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1 IntroductionOne of the major challenges in designing a BISDN/ATM network is to guarantee the quality-of-service (QoS) requirements for all transported streams without underutilizing the available band-width capacity. The QoS requirements, which are often measured by the cell loss rate and celldelay, can be easily satis�ed by allocating bandwidth based on the peak rates of the individualsources. However, due to the burstiness of many sources (i.e., large peak rate to mean rate ratio),source-peak-rate allocation results in low utilization. To increase the utilization, statistical multi-plexing can be used, which allows the available bandwidth to be shared among various streams on aneed basis. By means of statistical multiplexing, the network can allocate an aggregate amount ofbandwidth that is less than the sum of peak rates of the individual streams. This conventional useof statistical multiplexing results in possible cell queueing and bu�er over
ow. The amount of celldelay and cell loss depend on the tra�c model used to characterize the multiplexed streams. Be-cause of the statistical nature of commonly used tra�c models, the use of statistical multiplexingis usually limited to sources with statistical QoS requirements. Typically, a stream with deter-ministic QoS requirements (e.g., no cell losses) is not statistically multiplexed with other streams.Depending on its delay requirement, such a stream is either allocated its peak rate, or (if the somebu�ering delay can be tolerated) its peak rate over a �nite interval [5].In this paper, we focus on compressed video streams that are generated by MPEG encoders.We show that, contrary to the general belief, statistical multiplexing can be used to an advantagewith this type of tra�c while providing stringent and deterministic QoS guarantees. By exploitingthe deterministic and periodic manner in which frame types in an MPEG stream are generated, weshow that MPEG streams can be statistically multiplexed (with an e�ective bandwidth per sourcethat is less than the source peak rate) without experiencing any cell losses or delays. The e�ectivebandwidth depends on the relative degree of synchronization among the multiplexed streams. Weprovide a simple algorithm for computing the e�ective bandwidth for an arbitrary synchronizationstructure. This algorithm can be used as part of call admission control at a switching/multiplexingnetwork node. In situations where it is possible to have some control on the starting times ofMPEG streams (e.g., in a VOD system), we give the form of the best synchronization structure forthe multiplexed MPEG streams that has the optimal (minimum) e�ective bandwidth.The rest of the paper is structured as follows. The deterministic tra�c model that is usedto characterize MPEG sources is described in Section 2. The e�ective bandwidth for multiplexedMPEG streams is discussed in Section 3. In the same section, we derive the formulae for the `best'synchronization structure and the associated optimal e�ective bandwidth. The paper is concludedin Section 4. 1



2 Characterization of an MPEG Stream2.1 Compression PatternAn MPEG encoder employs several modes of compression to generate three types of compressedframes: Intra-coded (I ), Predictive (P), and Bidirectional (B) frames. I frames are compressedusing intraframe coding (e.g., DCT) only, while P and B frames are compressed using intraframecoding as well as motion compensation techniques (prediction techniques for P frames and bothprediction and interpolation techniques for B frames). As a result, I frames are, in general, thelargest in size, followed by P frames, and �nally B frames (the frame size refers to the number of bitsused to encode the frame). To maintain a constant-quality motion picture, frames are compressedat a constant frame rate (e.g., 30 frames/sec).An important feature of MPEG encoders is the manner in which frame types are generated.When compressing a video sequence, the encoder uses a pre-de�ned compression pattern to de-termine the types of the compressed frames. The compression pattern de�nes the number andtemporal order of P and B frames to be generated between two successive I frames. The samecompression pattern is used repeatedly to compress the whole video sequence. An example of thecompression pattern is shown in Figure 1-a. Because the sizes of compressed frames are largelya�ected by their types (as well as the scene dynamics), one should expect a signi�cant impact ofthe periodicity of the compression pattern on the characteristics of the tra�c and, consequently,the bandwidth allocation strategies.
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respect to frame types. Therefore, we will ignore the �rst few frames in a stream, and assume,for simplicity, that frame types in an MPEG stream are represented by exact replications of thecompression pattern.2.2 Deterministic Tra�c ModelSeveral tra�c models were proposed for the characterization of compressed video tra�c (see [2] andthe references therein). Most of these models are probabilistic in nature, and thus, cannot be usedto provide deterministic guarantees. To support deterministic QoS requirements, which is the focusof this paper, a deterministic model for an MPEG source is needed. Intuitively, a deterministiccharacterization can be constructed using bounds on the actual bit rate. In [5], Knightly et al.proposed a simple deterministic approach to characterize a VBR stream using a tra�c constraintfunction. The same methodology is adopted in this paper, and is explained below.Consider an MPEG stream that consists of a sequence of frames that are generated at a constantrate f . We assume that video bits in a frame are packetized into ATM cells (each 48 bytes of videocorresponds to one cell). Cells within a frame are distributed evenly over the frame period. Hence,the bit rate over a frame period is given by f times the frame size. Let Imax, Pmax, and Bmax be,respectively, the maximum sizes of I , P , and B frames in the stream. Using these three valuesand the compression pattern of the stream, a tra�c constraint function, b(t), can be de�ned whichbounds the actual bit rate (t here is measured in units of frame periods). An example of b(t) isshown in Figure 2 based on the compression pattern of Figure 1-a. Note that b(t) is a piecewiseconstant function.b(t) (in cells/frame)ImaxPmaxBmax TimeFigure 2: Tra�c constraint function based on the compression pattern of Figure 1(a).3



Because of its regularity, the compression pattern can be characterized by two parameters:L : number of frames between two consecutive I frames in an MPEG stream.Q : number of frames between an I frame and the subsequent I/P frames (whichever comes�rst) in an MPEG stream.Examples of various compression patterns and their associated L and Q values are shown in Table 1.The regularity of the compression pattern means that L is an integer multiple of Q. Notice thatit is possible to have L = Q = 1, in which case only I frames are generated (this is similar to astream generated by a JPEG encoder).Compression Pattern L QIBBPBB{IBBPBB � � � 6 3IBBPBBPBBPBBPBB{IBBPBBPBB � � � 15 3IBBBPBBB{IBBBPBBB � � � 8 4IPPP{IPPP � � � 4 1I {I {I {I {I � � � 1 1Table 1: Compression patterns and their associated L and Q values.Consequently, b(t) is fully speci�ed by �ve parameters: Imax, Pmax, Bmax, L, and Q. In thispaper, the tra�c constraint function is used to characterize an MPEG stream.3 Statistical Multiplexing of MPEG Streams3.1 PreliminariesWe consider MPEG streams with very stringent requirements that consist of no losses and noqueueing delays. Typically, these requirements are met by allocating bandwidth based on the peakbit rate of each source, resulting in very low utilization. Network utilization can be improvedby temporal averaging in which video frames are bu�ered before entering the network. However,the queueing delay incurred in bu�ering precludes its use for delay-sensitive tra�c. Moreover, anexcessive amount of bu�er is often needed to maintain a reasonable level of utilization. Networkutilization can also be improved using statistical multiplexing which spatially averages the bitrate of several streams. Typically, statistical multiplexing have not been used in conjunction withdeterministic QoS guarantees, mainly due to the statistical behavior of the sources. The situationis di�erent in the case of MPEG streams. Because of the deterministic structure of the compressionpattern, and using the tra�c constraint function to characterize an MPEG source, we show thatstatistical multiplexing can be used advantageously with MPEG sources while supporting stringent,deterministic QoS requirements. 4



The bene�ts of statistical multiplexing for MPEG streams with deterministic QoS guaranteescan be demonstrated by the following example. Consider two streams that are characterized by thesame tra�c constraint function, b(t), with L = 6, Q = 3, and Imax > Pmax > Bmax. Suppose thatthe second stream started exactly one frame period after the start of the �rst stream (see Figure 3).Then, an upper bound on the bit rate of the superposition of the two streams is given by:btot(t) = b(t) + b(t � 1) (1)which is clearly less than 2b(t). In fact, it is easy to see that:C 4= 1N maxt�0 btot(t) = Imax +Bmax2 < Imax (2)
multiplexersource 1source 2 BB IBBI BB P BIBPBFigure 3: An example that shows the reduction in bandwidth requirements when two MPEGstreams are multiplexed.The quantity C is the e�ective bandwidth (measured in cells per frame period) that must beallocated to each stream to guarantee lossless transmission with no delay. The notion of e�ectivebandwidth (also known as equivalent capacity) was investigated in several previous studies in astochastic framework (for example, see [4] and [1]). In this paper, the e�ective bandwidth is used in adeterministic framework to guarantee zero cell loss rate and no queueing delays. By superposing thetwo streams and allocating bandwidth for the aggregate tra�c, the required amount of bandwidthper source decreased from Imax (source-peak-rate allocation) to (Imax+Bmax)=2. The superpositioncan be achieved via statistical multiplexing. A very small bu�er is needed at the input to themultiplexer in case two cells from both streams arrive simultaneously at the multiplexer (the sizeof this bu�er is one cell). Notice that bandwidth gains from statistical multiplexing are obtainedvia spatial averaging, and not temporal averaging (i.e., bu�ering).From the above example, it is clear that bandwidth gains from statistical multiplexing depend onthe degree of synchronization among the multiplexed MPEG streams. In this context, the degree ofsynchronization is used to measure the di�erences in the starting times of the multiplexed streams.5



If the two streams were sending I frames simultaneously, then C = Imax, and statistical multiplexingintroduces no advantages over source-peak-rate allocation. Fortunately, the probability that bothstreams are in the same phase (i.e., sending I frames simultaneously) is small.Next, we formally quantify the bandwidth gains obtained by multiplexing an arbitrary numberof MPEG streams having an arbitrary synchronization structure. Two cases are considered. The�rst case is when MPEG sources have an arbitrary synchronization structure with regard to theircompression patterns, but the boundaries of the frames are exactly aligned. In this case the systemis slotted with a time unit of one frame period. The second case is more general than the �rstcase, where frames boundaries need not be necessarily aligned. Intuitively, the �rst case results inbetter bandwidth gains (or higher probability to achieve these gains) than the second case. In avideo server, exact alignment of frame boundaries can be imposed by delaying the starting timeof an MPEG stream by no more than a frame period. This delay amounts to less than 1/30 of asecond (at f = 30 frames/sec), and will not be noticeable by a user of a video-on-demand system.If multiplexing is to take place at an intermediate network node, then a small amount of bu�ering(less than a frame) is needed to exactly align frame boundaries. Even when frame boundaries arenot aligned, some bandwidth gains may still be obtained.3.2 E�ective Bandwidth for Multiplexed MPEG Streams3.2.1 Case of Aligned Frame BoundariesLet N be the number of multiplexed MPEG streams. We assume that all streams are characterizedby the same constraint function, b(t), which is speci�ed by (Imax; Pmax; Bmax; L; Q), withImax > Pmax > Bmax. When the streams have di�erent maximum values for the sizes of I , P , andB frames (but the same L and Q), a common constraint function can be obtained by taking Imaxas the largest I frame in all the streams (similarly, for Pmax and Bmax). Let uj be the di�erence (inframe periods) between the arrival time of an I frame from the jth MPEG stream and the arrivaltime of the most recent I frame from the �rst stream. Because of the periodicity of the compressionpattern and the fact that the same compression pattern is used in all the streams, uj is constantthroughout the connection hold time. For the present case of aligned frame boundaries, uj can takeany integer value in f0; : : : ; L�1g, u1 4= 0. In the example of Figure 3, u2 = 1. The synchronizationstructure of the N sources can be completely speci�ed by the (N�1)-tuple (u2; u3; : : : ; uN). Such atuple will be referred to as an arrangement . Let U be the set of all possible distinct arrangements ofN streams. For a given arrangement u = (u2; u3; : : : ; uN) and N , we de�ne the e�ective bandwidth6



per source as: C(u;N) 4= 1N maxt�0  NXi=1 b(t � ui)! (3)which can also be written as:C(u;N) = nIImax + nPPmax + nBBmaxN (4)for some nonnegative integers nI , nP , and nB where nI + nP + nB = N . In the worst situation, allthe streams send I frames simultaneously, in which case, nI = N , nP = nB = 0, and the e�ectivebandwidth is the same as the source peak rate. Notice that C(u;N) is given in units of cells/frameperiod which translates to f � C(u;N) � 53 � 8 bits/sec.Computing C(u;N) from (3) requires taking the maximum of L terms, each of which is the sumof N values. Note that the sum in the RHS of (3) is a piece-wise constant function that is periodicin L. A numerical procedure for computing C(u;N) is given in Figure 4 and is illustrated below.Input: u, L, Q, N , Imax, Pmax, BmaxOuput: C(u;N)Initialization: for k = 0; 1; : : : ; L� 1 dork := number of streams that are in phase kend forC(u;N) := Bmax /* a lower bound on C(u;N) */Loop: for k = 0; 1; : : : ; L� 1 doz := 0 /* number of streams that generate P frames during phase k */for j = 1; 2; : : : ; L=Q� 1 do /* compute z for phase k */x := modL(k + jQ)z := z + rx /* update z */end forY := (rkImax + zPmax + (N � rk � z)Bmax) =NC(u;N) := max(C(u;N); Y ) /* update C(u;N) */end forFigure 4: Algorithm for computing C(u;N).For i = 2; : : : ; N , ui can be obtained by implementing a counter at the multiplexing node,which is initialized with the �rst frame of the �rst admitted stream, and is incremented everyframe period. The counter goes from 0 up to L � 1 and then starts again. When the ith stream7



arrives, its ui is set to the current value of the counter. A table of (i; ui) pairs is maintained, andis used to execute the algorithm in Figure 4. The ith stream is said to be in phase k if ui = k.The algorithm requires the computation of rk which is the number of streams that are in the samephase.The inner `for' loop in the algorithm computes the number of streams that generate P framesduring phase k. Such streams must be at frame distances of Q or multiples of Q from streams ofphase k. These distances are given by x in the `for' loop. The number of computations requiredto obtain C(u;N) is O(L2=Q) which is relatively small (assuming that the values for rk are pre-computed, and are updated whenever a new stream is added). To further reduce the requirednumber of computations, we introduce the following results.Proposition 1 Consider any two streams i and j with ui = k1 and uj = k2, k1 6= k2. If duringphase k1 stream j sends a B frame, then during phase k2 stream i sends a B frame. Similarly, ifduring phase k1 stream j sends a P frame, then during phase k2 stream i sends a P frame. 2The proof Proposition 1 follows immediately from the fact that all the streams have the sameperiodic compression pattern.Proposition 2 In (4), nI � 1 for any arrangement u = (u1; : : : ; uN).Proof: Suppose that nI = 0.First, consider the case when nP = 0. Then C(u;N) = NBmax=N . Since u1 = 0 (by de�nition),r0 � 1. Thus, during phase 0 the aggregate peak rate btot(t) � Imax + (N � 1)Bmax > NC(u;N),which is contrary to the de�nition of C(u;N).Next, consider the case when nP � 1. Let phase k be the phase during which btot(t)=N = C(u;N).By assumption, rk = 0 (since nI = 0). Since nP � 1, there exists at least one stream j withjuj � ukj = a multiple of Q. During phase uj , source j sends I frames. Also, any other streamwhich sends P frames during phase uk will be sending either I frames or P frames during phaseuj . Thus, btot(t) during phase uj is larger than btot(t) during phase uk, which is contrary to thede�nition of C(u;N). Hence, nI � 1. 2Since nI � 1, the computational requirements of C(u;N) can be further reduced by excludingany phase k that has rk = 0 from the body of the outer `for' loop in Figure 4.The following example demonstrates the dependency of C(u;N) on the arrangement u. UsingN = 3, L = 15, and Q = 3, the e�ective capacity C(u;N) was computed for di�erent arrangements8



u = (u1; u2; u3) (with u1 4= 0). Figure 5 shows C(u;N) normalized to Imax (the source peak rate)for all possible values of u3 (from 0 to L � 1) and u2 = 0; 1; 2. Maximum values for frame sizeswere taken from the frame-size trace of the Wizard of Oz movie which was compressed using anMPEG encoder [6]. Accordingly, Imax = 894, Pmax = 742, and Bmax = 157 (in cells). It isclear that except for one possible arrangement, u = (0; 0; 0), statistical multiplexing can reducethe bandwidth requirements without sacri�cing any performance guarantees. In fact, even whenthe number of sources is as small as 3, the bandwidth requirement for a stream can be reduced insome cases to less than 50% of the source peak rate. The exact amount of reduction depends onthe synchronization structure. If all possible arrangements can occur with equal probability, thenthe chance of not achieving any gains from multiplexing is 1=LN�1 (which is the probability thatui = 0 for all i 2 f2; : : : ; Ng).
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Figure 5: E�ective bandwidth for di�erent arrangements in the case of aligned frame boundaries.Di�erent arrangements, u = (u1; u2; u3), are obtained by varying u3 from 0 to L � 1 (using onlyinteger values), with u2 = 0; 1; 2 and u1 = 0 (N = 3, L = 15, Q = 3).3.2.2 Case of Non-Aligned Frame BoundariesIn the previous section, it was assumed that frame boundaries from di�erent streams are aligned.This alignment can be enforced using a frame-bu�er for each stream. When frame boundaries are9



aligned, there is more probability to achieve bandwidth gains through statistical multiplexing thanin the case of non-aligned frames. Consider, for example, the two streams in Figure 3. If frameboundaries are aligned, then the probability of having C(u;N) = Imax is Prfu1 = u2 = 0g = 1=L(assuming all that all possibilities are equally probable). However, if frame boundaries are notaligned (e.g., source 2 starts after a fraction of a frame period from the start of source 1), thenthe probability of C(u;N) = Imax is the probability that the two sources simultaneously generateI frames for any time duration. This is the same as the probability that the two sources overlapin their phases, and is given by 2=L. In general, the probability of not gaining anything frommultiplexing N streams when frame boundaries are arbitrarily aligned is 2=LN�1 (compared to1=LN�1 when frames are aligned).When frame boundaries are not aligned, the algorithm in Figure 4 can still be used to computeC(u;N), with slight modi�cations. Since, in this case, the lag between the jth stream (j = 2; : : : ; N)and the 1st stream can take non-integer values, two phases are associated with each stream (exceptfor the �rst stream). Thus, if the lag between the arrival of an I frame in the jth stream and thearrival of the most recent I frame in the �rst stream is 3.2 frame periods, then the jth stream isassigned to both phases 3 and 4. When computing rk in Figure 4, a stream with a non-integer phaseis counted twice. This does not mean that the stream contributes two terms to the computation ofthe aggregate bit rate during a given phase, but rather its contribution is the largest of two terms.Hence, the most inner loop in the algorithm must be modi�ed to ensure that z does not exceedN � rk. A statement such as z = min(z;N � rk) should be inserted after the end of the most inner'for' loop. Figure 6 shows an example of the e�ective bandwidth (given in percentage of sourcepeak rate) for di�erent arrangements in the case of non-aligned frames. The same parameters asin Figure 5 are used. However, in this case u3 is continuously varied, while in Figure 5 u3 assumedonly integer values. Clearly, the proportion of arrangements that result in signi�cant bandwidthgains is smaller in the case of non-aligned frames. In fact, the e�ective bandwidth in this case isless than half of the source peak rate only at a �nite number of values for u3. For example, whenu2 = 1, C(u;N) < 0:5Imax only when u3 = 2; 5; 8; and 11. Assuming that u3 is random withuniform distribution in [0; L), the probability that C(u;N) < 50%Imax is zero. Nevertheless, thereis a high probability that C(u;N)< 70% Imax.3.3 \Optimal" E�ective BandwidthFrom the previous section, it is clear that C(u;N) varies with u. It is, thus, natural to seek the\best" arrangement that produces the \optimal" e�ective bandwidth for N multiplexed MPEGstreams (Copt(N)). In this section, we obtain the expression for Copt(N) and the arrangement10
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Figure 6: E�ective bandwidth in the case of non-aligned frame boundaries. u3 is continuouslyvaried in the interval [0; L) with u2 = 0; 1; 2 and u1 = 0 (L = 15, Q = 3).(in fact, one of the arrangements) that results in Copt(N). We also address the issues related tocomputing Copt(N). First, lets de�ne the optimal e�ective bandwidth:Copt(N) 4= minu2U C(u;N) (5)where U is the set of all possible distinct arrangements of N streams (distinct in the sense that allpermutations of the elements of a given u are counted as one distinct arrangement). We will assumethroughout this section that frame boundaries are aligned. Extension to the case of non-alignedframe boundaries is straightforward, since, as we show later, the optimal bandwidth when frameboundaries are generally non-aligned occurs for an arrangement with aligned frame boundaries(note that aligned frame boundaries are special cases of generally non-aligned boundaries).Computing Copt(N) directly from (5) requires an exhaustive search for the minimum C(u;N)among all possible distinct u. The number of computations is proportional to the size of U whichis given by: jUj = mXi=10@ Li 1A0@ N � 2i� 1 1A (6)11



where m = min fN � 1; Lg. The number of distinct arrangements grows very fast with N (e.g.,for L = 12 and N = 6, jUj = 4368). This is computationally prohibitive if Copt(N) is to beobtained during connection setup time. Of course, if the tra�c constraint function is known beforeconnection setup time, then Copt(N) can be computed o�-line. It should be note that although thenumber of distinct arrangements is that large, the number of possible values for Copt(N) no morethan N(N + 1)=2. This number is obtained by considering all possible values for C(u;N). From(4) and Proposition 2, the number of possible values for C(u;N) is PNi=1(N� j+1) = N(N+1)=2.Suppose that Copt(N) is known for a given N . Let u� 2 U be a `best' arrangement such thatC(u�; N) = Copt(N). It remains questionable if Copt(N � 1) and Copt(N + 1) can be obtained by,respectively, dropping or adding a stream to the N streams that are arranged according to u�. Thisis an important issue because if it was possible to start N streams with the `best' arrangement, itis desirable that the N � 1 streams that remains after a video stream terminates still form a `best'arrangement of N � 1 streams. Similarly, it is desirable that a `best' arrangement of N +1 streamscan be obtained by adding a stream to a `best' arrangement of N streams. There is a better chanceto obtain a best arrangement when adding a stream than when dropping a stream. For example,if u� = (u�1; u�2; : : : ; u�N) is a `best' arrangement of N streams, then the (N + 1)th stream can beadded with uN+1 = k such thatC((u�; uN+1 = k); N + 1) = minj2L C((u�; uN+1 = j); N + 1) (7)which requires only L computations of the e�ective bandwidth. However, the resulting arrangement(u�1; u�2; : : : ; u�N ; uN+1 = k) may not produce Copt(N + 1), but rather a suboptimal value.In the following, we provide a closed-form expression for Copt(N) in terms of Imax, Pmax, Bmax,L, Q, and N . More importantly, we show that it is possible to obtain Copt(N + 1) (Copt(N � 1))by adding (removing) a stream to a `best' arrangement of N streams. Since Imax > Pmax > Bmax,a lower bound on Copt(N) can be deduced from Proposition 2 and Equations (4) and (5):Copt(N) � Imax + (N � 1)BmaxN (8)Hence, an arrangement u with C(u;N) that equals the RHS of (8) must be a `best' arrangement.Let u� = (u�1; : : : ; u�N) be an arrangement of N streams that is given by:u� = (0; 1; 2; : : : ; L� 1; 0; 1; 2; : : : ; L� 1; : : : ;| {z }w times 0; 1; 2; : : : ; N � wL� 1) (9)12



where w 4= largest nonnegative integer k that satis�es N > kL (10)We will show that u� is a `best' arrangement of N streams. Notice that when N � L, then w = 0and u� reduces to u� = (0; 1; 2; : : : ; N � 1) (11)Consider the following cases:Case 1: 1 � N � QLet the N streams be arranged according to u� in (11). Since N � 1 < Q, for any streams i and j,it must be true that ���u�i � u�j ��� 6= a multiple of Q. From Proposition 2, C(u�; N) must come froma phase k with rk � 1. But for u�, rk = 0 or rk = 1 (each stream is in a distinct phase). Thus,during any phase k with rk = 1, there is exactly one stream that generates an I frame, and N � 1streams that generate B frames, implying that:C(u�; N) = Imax + (N � 1)BmaxN (12)From (8), u� must be a `best' arrangement. Notice that there can be more than one arrangementthat produces Copt(N). The rationale behind the particular choice of u� will be discussed later.Case 2: N = Q+ 1In this case the lower bound of (8) cannot be achieved. To see that, consider an arrangementof N streams, u = (u1; : : : ; uN). If two streams or more are in the same phase, then C(u;N) �(2Imax + (N � 2)Bmax)=N . On the other hand, if each stream is in a distinct phase, then theremust be at least two streams, i and j, such that jui � uj j = a multiple of Q 1, in which case,C(u;N)� (Imax + Pmax + (N � 2)Bmax)=N . Either way,C(u;N) � Copt(N) = Imax + Pmax + (N � 2)BmaxN = C(u�; N) (13)The last equality can be easily veri�ed by examining the structure of u� in (11). Since N = Q+ 1,for any phase k with rk = 1, there is exactly one stream delivering an I frame, one stream deliveringa P frame, and N � 2 streams delivering B frames. Hence, u� is a best arrangement.1In general, a set of distinct kX + 1 integers, where k is a nonnegative integer, must have at least k + 1 elementswhich di�er, pairwise, by a multiple of X. 13



Case 3: Q+ 1 < N � LThis case is a generalization of Case 2. Let m be the largest integer such that N > mQ. Similarto the argument used in Case 2, it is easy to see that if every stream of an arbitrary arrangementu is in a distinct phase, then there must be at least m + 1 streams whose phases di�er, pairwise,by a multiple of Q. In this case,C(u;N)� Imax +mPmax + (N � 1�m)BmaxN (14)On the other hand, suppose that at least two streams are in the the same phase. It can be shown(see the appendix for details) that C(u;N) satis�es:C(u;N) � sImax + lPmax + (N � s � l)BmaxN (15)where s � 2 and l+ s � m+ 1. Since s > 1, the RHS of (15) is greater than the RHS of (14), andthus either way C(u;N) cannot be less than the RHS of (14). Thus, Copt(N) is given by the RHSof (14). Now consider u� as given in (11). Each stream in u� is in a di�erent phase. Moreover,there is exactly m+ 1 streams whose phases di�er, pairwise, by a multiple of Q. Hence,C(u�; N) = Copt(N) = Imax +mPmax + (N � 1�m)BmaxN (16)Case 4: N > LIn this case it is not possible to assign each stream to a distinct phase. For u� in (9), it can beshown that Copt(N) = (w+ 1)Imax + (m� w)Pmax + (N � 1�m)BmaxN = C(u�; N) (17)The proof to the �rst equality is similar to the proof of Case 3 (given in the appendix), and isskipped for brevity. The second equality can be readily deduced from the structure of u�. Figure 7summarizes the results from the above four cases.As mentioned earlier, there can be several `best' arrangements for a given N . u� was chosenbecause it has the following important properties. IfN streams are arranged as in (18), the (N+1)thstream can be added resulting in a best arrangement of (N + 1) streams without disrupting theoriginal structure of the N streams. In other words, u� of (N + 1) streams can be obtained bysimply concatenating a single number to u� of N streams. When N streams are arranged accordingto u� and N � L, the removal of any stream will still result in a best arrangement. When N > L,14



A best arrangement of N streams for N = 1; 2; : : :, is given by:u� = (0; 1; 2; : : : ; L� 1; 0; 1; 2; : : : ; L� 1; : : : ;| {z }w times 0; 1; 2; : : : ; N � wL� 1) (18)Optimal e�ective bandwidth is:Copt(N) = (w + 1)Imax + (m� w)Pmax + (N � 1�m)BmaxN (19)where w 4= largest nonnegative integer k that satis�es N > kLm 4= largest nonnegative integer k that satis�es N > kQFigure 7: Best arrangement of N streams and the associated optimal e�ective bandwidth.only the removal of certain streams preserves the optimality of the arrangement.So far, we assumed that frame boundaries are aligned. However, even if frame boundaries areallowed to have any arbitrary alignment, the best arrangement and the optimal bandwidth in thiscase are still the same as in (18) and (19), respectively. The justi�cation is quite simple; whenframes boundaries are not aligned, the e�ective bandwidth is greater than or equal the e�ectivebandwidth of some arrangement with aligned boundaries (for example, compare Figure 5 and 6).Since the case of aligned boundaries is included in the generally non-aligned boundaries case, theresults in Figure 7 apply as well to the case of non-aligned frame boundaries.In Figure 8, the variation of Copt(N) (given as a percentage of the source peak rate, Imax) isshown as a function of N , using di�erent L and Q values. Maximum frame sizes (Imax, Pmax, andBmax) are taken from theWizard of Oz trace (see Section 3.2), which was compressed using L = 15and Q = 3. For simplicity, the same maximum sizes are used in to obtain Copt(N) under other Land Q values. Although one might expect that for a given movie, the maximum sizes of compressedframes vary with L and Q, our experiments (discussed below) suggest that compressing a videosegment using di�erent (L;Q) pairs has little impact on Imax, Pmax, and Bmax.Several noteworthy observations can be inferred from Figure 8. First, as N increases, Copt(N)decreases, but not monotonically, and converges slowly to some positive value. The limiting valueof Copt(N) can be determined from (19). For large N , w! N=L and m! N=Q. Thus,C�opt 4= limN!1Copt(N) = (1=L)Imax + (1=Q� 1=L)Pmax + (1� 1=Q)Bmax (20)The limiting value of Copt(N) is, in fact, achievable when N = kL for k = 1; 2; 3; : : :, implying15
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Figure 8: Optimal e�ective bandwidth, Copt(N) as a function of the number of sources (N), usingdi�erent L and Q. The values for Copt(N) are given in percentage of Imax (source's peak rate).Maximum frame sizes are obtained from Wizard of Oz trace.that the highest possible multiplexing gains are obtained whenever the number of multiplexedstreams is a multiple of L. For moderate and large N , Copt(N) is almost insensitive to N (comparethe plots for (L;Q) = (15; 3) and (L;Q) = (9; 3). This is expected since Pmax is close to (butsmaller than) Imax. When Pmax � Imax, C�opt in (20) reduces to (1=Q)Pmax+(1�1=Q)Bmax whichdoes not depend on L. On the other hand, the optimal e�ective bandwidth seems to depend heavilyon Q. In the above example, when L = 15 and Q is varied from Q = 1 (only I and P frames) toQ = 3, C�opt decreased from C�opt = 84% Imax to C�opt = 40:5% Imax. Clearly, the relative impact ofL and Q depends on the relative values of Imax, Pmax, and Bmax. In most cases, Pmax is closer toImax than to Bmax. We veri�ed that by examining the traces of several MPEG-compressed movies.The movies are listed in Table 2. Star War trace was provided by M. Garrett [3]. Advertisementsand Lecture traces were provided by E. Knightly [5]. Silence of the Lambs trace was provided byO. Rose [8]. Table 2 gives the maximum frames sizes (in cells) for each trace, the compressionparameters, and the limit on the statistical multiplexing gain (given as a percentage of the sourcepeak rate).To study the impact of L and Q on the maximum sizes of I , P , and B frames, we chose asegment from Wizard of Oz movie, and compressed it several times using di�erent L and Q values.16



Trace Length (in frames) Imax Pmax Bmax L Q (C�opt=Imax)� 100%Wizard of Oz 41760 894 742 157 15 3 41%Star Wars 174136 483 454 169 12 3 55%Advertisements 16316 215 214 162 6 3 84%Lecture 16316 131 92 32 6 3 45%Silence of the Lambs 40000 350 231 144 12 3 53%Table 2: Empirical MPEG traces for di�erent video movies with various compression patterns(frame sizes in cells). The last column shows C�opt as a percentage of source peak rate.The segment corresponds to 12600 frames (from frame No. 29191 to frame No. 41790 in the movie).Table 3 depicts the compression patterns that were used and the measured Imax, Pmax, and Bmax.In addition, the table gives the limiting value for Copt(N), which is computed from (20). It isclear that the compression pattern has a very insigni�cant impact on the maximum frames sizes(note, however, that the overall average of frames sizes can considerably vary from one compressionpattern to another). This can be intuitively justi�ed by the fact that a movie consists of several`scenes'. A scene can be loosely de�ned as a segment of the movie with relatively consistent levelof activity. Sizes of I frames (similarly, P and B frames) within a scene are close is value. Sinceon the average a scene lasts for several seconds [7], changing the compression pattern (whose timescale is smaller than one second) will have little e�ect on the maximum sizes of I , P , and B frameswithin a scene.Compression Pattern L Q Imax Pmax Bmax (C�opt=Imax)� 100%I 1 1 908 | | 100%IP 2 1 898 756 | 92.1%IPP 3 1 898 756 | 89.5%IPPP 4 1 896 756 | 88.3%IPPPP 5 1 896 740 | 86.1%IBPB 4 2 896 733 161 54.4%IBPBPB 6 2 898 742 161 53.2%IBPBPBPB 8 2 889 742 161 52.9%IBPBPBPBPB 10 2 894 742 161 52.2%IBBPBB 6 3 898 719 157 41.7%IBBPBBPBB 9 3 896 742 157 41.2%IBBPBBPBBPBB 12 3 896 742 157 40.7%IBBPBBPBBPBBPBB 15 3 893 742 157 40.5%Table 3: Encoding of a video segment using di�erent compression patterns.From the last column of Table 3, it is obvious that L has a very negligible e�ect on C�opt, whereasincreasing Q results in a signi�cant reduction in C�opt. However, a large Q means more B framesbetween successive I/P frames, which is undesirable from the perspective of the decoder. Hence,17



Q should be chosen such that it provides a good compromise between the decoder complexity (andthe associated decoding delay) and the multiplexing gain.4 SummaryMPEG encoders often use a pre-speci�ed compression pattern to determine the types of compressedframes. The periodic and deterministic nature of this pattern can be used advantageously in reduc-ing the bandwidth requirements of MPEG tra�c streams. By means of statistical multiplexing, weshowed that the amount of bandwidth that must be allocated to a source while guaranteeing verystringent QoS requirements (i.e., no cell losses and no queueing delay) can be less than the sourcepeak rate. Bandwidth gains are obtained by exploiting the structure of the compression patternof the multiplexed streams. The amount of bandwidth gain that can be achieved depends largelyof the synchronization structure (i.e., the arrangement) of the multiplexed streams. We measurethe bandwidth gain using the notion of e�ective bandwidth. Among all possible arrangements , wegive the form of the `best' arrangement that has the optimal (i.e., minimum) e�ective bandwidth.An expression for the optimal e�ective bandwidth was also derived. Examples of actual MPEGstreams from various compressed movies were presented and used to show the possible bandwidthgains that can be obtained from statistical multiplexing of MPEG streams. The development in thispaper assumed that the multiplexed streams are homogeneous with respect to their compressionpatterns and maximum frames sizes. In a future paper, we extend our development to the case ofheterogeneous streams. AppendixA Optimal E�ective Bandwidth when Q+ 1 < N � LIn this appendix we prove that, when Q + 1 < N � L, C(u;N) for an arbitrary u satis�es thefollowing inequality: C(u;N)� Imax +mPmax + (N � 1�m)BmaxN (21)where m is the largest possible integer that satis�es N > mQ.First, suppose that each stream has a distinct phase (i.e., ui 6= uj for all i 6= j). This possibilitycan occur because N � L. Then, there must be at least m+1 streams whose phases di�er pairwiseby a multiple of Q (if W = fS1; S2; : : : ; Sm+1g is the set of such streams, then jui�uj j = a multipleof Q for any Si and Sj in W , i 6= j). Hence, the aggregate bit rate during any phase uj , whereSj 2 W , is greater than or equal the RHS of (21). From the de�nition of the e�ective bandwidth18



(see (3)), C(u;N) must be greater than or equal to the aggregate bandwidth during any phase.Therefore, C(u;N) must satisfy (21).Next, suppose that at least two of the N streams have the same phase, i.e., 9 a phase i suchthat ri � 2. Let � 4= max0�j�L�1 rj (22)Note that � � 2. Denote the jth stream by Sj , j = 1; 2; : : : ; N . We will use the term chain to referto a subset of the N streams whose phases di�er pairwise by a multiple of Q (including streamsthat have the same phase). For example, if N = 9, L = 15, Q = 3, and u = (0; 0; 0; 1; 2; 3; 4; 5; 6),then one chain consists of the sources fS1; S2; S3; S6; S9g, a second chain consists of fS4; S7g, andthe last chain consists of fS5; S8g. The three chains are shown below. In this example, � = 3.
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3 4 5 6 7 8 S9From the de�nition of a chain, it is easy to see that there can be no more than Q chainsin a given arrangement. Let q be the number of chains (q � Q). Let the chains be denotedby W1; W2; : : : ;Wq, with corresponding sizes �1; �2; : : : ; �q (Pj �j = N). For each chain Wj , letCj(u;N) be the maximum aggregate peak rate divided by N , where the maximization is taken onlyover the time intervals that are composed of the phases of the streams in Wj . For j = 1; : : : ; q,Cj(u;N) can be given by: Cj(u;N) = n(j)I Imax + n(j)P Pmax + n(j)B BmaxN (23)where n(j)I +n(j)P +n(j)B = N . For any chain Wj , the total number of streams sending I or P framesduring the phase of any stream in Wj is given by �j . Clearly, �j is the same for all the phases ofstreams in Wj (see Proposition 1). At least one of the chains, say W1, contains � streams that arein the same phase, say phase i. Hence, it must be true that C1(u;N) results from the aggregatebit rate during phase i. Therefore, n(1)I = �. Based on the de�nition of C(u;N),C(u;N) = maxj2f1;:::;qgCj(u;N) (24)19



which implies thatC(u;N) � Pqj=1 Cj(u;N)q (25)= 1q ImaxPqj=1 n(j)I + PmaxPqj=1 n(j)P + BmaxPqj=1(N � n(j)I � n(j)P )N (26)Replacing n(j)P by �j � n(j)I , and with some rearrangements, (26) becomes:C(u;N) � 1q (Imax � Pmax)Pqj=1 n(j)I + PmaxPqj=1 �j +BmaxPqj=1(N � �j)N (27)From Proposition 2, n(j)I � 1 for j = 2; : : : ; q. Moreover, n(1)I = �. Thus,qXj=1n(j)I � �+ q � 1 (28)Note that Pqj=1 �j = N and Imax > Pmax. Thus, (27) reduces toC(u;N)� 1q (�+ q � 1)(Imax � Pmax) +NPmax + (qN �N)BmaxN (29)which can be written as C(u;N) � sImax + lPmax + (N � s � l)BmaxN (30)where s 4= �+ q � 1q (31)l 4= N � �� q + 1q (32)Note that (30) is the same as (15). We only need to show that s+ l � m+ 1. From (31) and (32),we have s + l = Nq � NQ (33)(since q � Q). But N > mQ, or equivalently, N � mQ+ 1. Therefore,s + l � m+ 1Q (34)However, the expression for the e�ective bandwidth must consist of integer number of Imax and20



Pmax in the numerator of (4). Thus, it must be true that s and l in (30) satisfy s + l � m + 1.When s+ l � m+ 1, the RHS of (21) is smaller than the RHS of (30), which implies that C(u;N)satis�es (21) for any arrangement u. Therefore,Copt(N) = Imax +mPmax + (N � 1�m)BmaxN : (35)2References[1] A. I. Elwalid and D. Mitra. E�ective bandwidth for general Markovian tra�c sources andadmission control of high speed networks. IEEE Journal on Selected Areas in Communications,1(3):329{343, June 1993.[2] V. S. Frost and B. Melamed. Tra�c modeling for telecommunications networks. IEEE Com-munications Magazine, 32(3):70{81, Mar. 1994.[3] M. W. Garrett and M. Vetterli. Congestion control strategies for packet video. In Proc. ofFourth Int. Workshop on Packet Video, Aug. 1991. Kyoto, Japan.[4] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and its application to band-width allocation in high-speed networks. IEEE Journal on Selected Areas in Communications,9(7):968{981, Sept. 1991.[5] E. W. Knightly and H. Zhang. Tra�c characterization and switch utilization using a deter-ministic bounding interval dependent tra�c model. In Proc. of IEEE INFOCOM '95, pages1137{1145, 1995.[6] M. Krunz, R. Sass, and H. Hughes. Statistical characteristics and multiplexing of MPEGstreams. In Proc. of the IEEE INFOCOM '95 Conference, pages 455{462, Boston, Apr. 1995.[7] M. Krunz, S. Tripathi, and H. Hughes. A source model for MPEG-coded video movies. In FirstIEEE Workshop on ATM Networks, Washington, DC, Oct. 1995.[8] O. Rose. Statistical properties of MPEG video tra�c and their impact on tra�c modeling inATM systems. In Proceedings of the 20th Annual Conference on Local Computer Networks,Minneapolis, MN, 1995. 21


