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Within this work, the nonlinear oscillations of various beam-like structures are

studied. Methods are developed to analyze systems of this type to better understand

their behavior in order to utilize the nonlinear phenomena associated with them and

to provide insights for device development. The specific applications explored within

this study are piezoelectric micro-scale resonators, micro-resonator arrays, the can-

tilever probes of atomic force microscopes, and a macro-scale test apparatus for

the AFM probe. In order to analytically, numerically, and experimentally study

these systems, various methods are employed. Analytical models are developed,

utilizing bending stiffness and axial stretching terms to explain nonlinear behavior.



Reduced-order-modeling techniques are applied to develop single-mode and multi-

mode approximations and study the dynamic behavior of these structures. Nonlin-

ear analysis methods are used to study these systems and to determine approximate

solutions. Discrete models are developed and utilized to conduct numerical simula-

tions. Data collected through experimental observations are utilized to determine

system parameters and verify simulation results.

Through this work, a multi-variable, parametric identification scheme is de-

veloped for characterizing nonlinear oscillators from frequency-response data with

jumps in the amplitude values. Parameter values are identified for piezoelectric

micro-scale resonators and good agreement is seen with the corresponding model

predictions. By using multiple data sets, parameter trends are studied for changes

in the input signal. In another nonlinear analysis, a relationship is identified be-

tween a nonlinear localization phenomena called Intrinsic Localized Modes (ILMs)

and nonlinear vibration modes. A method is developed to derive equations for de-

termining the spatial characteristics of the localizations and the profiles are used to

conduct further studies. For a cantilever beam impactor system, a period doubling

phenomenon is identified for off-resonance excitation conditions. Changes in this

system’s response are studied and a method is proposed to utilize this phenomenon

to determine conditions for grazing. This work shows how important nonlinearities

are in beam structures when oscillations exceed the linear range. More importantly,

these studies show how an understanding of the nonlinearities can be used to the

advantage of the system.
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Chapter 1

Introduction

Nonlinear oscillations of beam and beam-like structures are considered in this work.

The nonlinear behavior results from relatively large oscillations that exceed the range

within which linear models are sufficient. This type of behavior can occur in both

macro-scale and micro-scale structures. In order to study the systems examined

within this work, nonlinear beam models are developed to explain the nonlinear

behavior with nonlinear bending stiffness terms, nonlinear axial stretching terms,

and nonlinear inertia terms. To study these spatially continuous systems, it is

necessary to utilize reduced-order-models such as those with a finite number of

vibration modes. After model development, an assortment of nonlinear analyses is

employed to study the system behavior and stability as well as to derive approximate

solutions. The discretized models are then used to numerically simulate the behavior
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of the system so that additional studies can be conducted. Data from experimental

observations are used to obtain values for the system parameters and to verify the

results of the simulations.

1.1 Parametric Identification

Piezoelectric micro-scale resonators and resonator arrays are currently being de-

veloped through a number of different efforts. These devices are manufactured by

using microelectromechanical system (MEMS) fabrication techniques with the goal

of replacing the bulky macro-scale resonators currently in use. With micro-scale

dimensions, they require only a fraction of the space, and in addition, the power re-

quirements are low compared to those of their macro-scale counterparts. A number

of different resonator devices of various geometries are currently being developed.

A few of these include clamped-clamped resonators [1, 2], Film Bulk Acoustic Wave

Resonators (FBARs) [3], Silicon Bulk Acoustic Resonators (SiBAR) [4], ring-shaped

contour-mode resonators [5], Lamé-mode resonators [6], I2 resonators [7], paddle os-

cillators [8], and various disk resonators [9, 10, 11]. These devices have a number of

different applications including accelerometers [12], detection of minuscule quanti-

ties of materials including biological substances [13, 14, 15, 16], and communications

and signal processing [17, 18, 19].

During their development, the presence of nonlinear behavior has been ob-

served in many of these devices [20, 21, 22, 23, 24]. As seen with many micro-scale

devices, the dissipative forces are very small. Due to this diminished level of damp-

2



ing, micro-scale devices can exhibit nonlinear behavior that equivalent macro-scale

systems would not. As a result of nonlinearities, characterizing the behavior of these

devices becomes more difficult. The work covered in the second chapter recognizes

the nonlinearity and develops means to better understand the behavior of the de-

vices and how it corresponds to the input signal and other operation conditions.

Modeling and identification of the nonlinear behavior of dynamic systems has been

the focus of a large number of studies. These efforts include both non-parametric

identification methods [25] and parametric identification methods [26, 27, 28]. Here,

a parametric identification scheme is developed and applied to study the nonlinear

dynamic behavior of clamped-clamped micro-resonators.

In addition to system parameters such as the modal mass, equivalent viscous

damping, linear and nonlinear stiffnesses and the modal force, a parameter of in-

terest is the axial force that exists within the clamped-clamped beam resonators.

The axial force, and subsequently the average stress level within these devices are

especially of interest in composite MEMS devices [29, 30]. These residual stresses

can be produced during the fabrication process and they can significantly affect the

performance of the device by shifting the resonance frequencies or by producing a

non-flat equilibrium position. It is assumed that residual stress within the resonators

only affects the resonance frequencies. Through a synchronization process between

the identified linear natural frequencies and those of a linearized model, the axial

force and residual stress values are identified in this dissertation.

Ayela and Fournier [31] developed a parametric identification method for a

weakly anharmonic system. In their paper, the nonlinear behavior of electrostati-
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cally excited micro-machined silicon resonators is examined. A first-order approx-

imation is used to describe the behavior of a single-degree-of-freedom system with

a cubic nonlinearity and the excitation, damping, and nonlinearity are assumed to

be weak. The system is modeled by using equation (1.1) and the approximation is

presented as equation (1.2).

d2x

dt2
+

λ

a

dx

dt
+ ω2

0 x = −β x3 +
F≈
a

cos (ω t) (1.1)

x (t) ≈ A cos

((
ω0 +

3

8

β

ω0

A2

)
t

)
(1.2)

Within these equations, x is the transverse displacement and a function of time

t, a is the mass coefficient, λ is the damping coefficient, ω0 is the natural frequency,

β is the nonlinear stiffness coefficient, F≈ is the amplitude of the external applied

force, ω is the excitation frequency, and A is the amplitude of the response. From

the first-order approximation, an equation is determined to describe the relationship

between the response amplitude and the excitation frequency. This relationship is

given as equation (1.4) with the new variables defined in equation (1.3). Derivatives

of this equation are used to obtain an equation for the change in the amplitude

with respect to changes in frequency. The equation for the change in the response

amplitude as a function of the frequency difference is given as equation (1.5).

Γ =
F≈

2 a ω0

, X =
3

8

β

ω0

, ε = ω − ω0 (1.3)
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[(
ε−X A2

)2
+ λ2

]
A2 = Γ (1.4)

dA

dε
=

A (X A2 − ε)

ε2 + λ2 + X A2 (3 X A2 − 4 ε)
(1.5)

This derivative is then used to derive equations for the amplitudes and frequen-

cies corresponding to maximum amplitude values for frequency values corresponding

to the forward sweep and the backward sweep. An equation for the frequency dif-

ference between the maximum amplitude for an upward sweeping frequency and the

location where the amplitude jump occurred is also determined. They also deter-

mined an equation for the critical forcing value required for this amplitude jump to

occur. Along with this, they derived an equation for the critical amplitude, which

is the minimum amplitude necessary for jumps to occur in the frequency-response

curve. By using the equations for these seven parameters, they are able to deter-

mine the parameters for the weakly nonlinear system with a cubic nonlinearity from

two nonlinear frequency-response curves; that is, the response curve obtained for an

upward sweep and the response curve obtained for a downward sweep. In figure 1.1,

the different parameters are shown in the frequency-response curve.

Slight modifications of the method also allowed the formula to be applied to a

system exhibiting softening nonlinear behavior, where the nonlinear stiffness coeffi-

cient, β, has a negative value. This method requires that static measurements are

made to obtain linear parameters and that the remaining coefficients be calculated

from the dynamic measurements. By using this identification scheme, Ayela and

5
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Figure 1.1: Parameters from the method developed by Ayela and Fournier.

Fournier were able to examine the nonlinearity of different resonator structures and

the relationships between the different parameters.

Another approach for the parametric identification of weakly nonlinear sys-

tems was proposed by Malatkar and Nayfeh [32]. Within their paper, a model is

presented for a uniform metallic cantilever beam subjected to external excitation.

The equation used to model the beam is equation (1.6).

m v̈ + cv v̇ + ĉ v̇ |v̇|+ EI viv = m ab cos (Ω t)− EI
[
v′ (v′ v′′)

′]′
−1

2
m

{
v′
∫ s

l

[
∂2

∂t2

∫ s

0
v′2ds

]
ds

}′
(1.6)

In this equation, v is the transverse deflection and it is a function of time t and

position s. The length of the beam is represented by l, m is the mass parameter,

cv is the viscous damping coefficient, ĉ is the aerodynamic damping coefficient, ab

is the amplitude of the acceleration from the base excitation, Ω is the frequency of

6



the excitation, and EI is the product of the Young’s modulus and the moment of

inertia of the beam. An over-dot ‘ ˙ ’ is used to represent a derivative with respect

to time and a prime ‘ ′ ’ is used to indicate a derivative with respect to position.

With the assumption that the beam is weakly damped and weakly nonlinear and

that there are no cases of internal resonance, the authors approximated the spatial

response of the beam by the undamped linear mode whose natural frequency is

closest to the excitation frequency. The method of multiple scales is used with this

model to obtain a first-order approximation of the beam’s response. The modulation

equations are also obtained to describe the time variations of the amplitude a and

phase γ. The first-order approximation and modulation equation used are shown in

equations (1.8) through (1.9).

v (s, t) = a cos (Ω t− γ) Φn (s) + H.O.T. (1.7)

a′ = −µ a− 1

2
αd c a2 +

f

2 ωn

sin (γ) (1.8)

a γ′ = σ a− α

4 ωn

a3 +
f

2 ωn

cos (γ) (1.9)

Within these equations, the undamped linear mode shape is represented by

Φn (s) and H.O.T. represents higher order terms. The modal damping coefficient µ,

the nonlinear modal stiffness coefficients α and αd, and the modal excitation am-

plitude f are obtained through reduced order modeling. The detuning parameter

σ corresponds to the difference between the excitation frequency and the systems

natural frequency. The modulation equations are then used to relate the exci-

tation frequency and excitation level to the response amplitude. The frequency-

7



response equation and force-response equation are shown as equation (1.10) and

equation (1.11), respectively.

σ1,2 =
α

4 ωn

a2 ∓

√√√√ f 2

4 ω2
n a2

−
(
µ +

1

2
αd c a

)2

(1.10)

f = 2 ωn a

√(
µ +

1

2
αd c a

)2

+
(
σ − α

4 ωn

a2

)2

(1.11)

As with the previous method, the linear natural frequency of the beam was

determined independently of the nonlinear parameters. In this case, the linear nat-

ural frequency is obtained by applying very low amplitude excitations to minimize

the nonlinearity of the response. Within this work, the authors developed means

to calculate parameter values for the model both with and without the presence of

the quadratic damping used to model air drag. For a model including only linear

damping, the damping was calculated by using the excitation level, linear natural

frequency, and the peak amplitude value from one set of frequency-response data.

The model which includes nonlinear damping requires peak amplitude values for

two excitation levels. The nonlinear stiffness parameter is calculated from the lin-

ear natural frequency and the frequency and amplitude value at the peak of the

response. Because the peak amplitude is determined by fitting a cubic polynomial

to the experimental data, the authors suggest excitation levels below a critical level

to avoid jumps [33] in the frequency-response data. A curve fitting procedure was

also employed within this work on the basis of a least-squares data fitting with a

Gauss-Newton method.
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Figure 1.2: Structure of piezoelectric, micro-scale clamped-clamped resonator.

The micro-resonator design studied in this dissertation consists of a clamped-

clamped micro-structure machined out of a composite wafer [1], as shown in fig-

ure 1.2. The dynamic characteristics of the resonators provide spectral filtering of

the electrical signals. In order to produce the desired piezoelectric actuation and

sensing capabilities, the device is fabricated from a composite wafer [2]. The differ-

ent layers of one style utilizing the piezoelectric properties of lead zirconate titanate

(PZT) are shown in figure 1.3. The suspended structure is produced by removing a

portion of the silicon substrate from underneath the oxide layer. This silicon dioxide

layer, which provides the primary stiffness for the resonator, offsets the neutral axis

of the structure from the centerline of the piezoelectric film, and the two platinum

layers serve as electrodes for the PZT. The top electrode is separated to create in-

put and output ports for the micro-resonator. While studies have been conducted

to determine an electrode shape that selectively excites a single vibration mode

[34], these devices use quarter length electrodes to maximize the device response.

Representative dimensions of geometry corresponding to figure 1.3 are presented in

table 1.1.

In a second type of micro-resonators that is studied, aluminum gallium ar-

senide (AlGaAs) is used for the piezoelectric layer [35]. For this style of resonator,
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Figure 1.3: PZT resonator and geometry.

Table 1.1: Representative PZT resonator dimensions.

Dimension Symbol Value

Resonator Length l 200 µm

Width of all layers b 20 µm

Thickness, SiO2 h1 1.06 µm

Thickness, bottom Pt h2 135 nm

Thickness, PZT h3 530 nm

Thickness, top Pt h4 200 nm
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Figure 1.4: Structure of AlGaAs micro-resonator.

the two electrode layers are produced by doping AlGaAs with silicon (AlGaAs:Si).

The thickness of the bottom layer of AlGaAs:Si is increased in this design to provide

additional stiffness for the resonator and eliminate the need for an additional layer,

such as the SiO2 layer of the PZT resonators. Some of these resonators are being

fabricated to be thicker than the PZT resonators. This produces a stiffer device

resulting in higher resonance frequencies, and this device requires high excitation

levels before it exhibits nonlinear behavior. This design also helps eliminate some

of the problems that can arise when materials with different lattice structures are

placed together on a composite wafer. The arrangement of the three layers of the

AlGaAs micro-resonators are shown in figure 1.4. One set of dimension values for

this resonator type are presented in table 1.2.

The arrangement of some of the key components of the experimental setup

is illustrated in figure 1.5. With the sample fixed in a radio frequency (RF) probe

station, a function generator or dynamic signal analyzer is used to apply a harmonic

signal while the response is monitored by using laser interferometry. After initially

conducting the frequency sweep in a quasi-static fashion, simulations are conducted

with the identified parameter values and it is determined that a sweep-sine signal

11



Table 1.2: Representative AlGaAs resonator dimensions.

Dimension Symbol Value

Resonator Length l 200 µm

Width of all layers b 10 µm

Thickness, bottom AlGaAs:Si h1 2.0 µm

Thickness, AlGaAs h2 1.0 µm

Thickness, top AlGaAs:Si h3 0.5 µm

from the analyzer can be used to obtain valid results. The signal produced by

the laser vibrometer is sent back to the analyzer to produce a frequency-response

plot. A representative frequency-response data set is shown in figure 1.6, where the

response amplitude is given in nanometers and the excitation frequency is given in

kilohertz. Data represented by asterisks ‘∗’ correspond to an increasing frequency

sweep and data represented by circles ‘◦’ correspond to a decreasing frequency sweep.

Although the data are shown for both forward and backward frequency sweeps,

only the forward sweep data are used in the parametric identification scheme of this

dissertation.

Within chapter two, the model is developed and analyzed for the piezoelectric

micro-scale resonator. There, the identification scheme is further discussed and the

parameter trends determined are presented and examined.
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Figure 1.5: Experimental arrangement showing how a laser vibrometer is positioned

to examine transverse vibrations of the resonator. The resonator is excited by signals

input to the drive electrode.
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Figure 1.6: Experimental frequency-response data obtained for a 200 µm PZT res-

onator. The asterisks ‘∗’ correspond to forward sweep data and the ‘◦’ correspond

to backward sweep data.
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1.2 Intrinsic Localized Modes

In addition to studying the nonlinear behavior of single piezoelectric micro-scale

resonators, the effect of the nonlinearity on the dynamic behavior of these resonators

are to be studied when they are coupled together to form large arrays. Following

successful work with single resonator devices, arrays are being developed that utilize

mechanical coupling to produce more sophisticated filters [36, 37].

For a number of decades, localization phenomena have been studied in the

solid-state physics literature [38, 39, 40, 41]. In the late 1980s, theoretical studies

discovered a type of localization that resulted from the nonlinearities within a lattice

and not due the presence of defects [42]. These localizations, called Intrinsic Local-

ized Modes (ILMs), are also known as discrete breathers (DBs) [43, 44] due to their

discovery through a second, separate research path. A large number of experimen-

tal studies of these localization phenomena have been conducted in systems ranging

from electronic and magnetic solids to nonlinear photonic structures to Josephson

Junctions [45, 46, 47].

In recent work, Sato, Hubbard, Sievers, Ilic, Czaplewski, and Craighead [48]

and Sato, Hubbard, English, Sievers, Ilic, Czaplewski, and Craighead [49] extended

this study of ILMs into the field of microelectromechanical systems (MEMS). They

conducted experiments with silicon nitride micro-cantilever arrays uniformly driven

by lead zirconate titanate (PZT) actuation in a sinusoidal manner. In order to

produce localization within this uniformly driven system, the silicon nitride micro-

cantilever array is designed to consist of repeating cantilever pairs, as shown in

14



figure 1.7(a). Adjacent cantilevers are connected by a segment of the silicon nitride

that extends beyond the PZT base. The dynamic behavior of the array is modeled

by using the Klein-Gordon equations [50]. The model presented in (1.12) and (1.13)

describes damped oscillators with linear coupling between adjacent oscillators. Both

α and the x variables are functions of time and the over-dots are used to represent

derivatives with respect to time. Since the cantilevers are driven by an excitation

with a sufficiently large magnitude, the cantilevers are treated as nonlinear oscilla-

tors. The coupling between the cantilevers is simplified to be represented by only a

linear stiffness term and the mass of the overhang is neglected in the work of Sato

et al. [49]. The parameter values for the micro-scale cantilever pairs are determined

from the geometry of the cantilevers as well as the frequency-response data col-

lected from experiments [49]. In table 1.3, the parameters are identified and values

are given. These values are used here to simulate the localization phenomena.

From the time constant given in the table, the non-dimensional damping fac-

tors are ζa = 7.67 × 10−5 and ζb = 4.12 × 10−5. For this set of parameter values,

the strength of the nonlinearity is determined by comparing the force values pro-

duced by the cubic stiffness term in the equation of motion to the value of the force

from the linear stiffness term for the same displacement value. At the center of an

ILM, the nonlinear term produces ten percent of the force produced by the linear

term. The observed displacements of the oscillators adjacent to the center of the

ILM result in force values from the nonlinear term that are less than one percent

of the force values resulting from the associated linear terms. Away from the ILM,

the ratio is almost two orders of magnitude less.
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Figure 1.7: Studying ILMs in MEMS arrays: (a) unit cell of micro-cantilever array

and (b) representative simulation results of localization in a micro-scale cantilever

array. Time is shown on the horizontal axis and the oscillator position is shown on

the vertical axis.

maẍa,i +
ma

τ
ẋa,i + k2axa,i + k4ax

3
a,i + kI (2 xa,i − xb,i − xb,i−1) = maα (1.12)

mbẍb,i +
mb

τ
ẋb,i + k2bxb,i + k4bx

3
b,i + kI (2 xb,i − xa,i+1 − xa,i) = mbα (1.13)

In recent work on piezoelectric micro-scale resonators, it has been shown that

clamped-clamped micro-scale resonators need to be studied as nonlinear oscillators

[20, 51, 21]. In the previous section, the model used to parametrically identify

values for modal parameter of piezoelectric micro-scale resonators [52] is of the same

form as the model used to study localizations with the exception of the coupling

term. The parametric identification tool can be used to identify models for studying

localizations in piezoelectric micro-resonator arrays. If piezoelectric resonator arrays

can be engineered so that the coupling can be modeled in a manner similar to that

used for the micro-cantilever arrays, then, equations such as (1.12) and (1.13) are
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Table 1.3: Microcantilever array parameters.

Parameter Value

Mass of large cantilever, ma 5.46× 10−13 kg

Mass of small cantilever, mb 4.96× 10−13 kg

Time constant, τ 8.75× 10−3 sec

Linear stiffness of large cantilever, k2a 0.303 N/m

Linear stiffness of small cantilever, k2b 0.353 N/m

Nonlinear stiffness, k4 = k4a = k4b 5.0× 108 N/m3

Interconnect stiffness, kI 0.0241 N/m

Acceleration magnitude, α0 1.0× 104 m/s2

applicable to these resonator arrays and it may be possible to use these equations

to study localization in piezoelectric, micro-scale resonator arrays.

In figure 1.7(b), representative results obtained from a simulation conducted

with these equations for an array of fifty cantilever pairs are shown. The shading

used in this figure corresponds to the energy levels, with the darker regions represent-

ing the higher energy levels characterized by large amplitude oscillations. In order

to promote the occurrence of localizations, a uniform excitation is applied to the

array with a carefully designed excitation frequency profile, as shown in figure 1.8.

For the first 2500 periods of oscillation that last for 17.0 milliseconds, the excitation

frequency is increased linearly from the array’s highest natural frequency, which is

146.8 kHz, to a value three percent higher in order to promote the development of

localizations. The reasoning behind this process is explained in the work of Lifshitz
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Figure 1.8: Excitation frequency profile for uniform excitation within numerical

simulation.

and Cross [36], through their study of the nonlinear frequency-response behavior of

arrays of coupled nonlinear oscillators with cubic nonlinearities. Within this work,

they were able explain nonlinear behavior observed in the experimental work of

Buks and Roukes [53]. Lifshitz and Cross utilized numerical methods to identify

stable response curves for an array of sixty-seven parametrically excited, coupled

nonlinear oscillators. One of the stable response curves started at the array’s high-

est linear frequency and was found to increase in amplitude as the frequency was

increased. While their study focused on parametrically excited oscillators, similar

behavior would be expected for non-parametric excitation. During the second phase

of the simulation, which lasts for 5000 periods of oscillation or 34.1 milliseconds, the

excitation frequency is held constant at a value near 151.2 kHz, a frequency value

that is three percent higher than the array’s highest frequency. The final phase of

the simulation, which is also 2500 periods of oscillation in length, is characterized

by the removal of the excitation.
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Conducting the simulations in this way, it is possible to observe a number of

different phenomena related to mode localization. The most commonly observed

behavior is ‘unlocked ILMs’. This type of localization occurs during the initial chirp

phase of the excitation. Since the unlocked ILMs have relatively small displacement

magnitudes, they are capable of moving easily from one location on the array to

another. They tend to be short lived and quickly decay. In figure 1.7(b), unlocked

ILMs can be seen early in the simulation. Another type of phenomenon that can

be observed is ‘locked ILMs’. Locked ILMs oscillate with larger amplitudes than

unlocked ILMs, and as a result, they tend to be fixed at a single location on the

array. In figure 1.7(b), an example of locked ILMs is shown at position fourteen.

When the oscillation frequency of a locked ILM becomes synchronized to the exci-

tation frequency, the ILM will persist as long as the excitation is applied. These

localizations are called ‘pinned ILMs’. A pinned ILM can be seen in figure 1.7(b)

at position fifty-eight.

Of these different types of ILMs, the pinned ILM is of interest to this disser-

tation. In order to produce these localizations, the array of oscillators is initialized

with zero velocities and small random displacements having values between ±50 nm

in these simulation. This randomness results in a considerable amount of uncer-

tainty within the simulations, since it is not known whether a particular choice of

initial conditions will result in localization. Since this type of ILM has the largest

amplitude, remains spatially fixed, and endures as long as the system is excited; this

type of localizations has the most potential to influence the behavior of micro-scale

resonator arrays.
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Of the different types of ILMs, pinned ILMs are the most likely to cause dam-

age to a resonator array. If the design of an array does not accommodate this phe-

nomenon, the motion of the resonators may exceed safe levels producing increased

amounts of wear or mechanical failure. In addition to the potential damage that

may occur to the mechanical system, the sensitive electronics used to monitor the

output signal of the piezoelectric array can be damaged by unexpected high current

levels. To avoid these potential failure modes, it will be necessary for engineers to

be aware of this phenomenon and the conditions under which they occur.

While unwanted localizations within a resonator array can result in the failure

of a device, if this phenomenon can be anticipated and controlled, this may provide

a means to drastically improve the performance of the arrays or lead to a completely

new type of technology. Since pinned ILMs are spatially fixed and persist as long

as the system is being driven, once they occur, their behavior is quite predictable.

In addition, further work [54] has shown that the location of a pinned ILM can be

manipulated by artificially creating an impurity within the array in the proximity

of the center of the localization. Similarly, by quickly moving this artificial defect

across the location of the localization, a pinned ILM can be terminated. It was also

discovered that a localization event could be created through the addition of an ar-

tificial impurity and then gradually returning the array to its defect free state after

the ILM is formed [55].An artificial impurity mode can be produced within a piezo-

electric micro-scale resonator array by selectively applying a DC bias. This ability

to control pinned ILMs within an array makes this phenomenon quite attractive for

potential advances in the development of resonator arrays.
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In order to better understand these intrinsic localized modes, in this disser-

tation studies are conducted to explore the relationship between ILMs and non-

linear normal modes. Nonlinear normal modes are a special class of solutions to

nonlinear systems, defined on the basis of geometric concepts [56]. These modes

can be thought of as nonlinear versions of the normal modes studied in linear sys-

tems. These modes are synchronous periodic solutions to the nonlinear equations

of motion of a system. They provide a nonlinear relationship describing the be-

havior of one degree-of-freedom within the system as a function of the behavior of

another. Various methods exist to derive these relations including the restricted

normal mode approach [44], the method of multiple scales approach [56] as well as

other asymptotic methods [57]. A mathematical simplification called the Rotating

Wave Approximation (RWA) [58] is used to obtain spatial properties corresponding

to localizations but this method retains the frequency dependence unlike the nonlin-

ear vibration modes. The RWA simplification is unable to provide an equation for

the relationship between oscillators in the same manner as many of the nonlinear

vibration mode methods.

In this dissertation, by using the different analytical methods examined for

studying ILMs, equations are derived to relate the oscillator amplitudes that make

up the ILM profile. For a number of the methods employed, the presence of terms

of the form (ω2
k − ω2

j ) and (9 ω2
k − ω2

j ) in the denominators of coefficients in the

derived equations reveal a sensitivity to one-to-one and three-to-one internal res-

onance conditions. When the indices j and k are selected to represent adjacent

oscillators, the potential for internal resonance exists. Although these conditions
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do not exist and solutions are obtained, systems with these conditions have been

considered to study how these internal resonance conditions affect the behavior of

intrinsic localized modes. With the original parameter values given in table 1.3, the

resulting resonance frequencies of the two types of oscillators are incommensurate,

with a relationship of approximately 1.132 : 1.

In the third chapter, the nonlinear analyses undertaken to examine if a non-

linear vibration mode can be used to realize an ILM are presented. The results

obtained from the nonlinear analyses are examined, discussed, and it is shown that

an ILM can be realized as a forced nonlinear vibration mode. Potential internal

resonance conditions are also investigated to determine how the localizations are

affected.

1.3 Cantilever Beam Impactor System

In the fourth chapter, the dynamic behavior of a flexible cantilever beam is studied

to compare an unconstrained response with the system’s response when a compli-

ant material is positioned within the range of motion of the beam tip resulting in

periodic ‘soft’ impacts. In figure 1.9, a diagram of the system of interest is shown.

Some important system parameters for this test apparatus are listed in table 1.4.

Studies have found that systems such as this one where soft impacts occur can be

successfully modeled with a piecewise linear representation of the system’s stiffness

and damping (e.g., [59]). The difference between the system’s response for uncon-

strained conditions and constrained conditions is examined in an effort to develop
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Figure 1.9: Diagram of experimental test apparatus.

a method to determine the critical separation distance between the center of oscil-

lation of the beam and the surface of the contact material that would correspond

with grazing.

Grazing is the condition in an impact system where contact occurs with a zero

velocity. Examples of some different response conditions for an impact system are

presented as phase portraits in figure 1.10 for a single-degree-of-freedom system. The

periodic response represented by the curve of short dashes, A, is an example of the

system’s behavior for unconstrained conditions, where the oscillator is free to vibrate

harmonically. The system’s behavior for grazing conditions is show as the solid curve

B. The curve touches but does not pass through the boundary Σ, separating the

two regions of the system’s behavior. The periodic response represented by the

curve of long dashes, C , demonstrates how the response is affected by constrained

conditions for a piecewise linear model with region f0 corresponding to no contact

dynamics and f1 corresponding to contact with the constraining material.
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Table 1.4: Important dimensions of experimental test apparatus.

Parameter Value

Beam Material Phosphor Bronze

Density 8.8 gram/cm3

Young’s Modulus 117.0 GPa

Beam Length 436.0 mm

Beam Width 20.0 mm

Beam Thickness 0.8 mm

Impactor mass 0.8 gram

ABC

1f0f

x

x

Figure 1.10: Diagram of different behavior within an impact system. Curves A, B,

and C represent unconstrained, grazing, and constrained conditions, respectively.
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Grazing bifurcations, which are changes in behavior resulting from a transition

through the grazing condition, have been found to produce a wide range of behav-

ior including periodic oscillations, quasi-periodic oscillations, period-doubling, and

chaotic oscillations [60, 61, 62]. The desire to understand how a system’s behavior

changes when transitioning through grazing has led to studies being performed for a

number of different systems such as impact micro-actuators [63], periodically excited

strings [64], and atomic force microscopes [65, 66]. Through these studies, meth-

ods have been developed to describe low velocity, near-grazing behavior by discrete

mappings [67, 68]. As this dissertation’s investigation into the behavior of a system

at and around the grazing point is also motivated by a particular system, a com-

plete model is developed so that the simulated behavior agrees with experimental

observations.

While the classifications described by figure 1.10 are used within chapter four,

the system examined is much more complicated than a single-degree-of-freedom

model and considerably more complex behavior is observed. While many studies

have found that relatively simple models, i.e. a single mode approximation [69], can

be used successfully to study impact dynamics, a multi-mode approximation is uti-

lized in this dissertation. The system examined within this study includes a flexible

cantilever beam that experiences oscillation amplitudes of sufficient magnitude such

that a nonlinear model is necessary to describe its behavior [70].

The desire to understand how a grazing bifurcation will affect the response of

a system is often motivated by the desire to develop an effective control scheme to

avoid instabilities and produce the desired behavior [71]. Within the work presented
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in chapter four, motivated by the tapping mode operation method of atomic force

microscopy (AFM), it is desired to maintain near-grazing behavior as the distance

between the cantilever and the surface of the contact material varies arbitrarily.

This would ensure that a minimum amount of force is being applied to the surface

of the sample by the probe tip. This is especially important when using AFM to

study delicate samples such a living biological specimen [72]. Efforts to increase the

resolution of AFM images has resulted in decreases in the size of the probe tip and

methods are required to minimize the contact force so that the decreased contact

area does not result in high contact pressure levels that will damage and destroy

the sample [73].

With the aid of a scale model test apparatus, preliminary work is done to study

the unique nonlinear phenomenon associated with a grazing bifurcation. Through

the identification of a characteristic of the response that changes significantly as a

function of the separation distance and can be easily monitored, a control scheme

may be developed in order to maintain near-grazing behavior. Experimental ob-

servations of the cantilever probe of a commercial AFM system are compared and

found to show qualitative agreement with the macro-scale results.

1.4 Scope and Organization of Dissertation

Within this dissertation, the nonlinear behavior of various beam and beam-like

structures is explored. Analytical models are developed and utilized to study these

systems. Reduced order models are developed to facilitate further analysis of these
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systems and to conduct numerical simulations. Experiments are performed and data

is used to identify system parameters and verify behavior predicted in simulations.

Through these studies, a greater understanding of the nonlinear phenomena is gained

and methods to utilize them are developed.

The organization of the rest of the dissertation is as follows. In the second

chapter, the development and implementation of a multi-variable parametric identi-

fication scheme are discussed for characterizing piezoelectric micro-scale resonators

from nonlinear frequency response data with jumps. In the third chapter, the inves-

tigation of a nonlinear localization phenomenon in micro-scale resonator arrays is

discussed and the relationship to forced nonlinear vibration modes is explored. The

fourth chapter contains an investigation into the nonlinear behavior of a cantilever

beam impactor system and a period doubling phenomenon associated with grazing

bifurcation. Concluding remarks are collected in the final chapter and presented

along with recommendations for future work.
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Chapter 2

Parametric Identification

Within this chapter, the development and implementation of a parametric identi-

fication scheme for studying systems that exhibit Düffing-like nonlinear behavior

is discussed. The nonlinear beam model is developed and the process utilized to

obtain a frequency-response equation and a critical points equation is described in

the first section. The development of the identification scheme is discussed in the

second section along with results obtained through its application to both PZT

and AlGaAs devices. In the third section, the identification scheme is utilized to

obtain parameter values for multiple data sets in order to study how changes in

the operating conditions affect the performance of a device. Methods are also dis-

cussed regarding how these parameter trends can be used for the characterization

of material properties.
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Figure 2.1: Diagram of PZT resonator identifying spatial coordinate and three sec-

tions.

2.1 Resonator Model

The frequency-response data from the micro-scale resonators, shown in figure 1.6 in

chapter one, clearly reveals nonlinear characteristics. Although the dimensions of

some of the resonators may suggest that a plate model may be appropriate, a beam

representation is found to adequately model the dynamic behavior of the device. To

account for the nonlinear behavior of the resonators within the model, both axial

stretching and nonlinear curvature are considered [74]. For the resonators stud-

ied, the nonlinear curvature is found to be negligible. Because of this assumption,

only the axial stretching is included when modeling the traverse deflection Wn as a

function of axial position x and time t.

[
Pn(t)h̄(x)

]
,xx

= ρAnWn,tt + c Wn,t + (EInWn,xx),xx − P0 Wn,xx

−
M∑

m=1

[
EAm

2 l

∫ lm

lm−1

(Wm,x)
2 dx

]
Wn,xx (2.1)
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Within equation (2.1), the parameters and variables used are as follows: mass

per length ρAn, viscous damping coefficient c, bending stiffness EIn, axial force

P0, axial stiffness EAn, axial force from the piezoelectric layer Pn, and h̄(x) is a

discontinuous function that describes the separation between the neutral axis and

the applied axial force. This separation produces the distributed moment that ex-

cites the resonator [21]. The subscripts n and m are used to identify the sections

of the stepwise axially-varying geometry of the structure and M is the total num-

ber of sections. The summation is required to calculate the total axial stretching

within all of the sections. In figure 2.1, the three sections of the PZT resonator are

shown. Subscripts following a comma ‘,’ indicate partial derivatives. To complete

the model, boundary conditions and compatibility conditions are required. The

boundary conditions constrain the displacement and slope of the beam at each end

to be zero. Since these resonators are made up of three different segments, the

displacement profile is separated into three sections that require continuity at the

two interfaces. In order to accomplish this consistency, the compatibility conditions

require that the displacement, slope, moment, and shear be equal on both sides of

each of the connections. The composite structure of the resonators also requires ad-

ditional calculations to obtain averaged properties such as the bending stiffness and

the axial stiffness. These values are calculated based upon the assumption that the

effect of the coupling between bending and stretching is negligible. With the nonlin-

ear integro-partial differential equation, the boundary conditions, the compatibility

equations, and the averaged properties, the model of the resonator is complete.
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In order to facilitate the analysis of this model, the Galerkin procedure is

employed. Noting that the response range of interest is close to the resonator’s

first natural frequency, a single mode approximation is used, as shown in (2.2).

Through this procedure, the simplified model takes the form of a forced Düffing

oscillator, shown as (2.3) where z(t) is the temporal amplitude. The coefficients of

this equation, to be identified through the parametric identification scheme are the

following: i) the modal mass m̄, ii) the equivalent viscous damping coefficient c̄, iii)

the linear stiffness coefficient k, iv) the nonlinear stiffness coefficient α3, and v) a

modal force parameter F .

Wn (x, t) = φn (x) z (t) (2.2)

m̄ z̈(t) + c̄ ż(t) + k z(t) + α3 z3(t) = F cos(ω t) (2.3)

The over-dots in (2.3) are used to represent time derivatives. A harmonic

excitation is assumed in arriving at (2.3). The different modal coefficients are defined

by

m̄ =
3∑

n=1

{∫ ln

ln−1

φn(x) [ρAnφn(x)] dx

}
(2.4)

c̄ =
3∑

n=1

{∫ ln

ln−1

φn(x) [c φn(x)] dx

}
(2.5)

k =
3∑

n=1

{∫ ln

ln−1

φn(x)
[
EInφ

IV
n (x)− P0φ

′′
n(x)

]
dx

}
(2.6)
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α3 =

(
3∑

n=1

{∫ ln

ln−1

φn(x) [−φ′′n(x)] dx

})

∗
(

3∑
m=1

{
EAm

2l

∫ lm

lm−1

[φ′m(x)]
2

dx

})
(2.7)

F̂ (t) =
3∑

n=1

(∫ xn

xn−1

φn(x)

{
∂2

∂x2

[
Pn(t)h̄(x)

]}
dx

)
(2.8)

where the primes in (2.6) and (2.6) indicate spatial derivatives and φn(x) is the

considered mode shape function. Previous studies have shown that a forced Düffing

oscillator with a hardening type nonlinearity is capable of producing a frequency-

response curve with a structure similar to the experimental frequency-response data

obtained from the piezoelectric micro-scale resonator [75]. Assuming that the non-

linearity, damping, and forcing to be weak and focusing on excitation frequencies

close to the first natural frequency, the method of multiple scales is used to obtain an

approximate solution to the nonlinear differential equation (2.3) [76]. The approx-

imate solution for this case is found as (2.9) where H.O.T. stands for higher-order

terms and the amplitude and phase are governed by (2.10) and (2.11), respectively.

z(t) = a(t) cos(ω t− γ(t)) + H.O.T. (2.9)

ȧ(t) = −µ a(t) + K sin(γ(t)) (2.10)

a(t) γ̇(t) = σ a(t)− 3

8
α a3(t) + K cos(γ(t)) (2.11)

Periodic responses of the micro-resonator correspond to the fixed points (a0, γ0)

of (2.10) and (2.11); that is, ȧ(t) = γ̇(t) = 0. The fixed-point equations provide the

frequency-response equation (2.12), which shows how the amplitude of the periodic
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response changes with respect to the excitation amplitude and the excitation fre-

quency. The parameter values at which the fixed points loose stability is given by

the critical points’ equation (2.13).

[
µ2 +

(
σ − 3

8
α a2

0

)2
]
a2

0 = K2 (2.12)

µ2 +
(
σ − 3

8
α a2

0

) (
σ − 9

8
α a2

0

)
= 0 (2.13)

The variables within (2.12) and (2.13) are related to the parameters of (2.3)

by the following relations.

ω0 =
√

k/m̄,

µ = c̄/ (2 m̄ ω0),

Ω = ω/ω0,

α = α3/k,

σ = Ω− 1

K = F/ (2 k)

(2.14)

The critical points, where bifurcations occur, are satisfied by both (2.12) and

(2.13). Analytical curves produced by using these equations are displayed in fig-

ure 2.2.

In order to determine the spatial function needed to calculate the coefficients

for the forced Düffing equation from the nonlinear beam model, a linear approxi-

mation of the system is considered. From an analysis of this system along with the

boundary and compatibility conditions, the first natural frequency and the associ-

ated mode shape are determined. This mode shape is used as the spatial function.
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Figure 2.2: Thick lines are used to show the analytically predicted frequency-

response curve, and the stable and unstable response segments are shown by solid

lines and dashed lines, respectively. The thin lines are the critical-point curves,

which are independent of the excitation level. The encircled intersections of these

lines represent the critical points of the frequency-response curves.
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2.2 Identification Scheme

With the aid of the nonlinear beam model, the system parameters are examined

to determine how they affect the structure of the frequency-response curve. In

order to determine how best to design the parametric identification process, the

damping coefficient, the linear stiffness coefficient, the nonlinear stiffness coefficient,

and the modal force parameter are examined. The influence of the modal mass is not

examined because the modal mass is calculated from the nominal geometry, material

properties, and approximated mode shape of the resonator. Frequency-response

curves showing the affects of an increase in each of these parameters are displayed

in figures 2.3(a) through 2.3(d). As expected and shown in figure 2.3(a), the damping

coefficient affects the amplitude of the peak of the frequency-response curve while

leaving much of the rest of the curve unchanged. The nonlinear stiffness coefficient

influences the amount by which the peak of the frequency-response curve leans away

from the neutral position corresponding to the first natural frequency, as illustrated

in figure 2.3(b). Changing the value of the linear stiffness results in a shifting of

the system’s linear natural frequency and this causes the horizontal position of the

peak of the frequency-response curve to change, as shown in figure 2.3(c). The

modal force represents the generalized magnitude of the force being applied to the

system and a change in the value of this parameter affects the response amplitude

of the entire frequency-response curve most notably at the peak; this is illustrated

in figure 2.3(d).
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Figure 2.3: The effects of increasing parameter values on the analytical response

curve. The curve depicted by using solid lines corresponds to the nominal case, and

the curve illustrated by using dashed lines corresponds to the effect of increasing

the following: (a) equivalent viscous damping coefficient, (b) nonlinear stiffness

coefficient, (c) linear stiffness coefficient, and (d) modal force parameter.
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2.2.1 Stages of identification

Based on the information presented in figure 2.3, the parametric identification

scheme is developed so that the parameters with the most influence over the re-

sponse are fit before the parameters that affect the response the least. A flow chart

depicting an overview of the parametric identification scheme is presented in Fig-

ure 2.4. First, it is necessary to select initial values for each parameter so that the

peak of the analytical curve is located within the same frequency range as the ex-

perimental data and exhibits a similar structure. While the selection of these values

has a very large affect on the results of the parametric identification process, the

initial values are easily determined by using the relations obtained from the Galerkin

procedure and through a visual comparison of the predicted analytical curve and

the experimental data.

Once the initial values are selected, a three-stage parametric identification

scheme is applied to determine the optimal combination of parameter values in order

to fit the analytical curve to the experimental data. In the first stage, the frequency-

response equation (2.12) is utilized for a least-squares curve fitting process. The

parameters determined in this section, in the order identified, are the linear stiffness

coefficient, the nonlinear stiffness coefficient, and the modal force parameter. These

parameters are identified by tuning each parameter as long as the difference between

the analytical curve and the entire experimental data set continues to decrease.

The parameters are tuned both positively and negatively for a number of different

adjustment sizes.
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Figure 2.4: Flow chart depicting an overview of the parametric identification scheme

that is used to study piezoelectric micro-scale resonators.

In the second stage of the identification process, the frequency-response equa-

tion (2.12) as well as the critical points equation (2.13) are utilized to fit the upper

bifurcation point by tuning the equivalent viscous damping coefficient. As previously

mentioned, the identification procedure is designed specifically to study nonlinear

dynamic behavior that includes jumps in the frequency-response data. Experimen-

tal data sets that do not contain jumps can be studied with one of the identification

schemes discussed previously, such as the method developed by Malatkar and Nayfeh

[32]. Here, a similar tuning procedure is used but only the analytically predicted

amplitude of the upper bifurcation point is compared with the amplitude of the last

experimental data point before the jumps occurs. Although this does not take into

account any difference between the frequency of the experimental data point and the
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frequency value calculated by the model, additional iterations of the identification

process account for this discrepancy through tuning of the linear stiffness coefficient.

While both the modal force parameter and the equivalent viscous damping coeffi-

cient affect the amplitude value at the peak of the frequency-response curve, only

the modal force parameter significantly affects the portion of the curve away from

the peak. As a result, it is possible to determine a unique combination of the two

parameters for a given set of experimental data.

In the final of the three stages within the identification scheme, the linearized

system is used to obtain an approximate mode shape corresponding to the first nat-

ural frequency. This mode shape is determined by tuning the axial force within the

linearized model to synchronize the first resonance frequency of the model with the

frequency calculated from the identified parameter values. The axial force value is

tuned in the same fashion as the other parameters. This provides an approximation

of the micro-resonator’s mode shape for this natural frequency and an axial force

value that can be used to calculate the average residual stress in the resonator. By

using this approximate mode shape, the modal mass value can be recalculated. This

new modal mass value is then used in the next iteration of the identification process

to aid in the further refinement of the other parameter values.

Upon completion of these three stages of the identification scheme, the pa-

rameter values are examined to determine if the desired level of accuracy has been

obtained. If the parameter values are not determined to sufficient accuracy, the

identification scheme returns to the first stage of the three-stage process using the

current parameter values for the initial values. Since the system is nonlinear and
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has a multi-dimensional parameter space, the possibility exists that the identifica-

tion scheme may converge to a local optima and not the global optimum. To avoid

selecting a local optima, after the scheme has gone through a sufficient number of

iterations to produce the desired level of precision, each of the key parameter values,

c̄, k, α3, and F , are perturbed both positively and negatively to produce eight differ-

ent sets of parameter values. These eight sets are then used as initial values and the

results of the nine cases are compared. If the first set of parameter values is found to

have the best values, then it is considered to represent the “global optimum”. The

quality of each set of parameter values is determined by calculating an RMS error

from comparisons of the resulting analytical values with the experimental data. In

the event that the best set is one of the eight perturbed sets, these optimized values

are perturbed to produce eight new sets and the same process is repeated.

2.2.2 Parameters for PZT and AlGaAs micro-resonators

The same experimental arrangement and procedures are employed for both PZT

and AlGaAs micro-resonators. In figures 2.5(a) and 2.5(b), comparisons of the

experimental data and the frequency-response curve obtained on the basis of the

identified parameter values are shown for the PZT micro-resonator and AlGaAs

micro-resonator, respectively. For the PZT micro-resonator, a minimal RMS Error

value of 1.0943 nm is calculated from the forward sweep data and the identified

parameter values. Although only the forward sweep data is used to determine the

parameter values, the results of figure 2.5(a) show agreement with both the forward
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sweep data and the backward sweep data. For this particular data set, the RMS

error calculated for the backward sweep data has an even smaller value of 1.0814 nm.

This indicates that although the backward sweep data is not utilized during the

identification process, the information obtained can be used to predict the correct

frequency response in the lower branch, including the location of a jump.

Nonlinear frequency-response data collected from a 200 µm AlGaAs resonator

is presented in figure 2.5(b) along with the analytical curve representing the fit non-

linear model. Once again, the parametric identification scheme is able to match the

analytical curve to the experimental data well. For the data shown in figure 2.5(b),

an extremely small RMS error value of 0.5666 nm is calculated.

In table 2.1 and table 2.2, the parameter values determined by using the

parametric identification scheme and numerical values calculated from the nonlinear

beam model are shown for the PZT micro-resonator and AlGaAs micro-resonator,

respectively. The second column of each table contains parameters calculated by

using the identified axial force value. The parameters in the third column correspond

to residual stress levels determined by using the wafer bow measurement method

(e.g., [77]). From comparisons of the identified resonance frequencies, it can be

confirmed that the AlGaAs micro-resonator is stiffer than the PZT micro-resonator.

The experimental AlGaAs data also shows lower response amplitude values than

the PZT resonator data for equivalent input signals. This observation is consistent

with the fact that the AlGaAs resonators are stiffer and that they experience smaller

transverse deflections and that the piezoelectric coupling of the AlGaAs material is

weaker than that of the PZT material. However, as seen from tables 2.1 and 2.2,
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Figure 2.5: Nonlinear model fit to micro-resonator data: (a) 200 micrometer PZT

resonator and (b) 200 micrometer AlGaAs resonator.

the AlGaAs resonator has a higher Q factor compared to the PZT resonator. This

higher Q-amplification for the AlGaAs resonators compensates substantially for the

increased stiffness and reduced piezoelectric coupling.

In the case of the PZT micro-resonator, for the identified axial force, the

numerically obtained parameter values from the beam model generally agree with

the identified values with the largest discrepancy being between the values obtained

for the nonlinear stiffness coefficient. For the numerical values calculated with the

residual stress from the wafer bow measurements, the increased stress/axial force

values affect the linear stiffness coefficient and subsequently, the first resonance

frequency.

For the AlGaAs micro-resonator, when comparing the parameter values within

table 2.2, it is clear that the identification scheme determines the axial force/residual

stress level within the resonator to be significantly lower than the value calculated

from the wafer bow measurement method. The difference between these values may
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Table 2.1: Comparison of parameter values for PZT resonator.

Parameters Parametric Beam Beam Model

and Units Identification Model (Bow Stress)

m̄ (kg ×10−11) 1.58 1.58 1.58

c̄ (Ns/m ×10−8) 7.81 − −

k (N/m) 60.91 60.88 69.78

α3 (N/m3 ×10+12) 32.4 3.54 3.53

P (N ×10−3) 1.50 1.50 1.87

ω0 (kHz) 312.61 312.55 334.61

Qeffective 397.15 − −

σaverage (MPa) 43.56 43.56 54.29
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Table 2.2: Comparison of parameter values for AlGaAs resonator.

Parameters Parametric Beam Beam Model

and Units Identification Model (Bow Stress)

m̄ (kg ×10−11) 1.13 1.13 1.06

c̄ (Ns/m ×10−8) 1.55 − −

k (N/m) 54.02 54.02 0.225

α3 (N/m3 ×10+12) 24.6 2.84 2.92

P (N ×10−4) −2.68 −2.68 −24.0

ω0 (kHz) 347.58 347.58 23.17

Qeffective 1599.19 − −

σaverage (MPa) −8.94 −8.94 −80

44



occur because the wafer bow measurement determines an average across the entire

wafer. The values from the wafer bow measurement method are also determined

before the micro-machining of the device structure. During this process, some of

the stress may be released resulting in lower stress levels. This axial force dis-

crepancy causes the calculated values of the linear stiffness coefficient to be much

smaller, resulting in a significant decrease in the calculated resonance frequencies.

The deviation between the identified and calculated values for the nonlinear stiff-

ness parameter is consistent with results obtained for the PZT resonators. This

consistent deviation suggests that there may be an additional source of nonlinearity

that must be taken into account in the nonlinear beam model to more accurately

represent the dynamic behavior of the considered micro-resonators.

Overall, as demonstrated here, it has been possible to produce a successful

curve fit to the experimental data by using the parametric identification scheme

constructed on the basis of Düffing oscillator.

2.3 Trends of Identified Parameters

Here, results of preliminary investigations conducted into the variations of the iden-

tified parameter values with respect to the selected input signals or operating condi-

tions are reported to demonstrate the ability of the parametric identification scheme

to study the dynamics behavior of nonlinear systems such as MEMS devices. Differ-

ent swept-sine signals with increasing amplitude values and various DC bias levels

are considered. The changes in the response of the system are examined in the form
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of three parameter: the modal force parameter, the linear stiffness parameter, and

the nonlinear stiffness parameter.

2.3.1 Modal force and piezoelectric coefficient

In order to understand how changes in the amplitude of the applied signal affect the

modal force parameter, the corresponding term in the nonlinear beam model is ex-

amined. The excitation results from the distributed moment produced by the piezo-

electric material. The excitation term in (2.1) is separated into a time dependent

function Pn(t) and a position dependent function h̄(x). Following the application of

the Galerkin procedure, the modal force function F̂ (t) given by (2.8) is produced.

After carrying out integration by parts twice with respect to x, (2.15) is obtained.

F̂ (t) = P1(t) hφ′1(x1) (2.15)

By using the block force model to obtain the axial force from the piezoelectric

material, the definition of the modal excitation term can be further expanded to

include material properties, additional device geometry, and the applied voltage

[78]. This form of the modal force is given in (2.16).

F̂ (t) = EA (d31/t) V (t) hφ′1(x1) (2.16)

This equation can be used to gain additional information about the device.

For a number of data sets collected from the same device for increasing drive voltage

values, a complete set of parameter values can be identified. A plot of the modal force
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Figure 2.6: Approximating a linear force-voltage relation. The circles ‘◦’ represent

modal force values for different data sets and the solid line is a linear curve fit to

these data points.

parameters versus the drive voltage amplitude yields a nearly linear set of points.

An example of this data is displayed in figure 2.6. Rearranging equation (2.16) to

solve for the piezoelectric coefficient, d31, reveals a term that directly corresponds to

the slope of the data points. Because this term consists of two temporal functions,

it is important to note that the slope of the data points represents the ratio of the

amplitudes of the two harmonic functions and a negative sign must be included to

account for the phase difference. This form of the equation is shown in (2.17), where

the actuator area A = bh, F0 is the amplitude of F̂ (t), and V0 is the amplitude of

V (t).

d31 = − (F0/V0) (E b hφ′1(x1))
−1 (2.17)

47



With additional information about the resonator, it is possible to calculate

values for the piezoelectric coefficient. This is useful since the properties of thin-

film materials often differ from their macro-scale counterparts and the properties

of these materials can be dependent on the various fabrication procedures to which

they are exposed. In initial applications of the identification scheme, the determined

piezoelectric coefficient values range from −116× 10−12 m/V to −192× 10−12 m/V .

These thin-film material values are of the same order-of-magnitude as the piezoelec-

tric coefficient values associated with bulk ceramic materials. However, the thin-film

material piezoelectric coefficients are found to be smaller in magnitude.

2.3.2 Axial force, linear stiffness, and nonlinear stiffness

The addition of a DC bias to the applied signal results in a constant axial force in the

micro-resonator. As the value of the DC bias increases, the peak of the frequency-

response curve shifts to the right. Based on the parametric study previously dis-

cussed, the axial force produced by the addition of the DC bias affects the linear

stiffness of the resonator. This behavior agrees with the fundamental understanding

of the effects of an axial force within clamped-clamped beam structures. By using

the nonlinear beam model, it is possible to calculate linear natural frequency values

that qualitatively and quantitatively agree with the frequency changes observed in

the experimental data. While the model utilized within this work does not include

the effects of the hysteresis of the piezoelectric material, a basic linear approxima-

tion is compared with identified parameter values to obtain rough ranges for the
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DC bias and the axial force. By using the block force model; that is, axial force =

EA (d31/t) DC bias, refined values of this voltage-force ratio can be used to deter-

mine the piezoelectric coefficient d31 for the devices. By using the ratio values from

this basic model, piezoelectric coefficient values ranging from −93.3 × 10−12 m/V

to −163× 10−12 m/V are determined for the PZT micro-resonators. Although this

is merely a coarse approximation, these values are of a magnitude common for the

piezoelectric coefficients of bulk PZT materials [78].

To qualitatively compare the identified parameters with those of the nonlinear

beam model, the change in the identified first natural frequencies are shown in

Figure 2.7(a) for a range of DC bias levels and the calculated changes in the first

natural frequencies from the model are shown in Figure 2.7(b) for a range of axial

force values.

Another parameter that is significantly affected by the addition of a DC bias

is the nonlinear stiffness parameter. With an increase in the level of DC bias, the

identified nonlinear stiffness parameter value is found to decrease. Similar to the ob-

servations of the linear stiffness parameter values, the nonlinear stiffness parameter

values also appear to be influenced by the hysteresis of the piezoelectric material.

Again, by using only a basic model, a range of axial force values is found where the

value of the nonlinear stiffness decreases as the axial force increases. To qualita-

tively compare the identified parameters with those of the nonlinear beam model,

the identified nonlinear stiffness values are shown in figure 2.8(a) for a range of DC

bias levels and the nonlinear stiffness parameters from the model are shown in fig-

ure 2.8(b) for a range of axial force values, both normalized to their initial parameter
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Figure 2.7: Trends of the first, linear natural frequency for different PZT micro-

resonators. Diamonds correspond to 100 µm resonators, squares correspond to 200

µm resonators, and circles correspond to 400 µm resonators. Identified parameter

values are presented in (a) and model prediction values are presented in (b) showing

how the model is capable of explaining the parameter trends.

values. The axial force values are normalized with respect to the buckling force so

that buckling occurs at a normalized axial force value of negative one.

In this section, parameter trends with respect to variations in the resonator

input signals were examined by applying the parametric identification scheme to

a series of data sets. The parameter trends examined included the modal force

parameter values for incremental changes in the amplitude values of the drive voltage

and variation of linear and nonlinear stiffness values with respect to the addition

of a DC bias to the input signal. By using the nonlinear beam model, it has been

possible to explain the trends of each of the parameters and produce numerical

values that qualitatively agree with the identified values. While further work will be

necessary to develop more complete models of the trends, identifying this qualitative
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Figure 2.8: Trends of the nonlinear stiffness coefficient for different PZT micro-

resonators. Identified parameter values are presented in (a) and model parameter

values are presented in (b) showing qualitative agreement.

agreement is important in validating the selection of the nonlinear beam model and

determining the course of future work.

2.4 Summary

A parametric identification scheme is developed to quantify the nonlinear behavior of

systems that exhibit Düffing-like nonlinearities. This identification scheme is able to

determine parameter values from nonlinear frequency-response data collected from

PZT and AlGaAs resonator and good agreement is seen with the model values.

Parameter values obtained with the identification scheme are examined to study

parameter trends produced by incrementally changing the operating conditions of a

device. These parameter trends are found to provide a means to calculated values

for the piezoelectric coefficient of the piezoelectric material. The parameter trends

are also found to show how changes in the input signal affect the performance of
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the devices and agreement is seen with trends predicted by the model. In the next

chapter, the effects of the nonlinearity identified in the individual resonators are

investigated when they are coupled together to form resonator arrays.
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Chapter 3

Intrinsic Localized Modes

In this chapter of the dissertation, a relationship is identified between the nonlinear

localization phenomenon called Intrinsic Localized Modes (ILMs) and nonlinear vi-

bration modes. The amplitude profiles of the simulated localization are examined in

the first section and a number of analytical methods are explored. Floquet theory is

applied to obtain stability information for the results of these analyses. The results

of these methods are compared with profiles from simulations in the second section.

Based on the form of a number of the analytical solutions, the effects of internal

resonance conditions on the ILMs are explored in the third section of this chapter.
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3.1 Analysis of Oscillator Array

While previous work [36] examined the nonlinear spectral properties of arrays of

coupled micro-resonators, in this dissertation, the focus will be on the spatial char-

acteristics of the oscillations. Although a random initialization process has been

utilized to prompt the development of ILMs, as discussed in the first chapter, the

perfect periodicity of the array suggests that the amplitude profile of an ILM can be

analytically determined by using the properties of the array. In order to accomplish

this, it is first necessary to study the amplitude profiles of simulated ILMs. After

the amplitude profiles are identified from the simulations, various approaches are

employed to analytically identify the amplitude values associated with a localiza-

tion event in the array. Following the application of the different analysis methods,

the calculated amplitude profiles are compared with those determined through the

simulation. The stability of the analytically predicted motions is examined by using

Floquet theory [75].

3.1.1 Intrinsic Localized Mode Profiles

In order to better understand pinned ILMs, as shown in figure 1.7 in chapter one,

amplitude profiles are examined at times following the decay of most of the transient

localizations. An example of these displacement profiles is shown in figure 3.1(a).

The asterisk stems correspond to the larger, low-frequency cantilevers while the

smaller, high-frequency cantilevers are represented by the circle stems. Within this

figure, the location of the center of localization is apparent and the oscillators sur-
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Figure 3.1: Spatial characteristics of an ILM: (a) example of a displacement profile

and (b) the averaged normalized amplitude profile around localization. The horizon-

tal axis lists the position of the oscillators relative to the center of the localization.

The average normalized profile is represented by filled circles. The average plus and

minus one standard deviation is represented by empty circles and empty diamonds,

respectively.

rounding the center also have displacements that are significantly larger than the

other oscillators in the array. After examining a number of amplitude profiles, it

is observed that the displacements of the oscillators around the center of localiza-

tion roughly maintain a regular pattern. To study this pattern, the displacement

profile of the oscillators around the center of the localization is examined over 27.3

milliseconds during the constant frequency phase of the excitation.

In order to better observe the amplitude profile, the displacements are normal-

ized by the value at the center of the localization and averaged. The results of this

process are presented in figure 3.1(b). To produce an average profile, six percent

of the profiles are omitted when determining the average. These atypical profiles
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correspond to the displacement of the array when the oscillator at the center of the

localization has a displacement with an absolute value less than 1 µm. Under these

conditions, the displacement profile can become dominated by the influence of the

transient behavior. This transient behavior consists primarily of residual unlocked

ILMs and some of the boundary effects produced at either end of the array. Bound-

ary effects are the results of the influence that the boundaries of an array have on

the system’s behavior causing it to vary from the ideal case of an infinite array of

coupled oscillators. Magnified views of both boundaries are shown in figure 3.1(a) to

illustrate how these constraints can limit the magnitude of nearby oscillators. Sato

et al. [49] reported that comparable results are produced with either fixed or peri-

odic boundary conditions. This is due to the sufficiently weak coupling that causes

the boundary conditions to only affect the oscillators in their immediate vicinity.

Since the standard deviations are considerably small, especially for the oscillators

closest to the center of the ILM, it would appear that the average serves as a good

representation of the profile maintained by the pinned ILM.

Based upon the amplitude profile shown in figure 3.1(b) and the periodicity

of the array, the localization profile will be treated as symmetric about the center

of the localization. By using the average normalized amplitude profile, the ampli-

tude ratios are calculated for the adjacent oscillators moving out from the center of

the localization. The ratio of the amplitude of the first oscillator from the center,

henceforth to be referred to as x±1, to the amplitude of the oscillator at the center of

the localization, henceforth to be referred to as x0, is determined to be r1 = −0.21.

The ratio of the amplitude of the second oscillator out from the center of the local-
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ization, henceforth to be referred to as x±2, to the amplitude of x±1 is determined

to be r2 = −0.70. The negative values indicate that the adjacent oscillators are

half a period out of phase. Moving away from the center of the localization, the

amplitude ratios repeat periodically with a growing deviation. This corresponds to

the periodicity of the micro-cantilever pairs.

Given the nature of the differential system used to model the nonlinear oscil-

lators within the array, presented in chapter one as (1.12) and (1.13), an alternate

method is developed to characterize the amplitude profile corresponding to a local-

ization event. To accommodate the nonlinearity of the model, an additional cubic

term is added to the previous linear relationship. With the addition of this term, it is

no longer necessary to normalize the displacement profiles, as the actual values will

be required to determine the coefficients to the cubic terms. As done previously, this

method focuses on the oscillators around x0 where the displacements are the largest

and the effects of transient oscillations are minimal. In order to take advantage of

the symmetry of the localization and to further reduce the influence of transient os-

cillations on the calculated amplitude ratios, the displacement values on both sides

of the center of the localization are averaged and compared to the predicted dis-

placement value. The nonlinear relationships defining the predicted displacement of

x±1 are given by equation (3.1). The equations for the displacements x±2 are given

by equation (3.2). In each case, the predicted displacement value is a function of

only the displacement of x0 and the coefficients to be identified.

57



X±1(tn) = c1x0(tn) + c2x
3
0(tn) (3.1)

X±2(tn) = c3X±1(tn) + c4X
3
±1(tn) (3.2)

These predicted displacement values are then compared with the displacement

values obtained from the simulation by using the following equations.

E1 = X±1(tn)− 1

2
[x+1(tn) + x−1(tn)] (3.3)

E2 = X±2(tn)− 1

2
[x+2(tn) + x−2(tn)] (3.4)

The first error equation, (3.3), is employed initially to determine values for the

coefficients c1 and c2. The root-mean-square (RMS) value for this error equation

over the same twenty milliseconds that is used for the linear relationship is calcu-

lated and minimized by using a least-squares method to identify values for the two

aforementioned coefficients. The second set of coefficients, c3 and c4, are identified

with the aid of equation (3.4). For localization events occurring in arrays ranging

from twenty to fifty oscillator pairs, the identified values show very good agreement.

The averages of the identified values are as follows:

c1 = −0.2060, c2 = 2.4657× 108, c3 = −0.6679, c4 = 4.3477× 1010

The values identified for the coefficients of the linear terms display very good

agreement with standard deviations of less than two percent of the averaged val-

ues. The coefficients of the cubic terms, which are more susceptible to deviation,

have slightly larger standard deviation percentages but still remain consistent. In
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addition to providing a more effective means to characterize the amplitude profile

of a localization produced by a simulation, the form of the amplitude relationship

employed here also supports one of the analytical methods which is found to be the

most successful in realizing an intrinsic localized mode.

3.1.2 Nonlinear Vibration Mode Analyses

In order to determine if the amplitude ratios associated with an intrinsic localized

mode profile can be calculated analytically from a nonlinear normal mode analysis,

a number of different analysis methods are employed. These include the method

of multiple scales [56, 79], the restricted normal mode approach [44], as well as

the real-variable and complex-variable invariant-manifold approaches [56]. Future

studies will explore other asymptotic methods [57]. To perform these analyses, the

damping and forcing terms are dropped from equations (1.12) and (1.13). This is

done to study the invariant characteristics of the underlying conservative system.

For the purpose of this section, it is mentioned that it is assumed that there are no

internal resonances in the system.

Due to the characteristics of the localization and the periodic nature of the

array, an additional approximation can be made to simplify the array down to

a pair of coupled nonlinear oscillators. The first step in this simplification is to

assume that the amplitudes of the oscillators are symmetric about x0 as mentioned

previously and supported by figure 3.1(b). The next assumption to be made is

that the influence of x±2 on x±1 is negligible when compared to the influence of x0
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on x±1. This approximation is necessary for the restricted normal mode approach

and it has been found to improve the results obtained by using the method of

multiple scales approach. The resulting simplified model is then arranged into a

general form so that the equation governing the jth oscillator can be put in the

form of equation (3.5). When the index j is equal to a or an odd number for the

complete array model, equation (3.5) describes the larger of the micro-cantilevers.

The equation of motion of the smaller cantilever corresponds to j = b or when j is

equal to an even number for the complete array model. This arrangement results

in the center of the localization being located at one of the smaller, high-frequency

cantilevers. In the work reported by Sato et al. [49], this scenario was true for all

localizations observed in both the simulations and experiments.

d2qj(t)

dt2
+ ω2

j qj(t) + Gj = 0 (3.5)

ωj =


√

k2a/ma j, odd√
k2b/mb j, even

=


√

k2a/ma j = a√
k2b/mb j = b

(3.6)

Gj =
∑
k

g1,j,kq
3
k + g2,j,kqk (3.7)

In going from equations (1.12) and (1.13) to equation (3.5), the frequency ωj

and the terms Gj are introduced and defined by (3.6) and (3.7), respectively. In

equation (3.6), the definition of ωj is given for the simplified model following the

definition for the complete model. The values of these terms are dependent on the

index j. The term Gj includes the cubic term and the linear coupling terms from
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the model. The two coefficients g1,j,k and g2,j,k are dependent on the values of the

indices j and k. For the system at hand, these coefficients are defined, for both the

complete model and the simplified model, by equations (3.8) and (3.9). Based on the

values of the indices, these parameters are substituted into the resulting vibration

mode equations following each of the analyses. Complete derivations for each of the

methods presented are provided in appendix A.

g1,j,k =



k4/ma k = j, odd

k4/mb k = j, even

0 k 6= j

=



k4/ma k = j = a

k4/mb k = j = b

0 k 6= j

(3.8)

g2,j,k =



2 kI/ma k = j, odd

2 kI/mb k = j, even

−kI/mb k = j ± 1, odd

−kI/ma k = j ± 1, even

=



2 kI/ma k = j = a

2 kI/mb k = j = b

−2 kI/mb k, j = a, b

−kI/ma k, j = b, a

(3.9)

Method of Multiple Scales Approach

The method of multiple scales is a perturbation technique that uses multiple time

scales, as shown in equation (3.10), to determine approximate solutions to nonlinear

differential equations. In (3.10), the approximation and the derivative expansions

are also shown. For this analysis, the term Gj in (3.5) is considered to have values

significantly smaller than the other terms. This scaling is based on observations

of the relative contributions of the different terms in the equations of motion at

the center of the localization during the simulations. Both the inertia term and
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the linear stiffness term produce forces with magnitudes of the same order. The

amplitudes of the forces corresponding to the nonlinear term and the coupling term

are one order of magnitude smaller. The procedure for this method requires that the

influencing oscillator, in this case denoted by the index k, be considered as having a

non-zero order O(ε0) solution and the oscillator being influenced, represented by the

index j, as having an order O(ε0) solution that is trivial. The order O(ε0) solutions

are shown by (3.11).

Tn = εnt, xj = x0,j + ε x1,j + . . . ,
d

dt
=

∂

∂T0

+ ε
∂

∂T1

+ . . . (3.10)

x0,k(T0, T1) = ak(T1) cos (ωk T0 + βk(T1)) , x0,j(T0, T1) = 0 (3.11)

This allows the response of the jth oscillator to be defined in terms of the

response of the kth oscillator. The equation for the velocity of the jth oscillator is

obtained by taking the derivative of the displacement equation with respect to the

fastest time scale T0. Since coupling is limited to adjacent cantilevers and the two

cantilever structures have frequencies that are incommensurate, it is assumed that

internal resonance will not occur. Without internal resonance, these results as well

as those for the following methods will produce finite values. The procedure followed

for this analysis can be found in literature [56], and the details of this analysis can

be found in appendix A. Once the equations for the displacement qj and velocity pj

of the jth oscillator are derived, they are rewritten as functions of the behavior of

the kth oscillator.
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qj =
g2,j,k

ω2
k − ω2

j

qk +

(
7 ω2

k − ω2
j

)
g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)q3
k

+
6 g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)p2
k qk + . . . (3.12)

pj =
g2,j,k

ω2
k − ω2

j

pk +
3
(
3 ω2

k − ω2
j

)
q2
k g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)pk

+
6 g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)p3
k + . . . (3.13)

When examining (3.12) and (3.13), it is clear that these expressions are not

applicable in the presence of internal resonances in the system. Values are assigned

to j and k for j 6= k and the appropriate system parameters are substituted into

the manifold equations. Since only linear coupling is present, the coefficients of the

second and third terms of (3.12) and (3.13) are equal to zero for all values of j and k.

The remaining linear term has a value when k 6= j due to the linear coupling between

adjacent oscillators. The amplitude equations describing the manifold when k 6= j

for k = b and k = a are given by (3.14) and (3.15), respectively. The numerical

values of the system parameters are substituted into the equations in order to obtain

the numerical coefficients.

k = b, j = a qa =
kImb

k2amb − k2bma

qb + . . . = −0.2816 qb + . . . (3.14)

k = a, j = b qb =
kIma

k2bma − k2amb

qa + . . . = 0.6200 qa + . . . (3.15)

The form of these two equations indicates that the relationship between the

behaviors of two oscillators is affected by the linear properties of the oscillators and
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the coupling between them. When k = b, the equation describes the amplitude of

one of the low-frequency cantilevers caused by the amplitude of one of the high-

frequency cantilevers. When k is equal to a, the equation describes the amplitude

of one of the high-frequency cantilevers caused by the amplitude of one of the low-

frequency cantilevers. When the calculated values are negative, this indicates that

the oscillators will be half a period out of phase with the oscillator at the center of

the localization.

In order to produce an analytical amplitude profile to compare with the simu-

lation results, an amplitude value is selected for the center of the localization. This

value is selected based on the maximum amplitude values observed in the simulation

results. To produce this profile, equation (3.14) is used to determine the amplitudes

of x±1. The amplitude values for x±2 are calculated by using equation (3.15). By

repeatedly alternating the equations in this fashion, an analytical profile is produced

for this system. In figure 3.2(a), the amplitude profile for a region close to the center

of the localization is compared with the simulation results.

Restricted Normal Mode Approach

The second approach employed to analytically determine the amplitude profile is

the restricted normal mode approach. In this approach, it is assumed that the

two oscillators behave in a harmonic fashion with the same frequency but different

amplitudes, as shown in equation (3.16). These assumed forms are substituted into

the equations obtained from (3.5) for j = a and j = b. The resulting equations are

then combined to eliminate the frequency variable and the higher order harmonics
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Figure 3.2: Results of analytical studies: (a) a comparison of simulation profile (solid

line) and the profile obtained by using the method of multiple scales (dashed line)

and (b) the four roots of the polynomial from restricted normal mode approach.

are neglected, as discussed in appendix A. The equation produced is further modified

by defining each of the two amplitude variables as the product of a variable, R, and

a harmonic function of a second variable, θ, as shown in equation (3.17). The square

of the variable R is proportional to the total energy level of the oscillator pair. The

ratio of these amplitudes is defined by an additional variable, p. After incorporating

these definitions and variables, the resulting equation is a fourth-order polynomial

in p. This equation is presented as (3.18).

xa = A cos (ω t) , xb = B cos (ω t) (3.16)

A = R sin (θ) , B = R cos (θ) , p =
A

B
= tan(θ) (3.17)

p
(
1 + p2

)
(k2a mb − k2b ma)−

3

4
R2 k4 p

(
ma −mb p2

)
−kI

(
1 + p2

)
[2 ma p (1− p) + mb (1− 2 p)] = 0 (3.18)

65



The four roots of this polynomial are functions of R and the system parameters.

The value of R can be selected to determine the nonlinear vibration modes of the two

oscillators for different amplitude values. For a range of values of R, the four roots

are calculated, as shown in figure 3.2(b). The arctangent of the p values provides

θ values that are then used to calculate the amplitudes of A and B. A plot of the

corresponding values of amplitude A versus amplitude B for a range of R values is

presented in figure A.1 in appendix A. In figure 3.2(b), only two roots, p1 and p2,

exist for the range of R values that correspond to the amplitude values observed

in the simulations. The root p1, which is represented by the solid line, corresponds

to the amplitude ratio r1 and root p2, which is represented by the dash-dot-dash

line, corresponds to the inverse of the amplitude ratio r2. The roots are selected

in this manner to produce the ILM profile corresponding to the minimum energy

state. When the center amplitude is selected to agree with the simulation results,

an amplitude profile can be produced. A partial profile produced by this approach

around the center of the localization is shown along with the simulation result in

figure 3.3(a).

Real-Variable and Complex-Variable Invariant-Manifold Approach

The third approach employed to calculate the amplitude profiles corresponding to

an ILM in the micro-cantilever array is the two variations of the invariant-manifold

approach. The full procedure for implementing these analyses can be found in the

literature [56]. One of the strengths of this analysis is that the full multi-degree

of freedom system can be studied and the simplification is not necessary. The
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Figure 3.3: Results of analytical studies: (a) a comparison of simulated profile (solid

line) and analytical profile from restricted normal mode approach (dashed line) and

(b) a comparison of simulated profile (solid line) and analytical profile from modified

real-variable invariant-manifold approach (dashed line).

goal here is to determine the two-dimensional invariant-manifolds that define the

system’s normal modes. The two variations of the approach considered here are

the real-variable invariant-manifold approach and the complex-variable invariant-

manifold approach. The complex-variable approach differs from the real-variable

approach by using a single first-order complex-value equation rather than two first-

order real-value equations for each oscillator. When the complex-variable approach

is applied to the current system, the invariant-manifold given by equation (3.19)

is obtained. When converted to real-variable form, equations (3.20) and (3.21) are

produced.

hj =
g1,j,k

2 ωj (3 ωk − ωj)
ζ3
k +

3 g1,j,k

2 ωj (ωk − ωj)
ζ2
k ζ̄k

− 3 g1,j,k

2 ωj (ωk + ωj)
ζk ζ̄2

k −
g1,j,k

2 ωj (3 ωk + ωj)
ζ̄3
k (3.19)
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qj =

(
7 ω2

k − ω2
j

)
g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)q3
k +

6 g1,j,k(
9 ω2

k − ω2
j

) (
ω2

k − ω2
j

)qk p2
k + . . . (3.20)

pj =
6 g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)p3
k +

3
(
3 ω2

k − ω2
j

)
g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)q2
k pk + . . . (3.21)

When the results of the complex-variable approach are converted to real-

variable form, the resulting equations should be identical to the results of the real-

variable invariant-manifold approach, if the linear coupling terms are not present.

For this particular system, due to the difficulty of uncoupling the oscillators, the

results differ. Following the real-variable invariant-manifold approach, equations

(3.22) and (3.23) are produced.

qj =

[
7 (g2,k,k + ω2

k)− ω2
j

]
g1,j,k[

9 (g2,k,k + ω2
k)− ω2

j

] (
g2,k,k + ω2

k − ω2
j

)q3
k

+
6 g1,j,k[

9 (g2,k,k + ω2
k)− ω2

j

] (
g2,k,k + ω2

k − ω2
j

)qk p2
k + . . . (3.22)

pj =
6g1,j,k[

9 (g2,k,k + ω2
k)− ω2

j

] (
ω2

k − ω2
j

)p3
k

+
3
[
3 (g2,k,k + ω2

k)− ω2
j

]
g1,j,k[

9 (g2,k,k + ω2
k)− ω2

j

] (
ω2

k − ω2
j

)q2
k pk + . . . (3.23)

While the coefficients of the complex-variable analysis are not influenced by

the linear coupling term, the coefficients of the real-variable study are affected by

its presence. Additionally, due to the absence of nonlinear coupling within this

system, the variable g1,j,k, which is present in all of the manifold’s coefficients for

both the real-variable and complex-variable methods, is equal to zero for j 6= k.

As a result, it becomes clear that the real-variable and complex-variable invariant-

manifold approaches are not effective for systems that only have linear coupling.
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To accommodate the linear coupling of the system, a variation of the real-variable

invariant-manifold approach is proposed.

The real-variable invariant-manifold approach is modified to study a nonlin-

ear system with dominant linear behavior. The main modification is the inclusion

of linear terms in the assumed form of the manifold equations as shown in equa-

tion (3.24). To accommodate the nonlinear stiffness of the oscillators, a cubic term

is included in the manifold’s displacement equation. Due to the weak nature of the

nonlinear term, the manifold’s velocity equation includes only linear terms.

Qj =
∑
k

(
Γ1,j,kqk + Γ2,j,kq

3
k

)
, Pj =

∑
k

(Γ3,j,kpk) (3.24)

∂ Qj

∂qk

pk +
∂ Qj

∂pk

(
−ω2

kqk −Gk

)
= Pj (3.25)

∂ Pj

∂qk

pk +
∂ Pj

∂pk

(
−ω2

kqk −Gk

)
= −ω2

j Qj −Gj (3.26)

The manifold equations are then substituted into the equations of motion

given by equations (3.25) and (3.26), to solve for the coefficients Γ1,j,k, Γ2,j,k, and

Γ3,j,k. The definitions of these coefficients are listed in equations (3.27) and (3.28). It

follows that the displacement equation can describe the amplitude of one of the low-

frequency oscillators as a function of the amplitude of the adjacent high-frequency

cantilever as well as the opposite case.

Γ1,j,k = Γ3,j,k =
g2,j,k

g2,k,k + ω2
k − ω2

j

(3.27)
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Γ2,j,k =
g1,k,k

ω2
j

g2,j,k

g2,k,k + ω2
k − ω2

j

− g1,j,k

ω2
j

(3.28)

k = j ± 1, even:

Qj =
kImb

k2amb − k2bma − 2kIma

qk +
(k4kIma/k2a)

k2amb − k2bma − 2kIma

q3
k + . . .

= −0.1738 qk − 3.1576× 108 q3
k + . . . (3.29)

k = j ± 1, odd:

Qj =
kIma

k2bma − k2amb − 2kImb

qk +
(k4kImb/k2b)

k2bma − k2amb − 2kImb

q3
k + . . .

= 0.7096 qk + 9.1310× 108 q3
k + . . . (3.30)

The description of the amplitude of one of the low-frequency cantilevers as a

function of the amplitude of one of the high-frequency cantilevers is given by (3.29).

This corresponds to x±1 being influenced by x0. For the opposite case, the amplitude

of a high-frequency cantilever as a function of the amplitude of a neighboring low-

frequency cantilever is described by equation (3.30). For the particular silicon nitride

micro-cantilever array studied by Sato et al. [49], numerical values calculated with

this and the other methods are presented in Table 3.1 and Table 3.2.

Through the modification of the real-variable invariant-manifold approach, it

is possible to create an amplitude profile for a nonlinear array with the dominant

linear behavior. A partial amplitude profile produced by this analysis (dashed line) is

compared with the simulation profile (solid line) in figure 3.3(b), and good agreement

is seen. Although this method does not strictly follow the real-variable invariant-

manifold approach, the equations produced do comply with the requirements of the

manifold equations given as (3.31).
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qk = pk = 0

j = k

Qj(0, 0) = 0

Qk(qk, pk) = qk

Pj(0, 0) = 0

Pk(qk, pk) = pk

(3.31)

3.1.3 Floquet Theory

By using Floquet theory, the amplitude ratios predicted by the various methods are

examined to determine if they produce bounded, periodic solutions. To accomplish

this, the oscillators are simulated after initializing them with displacement values

corresponding to the amplitude values obtained through the different analysis meth-

ods and zero velocities. Results that appear to yield periodic solutions are examined

by using Floquet theory to determine if nearby trajectories will converge to these

solutions. Floquet theory is applied in the manner described in the text [75] by

following the evolution of the linearization and the full nonlinear system over one

period of the motion. The Floquet multipliers are calculated as the eigenvalues of

the corresponding monodromy matrix. Floquet multipliers with magnitudes greater

than one are used to identify unstable periodic solutions.

3.2 Analysis Results

The amplitude ratios r1 and r2 produced through this work are presented in Table 3.1

and Table 3.2, respectively. The data in the first row of the tables corresponds to

results obtained from the simulations with the linear relations and the second row

of the tables corresponds to results obtained from the simulations with the nonlin-

ear relations. The linear relations describe the amplitude ratios between adjacent

71



Table 3.1: Amplitude ratio r1 from simulation and analyses.

r1 Difference Difference

Method Value Linear Nonlinear

Simulation, Linear Relation -0.21 — —

Simulation, Nonlinear Relation -0.2060 — —

Method of Multiple Scales Approach -0.2816 25% 27%

Restricted Normal Modes Approach -0.1910 10% 7.9%

Invariant-Manifold Approach No Soln — —

Modified Real-Variable

Invariant-Manifold Approach -0.1940 8.2% 6.2%

oscillators of the average normalized profile. The nonlinear relations describe the

displacement relationships between adjacent oscillators fit to data over many periods

of oscillations with both linear and cubic terms. The remaining rows contain data

from the different analyses. The second column of each table contains the ampli-

tude ratio values. The values in the remaining columns are obtained by comparing

the calculated values with the values from the simulations from both the linear and

nonlinear relations.

3.2.1 Method of Multiple Scales Approach

After examining the analytical profile as well as the numerical coefficients of the two

equations, amplitude ratio values are produced. These values and comparisons with

the linear and nonlinear relations applied to the simulations are presented in the
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Table 3.2: Amplitude ratio r2 from simulation and analyses.

r2 Difference Difference

Method Value Linear Nonlinear

Simulation, Linear Relation -0.70 — —

Simulation, Nonlinear Relation -0.6679 — —

Method of Multiple Scales Approach -0.6200 13% 7.7%

Restricted Normal Modes Approach -0.5190 35% 29%

Invariant-Manifold Approach No Soln — —

Modified Real-Variable

Invariant-Manifold Approach -0.7118 1.7% 6.2%

third rows of Table 3.1 and Table 3.2. Despite the relatively small difference between

the displacement values as shown in figure 3.2(a), a simulation of the simplified

oscillator pair and subsequent stability analysis by using Floquet theory indicates

that the results obtained by using the method of multiple scales are not sufficient

to predict the characteristics of the localization phenomenon.

3.2.2 Restricted Normal Mode Approach

By using the equations that produced figure 3.2(b), an appropriate R value can be

identified for producing an amplitude value for B that corresponds to the amplitude

of x0 from the simulation results. After this is done, the value of p1 is equal to

the amplitude ratio r1. The value of A from the first relation is matched by using

p2 with a new value of R. The second amplitude ratio r2 is equal to the inverse
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of the value of p2. The results of this method are presented in the fourth rows of

Table 3.1 and Table 3.2. Simulations of the simplified system and stability analysis

by using Floquet theory confirm that the first amplitude ratio produced by the

restricted normal mode analysis results in a bounded, periodic solution. However,

for the second amplitude ratio, the difference between the calculated values and

those observed in the simulations is found to be too large. In order to further study

the results of the different methods, amplitude profiles are produced and used to

initialize the arrays for numerical simulations. This is done by setting the initial

displacements with the values from the amplitude profile and setting the initial

velocities to zero. The phase of the excitation sinusoid is set to synchronize with the

oscillations and the simulation is conducted. Although the equations of motion are

non-dimensionalized with respect to time and length, no special numerical schemes

are employed to account for numerical damping. When this method is used in an

attempt to initiate an ILM within an array, the ILM does not synchronize with the

excitation and decays very quickly. This failure to produce a pinned ILM is shown

in figure 3.4(a).

3.2.3 Invariant-Manifold Approaches

By again selecting a displacement value for the center of the localization, correspond-

ing to the amplitude obtained from the simulation, equations (3.29) and (3.30) are

used to predict the amplitude ratios when an ILM is present. These amplitude

ratios are listed in the sixth rows of Table 3.1 and Table 3.2. Simulation results
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Figure 3.4: Localization simulations: (a) failure to create an ILM with amplitude

ratios from the restricted normal mode approach and (b) the successful creation

of an ILM with amplitude ratios from the modified real-variable invariant-manifold

approach.

and Floquet multipliers indicate that a bounded, periodic solution is produced by

using the first amplitude ratio determined from this variation of the real-variable

invariant-manifold approach. By using equations (3.29) and (3.30), it is possible

to initiate an ILM within an array of coupled nonlinear oscillator pairs. A pinned

ILM can be produced from these amplitude ratios as shown in figure 3.4(b). Among

the different approaches examined in an attempt to analytically produce the char-

acteristic profile of an ILM, the modified real-variable invariant-manifold approach

is the most successful. This method produces nonlinear equations that can be used

to analytically create an amplitude profile for an ILM.

To further study the effectiveness of this method for predicting the amplitude

profile of an ILM, it has been applied to arrays with different parameter values.

The parameter values corresponding to the micro-cantilever array are varied and
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the coefficients of the amplitude equations are recalculated. The array system is

then simulated with these new parameter values and initial displacements calcu-

lated with the new amplitude equations. After correctly identifying the excitation

frequency necessary to maintain the localization, ILMs have been successfully placed

within these different systems. This is done by first altering only one of the sys-

tem parameters at a time, both by increasing and decreasing their values. After

gaining insight into the relationship between changes to the parameter values and

the excitation frequency, all of the mass and stiffness parameter values are varied

simultaneously to simulate a completely different array. The magnitude that the

values are varied is kept relatively small. The size of these changes are kept small in

order to ensure that the excitation level and center oscillator displacement do not

need to be changed and that only a single parameter, the excitation frequency, must

be modified. The successful application to these varied systems further supports

this modified method. It also suggests that the form of these types of localization

events can be predicted and that the localizations can be artificially initiated in this

manner.

Regarding the effects of noise on this system, simulations have been conducted

by adding a small-magnitude random signal with a uniform distribution to the ex-

citation. With a noise level at five percent of the amplitude of the sinusoidal signal,

ILMs could still be initiated and sustained with a ninety percent success rate. Ad-

ditional studies have also examined the effects of deviation from perfect periodicity

within the array on the localizations. Simulations suggest that the localization are

very sensitive to non-periodicity of the oscillators with a random variation of the
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mass or stiffness limiting the success rate for initiating ILMs to less than ten percent.

Within experimental systems, the non-uniformity of the resonance frequencies that

results from these variations can be accommodated with by tuning the resonators

with the addition of a DC bias.

The success of the modified real-variable invariant-manifold is thought to be

due to the linear coupling between the oscillators and the dominant linear behavior

observed within the array. Due to the range of motion of the oscillators, the contri-

butions of the cubic terms are negligible for most oscillators within the array when

compared to the contributions of the linear terms. The nonlinear vibration modes

obtained from this method are presented in Figure 3.5(a) and Figure 3.5(b) for the

maximum ranges of motion experienced at a localization. The solid line represents

the nonlinear vibration mode while the dashed line corresponds to only the linear

term. The close-up views within these figures indicate that nonlinear behavior is

prominent only for the largest amplitude values experienced by the oscillator at the

center of the ILM.

This results in circumstances that are analogous to the case of a localiza-

tion resulting from a defect within an array of coupled, linear oscillators. When

the amplitude of an oscillator within the system examined grows large enough, its

behavior becomes nonlinear distinguishing it from the other oscillators within the

array. Without the nonlinearity, this type of localization phenomenon cannot occur.
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Figure 3.5: Nonlinear vibration modes: (a) the nonlinear vibration modes relating

motion of x0 and x±1 for the range of motion experienced during an ILM and (b) the

nonlinear vibration modes relating motion of x±1 and x±2 for the range of motion

experienced during an ILM. The nonlinear vibration modes are represented by the

solid curves and the dashed line corresponds to only the linear term. The units are

in micrometers.
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3.3 Effects of Internal Resonance

3.3.1 One-to-One Internal Resonance

A number of methods explored to calculate nonlinear normal modes produced re-

sults that are sensitive to cases of internal resonance. Both the Method of Multi-

ple Scales Approach and the Invariant-Manifold Approach produced equations that

would result in a singularity when either one-to-one or three-to-one internal reso-

nance conditions existed. Here, these conditions are investigated to identify how

internal resonance affects the behavior of ILMs. In each case the system’s param-

eters are modified so that every pair of oscillators within the array experiences the

internal resonance conditions.

The first condition to be examined is that of one-to-one internal resonance. In

the case of a system of coupled oscillators, this would produce a mono-element array

which is an array of identical oscillators. A di-element array is an array consisting of

two types of oscillators that are arranged in a periodic fashion. Within the literature

[49], the selection of a di-element array for use with a uniform excitation method is

discussed and related to the dispersion curves associated with the arrays.

Dispersion curves provide both spatial and temporal information about wave

propagation within a discrete structure. Dispersion curves are calculated by assum-

ing that the displacement of the elements in the lattice, or in this case the two types

of oscillators, can be described by using equations (3.32) and (3.33). Within this

equation, xa and xb are the displacements of the oscillators and they are functions

of the oscillator number n and time t. The oscillation amplitudes are represented
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by Xa and Xb, a is the oscillator spacing, ω is the frequency, and k is the wave

number. The wave number is defined by equation 3.34, where λ is the wavelength

of the vibrations. These equations are substituted into the linearized, conservative

equations of motion and written in matrix form, as shown by equation (3.35). To

ensure a non-trivial solution for the vector of oscillation amplitudes, the determi-

nant of the matrix is set equal to zero. The resulting equation is then solved for the

frequency parameter ω and plotted as a function of the wave number k to produce

the dispersion curves.

xa (n, t) = Xae
i(n a k−ω t) (3.32)

xb (n, t) = Xbe
i(n a k−ω t) (3.33)

k =
2π

λ
(3.34)

 ma ω2 − k2a − 2 kI kI

(
1 + e−i a k

)
kI

(
1 + e−i a k

)
mb ω2 − k2b − 2 kI

 .


Xa

Xb

 =


0

0

 (3.35)

When compared with the mono-element array, the use of a di-element array

causes the dispersion curve to be folded back, resulting in the highest frequency

vibrational mode being at the zone center, as shown in Fig. 3.6. By folding back the

dispersion curve, a stop band is produced and, for hard anharmonicity, ILMs will

be created at the zone center at slightly higher frequencies. For the case of one-to-

one internal resonance within a system that is being uniformly excited, the absence
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k

ILM

Figure 3.6: Dispersion curves for mono-element (dashed) and di-element (solid)

arrays. The horizontal axis corresponds to the wave number and the vertical axis

corresponds to the frequency.

of the higher frequency vibrational mode allows the energy to disperse throughout

the array and inhibits the formation of these ILMs. While it is possible to study

localization in a mono-element array through the use of non-uniform excitation

methods, within this type of array, localizations will not be produced and these

conditions are not investigated here.

3.3.2 Three-to-One Internal Resonance

The second condition that would result in a singularity within the equations derived

with both the Method of Multiple Scales Approach and the Invariant-Manifold Ap-

proach is a three-to-one internal resonance. Under this condition, the resonance

frequencies of the two cantilever structures that make up the di-element array have

a relationship such that the frequency value of one is approximately equal to three

times the frequency value of the other; that is, ωb ≈ 3 ωa. In order to study the
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Table 3.3: Parameter values for three-to-one internal resonance condition.

Parameter Value

ma 6.0× 10−13 kg

mb 2.0× 10−13 kg

k2a 0.1 N/m

k2b 0.3 N/m

behavior of ILMs within a system where these conditions exist, the mass and stiff-

ness values associated with oscillators are modified. All other parameter values and

procedures remain unchanged. The new values, given in table 3.3, are selected to be

of the same orders of magnitude as the previous values while producing the desired

three-to-one internal resonance condition. As a result of the changes to the values

of the linear stiffness parameters, the relative strength of the nonlinear stiffness is

maintained with little change. Due to the change in the stiffness of the low frequency

oscillator, the value of the force produced by the nonlinear term for the oscillators

adjacent to the center of the ILM is increased to about two percent of the force

value produced by the linear term. The force ratios at the center of the ILM and

away from the ILM are not significantly affected.

With the new parameter values selected, the resulting dispersion curves are

examined to ensure that the formation of the localization events is able to occur.

Although the dispersion curves, shown in figure 3.7, reveal the necessary di-element
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Figure 3.7: Dispersion curve for di-element array with three-to-one internal reso-

nance.

form, the new parameter values increase the range of the frequency band, the differ-

ence between the highest and lowest frequencies of the array, from 23.3 kHz to more

than 130 kHz. In order to study how this large frequency band affects the behavior

of the ILMs and their characteristic amplitude profile, simulations are conducted

for an array of fifty oscillator pairs by using the new parameter values.

Numerical Simulations

Simulations conducted with the new parameter values are found to successfully gen-

erate localization events within the array. The use of the new parameter values

is found to result in conditions that are much more conducive to the formation of

ILMs. While numerous attempts are necessary in order to produce a simulation

where a locked ILM is observed using the original parameter values, multiple locked

ILMs are produced in most simulation with the new parameter values. As a result

of the greater quantity of locked ILMs, more ILMs becoming synchronized with the

excitation to become pinned ILMs. Representative results of a simulation conducted
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Figure 3.8: ILM simulation results for a di-element array with three-to-one internal

resonance.

by using the new parameter values is shown in figure 3.8. In this simulation, eleven

locked ILMs are produced and two synchronize with the constant frequency exci-

tation to become pinned ILMs. This simulation differs slightly from the previous

simulation in that the second phase of excitation is increased from 5000 periods of

oscillation to 35000 periods in order to allow more time for the transient oscillations

sufficient time to decay.

In order to determine whether this increased number of simulated ILMs is

a characteristic of the three-to-one internal resonance condition, simulations are

conducted by using the parameter values that produce near three-to-one internal

resonance conditions. By changing the values of the mass and stiffness parameters,

the resonance frequency of one type of oscillator is set to be 3.1 times the resonance

frequency of the other type of oscillator. These parameter values are used and

simulations are performed. The results of the simulations show the same increased

level of the production of locked ILMs that was seen for the three-to-one internal

resonance conditions. This suggests that the difference between the results of the
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simulations conducted with the original parameter values from table 1.3 in chapter

one and the simulations performed with the values listed in table 3.3 is a result of

the drastic increase in the frequency band of the array and not due to any type of

resonance phenomenon.

To further study the effects of the three-to-one internal resonance condition on

the localization events, the amplitude profile of the pinned ILM is examined. This

is done by selecting the data for ten thousand periods of oscillation from just before

the end of the second excitation phase for the oscillators in the direct vicinity of the

oscillator at the center of the pinned ILM, henceforth to be referred to as x0. To

ensure the quality of the results a number of the profiles are removed from the set;

6.4% for the original parameters and 8.3% for the three-to-one internal resonance

condition. These profiles correspond to instances where the displacement at the

center of the localization has a magnitude less than 0.1 µm, a condition that has been

found to be problematic when normalizing the profiles. The displacement values that

make up the remaining profiles are normalized by the displacement of x0. After

normalizing the displacement profiles, an average profile is calculated. Additionally,

the standard deviation of the profile is also calculated in order to determine how well

the average represents the behavior of the ILM. For the original parameter values,

x±1 and x±2 have average standard deviation values that are 0.74% and 2.5% of the

average values, respectively. With the parameter values necessary to produce three-

to-one internal resonance conditions, the average standard deviation values for x±1

and x±2 are 4.3% and 68% of the average values, respectively. Most of the standard

deviation values are only a small percent of the average value. The large percentage

85



-2 -1 0 1 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Relative Position

A
ve

ra
ge

 N
or

m
al

iz
ed

 A
m

pl
itu

de Original Parameters
3:1 Internal Resonance

Figure 3.9: Comparison of the ILM profile for the original parameter values (solid)

with the profile for three-to-one internal resonance conditions (dashed).

associated with x±2 for the three-to-one internal resonance condition results from

the average normalized amplitude value being equal to only 0.019. The standard

deviations are relatively small and this would indicate the average values provide an

accurate representation of the amplitudes of the oscillators when an ILM occurs.

The average normalized displacement profiles for these two conditions are pre-

sented in figure 3.9. The symmetry of the amplitude profiles in the figure is found

to be a characteristic of the ILMs and it is taken into account when analyzing their

behavior. In addition to the increased quantity of localizations, the comparison of

the amplitude profiles shows that when three-to-one internal resonance conditions

exist, the amplitudes of x±1 are considerably smaller, indicating that the energy is

more concentrated. The difference in the amplitude profiles is further explored by

calculating the ratios of the amplitudes between adjacent oscillators. The amplitude

ratios are listed in table 3.4. The first column of values corresponds to the original

parameter values and the second column of values corresponds to the three-to-one

internal resonance conditions. In order to determine if the three-to-one internal res-
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Table 3.4: Amplitude ratios.

Ratio Original System 3:1 Conditions Near 3:1

r1 -0.192 -0.026 -0.024

r2 -0.518 -0.731 -0.711

onance condition that produces this high level of energy concentration, amplitude

ratio values are also calculated for near three-to-one internal resonance conditions

and listed as the final column in table 3.4. These amplitude ratio values are very

similar to the previous column of values, again suggesting that the large frequency

band is responsible for the drastic change in performance from the original system.

By investigating an array where the three-to-one internal resonance condition

exists with the aid of numerical simulations, insight has been gained into the behav-

ior of ILMs under these conditions. The effects of these internal resonance conditions

on the amplitude profile of the ILM have also been investigated. With the aid of

the amplitude profiles and amplitude ratios obtained from the numerical investiga-

tion, analytical studies are conducted to further examine the effects of three-to-one

internal resonance conditions on the nonlinear localization phenomenon known as

intrinsic localized modes.
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Analytical Studies

In order to continue studying the manner in which three-to-one internal resonance

conditions affect the behavior of ILMs, an analytical investigation is conducted. The

computational details for producing the nonlinear modes by using the Method of

Multiple Scales Approach [56, 75] and the Invariant Manifold Approach [56] need

to be modified in the presence of internal resonance. However, with either the Re-

stricted Normal Mode Approach [44] or a linearized version of the Invariant Manifold

Approach [80], the computational approach to produce the nonlinear modes remains

the same for the cases with and without the internal resonance. By using the re-

sults obtained with these methods from the previous section, the new parameter

values from table 3.3 are substituted into the equations in order to obtain results

for three-to-one internal resonance conditions.

Before applying the Restricted Normal Mode Approach, it is necessary to use

the model simplification to reduce the system down to a single pair of coupled oscil-

lators. The damping and excitation terms are also omitted to produce a conservative

model. The restricted normal mode approach is applied in the manner described by

(3.16), (3.17), and (3.18).

The four roots of (3.18) for the new parameter values are plotted in figure 3.10

for a range of R values. A close-up view of the root represented by the solid curve

is shown in the insert. The values obtained for the roots pn of the polynomial are

used to calculate values for the parameters θn which are then used to calculate

values for the amplitudes An and Bn. For the oscillation amplitudes observed in the
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Figure 3.10: Four roots of the polynomial of the Restricted Normal Mode Approach.

The roots are plotted as a function of the parameter R with the different styles: dash,

dot-dash, and dot-dot-dash. The fourth root to the polynomial, which is represented

by the solid curve, is shown in the insert.

numerical simulations, the values of R will be less than 10× 10−6, eliminating two

of the roots. The two remaining roots are used to construct an amplitude profile.

This is done by first selecting an amplitude value for x0. Based on the simulation

results, an amplitude of 8 µm is used. By using the root represented in figure 3.10

by the solid curve, a value of −0.194 µm is calculated for x±1. The root represented

by the dash-dot curve is used to calculate an amplitude value of 0.0303 µm for x±2.

As before, the order in which the two roots are selected is decided so as to produce

the amplitude profile that corresponds to the lower energy state. These amplitude

values are compared with the results obtained from the simulation in figure 3.11.

The solid curve corresponds to the results of the simulation and the results of the

Restricted Normal Mode Approach are represented by the dashed curve.
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Figure 3.11: Comparison of results from the Restricted Normal Mode Approach

(dashed) with simulation results (solid).

Before applying the Linearized Invariant-Manifold Approach, the model of

this system, (1.12) and (1.13), is required in a general form. The general form,

shown as (3.5), provides a single equation able to describe the behavior of both

styles of oscillators depending on the value of the index j. With the equations of

motion rewritten in the general form, the linearized form of the Invariant-Manifold

Approach is performed. The values of the system parameters are substituted into

the displacement manifold equation and the amplitude values corresponding to the

oscillation profile of an ILM are calculated. With a value of 8 µm selected for the

amplitude of x0, equation (3.29) is used and a value of −0.400 µm is calculated

for x±1. Similarly, equation (3.30) is used and a value of −0.0385 µm is calculated

for x±2. These amplitude values are compared with the average profile obtained

from the simulation in figure 3.12. The solid curve corresponds to the simulation

profile and the profile obtained by using the linearized Invariant-Manifold Approach

is represented by the dashed curve.
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Figure 3.12: Comparison of results from linearized Invariant-Manifold Approach

(dashed) with simulation results (solid).

Floquet Theory

In order to investigate the stability of the results obtained from the Restricted

Normal Mode Approach and the linearized Invariant-Manifold Approach, Floquet

Theory is employed. To perform this study, the oscillators are simulated after ini-

tializing them with zero velocities and displacement values corresponding to the

amplitude values obtained from the two analytical methods. The periodic oscilla-

tions are examined by using Floquet Theory to determine if nearby trajectories will

converge to these solutions. Floquet multipliers with values greater than one are

used to identify unstable periodic solutions.

3.3.3 Results

While studying Intrinsic Localized Modes (ILMs), various methods to determine

nonlinear normal modes were employed in an attempt to analytically determine the

amplitude profile associated with the pinned ILMs. The resulting equations pro-

91



duced by particular computational applications of multiple methods were found to

be sensitive to one-to-one or three-to-one internal resonance conditions. An inves-

tigation is conducted to examine how these internal resonance conditions affect the

behavior of ILMs. This investigation is conducted with the aid of analytical and

numerical methods.

The first internal resonance conditions examined is that of one-to-one inter-

nal resonance. Within an array of coupled oscillators, this conditions produces a

mono-element array and, based upon the desire to excite the array uniformly, this

configuration is not conducive to the formation of ILMs. This is verified by examin-

ing the dispersion curves associated with both array configurations. Based upon this

information, the one-to-one internal resonance condition is not studied any further

and attention is directed toward the three-to-one internal resonance condition.

In considering the three-to-one internal resonance condition, the dispersion

curves are examined to verify that ILMs will form. While the structure of the

curves indicate that ILMs will exist within the system, the new resonance frequencies

cause the array’s frequency band to be increased from 23.3 kHz to more than 130

kHz. In order to study the behavior of ILMs under these new conditions, numerical

simulations are performed for an array of fifty oscillator pairs. These simulations

are found to produce a greater quantity of locked and pinned ILMs than with the

original system parameters. This is found to be due to the change in the resonance

frequencies and not a unique result of the resonance conditions as similar results

are obtained for near resonance conditions. This may be useful knowledge when

developing applications for this phenomenon as it suggests that it may be easier to
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Table 3.5: Amplitude ratios for three-to-one internal resonance conditions.

Ratio Simulation RNM Approach LIM Approach

r1 -0.026 -0.024 -0.050

r2 -0.731 -0.156 -0.096

produce ILMs in arrays with wide frequency bands. Additionally, it is found that

under the new conditions, the amplitude profile of the ILM shows a higher degree of

energy concentration with the amplitude values decaying much more rapidly when

moving out from the center of the pinned ILM. Again, near resonance conditions

produce similar results suggesting that this is a result of the wide frequency band

and it is not unique to the resonance conditions. This relationship between energy

concentration and the frequency band may also be beneficial when utilizing this

phenomenon in applications.

By using two analytical methods that were found to produce equations that

were not sensitive to the internal resonance conditions, values are obtained for the

amplitude ratios between the oscillators in the vicinity of the center of the ILM.

These values are listed in table 3.5. Within the table, the first column of values

corresponding to the simulation results and the second column and third column

correspond to the Restricted Normal Mode Approach and the linearized Invariant-

Manifold Approach, respectively. The negative sign indicates that adjacent oscilla-

tors are oscillating half a period out of phase. The values of the amplitude ratios
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indicate that for three-to-one internal resonance conditions, the Restricted Normal

Mode Approach performs better than the linearized Invariant-Manifold Approach

but neither method is able to successfully determine a value for the second amplitude

ratio.

The r1 value for the Restricted Normal Mode Approach shows the best agree-

ment with the results obtained from the simulation. When investigated further, this

amplitude ratio is found to produce a periodic solution within the simplified model

and all of the Floquet multipliers have magnitudes that are less than one. This

appears to be due to how successfully the simplified model represents the amplitude

profile of the ILM. The greater rate of the decrease of the amplitude values when

moving out from the center of the ILM causes x±2 to have a very small influence

on x±1, in agreement with the simplification. However, the simplification is based

on the relationship between x0 and x±1 and does not take into account the circum-

stances surrounding the pair consisting of x±1 and x±2. In order to improve the

performance of this method and obtain a better value for r2, a second simplified

model is required. In previous work, it has been found that when the amplitude

profile of the ILM is used to initialize the displacements of the array, it is possible to

initiate the localization phenomenon at the selected location without the transient

localizations that form during the ‘chirp’ phase of the excitation. This is done by

using initial velocities equal to zero and, after skipping the first phase of the ex-

citation frequency profile, correctly selecting the phase for the constant frequency

excitation. Possibly due to the difference between the r2 value from the simulation

and the value obtained from this method, when an amplitude profile is constructed
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and used to initialize a simulation, the ILM does not become synchronized and

quickly dissipates.

The amplitude ratios produced by the linearized Invariant-Manifold Approach

do not show as good agreement with the values obtained from the simulations.

Despite the use of a complete model which does not incorporate any simplifications,

the calculated value of r1 is found to be almost twice the value from the simulation.

It is found that a periodic solution is not produced when the amplitude ratio is used

to initialize the simulation and as a result, Floquet multipliers are not calculated.

Also, as with the Restricted Normal Mode Approach, the value calculated for r2 is

found to differ from the simulation value by almost an order of magnitude. One

possible explanation for the poor agreement between the values for the amplitude

ratio r2 is that the amplitude values are extremely small and the results from the

simulation may still be affected by transient behavior. It should be noted that the

standard deviation for the amplitude value of x±2 was sixty-eight percent of the

average values. In future work, it may be necessary to extend the length of the

simulation in order to allow for the further decay of transient localizations.

3.4 Summary

A relationship is identified between nonlinear vibration modes and the so-called

intrinsic localized modes more commonly studied in the field of solid state physics.

By using methods for calculating nonlinear normal modes, a process is developed

to analytically calculate the amplitude profile of these localization events from the
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system model. This provides an increased level of understanding of the relationship

between the spatial characteristics of the localizations and the system parameters

of the array. The ILMs are also studied in systems where the difference between

the fundamental frequencies of the devices is increased significantly. Numerical

simulations suggest that this will result in changes to the spatial characteristics of

the ILMs as well as changes to their behavior within an array. In the next chapter,

many of the modeling and simulation methods and nonlinear analyses utilized to

study piezoelectric micro-scale resonators are applied to a cantilever beam impactor

system in order to study a period doubling phenomenon.
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Chapter 4

Cantilever Beam Impactor System

In this chapter, a grazing bifurcation is examined in a system consisting of a can-

tilever beam with a small tip mass to act as an impactor and a piece of compliant

material positioned to constrain the motion of the beam for large amplitude os-

cillations. The analytical and numerical models for this system are developed in

the first section. In the second section, the system’s response is studied for differ-

ent excitation and constraint conditions. Additional experiments conducted with

a commercial atomic force microscopy system to ensure that the behavior of the

macro-scale test apparatus is representative of the micro-scale system are discussed

in the third section.
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4.1 System Modeling

Within this section, the macro-scale experimental setup used in this dissertation is

discussed and an analytical model is developed for the system. Starting from energy

equations, a nonlinear beam model is developed to describe the behavior of this

system. A reduced order model is produced through the use of the Galerkin method

with a multi-mode approximation. The discretized system is used to simulate the

response of the system. Experimental data is utilized in order to identify parameter

values and determine the minimum number of mode shapes required to successfully

model the behavior of the test apparatus.

4.1.1 Macro-Scale Experimental Setup

The system being investigated consists of a long, slender phosphor bronze beam.

The beam is cantilevered from a movable fixture and oriented in such a fashion as

to avoid gravitational effects. This is done to represent the negligible effect of gravity

on a micro-scale structure when compared to the other forces acting on the system.

The fixture is mounted on a ball screw and actuated by an AC servo motor in order

to harmonically excite the cantilever beam. The servo motor is controlled by a

closed-loop control scheme that employs an optical sensor to monitor the position

of the movable fixture. At the free end, a small bolt is affixed to the beam with

a hex nut in order to act as an impactor. The response of the beam at the free

end is monitored with a laser displacement sensor. This data is used to study the

behavior of the system and in the development of the system model. The data is also
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compared with the simulated response to verify the performance of the numerical

simulation. A compliant contact material made of a very soft foam rubber material

is placed onto a high resolution manual stage which is positioned along the beam in

line with the impactor. This will allow for collisions to occur periodically between the

impactor and the contact material when the stage is sufficiently close to the beam.

A diagram of this system is shown in figure 1.9 in chapter one. Some important

system parameters are listed in table 1.4 which is also located in chapter one.

4.1.2 Model Development

To model the behavior of this system, a nonlinear beam model is developed, taking

into account a number of potential sources of nonlinearity. This is done so that

the model is able to accurately describe the large deflections that may be experi-

enced when the beam is excited near resonance. In order to derive the equation of

motion, the beam is first assumed to be inextensional. The inextensionality con-

dition provides a relation between the longitudinal displacement of the beam and

the transverse displacement of the beam, represented by w (s, t) in the model. This

displacement is a function of both time t and the position s along the length of the

structure.

The first step toward obtaining the equation of motion for the transverse

vibrations of the beam is to determine the kinetic and potential energies of the

system. The total kinetic energy consists of the kinetic energy of the beam for both

longitudinal and transverse motion and the kinetic energy of the impactor for both
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longitudinal and transverse motion. In order to account for the base excitation,

a moving reference frame X (t) is utilized to represent the displacement produced

by the linear guide actuator [81]. Due to the slenderness of the beam, the rotary

inertia is neglected. The rotary inertia of the impactor is also considered to be

negligible, allowing for it to be modeled as a point mass. Due to the orientation

of the beam, the total potential energy consists of only the potential energy from a

bending stiffness term. The total energy equations are combined with a Lagrange

multiplier and the inextensionality condition to form the augmented Lagrangian.

The augmented Lagrangian and the non-conservative work are combined and the

variation of this sum is integrated with respect to time in order to apply the extended

Hamilton’s principle. For this system, the non-conservative work is produced by the

discontinuous contact force, Fc (t), that results from collisions between the impactor

and the surface of the contact material. Through this process, and by neglecting

terms of orders higher than cubic, a partial differential equation of motion is obtained

for the transverse displacement of the cantilever beam. In this equation, over-dots

are used to represent derivatives with respect to time and derivatives with respect

to position are represented by the prime symbol.

EI wiv + EI
[
w′ (w′w′′)

′]′
+

+cl ẇ + cnl ẇ |ẇ|+

+ρA ẅ − mtip

2
w′′
[∫ L

0

∂2

∂t2
(w′)

2
ds

]
+

+
ρA

2

{
w′
∫ s

L

[∫ s

0

∂2

∂t2
(w′)

2
ds

]
ds

}′
= Fb + Fc (4.1)
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This equation, shown as (4.1), includes both linear and nonlinear inertial

terms, linear and nonlinear bending stiffness terms, and a nonlinear inertial term

corresponding to the impactor. Linear and nonlinear damping terms are also added

to account for energy dissipation. The form of these terms is discussed later when

the values of the damping coefficients are determined. This equation also includes

the forces Fb and Fc acting on the beam as a result of the base excitation and colli-

sions with the contact material, respectively. The force acting on the beam due to

the base excitation is calculated as the product of the mass per length of the beam

and the acceleration applied to the structure. In the case of harmonic excitation, the

force is defined by (4.2) where X0 is the displacement amplitude of the excitation

and ω is the excitation frequency.

Fb = −ρA Ẍ (t) = ρA ω2X0 cos (ω t) (4.2)

Since the contact material is compliant in nature, the discontinuous force re-

sulting from contact between the material and the impactor is represented with a

piecewise linear model. The contact force, defined by (4.4), consists of a restoring

force acting on the beam when the displacement of the beam tip is greater than

the separation distance b between the contact material surface and the center of

oscillation of the beam. The restoring force, defined by (4.4), is a function of the

stiffness and damping coefficients of the contact material and the displacement and

velocity of the impactor at the free end of the beam. An additional requirement

for the model is that the value of the restoring force must be positive as a negative
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value would indicate that the beam has separated from the contact material. This

would occur when the beam is moving away from the contact material at a greater

rate than the material is able to return to its uncompressed position.

Fc =


Fr w (L, t) > b and Fr > 0

0 otherwise

(4.3)

Fr = kc [w (L, t)− b] + cc ẇ (L, t) (4.4)

The boundary conditions, shown as (4.5) and (4.6) for s = 0 and as (4.7) and

(4.8) for s = L, are also obtained from the extended Hamilton’s principle. The

boundary conditions are those of a uniform cantilever beam with the exception that

the shear force at the free end of the beam must balance the inertial force of the

impactor.

w (s, t)|s=0 = 0 (4.5)

w′ (s, t)|s=0 = 0 (4.6)

EI w′′ (s, t)|s=L = 0 (4.7)

EI w′′′ (s, t)|s=L = mtip ẅ (s, t)|s=L (4.8)

With these boundary conditions and the partial differential equation of motion,

a complete model is established for this system and numerical methods are utilized

in order to study its dynamic behavior.
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4.1.3 Numerical Simulations

A reduced-order-model is developed from the nonlinear beam model derived in the

previous section in order to obtain a discretized model of the system. The discrete

model is then used to conduct numerical experiments in order to study the dynamic

behavior of the system.

Model Discretization

Through this process, the response of the cantilever beam is approximated by the

summation of a finite number of modal responses. By using separation of variables,

the transverse displacement of the beam, w (s, t), is separated into a finite number

of position dependent mode shapes, φn (s), and time dependent modal responses,

qn (t). The forms of the mode shapes are calculated from a linearized, conservative

form of (4.1) which is obtained by removing the nonlinear terms, the damping terms,

and the excitation terms. By approximating the behavior of the system with these

linear mode shapes, the Galerkin method is applied to the nonlinear beam model.

Through this process, a number of N×N modal parameter matrices and N×1 modal

force vectors are produced where N is the number of mode shapes used to discretize

the system. The equations that are used to calculate the values of the components of

these matrices and vectors are included in appendix B. This discretization produces

the equation of motion that is used to simulate the dynamic behavior of the system.

This equation is shown as (4.9).
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[M ] {q̈}+ [K] {q}+ [CL] {q̇}+

+ [CNL] {q̇ |q̇|}+ [α1]
{
q3
}

+

+ [α2]
{
q̇2q + q2q̈

}
= {FB}+ {FC} (4.9)

The mode shapes are normalized causing the mass matrix, [M ], to be equal

to the identity matrix and the stiffness matrix, [K], to be a diagonal matrix where

the components are equal to the system’s characteristic frequencies squared. Non-

zero off-diagonal components in the modal parameter matrices for the nonlinear

stiffness, [α1], and for the nonlinear inertia, [α2], reveal nonlinear coupling between

the different vibration modes. The linear and nonlinear damping matrices, [CL] and

[CNL], are approximated by using linear and nonlinear damping factors.

The two sources of external force acting on the system are the base excitation

and the collisions between the impactor and the contact material surface. The

modal forces due to base excitation, {FB}, are calculated from the beam properties

and excitation conditions. To calculate the values of the modal forces resulting

from periodic impacts, the modal responses are combined to determine the system

response and the corresponding force acting on the system. Additional calculations

are then performed to separate this force into the modal components, {FC}, for use

within the numerical simulations.

The N × 1 column vector {q} contains the modal response coordinates for the

first N vibration modes of the system. The components of this vector are operated

on as indicated in (4.9) to produce time derivatives and nonlinear terms.
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Damping and Contact Material

While the values of the components in the modal mass and modal stiffness matrices

are calculated from the geometry of the beam and known material properties, the

damping within the system is not quantified quite as easily. To determine the form

of the damping and the corresponding coefficient values, an identification process

using experimental data is employed. The coefficient values for the stiffness and

damping associated with the contact material are also determined with the aid of

experimental methods.

In order to accurately model the dissipation of energy by the cantilever beam

for the range of motion to be studied, both viscous damping and aerodynamic

damping terms are included in the equation of motion. Free-vibration displacement

data is collected and the local minima and maxima of the decaying sinusoid are

identified and compared with equivalent data produced by numerical simulation.

Since the linear and nonlinear damping factors affect the decay of the free vibrating

system differently, a unique solution is obtained. The two parameter values are tuned

in order to minimize the error between the experimental data and the simulated

response. The identified parameter values are presented in table 4.1.

As indicated by (4.4), both the stiffness and damping of the contact material

are modeled with linear relationships. This assumption is made since the focus

of this investigation is on the transition between unconstrained and constrained

behavior, limiting the amount of compression experienced by the contact material.

The stiffness of the contact material is calculated with the aid of the high resolution
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Table 4.1: Linear and nonlinear damping factors.

Parameter Value

Linear Damping Factor, ζL 4.0× 10−4

Nonlinear Damping Factor, ζNL 1.3 m−1

Stiffness Coefficient, kc 85.68 N/m

Damping Coefficient, cc 1.7 Ns/m

manual stage and a force transducer. The restoring force of the contact material is

measured under static conditions for a number of different compression distances.

This data is then plotted and fit with a linear trend-line to obtain the linear stiffness

coefficient in the form of the slope. The values of the stiffness coefficient for the

contact material is listed in table 4.1.

In order to obtain a value for the last unknown parameter, the damping coef-

ficient of the contact material, simulated responses are again compared with experi-

mental data but under conditions where the system is excited and periodic collisions

occur between the impactor and the surface of the contact material. The value of

the damping coefficient is tuned in order to match the response predicted by the

simulation with experimental data for the same excitation and constraint conditions.

The damping coefficient identified through this comparison is presented in the final

row of table 4.1.
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Number of Mode Shapes

In order to accurately model the dynamic behavior of the system, simulations are

performed and compared with experimental observations in order to determine the

minimum number of mode shapes required. Within the investigation, harmonic ex-

citation is applied at frequencies between the system’s fundamental frequency and

second characteristic frequency. It is determined that a multi-mode approximation

is necessary to model the vibrations of the beam, even in the case of unconstrained

motion when the system is excited near the fundamental frequency. Under these

conditions, quasi-periodic behavior is observed and realized within the model by

nonlinear coupling between the system’s modes of vibration. The simulated behav-

ior is seen to agree with the experimental observations, as shown in figure 4.1(a)

and figure 4.1(b). The data is presented in the form of phase portraits to show the

response in greater detail. This provides for a more complete comparison between

the experimental and simulated responses. The velocity values for the experimental

data are calculated from the measured displacement values. The multi-mode ap-

proximation is found to be even more important when the system is experiencing

periodic collisions between the impactor and the surface of the contact material.

When the separation distance is decreased below a critical value, the contact mate-

rial constrains the motion of the oscillating beam, partially forcing the first mode

of vibration into the profile of the second vibration mode. Phase portrait plots of

experimental and simulated responses for constrained conditions are also shown in

figure 4.1.
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Figure 4.1: Phase portraits of the system’s response to harmonic excitation near

the fundamental frequency: (a) the response measured experimentally and (b) the

simulated response.

A multi-mode approximation is also required when the system is excited at

frequencies between the system’s first and second characteristic frequencies. For

unconstrained conditions, the system’s response is observed to be oscillations at the

excitation frequency with a considerable amount of amplitude modulation. As in

the previous case, this quasi-periodic behavior is realized within the model by the

nonlinear coupling. The use of the multi-mode approximation enables the simulation

to predict the amplitude modulation, but more importantly it enables the model to

provide an accurate simulation of the system’s response for constrained conditions.

The response to harmonic excitation with a frequency between the first and second

characteristic frequencies for unconstrained and constrained conditions are shown in

figure 4.2(a) and figure 4.2(b), respectively. Due to the off-resonance condition, the

amplitude of the response is small enough that the experimental measurements are

affected by noise. The effect of this noise is further amplified when the velocity of
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Figure 4.2: Phase portraits of the system’s response to harmonic excitation near

two and a half times the fundamental frequency: (a) the response measured exper-

imentally and (b) the simulated response.

the free end of the beam is calculated as the derivative of the displacement. Despite

the effects of noise, qualitative agreement is seen between the experimental response

and the response predicted by the simulation.

Within this investigation, the first three modes of vibration are used to approx-

imate the response of the system for a number of excitation frequencies between the

system’s first and second characteristic frequencies and for various unconstrained

and constrained conditions. The quasi-periodic response is found to be due to a

coupling between the first and third modes of vibration. The contribution of the

third vibration mode is seen to decrease for constrained conditions while the con-

tribution of the second vibration mode increases. Further studies can be conducted

to determine if additional model reduction methods can be employed to facilitate

further analysis of the identified nonlinear phenomenon.
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4.1.4 Micro-Scale System

After studying the macro-scale test apparatus both experimentally and with the

aid of the numerical simulations, additional experiments are conducted with a com-

mercial atomic force microscope in order to study the scalability of the nonlinear

phenomenon and to determine how well the macro-scale system represented the

AFM cantilever probe. The main components of the AFM system are shown in the

diagram in Fig. 4.3a. The cantilever probe of this AFM, shown in the SEM image

in Fig. 4.3b, is made from single crystal silicon and has the same general shape as

the macro-scale cantilever with its length, width, and thickness equal to 450 µm,

40 µm, and 5 µm, respectively. These properties result in a fundamental frequency

of 28 kHz. In comparing the relationships between these dimensions with those of

the macro-scale test apparatus, the micro-scale cantilever is much less slender with

length-to-width and with-to-thickness ratios around 10 to 1 while these ratios for

the macro-scale cantilever are greater than 20 to 1. This is believed to be a con-

tributing factor in higher level of nonlinear behavior observed of the macro-scale

test apparatus.

As discussed previously, the operation mode of interest is the so-called tapping-

mode or intermittent contact mode where by the AFM probe oscillates above the

sample, coming in contact with the surface once per period. In order to observe the

behavior of the cantilever probe in the commercial system, the output voltage of

the photo-diode is monitored. This data is used to study the qualitative behavior

of the cantilever probe’s response while it is subjected to different excitation and
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Figure 4.3: (a) Diagram of atomic force microscope system and (b) SEM image of

AFM cantilever probe.

constraint conditions. As the commercial AFM system is designed for operation

near resonance conditions, the range of excitation is limited and the magnitude of

the response for off-resonance conditions is significantly smaller.

4.2 Analysis

With the simulation developed for the cantilever beam impactor system and verified

through comparison with experimental data, studies are conducted to investigate the

system’s response for unconstrained conditions and various constrained conditions.

The responses of the system under these conditions are studied in order to determine

a way to locate the critical separation distance corresponding to grazing. The two

parameters that are varied within these studies are the excitation frequency and

the separation distance. After preliminary studies are conducted, two excitation

frequencies are selected for a more thorough investigation. The two frequencies

examined are 2.50 Hz and 6.25 Hz. The first excitation frequency is very close
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to the system’s fundamental frequency, which is 2.42 Hz and corresponds to the

standard excitation condition for tapping-mode atomic force microscopy. The second

excitation frequency has a value of about two and a half times the fundamental

frequency but less than the second characteristic frequency, which is 15.16 Hz.

4.2.1 Excitation Near ω1

The first excitation frequency that is investigated, 2.50 Hz, is very close to the fun-

damental frequency of the system and consequently, the response amplitude benefits

from the resonance condition. When comparing the system’s response for uncon-

strained and constrained conditions, a visual examination of the phase portraits in

figure 4.1 reveals significant differences. However, to develop a successful method to

locate the critical separation distance that corresponds to the grazing, it is desirable

to be able to quantify the changes in the system’s response in a way that can be

calculated in real-time from the displacement time series of the system. Time series

plots of the system’s response for this excitation condition are shown in figure 4.4.

This comparison shows no noticeable change in the response frequency and very

little change in the amplitude of the response. A comparison of the two time series

plots reveals that the response under constrained conditions is affected by small

amplitude harmonics of the excitation frequency.

In order to further examine how the system’s response changes with the addi-

tion of periodic impacts, spectral information for the response signals is calculated

with a fast Fourier transform and examined. The frequency spectrum plots for the
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Figure 4.4: Plots of the system response for excitation near the fundamental fre-

quency: (a) the system’s response for unconstrained conditions and (b) the system’s

response for constrained conditions.

system’s response for unconstrained conditions and for constrained conditions are

presented as figure 4.5(a) and figure 4.5(b), respectively. These figures indicate that

the main component of the response, at the excitation frequency, does not change.

This confirms the observations made from the time series plots. These plots also

reveal a number of other frequency components. For the unconstrained response,

figure 4.5(a) reveals a second significant frequency component at 42.49 Hz, the sys-

tem’s third characteristic frequency. This component accounts for the quasi-periodic

behavior observed in the phase portraits. For the response of the beam impactor sys-

tem under constrained conditions, there are many more frequency components in the

spectral plot of the system’s response. The largest of the new components appears

at the system’s second characteristic frequency and is produced by the collisions in

the manner discussed previously. A number of other frequency components in the

responses occur at integer multiples of the excitation frequency but the magnitudes
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Figure 4.5: Frequency spectrum plots of the system response for excitation near the

fundamental frequency: (a) the system’s response for unconstrained conditions and

(b) the system’s response for constrained conditions.

of these components are significantly less than the components discussed.

Although it is clear that the system’s response changes when the separation

distance is sufficiently decreased to produce constrained conditions, the changes are

relatively small and they are generally quantitative with respect to the different

vibration modes. For the very soft contact material used in this dissertation, these

changes are found to be extremely small.

4.2.2 Excitation Near 2.5× ω1

During the preliminary investigation into the response of the experimental system

under constrained conditions, a unique nonlinear phenomenon was observed for an

excitation frequency value of 6.25 Hz. When excited with this frequency, which is

about two and a half times the system’s fundamental frequency, the response of the

system undergoes a significant qualitative change for constrained conditions. The
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Figure 4.6: Plots of the system response for excitation near two and a half times

the fundamental frequency: (a) the system’s response for unconstrained conditions

and (b) the system’s response for constrained conditions.

response of the system changes from quasi-periodic behavior to a response with a

period twice as long as the period of the excitation. Period-two responses have

been observed in other similar experimental systems for excitation frequency values

around this multiple of their fundamental frequencies as well as for higher excitation

frequencies [82]. The responses at this excitation frequency for unconstrained and

constrained conditions are plotted in figure 4.6(a) and figure 4.6(b), respectively. For

the system examined in this dissertation, the amplitude of this period-two response

increases significantly from the amplitude of the unconstrained response. This dras-

tic qualitative change in the system’s behavior at the critical separation distance

appears to provide a means to locate grazing.

In the same manner as for the previous excitation frequency, spectral informa-

tion is calculated for the system’s response for both unconstrained and constrained

conditions. The frequency spectrum plot in figure 4.7 reveals that the quasi-periodic
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Figure 4.7: Frequency spectrum plots of the system response for excitation near

two and a half times the fundamental frequency: (a) the system’s response for

unconstrained conditions and (b) the system’s response for constrained conditions.

behavior is also caused by system’s third mode of vibration. The frequency spec-

trum plot of the response for constrained conditions reveals many more frequency

components for this excitation frequency. While the magnitudes of most of these

components are very small, a new component is produced at half of the excitation

frequency. This sub-harmonic of the excitation frequency accounts for the period-

two behavior observed in the time series plots. Unlike the frequency components

produced during constrained conditions for the previous excitation frequency, this

component has a magnitude on the same order as the component at the excitation

frequency and is easily identified, even in the presence of noise.

For an excitation frequency with a value of about two and a half times the

fundamental frequency, a significant qualitative change occurs to the response when

the separation distance is sufficiently decreased to produce constrained conditions.

Even for the extremely soft material used in this dissertation research, the change

in the response is drastic and easily quantified.
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4.2.3 Floquet Theory

With the aid of the numerical simulation, Floquet theory is employed to study the

stability of the periodic behavior of the macro-scale test apparatus. The results

of this analysis indicate that the unconstrained periodic responses of the system

for both excitation frequencies are stable, with all Floquet multipliers having mag-

nitudes less than one. For the constrained conditions, the periodic responses for

excitation frequencies of both 2.50 Hz and 6.25 Hz are both found to be stable.

Under these constrained conditions, the stability of the response if further improved

due to the additional damping from the constraining material. This is observed as

a decrease in the magnitudes of the Floquet multipliers. Due to the rather abrupt

transition across the critical separation distance that would correspond to grazing,

the presence of a period-doubling bifurcation can not be conclusively determined.

4.2.4 Grazing Bifurcation

In order to continue studying the changes to the system’s response that occur when

the separation distance is decreased sufficiently to produce constrained conditions,

Poincaré sections are calculated from the system’s responses and assembled to pro-

duce bifurcation diagrams [75]. This is done for the response of the system when it

is excited harmonically at 2.50 Hz and when the excitation frequency is 6.25 Hz by

using the separation distance at the control parameter.

When the beam impactor system is excited harmonically at a frequency near

the fundamental frequency, the resulting bifurcation diagram, shown in figure 4.8,
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Figure 4.8: A bifurcation diagram for harmonic excitation near the fundamental

frequency. The separation distance between the beam’s center of oscillation and the

surface of the contact material is used as the control parameter.

reveals a change in the response amplitude. Also, it should be noted that the

Poincaré sections for the unconstrained response are identical as there is no change

to the dynamic system until the separation distance is decreased below the critical

distance. The data points within these Poincaré sections are distributed across a

small range of amplitude values due to the quasi-periodic nature of the response.

This quasi-periodicity is shown in figure 4.9 where the Poincaré section is shown

to produce a closed curve in phase space. This unique bifurcation, where a quasi-

periodic response becomes periodic, is observed as a result of the use of a control

parameter that corresponds to the structure of the system.

For the other excitation case that is being examined, more complex behavior

is revealed by the bifurcation diagram, shown as figure 4.10. When the system is

excited near two and a half times the fundamental frequency, the quasi-periodic

unconstrained response changes into a periodic response with a period twice as long
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Figure 4.9: A phase portrait of the system’s unconstrained response to harmonic

excitation near the fundamental frequency. The enlarged section of the plot shows

the Poincaré section which reveals the quasi-periodic nature of the response.

as the period of the excitation. As with the previous bifurcation diagram, Poincaré

sections corresponding to the unconstrained response of the system are spread across

a range of amplitude values due to its quasi-periodic nature. The quasi-periodicity

of the response is shown in figure 4.11 with a Poincaré section plotted within a phase

portrait.

4.3 Micro-Scale System

After working with the macro-scale test apparatus to study this nonlinear phe-

nomenon, experiments are conducted with a commercial AFM system. This is done

to verify that the nonlinear behavior observed within the macro-scale system was

representative of the micro-scale structure. The behavior of the system is studied

for two excitation frequencies, the first frequency is near the fundamental frequency

of the AFM probe and the second frequency is at a value of about two and a half
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Figure 4.10: A bifurcation diagram for harmonic excitation near two and a half times

the fundamental frequency. The separation distance between the beam’s center of

oscillation and the surface of the contact material is used as the control parameter.
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Figure 4.11: A phase portrait of the system’s unconstrained response to harmonic

excitation near two and a half times the fundamental frequency. The Poincaré

section reveals the quasi-periodic nature of the response.
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Figure 4.12: Phase portraits of data collected from commercial AFM system for

an excitation frequency of two and a half times the fundamental frequency: (a)

the unconstrained response and (b) - (d) the response of system under constrained

conditions as the separation distance is incrementally decreased.

times the fundamental frequency. In comparing the experimental data from the

micro-scale system with the behavior studied in the macro-scale test apparatus,

there are some discrepancies. These may be caused by the differences between the

macro-scale test apparatus and the micro-scale structure. Due to these differences,

the behavior of the AFM probe does not exhibit quasi-periodic behavior, suggest-

ing a decreased level of nonlinearity. In addition, the response of the system to

an excitation frequency of two and a half times the fundamental frequency has a

much smoother transition from unconstrained to constrained behavior. The phase

portraits in figure 4.12 show this transition. The AFM probe oscillates harmoni-

cally when the separation distance is greater than the critical value, as shown in

figure 4.12(a). The manner in which the AFM probe’s response changes as the sep-

aration distance is decreased beyond the critical value is presented in figure 4.12(b)

through figure 4.12(d).

121



0 50 100
0

200

400

600

Frequency (kHz)

M
ag

ni
tu

de

0 50 100
0

200

400

600

Frequency (kHz)

M
ag

ni
tu

de

0 50 100
0

200

400

600

Frequency (kHz)

M
ag

ni
tu

de

0 50 100
0

200

400

600

Frequency (kHz)

M
ag

ni
tu

de

Figure 4.13: Frequency spectrum plots of data collected from commercial AFM sys-

tem for an excitation frequency of two and a half times the fundamental frequency:

(a) the system’s unconstrained response and (b) - (d) the response of system under

constrained conditions as the separation distance is incrementally decreased.

To gain a better understanding of how the response of the AFM probe changes

as the separation distance is incrementally decreased beyond the critical value, the

data plotted in figure 4.12 is analyzed with a fast Fourier transform in order to

examine the frequency components. This spectral information is plotted in fig-

ure 4.13. The spectral information for unconstrained conditions, in figure 4.13(a),

reveals a single significant frequency component at the excitation frequency. The

spectral information plot for the system’s response under constrained conditions in

figure 4.13(b) contains a second significant frequency component, located at half of

the excitation frequency. The frequency spectrum plots in figure 4.13(c) and fig-

ure 4.13(d) indicate that as the center of oscillation of the probe is moved closer

to the surface of the sample, the strength of the sub-harmonic of the excitation

frequency will increase.
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The changes in the response observed of the AFM probe are more desirable

than those observed in the macro-scale experiment. For the macro-scale system,

the transition is very sudden but a smoother transition across the grazing point is

observed for the AFM probe. A bifurcation diagram illustrating this transition is

presented in figure 4.14. While the presence of the sub-harmonic, resulting in period-

two behavior, indicates that constrained conditions exist, the relationship between

the separation distance and the magnitude of this frequency component provides a

means to locate grazing. By monitoring the magnitude of the sub-harmonic com-

ponent, the separation distance will be tuned in order to find the critical separation

distance. Additionally, the response transition for the AFM probe reveals that

when the separation distance is only a small amount less than the critical value, the

sub-harmonic frequency component will be present but small in magnitude and not

result in the large increase in force associated with the response transition of the

macro-scale system.

The qualitative difference in the transition between unconstrained and con-

strained motion for the two systems is believed to be due to the difference between

the ratios of the beam’s stiffness to the stiffness of the contact material. In the case

of the macro-scale experiment, an extremely soft foam rubber material is used to

provide an extreme case and to ensure that the system was successfully representing

conditions that would be comparable to an AFM system imaging a delicate sample

such as a living biological specimen. The ‘soft’, silicone material available for the

micro-scale experiments was relatively stiffer. While this suggests that the exact

behavior observed of the micro-scale structure may not be identical to the form of
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Figure 4.14: A bifurcation diagram of the data collected from the commercial AFM

system for an excitation frequency of two and a half times the fundamental fre-

quency. Period-doubling is shown to occur at the grazing bifurcation.

the response when imaging a much softer sample, it provides a starting point to de-

velop a new control methods for AFM that will utilize this nonlinear phenomenon to

minimize the magnitude of the contact force acting on the sample, thus improving

the capabilities of atomic force microscopy. Additional research can be conducted to

further study this stiffness relationship and to explore potential methods to obtain

smooth transitions for much softer material.

4.4 Summary

An analytical model is developed to describe the nonlinear transverse oscillations

of a slender cantilever beam with a soft material constraining the motion of the

free end of the beam for sufficiently large amplitude oscillations. The model is

developed, discretized, and the parameter values are determined, both analytically

and experimentally. Through simulations and experiments, a qualitative change in
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the system’s response associated with a grazing bifurcation is identified and studied

toward the goal of developing a control scheme to locate grazing in tapping mode

atomic force microscopy. Micro-scale experiments conducted with a commercial

AFM system show qualitative agreement with the macro-scale study.
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Chapter 5

Conclusions and Future Work

Within this dissertation, the nonlinear oscillations of beam and beam-like struc-

tures are studied with a specific focus on micro-scale structures. Through this

research, the following contributions resulted. A multi-variable, parametric iden-

tification scheme is developed to quantitatively characterize dynamic systems that

display Düffing-like nonlinearities. This powerful tool is able to determine param-

eter values for a system from frequency-response data collected for an increasing

frequency sweep without prior knowledge of the linear parameters. The application

of this tool to data collected from piezoelectric micro-scale resonators demonstrates

how it can be used for material characterization and to study how device perfor-

mance is influence by changes to the operating conditions. The second contribution

is the identification of a relationship between nonlinear vibration modes of nonlin-
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ear mechanics and the intrinsic localized modes of solid state physics. A process

is developed to utilize various methods for calculating nonlinear normal modes in

order to analytically determine the spatial characterizes of the intrinsic localized

modes based on the system model and parameter values. A third contribution of

the research detailed in this dissertation is the identification of a period-doubling

phenomenon associated with grazing in tapping mode atomic force microscopy. This

phenomenon, studied with a macro-scale test apparatus and verified with a com-

mercial AFM system, will provide a means by which a novel AFM operation mode

can be developed utilizing a control scheme to locate grazing, thus minimizing the

impact force of the AFM probe acting on the sample surface.

5.1 Parametric Identification

In chapter two, a parametric identification scheme is developed with the capability

of analyzing nonlinear systems that exhibit jumps in their frequency-response be-

havior. In addition to its ability to identify the parameter values corresponding to a

nonlinear model, this identification scheme can also provide additional information

about a device such as the axial force within the structure and the average residual

stress level. The identification scheme is applied to frequency-response data col-

lected from piezoelectric micro-scale resonators in order to quantify their nonlinear

behavior. Methods are developed to determine the values of an equivalent viscous

damping coefficient, a linear stiffness coefficient, a nonlinear stiffness coefficient, a

modal force parameter, the level of axial force, and the modal mass of the resonator.
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The identification scheme has been successfully applied to data obtained from both

PZT and AlGaAs micro-scale resonators. The parameter values are also compared

to numerical values obtained from a beam model and agreement is seen. The iden-

tification scheme is applied to multiple data sets and parameter trends have also

been studied. These parameter trends provide information about the performance

of the device and how it relates to the operating conditions. The parameter trends

are also used for material characterization to determine values for the piezoelectric

coefficient of the thin-film PZT.

In future work, this identification scheme can be applied to other systems, both

micro-scale and macro-scale in order to identify system parameters and study device

performance. This identification scheme could also be used for additional work in

material characterization, utilizing devices specifically designed for this purpose. It

is also conceivable that a parametric identification scheme such as that discussed in

this work can be used to tailor the characteristics of a MEMS array, so that phe-

nomenon such as localization [83, 49] can be engineered to improve the performances

of the considered devices.

5.2 Intrinsic Localized Modes

In the third chapter, a relationship is identified between nonlinear vibration modes

and intrinsic localized modes and a process is developed to analytically determine

the spatial characteristics of the localization from the system model and parameters.

The ability to analytically determine the amplitude profile for an ILM in an array
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of coupled nonlinear oscillators can be very beneficial in employing this nonlinear

localization phenomenon in MEMS devices. As shown in Figure 3.4(b), it may

be possible to use the amplitude profile to select initial displacement values for an

array to initiate ILMs within micro-resonator arrays at desired locations. Additional

studies have shown that initializing as few as five oscillators at the desired site of

localization may be sufficient to produce an ILM. This could be realized with the

aid of micro-manipulation techniques such as optical tweezers. Once the ILM has

been produced, it can then be maneuvered and interrupted with the addition of

an artificial impurity to the array [55]. This level of control over intrinsic localized

modes gives the phenomenon a great deal of potential for applications in developing

technologies with MEMS arrays.

In future work, additional studies can be conducted to study localizations in

other systems and expand the developed process to be able to analytically predict the

spatial characteristics of those systems. Experimental work can be done to verify the

results of the analytical and numerical efforts. This would require the development

of a method to monitor the behavior of the resonators with more detail than the

method currently employed. With the aid of the results of this dissertation, addition

work could be done to study the behavior of ILMs, such as interactions between ILMs

and their behavior as they dissipate following the excitation is removed.
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5.2.1 Internal Resonance

The investigation into the effects of internal resonance conditions on ILMs discussed

in third section of chapter three suggests that for the oscillator model studied,

internal resonance conditions do not uniquely affect the behavior and characteristic

amplitude profiles of ILMs. This is believed to be due to the presence of the linear

coupling term. The results of the linearized Invariant-Manifold Approach include

coefficients where the denominator includes frequencies as well as a term from the

coupling. As a result, a new internal resonance condition is produced where the

resonance frequency of one type of oscillator is a function of the resonance frequency

of the other type of oscillator and a coupling term.

Further investigations can be done to explore these new resonance conditions

and determine if they correspond to any unique resonance behavior or if it is just

a limitation of this analysis method. Also, by replacing the linear coupling with a

nonlinear coupling, it may be possible to study unique phenomena associated with

the three-to-one internal resonance conditions and determine how they affect the

behavior of ILMs. Despite the inability of the restricted normal mode approach and

the modified invariant manifold approach to accurately capture the amplitude ratios

associated with the amplitude profile for an ILM within a system with three-to-one

internal resonance, the results produced by these methods do show a successful

qualitative response to the changes in the system’s parameters. This suggests that

analysis methods such as these will be capable of analytically calculating the am-

plitude profile after details such as the model simplification are better addressed.
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5.3 Cantilever Beam Impactor System

Within the fourth chapter of this dissertation, the nonlinear behavior of a cantilever

beam impactor system is studied. The response of the system to harmonic excitation

at two frequencies, 2.50 Hz and 6.25 Hz, is examined for unconstrained and various

constrained conditions.

The system’s response for an excitation frequency near the fundamental fre-

quency is found to transition from quasi-periodic for unconstrained conditions to

period-one motion when constrained conditions are introduced. As the separation

distance is decreased further, the response amplitude is observed to decrease. The

displacement time series plots reveal little difference between the response for un-

constrained motion and the response when constrained conditions exist. A spectral

analysis of the data further supports this assertion as there is no significant change

in the main frequency component and the magnitudes of the other frequency com-

ponents are considerable smaller. Since the only changes observed of the response

when the separation distance is decreased to produce constrained conditions are

small, they may become very difficult to detect if the system is altered, i.e. dif-

ferent contact material. Consequentially, this excitation condition does not provide

the desirable means to determine the critical separation distance corresponding to

grazing behavior.

A more complex transition is identified for the system’s response to an exci-

tation frequency near two and a half times the fundamental frequency. For these

conditions, the response of the system is observed to change from quasi-periodic be-
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havior to period-two behavior when constrained conditions are introduced. As the

separation distance is decreased further, the displacement values from the Poincaré

section decrease in magnitude, with the positive values reacting in the same way as

the values for the other excitation frequency. For this excitation case, the displace-

ment time series for constrained conditions displays period-two behavior. Spectral

analysis of the response confirms this with the presence of a frequency component of

significant magnitude at half the excitation frequency. Many other frequency com-

ponents are produced after constrained conditions are introduced but their mag-

nitudes are significantly less than the two main components. Due to the rather

sudden transition from one type of behavior to the other, the presence of a period-

doubling bifurcation can not be conclusively determined using Floquet theory. With

a significant qualitative change in the system’s response when transitioning from un-

constrained motion to constrained conditions, the means to determine the critical

separation distance corresponding to grazing behavior is provided by this excitation

conditions.

Additional work [84] is currently underway by my Japanese colleagues toward

the development of a method to monitor the magnitude of the sub-harmonic of the

excitation frequency in real-time and control the center of excitation of the beam

to minimize the magnitude of the contact force acting on the surface of the sample.

The model and simulation presented in the dissertation need to be adapted to study

the behavior of the micro-scale AFM cantilever probe, incorporating multi-scale

modeling to obtain accurate information for tip-sample interactions. Additional

studies can also be conducted to examine how changes in the properties of the
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contact material affect the system’s response to harmonic excitation near two and

a half times the fundamental frequency.
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Appendix A

Analytical Methods

In this appendix, the details of the different analyses carried out in chapter three

are outlined.

A.1 Method of Multiple Scales Approach

Ordered Equation of Motion:

q̈j + ω2
j qj + ε Gj = 0 (A.1)

q̈k + ω2
kqk + ε Gk = 0 (A.2)

Time Scales, Expansions, and Derivatives:

t = T0 + ε T1 + . . . (A.3)

qj = qj,0 + ε qj,1 + . . . (A.4)

134



d

dt
=

∂T0

∂t

∂

∂T0

+
∂T1

∂t

∂

∂T1

+ . . . = D0 + ε D1 + . . . (A.5)

Substitution into Governing Equations and Expansion:

(D0 + ε D1 + . . .)2 (qj,0 + ε qj,1 + . . .) +

+ω2
j (qj,0 + ε qj,1 + . . .) + ε Gj = 0 (A.6)

(D0 + ε D1 + . . .)2 (qk,0 + ε qk,1 + . . .) +

+ω2
k (qk,0 + ε qk,1 + . . .) + ε Gk = 0 (A.7)

Hierarchy of Equations: Order O(ε0)

D2
0qj,0 + ω2

j qj,0 = 0 (A.8)

D2
0qk,0 + ω2

kqk,0 = 0 (A.9)

Hierarchy of Equations: Order O(ε)

D2
0qj,1 + ω2

j qj,1 = −Gj − 2 D0D1qj,0 (A.10)

D2
0qk,1 + ω2

kqk,1 = −Gk − 2 D0D1qk,0 (A.11)

Solution of Order O(ε0) System:

qj,0 = 0 (A.12)

qk,0 = Ak (T1) ei ωkT0 + Āk (T1) e−i ωkT0

= a (T1) cos (ωk T0 + βk (T1)) (A.13)

Order O(ε) system: Substitution and Expansion, where ‘cc’ is the complex conjugate

of preceding terms.
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D2
0qj,1 + ω2

j qj,1 = −g1,j,kA
3
ke

i 3 ωk T0 − 3 g1,j,kA
2
kĀke

i ωk T0 −

−g2,j,kAke
i ωk T0 + cc (A.14)

D2
0qk,1 + ω2

kqk,1 = −2 i ωk A′
ke

i ωk T0 − g1,k,kA
3
ke

3 i ωk T0 −

−3 g1,k,kA
2
kĀke

i ωk T0 − g2,k,kAke
i ωk T0 + cc (A.15)

Collecting Sources of Secular Terms in Eqn. Governing kth Oscillator and Setting

the Sum to Zero: Complex Modulation Equation

−2 i ωk A′
k − 3 g1,k,kA

2
kĀk − g2,k,kAk = 0 (A.16)

Substitution of Polar Form for Complex Amplitude:

Ak =
1

2
ak (T1) ei βk(T1) (A.17)

Āk =
1

2
ak (T1) e−i βk(T1) (A.18)

Amplitude and Phase Modulation Equations:

a′k (T1) = 0 (A.19)

ak (T1) β′k (T1) =
1

2

g2,k,k

ωk

ak (T1) +
3

8

g1,k,k

ωk

a3
k (T1) (A.20)

Amplitude and Phase Responses of kth Oscillator:

ak (T1) = ak (0) (A.21)

βk (T1) =
(

1

2

g2,k,k

ωk

+
3

8

g1,k,k

ωk

a2
k (0)

)
T1 + βk (0) (A.22)

Phase Angle & Nonlinear Frequency:

θ (T0) = ωNk T0 + βk (0) (A.23)

ωNk = ωk + ε
(

1

2

g2,k,k

ωk

+
3

8

g1,k,k

ωk

a2
k (0)

)
(A.24)
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Substitution into Order ε Equation of Motion of jth Oscillator:

D2
0qj,1 + ω2

j qj,1 = −g1,j,kA
3
ke

i 3 ωk T0 − 3 g1,j,kA
2
kĀke

i ωk T0 −

g2,j,kAke
i ωk T0 + cc (A.25)

Response of jth Oscillator:

qj =
3 g1,j,kA

2
kĀk + g2,j,kAk

ω2
k − ω2

j

ei ωk T0 +

+
3 g1,j,kĀ

2
kAk + g2,j,kĀk

ω2
k − ω2

j

e−i ωk T0 +

+
g1,j,k

9 ω2
k − ω2

j

(
A3

ke
i 3 ωk T0 + Ā3

ke
−i 3 ωk T0

)
+ . . . (A.26)

Displacement and Velocity of jth Oscillator:

qj =
g2,j,k

ω2
k − ω2

j

ak (T1) cos (θ (T0)) +

+
3 g1,j,k

4
(
ω2

k − ω2
j

)a3
k (T1) cos (θ (T0)) +

+
g1,j,k

4
(
9 ω2

k − ω2
j

)a3
k (T1) cos (3 θ (T0)) + . . . (A.27)

pj =
g2,j,k

ω2
k − ω2

j

(−ωk ak (T1) sin (θ (T0))) +

+
3 g1,j,k

4
(
ω2

k − ω2
j

) (−ωk a3
k (T1) sin (θ (T0))

)
+

+
3 g1,j,k

4
(
9 ω2

k − ω2
j

) (−ωk a3
k (T1) sin (3 θ (T0))

)
+ . . . (A.28)

Determined Nonlinear Vibration Mode:

qj =

(
g2,j,k

ω2
k − ω2

j

)
qk +


(
7 ω2

k − ω2
j

)
g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)
 q3

k +

+

 6 g1,j,k(
9 ω2

k − ω2
j

) (
ω2

k − ω2
j

)
 p2

k qk + . . . (A.29)
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pj =

(
g2,j,k

ω2
k − ω2

j

)
pk +

 3
(
3 ω2

k − ω2
j

)
g1,j,k(

9 ω2
k − ω2

j

) (
ω2

k − ω2
j

)
 pk q2

k +

+

 6 g1,j,k(
9 ω2

k − ω2
j

) (
ω2

k − ω2
j

)
 p3

k + . . . (A.30)

A.2 Restricted Normal Mode Approach

Equations of Motion of Simplified System:

ma ẍa (t) + (k2a + 2 kI) xa (t) + +k4 x3
a (t) = kI xb (t) (A.31)

mb ẍb (t) + (k2b + 2 kI) xb (t) + +k4 x3
b (t) = 2 kI xa (t) (A.32)

Harmonic Approximation:

xa (t) = A sin (ω t) (A.33)

xb (t) = B sin (ω t) (A.34)

Substitute into Equations of Motion:

(
A k2a −B kI + 2 A kI − A ω2 ma

)
sin (ω t) + A3k4 sin3 (ω t) = 0 (A.35)

(
B k2b + 2 B kI − 2 A kI −B ω2 mb

)
sin (ω t) + B3k4 sin3 (ω t) = 0 (A.36)

Retain Only Primary Frequency Component:

(
A k2a + 2 A kI −B kI − A ω2 ma +

3

4
A3k4

)
sin (ω t) = 0 (A.37)(

B k2b − 2 A kI + 2 B kI −B ω2 mb +
3

4
B3k4

)
sin (ω t) = 0 (A.38)
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Combining Equations to Eliminate Frequency and Resulting Characteristic Equa-

tion:

A B [mb (k2a + 2 kI)−ma (k2b + 2 kI)] +

+kI

(
2 A2 ma −B2 mb

)
+

3

4
A B k4

(
A2 mb −B2 ma

)
= 0 (A.39)

Oscillation Amplitudes:

A = R sin (θ) (A.40)

B = R cos (θ) (A.41)

p =
A

B
= tan (θ) (A.42)

Equation to Determine Amplitude Ratio p:

kI

(
1 + p2

)
[2 ma p (1− p) + mb (1− 2 p)]−

−p
(
1 + p2

)
(k2a mb − k2b ma) +

3

4
R2 k4 p

(
ma −mb p2

)
= 0 (A.43)

A.3 Real-Variable Invariant-Manifold Approach

Equations of Motion:

q̇j = pj (A.44)

ṗj = −ω2
j qj −Gj (A.45)

Nonlinear and Coupling Terms:

Gj =
∑
k

(
g1,j,k q3

k + g2,j,k qk

)
(A.46)
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Figure A.1: System of Interest: Amplitude Relations Determined By Numerically

Solving for p.

Manifold Equations:

qj = Qj (qk, pk) (A.47)

pj = Pj (qk, pk) (A.48)

qk = Qk (qk, pk) (A.49)

pk = Pk (qk, pk) (A.50)

qj = Qj (0, 0) = 0 (A.51)

pj = Pj (0, 0) = 0 (A.52)

Form of Manifold Equations based on Gj Terms:

Qj =
∑
k

(
Γ1,j,k q3

k + Γ2,j,k qk p2
k

)
(A.53)

Pj =
∑
k

(
Γ3,j,k p3

k + Γ4,j,k q2
k pk

)
(A.54)
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Substitution of Manifold Equations into Equations of Motion:

∂ Qj

∂qk

pk +
∂ Qj

∂pk

(
−ω2

k qk −Gk

)
= Pj (A.55)

∂ Pj

∂qk

pk +
∂ Pj

∂pk

(
−ω2

k qk −Gk

)
= −ω2

j Qj −Gj (A.56)

Separating Similar Terms and Solving for Γ Coefficients:

Γ1,j,k =
g1,j,k (7 g2,k,k + ω2

k)− ω2
j(

9 (g2,k,k + ω2
k)− ω2

j

) (
(g2,k,k + ω2

k)− ω2
j

) (A.57)

Γ2,j,k =
6 g1,j,k(

9 (g2,k,k + ω2
k)− ω2

j

) (
(g2,k,k + ω2

k)− ω2
j

) (A.58)

Γ3,j,k =
6 g1,j,k(

9 (g2,k,k + ω2
k)− ω2

j

) (
(g2,k,k + ω2

k)− ω2
j

) (A.59)

Γ4,j,k =
3 g1,j,k

(
3 (g2,k,k + ω2

k)− ω2
j

)
(
9 (g2,k,k + ω2

k)− ω2
j

) (
(g2,k,k + ω2

k)− ω2
j

) (A.60)

Real-Variable Invariant-Manifold Equations:

Qj =

 g1,j,k

(
7 (g2,k,k + ω2

k)− ω2
j

)
(
9 (g2,k,k + ω2

k)− ω2
j

) (
(g2,k,k + ω2

k)− ω2
j

)
 q3

k +

+

 6 g1,j,k(
9 (g2,k,k + ω2

k)− ω2
j

) (
(g2,k,k + ω2

k)− ω2
j

)
 qk p2

k (A.61)

Pj =

 6 g1,j,k(
9 (g2,k,k + ω2

k)− ω2
j

) (
(g2,k,k + ω2

k)− ω2
j

)
 p3

k

+

 3 g1,j,k

(
3 (g2,k,k + ω2

k)− ω2
j

)
(
9 (g2,k,k + ω2

k)− ω2
j

) (
(g2,k,k + ω2

k)− ω2
j

)
 q2

k pk (A.62)

A.4 Modified Invariant-Manifold Approach

Equations of Motion:

q̇j = pj (A.63)

ṗj = −ω2
j qj −Gj (A.64)
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Nonlinear and Coupling Terms:

Gj =
∑
k

(
g1,j,k q3

k + g2,j,k qk

)
(A.65)

Manifold Equations:

qj = Qj (qk, pk) =
∑
k

(
Γ1,j,k q3

k + Γ2,j,k qk

)
(A.66)

pj = Pj (qk, pk) =
∑
k

(Γ3,j,k pk) (A.67)

qj = Qj (0, 0) = 0 (A.68)

pj = Pj (0, 0) = 0 (A.69)

Substituting Manifold Equations into Equations of Motion:

∂ Qj

∂qk

pk +
∂ Qj

∂pk

(
−ω2

k qk −Gk

)
= Pj (A.70)

∂ Pj

∂qk

pk +
∂ Pj

∂pk

(
−ω2

k qk −Gk

)
= −ω2

j Qj −Gj (A.71)

Separating Similar Terms and Solving for Γ Coefficients:

Γ1,j,k =
g1,k,k

ω2
j

g2,j,k

g2,k,k + ω2
k − ω2

j

− g1,j,k

ω2
j

(A.72)

Γ2,j,k =
g2,j,k

g2,k,k + ω2
k − ω2

j

(A.73)

Γ3,j,k =
g2,j,k

g2,k,k + ω2
k − ω2

j

(A.74)

Modified Real-Variable Invariant-Manifold Equations:

Qj =

(
g1,k,k

ω2
j

g2,j,k

g2,k,k + ω2
k − ω2

j

− g1,j,k

ω2
j

)
q3
k +

+

(
g2,j,k

g2,k,k + ω2
k − ω2

j

)
qk (A.75)

Pj =

(
g2,j,k

g2,k,k + ω2
k − ω2

j

)
pk (A.76)
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Appendix B

Galerkin Method Equations

In this appendix, the equations for calculating the values of the components of the

modal parameter matrices and modal force vectors are presented.

[M ]i,j = ρA
∫ 1

0
φi (s) φj (s) ds + mtipφi (1) φj (1) (B.1)

[K]i,j = −EI

L3

∫ 1

0
φ′i (s) φ′′′j (s) ds (B.2)

[α1]i,j =
EI

L5

∫ 1

0
φi (s)

[
φ′j (s)

(
φ′j (s) φ′′j (s)

)′]′
ds (B.3)

[α2]i,j = −mtip

L2

(∫ 1

0
φi (s) φ′′j (s) ds

) [∫ 1

0

(
φ′j (s)

)2
ds
]

+

+
ρA

L

∫ 1

0
φi (s)

[
φ′j (s)

∫ s

1

∫ s

0

(
φ′j (s)

)2
dsds

]′
ds (B.4)

[CL] = 2 [M ] ζL

√
[M ]−1 [K] (B.5)
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[CNL] = 2 [M ] ζNL (B.6)

{FB}i =
(
ρA L

∫ 1

0
φi (s) ds + mtip φi (1)

)
Ω2X0 cos (Ω t) (B.7)

{FC}i =



−φi (1) FR w (1, t) > b, FR > 0

0 w (1, t) > b, FR ≤ 0

0 w (1, t) ≤ b

(B.8)

FR = kc [w (1, t)− b] + ccẇ (1, t) (B.9)
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