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Abstract

In an MPEG encoder, three types of frames (I, P, and B) are periodically generated ac-
cording to a pre-specified compression pattern. As a result, an MPEG sequence is periodic in
its compression pattern, and this periodicity can be used to reduce the bandwidth requirements
of multiplexed MPEG streams. By exploiting the deterministic and periodic nature of the com-
pression pattern, we show that it is possible to provide stringent deterministic guarantees (no
cell losses and no queueing delay) to MPEG connections without the need to allocate the peak
rates of individual sources. Instead, a stream is allocated its effective bandwidth, which is the
aggregate peak rate of the multiplexed streams divided by the number of streams. The aggregate
peak rate depends on the arrangement of the multiplexed streams which is a measure of the
degree of synchronization among the compression patterns of different streams. It is found that
in most cases, the effective bandwidth is smaller than the source peak rate. For a given arrange-
ment, we provide a procedure to compute the effective bandwidth. We also give an expression
for the ‘best’ arrangement that results in the ‘optimal’ effective bandwidth. Examples of real
MPEG sequences are used to show the bandwidth gains that can be achieved through proper
scheduling of the starting times of MPEG connections.

Keywords: bandwidth allocation, MPEG, statistical multiplexing, deterministic guarantees

* This research was partially supported by the NSF grant # CCR 9318933.



1 Introduction

One of the major challenges in designing a BISDN/ATM network is to guarantee the quality-of-
service (QoS) requirements for all transported streams without underutilizing the available band-
width capacity. The QoS requirements, which are often measured by the cell loss rate and cell
delay, can be easily satisfied by allocating bandwidth based on the peak rates of the individual
sources. However, due to the burstiness of many sources (i.e., large peak rate to mean rate ratio),
source-peak-rate allocation results in low utilization. To increase the utilization, statistical multi-
plexing can be used, which allows the available bandwidth to be shared among various streams on a
need basis. By means of statistical multiplexing, the network can allocate an aggregate amount of
bandwidth that is less than the sum of peak rates of the individual streams. This conventional use
of statistical multiplexing results in possible cell queueing and buffer overflow. The amount of cell
delay and cell loss depend on the traffic model used to characterize the multiplexed streams. Be-
cause of the statistical nature of commonly used traffic models, the use of statistical multiplexing
is usually limited to sources with statistical QoS requirements. Typically, a stream with deter-
ministic QoS requirements (e.g., no cell losses) is not statistically multiplexed with other streams.
Depending on its delay requirement, such a stream is either allocated its peak rate, or (if the some
buffering delay can be tolerated) its peak rate over a finite interval [5].

In this paper, we focus on compressed video streams that are generated by MPEG encoders.
We show that, contrary to the general belief, statistical multiplexing can be used to an advantage
with this type of traffic while providing stringent and deterministic QoS guarantees. By exploiting
the deterministic and periodic manner in which frame types in an MPEG stream are generated, we
show that MPEG streams can be statistically multiplexed (with an effective bandwidth per source
that is less than the source peak rate) without experiencing any cell losses or delays. The effective
bandwidth depends on the relative degree of synchronization among the multiplexed streams. We
provide a simple algorithm for computing the effective bandwidth for an arbitrary synchronization
structure. This algorithm can be used as part of call admission control at a switching/multiplexing
network node. In situations where it is possible to have some control on the starting times of
MPEG streams (e.g., in a VOD system), we give the form of the best synchronization structure for
the multiplexed MPEG streams that has the optimal (minimum) effective bandwidth.

The rest of the paper is structured as follows. The deterministic traffic model that is used
to characterize MPEG sources is described in Section 2. The effective bandwidth for multiplexed
MPEG streams is discussed in Section 3. In the same section, we derive the formulae for the ‘best’
synchronization structure and the associated optimal effective bandwidth. The paper is concluded

in Section 4.



2 Characterization of an MPEG Stream

2.1 Compression Pattern

An MPEG encoder employs several modes of compression to generate three types of compressed
frames: Intra-coded (I), Predictive (P), and Bidirectional (B) frames. [ frames are compressed
using intraframe coding (e.g., DCT) only, while P and B frames are compressed using intraframe
coding as well as motion compensation techniques (prediction techniques for P frames and both
prediction and interpolation techniques for B frames). As a result, [ frames are, in general, the
largest in size, followed by P frames, and finally B frames (the frame size refers to the number of bits
used to encode the frame). To maintain a constant-quality motion picture, frames are compressed
at a constant frame rate (e.g., 30 frames/sec).

An important feature of MPEG encoders is the manner in which frame types are generated.
When compressing a video sequence, the encoder uses a pre-defined compression pattern to de-
termine the types of the compressed frames. The compression pattern defines the number and
temporal order of P and B frames to be generated between two successive I frames. The same
compression pattern is used repeatedly to compress the whole video sequence. An example of the
compression pattern is shown in Figure 1-a. Because the sizes of compressed frames are largely
affected by their types (as well as the scene dynamics), one should expect a significant impact of
the periodicity of the compression pattern on the characteristics of the traffic and, consequently,

the bandwidth allocation strategies.
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Figure 1: An example of a compression pattern that defines the frame types in an MPEG stream.
Since B frames are coded using future [/P frames, the order in which frames are sent over

the network (i.e., the transmission order) is different from their encoding order (see Figure 1-b).

However, starting from the second [ frame, the transmission and encoding orders look similar with



respect to frame types. Therefore, we will ignore the first few frames in a stream, and assume,
for simplicity, that frame types in an MPEG stream are represented by exact replications of the

compression pattern.

2.2 Deterministic Traffic Model

Several traffic models were proposed for the characterization of compressed video traffic (see [2] and
the references therein). Most of these models are probabilistic in nature, and thus, cannot be used
to provide deterministic guarantees. To support deterministic QoS requirements, which is the focus
of this paper, a deterministic model for an MPEG source is needed. Intuitively, a deterministic
characterization can be constructed using bounds on the actual bit rate. In [5], Knightly et al.
proposed a simple deterministic approach to characterize a VBR stream using a traffic constraint
function. The same methodology is adopted in this paper, and is explained below.

Consider an MPEG stream that consists of a sequence of frames that are generated at a constant
rate f. We assume that video bits in a frame are packetized into ATM cells (each 48 bytes of video
corresponds to one cell). Cells within a frame are distributed evenly over the frame period. Hence,
the bit rate over a frame period is given by f times the frame size. Let ©,42, Praz, and B,q. be,
respectively, the maximum sizes of I, P, and B frames in the stream. Using these three values
and the compression pattern of the stream, a traffic constraint function, b(¢), can be defined which
bounds the actual bit rate (¢ here is measured in units of frame periods). An example of b(t) is
shown in Figure 2 based on the compression pattern of Figure 1-a. Note that b(¢) is a piecewise

constant function.
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Figure 2: Traffic constraint function based on the compression pattern of Figure 1(a).



Because of its regularity, the compression pattern can be characterized by two parameters:

L : number of frames between two consecutive I frames in an MPEG stream.
¢ : number of frames between an [ frame and the subsequent I/P frames (whichever comes
first) in an MPEG stream.
Examples of various compression patterns and their associated L and ) values are shown in Table 1.
The regularity of the compression pattern means that L is an integer multiple of ¢). Notice that
it is possible to have I = @) = 1, in which case only [ frames are generated (this is similar to a

stream generated by a JPEG encoder).

Compression Pattern L@
IBBPBB-IBBPBB - -- 6 |3
IBBPBBPBBPBBPBB-IBBPBBPBB --- | 15| 3
IBBBPBBB-IBBBPBBB - - - 8 14
IPPP—IPPP --- 4 |1
—1-1-i-i--. 111

Table 1: Compression patterns and their associated L and @) values.

Consequently, b(t) is fully specified by five parameters: L4z, Praz, Bmaz, L, and Q. In this

paper, the traffic constraint function is used to characterize an MPEG stream.

3 Statistical Multiplexing of MPEG Streams

3.1 Preliminaries

We consider MPEG streams with very stringent requirements that consist of no losses and no
queueing delays. Typically, these requirements are met by allocating bandwidth based on the peak
bit rate of each source, resulting in very low utilization. Network utilization can be improved
by temporal averaging in which video frames are buffered before entering the network. However,
the queueing delay incurred in buffering precludes its use for delay-sensitive traffic. Moreover, an
excessive amount of buffer is often needed to maintain a reasonable level of utilization. Network
utilization can also be improved using statistical multiplexing which spatially averages the bit
rate of several streams. Typically, statistical multiplexing have not been used in conjunction with
deterministic QoS guarantees, mainly due to the statistical behavior of the sources. The situation
is different in the case of MPEG streams. Because of the deterministic structure of the compression
pattern, and using the traffic constraint function to characterize an MPEG source, we show that
statistical multiplexing can be used advantageously with MPEG sources while supporting stringent,

deterministic QoS requirements.



The benefits of statistical multiplexing for MPEG streams with deterministic QoS guarantees
can be demonstrated by the following example. Consider two streams that are characterized by the
same traffic constraint function, E(t), with L =6, Q = 3, and 42 > Prazr > Bpas. Suppose that
the second stream started ezactly one frame period after the start of the first stream (see Figure 3).

Then, an upper bound on the bit rate of the superposition of the two streams is given by:
biot(t) = b(t) + b(t — 1) (1)

which is clearly less than 2b(¢). In fact, it is easy to see that:

JAN 1 - Imaac ‘|’ Bmaac
C= Nr?zag(btot(t) = f < s (2)
source 1
"""" I B B P B B I
source 2 : : : ‘ Q
""""" B | B p B B | 1 B S

multiplexer

Figure 3: An example that shows the reduction in bandwidth requirements when two MPEG
streams are multiplexed.

The quantity C' is the effective bandwidth (measured in cells per frame period) that must be
allocated to each stream to guarantee lossless transmission with no delay. The notion of effective
bandwidth (also known as equivalent capacity) was investigated in several previous studies in a
stochastic framework (for example, see [4] and [1]). In this paper, the effective bandwidth is used in a
deterministic framework to guarantee zero cell loss rate and no queueing delays. By superposing the
two streams and allocating bandwidth for the aggregate traffic, the required amount of bandwidth
per source decreased from [, (source-peak-rate allocation) to (/a5 Bmaz)/2. The superposition
can be achieved via statistical multiplexing. A very small buffer is needed at the input to the
multiplexer in case two cells from both streams arrive simultaneously at the multiplexer (the size
of this buffer is one cell). Notice that bandwidth gains from statistical multiplexing are obtained
via spatial averaging, and not temporal averaging (i.e., buffering).

From the above example, it is clear that bandwidth gains from statistical multiplexing depend on
the degree of synchronization among the multiplexed MPEG streams. In this context, the degree of

synchronization is used to measure the differences in the starting times of the multiplexed streams.



If the two streams were sending [ frames simultaneously, then C' = [,,,,,, and statistical multiplexing
introduces no advantages over source-peak-rate allocation. Fortunately, the probability that both
streams are in the same phase (i.e., sending [ frames simultaneously) is small.

Next, we formally quantify the bandwidth gains obtained by multiplexing an arbitrary number
of MPEG streams having an arbitrary synchronization structure. Two cases are considered. The
first case is when MPEG sources have an arbitrary synchronization structure with regard to their
compression patterns, but the boundaries of the frames are exactly aligned. In this case the system
is slotted with a time unit of one frame period. The second case is more general than the first
case, where frames boundaries need not be necessarily aligned. Intuitively, the first case results in
better bandwidth gains (or higher probability to achieve these gains) than the second case. In a
video server, exact alignment of frame boundaries can be imposed by delaying the starting time
of an MPEG stream by no more than a frame period. This delay amounts to less than 1/30 of a
second (at f = 30 frames/sec), and will not be noticeable by a user of a video-on-demand system.
If multiplexing is to take place at an intermediate network node, then a small amount of buffering
(less than a frame) is needed to exactly align frame boundaries. Even when frame boundaries are

not aligned, some bandwidth gains may still be obtained.

3.2 Effective Bandwidth for Multiplexed MPEG Streams
3.2.1 Case of Aligned Frame Boundaries

Let N be the number of multiplexed MPEG streams. We assume that all streams are characterized
by the same constraint function, b(¢), which is specified by (Imazs Prmazs Bmaz, L, @), with
Loz > Prae > Bige. When the streams have different maximum values for the sizes of I, P, and
B frames (but the same L and (), a common constraint function can be obtained by taking I,,q.
as the largest I frame in all the streams (similarly, for P, and Bp,.;). Let u; be the difference (in
frame periods) between the arrival time of an [ frame from the jth MPEG stream and the arrival
time of the most recent I frame from the first stream. Because of the periodicity of the compression
pattern and the fact that the same compression pattern is used in all the streams, u; is constant
throughout the connection hold time. For the present case of aligned frame boundaries, u; can take
any integer value in {0,..., L—1}, uy 2 0. In the example of Figure 3, ug = 1. The synchronization
structure of the N sources can be completely specified by the (N —1)-tuple (ug, us,...,un). Such a
tuple will be referred to as an arrangement. Let U be the set of all possible distinct arrangements of

N streams. For a given arrangement u = (ug,us,...,un) and N, we define the effective bandwidth



per source as:
Clu, N 2+ b(t — u;) (3)
u, = I?Zag( vt U;

which can also be written as:

Imax Pmax Bmax
C(qu):nI -I-nPN + np (4)

for some nonnegative integers ny, np, and ng where ny+np +np = N. In the worst situation, all
the streams send [ frames simultaneously, in which case, ny = N, np = np = 0, and the effective
bandwidth is the same as the source peak rate. Notice that C'(u, N)is given in units of cells/frame
period which translates to f * C'(u, N ) 53 * 8 bits/sec.

Computing C'(u, N) from (3) requires taking the maximum of L terms, each of which is the sum
of N values. Note that the sum in the RHS of (3) is a piece-wise constant function that is periodic

in L. A numerical procedure for computing C(u, N) is given in Figure 4 and is illustrated below.

InPUt: u7 L7 Q? N7 Imal’? Pmal’? Bmal’
Ouput: C(u,N)

Initialization: for £k =0,1,....L — 1 do
7 := number of streams that are in phase k

end for
C(u,N):= By /* alower bound on C'(u,N)*/
Loop: for k=0,1,...,L—1do
z:= 0 /* number of streams that generate P frames during phase k */
forj=1,2,...,L/Q — 1 do /* compute z for phase k */
z:= modp(k+ jQ)
zi=z471, /* update z */
end for
Y = (ridpas + 2 Pmae + (N — 75 — 2)Bpas) /N
C(u,N):= max(C(u,N),Y) /* update C'(u,N)*/
end for

Figure 4: Algorithm for computing C(u, N).

For ¢« = 2,..., N, u; can be obtained by implementing a counter at the multiplexing node,
which is initialized with the first frame of the first admitted stream, and is incremented every

frame period. The counter goes from 0 up to L — 1 and then starts again. When the ¢th stream



arrives, its u; is set to the current value of the counter. A table of (¢, u;) pairs is maintained, and
is used to execute the algorithm in Figure 4. The ith stream is said to be in phase k if u; = k.
The algorithm requires the computation of rx which is the number of streams that are in the same
phase.

The inner ‘for’ loop in the algorithm computes the number of streams that generate P frames
during phase k. Such streams must be at frame distances of ) or multiples of () from streams of
phase k. These distances are given by z in the ‘for’ loop. The number of computations required
to obtain C'(u, N)is O(L?/Q) which is relatively small (assuming that the values for r; are pre-
computed, and are updated whenever a new stream is added). To further reduce the required

number of computations, we introduce the following results.

Proposition 1 Consider any two streams v and j with u; = ki and w; = ko, ki # k. If during
phase ki stream j sends a B frame, then during phase ko stream ¢ sends a B frame. Similarly, if
during phase ki stream j sends a P frame, then during phase ko stream i sends a P frame. a

The proof Proposition 1 follows immediately from the fact that all the streams have the same

pertodic compression pattern.

Proposition 2 In (4), n; > 1 for any arrangement v = (uq, ..., un).

Proof: Suppose that ny = 0.

First, consider the case when np = 0. Then C(u, N) = NB,,4,/N. Since vy = 0 (by definition),
ro > 1. Thus, during phase 0 the aggregate peak rate by (t) > Loz + (N — 1)Baz > NC(u, N),
which is contrary to the definition of C'(u, V).

Next, consider the case when np > 1. Let phase k be the phase during which b, (t)/N = C'(u, N).
By assumption, r; = 0 (since n;y = 0). Since np > 1, there exists at least one stream j with
|u; — ux| = a multiple of @. During phase u;, source j sends I frames. Also, any other stream
which sends P frames during phase u; will be sending either I frames or P frames during phase
wj. Thus, bio¢(t) during phase u; is larger than bio¢(t) during phase uy, which is contrary to the
definition of C'(w, N). Hence, ny > 1. o

Since ny > 1, the computational requirements of C'(u, N) can be further reduced by excluding
any phase k that has rp = 0 from the body of the outer ‘for’ loop in Figure 4.
The following example demonstrates the dependency of C'(u, N) on the arrangement u. Using

N =3, L =15, and @ = 3, the effective capacity C'(u, N) was computed for different arrangements



w = (uy,uz, uz) (with uy 2 0). Figure 5 shows C'(u, N) normalized to [, (the source peak rate)
for all possible values of us (from 0 to L — 1) and uy = 0,1,2. Maximum values for frame sizes
were taken from the frame-size trace of the Wizard of Oz movie which was compressed using an
MPEG encoder [6]. Accordingly, lnee = 894, Prae = 742, and Bpee = 157 (in cells). It is
clear that except for one possible arrangement, v = (0,0,0), statistical multiplexing can reduce
the bandwidth requirements without sacrificing any performance guarantees. In fact, even when
the number of sources is as small as 3, the bandwidth requirement for a stream can be reduced in
some cases to less than 50% of the source peak rate. The exact amount of reduction depends on
the synchronization structure. If all possible arrangements can occur with equal probability, then
the chance of not achieving any gains from multiplexing is 1/LV~! (which is the probability that
wp=0forall e €{2,...,N}).
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Figure 5: Iffective bandwidth for different arrangements in the case of aligned frame boundaries.
Different arrangements, w = (uq,uz, us), are obtained by varying us from 0 to L — 1 (using only
integer values), with ug = 0,1,2and w3y =0 (N =3, L =15, Q) = 3).

3.2.2 Case of Non-Aligned Frame Boundaries

In the previous section, it was assumed that frame boundaries from different streams are aligned.

This alignment can be enforced using a frame-buffer for each stream. When frame boundaries are



aligned, there is more probability to achieve bandwidth gains through statistical multiplexing than
in the case of non-aligned frames. Consider, for example, the two streams in Figure 3. If frame
boundaries are aligned, then the probability of having C(u, N) = I45 is Pr{us = ug =0} = 1/L
(assuming all that all possibilities are equally probable). However, if frame boundaries are not
aligned (e.g., source 2 starts after a fraction of a frame period from the start of source 1), then
the probability of C'(u, N) = I,,. is the probability that the two sources simultaneously generate
I frames for any time duration. This is the same as the probability that the two sources overlap
in their phases, and is given by 2/L. In general, the probability of not gaining anything from
multiplexing N streams when frame boundaries are arbitrarily aligned is 2/LV~! (compared to
1/LN=" when frames are aligned).

When frame boundaries are not aligned, the algorithm in Figure 4 can still be used to compute
C(u, N), with slight modifications. Since, in this case, the lag between the jth stream (j = 2,...,N)
and the 1st stream can take non-integer values, two phases are associated with each stream (except
for the first stream). Thus, if the lag between the arrival of an I frame in the jth stream and the
arrival of the most recent I frame in the first stream is 3.2 frame periods, then the jth stream is
assigned to both phases 3 and 4. When computing 7 in Figure 4, a stream with a non-integer phase
is counted twice. This does not mean that the stream contributes two terms to the computation of
the aggregate bit rate during a given phase, but rather its contribution is the largest of two terms.
Hence, the most inner loop in the algorithm must be modified to ensure that z does not exceed
N — ri. A statement such as z = min(z, N — r) should be inserted after the end of the most inner
for’ loop. Figure 6 shows an example of the effective bandwidth (given in percentage of source
peak rate) for different arrangements in the case of non-aligned frames. The same parameters as
in Figure 5 are used. However, in this case us is continuously varied, while in Figure 5 u3 assumed
only integer values. Clearly, the proportion of arrangements that result in significant bandwidth
gains is smaller in the case of non-aligned frames. In fact, the effective bandwidth in this case is
less than half of the source peak rate only at a finite number of values for u3. For example, when
ug = 1, C(u, N) < 0.51,,4, only when uz = 2,5,8, and 11. Assuming that us is random with
uniform distribution in [0, L), the probability that C(u, N) < 50% [, is zero. Nevertheless, there
is a high probability that C(u, N) < 70% Ias-

3.3 “Optimal” Effective Bandwidth

From the previous section, it is clear that C'(u, N) varies with w. It is, thus, natural to seek the
“best” arrangement that produces the “optimal” effective bandwidth for N multiplexed MPEG

streams (Cope(V)). In this section, we obtain the expression for Cyp(N) and the arrangement
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Figure 6: Effective bandwidth in the case of non-aligned frame boundaries. wg is continuously
varied in the interval [0, L) with uy = 0,1,2 and uy =0 (L = 15, @ = 3).

(in fact, one of the arrangements) that results in Cype(N). We also address the issues related to

computing Copi(N). First, lets define the optimal effective bandwidth:

Copt(N) £ min C(u, N) (5)

where U is the set of all possible distinct arrangements of N streams (distinct in the sense that all
permutations of the elements of a given u are counted as one distinct arrangement). We will assume
throughout this section that frame boundaries are aligned. Extension to the case of non-aligned
frame boundaries is straightforward, since, as we show later, the optimal bandwidth when frame
boundaries are generally non-aligned occurs for an arrangement with aligned frame boundaries
(note that aligned frame boundaries are special cases of generally non-aligned boundaries).

Computing Cyp(N) directly from (5) requires an exhaustive search for the minimum C(u, N)
among all possible distinct u. The number of computations is proportional to the size of U which
is given by:

"L N -2

ul=>_1 (6)

11



where m = min {N — 1, L}. The number of distinct arrangements grows very fast with N (e.g.,
for L = 12 and N = 6, |U| = 4368). This is computationally prohibitive if Cp (N ) is to be
obtained during connection setup time. Of course, if the traflic constraint function is known before
connection setup time, then Cy,(N ) can be computed off-line. It should be note that although the
number of distinct arrangements is that large, the number of possible values for C,,¢(N) no more
than N(N + 1)/2. This number is obtained by considering all possible values for C'(u, N). From
(4) and Proposition 2, the number of possible values for C'(u, N)is 8 (N —j+1) = N(N +1)/2.

Suppose that Cpp(N) is known for a given N. Let u* € U be a ‘best’ arrangement such that
C(u*,N) = Cop(N). It remains questionable if Cy (N — 1) and Cype(N 4 1) can be obtained by,
respectively, dropping or adding a stream to the N streams that are arranged according to u*. This
is an important issue because if it was possible to start N streams with the ‘best’ arrangement, it
is desirable that the N — 1 streams that remains after a video stream terminates still form a ‘best’
arrangement of N — 1 streams. Similarly, it is desirable that a ‘best’ arrangement of N 41 streams
can be obtained by adding a stream to a ‘best’ arrangement of N streams. There is a better chance
to obtain a best arrangement when adding a stream than when dropping a stream. For example,
if w* = (uj,ul,...,u¥y) is a ‘best” arrangement of N streams, then the (N 4 1)th stream can be
added with uy41 = k such that

C((u*qu-I-l = k)vN + 1) = I]Iélil C((u*qu-I-l = ])7N + 1) (7)

which requires only I computations of the effective bandwidth. However, the resulting arrangement
(ui,u3,...,uk, un4+1 = k) may not produce Copi(N + 1), but rather a suboptimal value.

In the following, we provide a closed-form expression for C\p¢(N) in terms of 1,40, Prazys Bmass
L, ), and N. More importantly, we show that it is possible to obtain Cop(N + 1) (Cope(N — 1))
by adding (removing) a stream to a ‘best’ arrangement of N streams. Since l45 > Praz > Bmae,

a lower bound on Cy,(N) can be deduced from Proposition 2 and Equations (4) and (5):

Imaac ‘|’ N - 1 Bmaac
Copt(N) Z ( N ) (8)

Hence, an arrangement u with C'(u, N) that equals the RHS of (8) must be a ‘best’ arrangement.

Let w* = (uj,...,uy) be an arrangement of N streams that is given by:
v =1(0,1,2,...,L-1,0,1,2,..., L —-1,...,0,1,2,.... N —wlL — 1) (9)
w times

12



where

w2 largest nonnegative integer k that satisfies N > kL (10)

We will show that u* is a ‘best’” arrangement of N streams. Notice that when N < L, then w =0

and u* reduces to

v =(0,1,2,...,N = 1) (11)
Consider the following cases:

Case 1: 1< N <@

Let the N streams be arranged according to «* in (11). Since N — 1 < @, for any streams 7 and j,

it must be true that |uf — uj| # a multiple of ¢. From Proposition 2, C(w*, N) must come from

a phase k with r; > 1. But for u*, r, = 0 or 7, = 1 (each stream is in a distinct phase). Thus,
during any phase k with rp = 1, there is exactly one stream that generates an I frame, and ¥V — 1

streams that generate B frames, implying that:

Imaac N -1 Bmaac
C(ur, Ny = Lmaz + = ) (12)

From (8), v* must be a ‘best’ arrangement. Notice that there can be more than one arrangement

that produces Cyp¢ (V). The rationale behind the particular choice of u* will be discussed later.

Case 2: N=0Q +1

In this case the lower bound of (8) cannot be achieved. To see that, consider an arrangement
of N streams, u = (uy,...,uy). If two streams or more are in the same phase, then C(u, N) >
(2l ar + (N — 2)Bpas)/N. On the other hand, if each stream is in a distinct phase, then there
must be at least two streams, ¢ and j, such that |u; — u;| = a multiple of @ !, in which case,

C(uy, N) > (Lnaw + Praz + (N = 2)Ba,)/N. Either way,

The last equality can be easily verified by examining the structure of «* in (11). Since N = @ + 1,
for any phase k with rp = 1, there is exactly one stream delivering an I frame, one stream delivering

a P frame, and N — 2 streams delivering B frames. Hence, u* is a best arrangement.

'In general, a set of distinct kX + 1 integers, where k is a nonnegative integer, must have at least k + 1 elements
which differ, pairwise, by a multiple of X.

13



Case 3: Q+ 1< N<L

This case is a generalization of Case 2. Let m be the largest integer such that N > m(). Similar
to the argument used in Case 2, it is easy to see that if every stream of an arbitrary arrangement
u is in a distinct phase, then there must be at least m + 1 streams whose phases differ, pairwise,

by a multiple of (). In this case,

Imaac ‘|’ umax ‘|’ (N - 1 - m)Bmax

>

(14)
On the other hand, suppose that at least two streams are in the the same phase. It can be shown
(see the appendix for details) that C'(u, V) satisfies:

SImax ‘|’ leax ‘|’ (N - S5 — l)Bmax
1
- (15)

Clu,N)>

where s > 2 and [+ s > m + 1. Since s > 1, the RHS of (15) is greater than the RHS of (14), and
thus either way C'(u, N) cannot be less than the RHS of (14). Thus, Cyp(N) is given by the RHS
of (14). Now consider u* as given in (11). Fach stream in w* is in a different phase. Moreover,

there is exactly m + 1 streams whose phases differ, pairwise, by a multiple of ¢). Hence,

* Imaw+mpmax+ N_l_mBmaac
C(u*, N) = Cop(N) = ](V ) (16)

Case 4: N > L

In this case it is not possible to assign each stream to a distinct phase. For «* in (9), it can be
shown that
(w + 1)Imaac + (m - w)Pmax + (N -1~ m)Bmax

Copt(N) = ~ =C(u",N) (17)

The proof to the first equality is similar to the proof of Case 3 (given in the appendix), and is
skipped for brevity. The second equality can be readily deduced from the structure of u*. Figure 7
summarizes the results from the above four cases.

As mentioned earlier, there can be several ‘best’ arrangements for a given N. u* was chosen
because it has the following important properties. If N streams are arranged as in (18), the (N +1)th
stream can be added resulting in a best arrangement of (N + 1) streams without disrupting the
original structure of the N streams. In other words, u* of (N + 1) streams can be obtained by
simply concatenating a single number to v™ of N streams. When N streams are arranged according

to u® and N < L, the removal of any stream will still result in a best arrangement. When N > L.,
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A best arrangement of N streams for N = 1,2,..., is given by:

w=1(0,1,2,...,L-1,0,1,2,....,L—1,...,0,1,2,...,N — wL — 1) (18)

w times

Optimal effective bandwidth is:

(w + 1)Imaac + (m - w)Pmax + (N -1~ m)Bmax

Conl V) = = (19)
where

w 2 largest nonnegative integer k that satisfies N > kL

m 2 largest nonnegative integer k that satisfies N > k@)

Figure 7: Best arrangement of V streams and the associated optimal effective bandwidth.

only the removal of certain streams preserves the optimality of the arrangement.

So far, we assumed that frame boundaries are aligned. However, even if frame boundaries are
allowed to have any arbitrary alignment, the best arrangement and the optimal bandwidth in this
case are still the same as in (18) and (19), respectively. The justification is quite simple; when
frames boundaries are not aligned, the effective bandwidth is greater than or equal the effective
bandwidth of some arrangement with aligned boundaries (for example, compare Figure 5 and 6).
Since the case of aligned boundaries is included in the generally non-aligned boundaries case, the
results in Figure 7 apply as well to the case of non-aligned frame boundaries.

In Figure 8, the variation of C,,;(N) (given as a percentage of the source peak rate, I,,4,) is
shown as a function of N, using different L and @ values. Maximum frame sizes (/,4, Praz, and
Byqz) are taken from the Wizard of Oz trace (see Section 3.2), which was compressed using L = 15
and @ = 3. For simplicity, the same maximum sizes are used in to obtain C,y(N) under other L
and ) values. Although one might expect that for a given movie, the maximum sizes of compressed
frames vary with L and @, our experiments (discussed below) suggest that compressing a video
segment using different (L, Q) pairs has little impact on I45, Pras, and Bie.

Several noteworthy observations can be inferred from Figure 8. First, as N increases, Cop( V)
decreases, but not monotonically, and converges slowly to some positive value. The limiting value

of Cyppe(N) can be determined from (19). For large N, w — N/L and m — N/(@). Thus,
VN
Cop = lim Cop(N) = (1/ D)o + (1/Q = 1/ 1) Prsac + (1 = 1/ @) Buae (20)

The limiting value of Cyp (V) is, in fact, achievable when N = kL for k = 1,2,3,..., implying
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Figure 8: Optimal effective bandwidth, Cp(N) as a function of the number of sources (N), using
different L and @. The values for C,,;(N) are given in percentage of I,,,, (source’s peak rate).
Maximum frame sizes are obtained from Wizard of Oz trace.

that the highest possible multiplexing gains are obtained whenever the number of multiplexed
streams is a multiple of L. For moderate and large N, C,p(N) is almost insensitive to N (compare
the plots for (L,Q)) = (15,3) and (L,Q) = (9,3). This is expected since P, is close to (but
smaller than) I;a.. When Prop ~ Loz, Cgpy in (20) reduces to (1/Q) Praz+(1—1/Q ) Bpas which
does not depend on L. On the other hand, the optimal effective bandwidth seems to depend heavily
on . In the above example, when L = 15 and @) is varied from @ = 1 (only I and P frames) to
Q =3, C(fpt decreased from C(fpt =84% I,,4z tO C(fpt = 40.5% I,,4,. Clearly, the relative impact of
L and @ depends on the relative values of I,,4:, Prnaz, and Bj,.;. In most cases, Py, is closer to
Lar than to By q;. We verified that by examining the traces of several MPEG-compressed movies.
The movies are listed in Table 2. Star War trace was provided by M. Garrett [3]. Advertisements
and Lecture traces were provided by E. Knightly [5]. Silence of the Lambs trace was provided by
O. Rose [8]. Table 2 gives the maximum frames sizes (in cells) for each trace, the compression
parameters, and the limit on the statistical multiplexing gain (given as a percentage of the source
peak rate).

To study the impact of L and () on the maximum sizes of I, P, and B frames, we chose a

segment from Wizard of Oz movie, and compressed it several times using different L and ¢ values.
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Trace Length (in frames) | Iz | Praz | Bmae | L | Q | (CF1/Imaz) X 100%
Wizard of Oz 41760 894 742 157 |15 | 3 41%
Star Wars 174136 483 | 454 169 | 12| 3 55%
Advertisements 16316 215 214 162 6 | 3 84%
Lecture 16316 131 92 32 6 |3 45%
Silence of the Lambs 40000 350 231 144 | 12| 3 53%

Table 2: Empirical MPEG traces for different video movies with various compression patterns
(frame sizes in cells). The last column shows (5, as a percentage of source peak rate.

The segment corresponds to 12600 frames (from frame No. 29191 to frame No. 41790 in the movie).
Table 3 depicts the compression patterns that were used and the measured I,,,,.:, Prae, and Bae.
In addition, the table gives the limiting value for Cy,¢(N), which is computed from (20). It is
clear that the compression pattern has a very insignificant impact on the maximum frames sizes
(note, however, that the overall average of frames sizes can considerably vary from one compression
pattern to another). This can be intuitively justified by the fact that a movie consists of several
‘scenes’. A scene can be loosely defined as a segment of the movie with relatively consistent level
of activity. Sizes of I frames (similarly, P and B frames) within a scene are close is value. Since
on the average a scene lasts for several seconds [7], changing the compression pattern (whose time
scale is smaller than one second) will have little effect on the maximum sizes of I, P, and B frames

within a scene.

Compression Pattern L | Q| Inaz | Prax | Brmaz | (€51 Imax) x 100%
I 1 1| 908 — — 100%
IP 2 1| 898 756 — 92.1%
IPP 3 1| 898 756 — 89.5%
IPPP 4 | 1| 896 756 — 88.3%
IPPPP 5 1| 896 740 — 86.1%
IBPB 4 12 | 896 733 161 54.4%
IBPBPB 6 | 2| 898 742 161 53.2%
IBPBPBPB & | 2 | 889 742 161 52.9%
IBPBPBPBPB 10| 2 | 894 742 161 52.2%
IBBPBB 6 | 3 | 898 719 157 41.7%
IBBPBBPBB 9 | 3| 896 742 157 41.2%
IBBPBBPBBPBB 121 3 | 896 742 157 40.7%
IBBPBBPBBPBBPBB | 15| 3 | 893 742 157 40.5%

Table 3: Encoding of a video segment using different compression patterns.

From the last column of Table 3, it is obvious that L has a very negligible effect on 7 ,, whereas

increasing () results in a significant reduction in €7 ;. However, a large () means more B frames

between successive I/P frames, which is undesirable from the perspective of the decoder. Hence,
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@) should be chosen such that it provides a good compromise between the decoder complexity (and

the associated decoding delay) and the multiplexing gain.

4 Summary

MPEG encoders often use a pre-specified compression pattern to determine the types of compressed
frames. The periodic and deterministic nature of this pattern can be used advantageously in reduc-
ing the bandwidth requirements of MPEG traffic streams. By means of statistical multiplexing, we
showed that the amount of bandwidth that must be allocated to a source while guaranteeing very
stringent QoS requirements (i.e., no cell losses and no queueing delay) can be less than the source
peak rate. Bandwidth gains are obtained by exploiting the structure of the compression pattern
of the multiplexed streams. The amount of bandwidth gain that can be achieved depends largely
of the synchronization structure (i.e., the arrangement) of the multiplexed streams. We measure
the bandwidth gain using the notion of effective bandwidth. Among all possible arrangements, we
give the form of the ‘best’” arrangement that has the optimal (i.e., minimum) effective bandwidth.
An expression for the optimal effective bandwidth was also derived. Examples of actual MPEG
streams from various compressed movies were presented and used to show the possible bandwidth
gains that can be obtained from statistical multiplexing of MPEG streams. The development in this
paper assumed that the multiplexed streams are homogeneous with respect to their compression
patterns and maximum frames sizes. In a future paper, we extend our development to the case of

heterogeneous streams.

Appendix

A Optimal Effective Bandwidth when )+ 1< N < L

In this appendix we prove that, when @ + 1 < N < L, C(u, N) for an arbitrary u satisfies the
following inequality:
Imaac ‘|’ umax ‘|’ (N - 1 - m)Bmax

>

(21)

where m is the largest possible integer that satisfies N > m@).

First, suppose that each stream has a distinct phase (i.e., u; # u; for all 7 # 7). This possibility
can occur because N < L. Then, there must be at least m + 1 streams whose phases differ pairwise
by a multiple of @ (if W = {571, 52, ..., Sn41} is the set of such streams, then |u; —u;| = a multiple
of @) for any S; and S; in W, 7 # j). Hence, the aggregate bit rate during any phase u;, where
S; € W, is greater than or equal the RHS of (21). From the definition of the effective bandwidth
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(see (3)), C(u, N) must be greater than or equal to the aggregate bandwidth during any phase.
Therefore, C'(u, N') must satisfy (21).
Next, suppose that at least two of the N streams have the same phase, i.e., 3 a phase 7 such

that r; > 2. Let

(1>

a max r; (22)

0<y<L-1
Note that @ > 2. Denote the jth stream by 5;, 7 = 1,2,..., N. We will use the term chain to refer
to a subset of the N streams whose phases differ pairwise by a multiple of @ (including streams
that have the same phase). For example, if N =9, L. = 15, Q = 3, and v = (0,0,0,1,2,3,4,5,6),
then one chain consists of the sources {57, 59, 53, 9, 99}, a second chain consists of {54, 57}, and

the last chain consists of {55, 5g}. The three chains are shown below. In this example, @ = 3.

S3 4 S5 S6 S7 S8 S9

S2

o o % o o %
oo o—eo

0 1, 2 3 /4 5 6 phase

From the definition of a chain, it is easy to see that there can be no more than ¢ chains
in a given arrangement. Let ¢ be the number of chains (¢ < Q). Let the chains be denoted
by Wi, Wa,...,W,, with corresponding sizes 71y,72,...,7, (3_;7; = N). For each chain W}, let
C;(u, N)be the maximum aggregate peak rate divided by N, where the maximization is taken only
over the time intervals that are composed of the phases of the streams in W;. For j = 1,...,q,

C;(u, N) can be given by:

n(jj)lmax + ng)Pmax + ng)Bmax

Ci(u,N)= v

(23)
where n(lj) + ng) + ng) = N. For any chain W;, the total number of streams sending I or P frames
during the phase of any stream in W; is given by 7;. Clearly, 5; is the same for all the phases of
streams in W; (see Proposition 1). At least one of the chains, say Wi, contains a streams that are
in the same phase, say phase . Hence, it must be true that Cq(u, N) results from the aggregate

bit rate during phase ¢. Therefore, n(ll) = a. Based on the definition of C'(u, N),

Clu,N) = jelg%.)iq} Ci(u,N) (24)
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which implies that

Z?:l C](uv N)

C(u,N) > (25)
q
. llmax Z;:l n(]]) + Pmax Z;:l ng) + Bmaac Zg:l(N - n(]) - ng)) (26)
= ~
Replacing ng) by n; — n(lj), and with some rearrangements, (26) becomes:
q (9) q , q ,
C(u, N) Z E(Imaac - Pmax) i=1 n[ ‘|’ Pmax Zj:l 77] ‘|’ Bmaac ijl(N - 77]) (27)
q N
From Proposition 2, n(lj) > 1for 7 =2,...,q. Moreover, n(ll) = a. Thus,
g .
Zn(I])Za—I—q—l (28)
J=1
Note that 2;1:1 n; = N and .0 > Ppae. Thus, (27) reduces to
1 -1 Imaac_Pmax NPmax N_N Bmaac
q N
which can be written as
Imaac leaac N - _l Bmaac
Clu, Ny 3 Sman ¥ e £ (N 25 2 ) (30)
N
where
-1
s & atae-1 (31)
q
;& Noo—qtl (32)
q

Note that (30) is the same as (15). We only need to show that s 4+ > m + 1. From (31) and (32),

we have
N _ N
s+l=—>— 33
>0 (33)
(since ¢ < Q). But N > m@, or equivalently, N > m@ + 1. Therefore,
1
s+1{>m+ 6 (34)

However, the expression for the effective bandwidth must consist of integer number of I, and
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P qr in the numerator of (4). Thus, it must be true that s and [ in (30) satisfy s +1 > m + 1.
When s+ 1> m+ 1, the RHS of (21) is smaller than the RHS of (30), which implies that C'(u, N)

satisfies (21) for any arrangement u. Therefore,

Imaac ‘|’ umax ‘|’ (N - 1 - m)Bmax
Copt(N) = + : (35)
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