in the SM.
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Parameter Experimental value Comment

me 0.510998910 (13) MeV Scheme-independent

mµ 105.6583668 (38) MeV ”

mτ 1.77682 (16) GeV ”

mu 2.49+0.81
−0.79 MeV MS scheme at Q = 2 GeV

md 5.05+0.75
−0.95 MeV ”

ms 101+29
−21 MeV ”

mc 1.27+0.07
−0.09 GeV MS scheme at Q = mc

mb 4.19+0.18
−0.06 GeV MS scheme at Q = mb

mt 173.2± 0.9 GeV Latest Tevatron result [23]

λ 0.2253± 0.0007 CKMfitter result [24]

A 0.808+0.022
−0.015 ”

ρ̄ 0.132+0.022
−0.014 ”

η̄ 0.341± 0.013 ”

α3 0.1184± 0.0007 at Q2 = m2
Z

α2 0.033493+0.000042
−0.000038 ”

α1 0.016829(17) ”

GF 1.16637(1)× 10−5 GeV−2 from Ref. [25]

mh unknown see Ref. [26] for exclusion limits

Table 1.2: Parameters of the SM and their current experimental values [22].
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Eq. (1.12). However, the value of the vev can be obtained from the Fermi coupling

constant GF which is determined experimentally [25] from muon decay mediated in

the SM by W -boson exchange:

GF√
2

=
g2
2

8m2
W

, or, v =

(
1√
2GF

)1/2

' 246 GeV (1.20)

This leaves the Higgs mass as the only parameter in the SM whose value is not

yet known experimentally [27]. The direct searches at LEP have excluded the SM

Higgs mass below 114.4 GeV [4], whereas the most recent combined results from

CDF and D0 experiments at Tevatron exclude the mass range of 147 - 179 GeV at

95% C.L. [28]. On the other hand, the combined results from ATLAS and CMS

experiments at the LHC have excluded 127 - 600 GeV with 5 fb−1 data [26].

1.2 Why beyond the SM?

Even though the SM is remarkably consistent with all the precision measure-

ments so far [29], just finding the Higgs boson will not make it a complete theory

of Nature. There are strong experimental as well as conceptual indications that the

SM is just a low-energy effective field theory and there must exist some new physics

beyond the SM, not far above the electroweak scale.

The major experimental indications for beyond SM physics are the following:

1. Neutrino Masses and Mixing: The experiments with solar, atmospheric, reac-

tor and accelerator neutrinos have provided solid evidences for neutrino flavor

oscillations [30, 31] which imply nonzero neutrino masses and mixing. All

existing neutrino oscillation data can be described in a minimal three-flavor
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basis which is consistent with the LEP result for the number of light neutrino

species, Nν = 2.9840 ± 0.0082 [4]. In this basis, assuming that the charged

leptons are in their mass eigenstates, the leptonic part of the charged current

weak interaction in Eq. (1.16) can be written similar to the quark part:

Llepton
charged = − g2√

2

∑

`=e,µ,τ

ν̄`γ
µ (1− γ5)

2
`W+

µ + h.c.

= − g2√
2

∑

`=e,µ,τ

∑

α=1,2,3

ν̄αU
†
`αγ

µ (1− γ5)

2
`W+

µ + h.c. (1.21)

where U is now a 3 × 3 unitary neutrino mixing matrix, analogous to the

CKM mixing matrix in the quark sector, and is known as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [32]. This can also be parameterized

by three Euler angles and a phase, as in the CKM, but there are two additional

phases if the neutrinos are Majorana particles [33]:

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




× diag
(
1, eiα21/2, eiα31/2

)
, (1.22)

where sij = sin θij, cij = cos θij, δ is the Dirac CP -violating phase, and α21, α31

are the Majorana CP - violating phases. Thus, we have 7 (9 for Majorana)

additional parameters, namely the three neutrino masses, three mixing angles,

and one (three) CP -violating phases, in addition to those in the SM given by

Table 1.2. The existing neutrino oscillation data allow us to determine some of

these parameters, namely the two mass-squared differences, ∆m2
21 and |∆m2

31|,

the solar and atmospheric mixing angles θ12 and θ23, and the reactor mixing

12



angle θ13. The best fit as well as 3σ values are shown in Table 1.3 [34]. Note

that the global analysis provides > 3σ evidence for non-zero θ13 which was

recently confirmed by the Daya Bay [35] and RENO [36] reactor neutrino

experiments at 5.2σ and 6.3σ C.L., respectively. A natural explanation of

the remarkable smallness but non-vanishing nature of neutrino mass and large

neutrino mixing requires some new physics beyond the SM [37].

Parameter Best Fit 3σ range

∆m2
21 7.58× 10−5 eV2 (6.99− 8.18)× 10−5 eV2

|∆m2
31| 2.35× 10−3 eV2 (2.06− 2.67)× 10−3 eV2

sin2 θ12 0.312 0.265− 0.364

sin2 θ23 0.42 0.34− 0.64

sin2 θ13 0.025 0.005− 0.050

Table 1.3: The neutrino oscillation parameters values obtained from the global 3ν

oscillation analysis [34]. It includes all the existing neutrino data, except the most

recent Daya Bay [35] and RENO [36] results.

2. Baryon Asymmetry: Our Universe appears to be populated exclusively with

matter rather than antimatter. The asymmetry between matter and anti-

matter is usually characterized in terms of the baryon-to-photon ratio ηB =

(nB−nB̄)/nγ where nB(B̄) is the number density of baryons (anti-baryons) and

nγ is the number density of photons in the Universe. Historically, this ratio

was determined using the abundance of light elements in Big Bang Nucleosyn-
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thesis (BBN) [38]. However, in the last few years, the Wilkinson Microwave

Anisotropy Probe (WMAP) data has provided a more accurate measurement

of ηB [39]:

ηB = (6.19± 0.15)× 10−10 (68% C.L. value) (1.23)

The mechanism by which this non-zero baryon asymmetry could be produced

dynamically, starting from a baryon-symmetric universe, is known as “baryoge-

nesis” [40], and it requires to satisfy the three Sakharov conditions [41]: baryon

number (B) violating interactions, C and CP violation, and a departure from

thermal equilibrium. In principle, all these conditions could be satisfied within

the SM: baryon number is violated by sphalerons through non-perturbative ef-

fects [42]; parity is maximally violated in weak interactions, and CP violation

exists in the CKM matrix; the out of equilibrium condition could be satisfied

during electroweak phase transition. However, a more quantitative analysis

shows that it is not possible to have the observed baryon asymmetry in the

SM because the CKM CP violation is much too small ∼ 10−20 [43] and the

electroweak phase transition is not sufficiently strong first order unless the SM

Higgs mass, mh < 80 GeV [44] which is already excluded by LEP [4]. Thus

we must have additional sources of CP violation beyond the SM in order to

explain the observed baryon asymmetry in the universe [40].

3. Dark Matter and Dark Energy: There is overwhelming astrophysical and cos-

mological evidence [45] that most of the matter in our universe does not absorb

or emit electromagnetic radiation (hence the name “dark”) and most of this
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dark matter (DM) is not composed of baryons or any of the known particles.

The measurements of the Cosmic Microwave Anisotropy (CMB) anisotropy

and of spatial distribution of galaxies yield the DM density [39]

ΩDMh
2 = 0.110± 0.006, (1.24)

where h is the Hubble constant in units of 100 km.s−1.Mpc−1. Candidates

for non-baryonic DM must satisfy several conditions: they must be stable

over cosmological time scales (>∼ 1018 sec), they must be electrically neutral

and interact only weakly (and gravitationally) with ordinary matter, and they

must have the right relic density given by Eq. (1.24). Moreover, analyses

of structure formation in the universe indicate that most of the DM should

be non-relativistic (or “cold”) [46]. All these arguments rule out the only

SM candidate for DM (neutral and stable), i.e. neutrinos, which are highly

relativistic and have relic density Ωνh
2 ≤ 0.0067 at 95% CL [39]. Thus we

must consider beyond SM scenarios for viable DM candidates.

The discovery of accelerated expansion of the universe [47] suggests that the

bulk of the energy density of the universe is in the form of “dark energy”

with exotic physical properties which cannot be accounted for in the SM. The

7-year WMAP data yields the Dark Energy density of the universe to be [39]

ΩΛ = 0.725± 0.016. (1.25)

A compelling theoretical explanation for the Dark Energy must come from

some beyond SM physics involving gravity [48].
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4. Anomalies: In addition to these major experimental evidences for physics

beyond SM, there are always some experimental “anomalies” that do not agree

with the SM predictions. At present, the most persistent ones are: (i) the

muon anomalous magnetic moment which disagrees with the SM prediction

at 3.4σ level [49], and (ii) top quark forward-backward asymmetry which shows

deviations of more than 3σ from the SM expectations in the region of large tt̄

invariant mass [50].

Apart from the major experimental evidences listed above, there are also con-

ceptual reasons [51] that suggest the incompleteness of the SM as a fundamental

theory of Nature. Some of them are listed below:

1. The Naturalness Problem: The structure of the SM does not naturally ex-

plain the relative smallness of the electroweak symmetry breaking scale v ∼

1/
√
GF ∼ 100 GeV compared to the natural scale in the theory, i.e. the

Planck scale MPl ≡
√
h̄c/GN ∼ 1019 GeV. This “hierarchy problem” [52] be-

comes worse for the Higgs mass in the SM due to quantum corrections which

are quadratically divergent with respect to the cut-off scale Λ:

m2
h(physical) = m2

h(tree) + ∆m2
h, where ∆m2

h ∼
λ2

Φ

16π2
Λ2. (1.26)

Thus, if we assume that the SM is valid all the way up to the Planck scale,

then in order to prevent the physical Higgs mass given by Eq. (1.26) from

being pulled up to Λ = MPl, the tree-level mass parameter m2
h(tree) given by

Eq. (1.12) has to be fine-tuned to 1 part in 1028 to cancel the large radiative

correction ∆m2
h and to yield a physical Higgs mass at the weak scale. While
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this is not strictly impossible, it is technically unnatural and is known as the

“naturalness problem” in the SM [52, 53]. This problem could be eliminated by

making the cut-off scale slightly above the electroweak scale, i.e. Λ ∼ O (TeV)

which implies there must be new degrees of freedom that manifest themselves

at this scale [54].

2. Electroweak Symmetry Breaking: The SM does not provide any insight into

the mechanism of electroweak symmetry breaking (EWSB). Although we can

achieve EWSB spontaneously by introducing a complex scalar field, this is

done in the SM by an arbitrary scalar potential. There is no dynamical un-

derstanding of why the mass-squared parameter for the Higgs field becomes

negative in Eq. (1.4). A precise understanding of the EWSB is one of the

major goals of beyond SM physics [55].

3. Grand Unification Problem: This is the problem of trying to understand the

strong and electroweak interactions in the SM as different manifestations of a

single underlying force, thus unifying the three coupling strengths at a higher

energy scale known as the Grand Unified Theory (GUT) scale. The SM field

content does not lead to the unification of the three gauge couplings at high

energy (see Section 2.3).

4. The Flavor Puzzle: The SM does not explain the masses and mixing pattern

in the fermion sector. There appears to be a hierarchy between the fermion

mass scales, ranging from 0.5 MeV to about 200 GeV (see Table 1.2), and it

gets worse if we include the neutrino masses (< eV). Note however that this
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hierarchy between fermion masses and weak scale is not as serious problem

as the hierarchy between the Planck scale and weak scale for the Higgs mass

because the fermion masses are protected by chiral symmetry.

Although the experimental and theoretical arguments given above all imply the

existence of new physics beyond the SM, most likely at the TeV scale, they do not

by themselves provide any hints for the exact nature of the new physics. There

exist a number of possible extensions of the SM some of which are mentioned in the

following Section.

1.3 New Physics at TeV Scale

In order to solve the hierarchy problem, we must introduce new degrees of

freedom near the electroweak scale. The main ideas for new physics scenarios can

be divided into two broad classes of models:

1. There are no elementary scalar fields in Nature (and hence no associated fine-

tuning problem), and the Higgs boson is a composite of fermions. It duplicates

the QCD picture (at weak scale) that the low energy degrees of freedom are

baryons and mesons while at high energy these are quarks and gluons. This

idea is the basis of all technicolor, top-color and offspring models [56].

It was also realized that this strong dynamics at the weak scale is dual to the

warped extra dimensional models [57] via the AdS/CFT correspondence [58],

thus providing a natural solution of the gauge hierarchy problem.

2. Unlike the above idea which invokes new strong interactions at the TeV scale,
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one could keep the elementary scalars and maintain perturbativity up to much

higher energies if the quantum corrections are canceled to all orders in per-

turbation theory, due to some deeper symmetry. This is known as “super-

symmetry (SUSY)” [59, 60] which relates the bosonic and fermionic degrees

of freedom, and ensures the desired cancellation to all orders in perturbation

theory by exploiting the sign difference between bosonic and fermionic loops.

From experimental point of view, none of these ideas are completely disfavored,

and with more data from the ongoing LHC, we might be able to decide very soon the

exact nature of new physics chosen by Nature. At present, however, we find SUSY

as one of the leading candidates, due to several theoretical as well as experimental

arguments in its favor (see Section 2.1).

The plan of this thesis is as follows: In Chapter 2, we start with a brief review

of the Minimal Supersymmetric extension of the SM (MSSM), gauge coupling unifi-

cation in this model and its extension for neutrino masses by seesaw mechanism. In

Chapter 3, after a review of the seesaw scale, we discuss a different realization of the

seesaw mechanism, namely the inverse seesaw, and its general phenomenological as-

pects. Then we introduce a realistic inverse seesaw model based on Supersymmetric

Left-Right (SUSYLR) gauge group and show that it can be realized as a TeV-scale

effective theory of an SO(10) SUSY-GUT. In Chapter 4, we discuss the generation

of baryon asymmetry in the universe from lepton asymmetry (“leptogenesis”) in

general, and also in the case of Left-Right (LR) models with inverse seesaw, and

show that leptogenesis is consistent with TeV-scale LR symmetry. In Chapter 5,
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after an overview of the Weakly Interacting Massive Particles (WIMPs) as a viable

DM candidate and a discussion of the WIMP candidate in MSSM, namely the neu-

tralino, we show that in SUSYLR models, there exists a new scalar DM candidate

which is naturally inelastic due to the small Majorana mass in inverse seesaw and it

is allowed to be very light, unlike the neutralino in MSSM. In Chapter 6, we discuss

the collider and other low-energy tests of the inverse seesaw models. In Chapter

7, we discuss various proton decay operators in SUSY models and then present a

calculation for the decay rates in the SUSYLR models discussed earlier. Finally,

a summary is given in Chapter 8. Appendix A explicitly gives the masses of the

SO(10) Higgs multiplets for the GUT embedding of SUSYLR with inverse seesaw.

In Appendix B, we present all the Renormalization Group Equations (RGEs) for

fermion masses and mixing in SUSYLR, and in Appendix C, the RGEs for soft-

SUSY breaking sector of SUSYLR. Appendix D shows an analytic derivation of the

CP -asymmetry for inverse seesaw for specific forms of the Majorana singlet mass

matrix. Appendix E gives the analytic formulas for sfermion spectrum in SUSYLR.
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Chapter 2

Low-Scale Supersymmetry: the Minimal Model and Beyond

2.1 Why SUSY?

Supersymmetry [59, 60] predicts the existence of a new spin-1/2 particle for

every known spin-0 and spin-1 particles of the SM, and similarly, a new spin-0

particle for every SM fermion, with degenerate masses. These supersymmetric par-

ticles serve as the new perturbatively coupled degrees of the freedom that cancel the

quadratic divergences in the SM [61]. However, since we have not yet observed any

of these superpartners, SUSY must be a broken symmetry at low-energy. It turns

out that if broken appropriately (or “softly”) [62], this does not reintroduce the

quadratic divergences. These softly-broken SUSY theories have a number of the-

oretical virtues as well as phenomenological arguments which make them a strong

candidate for new physics at TeV-scale:

1. The supersymmetric transformations linking bosons and fermions, together

with translations, rotations and boosts, form the super-Poincaré group, whose

direct product with the internal symmetry group generate the most general

symmetries of the S-matrix allowed in a Quantum Field Theory [63].

2. The scalar potential in SUSY models is stable under radiative corrections,

provided the SUSY scale is around 4πmh ∼ TeV. Thus, TeV-scale SUSY
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models solve the naturalness problem with only O(1) tuning between the bare

scalar mass and multiplicatively renormalized quantum corrections. Moreover,

the weak scale SUSY theories do not reintroduce the hierarchy problem since

they are technically natural and the dynamical SUSY breaking can be realized

due to non-perturbative effects [64].

3. Gravity can be incorporated into SUSY theories if supersymmetric transfor-

mations are made local. This results in a gauge theory of gravity, known as

the “supergravity” [59, 60, 65], which could be elevated to superstring theo-

ries [66], so far the only viable candidates for a consistent quantum theory of

gravity.

4. If we assume SUSY in the range of 100 GeV-10 TeV, the three SM gauge

couplings unify remarkably well at the scale MG ∼ 2×1016 GeV, thus strongly

suggesting a SUSY-GUT at that scale [67, 68].

5. Soft SUSY-breaking offers a somewhat natural understanding of the elec-

troweak symmetry breaking (EWSB) by the mechanism of radiative EWSB [69]

in which the renormalization effects drive one of the Higgs squared mass pa-

rameters to negative values while keeping all other SUSY mass squared pa-

rameters positive. This mechanism occurs naturally if the top mass is close to

the electroweak scale, mt ∼ 100− 200 GeV which is indeed the case [23].

6. In order to enforce lepton and baryon number conservation in a simple way,

the minimal SUSY models are usually required to have a discrete symmetry,
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called R-parity [70]. A major consequence is that the lightest supersymmetric

particle is absolutely stable. A stable LSP is usually required to be electrically

and color neutral in order to be consistent with cosmological constraints [71],

thus making it a promising candidate for cold dark matter [72].

2.2 The Minimal Supersymmetric Standard Model

The most economical version of a low-energy SUSY theory is known as the

Minimal Supersymmetric Standard Model (MSSM) [59, 60] which is based on the

SM gauge group SU(3)c×SU(2)L×U(1)Y and contains the smallest number of new

particles and new interactions consistent with SM phenomenology.

Each of the SM gauge boson (spin-1) requires a real Majorana fermion (spin-

1/2) with the same quantum numbers as its superpartner (gaugino) to form a vector

supermultiplet, and each SM fermion requires a complex scalar boson (sfermion)

with the same quantum numbers to form a chiral superfield [73]. Finally, the Higgs

doublet requires the presence of its fermion superpartner, the Higgsino, to form two

chiral superfields with hypercharges ±1; note that two Higgs doublets with opposite

hypercharge are required to cancel the triangle anomalies [14] and also to give masses

to the isospin +1/2 and −1/2 fermions in a SUSY invariant way [74]. Note that

the introduction of an additional Higgs doublet leads to five Higgs particles after

EWSB: two CP -even (h,H), a CP -odd (A) and two charged (H±) Higgs bosons [75].

Their fermionic superpartners (higgsinos) will mix with the partners of SU(2)L and

U(1)Y gauge bosons (winos and bino) to give the mass eigenstates: 2 charginos (χ±)
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and 4 neutralinos (χ0
1,2,3,4). The field content of the MSSM is given in Table 2.1.

Superfield Boson field Fermion field SU(3)c SU(2)L U(1)Y

ĜA Gµ
A G̃A 8 1 0

Gauge Ŵa W µ
a W̃a 1 3 0

B̂ Bµ B̃ 1 1 0

Lepton L̂i =



ν̂L

ê−L




i

(
ν̃L, ẽ

−
L

)
i

(
νL, e

−
L

)
i

1 2 −1

Êc
i ẽ−Ri e−Ri 1 1 −2

Quark Q̂i =



ûL

d̂L




i

(ũL, d̃L)i (uL, dL)i 3 2 1
3

Û c
i ũRi uRi 3 1 4

3

D̂c
i ũRi dRi 3 1 −2

3

Higgs Ĥd =



ĥ0

d

ĥ−d


 (h0

d, h
−
d ) (h̃0

d, h̃
−
d ) 1 2 −1

Ĥu =



ĥ+

u

ĥ0
u


 (h+

u , h
0
u) (h̃+

u , h̃
0
u) 1 2 1

Table 2.1: The field content of the MSSM and the corresponding gauge quantum

numbers. Here i = 1, 2, 3 for 3 generations of SM fermions, a = 1, 2, 3 for the 3

W -bosons and A = 1, · · · , 8 for the 8 gluons. For each supermultiplet, there is a

corresponding anti-particle multiplet of charge-conjugated SM particles and their

superpartners.
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The most general MSSM superpotential, compatible with gauge invariance,

renormalizability and R-parity is given by [59, 60]

W = µεabĤuaĤdb
+

3∑

i,j=1

εab
[
−yuij

Q̂iaĤub
Û c

j + ydij
Q̂iaĤdb

D̂c
j + yeij

L̂iaĤdb
Êc

j

]
, (2.1)

where a, b = 1, 2 are the SU(2)L indices, and yu,d,e are the 3 × 3 Yukawa coupling

matrices, similar to those given in Eq. (1.8). The particle masses are generated after

the EWSB by the vevs of neutral components of the Higgs doublets:

〈Hu〉 =
1√
2




0

vu


 , 〈Hd〉 =

1√
2



vd

0




(
with

vu

vd

≡ tan β
)

(2.2)

The soft SUSY-breaking terms are given by

−Lsoft = m2
Hu
H†

uHu +m2
Hd
H†

dHd +Bµ(εabHuaHdb
+ h.c.)

+
3∑

i,j=1

[
m2

Qij
Q̃†iQ̃j +m2

Uij
ũ†RiũRj +m2

Dij
d̃†Rid̃Rj +m2

Lij
L̃†i L̃j +m2

Eij
ẽ†RiẽRj

+εab
(
Auij

yuij
Q̃iaHub

ũ†Rj + Adij
ydij

Q̃iaHdb
d̃†Rj + Aeij

yeij
L̃iaHdb

ẽ†Rj + h.c.
)]

+
1

2

[
M1

¯̃B ¯̃B +M2

3∑

a=1

¯̃
W

a ¯̃
W a +M3

8∑

A=1

¯̃G
A ¯̃GA + h.c.

]

+
i

2

[
M ′

1
¯̃Bγ5 ¯̃B +M ′

2

3∑

a=1

¯̃
W

a
γ5 ¯̃
W a +M ′

3

8∑

A=1

¯̃G
A
γ5 ¯̃GA + h.c.

]
(2.3)

These soft SUSY-breaking terms introduce 105 unknown parameters, in addition to

the 19 SM parameters, and makes any meaningful phenomenological analysis very

difficult [76]. However, many of these parameters lead to severe phenomenological

problems [77], e.g. unacceptably large FCNCs, CP violation, lepton flavor violation

(LFV) etc. which results in a more restricted parameter space for the MSSM.

One version in the bottom-up approach is known as the phenomenological MSSM

(pMSSM) [78], based on Minimal Flavor violation (MFV) [79], which has only 22
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parameters and has much more predictability [80]. A more restrictive scenario in

the top-down approach is known as the constrained MSSM (cMSSM) [78], or more

commonly known as minimal supergravity (mSUGRA) [81, 82] inspired by local

SUSY-GUT, and has only 5 parameters. For simplicity, we will mostly limit our

discussions to mSUGRA-based models in this work, but the results can be easily

extended to a more generalized parameter space.

2.3 Gauge Coupling Unification

In a renormalizable quantum field theory, the coupling constants and mass pa-

rameters of the theory are replaced by their running values depending on the energy

scale. The scale dependence of the parameters is specified by the renormalization

group (RG) equations [1]. In particular, the RG evolution of a coupling constant g

with renormalization scale Q is governed by the Callan-Symanzik β-function [83]

β(g) = Q
∂g

∂Q
(2.4)

The one-loop β-function for a general non-supersymmetric gauge theory is given

by [84]

β(g) =
g3

16π2

[
−11

3
C(G) +

2

3
nFS(RF ) +

1

3
nHS(RH)

]
, (2.5)

where C(G) is the quadratic Casimir for the adjoint representation of the associ-

ated Lie algebra [11], S(RF (H)) is the Dynkin index for representation RF (H) of the

fermion (scalar) fields, and nF (H) is the number of fermion (complex scalar) fields.

For an SU(N) gauge theory, S(R) = 1/2 for both fermions and scalars in the fun-

damental N -dimensional representation, whereas C(G) = N . For U(1)Y , S(R) = 1
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and C(G) = 0. For small values of nF , the β-function is negative which leads to the

asymptotic freedom of non-Abelian gauge theories [10].

For the SM particle content (see Table 1.1), the coefficients bi given by the

square bracket term in Eq. (2.5) are

(b1, b2, b3) =
(

41

10
,−19

6
,−7

)
(2.6)

for U(1)Y , SU(2)L and SU(3)c respectively, and we have used the “GUT normaliza-

tion“1 for U(1)Y coupling g1 =
√

5/3g′ [68]. The running behavior of the SM gauge

couplings with respect to the energy scale t = logQ is shown in Figure 2.1 (thin

lines), where we have used the experimental values at Q = mZ (see Table 1.2) as

inputs. It is clear that from Figure 2.1 that the three couplings in the SM fail to

unify.

In the MSSM, the β-function given by Eq. (2.5) will get modified by the

additional degrees of freedom, namely gauginos, higgsinos and sfermions. Using

S(R) = N for the adjoint representation in SU(N), the one-loop β-function in a

SUSY theory can be written as [85]

β(g) =
g3

16π2
[−3C(G) + S(R)] (2.7)

where the Dynkin index S(R) is now summed over all the matter and Higgs fields,

and their superpartners. For the MSSM particle content (see Table 2.1), the coeffi-

cients of the β-function in Eq. (2.7) are given by

(b1, b2, b3) =
(

33

5
, 1,−3

)
(2.8)

1We must use this normalization if each chiral family is to be embedded in a representation of

the unified group.
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The corresponding RG evolution is shown in Figure 2.1 (thick lines) from which

it is clear that the three gauge couplings do unify with satisfactory precision at a

point αU ' 0.04, thus defining a SUSY-GUT scale MGUT ∼ 2 × 1016 GeV, as well

as confirming the validity of perturbativity of the theory.
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Figure 2.1: The RG evolution of the gauge coupling strengths α−1
i ≡ (g2

i /4π)−1 for

the SM gauge group U(1)Y × SU(2)L × SU(3)c. With only the SM valid up to the

Planck scale, they (thin lines) fail to unify, whereas introducing MSSM at TeV-scale

leads to their unification (thick lines) at GUT-scale, MGUT ∼ 2× 1016 GeV.

To summarize, the MSSM solves some of the major inadequecies of the SM

listed in Section 1.2, namely, the gauge hierarchy problem, grand unification prob-

lem and dark matter problem. Also, it is possible to have successful electroweak

baryogenesis in MSSM [40]. However, just like in the minimal SM, neutrinos are

massless in MSSM. Given the solid evidence for neutrino masses and mixing [31], we

must extend the MSSM sector to incorporate neutrino masses, while preserving its

other nice features. One such viable mechanism is discussed in the following section.
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2.4 Neutrino Mass

In the SM, the LH neutrinos are massless due to the absence of their RH

counterparts (hence no Dirac mass) as well as the conservation of a global (B − L)

symmetry (hence no Majorana mass). Therefore, in order to generate non-zero

neutrino masses, one must extend the SM sector by either adding three RH neutrinos

(one per family) or by introducing (B − L)-breaking fields or both [30]. If we just

add RH neutrinos (N) while keeping the (B − L) symmetry unbroken, then the

observed smallness of LH-neutrino masses requires that the new Yukawa couplings

(yν) must be extremely small, i.e. yν <∼ 10−12 for sub-eV LH neutrino mass. In

the absence of any obvious compelling arguments for such a tiny Yukawa coupling,

the alternative path of generating non-zero neutrino masses by breaking (B − L)

symmetry seems more natural.

2.4.1 Seesaw Mechanism

The simplest way to parameterize the (B−L) breaking effects in SM extensions

is through Weinberg’s dimension-5 operator [86]

Leff = λij
LiLjΦΦ

M
(i, j = e, µ, τ) (2.9)

added to the SM Lagrangian, where M is the scale of new physics. After EWSB,

due to the Higgs vev given by Eq. (1.5), this operator leads to a non-zero neutrino

mass of the form mν = λv2/M .

There are both tree- and loop-level realizations of the dimension-5 operator

given by Eq. (2.9) to generate non-zero neutrino masses [87]. The tree-level realiza-
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tion is the so-called seesaw mechanism [37] in which the heavy particles associated

with the new physics, after being integrated out, lead to the effective operator in

Eq. (2.9). The simplest such model is the type I seesaw [88] in which the heavy

particles are SM singlet Majorana fermions, usually known as the RH neutrinos

(N), which couple to LH-doublets through Dirac Yukawa:

Lν =
3∑

i,j=1

[
yνij

L̄iΦNj + h.c.
]
+

1

2

3∑

i=1

MNi
NiNi, (2.10)

and MN is the Majorana mass of N which we have chosen to be diagonal, without

loss of generality. After EWSB, this leads to the neutrino mass matrix of the form

Mν =




0 MD

MT
D MN


 , (2.11)

where MD = vyν . The light mass eigenvalues are given by

mν = −v2yνM
−1
N yT

ν . (2.12)

Note that a second way to write the Weinberg operator in Eq. (2.9) is (LT~τL) ·

(HT~τH)/M where τ i’s are the usual Pauli matrices. This can be implemented by

adding an SU(2)L bosonic triplet ~∆ ≡ (∆++,∆+,∆0) coupled to SM leptons through

Majorana type couplings. This is known as the type II seesaw mechanism [89]. Yet

another way to write the effective Weinberg operator in Eq. (2.9) is (LT~τH)2/M

which can be implemented by adding an SU(2)L fermionic triplet (~Σ) coupled to

leptons through Dirac Yukawas, just like the singlet ones in type I. This is known

as the type III seesaw [90]. However, we do not discuss these variations further in

this work.
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2.4.2 Supersymmetric Seesaw

In the supersymmetric extension of the SM, the seesaw mechanism can be

incorporated [91] by introducing three gauge singlet RH neutrino superfields2 in

N̂ c
i (i = 1, 2, 3) which couple to the other MSSM superfields given by Table 2.1 via

the superpotential

W = WMSSM +
3∑

i,j=1

yνij
εabL̂iaĤub

N̂ c
j +

1

2

3∑

i=1

MNi
N̂ c

i N̂
c
i , (2.13)

where WMSSM is given by Eq. (2.1). The light neutrino masses are given by the

type-I seesaw formula, Eq. (2.12).

The soft SUSY-breaking terms in Eq. (2.3) must also be augmented by adding

the following terms:

−Lseesaw
soft =

3∑

i,j=1

[
m2

Nij
ν̃†Riν̃Rj + εab

(
Aνij

yνij
L̃iaHub

ν̃†Rj +
1

2
Bνij

ν̃Riν̃Rj + h.c.
)]

(2.14)

These new neutrino-sector superpotential and soft SUSY-breaking parameters in

general lead to enhancement in LFV decay rates through slepton and sneutrino

loops [93], and hence, are strongly constrained by experiments.

The massive neutrinos can also be incorporated in supersymmetric models

with the minimal particle content given in Table 2.1, but by giving up R-parity

conservation [94]. In R-parity violating (RPV) models with L violation, both ∆L =

1 and ∆L = 2 phenomena are allowed, leading to neutrino masses and mixing [95]

and various other L-violating phenomena [96]. However, we will not discuss RPV

models in this work.

2For SUSY models of neutrino mass without the seesaw mechanism, see e.g. Ref. [92].
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Chapter 3

Inverse Seesaw

3.1 Scale of Seesaw Physics

As discussed in Section 2.4.1, a simple paradigm for understanding the small-

ness of neutrino masses is the seesaw mechanism [88] where one introduces three

SU(2)L×U(1)Y singlet RH neutrinos with Majorana masses MNi
, usually assumed

to be much larger than the weak scale, thereby providing a natural way to under-

stand the tiny LH neutrino masses (hence the name “seesaw”). A great deal of

attention has been devoted to testing this idea the prospects of which depend on

the seesaw scale as well as any associated physics that comes with it at that scale. A

key question of interest is whether there are any theoretical guidelines for the seesaw

scale. This is certainly not possible within the SM gauge group under which the RH

neutrino fields are neutral. Therefore, it is natural to look for extended gauge groups

containing the RH neutrinos whose masses could be generated via Higgs mechanism

by spontaneous symmetry breaking of this extended gauge group and be protected

by the extended gauge symmetry. Also note that in the seesaw-extended SM, lep-

ton number is broken due to the ∆L = 2 Majorana mass term in the Lagrangian,

Eq. (2.10). Consequently, the seesaw-extended MSSM superpotential in Eq. (2.13)

conserves R-parity. It is therefore desirable to seek supersymmetric theories where,

just like in the SM, baryon and lepton number conservation (or R-parity) is guar-
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anteed by the field content and gauge symmetry.

The simplest extension is the supersymmetric version [97] of the Left-Right

(LR) model based on the gauge group SU(2)L × SU(2)R × U(1)B−L that provides

a natural explanation of the seesaw scale as connected to the SU(2)R × U(1)B−L-

breaking scale [98], apart from restoring the parity symmetry at high energy. Also,

the smallness of the neutrino mass is connected to the extent to which the RH-

current is suppressed at low energy. Thus, the LR-symmetry provides a well-defined

theory of neutrino masses [30] and can be used as a guide to study seesaw physics

at colliders provided the LR symmetry breaking scale is O(TeV) [99]. Moreover,

it provides a very attractive low-energy realization of SO(10) [100, 68], which is

arguably the simplest GUT scenario for seesaw mechanism [37] as it automatically

predicts the existence of RH neutrinos (along with the SM fermions) in a single

multiplet.

An advantage of GUT embedding of the seesaw mechanism is that the con-

straints of GUT symmetry tend to relate the Dirac neutrino mass MD in Eq. (2.11)

to the charged fermion masses thereby making a prediction for the seesaw scale MN

from low-energy experiments. For type I seesaw GUT embedding, typical values for

the MN are very large, usually in the range of 1010 - 1014 GeV, which are far beyond

the reach of colliders. Note that the key feature that leads to such restrictions in

type I seesaw case is the close link between the large (B−L)-breaking RH neutrino

Majorana mass and the smallness of the LH neutrino masses. So the question is to

know if there exists a seesaw mechanism whose GUT embedding is consistent with

TeV scale RH neutrinos. This is the main theme of this chapter.
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3.2 Inverse Seesaw Mechanism

A completely different realization [101] of the seesaw mechanism is character-

ized by a small effective lepton number violating Majorana mass µS which is directly

proportional to the small LH neutrino mass. This is known as the “inverse seesaw”

mechanism. The original motivation behind this formulation was to understand

small neutrino mass in SUSY-GUT models where no Higgs representation is avail-

able to generate the RH neutrino mass, e.g. in supersymmetric E6 models inspired

by superstring theory [102]. The original implementation of this mechanism required

two sets of SM singlet neutrino superfields N̂ c
i , Ŝi (i = 1, 2, 3 for three generations)1,

added to the MSSM field content (see Table 2.1). The resulting superpotential is

given by [101]

W = WMSSM +
3∑

i,j=1

[
εabyνij

L̂a
i Ĥ

b
uN̂

c
j +MNij

N̂ c
i Ŝj +

1

2
µSij

ŜiŜj

]
, (3.1)

whereWMSSM is the MSSM superpotential given by Eq. (2.1). In a non-supersymmetric

version of the model, the corresponding Lagrangian is given by2

Lν = LSM +
3∑

i,j=1

[(
yνij

L̄iΦNj +MNij
N̄iSj + h.c.

)
+

1

2
µSij

SiSj

]
(3.2)

1It was shown in Ref. [103] that in a minimal supersymmetric inverse seesaw model, only one

pair of singlets is sufficient to satisfy the neutrino oscillation data. However, we consider three sets

of singlets as required by SO(10) symmetry [100].
2A similar construction with SU(2)L×SU(2)R×U(1)B−L gauge group was done in Ref. [104].
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3.2.1 Light Neutrino Mass

After electroweak symmetry breaking, we obtain the following 9× 9 neutrino

mass matrix in the basis {ν,N c, S}:

Mν =




0 MT
D 0

MD 0 MT
N

0 MN µS/2




, (3.3)

where we have suppressed the family index for brevity. Here MD ≡ vuyν and MN

are arbitrary 3× 3 complex matrices in flavor space, whereas µS is a 3× 3 complex

symmetric matrix that breaks the lepton number. The 9×9 mass matrix in Eq. (3.3)

can be diagonalized by a unitary mixing matrix V :

VTMνV = diag
(
mνi

,mNj
,mN ′

k

)
, (i, j, k = 1, 2, 3) (3.4)

thus yielding nine mass eigenstates, three of which correspond to the observed light

neutrinos with masses mνi
, and three pairs of two-component leptons (Nj, N

′
j) com-

bining to form three heavy quasi-Dirac neutrinos with masses MNi
. The mixing

between the light and heavy states is roughly θνN ' MDM
−1
N for MD ¿ MN ,

similar to the type I case.

In the limit µ ¿ MD ¿ MN , the diagonalization of Eq. (3.3) results in the

following effective Majorana mass matrix for light neutrinos:

mν '
(
MDM

−1
N

)
µS

(
MDM

−1
N

)T
, (3.5)

where µS breaks the lepton number. Because of the presence of this new mass scale

µS in this theory, the seesaw scale MN can be as low as O(TeV) even for “large”

Dirac masses, unlike in the type I case [Eq. (2.12)].
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3.2.2 Smallness of µS

In the limit µS → 0, there are exactly conserved lepton numbers (1,−1, 1) for

(ν,N c, S) respectively. Then the three light neutrinos are massless Weyl fermions

as in the SM and the six heavy neutrinos combine exactly into three Dirac fermions.

Thus, the smallness of µS is technically natural (in the ’t Hooft sense) [105], since

µS → 0 restores a larger symmetry (a global U(1) in this case).

The typical size of µS can be estimated from Eq. (3.5) (for one generation):

(
mν

0.1 eV

)
=

(
MD

100 GeV

)2 (
µS

1 keV

) (
MN

10 TeV

)−2

(3.6)

Thus for MR ∼ a few TeV and large Dirac mass MD ∼ 100 GeV, the observed light

neutrino masses are obtained with µS in the keV range. In models where lepton

number is spontaneously broken by a vev 〈σ〉 [106], µS = yν〈σ〉 [107]. For typical

Yukawas yν ∼ 10−1 − 10−3, µS = 1 keV corresponds to the lepton number violation

scale of 〈σ〉 ∼ 10 keV− 1 MeV. However, such a low scale may not be protected by

SUSY from radiative corrections, though gauge loops may not destabilize it since it is

a gauge singlet and interacts with gauge bosons only through its mixing. However,

the smallness of µS can be explained by some other mechanism, e.g. radiative

corrections [108], or extra dimensions [109].

3.2.3 Phenomenology

The inverse seesaw mechanism leads to a rich phenomenology which can be

used to test it in energy, intensity and cosmic frontiers. Here we present a brief

summary of various signatures of this mechanism in a model-independent manner,
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and in subsequent chapters, we elaborate on these topics.

1. Direct Collider Signatures: In the inverse seesaw mechanism, since the (B−L)-

breaking RH neutrino mass is decoupled from the smallness of the neutrino

mass by the new small Majorana mass scale µS, the RH neutrino mass could

be easily allowed to be in the TeV-range, which should be kinematically ac-

cessible at the LHC to be produced on-shell by gauge boson exchange. In

particular, if the Dirac Yukawa is large, it allows for a large mixing effect

|θνN |2 ∼
(
MDM

−1
N

)2
between the light and heavy neutrinos, thus making the

collider test of this mechanism much more feasible (see Section 6.1 for a more

detailed discussion). This is in contrast with the type I case where the mix-

ing effects are usually of order ∼ mνM
−1
N and hence suppressed by the small

neutrino mass unless there are cancellations to get small neutrino masses from

large Dirac masses using some symmetries (see e.g. Ref. [110, 111]).

Once produced, these heavy neutrinos will decay to multi-lepton final states

as their striking collider signatures [112]. Due to their pseudo-Dirac nature in

inverse seesaw, the “smoking gun” signal for type I seesaw, namely the lepton

number violating same-sign dilepton signal [112, 113, 114, 111], is absent.

Instead, the lepton-flavor violating trilepton signal [112, 115, 116, 117] can be

used to test the inverse seesaw models at the LHC. We showed in Ref. [116]

that this could be used to distinguish type I from inverse seesaw at the LHC,

and also the heavy gauge boson WR could be discovered in this process.

2. Non-unitarity Effects: Apart from directly producing the RH neutrinos at col-
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liders, a different way to test the seesaw mechanism at the intensity frontier

follows from the observation that the mixing of the LH neutrinos with the

RH ones in general leads to violation of unitarity of the PMNS mixing ma-

trix [118] that describes only the mixing of the three light neutrinos. Due to

large mixing being allowed in inverse seesaw models, the non-unitarity effects

could be sizable [119, 120] and could be searched for in neutrino oscillation ex-

periments [118, 121] and weak decays [118]. Note that these effects are usually

suppressed by the light neutrino masses in canonical type I seesaw [122].

One may recall here that for the analogous mixing matrix in the quark sector,

namely the CKM matrix, deviations from unitarity are considered a good win-

dow for physics beyond the SM and the unitarity triangle has been extensively

studied in that case [123]. The need for similar studies in the leptonic sector

should also be emphasized [124].

3. CP Violation: The large mixing and non-unitarity effects could give rise to

leptonic CP violation [125] (for a review, see e.g. Ref. [126]). Note that the

CP violation in inverse seesaw models [119, 120] can occur even when the light

neutrinos are strictly massless [127], and could be large provided sin2 θ13 and

the Dirac CP phase are non-zero. As sin2 θ13 is indeed found to be large [35, 36],

the possibility of large leptonic CP violation becomes stronger now.

4. LFV Signatures: The large mixing between the light and heavy neutrinos in

the charged current sector leads to enhanced rates for the LFV processes `−α →

`−β + γ, µ → eee and µ → e conversion in nuclei and τ → eee, eµµ [128, 129,
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130]. Note that these LFV processes can occur in inverse seesaw irrespective of

the light neutrino mass and the SUSY spectrum [128]. This is in contrast with

the canonical type I seesaw where the LFV decay rates are usually suppressed

by the light neutrino mass [131] and are enhanced only by SUSY effects [93,

132].

Note that due to the small lepton number breaking in inverse seesaw, the

important lepton number violating signal for Majorana neutrinos, i.e. neutri-

noless double beta decay (0ν2β) cannot be used to test the inverse seesaw [133].

5. Dark Matter: In SUSY seesaw models, the scalar superpartner of the RH neu-

trino, with a small admixture of the LH counterpart, could be a possible DM

candidate, apart from the usual MSSM candidate, viz. the neutralino. More-

over, if the DM turns out to be very light (<∼ 20 GeV or so), as suggested by

some recent experiments and observations (for a recent review, see Ref. [134]),

the mixed sneutrino DM could be a preferred candidate than the neutralino

(see Chapter 5 for more details). Various models of such sneutrino DM have

been constructed for extensions of MSSM with type I [135] as well as inverse

seesaw [136, 137, 138, 139, 140]. We showed in Ref. [140] that the small Ma-

jorana mass term in inverse seesaw leads to a keV-scale mass splitting of the

lightest complex scalar sneutrino, thus providing a natural framework for “in-

elastic” DM [141]. This could be used to test the inverse seesaw mechanism

in DM direct detection experiments, when combined with the results from

collider searches for a sneutrino DM [103, 117, 142].
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6. Leptogenesis: One of the attractive features of the seesaw mechanism is that it

provides a way to understand the origin of matter in the Universe via leptoge-

nesis [143] (for recent reviews, see Ref. [144]). In the canonical type I seesaw

models with extended gauge groups (required to explain the RH neutrino

mass scale), low-scale leptogenesis is found to be in conflict with the observed

baryon asymmetry unless the extra gauge boson (W ′ and/or Z ′) masses are

above several TeVs [145, 146]. On the other hand, for inverse seesaw, we find

these constraints to be rather weak [147] due to large Dirac Yukawa couplings

and very small lepton number breaking (see Chapter 4 for details), which allow

the masses of heavy gauge bosons to be in the “LHC-friendly” energy range.

Hence, the discovery of heavy gauge bosons at the LHC will be considered as

a strong indication for inverse seesaw if leptogenesis is indeed the mechanism

for origin of matter.

These are some generic, model independent qualitative features of the inverse

seesaw phenomenology. However, for making more precise and quantitative predic-

tions, we need to be somewhat model-dependent. As we discussed earlier, in order

to have a complete model of BSM physics, the seesaw mechanism must be embed-

ded into either the SM or an extended gauge group. In the bottom-up approach,

we would like to examine whether a TeV-scale inverse seesaw model is compatible

with any other existing new physics scenarios. In particular, we are interested in

TeV-scale supersymmetric inverse seesaw models.
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3.2.4 Model Building

Current literature on the SUSY inverse seesaw discusses a few classes of such

models: (i) Originally, the minimal inverse seesaw structure given by Eq. (3.3) was

considered within the framework of MSSM [101] and some of its phenomenology was

explored in details later [103, 129, 136, 148]. However, in these models, since both N

and S are singlet fields, the MSSM gauge symmetry does not forbid terms like LHuS

and NN in the superpotential given by Eq. (3.2), and these extra terms have to be

omitted “by hand” in order to obtain the minimal structure given by Eq. (3.3). (ii)

The second class of inverse seesaw models extend the gauge symmetry of the model

to SU(2)L × U(1)Y × U(1)B−L [149] so that the seesaw mass matrix arises from a

(B−L) gauge symmetry and given rise to some interesting phenomenology [137, 150].

However, the (B − L) gauge symmetry discussed in Ref. [149] does not arise from

a GUT, and thus, the nice features of SUSY-GUT might be lost in this framework.

(iii) Yet another class of models uses global (B−L) symmetry to restrict the inverse

seesaw matrix to the desired form [139].

We proposed an alternative realization of TeV scale supersymmetric inverse

seesaw [120, 151] by extending the MSSM gauge group to the supersymmetric Left-

Right (SUSYLR) gauge group SU(2)L × SU(2)R ×U(1)B−L. Apart from rendering

the inverse seesaw matrix in Eq. (3.3) naturally protected by gauge symmetry, this

scenario has many interesting features such as (i) a full set of heavy gauge bosons

(W±
R , Z

′) for the SU(2)R sector, thus restoring parity symmetry at TeV scale, while

being consistent with low-scale leptogenesis [147] (see Chapter 4), (ii) inelastic sneu-
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trino dark matter [140] which is allowed to be very light (5 − 20 GeV range, as

suggested by some direct detection experiments) satisfying cosmological and col-

lider constraints (see Chapter 5), (iii) enhanced tri-lepton signal at the LHC [116]

due to on-shell production of a heavy RH neutrino via WR exchange (see Chap-

ter 6), (iv) gauge coupling unification and a successful embedding into an SO(10)

GUT [120] (see section 3.3) while being consistent with the current proton decay

constraints [151] (see Chapter 7). The GUT-embedding allows us to fully determine

the Yukawa couplings and the Dirac neutrino mass matrix from SO(10) relations

between quark and lepton mass matrices, which makes the model very predictive

for the non-unitarity and LFV effects in inverse seesaw [120] (see section 6.2).

3.3 A Realistic Model based on SUSYLR

The Left-Right symmetry [98], based on the gauge group SU(2)L×SU(2)R×

U(1)B−L, has the appealing feature of restoring parity symmetry in weak interac-

tions asymptotically, apart from explaining the neutrino mass naturally via seesaw

mechanism [88]. A key question is whether this extended symmetry could co-exist

with SUSY close to the weak scale, and if so, whether a TeV-scale SU(2)R×U(1)B−L

breaking (and hence the seesaw scale) is consistent with coupling unification. As a

generic possibility, the SUSYLR is quite consistent with current low energy observa-

tions [152]. Whether a TeV Scale SU(2)R symmetry is compatible with supersym-

metric coupling unification has been extensively investigated in literature [153, 154].

While it is possible with a judicious choice of Higgs multiplets [153], it is very hard
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to reconcile with TeV scale type I seesaw and related phenomenology [154]. On the

other hand, as we showed in Ref. [120], it is possible to achieve gauge coupling unifi-

cation with TeV scale inverse seesaw, which gives rise to interesting phenomenology.

Moreover, our SUSYLR model could be easily embedded into an SO(10) GUT and

fermion masses and mixing arise in a simple manner3, unlike in Ref. [153] which

does not give rise to a realistic fermion mass spectrum.

3.3.1 Particle Content of the SUSYLR Model

Here we consider only the doublet implementation of the SUSYLR model, i.e.

we use only SU(2) doublet Higgs fields (from the 16H ⊕ 16H multiplet of SO(10))

to break the (B−L) symmetry. In order to keep the model general, we allow for an

arbitrary number of these doublet fields, to be denoted by nL and nR respectively

for SU(2)L and SU(2)R doublets. Likewise we have n10 Higgs bi-doublets (from 10H

multiplet) which, on acquiring vevs, give masses to the fermions through Yukawa

couplings. We also allow for an arbitrary number nS of singlet fields Sα, as required

by inverse seesaw. These are the essential multiplets in a generic SUSYLR model

with inverse seesaw.

However, it turns out that with this minimal set of particles, it is not possible

to obtain the gauge coupling unification at a scale higher than ∼ 1015 GeV as

required from current bounds on proton decay lifetime, τp >∼ 1034 years [156]. As

we have shown below, unification is possible after adding the contribution from the

3An SO(10) embedding for inverse seesaw along somewhat similar lines to ours was also con-

sidered in Ref. [155].
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color triplets
[(

3, 1, 4
3

)
+ c.c.

]
(which come from the 45H multiplet). The lightness

of these Higgs multiplets, while consistently keeping all other multiplets heavy, is

justified in Appendix A.

The most general field content in our SUSYLR model is given in Table 3.1.

The electric charges of the fields must obey the relation Qem = I3L + I3R + B−L
2

.

3.3.2 Gauge Coupling Unification

The running of the gauge couplings is given by Eq. (2.4) and the one-loop

β-function in a supersymmetric theory is given by Eq. (2.7). With C(G) = N for a

fundamental representation of SU(N), we can write the coefficients of βi in Eq. (2.7)

as [157]

bSUSY
i = 2ng − 3N + TH(SN) (3.7)

for ng generations of fermions, and the complex Higgs representation parametrized

by TH(SN). For U(1) gauge group, N = 0 in Eq. (3.7) and the (B − L) gauge

coupling is GUT-normalized as g1 =
√

2
3
gB−L [68].

For the particle content given by Table 3.1, the Higgs contributions to Eq. (3.7)

are explicitly given by

T2L = n10 + nL, T2R = n10 + nR, T3c = 1, and TB−L = 4 +
3

2
(nL + nR) (3.8)

Hence for three fermion generations, the coefficients of the β-functions in our SU-

SYLR model are

bSUSYLR
i =

(
10 +

3

2
nL +

3

2
nR, n10 + nL, n10 + nR, − 2

)
, (3.9)
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Superfield SU(3)c SU(2)L SU(2)R U(1)B−L

ĜA 8 1 1 0

Gauge Ŵ a
L 1 3 1 0

Ŵ a
R 1 1 3 0

B̂ 1 1 1 0

Quark Q̂i =


 ûi

d̂i


 3 2 1 1

3

Q̂c
i =


 d̂c

i

−ûc
i


 3̄ 1 2 − 1

3

Lepton L̂i =


 ν̂i

−êi


 1 2 1 −1

L̂c
i =


 êc

i

−ν̂c
i


 1 1 2 1

Singlet Ŝα
i 1 1 1 0

Higgs φ̂p
u =


 φ̂+p

u

φ̂0p
u


 1 2 1 1

(
φ̂c

)q

u
=


 φ̂c0q

u

−φ̂c+q

u


 1 1 2 −1

φ̂p
d

=


 φ̂0p

d

φ̂−p
d


 1 2 1 −1

(
φ̂c

)q

d
=


 φ̂c−q

d

−φ̂c0q

u


 1 1 2 1

Φ̂r =


 ϕ̂0

dr
ϕ̂+

ur

ϕ̂−
dr

ϕ̂0
ur


 1 2 2 0

δ̂ 3 1 1 4
3

δ̂c 3̄ 1 1 − 4
3

Table 3.1: The superfield content of our SUSYLR model and their 3c2L2R1B−L quantum

numbers. Here i = 1, 2, 3 is the generation index, a = 1, 2, 3 and A = 1, · · · , 8 are the 2

and 3 gauge indices, r = 1, ..., n10, p = 1, ..., nL, q = 1, ..., nR and α = 1, ..., nS .
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where i stands for 1B−L, 2L, 2R and 3c respectively.

For illustrative purposes, we assume the SUSY scale MSUSY = 300 GeV and

the SU(2)R × U(1)B−L-breaking scale MR = 1 TeV. Also we take the number of

Higgs bi-doublets, n10 = 2 which is the minimum number required to get a realistic

fermion mass and mixing pattern for an SO(10)-GUT [68]. However, the number of

Higgs doublets can be arbitrary and we choose the minimum number of them which

gives successful unification. We start with the weak scale experimental values of the

couplings for 1Y , 2L and 3c given in Table 1.2 and run them up to the SUSY scale

MSUSY using the SM β-functions given by Eq. (2.5) with the coefficients given by

Eq. (2.6). Similarly, the running between the SUSY scale and the SU(2)R-breaking

scale is determined by the MSSM β-functions given by Eq. (2.7) with the coefficients

given by Eq. (2.8). And finally, the running between the SU(2)R-breaking scale and

the GUT-scale is determined by the SUSY β-functions given by Eq. (2.7) with

the coefficients obtained in Eq. (3.9). Also we use the matching condition [68] at

Q = MR where the U(1)Y -gauge coupling gets merged into SU(2)R × U(1)B−L:

α−1
1Y (MR) =

3

5
α−1

2R(MR) +
2

5
α−1

B−L(MR) (3.10)

As shown in Figure 3.1, the gauge coupling unification is obtained for nL = 0 and

nR = 2, with the unification scale parameters

MG ' 4× 1016 GeV, and αU(MG) ' 0.05 (3.11)

As the running behavior is mostly controlled by the SUSYLR sector, the scales

MSUSY and MR can be relaxed a little bit, still preserving unification, as long as

MSUSY is not too far from the weak scale (for reasons already discussed in Chapter
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Figure 3.1: Gauge coupling unification in the SUSYLR model. We have used n10 =

2, nL = 0, nR = 2, MSUSY = 300 GeV and MR = 1 TeV.

2). Note that the unification scale obtained here is slightly higher than the usual

SUSY-GUT scale. Moreover, unification occurs irrespective of the value of the inter-

mediate scale MR, and when the unified coupling is extrapolated back to the weak

scale, the Weinberg angle sin2 θW (mZ) and the strong coupling constant α3(mZ) are

independent of MR. This is an important feature of SO(10) GUT [158].

It should be emphasized here that the choice of two Higgs bi-doublets is the

minimum possible choice since one bi-doublet does not give a realistic fermion mass

spectrum in SO(10). Also, the choice of the number of Higgs doublets is unique

for the field content given by Table 3.1, since changing any of them will spoil the

unification. However, as we realized later (see Appendix A in Ref. [147]), there is an

alternative and somewhat better choice of Higgs fields which also leads to coupling

unification with TeV-scale WR and Z ′. We found that if we add one set of SU(2)R

triplets ∆(1, 1, 3, 0) (coming from the 45H field) to the field content in Table 3.1,
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then we can achieve unification with only one SU(2)R doublet, instead of two as

shown in Figure 3.1. This model has two nice features over the one presented here:

(i) all the Higgs fields required for unification are connected to breaking of separate

gauge symmetries and there is no arbitrariness in the number of fields, and (ii) the

presence of the SU(2)R triplet enables us to decouple the mass scales MWR
and MZ′

which are otherwise related in usual Left-Right models with MZ′ > MWR
. However,

the other low-energy effects to be discussed in subsequent chapters are more or less

independent of this choice of one or two RH-doublets.

We should also comment on the asymmetry between nL and nR. As shown

in Appendix A, since the vev of the 45H Higgs breaks D-parity and decouples it

from the SU(2)R breaking scale [159], it is possible to have only the right-handed

doublets and no left-handed ones below the GUT scale. This leads to the asymmetry

between α2L and α2R, with α2L

α2R
' 1.3 at TeV-scale in our case (see Figure 3.1).

3.3.3 Fermion masses and mixing

The RG evolution of the fermion masses and mixing have been extensively

studied for both the SM and the MSSM cases [84, 85, 160], but not for the SUSYLR

model, even though the analytical expressions for the Yukawa couplings had already

been derived in Ref. [161]. In this section, we present a detailed RG analysis of our

SUSYLR model and numerically solve them to obtain the quark and lepton masses

and the CKM matrix elements at the unification scale MG.

The general R-parity conserving superpotential in the SUSYLR model is given
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by

W SUSYLR = iyaQ̂
T Φ̂aQ̂

c + iy′aL̂
T τ2Φ̂aL̂

c + iy′αp
S ŜαL̂T τ2φ̂

p
u + iyαq

S ŜαL̂cT

τ2φ̂
cq

u

+yαab
Φ ŜαTr

(
Φ̂T

a τ2Φ̂bτ2
)

+ iyαpq
φ Ŝα

(
φ̂p

u

)T
τ2φ̂

q
d + iyαpq

φc Ŝα
(
φ̂cp

u

)T
τ2φ̂

cq

d

+iλapq

(
φ̂p

u

)T
τ2Φ̂a

(
φ̂cq

u

)
+ iλ̄apq

(
φ̂p

d

)T
τ2Φ̂aφ̂

cq

d

+iµpq
φ

(
φ̂p

u

)T
τ2φ̂

q
d + iµpq

φc

(
φ̂cp

u

)T
τ2φ̂

cq

d + µab
Φ Tr

(
ΦT

a τ2Φbτ2
)

+
1

2
µαβ

S ŜαŜβ +
1

6
Y αβγ

S ŜαŜβŜγ (3.12)

where we have suppressed the generational and SU(2) indices. Also we have ig-

nored all non-renormalizable terms in the superpotential as their contributions to

the RGEs are suppressed by MR/MG. We note that the superpotential given by

Eq. (3.12) has two additional terms of the form SLφu and SLcφc
u (as required by

the inverse seesaw model) as compared to that given in Ref. [161]. Also note that

since the δ, δc fields in Table 3.1 do not couple to any of the matter fields, they

do not enter the superpotential and do not affect the RG running of fermion mass

parameters (they only affect the color gauge coupling evolution).

We have seen from the previous section that the gauge coupling unification

requires that we should not have any SU(2)L doublet of Higgs fields in the low-energy

spectrum. Hence, we can drop the φu,d terms altogether from the superpotential of

Eq. (3.12) to get the following working superpotential for our model:

W = iyaQ̂
T Φ̂aQ̂

c + iy′aL̂
T τ2Φ̂aL̂

c + iyαq
S ŜαL̂cT

τ2φ̂
cq

u + yαab
Φ ŜαTr

(
Φ̂T

a τ2Φ̂bτ2
)

+iyαpq
φc Ŝα

(
φ̂cp

u

)T
τ2φ̂

cq

d + iµpq
φc

(
φ̂cp

u

)T
τ2φ̂

cq

d + µab
Φ Tr

(
ΦT

a τ2Φbτ2
)

+
1

2
µαβ

S ŜαŜβ +
1

6
Y αβγ

S ŜαŜβŜγ (3.13)
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where a = 1, 2, p, q = 1, 2 and α = 1, 2, 3 corresponding to the two bi-doublets,

RH-doublets and three fermion singlets, respectively, and we have suppressed other

SU(2) indices for brevity.

The RGEs for the Yukawa couplings ya and y′a in Eq. (3.13) are given by

16π2dya

dt
= ya

[
2y†byb − 16

3
g2
3 − 3g2

2L − 3g2
2R −

1

6
g2

B−L

]

+yb

[
Tr

(
3y†bya + y′†b y

′
a

)
+ 2y†bya + 4

(
µΦ†

α µΦ
α

)
ba

]
(3.14)

16π2dy
′
a

dt
= y′a

[
2y′†b y

′
b − 3g2

2L − 3g2
2R −

3

2
g2

B−L

]

+y′b
[
Tr

(
3y†bya + y′†b y

′
a

)
+ 2y′†b y

′
a + 4

(
µΦ†

α µΦ
α

)
ba

+ yα†
S yα

Sδba
]
(3.15)

where the repeated indices are summed over. Note that we have an additional

contribution to the RGE of the lepton Yukawa coupling y′a as compared to those

given in Ref. [161] which comes from the Sφc
uL

c term in the superpotential. Note

also the presence of the yb terms in the second line in both the Yukawa RGEs even

for a 6= b, which are characteristics of left-right models, arising from the Higgs

self-energy effects, and are absent in case of MSSM [157].

The fermion masses arise through the Yukawa couplings ya and y′a in the

superpotential given by Eq. (3.13) when the two Higgs bi-doublets Φ1,2 acquire vevs.

In general, a linear combination of y1 and y2 will give masses to the up-type quarks,

and similarly different linear combinations for the other masses. The dynamics of

the superpotential can be chosen in such a way that the bi-doublets acquire vevs in

the following simple manner:

〈Φ1〉 =
1√
2



vd 0

0 0


 , 〈Φ2〉 =

1√
2




0 0

0 vu


 (3.16)
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and we identify the ratio vu/vd ≡ tan β as in Eq. (2.2). To obtain the RGEs for the

mass matrices, we choose the renormalization method where the Yukawa couplings

and the Higgs vevs run separately [160]. The RGEs for the Higgs vevs are obtained

from the gauge and scalar self-energy contributions:

16π2dvu

dt
= vu

[
3

2
g2
2L +

3

2
g2
2R − Tr

(
3y†2y2 + y′†2 y

′
2

)
− 4

(
µΦ†

α µΦ
α

)
22

]
(3.17)

16π2dvd

dt
= vd

[
3

2
g2
2L +

3

2
g2
2R − Tr

(
3y†1y1 + y′†1 y

′
1

)
− 4

(
µΦ†

α µΦ
α

)
11

]
(3.18)

Using Eqs. (3.14, 3.15) for ẏa, ẏ
′
a and Eqs. (3.17, 3.18) for v̇u, v̇d, we have explicitly

derived the RGEs for the physical fermion masses and the quark mixing in our

SUSYLR model in Appendix B. Using the initial values for the mass and mixing

parameters at weak scale from Table 1.2 and the SM and MSSM Yukawa RGEs [160]

for mZ to MSUSY and MSUSY to MR respectively, we numerically solve the SUSYLR

RGEs given in Appendix B to obtain the running quark and lepton masses and the

CKM matrix elements at the unification scale MG:

mu(MG) = 0.0017 GeV, mc(MG) = 0.1910 GeV, mt(MG) = 77.8035 GeV;

md(MG) = 0.0013 GeV, ms(MG) = 0.0263 GeV, mb(MG) = 1.7092 GeV;

me(MG) = 0.0004 GeV,mµ(MG) = 0.0911 GeV, mτ (MG) = 1.7096 GeV;

VCKM(MG) =




0.9793 0.2023 + 0.0018i 0.0005− 0.0057i

−0.2023 + 0.0016i 0.9791 0.0240

0.0044− 0.0056i −0.0236− 0.0013i 0.9997




tan β(MG) = 7.0 (3.19)
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Figure 3.2: Running of fermion masses in our SUSYLR model for MSUSY = 300 GeV

and MR = 1 TeV. Note the b − τ unification which is a generic feature of SO(10)

GUT.
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Figure 3.2 shows the running of the quark and charged lepton masses up to the

unification scale MG. Note that we are able to generate the fermion mass spectrum

at the GUT scale with

mb

mτ

' 1,
mµ

ms

' 3,
me

md

' 1

3
(3.20)

which are characteristics of SO(10)-GUT spectrum [100], thus validating our RG

analysis presented here. Figure 3.3 shows the running of the CKM elements involving

only the third generation. Note that in addition to the significant running for the

third generation CKM elements Vub, cb, td, ts, we have a relatively milder running for

the other elements as well [cf. Eq. (3.19)], even in the third-generation dominance

approximation. This is a characteristic of the Left-Right model, in contrast with the

MSSM case where in the third generation dominance, the first and second generation

elements do not run at the one-loop level [160].

3.3.4 Symmetry breaking by radiative corrections

In this section, we propose a way to break both the SU(2)R×U(1)B−L as well as

the SM symmetry via radiative corrections from renormalization group extrapolation

of the scalar Higgs masses from the GUT to TeV scale [151]. As is well known,

the large top quark coupling enables one to achieve a similar goal in the case of

MSSM [69]. However, the simple generalization of that procedure cannot work in

our model since the bidoublet Higgs of LR models contains both theHu,d components

of MSSM, and as a result, large top quark coupling will necessarily turn both their

masses negative and this will not to give a stable vacuum.

53



Our proposal [151] is that we use a domain of parameter space for the soft

SUSY-breaking mass squares for the RH Higgs doublets φc
u,d where the mass square

of one of them turns negative, by RG running to the TeV scale due to the Lcφc
dS

Yukawa coupling being large. This leads to a breaking of the SU(2)R and (B − L)

symmetry. The mass square of the φc
u remains positive throughout but it acquires

an induced vev. The differences in their vevs, via the D-term [162], can make the

mass square of the Hu field negative while keeping the mass square of Hd positive

as in the case of MSSM, thereby also giving rise to the EWSB. The main point is

that both symmetry breakings owe their origin to one radiative correction.

In order to show that it is indeed possible to achieve negative mass square for

one of the RH Higgs doublets while keeping all other soft mass squares positive, we

need to examine the RG running of all the soft mass parameters from the GUT to

TeV scale. In this regime, the model is SUSYLR for which the soft SUSY-breaking

Lagrangian is given by [161]

Lsoft = −1

2

(
M3G̃G̃+M2LW̃LW̃L +M2RW̃RW̃R +M1B̃B̃ + h.c.

)

−
[
iAuaQ̃

T τ2ΦaQ̃
c + iAeaL̃

T τ2ΦaL̃
c + iAα

φc
u
Sαφuc

T τ2φuc + iAα
LcS̃αL̃cT

τ2φ
c
u

+
1

6
Aαβγ

S SαSβSγ + Aα
Φab
SαTr

(
ΦT

a τ2Φbτ2
)

+ h.c.
]

−
[
iBφcφcT

u τ2φ
c
d +BabTr

(
ΦT

a τ2Φbτ2
)

+
1

2
Bαβ

S SαSβ
]

−
[
m2

QQ̃
†Q̃+m2

QcQ̃c†Q̃c +m2
LL̃

†L̃+m2
LcL̃c†L̃c +m2

φc
u
φc†

u φ
c
u +m2

φc
d
φc†

d φ
c
d

+m2
Φab

Tr
(
Φ†

aΦb

)
+m2

Sαβ
SαSβ

]
(3.21)

where we have suppressed the generational and SU(2) indices, and a, b = 1, 2 (for

two bidoublets), and α, β, γ = 1, 2, 3 (for three gauge singlets). Note that we do
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not have any φu,d-term in these expressions as there is no SU(2)L Higgs doublet

in our model. Also we have an additional term in the superpotential (the SLcφc
u

term) and a corresponding trilinear term in the soft breaking Lagrangian (the S̃L̃cφc
u

term) as compared to the expressions given in Ref. [161]; this additional term in the

superpotential is required for the inverse seesaw mechanism to work. Moreover, if

we assume R-parity conservation, then the Sφc
uφ

c
d and SΦΦ terms are not allowed

in the superpotential and also in the soft-breaking Lagrangian, i.e. the couplings

µφc and µΦ as well as Yabc in Eq. (3.12) and the corresponding terms in Eq. (3.21)

are set to zero and yφc is the only non-zero coupling in Eq. (3.12) which can be fixed

by requiring b− τ unification at the GUT-scale. In this section, we work with this

assumption.

Now we analyze the RG evolution of the gaugino and soft mass parameters

from GUT to TeV scale. It is well known that in minimal SUSY GUTs, the β-

function for the gaugino mass is proportional to the β-function for the corresponding

gauge coupling [157]. Explicitly, the RGEs for the gaugino mass parameters are

given by

dMi

dt
=

bi
8π2

Mig
2
i (3.22)

where the β-function coefficients in our SUSYLR model are given by Eq. (3.9). This

implies that the three gaugino masses, like the three gauge couplings, must unify at

Q = MG. In order to solve Eq. (3.22), we adopt the universality hypothesis at the

GUT scale (as in typical mSUGRA type models) [82]

M1 = M2L = M2R = M3 ≡ m1/2, (3.23)
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together with the initial condition

g2
1 = g2

2L = g2
2R = g2

3 ≡ 4παU , (3.24)

where αU is given by Eq. (3.11). Using these initial conditions, we can obtain the

running masses for the gauginos at TeV scale, starting with a given value m1/2 at

the GUT scale, as shown in Fig. 3.4 for an illustrative value of m1/2 = 200 GeV. The

value of M3 increases, since it has a negative β-function, while the other gaugino

masses decrease as we go down the energy scale. Thus the gluino is much heavier

than the other gauginos at the weak scale.
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Figure 3.4: RG evolution of gaugino masses from GUT to TeV scale for m1/2 = 200

GeV.

The one-loop RGEs for the soft SUSY-breaking mass parameters are given in

Appendix C. As initial conditions, we assume universality and reality of the soft

fermion and Higgs masses at the GUT-scale, i.e.

(
m2

Q

)
ij

=
(
m2

Qc

)
ij

=
(
m2

L

)
ij

=
(
m2

Lc

)
ij
≡ m2

0δij,
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m2
φc

u
= m2

φc
d

= m2
φ0
,

(
m2

Φ

)
ab

= m2
Φ0
δab,

(
m2

S

)
αβ

= m2
S0
δαβ (3.25)

Note that in principle, we can choose a different mass scale for the Higgs bidoublets

and even different generations of fermions as well. The only constraint due to the

SO(10) symmetry requires us to have the same mass for each generation of fermions.

Also note that all the off-diagonal soft SUSY breaking scalar masses have been set

to zero. The inter-generation mixing at the low energy scale then occurs only via

the superpotential Yukawa couplings. With these initial conditions, we solve the

coupled RGEs for the soft masses given in Appendix C, along with the Yukawa

RGEs given by Eqs. (3.14) and (3.15) to get the running soft masses at the low

scale.

Fig. 3.5 illustrates such a scenario for the choice m1/2 = 200 GeV, m0 = mφ0 =

mΦ0 = 1.2 TeV and mS0 = 1.27 TeV. We have chosen the SLcφc
u coupling yS = 0.7

to achieve a realistic fermion mass spectrum, and in particular, the b− τ unification

at the GUT scale. Note that the RH slepton masses evolve much more rapidly than

their LH counterparts due to this large coupling yS. The value of mS0 is chosen

such that all the other eigenvalues (especially m2
Lc

3
and m2

S) remain positive at the

TeV scale. Note that the low energy values of m2
Lc

3
and m2

S are of order (10 GeV)2.

However the physical masses of these particles also receive a contribution from the

〈φc
d〉 which pushes the masses upto a TeV scale. As far as the squark masses are

concerned, they evolve more than the slepton masses due to the strong interaction

loop contributions to their RGEs. The small intra-generational mass splitting is
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|m2|, so that the negative values on the curves correspond
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due to the differences in their electroweak interaction. We can see clearly that at

the weak scale, the values of m2
φc

d
and m2

Φ1
are negative, thus triggering the SU(2)R

and electroweak symmetry breaking respectively. Note that we need not have both

the bidoublet mass squares to be negative, as one negative value will induce the

symmetry breaking via the cross terms of the type Φ1Φ2 in the Lagrangian.

We also verify that the low-energy values of the sfermion mass square matrices

satisfy all the FCNC constraints [77], due to the smallness of the off-diagonal entries.

As an example, we give the values here for the parameter values shown in Figure 3.5:

m2
Q =




1.63× 106 −1.45× 101 + 8.64× 101i −4.79× 102 + 3.57× 103i

−1.45× 101 − 8.64× 101i 1.63× 106 −2.31× 104 + 1.68i

−4.79× 102 − 3.57× 103i −2.31× 104 − 1.68i 6.51× 105


 GeV2,
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m2
Qc =




1.58× 106 −1.45× 101 + 8.64× 101i −4.79× 102 + 3.57× 103i

−1.45× 101 − 8.64× 101i 1.58× 106 −2.31× 104 + 1.68i

−4.79× 102 − 3.57× 103i −2.31× 104 − 1.68i 5.99× 105


 GeV2,

m2
L =




1.39× 106 −7.28 + 8.39× 101i −2.59× 102 + 3.45× 103i

−7.28− 8.39× 101i 1.39× 106 −1.25× 104 + 7.45× 10−1i

−2.59× 102 − 3.45× 103i −1.25× 104 − 7.45× 10−1i 8.66× 105


 GeV2,

m2
Lc =




3.81× 105 −7.18 + 8.24× 101i −2.57× 102 + 3.41× 103i

−7.18− 8.24× 101i 3.81× 105 −1.24× 104 + 7.75× 10−1i

−2.57× 102 − 3.42× 103i −1.24× 104 − 7.75× 10−1i 5.00× 103


 GeV2.

3.4 Embedding into SO(10) GUT

In order to embed the inverse seesaw mechanism into a supersymmetric SO(10)

theory, we have to break the (B−L) symmetry by using a 16 ⊕ 16 pair rather than

a 126 ⊕ 126 pair of Higgs representation. In this context, there are two symmetry

breaking chains that are particularly interesting:

1. SO(10)
MG−→ 3c2L2R1B−L

MR−→ 3c2L1Y (MSSM)

MSUSY−→ 3c2L1Y (SM)
MZ−→ 3c1Q [153]

2. SO(10)
MG−→ 3c2L2R1B−L

VR−→ 3c2L1I3R
1B−L

vR−→ 3c2L1Y (MSSM)

MSUSY−→ 3c2L1Y (SM)
MZ−→ 3c1Q [163]

In this paper, we consider only the former (and simpler) case of SO(10) breaking

chain. We also need at least two 10H and a 45H to have a realistic fermion mass

spectrum. With this minimum set of Higgs multiplets {10H , 16H , 16H , 45H},

several SO(10) models have been constructed [164]. All these models require various
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dimension-5 operators to get right fermion masses: in principle, they are also present

in our model. However, most of them e.g. hij

M
16i16j16H16H , are suppressed by the

factor MR

MPl
∼ 10−15 as the 16H Higgs acquires only TeV-scale vev. The only other

dimension-5 operator that can make significant contribution to fermion masses is

h′ij
M

16i16j10H45H ; we assume its effects to be small in our model and keep the

dimension six operator

fij

M2
16i16j10H45H45H (3.26)

This operator is suppressed only by
(

MG

MPl

)2 ∼ 10−4 as the 45H acquires a vev at the

scale MG and plays an important role in the fermion mass fitting given below.

The fermion mass splitting is obtained by the completely antisymmetric com-

bination of the operator given by the expression (3.26), i.e. in the notation of

Ref. [165]

〈ψ∗+|B[ΓiΓjΓkΓlΓm]AijAklΦm|ψ+〉 (3.27)

with B =
∏

µ=odd

Γµ and [...] denoting the completely antisymmetric combination.

Here Φ and A denote the 10H and 45H fields respectively. When the following vevs

are non-zero:

〈Φ9,10〉 6= 0, 〈A12,34,56〉 6= 0, (3.28)

this antisymmetric combination acts as an effective 126H operator which gives the

mass relation me = −3md and mν = −3mu due to the vevs 〈Aij〉, while mu and

md are split in the usual manner by the two 10H vevs, 〈φ9,10〉. To obtain a realistic

fermion mass spectrum, we construct the following model using the Higgs multiplets

{10H , 45H , 54H}. The SO(10) symmetry breaking to 3c2L2R1B−L is obtained by
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a combination of the 45H and 54H , with the following vevs in an SU(5) basis:

〈45〉 ∝ diag(a, a, a, 0, 0),

〈54〉 ∝ diag(2a, 2a, 2a, 2a, 2a, 2a,−3a,−3a,−3a,−3a) (3.29)

In this model, the fermion mass matrices at the GUT-scale have the following form:

Mu = h̃u + f̃ , Md = h̃d + f̃ , Me = h̃d − 3f̃ , MD = h̃u − 3f̃ (3.30)

where the hu,d matrices come from the usual Yukawa terms hij16i16j10H(10′H) and

the f matrix comes from the 45H contribution given by the expression (3.26), where

we have assumed the same coupling for both the 10H fields. The tilde denotes the

normalized couplings with mass dimensions where the vevs have been absorbed.

We know the nine eigenvalues of the quark and charged lepton mass matrices at the

scale MG from our RG analysis in the previous section [cf. Eqs. (3.19)]; however, we

have 18 unknowns (for 3 hermitian matrices) to fit into Eq. (3.30). Hence a unique

fit is not possible; we just give here one sample fit that is consistent with all the

masses and mixing at the GUT scale obtained from the RGEs.

We work in a basis in which the charged lepton mass matrix is diagonal, i.e.

Me =




me(MG) 0 0

0 mµ(MG) 0

0 0 mτ (MG)




=




0.0004 0 0

0 0.0911 0

0 0 1.7096




GeV

This immediately implies from Eq. (3.30) that

h̃d,ij = 3f̃ij. (i 6= j) (3.31)
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For simplicity, let us choose the f̃ -matrix to be diagonal. Then Eq. (3.31) implies

that h̃d is also a diagonal matrix. We also have the following relations:

h̃d,αα + f̃αα = mα, h̃d,ββ − 3f̃ββ = mβ (3.32)

where mα = (md, ms, mb) are the eigenvalues of Md and mβ = (me, mµ, mτ )

the eigenvalues of Me. These six equations (3.32) now fix the hd and f matrices

completely:

f̃ =




1
4
(md −me) 0 0

0 1
4
(ms −mµ) 0

0 0 1
4
(mb −mτ )




=




2.25× 10−4 0 0

0 −0.0162 0

0 0 −0.0001




GeV,

h̃d =




1
4
(3md +me) 0 0

0 1
4
(3ms +mµ) 0

0 0 1
4
(3mb +mτ )




=




0.0011 0 0

0 0.0425 0

0 0 1.7093




GeV (3.33)

The h̃u matrix can now be determined by fitting to Mu which, in this basis, is given

by

Mu = VCKMM
diag
u V †

CKM
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=




0.0120 0.0384− 0.0103i 0.038− 0.4433i

0.0384 + 0.0103i 0.2280 1.8623 + 0.0002i

0.038 + 0.4433i 1.8623− 0.0002i 77.7569




GeV(3.34)

Then from Eq. (3.30) the h̃u matrix is given by

h̃u =




0.0118 0.0384− 0.0103i 0.038− 0.4433i

0.0384 + 0.0103i 0.2442 1.8623 + 0.0002i

0.038 + 0.4433i 1.8623− 0.0002i 77.757




GeV (3.35)

Hence the Dirac neutrino mass matrix is given by

MD =




0.0111 0.0384− 0.0103i 0.038− 0.4433i

0.0384 + 0.0103i 0.2928 1.8623 + 0.0002i

0.038 + 0.4433i 1.8623− 0.0002i 77.7573




GeV (3.36)

It may be noted here that even though the specific form of the Dirac neutrino

mass matrix may depend on the choice of the particular basis we have chosen, the

individual values of the matrix elements are more or less fixed by the up-type quark

mass values, due to the mass relation (3.30), and hence, do not depend on the basis

so much. Therefore, all the predictions of the model that follow from the form of

MD given by Eq. (3.36) will be independent of the initial choice of our basis, upto

a few %. We will use this Dirac mass matrix in phenomenological studies as a

representative value for our model.

With this Dirac neutrino mass, we can easily fit the observed neutrino oscil-

lation data in Table 1.3 by fixing the singlet mass matrix µS in Eq. (3.5). As an

example, for a normal hierarchy of neutrino masses, and assuming a diagonal de-

generate structure for the RH neutrino mass matrix MN with eigenvalue 1 TeV, we
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can fit the observed neutrino oscillation data in Table 1.3 for the following choice of

µS:

µS =




−1.5934 + 0.0283i 0.2244− 0.0063i −0.0044 + 0.0092i

0.2244− 0.0063i −0.0322 + 0.0012i 0.0006− 0.0013i

−0.0044 + 0.0092i 0.0006− 0.0013i (4.0 + 5.1i)× 10−5




GeV (3.37)

Note that this can be regarded as one drawback of the inverse seesaw mecha-

nism as µS is an arbitrary mass matrix, and hence, we lose the predictability in the

neutrino sector, unlike other seesaw schemes embedded in SO(10) GUT. However,

recently there has been some progress in ameliorating this situation in inverse see-

saw by using some discrete symmetries [166] though its validity in SO(10) GUT is

yet to be tested.
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Chapter 4

Low-Scale Leptogenesis

4.1 The General Framework of Leptogenesis

Leptogenesis [143] is an elegant framework to understand the origin of matter-

antimatter asymmetry of the Universe [39]. Another attractive feature of this mech-

anism is that this is the cosmological consequence of the seesaw mechanism [88] and

is intimately related to the Majorana nature of the neutrino masses. In particu-

lar, successful leptogenesis yields an upper bound on all light neutrino masses of

0.1eV [167] which could be tested by future laboratory experiments and also by

cosmology.

In the standard paradigm of leptogenesis (for reviews, see e.g. Ref. [144]), the

three Sakharov conditions [41] for dynamically generating the baryon asymmetry

(see Section 1.2) are satisfied as follows:

1. The heavy RH neutrinos (required by seesaw mechanism) decay into lepton

and Higgs doublets to produce lepton number violation, which is transferred to

baryon number violation through (B+L)-violating sphaleron interactions [168,

143].

2. CP violation also occurs in the decays of the heavy neutrinos through their
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Yukawa couplings. The CP asymmetry parameter is defined as

εi ≡
∑

α Γ(Ni → `αΦ†)−∑
α Γ(Ni → ¯̀

αΦ)∑
α Γ(Ni → `αΦ†) +

∑
α Γ(Ni → ¯̀

αΦ)
, (4.1)

where α = e, µ, τ is the flavor index. This parameter can be computed from

the interference between the tree-level diagram and the two one-loop diagrams,

namely the vertex correction and self-energy diagrams, as shown in Figure 4.1,

which yields [169]

εi =
1

8π

∑
j 6=i Im

[
(y†y)2

ij

]

∑
α |yiα|2 f

(
M2

Nj

M2
Ni

)
, (4.2)

where f(x) =
√
x

[
1− (1 + x) log

(
1+x

x

)]
is the Fukugita-Yanagida loop func-

tion [143].

Figure 4.1: The Feynman diagrams for the L-violating decays of the heavy RH neu-

trino. Note that we need at least two of them to produce a non-zero CP asymmetry.

3. The out-of-equilibrium condition is provided by the expansion of the universe

when the L-violating interaction rates become slower than the Hubble expan-

sion rate. Thus a naive out-of-equilibrium condition is

ΓD,i < H(T = MNi
), (4.3)
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where ΓD,i is the total decay rate of the heavy neutrino Ni,

ΓD,i =
∑
α

Γ(Ni → `αΦ†) +
∑
α

Γ(Ni → ¯̀
αΦ) =

(y†νyν)iiMNi

8π
, (4.4)

and H is the usual Hubble expansion rate of the universe,

H(T ) = 1.66g1/2
∗

T 2

MPl

(4.5)

where g∗ is the number of relativistic degrees of freedom in the thermal bath [170].

A more sophisticated way to parameterize the out-of-equilibrium condition is

through the decay parameter Ki [171]

Ki ≡ ΓD,i

H(T = MNi
)

(4.6)

The parameter range for which K ¿ 1 is known as the “weak washout” regime

and K >∼ 3 is known as “strong washout” [171]. Eq. (4.6) can be conveniently

expressed in terms of two mass parameters [172]:

m̃i ≡ 8πv2

M2
Ni

ΓD,i =
(y†y)iiv

2

MNi

,

m∗ ≡ 8πv2

M2
Ni

H(T = MNi
) ' 1.08× 10−3 eV (4.7)

Both these masses are of the order of the light neutrino masses. m∗ is known

as the “equilibrium neutrino mass” and m̃i is known as the “effective neutrino

mass” which should be larger than the lightest neutrino mass [173].

4.1.1 The Boltzmann Equations

The theory of leptogenesis is very similar to classical GUT baryogenesis [170],

where the departure from thermal equilibrium is provided by some heavy particle
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decay resulting in the deviation of its distribution function from the equilibrium

value. This non-equilibrium deviation is usually computed by solving the classical

Boltzmann equations [174]. Here we only discuss the “vanilla leptogenesis” scenario

in which the baryon asymmetry is thermally produced by the decay of heavy singlet

neutrinos.

The various relevant processes1 for the out-of-equilibrium distribution are [176,

177]:

1. Decays and inverse decays: Ni ↔ `Φ† and the conjugate process Ni ↔ ¯̀Φ.

2. ∆L = 2 scattering processes `Φ ↔ ¯̀′Φ† (s-channel) and `` ↔ Φ†Φ† (u- and

t-channel) mediated by Ni.

3. ∆L = 1 scattering processes mediated by Higgs (e.g. `Ni ↔ Q3t̄) and gauge

bosons (e.g. `Ni ↔ Φ†V ).

The decay process was shown in Figure 4.1, and the other processes, collectively

known as the “washout processes” are shown in Figure 4.2. Neglecting the thermal

corrections [176], the Boltzmann equations can be written as [169, 177]

dNNi

dz
= −(Di + Si)(NNi

−N eq
Ni

), (4.8)

dNB−L

dz
=

∑

i

εi(Di + Si)(NNi
−N eq

Ni
)−NB−LW, (4.9)

where z ≡ MN1/T , N1 being the lightest heavy neutrino. NNi
and NB−L are the

number densities (abundance per RH neutrino) in a comoving volume containing one

photon at temperature T ÀM1, so that the relativistic equilibrium number density

1We have neglected the spectator processes [175] for simplicity.
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Figure 4.2: The Feynman diagrams for the washout processes: inverse decays, ∆L =

2 and ∆L = 1 scatterings. There are also t-channel contributions to the last diagram,

as well as those involving gauge bosons.

is given by N eq
N1

(z ¿ 1) = 3/4 [170]. The decay term Di ≡ ΓD,i/(Hz) accounts for

both decays and inverse decay, whereas Si represents the ∆L = 1 scattering. The

decays also yield the 1st term in Eq. (4.9) which is the source term for generating the

B−L asymmetry. All the other processes, namely the inverse decay and ∆L = 1, 2

scatterings contribute to the total washout, denoted by W .

4.1.2 Baryon Asymmetry

The final B − L asymmetry can be obtained by solving the Boltzmann equa-

tions, Eqs. (4.8) and (4.9) [170]:

N f
B−L(z) = N i

B−Lexp

(
−∑

i

∫ z

zi

dz′Wi(z
′)

)
+

3

4

∑

i

εiκ
f
i(z), (4.10)

whereN i
B−L denotes any possible pre-existing asymmetry at the onset of leptogenesis

at z = zi. In the strong washout regime, such initial asymmetry is completely erased

before the lightest heavy neutrino decay [167], and hence, the final asymmetry is

independent of the initial conditions. On the other hand, in the weak washout

regime, the final asymmetry does depend on the initial conditions; however, in the
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standard “thermal leptogenesis” scenario, it is usually assumed that N i
B−L = 0 [171].

The B−L production from the decay of Ni is expressed by the final efficiency

factor κf
i ≡ κi(z →∞) [178] in Eq. (4.10) which is given by

κf
i(z) =

4

3

∫ ∞

zi

dz′
Di(z

′)
Di(z′) + Si(z′)

dNNi

dz′
exp

(
−∑

i

∫ z

z′
dz′′Wi(z

′′)

)
(4.11)

Eq. (4.11) is normalized such that κf
i → 1 in the limit of thermal initial abundance

of the heavy neutrinos, NNi
= N eq

Ni
and no washout (Wi = 0); in general, for

NNi
≤ N eq

Ni
, κf

i ≤ 1.

The final baryon asymmetry, which is to be compared with the measured value

at recombination, Eq. (1.23), is given by [171]

ηB =
3

4

asph

f
N f

B−L (4.12)

where asph = NB/NB−L accounts for the fraction of B−L asymmetry converted into

baryon asymmetry by sphaleron processes, and its value is 28/79 if the electroweak

sphalerons go out of equilibrium before electroweak phase transition [179]2. f =

N rec
γ /N i

γ = 2387/86 [170] is the dilution factor for the photon number density from

the onset of leptogenesis till recombination. Using these values for asph and f in

Eq. (4.12), and ignoring the N i
B−L term in Eq. (4.10), the final baryon asymmetry

is given by

ηB ' 0.96× 10−2
∑

i

εiκ
f
i (4.13)

2If the sphalerons remain in equilibrium until slightly after the electroweak phase transition,

asph = 12/37 [180]. Both the values are of order 1/3 and, for definiteness, we use the previous

value.
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4.1.3 Lower Bounds on RH Neutrino Mass and Treheat

Comparing the theoretical prediction for the baryon asymmetry, Eq. (4.13),

with the measured value, Eq. (1.23), we obtain the required CP -asymmetry (assum-

ing that only the lightest heavy neutrino N1 decay contributes significantly):

εWMAP
1 '

(
6.4× 10−8

) (
κf

1

)−1
(4.14)

The maximal CP -asymmetry [181] in general depends on the mass of the heavy

neutrino MN1 , the effective neutrino mass m̃1 [cf. Eq. (4.7)] and the light neutrino

mass spectrum. For a normal hierarchy of neutrino mass with m1 = 0, the maximal

CP -asymmetry is only a function of MN1 and is given by [182]

εmax
1 (MN1) =

3

16π

MN1

√
∆m2

atm

v2
' 10−7

(
MN1

109 GeV

) 


√
∆m2

atm

0.05 eV


 (4.15)

Comparing Eqs. (4.14) and (4.15), and using the atmospheric neutrino oscillation

mass parameter from Table 1.3, we obtain an absolute lower bound on the heavy

neutrino mass for successful vanilla leptogenesis, known as the Davidson-Ibarra

bound [182]:

MN1 > Mmin
N ' 4× 108 GeV (4.16)

This translates into a lower bound on the initial temperature of leptogenesis,

Tin > Tmin
in ' 1.5× 109 GeV (4.17)

The main point is that for hierarchical heavy RH neutrinos, leptogenesis makes

it impossible for them to be observed at colliders. Moreover, assuming a period of

inflation [183] at early states of the expansion, the minimum initial temperature Tmin
in
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that allows for successful leptogenesis can be identified with the minimal reheating

temperature Tmin
reheat after inflation [170]. This leads to the “gravitino problem” [184]

in local supersymmetric theories, as the abundant production of gravitinos during

the reheating phase may overclose the universe. If the gravitino is the stable LSP, as

in most supergravity models, in order for it not to exceed the DM relic abundance,

the reheat temperature should be below 107−109 GeV [185]; on the other hand, if the

gravitinos are unstable, their decay during or after BBN may lead to a large entropy

production which puts stronger bounds on the reheating temperature, Treheat <∼ 106

GeV [186].

4.2 Resonant Leptogenesis

As we discussed in the previous section, the vanilla leptogenesis scenario is

not compatible with supergravity. On the other hand, from the point of view of

the seesaw mechanism itself, one can envisage the new physics scale to be anywhere

between TeV to 1014 GeV. Hence, it is interesting to explore the possibilities of a

“low-scale leptogenesis” which could be tested at the LHC. Several ways to relax

the constraints of leptogenesis and to overcome the gravitino problem have been

proposed in the literature [144]. Here we focus on one such possibility, namely

the enhancement of the CP asymmetry by allowing the RH neutrinos to be quasi-

degenerate; this mechanism is known as the “resonant leptogenesis” [187].

The idea of resonant leptogenesis came from the observation that self-energies

dominate the lepton asymmetry provided |MNi
−MNj

| ¿ MNi,j
[188]. It leads to
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important qualitative as well as quantitative differences from the vanilla leptoge-

nesis scenario discussed earlier. For example, flavor effects [189] due to neutrino

Yukawa couplings play an important role here. Also, we have to include the heavy

neutrino width effects in order to obtain a well-behaved analytic expression for the

CP asymmetry. The CP asymmetry generated during the decay Ni → `αΦ† (and

its conjugate process Ni → ¯̀
αΦ) is now given by [190]

εiα =
1

8π

∑

j 6=i





Im
[
(y∗iαyjα

(∑
β y

∗
iβyjβ

)]

∑
γ |yiγ|2 f v

ij +
Im

[
(y∗iαyjα

(∑
β yiβy

∗
jβ

)]

∑
γ |yiγ|2 f c

ij



 (4.18)

where f v is the L-violating self-energy and vertex loop factor and f c is the L-

conserving self-energy loop factor. In the quasi-degenerate limit of the (i, j) pair,

namely MNi
'MNj

, only the self-energy correction is relevant and

f i,j
v ' −f j,i

v ' f i,j
c ' −f j,i

c ≡ f i,j
self (4.19)

with [191]

f ij
self =

(M2
Nj
−M2

Ni
)M2

Ni

(M2
Nj
−M2

Ni
)2 + (MNj

Γj −MNi
Γi)2

, (4.20)

where Γi ' Γj is the width of the quasi-degenerate pair.

Similarly, the efficiency factors receive separate contributions for each degen-

erate Ni, and the final efficiency is given by

κf
iα(z →∞) ' κ


∑

j

Kjα


 , (4.21)

where the function κ(K1) is defined as [171]

κ(K1) =
2

K1zB(K1)

[
1− exp

(
−1

2
K1zB(K1)

)]
, (4.22)
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where zB is the central value around which the effective B−L asymmetry is gener-

ated (for zB − 2 < z < zB + 2) [192]:

zB(K1) ' 2 + 4K0.13
1 exp

(
−2.5

K1

)
. (4.23)

and the decay parameter K1 is defined in Eq. (4.6).

The final B − L asymmetry is then given by

N f
B−L =

∑
α




(∑

i

εiα

)
κ


∑

j

Kjα





 (4.24)

Note that the sums i and j run over all degenerate heavy neutrinos Ni,j, i.e. if all 3

of them are degenerate, then i, j = 1, 2, 3, whereas if only N1 and N2 are degenerate,

then i, j = 1, 2.

4.3 Low-scale Leptogenesis with LR Symmetry

Theoretically, it will be nice to have an understanding of the quasi-degeneracy

of the RH neutrinos in resonant leptogenesis. In seesaw models for RH neutrinos, a

higher gauge symmetry, e.g. B−L, is usually called for to make the model “natural”.

An attractive gauge symmetry that embeds the B −L symmetry and also provides

a way to understand the origin of parity violation in low-energy weak interactions

is the Left-Right (LR) gauge group SU(2)L×SU(2)R×U(1)B−L [98]. As discussed

in previous chapter, in addition to providing a compelling reason for the inclusion

of the RH neutrinos to guarantee anomaly cancellation, in the type I case, it can

also be used to understand why the seesaw scale is so much lower than the GUT

scale, whereas, in the inverse seesaw case, it stabilizes the zeros in the (ν,N c, S)

74



mass matrix that leads to the doubly-suppressed seesaw formula. An important

question that arises in these models is: What is the scale of parity invariance? In

particular, if it is in the TeV range and if at the same time leptogenesis generates

the desired matter-anti-matter asymmetry, then the LHC could be probing neutrino

mass physics as well as shed light on one of the deepest mysteries of cosmology.

Since Sakharov’s out-of-equilibrium condition [41] must be satisfied in order

to generate a baryon asymmetry, the existence of new interactions inherent to the

LR models make it a nontrivial task to check whether a TeV-scale WR, Z
′ is indeed

compatible with leptogenesis as an explanation of the origin of matter. Specifically,

the efficiency of leptogenesis crucially depends on the number of RH neutrinos that

decay out of equilibrium to produce a leptonic asymmetry. As discussed earlier in

this chapter, this number is set by two things: First, it depends on the relative

magnitudes of the decay rate and the (CP -conserving) gauge scattering rates of

the RH neutrino, since this can lead to a dilution of the number of “useful” RH

neutrinos. Second, the washout processes, primarily inverse decays, should drop out

of equilibrium early enough, otherwise the number of RH neutrinos gets suppressed

at an exponential rate.

4.3.1 With Type I Seesaw

The above issues have been analyzed for the type-I case within LR symmetric

models [145] as well as only (B−L) models [146]. It was found that for the full LR

models with TeV-scale parity restoration and RH neutrino masses, gauge scattering
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rates induced by WR exchange largely dominate the decay and inverse decay rates

because the Yukawa couplings are small for the standard type-I seesaw at the TeV

scale. These facts lead to a huge dilution of the number of RH neutrinos which decay

out of equilibrium and in a CP asymmetric manner. Moreover, the gauge scattering

interactions also wash out lepton number at a very large rate, much larger than

the inverse decays. Altogether, these two effects lead to a very stringent constraint

on the mass scale of WR for successful leptogenesis, MWR
≥ 18 TeV [145], which

would imply that the discovery of a WR at the LHC is incompatible with thermal

leptogenesis as the origin of matter. On the other hand, in the case of a simple

(B − L) theory, successful leptogenesis only implies that MZ′ ≥ 2.5 TeV in the

“collider-friendly” region of parameter space where the RH neutrino mass is less

than half the Z ′ mass [146]3. We note that there exist bounds on the WR mass from

low energy observations [194] and they allow WR mass to be as low as 2.5 TeV.

4.3.2 With Inverse Seesaw

In this section we summarize the main features of leptogenesis within the class

of LR inverse seesaw models discussed in Chapter 3 [147]4. We want to make it

clear that while we have used the SO(10) framework to make the results definite

and somewhat more predictive, our discussion is very general and applies also to the

case of TeV-scale Left-Right symmetry without grand unification and even without

3For a discussion of low scale leptogenesis in an SO(10) model where only the doubly charged

Higgs boson is in the TeV range, see Ref. [193].
4For other low-scale leptogenesis scenarios in inverse-seesaw-related frameworks, see Ref. [195].
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SUSY.

Two features distinguish the inverse seesaw mechanism from the type-I seesaw:

(i) the Dirac Yukawa couplings of the RH neutrino N can be much larger (∼ 10−1−

10−2) than for the type-I case (where they are typically of order ∼ 10−6 for TeV-scale

RH neutrino masses) and (ii) the lepton-number-violating parameter (the Majorana

mass µS of the left-right singlet lepton S, which measures the “pseudo-Diracness” of

N) is much smaller than the Dirac mass of N . As a result, first, the decay rate of N

can be much larger than the WR exchange scattering rate at the baryogenesis epoch,

and second, the wash-out processes are suppressed by the small Majorana mass µS.

Consequently, we find that both the WR and Z ′ can be in the TeV range and hence

accessible at the LHC [147]. This result should make the case for searching the WR

and Z ′ at LHC stronger [116, 196, 197, 198].

Note that in inverse seesaw models, the quasi-degeneracy of the RH neutrinos

are natural since they are related to the smallness of the Majorana neutrino mass and

they become exactly degenerate in the limit of massless neutrinos. We expect that

the lepton-number-violating washout will also go to zero in the limit of vanishing

µS. As a matter of fact, as explicitly shown in Ref. [199], the all-important ∆L = 2

washout process `Φ → ¯̀Φ† vanishes as δ2
i , with

δi =
|Mi −Mj|

Γi

' µii

Γi

, (4.25)

where Γi is the total decay rate of Ni into lepton and Higgs (and antiparticles), and

Mi,j are the masses of the quasi-Dirac RH neutrino pair Ni,j (with Γi ' Γj). Note

that we denote by Mi (i = 1, . . . , 6) the heavy neutrino mass eigenvalues. As shown
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in the Appendix D, the leading order contribution to the mass splitting for each

quasi-Dirac pair comes from the diagonal elements of the µS matrix. Therefore, as

expected, the washout tends to zero in the limit of vanishing µS. The suppression

of the washout can be shown to occur through the destructive interference of one

member of a quasi-Dirac pair with the other [199]. It is instructive to show numeri-

cally how the washout is kept under control in this family of models with more than

one pair of RH neutrinos. Plugging in numbers, we find that with Yukawa couplings

of order 10−1 and a RH neutrino mass of order 1 TeV, the decay parameter K in

Eq. (4.6) is of order 1012, which would naively imply strong washout! However, the

suppression of the washout is also very large, being proportional to δ2 with δ ¿ 1

due to the smallness of µS, as required to get the right scale for the light neutrinos.

Specifically, for the example of Eq. (3.37), we find that δ ∼ 10−5 and therefore the

effective decay parameter Keff ' δ2K ∼ 100, which is reasonably small.

In the LR model we are considering, there are other processes contributing to

the washout of lepton number, for instance, NReR ↔ ūRdR. More precisely, this

process destroys RH lepton number, but in the temperature range of interest to

us (TeV scale) every individual RH lepton flavor equilibrates with the LH lepton

flavor one, thanks to the Yukawa interactions. Does this process also turn off in

the limit of lepton number conservation? It can be easily shown that, including

the production of the RH neutrino by an inverse decay, followed by the scattering

process mentioned above, there is also a destructive interference within the quasi-

Dirac pair which leads exactly to the same kind of δ2-suppression as for the process

`Φ → ¯̀Φ†.
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Another feature of inverse seesaw models is that they typically lead to lepton

flavor equilibration [200] because of the large Yukawa couplings. More precisely, it

can be shown that the process `αΦ ↔ `βΦ, which does not change lepton number,

but changes lepton flavor, is deep in thermal equilibrium for the TeV temperatures

(see, for instance, Ref. [192]). Consequently, the Boltzmann equations for leptogen-

esis can be written as only one equation for the sum of the lepton flavors [200]. In

other words, flavor effects [189] are not important in our framework.

The CP asymmetry is given by Eq. (4.18). Note that this was derived as-

suming heavy neutrino mass eigenstates. Therefore, it is necessary to make a basis

transformation from the “flavor” basis where

MRH =




0 MN

MT
N µS/2


 , (4.26)

to the diagonal mass basis with real and positive eigenvalues Mi (i = 1, 2, . . . , 6),

grouped into three quasi-degenerate pairs with mass splittings in each pair of order

µkk (k = 1, 2, 3). Analytically, the exact diagonalization of the full 6×6 mass matrix

MRH to get a closed form expression for the Yukawa couplings, yiα, in terms of the

known parameters, namely MD, MN and µS, is extremely involved. In Appendix

D, we show the analytical expressions up to first order in µS for some simpler cases

with only two quasi-Dirac pairs and show explicitly that the CP -asymmetry indeed

vanishes in the L-conserving limit µS → 0, as expected. For the general case with

three quasi-Dirac pairs, we numerically evaluate the CP -asymmetry in the next

section. We note that the three-pair case reduces to the two-pair case discussed

in Appendix D if one of the masses is much heavier than the other two and hence
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decouples from the rest.

For numerical results, the Yukawa couplings are fixed by the SO(10) symmetry.

The µS matrix can be deduced from the knowledge of the light neutrino masses and

mixing angles as a function of the RH neutrino mass matrix MN , which can be

taken to be diagonal without loss of generality. Varying the RH neutrino mass

eigenvalues input then leads to different µS matrices, keeping the light neutrino

mass matrix such that its mass eigenvalues and mixing angles satisfy the neutrino

oscillation data within 3σ. Once we know the explicit form of the RH neutrino mass

matrix given by Eq. (4.26), we can define the quasi-Dirac pairs by transforming to

a basis in which this mass matrix is diagonal with real and positive eigenvalues.

We then calculate the CP -asymmetry and efficiency factors for the decay of the

lightest RH neutrino pair and scan the parameter space to match the calculated

baryon asymmetry (Eq. (4.13)) with the measured value (Eq. (1.23). Note that we

only consider the asymmetry generated by decay of the lightest RH neutrino pair

as the asymmetry generated by the heavy pairs is washed out very rapidly (due to

large exponential suppression), and for these washouts not to affect the asymmetry

generated by the lightest pair, we require the lightest pair to be at least 3 times

smaller than the next heavy pair [201].

To calculate the efficiency factor given by Eq. (4.11), we first write down

the thermally averaged rates for N → `Φ decay and the corresponding inverse

decay [171]:

D(Ki, z) =
K1(z)

K2(z)
Kiz,
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WID(Ki, z) =
1

4
KiK1(z)z

3. (4.27)

with Ka, a = 1, 2 denoting the modified Bessel function of the ith type. The

thermally averaged rate DWR
for the WR-mediated N -decay, N → `qRq̄

′
R, is given

by

DWR
(z) =

γ
(WR)
N

neq
NHz

(4.28)

where neq
N is the RH neutrino equilibrium number density, neq

N (z) = 3
4
nγ(z)N

eq
Ni

(z)

with nγ = 2ζ(3)
π2 T 3, and γN is the reaction density:

γ
(WR)
N = neq

N (z)
K1(z)

K2(z)
Γ

(WR)
N , (4.29)

where Γ
(WR)
N is the total three body decay width of N , given by [145]

ΓWR
N =

3g4
R

29π3M3
N

∫ M2
N

0
ds

(M6
N − 3M2

Ns
2 + 2s3)

(s−M2
WR

)2 +M2
WR

Γ2
WR

. (4.30)

with the WR total decay width ΓWR
=

g2
R

4π
MWR

.

The various scattering rates SWR,Z′ appearing in Eq. (4.11) are also defined as

in Eq. (4.28) where the corresponding scattering reaction density is related to the

reduced cross section as follows (see, for instance, Ref. [176]):

γ(ab↔ cd) =
M4

N

64π4z

∫ ∞

xthr

dx
√
xσ̂(x)K1(z

√
x) (4.31)

with x = s/M2
N and the threshold value xthr = 1

M2
N

max[(ma + mb)
2, (mc + md)

2].

The reduced cross sections for various WR exchange diagrams were computed in

Ref. [145]:

σ̂NeR↔ūRdR
(x) =

9g4
R

48πx

(1− 3x2 + 2x3)[(
x− M2

WR

M2
N

)2

+
M2

WR
Γ2

WR

M4
N

] , (4.32)
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σ̂NūR↔eRd̄R
(x) =

9g4
R

8πx

∫ 0

1−x
du

(x+ u)(x+ u− 1)
(
u− M2

WR

M2
N

)2 , (4.33)

σ̂NdR↔eRuR
(x) =

9g4
R

8π

M2
N

M2
WR

(1− x)2

(
x+

M2
WR

M2
N
− 1

) , (4.34)

Here we have ignored the t-channel process NN → `` as the rate for this process

falls off very rapidly for the region of interest, viz. z > 1 [145].

The reduced cross section for the Z ′ exchange diagram is given by [169]

σ̂NN↔`¯̀,qq̄(x) =
13g4

B−L

6π

√
x(x− 4)3

(
x− M2

Z′
M2

N

)2

+
M2

Z′Γ
2
Z′

M4
N

, (4.35)

with the total Z ′ decay width

ΓZ′ =
g2

B−L

24π
MZ′


13 + 3

(
1− 4M2

N

M2
Z′

)3/2

 . (4.36)

Before calculating the efficiency factor, it is instructive to compare all the re-

action rates appearing in Eq. (4.11) to get a clear idea of various contributions. As

an illustration, we consider the case with the RH Majorana neutrino mass eigen-

values (3.5, 3, 1) TeV (as in Eq. (3.37)). The flavor-summed washout parameter for

the decay of the lightest quasi-Dirac pair in this case is given by K3 ' 4 × 1011

whereas the effective washout parameter is given by Keff
3 ' δ2

3K3 ' 168 which is

reasonable. For comparison, the corresponding values for the two heavy pairs are

Keff
1 ' Keff

2 = 8×107 which, when exponentiated in the washout term in Eq. (4.11),

leads to a huge suppression, thus making the efficiency in those channels practically

negligible. Hence, from now on, we will consider the decay of only the lightest pair.

In Fig. 4.3, we show the various thermally averaged decay and scattering rates

as a function of z ≡MN3/T , for the above choice of the RH neutrino masses and for
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Figure 4.3: Various N decay and scattering rates (thermally averaged) as a function

of z = MN3/T for a particular choice of RH neutrino masses, (MN1 ,MN2 ,MN3) =

(3.5, 3, 1) TeV and MWR
= MZ′ = 2 TeV. The yellow shaded region is where the

asymmetry is generated.

MWR
= MZ′ = 2 TeV. The yellow shaded region shows the asymmetry production

time, approximately when zB − 2 < z < zB + 2 with zB given by Eq. (4.23) 5. We

note that in this range, the N → `Φ decay rate, D`Φ, dominates over the three-

body decay rate as well as all the scattering rates by several orders of magnitude.

Hence in the efficiency factor, Eq. (4.11), the dilution term D/(D+ S) is very close

to unity and is essentially independent of MWR
and MZ′ . The enhanced N → `Φ

decay rate is due to the large Yukawa couplings in the inverse seesaw scenario. We

also note that as the WR-mediated three-body N decay rate is much smaller than

5Here we have assumed that the production of asymmetry stops immediately after the tem-

perature drops below the sphaleron freeze-out temperature, Tsph ' 130 GeV for a Higgs mass

mH = 120 GeV [202].
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the N → `Φ decay rate, the washout term WWR
in Eq. (4.11) arising due to the

process `Φ → N → ¯̀qq̄′ which is proportional to the branching ratio of N → ¯̀qq̄′

will be suppressed compared to the inverse decay term WID. Thus we find that

the efficiency factor is also essentially independent of both WR and Z ′ masses for

a wide range of parameter space. Of course, the WR and Z ′ scattering terms will

start to dominate for very low values of their masses; however, we estimated this

lower bound to be well below the current collider bounds on MWR
and MZ′ which

are roughly a TeV or so [203].
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Figure 4.4: Correlation between the baryon asymmetry and the lightest RH neutrino

mass for various heavy mass pairs (MN1 ,MN2) in TeV. The yellow shaded region is

the observed value of ηB within 2σ C.L..

Fig. 4.4 shows the baryon asymmetry ηB as a function of the lightest RH

neutrino massMN3 for different choices of the heavy RH neutrino masses (MN1 ,MN2)

from 1.5 − 3 TeV. The calculated value of ηB is to be compared with the observed

68% C.L. value, ηB = (6.2± 0.15)× 10−10 [39]. It is clear from the figure that for a
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Figure 4.5: Correlation between the efficiency factor and the flavor-summed CP -

asymmetry for the lightest pair for various values of the heavy mass pair (MN1 ,MN2)

in TeV. The yellow shaded region corresponds to the observed value of ηB within

2σ C.L..

given heavy mass pair, there is a narrow range of values allowed for MN3 satisfying

the observed baryon asymmetry (the yellow shaded region). We note that for fixed

MN1 , the allowed range of MN3 decreases with increasing MN2 , while for fixed MN2 ,

the allowed range of MN3 increases with increasing MN1 . Also note that when the

heavy pairs have degenerate mass, the baryon asymmetry gets suppressed (e.g. the

lower two lines in Fig. 4.4) due to the suppression in the CP -asymmetry. Finally,

we note that for a given set of heavy mass pairs, ηB ∝M−3
N3

.

Fig. 4.5 shows the correlation between the efficiency factor and the flavor-

summed CP asymmetry for various channels. The different lines correspond to

different values of the heavy mass pair, (MN1 ,MN2) in TeV, starting from (3,1.5)

TeV at the top to (3,3) TeV at bottom. We note that for fixed MN1 , the lines move
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down as we increase MN2 while for fixed MN2 , they move up with increasing MN1 .

The yellow shaded region shows the observed value of ηB which is essentially the

product of κ and ε, summed over all pairs. As we have pointed out earlier, only the

lightest pair contribution is significant, while the efficiency is too small for the other

two pairs.

In summary, we have shown that a TeV-scale Left-Right symmetry can be

compatible with the understanding of the origin of matter via leptogenesis provided

small neutrino masses are understood using the inverse seesaw mechanism.
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Chapter 5

Dark Matter

The existence of Dark Matter in our universe is by now well-established [45]

from various astrophysical and cosmological observations, e.g. galactic rotation

curves, spatial distribution of galaxies, gravitational lensing and CMB anisotropy.

The current relic abundance of the DM is measured by the fraction of its density

ΩDM = ρDM/ρc where ρc is the critical closure density,

ρc =
3H2

0

8πGN

' 1.88× 10−29h2 g.cm−3, (5.1)

where h is a dimensionless scaling constant used to parameterize the Hubble param-

eter today, H0 = 100hkm.s−1.Mpc−1, and its measured value is h = 0.72±0.03 [204].

The current most accurate determination of ΩDM comes from global fits of cosmo-

logical parameters [204] to a number of observations (e.g., CMB, Baryonic Acoustic

Oscillations, Type Ia Supernovae) and yields Eq. (1.24): ΩDMh
2 = 0.110±0.006 [39].

This actually refers to the relic density of “cold, non-baryonic” DM [204]:

ΩCDM = Ωm − Ωb − Ων = 0.110(6)h−2 = 0.21± 0.02, (5.2)

which is deduced from the total matter density Ωm = 0.26(2), total “baryonic”

matter density Ωb = 0.044(4), and the light neutrino density Ων < 0.013.

Another important parameter in Dark Matter physics is the “local DM halo

density”, i.e. the DM density in the neighborhood of our solar system; the estimates

based on the “Standard Halo Model” give ρlocal ' 0.3 GeV.cm−3 [205].
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5.1 WIMPs

A number of possible DM candidates exist in literature [206], with masses

ranging from 10−5 eV to 1060 GeV. However, as the observational data indicate [cf.

Eq. (5.2)], most of the DM in our universe must be “cold” (non-relativistic) and

non-baryonic. Hence, we will not further discuss about the baryonic DM candidates

(e.g. MACHOs and molecular gas clouds) and “hot” (relativistic) DM candidates

(e.g. light neutrinos). The leading “cold” DM candidates are axions [207] and

WIMPs (Weakly Interacting Massive Particles) [208]. WIMP candidates are theo-

retically motivated by the so-called “WIMP Miracle” (discussed below); also from

experimental point of view, the nature and properties of a WIMP can be directly

probed via its scattering against different target nuclei [209] as well as from indirect

signals through its annihilation in space [210].

5.1.1 Relic Density

The thermal relic density of WIMPs (henceforth denoted by χ) can be calcu-

lated reliably within the standard Friedmann-Robertson-Walker (FRW) cosmology

by assuming that they were in thermal and chemical equilibrium with other elemen-

tary particles in the early universe when the temperature of the universe was larger

than the WIMP mass (mχ). As the universe expands and cools to a temperature

T < mχ, the equilibrium abundance becomes exponentially (Boltzmann) suppressed

∼ e−mχ/T until its interaction rates fall below the Hubble expansion rate, at which

point it drops out of equilibrium (“freeze out”). After freeze out, the comoving
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WIMP density remains essentially constant and can be determined by solving the

Boltzmann equation in an expanding universe [170]:

dnχ

dt
+ 3Hnχ = −〈σAvrel〉

[
n2

χ −
(
neq

χ

)2
]
, (5.3)

where nχ is the number density of WIMPs, H = 1
a

da
dt

is the Hubble expansion rate,

a is the scale factor of the universe, and 〈σAvrel〉 is the thermally averaged total

annihilation cross section times the relative velocity. neq
χ = g

(2π)3

∫
d3pf(p) is the

equilibrium number density, where g is the number of relativistic degrees of freedom

and f(p) is the statistical distribution function. The second term on left in Eq. (5.3)

represents a diminution of number density as the universe expands, while the first

term on right accounts for depletion due to annihilation, and the second term due

to creation of WIMPs from inverse reactions.

In the absence of number-changing interactions, the right side of Eq. (5.3) is

zero, and the solution is nχ ∝ a−3 as for a matter-dominated universe. In presence

of the right side term, there is no closed-form analytic solution; however, we can

obtain an analytic approximation to within 10% accuracy by assuming that the

annihilation cross section is energy independent. Using the freeze-out condition

that the annihilation rate Γ = nχ〈σAvrel〉 is equal to the Hubble expansion rate H =

1.66g
1/2
∗ T 2/MPl (which occurs at temperature Tf ' mχ/20 almost independently of

the WIMP properties), and the fact that the comoving number density nχ/s remains

constant after freeze out, where s ' 0.4g∗T 3 is the entropy density, we obtain [170]

(
nχ

s

)

today
=

(
nχ

s

)

freeze−out
' 100

MPlg
1/2
∗ mχ〈σAvrel〉

' 10−8

(
1 GeV

mχ

) (
10−27 cm3s−1

〈σAvrel〉

)
(5.4)
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Using the current entropy density s0 ' 4000 cm−3, and the critical density from

Eq. (5.1), we obtain [170]

Ωχh
2 =

mχnχ

ρc

' 3× 10−27 cm3s−1

〈σAvrel〉 ≡ 0.1 pb

〈σAvrel〉 (5.5)

Thus, the relic density of the WIMP is independent of its mass (except for logarith-

mic corrections) and is inversely proportional to its annihilation cross section which

happens to be the typical size of weak interaction cross sections O(1 pb) in order

to reproduce the measured relic density, Eq. (5.2). This is known as the “WIMP

miracle”.

As noted above, the typical freeze out temperature Tf ' mχ/20 which means

the WIMPs are already non-relativistic at freeze out. Hence, the total annihilation

cross section can be written in powers of their velocities (v ¿ 1):

〈σAvrel〉 = a+ bv2 +O(v4), (5.6)

where the first term comes from s-wave annihilation and the second term from

both s- and p-wave annihilation. Hence, the simplest (energy independent) case

considered above is true only if the s-wave annihilation is unsuppressed. For s-wave

suppression case, we need to consider the velocity-dependent term in Eq. (5.6) and

the final relic density given by Eq. (5.5) has to be modified accordingly to take

this effect into account [170], which can be done with high accuracy by numerically

solving the Boltzmann equation, Eq. (5.3).
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5.1.2 LSP as WIMP

As discussed in Chapter 2, in R-parity conserving SUSY models, the LSP is

absolutely stable. If it is a color and electrically neutral massive particle, it can

serve as a WIMP candidate. The lightest neutralino is the most popular WIMP

candidate in SUSY models [72]. In fact, in MSSM, this is the only possible DM

candidate, as the other natural candidate, namely the scalar superpartner of the LH

neutrino, is completely ruled out by relic density, direct detection and invisible Z-

decay width constraints [211]. More precisely, the LH sneutrinos are weakly charged

and typically annihilate too rapidly via Z-mediated s-channel diagrams. This results

in a too small relic density [cf. Eq. (5.5)] compared to the observed value, Eq. (5.2).

In order to suppress the annihilation rate, the sneutrinos must be either very light of

order GeV [212] or very heavy of order TeV [213]. A very light sneutrino is excluded

by the measurement of the Z-invisible decay width at LEP [4] whereas a very heavy

sneutrino is excluded from constraints on the direct detection cross section (for the

latest exclusion limits, see e.g. Ref. [214]).

In the constrained MSSM, the lightest neutralino has the desired relic den-

sity given by Eq. (5.2) in a few narrow regions (for a recent updated analysis, see

Ref. [215]).

1. The bulk annihilation region which occurs at low (m0,m1/2) where neutralino

annihilation mainly occurs via χ0
1χ

0
1 → `¯̀ via t-channel slepton exchange. As

m0 increases, the slepton masses also increase, thus suppressing the annihila-

tion cross section and increasing the relic density beyond the observed value.
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2. The co-annihilation region where the lighter stau and other sleptons bring the

relic density into measured range 1. At large tan β, this region extends into a

funnel region when 2mχ is close to the mass of the CP -odd Higgs boson so that

direct-channel Higgs resonances are dominant. There is also a narrow strip

at low m1/2 where the annihilation via light Higgs resonance occurs; however,

this region is already ruled out by the LHC SUSY searches [216].

3. The focus point region at large m0 where the neutralino is mostly Higgsino like

(since |µ| is small) and annihilates dominantly into WW,ZZ and Zh states.

The neutralino relic density allowed regions in (m0,m1/2) plane are narrow strips for

fixed values of A0 and tan β [217, 215] from which we conclude that the parameter

space for neutralino DM is highly constrained in the cMSSM.

Also, the relic density puts strong constraints on the MSSM neutralino LSP

mass. If we assume gaugino mass unification, the absolute lower limit on the neu-

tralino mass from LEP searches is 47 GeV [219]. Even if we do not assume gaugino

or scalar mass unification, the WMAP constraints, together with the LEP bounds

on chargino mass, require that mχ0
1
> 18 GeV [218]. Thus, if the WIMP DM turns

out to be as light as 5 − 15 GeV, as suggested by some recent experiments [220],

we need to go beyond the universal MSSM scenario. Since MSSM is anyway not a

complete theory and needs to be extended to accommodate observed small neutrino

masses, it would be interesting to see if these extensions can also provide viable light

dark matter candidate while satisfying both collider and relic density constraints. In

1At large A0, the stop co-annihilation is also important.
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this chapter, we examine [140] these issues in the inverse seesaw extension discussed

before.

5.2 Sneutrino DM in Inverse Seesaw

In this section, we focus on the supersymmetric inverse seesaw models [101]

discussed before where one adds two SM singlet fermions N and S per family to

generate small neutrino masses while still keeping the S and N masses in the TeV

range. These models give three lepton number carrying electrically neutral fermions

per family, namely (ν,N c, S). If a linear combination of the super-partners of these

fields turns out to be the LSP, then it could be a candidate for dark matter [136,

137, 138, 139, 140]. As discussed earlier, we consider the SUSYLR gauge group

to stabilize the zeros of the inverse seesaw mass matrix. The presence of left-right

gauge symmetry endows special dynamical properties to the dark matter particle

than other inverse seesaw sneutrino models. We showed in Ref. [140] that this

can lead to a light inelastic dark matter particle in the 5-20 GeV mass range with

the correct relic abundance and also satisfying the current XENON100 bounds for

spin-independent scattering cross section.

Working within this LR class of models, we find the following results [140]:

(i) The LSP dark matter, a linear combination of the superpartners of the new

SM singlet fermions, can have mass from a few GeV up to about 100 GeV without

running into conflict with known low energy observations. (ii) The S-fermion, which

is given a small lepton number violating mass to understand small neutrino masses,
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leads to a splitting of the above complex scalar LSP into two closely-spaced real

scalar fields2, the lighter of which (we’ll denote it by χ1) is the true dark matter field

and is accompanied by its slightly heavier partner field (χ2) with a mass difference

of order keV. A consequence of this is that the direct detection process involves a

dominantly inelastic scattering mode with the nucleus (N ) where χ1 +N (A,Z) →

χ2 + N (A,Z) [141], and can therefore be tested in direct dark matter detection

experiments [222]. The inelastic property arises naturally since the gauge Noether

current coupling to the Z (and Z ′ in models with extended gauge symmetries)

necessarily connects χ1 to χ2; also, any possible elastic contribution (mostly through

the Higgs mediation) is highly suppressed due to small Yukawa couplings to light

quarks. We believe that this important point was emphasized for the first time

in Ref. [140]. (iii) The new TeV scale gauge dynamics in these models leads to

new annihilation diagrams for dark matter in the early Universe responsible for its

current relic density. (iv) Finally, we also note a collider signature which is specific

to sneutrino combination rather than the neutralino being the dark matter.

In the SUSYLR model, the sneutrino mass matrix in the basis of {ν̃, ν̃c†, S̃} is

given by

Mν̃ =




m2
ν̃†ν̃ m2

ν̃†ν̃c† m2
ν̃†S̃

(
m2

ν̃†ν̃c†

)†
m2

ν̃cν̃c† m2
ν̃cS̃

(
m2

ν̃†S̃

)† (
m2

ν̃cS̃

)†
m2

S̃†S̃




(5.7)

where the various entries are described in Appendix E. The lightest sneutrino mass

eigenstate, which will be the dark matter candidate, turns out to be mostly S̃ and

2For a similar idea connecting inelastic splitting to neutrino masse, see Ref. [221]
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with little admixtures of ν̃ and ν̃c† in this model. Note that the ν̃ component is

anyway required to be very small for a light DM as it is severely constrained by the

invisible Z-decay width. The ν̃, ν̃c components are crucial for the direct detection

of the DM because these are the only parts interacting with the observable sector via

gauge bosons and gauginos. However, the relic density will be mostly determined

by the S̃ component of the DM as explained in Section 5.2.3.

5.2.1 Constraints in the ν̃ Sector

Most of the collider and flavor constraints are only on the left-sneutrino compo-

nent, ν̃L, due to its interaction with the SM-sector. However, if we assume sfermion

mass universality at the GUT scale, some indirect bounds on the other components

of sneutrino could be derived. Assuming that only one ν̃ state can be lighter than

half Z mass, the Z decay width to two ν̃s is given by

Γ(Z → χ̃1χ̃2) = |C0|4 Γν

2

[
1−

(
2Mχ

mZ

)2
]3/2

Θ(mZ − 2m1) (5.8)

where C0 is the fraction of LH component and Γν = e2mZ

24π sin2 2θW
= 167 MeV is the

partial decay width of Z into one invisible νν̄ mode in the SM. The current bound on

the width of any additional invisible decay is 2.3 MeV (experimental uncertainty [4]).

This constrains the LH component c0 as shown in Figure 5.1. We note here that

for a purely LH-sneutrino, the invisible Z-decay width puts a lower bound on the

sneutrino mass around 44 GeV [22]. Roughly speaking, for light mass dark matter

that contains the left sneutrino (Mχ ≤ 44 GeV), the ν̃-fraction must be less than

40%
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Figure 5.1: LH sneutrino component constrained by the invisible Z-decay width as

a function of the DM mass. Red region is the allowed domain.

5.2.2 Sneutrino as Inelastic Dark Matter

Neglecting the keV scale lepton number violation effect, the sneutrino mass

eigenstates are complex scalars in the basis of (ν̃, Ñ †, S̃), and the lightest sneutrino

eigenstate can be written as

χ̃1 =
3∑

i=1

(U †)1νi
ν̃i + (U †)1Ni

Ñ †
i + (U †)1Si

S̃i (5.9)

where U is a 9 × 9 unitary matrix that diagonalizes the full neutrino mass matrix

given by Eq. (3.3). When the lepton number violation is invoked, the splitting terms

∑9
m,n=1Amnχ̃mχ̃n are generated in the sneutrino sector, through the F -term [223]

potential

∣∣∣∣∣
∂W

∂Φ̂

∣∣∣∣∣
2

Φ̂=S

=
∣∣∣µSS̃ + ySvRdν̃

c
∣∣∣
2

(5.10)

The interference term, ySµSvRdS̃
†ν̃c+ h.c., generates the mass splitting between the

imaginary and real part of the mass eigenstates χ̃i.
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Up to leading order in the lepton number violating mass term µS, the mass

splitting of the lightest mass eigenstate can be written as

δMχ =
4|A11|
Mχ

, (5.11)

where generically A11 ∼ µSMSUSY. If Mχ is also of order of the SUSY breaking scale

(assumed to be around TeV), the splitting is of order µS, and if Mχ is much lower

than MSUSY as in some region of parameter space in SUSYLR, the splitting can be

enhanced.

A consequence of this mass splitting is that in the direct detection process, the

scattering of the DM particle off nuclei mediated by gauge bosons will be an inelastic

scattering mode. The inelastic property arises naturally since the gauge Noether

current coupling to the Z (and Z ′ in this model) necessarily connects χ1 to χ2.

Moreover, any possible elastic contribution (mostly through the Higgs mediation)

is highly suppressed due to small Yukawa couplings to light quarks, as discussed in

Section 5. Hence, a sneutrino LSP in supersymmetric inverse seesaw naturally leads

to an inelastic DM, as we pointed out in Ref. [140].

5.2.3 Relic Abundance

From Eq. (5.9), we see that the sneutrino DM is a linear combination of the

(ν̃, Ñ †, S̃) fields. Therefore, as shown in Fig. 5.2, its annihilation channels involve

three major contributions, one from each component. Note that the second and third

channels are the new contribution in SUSYLR. To leading order, the expressions for
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the annihilation cross sections in the s- and t-channel are respectively given by

σs ' g4
2LκfNc

96π cos4 θW

sv

(s−M2
Z)2 +M2

ZΓ2
Z

[
c20 + c21

(
g2R

g2L

)4
(

cos12 θW

cos2 2θW

)

(
(s−M2

Z)2 +M2
ZΓ2

Z

(s−M2
Z′)2 +M2

Z′Γ
2
Z′

)
+ 2c0c1

(
g2R

g2L

)2 cos8 θW

cos 2θW

×
(

(s−M2
Z)(s−M2

Z′) +MZMZ′ΓZΓZ′

(s−M2
Z′)2 +M2

Z′Γ
2
Z′

)]

σt ' y4
Sc

2
2

96π
sv(

M2
φ̃R
−M2

χ

)2 (5.12)

where κf = (I3f − Qf sin2 θW )2 + (Qf sin2 θW )2, Nc = 3(1) for quarks (leptons), v =
√

1− 4M2
χ/s is the speed of the DM particle in the center-of-mass frame, and c(0,1,2) =

∑3
i=1 |U(ν,N,S)i1

|2. We note that both s- and t-channel annihilations in our case are p-wave

scattering, as expected from symmetry arguments. For low-mass DM (Mχ < 20 GeV),

and assuming yS ∼ O(1) and Mφ̃R
<∼ 500 GeV, the t-channel involving only leptonic final

states turns out to be the dominant contribution in our case (Fig. 5.3). For this reason,

we do not show the interference term between s- and t-channels for leptonic final states

in Eq. (5.12).

ν̃

ν̃∗

f

f̄

Z

Ñ∗

Ñ

f

f̄

Z ′

S̃

S̃∗

φ̃R

l−
R

l+
R

Figure 5.2: The dominant annihilation channels of the sneutrino DM in SUSYLR

model.

The annihilation cross section for the Z ′ channel is suppressed compared to the Z-

channel by a factor (c1/c0)2(MZ/MZ′)4. Also, we find that the correct DM relic density

is obtained only for c0 < 0.16, as shown in the left-panel of Fig. 5.4. This also agrees

with the invisible Z-decay width constraint (as shown by the vertical line in Fig. 5.4).
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Figure 5.3: The dominant annihilation cross sections in our SUSYLR model. We

have chosen M
φ̃R

= 500 GeV and MZ′ = 1 TeV. Also c0 = 0.16 and c1 = 0.5.
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Figure 5.4: In the left-panel, the purple (black) points correspond to the allowed

values in the c0(1)-relic density plane, for the mixed sneutrino DM in our model;

the vertical line shows the upper limit for c0 from invisible Z-width constraint. The

right-panel shows the scatter plot of relic density prediction for light LSP mass. The

horizontal shaded region is the 2σ limit obtained from 7-year WMAP data.
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The right panel of Fig.5.4 shows the the scatter plot of the predictions for the LSP relic

density, calculated numerically using MicroMEGAS [224] taking into account all relevant

annihilation channels; we find enough parameter range where the correct relic density is

reproduced for a light DM.

5.2.4 Direct Detection

As the sneutrino dark matter (χ̃1) in inverse seesaw is a real scalar field accompanied

by its slightly heavier partner field, it has both elastic and inelastic interaction with nuclei

in direct detection experiments.

The direct detection channel mediated by the SM-like Higgs boson is due to the

interaction term λh0χ̃
†
1χ̃1, where λ is mainly the D-term [162] contribution which can be

simplified to (g2
1 + g2

2)vwkc0/4 for MSSM and (g2
2Lc0 + g2

2Rc1)vwk/4 for SUSYLR assuming

the coupling limit of the MSSM Higgs mixing angles, i.e. large tanβ and α ' β−π/2 [225].

After invoking the lepton number violation effect, a mass splitting is generated between

χ1 and χ2, and the interaction term can be rewritten as λ
2h0(χ2

1 + χ2
2) which is clearly an

elastic interaction.

The direct detection channel contributed by gauge boson exchanges can be written

as

i

2 cos θW

(
c0g2LZ

µ + c1
cos2 θW√
cos 2θW

g2RZ
′µ

)
(5.13)

where θW is the Weinberg angle, and in the MSSM version, only the first term exists (i.e.

c1 = 0). After invoking lepton number violation effect, the interaction term is of the form

iZµ(χ1∂µχ2 − χ2∂µχ1). Therefore, the collisions between χ1 and nucleus conducted by

gauge bosons is inelastic.
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The differential scattering rate of dark matter particle on target nucleus in direct

detection experiment can be written as

dR

dEr
=
ρχ1

Mχ

∫

|v|>vmin

d3v
A2

eff σ̄N

2µχN |v|F
2(|q|)f(v) , (5.14)

where Er is the nuclear recoil energy, ρχ1 is the local mass density of DM, Mχ is the

mass of the DM particle, σN is the DM-nucleon cross section, and µχN is the reduced

mass of DM and the target nucleus. σ̄ and Aeff are defined as σ̄ = (σp + σn)/2 and

Aeff =
∑

i∈isotopes 2ri[Z cos θN + (Ai − Z) sin θN ]2, where ri are relative abundances of

isotopes, and tan θN = Mn/Mp, Mn,p being the DM scattering amplitudes off neutron

and proton respectively [226]. F (|q|) is the nuclear form factor and f(v) is the velocity

distribution of the local galaxy. vmin is the minimal velocity needed to generate the nuclear

recoil energy Er, which can be written as [141]

vmin =
1√

2MNEr

(
MNEr

µχN
+ δ

)
(5.15)

where δ is the mass gap, and δ = 0 corresponds to the case of elastic scattering.

In the case of elastic scattering contributed by the Higgs boson exchange, σN in

Eq. (5.14) is the total scattering cross section which can be written as

σel
N =

λ2(M2
N

∑
q〈N |mq q̄q|N〉)2

4πv2
wkM

4
h(MN +Mχ)2

, (5.16)

whereas in the case of inelastic scattering, σN can be written as

σin
p,n =

g4
2Lκp,n

4π cos4 θWM4
Z

M2
p,nM

2
χ1

(Mχ1 +Mp,n)2

[
c20 + c21

(
g2R

g2L

)4 (
MZ

MZ′

)4 cos12 θW

cos2 2θW

]
,(5.17)

where the first term in the bracket is induced by Z boson whereas the second term is due

to the Z ′ boson exchange in SUSYLR. The factors κp =
(

3
4 − sin2 θW

)2
and κn =

(
3
4

)2

are due to the different coupling of the vector bosons to proton and neutron respectively.
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Figure 5.5: The model prediction for the inelastic scattering cross section of the

sneutrino dark matter off a nucleon as a function of its mass, for various choices of

the left and right sneutrino components. Also shown are the XENON100 constraints

for mass gap δ = (0, 30, 60, 90, 120) keV which were obtained by Feldman-Cousins

method [227] using the 100 days of live data [228].

It is important to note here that for large fractions of the left sneutrino component

(c0 >∼ 10−3), the scattering is mostly dominated by the Z-exchange, and is hence inelastic.

The Z ′ contribution to the inelastic channel is always suppressed by its mass, and similarly,

the elastic cross section is 4-5 orders of magnitude smaller than the Z-dominated inelastic

contribution because the coupling of the Higgs to nucleon is suppressed by light quark

masses. However, for c0 <∼ 10−4 and large c1, the inelastic contribution, suppressed by the

Z ′-mass, becomes either smaller than or comparable to the elastic counterpart. This is

shown in Fig. 5.5, where we have plotted the cross section as a function of the DM mass

for various values of c0 and c1. One can see that for small c0 and large c1 values (blue

and orange horizontal curves), the cross section is dominated by the elastic channel for
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low mass DM and by inelastic channel (mediated by Z ′) for Mχ >∼ 10 GeV, whereas for

small or zero c1 component (pink and green curves), the scattering is always dominated

by the inelastic channel (mediated by Z). It is interesting to note here that the current

XENON data constrains most of the parameter space of the model and for large c0, puts

an upper bound on the DM mass. This can be seen clearly from Fig. 5.5 where we have

shown the XENON100 limits on scattering cross section for various values of the mass

gap, starting from zero on the left (red solid curve, corresponding to the elastic case) to

δ = 30, 60, 90 and 120 keV cases. We note that for small mass gaps of order a few keV

(as expected in this model), the XENON100 constraints leave only the low mass iDM

(below 20 GeV) open in this model. Similar constraints on the iDM mass can be obtained

using the existing data from other direct detection experiments [229], but the XENON100

constraints are found to be the most stringent.

The nuclear recoil energy in both elastic and inelastic scattering has a maximum

determined by the escape velocity of DM in the local galaxy, and a minimum determined

by the mass gap for inelastic case. Therefore, the topology of the differential scattering

rate for inelastic scattering is very different from the elastic scattering, which can be used

to determine whether the DM is inelastic or not. Furthermore, for inelastic scattering, if

the mass gap is comparable to the kinetic energy of DM, for certain nuclear recoil energy,

due to Eq. (5.15), the required velocity is pushed to the tail end of the velocity distribution

where the motion of the earth has a larger effect and therefore the DM annual modulation

signal gets enhanced.

The predicted normalized differential scattering rate and annual modulation for

Germanium- and Xenon-based detectors are shown in Fig. 5.6 with different choices for

parameters of the SUSYLR model. The mass of Z ′ is taken to be 1 TeV in both cases. The
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red and blue curves are for (c0, c1) = (0.001, 0.1) and (c0, c1) = (0.1, 0.001), corresponding

to the Z ′ and Z dominance, respectively, in the inelastic scattering between DM and target

nucleus. The latter case is similar to the MSSM version of inverse seesaw. To translate the

differential rates to experimental quantities, namely the electron equivalent recoil energies

in germanium detector and the S1 signal in xenon detector, we have used the quenching

factor and scintillation efficiencies from CoGeNT [230] and XENON100 [228] experiments

respectively. One can see from the first two plots in Fig. 5.6 that a peak shows up if

the scattering is dominated by inelastic interactions. Furthermore, one can see from the

third and fourth plots that for inelastic case, the annual modulation can be larger than

100% in some energy region. Also from the solid blue curves in the first and third plots,

one can see that the energy regions for large recoil energy and large modulation can be

separated from each other, which provides a chance to fit the anomaly observed by the

CoGeNT experiment. In these plots, A0 and A1 are the zeroth and first Fourier modes of

the differential scattering rate; for a detailed definition, see Ref. [231].

5.2.5 Comments on Indirect Detection

As noted earlier, there exists a domain in the parameter space for which the dom-

inant annihilation channel of the DM is to lepton-anti-lepton final states. The relative

branching fractions depend on the masses of the RH neutrinos and are somewhat model-

dependent. If we take the model in Ref. [120] as a guide, we expect them to be of similar

order. These dominantly-leptonic annihilation modes can, in principle, be important in un-

derstanding signals from the galactic center, radio filaments as well as WMAP haze [232].

Also the iDM capture in Sun could lead to significant flux of high energy neutrinos and/or

electron/muons [233]. However, we expect these effects to be suppressed in our model due
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Figure 5.6: The model prediction for differential scattering rates and annual modula-

tions for germanium and xenon detectors. The upper two plots show the differential

scattering rate for germanium (left) and xenon (right) detectors. The lower two

plots show the annual modulation in the same detectors. Red and blue curves are

for (c0, c1) = (0.001, 0.1) and (c0, c1) = (0.1, 0.001), respectively, while the solid and

dashed curves are for (Mχ, δ) = (10GeV, 20keV) and (50GeV, 60keV), respectively.

to the p-wave nature of the dominant DM annihilation channels. Thus the exclusion range

of 4-90 GeV for sneutrino mass from Kamiokande Collaboration [234] does not apply in

this case.
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5.2.6 Collider Signatures

There exist upper limits on the direct DM detection cross section from monojet plus

missing energy searches in colliders [235]. However, for light spin zero dark matter only

weakly interacting with the nucleons, the collider limits on the spin-independent cross

sections are weaker than the direct search bounds and our model predictions are within

these bounds.

Depending on the sparticle spectrum prediction of the model, the sneutrino LSP

can have distinctive collider signatures. This could be used to distinguish a sneutrino

LSP from a neutralino LSP in SUSY, for instance. In particular, as has been noted

in Ref. [142], sneutrino DM models in general have a characteristic LHC signal of type

pp→ q̃q̃ → W̃ + W̃ +dijet → charged dilepton+dijet+MET, or pp→ g̃g̃ → q̃q̃+dijet →

W̃W̃ +four jets → charged dilepton + four jets + MET, which can be useful in testing the

model. In SUSY inverse seesaw models, the mass of the lightest sneutrino relates directly

to the sneutrino soft masses if all the sfermion soft masses and the chargino masses share

common origins like in most of the SUSY breaking scenarios.

5.2.7 Sneutrino LSP Parameter Space

From the form of the mass matrices as given in Appendix E, it can be seen that

for a universal gaugino mass and TeV scale vR, the sneutrino DM must be light (below

100 GeV or so), otherwise the lightest neutralino or chargino becomes the LSP. Fig. 5.7

shows the allowed m0−m1/2 plane for sneutrino and neutralino LSP, shaded red and green

respectively.

Requiring the lightest sneutrino to be the LSP induces a constraint that, in a large

part of the parameter space, the mass of gluino is larger than the mass of lightest squark,
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Figure 5.7: Allowed m0 − m1/2 plane for sneutrino (red) and neutralino (green)

LSP in our SUSYLR model. Here we have assumed a mSUGRA-type scenario with

A0 = 0, µ > 0. Also we have chosen tan β = 35, tan θ = 10 and vR = 1 TeV.

as shown in Fig. 5.8. In these regions, the signal from LHC is dominated by pp →

same sign charged dilepton + dijet + MET [142], as discussed in the previous section.

Furthermore, in most of the SUSY models, stop is the lightest squark, so one can also do

b-tagging for these events.

To summarize, we have shown that the supersymmetric inverse seesaw model for

neutrinos naturally leads to an inelastic scalar dark matter. Allowing for some fine tuning

of the SUSY parameters, the dark matter can be light with mass easily in the 5-20 GeV

range. A novel feature of the model is that the splitting between the LSP and NLSP

states is directly related to the lepton number violating singlet fermion mass parameter

responsible for small neutrino masses and is naturally of order of a few tens of KeVs due

to inverse seesaw constraint. In the presence of right handed gauge symmetry, the relic

density calculation is dominated by the right handed Higgsino exchange in the t-channel.
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Figure 5.8: Squark-gluino spectrum for sneutrino LSP in SUSYLR.

For reasonable values of the parameters, this leads to the desired relic DM density. The

direct detection cross section is dominated by the inelastic channel due to Z exchange.The

differential scattering rate and annual modulation for direct detection predicted in these

models might be tested in future direct detection experiments. The dark matter particle

mass is found to be strongly constrained by the current XENON bounds, and for keV scale

mass splitting for the real scalar LSP states (as required by neutrino mass constraints),

we find an upper limit of around 20 GeV on the dark matter mass. This is consistent with

the model prediction for the sneutrino LSP mass which is required to be below ∼ 100 GeV

from universality arguments.

Therefore, we might be able to identify SUSY inverse seesaw if from the collider

search, we can confirm that the sneutrino is a long lived particle, and then from direct

detection experiments, we observe an inelastic WIMP from the differential scattering rate

and the annual modulation.
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Chapter 6

Signatures of Inverse Seesaw

In this chapter, we discuss various experimental signatures to identify inverse seesaw.

These include collider as well as other low-energy experiments.

6.1 Collider Signals

The heavy RH neutrinos, being SM singlets, can be produced at colliders only via

ν −N mixing after virtual W (Z)’s produced in parton collision decay to `(ν̄) + ν. Once

produced, the N ’s decay to multi-lepton final states which could be used as a distinct

signal for seesaw [112, 236]. In type I seesaw, N , being a Majorana particle, decays equally

likely to both charged leptons and anti-leptons, thus giving the distinct collider signature

of like-sign di-lepton final states1. However, the mixing in type-I seesaw is typically given

by θνN ∼
√
mνM

−1
N

<∼ 10−6 (barring cancellations [110]), and hence, the production of

the N ’s is highly suppressed. A detailed collider simulation shows that the minimal type

I seesaw can be tested at colliders only if θνN is large (>∼ 10−2) or MN is small (up to a

few hundred GeV) [114].

In case of inverse seesaw, because of the presence of new lepton number breaking

mass scale in the theory which is directly proportional to the light neutrino mass, the

seesaw scale MN can be naturally very low (within the range of colliders) even for “large”

Dirac Yukawa couplings. This also allows for a large mixing θνN ' vwkhνM
−1
N , and makes

1This is a collider analogue of neutrinoless double beta decay to probe the lepton number

violation.
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the collider tests of this possibility much more feasible. However, due to the pseudo-

Dirac nature of the RH neutrinos, the “smoking gun” signal for type I seesaw, namely the

lepton number violating same-sign di-lepton signal [114] is absent in this case. Instead, the

lepton flavor violating tri-lepton signal [112, 115, 116] can be used to test these models.

In this section, we will mainly focus on these SM singlet RH neutrinos and present a

detailed collider study of the multi-lepton final states in order to distinguish the heavy

Dirac neutrinos from their Majorana counterparts at the LHC [116]. For reasons already

discussed earlier, we will mostly work within a LR-symmetric framework at TeV-scale.

Before discussing the collider studies, we present a brief overview of the mixing

between light and heavy states in LR inverse seesaw.

6.1.1 Mixing in the LR Gauge Sector and Neutrino Sector

The charged gauge bosons W±
L,R in the weak eigenstate mix in the mass eigenstates

W,W ′ [30]:

W = cos ζWWL + sin ζWWR,

W ′ = − sin ζWWL + cos ζWWR, (6.1)

where tan 2ζW = 2κκ′/(v2
R − v2

L). The current bound on the mixing angle is as low as

ζW < 0.013 [237, 238]; hence for our purposes, we can safely assume the mass eigenstates as

the weak eigenstates, and recognize WL as the pure SM W -boson. The lower bound on the

W ′ mass comes from a variety of low-energy constraints, e.g. KL −KS mass difference,

Bd,s − B̄d,s mixing, weak CP violation etc (For a recent update on the old results, see

Ref. [194, 198]). The most stringent limit on WR mass in LR models is for the case of

same CKM mixing angles in the left and right sectors: MWR
> 2.5 TeV [194]; however, this
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limit can be significantly lowered if there is no correlation between the mixing angles in

the two sectors [237, 239]. The current collider bound on W ′ mass is around 1 TeV [203].

The neutral gauge bosons in LR model are mixtures of W 3
L,R and B and the mixing

between the weak eigenstates of these massive neutral bosons is parameterized as

Z = cos ζZZ1 + sin ζZZ2,

Z ′ = − sin ζZZ1 + cos ζZZ2 (6.2)

where Z,Z ′ are the mass eigenstates, and in the limit vL ¿ κ, κ′ ¿ vR, the mixing angle

is given by tan 2ζZ ' 2
√

cos 2θW (MZ/MZ′)2. Current experimental data constrain the

mixing parameter to < O(10−4) and the Z ′ mass to values > O(TeV) [238, 240]. The

current collider limit on the LR Z ′ mass is > 998 GeV [203].

In the neutrino sector of LR models, due to the presence of the RH neutrinos, the

neutrino mass eigenstates (νi, Ni) are mixtures of the flavor eigenstates (να, Nα) where

i = 1, 2, 3 and α = e, µ, τ for three generations. For type I seesaw with only one additional

set of SM singlets, this mixing can be parameterized as



να

Nβ


 = VI




νi

Nj


 (6.3)

where VI is a 6×6 unitary matrix diagonalizing the full neutrino mass matrix in Eq. (2.11).

Similarly, for inverse seesaw case in which we have two sets of SM singlet heavy neutrinos,

the mixing is given by



να

Nβ

Sγ




= Vinv




νi

Nj

Nk




(6.4)

where Vinv is a 9 × 9 unitary matrix given by Eq. (3.4) diagonalizing the neutrino mass

matrix in Eq. (3.3). Thus the weak interaction currents of light and heavy neutrinos are
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modified as follows:

LCC =
g√
2

[
Wµ

L
¯̀
αγ

µPLνα +Wµ
R

¯̀
βγ

µPRNβ

]
+ h.c.

=
g√
2

[
Wµ

L
¯̀
αγ

µPL(Vαiνi + VαjNj) +Wµ
R

¯̀
βγ

µPR(Vβiνi + VβjNj) + h.c.
]
,(6.5)

LNC ' g

2 cos θW

[
Zµν̄αγ

µPLνα +
√

cos 2θWZ ′µNβγ
µPRNβ

]

=
g

2 cos θW

[
Zµ

{V∗αi1Vαi2 ν̄i1γ
µPLνi2 + (V∗αiVαj ν̄iγ

µPLNj + h.c.)

+V∗αj1Vαj2N j1γ
µPLNj2

}
+

√
cos 2θWZ ′µ

{
V∗βj1Vβj2N j1γ

µPRNj2

+(V∗βiVβj ν̄iγ
µPRNj + h.c.) + V∗βi1Vβi2 ν̄i1γ

µPRνi2

}]
(6.6)

where we have dropped the subscript for V which now generically represents both VI and

Vinv in Eqs. (6.3) and (6.4) respectively. Thus, in general, V is a (3 + n)× (3 + n) unitary

matrix, where n stands for the number of SM singlets (3 for type-I and 6 for inverse

seesaw). This can be decomposed into the following blocks:

V =




U3×3 V3×n

Xn×3 Yn×n


 (6.7)

where U is the usual PMNS mixing matrix for the light neutrinos. The unitarity of V

implies that

UU † + V V † = U †U +X†X = I3×3,

XX† + Y Y † = V †V + Y †Y = In×n. (6.8)

with UU †, Y †Y ∼ O(1) and V V †, X†X ∼ O(M2
D/M

2
N ). Thus in Eqs. (6.5) and (6.6), the

mixing between the light states, Vαi ≡ Uαi, and between the heavy states, Vβj ≡ Yβj both

are of order O(1), whereas the mixing between the light and heavy states, Vαj ≡ Vαj ,Vβi ≡

Xβi ∼ O(MDM
−1
N ) for both type I and inverse seesaw cases, which, in principle, could

be large for TeV mass RH neutrinos and large Dirac Yukawa case. Henceforth, we will
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generically denote this mixing between light and heavy neutrinos by V`N , and assume the

other mixing elements in Eqs. (6.5) and (6.6) to be O(1).

The electroweak precision data constrain the mixing V`N involving a single charged

lepton [241] and the current 90% C.L. limits are summarized below:

3∑

i=1

|VeNi |2 ≤ 3.0× 10−3,
3∑

i=1

|VµNi |2 ≤ 3.2× 10−3,
3∑

i=1

|VτNi |2 ≤ 6.2× 10−3 (6.9)

These limits are crucial for our analysis since they determine the decay rate of the heavy

neutrinos to multi-lepton final states, as discussed in next section. One can also get

constraints on the mixing involving two charged leptons from lepton-flavor violating (LFV)

processes [242] 2:

∣∣∣∣∣
3∑

i=1

VeNiV
∗
µNi

∣∣∣∣∣ ≤ 1.0× 10−4,

∣∣∣∣∣
3∑

i=1

VeNiV
∗
τNi

∣∣∣∣∣ ≤ 1.0× 10−2,

∣∣∣∣∣
3∑

i=1

VµNiV
∗
τNi

∣∣∣∣∣ ≤ 1.0× 10−2

For the heavy neutrino mass below 100 GeV, the updated limits are summarized in

Ref. [243].

Another constraint for the manifest LR model comes from neutrino-less double beta

decay as there is a new contribution involving the heavy gauge boson WR and RH Ma-

jorana neutrino [244, 133]. For a TeV mass RH neutrino, this puts a lower bound on

MWR
≥ 1.1 TeV which increases as M−1/4

N for smaller RH neutrino mass. In this paper,

we therefore mainly focus on a TeV mass RH neutrino.

2However, these constraints can be easily evaded if, for example, each heavy neutrino mixes

with a different charged lepton.
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6.1.2 Production and Decay of Heavy Neutrinos

At a proton-proton collider, a single heavy neutrino can be produced at the parton-

level, if kinematically allowed, in

qq̄′ →W ∗
L/WR → `+N(`−N), (6.10)

which has lepton-number conserving (LNC) or violating (LNV) decay modes depending on

whether N is Dirac or Majorana3. Since τ -lepton identification may be rather complicated

in hadron colliders [245], we restrict our analysis to only the light charged-leptons (` =

e, µ). The parton-level production cross sections, generated using CalcHEP [246] and with

the CTEQ6L parton distribution function [247], are shown in Fig. 6.1 as a function of the

mass of N for 1.5, 2 and 2.5 TeV WR mass (solid lines) at
√
s = 14 TeV LHC. We also

show the normalized production cross section σ/|V`N |2 (normalized to |V`N |2 = 1) for

SM WL-boson mediation (dashed line), which is generated only through the mixing V`N

between the LH and RH neutrinos. We can clearly see that the WL-mediated production

is highly suppressed by the mixing; even for large mixing, the cross section for a heavy

RH neutrino with MWR
> MN ÀMWL

is mostly dominated by the WR-channel because

WR can always decay on-shell whereas the W has to be highly off-shell to produce N .

The heavy RH neutrino decays to SM leptons plus a gauge or Higgs boson through

its mixing with the left sector: N → `W, νZ, νH. So all these decay rates are suppressed

by the mixing parameter |V`N |2. In LR models, N can also have a three-body decay mode:

N → `W ∗
R → `jj (and similarly for Z ′) which is not suppressed by mixing, but by mass

of WR. Note that the decay mode N → `W ∗
R → ``ν will be suppressed by mixing as

well as WR-mass and hence the di-jet mode is always the dominant final state for the

3In Eq. (6.10) and following, N should be replaced by N for a Majorana RH neutrino.
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Figure 6.1: The cross section for qq̄′ → WL/WR → N`± for various values of WR

mass (solid lines). Also shown is the normalized cross section σ/|V`N |2 for WL-

mediated s-channel (dashed line).

three-body decay of N . The various partial decay widths of N are shown in Fig. 6.2 for a

mixing parameter |V`N |2 = 0.001 and Higgs mass of 125 GeV. It is clear that for mixing

larger than O(10−4), N mainly decays into the SM gauge or Higgs boson which could

subsequently lead to multi-lepton final states.
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Figure 6.2: The partial decay widths of the RH neutrino into `W, νZ, νH (dashed

lines) as a function of its mass for a mixing parameter |V`N |2 = 0.001. Also shown

are the three-body decay widths for N → `WR → `jj (solid lines) for MWR
=1.5,

2.0 and 2.5 TeV.
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It should be emphasized here that the LR symmetry provides a unique channel

for the production of RH neutrino through the WR gauge boson, without any mixing

suppression, and multi-lepton final states through the decay of N to SM gauge bosons,

which even though suppressed by the mixing, still offer a promising channel to study

the Dirac or Majorana nature of N . Without the LR symmetry (and hence WR), the

production of N (through SM W/Z) will also be suppressed by mixing, which limits its

observability to only a few hundred GeV masses, mainly due to the large SM background

[114]. On the other hand, LR-symmetric models provide much higher mass reach at the

LHC in the multi-lepton channel, as we discuss in the next section.

We further note that a single N can also be produced in qq̄ → Z/Z ′ → ν̄N but the

resulting final state has either one charged lepton or opposite-sign di-leptons, and is buried

under the huge LHC background 4. One could also produce the RH neutrinos in pairs

through a Z ′-exchange: qq̄ → Z ′ → NN , if kinematically allowed; however, the decay of

two N ’s will be suppressed by |V`N |4, and hence, negligible.
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Figure 6.3: The golden channels for heavy Majorana and Dirac neutrino signals at

the LHC.

Thus we conclude from this study that for a hadron collider analysis, the most

4This could, however, be important in cleaner environments, e.g. e+e− [248] and eγ [249]

colliders.
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suitable production channel for a Dirac RH neutrino in LR models is throughWR-exchange

and the N decay mode through SM W . We note that this particular channel was not

considered in the previous studies of RH neutrino signals in LR models [198, 197], because

they only considered a heavy Majorana neutrino (in type I seesaw) for which the golden

channel is the same-sign di-lepton mode in Fig. 6.3(a): qq̄′ → W±
R → N`± → W ∗

R`
±l± →

jj`±`± [196]. In this case, the 3-body decay mode of N → `W ∗
R → `jj is dominant over

the 2-body decay N → `W because the latter is suppressed by mixing which is usually

very small in type I seesaw. However, for a heavy Dirac neutrino, this same-sign di-lepton

mode is absent and the corresponding opposite-sign di-lepton mode qq̄′ →W±
R → N`± →

W ∗
R`
∓l± → jj`∓`± has large SM background. So the golden channel for a heavy Dirac

neutrino is the tri-lepton mode in Fig. 6.3(b) where the W/W ∗
R decays to leptonic final

states: pp → W±
R → N`± → W/W ∗

R`
∓`± → ν`±`∓`± [112, 115]. As discussed earlier in

this section, the N decay to SM W is dominant over the 3-body decay through WR for

mixing |V`N | <∼ 10−4, which is easily satisfied in inverse seesaw models, for instance. This

is also true for type I seesaw with large mixing [110, 111], in which case the 2-body decay

of N to SM gauge bosons (W,Z,H) will be dominant over the three-body decay through

a virtual WR.

6.1.3 Multi-Lepton Signals and SM Background

We perform a full LHC analysis of the multi-lepton final states given in Fig.3 and

the SM background associated with it. The signal and background events are calculated

at parton-level using CalcHEP [246] which are then fed into PYTHIA [250] to add initial and

final state radiation and pile up, and perform hadronization of each event. Finally, a fast

detector simulation is performed using PGS [251] to simulate a generic LHC detector. We
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use the more stringent L2 trigger [252] in order to reduce the SM background. We note

that the signal strength remains the same, if we use the low threshold L1 trigger, which is

very close to the actual values used by the CMS detector. The L2 trigger has high enough

thresholds to reduce all the SM background below the signal and therefore we do not need

to impose any additional cuts on the events.

The major SM background for the di-lepton signal comes from the semi-leptonic

decay of a tt̄ pair,

qq̄, gḡ → tt̄→W+bW−b̄→ jjb`−ν̄b̄, (6.11)

and the b-quark giving the second lepton: b→ c`ν. Similarly, tri-lepton background is pro-

duced in the fully leptonic decay of tt̄ and the third lepton coming from b-quark. Though

the charged leptons from b-quark decay typically have small transverse momentum, the

large tt̄ production cross section (compared to the production of N) is responsible for

the dominant background, and must be taken into account in the detector simulation.

The other dominant SM backgrounds for multi-lepton channels at the LHC arise from

the production of WZ,WW,ZZ,WWW,Wtt̄, Zbb̄,Wbb̄ etc.. A detailed discussion of the

background analysis for multi-lepton final states can be found in Ref. [112, 253]. We

find that by implementing the L2 trigger, most of this SM background can be eliminated,

and the remaining background is dominantly due to tt̄, WW, WZ and ZZ (which we

collectively denote as ‘SM background’ in the following).

The invariant mass of the final state particles is used to reconstruct the mass of

WR. The selected events for the tri-lepton (`±`∓`±)+ 6ET final state is shown in Fig. 6.4

(thick lines) as a function of the invariant mass (100 GeV bins) for
√
s = 14 TeV LHC

and integrated luminosity, L = 8 fb−1. The expected SM background events (tt̄ + V V )

are also shown (thin lines). Here we have chosen MWR
= 2 TeV and MN = 1 TeV.
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We have also taken the mixing parameter V`N just below the experimental upper bound:

|V`N |2 = 0.0025 (For a lower value of mixing, the cross section and hence the total number

of events, will decrease as |V`N |2). We find that the invariant mass of WR is reconstructed

nicely and the tri-lepton channel is virtually background free above 1 TeV or so. We also

plot the invariant mass of (`±`∓`±) in Fig. 6.5 which has the sharp end point at WR mass.

We note here that the tri-lepton final states with two positively charged (anti)leptons has

more likelihood to be produced than those with one positively charged, which is naively

expected for a proton-proton collision.
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Figure 6.4: Selected events for the tri-lepton final state as a function of the invariant

mass of `±`∓`± + 6ET (100 GeV bins) for
√
s = 14 TeV and L = 8 fb−1. We have

chosen MWR
= 2,MN = 1 TeV and |V`N |2 = 0.0025 for this plot. The dominant SM

background (tt̄+WW +WZ + ZZ) is also shown here (thin lines).

For comparison, we have also performed similar analysis for a heavy Majorana

neutrino, similar to those in Ref. [198, 197], but with a large mixing |V`N |2 = 0.0025.

Hence, as we discussed in Sec. III, N mostly decays to SM gauge bosons and charged

leptons, and not through the 3-body decay involving WR. The resulting events are shown

in Figs. 6.6 and 6.7 for the invariant mass of `±`±jj and `±`± respectively. The parameters
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Figure 6.5: Selected events for tri-lepton final state as a function of the invariant

mass of `±`∓`± for the same parameters as in the Fig. 6.4 caption.

chosen are the same as for Figs. 6.4 and 6.5. We note that the number of same-sign di-

lepton events passing the L2 trigger are roughly one order of magnitude larger than the

tri-lepton events. This is because of the overall enhancement of the cross section for the

di-lepton final state because the branching fraction for hadronic decay modes of W → jj

is roughly thrice that of the light leptonic decay modes W → `ν.
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Figure 6.6: Selected events for the same-sign di-lepton final state as a function of

the invariant mass of `±`±jj for the same parameters as in the Fig. 6.4 caption.

To conclude this section, we have discussed the collider signatures of a heavy SM
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Figure 6.7: Selected events for same-sign di-lepton final state as a function of the

invariant mass of `±`± for the same parameters as in the Fig. 6.4 caption.

singlet neutrino in a minimal LR framework, which can be of either Majorana or Dirac

nature depending on the mechanism for neutrino mass generation. In particular, we

have analyzed the multi-lepton signals to distinguish a TeV scale Dirac neutrino from a

Majorana one at the LHC. We perform a detailed collider simulation to show that, in LR

models, a TeV-scale heavy neutrino can be produced at the LHC dominantly through a

WR exchange, which subsequently decays dominantly via SM gauge boson exchange. The

invariant mass of the final state particles can be used to nicely reconstruct the mass of WR

in multi-lepton channels which are virtually background free above a TeV. We observe that

if the heavy neutrino is of Majorana-type, there will be distinct lepton-number violating

signals, including the same-sign di-lepton signal discussed here. However, in the absence

of the same-sign di-lepton signal, the tri-lepton signal can be used to establish the Dirac

nature of the heavy neutrino. This provides a direct way of probing the seesaw mechanism

and the associated new physics at TeV-scale, and can be used to distinguish type-I seesaw

(with purely Majorana heavy neutrinos) from inverse seesaw (with pseudo-Dirac ones) at

the LHC.
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6.2 Non-unitarity effects in the lepton mixing matrix

The 3×3 light neutrino mass matrix in flavor basis can be diagonalized by a unitary

transformation:

UT
PMNSmνUPMNS = diag(m1,m2,m3) ≡ mν̂ (6.12)

where UPMNS is the standard PMNS mixing matrix given by Eq. (1.22). In the inverse

seesaw formula [cf. Eq. (3.5], however, since the above diagonalization of mν does not

diagonalize the matrices MN and µ, there will be off-diagonal mixing between the differ-

ent light neutrinos even after diagonalization of mν due to their mixing with the heavy

neutrinos. In other words, in the basis where the charged-lepton mass matrix is diagonal,

U is only a part of the full mixing matrix responsible for neutrino oscillations. We have

to examine the full 9 × 9 unitary matrix V in Eq. (3.4) which diagonalizes the full neu-

trino mass matrix Mν given by Eq. (3.3). If we block-decompose V as in Eq. (6.7), the

upper-left sub-block U3×3 will represent the full (non-unitary) PMNS mixing matrix. For

µ¿MD ¿MN , it is sufficient to consider only up to the leading order in MDM
−1
N ≡ F

in Eq. (3.4). Then using Eq. (3.5), we can write new PMNS matrix up to second order if

F [254]:

U3×3 '
(

1− 1
2
FF †

)
UPMNS ≡ N (6.13)

In the commonly used parametrization [125], N = (1 − η)UPMNS, and hence, all the

non-unitarity effects are determined by the Hermitian matrix

η =
1
2
FF † =

1
2

(
MDM

−1
N

) (
MDM

−1
N

)†
(6.14)

which depends only on the mass ratio MDM
−1
N and not on the parameterization of the

PMNS matrix.
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The LH neutrinos entering the charged-current interactions of the SM now become

superpositions of the nine mass eigenstates (ν̂i, Nj , N
′
k) and at the leading order in F , the

light neutrino entering the SM weak interaction Lagrangian becomes

ν ' N ν̂ +KP (6.15)

where K ≡ V3×6 ' (0, F )V6×6 and P = (N1, N2, N3, N
′
1, N

′
2, N

′
3). Then the charged-

current Lagrangian in the mass basis, Eq. (1.21), is given by

LCC = − g√
2
lLγ

µνW−
µ + h.c. ' − g√

2
lLγ

µ(N ν̂ +KP )W−
µ + h.c. (6.16)

This mixing between the doublet and singlet components in the charged-current sector has

several important phenomenological consequences for LFV processes, as discussed later in

this section.

6.2.1 Bounds on |η|

The non-unitarity parameter η was defined in Eq. (6.14). Choosing a basis in which

MN is diagonal, and motivated by resonant leptogenesis (See Chapter 4), assuming de-

generate eigenvalues for MN equal to mN , we have

η =
1

2m2
N

MDM
†
D (6.17)

With a typical form of MD fixed by SO(10) symmetry, Eq. (3.36),and extrapolated to the

weak scale by neutrino RGEs [255]5, we can readily calculate the elements of η:

η ' 1 GeV2

m2
N




0.1 0.0412− 0.4144i 1.5134− 17.247i

0.0412 + 0.4144i 1.78 72.6794− 0.0005i

1.5134 + 17.247i 72.6794 + 0.0005i 3024.93




(6.18)

5The running effects are estimated to be small (within a few percent) for normal hierarchy of

neutrino masses.
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This is to be compared with the present bounds on |ηij | (at the 90% C.L.) [256]:

|η| <




2.0× 10−3 3.5× 10−5 8.0× 10−3

3.5× 10−5 8.0× 10−4 5.1× 10−3

8.0× 10−3 5.1× 10−3 2.7× 10−3




(6.19)

This gives a lower bound on the mass of the RH neutrino:

mN >∼ 1.06 TeV, (6.20)

which is still kinematically accessible at the LHC to be produced on-shell and it decay to

trilepton final states can be used to identify its pseudo-Dirac nature and test the inverse

seesaew model [116].

With this lower bound on mN , we get the following improved bounds on |ηαβ| [120]:

|ηee| < 8.9× 10−8, |ηeµ| < 3.7× 10−7, |ηeτ | < 1.5× 10−5,

|ηµµ| < 1.6× 10−6, |ηµτ | < 6.5× 10−5 (6.21)

At least one of these bounds, namely |ηeµ|, is reachable at future neutrino factories from

the improved branching ratio of µ → eγ down to 10−16, reachable in the proposed

PRISM/PRIME project [257]. We note that relaxing the condition of degenerate RH

neutrinos but fitting the neutrino masses affects the values of ηαβ ; we present these results

in Table-2. It appears that |ηeµ| values are all accessible to the future µ → eγ searches;

The largest value of |ηµτ | in this table may also be accessible to neutrino oscillation ex-

periments, preferably with short baseline (L <∼ 100 km) [121].

124



mN1 mN2 mN3 |ηeµ| |ηeτ | |ηµτ |

1100 1100 1100 3.7× 10−7 1.5× 10−5 6.5× 10−5

100 100 1100 7.9× 10−7 1.6× 10−5 8.9× 10−5

50 50 1200 2.5× 10−6 2.2× 10−5 1.6× 10−4

30 30 2100 6.7× 10−6 4.4× 10−5 3.2× 10−4

Table 6.1: Predictions for the non-unitarity parameter |ηαβ| for various RH neutrino

masses (given in GeVs).

6.2.2 CP -violation effects

The CP -violation effects in the leptonic sector will be governed by the full PMNS

matrix N instead of UPMNS through the Jarlskog invariant [43]

J ij
αβ = Im

(
NαiNβjN ∗

αjN ∗
βi

)
(6.22)

where the indices α 6= β run over e, µ and τ , while i 6= j can be 1, 2 and 3. In the standard

PMNS parametrization of U by the three mixing angles θij and the Dirac CP -phase δ,

one can expand Eq. (6.22) up to second order in ηαβ and s13 ≡ sin θ13 (assuming those to

be small) to obtain

J ij
αβ ' J + ∆J ij

αβ , (6.23)

where the first term governs the CP -violating effects in the unitary limit and the second

term gives the contribution coming from the non-unitarity effect:

J = c12c
2
13c23s12s13s23 sin δ, (6.24)

∆J ij
αβ ' −

∑
γ=e,µ,τ

Im
(
ηαγUγiUβjU

∗
αjU

∗
βi + ηβγUαiUγjU

∗
αjU

∗
βi
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+ η∗αγUαiUβjU
∗
γjU

∗
βi + η∗βγUαiUβjU

∗
αjU

∗
γi

)
(6.25)

Note that the unitary term J vanishes if either s13 → 0 or δ → 0. However, ∆J ij
αβ depends

on the off-diagonal elements of η (generally complex) and does not necessarily vanish even

if both s13 and δ are zero; in fact, it might even dominate the CP -violating effects in the

leptonic sector.

Note that ∆ij
αβ is non-zero in our case as η is a complex matrix (the phases arising

from the Dirac neutrino sector). Using the values of θij from neutrino oscillation data

given in Table 1.3 and the structure of η determined in Eq. (6.18) with mN = 1.1 TeV,

we obtain the following values for ∆J ij
αβ :

∆J12
eµ ' −2.4× 10−6,

∆J23
eµ ' −2.7× 10−6,

∆J23
µτ ' 2.7× 10−6,

∆J31
µτ ' 2.7× 10−6,

∆J12
τe ' 7.1× 10−6 (6.26)

and ∆J23
eµ = ∆J31

eµ = −∆J12
µτ = ∆J23

τe = ∆J31
τe . Note that these values are just one order of

magnitude smaller than the quark sector value, JCKM =
(
2.91+0.19

−0.11

)
×10−5 [123], and can

be the dominant source of CP -violation in the leptonic sector, even for vanishing Dirac CP

phase, thus leading to distinctive CP -violating effects in neutrino oscillations [125]. For

instance, the transition probability for the “golden channel” νµ → ντ with non-unitarity

effects is given by [125]

Pµτ ' 4|ηµτ |2 + 4s223c
2
23 sin2

(
∆m2

31L

4E

)
− 4|ηµτ | sin δµτs23c23 sin

(
∆m2

31L

2E

)
(6.27)

where the last term is CP -odd due to the phase δµτ of the element ηµτ which, in our model,
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is ∼ 7 × 10−6 [cf. Eq. (6.18)]. Hence, the CP -violating effects should be pronounced for

long-baseline neutrino factories.

6.3 LFV decay rates

Lepton flavor violating decays such as µ → eγ, τ → eγ and τ → µγ could be a

signature of seesaw models for neutrino masses. The LFV decays mediated by the heavy

RH neutrinos have branching ratios [131]

BR(lα → lβγ) '
α3

W s2Wm5
lα

256π2M4
W Γα

∣∣∣∣∣
6∑

i=1

KαiK∗βiI

(
m2

Ni

M2
W

)∣∣∣∣∣

2

(6.28)

where K is defined below Eq. (6.15), Γα is the total decay width of lα and the function

I(x) is defined by

I(x) = −2x3 + 5x2 − x

4(1− x)3
− 3x3 lnx

2(1− x)4
(6.29)

For degenerate RH neutrino masses, Eq. (6.28) becomes

BR(lα → lβγ) '
α3

W s2Wm5
lα

256π2M4
W Γα

∣∣∣∣∣
(
KK†

)
αβ
I

(
m2

N

M2
W

)∣∣∣∣∣
2

, (6.30)

Note that the amplitude is proportional to
(
KK†

)
αβ
∼

(
FF †

)
αβ

, and hence, for sizeable

F and TeV-scale RH sector in inverse seesaw, one could expect appreciable rates in the

LFV channels [128, 129, 130]. On the other hand, in the conventional type I seesaw

model, one has approximately KK† = O
(
mνM

−1
R

)
, and therefore, the branching ratio,

BR(lα → lβγ) ∝ O (
m2

ν

)
is strongly suppressed [131].

In our model [120], knowing all the three 3 × 3 mass matrices entering the inverse

seesaw formula given by Eq. (3.3), we can easily determine the structure of the full unitary

matrix V by diagonalizing the 9 × 9 neutrino mass matrix Mν , and hence, obtain K to

estimate the branching ratios given by Eq. (6.30).
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The total decay width Γα entering Eq. (6.30) is given by h̄/τα where the mean life

for µ and τ are, respectively [22]

τµ = (2.197019± 0.000021)× 10−6 sec.,

ττ = (290.6± 1.0)× 10−15 sec. (6.31)

Using these values, we obtain the following branching ratios for the rare LFV decays [120]

BR(µ→ eγ) ' 3.5× 10−16,

BR(τ → eγ) ' 1.1× 10−13,

BR(τ → µγ) ' 2.0× 10−12 (6.32)

We have also estimated the contribution to µ→ eγ branching ratio from the off diagonal

Dirac Yukawa coupling contribution to slepton masses and find that for universal scalar

mass of 500 GeV and tan β ' 5, it is comparable to this value or less [258]. Such values

for µ→ eγ branching ratio are accessible to future experiments such as PRISM/PRIME,

capable of reaching sensitivities down to 10−16 [257]. They can be used to test the model.

In our model we assume that squark and slepton masses are above a TeV so that

their contribution to the FCNC effects are negligible. The predictions for µ → 3e and

µ → e conversion [132] for a TeV-scale slepton mass, as in our model, are much smaller

than what can be probed in planned experiments.
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Chapter 7

Proton Decay

Proton decay is the smoking gun signature of baryon number violation and hence

grand unification [259]. Although there is no evidence for proton decay till now, current

experimental lower bounds on the partial lifetimes of various proton decay modes tend

to put severe constraints on the GUT models and suggest possible modifications of such

models [260]. They also constrain the choices of Higgs multiplets that can be used for

model building with SO(10) group [261]. In the SO(10) models we are interested in [120,

151], due to the fact that all the Yukawa couplings responsible for proton decay are

constrained by the fermion mass fits, it is possible to estimate the partial life times for

the various modes as functions of the squark and gaugino masses.

In non-SUSY GUTS, proton decay occurs via dimension-6 operators involving the

superheavy X and Y gauge bosons, and are suppressed by (1/M2
X,Y ) where MX,Y are of

the order of the GUT-scale. The proton decay lifetime in a non-SUSY SU(5) GUT, for

instance, is given by [68]

τp ≈ M4
G

α2
Gm

5
p

(7.1)

The dominant decay mode is p → e+π0. The present experimental lower bound on this

mode, τ(p→e+π0) > 8.2 × 1033 years [156], has already ruled out such non-SUSY GUTs,

which predict a unification scale of ∼ 1015 GeV. In SUSY-GUTs, the GUT scale is signif-

icantly higher ∼ 2 × 1016 GeV (see Chapter 2), and hence the dimension-6 proton decay

operators are significantly suppressed in SUSY-GUTs with τp ∼ 1034−38 years [262].
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However, in SUSY-GUTs, we could also have dimension-4 and -5 contributions to

baryon-number violation [263]. The d = 4 operators are very dangerous for SUSY-GUTs

as they make the proton extremely unstable. However, they could be eliminated by

imposing R-parity [70]; in other words, R-parity must be a symmetry in any effective

low-energy theory of SUSY-GUT. The d = 5 operators are generated by color triplet

Higgsino exchange. Since the higgsino-mediated decay rate depends on Yukawa couplings,

in SUSY GUTs, the proton preferentially decays to kaon (p→ K+ν̄) rather than to pion

as in non-SUSY GUTs. The exact decay rate for this operator is model dependent, as it

depends on the whole SUSY spectrum and on the structure of the Higgs sector. However,

the current experimental lower bound, τ(p→K+ν̄) > 1.6 × 1033 years [156] is sufficiently

strong to rule out the minimal SUSY SU(5) [264], though non-minimal Higgs sectors in

SUSY SU(5) (see e.g. Ref. [265, 260]) and SO(10) (see e.g. Ref. [266]) still survive the

Super-K bounds.

In the following, we first discuss the various proton decay operators in a generic

SUSY-GUT, and then we estimate the proton decay rates induced by d = 5 operators in

our SO(10) model [120, 151].

7.1 Proton decay operators

As mentioned above, in generic SUSY-GUTs with R-parity, there exist two main

sources for proton decay:

• D-type (dimension-6) operators that may arise from exchange of gauge boson ex-

change:

1
M2

G

∫
d2θ d2θ ΦΦΦΦ, (7.2)
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where Φ denotes a chiral superfield. For a unification scale >∼ 1016 GeV, these

contributions to proton decay are sufficiently small and well beyond the range of

current experiments. Hence, we will not discuss them further.

• F -type (dimension-5) operators that may arise from the exchange of color triplet

Higgsino fields in 10-Higgs fields as shown in Fig. 7.1(a):

1
MG

∫
d2θ ΦΦΦΦ (7.3)

In the component language, they give rise to dimension-5 operators of the form

(QQ)(Q̃L̃) and (QL)(Q̃Q̃). As these operators involve squark and slepton fields,

they cannot induce proton decay in the lowest-order. Proton decay occurs by con-

verting the squark and slepton legs into quarks and leptons by exchanging a gaugino,

as shown in the box diagram of Fig. 7.1(b).

(a)

16i

16j

16k

16l

10H10H

(b)

Qi

Qj

Qk

Ll

Q̃

L̃

H̃ g̃, W̃ , B̃

Figure 7.1: (a) Supergraph giving rise to effective dimension-5 proton decay opera-

tors, and (b) Box diagram involving gaugino exchange that converts the dimension-5

operator of Fig. 3(a) into an effective four- Fermi operator that induces proton de-

cay.

There are two types of effective dimension-5 operators given by Eq. (7.3): LLLL type

that involve only left-handed quark and lepton fields and a corresponding RRRR type,
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both invariant under MSSM [263]. In super-space notation, these are explicitly given by

OL =
∫
d2θ εαβγεabεcd QαaiQβbjQγckLdl , (7.4)

OR =
∫
d2θ εαβγ (Qc)αi (Q

c)βj (Qc)γk (Lc)l (7.5)

where α, β, γ = 1, 2, 3 are SU(3)c color indices; a, b, c, d = 1, 2 are SU(2)L isospin indices;

and i, j, k, l = 1, 2, 3 are generation indices. It is clear from the form of these operators

that they break baryon number by one unit, but preserve the B − L symmetry, leading

to the proton decay to a pseudoscalar and an anti-lepton. As argued in Ref. [267] for

kinematical reasons and explicitly shown in Ref. [268] for small to moderate tanβ region

of the SUSY parameter space, the RRRR contributions are at least an order of magnitude

smaller than the LLLL contributions. We also verify this in our model, as shown later;

for the time being therefore, we concentrate only on the LLLL operator.

In component form, the effective superpotential due to the LLLL operator is ex-

plicitly given by [269]

W∆B=1 =
1
MT

εαβγ [(Cijkl − Ckjil)uαidβjuγkel − (Cijkl − Cikjl)uαidβjdγkνl] (7.6)

where MT is the effective mass of the color triplet Higgs field belonging to the 10H

representation, and in our model, is of the order of the unification scale MG (see Appendix

A). The coefficients Cijkl associated with the superpotential given by Eq. (7.6) can be

expressed in terms of the products of the GUT-scale Yukawa couplings (see Section 7.3).

This superpotential leads to the effective dimension-5 operators involving two fermions

and two sfermions as shown in Fig. 7.1(b), which lead to proton decay by four-Fermi

interactions when “dressed” via the exchange of gauginos, namely gluinos, binos and

winos. A typical diagram for the effective four-Fermi interaction induced by this dressing

is shown in Fig. 7.2.

132



W̃

f

f

f

f

f̃

f̃

Figure 7.2: The effective four-Fermi interaction diagram induced by the gaugino

dressing of the effective dimension-5 operator given by Fig. 7.1(b).

It can be shown that [270] in the limit of all squark masses being degenerate as in

typical mSUGRA type models, the gluino and bino contributions to the dressing of the

dimension-5 operators vanish. This basically follows from the use of Fierz identity for the

chiral two component spinors representing quarks and leptons. In realistic models, the

FCNC constraints allow only very small deviations from universality of squark masses.

Hence, these gluino and bino contributions are expected to be small compared to the wino

contributions, and can be ignored altogether. The charged wino dressing diagrams have

been evaluated earlier [271], and in the limit of degenerate squark masses, this leads to

the effective Lagrangian [269]

L∆B=1 = 2Iεαβγ(Ckjil − Cijkl)[uT
αkCdβjd

T
γiCνl + uT

βjCdγku
T
αiCel], (7.7)

where C denotes the charge-conjugation matrix and I is given by

I =
α2

4π
m

W̃

M2

f̃

, (7.8)

m
W̃

being the wino mass and M
f̃

the sfermion mass. Using this expression and adding a

similar contribution from the neutral wino exchange diagram, we can write down the total

contribution to various proton decay channels. This is summarized in Table 7.1. We note

that the proton decay operators with s-quark lead to K-meson final states whereas the

133



ones without s lead to π final states. As shown in Table 7.1, the amplitude for non-strange

quark final states will be Cabibbo-suppressed compared to the strange quark final states.

It is also important to mention here that the total amplitude for final states involving

neutrinos is the incoherent sum of the rates for all three neutrino states. This leads to

large decay rates for p → K+ν and p → π+ν channels compared to the other decay

channels due to the large Yukawa couplings of the third generation.

Decay channel C-coefficient

p→ K+νl (C112l − C121l)

p→ K0e+ (C1121 − C1211)

p→ K0µ+ (C1122 − C1212)

p→ π+ν l sin θC(C211l − C112l)

p→ π0e+ sin θC(C2111 − C1121)

p→ π0µ+ sin θC(C2112 − C1122)

Table 7.1: The coefficients for various ∆B = 1 dimension-5 operators obtained

from the effective Lagrangian to leading order. Here θC is the Cabibbo angle (with

sin θC ∼ 0.22) and the Cijkl’s are products of the Yukawa couplings, as defined in

Eqs. (7.17) and (7.18).

7.2 Yukawa Couplings

Model (A): The model discussed in Chapter 3 is defined by the vev pattern of

the bi-doublets Φ1,2 given by Eq. (3.16), leading to the fermion mass matrices given by
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Eq. (3.30). Note that the contribution from the effective 126H operator is assumed to be

the same for both up and down sectors, i.e. f̃ = κufu = κdfd; as a result, we have the

relation fd = fu tanβ. Using the RG analysis for the fermion masses and mixing in the

SUSYLR model (see Appendix B), we obtain the GUT-scale fermion masses starting from

the experimentally known values at the weak scale (see Eqs. (3.19)). Using these mass

values, we obtain a fit for the coupling matrices at the GUT scale defined in Eq. (3.30).

Here we give the results in a down quark mass diagonal basis for two values of tanβ:

(a) tanβ(MSUSY) = 10: In this case, the GUT-scale values of the charged fermion masses

are given by Eq. (3.19). With these mass eigenvalues, we find a fit for the GUT-scale

couplings of the form [151]

fu = diag
(
1.26× 10−6,−0.0001,−9.48× 10−6

)
, fd = fu tanβ,

hd = diag
(
4.86× 10−5, 0.0019, 0.0752

)
, (7.9)

hu =




7.46× 10−5 0.0002− 6.51× 10−5i 0.0002− 0.0028i

0.0002 + 6.51× 10−5i 0.0015 0.0118 + 1.26× 10−6i

0.0002 + 0.0028i 0.0118− 1.26× 10−6i 0.4908




Note that for simplicity we have chosen the f -couplings to be diagonal. Our fit does not

allow the off-diagonal components to be too different from zero.

(b) tanβ(MSUSY) = 30: In this case, the GUT-scale values of the charged fermion masses

are found to be

mu = 0.0121 GeV, mc = 0.3269 GeV, mt = 120.53 GeV,

md = 0.0014 GeV, ms = 0.0277 GeV, mb = 2.7958 GeV,

me = 0.0006 GeV, mµ = 0.1266 GeV, mτ = 2.7737 GeV (7.10)
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and tanβ(MG) = 20. With these mass eigenvalues, we obtain a fit for the couplings of

the following form [151]:

fu = diag
(
1.5× 10−6,−0.0002, 4.2× 10−5

)
, fd = fu tanβGUT,

hd = diag (0.0002, 0.0078, 0.4163),

hu =




0.0002 0.0003− 0.0001i −0.0008− 0.0081i

0.0002 + 0.0001i 0.0029 0.0144 + 0.0002i

−0.0008 + 0.0081i 0.0144− 0.0002i 0.9145




(7.11)

We note that in this model, larger values of tanβ (> 30) are not allowed. This can be

seen analytically from the RGEs given in Appendix B; it can be seen from the form of the

RGEs that the up-quark sector masses will increase rapidly at high energies for large tanβ

and the same effect is induced in the down-quark sector which makes the Yukawa terms

dominant over the gauge terms. This makes all the quark masses to run up to unacceptably

large values at the GUT-scale. We believe this is a general feature of low-scale SUSYLR

models, in contrast to MSSM case [272].

Model (B): In this section, we consider an alternative mass fit within the SO(10)

models with low scale B −L [151]. It follows from the ansatz in Ref. [273] that in generic

SO(10) models which do not use type I seesaw to fit neutrino masses, an alternative fit

to fermion masses is possible with a rank one 10-Higgs Yukawa coupling matrix which

dominates the fermion masses while other couplings introduce small corrections; the third

generation masses arise from the dominant rank one coupling matrix with smaller 126

and second 10 couplings generating the CKM mixing as well as the second and the first

generation fermion masses. This idea can be applied to our case since, the neutrino mass

is given by the inverse seesaw formula which involves an additional matrix µ. The main

difference of model (B) as compared to model (A) resides in the vev pattern of the two
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Higgs bidoublets i.e. in model (B), we have

〈Φ1〉 =



κd 0

0 κu


 , 〈Φ2〉 =



κ′d 0

0 κ′u


 (7.12)

with vwk/
√

2 =
√
κ2

u + κ2
d + κ′2u + κ′2d . Also we must have κu

κd
6= κ′u

κ′
d

in order to get right

fermion mixing pattern. In the limit κu À κ′u, the RG analysis of model (A) can be

applied to this case to generate fermion masses at the GUT scale as well as the symmetry

breaking pattern via radiative corrections.

The resulting fermion mass formulas in terms of the appropriately redefined Yukawa

couplings are given as follows [274]:

Mu = h̃+ r2f̃ + r3h̃
′,

Md = r1(h̃+ f̃ + h̃′),

Ml = r1(h̃− 3f̃ + ceh̃
′),

MνD = h̃− 3f̃ + cν h̃
′ (7.13)

where

h̃ = κuh, f̃ =
κuκ

′
d

κd
f, h̃′ =

κuκ
′
d

κd
h′,

r1 =
κd

κu
, r2 = r3 =

κdκ
′
u

κuκ′d
. (7.14)

As in the case of model (A), the f coupling above represents the effective 126 coupling

arising from the ψψA1A2H2 term in the superpotential and h′ arises from a coupling of

the form ψψH2X (with a nonzero vev for the additional singlet field X). Note that if

there is an additional Z2 symmetry under which H2, A2, X are odd and all other fields

are even, one can have a superpotential with only the h, f, h′ type contributions as given

above, to the fermion mass formulas. In our case with two Higgs bi-doublets, ce = 1 and
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cν = r3. With the GUT-scale mass eigenvalues obtained earlier, we obtain a fit for these

couplings as follows:

(a) tanβMSSM = 10:

κu = 173.2 GeV, r1 = 0.0218, r2 = 0.14, h = diag (0, 0, 0.45), (7.15)

f =




0 −0.0006 0.0019

−0.0006 0.0115 0.0101

0.0019 0.0101 0.0001



, h′ = i




0 −0.0022 0.0005

0.0022 0 0.0181

−0.0005 −0.0181 0




(b) tanβMSSM = 30:

κu = 172.4 GeV, r1 = 0.0231, r2 = 0.21, h = diag (0, 0, 0.70), (7.16)

f =




0 −0.0016 0.0062

−0.0016 0.0140 0.0111

0.0062 0.0111 0.0019



, h′ = i




0 −0.0022 0.0005

0.0022 0 0.0181

−0.0005 −0.0181 0




It may be noted here that in both the cases, all the fermion mass values predicted using

the couplings above agree with those obtained from the RGEs within the experimental

uncertainty, the only exception being the up-quark mass in case (a), where the our pre-

dicted value is about 4 times larger. Note however that in our discussion, we have not

included contributions from threshold corrections or higher dimensional operators. Those

contributions can generally be of order MeVs when their couplings are chosen appropri-

ately, in which case, they will not affect the second and third generation masses but could

easily bring the up quark mass into agreement with RGE predictions.

With the Yukawa couplings given by Eqs. (7.15) and (7.16), we can calculate the

C-coefficients introduced in Eq. (7.6). For model (A), this is given by

Cijkl = huijhukl
+ x1hdijhdkl

+ x2huijhdkl
+ x3hdijhukl

+
1
2

[
huijfukl

+ fuijhukl
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+x1

(
hdij

fdkl
+ fdij

hdkl

)
+ x2

(
fuijhdkl

+ huijfdkl

)
+ x3

(
hdij

fukl
+ fdij

hukl

)]

+
1
4

(
fuijfukl

+ x1fdij
fdkl

+ x2fuijfdkl
+ x3fdij

fukl

)
(7.17)

while for model (B) this becomes

Cijkl = hijhkl + x1h
′
ijh

′
kl + x2hijh

′
kl + x3h

′
ijhkl

+
1
2

[
x1

(
h′ijfkl + fijh

′
kl

)
+ x2hijfkl + x3fijhkl

]
+

1
4
x1fijfkl (7.18)

where xi’s are the ratios of the 10H color triplet Higgs masses and mixing and the factor 1
2

is the Clebsch-Gordan coefficient for the 10 · 10 · 126 coupling. Note that there are only

three mixing parameters as there are only four color triplet Higgses in the MSSM gauge

group, corresponding to the two 10H fields in our model. As we are interested only in the

upper bound for the partial lifetimes of various proton decay channels, we do not need to

know the detailed form for the xi parameters in terms of these masses and mixing. We

just vary these parameters numerically to get the maximum value for the partial lifetimes.

Before proceeding to calculate the rate of proton decay induced by the LLLL type

operators discussed in Section 7.1, let us estimate the contribution from the RRRR type

operators in our model. The gluino dressing graphs do not contribute in the limit of uni-

versal sfermion masses by the same Fierz arguments as for the LLLL case. Moreover, since

all superfields in the RRRR operator are SU(2)L singlets, there is no wino contribution

to the leading order. Also the bino dressing generates an effective four-Fermi operator

of the type εαβγεijεklucT

βjCd
c
γku

cT

αiCe
c
l which, in flavor basis, is antisymmetric in the flavor

indices i and j, and hence in the mass basis, must involve a charm quark. Thus to leading

order, the bino contribution also vanishes due to phase space constraints. Thus the only

dominant contribution comes from the Higgsino exchange and the largest amplitude in

this case, which comes from stop intermediate states, is estimated to be [269] (using the
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Cijkl values given above)

C1323
mtmτVub

16π2v2
wk sinβ cosβ

∼ 4.0× 10−10 (7.19)

for tanβ = 30, as compared to the LLLL contribution which is typically of order

C1123
α2

4π
∼ 4.5× 10−9 (7.20)

As the RRRR contribution is proportional to 1/(sinβ cosβ) which is ∼ tanβ for large β,

for smaller tanβ, this contribution is further suppressed. This justifies why we can ignore

the RRRR contributions in the following calculation of proton decay rate.

7.3 Extrapolation Factors for d = 5 Operators

In order to calculate the proton decay rate, we must extrapolate these dimension-5

operators defined at the GUT scale to the mass scale of proton, i.e. mp ' 1 GeV. In

our model, we can divide this whole energy range into three parts, following the breaking

chain given in Section 3.4:

(a) from the GUT scale MG to the B − L breaking scale MR (SUSYLR),

(b) from MR to the SUSY-breaking scale MS (MSSM), and

(c) from MS to 1 GeV (SM).

The values of these extrapolation factors for SM and MSSM are given in the literature [267,

275, 276, 277], but not for the SUSYLR model. In this section, we derive these factors

using the anomalous dimensions for the dimension-5 operators in our model [151]. We

noted some discrepancies in the values of the anomalous dimensions quoted in different

papers, but found that our results for the SM and MSSM cases agree with those given in

Refs. [275, 267] and quoted in Appendix E of Ref. [259].
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First, we have the SM sector from 1 GeV to the SUSY-breaking scale MS in which

we have the usual non-SUSY enhancement factor [275] for the LLLL operator:

ANS
e =

[
α3(1 GeV)
α3(MS)

]2/(11− 2
3
nf)

(7.21)

where nf is the number of quark flavors below the energy scale of interest. Here we have

neglected the effects of SU(2)L and U(1)Y couplings as they are much smaller compared

to that of SU(3)c (see Table 1.2). Assuming MS > mt, the enhancement factor explicitly

becomes

ANS
e =

[
α3(1 GeV)
α3(mc)

]2/9 [
α3(mc)
α3(mb)

]6/25 [
α3(mb)
α3(mt)

]6/23 [
α3(mt)
α3(MS)

]2/7

= 1.49 (7.22)

using the values of α3(Q) at Q = 1 GeV, mc and mb obtained by interpolating the

renormalization group equation for the effective QCD coupling [278] and at Q = mt by

the SM running from Q = mZ .

Now above MS , we have the usual MSSM till the B−L breaking scale MR and then

the SUSYLR model till the GUT scale MG. The extrapolation factor in this case is given

by

AS
e = AMSSM

e ASUSYLR
e , with

AMSSM
e =

3∏

i=1

[
αi(MS)
αi(MR)

] γi
bi
, and ASUSYLR

e =
4∏

j=1

[
αj(MR)
αj(MG)

] γj
bj

(7.23)

Here bi =
(

33
5 , 1,−3

)
for i = 1Y ,2L,3c are the well known MSSM β-function coefficients

[cf. Eq. (2.8)], bj = (13, 2, 4,−2) for j = 1B−L,2L,2R,3c are the β-function coefficients

[cf. Eq. (3.9)] for the SUSYLR model, and γi’s are the anomalous dimensions for the

LLLL operator, calculated below.

The derivation of the anomalous dimensions of the dimension-5 operators of the

LLLL type given by Eq. (7.4) is straightforward in a supersymmetric gauge due to the
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fact that the operator OL is purely chiral (it is an F -term [223]), and hence, it follows

from non-renormalization theorems [279] that in a supersymmetric gauge, it will only have

wave function renormalization. Then it is easy to show that the anomalous dimensions of

any purely chiral operator are given by

γO =
∑
r

C2(r) (7.24)

where C2(r) is the eigenvalue of the quadratic Casimir operator in the representation r,

and the sum runs over all the chiral superfields occurring in the chiral coupling. As the

gauge bosons belong to the adjoint representation, we have

C2(r) =





N2−1
2N for SU(N)

1
4X

2 for U(1)X

(7.25)

Thus we have for SU(3)c,

γ3c = 3× 4
3

= 4 (7.26)

as there are three SU(3)c fields in the LLLL operator [e.g. (qq)(q̃l̃)]. Similarly, we have

γ2L,R = 4× 3
4

= 3, (7.27)

γ1Y =
1
4

[
3

(
1
3

)2

+ 1

]
3
5

=
1
5
, (7.28)

γ1B−L =
1
4

[
3

(
1
3

)2

+ 1

]
3
2

=
1
2
, (7.29)

where the factors 3
5 and 3

2 are the GUT normalization factors for U(1)Y and U(1)B−L re-

spectively. Note that the same results would have been obtained in a non-supersymmetric

gauge, though the calculation is much more involved. For instance, the calculation for the

MSSM case in a Wess-Zumino gauge was done in Ref. [267].

Using these anomalous dimensions, we obtain from Eq. (7.23)

AMSSM
e =

[
α3(MS)
α3(MR)

]−4/3 [
α2L(MS)
α2L(MR)

]3 [
α1Y (MS)
α1Y (MR)

]1/33

= 0.91 (7.30)
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using the MSSM running of the gauge couplings, and similarly,

ASUSYLR
e =

[
α3(MR)
α3(MG)

]−2 [
α2L(MR)
α2L(MG)

]3/2 [
α2R(MR)
α2R(MG)

]3/4
[
α1B−L(MR)
α1B−L(MG)

]1/26

= 0.08

(7.31)

using the SUSYLR running of the gauge couplings (see Figure 3.1). Combining the results

from Eqs. (7.22), (7.30) and (7.31), we get the overall extrapolation factor in bringing the

d = 5 operators from the GUT scale down to 1 GeV:

Ae = ANS
e AMSSM

e ASUSYLR
e = 0.11 (7.32)

7.4 QCD Effects

We also need to include the QCD effects in going from a partonic calculation involv-

ing three quarks to a hadronic bound state, i.e. the proton. As the low-energy hadrons

are involved in the decay, this is a highly non- perturbative process, and it is difficult to

calculate the exact form of the hadronic mixing matrix element for the process. Even

though various QCD models have been constructed for the purpose, the estimates vary

by a factor of O(10) between the smallest and the largest [280]. As the partial width

of the decay is proportional to the matrix element squared, the variation in the esti-

mate of proton lifetime in different models will be O(100). A different approach using

lattice QCD techniques gives more consistent results [281]. We use these lattice results

to estimate the chiral symmetry breaking effects which can be parameterized by two

hadronic parameters D and F . Then the hadronic mixing matrix for the proton decay

can be written as β
fπ
f(F,D) where fπ = (130.4 ± 0.04 ± 0.2) MeV [22] is the pion de-

cay constant and |β| = 0.0120(26) GeV3 [281] is a low-energy parameter of the SU(3)f

baryon chiral Lagrangian with the baryon number violating interaction. The hadronic
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matrix elements f(F,D) can be obtained for different decay channels in the approxima-

tion mu,d ¿ ms ¿ mp as well as −q2 ¿ m2
p where qµ is the momentum transfer (the

momentum of the anti-lepton for physical decays), and summarized in Table 7.2. Here

we have chosen the low-energy parameters D and F to be the same as the analogous

parameters in weak semileptonic decays [13]. Then D + F = g
(np)
A = 1.27 is the nucleon

axial charge, while D − F = g
(Σ−n)
A = 0.33− 0.34 [22]. This gives D = 0.8 and F = 0.47

which are used in Table 7.2.

Decay mode f(F,D) |f(F,D)|2

p→ π0l+ 1√
2
(1 +D + F ) 2.58

p→ π+ν l 1 +D + F 5.15

p→ K0l+ 1− mN

mB
(D − F ) 0.53

p→ K+ν l
mN

mB

2D
3

0.19

Table 7.2: The hadronic factors f(F,D) for different proton decay modes. Here we

have used mN = 0.94 GeV for the mass of nucleon and mB = 1.15 GeV for the

average baryon mass (mB ' mΣ ' mΛ).

7.5 Proton Decay Rates

Finally, combining all the factors discussed above, the proton decay rate for a given

decay mode p→Ml (M denotes the meson and l the lepton) is given by [269]

Γp(Ml) ' mp

32πM2
T

|β|2
f2

π

(
α2

4π

)2

m

W̃

M2

f̃




2

4|C|2|Ae|2|f(F,D)|2

'
(
1.6× 10−49 GeV

) (
2× 1016 GeV

MT

)2 (
m

W̃

200 GeV

)2
(

1 TeV
M

f̃

)4
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× |C|2|Ae|2|f(F,D)|2 (7.33)

where the coefficients C are given in Table 7.1, the hadronic factors f(F,D) are listed

in Table 7.2, and the extrapolation factor Ae is given by Eq. (7.32). Using the triplet

Higgsino mass, MT ' MG ' 4 × 1016 GeV in our model [cf. Eq. (3.11)], we obtain the

partial lifetimes of different decay modes:

τp(Ml) =
h̄

Γp
'

(
4.42× 1033 years

)

|f(F,D)|2
(

10−14

|C|2
) (

200 GeV
m

W̃

)2 (
M

f̃

1 TeV

)4

(7.34)

The wino mass, m
W̃

, has been constrained at LEP to be larger than ∼ 100 GeV [219],

essentially independent of any specific model. As a typical value, we choose the universal

gaugino mass, m1/2 = 200 GeV, which when extrapolated to the weak scale gives m
W̃
'

134 GeV for the wino mass.

With the Yukawa couplings completely fixed in our model, we can analyze the

predictions for the proton decay rate which is discussed below for both models (A) and

(B), proposed earlier in this Chapter.

Model (A): As we are interested in obtaining an upper bound on the partial

lifetimes of various proton decay modes, we adopt the strategy of varying the mixing

parameters xi’s defined by Eq. (7.17) to maximize the expression (7.34) and simultaneously

satisfying the present experimental lower bounds [156]. As expected for a SUSY-GUT,

we find that the most stringent constraint comes from the p → K+ν decay mode, and

for this decay rate to be consistent with the present experimental bound, we must have

the sfermion mass M
f̃
≥ 1.2 (2.1) TeV for the MSSM tanβ = 10 (30). This value of M

f̃
,

when extrapolated to the GUT-scale, puts a lower limit on the universal squark mass m0

for a given value of m1/2. The allowed region in the m0−m1/2 plane satisfying the proton

decay constraints and also satisfying the EWSB constraints is shown in Fig. 7.3. It is clear
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that this model favors low values of tanβ. The model predictions for the upper bound
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Figure 7.3: Model (A) allowed region in the m0 −m1/2 plane satisfying the proton

decay and EWSB constraints for tan β = 10 (red) and tan β = 30 (green).

Decay Experimental Predicted upper limit (×1033 yr)

mode lower limit (×1033 yr) tan β = 10 tan β = 30

p→ K+ν 2.3 2.3 2.3

p→ K0µ+ 1.3 399.3 738.8

p→ K0e+ 1.0 1.3× 103 49.7

p→ π0e+ 10.1 5.8× 103 230.0

p→ π0µ+ 6.6 2.4× 104 1.3× 104

p→ π+ν 0.025 1.5 0.8

Table 7.3: Model (A) predictions for proton lifetime and present experimental limits.

on partial lifetime of various proton decay modes are given in Table 7.3. We also list the
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present experimental lower bounds for comparison. As noted above, the most stringent

constraint on the parameter space comes from the p→ K+ν decay mode; this is due to the

fact that the neutrino final states add incoherently for the three generations, and hence,

the decay rate for the neutrino final states will be much larger compared to the rates of

other decay modes due to the third generation Yukawa coupling dominance. This also

explains why the p → π+ν decay rate is so large, even though it is Cabibbo-suppressed.

The predicted upper bounds for these neutrino final states may be testable in the future

proton decay searches, as in the next round of Super-Kamiokande [156] or megaton type

detectors such as Hyper-Kamiokande [282].

Model (B): As in the model (A), we maximize the function |C|−2 given by Eq. (7.18)

with respect to the xi parameters to find an upper bound on the proton decay lifetime.

However, due to the particular structure of the Yukawa matrices in this model, as given

by Eqs. (7.16) and (7.17), the parameters x2 and x3 have no effect on the amplitude and

the only effective mixing parameter is x1. The experimental lower bounds on the lifetime

of various proton decay modes will then put a lower bound on the ratio
M2

f̃

x1m
W̃

. It turns

out that the most stringent bound is p → K+ν̄ (π0µ+) for tanβ = 10 (30) and we must

have

M2

f̃

x1mW̃

≥ 1.44 (1.06)× 105 GeV (7.35)

As an example, for m1/2 = 200 GeV and x1 = 0.1, it puts a lower bound on the first

and second generation squark masses to be M
f̃
≥ 1.4 (1.2) TeV for tanβ = 10 (30). The

model predictions for x1 = 0.1 for various decay modes are given in Table 7.4. We note

that the observation of one of the decay modes in the last two columns of Table 7.4 at a

given rate will fix x1 and the rates for remaining modes (the ones without stars) are then

predicted and should provide a test of this model. It should also be noted here that within
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Decay Experimental Predicted upper limit (×1033 yr)

mode lower limit (×1033 yr) tan β = 10 tan β = 30

p→ K+ν 2.3 2.3 3.5

p→ K0µ+ 1.3 2.3 1.6

p→ K0e+ 1.0 * *

p→ π0e+ 10.1 * *

p→ π0µ+ 6.6 9.8 6.6

p→ π+ν 0.025 1.7 2.7

Table 7.4: Model (B) predictions for proton lifetime. Note that in this case, the

model does not have any predictions for the decay modes p→ K0e+ and p→ π0e+,

because the C coefficients for both these modes involve products of (1,1) elements

of the Yukawa coupling matrices, and by construction, these elements are zero for

all the three coupling matrices; hence these modes have vanishing decay rates.

the mSUGRA framework at low tanβ, Tevatron has put a lower limit of 375 GeV for the

squark mass based on an integrated luminosity of 1 fb−1. We expect our predicted lower

bound on the squark mass which is of order 1 TeV to be testable at higher luminosities

within the reach of LHC.

7.6 Effect of R-parity breaking

Another class of dimension-5 operators arising from R-parity breaking Planck sup-

pressed operators These operators are absent in models where 126 Higgs fields break
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B − L, but are present in our model where the B − L is broken by a 16⊕ 16 Higgs field.

In this section we discuss the implications of these operators on proton life time in our

model. This is an interesting exercise in view of the fact that in MSSM embedding into

SU(5), relaxing R-parity (or matter parity) conservation leads to new contributions to

baryon number violation with arbitrary strength, so that in principle, such models are

not viable without matter parity assumption. We would like to study in this section the

situation in the case of our SO(10) model.

The most general R-parity violating interactions upto dimension-5 operators in our

model are the following:

W ′ = M ′
aψaψ̄H + λψaψHH +

λabc

MPl
ψaψbψcψH + SaSbSc + µ′2Sa (7.36)

where ψa,b,c denote matter spinors and ψH and ψ̄H are Higgs spinor fields. Before pro-

ceeding to discuss their implications, note that M ′
a must be of order TeV otherwise the

right handed neutrino field would decouple from the low energy sector and break the gauge

multiplet required to implement inverse seesaw. There are the following classes of R-parity

violating operators that follow from this in conjunction with the superpotential given by

Eq. (3.12) at the TeV scale:

W ′(TeV) = M ′
aL

c
aχ̄

c + λLΦχc +
λabc

MPl
χc [Qc

aQ
c
bQ

c
c + LaQbQ

c
c + Lc

aLbLc + · · ·] (7.37)

Note that the terms within the square bracket, after B − L breaking, give rise to the

familiar MSSM R-parity breaking terms with however couplings determined to be of order

vBL
MPl

which is of order 10−15. Hence their contribution to proton decay is negligible. Note

this would not be the case with SO(10) models where B − L symmetry is broken at the

GUT scale.
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Chapter 8

Summary

As we discussed in Chapter 1, there are solid experimental as well as theoretical

reasons to believe that even though the standard model has been phenomenally successful

in describing all the electroweak precision data, the discovery of its last missing piece,

i.e. the Higgs boson would not make it a complete theory of Nature all the way up to

the Planck scale. If the SM is indeed just a low-energy effective field theory, the main

challenge for us is to understand what lies beyond the SM, and if any of this new physics

could solve all the problems posed by the SM, while being consistent with the existing

low-energy data.

We argued in Chapter 2 that low-energy SUSY is one of the strongest candidates for

the new physics and its minimal version solves some major issues unanswered in the SM

such as gauge hierarchy problem, coupling unification, electroweak symmetry breaking,

dark matter, baryogenesis etc.. However, in order to explain the observed non-zero but

small neutrino masses, the minimal supersymmetric standard model must be extended

and it is certainly desirable to to construct supersymmetric models for neutrino masses,

thus preserving all the nice features of SUSY, and, at the same time, connecting it to the

neutrino sector.

A simple paradigm to understand the small neutrino masses is by the “seesaw mech-

anism” where one adds extra SM gauge singlets which break the B − L symmetry of the

SM. The simplest version of seesaw (Type-I), where one adds only one set of heavy Majo-

rana neutrinos, usually requires very large mass ∼ 1013−14 GeV for these heavy neutrinos
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(with O(1) Yukawa couplings) in order to account for the smallness of the left-handed

(LH) neutrinos (hence the name “seesaw”). This makes it impossible to probe this type of

seesaw physics at colliders. Lowering the seesaw scale to TeV-range requires tiny Yukawa

couplings (∼ 10−6), which again makes it difficult to produce these heavy neutrinos at

colliders. In Chapter 3, we discussed a different realization of the seesaw mechanism,

namely the inverse seesaw, where one adds two sets of SM singlet fermions – one Dirac

and one Majorana, in which the smallness of the LH neutrino can be directly attributed

to the smallness of the Majorana mass term. Hence, O(1) Dirac Yukawa couplings can be

obtained naturally even at TeV-scale, thus making them “collider-friendly”, and extending

the scope of the LHC physics search to the neutrino sector.

We noted [120, 151] that the inverse seesaw mechanism can be naturally realized by

extending the SM gauge group to the Left-Right symmetric gauge group which restores

the parity symmetry and has many interesting phenomenological consequences. We also

showed that a TeV-scale supersymmetric version of the LR model with inverse seesaw

for neutrino masses leads to a successful gauge coupling unification, unlike its type-I

counterpart. We propose this model as a realistic extension of MSSM for neutrino masses,

while still preserving all its nice features. We also show this model to be a low-energy

realization of an SO(10) SUSY-GUT.

In Chapter 4, we observed [147] that a low-scale LR model with inverse seesaw can

also successfully explain the observed baryon asymmetry in our universe by the mechanism

of leptogenesis. This result makes the case stronger for the heavy gauge boson searches

at the LHC. This is in contrast with the type-I LR models which require the LR scale to

be well beyond the reach of colliders for successful leptogenesis.

In Chapter 5, we showed [140] that our model provides a new Dark Matter candidate
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which is allowed to be light (a few GeV) by the experimental constraints. This might

be an important point, if the Dark Matter mass indeed turns out to be in a few GeV

range, as suggested by some recent experiments, since the only MSSM candidate, namely

the lightest neutralino, is severely constrained by relic density and collider data to be

no lighter than 20 GeV or so. Moreover, we established [140] that the light scalar DM

candidate in inverse seesaw must be inelastic in nature, with the mass splitting closely

connected to the Majorana mass of neutrinos.

We also analyzed [116, 120] the testability of the inverse seesaw mechanism at various

experiments at energy and intensity frontiers. At colliders, the striking signal for inverse

seesaw is the trilepton final state from the production and decay of the pseudo-Dirac heavy

neutrino which could provide a clean signal against a very small background at the LHC.

At the intensity frontier, inverse seesaw induces various non-unitarity and LFV effects

which might be accessible to the next generation low-energy experiments.

Finally, we discussed [151] proton decay in this class of supersymmetric SO(10)

GUTs, and found that the decay rates of the dominant channels are below the experimental

bounds for a reasonable squark mass of order TeV which is within reach of the LHC.

In conclusion, a supersymmetric inverse seesaw mechanism for neutrino masses could

be considered as an alternative extension to the minimal supersymmetric standard model

and offers a rich phenomenology for colliders as well as other low-energy experiments.
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Appendix A

Masses of the SO(10) Higgs multiplets

As discussed in Section 3.3.2, we obtain the gauge coupling unification at an ac-

ceptable scale only after including the contribution from the color triplets δ, δc. This pair

of Higgs fields is contained in the 45 representation of Higgs in a generic SO(10) model.

However, in principle, there could be other light gauge multiplets of 45 and/or 54 that

might contribute to the gauge coupling running as well. Here we argue that in a generic

SO(10) model with only 45H and 54H representations of Higgs (apart from the essential

10H and 16H), it is possible to have only the δ’s as light states (TeV scale) whereas all

the other states are very heavy at GUT scale, and hence, do not contribute to the RG

running. It turns out that we need to have at least two 45H ’s in our model in order to

have these light color triplets.

The most general Higgs superpotential with two A ≡ 45’s and a E ≡ 54 Higgs

fields is given by

WH =
1
2
m1A2 +

1
2
m′

1A
′2 +

1
2
m2E2 + λ1E3 + λ2EA2 + λ′2EA′2 + λ3EAA′ (A.1)

where we have absorbed the AA′ term by a redefinition of the fields. The Higgs fields

A, A′ and E contain three directions of singlets (with A and A′ VEVs parallel) under

the SM subgroup 3c2L1Y [283]. The corresponding VEVs are defined by

〈A〉 =
2∑

i=1

AiÂi, 〈A′〉 =
2∑

i=1

A′iÂ′i, 〈E〉 = EÊ (A.2)

where in the notation of Ref. [283], the unit directions Âi and Ê in the Y -diagonal basis
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are given by

Â1 = Â
(1,1,0)
(1,1,3) =

i

2
[78 + 90] = Â′1,

Â2 = Â
(1,1,0)
(15,1,1) =

i√
6
[12 + 34 + 56] = Â′2,

Ê = Ê
(1,1,0)
(1,1,1) =

1√
60

(−2× [12 + 34 + 56] + 3× [78 + 90]) (A.3)

where the upper and lower indices denote the 3c2L1Y and 4c2L2R quantum numbers

respectively. The unit directions in Eq. (A.2) satisfy the orthonormality relations

Âi · Âj = δij and Ê · Ê = 1 (A.4)

The superpotential of Eq. (A.1) calculated at the VEVs in Eq. (A.2) is given by

〈WH〉 =
1
2
m1〈A〉2 +

1
2
m′

1〈A′〉2 +
1
2
m2〈E〉2

+λ1〈E〉3 + λ2〈E〉〈A〉2 + λ′2〈E〉〈A′〉2 + λ3〈E〉〈A〉〈A′〉

=
1
2
m1(A2

1 +A2
2) +

1
2
m′

1(A
′2
1 +A′22 ) +

1
2
m2E

2 +
λ1

2
√

15
E3

+
E

2
√

15

[
λ2(3A2

1 − 2A2
2) + λ′2(3A

′2
1 − 2A′22 ) + λ3(3A1A

′
1 − 2A2A

′
2)

]
(A.5)

using the definitions in Eqs. (A.3) and the orthonormality relations given by Eqs. (A.4).

The VEVs are determined by the minimization of the superpotential with respect to the

fields:

{
∂

∂A1
,

∂

∂A2
,

∂

∂A′1
,

∂

∂A′2
,
∂

∂E

}
〈WH〉 = 0 (A.6)

This yields a set of five equations for A1, A2, A
′
1, A

′
2 and E:

0 = m1A1 +
3√
15
λ2EA1 +

3
2
√

15
λ3EA

′
1,

0 = m1A2 − 2√
15
λ2EA2 − 2

2
√

15
λ3EA

′
2,

0 = m′
1A

′
1 +

3√
15
λ′2EA

′
1 +

3
2
√

15
λ3EA1, (A.7)
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0 = m′
1A

′
2 −

2√
15
λ′2EA

′
2 −

2
2
√

15
λ3EA2,

0 = m2E +
1

2
√

15

[
3λ1E

2 + λ2(3A2
1 − 2A2

2) + λ′2(3A
′2
1 − 2A′22 ) + λ3(3A1A

′
1 − 2A2A

′
2)

]

As in our model, the SO(10) symmetry is broken by the 45 and 54 VEVs to 3c2L2R1B−L

gauge group at the scale MG, we are interested in the 3c2L2R1B−L symmetry solu-

tions [283] A1 = A′1 = 0, A2 6= 0, A′2 6= 0, E 6= 0. Hence it follows from Eqs. (A.7)

that

m1 − 2λ2E√
15

=
λ3E√

15
A′2
A2
, m′

1 −
2λ′2E√

15
=
λ3E√

15
A2

A′2
(A.8)

In order to study the mass matrices, it is convenient to decompose the Higgs repre-

sentations under the SM gauge group 3c2L1Y . In Table-3 we present the explicit decom-

positions of all the Higgs representations under the chain of subgroups

4c2L2R ⊃ 3c2L2R1B−L ⊃ 3c2L1Y .

Using the Clebsch-Gordan coefficients given in Ref. [283], we obtain the masses of these

multiplets as follows. The basis designating the columns (c) of the mass matrices is given

in the same way as in Table-3 while the rows (r) are designated by the corresponding

complex conjugated 3c2L1Y multiplets.

First, we obtain the masses of the multiplet
[(

3, 1, 4
3

)
+ c.c.

]
in the basis

c : Â(3,1, 4
3)

(15,1,1), Â
′(3,1, 4

3)
(15,1,1); r : Â(3̄,1,− 4

3)
(15,1,1) , Â′

(3̄,1,− 4
3)

(15,1,1)

M
(3,1, 4

3)
δ =



m1 − 2λ2E√

15
−λ3E√

15

−λ3E√
15

m′
1 − 2λ′2E√

15


 =

λ3E√
15




A′2
A2

−1

−1 A2
A′2


 (A.9)

using Eq. (A.8). It is obvious that det(Mδ) = 0, and hence, one of the two eigenvalues is

zero while the other eigenvalue is given by

Tr(Mδ) =
λ3E√

15

(
A′2
A2

+
A2

A′2

)
, (A.10)
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The zero eigenvalues (six in total) are easily identified as the longitudinal Nambu-Goldstone

modes as the SU(4)c gauge group breaks to SU(3)c × U(1)B−L and they acquire mass

of order MG by the usual Higgs mechanism once the 45H gets VEV at the GUT scale.

We keep the other six eigenvalues given by Eq. (A.10) at TeV scale by fine-tuning the

coupling λ3. In what follows, we explicitly calculate the mass eigenvalues for all the other

multiplets given by Table-3 and show that it is possible to have only the above six massive

δ’s at the TeV scale while all the other states of 45 and 54 are heavy at the GUT-scale.

We note that once we assume λ3 to be small, the effect of the second 45H multiplet

becomes negligible and we can as well drop the primed terms in the superpotential. For

simplicity, we also assume that A2 = E ∼ MG. Then the VEV conditions given by

Eqs. (A.7) yield

m1 ' 2λ2E√
15

, m2 ' E√
15

(
λ2 − 3

2
λ1

)
(A.11)

We list below the mass eigenvalues for all the multiplets given in Table-3.

• (1,1,0) : We have three such states and the mass matrix is given by

c : Â(1,1,0)
(1,1,3), Â

(1,1,0)
(15,1,1), Ê

(1,1,0)
(1,1,1) ; r : Â(1,1,0)

(1,1,3), Â
(1,1,0)
(15,1,1), Ê

(1,1,0)
(1,1,1)



m1 + 3λ2E√
15

0 3λ2A1√
15

0 m1 − 2λ2E√
15

−2λ2A2√
15

3λ2A1√
15

−2λ2A2√
15

m2 + 3λ1E√
15




=
E√
15




5λ2 0 0

0 0 −2λ2

0 −2λ2 λ2 + 3
2λ1




So the mass eigenvalues are

M
(1,1,0)
1 =

5E√
15
λ2 6= 0,

M
(1,1,0)
2 =

E

2
√

15




(
λ2 +

3
2
λ1

)
+

√(
λ2 +

3
2
λ1

)2

+ 16λ2
2


 6= 0,

M
(1,1,0)
3 =

E

2
√

15




(
λ2 +

3
2
λ1

)
−

√(
λ2 +

3
2
λ1

)2

+ 16λ2
2


 6= 0 (A.12)
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• [(1, 1, 2) + c.c.] : There is only one such multiplet and its mass is

c : Â(1,1,2)
(1,1,3), r : Â(1,1,−2)

(1,1,3)

M (1,1,2) = m1 +
3√
15
λ2E =

5E√
15
λ2 6= 0 (A.13)

•
[(

3, 2,−5
3

)
+ c.c.

]
: There are two such multiplets and the mass matrix is

c : Â(3,2,− 5
3)

(6,2,2) , Ê
(3,2,− 5

3)
(6,2,2) ; r : Â(3̄,2, 5

3)
(6,2,2) , Ê

(3̄,2, 5
3)

(6,2,2)


m1 + λ2E
2
√

15
−λ2A1

2 − λ2A2√
6

−λ2A1
2 − λ2A2√

6
m2 + 3λ1E

2
√

15


 =

λ2E√
15




3 −
√

5
2

−
√

5
2 1




with the eigenvalues

M
(3,2,− 5

3)
1,2 =

Eλ2

2
√

15

[
4±

√
14

]
6= 0 (A.14)

•
[(

3, 2, 1
3

)
+ c.c.

]
: There are two of them and the mass matrix is

c : Â(3,2, 1
3)

(6,2,2) , Ê
(3,2, 1

3)
(6,2,2) ; r : Â(3̄,2,− 1

3)
(6,2,2) , Ê

(3̄,2,− 1
3)

(6,2,2)


m1 + λ2E
2
√

15
λ2A1

2 − λ2A2√
6

λ2A1
2 − λ2A2√

6
m2 + 3λ1E

2
√

15


 =

λ2E√
15




3 −
√

5
2

−
√

5
2 1




with the same eigenvalues as the previous one:

M
(3,2, 1

3)
1,2 =

Eλ2

2
√

15

[
4±

√
14

]
6= 0 (A.15)

• (1,3,0) : There are also two of them and the mass matrix is

c : Â(1,3,0)
(1,3,1), Ê

(1,3,0)
(1,3,3) ; r : Â(1,3,0)

(1,3,1), Ê
(1,3,0)
(1,3,3)


m1 + 3λ2E√

15
λ2A1

λ2A1 m2 + 9λ1E√
15


 =

E√
15




5λ2 0

0 λ2 + 15
2 λ1




So the mass eigenvalues are

M
(1,3,0)
1 =

5E√
15
λ2 6= 0, M

(1,3,0)
2 =

E√
15

(
λ2 +

15
2
λ1

)
6= 0 (A.16)
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• [(1, 3, 2) + c.c.] : There is only one such multiplet whose eigenvalue is given by

c : Ê(1,3,2)
(1,3,3) , r : Ê(1,3,−2)

(1,3,3)

M (1,3,2) = m2 +
9√
15
λ1E =

E√
15

(
λ2 +

15
2
λ1

)
6= 0 (A.17)

•
[(

6, 1,−4
3

)
+ c.c.

]
: Its eigenvalue is

c : Ê(6,1,− 4
3)

(20′,1,1) , r : Ê(6,1, 4
3)

(20′,1,1)

M(6,1,− 4
3) = m2 − 6√

15
λ1E =

E√
15

(
λ2 − 15

2
λ1

)
6= 0 (A.18)

unless λ2 = 15
2 λ1 (which we assume not to be the case).

• (8,1,0) : There are two of them and the mass matrix is

c : Â(8,1,0)
(15,1,1), Ê

(8,1,0)
(20′,1,1); r : Â(8,1,0)

(15,1,1), Ê
(8,1,0)
(20′,1,1)


m1 − 2λ2E√

15

√
2
3λ2A2

√
2
3λ2A2 m2 − 6λ1E√

15


 =

E√
15




0
√

45
2 λ2

√
45
2 λ2 λ2 − 15

2 λ1




with the mass eigenvalues

M
(8,1,0)
1,2 =

E

2
√

15




(
λ2 − 15

2
λ1

)2

±
√(

λ2 − 15
2
λ1

)2

+ 90λ2
2


 6= 0 (A.19)

Thus we see that all the other multiplets have non-zero masses, and moreover, all these

masses are of order E ∼ MG. Hence, none of these multiplets will contribute to the

running of gauge coupling up to the unification scale MG except the color triplets since

these color triplets have masses of order of the SUSY breaking scale.

Note that the 10H -Higgs field also has a color triplet pair
[(

3, 1,−2
3

)
+ c.c.

]
under

the SM gauge group, apart from the TeV-scale bi-doublet fields Φ1,2 used in the SUSYLR

model in Section 4 which reduce to (1, 2,±1) under the SM gauge group. At the GUT-

scale, the H ≡ 10H field interacts with the E ≡ 54H field by the following term in the
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superpotential:

W10 =
1
2
m3H2 + λ3EH2 (A.20)

After the 54H acquires a VEV, this gives rise to the color triplet mass

c : Ĥ(3,1,− 2
3)

(6,1,1) ; r : Ĥ(3̄,1, 2
3)

(6,1,1)

M(3,1, 2
3) = m3 − 2λ3E√

15
(A.21)

while the doublet mass is

c : Ĥ(1,2,1)
(1,2,2) ; r : Ĥ(1,2,−1)

(1,2,2)

M (1,2,1) = m3 +
√

3
5
λ3E (A.22)

We see that the (1, 2,±1) field can be made light by fine-tuning m3 +
√

3
5λ3E ∼ TeV

which still leaves the
(
3, 1, 2

3

)
field heavy (of order MG).

Finally, let us discuss how only the right handed doublets fields (φc
u, φ

c
d) from 16H -

Higgs fields (ψH) remain massless at the GUT scale. Note that in the left-right language,

the fields in 16 are QH (3, 2, 1, 1
3)⊕Qc

H (3̄, 1, 2,−1
3) and φc

d (1, 2, 1,−1)⊕ φc
u(1, 1, 2,+1),

and similarly for 16H ≡ ψ̄H field. The superpotential involving these fields is

W16 = M16ψ̄HψH + λψ̄HAψH (A.23)

The second coupling has been worked out explicitly in Ref. [284]. On substituting the

VEV of the 45-Higgs field (A), we get the following masses for the QH (3, 2, 1, 1
3) ⊕

Qc
H (3̄, 1, 2,−1

3) and φc
d (1, 2, 1,−1)⊕ φc

u(1, 1, 2,+1) fields:

MQH−QH
= M16 + λA2; MQc

H−Q
c
H

= M16 − λA2;

Mφd−φu = M16 − 3λA2; Mφc
d
−φc

u
= M16 + 3λA2 (A.24)

From this we see that to get only the φc fields light, we have to fine-tune M16 + 3λA2 ∼

TeV. With this assumption, all other fields remain heavy at the GUT scale.
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SO(10) 4c, 2L, 2R 3c, 2L, 2R, 1B−L 3c, 2L, 1Y

(1,2,2) (1,2,2,0) (1, 2,±1)

10 (6,1,1)
(
3, 1, 1,− 2

3

) (
3, 1,− 2

3

)
(
3̄, 1, 1, 2

3

) (
3̄, 1, 2

3

)

(4,2,1)
(
3, 2, 1, 1

3

) (
3, 2, 1

3

)

(1, 2, 1,−1) (1, 2,−1)

16
(
3̄, 1, 2,− 1

3

) (
3̄, 1, 2

3

)

(4̄, 1, 2)
(
3̄, 1,− 4

3

)

(1,1,2,1) (1,1,2)

(1,1,0)

(1,1,2)

(1,1,3) (1,1,3,0) (1,1,0)

(1, 1,−2)

(1,3,1) (1,3,1,0) (1,3,0)

(
3, 2, 2,− 2

3

) (
3, 2, 1

3

)

45 (6,2,2)
(
3, 2,− 5

3

)
(
3̄, 2, 2, 2

3

) (
3̄, 2, 5

3

)
(
3̄, 2,− 1

3

)

(1,1,1,0) (1,1,0)

(15,1,1)
(
3, 1, 1, 4

3

) (
3, 1, 4

3

)
(
3̄, 1, 1,− 4

3

) (
3̄, 1,− 4

3

)

(8,1,1,0) (8,1,0)

(1,1,1) (1,1,1,0) (1,1,0)

(1,3,2)

(1,3,3) (1,3,3,0) (1,3,0)

(1, 3,−2)

(
3, 2, 2,− 2

3

) (
3, 2, 1

3

)

54 (6,2,2)
(
3, 2,− 5

3

)
(
3̄, 2, 2, 2

3

) (
3̄, 2, 5

3

)
(
3̄, 2,− 1

3

)
(
6, 1, 1,− 4

3

) (
6, 1,− 4

3

)

(20′, 1, 1)
(
6̄, 1, 1, 4

3

) (
6̄, 1, 4

3

)

(8,1,1,0) (8,1,0)

Table A.1: Decomposition of the 10, 16, 45 and 54 Higgs representations under

the chain of SO(10) subgroups 4c2L2R ⊃ 3c2L2R1B−L ⊃ 3c2L1Y .
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Appendix B

RGEs for fermion masses and mixing

Given the form of the bi-doublets VEVs as in Eq. (3.16), it immediately follows

from the first two terms of the superpotential Eq. (3.13) that the fermion mass matrices

can be written as

Mu =
1√
2
vuy2, Md =

1√
2
vdy1, Me =

1√
2
vdy

′
1, and MD =

1√
2
vuy

′
2 (B.1)

Henceforth, for clarity, we will denote the Yukawa couplings as

hU ≡ y2, hD ≡ y1, hE ≡ y′1, hN ≡ y′2

Then using Eqs. (3.14, 3.15) and (3.17, 3.18) the RGEs for the fermion mass matrices can

be written as

16π2dMu

dt
= Mu

[
4h†UhU + 2h†DhD −

∑

i

C̃
(q)
i g2

i

]

+Md tanβ
[
Tr

(
3h†DhU + h†EhN

)
+ 2h†DhU + CΦ

12

]
(B.2)

16π2dMd

dt
= Md

[
4h†DhD + 2h†UhU −

∑

i

C̃
(q)
i g2

i

]

+
Mu

tanβ

[
Tr

(
3h†UhD + h†NhE

)
+ 2h†UhD + CΦ

21

]
(B.3)

16π2dMe

dt
= Me

[
4h†EhE + 2h†NhN + Cφ −

∑

i

C̃
(l)
i g2

i

]

+
MD

tanβ

[
Tr

(
3h†UhD + h†NhE

)
+ 2h†NhE + CΦ

21

]
(B.4)

16π2dMD

dt
= MD

[
4h†NhN + 2h†EhE + Cφ −

∑

i

C̃
(l)
i g2

i

]

+Me tanβ
[
Tr

(
3h†DhU + h†EhN

)
+ 2h†EhN + CΦ

12

]
(B.5)
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where CΦ
ab = 4

(
µΦ†

α µΦ
α

)
ab
, Cφ = y†Sα

ySα , and for i = 3c, 2L, 2R, 1B−L,

C̃
(q)
i =

(
16
3
,
3
2
,
3
2
,
1
6

)
, C̃

(l)
i =

(
0,

3
2
,
3
2
,
3
2

)
(B.6)

Note that the second line in each of the above mass RGEs, Eqs. (B.2-B.5), is characteristic

of the left-right models, and does not appear in MSSM.

Not all the parameters of the Yukawa matrices are physical. Under an arbitrary

unitary transformation on the left(right)-handed fermion fields, FL(R) → L(R)fFL(R)

(where F = U,D,E,N), the Yukawa matrices undergo a bi-unitary transformation, hf →

LfhfR
†
f and the charged current becomes off-diagonal, with the CKM mixing matrix

LUL
†
D. We will also have a leptonic counterpart of the CKM matrix that represents the

mixing between the charged lepton and Dirac neutrino sector. However, as the running of

lepton masses is very mild and we are working only to the one-loop order, we can safely

ignore this mixing in the leptonic sector. Moreover, if we assume the CP phase in the

Higgs VEV to be zero, then the mass matrices are Hermitian and Lf = Rf (manifest

left-right). Thus we may perform scale-dependent unitary transformations Lf (µ) on the

fermion bases so as to diagonalize the Yukawa matrices, and hence the mass matrices, at

each scale:

ĥf (µ) = Lf (µ)hf (µ)L†f (µ), and M̂f = Lf (µ)Mf (µ)L†f (µ), (B.7)

where ĥf and M̂f denote the diagonalized Yukawa and mass matrices, respectively.

The RGEs for the physically relevant quantities, namely the mass eigenvalues M̂f (µ)

and the scale-dependent CKM matrix VCKM(µ) = LU (µ)L†D(µ), are both contained in the

RGEs of M̂2
f (µ) = L†f (µ)Mf (µ)M †

f (µ)Lf (µ):

d

dt

(
M̂2

u

)
=

[
L̇UL

†
U , M̂

2
u

]
+

1
16π2

[
4ĥ2

U + 2ĥ2
D −

∑

i

C̃
(q)
i g2

i

]
2M̂2

u

+
1

16π2
tanβ

[{
Tr

(
3VCKMĥDV

†
CKMĥU

)
+ CΦ

12

} (
VCKMM̂dV

†
CKMM̂u

)
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+2VCKMM̂dĥDV
†
CKMĥUM̂u + h.c.

]
(B.8)

d

dt

(
M̂2

d

)
=

[
L̇DL

†
D, M̂

2
d

]
+

1
16π2

[
4ĥ2

D + 2ĥ2
U −

∑

i

C̃
(q)
i g2

i

]
2M̂2

d

+
1

16π2

1
tanβ

[{
Tr

(
3VCKMĥDV

†
CKMĥU

)
+ CΦ

12

} (
M̂dV

†
CKMM̂uVCKM

)

+2M̂dĥDV
†
CKMĥUM̂uVCKM + h.c.

]
(B.9)

d

dt

(
M̂2

e

)
=

[
L̇EL

†
E , M̂

2
e

]
+

1
16π2

[
4ĥ2

E + 2ĥ2
N + <

(
Cφ

)
−

∑

i

C̃
(l)
i g2

i

]
2M̂2

e (B.10)

d

dt

(
M̂2

D

)
=

[
L̇NL

†
N , M̂

2
D

]
+

1
16π2

[
4ĥ2

N + 2ĥ2
E + <

(
Cφ

)
−

∑

i

C̃
(l)
i g2

i

]
2M̂2

D (B.11)

where L̇ ≡ dL
dt and <

(
Cφ

)
denotes the real part of Cφ. The commutator

[
L̇fL

†
f , M̂

2
f

]

has vanishing diagonal elements because M̂2
f is diagonal. Thus the RGEs for the mass

eigenvalues m2
f follow immediately from the diagonal entries of Eqs. (B.8-B.11). Using

dominance of Yukawa couplings of the third generation over the first two, i.e.

y2
t À y2

c À y2
u, y2

b À y2
s À y2

d, y2
τ À y2

µ À y2
e , y2

N3
À y2

N2
À y2

N1
,

we obtain the following RGEs for the mass eigenvalues of the fermions:

16π2dmu

dt
'

(
4y2

u + 2y2
d −

∑

i

C̃
(q)
i g2

i

)
mu + tanβ

[
3|Vtb|2ybyt + rq

] ∑

j=d,s,b

|Vuj |2mj

16π2dmc

dt
'

(
4y2

c + 2y2
s −

∑

i

C̃
(q)
i g2

i

)
mc + tanβ

[
3|Vtb|2ybyt + rq

] ∑

j=d,s,b

|Vcj |2mj

16π2dmt

dt
'

(
4y2

t + 2y2
b −

∑

i

C̃
(q)
i g2

i

)
mt + tanβ

[(
3|Vtb|2 + 2

)
ybyt + rq

]
|Vtb|2mb

16π2dmd

dt
'

(
4y2

d + 2y2
u −

∑

i

C̃
(q)
i g2

i

)
md +

1
tanβ

[
3|Vtb|2ybyt + rq

] ∑

j=u,c,t

|Vjd|2mj

16π2dms

dt
'

(
4y2

s + 2y2
c −

∑

i

C̃
(q)
i g2

i

)
ms +

1
tanβ

[
3|Vtb|2ybyt + rq

] ∑

j=u,c,t

|Vjs|2mj

16π2dmb

dt
'

(
4y2

b + 2y2
t −

∑

i

C̃
(q)
i g2

i

)
mb +

1
tanβ

[(
3|Vtb|2 + 2

)
ybyt + rq

]
|Vtb|2mt

16π2dme

dt
'

(
4y2

e + 2y2
N1

+ rl −
∑

i

C̃
(l)
i g2

i

)
me

16π2dmµ

dt
'

(
4y2

µ + 2y2
N2

+ rl −
∑

i

C̃
(l)
i g2

i

)
mµ
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16π2dmτ

dt
'

(
4y2

τ + 2y2
N3

+ rl −
∑

i

C̃
(l)
i g2

i

)
mτ

16π2dmN1

dt
'

(
4y2

N1
+ 2y2

e + rl −
∑

i

C̃
(l)
i g2

i

)
mN1

16π2dmN2

dt
'

(
4y2

N2
+ 2y2

µ + rl −
∑

i

C̃
(l)
i g2

i

)
mN2

16π2dmN3

dt
'

(
4y2

N3
+ 2y2

τ + rl −
∑

i

C̃
(l)
i g2

i

)
mN3 (B.12)

where rq = <
(
CΦ

12

)
and rl = <

(
Cφ

)
.

The VEV RGEs, Eqs. (3.18) and (3.17), for third generation dominance become

16π2dvu

dt
' vu

[
3
2
g2
2L +

3
2
g2
2R − 3y2

t − y2
N3
− CΦ

22

]
, (B.13)

16π2dvd

dt
' vd

[
3
2
g2
2L +

3
2
g2
2R − 3y2

b − y2
τ − CΦ

11

]
(B.14)

The RGE for the CKM matrix VCKM = LUL
†
D is given by

d

dt
VCKM = L̇UL

†
D + LU L̇

†
D = L̇UL

†
UVCKM − VCKML̇DL

†
D,

or,
d

dt
Vαβ =

∑

γ=u,c,t

(
L̇UL

†
U

)
αγ
Vγβ −

∑

γ=d,s,b

Vαγ

(
L̇DL

†
D

)
γβ

(B.15)

However, the diagonal elements of L̇U,DL
†
U,D are not determined by Eqs. (B.8) and (B.9).

This is because Eq. (B.7) determines LU,D only up to right multiplication by a diago-

nal matrix of scale-dependent phases. These undetermined phases contribute arbitrary

imaginary functions to the diagonal elements of L̇U,DL
†
U,D. But the off-diagonal elements

are unambiguously determined because they receive no contribution from the phases. We

can, nevertheless, make the diagonal entries of L̇U,DL
†
U,D, which are manifestly imaginary,

vanish by an appropriate choice of phases. With this choice of phases, we can then obtain

the RGEs for the CKM matrix elements using Eq. (B.15):

d

dt
Vαβ =

∑

γ=u,c,t
γ 6=α

(
L̇UL

†
U

)
αγ
Vγβ −

∑

γ=d,s,b
γ 6=β

Vαγ

(
L̇DL

†
D

)
γβ
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=
1

16π2




∑

γ=u,c,t
γ 6=α

[
tanβ

mα −mγ

{
Tr

(
3V ĥDV

†ĥU

)
+ rq

} (
V M̂dV

†
)

αγ

+
4
v2
d

m2
α +m2

γ

m2
α −m2

γ

(
V M̂2

dV
†
)

αγ

]
Vγβ

−
∑

γ=d,s,b
γ 6=β

Vαγ

[
1

tanβ(mγ −mβ)

{
Tr

(
3V ĥDV

†ĥU

)
+ rq

} (
V †M̂uV

)
γβ

+
4
v2
u

m2
γ +m2

β

m2
γ −m2

β

(
V †M̂2

uV
)

γβ

])
(B.16)

As before, we use the third generation dominance and get the following RGEs for Vαβ :

16π2 d

dt
Vud ' − tanβ

(
3|Vtb|2ybyt + rq

)



(
V M̂dV

†
)

uc
Vcd

mc
+

(
V M̂dV

†
)

ut
Vtd

mt




− 4
v2
d

[(
V M̂2

dV
†
)

uc
Vcd +

(
V M̂2

dV
†
)

ut
Vtd

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)


Vus

(
V †M̂uV

)
sd

ms
+
Vub

(
V †M̂uV

)
bd

mb




− 4
v2
u

[
Vus

(
V †M̂2

uV
)

sd
+ Vub

(
V †M̂2

uV
)

bd

]

16π2 d

dt
Vus ' − tanβ

(
3|Vtb|2ybyt + rq

)



(
V M̂dV

†
)

uc
Vcs

mc
+

(
V M̂dV

†
)

ut
Vts

mt




− 4
v2
d

[(
V M̂2

dV
†
)

uc
Vcs +

(
V M̂2

dV
†
)

ut
Vts

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)

−

Vud

(
V †M̂uV

)
ds

ms
+
Vub

(
V †M̂uV

)
bs

mb




− 4
v2
u

[
−Vud

(
V †M̂2

uV
)

ds
+ Vub

(
V †M̂2

uV
)

bs

]

16π2 d

dt
Vub ' − tanβ

(
3|Vtb|2ybyt + rq

)



(
V M̂dV

†
)

uc
Vcb

mc
+

(
V M̂dV

†
)

ut
Vtb

mt




− 4
v2
d

[(
V M̂2

dV
†
)

uc
Vcb +

(
V M̂2

dV
†
)

ut
Vtb

]

+
1

mb tanβ

(
3|Vtb|2ybyt + rq

) [
Vud

(
V †M̂uV

)
db

+ Vus

(
V †M̂uV

)
sb

]

+
4
v2
u

[
Vud

(
V †M̂2

uV
)

db
+ Vus

(
V †M̂2

uV
)

sb

]

16π2 d

dt
Vcd ' − tanβ

(
3|Vtb|2ybyt + rq

)

−

(
V M̂dV

†
)

cu
Vud

mc
+

(
V M̂dV

†
)

ct
Vtd

mt



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− 4
v2
d

[
−

(
V M̂2

dV
†
)

cu
Vud +

(
V M̂2

dV
†
)

ct
Vtd

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)


Vcs

(
V †M̂uV

)
sd

ms
+
Vcb

(
V †M̂uV

)
bd

mb




− 4
v2
u

[
Vcs

(
V †M̂2

uV
)

sd
+ Vcb

(
V †M̂2

uV
)

bd

]

16π2 d

dt
Vcs ' − tanβ

(
3|Vtb|2ybyt + rq

)

−

(
V M̂dV

†
)

cu
Vus

mc
+

(
V M̂dV

†
)

ct
Vts

mt




− 4
v2
d

[
−

(
V M̂2

dV
†
)

cu
Vus +

(
V M̂2

dV
†
)

ct
Vts

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)

−

Vcd

(
V †M̂uV

)
ds

ms
+
Vcb

(
V †M̂uV

)
bs

mb




− 4
v2
u

[
−Vcd

(
V †M̂2

uV
)

ds
+ Vcb

(
V †M̂2

uV
)

bs

]

16π2 d

dt
Vcb ' − tanβ

(
3|Vtb|2ybyt + rq

)

−

(
V M̂dV

†
)

cu
Vub

mc
+

(
V M̂dV

†
)

ct
Vtb

mt




− 4
v2
d

[
−

(
V M̂2

dV
†
)

cu
Vub +

(
V M̂2

dV
†
)

ct
Vtb

]

+
1

mb tanβ

(
3|Vtb|2ybyt + rq

) [
Vcd

(
V †M̂uV

)
db

+ Vcs

(
V †M̂uV

)
sb

]

+
4
v2
u

[
Vcd

(
V †M̂2

uV
)

db
+ Vcs

(
V †M̂2

uV
)

sb

]

16π2 d

dt
Vtd ' tanβ

mt

(
3|Vtb|2ybyt + rq

) [(
V M̂dV

†
)

tu
Vud +

(
V M̂dV

†
)

tc
Vcd

]

+
4
v2
d

[(
V M̂2

dV
†
)

tu
Vud +

(
V M̂2

dV
†
)

tc
Vcd

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)


Vts

(
V †M̂uV

)
sd

ms
+
Vtb

(
V †M̂uV

)
bd

mb




− 4
v2
u

[
Vts

(
V †M̂2

uV
)

sd
+ Vtb

(
V †M̂2

uV
)

bd

]

16π2 d

dt
Vts ' tanβ

mt

(
3|Vtb|2ybyt + rq

) [(
V M̂dV

†
)

tu
Vus +

(
V M̂dV

†
)

tc
Vcs

]

+
4
v2
d

[(
V M̂2

dV
†
)

tu
Vus +

(
V M̂2

dV
†
)

tc
Vcs

]

− 1
tanβ

(
3|Vtb|2ybyt + rq

)

−

Vtd

(
V †M̂uV

)
ds

ms
+
Vtb

(
V †M̂uV

)
bs

mb




− 4
v2
u

[
−Vtd

(
V †M̂2

uV
)

ds
+ Vtb

(
V †M̂2

uV
)

bs

]
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16π2 d

dt
Vtb ' tanβ

mt

(
3|Vtb|2ybyt + rq

) [(
V M̂dV

†
)

tu
Vub +

(
V M̂dV

†
)

tc
Vcb

]

+
4
v2
d

[(
V M̂2

dV
†
)

tu
Vub +

(
V M̂2

dV
†
)

tc
Vcb

]

+
1

mb tanβ

(
3|Vtb|2ybyt + rq

) [
Vtd

(
V †M̂uV

)
db

+ Vts

(
V †M̂uV

)
sb

]

+
4
v2
u

[
Vtd

(
V †M̂2

uV
)

db
+ Vts

(
V †M̂2

uV
)

sb

]
(B.17)

We have presented the results for these RGEs even though they look quite messy because

we believe this is the first time such an analysis has been carried out in the SUSYLR

model, and these analytical results at the one-loop level may be useful later for future

work in this direction.

In order to solve these mass and mixing RGEs numerically, we need to know the

initial values for all the 23 variables (12 masses, 9 CKM elements and 2 VEVs). We know

the experimental values at Q = mZ for all of them except for the Dirac neutrino masses

mNi . We fix these values by iterations using the GUT-scale predicted values, mNi(MG),

which, in turn, are determined completely in terms of the other fermion masses at the

GUT-scale in SO(10) GUT models. Here we note that adjusting the GUT-scale values of

mNi to fit the SO(10) model prediction do not change the other fermion masses at this

scale significantly even though they are all coupled equations because of the mild running

of the neutrino masses. Hence the mass and mixing values given in Eqs. (3.19) can be

considered as generic and independent of the specific SO(10) model chosen.

We also have the free parameters rq and rl corresponding to the couplings µΦ
α and

ySα . Assuming the couplings µα to be the same ∀ α = 1, 2, 3, we have

CΦ
ab = 4

(
µΦ†

α µΦ
α

)
ab

= 12
(
µΦ†µΦ

)
ab

= 12
2∑

c=1

µΦ∗
ca µ

Φ
cb

Cφ = y†Sα
ySα = 3y†SyS
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Further assuming µΦ
ab = µφ ∀ a, b = 1, 2, we have

rq = 24|µφ|2, rl = 3|yS |2

where µφ and yS can take values between 0 and 4π (for the theory to remain perturbative).

For the running behavior shown in Figures 3.2 and 3.3, we have chosen µφ = 0.01

and yS = 0.46 (requiring b − τ unification) and the initial values of the Dirac neutrino

masses

mN1(MR) = 0.0031 GeV, mN2(MR) = 0.2825 GeV, mN3 = 71.86 GeV

such that the masses evaluated at the GUT-scale, mNi(MG), agree with those predicted

from the specific SO(10) model described in Section 6. For consistency check, we note

that the SO(10) model predicted eigenvalues of MD given by Eq. (3.36),

mpredicted
Ni

= (0.0028, 0.2538, 77.8046) GeV,

agree quite well with those obtained from the RGEs,

mRG
Ni

(MG) = (0.0028, 0.2538, 77.8106) GeV.
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Appendix C

RGEs for soft SUSY-breaking masses in SUSYLR model

Assuming R-parity conservation and the trilinear couplings A’s and Y ’s in the su-

perpotential and soft breaking Lagrangian given by Eqs. (3.13) and (3.21) to be zero, the

soft breaking mass RGEs at one-loop level are given by [161]

16π2 d

dt
m2

Q = 2m2
Qyay

†
a + ya

(
2y†am

2
Q + 4m2

Qcy†a + 4m2
Φab

y†b
)

−1
3
M1M

†
1g

2
1 − 6M2LM

†
2Lg

2
2L −

32
3
M3M

†
3g

2
3 +

1
8
g2
1S2, (C.1)

16π2 d

dt
m2

Qc = 2m2
Qcy†aya + y†a

(
2yam

2
Qc + 4m2

Qya + 4ybm
2
Φba

)

−1
3
M1M

†
1g

2
1 − 6M2RM

†
2Rg

2
2R −

32
3
M3M

†
3g

2
3 −

1
8
g2
1S2, (C.2)

16π2 d

dt
m2

L = 2m2
Ly

′
ay
′†
a + y′a

(
2y′†a m

2
L + 4m2

Lcy′†a + 4m2
Φab

y′†b
)

−3M1M
†
1g

2
1 − 6M2LM

†
2Lg

2
2L −

3
8
g2
1S2, (C.3)

16π2 d

dt
m2

Lc = 2m2
Lcy′†a y

′
a + y′†a

(
2y′am

2
Lc + 4m2

Ly
′
a + 4y′bm

2
Φba

)

+2yα†
S

[
m2

Lcyα
S +m2

φc
d
yα

S + yβ
S

(
m2

S

)
βα

]

−3M1M
†
1g

2
1 − 6M2RM

†
2Rg

2
2R +

3
8
g2
1S2, (C.4)

16π2 d

dt
m2

φc
d

= 2ySα
†
[
m2

Lcyα
S +m2

φc
d
yα

S + yβ
S

(
m2

S

)
βα

]

−3M1M
†
1g

2
1 − 6M2RM

†
2Rg

2
2R −

3
8
g2
1S2, (C.5)

16π2 d

dt
m2

φc
u

= −3M1M
†
1g

2
1 − 6M2RM

†
2Rg

2
2R +

3
8
g2
1S2, (C.6)

16π2 d

dt

(
m2

S

)αβ
= 4yα†

S yβ
S

(
m2

φc
d
+m2

Lc

)
+ 8Tr(µα†

Φ µρ
Φ)

(
m2

S

)
ρβ
, (C.7)

16π2 d

dt
m2

Φab
= m2

Φac
Tr

(
3y†cyb + y′†c y

′
b

)
+ Tr

(
3y†ayc + y′†a y

′
c

)
m2

Φcb

+Tr
(
6y†aybm

2
Qc + 6y†am

2
Qyb + 2y′†a y

′
bm

2
Lc + 2y′†a m

2
Ly

′
b

)
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+
(
−6M2LM

†
2Lg

2
2L − 6M2RM

†
2Rg

2
2R

)
δab (C.8)

where

S2 ≡ 4
[
Tr

(
m2

Q −m2
Qc −m2

L +m2
Lc

)
+

(
m2

φc
u
−m2

φc
d

)]
(C.9)

We have ignored the RG running of the coupling yα
S as these are higher order effects.
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Appendix D

CP -Asymmetry for Leptogenesis in Inverse Seesaw

The full Majorana mass matrix in the flavor basis (Ni, Si) is given by

M =




0 MN

MT
N µS/2


 (D.1)

where for i = 1, 2, 3, both MN and µS are 3 × 3 symmetric matrices. The Yukawa

Lagrangian in this basis is given by (with i, j = 1, 2, 3)

Ly = yiαN iΦ†lα +MNijN
T
i C

−1Sj +
1
2
µijS

T
i C

−1Sj + h.c. (D.2)

In order to calculate the CP asymmetry in this framework, it is more convenient to

work in the basis in which the RH Majorana neutrino mass matrix is diagonal with real

and positive eigenvalues. The Lagrangian in this basis is given by (with i = 1, 2, · · · , 6)

Lh = hiαÑ iΦlα +
1
2
MiÑ

T
i C

−1Ñi + h.c. (D.3)

Analytically, the exact diagonalization of the full 6 × 6 mass matrix M is extremely

involved and we cannot obtain a closed form expression for the CP -asymmetry in this

case. However, we can study the dependence of the small L-violating parameter µS in

some special cases, viz. when the µS-matrix is completely diagonal or completely off-

diagonal, as in these cases the Majorana mass matrix reduces to a block diagonal form. In

this section, we derive the analytical expression for the CP -asymmetry in these two limits

and for two sets of RH neutrinos, i.e. for (Ni, Si) with i = 1, 2. The i = 3 case reduces to

this limit if one of the masses is much heavier and hence decouples from the other two.
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We consider the 4× 4 version of the Majorana mass matrix M:

M4×4 =




0 MN2×2

MN2×2 µ2×2


 , (D.4)

where without loss of generality we choose the mass matrix MN to be diagonal with

real positive eigenvalues MN1,2 . However, the elements of the µS-matrix are, in general,

complex quantities. Now we consider two special cases:

Case I – µS purely diagonal: In this case, the Majorana mass matrix can be

reduced to a simple block diagonal form which decouples the (N1, S1) and (N2, S2) sectors:

M =




0 0 MN1 0

0 0 0 MN2

MN1 0 µ11 0

0 MN2 0 µ22




r2↔r3,c2↔c3−→




0 MN1 0 0

MN1 µ11 0 0

0 0 0 MN2

0 0 MN2 µ22




. (D.5)

Then in the (Ni, Si) flavor basis, we have the 2× 2 matrices

M̃i =




0 MNi

MNi µii


 =




0 MNi

MNi εiMNie
iθi


 , (D.6)

where εi ≡ µii/MNi ¿ 1. The M̃i is diagonalized with real and positive eigenvalues by a

unitary transformation UT
i M̃iUi where

Ui =



−i cosαie

iθi/2 sinαie
iθi/2

i sinαie
−iθi/2 cosαie

−iθi/2


 , (D.7)

and the mixing angles are given by

cosαi ' 1√
2

(
1 +

εi
4

)
, sinαi ' 1√

2

(
1− εi

4

)
, (D.8)

up to O(εi). The corresponding mass eigenvalues are given by

Mj 'MNi

(
1± εi

2

)
(i = 1, 2; j = 1, 2, 3, 4) . (D.9)
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It is clear that the mass splitting within a quasi-Dirac pair is given by µii.

The Yukawa couplings in this diagonal mass basis are related to the couplings in

the flavor basis as follows:

h1α ' ie−iθ1/2

√
2

(
1 +

ε1
4

)
y1α,

h2α ' e−iθ1/2

√
2

(
1− ε1

4

)
y1α,

h3α ' ie−iθ2/2

√
2

(
1 +

ε2
4

)
y2α,

h4α ' e−iθ2/2

√
2

(
1− ε2

4

)
y2α. (D.10)

Note that in the L-conserving limit εi → 0, we have hiα = ihjα within a quasi-degenerate

pair (i, j), as expected.

Now let us calculate the CP -asymmetry for the decay of one of the quasi-Dirac

particles, say i = 1. We have from Eq. (4.18),

ε1 =
1
8π

∑

j 6=1

Im
[
(hh†)21j

]

∑
β |h1β|2 fv

1j '
ε2

16π
∑

β |y1β|2 Im


ei(θ1−θ2)

(∑
α

y∗1αy2α

)2

 fv

13 (D.11)

assuming f13 ' f14. Note that the j = 2 term vanishes as there is no imaginary part in

that case. It is clear that ε1 vanishes as µ22 → 0. Similarly, one can show that ε2 also

vanishes in the limit µ22 → 0, and ε3, ε4 vanish as µ11 → 0.

Case II – µS purely off-diagonal: In this case, the Majorana mass matrix in the

(Ni, Si) flavor basis reduces to the following block diagonal form:

M =




0 0 MN1 0

0 0 0 MN2

MN1 0 0 µ12

0 MN2 µ12 0




c1↔c3,r2↔r4−→




MN1 0 0 0

µ12 MN2 0 0

0 0 MN1 µ12

0 0 0 MN2




,(D.12)

which, however, mixes the (1,2) sectors; in the (N1, S2) basis, we have the 2 × 2 mass
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matrix

M̃ =



MN1 0

µeiθ MN2


 , (D.13)

with µ ¿ MN1 ,MN2 . However, unlike in Case I, we cannot diagonalize this asymmetric

matrix by a single unitary transformation; instead, we have to apply a bi-unitary trans-

formation of the form V †M̃U . We find that the following forms of U and V diagonalize

M̃ :

U =




cosα sinα

− sinαeiθ cosαeiθ


 , V =




cosβ sinβ

− sinβeiθ cosβeiθ


 , (D.14)

where the mixing angles are given by

cosα =
M2

N2
−M2

N1√
(M2

N2
−M2

N1
)2 + µ2M2

N2

,

sinα =
µMN2√

(M2
N2
−M2

N1
)2 + µ2M2

N2

,

cosβ =
M2

N2
−M2

N1√
(M2

N2
−M2

N1
)2 + µ2M2

N1

,

sinβ =
µMN1√

(M2
N2
−M2

N1
)2 + µ2M2

N1

. (D.15)

The eigenvalues of M̃ are given by

Mi ' 1√
2

[
M2

N1
+M2

N2
+ µ2 ∓

√
(M2

N2
−M2

N1
)2 + 2µ2(M2

N1
+M2

N2
)
]1/2

, (D.16)

up to order O(µ2). Note however that in the new basis, the mass matrix is still not

diagonal and is of the form




0 Mi

Mi 0


 with eigenvalues ±Mi. This can be diagonalized

with real and positive eigenvalues |Mi| by another unitary transformation:

Ud =




cos π
4 sin π

4

− sin π
4 cos π

4


 · diag

(
e−iπ/2, 1

)
(D.17)
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We note here that in this case, unlike in case I, there is no mass splitting within the pair

and the two quasi-Dirac RH neutrinos are exactly degenerate. This is a general result

that the off-diagonal elements of µ do not contribute to the mass splitting within a pair;

they just shift the eigenvalues. Hence, the splitting can be approximated by the diagonal

elements of µ, as in Eq. (4.25).

Finally, the Yukawa couplings in the mass-diagonal basis with real and positive

eigenvalues are given in terms of the couplings in the flavor basis as follows:

h1α =
i√
2

(
cosβ y1α + sinαe−iθ y2α

)
,

h2α =
1√
2

(
cosβ y1α − sinαe−iθ y2α

)
,

h3α =
i√
2

(
sinβ y1α − cosαe−iθ y2α

)
,

h4α =
1√
2

(
sinβ y1α + cosαe−iθ y2α

)
. (D.18)

Note that in the L-conserving limit µ→ 0, cosα, cosβ → 1 and sinα, sinβ → 0; it is clear

from Eqs. (D.18) that in this limit, we recover the relation hiα = ihjα for the (i, j) pair.

Using Eqs. (D.18), it can be shown that the CP -asymmetry, Eq. (4.18), for i = 1

becomes

ε1 =
Im

(
e−iθ ∑

γ y
∗
1γy2γ

)

8π
∑

γ |h1γ |2
[
sinα cosβ

(
cos2 β

∑
γ

|y1γ |2 − sin2 α
∑
γ

|y2γ |2
)
fv
12

−1
2

{
cosα sinβ

(
cos2 β

∑
γ

|y1γ |2 − sin2 α
∑
γ

|y2γ |2
)

+cosα cosβ

(
cosβ sinβ

∑
γ

|y1γ |2 − cosα sinα
∑
γ

|y2γ |2
)}

fv
13

]
(D.19)

which clearly vanishes in the limit µ → 0 (as sinα, sinβ ∝ µ). Similarly it can be shown

for other channels.

Comparing the CP -asymmetries ε1 in these two cases, we find that in Case I, the

contribution within the pair vanishes and the remaining term in Eq. (D.11) which is
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proportional to fv
13 is highly suppressed as M1 is not quasi-degenerate with the (M3,M4)

pair. On the other hand, in case II, the dominant contribution comes from within the

(M1,M2) pair which is enhanced due to large fv
12. Hence, combining these results, we

expect that in the general case with both diagonal and off-diagonal µ-entries, the dominant

contribution to the CP -asymmetry εi should come from “within the pair” decay of Ni.

We checked numerically that this is indeed the case.
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Appendix E

Sparticle Spectrum in SUSYLR

The superpotential for the SULYLR model discussed in Chapter 3 is given by

Eq. (3.12) and the relevant soft-SUSY breaking Lagrangian is given by Eq. (3.21). The

B−L symmetry is broken by the vev of the neutral RH-doublet fields: 〈φc0
d 〉 = vRd

, 〈φc0
u 〉 =

vRu and we define

tan θ ≡ vRu

vRd

, vR ≡
√
v2
Ru

+ v2
Rd

(E.1)

with vR ∼ TeV. The electroweak symmetry is broken by the vev of the neutral bi-doublet

fields: 〈Φ0
1d〉 = vd, 〈Φ0

2u〉 and we define

tanβ ≡ vu

vd
, vwk ≡

√
v2
u + v2

d (E.2)

The values of µ2
φc and µ2

Φ are determined by minimizing the Higgs potential:

VHiggs = VF + Vsoft + VD, where (E.3)

VF = µ2
φc(|φc0

d |2 + |φc0
u |2 + |φc−

d |2 + |φc+
u |2)

+µ2
Φ(|Φ0

d|2 + |Φ0
u|2 + |Φ−d |2 + |Φ+

u |2), (E.4)

Vsoft = m2
φc

d
(|φc0

d |2 + |φc−
d |2) +m2

φc
u
(|φc0

u |2 + |φc+
u |2) +m2

Φ(|Φ0
d|2 + |Φ−d |2 + |Φ+

u |2 + |Φ0
u|2)

−Bφc(φc0
d φ

c0
u − φc−

d φc+
u + h.c.)−BΦ(Φ0

dΦ
0
u − Φ−d Φ+

u + h.c.), (E.5)

VD =
g2
L

8

[
(|Φ+

u |2 − |Φ0
u|2 + |Φ0

d|2 − |Φ−d |2)2 + 4(|Φ+
u |2|Φ0

u|2 + |Φ0
d|2|Φ−d |2)

+4(Φ+∗
u Φ−∗d Φ0

uΦ0
d + Φ0∗

u Φ0∗
d Φ+

u Φ−d )
]

+
g2
R

8

[
(|Φ0

d|2 − |Φ−d |2 − |Φ0
u|2 + |Φ+

u |2 + |φc0
d |2 − |φc−

d |2 − |φc0
u |2 + |φc+

u |2)2
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+4(|Φ0
d|2|Φ−d |2 + |Φ0

u|2|Φ+
u |2 + |φc0

d |2|φc−
d |2 + |φc0

u |2|φc+
u |2)

+4(Φ0∗
d Φ0∗

u Φ−d Φ+
u + Φ0∗

d Φ−d φ
c0
d φ

c−∗
d + Φ0∗

d Φ−d φ
c0∗
u φc+

u + Φ0
dΦ

−∗
d φc0∗

d φc−
d

+Φ0
uΦ0

dΦ
+∗
u Φ−∗d + Φ0

uΦ+∗
u φc0

d φ
c−∗
d + Φ0

uΦ+∗
u φc0∗

u φc+
u + Φ0∗

u Φ+
u φ

c0∗
d φc−

d

+Φ0
dΦ

−∗
d φc0

u φ
c+∗
u + Φ0∗

u Φ+
u φ

c0
u φ

c+∗
u + φc0∗

d φc0∗
u φc−

d φc+
u + φc0

u φ
c0
d φ

c+∗
u φc−∗

d )
]

(E.6)

Minimizing this potential for the neutral fields yields

µ2
Φ = −m2

Φ −
v2
wk

4
(g2

L + g2
R)− v2

Rg
2
R

4
cos 2θ
cos 2β

,

µ2
φc =

m2
φc

d
−m2

φc
u
tan2 θ

tan2 θ − 1
− v2

R

4
(g2

R + g′2) (E.7)

The chargino mass matrix in the basis {W̃+
L , W̃

+
R , Φ̃

+
u , φ̃

c+
u } is given by

Mcharge =




M2L 0 gLvd 0

0 M2R gRvd gRvRd

gLvu gRvu −µΦ 0

0 gRvRu 0 −µφc




(E.8)

The neutralino mass matrix in the basis {W̃3L, W̃3R, B̃, Φ̃0
d, Φ̃

0
u, φ̃

c0
d , φ̃

c0
u } is given by

Mneutral =




M2L 0 0 gLvd√
2

−gLvu√
2

0 0

0 M2R 0 gRvd√
2

−gRvu√
2

gRvRd√
2

−gRvRu√
2

0 0 M1 0 0 −g′vRd√
2

g′vRu√
2

gLvd√
2

gRvd√
2

0 0 µΦ 0 0

−gLvu√
2

−gRvu√
2

0 µΦ 0 0 0

0
gRvRd√

2
−g′vRd√

2
0 0 0 µφc

0 −gRvRu√
2

g′vRu√
2

0 0 µφc 0




(E.9)

For the sfermion sector, the masses for first generation are given by

m2
ũL

= m2
Q1

+m2
u +

1
4
g2
Lv

2 cos 2β − 1
12
g′2v2

R cos 2θ
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m2

d̃L
= m2

Q1
+m2

d −
1
4
g2
Lv

2 cos 2β − 1
12
g′2v2

R cos 2θ

m2
ẽL

= m2
L1

+m2
e −

1
4
g2
Lv

2 cos 2β +
1
4
g′2v2

R cos 2θ

m2
ũR

= m2
Qc

1
+m2

u −
1
4
g2
R(v2 cos 2β + v2

R cos 2θ) +
1
12
g′2v2

R cos 2θ

m2

d̃R
= m2

Qc
1
+m2

d +
1
4
g2
R(v2 cos 2β + v2

R cos 2θ) +
1
12
g′2v2

R cos 2θ

m2
ẽR

= m2
Lc

1
+m2

e +
1
4
g2
R(v2 cos 2β + v2

R cos 2θ)− 1
4
g′2v2

R cos 2θ (E.10)

and similarly for the other two generations. For the sneutrino sector, the mass matrix in

the basis of {ν̃, ν̃c†, S̃} is given by

Mν̃ =




m2
ν̃†ν̃ m2

ν̃†ν̃c† m2
ν̃†S̃

(
m2

ν̃†ν̃c†

)†
m2

ν̃cν̃c† m2
ν̃cS̃

(
m2

ν̃†S̃

)† (
m2

ν̃cS̃

)†
m2

S̃†S̃




(E.11)

where

m2
ν̃†ν̃ = m2

L + v2
uh
†
νhν +

1
4
g2
Lv

2 cos 2β +
1
4
g′2v2

R cos 2θ

m2
ν̃cν̃c† = m2

Lc + v2
uhνh

†
ν + v2

Rd
ySy

†
S −

1
4
g2
R(v2 cos 2β + v2

R cos 2θ)− 1
4
g′2v2

R cos 2θ

m2
S̃†S̃

= m2
S + µ2

S + v2
Rd
y†SyS

m2
ν̃†ν̃c† = 2µΦvdh

†
ν

m2
ν̃†S̃

= vuvRd
h†νyS ,

m2
ν̃cS̃

= µ∗φcvRuyS (E.12)
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[49] A. Höcker and W. J. Marciano, in Ref [22], p. 517.

[50] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D83, 112003 (2011)
[arXiv:1101.0034 [hep-ex]].

[51] For a review, see e.g., G. Altarelli, in Ref. [3].

[52] S. Weinberg, Phys. Rev. D19, 1277 (1979); L. Susskind, Phys. Rev. D20, 2619
(1979).

183



[53] S. Weinberg, Phys. Lett. 82B, 387 (1979); M. Veltman, Acta. Phys. Polon.
B12, 437 (1981); C. H. Llewellyn Smith and G. G. Ross, Phys. Lett. 105B, 38
(1981).

[54] M. Veltman, Acta. Phys. Pol. B8, 475 (1977); L. Susskind, Phys. Rept. 104,
181 (1984).

[55] See e.g. M. E. Peskin, hep-ph/9705479; R. S. Chivukula, hep-ph/9803219;
C. Quigg, Acta Phys. Polon. B30, 2145 (1999) [hep-ph/9905369].

[56] For a review, see e.g., R. Kaul, Rev. Mod. Phys. 55, 449 (1983); K. Lane,
hep-ph/0202255; C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003)
[Erratum-ibid. 390, 553 (2004)] [hep-ph/0203079]; R. S. Chivukula, M. Narain,
and J. Womersley, in Ref. [22], p. 1340.

[57] For a review, see e.g., R. Sundrum, hep-th/0508134.

[58] For a review, see e.g., J. M. Maldacena, hep-th/0309246.

[59] Some standard texts on SUSY: P. West, Introduction to Supersymmetry and
Supergravity, Second Edition, World Scientific (1990); J. Wess and J. Bagger,
Supersymmetry and Supergravity, Second Edition, Princeton University Press
(1992); S. Weinberg, The Quantum Theory of Fields, Volume III, Supersymme-
try, Cambridge University Press (2000); R. N. Mohapatra, Unification and Su-
persymmetry, Third Edition, Springer-Verlag (2003); M. Drees, R. M. Godbole,
and P. Roy, Theory and Phenomenology of Sparticles, World Scientific (2005);
H. Baer and X. Tata, Weak Scale Supersymmetry, Cambridge University Press
(2006); P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Ox-
ford University Press (2006); I. J. R. Aitchison, Supersymmetry in particle
physics: an elementary introduction, Cambridge University Press (2007); M.
Dine, Supersymmetry and String Theory, Cambridge University Press (2007).

[60] For reviews on SUSY, see e.g. P. Fayet and S. Ferrara, Phys. Rept. 32, 249
(1977); H. P. Nilles, Phys. Rept. 110, 1 (1984); H. E. Haber and G. L. Kane,
Phys. Rept. 117, 75 (1985); M. F. Sohnius, Phys. Rept. 128, 39 (1985);
J. A. Bagger, hep-ph/9604232; S. P. Martin, in G. L. Kane (ed.), Perspec-
tives on supersymmetry II, World Scietific, (2010), p. 1-153 [hep-ph/9709356];
N. Polonsky, Lect. Notes Phys. M68, 1 (2001) [hep-ph/0108236]; M. E. Pe-
skin, arXiv:0801.1928 [hep-ph]; A. Signer, J. Phys. G36, 073002 (2009)
[arXiv:0905.4630 [hep-ph]]; M. C. Rodriguez, Int. J. Mod. Phys. A25, 1091
(2010) [arXiv:0911.5338 [hep-ph]]; H. E. Haber, in Ref. [22], p. 1292.

184



[61] E. Witten, Nucl. Phys. B188, 513 (1981); ibid. B202, 253 (1982); N. Sakai, Z.
Phys. C11, 153 (1981); S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150
(1981); R. K. Kaul and P. Majumdar, Nucl. Phys. B199, 36 (1982).

[62] L. Girardello and M. T. Grisaru, Nucl. Phys. B194, 65 (1982); for a review,
see e.g., D. J. H. Chung et al., Phys. Rept. 407, 1 (2005) [hep-ph/0312378].

[63] R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975).

[64] For a review, see e.g., M. Dine and J. D. Mason, Rept. Prog. Phys. 74, 056201
(2011) [arXiv:1012.2836 [hep-th]].

[65] See e.g. P. Van Nieuwenhuizen, Phys. Rept. 68, 189 (1981); P. Nath, R.
Arnowitt, and A. H. Chamseddine, Applied N=1 Supergravity, World Scien-
tific (1984).

[66] See e.g. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol-
umes 1 and 2, Cambridge University Press (1988); M. Kaku, Introduction to
Superstrings and M-Theory, Second Edition, Springer-Verlag (1999).

[67] See e.g. G. G. Ross, Grand Unified Theories, Benjamin/Cummings (1984); S.
Raby, in Ref. [22], p. 193.

[68] R. N. Mohapatra, in Ref. [59].

[69] L. E. Ibanez and G. G. Ross, Phys. Lett. B110, 215 (1982); K. Inoue,
A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982)
[Erratum-ibid. 70, 330 (1983)]; ibid. 71, 413 (1984); J. R. Ellis, J. S. Hagelin,
D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B125, 275 (1983); L. Alvarez-
Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. B221, 495 (1983).

[70] G. R. Farrar and P. Fayet, Phys. Lett. B76, 575 (1978).

[71] J. Ellis et al., Nucl. Phys. B238, 453 (1984).

[72] For a review, see e.g. G. Jungman, M. Kamionkowski and K. Griest, Phys.
Rept. 267, 195 (1996) [hep-ph/9506380]; K. Griest and M. Kamionkowski,
Phys. Rept. 333, 167 (2000).

[73] A. Salam and J. A. Strathdee, Nucl. Phys. B76, 477 (1974); ibid., Phys. Lett.
B51, 353 (1974).

185



[74] P. Fayet, Nucl. Phys. B90, 104 (1975); ibid. Phys. Lett. B64, 159 (1976); ibid.
B69, 489 (1977); ibid. B84, 416 (1979); L. Alvarez-Gaume and E. Witten,
Nucl. Phys. B234, 269 (1983).

[75] See e.g., A. Djouadi, Phys. Rept. 459, 1 (2008) [hep-ph/0503173].

[76] S. Dimopoulos and D. W. Sutter, Nucl. Phys. B452, 496 (1995) [hep-
ph/9504415].

[77] F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B477, 321
(1996) [hep-ph/9604387].

[78] See e.g. A. Djouadi et al. [MSSM Working Group Collaboration], hep-
ph/9901246.

[79] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B645,
155 (2002) [hep-ph/0207036].

[80] C. F. Berger, J. S. Gainer, J. L. Hewett and T. G. Rizzo, JHEP 0902, 023
(2009) [arXiv:0812.0980 [hep-ph]].

[81] A. H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49, 970 (1982);
R. Barbieri, S. Ferrara and C. A Savoy, Phys. Lett. B119, 343 (1982); L. Hall,
J. Lykken and S. Weinberg, Phys. Rev. D27, 2359 (1983).

[82] H. P. Nilles, Phys. Lett. B115, 193 (1982); ibid. Nucl. Phys. B217, 366 (1983);
S. K. Soni and H. A. Weldon, Phys. Lett. B126, 215 (1983); N. Ohta, Prog.
Theor. Phys. 70, 542 (1983).

[83] C. G. Callan, Phys. Rev. D2, 1541 (1970); K. Symanzik, Comm. Math. Phys.
18, 227 (1970).

[84] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B222, 83 (1983).

[85] D. R. T. Jones, Nucl. Phys. B87, 127 (1975); D. R. T. Jones and L. Mezincescu,
Phys. Lett. 136B, 242 (1984).

[86] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

[87] E. Ma, Phys. Rev. Lett. 81, 1171 (1998) [hep-ph/9805219].

[88] P. Minkowski, Phys. Lett. B67 421 (1977); T. Yanagida in Workshop on Unified
Theories, KEK Report No. 79-18 (1979), p. 95; M. Gell-Mann, P. Ramond and

186



R. Slansky, in Supergravity, D. Freedman et al. (eds.), North Holland (1980),
p. 315; S. L. Glashow, 1979 Cargese Summer Institute on Quarks and Leptons,
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