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Bypass transition in flat-plate boundary layers due to a highly disturbed free
stream is investigated via numerical simulation. The first part of the study presents
DNS & LES of the interaction between a laminar boundary layer and a von Karméan
vortex street behind a circular cylinder. Rapid, bypass-like transition to turbulence
is observed for higher Reynolds number cases. An investigation of the underly-
ing transition mechanism is performed. The second part of the study focuses on
transition due to the effects of isotropic free-stream turbulence (FST). First, the ef-
fects of different inflow parameters on the location of transition onset are examined.
The length scale of the FST and the extent of its penetration into the boundary
layer are among the parameters that affect srongly the transition onset location.
In subsequent simulations, we include the leading edge of the flat plate inside the
computational domain. The results reveal the presence of small-amplitude lami-

nar streaks at the streamwise location corresponding to the inflow boundary of the



truncated-domain simulations. We conclude that such simulations should not be
expected to provide quantitative predictions of bypass transition. However, with
suitable calibration, they represent a useful tool for investigating bypass transition
physics. Finally, DNS of bypass transition in the flat-plate boundary layer induced
by high-amplitude FST are carried out. In one simulation, the boundary conditions
are chosen to match the 6% FST ERCOFTAC experiment T3B. The mean velocity
and Reynolds stress profiles are in good agreement with the experimental dataset.
In the other simulations, the length scale and intensity of the oncoming FST are
varied to determine the effects on the onset and mechanism of transition. Our
results indicate that the physics of FST-induced boundary-layer transition are de-
pendent on the choice of the FST length scale.A description of statistical quantities
is followed by a study of the transition mechanism. Qualitative similarities between
bypass transition due to FST and wake-induced transition are underlined and the
challenges of predicting boundary-layer transition in this complex environment are

discussed.
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PREFACE

Transition to turbulence in wall-bounded flows is one of the most studied
problems in fluid dynamics. Notorious for its mathematical complexity, it is also
of significant engineering interest. It is well known, for example, that a turbulent
boundary-layer flow results in an higher viscous drag, increased heat transfer be-
tween the wall and the fluid and enhanced mixing; it may also be less prone to
separation compared to laminar flow. For these reasons, the ability to control, or at
least predict, the onset of laminar-turbulent transition is crucial to the design of aero-
dynamic components with a significant extent of laminar flow. Despite the relative
simplicity of the laminar channel and boundary-layer flows, the various disturbances
ultimately leading to transition induce a myriad of complex phenomena that have
challenged some of the most talented minds. Consequently, compared to other areas
in fluid dynamics, the understanding of transition to turbulence has been slow to
come. Despite outstanding progress in the area of natural transition, bypass transi-
tion in boundary-layers caused by moderate to high amplitude turbulence in the free
stream is still not well understood. In the past decade, advances in computing power
and the development of efficient numerical algorithms have made many transitional
flows amenable to Direct Numerical and Large Eddy Simulation (DNS/LES). Many
results from DNS of laminar-turbulent transition have been validated experimen-

ii



tally, and earned this tool a permanent place in transition research. The current
dissertation is a numerical study of boundary-layer transition in a highly-disturbed
free-stream environment. Our primary focus is on transition caused by coherent
disturbances (wakes) generated by obstacles upstream of the boudary layer, but the
germane topic of transition due to high-amplitude free-stream turbulence (FST), is
also studied. Our research aims at investigating the physical mechanisms reponsible

for the transition process in both types of free-stream disturbance environments.

This dissertation includes previously published work in the form of one journal article
and two conference papers co-authored by V.O., U.P. and Dr. Meelan M. Choudhari
of the NASA Langley Research Center. The papers are being included with the
permission of the Dissertation Advisor and the Graduate Director. The examining
committee has determined that the student has made substantial contributions to

these papers and agrees that this work should be included in the dissertation.
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Chapter 1
Introduction

This chapter presents a brief background for the present investigation and
a review of the pertinent literature on boundary-layer transition. Keeping with
tradition, we start with natural transition, move on to discuss bypass transition,
and finish with wake/boundary-layer interactions. The last two topics are directly
relevant to the present research. The chapter concludes with a statement of the

technical objectives and an outline of the organization of the results.

1.1 Motivation

In many wall-bounded flows of engineering interest, it is often desirable to delay
the onset of laminar-turbulent transition in order to reduce the skin friction drag on
the surface. In aeronautical applications, drag reduction via laminar flow control is
primarily relevant to the cruise configuration. Typical high-lift configurations used
during the take-off and landing stages of commercial subsonic transports involve
multi-element airfoils consisting of a leading edge slat and a trailing edge flap in
addition to the wing. Flight tests suggest that the high-lift flow fields may involve
large regions of laminar flow. Due to the intricate coupling between transition and

flow separation in such flows, accurate predictions of transition inset is crucial to the
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design of high-lift devices. While transition scenarios on a single airfoil have been
studied in great detail, e.g. natural or bypass transition in isolated boundary layers,
boundary-layer transition due to disturbances generated by upstream geometry, as
in the multi-element airfoil, has received less scrutiny, and is investigated in the
current work.

A model multi-element airfoil is illustrated in figure 1.1. The shaded areas rep-
resent the boundary layers and wakes forming on the three elements, the upstream
slat, the main element in the middle, and the downstream flap. Figure 1.2(a) shows

a close-up of the slat/body region. In the figure, the slat is in the extended position



to delay the onset of stall on the main element at higher angles of attack. The
gap and the overlap settings between the slat and the main body are calculated
to optimize the overall performance of the high-lift system. The evolution of the
boundary layer on the suction surface of the main element is significantly influenced
by the wake of the slat. The wake turbulence may include vortex shedding from the
trailing edge and may be further augmented by the vortical structures emanating
from the separated flow in the slat cove region.

In the current research, we perform Direct Numerical Simulations (DNS) to
study the interaction between the unsteady trailing-edge wake of an upstream ele-
ment and the laminar boundary layer over a downstream element. To study such
flows in a simpler setting, we consider a model problem, illustrated in figure 1.2(b),
which consists of a circular cylinder positioned above a flat plate. This configuration
removes the effects of surface curvature and pressure gradients on the boundary-layer
development, yet retains the essential aspects of wake/boundary-layer interaction.
Our aim is to elucidate the physical mechanism underlying this interaction and draw
comparisons to the well-known phenomenon of bypass transition due to free-stream
turbulence.

In a realistic flow environment, the boundary layer over the main airfoil el-
ement depicted in figure 1.1 will be subjected to both, vortical disturbances from
the trailing edge of the slat and turbulence in the free steam. Thus, it is interest-
ing to see whether the two mechanisms of interaction involve the same fundamental

boundary-layer physics, and which mechanism is likely to dominate the transition in



the boundary layer. The answers to these questions are essential to develop realiable
predictive models for transition in high-lift flow fields.

Although FST-induced bypass transition has been studied extensively through
experiments, complementary high-accuracy numerical simulations are few and not
quite complete. In particular, neither the effect of the FST integral length scale
nor the role of the leading edge during the transition process has been systemati-
cally addressed. Moreover, even at low values of FST length scale, the finer details
of the transition mechanism are still debated. Finally, the issue of generating the
appropriate inflow boundary conditions for bypass transition simulations beginning
downstream of the leading edge is not fully settled. Therefore, a substantial part
of this investigation is devoted to simulations of FST-induced bypass transition us-
ing different inflow-generation methods and at different values of the FST length
scale. We carry out a grid refinement study and obtain agreement with a bench-
mark experiment. We conclude with an investigation of the physics of FST-induced

transition and a discussion of the different transition scenarios.

1.2 Natural transition

In 1880, Lord Rayleigh presented a linear stability theory for inviscid paral-
lel shear flows. This theory described a “roll-up” instability of inflectional velocity
profiles in unbounded shear flows, but failed in wall-bounded flows, such as the

Blasius boundary layer, in which viscosity is actually necessary for the initial in-



stability. Orr (1907) and Sommerfeld (1908) included the effects of viscosity within
Rayleigh’s linear theory. For a given basic flow, the goal is to solve for the dis-
turbance phase speed (eigenvalue) and the disturbance profile (eigenfunction), as a
function of the Reynolds number and streamwise wavenumber. Tollmien (1929) and
Schlichting (1933) independently obtained solutions of Orr-Sommerfeld equation for
the Blasius boundary layer (Tollmien-Schlichting waves). Disturbance profiles cor-
responding to these solutions were measured by Schubauer & Skramstad (1947) in
carefully controlled experiments involving artificial excitation, although the agree-
ment with theory was not perfect due to nonparallel effects (nonparallel theories pre-
dict higher TS wave growth and yield a better agreement with experiments [Gaster
1974]). Bennett (1953) also observed TS waves in naturally-occuring flow. A review
of linear stability mechanisms is given by Bayly, Orszag, and Herbert (1988). For
certain values of the streamwise wavenumber, T'S waves amplify in a narrow band of
Reynolds numbers, or between the lower and upper branches of the linear stability
curve. At sufficiently low amplitudes, TS waves grow downstream of Branch I on
a slow viscous scale and decay harmlessly past Branch II. At higher initial ampli-
tudes, i.e. greater than approximately 1% of Uy, rapidly-evolving three-dimensional
instabilities are known to appear. Klebanoff, Tidstrom & Sargent (1962) generated
boundary-layer disturbances using a vibrating ribbon and observed regions of en-
hanced and diminished perturbation velocity alternating in the spanwise direction,
which they labeled peaks and valleys. Because the spanwise scale of the pattern

was the same as the TS wavelength, this mode of transition has become known



as the fundamental (or K-type, for Klebanoff) breakdown. This (nonlinear) stage
was characterized by rows of A-shaped vortices that are aligned in the streamwise
direction. These vortices lead to the formation of localized layers of high shear, fol-
lowed by a sudden appearance of spikes during each cycle of the oscilloscope traces.
These spikes multiplied, doubling and tripling in number, and leading, finally, to a
turbulent spot.

The experiments of Klebanoff et al. (1962) were reproduced by Kachanov et
al. (1985) and Kachanov et al. (1990). It was found that the disturbances remained
deterministic up until the late stages of breakdown. The spectra had clear signals
of the fundamental and harmonic frequencies right before the appearance of spikes,
at which stage the total disturbance intensity increased rapidly near the high-shear
layers. Spike formation was not attributed to a jump in amplitude, but to phase
synchronization in disturbance harmonics in a definite region of space. Kachanov
(1987, 1990) developed a wave-resonant theory of K-type breakdown as an extension
of the resonant triad theory of Craik (1971) and the subsequent work of Nayfeh &
Bozatli (1979). The wave-resonant concept explained the experimentally observed
3D amplification and spike generation.

Rist (1990), Rist & Fasel (1991) and Rist & Fasel (1995) performed spatial
DNS of controlled transition in a flat-plate boundary layer, aiming to reproduce the
experiments of Kachanov et al. (1985). These authors obtained good agreement
with experiments up to the stage of spike formation. The initial disturbance was a

2D wave with very small spanwise periodic variation. Nonlinear effects soon gener-



ated other modes, with spanwise high-frequency modes generated more quickly than
2D streamwise counterparts. The growth of spanwise modes saturated before the on-
set of breakdown. These authors confirmed that spike development is a predictable
event, caused by the synchronization of wave components in a narrow frequency
range. Iso-surfaces of the spanwise vorticity perturbation developed tongue-like
structures, which became more elongated with the streamwise distance. While be-
ing stretched in the streamwise direction, these structures developed streamwise
waviness. Iso-surfaces of the streamwise vorticity were A-shaped. The legs of the
vortices are near and parallel to the wall, but the tip is displaced vertically into the
outer boundary layer.

In visualisation studies of boundary-layer transition, Knapp & Roach (1968)
observed A-vortices in a staggered, instead of aligned, arrangement. Kachanov et
al. (1977) also noticed this pattern while performing controlled transition exper-
iments. These authors realized that the staggered A-vortex arrangement leads to
a qualitatively different mode of breakdown from the K-type. This scenario was
later denoted N-type, or subharmonic breakdown, after the fact that the dominant
streamwise wavelength of the disturbance is twice that of the fundamental T'S wave.
In this case, no spikes are present. The amplitude of the fundamental wave grows
until the signal becomes random, accompanied by a weak growth of higher har-
monics. Usually, the initial amplitude of the fundamental wave is small compared
to the K-breakdown. The onset of three-dimensionality starts with the formation

and rapid development of a broad packet of low-frequency disturbances. They are
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quasi-subharmonic fluctuations with half the frequency of the fundamental, but with
random amplitude and constant phase. Geometrically, the amplified subharmonic
consists of a pair of 3D instability waves inclined at # = +63 to the flow direction.
Laminar breakdown begins with the appearance of quasi-random disturbances near
the frequencies w/wy = 3/2, 5/2, where wy is the frequency of the fundamental wave.

Craik (1971) developed a theory of resonant three-wave interaction for the
boundary layer based on a weakly-nonlinear approach. The triad consists of one 2D
instability wave and two oblique subharmonic waves, propagating at angles of same
magnitude but opposite sign. Craik’s model did not generate widespread interest
until the first observations of amplified subharmonic modes in the boundary layer
(Kachanov et al. 1977). Craik-type resonances were observed experimentally by
Saric et al. (1981), Thomas & Saric (1981) and Kachanov & Levchenko (1984). The
resonant triad model was valid, but ultimately incomplete. Craik’s idea was ex-
tended by Nayfeh & Bozatli (1979). These authors studied the resonant interaction
of four waves, (wy,0),(2wp, 0),(wo, £/5), which could result in the amplification of
3D waves with the fundamental frequency wy. Orszag & Patera (1983) carried out
numerical studies of 3D secondary instability of TS waves. They found that differ-
ent types of disturbances can arise. Primary resonance with the TS wave produces
peak-valley splitting as the TS wave amplitude exceeds a threshold, while subhar-
monic resonance can occur at smaller TS wave amplitudes. Their calculated distur-
bance velocities and growth rates were consistent with experiments. The authors

concluded that secondary instability originates from the redistribution of spanwise



vorticity into streamwise-periodic lumps near the critical layer. The growth of 3D
modes arises from the combined effects of vortex tilting and stretching.

Herbert (1984, 1986, 1987) carried out Floquet analysis of secondary instability
in the presence of a finite amplitude T'S wave and obtained good overall agreement
with experiments on both fundamental (K-type, peak-valley splitting) and subhar-
monic (N-type) breakdown. He concluded that peak-valley splitting is likely to
occur at lower frequencies and higher TS wave amplitude. The subharmonic insta-
bility modes were found to be more unstable than the fundamental. Spalart & Yang
(1987) carried out DNS of transition in a temporally-growing boundary layer and
also observed that subharmonic modes were more unstable. DNS of N-type break-
down were also performed by Fasel (1990) and Kleiser & Zang (1991) and showed
good overall agreement with experiments.

The combined efforts of experimentalists and theoriticians essentially clari-
fied the physics of N-type transition in the flat-plate boundary layer. The main
mechanism is due to a rapid resonant amplification of 3D quasi-subharmonic modes
through their interaction with a quasi-2D initial T'S wave, amplified by the primary
flow instability. For thorough reviews of the mechanisms of secondary instability and
subsequent disturbance evolution, the reader is referred to the articles by Herbert

(1988) and Kachanov (1994).



1.3 TS-wave receptivity

In the above discussion, we have focused on the evolution of a small disturbance
present in the boundary layer as an initial condition. In reality, the process of recep-
tivity, i.e. the generation of this initial disturbance through the interaction of the
mean 2D flow with acoustic, vortical, or geometric (e.g. surface roughness) distur-
bances, is of equal importance. Mathematically, receptivity is an initial-boundary-
value, rather than an eigenvalue problem, ¢.e. it should admit solutions for all values
of wavenumbers and frequencies, and thus has to be treated differently. Selected
receptivity studies are sumarized below. For a recent comprehensive review, the
reader is referred to Saric et al. (2002).

In a seminal paper, Goldstein (1983) used high-Reynolds number asymptotics
to investigate the receptivity of the flat plate boundary layer to acoustic waves. His
analysis explains how the O(1) nonparallel flow effect in the leading-edge region can
transfer energy from a long wavelength to the short TS wave. In a subsequent paper,
Goldstein (1985) showed that short-scale variations in surface geometry can lead to
a direct transfer of energy from the free stream acoustic disturbance to a TS wave.
Golstein & Hultgren (1987) studied the influence of leading-edge curvature on the
receptivity process.

Lin et al. (1992) studied via DNS the boundary-layer receptivity to acous-
tic disturbances in the presence of an elliptic leading-edge. The discontinuity in

curvature at the ellipse/flat-plate junction was found to be a source of TS-wave re-
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ceptivity. The receptivity decreased with increasing leading-edge sharpness (higher
aspect ratio). Lin et al. (1992) also found that the resultant TS wave amplitude
halved when a superellipse was used, eliminating the curvature discontinuity. Buter
& Reed (1994) studied boundary-layer receptivity to free-stream vorticity for the
same geometry as Lin et al. (1992). As the disturbance convected past the body, it
was ingested into the upper part of the boundary layer. Signals at the T'S wavelength
were prevalent near the wall, while near the boundary-layer edge disturbances of the
free-stream wavelength were observed. The receptivity to vorticity was smaller than
the receptivity to sound by a factor of three. TS-wave response was linear up to
free-stream disturbance amplitudes of 4.2% and 2.1% of the free-stream velocity, for

symmetric and antisymmetric disturbances, respectively.

1.4 Bypass transition

The studies of boundary-layer transition summarized above were motivated by
early theoretical results from linear stability theory (LST). The neglect of the non-
linear term, which rendered the problem tractable, required that the amplitudes of
the initial perturbation be sufficiently small. This condition may be met in a number
of external aerodynamic flows, particularly in aeronautical applications because of
the benign nature of the disturbance environment. Certain flows of engineering in-
terest, e.g. in turbomachinery, involve high-amplitude disturbances that invalidate

a straightforward application of LST. In fact, with free-stream vortical disturbances
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in excess of 1% of the free-stream velocity (low/moderate-amplitude free-stream
turbulence), the TS-wave scenario appears to be absent. The boundary layer un-
dergoes a more rapid transition, at flat-plate Reynolds numbers up to an order of
magnitude lower than those predicted via the linear theory. The disturbance growth
rate is also higher and occurs on a convective, rather than a slow viscous time scale
associated with TS waves. Morkovin (1969) referred to this transition phenomenon
as “bypass transition,” after the fact that the classical TS mechanism is bypassed.
In the following, we summarize the most important experimental, theoretical, and
numerical research on bypass transition. This discussion is repeated in chapter 6 of
this dissertation, where we also present the bulk of our DNS results on FST-induced

boundary-layer transition.

1.4.1 Experimental work on transition due to FST

Klebanoff (1971) observed that the Blasius boundary layer develops unsteady
undulations of the streamwise velocity with a frequency content that is significantly
lower than that of the unstable TS waves. The amplitude of the peak response in-
creased in proportion to the FST amplitude, and grew larger in proportion with the
boundary-layer thickness. Arnal & Juillen (1978) found no evidence of TS waves in
the transition process, and observed that the peak of the low-frequency disturbance
energy is located in the middle of the boundary layer. Kendall (1985) observed long

streamwise streaks with small spanwise scales, which he called Klebanoff modes.
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He also confirmed the finding of Klebanoff (1971) that the disturbance s grows
in proportion to the boundary-layer thickness. Westin et al. (1994) reported that
the mean velocity profile is only slightly modified, despite boundary-layer u,,s lev-
els of 10% of the free-stream velocity. They also confirmed a linear dependence of
the boundary-layer u,,s on the layer thickness. Comparing with other experiments,
they noted that the constant of proportionality may be variable. Matsubara & Al-
fredsson (2001) reviewed several experiments performed at the Royal Institute of
Technology (KTH). They found that the spanwise spacing of streaks (of opposite
sign of the u'-velocity perturbation, i.e. high- and low-speed) increases with the
FST level, and also slightly increases with the streamwise distance. Towards the
end of the transition zone, it is approximately equal to the boundary-layer thick-
ness. These authors suggested that the spanwise scale selection occurs within the
boundary layer. In a later publication, however, Fransson & Alfredsson (2003) con-
cluded that the selection process is more complex and is influenced by the FST
scale, among other effects. Matsubara & Alfredsson (2001) confirmed that the tran-
sitional boundary-layer u,,s peak is located approximately in the middle of the layer
and show that the length of streaks increases in proportion to the layer thickness.
From their flow visualization studies, the authors concluded that the appearance of
“turbulent spots” (Emmons, 1951) — patches of irregular fluid motion surrounded
by quasi-laminar flow that appear in the last stages of transition — may be due to
secondary instabilies of the streaks. Recently, Fransson, Matsubara & Alfredsson

(2005) performed additional experiments using a wide range of FST intensities and
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length scales and made several important contributions. First, there is an initial
region near the leading edge where the disturbance grows more slowly than farther
downstream, i.e. the receptivity process requires a certain distance. Second, the
disturbance energy increases in proportion to the FST energy and the flat-plate
Reynolds number (Re,). Third, the transition Reynolds number is inversely pro-
portional to the FST energy. Finally, the extent of the transition zone increases in
proportion to the flat-plate Reynolds number. These findings should be confirmed
in future experiments and numerical simulations. Although Fransson et al. (2005)
vary the FST length scale in a controlled manner, they do not sort their data based
on the length scale. Thus, the effect of the FST length scale is not addressed in
their work. Jonds, Mazur & Uruba (2001) study the effect of the FST dissipation
length scale on the onset of transition at the FST intensity of 3%. Based on their
measurements of the intermittency function, they find that the onset of transition
is moved upstream with increasing length scale, and that the transition region be-
comes longer. Further, quantitative studies of the effect of the FST length scale are
needed, especially because, together with other factors, such as leading-edge geom-
etry, they may explain some of the discrepancies in the experiments performed to

date.
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1.4.2 Theoretical work

Several approaches have been taken to understand the physics of bypass tran-
sition from a theoretical point of view. Ellingsen & Palm (1975) proposed a linear
mechanism for the inviscid evolution of an initial disturbance in the presence of a
mean shear. Due to the non-orthogonality of the linearized incompressible Navier-
Stokes (NS) operator, an initial disturbance may undergo an initial “transient”
growth before exponential decay. In particular, the streamwise disturbance compo-
nent may grow linearly in time, evolving into a streak. A similar mechanism due to
Moffat was also referenced by Philips (1969). Landahl (1980) produced a physical
explanation for this phenomenon, known as the “lift-up” effect. Pairs of counterro-
tating vortices are able to lift low-momentum fluid into the upper boundary-layer,
producing a streak of negative velocity fluctuation. Transient growth theory has
been used with some success in several wall-bounded flows. Butler & Farrel (1992)
found optimal perturbations for plane channel, Couette, and parallel boundary-layer
flow. Andersson, Breggen & Henningson (1999) and Luchini (2000) used optimiza-
tion techniques to find optimal disturbances for a Blasius boundary layer. The
optimal disturbance was found to be a pair of counterrotating vortices and the
downstream perturbation was a streaky structure with a spanwise scale of 1.4 times
the boundary-layer thickness. Good agreement was found between the disturbance
cross-stream profile and u,ms data of Westin et al. (1994). Since transient growth

theory is linear, it can only describe the initial transition stages, and not its later de-
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velopment. A theoretical study of streak breakdown as part of a self-sustaining cycle
can be found, for example, in Waleffe (1997). Andersson et al. (2001) used Floquet
theory to investigate secondary instabilities of the optimal final disturbance from
Andersson et al. (1999). These authors found critical streak amplitudes for the sinu-
ous and varicose instabilities to be 26% and 37%, respectively. A different approach
was used by Bertolotti (1997), who used the parabolic stability equations (PSE) to
study the response of the boundary layer away from the leading edge to vortical
modes in the free stream. He found that low frequency stationary modes produce
disturbance profiles that are in good agreement with experiments. Leib, Wundrow
& Goldstein (1999) solved the linear boundary-region equations, accounting for the
FST interaction with a solid surface. The results indicate the importance of the
cross-stream velocity components in triggering streamwise streaks. Their predic-
tions provide encouraging agreement with measured boundary-layer data for lower

levels of FST.

1.4.3 Computational work

Large-Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of
transition in boundary layers have been slow to come due to the high costs of
computation. Not only must the boundary layer resolution be sufficiently fine to
ensure accurate disturbance evolution, but the streamwise domain size must be large

enough to capture all stages of the boundary-layer development. The first DNS of
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boundary-layer transition due to FST in a spatial formulation was performed by Rai
& Moin (1993), who used a finite-difference, fractional-step, compressible NS solver
to model the experiments of Blair (1983). The disturbance was generated to match
the von Karmén energy spectrum with a prescribed intensity and length scale. The
location of transition onset agreed with the experiments adequately, but the skin
friction development farther downstream was compromised due to under-resolution.
Their work indicates that the resolution needed to simulate a transitional flow is
as high as that for a turbulent boundary layer. Voke & Yang (1995) used a finite
volume conservative method to perform LES of boundary-layer transition, in an
attempt to reproduce the experiments of Roach & Brierlay (1992). Although their
simulations were severely under-resolved and the FST properties were not matched
to the experiment, they were able to provide qualitative insights into the transition
mechanism. The wall-normal FST component acts with the mean shear of the flow
to produce the Reynolds shear stress, which, together with the mean shear, drives
the production of the streamwise Reynolds stress. A proper DNS of FST-induced
transition was performed by Jacobs & Durbin (2001). Following Grosch & Salwen
(1978), these authors expanded the FST in the eigenfunctions of the linear Orr-
Sommerfeld operator to provide a realistic inflow condition without simulating flow
around the leading edge. With fine, turbulent-like resolution in the entire boundary
layer, they obtained very good agreement with the T3A experiment of Roach &
Brierlay (1992) at 3% FST intensity. Klebanoff modes were found to be a prominent

feature of their simulations, and were generated nonlinearly by the penetration of
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the FST into the boundary layer. The spanwise streak spacing was in agreement
with the optimal results of Andersson et al. (1999). No evidence of streak instability
was reported in their work. Instead, low-speed streaks provide a receptivity path
between the FST and the boundary layer, but are otherwise irrelevant to transition.

Brandt, Schlatter & Henningson (2004) performed DNS of boundary-layer
transition due to FST with variable length scale and intensity. They used the dis-
turbance generation method in Jacobs & Durbin (2001) but also with the Squire
modes for the wall-normal vorticity. They found that for a given FST intensity,
increasing the FST length scale moves the onset of transition upstream. The span-
wise scale of the streaks did not vary appreciably with the FST length scale. Many
aspects of their simulations are in qualitative agreement with Alfredsson & Mat-
subara (2001). Using flow visualizations, Brandt et al. (2004) conclude that streak
breakdown and turbulent spot formation is caused by one of two instability modes
of low speed streaks. The sinuous mode, characterized by streak oscillations in the
spanwise direction was observed more frequently than the varicose mode, which
was due to streak oscillation in the wall-normal direction. The authors noted that
the transition mechanism due to streak instability may resemble the behaviour of
streaks in turbulent boundary layers. Ovchinnikov, Piomelli & Choudhari (2004)
use DNS to study the effect of inflow parameters on the onset of transition. They
confirm the finding of Brandt et al. (2004) on the effect of the FST length scale
and also show that by manipulating the FST spectrum one can significantly change
the location of transition onset. They also suggest that including the leading edge
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of the plate may be necessary for accurate transition prediction.

1.5 Wake/boundary-layer interaction

An additional class of transition scenarios arises in flow situations in which the
boundary layer over a submerged body is impacted by unsteadiness generated by an
upstream body. A boundary layer interacting with a wake of sufficient strengh may
undergo a rapid and premature transition due to the ingestion of wake turbulence. In
some instances, transition occurs in a boundary layer that would otherwise remain
laminar for all time. Quintessential examples of such flows are wake/boundary
layer interactions in turbomachinery and wake/boundary layer interactions in multi-
element airfoils. These two examples differ from each other due to the large unsteady

effects in the first case, and thus are discussed separately.

1.5.1 Unsteady interaction

In a turbine, stator vanes will be continuously affected by a velocity field
contaminated by wakes from the blades on the upstream rotor. Since the rotor
and the stator are in relative motion, a typical stator vane will be impacted by
wakes at different chord locations on the suction side, in a manner dependent on
the velocity of the rotor and on the number of rotor blades. Furthermore, during
the periods when the vane is not in the path of an upstream wake, its external flow

will be quiescent. Boundary layers on the moving rotor blades undergo a similar
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interaction with the wakes from the stator vanes. Since the wakes impact the vanes
intermittently (albeit periodically), this mode of wake/boundary-layer interaction
is labeled unsteady. The axes of the wakes passing through the cascade channels
are inclined to the blade walls, so that at different distances from the wall, the
free-stream oscillates at a different phase.

Because transition to turbulence affects important design parameters such as
drag, mixing, and heat transfer, the case of unsteady interactions in turbomachinery
applications has received extensive study by experimentalists and theoreticians in
the 1980’s. Many results are summarized by Mayle (1991). We quote a few examples
especially relevant to the current work. The geometry of a turbine and the physics
involved lead to a very complex flow regime. A simplified geometry was studied
by Herbst (1980) and Pfeil, Herbst & Schroder (1983). In these experiments, a 2D
laminar boundary-layer was impacted by wakes generated by an array of cylinders
mounted on a rotating squirrel cage. The velocity of the cylinders was approximately
perpendicular to the plate at all times (directed towards the plate). In this manner,
the effects of surface curvature and pressure gradient were separated from the effects
of the wake. Pfeil et al. (1983) devised a conceptual model from their experiments
as the number of mounted cylinders was varied. This model is summarized below.

Undisturbed flow undergoes natural transition according to the linear stabil-
ity theory. When a turbulent spot arises, it is followed by a “becalmed” region
of flow in which no additional turbulent spot can arise. When wakes are present,

the laminar boundary layer is intensely disturbed. Turbulent spots form farther
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upstream than in the undisturbed case, and are followed by similar becalmed re-
gions. If the wake frequency is low enough, spots due to natural transition can
also occur, but with a small enough cylinder spacing, natural transition can be pre-
vented completely. Completion of transition in the disturbed case is actually farther
downstream, because of the becalmed flow regions. When the cylinder spacing is
reduced below a critical value, the wakes merge in the afflux, thus approximating a
high-amplitude FST environment. In this case, the length of the transition region
decreases markedly. The average velocity of the leading edge of the spots is higher
than that of the trailing edge, leading to spot spreading and merger. While the
start of the transition zone is the same for any number of cylinders, the end moves
upstream with increasing passing freqency. At the highest frequency, transition was
complete upstream of the start of the natural transition zone.

Basing their setup on that of Pfeil et al.(1983), Liu & Rodi (1991) conducted
a similar experiment with the aim to study the detailed physics and provide reliable
data on 2D wake-induced boundary-layer transition. Four separate experiments
were conducted with 4, 8 12 and 24 cylinders, respectively. Properties of the in-
dividual wakes were significantly altered by the arrangement of the cylinders and
did not exhibit the spreading and decay of single wakes in unconfined surroundings.
Contrary to the findings of Pfeil et al., when the flow was undisturbed, natural
transition was not observed. This discrepancy is probably due to differences in the
background free-stream enviroment. The authors also report that the onset of tur-
bulence moves upstream with increasing wake frequency, but stops moving when the
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frequency is so high that the wakes merge near the plate leading edge. In this case,
the rotating cage generates an approximation to FST. The intermittent passage of
turbulent spots was accompanied by an increase in the boundary-layer u,,,;, the
displacement thickness and the ensemble-averaged velocity deficit, and a decrease
in the shape factor. Even in those cases in which the u,,,, and the mean free-stream
velocity remained fairly uniform over a cycle, the displacement thickness and the
shape factor varied significantly. There was also a slight phase lag between the
regions of velocity deficit and high ;.

The unsteadiness was also studied in a Lagrangian frame of reference, i.e. with
the measurements taken following laminar and turbulent patches of the flow. The
boundary-layer regions underneath passing wakes were fully turbulent with the
almost constant in space and a shape factor close to 1.5. Similarly, %,,,s and the
shape factor underneath laminar free-stream regions indicated a laminar boundary-
layer; these laminar “stripes” became turbulent at the end of the test section for 8,
12, and 24 mounted cylinders, but not for 4. Velocity profiles were also measured and
had a logarithmic profile for turbulent patches and a “shallow” profile for laminar
ones. It was also concluded that upstream movement of transition onset was caused
by wake disturbances and not by a local adverse pressure gradient associated with
the wakes.

A detailed Direct Numerical Simulation (DNS) of transition due to passing
wakes was recently performed by Wu, Jacobs, Hunt, and Durbin (1999). The flow
configuration was very similar to the one used by Liu & Rodi (1991), except that

22



the velocity of the virtual cylinders was always normal to the plane of the plate
(the flow around the cylinders was not computed, and the effect of their wakes was
incorporated into the inflow boundary condition, hence the qualifier “virtual”). The
inlet into the simulation domain was located downstream of the plate leading edge
at Rey = 80, and the inflow velocity consisted of a Blasius profile upon which a
time-varying velocity field was superimposed to approximate the wakes. The wake-
velocity field was obtained from a previous DNS of a plane wake, multiplied by the
Blasius profile to bring the disturbance to zero at the wall. With 54 million grid
cells inside the domain, Wu et al. (1999) were able to get a detailed view of the flow
physics. The picture of transition agrees qualitatively with the experimental data
of Liu & Rodi (1991). The transition scenario was characterized by the appearance
of streaky disturbances in the u-velocity fluctuation, similar to the ones observed
by Matsubara & Alfredsson (1996). When acted on by a free-stream eddy of a
certain type, some streaks gave rise to turbulent spots. The authors indicated
that the forcing by a free-stream eddy is crucial in the breakdown process i.e. the
breakdown does not occur due to a streak instability per se. A typical turbulent
spot looked similar to smoke visualization results of Zhong et al. (1998). Growing as
it propagates downstream, the spot had an approximate reverse arrowhead shape.
The authors proposed that the reason for a reversed and not a forward arrowhead
shape is that in this case transition is top-down, i.e. starting at the top of the
boundary layer, and not bottom-up (as in roughness-induced spots).

The onset of transition was defined as the region of sharp skin friction increase
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(Cf). Amplitude of root-mean-square (rms) fluctuations in Cy was highest in the
regions of high flow intermittency due to the passage of turbulent spots. In the
fully- turbulent boundary-layer region, the flow statistics were in agreement with
DNS data of Spalart (1988). The authors performed additional simulations (i) with
the cylinder velocity reversed (i.e. the cylinders moving away from the plate) and
(ii) with the mean wake deficit artificially set to zero (so that only the turbulent
fluctuations were present). From these calculations, the authors concluded that the
wake deficit of mean velocity profile has a strong influence on the phase-averaged
(' in the transition region. Removing the mean wake velocity profile and retaining
only the fluctuations eliminated the difference in Cf between U, < 0 and Uy > 0

cases (cylinders moving towards and away from the plate, respectively).

1.5.2 Steady interaction

The flow over a multi-element airfoil represents another type of wake/boundary
layer interaction important for aerospace applications. Multi-element airfoils are
used in situations where high lift is required, such as during aircraft landing and
takeoff, so that the involved boundary layers are subject to adverse pressure gra-
dients (APG) and are often on the verge of separation. With a wake passing near
to and merging with the boundary layer, the modification of boundary-layer dy-
namics is important in airfoil design. The separation characteristics can be strongly

influenced by the state of the boundary layer flow.
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The reason for significant interaction between an airfoil slat wake and the
boundary layer over the main body (wing) is tied to the optimal overall design
of the multi-element configuration. The slat wake is initially away from the wing
surface and does not merge with the boundary-layer until near mid-chord. This
separation distance is due to the optimum gap between the slat and the leading
edge of main wing. If this gap is reduced, there is earlier merging, which thickens
the viscous layer, increasing the likelihood of separation upstream of the flap. If
the gap is too large, the suction peak at the leading edge of the main element is
increased, and an adverse pressure gradient leads to leading-edge separation.

The turbulence in the slat wake may be amplified by the presence of a “cove”
on the pressure side of the slat, which is required for a snug fit in cruise conditions.
The flow separates in the cove (although usually reattaches on the lower surface of
the slat near the trailing edge), producing additional turbulence. While this example
bears many similarities with wake/boundary-layer interactions in turbomachinery,
there is no relative motion of airfoil components. This implies that the upstream
wake will merge with the downstream boundary layer at a fixed chord location (in
an ensemble averaged sense). Thus, the only unsteadiness present is in the dynamics
of the wake itself. Consequently, such cases of wake/boundary-layer interaction are
labeled steady (i.e. statistically stationary). Due to the absence of large unsteady
effects, experiments and numerical simulations are typically easier to perform. A
review of experimental and theoretical work prior to 1990 can be found in Squire

(1989). Since this topic is directly relevant to the present research, several important
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experiments (in simplified geometries) are reviewed below.

Zhou & Squire (1985) studied experimentally the interaction between an airfoil
wake and a flat-plate boundary layer. They found that near the wall, the evolution
of the wake is strongly modified by the boundary layer. The boundary layer shows
a large momentum deficit in the outer core, but has the statistics of a turbulent
boundary layer near the wall. The streamwise region of interaction could be divided
into three parts. In the first, the wake and the boundary layer are separated by
a potential core. In the second, the wake and the boundary layer begin to merge.
Physically, this region is the most important and complicated. The flow in the
overlap region (i.e. in the outer boundary layer and the outer wake) is completely
different from that in an undisturbed boundary-layer flow. In the third, the merging
is complete. The resulting boundary layer is thicker than that in undisturbed flow.
This last stage may not be reached by the end of the airfoil.

In the initial part of the merging region, the region of negative shear stress
(—wv < 0) in the inner part of the wake was not completely eliminated (by the
influence of the boundary layer, which has —uw > 0). The location of zero shear
stress did not coincide with the location of dU/dy = 0, indicating questionable the
validity of simple eddy viscosity models for turbulent simulations of the merging
region. The speed of merging increased with increasing levels of turbulence in the
wake. In an adverse pressure gradient (APG), the rate of lateral wake-spreading
was faster, speeding up the interaction.

Savill & Zhou (1983) performed smoke visualization studies of wake/boundary-
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layer interactions using cylinders, plates, and airfoils, mounted at different locations
relative to a flat plate. The authors emphasize the differences between strong and
weak types of interaction. If a wake retains its initial (vortical) coherence during
its merger with the boundary layer, strong interaction is taking place. In this case,
the boundary layer is likely to inherit some of the characteristics of the wake, e.g.,
the wake-shedding frequency. This would be the mode of interaction if the wake-
generating body were placed close to the boundary layer of interest. If, by the
time the interaction takes place, the wake is incoherent, (that is, it approximates a
free-stream turbulence [FST] environment), the a weak interaction is said to occur.
An example of weak interaction would be a cylinder wake developing sufficiently far
away from a boundary layer that the von Karman vortex street has lost its dominant
frequencies and turned into essentially chaotic flow.

The authors found that in the case of strong interaction between a cylinder
wake and the boundary layer, an interchange of mushroom-shaped vortices between
the wake and the boundary layer takes place. The cylinder wake was different from
FST and had clearly organized structures and non-zero shear stress. Overall, the
interaction region was dominated by the movement of large scale structures into
the boundary layer, which transported shear stress of “opposite” sign (in turbulent
boundary-layers uv < 0, whereas in the the wake wv > 0).

This phenomenon has been noticed in several previous works, for example by
Bario, Charnay, and Papailliou (1982), who studied the wake created by a symmet-
rical airfoil interacting with the boundary layer of a longitudinally displaced airfoil
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in an adverse pressure gradient. These authors found regions of “negative produc-

)

tion,” i.e. those in which dU/dy and —uw are of opposite sign. The authors provide
the explanation that if an eddy that is formed from a boundary-layer ejection event
travels from a region of positive mean velocity gradient (outer boundary-layer and
outer half-wake) into a region of negative mean velocity gradient, the eddy trans-
ports with itself the turbulent properties generated in the outer boundary layer (such
as T < 0). Thus, in a limited region of the inner half wake, in spite of the negative
velocity gradient, uv remains negative. As mentioned before, this counter-gradient
transport phenomenon invalidates those eddy viscosity models, in which the shear
stress —uw is proportional to the mean velocity gradient.

Kyriakides, Kastrinakis, Nychas, and Goulas (1996) conducted an experimen-
tal investigation of boundary-layer transition due to a von Karman vortex street
behind a circular cylinder at Reynolds numbers in the range 385 < Rep < 10, 500,
based on the cylinder diameter. Various positions of the cylinder relative to the flat-
plate leading edge were invesigated (spanning weak-to-strong regimes of interaction).
In the absence of cylinder wakes, the boundary layer remained laminar, and with
the wakes present, rapid transition was observed in nearly all cases. The onset of
transition was identified from signals of the streamwise velocity inside the boundary
layer. The amplitude of the initially sinusoidal signal (due to the coherence of the
von Karman street coherence) increased linearly as a function of the streamwise dis-
tance up to /D = 6.8. The location at which the sinusoidal behavior disappeared

was taken as the location of transition. This criterion gave some surprising results,
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such as that for Rep = 385, the onset of transition was observed at Re, = 2,625.
Typical plate Reynolds numbers (Re,) of transition onset for bypass transition are
O(10%). Also, with this criterion, the values of the maximum boundary-layer s
achieved at position of transition onset, were smaller than 5%. The values of s
typical of boundary-layer bypass transition are above 10% (e.g. Matsubara & Al-
fredsson, 2001). The end of the transitional regime was defined as the location at
which the wake has completely merged with the boundary layer. Similar to Zhou
& Squire (1985), three distinct flow regions were observed: (i) the wake and the
boundary-layer separated by a potential core, (ii) the region of merging, and (iii)
the (thicker) confluent turbulent boundary layer region. The frequency of cylin-
der wake-shedding (Strouhal frequency) was present in the boundary-layer velocity
signal at all experimental locations and its strength decayed with the streamwise
distance. The secondary harmonic was also observed. This was a clear indication
that the boundary layer is affected by the coherent dynamics of the wake.

By varying experimental parameters, Kyriakides et al. (1996) reported the
following general trends: Increasing the frequency of shedding, the cylinder distance
upstream of the leading edge and its vertical proximity to the plate, produces a
decrease in the transition Reynolds number (upstream transition). Increasing the
vertical distance from the plate has the opposite effect.

The work of Kyriakides et al. (1996) was continued in Kyriakides, Kastrinakis,
Nychas, and Goulas (1999a,b). These publications provide additional details of case

12 (Rep = 3,500) of the former paper, which corresponds to a cylinder location
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of (x/D,y/D) = (—1,2.5), relative to the plate leading edge. Strong interaction
of the cylinder wake with the boundary layer produced transition at z/D = 3.3
(Re; = 11,550). Transition was complete by /D = 12 (Re, = 42,000). A spectral
peak coresponding to the Strouhal frequency of the wake could be identified up to
location z/D = 17.

The time averaged velocity profiles were used to compute contours of the
streamfunction. The transitional region was characterized by a secondary vortical
structure forming near the wall, directly beneath a passing Kdrmdan vortex with
negative vorticity (clockwise rotation). This secondary structure (with positive vor-
ticity) was convected away from the wall with the streamwise distance. Based on
uv-, u?v-, and v3-contours, the authors concluded that during the passage of a pri-
mary votex with negative vorticity, turbulent energy is transferred to the boundary
layer (u2v and v® are both negative) and during the passage of a vortex with positive
vorticity, energy is transferred to the wake from the boundary layer (both u2v and
v3 are maximum and positive). The authors remark that the elongated streamwise
structures reported in the studies of bypass transition due to FST, e.g. Westin et
al. (1994), were not observed in their experiments.

From the examination of shear stress and mean velocity profiles inside the
transtional region, the authors conclude that a region of negative energy production,
similar to the one reported by Bario et al. (1982), exists in the region of overlap
between the lower reaches of the wake and the upper region of the boundary layer.

In this region, turbulence energy is transferred from the wake toward the wall.
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Following Wallace, Eckelman, & Brodkey (1972), Kyriakides et al. (1999b)
performed a quadrant splitting analysis of the negative production region and con-
cluded that it is dominated by “interactions wallward,” i.e. v < 0,0 < 0, in
contrast to ejections and sweeps (v’ < 0, v > 0 and v’ > 0, v' < 0) found in
turbulent boundary layers.

Doligalski, Smith, and Walker (1994) have reviewed the problem of vortex/wall
interactions on a more fundamental level. When a spanwise vortex is convected par-
allel to (and sufficiently close to) a solid surface, a viscous response is generated in
the near-wall flow. A vortex Reynolds number may be defined as Re = I'/27v,
where I is the circulation. At a sufficiently high Reynolds number, a sequence of
events initiates in the boundary layer that ends in an abrupt eruption of surface fluid
and usually leads to the formation of a new upstream vortex structure. Such erup-
tions develop because any vortex in proximity to a wall induces an adverse pressure
gradient on the boundary layer, in a frame of reference that moves with the vortex.
Theoretical results (Elliott, Cowley, and Smith 1993, Cowley, Van Dommelen, Lam
1991) imply that steady motion at high Reynolds numbers is not possible under
such circumstances and an abrupt erution is likely. It is initiated by a local con-
centration of the vorticity field within the boundary layer, which stimulates a rising
“spire” of fluid that interacts strongly with the external flow. These spires contain
vorticity and “roll up” into vortices. On the boundary-layer scale, eruptions appear
as explosively growing spikes in the displacement thickness. These spikes have a
thickness that approaches zero as Re — oo. On the scale of the external flow, the

31



event appears as a sharply focused concentration of vorticity near the surface about
to eject into free stream.

Luton, Ragab & Telionis (1995) performed 2D numerical simulations of the
early stages of interaction between a spanwise vortex and a boundary layer and
confirmed the appearance of boundary-layer eruptions for primary vortices with
large negative vorticity (i.e. clockwise rotation). The clockwise vortex induces
upstream vorticity that erupts from the boundary layer and interacts inviscidly
with the primary vortex. The experimental data of Kyriakides et al. is insufficient

to decide whether the above mechanism plays a significant role in their work.

1.6 Aim of current study

In the previous section we reviewed selected works that show several paths to
boundary-layer transition due to a disturbed free-stream environment. These paths
are, no doubt, related: the case of transition due to wakes of moving compressor
blades resembles FST-induced transition, in the limiting case of narrow wake spac-
ing such that the wakes merge prior to reaching the affected stator vane. On the
other hand, in the limit of zero velocity of the blades relative to the vanes, a case
of steady (statistically stationary) interaction, analogous to the one encountered in
multi-element airfoils, results. It is therefore natural to view the three broad cate-
gories of transition due to a highly disturbed free-stream (FST, unsteady and steady

interaction) as complementary and overlapping. In particular, many observations
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and findings regarding one scenario may also be valid for the other two.

In the past two decades, advances in numerical algorithms and computing
hardware have made computer simulations of flows a powerful research tool. Di-
rect Numerical Simulations (DNS), in particular, continue to provide data that are
difficult or impossible to measure in an experiment, and enrich our understanding
of fluid dynamics on a continual basis. Because of its current restriction to low
Reynolds number flows, DNS is not a stand-alone prediction tool for high-Reynolds
number flows of practical interest. Rather, DNS is an ideal tool for the discovery of
new low-Reynolds-number physics. Careful generalization to high-Reynolds number
flows promises improved predictions.

As shown in the works of Wu et al. (1999), Jacobs & Durbin (2001), and
Brandt et al. (2004), DNS has done much to further our understanding of unsteady
wake-induced and FST-induced transition. Good agreement with experiment in
the second reference is especially encouraging. Our aim in this reasearch is to
elucidate by DNS the physical mechanisms underlying steady wake/boundary-layer
interaction (wake-induced transition) and to present our findings in the broader
context of boundary-layer transition due to a disturbed free stream. The availability
of a full 3D velocity field allows a high level of detail, similar to that found in the
above references.

Our work may be naturally divided into two broad categories:

e Simulations of steady cylinder-wake-induced boundary-layer transition
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e Simulations of FST-induced boundary-layer transition.

The first topic has not been previously studied by high-fidelity numerical sim-
ulations and therefore directly complements the works of Wu et al. (1999), Jacobs
& Durbin (2001), and Brandt et al. (2004).

Investigations of the second topic were necessary to provide additional results
on FST-induced transition and to answer some of the questions left open in previous
studies. During the course of this research, high-accuracy DNS of FST-induced
transition were performed, which for the first time computed the interaction of the
turbulence with the leading edge of the flat plate.

Examination of the two transition scenarios was related to other experimental
and numerical investigations, and represents a step towards a general understanding
of boundary-layer transition.

Specifically, the accomplishments of this research are the following:

e the mechanism of boundary layer transition due to a steady interaction with
cylinder wakes have been elucidated in a simplified geometry using statistical

analysis and flow visualization

e the transition mechanism identified have been related to other studies of bypass

transition

e a study on the applicability of widely-used inflow conditions for simulations
of bypass transition due to FST has been performed. A strong sensitivity of
transition location to ad hoc inflow parameters has been demonstrated
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e well resolved DNS of FST-induced boundary-layer transition that include the
effects of the leading edge region have peen performed with good agreement

with experimental data

e the influence of the FST intensity and length scale on the location of transition

onset has been investigated

e an alternative mechanism of boundary-layer transition due to FST of large

length scale is discovered and studied in detail

Our investigations have provided answers to some questions, partial answers
to others, and raised several more that should be addressed in future studies. The

most important unanswered questions are:

does the mechanism of steady wake-induced boundary-layer transition change
fundamentally if the flow geometry is changed (minimally, if the location of

the cylinder axis is shifted)?

e is this mechanism still dominant if free-stream turbulence is superimposed on

the wake flow, as is the case in many aerodynamic flows?

e quantitatively, what is the effect of the leading edge geometry on the location
of FST-induced transition onset? How sensitive is this dependence on the FST

length scale and intensity?

e quantitatively, what is the effect of the FST length scale on the location of
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transition onset? How sensitive is this dependence on the leading edge geom-

etry and FST intensity?

e how do the answers to the above questions change with streamwise curvature

and pressure gradient?

It is our belief that with time, answers to these complex and open-ended
questions will lead to the long-awaited understanding of bypass transition in wall-

bounded flows.

1.7 Organization

A summary of the numerical method used in the current simulations is pre-
sented in Chapter 2. The main body of this dissertation is comprised of four self-
contained articles, two of which have been published in conference proceedings, the
third is awaiting publication in the Journal of Fluid Mechanics, and the fourth is un-
der review by the same journal. These articles are reproduced in chapters 3 through
6, each preceded by a foreword that explains the article’s significance in the context
of the entire thesis. When necessary, an article is followed by additional data and
discussion. Each article contains its own complete list of references, and the entire
bibliography is compiled at the end of the thesis. The articles that form the basis

for this dissertation are, respectively,

1. OvcHINNIKOV, V. O., PioMELLI, U., & CHOUDHARI, M. M. Numerical
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simulations of boundary-layer transition induced by a cylinder wake. J. Fluid

Mech. Accepted for publication.

2. OvcHINNIKOV, V. O., PioMELLI, U., & CHOUDHARI, M. M. 2004 Inflow
conditions for numerical simulations of bypass transition AIAA Paper, 2004-

0591.

3. OvcHINNIKOV, V. O., PioMELLI, U., & CHOUDHARI, M. M. Numerical
simulations of boundary layer bypass transition with leading edge effects. In
Proc. 4th Int. Symp. Turbulence and Shear Flow Phenomena, Williamsburg,

Virginia, June 25-27, 2005, 425-430.

4. OvcHINNIKOV, V. O., PioMELLI, U., & CHOUDHARI, M. M. Numerical
simulations of boundary-layer bypass transition due to high-amplitude free-

stream turbulence. J Fluid Mech. Submitted for publication.

Chapter 7 summarizes key results and contributions and underscores several
features of boundary-layer transition that appear common to the class of problems

studied herein.
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Chapter 2

Numerical method

2.1 Governing equations

In the current investigation, we perform Direct and Large-Eddy Simulations
(DNS and LES) of boundary-layer transition. The governing equations for DNS are

the Navier-Stokes (NS) equations

Ou;
83: j
ou; 0 op 1

ot tas, W) = "o T R

=0, (2.1)

written in a nondimensional form using the free-stream velocity U,, and an appropri-
ate length scale L. In the wake/boundary-layer simulations, L was the cylinder di-
ameter (D), and for simulations of FST-induced transition, either the half-thickness
of the plate, or the boundary-layer thickness at a reference location. The resulting
Reynolds number is defined as Re;, = UyL/v. The presence of the body forces
fi (f; in the case of LES) is due to the immersed boundary forcing, which models
the effect of a submerged body (cylinder, or flat-plate leading edge) on the ambient

fluid, as described in the last section of this chapter.
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2.2 Numerical algorithm

Despite low convergence rates as the number of grid cells is increased, second-
order central finite-difference (FD) formulations on staggered meshes ensure con-
servation of mass, momentum and kinetic energy in the discrete sense!, reflecting
the basic conservation properties of the Navier-Stokes equations. For this reason,
27d_order central schemes have been very popular in DNS and LES of incompress-
ible flows, which require accurate representation of the smallest resolved scales of
the flow. Additionally, the staggered arrangement is preferred to the collocated
because it produces a physical pressure field by avoiding the even-odd decoupling
problem inherent in collocated FD formulations (Ferziger & Peric 1998). Moreover,
when the FD formulas that are 2"4-order accurate for equispaced meshes are used
on stretched meshes, the conservation properties remain unaffected, even though
the order of accuracy may drop to somewhat below 2.0, depending on the degree of
stretching. Consequently, such numerical schemes are well-suited for our problems,

and a popular variant, implemented in our code, is described in detail below.

2.2.1 Spatial and temporal discretization

The formulation is based on the fractional-step method of Chorin (1968) and
Kim & Moin (1985). The spatial derivatives are represented by second-order-

accurate central finite-differencing (FD) on a staggered mesh. The arrangement

Tn the limit of zero divergence, see Morinishi, Lund, Vasilyev & Moin (1998)
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]

Figure 2.1: Staggered variable arrangement.

of the primitive variables is illustrated in figure 2.1. The three velocities u, v and
w are defined on the cell face normal to the respective direction, and the pressure p
and the turbulent viscosity (in the case of LES) vr, at the cell center.

The momentum equation for each velocity component u; is advanced at the
corresponding velocity node using the 2"d-order (in time) Adams-Bashforth explicit
method for both convective and viscous terms. The pressure at the last iteration

(n) is also included:

ul —ul 3 1 dop™

Lt = CHM— —HM! - 2.3
At 2" 2" 52.Ii’ ( )
where
0o (ufu? 1 Zyn
HZL:_ 2( ]) - 62uz ’ (24)
52.Tj Re 5237_7'6237]'
b2

oy () represents the second-order finite-difference approximation to the correspond-

ing derivative, At is the time step, and the superscript n indicates the current in-
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teration. The above equation yields a provisional “predicted” velocity u;, which is

not divergence-free. Mass conservation is applied indirectly in the “corrector” step:

ultt — b9 (0p"™*1)
o i U A 2.5

Requiring the corrected velocity u?™ to be divergence-free, i.e. dyul't'/drx; = 0, a

n+1

relation for the pressure correction dp™** may be obtained:

= L= At .
52371' At 52371' 52.’1)1' (52.’1)1' 52.’1)1'52371'

Thus, the above correction step requires the solution of a Poisson difference equation

n+1

for the pressure correction dp"**. This procedure is illustrated below. Expanding

the discrete Laplacian produces

7

52u»} A 5% (5pn+1) _ A 5% (5pn+1) 5% (5pn+1) 5% (5pn+1)

= 2.7
52332' 523?1'52332' 52.%‘5231‘ 52y52y 522522 ( )
Since in our simulations the boundary conditions are periodic in the spanwise (z)

direction, applying the discrete fast Fourier transform (DFFT) yields N, uncoupled

equations of the form:

— 9 [ ontl o [t
N N

where [V, is the number of grid cells in the spanwise direction, k£ € [-N,/2, N,/2 — 1],
K = 2 (cos[2nk/N,] — 1) /Az is the modified wavenumber, (™) represents a Fourier
amplitude coefficient for a given wavenumber, and the dependence on z, y, and r
is implied for all terms. Each Helmholz equation in the above system is solved by a
cyclic reduction algorithm (Swarztrauber, 1974).
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Once the pressure correction is calculated, the predicted velocity is updated

using equation 2.5, and the pressure at timestep n + 1 is obtained by

pn+1 — pn + 5pn+1. (2.9)

The timestep At is obtained in accordance with the CFL and viscous condi-

tions, which require, respectively,

At maz; (K‘J) < CFL, and (2.10)
vAt
max; (A—xf) <o. (2.11)

To ensure numerical stability, CF'L and o were set to 0.3, and 0.25, respectively

(Ferziger & Peric 2001).

2.2.2 Boundary conditions

The outflow condition for each simulation was based on the idea by Orlanski
(1976). In this formulation, the following wave equation is solved at the most

downstream grid node:

¢n+1 _ ¢n _
At

010

_Ucon
A\’ 51x Y

(2.12)

where ¢ is any of the three velocity components, U,,,, is the average velocity across
the most downstream plane, and (;i—lz () represents first-order accurate FD?2. This con-

vective treatment minimizes the reflection of pressure waves into the computational

2The overall second-order accuracy of the code is maintained even if the boundary treatment

is first order.
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domain, but its approximate nature does lead to modification of the flow field in a
finite region near the outflow plane. For this reason, the results in the downstream
10%-15% of the computational domains were discarded in all of the simulations
described herein.

The pressure boundary condition was periodic in the spanwise direction and
homogeneous Neumann on all other boundaries.

The other boundary conditions were dependent on the specific problem. Chap-
ters 3-6 are each preceeded by a section that explains the corresponding geometry

and boundary conditions in detail.

2.3 Large eddy simulation

In large-eddy simulation, the flow field is separated into large (resolved) scales
and small (subgrid) scales. Given a flow variable ¢, the large-scale component is

obtained using the filtering operation:

3 (x) z/_Z/Z/:qb(m')G(x,:c';A) da, (2.13)

where G (z,2'; A) is the filter kernel with filter width A, and z is a spatial coordinate.
Applying the filtering operation to the Navier-Stokes equations (2.1 and 2.2)

and assuming that the filtering operation commutes with temporal and spatial dif-

92



ferentiation®, one obtains the filtered NS equations:

o1,
— = 2.14
ou; 0 ,_ _ 10p 1o Omj &
9 (@) = — Bl v AL > 2.1
ot Ox; (%) p 0x; * ReV i Ox; = Ji (2.15)

The term 7;; = Wu; — u;u; denotes the subgrid-scale (SGS) stress, which
represents the effect of small (subgrid) scales on the resolved velocity field. In
the present calculations, 7;; was modeled using the dynamic eddy-viscosity model
(DEVM) with Lagrangian averaging (Meneveau, Lund & Cabot 1996), which is an
extension of the original DEVM with planar averaging (Germano, Piomelli, Cabot
& Moin 1991). The essential idea behind DEVM with Lagrangian averaging is
described below.

The anisotropic part of the SGS stress 7;; is represented by an eddy-viscosity
assumption:

Tij — %Tkk = —2upS;; = —2c5A? ‘§| Sijs (2.16)
where ¢;; is the Kronecker delta tensor, |§‘ = (2§ij§ij)1/2, Ej is the filtered rate-
of-strain tensor, and cg is a dynamic coefficient. The application of a second filter
G (z,2';2A) (with twice the filter width) to the filtered NS equations, produces a

subtest-scale stress defined as

——

Tij = wiuj —

~

Uy, (2.17)

Iy

3True to second order accuracy. See Vasilyev, Lund & Moin (1998) for a discussion of commu-

tation errors.
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where () stands for filtering at the 2A scale. The Germano (1992) identity states:
Lij =Tij — T, (2.18)

where L;; = E/Z\HJ - ﬁlﬁj is the stress due to flow scales intermediate between A and
2A, and can be computed directly from an LES flow field. Using the same eddy
viscosity assumption to parameterize the subtest-scale stress (with twice the filter

width), one obtains

Oii — ENIEN
The Germano identity requires

The idea fundamental to the dynamic eddy-viscosity model, is to choose the value cg
in such a way that the error e;; in the above identity is minimized in an appropriate
average sense. The DEVM with Lagrangian averaging is based on error minimization
along particle path lines. This choice is particularly well-suited to complex-geometry
flows, in which planar averaging is precluded by the lack of homogeneous directions.

The choice of error accumulation function used by Meneveau et al. (1996)* gives

“The total error is weighted towards recent events using a weight function that decays expo-

nentially in time.
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the following simple rules for the dynamic determination of cg:

2= g;]‘; : (2.22)
DI (LM~ Yo, (2.23)
= Ef‘gM = % (My;Mi; — Yaar),  and (2.24)
T =1.5A (Tan Tarnr) 8. (2.25)

The DEVM with Lagrangian averaging yields results that are slightly superior
to the DEVM with planar averaging (for flows in which both averaging methods
are applicable), but requires nearly twice the computational cost of an LES with no
model (both in memory and in CPU time), because of explicit filtering at the test
filter width. Furthermore, since the derivation of the dynamic model requires that
both the grid filter and the test filter length scales correspond to the inertial range of
the flow energy spectrum, for the transtitional and low Reynolds-number turbulent
flows studied in this dissertation, the dynamic model does not significantly alleviate
the resolution requirement of DNS.

Consequently, for many of our simulations, it proved more memory-efficient to

increase the number of grid nodes and perform DNS instead of LES.

2.4 The immersed boundary method

Second-order finite-difference codes based on Cartesian geometries are appre-
ciated for their speed, memory efficiency, and ease of use. These benefits come
at a price: by virtue of their simple design, Cartesian codes are unable to han-
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Figure 2.2: The immersed boundary method

dle complex geometries directly. Fortunately, an alternative, indirect treatment of
complex boundaries has been developed, beginning with the pioneering work of Pe-
skin (1972), who computed flow around heart valves using an “immersed boundary”
method with a Cartesian-based code. Since that time, a large amount of literature
has been published, investigating many variations of the original idea. A recent
review is given by Mittal & Taccarino (2005). In the following, we describe one
particular formulation that has been validated in various flows, in conjunction with
a second-order FD method, and was successfully used in our simulations. Our im-
plementation follows Balaras (2004), who extended the work of Fadlun, Verzicco,
Orlandi & Mohd-Yusof (2000).

In this method, the effect of a submerged object on the fluid is modelled by a
set of discrete forces, imposed at the appropriate velocity locations. Conceptually,
this procedure is illustrated in figure 2.2. The flow field is interrupted by a contour

that represents the solid-fluid interface. Taking the (stationary) solid to be below the
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line, the grid nodes are naturally divided into three categories: (i) nodes in the fluid
region (unfilled and solid dots), (ii) nodes inside the body (shaded dots), and (iii)
nodes located on the boundary to within a prescribed tolerance € (striped dots).
The immersed boundary procedure consists of imposing a force field at the fluid
nodes adjacent to the solid boundary (unfilled nodes) or directly on the boundary
(striped nodes) in such a way that the modified velocities are consistent with the
proximity of the body.

In the context of our second-order code, the procedure is as follows: Let u"
denote the streamwise component of the velocity at node I in figure 2.2 at timestep
n. To account for the force field, we have a modified equation for the predicted

velocity, u*:
u* —u”

At

1
= SHP - SH -
2 2

"
52.T

+ fr (2.26)

where H" represents the discretized convective and viscous terms at timestep n, as
before. Note that the force f™ is evaluated using information at timestep n, i.e.
explicitly. If the desired fluid velocity at node I were known, i.e. u™t' = V., the

force could be approximated by setting u* =V in equation 2.26 as

3 1
fi'=—5H + SH ™ +

Oop"™ V —u"
2 2 +

5233 At

(2.27)

Upon substituting this equation into 2.26, it becomes obvious that the above ap-
plication of forces is equivalent to modifying the predicted velocity u* directly, 7.e.
setting u* = V. For this reason, the above approach is called “direct forcing.”

The modified predicted velocity field, which we denote by ©**, is made solenoidal
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using a correction step identical to the one in equation 2.5 (for the streamwise com-

ponent):
55 (6 n+1
= g = 220 (2.28)
525C
with dp"*! obtained by inverting the Poisson equation
62 (6pntt 1 dou*

Oyxi0ax; At Gyx;
Note that the formulation of the Poisson equation is unaffected by the presence of
the forces, which implies that the correction step is allowed to modify the forced
velocity field at the immersed boundary. Consequently, the corrected velocity u"*!
will be different from V. Fadlun et al. (2000), however, found that the modification
of the immersed boundary velocities is negligibly small (O (103 — 10™%)) relative to
the velocity values themselves. More importantly, the many validations presented in
their paper, along with those in Balaras (2004), demonstrate that the direct forcing
treatment preserves the overall 2"4-order accuracy of the code.

The remaining question concerns the determination of V. This process is
illustrated in figure 2.2 in 2D for immersed boundary (IB) points I and II. In
the direct forcing approach, V is obtained from bilinear interpolation using the
prescribed velocity on the boundary and the predicted velocities at the fluid nodes
adjacent to the IB nodes. First, the usual velocity prediction step is performed
(2.3). For each IB point, a surface normal n passing through the point is then
computed (for a stationary body, this step is performed once at the beginning of
the calculation). The normal is repeatedly extended farther out into the flow field
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by small increments Ah, until its end (the ghost point in figure 2.2) is inside a grid
cell with three or four nodes in the fluid region. The velocity value at the ghost
point is obtained using bilinear interpolation from the surrounding fluid nodes, and
the velocity at the IB node, using linear interpolation from the ghost point and the
point on the body that lies on the surface normal. This procedure applies only to
nodes adjacent to the boundary on the fluid side of the interface. Inside the solid,
the velocity and pressure are allowed to adjust freely. Their behavior in this region
is unphysical and has no apparent influence on the fluid side.

Because we use a staggered spatial discretization (figure 2.1), the v and w
velocity nodes are at different locations in space. Thus, the IB points of the v and
w velocity components each use a different interpolation stencil. Other than this,
the forcing procedure is the same as for the © component.

Finally, the IB forcing was also applied to Y7 in the case of LES, (in the
numerator on the right-hand-side of equation 2.22) to ensure that the eddy viscosity
vr approached zero at the solid boundary.

The direct forcing approach as described above is second-order-accurate, memory-
efficient, and incurs negligible overhead, compared to the overall cost of computa-
tion. As such, it a valuable alternative to complex-geometry formulations. We
remark that all of the simulations presented in this dissertation are fully explicit in
time. However, when the viscous terms are computed implicitly, e.g. using Crank-
Nicolson time advancement, the above forcing procedure should also be implicit.

This involves a straightforward modification of the matrix that results from CN
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Figure 2.3: Pressure recovery

discretization and is described in Fadlun at al. (2000).

2.4.1 Pressure recovery

The pressure field on the submerged body was recovered using the linear re-

construction method described in Tseng & Ferziger (2003), illustrated in figure 2.3.

This method requires pressure values at two fluid nodes and the normal pressure

gradient at a surface point, which is assumed to be zero.

The pressure at the surface point Py (x, y) is given by

P0:a0+a1x+a2y,

where
- ag - - 0 -sin(f) cos(#) - -
i=B"¢, d=|a | B=|1 2 4 |, 6=
| 2 | ] I Y2 ]

9Py

an

P,

(2.30)

(2.31)

In the above, (z1, y1) and (za, y2) are the coordinates of the two nodes in

the fluid region, P; and P, represent the pressure at those nodes, and tan (6) is the
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slope of the surface normal.

2.5 Code parallelization

The above algorithm was parallelized using the Message-passing interface (MPI).
The computation is distributed between n processors (n was varied between 1 and
16 for the simulations described in this dissertation) in the following way. The
flow domain is subdivided into n regions along the flow direction, with each re-
gion containing the same number of cells. Before the predictor step (equation 2.3),
each processor receives velocity values from the two adjacent planes upstream and

7 Additional velocity values are trans-

downstream as local “boundary conditions.
mitted if for some immersed-boundary nodes the interpolation stencil is outside
the local domain. The Poisson equation 2.6 is solved efficiently by distributing the
uncoupled Helmholtz problems equally among the n processors. This is the most
communication-intensive step, as it requires that each processor receive a complete
set of complex coefficients for a given spanwise wavenumber kj, which is initially
scattered between the n processors. The subsequent inverse DFF'T requires the re-

verse of this process. The above parallelization resulted in a nearly linear reduction

in computational time as the number of processors n was increased from 1 to 16.
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Preface to Chapter 3

In the following article, “Numerical simulations of boundary-layer transition in-
duced by a cylinder wake,” we investigate the problem of statistically stationary
wake/boundary-layer interactions in a simplified geometry. The wake-generating
element is a circular cylinder, and the affected boundary-layer develops along a flat
plate in a zero-pressure-gradient (ZPG) environment. The slat/main-body gap in
a multi-element airfoil configuration is represented by the vertical distance from
the cylinder axis to the leading edge (LE) of the plate. For the cases currently
studied, this gap was kept fixed by setting the location of the cylinder axis at
(xz,y) = (0,3.5D) relative to the leading edge. Since the ultimate objective of this
research is to improve transition prediction capabilities, we vary the flow Reynolds
number over one order of magnitude (but still in the low Reynolds-number regime)
for a fixed geometry, hoping that the physics that these simulations have in common
will also be dominant at higher Reynolds numbers.

The cylinder-plate geometry was chosen for two basic reasons. First, the ab-
sence of curvature and streamwise pressure gradients along the plate isolates the
effects of interaction with the vortical disturbances in the free stream. Second, both
the ZPG boundary-layer flow and the flow past a circular cylinder have been ex-
tensively investigated in the past. This permits simultaneous code validation and

comparison of interacting vs. noninteracting flow (e.g. boundary-layer disturbed by
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wakes vs. buffeted or turbulent boundary layer in an undisturbed free stream).

In the current configuration, the boundary layer undergoes the three stages
of evolution discussed in the introduction: (i) the wake and the boundary layer
separated by a potential core, (ii) the merging/interaction region, and (iii) the fully-
turbulent boundary-layer region. It is shown that the cylinder wake induces a rapid
boundary-layer transition at sufficiently high Reynolds numbers, with many simi-
larities to bypass transition due to FST.

The effect of the separation between the cylinder axis and the leading edge is

not explicitly addressed, and should be the subject of a future study.
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Chapter 3
Numerical simulations of boundary-layer transition induced by a cylin-

der wake!

3.1 Abstract

Direct and large-eddy simulations of the interaction between a laminar bound-
ary layer and a von Kérmén vortex street behind a circular cylinder are carried
out for three values of the Reynolds number based on the cylinder diameter and
free-stream velocity: Rep = 385, 1155 and 3900. Rapid, bypass-like transition to
turbulence is observed in the two higher Reynolds number cases. Flow statistics in
the transitional and turbulent regions are examined, followed by an investigation of
the underlying transition mechanism. Qualitative similarities between wake-induced
transition and bypass transition due to free-stream turbulence are discussed and the
challenges of predicting boundary-layer transition in this complex environment are

pointed out.

'To be published as
OvcHINNIKOV, V. O., PioMmELLI, U. & CHOUDHARI, M. M., 2005 Numerical simulations of

boundary-layer transition induced by a cylinder wake. J. Fluid Mech. Accepted for publication



3.2 Introduction

High-lift systems have a significant impact on the overall cost and safety of
aircraft. According to Meredith (1993), a 1% improvement in the maximum lift
coefficient (or lift-to-drag ratio) could translate into an increased payload of 14 to
22 passengers on a large twin-engine transport airplane. An optimal aerodynamic
design of a multi-airfoil high-lift configuration requires careful consideration of both
inviscid and viscous flow phenomena. In particular, laminar-to-turbulent transition
is a crucial issue for ground-to-flight scaling of high-lift flow fields.

The familiar transition mechanisms over a single isolated airfoil are also rele-
vant to transition over the multi-element airfoil configurations encountered in high-
lift applications. These include, respectively, transition due to one or more types of
hydrodynamic instabilities (attachment line instabilities, streamwise instabilities in
the form of Tollmien-Schlichting waves or Rayleigh modes, and crossflow vortex in-
stabilities) or leading-edge contamination—a form of subcritical (i.e., bypass) tran-
sition. An additional transition mechanism that is unique to multi-element airfoils
involves boundary-layer contamination due to unsteady wakes of upstream elements
or additional types of vortical disturbances originating from the separated cove flow
beneath an upstream element. While the “single-element” class of transition mech-
anisms has been widely studied in the literature (see, for example, Kusunose & Cao
1994), the wake-contamination issue has received little scrutiny thus far and is the

focus of this paper. Transition due to wake/boundary layer interaction is also known
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to occur in turbine flows, where the interaction involves the wake of an upstream
blade and the boundary layer of a downstream one. The transition process in this
case is inherently unsteady. As the wake impinges on the downstream airfoil, a
turbulent region analogous to a turbulent spot is formed locally, which travels in
the boundary layer of the downstream blade and perturbs it. Wake/boundary-layer
interaction over multi-element airfoils involves the wake of an upstream element
that develops nearly parallel to the boundary layer on a downstream one. Wake
induced transition in this case is due to a steady interaction in which the position
of the wake and the resulting onset of transition remain fixed with respect to the
boundary layer.

Most of the prior investigations of the interactions between turbulent wakes
and boundary layers have concentrated on the unsteady case. The unsteady charac-
ter of the impingement zone (which travels downstream in time) plays an important
role in the dynamics of the flow, as shown by a number of investigators (see, for
example, Liu & Rodi (1991), Wu, Jacobs, Hunt & Durbin (1999), and references
therein). In contrast, the number of studies devoted to steady wake/boundary-layer
interactions is much smaller. Squire (1989) summarizes many of the investigations
conducted prior to 1989. Particularly important is the work by Zhou & Squire
(1985), who examined the interaction between the wake of an airfoil and a flat
plate. They found that a region in which the wake and boundary layer are sepa-
rated by a potential core is followed by a merging zone. Across this zone the velocity
profile in the outer part of the boundary layer is substantially different from that
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in a regular flat-plate boundary layer. Zhou & Squire also observed that the posi-
tions of zero Reynolds shear stress and zero mean velocity gradient do not coincide,
indicating that the Boussinesq approximation inherent in the scalar eddy viscosity
models becomes suspect in such flows.

Kyriakides et al. (1996) performed experiments on boundary-layer transition
induced by a von Karméan vortex street behind a circular cylinder. The cylinder was
mounted above the plate, and the Reynolds number based on cylinder diameter was
varied between 385 and 10, 500. These authors reported transition for all Reynolds
numbers and noted several interesting trends as the diameter of the cylinder and its
location relative to the plate were varied. Unfortunately, their paper did not report
turbulent statistics besides profiles of mean streamwise velocity and disturbance
spectra at their lowest Reynolds number. More importantly from our standpoint,
the transitional aspects of the boundary-layer flow were not investigated in detail.

In most wake/boundary-layer interaction scenarios, the wake is initially sepa-
rated from the boundary layer and merges with it some distance downstream. The
merging distance depends, of course, on the spreading rate of the wake and on the
boundary-layer growth (i.e., on the Reynolds number), as well as on the initial dis-
tance between the wake and the solid body. The shape of the body that forms the
wake is also important: bluff body wakes are characterized by a von Karman vor-
tex street that involves strong, coherent eddies (the spanwise “rollers”), along with
“braid vortices” between the rollers. Wakes of airfoils or flat plates may or may not

contain such coherent motions, depending, among other factors, on the sharpness of
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Figure 3.1: Sketch of (a) the multi-airfoil configuration and () the model problem.

the trailing edge, on whether the flow is attached or separated, etc. In the case of
bluff body wakes, two types of interaction can be identified (Zhou & Squire 1985):
a “strong interaction” case that occurs when the wake still contains coherent eddies
in the interaction region, and a “weak interaction” one, in which the interaction
takes place sufficiently far downstream of the cylinder that the spanwise rollers have
decayed.

The present paper will focus on a numerical simulation of two element transi-
tion scenario in the simplified case of a cylinder placed above the leading edge of a
flat plate; boundary layer-transition is induced by the wake generated by the cylin-
der. Because of the extensive prior studies pertaining to flat-plate and cylinder flows
in isolation, the cylinder-plate combination is convenient yet retains the essential
physics of realistic complex geometry cases. Furthermore, the experimental data
of Kyriakides et al. (1996) can be used to validate the computational results to a
limited extent. Two of the cases simulated here, Rep = 385 and Rep = 1155, were
discussed by Kyriakides et al. (cases 1 and 2 in their paper). They also reported a

case at Rep = 3,500, close to the Rep = 3,900 case studied herein.
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The streamwise location of the cylinder axis is taken to be right above the
leading edge of the flat plate. Our simulations begin upstream of the cylinder and
the flat plate leading edge and extend into the fully turbulent region, thus including
the entire domain of interest.

The present paper is organized as follows: First we present the numerical
formulation, details of the configuration geometry, and the initial and boundary
conditions. We then discuss flow validation and resolution studies. Next, we show
and discuss the results, with an emphasis on the transition mechanism and transition

prediction. We end with possible directions for future investigations.

3.3 Problem Formulation

In the present study we perform both direct- and large-eddy simulations of
incompressible flow. In the case of direct numerical simulations (DNS), we solve the
incompressible equations of conservation of mass and momentum:

Ou;
8.7)]'

ot T oz, W = "5 T Rep

=0, (3.1)

V2u; + fi, (3.2)

while in the case of large-eddy simulation (LES), we use the filtered equations of

motion:
ou;
—J — 3.3
6H,~ 0 _ ap 1 2— 8TZJ
;) = —_— — A4
ot +on, @) or, + ReDV Ui = 5 ] + fi, (3.4)



where the overbar represents the filtered variables, and 7;; = uw;u; — w;u; is the
subgrid-scale stress (SGS), which in the present calculations was modeled using
the dynamic eddy-viscosity model with Lagrangian averaging (Meneveau, Lund &
Cabot 1996). The equations above have been made dimensionless using the free-
stream velocity Uy, and the cylinder diameter D. The resulting Reynolds number
is defined as Rep = UxD/v. The presence of the body forces f; is due to the
immersed boundary method, described below.

The equations of motion are solved using a fractional step method (Chorin
1968, Kim & Moin 1985). We use a staggered-grid arrangement, with central ap-
proximations for all the derivatives and explicit Adams-Bashforth time advancement
for the convective and diffusive terms. The method is second-order accurate in both
time and space. Following the time advancement step, the predicted velocity field
is made solenoidal by solving the Poisson equation for the pseudo-pressure? and
correcting the predicted velocities with the pseudo-pressure gradient. The method
fully conserves mass, momentum, and energy in the discrete sense (see Morinishi,
Lund, Vasilyev & Moin 1998). The coordinates z;, x2, and z3 (or, interchange-
ably, z, y and z) refer, respectively, to the streamwise, wall-normal and spanwise
velocity directions. The grid is uniform in the spanwise direction and stretched in
the streamwise and wall-normal directions to ensure adequate resolution within the
boundary layer (particularly in the transitional region) and the convecting cylinder

wake. The code has been extensively validated for a variety of turbulent and relam-

2Equal to the actual pressure to second-order accuracy.
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inarizing flows (Balaras, Benocci & Piomelli 1995; Piomelli, Balaras & Pascarelli
2000; Balaras, Piomelli & Wallace 2001).

The above algorithm was parallelized using the Message-Passing Interface
(MPI). The computational box is divided into n equal subdomains in the flow di-
rection and each of the n processors integrates the equations of motion in one of
the subdomains. The pseudo-pressure field is obtained by applying a spanwise Fast
Fourier Transform (FFT) to the discrete Poisson equation. This yields a pentadi-
agonal matrix for each Fourier mode, which is then inverted by a cyclic reduction
algorithm. Each processor is assigned a subset of the Fourier modes resulting from
the application of FFT.

The Cartesian computational grid does not conform to the cylinder body.
To satisfy the no-slip boundary conditions at the cylinder surface, we employ the
immersed boundary method of Fadlun, Verzicco, Orlandi & Mohd-Yusof (2000),
following the implementation of Balaras (2004). In this procedure the body forces
f; or f; are non-zero only in grid cells near the cylinder surface and are assigned
in such a way that the velocity on the cylinder surface is zero to second-order.
When the predicted velocity is projected onto a divergence-free field, the velocity
perturbations that are introduced in the vicinity of the cylinder are small (Fadlun
et al. 2000), so that the corrected velocity is also second-order accurate around
the cylinder body. Finally, we note that in the case of explicit time advancement,
calculating and including a force field in the momentum equations is equivalent
to modifying the predicted velocities directly. The immersed boundary method, as
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Figure 3.2: Computational configuration and boundary conditions.

described above, has been extensively validated in laminar and turbulent flows in the
references mentioned above. For further validation in the specific context of interest,
we also performed an LES of the flow past a circular cylinder at Rep = 3900, which

will be described in Section 3.

3.3.1 Initial and boundary conditions

Figure 3.2 shows a sketch of the computational configuration and boundary
conditions. All our calculations start ten cylinder diameters upstream of the flat-
plate leading edge. On the lower side of the domain, ahead of the leading edge of the
plate, we apply free-slip conditions (0u/dy = Ow/dy = 0, v = 0), whereas we apply
no-slip conditions on the plate. In order to avoid the numerical difficulties associated
with modeling a sharp leading edge (i.e., the possibility of numerical instabilities due

to the sudden change from the homogeneous Neumann to the Dirichlet conditions),
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we merged the two conditions smoothly over a length z ~ 8 using a hyperbolic
tangent function. Since the flow around the leading edge is slowed down gradually
rather than suddenly, the above merging approximates modeling a finite thickness
leading edge. We verified that the mean velocity profiles sufficiently far downstream
of the leading edge asymptote to the Blasius solution.

Along the free-stream boundary, we imposed free-slip conditions. This bound-
ary condition does not allow outflow through the top side of the domain, causing
the flow above the boundary layer to accelerate in order to compensate for the
boundary-layer growth. In our simulations, the acceleration parameter due to this
effect, K = — (v/U2)) (dUy/dz), was of the order of 10~7. The value of K at which
a turbulent boundary layer is expected to relaminarize is around 3.0 x 10~% (Spalart
1986). Since in our case, K is an order of magnitude lower, we do not expect the
acceleration to affect transition significantly.

The inlet condition consisted of a uniform streamwise velocity profile. At the
outflow we imposed non-reflecting boundary conditions (Orlanski 1976). Simulation
results in the last 15% of the domain were discarded because of the proximity of the
outflow boundary. Since the grid was stretched significantly in this region, however,
only about 7% of the grid cells were wasted. In the spanwise direction, z, periodic
boundary conditions were used.

The three calculations performed in this work required substantial computa-
tional resources, especially those at Rep = 1155 and Rep = 3900. The computa-

tional expense was necessary to resolve properly the boundary-layer leading edge,
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the cylinder wake, and the transitional region of the boundary layer, which is known
to be sensitive to the grid resolution (Jacobs & Durbin 2001; Ovchinnikov, Piomelli
& Choudhari 2004). Therefore, two overlapping computational domains were used
in the above two cases to minimize the computational resources required. The first
box contained the cylinder and the flat-plate leading edge and had very fine resolu-
tion near the wall and near the cylinder surface (to allow accurate implementation
of the immersed boundary method) as well as in the shear layers emanating from
the cylinder separation. Some distance downstream of the cylinder, where the plate
boundary layer is thicker and the smallest scales within the cylinder wake have
grown in size, the wall-normal resolution requirement could be relaxed. At this
location, a time sequence of planes of velocity was stored and used as the inflow
condition for a second computational domain that had fewer points in the wall-
normal direction, but maintained the fine streamwise resolution required to resolve
the transition zone (Jacobs & Durbin 2001, Ovchinnikov et al. 2004). The multi
domain aproach has been used by researchers in the past with good success (Rai &
Moin 1993, Huai, Joslin & Piomelli 1997). However, strictly speaking, it violates
the ellipticity of the incompressible Navier-Stokes (NS) equations. To estimate the
magnitude of the errors, we performed two DNS of the flow past a circular cylinder
at Rep = 3900. In the first, the computational domain was inside a single box
spanning x = —10D — 8D, and in the second, it was split between two boxes
spanning x = —10D — 4.7D, and x = 4.7D — 8D, respectively. The cylinder
axis was located at (z,y) = (0D, 15D) and the wall-normal domain was 30D. The
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wall-normal domain had 352 cells in the first simulation and the first box of the
second simulation, and 232 cells in the second box of the second simulation. Linear
interpolation was used to transfer the velocity from the outflow plane of the first box
to the inflow plane of the second box. The resolution was in accordance with the
validation study presented in the next section. The simulations were started from
the same initial field and advanced synchronously. This permitted comparisons of
instantaneous as well as time-averaged fields. For the two simulations, contours of
the instantaneous velocity were almost indistinguishable in the region z = 4.7D —
8D. The maximum deviation in the mean velocity in this region was 4%, and the
streamwise Reynolds stress (uu) was underpredicted by at most 8% in the two-box
simulation. This mild underprediction is expected since linear interpolation used
to transfer the velocity field is dissipative. Overall, the error incurred by the multi
domain approach seems justified by the 34% savings in computational time.

Despite the reduced cost of the split domain approach, the simulations required
a total of 65 and 80 million points for the Rep = 1155 and Rep = 3900 cases,
respectively. In order to obtain converged statistics, each case required a total CPU
time of 300400 hours per processor on an 8-processor Pentium 4 cluster.

The initial condition for the low Reynolds number calculation (Rep = 385)
was a uniform velocity profile throughout the entire domain. For the first box of the
higher Reynolds number calculations, the initial condition was obtained by interpo-
lating the converged velocity field from a lower Reynolds number calculation. For the

second box, a Blasius boundary-layer solution with the appropriate boundary-layer
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thickness at the inlet (obtained from the first box) was used as initial condition.

3.3.2 Simulation Parameters

The flat-plate leading edge was located at x = 10 on the bottom boundary,
and the cylinder axis at x = 10, y = 3.5 for all simulations (as mentioned above, all
lengths are made dimensionless by the cylinder diameter D), as shown in figure 3.2.
Table 3.1 summarizes the simulation parameters. The computational domain for the
Rep = 385 case was a rectangular box of dimensions L, x L, x L, = 150 x 20 x 2.
For the Rep = 1155 case, the first box had dimensions 100 x 20 x 27; cross-stream
planes were extracted at location x = 60, interpolated onto the wall-normal mesh of
box 2, and fed into a second computational box of dimensions 115 x 20 x 27. With
respect to the flat-plate leading edge, the useful region of the calculation, therefore,
extended from z = —10 to x = 150 (the last 15 units of the second domain are
discarded because the grid stretching results in excessive coarseness of the mesh
in this region, and the effect of the outflow boundary conditions alters the flow
physics). For the Rep = 3900 case, the first box had dimensions 30 x 20 x 27; cross-
stream planes were extracted at z = 17.3 and fed into a second box of dimensions
60 x 20 x 2m. For the highest Reynolds number simulation, the computational
domain could be shorter because transition takes place closer to the leading edge
than in the other cases. As will be shown, in the Rep = 1155 case transition begins

in the first box and completes in the second box, while in the Rep = 3900 case, the
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Case Re Method L,xL,xL, nr X ny X nz

1 385 DNS 150 x 20 x 27 1128 x 192 x 48

100 x 20 x 27 (useful)

2 1155 LES 100 x 20 x 27 (box 1) 1056 x 384 x 128 (box 1)
115 x 20 x 27 (box 2) 624 x 200 x 128 (box 2)

160 x 20 x 27 (useful)

3 3900 DNS 30 x20x2r (box1) 608 x 448 x 160 (box 1)
60 x 20 x 27 (box 2) 1168 x 310 x 160 (box 2)

58 x 20 x 27 (useful)

Table 3.1: Simulation parameters.

transition process is entirely confined to the second box.

The governing equations were advanced in time until a steady state was
reached, statistics were then accumulated for a period of 130-150 dimensionless
time units (25-30 wake shedding cycles). Convergence of the statistical sample was
verified by comparing the statistics obtained using only half of the sample with those
obtained using the entire sample. First-order quantities differed by less than 1%,

second moments by less than 5%.
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Method Re Azt Ayl . Azt

max maXx

DNS 385 7.0 0.25 3.0

LES 1155 (box 1)  10.0 0.21 2.8

LES 1155 (box2) 12.0 1.0 3.1

DNS 3900 (box1) 4.0 03 6.0

DNS 3900 (box2) 105 09 7.0

Table 3.2: Largest grid size in viscous units (A*(z) = A(z) - u,(z)/v) near the flat

plate.

3.4 Grid requirements

In order to ensure the accuracy of our calculations, we needed to establish
separate grid resolution requirements for the evolving boundary layer and the cylin-
der wake. The grid requirements for the simulation of turbulent boundary layers
using 2nd-order accurate central difference schemes are well known (Az™ ~ 15,

Ayt <1, Azt >~ 6 for DNS, Azt ~ 50, Ayt <1, Azt ~ 20 for LES) and were
easily achieved in the fully turbulent region. Table 3.2 shows the largest grid size in
wall units for all the calculations.

For transitional flows, the grid requirements are less well established. However,
the results presented in this paper will show that the phenomenon of wake induced

transition is analogous to bypass transition due to free-stream turbulence (FST).

Accordingly, the computational grids used in the present study were based on previ-
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ous work related to FST-induced transition (see Jacobs & Durbin 2001; Ovchinnikov
et al. 2004). As argued in these references, boundary-layer bypass transition is es-
pecially sensitive to streamwise resolution. Ovchinnikov et al. (2004) show that an
excessively coarse streamwise grid compromises the evolution of the turbulence spots
characteristic of boundary-layer bypass transition (Jacobs & Durbin 2001; Ovchin-
nikov et al. 2004; Brandt, Schlatter & Henningson 2004), and that under-resolved
calculations predict a premature and abrupt transition. In all of our simulations,
the streamwise grid spacing was under 12 viscous units throughout the transition
region, which is sufficiently fine according to Jacobs & Durbin (2001).

To verify the grid resolution requirements in the vicinity of the cylinder, we
first examined the two extreme cases, Rep = 385 and 3900. For the low Reynolds
number case, Rep = 385, near cylinder resolution was the same as that used by
Balaras (2004), who validated the immersed boundary method for the flow past a
circular cylinder at Rep = 300 against reference simulations based on boundary
conforming grids. The two Reynolds numbers are sufficiently close that using the
same resolution is justified.

For the high Reynolds number case, we performed DNS and LES of the flow
past a circular cylinder at Rep = 3900 and compared our results with the DNS
data of Kravchenko & Moin (2000). For the LES we used a computational box of
dimensions L, X L, x L, = 30 x 30 x w (with the same spanwise dimension of the
domain used by Kravchenko & Moin 2000), which was discretized on a 496 x 352 x 80

grid. The cylinder was located at x = 10, y = 15. A DNS simulation on the same
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Figure 3.3: Profiles of (a) streamwise velocity, (b) streamwise Reynolds stress (u'u'),
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LES; O Experiment (Ong & Wallace 1996); ---- DNS (Kravchenko & Moin 2000);
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domain but using a 608 x 352 x 80 grid (with slightly higher concentration of wall-
normal points near the cylinder), produced nearly the same results as the LES. In
both cases the average spacing between adjacent points near the cylinder was 0.015
and 0.011 in the LES and DNS cases, respectively. Free-slip conditions were applied
on the top and bottom boundaries, the inlet condition was a uniform streamwise
velocity profile, and at the outflow, a non-reflecting convective outflow condition
was used (Orlanski 1976). While the simulations of Kravchenko & Moin (2000)
are performed using boundary conforming cylindrical grids and a numerical method
based on B-splines, our code is based on a rectangular Cartesian grid and uses the
immersed boundary method to represent the cylinder; for this reason we cannot
match our grid resolution directly to theirs. To ensure a comparable resolution,
however, we required the number of immersed boundary points (the points just
outside the cylinder surface at which forces are applied to mimic the presence of
the body) to be no less than the number of points lying on the cylinder surface
in the azimuthal direction in their final grid. In our validation case, we used 210
immersed boundary points along the cylinder countour compared with 185 surface
points used by Kravchenko & Moin (2000). At this resolution we obtained very
good agreement with their results. Figure 3.3 presents a comparison of the mean
velocity and the streamwise and shear Reynolds stress profiles at z/D = 4 from our
simulation with the DNS of Kravchenko & Moin (2000) as well as experiments of

Ong & Wallace (1996)2 Increasing further the number of immersed boundary points

3The pressure coefficient C,, = 2 (p — poo) /U2, is shown in the addendum.
p o]
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to 255 produced no change in the simulation statistics (not shown). With the
Rep = 385 and 3900 cases validated and the near cylinder resolution known for the
two cases, we estimated the near cylinder resolution necessary to ensure accuracy in
the Rep = 1155 case. This was done by assuming that the thickness of the laminar
boundary layer attached to the cylinder decreases with \/Rep, which implies that
the Rep = 1155 simulation requires approximately half the near cylinder resolution
of the Rep = 3900 case. For further confidence in the Rep = 1155 results, we
also performed the first box of the Rep = 1155 simulation of wake/boundary-layer
interaction on a coarser grid, which used only 816 x 288 x 96 to discretize the first
box and had 30% fewer points in each direction in the near cylinder region. The
results of the two simulations were in good agreement, indicating that the fine grid
is more than sufficient to resolve the important eddies in the transition region and
in the wake.

For the actual Rep = 3900 wake/boundary-layer simulation, we used the same
near cylinder resolution as described above for the validation case. The validity of
the laminar boundary-layer solution upstream of the transition region was confirmed
by observing agreement with the Blasius solution sufficiently far from the leading
edge (where the integral quantities such as displacement and momentum thickness
and shape factor matched the analytical solution to within 1%). At the streamwise
location of transition onset (x = 20), the boundary layer was resolved with 50
wall-normal grid cells. Throughout the transitional and turbulent regions, the first

wall-normal point was always below y* = 1. For the Rep = 1155, we ensured that
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the near-wall region was similarly resolved.

Finally, we examined spanwise two-point correlations of velocity fluctuations
to verify that the spanwise size of the computational domain was sufficient for the
fuctuations to become decorrelated. Starting from the onset of transition, the cor-
relation in the two velocity fluctuation components decays rapidly to zero, except
near the wake centerline, where some spanwise coherence due to the von Karman
street is present throughout the domain. Upstream of the transitional region, the
correlation plots remained oscillatory across the boundary layer, which was due to
pronounced streamwise streaky structures existing prior to transition. Some of these
observations are illustrated in figure 3.10, which is discussed in the section on the

transition mechanism.

3.5 Results

3.5.1 Flow Development

This section presents an overview of our results for the three Reynolds num-
ber cases considered. Most of the emphasis is placed on the evolution of various
flow metrics from the laminar into the turbulent regimes. An examination of the
receptivity mechanism and laminar breakdown is deferred until the next section.

As stated previously, the simulations at Rep = 385 and 3900 were treated
by DNS, while in the intermediate Reynolds number simulation the SGS model

was included. However, the eddy viscosity was significant only in the near wake
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of the cylinder (where small scales are generated by the shear-layer instability)
reaching maximum values of approximately 1.2 times the molecular viscosity. The
grid resolution in the boundary layer was fine enough that the eddy viscosity in that
region was negligible, and the transition calculation was effectively a DNS.

In the following, we define time-averaged quantities as

L, t
F=t=g7 | [ f@zn (3.5)

The integration period, T', was equal to approximately 25 shedding periods and was
sufficient to ensure statistical convergence of the data presented herein, as mentioned
above.

In our discussion, we will emphasize several the streamwise evolution of sta-
tistical flow quantities across the region of laminar-turbulent transition. The skin

friction coeflicient

Tw

C, =
T Uz /2

(3.6)

(where T, is the time-averaged wall stress), is an indicator of transition onset since it
increases markedly across the transition region. The shape factor H = 0/6*, where

the displacement thickness 6* and momentum thickness 6 are defined as

Yedge < U) Yedge < U) < U)
o [ A gyl [ (0
0 Uedge Y 0 Uedge Uedge Y ( )

The shape factor is equal to 2.6 in Blasius flow and ranges from 1.3 to 1.4 in turbulent

flow. It is an inverse measure of the boundary-layer momentum, which increases in

the turbulent regime. The integration in (3.7) is performed up to the edge of the
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boundary layer, yeqqe (defined as the location of maximum mean velocity between
the wake and the plate), and the “effective” free-stream velocity, Ueqgge, is the mean
velocity at this location.

We also examine the near-wall behavior of the velocity and turbulent kinetic
energy (TKE) profiles throughout the domain. In fully turbulent boundary layers,
the velocity profile has a logarithmic region, and the TKE profile has a near-wall
peak caused by low- and high-speed streaks of streamwise velocity. The log-law
expression used in our comparisons is ut = 2.44 X log (y*) + 5.5. Finally, we will
discuss the budget of the TKE across the transitional region k = (ujul)/2. It is

given by:

ok ok U, , , oul; Ou} 1 0(p'ul) o 10(ujuju)
ot <Z>8xj 0z (uaei) —v Oz; Ox; p Ox; VTR 2 Or;

(3.8)
The terms on the right side of (3.8), which is derived from the Reynolds-Averaged
Navier Stokes (RANS) equations, are referred to, respectively, as advection, pro-
duction, dissipation, pressure work, viscous diffusion, and turbulent transport. In
the case of LES at Rep = 1155, additional subgrid-scale (SGS) transport and dis-

sipation terms are present on the right-hand side. They are defined, respectively,

as
8(u’-7'-'-)
T — __\NvY/ 3.9
SGS 8:cj ( )
ou!
D = 3.10
SGS = Tij 0z ( )

and are included in the RANS transport and dissipation. The sum of the computed
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terms in the budgets was very small throughout the computational domain, indi-
cating good convergence. For example, in the fully turbulent region, the maximum
imbalance was 2% and 4% of the maximum production for the Rep = 1155 and
Rep = 3900 cases, respectively.

Figure 3.4 shows instantaneous snapshots of the flow field for each Rep case.
Although the computational domains have different streamwise sizes, the axes limits
for the three plots are the same to facilitate comparison. Pressure isosurfaces high-
light the cylinder wake, and contours of the streamwise velocity fluctuation show the
perturbations near the wall as well as in the wake. A more coherent von Karman
vortex street can be observed for the Rep = 385 case than for the Rep = 1155 and
3900 cases. In the higher Rep cases, consistent with the Reynolds number increase,
the cylinder wake contains eddies of a much finer scale. The spanwise rollers of the
vortex street rapidly become three-dimensional. Concomitant with the deformations
of the rollers, elongated streamwise streaks of high- and low-speed fluid appear inside
the laminar boundary layer. In the Rep = 385 case, although the laminar boundary
layer is buffeted by the shed vortices, it remains stable and no transition to turbu-
lence is observed within the computational domain. In contrast, in the Rep = 1155
and Rep = 3900 cases, the onset of laminar-turbulent transition is clearly visible
at approximately x = 30 (Re, = 34,650) and z = 20 (Re, = 78,000), respectively,
judging from the appearance of near-wall pertrubations. Transition is accompanied
by significant changes in the mean flow statistics, as well as the generation of fine-

scale streaky structures near the wall. The average spacing between the near-wall
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Figure 3.4: Isosurfaces of pressure (p = —0.08) and streamwise velocity fluctuation
contours inside the boundary layer and in the wake; (a) Rep = 385, (b) Rep = 1155,

(c) Rep = 3900
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Figure 3.5: Skin friction coefficient; —— Rep = 385, --- Rep = 1155, —— Rep =
39005 -------- laminar Cf, —--— turbulent C; the asterisks indicate the locations of

the onset and the end of transition.

streaks is about 100 wall units, consistent with typical turbulent wall-bounded flows.
The streaks become visible downstream of z ~ 30 in figure 3.4(c), which extends
into the fully turbulent region, but are less clear in figure 3.4(b), which extends only
through the middle of the transitional region.

In figure 3.5, we show the streamwise evolution of skin friction for the three
cases. In each case the skin friction starts from a perturbed laminar value that
does not coincide with the Blasius profile. This is due to the combination of the
proximity to the leading edge (where Blasius similarity is invalid) and the free-

stream acceleration due to the flow obstruction by the cylinder, which causes the
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Figure 3.6: Mean streamwise velocity profiles in wall units; bottom: Rep = 385;

-—-x =20, Re, = 7,700, —— x = 50, Re, = 19, 250, x =90, Re, = 34,650
middle: Rep = 1155; --- x = 30, Re, = 34,650, —— z = 70, Re, = 80,850, ——
x = 150, Re, = 173,250 top: Rep = 3900; --- x = 20, Re, = 78,000, —— = = 40,

Re, = 156,000, r = 47, Re, = 183, 300; The plots for the different Reynolds

number cases are offset by 10 units in the vertical direction.
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Figure 3.7: Profiles of mean velocity (--- ) and the turbulent kinetic energy (——
); (a) Rep = 385; from left to right, the plots correspond to z = 10, 30, 50, 70,
90, Re, = 3,850, 11,550, 19,250, 26,950, 34,650; (b) Rep = 1155; from left to
right, the plots correspond to x = 10, 15, 30, 90, 150, Re, = 11,550, 17,325,
34,650, 103,950, 173, 250; (c) Rep = 3900; from left to right, the plots correspond
to x = 10, 20, 30, 40, 47, Re, = 39,000, 78,000, 117,000, 156,000, 183,300. The
dots correspond to Blasius profiles at the respective Re, values. The U and k plots

are offset by 1 and 0.02, respectively.
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initial skin-friction undershoot. In the absence of the cylinder, the Blasius profile
was matched by z = 6, for the Rep = 385 case. Figures 3.5.1 and 3.7 show profiles
of the streamwise velocity at various locations for the three Rep cases. In figure
3.7, we have also included profiles of the turbulent kinetic energy at the respective
stations.

We begin with a discussion of the statistics for the Rep = 385 case. The
skin-friction coefficient shows increasing deviation from the perturbed laminar level
but does not rise more than halfway towards the turbulent value. This behavior is
consistent with evolution of the mean velocity: the velocity profiles show a small
progressive deviation from the laminar Blasius solution (figure 3.7 (a)), but there
is no trend towards a logarithmic law (figure 3.5.1, bottom), and the fuller velocity
profile is due to a perturbed laminar flow regime. The shape factor for this case has
a minimum value of 2.25, which is below the Blasius value of 2.6 but far from the
turbulent value of 1.5. Figure 3.7 also shows an initial increase in the boundary-
layer TKE peak with streamwise distance, which is most likely due to the growth of
the laminar boundary-layer streaks visible in figure 3.4, which will be discussed in
the next section. The TKE peak remains near the middle of the boundary layer and
not near the wall as in a turbulent wall-bounded flow. Finally, the Reynolds number
based on the momentum thickness, Rey, only reaches 105 by the end of the domain
(x = 90, Re, = 34,650). To our knowledge, the lowest value of Rey at which a
turbulent boundary layer can be generated experimentally is 285 (Bandyopadhyay
1987). In our Rep = 1155 calculation, the boundary layer had fully turbulent

93



statistics at Rey ~ 200.

For the Rep = 1155 case, the C[ curve begins to rise at = 30 (Re, ~ 35, 000),
indicating the onset of transition. The skin-friction maximum (which may be viewed
as the end of transition) is attained at z ~ 70 (Re, ~ 81,000). We note in passing
that this Reynolds number is far below the range characteristic of transition due
to Tollmien-Schlichting (TS) waves (Re, ~ 10%). The low transitional Re, value
is more consistent with bypass transition due to moderate-amplitude free-stream
turbulence (e.g. Roach & Brierlay 1992).

The skin-friction development at Rep = 3900 indicates that transition to
turbulence begins at x ~ 20 (Re, = 78,000) and is complete by x = 40, or
Re, = 156,000. Also visible is a pronounced skin friction overshoot of the val-
ues predicted by the calculation in the turbulent region. As mentioned earlier, we
met, or exceeded the standard grid resolution requirements for a turbulent boundary
layer, so the overshoot is probably not due to a lack of resolution. Unfortunately,
our computational domain did not extend beyond location x = 47, so the behavior
of the skin-friction farther downstream remains unknown for this case.

The velocity profiles for the Rep = 1155 and 3900 cases (figures 3.7(b), (¢))
indicate a greater deviation from the Blasius profile than observed for Rep = 385,
starting at locations x ~ 50 and x ~ 30 (Re, = 57,750 and Re, = 117,000), re-
spectively. Figure 3.5.1 (middle and bottom profiles) shows that the mean near-wall
streamwise velocity profiles at Rep = 1155 and Rep = 3900 develop a logarithmic

layer, suggesting that a turbulent equilibrium is established. For the Rep = 3900
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case, one observes a momentum deficit in the cylinder wake region even where
the boundary-layer velocity profile appears turbulent. This is due to the fact that
the development of statistical quantities in the wake is z-dependent and not Re,-
dependent, as will be discussed later. For both Rep cases, the shape factor reaches
a value of approximately ~ 1.5 consistent with turbulent flow. The TKE profiles in
figure 3.7(b) and (c) show that by the locations z = 50 (Rep = 1155) and z = 30
(Rep = 3900) the boundary-layer peak is moving closer to the wall. At z = 100
(Re, = 115,500) and = = 41 (Re, = 160,000) for the lower and higher Rep cases,
respectively, the position of the peak was about 15 wall units, close to the accepted
value of 12 for near-wall turbulent flows. The evolution of boundary-layer TKE will
be discussed at greater length in the next section in the context of the mechanism
of transition.

The budgets of the TKE were also computed for each case. Figure 3.8 shows
the development of the TKE budget corresponding to the Rep = 1155 simulation.
We focus on this case, but the differences from the other cases will be noted. The
data are normalized by the free-stream velocity and cylinder diameter. This choice
was made in order to separate the effects of the mean flow evolution (which enters
through the change in u,) from the evolution of the budget terms, which involve
higher-order moments. The figure illustrates that the maximum of the boundary
layer TKE production is initially near the middle of the laminar boundary layer. The
location of the peak approximately coincides with the location of the maximum ;.
As the perturbed laminar boundary grows in thickness, the peak in the production
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Figure 3.8: Budgets of k at various locations; Rep = 1155. All terms are normalized
by Us and D. (a) x = 15, Re, = 17,325,099 = 0.51; (b) z = 30, Re, = 34,650, 699 =
0.92; (¢) = 47, Re, = 54,285,099 = 1.18; (d) x = 90, Re, = 103,950,099 =
2.1. Symbols: channel flow DNS by Moser et al. (1999); lines: present simulation.
+, —— : production; [0 , —-— Dissipation; A , --- Turbulent transport; x ,

-------- Pressure diffusion; ¢ , —--— Viscous diffusion.
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slowly moves farther away from the wall, up to the onset of transition at z = 30;
beyond this location it moves rapidly toward the wall. While the wake is strong,
(z < 30), turbulent transport (the dashed line in figure 3.8) increases the boundary-
layer turbulence by convecting wake turbulence into the outer part of the boundary
layer. In this region the dissipation and the turbulent transport inside the boundary
layer are small and the budgets are balanced by the advection term (unlike fully
turbulent boundary layers, in a transitional boundary layer, due to a rapid growth
of the TKE, the term —(U)0k/0x is significant). By x = 30, (Re, = 34,650), (plot
b) the magnitudes of the budget terms are about 2/3 of their turbulent values; and
by x = 47, (Re, = 54, 285), the budget is nearly that of a turbulent near-wall flow.
Interestingly, at this location the near-wall streamwise velocity profile does not yet
have a logarithmic region; the laminar-turbulent shift in the mean velocity profile
occurs after a near-wall turbulence cycle has been established. At the final location,
z = 90, (Re, = 183,300), we have also included the turbulent channel flow data
of Moser, Kim & Mansour (1999) obtained at Re, = 395 for comparison (the use
of channel rather than boundary-layer data for comparison is justified because the
near-wall behavior of the two flows is very similar). To convert the channel flow
data to outer coordinates, we used the local u, and v from our simulation. The
comparison in figure 3.8(d) shows that a turbulent equilibrium is fully established.
An examination of the TKE budgets for the Rep = 3900 case revealed a similar
development, except that between locations x = 26 and x = 40, the dissipation at
the wall exceeds the peak energy production inside the boundary layer. The near-
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wall peak in the turbulent transport is about 50% of the peak production, compared
to 25% typical of near-wall turbulent flows. By location x = 47, (Re, = 183, 300),
the TKE budget is again very close to data of Moser et al. (1999), indicating that
a turbulent equilibrium has been reached. The development of the TKE budget
corresponding to Rep = 385 case was similar to that of the Rep = 1155 case prior
to the transition onset. The y-location of the turbulence production peak increases
throughout the computational domain, and the magnitude of the peak increases
initially, then decreases downstream of z = 20, (Re, = 6,700), indicating that the

perturbation is decaying.

3.5.2 Instability and laminar breakdown

The purpose of this section is to identify the important stages in flow evolution
prior to the onset of fully developed turbulence. We focus our attention primarily on
the Rep = 385 and Rep = 3900 cases; the intermediate Rep = 1155 case combines
elements from both. Much of our discussion will be inspired by the Rep = 385 case
data, since the low Reynolds number implies a narrower range of scales that makes
the identification of coherent structures easier. Many of the observations regarding
this case carry over to the higher Rep cases, although important differences will be
pointed out in the course of the discussion.

Visualizations of the three flow fields in figure 3.4 were discussed in the previous

section. The prominent difference between the cases is in range of flow scales, which
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Figure 3.9: Profiles of u,,s across the boundary layer normalized by the maximum
boundary-layer t,.,s; 6* is the displacement thickness; (a) Rep = 385; @ x = 10, A

=30, Oz =40, x x = 60, - z =90; (b) Rep =3900; e x =5, A =10, O

x =15, x £ = 20, - x = 30; from Matsubara & Alfredsson (2001)

increases with the Reynolds number. The higher the Reynolds number, the more
rapidly the cylinder wake loses its coherence, and the more unstable the boundary
layer is to perturbation. Despite the difference in the Reynolds number, we believe
that the mechanism of interaction is the same in all three cases, as described below.

The visualizations in figure 3.4 show the generation of streamwise velocity
streaks downstream of location x ~ 10 for all cases. To characterize these streaks,
we computed profiles of u,,,s inside the perturbed boundary layer, shown in figure 3.9
for the Rep = 385 and Rep = 3900 cases. Since the streaks are the only disturbances
present, the nonzero Reynolds stress is entirely caused by them. When the wall-
normal coordinate is scaled with the local displacement thickness, and u,,s with its

maximum inside the boundary layer, the profiles exhibit a region of approximate
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self-similarity. For the Rep = 385 case, the self-similar region is established at
x ~ 20 and persists downstream up to z = 90 (Re, = 34,650), as the boundary
layer remains laminar. For the Rep = 3900 case, this region is limited to the range
x € [10,20]. Farther downstream transition to turbulence occurs, and the location
of the u,,,s peak shifts towards the wall. In the figure we also show the experimental
data of Matsubara and Alfredsson (2001), which was obtained from a transitional
boundary layer subjected to moderate free-stream turbulence. The agreement with
measured data is good, indicating that the streaks found in our simulations may be
related to the Klebanoff modes (Klebanoff 1971) observed in the experiment. We
note that the self-similarity is approximate: the peak in u,,,, moves closer to the wall
with increasing Reynolds number. This trend is also present in the experiments of
Mastubara & Alfredsson (2001) and in the numerical simulations of boundary-layer
transition due to FST by Brandt et al. (2004).

To determine the average spacing between the streaks, we computed spanwise
correlation functions of streamwise and wall-normal velocity fluctuations. In figure
3.10 we plot these functions for the Rep = 385 and Rep = 3900 cases at various
streamwise positions at y = 0.2. The first streamwise location for each Reynolds
number was chosen to match the approximate onset of streak self-similarity. Both
R,. and R,, correlations in figure 3.10 (a) and (b) predict an average streak spacing
of 2.5D at Rep = 385 (twice the distance to the first Ry, zero crossing, or four times
the distance to the first R,, zero crossing). For this case, the streak spacing remains

approximately constant throughout the domain. The bottom curves in plots (¢)
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Figure 3.10: Spanwise correlation functions of the streamwise and wall-normal ve-
locity fluctuations; (a) Rep = 385, Ryy; (b) Rep = 385, Ryy; (¢) Rep = 3900, Ryy;
(d) Rep = 3900, R,,; the correlation functions are computed at y = 0.2. The curves

at successive z-locations are offset by 1 in the vertical direction.
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and (d), corresponding to Rep = 3900, are also consistent with streamwise streaks
separated by ~ 2.5D. For the intermediate case, Rep = 1155, the streak spacing
was estimated to be the same. This finding may seem surprising, since there is a
factor of five difference in Re, between the highest and the lowest Reynolds number.
The boundary-layer thickness dqg is 1.59 for the Rep = 385 case at location x = 35
and 0.35 for the Rep = 3900 case at location x = 16.5. Thus there is also a factor of
4.5 difference in dgg9. At the above locations, the streaks are 1.6d99 and 7.2099 apart
for the two cases, respectively. Experiments and simulations on boundary-layer
transition due to moderate to strong levels of f.s.t (e.g. Matsubara & Alfredsson
2001, Jacobs & Durbin 2001), in contrast, report streamwise streaks with mean
separation of the order of the boundary-layer thickness. An explanation of this
discrepancy follows shortly below when we discuss the evolution of the cylinder
wake.

Figure 3.10 (¢) and (d) also shows spanwise correlations functions at location
x = 20, at the onset of transition, and at x = 47 when the flow is fully turbulent.
An abrupt decrease in streak spacing to 0.5D is evident; these streaks are differ-
ent from those described above and characterize the near-wall region of turbulent
wall-bounded flows. Interestingly, at location z = 20, the R, curve already shows
small scale fluctuations whereas the R, curve is little different from the one at lo-
cation 16.5, suggesting that the laminar breakdown first manifests itself through the
wall-normal velocity component (the correlation function for the spanwise velocity
fluctuation, Ry, was very similar to R,,).
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Figure 3.11: (a) Maximum streamwise Reynolds stress (uu) inside the boundary
layer. —— Rep = 385, --- Rey, 155, —— Rep = 3900; (b) Spectra of streamwise

velocity inside the boundary layer for the Rep = 385 case;

z=0---z=10

In figure 3.11 (a) we show the maximum streamwise Reynolds stress (uu) inside
the boundary layer for the three Rep cases. The stars indicate the locations of the
onset of transition and the Cy maximum. All three curves exhibit a region of rapid
growth followed by a slow decrease. For the Rep = 1155 and Rep = 3900 cases,
we note an overshoot of (uu) within the transitional region. A similar overshoot
upstream of the onset of turbulence is also documented in the studies of bypass
transition due to free-stram turbulence by Matsubara & Alfredsson (2001) and is
probably a general feature of boundary-layer bypass transition.

To determine whether the initial growth of the streamwise Reynolds stress in
our simulations is localized to a particular band of frequencies, we computed fre-

quency spectra of streamwise velocity fluctuation at various locations in the domain.
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Figure 3.11(b) shows frequency spectra for the Rep = 385 case at the streamwise
locations ¢ = 0, x = 10, and z = 30, corresponding to Re, = 0, Re, = 3,850,
and Re, = 11,550. The higher two Re, values are within the rapid growth region,
which extends to Re, ~ 14,000. The wall-normal location was y = 0.1 for the three
curves, which falls inside the bottom 15% of the boundary layer for the two down-
stream stations. The frequency axis is normalized with wg; = 0.215, corresponding
to the Strouhal frequency of wake shedding. A peak corresponding to the shed-
ding frequency of the cylinder can be seen at the first two locations. This peak is
caused by the instant propagation of the unsteadiness of the cylinder wake shedding
through the pressure. The peak becomes less prominent with downstream distance,
and by location x = 40, it is completely obscured by the presence of the neighbor-
ing frequencies. We also note the initial presence of two higher-order harmonics of
the Strouhal frequency. Only one harmonic was detected for the Rep = 3900 case,
perhaps because the signal was more noisy at this Reynolds number. The presence
of harmonics was also noted by Kyriakides et al. (1996) during their experiment.
More significantly, figure 3.11(b) indicates that most of the growth in the (uu)
Reynolds stress at Rep = 385 occurs within the low frequency range, at or below
1/4 of the shedding frequency of the cylinder. This observation is consistent with
the growth of the streamwise streaks inside the boundary layer with the downstream
distance. A growth region similar to ours has been noted in experiments on bypass
transition due to FST (e.g. Klebanoff 1971), which is caused by the growth of low

frequency Klebanoff modes inside the perturbed boundary layer. Several experi-
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ments showed that the streamwise Reynolds stress grows in proportion with the
flat-plate Reynolds number Re,, although the constant of proportionality is not
agreed upon (see Westin, Boiko, Klingmann, Kozlov & Alfredsson (1994) for further
discussion). In our simulations, we do not see a well defined linear growth region.
This is most likely because the disturbance does not interact with the boundary
layer starting from the leading edge, or that the disturbance environment associ-
ated with strong wake/boundary-layer interactions is different from FST Outside of
the boundary layer in the wake region, we did not observe energy growth in the low
frequencies; the amplitude of the Strouhal frequency remained dominant through
the entire computational domain.

The spectra corresponding to the Rep = 3900 case (not shown) had a similar
behavior for the low frequency modes in the rapid growth region. Downstream of
location z = 20, we observed rapid growth in high frequencies, characteristic of the
breakdown to turbulence. No spectra were obtained for the Rep = 1155 case.

The behavior of disturbance spectra is in partial agreement with the exper-
iments of Kyriakides et al. (1999b). Although their configuration was slightly
different, with the cylinder axis located one diameter upstream of the plate and
the Reynolds number set to 3,500, the important features of the flow should be
comparable between the two cases. Kyriakides et al. (1999b) were able to detect
velocity fluctuations at the Strouhal frequency inside the boundary layer within the
Reynolds number range Re, = 24,500 - 59, 500. They used the velocity signal to
deduce the presence of a secondary vortical structure located within the boundary
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layer, which was induced by a von Kdrman vortex with negative spanwise vorticity.
They did not, however, report any structures with large streamwise scales, which
are prominent in our simulations. This may be because they did not place probes
sufficiently far downstream of the leading edge. In our Rep = 3900 simulation,
streamwise streaks were clearly visible at = ~ 16, corresponding to Re, = 62,400
(see figure 3.10). We did not observe any spanwise vortical structures inside the
boundary layer. Interestingly, however, in their earlier publication, Kyriakides et
al. (1996) presented streamwise velocity spectra at Rep = 385, which had a pro-
nounced growth in the low-frequency content, consistent with the presence of long
streamwise scales encountered in our simulations.

To investigate the connection between the cylinder wake and boundary-layer
streaks, we examined the instantaneous flow field for the three Rep cases. In figure
3.12, isosurfaces of pressure fluctuation (gray) are superimposed on top of streamwise
velocity fluctuation contours inside the boundary layer for the Rep = 385 and Rep =
3900 cases. For the low Rep case we also show isosurfaces of positive streamwise
vorticity fluctuation (light gray) and isosurfaces of negative streamwise vorticity
fluctuation (black). The pressure isosurfaces highlight large spanwise vortices behind
the cylinder and the vorticity isosurfaces show the braid vortices around the spanwise
rollers. Vorticity isosurfaces are omitted for the Rep = 3900 case because they do
not correspond to coherent structures at this higher Reynolds number, i.e. the braid
vortices break down to fine-scale turbulence early on. The domain is repeated in

the spanwise direction in order to show the boundary-layer streaks more clearly.
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Figure 3.12: Isosurfaces of pressure (gray, p = -0.08), isosurfaces of positive (light
gray, w, = 1) and negative (black, w, = —1) streamwise vorticity fluctuation above
contours of streamwise velocity fluctuation inside the boundary layer; vorticity is
shown only for the Rep = 385 case. (a) Rep = 385, contours are plotted at y = 0.4

(b) Rep = 3900, contours are plotted at y = 0.1.
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The pressure isosurfaces become wavy with downstream distance indicating
the deformation of the spanwise rollers. The dominant spanwise wavelength of this
deformation equals about one half of the domain size for both cases, around 3D. This
value is in agreement with the scale of the elliptic instability of the primary vortex
cores, which at Reynolds numbers in the range 170 < Rep < 240 give rise to mode
A instability of the cylinder wake (Williamson 1996). That this wavelength seems
the same for two simulations separated by a factor of 10 in the Reynolds number
implies a weak Reynolds number dependence for the primary roller instability. At
higher Reynolds numbers, as observed in our cases, cylinder wake dynamics are
dominated by mode B instability, which corresponds to the dynamics of the quasi-
streamwise oriented vortices in the braid region. From the contours of u’ inside
the boundary layer and the spanwise correlation data presented earlier, it appears
that the streaks occur on the same spanwise scale as the deformation of the rollers.
They are unlikely to be induced by the braid vortices (which correspond to the
mode B instability of the cylinder wake), whose spanwise length scale is smaller,
approximately 1D, for the Rep = 385 case, and which have nearly degenerated
into small-scale turbulence by location z = 10 for the Rep = 3900 case. In both
cases (and also for Rep = 1155, not shown), well defined streaks appear at location
x ~ 15. The fact that this location is the same at Rep = 385 and Rep = 3900,
despite a factor of three difference in the boundary-layer dg9 between the two cases,
indicates that for this flow configuration the location of streak inception is not very

sensitive to the Reynolds number. To gain more insight into the mechanism of streak
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Figure 3.13: Contours of instantaneous streamwise velocity fluctuation; (a) y = 0.1,
(b) y = 0.3, (¢) y = 1.0. At z = 10: Re, = 39,000, d99 = 0.28; at z = 40:

Re, = 156,000, d99 = 0.79, Rep = 3900.

generation, we examined a time sequence of velocity fluctuations in a cross-stream
plane located at x = 10 for the Rep = 385 case. When the plane cut across a
spanwise roller, the contours of the streamwise velocity fluctuation were sinusoidal
(oscillatory) in the core of the vortex, consistent with the deformation of the roller
in the zz-plane. Such deformation partially reorients the spanwise vorticity of the
roller in the streamwise direction. The streamwise-oriented sections of the roller
inject fluid into the boundary layer that gives rise to laminar velocity streaks.
While cross-stream planes proved useful for the Rep = 385 case, for the
Rep = 3900 case they were more difficult to interpret because of finer-scale struc-

tures present in the flow. A different perspective is provided in figure 3.13, which
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cessive curves are offset by 0.005 in the vertical direction.

shows contours of the streamwise velocity fluctuation at three xz-planes, located at
y = 1, 0.3, and 0.1, top to bottom. The boundary-layer thickness, dg9, is 0.28 at
x =10 and 0.79 at x = 40. The top plane, located outside of the boundary layer,
shows patches of small scale turbulence occurring at intervals of length five, close to
the Strouhal wavelength of wake shedding. This is consistent with the wake ejecting
fluid towards the boundary layer. The patches located at x ~ 20 and =z ~ 25 are
also visible in the middle and bottom planes, both of which are within the bound-
ary layer at these locations. The bottom plane also shows two low-speed streaks
surrounding the patch of high-speed turbulence ejected from the wake at = ~ 20.
Thus, it appears that at Rep = 3900 the laminar velocity streaks are the direct re-
sult of turbulence ejected by the wake into the boundary layer. Unfortunately, we do

not have time series of the velocity field or xz-planes at Rep = 3900, which could
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confirm the connection between wake turbulence and the boundary-layer streaks
at Rep = 3900. Instead, the above discussion is supported by two instantaneous
velocity fields.

Because the cylinder Reynolds number is sufficiently high at 3900, the laminar
streaks rapidly break down to turbulence. The region of breakdown is intermittent;
the intermitency may be visualized from plots of skin friction at different instants in
time. Figure 3.14 shows the temporal evolution of instantaneous (spanwise-averaged
to remove high-frequency noise) skin friction. The intermittency is similar to the
turbulent spots found in bypass transition studies, (see Jacobs & Durbin 2001; Al-
fredsson & Matsubara 2001). One can see high C regions associated with turbulence
moving downstream, as the peak C} inside the region is also increasing. Note, in
particular, the curve corresponding to ¢ = 57.9, which shows a turbulent region sur-
rounded by low skin-friction values, indicating the presence of turbulence inside lam-
inar flow. From the instantaneous skin-friction plots, we estimated the convective
speeds of the front and the rear of an intermittency region to be 0.99U, and 0.66U,
respectively. These values are higher than those reported by Henningson, Spalart
& Kim (1987), who simulated the development of a “classical” arrowhead-shaped
turbulent spot, and found convection velocities of 0.9U,, and 0.5U,, respectively.
These differences may be due to the different types of boundary-layer disturbances
in the two simulations, as was suggested by Jacobs & Durbin (2001): Henningson
et al. (1987) introduced a disturbance near the wall, whereas in our case, the dis-
turbance entered the boundary layer from the free-stream. Finally, it is not clear
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whether, in the present case, the intermittency is due entirely to streak instability
or to the impingement of wake turbulence on the boundary layer. The intermittency
was not observed for the Rep = 1155 case, probably because the Reynolds number
was not sufficiently high. Downstream of the location of transition onset, the flow
did not exhibit instantaeous laminar levels of skin friction as in the Rep = 3900
case.

In summary, we have found that the interaction of a cylinder wake with a
flat-plate boundary layer results in the generation of streamwise streaks that in the
high Rep cases breakdown to turbulence. The profiles of u,,,s inside the boundary
layer indicate that the streaks bear similarity to Klebanoff modes (Klebanoff 1971).
A rapid initial growth in the low-frequency components of the streamwise veloc-
ity spectrum suggests that the incipient streaks are preferentially amplified inside
the boundary layer. The streaks appear to be generated by the three-dimensional
instability of the primary vortex in the wake. The scale of this instability is approx-
imately the same for the three cases, which results in the same spacing between the
boundary-layer streaks for the three Reynolds numbers. The proposed mechanism
is an example of strong interaction, ¢.e. one in which the disturbance acting on
the boundary layer is coherent. We also found that the transitional region in the
Rep = 3900 is intermittent and similar to that in bypass transition due to FST

As mentioned previously, Kyriakides et al. (1996) carried out experiments on
wake induced boundary layer transition for several Reynolds numbers, including
Rep = 385, Rep = 1155, and Rep = 3,500. They observed transition in all three
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cases, respectively at x = 7.3, 2.7, and 54.5, corresponding to Re, = 2,625, for the
first two cases, and 21, 000 for the last. They stated that the transition scenario is the
same for all three cases. Unfortunately, a meaningful comparison of our simulations
with their experiments is difficult, primarily because the indicator of boundary-layer
transition used in their work is only qualitative. Kyriakides et al. (1996) state that
“the z-location where the [streamwise] velocity signal loses its sinusoidal character
is considered to be the onset of transition.” The velocity spectra obtained for our
Rep = 385 case show that the peak corresponding to the Strouhal frequency inside
the boundary layer disappears by location x = 40. At this location the velocity
signal is certainly non-sinusoidal. However, as we have shown, the flow does not
transition to turbulence inside the domain. The observation that the momentum
thickness Reynolds number was 105 at Re, = 34,650, further suggests that it is
improbable, if not impossible, to see transition at Rep = 385 within the flow region
considered. Furthermore, the experimental observation that, at Rep = 1155, the
onset of transition occurs at a distance from the leading edge smaller than the
distance between the cylinder and the plate, cannot be caused by the response of
the boundary layer to wake turbulence (which would imply particle trajectories that
form an angle greater than 45° to the wake centerline). Instead, it suggests that
the phenomena observed in the experiment are due to the advection caused by the
von Karman street and reflect the wake breakdown more than the boundary layer
response to the perturbation. Thus, the loss of a sinusoidal character may not be an

appropriate measure of transition. Instead, it may be an indicator of the onset of a
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perturbed flow regime inside the boundary layer that may lead to transition farther

downstream.

3.5.3 Onset of turbulence

The ability to predict and control the onset of transition is the ultimate goal
in theoretical and applied transition studies. Although our simulations span only
a decade in the Reynolds number range, we can use the present data to make a
conjecture on the effect of increasing the cylinder Reynolds number on transition
onset. The location of the cylinder inside the domain is another important variable,
and its effects on transition should be investigated in a future study.

Figure 3.5 shows skin-friction coefficients for the three cases as a function of
Re,. The curves do not collapse under the Re, scaling; in fact, the onset of transition
in the high Reynolds number case occurs at a Re, value that is more than two times
larger than for Rep = 1155. To understand this behavior, we compare in figure
3.15 contours of the spanwise vorticity in an xy-plane in the transition region for
the two cases. This figure shows that the wake spreading is very similar for the two
cases, ¢.e. it is a weak function of the Reynolds number. An obvious difference in
the range of turbulent scales is present due to the factor of three difference in the
Reynolds numbers. The boundary layer is also much thinner in the Rep = 3900

1/2

case, since 0 ~ Re'/“. Because of the weak Reynolds-number dependence of the wake

spreading, the boundary layer and the wake begin to interact at approximately the
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Figure 3.15: Contours of the spanwise vorticity. (a) Rep = 385; (b) Rep = 1155;
(¢c) Rep = 3900. Contour levels are +0.5 and +1; negative contours are grey. The

thick lines are U = 1 isolines, showing the wake and boundary-layer thickness.
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same distance from the leading edge for the three cases. The visualization in the
figure shows wake turbulence impinging on the boundary layer around z = 20 for all
three Reynolds numbers. However, at some instants of time, direct impingement of
the wake turbulence on the boundary layer can be visually observed as far upstream
as ¢ = 15. The figure also shows that the mean velocity profile loses its inflection
points near x = 40 (z = 39, 38, and 42, for the three Rep cases, from lowest to
highest), indicating that the location of merger between the wake and the boundary
layer is relatively insensitive to the cylinder Reynolds number. However, once the
boundary layer has been perturbed, the Reynolds number effect becomes important:
the higher the Reynolds number the more rapid the breakdown to turbulence.

The effect of the Reynolds number on the dynamics of the wake/boundary-
layer interaction is further illustrated in figures 3.16 and 3.17. Figure 3.16 shows
the mean velocity and turbulent kinetic energy profiles at several z-locations for the
three Rep cases. Figure 3.17 shows TKE profiles at three xz-locations, the onset of
transition, the middle of the Cf rise (“halfway” through transition), and the onset
of full-blown turbulence (the end of transition and the location of maximum Cf).
The distance to the wall is normalized by the boundary-layer thickness, dg9 (Which
was computed on the basis of Ueqge instead of Uy, as explained in §4.1).

The weak dependence of wake development on the Reynolds number is evident
in figure 3.16. Apart from the initial decay of TKE in the near wake, one sees
relatively little difference between the profiles, despite a factor of 10 in the Reynolds

numbers. We note that, due to the difference in the boundary-layer growth-rates,
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the turbulence intensity at the edge of the boundary layer is different for the three
cases. At the beginning of the transition region, for instance, the turbulence level
at the boundary-layer edge is higher by almost a factor of two in the Rep = 1155
case compared to the Rep = 3900 case (figure 3.17). It is not clear whether this
difference plays a significant role in accelerating transition since the wake introduces
instabilities into the boundary layer as close upstream as x = 10 at some instances.
It is possible that increased turbulence at the edge of the boundary layer accelerates
the laminar breakdown. Figure 3.17 shows that the turbulent kinetic energy near
the onset of transition is nearly 50% lower at Rep = 3900, in comparison with the
Rep = 1155 case. The TKE grows much faster in the high-Re case, and the level
of TKE at the end of transition is, in fact, larger than that for Rep = 1155.

Thus, it would appear that wake induced boundary-layer transition in the
present configuration depends both on the physical distance from the plate lead-
ing edge, /D, and on the plate Reynolds number, Re,. The former dependence
appears as an “interaction distance,” the physical streamwise distance needed for
the wake disturbance to contaminate the boundary layer, while the Re, dependence
enters through the degree of boundary-layer instability, which increases with Re,.
From the above observations, we can conjecture that transition may depend on a
Reynolds number based on the distance from the impingement point, x;. If, in the
present simulations, we take the impingement distance to be z;/D = 15, which
corresponds to the streamwise location at which laminar streaks are first clearly

observed, independent of Rep (see figure 3.12 and the accompanying discussion),
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Figure 3.16: Profiles of streamwise velocity (a) and TKE (b) at locations x = 10, 20,
30, 40, 47 from left to right. —— Rep = 3900, --- Rep = 1155, —-— Rep = 385;
the horizontal lines represent the boundary-layer thickness for each case. In (a), the
velocity profile is amplified by a factor of five for clarity; in (b), the TKE profiles

are offset by 0.05.

then we can compute a modified Reynolds number as Re; = (z — z;)Uy/v. This
formula yields Re; ~ 17,500 and Re; ~ 19,500 for the locations of transition onset
at Rep = 1155 and Rep = 3900, respectively. In order to verify the relevance of
Re;, experiments and simulations should be carried out at higher Reynolds numbers

and with varying locations of the cylinder inside the flow domain.

3.6 Conclusion

High resolution DNS and LES studies of cylinder wake induced boundary layer-
transition were carried out at three Reynolds numbers, Rep = 385, 1155 and 3900.

In all three cases, coherent, almost two-dimensional spanwise rollers, are present di-
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Figure 3.17: Turbulent kinetic energy profiles in the beginning, the middle, and the

end of the transition region; Rep = 3900 --- Rep = 1155; from left to right,

the streamwise locations of the profiles are x = 30, 50, 70 for the Rep = 1155 case,

and z = 20, 30, 40 for the Rep = 3900 case.

rectly behind the cylinder. A short distance downstream of the cylinder, these rollers
develop spanwise-periodic deformations, which cause the injection of external wake
momentum into the boundary layer. The disturbances entering the boundary layer
evolve into streaks of streamwise velocity, which, in the two higher Rep cases, lead to
transition to turbulence. The onset of transition occurs at relatively low Reynolds
numbers, Re, ~ 60,000 for the Rep = 1155 case, and Re, ~ 120,000 for the
Rep = 3900 case. The transition scenario is somewhat similar to bypass transition
due to free-stream turbulence, in which transition onset also occurs at compara-
ble Re, values: profiles of u,,,s inside the perturbed laminar boundary layer were
similar to those documented by Matsubara & Alfredsson (2001), and spectra of

streamwise velocity showed rapid initial growth in the low-frequency component,
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consistent with observations of bypass transition due to FST Furthermore, for the
Rep = 3900 case, the transitional region was intermittent and bore similarity to
intermittency in transition due to FST, that is caused by the formation and sub-
sequent evolution of turbulent spots. Despite these similarities, the two transition
scenarios are distinct in the nature of the external perturbation: in our case it is
strongly coherent and anisotropic, whereas in transition due to FST it is approxi-
mately isotropic and has no large-scale unsteadiness. The simulations indicate that
the spacing of laminar boundary-layer streaks is the same for the all three velues of
Rep, being determined by the scale of the deformation of the primary roller core,
which has only a weak Reynolds number dependence. In contrast, in transition due
to FST, laminar streaks are on the order of d99 apart. For these reasons, the paral-
lels between the two cases should be made with caution. We have examined mean
velocity statistics, Reynolds stress profiles, and TKE budgets throughout the com-
putational domain and concluded that, in the Rep = 1155 and Rep = 3900 cases,
the boundary-layer turbulence is fully developed. Finally, we noted that transition
in the two higher Rep cases was observed at widely different Re, values. This
phenomenon can be explained by conjecturing that transition can occur only after
a fixed, nearly Rep-independent “interaction distance,” i.e., the streamwise length
needed for the wake disturbance to reach the boundary layer. Once the boundary
layer is contaminated, transition depends primarily on the boundary-layer Reynolds
number, Re,. Future work should include studies of transition due to different types

of upstream disturbances, such as wakes behind other types of bluff bodies.

120



Acknowledgments

The first two authors acknowledge the financial support of the NASA Langley

Research Center, under Cooperative Agreement NAG12285.

3.7 References

[1] BALARAS, E. 2004 Modeling complex boundaries using an external force field

on Cartesian grids in large-eddy simulations. Comput. Fluids 33, 375-404.

[2] BALARAS, E., BENoccl, C. & ProMmEeLLl, U. 1995 Finite difference compu-
tations of high Reynolds number flows using the dynamic subgrid-scale model.

Theoret. Comput. Fluid Dyn. 7, 207-216.

[3] BALARAS, E., PioMELLI, U. & WALLACE, J. M. 2001 Self-similar states in

turbulent mixing layers J. Fluid Mech., 446, 1-24.

[4] BANDYOPADHYAY, P. R. 1987 Resonant flow in a row of small transverse

cavities submerged in a turbulent boundary layer. ATAA Paper 1987-1235.

[6] BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2004 Transition in
boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167—

198.

[6] CHORIN, A. J. 1968 Numerical solution of the Navier-Stokes equations. Math.

Comput. 22, 742-762.

121



7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Faprun, E. A., VErzicco, R., OrRLANDI, P. & MoHD-YUsor, J. 2000
Combined immersed-boundary finite-fifference methods for three-dimensional

complex flow simulations. J. Comput. Phys. 161, 35-60.

HENNINGSON, D., SPALART, P. & Kim, J. 1987 Numerical simulations of
turbulent spots in plane Poisseuille and boundary-layer flow Phys. Fluids 30,

2914-2917.

Huar, X., Jostin, R. D., PioMELLI, U. 1997 Large-eddy simulation of tran-

sition to turbulence in boundary layers. Theoret. Comput. Fluid Dynamics 9,

149-163.

JAcoBs, G. J. & DuRBIN, P. A. 2001 Simulations of bypass transition. J.

Fluid Mech. 428, 185-212.

KiMm, J. & MoOIN, P. 1985 Application of a fractional step method to incom-

pressible Navier-Stokes equations. J. Comput. Phys. 59, 308-323.

KLEBANOFF, P. S. 1971 Effect of freestream turbulence on the laminar bound-

ary layer. Bull. Amer. Phys. Soc. 10, 1323.

KrAvCHENKO, A. G. & Moin, P. 2000 Numerical studies of flow over a

circular cylinder at Rep = 3900. Phys. Fluids 12, 403-417.

KusunNosg, K. & Cao, H. V. 1994 Prediction of transition location for a
2-D Navier-Stokes solver for multi-element airfoil configurations. ATAA Paper
1994-2376.

122



[15] KYRIAKIDES N. K., KAsTRINAKIS, E. G., NYCHAS, S. G. & GouLas, A.

1996 Boundary layer transition induced by a von Karman vortex street wake.

Proc. Inst. Mech. Eng. 210, 167-179.

[16] KYRIAKIDES N. K., KASTRINAKIS, E. G., NYCHAS, S. G., & GoOULAs, A.
1999 A bypass wakeinduced laminar turbulent transition. Fur J. Mech. B-Fluid

18, 1049-1065.

[17] Liu, X. & Robi, W. 1991 Experiments on transitional boundary layers with

wake-induced unsteadiness J. Fluid Mech. 231, 229-256.

[18] MATSUBARA, M. & ALFREDSSON, H. 2001 Disturbance growth in boundary

layers subjected to free-stream turbulence. J. Fluid. Mech. 430, 149-168.

[19] MENEVEAU, C., LunD, T. S. & CaBoT, W. H. 1996. A Lagrangian dynamic

subgrid-scale model of turbulence. J. Fluid Mech. 319, 353-385.

[20] MEREDITH, P. T. 1993 Viscous phenomena affecting high-lift systems and

suggestions for future CFD development. AGARD CP-515 19.1-19.8.

[21] MoRiINisHI, Y., LunDp, T. S., VAsILYEV, O. V. & Moin, P. 1998 Fully-
conservative higher order finite difference schemes for incompressible flow. J.

Comput. Phys. 143, 90-124.

[22] MOSER, R. D., Kiv, J. & MANSOUR, N. N. 1999 Direct numerical simulation

of turbulent channel flow up to Re, = 500. Phys. Fluids 11, 943-945.

123



23]

[24]

[25]

[26]

[27]

28]

[29]

NORBERG, C. 1993 Pressure forces on a circular cylinder in cross flow. Proceed-
ings of IUTAM Symposium on Bluff-Body Wakes, Dynamics and Instabilities,
Gottingen, Germany, September 7-11, 1992, Proc. eds. Eckelmann, H., Graham,

J. M. R., Huerre, P. & Monkewitz, P. A., Springer-Verlag, Berlin, 275-278.

ONG, L. & WALLACE, J. 1996 The velocity field of the turbulent very near

wake of a circular cylinder. Exp. Fluids 20, 441-453.

ORLANSKI, 1. 1976 Simple boundary condition for unbounded hyperbolic flows.

J. Comput. Phys. 21, 251-269.

OvcHINNIKOV, V. O., PIoMELLI, U. & CHOUDHARI, M. M., 2004 Inflow
conditions for numerical simulations of bypass transition AIAA Paper, 2004-

0591.

PiomeLLl, U., BALARAS, E. & PAsCARELLI, A. 2000 Turbulent structures

in accelerating boundary layers. J. Turbulence 1, (001) 1-16.

PioMeLLI, U., CHOUDHARI, M. M., OVCHINNIKOV, V. O. & BALARAS,
E.,2004 Numerical simulations of wake/boundary layer interactions. AIAA Pa-

per, 2004-0975

Ra1i, M. M. & Moin, P. 1993 Direct numerical simulation of transition and

turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169

192.

124



[30]

[31]

32]

[33]

[34]

[35]

[36]

RoacH, P. E.; & BrIERLEY, D. H. 1992 The influence of a turbulent free-
stream on zero pressure gradient transitional boundary layer development part
I: test cases T3A and T3B. In Numerical Simulation of unsteady flows and
transition to turbulence, O. Pironneau, W. Rodi, I. L. Rhyming, A. M. Savill

and T. V. Truong, eds. Cambridge, 319-347.

SPALART, P. R. 1986 Numerical study of sink-flow boundary layers. J. Fluid

Mech. 172, 307-328.

SQUIRE L. C. 1989 Interactions between wakes and boundary-layers. Prog.

Aerospace Sci. 26, 261-288.

WEesTIN, K. J. A., Boiko, B. G. B., KLinGMANN, G. B., KozLov, V. V.,
ALFREDSSON, P. H. 1994 Experiments in a boundary layer subjected to free

stream turbulence. Part I. Boundary layer structure and receptivity. J. Fluid.

Mech. 281, 193-218.

WiLriaMsoN, C. H. K. 1996 Three-dimensional wake transition. J. Fluid

Mech. 328, 345-407.

Wu, X., JAacoss, R. G., Hunt, J. C. R. & DURBIN, P. A. 1999 Simulation
of boundary layer transition induced by periodically passing wakes J. Fluid

Mech. 398, 109-153.

Zuou, M. D. & SQUIRE, L. C. 1985 The interaction of a wake with a turbulent

boundary-layer. J. Aeronaut. 89, 72-81.

125



— 1 . 5 Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180
0

Figure 3.18: Evolution of the pressure coefficient along the cylinder surface at Rep =
3,900 (validation case). The stagnation point corresponds to # = 0. —— , Immersed

boundary simulation; o experiments by Norberg (1993)

3.8 Addendum

In this section, we provide additional data that were not included in the article
due to space limitations. Figure 3.18 presents a comparison of the pressure co-
efficient, C, = 2(p — po) /U2, along the cylinder surface at Rep = 3,900 from
our immersed boundary simulation and the experimental data of Norberg (1993).
The good agreement demonstrates the ability of the immersed boundary method to
accurately predict the forces that a fluid exerts on a submerged object.

In figure 3.19 we show a comparison of the skin friction coefficient (Cy) of
box I of the Rep = 1155 case (LES) obtained on the final mesh (1056 x 384 x 128)

and on a coarser mesh (816 x 288 x 96), as described in §3. We see that the onset
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Figure 3.19: Grid resolution study. Rep = 1155 box I. —— | 816 x 288 x 128,

—-—, 1056x 384 x 128, ---, laminar C

of transition does not change significantly for the low-resolution case, and there-
fore conclude that the final mesh, in particular, resolves the transitional flow field
adequately.

Next, we present the TKE budgets for cases Rep = 385 and Rep = 3900. The
budget corresponding to the intermediate Rep = 1155 case is included in the article.
Figures 3.20 (Rep = 385) and 3.21 (Rep = 3900) complement the discussion in §4.
Note, in particular, that the evolution of the Rep = 3900 budget is qualitatively
similar to that of the Rep = 1155 case (figure 3.8). At Rep = 385, the budget at
the final position, (z = 88), is that of a perturbed-laminar boundary layer. This
can be seen by noting the low levels of dissipation and diffusion in the near-wall

region compared to a turbulent boundary layer. Aside from this difference, the

127



15

25

0 0.5

15

25

3 35

Figure 3.20: Budgets of k at various locations; Rep = 385. All terms are normalized

by Uy and D. (a) x = 20, Re, = 7,700, dg9 ~ 1.25; (b) x = 40, Re, = 15,400, dgg =~

1.5; (¢) x = 60, Re; = 23,100,099 ~ 2.0; (d) x = 88, Re, = 33,880,099 =~ 2.4.

—— production —-— dissipation, --- turbulent transport, -------- pressure diffusion;

—---— viscous diffusion.
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Figure 3.21: Budgets of £ at various locations; Rep = 3900. All terms are nor-
malized by Uy and D. (a) x = 8, Re, = 31,200,099 ~ 0.25; (b) x = 26, Re, =
101,400, 099 =~ 0.5; (c) = = 41, Re, = 159,900,699 ~ 0.82; (d) z = 47, Re, =
183,300,099 ~ 0.96. Symbols: channel flow DNS by Moser et al. (1999); lines:
present simulation. +, —— , production; [1 , —-— Dissipation; A , --- Turbulent

transport; X , - Pressure diffusion; ¢ , —---— Viscous diffusion.
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Figure 3.22: Spectra of the streamwise velocity for the Rep = 385 case; (a) in the

free stream (y = 2), (b) inside the boundary layer (y = 0.1); —— 2z =0, --- 2 = 10

perturbed-laminar budget looks remarkably similar to that of a near-wall turbulent
flow.

In figures 3.22 and 3.23 we show frequency spectra for the Rep = 385 and
Rep = 3900 cases, respectively. The spectra in figures 3.22a and 3.22b are plotted
at locations y = 0.1 and y = 2, respectively, and show the difference between the

boundary layer and the free stream. In accordance with the discussion in §4.2, we
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Figure 3.23: Spectra of the streamwise velocity for the Rep = 3900 case; (a) in the

free stream (y = 2), (b) inside the boundary layer (y = 0.05); x=0,---x =10
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Figure 3.24: Spanwise correlation functions of the streamwise and wall-normal ve-
locity fluctuations; (a) Rep = 385, Ryy; (b) Rep = 385, Ryy; (¢) Rep = 3900, Ryy;

(d) Rep =3900, Ryy; -——-,y=2;—— ,y=0.2

see that preferential amplification of low-frequency components with w/wg; < 0.5,
occurs in the boundary layer, but not in the free stream. Figures 3.23(a) and 3.23(b)
show similar behavior (but less pronounced) for the Rep = 3900 case.

In figure 3.24 we supplement the near-wall correlation data of figure 3.10 with
that in the free stream (dashed lines). The plots corresponding to the free stream do
not show a dip in the correlation functions that is present close to the wall. Thus,
we see that streaks are present only inside the boundary layer. Also we note that

due to the coherence of the wake, the free-stream velocities remain correlated in
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Figure 3.25: Contours of (a) streamwise and (b) wall-normal velocity fluctuations in
the y — z plane at x = 10; horizontal line denotes the boundary-layer edge. Contour

levels are clustered near zero for a better view inside the boundary layer.

the spanwise direction, but, as intuitively expected, the correlation diminishes with
increasing streamwise distance and flow Reynolds number.

Next, in figure 3.25(a) and 3.25(b), we show contours of the streamwise and
wall-normal velocity fluctuation for the Rep = 385 case in a cross-stream (y — 2)
plane. The plane is located at x = 10 and a horizontal line denotes the edge of
the boundary layer. Figure 3.25(a) indicates that the plane cuts across a clockwise-
rotating spanwise roller (if the flow is from left to right). The waviness of the
contours in the center is consistent with the deformation of the roller in the (z — 2)
plane, which partially reorients the spanwise vorticity of the roller in the stream-
wise direction. The streamwise-oriented sections of the roller inject fluid into the
boundary layer, as shown by the two regions of negative wall-normal velocity fluc-
tuation across the boundary layer at locations z ~ —0.8 and z ~ 1.8. At these two

locations, the streamwise fluctuation is negative because the lower part of the wake
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Figure 3.26: Contours of the streamwise velocity fluctuation. Filled contours — box

I of auxiliary simulation; lines — box II

is moving slower than the average particle at the boundary-layer edge. In response
to the injections of low-speed flow, the boundary layer appears to develop laminar
velocity streaks.

In response to one referee’s concern about violating the ellipticity of the NS
equations by using one-way coupling between two streamwise subdomains, we per-
formed an auxiliary simulation of flow past a circular cylinder at Rep = 3,900 in
two ways: with single domain and with two overlapping subdomains, as described
in the third paragraph of §2.2. The simulations were run synchronously, which per-
mitted comparisons of instantaneous quantities. Here we present a plot of u-velocity
contours from the two simulations superimposed on top of each other (figure 3.26).

It can be seen that the violation of ellipticity is sufficiently minor that our results
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can be deemed reliable.
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Preface to Chapters 4 & 5

In the next two articles, we investigate the validity of synthetic-turbulence
inflow conditions for simulations of boundary-layer transition due to free-stream
turbulence (FST). Because of the high cost of computation, to date, all well-resolved
DNS of bypass transition have been performed on truncated domains, i.e. domains
in which the inflow plane is at some arbitrary location downstream of the leading
edge (LE). Not including the LE region in the computation raises the question of
the inflow condition for the truncated domain. Here, the scientist is forced to make
an educated guess about the state of boundary-layer/FST interaction at the inflow
plane. The simplest solution that has been used in most simulations, is to specify
the inlet velocity as a superposition of a zero-mean disturbance field (approximation
to FST) and the Blasius mean velocity profile.

Chapter 4 examines several possible choices for the first component, and the
effect of parameter choices that the investigator has to make. The influence of the
FST length scale on the transition location is also discussed. Chapter 5 compares
the results of truncated-domain simulations to those of a simulation which includes
the plate leading edge.

We conclude that truncated-domain simulations, as currently implemented,
do not yield reliable predictions of transition onset. The two chapters precede a

thorough investigation of the transitional boundary layer in a high-amplitude FST
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environment performed on a domain that contains the leading edge of the plate.
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Chapter 4

Inflow conditions for numerical simulations of bypass transition?

4.1 Abstract

High-resolution, direct numerical simulations of boundary-layer bypass transi-
tion due to free-stream turbulence are performed and the effects of different inflow
conditions and inflow noise parameters on the location of the transition onset are ex-
amined. The length scale of the free-stream noise and the extent of noise penetration
into the boundary layer are found to affect strongly the transition point location, re-
gardless of the inflow-generation method used. It is concluded that in order to assure
unambiguous comparisons between simulation and experiment, future experimental
data must provide information on the length scale of the free-stream turbulence,
and profiles of the Reynolds stresses across the boundary layer at locations well

upstream of the transition point.

1Originally published as
OVCHINNIKOV, V. O., PIoMELLI, U. & CHOUDHARI, M. M., 2004 Inflow conditions for numerical

simulations of bypass transition AIAA Paper, 2004-0591.



4.2 Introduction

Transition prediction has its place among the most important practical prob-
lems in fluid dynamics today. Among its immediate applications are optimization
of airfoil and turbine design, in which it is frequently desirable to delay transition
to turbulence and avoid boundary layer separation.

The classical picture of transition in wall-bounded flows in a benign distur-
bance environment, the so-called ‘natural transition’, begins with linear stability
theory. The Orr-Sommerfeld equation obtained from linear stability analysis admits
solutions in the form of Tollmien-Schlichting waves (Drazin & Reid 1981), which have
been observed during experiments on boundary layer transition (Kachanov, Kozlov
& Levchenko, 1980). Transition due to Tollmien-Schlichting waves, however, is a
slow process and occurs if the boundary layer perturbations are very small (e.g. less
than about 0.5% of the free-stream velocity). When the levels of free stream dis-
turbances rise above 1%, as is the case in many engineering applications, transition
occurs farther upstream. This behavior has been termed “bypass transition” after
the fact that the transition process seems to bypass the Tollmien-Schlichting waves
completely (Morkovin 1969). The phenomenon of transient algebraic growth due to
the non-normality of the linear NS operator has been implicated in bypass transition
and studied theoretically and numerically (Ellingsen & Palm 1975; Butler & Farrel
1992; Andersson, Breggren & Henningson 1999).

Bypass transition due to moderate to high levels of FST in laminar bound-

139



ary layers with zero streamwise pressure gradient has been studied experimentally
(Roach & Brierlay 1992, Matsubara & Alfredsson 2001) and numerically through
LES (Voke & Yang 1995) and DNS (Jacobs & Durbin 2001, Rai & Moin 1993,
Brandt, Schlatter & Henningson 2004).

It was initially surmised that a realistic simulation of bypass transition would
involve only moderate computational cost. Voke and Yang (1995) performed LES
simulations on a coarse mesh (with a total of 0.7 M points) and obtained reasonable
agreement with experiments. In an earlier study, Rai and Moin (1993) estimated
the grid resolution requirements for a satisfactory DNS to be seven times finer in the
streamwise and spanwise directions (each) than those used in the LES by Voke &
Yang (1995). Their numerical method had fourth-order overall spatial accuracy, but
was upwind-based for convective terms and thus was not energy conserving. Due
to the unavailability of computational resources, Rai and Moin (1993) were forced
to use sub-optimal resolution (with a total of 1.8 M points) and yet obtained good
qualitative agreement with experiments.

Recently, well-resolved simulations of bypass transition were performed by
Jacobs and Durbin (2001) who relied on the detailed grid refinement studies of Wu,
Jacobs, Hunt and Durbin (1999). Jacobs and Durbin (2001) confirmed the resolution
requirements of Rai and Moin (1993) for their second-order code and used grids with
71 and 45 million points for simulations of transition due to 3% and 7% free-stream
turbulence intensity, respectively. At this resolution, Jacobs and Durbin were able

to provide valuable insights into the physics of the transition mechanism, showing,
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in particular, that very fine streamwise and spanwise resolution are essential for
capturing laminar streak breakdown on the path to turbulence. They also obtained
good overall agreement with experiments. Properly resolved DNS simulations of
bypass transition were performed by Brandt et al. (2004), but with the aim of
studying the flow physics rather than to match any experiment.

Assuming adequate grid resolution, when performing calculations of bypass
transition, the issue of generating physically realistic inflow conditions must also
be addressed. In experimental studies, typically, a flat plate is immersed in a fluid
stream downstream of a grid that generates homogeneous isotropic turbulence. The
turbulence characteristics are measured some distance upstream and/or above the
plate. In numerical calculations, on the other hand, the leading-edge of the plate
is generally excluded. Inflow conditions usually consist of a Blasius laminar veloc-
ity profile, over which perturbations resembling (more or less closely) homogeneous
isotropic turbulence are superimposed. While it is possible to match the turbulence
free-stream intensities of an experimental study, and even the turbulence length
scales, if necessary, the absence of the leading edge introduces a degree of arbitrari-
ness. Physically, the penetration of the free-stream turbulence into the boundary
layer is determined by the interaction of the leading edge with the free-stream tur-
bulence. In numerical studies, however, it is imposed a priori, as the turbulence
intensity is forced to go to zero as the wall is approached.

The simplest inflow condition used for bypass transition studies uses a pre-
scribed turbulence spectrum with random phases (Rogallo 1981) to generate ap-
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proximately isotropic turbulence in the free-stream region. The correct phase re-
lationships between the modes of the noise is established downstream, hopefully
close to the inlet. The advantage of this method is that it is relatively simple to
implement; its greatest weakness is that the noise thus generated must be suitably
attenuated inside the boundary layer such that the no-slip boundary conditions are
satisfied at the solid surface. The shape of this decay function must be assigned on
an ad hoc basis.

Alternatively, inflow can be generated through precursor simulations over a
computational domain that extends farther upstream of the intended inflow location
for the bypass transition calculations (Voke & Yang 1995). The precursor simulation
is driven by (unphysical) random noise at the inlet, typically with free-slip boundary
conditions on the bottom wall. One then estimates a streamwise location inside the
upstream box at which the disturbance has become physical, and uses cross-flow
planes at that location as inflow conditions for the main simulation. The advantage
of this method is that one does not need to generate physical disturbances for the
precursor simulation and that the precursor simulation guarantees a physical noise
(away from the wall) with a well-defined length scale. A serious drawback is that
one must still use an (arbitrary) cut-off function to force the disturbance to zero at
the wall and that the disturbance evolving in the precursor box is not influenced by
the boundary layer, and may not be physical near the wall. The increased cost of
the calculation and the additional storage requirements are additional drawbacks of
this technique.
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Jacobs and Durbin (2001) proposed a novel inflow-generation method based
on the earlier work of Grosch and Salwen (1978). In their method, an arbitrary
disturbance is expressed as a superposition of Orr-Sommerfeld modes from the con-
tinuous spectrum, which have a finite Lo, norm, but unbounded L, norm?. The
eigenfunctions of this alternative basis, when computed about the Blasius profile as
the base flow, have the added virtue of automatically satisfying the no-slip boundary
conditions at the solid wall, thus obviating the need for arbitrary cut-off functions.
Arguing that the Orr-Sommerfeld eigenfunctions behave as Fourier modes in the
free-stream, the authors use a procedure similar to the one proposed by Rogallo
(1981) to obtain the amplitude coefficients for each eigenfunction.

Although the inflow-generation algorithm of Jacobs and Durbin (2001) rep-
resents an improvement over the other two approaches, ambiguity still remains in
the choice of the wall-normal modes used to represent the disturbance. This arbi-
trariness, as will be shown, may significantly affect the prediction of the inception
of transition. The objective of this work is to investigate how the inflow-generation
mechanisms affect the transition process. First, we will present the results of our-

grid refinement study inside domains identical to those used by Jacobs and Durbin

(2001) to facilitate comparisons with their data and experiments by Roach and Brier-

2The expansion of an arbitrary three-dimensional velocity disturbance requires the addition of
wall-normal vorticity (Schmid & Henningson 2001), obtained by solving Squire’s equation. How-
ever, Jacobs and Durbin (2001) argued that an adequate approximation to free stream noise can

be obtained using only the Orr-Sommerfeld spectrum.
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lay (Roach & Brierlay, 1992), and point out the consequences of under-resolution.
In addition, we have implemented and tested the three inflow-generation mecha-
nisms mentioned above and investigated the effects of varying the length scale of
the free-stream noise and its penetration depth into the boundary layer.

In the following, we will first present the problem formulation and discuss the
numerical method used and the inflow-generation techniques employed. Then, we
will discuss the numerical results. Conclusions will finally be drawn, and directions

for future work will be presented.

4.3 Problem formulation

In this work we use the incompressible Navier-Stokes equations to perform
DNS simulations of boundary layer transition under free-stream turbulence. The

equations of motion

ou;
8—3:]- =0, (4.1)
j
ou,; 0 _1op 9
ot + oz, (uju;) = o, + vV, (4.2)

are solved numerically using a second-order accurate finite-difference method on a
staggered grid. The method fully conserves mass, momentum and kinetic energy in
the discrete sense (see Morinishi, Lund, Vasyliev & Moin 1998). The coordinates
x1, T2 and z3 (or, interchangeably, x, y and z) refer, respectively, to the streamwise,
spanwise and wall-normal directions. The velocity components in these directions
are, respectively, u, v and w. All grids used are uniform in the spanwise direction
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1y, stretched in the streamwise and wall-normal directions to allow accurate reso-
lution of boundary layer disturbances, particularly in the transitional region. The
discretized equations are integrated in time using an explicit fractional time-step
method, (Chorin 1968, Kim & Moin 1985) in which all terms are advanced in time
using the Adams-Bashforth method. The Poisson equation for the pseudo-pressure
is solved, and the velocity is corrected to make the field solenoidal. The code has
been extensively validated for a variety of turbulent (Balaras, Benocci & Piomelli
1995, Balaras, Piomelli & Wallace 2001) and re-laminarizing (Piomelli, Balaras &
Pascarelli 2000) flows.

The code was parallelized with the MPI message-passing protocol. The com-
putational box is divided into n subdomains in the streamwise direction, and each
of the n processors integrates the equations of motion in one of the subdomains.
The pressure field is obtained by applying spanwise FF'T to the Poisson equation.
This yields a pentadiagonal matrix for each Fourier mode, which is then inverted
by a cyclic reduction algorithm. Each processor is assigned a subset of the Fourier

modes resulting from the application of FFT.

4.3.1 Initial and boundary conditions

Our computational domain is a rectangular box with dimensions L, X Ly XL, =
62003, x 30099 x 40084, where 69, is the 99% thickness of the laminar boundary layer

at the inlet. The inlet is located at Rey = 106, (Re, = 6000). At the outflow,
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dg9 is approximately 1/4 of the wall-normal domain. All velocity components are
normalized with the free-stream velocity.

The following boundary conditions were applied

1. In all of our simulations the inlet velocities are imposed by adding zero-mean
perturbations to the Blasius base flow. When the noise is generated using the
algorithm of Rogallo (1981) or obtained from a precursor simulation, the zero-
mean perturbation velocity field is multiplied by a hyperbolic tangent cut-off

function, which forces the perturbation field to approach zero at the wall.

2. At the outlet, non-reflecting boundary conditions (Orlanski 1976) were ap-
plied. Simulation results in the last 15% of the domain (where the grid was
also stretched exponentially in the streamwise direction) were deemed un-
physical, due to potential contamination associated with an imperfect outflow

condition.

3. In the spanwise direction, y, periodic conditions were used.

4. At the free-stream, we imposed v = 1, v = 0, w = dé*/dz, where 0* is
computed for the Blasius profile. The boundary condition on the wall-normal
velocity component, w, is accurate through the onset of transition and becomes
less so as transition to turbulence takes place. The effect of using an incorrect
top outflow condition may result in a favorable or adverse pressure gradient,

which could delay or accelerate transition, respectively. In our simulations,
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however, the acceleration coefficient K (= — (v/UZ2) (dUy /dx)) was of the

order of 10~7, which is well below the levels that are known to affect transition.

5. No-slip conditions were used on the bottom wall.

4.3.2 Free-stream disturbance generation

Complete details of the three methods can be found in the Appendix. Here we
outline only the essential features. We have performed calculations using three types
of inflow conditions. In the first, we use the algorithm developed by Rogallo (1981),
and multiply the noise by a hyperbolic tangent cut-off function which decays to zero
at the wall. In the second, we employ the algorithm of Rogallo to generate noise
as input into a precursor simulation of spatially-developing homogeneous isotropic
turbulence. We then use velocity data from a cross-stream plane at an appropriate
streamwise location as the inlet condition for the main simulation. Note that the
inflow obtained from the precursor simulation is cut-off with the same hyperbolic
tangent function as in the first method, so that the planes of data used for the
inflow condition have zero turbulence levels at the solid wall. The third type of
inflow condition used is the one proposed by Jacobs and Durbin (2001), which
modifies the Rogallo algorithm by replacing the Fourier basis with the continuous
Orr-Sommerfeld basis and, therefore, requires no cut-off function near the wall.
Following Jacobs & Durbin (2001), the free-stream noise amplitude imposed at the

inflow location (Re, = 6000), ug = (Vu'v/ + Vv’ + Vw'w')/3, was 7% for all
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simulations; the three velocity r.m.s. values were within 10% of ug. The overline
here indicates Reynolds averaging, and the prime a fluctuation from the mean. The

disturbance integral length scale,

L11 = —Zdr .
/0 o' (x)u! () (4.3)

was varied between 1.00g, and 3.00g,. For the simulations that used the Orr-
Sommerfeld eigenfunctions we also explored the effect of the range of modes used

to generate the inflow disturbance.

4.4 Results

4.4.1 Grid refinement study

To gain confidence in our results we performed a grid refinement study of
bypass transition due to 7% FST, using the inflow-generation algorithm of Jacobs
and Durbin (2001). For the simulations in this and the remaining sections, our
computational domain was a box with dimensions L, x L, x L, = 62053y x 300, X
4069, chosen to match that of Jacobs and Durbin. The disturbance integral length
scale, L1, was set to 3.009, (Jacobs and Durbin do not mention the value used in
their simulations), and the wave-numbers k, = 27n,/L and k, = 27mn,/L (where
L = 3063y) and the frequency w = Uyk, were chosen in the manner described in
the Appendix, using 32 modes in each direction. The 3D energy spectrum of the

inlet disturbance (where we have assumed k, = w/Uy) is shown in the Appendix.
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Mesh nr X ny X nz Azt | Ayt | AzT

men

Coarse 500 x 96 x 96 Fig.4.1 | 3.0 1.0

Medium | 900 x 180 x 150 | Fig.4.1 | 2.5 0.5

Fine 1200 x 256 x 180 | Fig.4.1 | 2.4 0.5

Table 4.1: Meshes used in the grid refinement study.

Simulation parameters are summarized in Table 4.1 and the streamwise mesh spacing
is shown in Fig. 4.1, which also shows the streamwise resolution used by Jacobs and
Durbin and the resolution estimate of Rai and Moin (1993)% (Az™ = 12, Ay™ = 6).
Note that up to Re, = 100,000 and Re, = 140,000 for the medium and the fine
grids, respectively, the streamwise spacing is nearly constant. Beyond these values
the stretching is mild with Az; 1 /Az; < 1.01 for both grids.

Figure 4.2 shows the streamwise development of the skin-friction coefficient

Tw

Cp=-Tv_ 4.4
Y (4.4)

where 7, is the wall shear stress. The medium and fine grids show very good
agreement up to the onset of transition, which is the region of the flow in which we are
most interested. At Re, ~ 120,000 the two curves depart, the medium grid giving a
sharper transition to a fully turbulent regime. The reason for this departure can be

understood by looking at the distribution of streamwise mesh spacing for the fine

3Rai & Moin (1993) used a compressible NS solver with fifth-order upwind differencing for the

convective terms and fourth-order central differencing for the diffusive terms.
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and medium grids (Fig. 4.1). The increased slope of the rise in skin friction correlates
with a substantial increase in mesh spacing, which occurs farther downstream for
the fine grid. The result that an under-resolved grid produces a premature and
abrupt transition is somewhat counterintuitive, since mesh coarsening implies not
resolving small-scale instabilities. By looking at the skin friction plot it can be
seen that in both medium and fine grids adequate resolution is maintained in the
early transitional regime. We therefore believe that the medium grid is adequate
in predicting transition inception. As the latter provides an adequate metric to
assess the effects of varying inflow parameters, the medium grid will be used for all
remaining calculations presented in this paper.

Our results also imply that transitional flows are more sensitive to grid resolu-
tion than fully turbulent flows. Looking at near-wall streamwise velocity, Reynolds
stresses and a budget for the turbulent-kinetic energy obtained on the medium grid
and shown in Figs. 4.3 and 4.4, we observe the expected turbulent behavior. In
particular, very good agreement with turbulent channel data of Moser, Kim and
Mansour (Moser, Kim & Mansour 1999) can be seen despite the coarser streamwise

resolution in the fully turbulent region.

4.4.2 Free-stream turbulence decay rate

In all of our simulations, after a short transient, free-stream turbulence inten-

sity decayed as (xz — x¢)~%, with « € [0.7,0.8]. We note, however, that the virtual
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Figure 4.1: Grid-refinement study. Streamwise mesh spacing in absolute units (top)

and wall units (bottom).
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Figure 4.2: Grid-refinement study. Skin friction coefficient distribution.

origin of turbulence, zy, is as important a parameter as the actual decay exponent.
While Fig. 4.5 (and other figures) show that in the experiments by Roach and Brier-
lay (1992), the free-stream turbulence decayed at a significantly lower rate than that
in our simulations (as was also the case in the work of Jacobs and Durbin, 2001,
and Brandt and Henningson, 2004), both curves could be fit to the above decay
law with nearly the same decay exponent, but with different virtual origins. As
has been suggested previously (Jacobs & Durbin, 2001, Brandt et al. 2004), the
slower decay of the experimental turbulence is most likely due to the larger length
scale. For convenience, in our free-stream turbulence decay plots we also report the
dissipation length scale, L; = (k3/ 2) / (Usodk/dx), computed at the inflow, where k&

denotes the turbulent kinetic energy.
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Figure 4.3: Top: near-wall streamwise velocity at variuos x—locations. Bottom:
Reynolds stresses in the turbulent region at x = 520, (Re, = 189,280). The four
curves correspond to u'u’, v'v', w'w’, and w/w’, from top to bottom, and the symbols
correspond to the DNS data for channel flow (Moser et al. 1999). Medium grid

DNS.
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Figure 4.4: Near-wall TKE budget in the turbulent region; medium grid DNS. The

symbols correspond to the DNS data for channel flow (Moser et al. 1999).

4.4.3 Flow structure

A detailed description of boundary layer transition via the bypass mechanism
can be found in various references (Jacobs & Durbin 2001, Brandt et al. 2004). Here
we merely identify the streaky structures and turbulent spots that are the classical
features of this flow. Figure 4.6 shows the average and instantaneous skin-friction
distribution, and contours of velocity and pressure in an xz— and xy—plane, taken
from the fine-grid simulation. Between x = 200 and 400 (73,000 < Re, < 146, 000)
we can observe two so-called “turbulent spots” — isolated patches of irregular motion
— alternating with regions of laminar-like quiescence. The spots are clearly seen in
the v- and w-velocity contour plots at the bottom of the figure, and also, indirectly,

in the spikes in Cy in the top plot. These spots are convected with the local mean
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Figure 4.5: Grid refinement study: disturbance decay rate.

velocity and merge with the fully turbulent front (shown at z = 450, Re, = 150,000
in the figure 4.6). The gradual increase in the averaged skin-friction plot is ob-
tained by averaging over the passage of several such turbulent spots. In this context
the essential feature of grid under-resolution can be illustrated: our medium and
coarse grid results show the breakdown to turbulence, but do not show the quasi-
laminar region at 400 < x < 450. Apparently, the coarseness of grid destabilizes the
boundary layer, eliminating the intermittency region and forcing the flow towards
full-blown turbulence earlier. A possible explanation is that the under-resolution
causes unphysical energy aliasing into unstable scales of motion. Improving the res-
olution ensures that this energy is removed by the scales of dissipation. It is for this
reason that the medium-grid skin-friction plot shown in the grid-refinement section

has a higher slope than the fine-grid one. As a consequence, previous simulations in

155



which the grid was perhaps too coarse (Voke & Yang 1995, Rai & Moin 1993) did
not report seeing turbulent spots. We reiterate, however, that although our medium
grid does not capture this intermittency region, it is fine enough to predict the onset
of turbulence accurately. This assertion is justified by noticing that the streamwise
location of the turbulent-spot generation (z = 200, Re, = 73,000) is well upstream
of the region where our medium grid becomes too coarse by the standards of Rai
& Moin (1993) and Jacobs & Durbin (2001) (see Fig. 4.1) and also by the good

agreement of our medium-grid and fine-grid simulations in that region.

4.4.4 Results with Rogallo (1981) disturbance

The purpose of this set of simulations is to establish the effect of the dis-
turbance length-scale and the extent of its penetration into the boundary layer on
transition location. The simulation parameters are summarized in Table 4.2. The
cutoff functions used to bring the noise to zero at the wall are shown in Fig. 4.7. Note
that neither cutoff function extends far into the region of significant boundary-layer
mean shear, consistent with the shear-sheltering phenomenon of boundary layers,
which hinders the penetration of disturbances towards the wall. Voke & Yang (1995)
used a cutoff function that attenuated the free-stream turbulence to zero over the
region 0.5 < z/dg9 < 1.08 at the inflow plane. In their case the disrbance was
probably placed somewhat deeper inside the boundary layer than in our cutoff I

case, although they did not show the profile (or give an analytical form) of the
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Case | nr xnyxnz | L;; | Modes | Cut-off

| 900 x 180 x 150 | 3.0 | 323 I
IT | 900 x 180 x 150 | 3.0 | 323 IT
ITT | 900 x 180 x 150 | 1.0 | 323 I

Table 4.2: Simulations parameters for the calculations using Rogallo noise.

attenuation function. The skin friction plots in Figs. 4.7 and 4.8 indicate that in-
creasing noise penetration into the boundary layer and increasing the length scale
of the free-stream noise causes transition to move farther upstream. It is unclear
whether the latter effect is due to the lower decay rate of larger-scale turbulence
(see Fig. 4.9), which increases the time interval over which the boundary layer is
subjected to high-amplitude perturbations, or to the possibly increased boundary-
layer sensetivity to large-scale noise. Our results are in qualitative agreement with
the experiments of Jonas, Mazur, and Uruba (2000) in which the onset of transition

moves farther downstream with decreasing FST length scale.

4.4.5 Results with precursor simulation inflow

For the simulation in this section, the free-stream noise had the same length
scale, wall cutoff function, and nearly the same amplitude as the first case of the
previous section (see Fig. 4.7, I), but was obtained from a precursor simulation. In

order to match the length scale and turbulence intensity at the main box inlet we
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used a lower integral length scale (Ly; = 2.503y) and a higher free-stream noise am-
plitude (u" = 0.1Uy) for the precusor box inlet (44, is the boundary layer thickness
at the inflow of the main simulation). At position x = 775%, inside the precursor
box the free-stream disturbance amplitude decayed to 0.068U,,, and the integral
length scale, L;;, was approximately 3.00g,. At this position cross-stream planes
were saved and used as inflow for the main simulation. Fig. 4.10 shows skin friction
plots from two simulations, one using noise generated with the algorithm of Rogallo,
and the other, using noise generated from a precursor simulation. The close agree-
ment between the two curves indicates that the two methods of noise generation are
effectively similar, as far as the boundary layer is concerned. Free-stream turbuence

decay rates corresponding to the skin friction plots in Fig. 4.10 were nearly identical.
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4.4.6 Results with Jacobs and Durbin inflow

The purpose of the simulations presented in this section was to evaluate the
applicability of the disturbance generation algorithm of Jacobs and Durbin (2001)
for transition prediction. As mentioned in the Section on disturbance generation
and discussed in detail in the Appendix, the Jacobs and Durbin (2001) inflow-
generation algorithm aims to match the von Karman spectrum by assuming that in
the free-stream the Orr-Sommerfeld modes behave as Fourier modes. Whereas the
inflow produced under this assumption may still be adequate, we point out that the
assumption is not valid: while the real part of an Orr-Sommerfeld mode may be
normalized to have unit amplitude in the free-stream, this cannot generally be done
for both the real and the imaginary parts. Thus, while the real and the imaginary
part of a Fourier mode are both of unit amplitude, in the free-stream only one part of
the Orr-Sommerfeld mode can be made to have this property, while the amplitude of
the other part can be substantially larger or smaller (Fig. 4.11) *. As a consequence
of this discrepancy, the energy spectrum of the generated disturbance is different
from one in which true Fourier modes are used. Figure 4.12 shows the 3D energy
spectrum generated using Orr-Sommerfeld and Fourier modes.

Of much greater importance is the range of wave-numbers used for the noise

generation. While the exact relation u/u = [° E(k)dk is valid both continuously

“In the solver of Jacobs & Durbin (2001), the boundedness of eigenfunctions is achieved by using
the (arbitrary) boundary condition ¢ = (1,0) on the top boundary, which allows for substantially

different amplitudes of the real and imaginary parts.
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and discretely, the discrete integral will have no contributions from wave-numbers
above a certain finite cutoff. Thus, suppose that we are generating the disturbance
inside a cube of size 27 (assume x = U - t) using 64 grid points in each direction.
The maximum wave-number represented on this mesh is 32 and the generated dis-
turbance contains no contributions from wave-numbers above this value. In order
for the discrete integral to remain the same as the continuous integral (to match the
experimental turbulence intensity), additional energy must be added to the resolved
modes. This additional amount will, of course, decrease (or increase) as the resolu-
tion (equivalently the maximum resolved wave-number) is increased (or decreased).
This argument is illustrated in Fig. 4.13. Since the extent of penetration of an Orr-
Sommerfeld mode into the boundary layer increases with decreasing frequency (Fig.
4.14), using a low number of modes (with a low maximum wave-number) forces
one to increase the energy of low-frequency modes to achieve a given turbulence
intensity; this, in turn, increases noise penetration into the boundary layer.

It follows, then, that 7% FST with the maximum resolved wave-number k;
will cause transition earlier than 7% FST with a maximum resolved wave-number
ko > ki, because in the former case more energy is put into the low wave-number
region to compensate for the larger unresolved part and we infer from Fig. 4.14 that
the disturbance penetration depth is greater in the former case than in the latter.
This effect is illustrated in Fig. 4.15. The input parameters of the three simulations
shown are identical except for the number of modes used for the noise generation

(see Table 4.3). Interestingly, this number may also affect disturbance decay-rates
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Figure 4.15: Effect of wave-number cut-off on transition location.

significantly (Fig. 4.16), but the difference between the decay rates of the 163 and
323 mode simulation does not appear to be sufficiently large to account by itself for

the much larger shift in skin friction.

Case | nx xnyxnz | Li; | Modes

I 900 x 180 x 150 | 3.0 | 323

IT | 900 x 180 x 150 | 3.0 163

IIT | 900 x 180 x 150 | 3.0 83

IV ] 900 x 180 x 150 | 1.0 83

Table 4.3: Simulations with Jacobs & Durbin (2001) inflow

As can be seen, by keeping all simulation parameters the same but changing

the frequency range used to represent the disturbance, the skin friction curve can
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Figure 4.16: Effect of wave-number cut-off on disturbance decay rate

be shifted in either direction to obtain a match with experiments. If one is allowed
to adjust the integral length scale, even greater freedom is obtained. In Figs. 4.15
and 4.17 we have obtained agreement with experiments in two separate ways: by
varying the modal content in the disturbance spectrum and the length scale of the
free-stream noise.

The paper by Jacobs and Durbin (2001) does not specify the number of modes
used to generate their disturbance, but does mention that this number was small.
Brandt et al. (2004) have implemented a very similar inflow-generation algorithm?®
and mention that they used 800 modes. Moreover, whereas the number of wave-
number triplets ki, ko, k3 such that |\/k? + k3 + k2| = k' grows quadratically with

k', Brandt et al. (2004) set this value to 40. While there is little a priori reason

5Both Orr-Sommerfeld and Squire modes were used in their simulations.
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Figure 4.17: Effect of disturbance length scale on transition location.

to prefer one set of modes to another, the choice clearly has repercussions on the

location of transition.

4.5 Conclusions

We have performed a grid refinement study of boundary-layer bypass transition
due to 7% free-stream turbulence. In the present simulations, the inflow plane is
located downstream of the leading edge, and the inlet velocity is a superposition of
a Blasius base flow and a presecribed disturbance profile. Our results support the
resolution estimates of Rai and Moin (1993) for simulating the transition region;
the C predictions based on the medium-grid simulation begins to disagree with the
fine-grid simulation when the local streamwise resolution falls below their estimates.

We have also shown that a consequence of under-resolution is the disappearance of
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the intermittency region characterized by the passage of turbulent spots surrounded
by quasi-laminar quiescent regions: insufficient resolution causes an earlier and more
abrupt transition to turbulence.

We have demonstrated that boundary layer bypass transition is strongly de-
pendent on the integral length scale of the noise and the extent of its penetration
into the boundary layer. We also implemented the inflow-generation algorithm of
Jacobs and Durbin (2001) and compared our simulation results with experiments by
Roach and Brierlay (1992). By varying simulation parameters that were not spec-
ified in the experiment within a sensible range, while keeping the amplitude of the
free-stream turbulence the same, we were able to move the transition point within
the computational box upstream or downstream. These results indicate that, in

order to specify the problem fully (1) a reliable value for the length scale of the free-
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stream turbulence and (2) the extent of disturbance penetration into the boundary
layer must be available from experiments. Simulations should match experimental
Reynolds-stress profiles inside the boundary layer well upstream of the transition
location.

Alternatively, in order to avoid the problem of specifying the near-wall be-
havior altogether, numerical simulations could include the boundary-layer leading
edge modeled as an elliptical body to avoid velocity discontinuities. Our future
work will include simulations of this type with the superelliptical leading-edge rep-
resented using the immersed boundary method (Balaras 2004). The simulation will
be performed on a Cartesian coordinate system inside a multi-block domain. The
multi-block approach is necessary because, in order to resolve properly the formation
of the boundary layer around the leading edge, very fine wall-normal grid resolu-
tion is required, which is not necessary throughout the entire domain. Through
simulations of the above type it becomes possible to follow the development of the
free-stream disturbance near the boundary layer edge and to monitor the extent
of its penetration into the boundary layer. Furthermore, such simulations can also
enable one to make more general conclusions about the universal applicability of
the inflow-condition methods proposed and used in the past, and on the effect of ad

hoc parameters in these methods.
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4.6 Appendix

This section gives a detailed description of the three methods of inflow gener-
ation used in this paper. The first method uses the algorithm by Rogallo (1981) as
found in Jacobs and Durbin (2001) with Fourier modes in each of the three directions
(with the disturbance multiplied by a cutoff function at the wall). The second uses
the same algorithm as the first, with the noise fed into a precursor simulation box.
Cross-stream planes from the precursor simulation are then used as inflow for the
main simulation (with the same cutoff function). The third method again employs
the Rogallo (1981) algorithm but uses the continuous Orr-Sommerfeld basis in the
wall-normal direction to determine the wall-normal behavior of the inflow profile

(the eigenfunctions are required to be bounded but not square-integrable, Grosch &

Salwen 1978).

Rogallo (1981) algorithm

In this method, a prescribed turbulence spectrum with random phases is used
to generate approximately isotropic turbulence. The first step in this method con-
sists of the choice of the range of wave-numbers used to represent the disturbance
(this range need not be the same as the range of wave-numbers supported by the
actual computational mesh). We use the same range in all three dimensions, which
is determined by the domain size and the number of points The domain size for the

disturbance calculation matches the spanwise length of the computational domain,
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but need not have the same number of grid cells.

For simplicity of the current discussion we will assume a uniform mesh with
nr = ny = nz = 64, and a cubic domain with sides L = 27.% In the following,
kmaz = nx/2 is the maximum resolved wave-number.

Once the wave-number range has been chosen, we loop over all possible wave-
number triplets and pick only those for which k2 + k2 + k2 < k7, essentially so
that the wave-number sphere fits inside the wave-number cube. The wave-numbers
that do not fit this category are left unpopulated. Given the above constraints, the
number of all possible triplets for the 64 mesh is approximately 34,000 (the number
of possible triplets grows approximately quadratically with |k|). Processing such a
large number of triplets at each time-step of the simulation results in a substantial
increase in the cost of the calculations. Therefore, we only consider every third wave-
number in each direction: we let, for instance, k, = w/Us =1, 2, 3, 5, 8, 11,...
etc. Including all of the lower wave-numbers prevents large symmetrical structures
in the inflow, and using only every third wave-number in the higher range decreases

the number of triplets to approximately 1,400 —a manageable number.

The disturbance in physical space is then generated from the wave-number

6Notice that in reality the z direction represents time, and that k, = w/U.,, where w is the
disturbance frequency; in practice, the common choice of U,, = 1 makes = and ¢ (or k; and w)

interchangeable.
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coefficients using:

u(y, 2, t) Z Z Z nethvyetkaz e~ (4.5)

w  ky kg

y,z t Zzzvezkyyezkzz —iwt (46)

w  ky kg

y,z t Zzzwezkyyezkzz —iwt (47)
w  ky ks

where we have replaced k,x with —wt using Taylor’s hypothesis. When looping
over all the possible wavenumber triplets, the Fourier amplitude coefficients of the

velocity fluctuations are computed as follows:
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& = =l p, (4.10)

where

A= Fe" cosé (4.11)
w? + k2 + k2
B=F— % Yei2gin§ 4.12
w? + k2

F = f\/ VA kR k2). (4.13)

A (w? + k2 + k2)?
In the above, 4, #; and 6, are uniformly distributed, random angles, which randomize

the mode phases. Multiplying the wave-number coefficients in (4.8-4.10) by their

complex conjugates, averaging and substituting for A and B produces the isotropic
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energy spectrum tensor:

0T = k78 = ki) (4.14)
which contracts to give,
uur = f7r(|‘l]j:|‘2 (4.15)
The von Karman spectrum is defined as
Bk = m— K (4.16)

“on+ k)Y

where

ul = / E(k (4.17)
L =1.339Ly, (4.18)

C = 0.6883, (4.19)

and L;; has been defined in the text and u_g is the square of the desired FST intensity.
To perform the averaging in Eq. (4.14), we count all the wave-number triplets
such that \/w? + kZ + k2 = k' for some £’ and divide the combined energies in these
wave-numbers by that number. This will ensure that Eq. (4.14) holds. However, to
obtain the correct spectrum, the following equality must hold in the discrete sense:
Yo @it =EF). (4.20)
VIR RI=R
This implies that the Fourier amplitude coefficients must be multiplied by 1/ (27&'%/n)
where n is the number of wave-number triplets that sum to &>
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Figure 4.19: 3D disturbance spectra (top) and contours of streamwise disturbance

velocity (bottom). Left column: Ly; = 0.7, right column: Ly; = 3.0.

The discrete spectrum is compared to the analytical expression for E(k) in
Fig. 6.9, which also shows the instantaneous velocity fields in real space, for two

values of the integral length L.

Precursor simulation

In this method, free-stream turbulence was obtained by feeding synthetic noise

generated using the algorithm of Rogallo, described above, into a precursor simu-
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lation box of dimensions 100, x 3009, x 4009, where &gy is the initial boundary
layer thickness of the main simulation. Slip-wall boundary conditions were applied
on the top and bottom walls of the precursor simulation box. Slip-wall, rather than
periodic conditions were chosen in the wall-normal direction because the latter were
incompatible with our pressure solver. The turbulence intensity at the inlet of the
precursor box was ug = 0.1U. At position z = 7703, inside the precursor box, the
turbulence intensity decayed to uy = 0.068U,, and the disturbance integral length
scale was approximately 309, consistent with the values imposed for the simulations
with the Rogallo (1981) synthetic inflow. Therefore, at this location cross-stream
planes were saved and used as inflow for the main simulation. Only the central
region of the precursor cross-planes was used because the slip-wall condition of the
precursor box is unphysical (e.g. the slip-wall destroys turbulence near the wall).
To bring the disturbance to zero at the wall we used the same cutoff function as for

the Rogallo synthetic inflow (see Fig. 4.7 cutoff I).

Jacobs and Durbin Algorithm

In the algorithm proposed by Jacobs and Durbin (1998), an arbitrary dis-
turbance is expressed as a superposition of the continuous spectrum modes of the
Orr-Sommerfeld equation. To generate the continuum eigenmodes, we use the nu-
merical method described in Jacobs & Durbin (1998). To validate the solver we

compared our results with the plots in Jacobs & Durbin (1998, 2001) with excellent
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Figure 4.20: Validation of Orr-Sommerfeld solver (compare with Fig. 7 in Jacobs &

Durbin (1998).

agreement (compare Fig. 4.20 with Fig. 7 in Jacobs & Durbin 1998). The procedure
to synthesize the inflow disturbance from these eigenmodes is then similar to the
Rogallo algorithm described above, with the following modification: In the summa-
tions (4.5-4.7) the Fourier mode e**+7 is replaced by the Orr-Sommerfeld eigenmode
d(w, k,, R; 2) (note the explicit dependence on w, k, and R, the Reynolds number
based on Blasius variables). The summations now read:

u(y, z,t) ZZZgﬁ w,ky, R; 2 Z ey gt (4.21)

w  ky k:

v(y, 2, 1) ZZZ¢ w, k,, R; 2)vekvy et (4.22)

w  ky k:

w(y, z,t) = ZZZ¢ w,k,, Ry 2)— k 2kyye wt (4.23)
w  ky

Z
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Figure 4.21: Streamwise contours of a disturbance generated using Orr-Sommerfeld

modes, corresponding to the spectrum in Fig.4.12

The necessity to divide the v and w wave-number coefficients by ik, is seen by
substituting ¢ = e*:* into the above expression and comparing with (4.5-4.7). We
note that following Jacobs & Durbin (2001) we do not compute the eigenmodes of

the Squire’s equation, which are required to form a complete 3D basis.
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Chapter 5
DNS of boundary-layer bypass transition with leading edge

effects!

5.1 Abstract

This study investigates the accuracy of synthetic-turbulence inflow conditions
to numerical simulations of boundary-layer bypass transition. To this end we have
performed three direct numerical simulations (DNS) of boundary layer bypass tran-
sition. In two of the simulations, the inflow condition is imposed downstream of the
leading edge and the free-stream turbulence (FST) is attenuated inside the bound-
ary layer using two prescribed ad hoc attenuation profiles. In the third simulation,
we included the leading edge of the flat plate inside the computational domain; thus
we were able to follow the physical evolution of the FST above the flat plate. The re-
sults of the latter simulation reveal the presence of small-amplitude laminar streaks
at the streamwise location corresponding to the inflow boundary of the truncated-

domain simulations. Because these boundary-layer streaks are not modeled by the

LOriginally published as
OvcHINNIKOV, V. O., PioMELLI, U.& CHOUDHARI, M. M., 2005 Numerical simulations of
boundary layer bypass transition with leading edge effects In Proc. 4th Int. Symp. Turbulence

and Shear Flow Phenomena, Williamsburg, Virginia, June 25-27, 2005, 425-340.



inflow specification for the truncated-domain simulations, such simulations may not
be expected to provide reliable predictions of the bypass transition process. How-
ever, our simulations underline qualitative similarities between the flow fields in all
three cases. Thus it is possible that, with suitable calibration, truncated-domain
simulations may be a useful tool for investigating the physical mechanisms of bypass

transition.

5.2 Introduction

Transition prediction has its place among the most important practical prob-
lems in fluid dynamics today. Among its applications are airfoil design and optimiza-
tion of low-pressure turbine, in which it is frequently desirable to delay transition
to turbulence or avoid boundary layer separation. For this reason, the recent years
have witnessed extensive experimental, theoretical, and numerical work on bound-
ary layer receptivity and transition. In a benign disturbance envorinment typical
of external flight aerodynamics, transition is often initiated by the TS instability
waves. In the presence of higher amplitude external disturbances, such as those
encountered in turbomachinery flows, the transition bypasses the linear T'S mecha-
nism. Although the phenomenon of bypass transition has been well-studied through
experiments, added insights via numerical simulations have been slow to come be-
cause of the formidable cost of computation, even at low Reynolds numbers (see

Rai & Moin, 1993, Voke & Yang, 1994, Jacobs & Durbin, 2001). With the possible
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exception of Rai & Moin (1993), the above studies did not account for the interac-
tion between incoming FST and the flat plate leading edge. Because this interaction
sets the initial conditions for the disturbance evolution in the region farther down-
stream, it is important to understand the effects of the ad hoc initial conditions on
the boundary-layer transition process.

We have recently carried out several bypass transition simulations (Ovchin-
nikov et al. 2004) with the aim of investigating the effects of various inflow pa-
rameters on the onset of transition. In particular, we observed that boundary layer
bypass transition is strongly dependent on the integral length scale of the free-
stream disturbance and the extent of its penetration into the boundary layer. By
varying, within a sensible range, the simulation parameters that were not specified
in the reference experiment (Roach & Brierlay, 1992) we were able to move the
transition onset upstream or downstream at a fixed level of FST intensity. These
results indicated that in order to specify the problem fully, (i) a reliable value for the
length scale of the free-stream turbulence, and (ii) the extent of disturbance pene-
tration into the boundary layer at the inflow location of the simulation domain must
be available from experiments. Simulations may also need to match experimental
Reynolds stress profiles inside the boundary layer well upstream of the transition
location.

Alternatively, in order to avoid the problem of specifying the near-wall be-
havior altogether, numerical simulations could include the boundary-layer leading
edge. To investigate the difference between simulations with an artificial inflow dis-
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turbance profile and those that include the leading-edge, we present a simulation
with a super-elliptical leading-edge that is represented using the immersed boundary
method (implemented according to Balaras, 2004). The super-ellipse is only a con-
venient choice of leading-edge shape that avoids velocity discontinuities associated
with simulating a sharp leading edge; the effect of leading-edge geometry may be an-
other significant factor and is not investigated here. The simulation is performed on
a Cartesian coordinate system inside a multi-block domain. Through a simulation
of this type, it is possible to follow the development of the free-stream disturbance
near the boundary layer edge, and monitor the extent of its penetration into the
boundary layer. Furthermore, it should be possible to make more general conclu-
sions about the accuracy of the inflow-condition methods proposed in the past, and
on the effect of ad hoc parameters in these methods. Our primary emphasis at
this stage is on using statistical flow metrics to gauge the effect of various inflow

treatments. Detailed investigation of transition physics is deferred to a later stage.

5.3 Problem Formulation

In this work we use the incompressible Navier-Stokes equations to perform

DNS simulations of boundary layer transition under free-stream turbulence. The
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equations of motion

—L =0, (5.1)

i 0 C1ep
ot a—xj (’LL]UZ) = ;8—% -+ vV Us, (52)

are solved numerically using a second-order accurate finite-difference method on a
staggered grid. The method fully conserves mass, momentum and kinetic energy
in the discrete sense (see Morinishi et al., 1998). The coordinates x, y and z refer,
respectively, to the streamwise, spanwise and wall-normal directions. The velocity
components in these directions are, respectively, u, v and w. All grids used are
uniform in the spanwise direction y, stretched in the streamwise and wall-normal
directions to allow accurate resolution of boundary layer disturbances, particularly
in the transitional region. The discretized equations are integrated in time using an
explicit fractional time-step method, (Chorin, 1968, Kim & Moin, 1985) in which
all terms are advanced in time using the Adams-Bashforth method. The Poisson
equation is solved, and the velocity is corrected to make the field solenoidal. The
code has been extensively validated for a variety of turbulent (Balaras et al., 1995,
Balaras et al., 2001) and re-laminarizing (Piomelli et al., 2000) flows.

The code was parallelized with the message-passing interface (MPI). The com-
putational box is divided into n subdomains in the streamwise direction, and each
of the n processors integrates the equations of motion in one of the subdomains.
The pressure field is obtained by applying spanwise FF'T to the Poisson equation.
This yields a pentadiagonal matrix for each Fourier mode, which is then inverted

187



by a cyclic reduction algorithm. Each processor is assigned a subset of the Fourier

modes resulting from the application of FFT.

5.3.1 Initial and boundary conditions

Two types of simulations of boundary layer transition have been carried out.
In the first type (truncated-domain), the inflow plane is located downstream of the
flat-plate leading edge. In this case our computational domain is a rectangular box
with dimensions Ly X L, X L, = 620095 x 300gg X 40035, where 695 is the 98% thickness
of the laminar boundary layer at the inlet.? The inlet is located at Rey ~ 50,
(Re; = 5,520, z = 15). At the outflow, dgg is approximately 1/4 of the wall-normal
domain.

In the second type (full-domain), we used the same length scale as in the
first type (i.e. 093) and our computational domain consisted of two boxes with
dimensions L, x L, x L, = 50dgg x 30053 x 40035 and L, x L, x L, = 720055 X
306gg x 38.7dg5, respectively. The multi-block approach is necessary because, in order
to resolve properly the formation of the boundary layer around the leading edge,
very fine wall-normal grid resolution is required that is not necessary throughout
the entire domain. In the first box, we used the immersed boundary method to
represent a flat plate with a super-elliptical leading edge (see Lin et al., 1992) with

radius 1.3 (or, equivalently, plate half-thickness) and aspect ratio 6. In order to

2Taking the location of 98% of the velocity maximum removed small-amplitude fluctuations of

the velocity around its free-stream mean. The ratio dgg/dg9 Was about 0.9.
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validate the immersed-boundary representation of the leading-edge geometry, we
simulated laminar flow around a superellipse of aspect ratio 6, at Re = 2,400, based
on the plate half-thickness, and obtained excellent agreement with the data of Lin
et al. (1992). To avoid excessive computational cost, only the top half of the super-
ellipse was modeled, and a symmetry condition was used on the bottom boundary.
The symmetry condition is not physical, since it anchors the flow stagnation point
to the tip of the super-ellipse at all times. The effect of on the fluctuations in
the stagnation point location on transition characteristics needs to be ascertained.?
The flow configuration is sketched in Figure 5.1. The inflow boundary is located at
x = —20, inside the first box, the leading edge being at x = 0. At location z = 20,
corresponding to Re, = 7,280, cross-stream velocity planes were saved and used as
the inflow condition for the second box. At the outflow of the second box, dgg was
approximately 1/3 of the wall-normal domain. All streamwise distances quoted in
this article are measured relative to the leading edge.

The following boundary conditions were applied:

1. In the truncated-domain simulations, the inlet velocities are imposed by adding
zero-mean perturbations to the Blasius base-flow. The disturbance was gen-
erated using the modified Rogallo (1981) algorithm as implemented by Jacobs
and Durbin (2001) with Fourier modes (see Ovchinnikov et al., 2004, for de-
tails). The disturbance field was multiplied by an attenuation profile f, which

was smoothly decreased from f = 1 in the free stream to f = 0 at the plate

3Simulations without the symmetry condition are described in §6.
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Figure 5.1: Schematic of the geometry for the full-domain simulation

surface to mimic the shear-sheltering of the boundary layer (see Jacobs &
Durbin, 1998), which hampers the penetration of turbulence towards the wall.

The attenuation profiles, plotted in Figure 5.3, are defined as

_ tanh (7 (20 — 2) +1)
tanh (7)+1 ~’

f=1 (5.3)

where zg is the inflection point location of the attenuation profile. For Trun-

cated I and II cases, zp = 1.0 and 1.5, respectively.

Similarly, the inflow for the first box of the full-domain simulation was obtained
by adding a zero-mean field to a uniform mean velocity profile. The inflow
condition for the second box was obtained by interpolating velocities from the
first box onto the wall-normal grid of the second box, as mentioned above. In
all cases, the initial free-stream turbulence integral length scale was 3.063; and
the target FST intensity was 6% at (z = 15, Re, = 5,520). In all simulations,
downstream of a short transient, the FST intensity decayed as a power law
(x — x9)” " with a = 0.7.
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2. At the outlet, convective boundary conditions (Orlanski, 1976) were applied.
Simulation results in the last 10% of the domain were discarded due the prox-

imity of the outflow boundary condition.

3. In the spanwise direction, y, periodic conditions were used.

4. At the free-stream boundary of the truncated-domain simulations and the sec-
ond (downstream) box of the full-domain simulation, we imposed u = 1, v =
0, w = ddé*/dz, where §* is computed for the Blasius profile. In these simu-
lations the acceleration coefficient K, = — (v/U2) (dUw/dz), was of the order
of 1077. The value of K at which a turbulent boundary layer is expected to
re-laminarize is around 3.0 x 107% (Spalart, 1986). Since in our case K is an
order of magnitude lower, we do not expect the acceleration to affect transi-
tion significantly. For the first (upstream) box of the Full-domain simulation
we used a slip-wall boundary condition on the free-stream boundary. The

resulting acceleration of the free-stream flow was also mild, with K ~ 10~7.

5. No-slip conditions were used on the bottom wall of the truncated-domain
simulations, the bottom wall of the second box of the full-domain simulation,

and the plate leading edge within the first box.

191



5.4 Results

The grid requirements for DNS of boundary-layer bypass transition can be
found in various sources (Rai & Moin, 1993, Jacobs & Durbin, 2001, Ovchinnikov et
al., 2004). As a general rule, for a second-order accurate algorithm, the streamwise
and spanwise grid spacing should be under Azt = 12, Ayt = 6 with the same
wall-normal resolution as needed for DNS of the turbulent boundary layer (i.e. the
grid should have 7-8 cells below y* = 10 and the first node away from the wall
should be below y+ = 1). Simulation parameters are summarized in Table 5.1 and
the streamwise mesh spacing is shown in Fig. 5.2, which also shows the streamwise
resolution used by Jacobs & Durbin (2001), who also used a code similar to ours.

The initial purpose of the truncated-domain simulations was to capture the
region of transition onset accurately (as judged by the skin friction rise and the tur-
bulent kinetic energy budgets), but not its final stages, or the fully-turbulent regime.
While this significantly reduces computational cost, it limits the region of reliable
data to the maximum of x = 275, Re, = 100,100 (see Figure 5.2). Consequently,
in all of the plots that follow, data from truncated simulations have been restricted
to this region. Data from the full-domain simulation, in contrast, are reliable up to
x ~ 660, Re, ~ 240, 000.

In subsequent figures that show streamwise evolution of various quantities, we
plot a dotted vertical line at location x = 220, Re, = 80,080 to denote the middle

of skin friction rise. The skin friction coefficient, which shows a characteristic rise
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Table 5.1: Summary of simulation parameters.

Case nT X ny X nz Azt Ayt Azt
Truncated I 900 x 180 x 150 Fig.5.2 3.0 1.0
Truncated II 900 x 180 x 150 Fig.5.2 2.5 0.5

Full Upstream Box 288 x 192 x 222 Fig.h.2 24 0.5

Full Downstream Box 1474 x 192 x 159 Fig.5.2 2.5 0.8

in transition, is defined as

(5.4)

15 R
+ i

> 10K / E
<] - == -7 —— Leading edge

Sr ‘ — - Truncated 1 & I
Jacobs & Durbin (2001)

0.5 1 Re 1.5 2 2.5
X x 10°

Figure 5.2: Streamwise mesh spacing in wall units

The difference between Truncated I and Truncated II cases is the choice of the
attenuation profile, shown in Figure 5.3. As can be seen, in case I, turbulence is
placed closer to the wall than in case II, in which the disturbance profile attenuates

rapidly just inside the boundary-layer edge.
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Figure 5.3: Attenuation profiles used in truncated-domain simulations.

In order to permit a direct comparison between the three simulations, the
external disturbance environment must be the same. This means that the type
of disturbance, its integral length scale and intensity should be identical. Since
in the full-domain simulation our inflow plane was located 4003; upstream of the

4 we were required to experiment with the intial

truncated-domain inflow plane,
disturbance amplitude and length scale of the Full-domain inflow in order to match
the initial amplitude (6%) and decay rate of the truncated-domain simulations. The
FST intensities are shown in Figure 5.4. It can be seen that the FST level in the
full-domain simulation is slightly above the target value. This discrepancy, however,
is small and should not cause a major shift in the onset of transition.

In addition, because the full-domain simulation inflow is located upstream of

the truncated-domain simulation inflow, the boundary layer in the former (due to the

FST and the leading edge geometry) could potentially evolve differently and result

“Recall, that 638 is measured at the inflow location of truncated simulations
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Figure 5.4: Evolution of the FST intensity.

in a different mean flow, which would complicate comparisons with the truncated
simulations. To investigate this possibility, in Figure 5.5 we show the streamise
evolution of the displacement and momentum thicknesses for the three simulations,

which are defined as

X
0 100 200 300 400 500 600 700
T T T T T T
— Leading Edge
257 - - cutoff | . 125
— - Cutoff Il
2+ ) 12
15+ _ 4115
1 i // g = - e ] l
05r / _=" 405
0 1 1 1 1 1
0 0.5 1 15 2 25
Rex x 10°

Figure 5.5: Streamwise evolution of displacement and momentum thickness.
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5 = /0 e (1 _ %) dy, (5.5)
6 — /Oym % (1 _ %) dy. (5.6)

The good agreement in these quantities (0% and 6 are within 2.5% and 5% of
the average value for the three cases) indicates that the mean flows upstream of the
onset of transition are very similar.

As stated before, in truncated simulations an attenuation profile is used to
bring the turbulence velocities to zero at the flat plate. No generally accepted the-
ory on the depth and shape of the penetration profile exists (although see the works
by Leib et al. 1999 and Jacobs & Durbin 2001). To shed some light on this matter,
in Figure 5.6 we show profiles of the turbulent kinetic energy (TKE), defined as
k = (ulu})/2 (a prime denoting a fluctuation from the mean), inside the boundary
layer at locations z = 25, 75, 175, 275, (Re, = 9,100, 27,300, 63,700, 100, 100) for
the three simulations (see Figure 5.3 for attenuation profiles). The first location is
fully within the perturbed laminar boundary layer, the second is near the location
of transition onset (judging by the skin friction rise, shown Figure 5.13) and the
last, near the end of transition. The wall-normal coordinate is the Blasius similarity
variable n = z/ \/m The laminar boundary layer edge corresponds to n ~ 4.9.
At location z = 25, the full-domain simulation shows nearly the same kinetic energy
as the Truncated II case. The maximum TKE corresponding to the Truncated I case
is twice that of the full-domain case. However, from that location on, the growth
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of the TKE inside the boundary layer for the full-domain case surpasses that of the
other cases, so that by location x = 75 the maximum boundary layer TKE for the
full case is 20% larger than that of the Truncated I case. By location x = 275, which
is at the beginning of the fully-turbulent region, all three cases show very similar
TKE levels, suggesting that a turbulent equilibrium is being established. For more
detail, in Figure 5.7 we show the streamwise evolution of the maximum Reynolds
stresses inside the boundary layer (normalized by the friction velocity, u,, defined as
\/Tw/p). One can see the prominent growth of (uu), larger in the full domain case
than in the others, which is followed by a decay towards a turbulent equilibrium in
all three cases. The growth, linear-like in the region x = 25 — 75, is present only in
the streamwise component of the Reynolds stress, which is magnified in Figure 5.8
and normalized by U,. From this plot one can also see that the truncated-domain
simulations show an initial transient in which the streamwise stress is oscillatory.
This may indicate that in the truncated simulations the inflow disturbance lacks
the proper phase information inside the boundary layer and produces a lower dis-
turbance growth-rate. The result is that in the early transitional stage the Reynolds
stresses do not match the values of the full-domain simulation.

It has been shown experimentally and numerically (see, for example, Matsub-
ara & Alfredsson, 2001, and Jacobs & Durbin, 2001) that boundary-layer interaction
with moderate-amplitude FST is characterized by the appearance of low-frequency

streaks of streamwise velocity® inside the perturbed laminar and early transitional

5Also known as Klebanoff (1971) modes
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Figure 5.6: Profiles of the turbulent kinetic energy vs. 7. Successive curves are

offset by 0.02 on the z-axis.

boundary layer.

Jacobs & Durbin (2001) and Brandt, Schlatter & Henningson (2004) performed
DNS of boundary-layer transition due to moderate levels of FST. The later group
reported secondary streak instability as the cause of transition, while the former
claimed that the streaks provide a receptivity path for the FST to enter the boundary
layer, but are otherwise irrelevent to the transition process (i.e. no evidence of
secondary instability was seen).

Examination of the flow field in our simulations revealed the presence of near-
wall streaks in all three cases. Figure 5.9 shows contours of the streamwise velocity
fluctuation in a plane parallel to the wall at z = 0.05, which at location x = 15,

Re, = 5,500 corresponds to 5% of the boundary layer thickness dqg, and about 2%
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Figure 5.7: Streamwise evolution of maximum Reynolds stress levels inside the

boundary layer normalized by the friction velocity u..

of dgg at x = 100, Re, = 36,400. The qualitative similarity of the plots away from
the inlet suggests that the transition mechanism is the same in all cases (this is
further supported by the comparison between the evolution of the corresponding
TKE budgets, shown in Figure 5.12 for two cases). From location x = 15 (where
the inlet into the truncated-domain simulations is placed) to x & 22, however, only
the full-domain plot shows incipient streaks. Streamwise streaks can also be inferred
from spanwise correlation functions of the streamwise and wall-normal velocity fluc-
tuation. In a streaky flow, the wall-normal velocity correlation falls below zero due
to the vortical structures that must be present in order to generate the streaks. The
distance to the correlation minimum can be interpreted as the size of the streak-
generating vortex, or roughly one half of the average distance between a high- and
a low-speed streak. Figure 5.10 shows plots of the wall-normal correlation function

at two locations, © = 120 (Re, = 43,680), just upstream of the rapid skin friction
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Figure 5.8: Streamwise evolution of maximum (u'u') stress levels inside the boundary

layer normalized by the free-stream velocity.

rise, and at x = 350 (Re, = 127,400), at the onset of fully-developed turbulence.
For each location, the top plot is at the edge of the boundary layer.

At location z = 120 (Figure 5.10 top), oscillatory behavior in the correlation
curves can be observed throughout the spanwise domain, consistent with strongly-
correlated laminar streaks with a dominant spacing of 3.5, (~ 1.4dg) (at this location
dos =~ 2.5). The oscillations are absent at the boundary-layer edge, indicating that
the streaks are present only inside the boundary layer. At the end of transition
and the onset of turbulence, the correlation function shows a single dip below zero,
corresponding to one half of the average spacing between turbulent streaks of op-
posite sign. These streaks are closer together, separated by a distance of 2, and are
different from their transitional counterparts. The boundary-layer thickness at this

location is 4.5. Further characterization will determine whether the streaks in the
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(a)

Figure 5.9: Contours of the streamwise velocity fluctuation at z = 0.05; (a) Full-

domain, (b) Truncated I (c) Truncated II.

perturbed laminar region are Klebanoff modes. ¢
The obvious reason for the initial absence of streaks from the truncated-domain
simulations is that the inlet disturbance is has been synthesized with random phases
for the various Fourier modes. Distance is required for the boundary layer to gen-
erate a physical disturbance field. Examining the TKE budgets for the three cases
revealed the importance of production, convection and pressure transport in this

process. These terms are defined, respectively, as
a(U;) ok 10(puy)

_O\Yi) B gAY AP Ui/
B ), —Wg, S

(5.7)

and are shown Figure 5.11 at location x = 16, for the Truncated II and the full-
domain cases. The budget for the Truncated I case is qualitatively similar to the

Truncated II case, with a higher amplitude for all terms. The other terms were

6This is done in §6.
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Figure 5.10: Spanwise correlation of wall-normal velocity fluctuation. left (tran-
sitional): z = 100, Re, = 36,400; right (turbulent): x = 300, Re, = 109, 200.

Successive curves are ofset by 1 in the vertical direction.

not significant in the truncated-domain simulations. The convection and pressure
transport terms are most active at the inflection point of the attenuation profile (see
Figure 5.3).

By location x ~ 30, the convection and pressure are much smaller than the
production term and from z = 50 on, the budgets for the two cases are very close.
In figure 5.12, we plot the TKE budget terms at + = 75, and x = 275. The
striking similarity between the cases indicates that despite an initial transient in the
truncated simulation, the dynamics of the TKE asymptotes to the same behavior
in all three cases.

In view of the discrepancies between the full- and truncated-domain simula-
tions discussed above, it is surprising to see good agreement in the skin friction

between the Truncated II case and the full-domain case that is observed in Figure
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Figure 5.11: Convection, Production and Pressure Transport of TKE; thin lines:

Full-domain case, thick lines: Truncated II case.

5.13. The fact that we were not able to match the FST levels in the two simulations
perfectly (cf. Figure 5.4) further suggests that the agreement is likely to be coin-
cidental. Moreover, there is no a prior: reason to choose one attennuation profile
over the other, and Figure 5.13 shows that the onset of transition is sensitive to
the choice of attenuation profile. In addition, in our simulations the inlet into the
truncated-domains was arbitrarily placed at x = 15. It is conceivable that shift-
ing this location could significantly change the evolution of the streamwise streaks

which, in turn, would shift the transition onset.
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5.5 Conclusions

In the present study we compared DNS of boundary layer bypass transition
performed in a truncated domain with a simulation that includes the flat plate
leading edge modeled as a super-ellipse. The results of the full-domain simulation
indicate that at the streamwise location corresponding to the inflow boundary of
the truncated-domain simulations, the boundary layer already contains streaks of
streamwise velocity. We also noted a higher linear-like growth of (u'u’) inside the
boundary layer in the full-domain simulations in the region x ~ 25 — 75, which

results in an overshoot of the levels found in turbulent boundary layers. The pres-
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ence of streaks implies that the current inflow condition for the truncated-domain
simulations is unphysical, since the streaks appear to be a necessary feature of tran-
sition (Jacobs & Durbin 2001; Brandt, Schlatter & Henningson 2004). This suggests
that for accurate prediction of transition onset, truncated simulations of the type
presented in this study are inadequate because they cannot ensure the correct evo-
lution of streamwse streaks. An alternative approach to inflow specification for the
truncated-domain simulations would be to use a theoretical model that acccounts for
the interaction of free-stream disturbance with the wall and the upstream evolution
of the disturbance signature inside the boundary layer (Choudhari, 1996, Leib et al.,
1999). Predictions from such models were shown to provide encouraging agreement
with the measured boundary-layer data for lower levels of FST (Leib et al. 1999).
Future investigations will show whether this approach, with proper calibration, can
provide accurate inflow conditions for numerical simulations of bypass transition.
Finally, given the similarity among the low fields and TKE budgets for the
three simulations described, it appears that truncated domain simulations provide a
cost-effective approach if the aim is to understand the physical mechanisms under-

lying transtion and not to seek quantitative predictions of the transitional region.
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Preface to Chapter 6

In Chapters 4 and 5, we demonstrated the sensitivity of the transition location
to the FST environment. We also concluded that synthetic inflow conditions applied
on truncated domains contain ad hoc parameters that impact the onset of transition.
One obvious solution is to include the leading edge in the simulated domain, so that
the FST environment develops naturally along the flat plate.

In the following article, ” Numerical simulations of boundary-layer bypass tran-

” we perform one such simula-

sition due to high-amplitude free- stream turbulence,’
tion in an attempt to match the ERCOFTAC T3B experiment on boundary-layer
transition due to 6% FST. This simulation is unique in that it is the first to compute
the flow around the flat-plate leading edge, and also to match the decay and length
scale of the external disturbance environment. Good agreement with experiment
gives weight to our investigation of the physics.

Two additional transition simulations, performed with a smaller FST length
scale, are included in our analysis. In one, only the top half of the superellipse is
simulated (as in Chapter 5), and in the other, the entire superellipse. It is found
that the symmetry condition inherent in the first formulation attenuates turbulence
near the leading edge of the plate. The boundary layer is more receptive to the FST

at the lower length scale, and thus the symmetry condition results in lower levels of

disturbance inside the boundary layer. For this reason, the symmetry condition is
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not permissible at low FST length scales. At much higher FST length scales (as in
the T3B ERCOFTAC case), however, the boundary-layer receptivity to FST is low,

and the symmetry condition is unlikely to have a significant effect.
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Chapter 6
Numerical simulations of boundary-layer bypass transition due to high-

amplitude free- stream turbulence’

6.1 Abstract

Direct numerical simulations (DNS) of bypass transition in the flat-plate bound-
ary layer induced by high-amplitude free-stream turbulence (FST) are carried out.
The computational domains employed begin upstream of the flat-plate leading edge
and extend into the fully-turbulent region inside the boundary layer. In one of the
simulations performed, the boundary conditions are chosen to match the ERCOF-
TAC benchmark case T3B. The evolution of mean velocity and Reynolds stress
statistics is in good agreement with experimental data. In the other simulations,
the length scale and intensity of the oncoming FST are varied to determine the
effects on the onset and mechanism of transition. An examination of boundary-
layer disturbance amplification suggests that the boundary-layer sensitivity to FST
near the leading edge is reduced when the FST length scale is much larger than

the leading edge radius and the boundary-layer thickness in the leading edge region.

!Submitted as OvVCHINNIKOV, V.O., CHOUDHARI, M.M. & PIOMELLI, U., Numerical simu-
lations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J Fluid

Mech. Submitted for publication.



We have examined the evolution of boundary-layer disturbances in the transitional
region and followed the birth and growth of turbulent spots in two cases, one with a
much higher FST length scale than the other. We found that elongated streamwise
streaky structures were present inside the transitional regions in both cases. How-
ever, turbulent spot formation due to a streak instability was observed only in the
case of lower length scale. The instability appeared to be of the varicose (symmet-
ric) type and the resulting turbulent spot did not have an arrow-head shape. For
the case with a higher length scale, turbulent spots formed upstream of the region
where streaks could be detected. T'wo of the four spots examined had a well-defined
arrowhead shape. The differences in the transition scenarios can be explained by a

lower receptivity to FST at the leading edge.

6.2 Introduction

In many wall-bounded flows of engineering interest, it is desirable to delay
the onset of laminar-turbulent transition. In aerospace applications, it may be
advantageous to maintain laminar flow over a major portion of an airfoil to reduce
drag. In turbine design, preventing/delaying transition would result in substantial
increase in energy efficiency. Transition to turbulence has therefore been the focus
of extensive research in the past century.

Traditionally, the study of transition in a boundary layer has been approached

from the point of view of linear stability. In 1880, Lord Rayleigh derived the in-
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viscid disturbance equations linearized around a mean flow. Later Orr (1907) and
Sommerfeld (1908) included the effects of viscosity and, assuming a harmonic form
for the disturbance, independently derived the Orr-Sommerfeld equation. The first
solutions for a flat-plate boundary layer were obtained by Tollmien (1929) and Sch-
lighting (1933) in the form of exponentially growing (TS) waves. Their existence
was verified experimentally by Schubauer & Skramstad (1947). When TS wave
amplitude exceeds 1% of the free-stream velocity, the perturbed boundary layer de-
velops secondary 3D instabilities. Klebanoff, Tidstrom & Sargent (1962) observed
regions of high and low disturbance velocity, “peaks and valleys,” alternating in the
spanwise direction. The spanwise wavelength of this pattern was the same as that
of the TS wave. This transition scenario has been denoted K-type, or fundamental.
The later nonlinear stages of transition are characterized by lambda vortices aligned
in the flow direction. Kachanov, Kozlov & Levchenko (1977) observed a similar pat-
tern but with the spanwise scale twice that of the TS wave. In this case, the lambda
vortices had a staggered arrangement. This transition scenario is known as H-type,
N-type, or subharmonic.

Because T'S waves grow on a viscous time scale, they attain amplitudes that
are sufficiently high for instability at Reynolds numbers on the order of 10°. In many
flows with an external disturbance environment, however, transition is observed at
Reynolds numbers on the order of 10° and does not involve the TS mechanism.
The term “bypass transition” (Morkovin, 1969) has been used to describe various

transition cases in which T'S waves are bypassed. The case of boundary-layer bypass
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transition due to the effects of free-stream turbulence (FST), has received particular

attention by experimental, theortical, and, more recently, computational scientists.

6.2.1 Experimental work on transition due to FST

Klebanoff (1971) observed that the Blasius boundary layer developes low-
frequency unsteady undulations of the streamwise velocity. The amplitude of the
peak response increased in proportion to the FST amplitude, and grew larger in
proportion with the boundary-layer thickness. Arnal & Juillen (1978) found no
evidence of TS waves in the transition process, and observed that the peak of the
low-frequency disturbance energy is located in the middle of the boundary layer.
Kendall (1985) observed long streamwise streaks with small spanwise scales, which
he called Klebanoff modes. He also confirmed the finding of Klebanoff (1971) that
the disturbance u,,s grows in proportion to the boundary-layer thickness. Westin et
al. (1994) reported that the mean velocity profile is only slightly modified, despite
boundary-layer u.ys levels of 10% of the free-stream velocity. They also confirm a
linear dependence of the boundary-layer wu,,s on the layer thickness. Comparing
with other experiments, they note that the constant of proportionality may be vari-
able. Matsubara & Alfredsson (2001) review several experiments performed at the
Royal Institute of Technology in Stockholm (KTH). They find that the spanwise
spacing of streaks increases with the FST level, and also slightly increases with the

downstream distance. Towards the end of the transition zone, it is approximately

215



equal to the boundary-layer thickness. These authors suggested that the spanwise
scale selection occurs within the boundary layer. In a later publication, however,
Fransson & Alfredsson (2003) conclude that the selection process is more complex
and is influenced by the F'ST scale, among other effects.

Matsubara & Alfredsson (2001) confirmed that the transitional boundary-layer
Urms Peak is located approximately in the middle of the layer and showed that the
length of streaks increases in proportion to the layer thickness. From their flow vi-
sualization studies, the authors concluded that the appearance of “turbulent spots”
(Emmons, 1951) — patches of irregular fluid motion surrounded by quasi-laminar
flow that appear in the last stages of transition — may be due to secondary instabil-
ities of the streaks. Recently, Fransson, Matsubara & Alfredsson (2005) performed
additional experiments using a wide range of FST intensities and length scales and
made several important contributions. First, there is an initial region near the lead-
ing edge where the disturbance grows more slowly than farther downstream, i.e. the
receptivity process requires a certain distance. Second, the disturbance energy in-
creases in proportion to the FST energy and the flat-plate Reynolds number. Third,
the transition Reynolds number is inversely proportional to the FST energy. Finally,
the extent of the transition zone increases in proportion to the flat-plate Reynolds
number. These findings should be confirmed in future experiments and numerical
simulations. Although Fransson et al. (2005) vary the FST length scale in a con-
trolled manner, they do not sort their data based on the length scale. Thus, the

effect of the FST length scale is not addressed in their work. Jonas, Mazur & Uruba
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(2001) study the effect of the FST dissipation length scale on the onset of transition
at the FST intensity of 3%. Based on their measurements of the intermittency, they
find that the onset of transition is moved upstream with increasing length scale,
and that the transition region becomes longer. Further, quantitative studies of the
effect of the FST length scales are needed, especially because, together with other
factors, such as leading-edge geometry, they may explain some of the discrepancies

in the experiments performed to date.

6.2.2 Theoretical work

Several approaches have been taken to understand the physics of bypass tran-
sition from a theoretical point of view. Ellingsen & Palm (1975) proposed a linear
mechanism for the inviscid evolution of an initial disturbance in the presence of a
mean shear. Due to the non-orthogonality of the linearized incompressible Navier-
Stokes (NS) operator, an initial disturbance may undergo an initial “transient”
growth before exponential decay. In particular, the streamwise disturbance compo-
nent may grow linearly in time, evolving into a streak (i.e. a streamwise elongated
region of positive or negative u-velocity fluctuation). A similar mechanism due to
Moffat was also referenced by Philips (1969). Landahl (1980) provided a physical
explanation for this phenomenon, known as the “lift-up” effect. Pairs of counterro-
tating vortices are able to lift low-momentum fluid into the upper boundary-layer,

producing a streak of negative velocity. Transient growth theory has been used with
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some success in several wall-bounded flows. Butler & Farrel (1992) found optimal
perturbations (i.e. those that produce the highest level of disturbance at a reference
downstream location) for plane channel, Couette, and parallel boundary-layer flow.
Andersson, Breggen & Henningson (1999) and Luchini (2000) used optimization
techniques to find optimal disturbances for a Blasius boundary layer. The optimal
initial disturbance was found to be a pair of counterrotating vortices and the down-
stream perturbation was a streaky structure with a spanwise scale of 1.4 times the
boundary-layer thickness. Good agreement was found between the boundary-layer
disturbance cross-stream profile and u,m,s data of Westin et al. (1994). Since tran-
sient growth theory is linear, it can only describe the initial transition stages, and
not its later development. A theoretical study of streak breakdown as part of a
self-sustaining cycle can be found, for example, in Waleffe (1997). Andersson et al.
(2001) used Floquet theory to investigate secondary instabilities of the optimal final
disturbance from Andersson et al. (1999). These authors found critical streak am-
plitudes for the sinuous and varicose instabilities to be 26% and 37%, respectively.
A different approach was used by Choudhari (1996), who used the linearized un-
steady boundary layer equations (LUBLE) to examine the boundary layer response
near the plate leading edge to small-amplitude convected vortical perturbations in
the free stream. The forced response clearly showed gradual intensification of the
streamwise velocity perturbation within the boundary layer, analogous to the mea-
surements of Kendall (1985). A thorough analytical study by Leib, Wundrow &
Goldstein (1999) showed that the FST interaction with the boundary layer doen-
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stream of the LUBLE region was governed by linear boundary region equations.
The results indicate the importance of the cross-stream velocity components in trig-
gering streamwise streaks. Their predictions provide encouraging agreement with
measured boundary-layer data for lower levels of FST. Bertolotti (1997) had used
the parabolic stability equations (PSE) to study the response of the boundary layer
away from the leading edge to vortical modes in the free stream. Although his ini-
tial profiles did not account for the upstream interaction between the free-stream
disturbance and the plate leading edge, the results showed that low frequency sta-
tionary modes produce disturbance profiles that are in good agreement with the

experiments.

6.2.3 Computational work

Large-Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of
transition in boundary layers have been slow to come due to the large computa-
tional requirements involved. Not only must the boundary layer resolution be suf-
ficiently fine to ensure accurate disturbance evolution, but the streamwise domain
size must be large enough to capture all stages of the boundary-layer development.
The first DNS of boundary-layer transition due to FST in a spatial formulation
was performed by Rai & Moin (1993), who used a fifth-order upwind biased finite-
difference, fractional-step, compressible NS solver to model the experiments of Blair

(1983). The disturbance was generated to match the von Kérman energy spectrum
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with a prescribed intensity and length scale. The predicted location of transition
onset showed reasonable agreement with the experimental data, but the skin fric-
tion development farther downstream was compromised because of under-resolution.
Their work indicates that the resolution needed to simulate a transitional flow is as
high as that for a turbulent boundary layer.

Voke & Yang (1995) used a finite volume conservative method to perform LES
of boundary-layer transition, in an attempt to reproduce the experiments of Roach
& Brierlay (1992). Although their simulations were severely under-resolved and
the FST properties were not matched to the experiment, they were able to provide
qualitative insights into the transition mechanism. The interaction of the wall-
normal FST component with the mean shear was proposed to be the key mechanism
for the production of Reynolds shear stress, which, together with the mean shear,
drove the production of the streamwise Reynolds stress.

A properly resolved DNS of FST-induced transition was performed by Jacobs
& Durbin (2001). Following Grosch & Salwen (1978), these authors expanded the
FST in the eigenfunctions of the linear Orr-Sommerfeld operator to provide a some-
what realistic inflow condition without simulating flow around the leading edge.
With fine, turbulent-like resolution in the entire boundary layer, they obtained very
good agreement with the T3A experiment of Roach & Brierlay (1992) at 3% FST in-
tensity. Klebanoff modes were found to be a prominent feature of their simulations,
and were generated nonlinearly by the penetration of the FST into the boundary

layer. The spanwise streak spacing was in agreement with the optimal results of

220



Andersson et al. (1999). No evidence of streak instability was reported in their
work. Instead, low-speed streaks provide a receptivity path between the FST and
the boundary layer, but are otherwise irrelevant to transition. The onset of transi-
tion was attributed to the direct penetration of the free-stream disturbance into the
perturbed laminar boundary layer.

Brandt, Schlatter & Henningson (2004) performed DNS of boundary-layer
transition due to FST with variable length scale and intensity. They used the dis-
turbance generation method in Jacobs & Durbin (2001) but also included the Squire
modes for the wall-normal vorticity. They found that for a given FST intensity of
4.7%, increasing the FST length scale moves the onset of transition upstream. The
spanwise scale of streaks did not vary appreciably with the FST length scale. Many
aspects of their simulations are in qualitative agreement with the experiments of
Matsubara & Alfredsson (2001). Using flow visualizations, Brandt et al. (2004)
conclude that streak breakdown and turbulent spot formation is caused by one of
two instability modes of low speed streaks. The sinuous mode, characterized by
streak oscillations in the spanwise direction, was observed more frequently than the
varicose mode, which was due to streak oscillation in the wall-normal direction. The
authors note that the transition mechanism due to streak instability may resemble
the behaviour of streaks in turbulent boundary layers. Ovchinnikov, Piomelli &
Choudhari (2004) used DNS to study the effect of inflow parameters on the onset
of transition. They confirmed the finding of Brandt et al. (2004) on the effect of
the FST length scale and also showed that by manipulating the FST spectrum one
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can significantly change the location of transition onset. They also suggest that
including the leading edge of the plate may be necessary for accurate transition

prediction.

6.2.4 Aim of the current work

In this study we perform the first high-resolution DNS of boundary layer tran-
sition due to high-amplitude FST, in which we compute the flow around the plate
leading edge, and impose a FST length scale that matches the T3B experiment of
Roach & Brierlay (1992). Our hope is to approximate the experiment with sufficient
fidelity, such that the simulation database can be used to examine the underlying
transition physics as well as to guide the development of physics based engineering
prediction methods. Two additional simulations are performed with a smaller FST
length scale in order to examine the effects of length scale variation on the transition

mechanism.

6.3 Problem Formulation

We use the incompressible Navier-Stokes (NS) equations to perform DNS of

boundary layer transition due to FST. The equations of continuity and momentum

Ou;
8.7)]'
ou; 0 _ 1op
ot * 0z (1) = p 0x;

=0, (6.1)

+ vV2u; + f;, (6.2)
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are discretized using a second-order accurate finite-difference method on a staggered
Cartesian grid. The method fully conserves mass, momentum and kinetic energy
in the discrete sense (see Morinishi et al., 1998). The presence of the body forces
fi is due to the immersed-boundary method, described at the end of this section.
The coordinates z, y and z refer, respectively, to the streamwise, wall-normal, and
spanwise directions. The velocity components in these directions are, respectively, u,
v and w. All grids used are uniform in the spanwise direction y, and stretched in the
streamwise and wall-normal directions to allow accurate resolution of boundary layer
disturbances, particularly in the transitional region. The equations are integrated in
time using an explicit fractional time-step method (Chorin 1968, Kim & Moin 1985),
in which the convective and diffusive terms are advanced in time using the second-
order accurate Adams-Bashforth method. The Poisson equation for the modified
pressure is solved, and the modified pressure gradient is used to make the velocity
field divergence-free.

The algorithm was parallelized using the Message-passing interface (MPI).
The computational box is divided into n equal subdomains in the mean flow direc-
tion and each of the n processors integrates the equations of motion in one of the
subdomains. The modified pressure field is obtained by applying a spanwise Fast
Fourier Transform (FFT) to the discrete Poisson equation. This yields a pentadi-
agonal matrix for each Fourier mode, which is then inverted by a cyclic-reduction
algorithm. Each processor is assigned a subset of the Fourier modes resulting from

the application of the spanwise FFT. The code has been previously validated for
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a variety of turbulent (Balaras et al., 1995, Balaras et al., 2001), re-laminarizing
(Piomelli et al., 2000), and transitional (Ovchinnikov & Piomelli 2006) flows.

The governing equations were advanced in time until a statistically stationary
state was reached. Flow statistics were then accumulated for a time period required
for the mean flow to traverse the entire domain three times. Convergence of the
statistical sample was verified by comparing the statistics obtained using only half
of the sample with those obtained using the entire sample. First-order quantities

differed by less than 3%, second moments by less than 6%.

6.3.1 Simulation Parameters

Three DNS were performed in the current study. The two types of geometry
are illustrated in figure 6.1. In one case, we computed the flow around the entire
leading edge, and in the other two we only simulated the top half of the domain and
assumed that the flow was symmetric about the mid-plane of the plate.

The primary goal of the current investigation was to study the mechanism of
bypass transition in a realistic environment. Thus, the configuration of the main
simulation was chosen to approximate the wind tunnel experiment T3B by Roach &
Brierlay (1992), conducted at the FST amplitude of 6% of the free-stream velocity
(as measured near the leading edge). This simulation also served as a validation
case for the other simulations.

The available experimental data includes the evolution of the FST intensity
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Is; —— Case [; o T3B experiment of Roach & Brierlay (1992).

with the streamwise distance, but not its integral length scale, defined as

L11 = / Mdr,
0

(6.3)
u!(z)u'(x)
(where u' denotes the free-stream velocity fluctuation, and the brackets, the long-

time average). The energy dissipation length scale, defined as

k3/2

Ly=——"
F T Usdk/da’

(6.4)

where k£ denotes the turbulent kinetic energy, can be computed directly from the
streamwise FST evolution. According to this definition, the smaller the turbulence
decay rate, the larger the associated length scale value, consistent with the conven-
tional (spatial) understanding of the length scale. For the T3B experimental data,
assuming isotropy of the FST, we found L, = 25R at the leading edge location.
To model the measured FST decay in the experiment, we chose L;; = 14R; this
condition also ensures that Ly = 25R as derived from the experimental data. From
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this point on, we will refer to the calculation with L;; = 14 as the T3B simula-
tion. For the other two simulations performed in this study (cases I and Is), the
FST Li; value was set to 2.3, which is similar to the values used in other numerical
investigations of FST-induced bypass transition (Jacobs & Durbin 2001; Brandt &
Henningson 2004). The corresponding value for the dissipation length scale was 3R.
The evolution of the FST intensity for the experiment and simulations is shown in
figure 6.2.

The leading edge of the experimental test section was asymmetrical with a
circular tip of radius 0.75 mm. The Reynolds number based on the average free-
stream velocity of 9.4 m/s, and the LE radius was 470. In our simulations, we used
a symmetrical superellipse with an aspect ratio (AR) of 6 to model the leading edge

of the plate. The geometry for the superellipse used in our study is given by:

(1_L£)4+£2:1- (6.5)
ARR R

In all of our simulations, the Reynolds number based on the free-stream velocity
and the minor half-axis of the superellipse (equivalently, the plate half-thickness, or
the LE radius) was fixed at 475. Unless stated otherwise, all quantities presented
in this study are normalized with the free-stream velocity (Us) and the LE radius
(R). The above geometry was motivated by the availability of 2D numerical data
for flow validation, and the assumption that this difference in geometry would not
be significant because the estimated length scale of the FST was much larger than

the LE radius. We note that the symmetry of the LE leads to a suction peak (see
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figure 6.3) that was probably absent in the reference experiment. However, the
experimental configuration cannot be reproduced exactly because the test section
had a flap attached to the end, which cannot be simulated easily. Some discussion of
leading-edge-geometry effects can be found in Klingmann et al. (1993) and Fransson
(2004).

The Cartesian computational grid does not conform to the body of the superel-
liptical leading edge. To satisfy the no-slip boundary conditions on the superellipse
surface, we employ the immersed boundary method of Fadlun, Verzicco, Orlandi &
Mohd-Yusof (2000), following the implementation of Balaras (2004). In this pro-
cedure, the body forces, f;, are non-zero only in grid-cells nearest to the cylinder
surface, and are assigned in such a way that the velocity on the cylinder surface
is zero to second-order accuracy. When the predicted velocity is projected onto a
divergence-free field, the velocity perturbations that are introduced in the vicinity
of the cylinder are small (Fadlun et al. 2000), so that the corrected velocity is also
second-order-accurate around the plate. Finally, we note that in the case of explicit
time advancement, calculating and including a force field in the momentum equa-
tions is equivalent to modifying the predicted velocities near the solid surface. The
immersed boundary method, as described above, has been extensively validated in
laminar and turbulent flows in the references mentioned.

To ensure that the immersed-boundary representation of the superelliptical
leading edge was accurate, we performed a two-dimensional simulation of the mean

flow past a superellipse with AR = 6, described by equation (6.5). The computa-
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Figure 6.3: Comparison of surface properties for a 2D flow over a superellipse; (a)
Pressure coefficient, C,; (b) Pressure gradient with respect to arc length, dp/ds; (c)
Wall vorticity, w,; —— current immersed boundary simulation, --- simulation by

Collis & Lele (1996), — — simulation by Lin (1992).
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tional domain (similar to the one in figure 6.1 (a)) extended over 25 and 16 units
in x and y directions, respectively, and was resolved with 1075 and 300 cells in
the respective directions. The lengths are normalized by the ellipse minor half-axis
(i.e. plate half-thickness), and the Reynolds number based on this length scale was
2,400. This geometry was chosen to match the calculations of Lin (1992) and Collis
& Lele (1996), who used NS solvers on curvilinear grids. Comparisons of the pres-
sure coefficient, C, = 2 (p — peo) /pUZ, along the surface of the ellipse, the pressure
gradient with respect to arc length, dp/ds, and the surface vorticity, w,, are shown
in Figure 6.3. The overall agreement is good.

The calculations performed in this study required substantial computational
resources. Since the boundary-layer transition is caused by the free-stream envi-
ronment, reproducing its properties to the best of ability is crucial for a proper
comparison with experiments. Matching the FST intensity, length scale, and degree
of isotropy, are the minimum requirements. Whereas generating nearly isotropic
FST with a prescribed intensity is fairly easy, setting a large enough FST length
scale may not be affordable in a computation. While the size of the smallest scales
to be resolved is the same for cases I and T3B, since it depends only on the flow
Reynolds number, the largest scales of the flow to be captured, which are propor-
tional to the FST integral length scale, L;;, are approximately six times larger for
the T3B case. Furthermore, because our simulations are spatially-developing, the
streamwise domain must be large enough to capture the entire boundary-layer de-

velopment, from the inception, through the transition, and into the fully-turbulent
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regime. Additionally, near the leading edge of the plate, especially fine resolution is
needed to ensure the accuracy of the immersed boundary method.

To decrease the overall cost of computation, each computational domain was
split along the streamwise direction into two overlapping blocks. The first box con-
tained the flat-plate superellipse, and had very fine resolution near the plate leading
edge. A short distance downstream, where the boundary layer was thicker, the wall-
normal resolution requirement could be relaxed. At this location, a time-sequence
of planes of velocity was stored and used as the inflow condition for a second compu-
tational domain that had fewer points in the wall-normal direction, but maintained
the fine streamwise resolution required to resolve the transition zone. The multi-
block approach has been successfully used by researchers in the past (Huai, Joslin &
Piomelli, 1997). However, strictly speaking, it violates the ellipticity of the incom-
pressible NS equations (the pressure in the two blocks is independent). The errors
due to the multi-block splitting were estimated by Ovchinnikov et.al (2005), who
simulated boundary layer bypass transition due to a cylinder wake, and found to be
insignificant. The immersed boundary representation of the superellipse was only
necessary in the first block of each simulation. The second box was constructed so
that its bottom boundary coincides with the surface of the plate of the upstream
box.

Even with the multi-block aproach, computing the flow around the entire
superelliptical body turned out to be prohibitive for the T3B case: the calculation

would require more than 200 million points. This high cost was primarily due to
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the need for a domain that is large enough to accomodate the FST integral scales,
yet resolved finely enough to capture the smallest boundary-layer scales. Thus,
we chose to make the additional approximation that the mid-plane of the plate
can be represented as a plane of symmetry. The symmetry assumption halves the
computational cost in the first block, reducing the overall cost to 150 million points,
but, as described later, has the consequence of attenuating turbulence upstream of
the plate in the vicinity of the plate mid-plane. Since the symmetry condition does
not allow transpiration (v = 0), at the boundary v' = 0. This directly reduces v
levels near the symmetry plane and also indirectly inhibits the v’ and w’ components.
This can reduce the effective amplitude of the FST interacting with the leading edge
and hence may also affect the transition onset location. To estimate the errors due
to the symmetry assumption, we repeated the simulation with the smaller FST
length scale, Li; = 2.3 without invoking the symmetry assumption in the first block
(the low FST length scale makes the full-domain simulation affordable). The two
simulations with and without the symmetry condition are henceforth referred to as
cases Is and I, respectively. The results of this investigation are presented in §6.4.1.

The simulation parameters are summarized in Table 6.1.

6.3.2 Boundary Conditions

The following boundary conditions were applied:

1. The inlet velocities are imposed by adding a zero-mean perturbation field to
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Largest grid
Case Ly L,xL,xL, nzXnyXnz size at wall

+ + +
Azt x Aywa”,maw x Az

Block 1 38%x62x%x23 288 %444 %192 9.5x0.6x3.5

1 2.3
Block 11 538%x30x23 1472x160x192 12x0.7%x3.6
Block 1 38x31x23 288%222x%192 10x0.6x3.5

Is 2.3
Block II 538%x30x23 1472x160x192 12x0.7%x3.8
Block 1 120Xx67x67 608%x240x512 10x0.8%x4.0

T3B 14
Block 11 330x66x67 882x170x512 10x0.8x3.5

Table 6.1: Simulation parameters.
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the uniform mean flow U = (U, 0,0). The disturbance was generated using
the algorithm due to Rogallo (1981) as described by Jacobs & Durbin (2001),
but with Fourier modes, instead of Orr-Sommerfeld modes. The disturbance
field has the model spectrum due to von Karman, and is designed to be ho-
mogeneous, isotropic, and divergence-free to avoid large pressure fluctuations
near the inflow plane. For all three cases, the FST amplitude in the vicin-

ity of the leading edge was around 6% of U,,; the three velocity r.m.s. values

were within 10% of T'u, which was defined as (y/(u'v/)++/(v'v") +/(w'w')) /3.
The brackets denote Reynolds averaging, and the prime, a fluctuation from the

mean. Further details on the inflow generation can be found in Ovchinnikov

et al.(2004).

2. The interface condition between the first and second blocks was obtained by
interpolating velocities from the first box onto the wall-normal grid of the
second box as mentioned above. The plane from which velocity data were
extracted was located at x = 15 for cases Is and I, and z = 20 for case T3B.

All streamwise distances are quoted relative to the leading edge of the plate.

3. At the outlet of each computational block, a convective outflow boundary
condition was applied to each velocity component (Orlanski 1976). Simulation
results in the last 10-15% of each block were discarded in order to eliminate

the effects of proximity to the outflow boundary.

4. In the spanwise direction, z, periodic conditions were used.
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5. The no slip condition was imposed along the plate surface, whereas a symmetry
condition was used upstream of the plate leading edge within the first block

of cases Is and T3B.

6. Along the free-stream boundary of the first block of each simulation, we im-
posed slip-wall conditions, and at the free-stream boundary of the second
block, we applied du/dy = 0, v = d§*/dz, w = 0, where ¢* is the displace-
ment thickness computed for the Blasius velocity profile at each location. The
boundary condition on the v-component provides the the correct mass flux
through the top wall to account for the Blasius boundary-layer growth in the
zero-pressure-gradient regime. It becomes less accurate in the transitional and
turbulent boundary-layer regions, but does not result in significant free-stream

acceleration.

The top (free slip) boundary condition in the first block does not allow flow normal
to the boundary, causing the fluid above the boundary layer to accelerate in order to
compensate for the boundary-layer growth. This approximation produces a slightly
fuller velocity profile in the first computational block, but should not affect transi-
tion. The boundary layer is still fully laminar at the outflow of the first block, and
in the second block, the velocity approaches the Blasius solution upstream of the
transitional region. In the second block it was more important to provide outflow
through the top to minimize the free-stream acceleration above the transitional re-

gion. In all three simulations, the acceleration coefficient, K = — (v/U2) (dU /dx)
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was of the order of 107 for both blocks. The value of K at which a turbulent
boundary layer is expected to re-laminarize is around 3.0 x 107% (Spalart 1986).
Since the value of K in our case is an order of magnitude lower, we do not expect

the acceleration to have an appreciable effect on the onset of transition.

6.3.3 Grid requirements

The computations carried out in this work required long integration times.
A typical simulation required a month of clock time on an 8-processor Beowulf
cluster (6000 CPU-hours). We were thus unable to perform a grid-refinement study.
Ovchinnikov et al. (2004), however, performed calculations of bypass transition in
a configuration similar to the one studied here (their calculations did not include
the leading edge and were therefore much less computationally demanding). They
observe that inadequate streamwise resolution in the transition region may lead
to a premature and abrupt transition, probably because energy is aliased into the
unstable scales due to under-predicted dissipation. They obtained grid-converged
results with the grid spacings, in wall units (i.e., normalized by the friction velocity
u, and the viscosity v) of Awt ~7—12, Ayl ., =~ 1 and Azt ~ 25— 3. We
used similar values in our calculations, as reported in Table 6.1. Note that these
spacings are typical of turbulent flow calculations, and are smaller than those used
by Jacobs & Durbin (2001) and Rai & Moin (1993) in their simulations of bypass

transition.
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To ensure that the computational domains were sufficiently large in the span-
wise direction, we computed spanwise correlations of the velocity. The u-velocity
correlations are shown in figure 6.14 in §6.4.5. For the simulations with L;; = 2.3,
the correlation functions approach the zero line well within the computational do-
main. For the T3B case, the spanwise domain size is smaller than optimal, but
sufficient: an additional simulation preformed on a domain that was twice as large
in the spanwise and wall-normal directions, but without the flat plate (hence without
the stringent grid requirement), showed that the FST decay rate was unchanged.
Therefore, we were confident that the external free-stream environment was ade-

quately captured.

6.4 Results

We begin by examining cases I and Is to evaluate the effects of the symmetry
condition on the transition mechanism and onset location. We find that at this value
of the FST integral length scale, there are no qualitative differences in the transition
mechanism between the two cases. The influence of the symmetry assumption is to
reduce the near-wall FST intensity in the vicinity of the leading edge, producing a
downstream shift in the transition onset. The essential transition physics remain the
same. Examining the disturbance amplification inside the boundary-layer for case
T3B, we conclude furthermore that for the choice of the larger FST length scale, the

symmetry assumption should cause much smaller differences in the transtion onset.
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Figure 6.4: Evolution of the skin friction coeficient, C'y. —— Case T3B; --- Case
Is; —— Case I; o T3B experiment of Roach & Brierlay (1992); —--— Blasius Cf;

-------- Turbulent C;.

Thus, the T3B simulation performed with a symmetry plane in the first block should
capture the transition physics both qualitatively and quantitatively. We compare
the transition mechanisms between cases I and T3B, and conclude the section with

a visual analysis of the transitional flow fields.

6.4.1 The effect of symmetry condition

Cases I & Is were chosen to be identical except for the geometry of the first
block. In case I we compute the flow around the entire superellipse and in case Is
we only model the top half, using a symmetry condition at y = 0 upstream of the

plate. The two domains were shown in figure 6.1.
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Time-averaged quantities are defined as

PG =17 [ [ twwznie (6.6)

The skin friction coefficient

.
Cp=—2
T pUz /2

(6.7)

(where 7, is the time-averaged wall stress), is an indicator of transition onset since it
increases markedly across the laminar-turbulent shift. Its streamwise development
is shown in figure 6.4.

The initial mismatch between the Blasius C'y and the simulation data is due
to (i) the fact that Blasius similarity is invalid close to the leading edge, (ii) an
uncertainty in the virtual origin of the boundary layer (in the figures, the start of
the boundary layer, i.e. the location z = 0, is taken to be the tip of the superellipse)
and (iii) the imposition of the free-slip boundary condition at the top wall of the
first block of each simulation.

The C} evolution shows that the onset of transition occurs at widely different
locations, at z = 100, (Re; = 50,000) for case Is, and at =z = 70, (Re, = 35, 000)
for case I. Even though the FST intensity (figure 6.2) evolves identically for the two
cases, the Reynolds stress magnitudes at the boundary-layer edge are different. In
figure 6.5(a) we plot the profiles of the TKE at several streamwise locations, and in
6.5(b), profiles of the streamwise Reynolds stress, (uu), at the same locations. The
short horizontal lines indicate the local boundary layer thickness, dg9. Figure 6.5(a)
shows that below y = 5, the TKE is lower for case Is, and at the edge of the laminar
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Figure 6.5: Profiles of (a) the TKE, and (b) streamwise Reynolds stress, (uu). From
left to right, the plots correspond to x = 3; 5; 10; 20; 75; 250; Re, = 1,422; 2, 370;
4,740; 9,480; 35, 550; 118, 500; —— Case T3B; --- Case Is; —-— Case I; The short

horizontal lines indicate the local boundary-layer thickness dg9 On the z-axis the

profiles are offset by 0.01.
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Figure 6.6: Contours of the streamwise velocity fluctuation inside the boundary

layer; (a) Case Is; (b) Case I; y = 0.04.

boundary layer, it is about 50% of the case I value. This difference arises from the
upstream development of the FST, which in case Is is inhibited by the symmetry
condition at the bottom wall. The symmetry condition does not allow flow normal
to the boundary, which reduces v,,,; in the vicinity of the boundary and indirectly
inhibits the other two FST intensities via the pressure strain redistribution term.
Figure 6.5(b) shows that the boundary layer for cases Is & I is very sensitive to
the free-stream level of the TKE. For x < 30, we see that the amplitude of the
boundary-layer (uu) peak for case Is is about 50% lower than for case I.

A qualitative comparison of cases Is and I is made in figure 6.6, which shows
instantaneous contours of the streamwise velocity fluctuation in the xz-plane located
aty = 0.04 (y/6* = 0.13 at Re, = 1x10*). Only the transtional part of the flow field
is shown for clarity. Higher-amplitude near-wall disturbance environment near the
leading edge is evident for case I, and the corresponding boundary layer appears more

disturbed throughout the domain, consistent with the more rapid transition onset
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indicated in figure 6.4. Aside from the differences in the overall perturbation levels,
the two flow fields are very similar. This suggests that the underlying transition
mechanism is the same in both instances. The following discussion also demonstrates
that this is the case.

At this FST length scale (Lj; = 2.3) and range of FST intensities, transition
appears to be accompanied by Klebanoff (1971) modes — long streaky structures
that precede turbulent flow. These modes are responsible for the peak in (uu),
located in the middle of the laminar boundary layer and growing in amplitude
through the onset of transition.

A closer examination of the near-wall profiles of u,, for cases I and Is, plotted
together with the experimental data from Matsubara & Alfredsson (2001), is shown
in figures 6.7(a, c¢) (the profiles corresponding to case T3B, as well as low-pass
filtered disturbances in figure 6.7(b), will be discussed later).

These authors performed experimental studies of FST-induced boundary-layer
transition for FST intensities between 1%-6% of the free-stream velocity. They ob-
served prominent streaks of the streamwise velocity preceding the fully-turbulent
front for all experimental cases. They also showed that the wall-normal s profiles
show approximate self-similarity in the transition region. When the wall-normal co-
ordinate is normalized by the boundary-layer displacement thickness, §*, the profiles
yield a peak around 1.3, corresponding to the center of the streak (Klebanoff mode).
As initially suggested by Klebanoff (1971), the expression ydU/dy provides a very
good approximation to the profile shape in the near-wall region. The good agree-
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Figure 6.7: Profiles of u,,,s across the boundary layer; §* is the local displacement
thickness; a) Case Is; b) Case Is, low-frequency modes only (using a sharp Fourier
cutoff filter); ¢) Case I; d) Case T3B; ez =4, Az =8 02 =12, x £ =15, -

=054, —— x=173; self-similar profiles from Matsubara & Alfredsson (2001)
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Figure 6.8: Evolution of the maximum streamwise Reynolds stress inside the bound-
ary layer; a) normalized by Uy; b) normalized by the TKE at the boundary-layer

edge Case T3B, --- Case Is, —— Case |

ment with the experimental data for cases I and Is indicates that in both instances,

the transition mechanism is the same and involves the Klebanoff modes.

6.4.2 Streamwise evolution of (uu)

Figures 6.8(a, b) show the evolution of the maximum streamwise Reynolds
stress, (uu), inside the boundary layer. In 6.8(b), the data are normalized using
the turbulent kinetic energy at the edge of the boundary layer. The agreement
between cases Is & I up to z ~ 30 in figure 6.8(b) suggests that for the fixed FST
length scale, Li; = 2.3, the initial streak amplitude is proportional to the turbulence
intensity at the boundary-layer edge. Brandt et al. (2004) report similar behaviour
in their simulations. Figure 6.8(a) also shows that for cases Is & I, after an initial
region of slower growth, the streamwise Reynolds stress increases linearly up to
locations x = 70 and z = 90, respectively. In figure 6.9(b), the evolution of the

disturbance energy in the low-frequency modes has the same behaviour (the low-
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Figure 6.9: a) Spectra of the streamwise velocity inside the boundary layer for Case
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frequency contribution was computed from the frequency spectrum of the streamwise
velocity). These results agree with the experimental findings of Fransson et al.
(2005), who also observed initial regions of slower growth of tu,,s before a linear
increase. They explain this phenomenon by a “receptivity distance,” i.e. a distance
needed for the adjustment of discrepant length scales in the free stream and the
boundary layer. It is also likely that this receptivity distance would increase with
the degree of scale mismatch, which suggests that the regions of linear disturbance
growth could vary for different simulations and experiments.

In figure 6.8(a) there is also a region of overshoot of the turbulent levels of
(uu) for 50 < x < 250. This is a known feature of boundary-layer bypass transition
(see, for example, figure 2d in Matsubara & Alfredsson 2001), and may be due to
the streaks reaching supercritical amplitudes before turbulent breakdown.

To determine whether the growth of s shown in figure 6.8 for cases Is & I is
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localized to a particular band of frequencies, we computed spectra of the streamwise
velocity at various locations within the computational domains. In figure 6.9(a) we
show a region of the u-velocity spectrum for case Is corresponding to F' < 20 at the
stations x =16, 46, 112, and 150. The wall-normal location at which the spectra
are calculated corresponds to the maximum boundary-layer u,ms. This position is
approximately in the middle of the transitional boundary-layer, but moves close to
the wall at the onset of turbulence, as can be seen from figure 6.5(b). The spectral
power is plotted versus the nondimensional frequency F = 10%wv/UZ%. The figure
indicates the energy in the low-frequency modes, for which F' < 20, grows steadily up
to approximately x ~ 120 (as also indicated in figure 6.8). The subsequent decay of
the low-freqency energy and a marked increase in high-frequency energy (not shown)
are due to the breakdown to turbulence. Figure 6.9(b) shows the evolution of the
energy in the first two discrete modes, F' < 15 and figure 6.7(b) shows profiles of
the square root of the same energy across the boundary layer. Comparison of this
figure with 6.7 (a), in which the square root of the energy in all the modes (i.e. ;)
is plotted, shows that the increase in the boundary-layer u,,,, for case Is is due to
the energy growth in low frequencies.

In the above discussion we have examined several essential features of transi-
tion for cases I and Is. It is dominated by the evolution of Klebanoff modes under
the influence of FST. Several characteristics of Klebanoff modes that have been
found in experiments are confirmed in our simulations. We also concluded that

the symmetry approximation employed in the first block of case Is does not affect
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transition physics. Its effect is to delay the onset of transition through the atten-
uation of FST amplitudes near the leading edge. Specifically, the reasons for the
more rapid onset of transition for case I are probably (i) that the higher external
FST intensity creates higher-amplitude boundary-layer disturbances, which reach
critical amplitudes farther upstream, and (ii) that the higher external FST intensity
induces an earlier breakdown of these disturbances. The first statement is supported
in figure 6.8(b), and the second in(a), which shows that the maximum level of wys
is lower for case I than case Is. Evidence for a causal relationship between streak
breakdown and the onset of transition for case Is will be given in §6.4.6, in which
we present flow visualizations. Assuming that the above discussion also holds for
the T3B case (which corresponds to a larger value of Ly;), a possible effect of the
symmetry condition on the T3B simulation results would be an analogous down-
stream shift in the onset of transition via the attenuation of the turbulence levels
near the leading edge. However, while the change in the FST intensity near the
boundary-layer edge resulted in a significant impact on the transition location in
cases Is & I, the corresponding effect is likely to be weaker because of the increase in
the FST length scale (six times larger compared to cases Is and I). Figures 6.5 (a, b)
show that after an initial contamination by the FST, the maximum boundary-layer
TKE and the streamwise Reynolds stress magnitudes remain constant up to location
x = 25. In contrast, for case Is, within the region 3 < z < 25, (uu) increases by a
factor of five. A similar difference is also clear in figure 6.8 (a). This observation

suggests that near the leading edge, at the FST length scale of the T3B simulation,
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the boundary layer is not very sensitive to the FST intensity. Downstream of the
leading edge, in the z-range where turbulent spot precursors are first detected in the
T3B simulation, the effective FST intensity would not be very different if the first
block were performed without the symmetry assumption. Therefore, it is unlikely
that the symmetry boundary condition used in block I of simulation T3B would
change the location of transition onset appreciably.

Furthermore, we will observe from the flow visualization data and spanwise
two-point velocity correlations that the initial path to transition in the T3B case
is different from that in cases Is & I, and is unrelated to the growth of the Kle-
banoff modes: well-defined streaks are found downstream of z = 75, although small
turbulent spots can be observed as close upstream as x = 50. This conclusion can
also be anticipated from figures 6.7(a, d): while there is good agreement with the
experimental data of Klebanoff-mode-dominated transition for cases Is & I, for the
T3B case, the u,,s peaks are located higher at y/6* ~ 1.65. This suggests that in

the T3B case the boundary-layer disturbance is different from the Klebanoff modes.

6.4.3 Flow development

In this section we compare the evolution of the T3B calculation statistics across the
laminar/turbulent transition region with the available experimental data. We show
that the boundary layer is fully turbulent at the end of the computational domain,

and discuss the development of the turbulent kintic energy (TKE) budget across
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Figure 6.10: Evolution of the boundary-layer shape factor, H. —— Case T3B;

--- Case I; —-— Case II; o T3B experiment of Roach & Brierlay (1992).

the transitional region.

The spatial evolution of the FST turbulence intensity, 7'u, and the skin friction
coefficient, C'y was shown in figures 6.2 and 6.4 for the three cases. The boundary-
layer shape factor, H, is shown in figure 6.10. It is defined as H = /§*, (where 6*

and f are, respectively, the displacement and momentum thicknesses, given by

5 — /0 e (1 _ éi:) dy; 0= /0 o é(ji (1 - (gi) dy),  (6.8)

and equals 2.6 in Blasius flow and around 1.4 for turbulent boundary-layer flow at

low values of Rey. The shape factor is an inverse measure of the boundary-layer
momentum, which increases in the turbulent regime. The integration in (6.8) is
performed up to the edge of the boundary layer, yeqqe (taken to be the location
of zero mean U-velocity gradient). The effective free-stream velocity, Ueqge, is the
mean velocity at this location.

The T3B simulation captures the onset and the progress of transition well, as
indicated especially by the H and C curves. The approximate locations of the onset
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of transition for each case (nominally defined as the z-location at which the skin
friction begins to increase®), are z = 100, x = 70, and & = 100 for cases Is, I, and
T3B, respectively. The corresponding Re, values are 50,000, 35,000, and 50, 000.
The evolution of the FST intensity for the T3B case (figure 6.2), is in agreement
with the experiment. This suggests that (i) the FST length scale matches that of
the experiment, and (ii) the interaction between the turbulence and the boundary
layer is probably well-represented along the entire transitional boundary layer. The
two conclusions suggest that the transition physics in the T3B experiment can be
reliably studied through our T3B simulation.

Further comparison between the T3B simulation and experiment is shown in
figures 6.11(a—d). In figure 6.11 (a), the velocity profiles corresponding to the simu-
lation fall almost on top the experimental data, consistent with the good agreement
in the Cy curve. Figures 6.11(b-d) show that the evolution of boundary-layer turbu-
lent intensities is also captured well. The dominant component of the boundary-layer
perturbation is u' and its profiles agree with the measurements at all four stations
shown. The v" and w’ profiles in the outer region of the boundary layer also agree
well. However, noticeable disrepancies are observed in the near-wall region for the
v'-component, particularly at the upstream locations. The cause of the disagreement
is not fully known at present.

The domain coresponding to the T3B simulation was 40% shorter than for

cases Is & 1. It was larger in the spanwise direction, having 512 cells, compared with

2Young turbulent spots are often observed well upstream of this location
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Figure 6.11: Comparison of velocity and turbulent intensities for T3B simulation vs.
experiment. a) Mean streamwise velocity, U; b) tyms; €) Upms; d) Wems; lines: sim-
ulation; symbols: experiment; the dashed line marks the location of the boundary-
layer edge, dgg; L1 x = 60, Re, = 28,440; A z = 93, Re, = 44,082; x x = 127,
Re, = 60,198; ¢ x = 193, Re, = 91,482; +x = 260, Re, = 123,240; in (a) suc-
cessive curves are shifted in the vertical direction by 10, and in (b), (c¢) and (d), by

0.05.
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Figure 6.12: Evolution of the maximum streamwise turbulent intensity inside the

boundary layer in wall units; Case T3B, --- Case Is, —— Case .

192 cells for cases Is & I, and had to be shortened to make the simulation feasible.
However, as suggested by the C; plot (figure 6.4), the boundary layer became fully
turbulent within the computational domain in each simulation. The transition from
the laminar velocity profile to the turbulent one occurs over a different streamwise
range for each case, in correlation with the C plot, but in each case, the velocity fits
the logarithmic law by = = 260, (Re, = 135,000). Figure 6.12 shows the evolution
of the maximum wu,,,s inside the boundary layer in wall units. The Reynolds stress
levels converge on the same value, indicating that in each case the flow tends to the

equilibrium characteristic of turbulent boundary layers.
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Figure 6.13: Budgets of the TKE at various locations; T3B case. All terms are

normalized by Uy, and R. (a) x = 25, Re, = 12,500, dg9 = 1.12; (b) z = 100, Re,

50,000,899 = 2.41; (c) z = 193, Re, = 91,500,649 = 4.36; (d) = = 260, Re,

123, 250, dg9 = 6.13. Symbols: channel-flow DNS by Moser et al. 1999; lines: present

simulation. 4+, ——: production; (1, —-— Dissipation; A , --- Turbulent transport;

Pressure diffusion; ¢ , —---— Viscous diffusion.
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6.4.4 TKE budget

Figure 6.13 shows the development of the TKE budget corresponding to the

T3B case. The terms are given by

ok ok U, , , oul; Ou} 1 0(p'ul) o, 10(ujujuy)
ot <Z>8xj 0x; (user) v Oz 0x; p 0x; TV 2 or;

(6.9)
The quantities on the right side of (6.9), which is derived from the Reynolds-
Averaged Navier-Stokes (RANS) equations, are referred to, respectively, as advec-
tion, production, dissipation, pressure work, viscous diffusion, and turbulent trans-
port. The sum of the computed terms in the budgets was very small throughout
the computational domain, indicating good convergence. For example, in the fully-
turbulent region, the maximum imbalance was 3% of the maximum production.
Our focus is on the T3B case but the differences from the other cases will
be noted. The data are normalized by the free-stream velocity and the LE radius
(both constant outer-coordinate scales), and thus are not in wall units. This choice
was made in order to separate the effects of the mean flow evolution (which enters
through the change in u,) from the evolution of the budget terms, which involve
higher-order moments. The figure illustrates that the boundary layer TKE produc-
tion maximum is initially near the middle of the laminar boundary layer. As the
perturbed-laminar boundary grows, the peak in the production slowly moves farther
away from the wall, consistent with the boundary-layer growth, up to the onset of

transition at x = 100; beyond this location, it moves rapidly toward the wall. In
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the transitional and turbulent regions, the location of the production peak approx-
imately coincides with the location of the maximum u,,s. This maximum is due
primarily to low-frequency modes of the streamwise velocity, as shown in the next
section. At x = 25, (Re; = 12,500), the only active terms in the budget are the pro-
duction, viscous diffusion, and viscous dissipation. The viscous terms balance each
other at the wall, and together balance the production in the middle of the boundary
layer. At x = 100, (Re, = 50,000) (plot b), the magnitudes of the budget terms
are, on the average, 40% of their turbulent values at x = 260, (Re, = 123,250). The
viscous diffusion and dissipation have increased in magnitude near the wall, and the
growing production is now balanced, in addition, by the turbulent transport and
the advection (not shown for clarity of the plot). By z = 193, (Re, = 91, 500), the
budget is nearly that of a turbulent near-wall flow. At this and at the final location,
x = 260, (Re, = 123,250), we have also plotted the turbulent channel data of Moser
et al. (1999) obtained at Re, = 395 for comparison (the use of channel rather than
boundary layer data for comparison is justified because the near-wall behavior of the
two flows is very similar). To convert the channel data to outer coordinates, we used
the local u, and v from our simulation. The comparison in figure 6.13(d) shows that
a turbulent equilibrium is fully established. An examination of the TKE budgets
for cases Is & I revealed a qualitatively similar development, except that the levels
of production and the corresponding balancing terms were higher in the transitional
region, in correlation with higher boundary-layer u,ms levels, as discussed in the next
section. The perturbed laminar stage was characterized by a linear-like growth of
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Figure 6.14: Spanwise correlation functions of the streamwise velocity fluctuations;

(a) Case I, R,,; (b) Case T3B, Ryy; correlation functions at the location

of maximum boundary-layer u,,; --- correlation functions at the boundary-layer
edge; from bottom to top: z = 38, Re, = 19,000; x = 96, Re, = 47,800; x = 154,

Re, = 76,800; x = 308, Re, = 153, 600.

the production peak, located approximately in the middle of the boundary layer.
Across the breakdown stage, the production peak moved rapidly toward the wall,
accompanied by a sharp increase in the magnitudes of the dissipation, diffusion and
turbulent transport. In the fully-turbulent region, the budgets collapsed with the

data of Moser et al. (1999).

6.4.5 'Two-point correlations

Two-point spanwise correlations of the velocity signal can provide information
on the dominant spanwise length scale of the flow. In transitional and turbulent
boundary layers, correlations of the streamwise velocity are used to estimate the

average spanwise separation between adjacent low- and high-speed streaks. This
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Figure 6.15: Streamwise evolution of the location of the minimum of the spanwise
correlation functions of the streamwise velocity; (a) unnormalized; (b) normalized by
the boundary-layer displacement thickness; the correlation functions are computed
at the location of maximum boundary-layer u,,s; —— Case T3B; --- Case Is;

—-— Case 1.

distance is taken to be the distance to the first minimum of the correlation function.
In figure 6.14 (a) and (b) two-point correlation functions of the streamwise velocity
are shown for cases I and T3B, respectively. The corresponding plot for case Is
is qualitatively similar. The dashed lines represent the correlation function at the
boundary layer edge, and the solid lines, the correlation function at the location of
maximum ., inside the boundary layer. The correlation function at the boundary
layer edge indicates a much larger spanwise scale for case T3B, as expected. For case
I, this scale clearly increases (albeit slowly) with the streamwise coordinate, but for
the T3B case it appears to be almost constant. The evolution of the spanwise scale
in the T3B case may be influenced by the spanwise domain size, which was smaller
than optimal.

The solid curve that corresponds to x = 96, (Re, = 47,800) is located inside
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near the onset of skin friction growth for both cases. It can be seen that the spacing
between the streaks is approximately 3.4 for the T3B case, compared to about
1.8 for case I. The solid curves corresponding to x = 308, (Re, = 153,600) show
that in the fully turbulent region, the streak spacing is the same for the two cases,
regardless of the differences in the upstream development, indicating a universal
turbulent equilibrium. These streaks are certainly not the same as their counterparts
in the transitional region. Figure 6.5(b) demonstrates that the location of the (uu)
maximum moves close to the wall at the onset of turbulence.

Figure 6.15 (a) shows the streamwise evolution of the location of the minimum
of the correlation function. The figure shows that for cases Is & I the transitional
streak spacing of ~ 2 is established by x = 75. For case T3B, the appearance of
streaks with separation ~ 3.4 is delayed to x ~ 100. This was also confirmed by
observing the flow field directly. Not only do the streaks appear later than for cases
Is & I, but they also do not seem essential to transition. It is interesting to see that
while for case T3B there is a marked shift in the streak separation distance across the
laminar-turbulent transition, for cases Is & I the separation distance does not change
significantly. This observation suggests that there is no universal value for streak
separation in the perturbed boundary layer. Rather, it may be determined by the
FST length scale. Fransson & Alfredsson (2003) performed controlled experiments
of boundary-layer transition with and without distributed suction and found that
the spanwise streak spacing was virtually unchanged between the two cases, despite
a factor of two reduction in the boundary layer thickness for the case with suction.
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They suggest that the scale selection process involves the free-stream length scales.
Figure 6.15 (a) shows that within the transitional and turbulent regions, the streak
spacing slowly increases with the downstream distance. Figure 6.15 (b) shows that
it slowly decreases relative to the local boundary-layer displacement thickness. Both
of these findings are in qualitative agreement with Matsubara & Alfredsson (2001).
However, in these authors’ experiments, the distance to the correlation function
minimum in the transition region tends to 36*, whereas our values for cases Is & 1
are closer to 20*. For case T3B, the streak spacing is 40* in the transitional region.
However, we will show in the next section that the streaks for this case may be due

to a different phenomenon.

6.4.6 Flow visualization

Jacobs & Durbin (2001) were the first to visualize Klebanoff modes and their
breakdown into turbulent spots in a spatial boundary-layer simulation. With the
FST intensity set to 3%, the boundary layer developed streaks that were about 1.2dg9
apart. Turbulent spot formation was initiated via the penetration of the F'ST into
the outer boundary layer. The spots grew in size as they were convected downstream
and merged with developed turbulence to maintain its upstream front. The authors
concluded that the low-speed streak provides a path for the direct contamination
of the boundary layer by the FST when the streak moves into the outer boundary

layer, but is otherwise irrelevant to transition, i.e. no evidence of streak instability
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was found. The turbulent spots resulting from this FST /boundary-layer intaraction
were called "top-down’ spots because they originated from an incursion of the FST
into the outer boundary-layer and spread vertically toward the wall while being
convected downstream with the mean flow.

Motivated by previous work on streak instability and breakdown (Andersson
et al. 2001, Brandt & Henningson 2002), Brandt, Schlatter, and Henningson (2004)
illustrated a different mechanism. Using planar and three-dimensional images of
the flow field, these authors concluded that in their simulations, the formation of
turbulent spots was caused by one of two instability modes of the streamwise streak.
The sinuous, or the antisymmetric mode, was observed more often than the varicose,
or the symmetric mode. This could be explained by the analysis of Andersson
et al. (2001), who found a lower critical streak amplitude for the sinuous mode.
We note that neither Jacobs & Durbin (2001), nor Brandt et al. (2004) observed
arrowhead-shaped spots, observed by Emmons (1951) (see also van Dyke 1982), and
also reported by Matsubara & Alfredsson (2001). In this section we examine the
evolution of boundary-layer disturbances for our cases Is and T3B. We follow the
development of turbulent spots from their birth to their merger with the downstream
turbulent front. We note that because of the high intensity of the background FST,
it is difficult to perform a quantitative characterization of the turbulent spots, e.g.
the location of spot origin, the spanwise spreading rate, and the speeds of the leading
and trailing edges.

For case Is, two types of turbulent spots were observed. The first type is illus-
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Figure 6.16: Contours of velocity fluctuations for a turbulent spot of the first type.
Case Is; y = 0.4; a), ¢), e), g) streamwise velocity fluctuation; b), d), f), h) wall-
normal velocity fluctuation; a), b) t = 238; ¢), d) t = 296; e), f) t = 313; g), h)

t = 391.
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trated in figure 6.16. The first column, (a) — (g), shows contours of the streamwise
velocity fluctuation in an xz-plane, and the second column, (d) — (f), contours of
the wall-normal velocity fluctuation. In this, as in all similar figures, the plane is
located in the lower regions of the transitional boundary layer. The spot originates
from a wiggle in a low-speed streak at position (z,y) = (77,13), t = 238 (figure 6.16
(a)-(b)), and displays prominent lateral (i.e. spanwise) symmetry in the u- and v-
velocity components up to x ~ 127,¢ = 313 (figure 6.16 (¢)-(f)). The w-component
is antisymmetric (not shown). It is most likely associated with the varicose insta-
bility. Its development farther downstream is disorderly, and by x = 180, ¢ = 391
(figure 6.16 (g)—(h)), it has merged with the turbulent front. In its overall appear-
ance, this spot is similar to the ones shown by Jacobs & Durbin (2001) and Brandt
et al. (2004) in figures 9 and 11, respectively.

The second type of turbulent spot found in the case Is simulation is illustrated
in figure 6.17. The origin of the spot appears to be an asymmetric streak wiggle
at (z,y) = (104,14), t = 136 (figure 6.17 (a)-(b)). No definite symmetry or
asymmetry, however, could be detected in the spot itself. This may be due to a
higher level of background turbulence than present in the simulations of Brandt
et al. (2004). The spanwise spreading rate of this spot is larger than that of the
previous one. At z = 142, ¢ = 211 (figure 6.17 (e)-(f)), fifty units downstream
of the instability, it occupies two thirds of the spanwise domain. The limiting size
of the spanwise domain prevents the natural growth of the spot in the spanwise
direction from this point on.
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Figure 6.17: Contours of velocity fluctuations for a turbulent spot of the second type.

Case Is; y = 0.4; a), ¢), e) streamwise velocity fluctuation; b), d), f) wall-normal

velocity fluctuation; a), b) ¢t = 136; ¢), d) t = 186; e), f) ¢ = 211;
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Figure 6.18: Contours of velocity fluctuations for a turbulent spot of the first type.
Case T3B; y = 0.68; a), c), e), g) streamwise velocity fluctuation; b), d), f), h)
wall-normal velocity fluctuation; a), b) t = 189; ¢), d) t = 241; e), f) ¢t = 296; g), h)

t = 320.
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Figure 6.19: Contours of velocity fluctuations for a turbulent spot of the second
type. Case T3B; y = 0.68; a), ¢), e), g) streamwise velocity fluctuation; b), d), f),
h) wall-normal velocity fluctuation; a), b) ¢t = 82; ¢), d) t = 154; e), f) t = 179; g),

h) ¢ = 261.
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Next, we examine the evolution of turbulent spots for the T3B simulation.
The agreement of the mean-flow statistics with the T3B experiment suggests that
the fundamental physics of this flow are present in the simulation. Moreover, the
spanwise domain of the T3B simulation is sufficiently large to permit unhindered
development of the turbulent spots. Four spots were followed during the course of
the simulation. Two of the spots observed have distinct arrowhead shapes, similar
to the illustration in figure 4(b) in Matsubara & Alfredsson (2001). The other
two seem to have rather arbitrary shapes. One spot from each category will be
illustrated in figures 6.18 and 6.19 in the same format as used in figures 6.16 and
6.17. We found no evidence that streak instability is related to the origin of either
spot. Instead, the spot precursors appear as regions of upward and downward-
moving fluid, alternating in the streamwise direction, initially almost perpendicular
to the direction of the flow. This is shown for the first spot in figure 6.18 (b) at
(z,y) = (33,33), t =189, and (d) at (x,y) = (47,27), ¢t = 241, where another spot
is forming close upstream of the main one, and for the second spot in figure 6.19 (b)
at (z,y) = (35,30), t = 82. In the first spot, the ends of the low/high speed region
are then reoriented toward the flow direction, so that the resulting perturbation
has the wall-normal velocity signature of a A vortex. This is most clearly seen
from figure 6.18 (f) at (z,y) = (80,27), t = 296 in the spot developing upstream.
The reorientation of this perturbation is probably due to the the boundary-layer
mean shear. When the central part of the low/high speed region is moved up by
the fluctuating velocity, the velocity gradient causes it to move faster than the
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ends, stretching the disturbance into a ‘>’-shape. This may be the origin of the
arrowhead shape for many turbulent spots. For the second spot, only the top half
of the low/high speed region is reoriented toward the streamwise direction, which
gives it the appearance of a quasi-streamwise vortex. This is shown in figure 6.19
(d) at (z,y) = (80,33), t = 154. As a result of the asymmetry, this turbulent spot
is not arrowhead-shaped.

At this point, the vortical structures develop wall-normal oscillations along
their axes, which leads directly to turbulence. This is seen in figures 6.18 (f) at
(x,y) = (87,32), t =296 and 6.19 (f) at (z,y) = (93,35), t = 179. The first spot
spreads upstream through its lateral edges, which preserves its arowhead shape up
to the merger with the fully-turbulent region (z ~ 220). Interestingly, the shape
of the second spot appears to be arbitrary up to ¢ = 261, at which point it has
just merged with another nascent spot developing below it (seen in 6.19 (f) at
(z,y) = (110,17), t = 179). The resulting larger spot has a reverse arrowhead

shape (6.19 (h) at (x,y) = (145,30), t = 261).

6.5 Discussion and Conclusion

We have presented three DNS of boundary-layer transition due to 6% FST.
For cases Is & I, the FST integral length scale is set to 2.3 and the two cases differ
in the geometry: for case Is we use a symmetry condition along y = 0 in the region

upstream of the plate leading edge, and for case I, the full domain is considered. The
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difference in the onsets of transition is due to higher levels of FST in the vicinity
of the LE for case I. This difference comes from the symmetry boundary condition,
which attenuates turbulence in the immediate neighborhood of the LE of case Is.
At this length scale, the boundary layer appears highly receptive to the FST and
is contaminated more in case I. The boundary-layer disturbances are low-frequency
modes that appear as low- and high-speed streaks of the streamwise velocity. Their
energy increases approximately linearly with the streamwise distance after an initial
adjustment region, and in the transitional region they have a spanwise separation of
20*-36*. For case T3B, the FST length scale is 14, and the simulation is designed to
match the T3B experiment, performed by Roach & Brierlay (1992). Good overall
agreement with the reference experimental dataset is obtained. In this case, the
boundary layer is less receptive to the FST near the leading edge because of the
larger length scale difference, and the symmetry boundary condition in the first
block is likely to have less impact on the evolution of the flow. In this case we did
not observe perturbation growth in the vicinity of the leading edge. Streamwise
streaks were visible downstream of location x = 100 and their spanwise spacing in
the transitional region was larger compared to cases I and Is (=~ 4.255%).

From our flow visualization studies we concluded that transition in case Is is
in part caused by instabilities of streaks. In particular, one of the turbulent spot
precursors examined shows prominent spanwise symmetry and is consistent with
the varicose instability mode of the streaks. The above conclusion is also indirectly

supported by the fact that in case I, which shows a more rapid transition, the initial
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(uu) levels associated with the streamwise streaks are twice those of case Is. This
suggests that in case I, the streaks may reach a critical breakdown amplitude closer
upstream that in case Is. For the T3B case, the transition mechanism appears
to be different from that in cases I and Is. We have shown that spot precursors
are present as close upstream as x = 35, and a small turbulent spot is shown
at £ ~ 65 in figure 6.18(c)—(d). Figure 6.15 (a), indicates that streaks with a
well-defined spanwise separation first appear around x ~ 100. Thus, they cannot
be directly responsible for transition. Their appearance may be unrelated to the
turbulent spots, or, alternatively, may be caused by the turbulent spots themselves,
since any localized disturbance will be stretched by the boundary-layer mean shear,
which will give it a streaky appearance. Rather than induce boundary-layer streaks,
the FST indices streamwise ‘waviness’ — alternating regions of wall-normal velocity
that generate spanwise vorticity. Initially perpendicular to the mean flow, these
waves (vorticity) subsequently reorient themselves to become partially aligned in the
streamwise direction; at this stage, appear either as symmetric hairpin vortices (two
legs) or quasi-streamwise vortices (one leg). The vortices develop oscillations along
their axis that lead to turbulence (e.g. see figure 6.19 (f) (z,y) = (93,35), t = 179).
The spots that have the arrowhead shape originate from the hairpin vortices; quasi-
streamwise vortices lead to spots of arbitrary shape, but may merge to form a reverse
arrowhead.

Hairpin and quasi-streamwise vortices have been found in numerous previous

studies of transitional boundary layers. Perry, Lim & Teh (1981) created a turbulent
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spot by a short pulse of air from a small hole drilled in the floor of their windtunnel.
The spot was composed of an array of ‘folds’ near the wall, which were similar in
appearance to A-vortices. It had an arrowhead shape and was trailed by long streaky
tails. The authors hypothesized that a tubulent spot is nothing but a staggered
arrangement of a series of A-shaped vortices. Asai & Nishioka (1990) investigated
boundary-layer transition below the linear stability critical point, caused by acoustic
perturbations near the leading edge. Their smoke visualization study revealed that a
hairpin-like structure was important in the transition process. Singer & Joslin (1994)
and Singer (1996) performed DNS to study the evolution of a single hairpin vortex
in the flat-plate boundary layer and its subsequent development into a turbulent
spot. The hairpin vortex was generated by blowing at the wall and its evolution was
very similar to what was described in previous studies. The spot was composed of
hairpin and quasi-streamwise vortices, possessed a clear arrowhead shape and was
followed by velocity streaks. In addition, the authors observed the formation of new
hairpin vortices near the trailing edge of the spot.

The similarities between the spots found in our T3B simulation and those in
the above studies are striking. This seems surprising, since in our case turbulent
spots are generated by forcing at the boundary-layer edge and not at the wall. The
similarity indicates that the turbulent spot as described in this and many previous
studies is a fundamental feature of transitional boundary layers.

The essential difference between cases Is and T3B is the FST length scale.

Its larger value for the T3B simulation requires the computational domain to be
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much larger in order to accomodate larger eddies in the T3B simulation, and also
reduces the FST decay, exposing the boundary layer to relatively higher turbulence
intensities in the transitional region.

The difference in transition mechanisms between cases I and T3B can be ex-
plained by a reduced boundary-layer receptivity to the FST for case T3B, probably
caused by the large difference between the FST length scale and the LE radius. For
cases Is (& I) the FST length scale is comparable to the LE radius and the viscous
flow scale (the Reynolds number based on the FST length scale is Re;, = 1150)
and the FST induces streaky boundary layer disturbances, whose rapid growth is
evident in figures 6.5 and 6.8. Transition is caused by a secondary instability and
breakdown of streaks that have reached high amplitudes. For the T3B case, the
FST length scale is six times larger than for cases Is & I (Rer, = 6900), and the
interaction of the FST with the leading edge region does not result in growing dis-
turbances, as was shown in figure 6.8. This is likely responsible for the delayed
deviation from the laminar C} (figure 6.4) for the T3B case. The absence of streaks
unmasks another transition mechanism, whereby the FST induces a different type
of disturbance, a streamwise ‘waviness,” which first appears at the boundary-layer
edge, and propagates towards the wall. This mechanism does not involve the vicin-
ity of the leading edge. Unlike the streaks, which are present close to the LE (see
figure 6.15), the latter type of disturbance is first detected downstream of z ~ 30.
The onset of transition for case T3B appears delayed and the rise in the skin friction

through transition is more abrupt. The above hypothesis does not contradict the
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conclusion of Brandt et al. (2004) and Ovchinnikov et al. (2004) that increasing the
FST length scale accelerates transition. First, the largest FST length scale used in
their simulations was approximately 3dq9 at Re, ~ 30,000, which is comparable to
the FST length scale used in our cases Is & 1. Second, these authors used truncated
simulations, in which the computation is started downstream of the leading edge at
an arbitrarily prescribed Re,. Therefore, their simulations do not account for the
receptivity in the vicinity of the LE. The experiments of Jonas, Mazur, & Uruba
(2000), on the other hand, span the range of length scales used in the current sim-
ulations, and thus our results are in qualitative disagreement. However, the FST
intensity in their experiments was fixed at 3%, compared to 6% in our simulations.
It is possible that at the higher intensity, the optimal FST length scale for transition
is smaller. Some support for this conjecture comes from the fact that small-scale
turbulence penetrates the boundary layer more easily (Brandt et al. (2004), but also
decays more rapidly. Thus, overall perturbation of the boundary layer is reduced
compared to the case of large-scale turbulence (which decays more slowly). Increas-
ing the FST intensity may offset the faster decay of the small-scale turbulence and
make it more effective than the larger scales in inducing transition.

The present results indicate the importance of the FST length scale not only
on the onset of transition, but also on the mechanism. Future numerical and ex-
perimental studies should investigate the effect of the Reynolds numbers based on
the plate thickness and the FST length scale on the various aspects of boundary-

layer transition. It is likely, for instance, that FST of different length scales produce
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different disturbance growth rates inside the boundary layer, which could reconcile
the differences in the transition onsets for experiments. The effect of the leading
edge geometry should also be investigated systematically in the specific context of

bypass transition.
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Chapter 7
Conclusion

Since each of the preceding chapters is complete with a conclusion section that
summarizes the most important results presented there, in this chapter the aim is
not to reiterate those summaries, but rather to present our major findings in a
unified perspective.

In the current investigation we performed DNS of boundary-layer transition
due to three types of free-stream disturbance, a von Karman vortex street behind
a circular cylinder, and 6% free-stream turbulence with two different values for the
integral length scale. The onset of turbulence was observed at low values of the
plate Reynolds number (Re, ~ 10°), which are typical of bypass transition. The
differences in the free-stream disturbance environment resulted in somewhat differ-
ent transition scenarios. Nonetheless, the transitional flows had several important
features in common.

In all of our simulations we observed clearly defined streaks of the streamwise
velocity. In the simulations of wake/boundary-layer interactions and simulations
of transition due to small-scale FST, these streaks appeared to have three univer-
sal properties. First, their corresponding near-wall u,.,,s profiles are approximately

self-similar when scaled by the boundary-layer thickness!. Second, they are prefer-

Yprms ™ y% near the wall is a good approximation (Klebanoff 1971; Goldstein & Wundrow
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entially amplified by the boundary-layer mean shear: the streamwise evolution of
the frequency spectrum shows growth in the lower frequency range. In the case of
FST, their initial amplitude is proportional to that of the free-stream disturbance,
but the proportionality constant is probably dependent on other properties of the
FST, e.g. length scale. Third, the energy associated with the streaks, as well as the
overall streamwise Reynolds stress (uu), increases in a quasi-linear, or affine depen-
dence on the plate Reynolds number (Re,). The affine behavior may be caused by a
short receptivity distance, across which there is no disturbance growth, as suggested
by Fransson, Matsubara & Alfredsson (2005).

An essential property that does not appear to be universal is the streak sepa-
ration distance in the spanwise direction. Our results from the wake/boundary-layer
simulation indicate that it is dictated by the spanwise scales of the wake in the free
stream. In the calculations of FST-induced boundary-layer transition by Jacobs &
Durbin (2001), Brandt, Schlatter & Henningson (2004) and our cases I and Is in
the previous chapter, the streak separation was close to the boundary-layer thick-
ness dgg, comparable to the value 1.4d99 predicted by optimal disturbance theory
(Andersson et al. 1999). However (based on velocity correlations, flow visualization
or turbulence decay rates), in all of the above simulations, the length scale of the
FST was also close to this value. On the other hand, in our simulation of the T3B
case (large FST length scale), streaks were not precursors of transition and were not

generated by the FST directly. This observation supports the conjecture that the

1998)
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FST scale has a major influence on the boundary-layer streak spacing. Moreover,
Fransson & Matsubara (2003) reduced the thickness of the Blasius boundary layer
by a factor of two using suction, but observed no change in the streak separation.
This implies that the spacing of streaks was probably dictated by the FST environ-
ment, which was kept unchanged. Thus, in order to determine the origin of laminar
streak spacing, there is clearly a need for experiments and simulations that have the
FST length scale as a carefully controlled parameter.

Our observations regarding the universality of streaks are not unexpected:
numerous investigators who studied the problem of bypass transition by various ex-
perimental, numerical and theoretical means, observed or predicted the generation
of streamwise-elongated structures. For example, Wu et. al (1999) observed flow
streakiness in DNS of unsteady wake/boundary-layer interaction, Berlin & Hen-
ningson (1999) demonstrated the evolution of streamwise-oriented streaks from two
oblique modes of opposite angle. Elofsson & Alfredsson (1998) studied this mech-
anism experimentally in channel-flow transition . Bertolotti (1997) predicted the
appearance of streaks using the nonlinear Parabolic Stability Equations (PSE) in
response to vorticity in the free stream. Wundrow & Goldstein (1998) used the
boundary-region equations to study the boundary-layer response to wall-normal
vorticity, and predicted elongated streamwise structures with cross-stream near-wall
Urms profiles of the form y%, as initially suggested by Klebanoff (1971).

It is also tempting to speculate that streaks of the perturbed-laminar regime

may be similar to the sublayer streaks found in fully-turbulent near-wall flows.
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Qualitative similarities between the two regimes have been pointed out by Brandt,
Shlatter & Henningson (2004). In both cases the streaks are produced by flanking
streamwise-oriented vortices, which transfer near-wall low-momentum fluid into the
outer boundary layer, and outer high-momentum fluid towards the wall. Further-
more, comparing the TKE budgets in the perturbed laminar and turbulent regimes
for any of our simulations demonstrates that the differences are mostly qualitative
and are largely due to the lower levels of near-wall dissipation and viscous diffusion
in the perturbed laminar regime. The shapes of the curves are very similar.

Thus, as the turbulent near-wall cycle may be an attractor for wall-bounded
transitional flows, the laminar-streak regime may be a similar attractor for perturbed
laminar flows. The turbulent self-sustaining regime has been the subject of recent
theoretical and numerical investigations, e.g. Waleffe (1997), Jiménez & Pinelli
(1999), and the possibility that the results of these analyses are also relevant to the
perturbed-laminar regime is intriguing.

The appearance of flow intermitency in the form of turbulent spots in transi-
tional wall-bounded flows is a unifying feature of many transition scenarios. These
turbulent regions, surrounded by essentially laminar flow were clearly observed and
photographed by Emmons (1951) (see also Van Dyke, 1982) inside a thin layer of
fluid. Shaped in the form of an arrowhead, these spots spread laterally and longitu-
dinally, preserving their shape until their merger into a fully-turbulent front. Since
then, analagous turbulent spots have been seen in experiments and simulations of

natural and bypass transtion and in both compressible and incompressible flows.
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Matsubara & Alfredsson (2001) and Fransson, Matsubara & Alfredsson (2004)
reported arrowhead-shaped turbulent spots resulting from the breakdown of a streaky
flow, disturbed by FST of various amplitudes. Wu et al. (1999) observed turbulent
spots of a reversed arrowhead shape in simulations of unsteady wake/boundary-
layer interaction. Jacobs & Durbin (2001), Brandt and Schlatter & Henningson
(2004) observed streaky flow contaminated with turbulent spots of arbitrary shape
in FST-induced boundary layer-transition. In these simulations, as well as in our
simulations of cases I & Is presented in §6, however, the spanwise extent of the
domain was limited because of the computational cost. Thus, the maximum spot
size was restricted and after the spot filled the entire computational domain, its
shape could no longer be determined. It is possible that the shape of a turbulent
spot originating in a streaky flow via an instability is initially not well defined, but
tends to an arrowhead shape at later stages. The flow visualizations of Fransson,
Matsubara & Alfredsson (2004) support this hypothesis: the spot formation and
the initial evolution is as visually presented in Jacobs & Durbin, Brandt, Schlater
& Henningson, and our case I in the previous chapter, but as the spot grows in size,
an arrowhead shape becomes evident.

In experimental turbulent spot visualization studies, Perry et al. (1981) hy-
pothesized that a turbulent spot is an array of A-shaped vortices. Spot precursors
were generated by blowing through a hole in the wind tunnel wall and the resulting
spot was composed of a staggered array of “folds,” ¢.e. deformed vortical filaments

similar to a A-vortex.
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Krishnan & Sandham (2004) studied turbulent spots in simulations of super-
sonic flow at Mach numbers 2, 4 and 6. The spots were generated by a blowing
strip and resulted from the breakdown of A and streamwise-oriented vortices. The
downstream section of the spots was an arrowhead-shaped overhang caused by a par-
ticular arrangement of hairpin and streamwise vortices, and the upstream section
was characterized by relatively calm flow.

Our results from the T3B simulation revealed a strikingly similar spot develop-
ment, which involves A and streamwise- oriented vortices in the spot generation and
growth. By following the evolution of spots in time, we showed the important role
of A-shaped vortices in producing and maintaining the arrowhead shape of the spot.
It is especially interesting that our T3B simulatioin results were similar to those of
Krishnan & Sandham (2004) despite a fundamental difference in the disturbance
origin (blowing vs. FST).

In our simulations of steady wake/boundary-layer interaction at Rep = 3,900,
we observed transitional intermittency that was very similar to the turbulent spots
in FST-induced transition (see, for example, figure 10 in Jacobs & Durbin 2001).
Unfortunately, we did not obtain enough data to follow the spots in time as was done
in §6 for FST-induced transition. In this case, the spots were caused by patches of
turbulent flow injected into the boundary layer by the wake in the free stream.

Despite the various possible origins of turbulent spots, as evidenced by their
occurrence in natural, bypass, and wake-induced transition regimes, there is com-
pelling evidence that turbulent spots in wall-bounded flows tend toward a universal
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arrowhead shape. The preservation of shape is probably due to the orientation of
the vortical structures that produce spot growth.

Based on our present work as well as on other simulations and experiments,
it is apparent that while the various modes of bypass transition share prominent
physical features e.g. streamwise streaks and turbulent spots, their connection to
the transition process is not universal. Although streaky structures are present in
nearly all flows undergoing bypass transition, it seems that only in certain cases
turbulent spot formation is caused by a streak-related instability. Furthermore,
even for FS'T length scales, i.e. in an environment in which streamwise streaks are
the dominant structures, a disagreement on the origin of turbulent spots remains.
Jacobs & Durbin (2001) argue that streaks provide a direct receptivity path between
the FST and the boundary layer, whereas Brandt, Schlatter & Henningson (2004)
report that the streaks themselves undergo instabilities, and the FST is probably
important in forcing the streaks. The results of our case I simulation support the
latter theory, although in a highly-disturbed free stream the two mechanisms may
not be visually distinguishable.

On the other hand, as our T3B simulation shows, free-stream turbulence can
interact directly with the boundary layer and this effect becomes dominant with
increasing FST length scale. The turbulent spots caused by this direct interaction
arise differently, although at later, more disorderly stages of evolution, they may be
indistinguishable from spots originating from streak instabilities.

In the case of wake/boundary-interaction, the situation is complicated by an
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additional mechanism. Aside from inducing streamwise streaks and possibly A-
vortices, free-stream wakes are capable of injecting turbulent momentum directly
into the boundary layer. The latter scenario was dominant in our wake/boundary-
layer interaction simulations, and also in the simulations of unsteady interaction
of Wu et al. (1999). In such cases, it becomes increasingly difficult to isolate the
essential physics. Moreover, the dominant phenomenon may change with a small
modification of the geometry or disturbance characteristics, making generalization
uncertain.

In summary, in the present investigation we have observed three different mech-
anisms of boundary-layer bypass transition depending on the nature of the external
disturbance environment. When the free-stream disturbance is composed of coher-
ent wakes in the form of a von Karman vortex street, boundary-layer transition
is initiated by the injections of free-stream fluid from the wake into the boundary
layer. The boundary layer responds by generating streamwise velocity streaks that
are very similar to Klebanoff modes. At a sufficiently high Reynolds number, the
wake fluid contains small scale motions that become the origin of boundary-layer in-
termittency, ¢.e. turbulent spots. From our data, a possible role of streak instability,
however unlikely, cannot be excluded.

If the external disturbance is homogeneous and isotropic free-stream turbu-
lence with a fairly low integral length scale (for case I in §6 the Reynolds number
based on the FST integral length scale was 1150), the FST is ingested into the
boundary layer in the vicinity of the leading edge, stretched by the boundary-layer
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shear, and evolves as elongated streaks of streamwise velocity. In this case, the tran-
sition process appears dominated by streak instabilities. Streak breakdown results
in turbulent spots that do not have the classical arrowhead shape in the early stages
of development. The later stages are not available from our data, but experimental
smoke visualizations indicate that the arrowhead shape is approached (Mastubara
& Alfredsson 2001; Fransson, Matsubara & Alfredsson 2004).

In the case that the FST length scale is larger, as in case T3B (Rer, = 6900),
boundary-layer transition is no longer dominated by streaks. The large-scale FST
induces A or streamwise-oriented vortices inside the boundary layer, and the sub-
sequent generation of turbulent spots proceeds essentially as has been described for
natural transition or blowing/suction-induced turbulent spots. In this scenario, the
streamwise streaks are also present, but they are most likely formed upstream of
the spots, by the ‘legs’ of the stretched hairpin vortices, as has been suggested by
Gal-ed-Hak, Blackwelder, & Riley (1981) and Perry, Lim, & Teh (1981), and are
irrelevant to the transition process.

The above physical mechanisms are qualitatively distinct, and therefore will
probably require different modeling strategies. Moreover, the likelihood that in
some flows they may be present simultaneously will pose additional challenges for

transition prediction.
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