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ABSTRACT 

Title of Dissertation: An Investigation of Blast Waves 

Generated by Constant Velocity 

Flames 

Robert Thomas Luckritz, Doctor of Philosophy, 1977 

Dissertation directed by: Joseph M. Marchello 
Professor 
Chemical Engineering 

The relevant flow field parameters associated with the 

generation and propagation of blast waves from constant vel­

ocity flames were systematically studied through numerical 

integrations of the non-steady equations for mass, momentum, 

and energy. The flow was assumed to be that of an adiabatic 

inviscid fluid obeying the ideal gas law and the flame was 

simulated by a working fluid heat addition model. 

The flame velocity was varied from infinitely fast 

(bursting sphere) through velocities characterized by the 

nearly constant pressure deflagration associated with low Mach 

number laminar flames. The properties noted included peak 

pressure, positive impulse, energy distrib.ution, and the blast 

wave flow field. 

Results were computed for the case of a methane-air 

mixture assuming an energy density, q = 8.0, an ambient spe­

cific heat ratio, y
0 

= 1.4 and a specific heat ratio behind 

the flame, y 4 = 1.2. In the source volume, as the flame 



velocity decreased to Mach 4.0 the overpressure increased. 

For flame velocities below Mach 4.0 the overpressure decreased, 

and approach the acoustic solution originally developed by 

Taylor. In the far field the overpressure curves for super­

sonic flame velocities coalesced to a common curve at approxi­

mately 70% of Baker's pentolite correlation. Far field 

overpressures for subsonic flame velocities decreased as the 

flame velocity decreased. 

For the flame velocities investigated the near field 

impulse was greater than the impulse from Baker's pentolite 

correlation. In the far field the flame generated impulse 

decreased to 60 to 75% of the pentolite impulse. 

In cases where the flow was expected to reduce to a 

self-similar solution and/or show Rayleigh line behavior it 

did. The calculations showed that the flow field behaved 

normally where expected, and for flow velocities where 

steady state behavior is not expected, non-steady behavior 

was observed. 
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I. INTRODUCTION 

The increasing eriergy nee·ds of the United States and 

other advanced technology countries have resulted in the hand­

ling, transportation, and storage of ever increasing quantities 

of highly volatile and highly combustible fuels. Present 

projections of energy needs for the future indicate a con­

tinued expansion of energy demands in these countries. As 

with any technological advance the luxuries provided by the 

use of large quantities of these energy sources are accom­

panied by an increased risk in the event of their accidental 

release. 

In addition to the ever increasing need for additional 

fuel, the government and the public have become cognizant 

of the necessity for protection of the environment from pol ­

lution by the contaminants present in many of our more abun­

dant fuel supplies. Natural Gas is one energy source which 

is presently available, easily distributed, and rel a tive l y 

low in pollution potential. However, the supply of easily 

accessible Natural Gas in the United States is limited and 

many existing distribution facilities in large metropolitan 

areas are unable to meet peak winter demands. To alleviate 

this situation many utilities are storing the natural gas 

in a liquefied state and/or providing for the importation 

of shipload quantities from such areas as Alaska, Algeria, 

Libya, and Indonesia. 

The release of natural gas from accident, natural dis­

aster, or sabotage could subject personnel and facilities 

1 
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near the release to great risk, Among these risks are the 

danger of fire and/or explosion if the release were ignited. 

The question which concerns both governmental decision 

makers and the public at large is precisely what would be 

the effects of large scale releases of a flammable gas such 

as Natural Gas. 

Compounding this difficult question is the conclusions 

which can be extrapolated from accidents as a result of the 

release of similar exothermic compounds. A survey of 

accidental explosions that have occurred over the past 40 

years was compiled by Strehlow(l). He noted a sharp increase 

in annual damage from accidental explosions since 1964 and 

attributed this increase to larger spills of a variety of 

chemical substances with many spills occuring in the 

neighborhood of expensive process equipment. In his paper 

he recommended an investigation into the effects of the 

overall flame-propogation rate and the nature of the blast 

wave produced by the deflagrative combustion of a large 

unconfined vapor cloud. 

There are also basic fundamental questions concerning 

the fluid dynamic flow field developed by an accidental ex­

plosion. The flow fields generated by high explosives have 

been investigated in detail for weapons applications and 

industrial blast technology. To date there has been only 

minimal effort directed to investigating the effects of ac­

cidental (non-ideal) explosions. 

This dissertation addresses one aspect of accidental 
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(non-ideal) explosions, namely the consequences of 
the pro­

pagation of constant velocity flames after delayed 
ignition . 

That is, what happens when there is a large 
scale release 

of flammable gas with widespread dispersion of the 
vapors, 

followed by ignition? Other related problems such as the 

effects of a burning pool of f l arrnnable fuel or the 
effects 

of rapid release which 

of the mixture are not 

does not involve delay· ed 1.·g · · n1.tion 
addressed. The problem 1.·s 

presented 
in terms of a systematic study of the effects of constant 

Lagrangian velocity flame through a flammable, compressible 

mixture . The behavior of the flow is studied in the com­

pressible medium surrounding the flammable mixture during 

and after heat addition. 

A heat addition-working fluid model is used to replace 

the combustion process. This model and the equations of 

mass, momentum, and energy coupled with the equation of 

state are used to study the effects of heat addition waves . 

Both the near field and far field effects including peak 

pressure, impulse, and energy distribution were studied to 

show systematic trends and effects for an energy density 

approximating that of a stoichiometric mixture of natural 

gas in air, a common fuel . 

A. Ideal (Point Source) Blast Waves 

A blast wave is a pressure wave of finite amplitude 

generated by the rapid release of energy, such as an explo­

sion o The structure will vary as a function of the energy 

source which produces it . 
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Nuclear and high explosive explosions generate what are 

known as ideal or point source blast waves . These explosions 

are described as a finite amount of energy deposited in an 

infinitely small increment of time at an infinitesimal point 

in a uniform atmosphere. They generate a shock wave which 

monotonically decreases in strength as it propagates from 

the energy source . The properties of the shock wave and the 

flow associated with it can be determined by solving the non­

steady, non-linear equations of fluid mechanics . 

The Eulerian pressure-time history at a reference point 

would show ambient conditions until the shock wave arrived 

at time t , with an almost discontinuous rise to the peak 
a 

+ over-pressure of the shock wave, Ps + p
0

, as illustrated in 

figure 1 from Baker(Z) . This peak overpressure, p+ + p, 
S 0 

would be followed by nearly exponential pressure decay 

through the ambient pressure, p
0

, at time ta+ t+, to a min­

imum pressure of less than ambient, p
0
-p;, then increasing 

until the pressure again reaches ambient, p
0

, at time ta+ 

t+ + t- . 

The time during which the pressure is greater than 

ambient, t through ta + t+ is know as the positive phase. a , 

The time during which the pressure is negative, t a+ t+ 

through ta +t++t-, is known as the negative phase . 

As an ideal (point source) blast wave propagates away 

from its source there are three regions of interest: 

(1) The near field wave where pressures are so large 

that external pressure can be neglected . In this region 
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Positive Phase 

Pressure 

I -----t--·~.._-~ 
I 

0 '--------,-----------+' --------+--------
0 

. Time 

Figure 1. Pressure-time relationship for ideal blast wave. 
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self-similar solutions and analytical formulations are ade­

quate. This is followed by 

(2) An intermediate region of extremely practical im­

portance because both the overpressure and impulse are ·suf­

ficiently high to do significant damage. The flow field in 

this region cannot be solved analytically and must be solved 

numerically. This in turn is followed by 

(3) A far field region which yields to an analytical 

approximation involving extrapolation of overpressure-time 

curves from one location to another. As the shock wave 

decays, its Mach number approaches unity and the lead wave 

nears the acoustic limit. There is theoretical evidence that 

an "N" wave which propagates as an acoustic level phenomena 

must form. However, atmospheric non-uniformities prevent 

the observation of this phenomena. 

Assuming that the atmospheric counterpressure is small 

when compared to the shock overpressure, a constant value of 

specific heat, y, and an instantaneous (over an infinitely 

small time) energy deposition at a point, Taylor( 3), and 

Sedov(4) reduced the equations of fluid mechanics to non-linear 

differential equations with one independent variable. These 

differential equations were then solved to determine the blast 

wave behavior in the time-space domain. Their analysis 

determined the pertinent flow variables between the origin 

and the lead pressure wave and showed that: (1) the particle 

velocity and density decrease from a maximum value at the shock 

front to zero at the origin, (2) the preisure decreises, 
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in a nearly exponent ial manner near the shock front, from a 

maximum v alue a t the h k f t + 1 f · soc ron , Ps , to a va ue o approxi-

mately 36% of Ps+ at the origin (for y=l . 4 gas), and (3) the 

temperature increases without bound as the origin is approached. 

While investigating these point source solutions , Bethe(S) 

observed from the shock relations : 

P2 = (y+l)Ml2 = 

Po (y-l)M1
2+2 (y -1)+ 2 

~ 1 

I-1 

where P2 is the density of the fluid immediately behind the 

shock, P0 is the ambient density of the fluid, and M
1 

is the 

approach fluid Mach number that most of the mass in the 
' 

system is concentrated near the shock. As gannna approaches 

one and the Mach number of the shock becomes large, the 

effect becomes more pronounced. 

Using these same conditions it can be seen that in the 

limit as y~l, p2/p
0 

approaches infinity, i.e . all the mass 

in the system bounded by the lead shock wave is located in 

or immediately adjacent to the wave . 

B. Non-Ideal Blast Waves 

Actual explosions do not generate ideal blast waves. 

Because of the explosive configuration, the finite reaction 

time , and the finite volume of the explosive, the pressure 

wave generated by a real explosion will not follow exactly 

the time-pressure distribution of an ideal blast wave . Near 

the energy source which is driving the pressure wave there 



may be a more 8 
gradual build-up 1.·n pressure than the nearly 

discontinuous 
Pressure r~se associated with ideal explosions. 

Other irreg 1 .. u ar1.t1.es such as fragments, . ground effects, re­
flections, etc. may cause 

pressure-time fluctuations incon-
sistent · h 

wit ideal blast wave theory. 

In general, non-ideal explosions are those where the 

source energy density is l ow and/or the energy deposi t ion 

time is long. There a r e an infi ni te number of non- ideal 

source behaviors that yield blast waves wi th an i nfinite 

number of different structures, all non-ideal. 

In point source analysis for ideal blast waves, the 

assumption is made that initially the energy is added to an 

infinitely small mass. Therefore, the total energy from the 

source is available to the surrounding gas to drive the lead 

shock wave. However, in a real explosion the energy is di­

vided between the source volume and the surrounding atmos­

phere. Only the energy in the surrounding atmosphere drives 

the lead shock. This partitioning of energy causes the curves 

of overpressure vs. radius to lie below the curves from ideal or 

point source theory. However, as the energy density is in­

creased and/or the time of deposition is decreased, as occurs 

in nuclear or high explosive explosions, the Ps - RE curves 

approach the ideal (point source) curves. This is attri-

buted to the more efficient transmission of energy to the 

surrounding gas; thereby making more energy available to the 

shock and nearby flow field. 

To model the rate of reduction of shock strength caused 
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by the energy which remains in the source volume a non-simi­

lar solution in the form of series expansions of key non­

dimensional flow parameters was developed by Sakurai(6). He 

transformed the dependent and independent variables to an­

other set where some of the variable were not as sensitive 

and then expanded each variable as a function of the Mach 

number squared. The variables were then incorporated into 

the conservation equations. Solutions, to various orders 

of accuracy, were obtained by collecting terms of like orders 

of magnitude and solving each set of differential equations 

produced, subject to applicable boundary conditions, and 

calculating the coefficients to the expansions . In the solu­

tion he used an energy source with an instantaneous energy 

deposition time, but indicated that sources with finite 

times of energy deposition could be modeled . 

For the second order approximation Sakurai calculated 

the shock pressure for a y=l . 4 gas to be: 

0 . 69 R -1 
E 

+2 . 33 j=O I-2 
Ps 

1 . 33 R-2 +2 . 16 j=l I-3 = 
Po E 

1 . 96 R- 3 +2 . 07 j=2 I-4 
E 

where 

I-5 
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Explosion energy per unit area j=O 

E. = (Explosion energy per 
J 

-1 j=l unit l ine)(2~) 

(Explosion e~ergy)(4n) -1 j=2 

and j is the geometry factor (0,1, and 2 for planar, cylin­

drical and spherical flow fields respectively) . 

Data on shock arrival times were obtained by Oshima(
7

) 

from exploding wire experiments and were extensively compared 

with the predictions calculated by Sakurai . An increase in 

the range of validity was shown for the higher order approx­

imations o 

These analyses were performed with the assumption that 

the energy is deposited instantaneously o The heat release 

which occurs as a result of chemical reaction associated 

with a reactive fluid-dynamic process has both spatial and 

temporal dependence . In many cases this invalidates the 

simplifying self-similar assumptions and the theoritician 

must resort to numerical integration techniques to obtain 

a solution. 

The conservation equations that describe blast waves 

are three non-linear partial differential equations . Two 

numerical techniques which have proven useful in the solu­

tion of numerous types of non-linear partial differential 

equations are the method of characteristics, a procedure 

from the theory of partial differential equations, and, with 

the development of high speed computers, finite differences o 

When the finite differencing technique is used for the 
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study of blast waves it is preferred to express the conserva-

tion equat1.·ons of flu1.·d d · · h · L · ynam1.cs 1.n t e1.r agrangian form . In 
this method a fluid particle is followed from its initial 

position to a later position while its intensive properties 

vary as a function of time . The principle advantages are the 

computational grid does not distort with time and new grid 

points can be added as the lead wave uncovers new material . 

One of the primary areas of interest on the study of 

blast waves is the generation and propagation of shock waves 

contained in the flow field and the deviation of these shock 

waves from those which would be generated in an ideal (point 

source) explosion . A shock wave can be described as a non­

isentropic region in which the fluid properties rapidly change 

from their initial equilibrium states to a final state in 

which the temperature, density, and pressure are greater than 

ahead of the wave . The change in fluid properties occurs 

within a few mean free path lengths, the average distance a 

molecule must travel before it is influenced by the presence 

of another molecule . Because of the steep gradients in the 

non-isentropic region, the shock can be replaced by either a 

discontinuity satisfying the Rankine-Hugoniot "jump" rela­

tions(S) or, when using finite differencing procedures, by 

"spreading" this region to one of large but finite gradients 

over the length of a few computational cells . When perform­

ing numerical integrations using the finite differencing 

technique, gradients within the boundaries are assumed to the 

finite . Normally the shock is spread over the computational 
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cells by inco · , h rporating into t e momentum and energy equations 

a ficticious dissipative term developed by Von Neumann and 

Richtmyer<
9

) for their study of the propagation of plane shock 

They incorporated a dissipation term which was pro­

portional to the absolute value of the velocity gradient and 

only became significant in the shock region. 

In a later analysis Lax and Wendroff(lO) restricted the 

magnitude of gradients in strongly compressive regions by 

using the inherent dissipative mechanism in a modified central 

differencing scheme which attenuated the high frequency com­

ponents of the solution. 

The application of either dissipative mechanism to es­

tablish finite gradients does not violate the conservation 

of mass, momentum, or energy, as noted by Richtmyer and 

Morton(ll). The dissipated energy, which is only a minute 

amount of the total energy, appears as internal energy of 

the fluid . 

Von Neumann<12 ) and Brode<13 ) were two of the first to 

apply the dissipative technique of Von Neumann and Richtmyer 

to the numerical solution of propagating spherical blast 

waves " By numerically integrating the differential equations 

of gas motion in Lagrangian coordinates, Brode determined the 

strong shock-point source solutions " 

He determined that the strong shock-point source solu­

tions of overpressure versus radius follows the inverse cube law 

down to an overpressure of approximately 10 atmospheres at 

which point actual overpressures are 3% higher than ·predicted . 
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U · (2) 
sing a form of Sachs' scaling, he proposed that the inverse 

cube relation be replaced by the following t· equa ion for pres-

sures greater than 5 atmospheres: 

P = 0.1567 R- 3 + 1 . s € I-6 

For lower pressures he developed the following empirical fit: 

p = 0 . 137 + 0 . 11~ + 0 . 269 _ 0 . 019 
s R 3 R 2 RE 

€ € 

I-7 

0 . 1 <P < s 10 . 

0 . 26 <R < 
€ 

2 . 8 

where Ps - Po p = s Po 
I-8 

1/3 
R = rs/(ET/po) € I-9 

and ET is the total blast energy . He also solved for density, 

particle velocity, and particle position as functions of time 

and space . 

Blast waves generated by the combustion of flannnable 

vapors are of the non-ideal type . The mixing of the fuel with 

air gives an energy source dispersed over a large volume, i . e . 

the source has a low energy density. Also, the finite time 

required for the chemical reaction to reach end state condi­

tions determines the time over which the energy is released. 

An example of a strictly one-dimensional constant area, 

non-ideal blast wave generated by the deposition of a finite 
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amount of energy over a finite volume is the rupture of a dia­

phram separating a high energy source gas from a low energy 

gas in a shock tube . At the instant the membrane is ruptured 

a wave system is generated at the edge of the pressure step 

as illustrated by figure 2 . The wave system consists of a 

shock propagating into the low pressure gas while an expan­

sion wave propagates through the high pressure source . Since 

the flow field is one-dimensional the pressure at the shock 

front can be determined by using the Rankine-Hugoniot jump 

conditions through the shock, the isentropic flow equations 

through the expansion fan, and matching the pressure and flow 

velocity at the contact surface . The procedure is outlined 

in Liepmann and Roshko(B) and other texts on compressible 

fluid flow . 

From this analysis the overpressure at the shock front 

for one-dimensional, constant area f l ow is: 

I-10 

When the flow field geometry changes from planar (con­

stant area) to cylindrical or spherical the one-dimensional, 

constant area solution is no longer valid . As the shock 

propagates through the sur~oundings there is a two or three 

dimensional relieving effect and the partial differential 

conservation equations can not be easily solved . Blast waves 
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from bursting pressurized gas spheres were studied by 

Ricker(l4) Using a Von Neuman/Richtmeyer type finite dif-

ferencing procedure he obtained _: the relevant flow parameters 

by integrating the Lagrangrian, one-dimensional, non-steady 

fluid equations of motion. Blast damage (peak pressure and 

specific impulse vs radius) was calculated as a function of 

initial pressure, temperature, and the ratio of the specific 

heats of the gas in the source volume . 

C. Homogeneous Energy Addition Blast Waves 

In vapor and dust explosions the energy is deposited 

within a finite volume over a time period which is long in 

relation to the characteristic times of the system . Al­

though bursting spheres have been extensively investigated, 

there has been little consideration to the case of homogen­

eous exothermic reactions which may occur when a highly 

dispersed cloud of combustible material is ignited . 

An analysis of the pressure wave which is generated 

when a central core region containing a highly-exothermic 

mixture of hydrogen and oxygen begins to liberate heat was 

performed by Zajac and Oppenheim(lS) . Using a constant time­

step method of characteristic, they assumed a homogeneously 

reacting core region devoid of wave processes . An imperme­

able contact surface, across which the pressure and flow 

velocity was equal, separated the core region from the 

surroundings . The analysis incorporated the integration of 

the complete set of chemical-kinetic equations associated 

with the hydrogen-oxygen system for the core gas and the 
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method of characteristics for the unreacti v e s urrounding 

gas 0 Planar, cylindrical, and spherical flow field geome­

tries were investigated and shock formation was predicted 

in both the planar and cylindrical flow with the distance 

greater in the cylindrical case o No shock formation was 

noted in the spherical case . This was attributed to the 

divergent effects of the expanding flow system . 

Freeman< 16 ) and Dabora(l?) developed an analytical so­

lution of self-similar flow fields which incorporated a 

variable rate of energy release as a function of time . In 

the analysis by Dabora the energy release was proportional 

to t 8o For B equal zero the energy release was instantaneous 

and for B>O there was a gradual energy addition of finite 

power . 

Adamczyk(lB) performed a systematic study of the fluid 

dynamic and thermodynamic fields associated with the genera­

tion and propagation of blast waves from the homogeneous 

deposition of energy o Using a Von-Neumann/Richtrnyer-type 

finite difference integration procedure,numerical solutions 

of the relevant flow parameters were generated by integrating 

the one-dimensional non-steady fluid dynamic equations of 

motion in Lagrangian form. Solutions were calculated for 

planar, cylindrical and spherical flow fields o Varying both 

the energy density of the source region and the time of 

energy deposition over two orders of magnitude he noted tha t 

they both affect the primary causes of structural damage, 

shock overpressure and positive phase impulse o A two-order 
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of ma · d gn1.tu e change in the time of energy deposition caused 
th e near field, peak sho"ck overpressure to vary by a factor 

of 80 and the near field positive-phase impulse ·to vary by 

a factor of 6. However, he found that the shock front "for­

gets" the influence of source non-idealities as it propagates 

from the origin. 

D. Constant Velocity Flame Blast Wav·es 

In the case of delayed ignition of a large volume of 

flammable gas the flow field will not be that of a bursting 

sphere as modeled by Brode(l 3) and Ricker<14) or a homogen­

eous reaction as studied by Zajac and Oppenheim(lS) and 

Adamczyk<18). The flow field will develop from energy re-

leased as a flame front propagates from the ignition source 

through the combustible mixture to the edge of the source 

volume. Because of the finite source volume and the finite 

time required for the flame front to propagate from the igni­

tion source to the edge of the kernel, the explosion will be 

non-ideal. 

Combustion processes and non-steady one-dimensional 

flow in ducts were investigated by Rudinger(l 9). Assuming 

the chemical reaction takes place instantaneously as the 

unburned gas passes through an advancing flame front and 

the burning velocity is directly proportional to the abso­

lute temperature of the unburned gas, he used the method 

of characteristics to calculate ·the properties of flame 

fronts with moderate, high,· and detonative flame velocities. 

The conservation equations were reduced to a manageable 



19 

form by omitting terms of small magnitude. Flow variables 

were then assumed to be uniformly distributed over any sec­

tion of the duct leaving only time and one space coordinate 

as independent variables. The propagation of gas particles 

and pressure waves were then followed graphically in a 

coordinate system of these two variables on a plot called a 

wave diagram . Although this solution was strictly for one­

dimensional flow, it led to the study of more complex flow 

fields . 

A self-similar solution for evaluating the structure 

of blast waves was developed by Oppenheim( 20), et al. The 

blast wave was assumed geometrically symmetrical and non­

steady . The solution is in terms of two dimensionless 

independent variables, radius, R, and time, ~. The blast 

waves were examined in respect to two parameters, one des­

cribing the front velocity and the other the variation of 

the density irrnnediately ahead of the front. 

The evolution of pressure waves generated by steady 

flame propagating in an unbounded atmosphere with planar, 

cylindrical, and spherical geometry was studied by Kuhl 

Kamel, and Oppenheim( 2l). They considered a self-similar 

flow field with both the deflagration and shock front pro­

pagating at constant velocity and constant gas dynamic para­

meters along lines of similarity Y = r/rs . They introduced 

reduced blast wave parameters as phase-plane coordinates 

and determined the appropriate integral curves on this plane . 

A numerical solution for the case of a hydrocarbon-air 
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mixture was developed which showed that the transition be­

tween the blast wave solution and the acoustic solution is 

continuous . Pressure curves were generated as a function 

of deflagrative burning velocity for an expansion ratio, vf, 

equal to 7 . 

A simplified method for calculating blast parameters 

generated by a propagating deflagration was developed by 

Strehlow(ZZ) . Assuming that the pressure and density be­

tween the shock and the flame is spatially constant, regard­

less of geometry, the equations reduce to algebraic form 

allowing simple iterative solutions . Comparing his results 

with the exact self-similar solutions of Kuhl, et al . , 

Strehlow showed his results were identical for the case of 

planar flow when the pressure between the shock and flame 

are known constant . However, when the geometry changes to 

cylindrical or spherical the divergence of the flow field 

causes the pressure to decrease from the flame to the shock 

and the results varied from the exact solution but were with­

in acceptable limits . 

E u Problem Definition 

The classical problem of ideal or point source explos­

ions has been extensively studied by many investigators . 

Ideal blast wave theory is well understood and conveniently 

summarized by Baker(ZB) . 

Non-ideal explosions are not well under stood and many 

of the studies which have been done have not pr ovided com­

plete answers to the questions of interest . The solutions 
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of Kuhl, et al o are limited by the self-similar assumption 

which applies only during the energy addition. There is no 

solution for the structure of the blast wave after the energy 

addition o Fishburn only investigated selected cases o There­

fore his work did not show any trends. A systematic study 

of all the parameter affecting the generation and propaga­

tion of non-ideal blast waves is needed . 

In the investigation of non-ideal explosions there are 

many parameters which affect the structure of the blast wave 

flow field o These parameters include the energy density of 

the source volume, the energy deposition time, the heat 

capacity ratio of the source volume and the surroundings, 

the flame velocity, and the flame thickness . 

By considering these parameters as planes or dimensions 

in an n-dimensional space a convenient tool for visualizing 

this investigation in relation to other studies is available. 

Figure 3 illustrates three of the dimensions investigated: 

(1) Energy density 

(2) Energy deposition time 

(3) Flame velocity (Plotted as the reciprocal) 

An investigation of bursting spheres (infinitely fast 

energy wave with instantaneous deposition time) was performed 

by Ricker(l4 ) . His studies are located at various energy 

densities on the bursting sphere line in figure 3 . 

Adamczyk(lS) expanded on the studies of Ricker . Add­

ing energy uniformly throughout the source volume (infinite 

velocity, infinitely thick wave) he varied the energy density 
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Figure 3. Three dimensional Diagram of three parameters affecting Non-ideal Blast Wave Behavior. 
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and energy deposition time, over two orders of magnitude. 

This dissertation is part of a systematic study of the 

parameters affecting non-ideal explosions. In it the inves­

tigations of Ricker and Adamczyk are expanded into a third 

dimension, a study of the effects of a constant velocity 

flame propagating from the origin to the edge of the source 

volume . The investigation was done using the energy density 

of natural gas, a common fuel. Cases were systematically 

run at selected velocities and the results were then com­

pared to the homogeneous energy addition and the common lim­

it case of bursting sphere. 



II. THEORETICAL CONSIDERATIONS 
A. Governing Equations 

Blast waves in air are non-steady flow fields propagat­

ing through a compressible fluid medium bounded by a gas 

dynamic discontinuity. To predict the effects of propagat­

ing blast waves it is essential to know the time history of 

the flow field properties at all locations within the med­

ium. These properties are determined by the fundamental laws 

of nature appl~ed to fluid flow. Air, at or near standard 

temperature and pressure, is considered to be an inviscid 

fluid. Shock waves that appear in the flow can be treated 

as discontinuities or by using an artificial viscosity tech­

nique. With these conditions the fundamental conservation 

equations can be expressed as: 

* + 'i/·(pV) = 0 

~ + V-.nv- =-(V .p)+ f 
at v p E Ci i 

i 
v2 

a [ p (e+2 ) l v2 _ 
at + 'il· [p(e+z-)Vl = 

(Mass) II-1 

(Momentum) II-2 

-'v· (pV)+pQ+pEcifiVi 

(Energy) II-3 

· h d · V 1.·s the flow veloc1.'ty vector, Pis where p 1.s t e ens1.ty, 
0 

energy' Q is the heat the fluid pressure, e is the internal 

addition rate per unit mass, ci is the mass concentration of 

P ·es 1.· and f 1.'s the body force act1.'ng on species i. s ec1. , i 

24 
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Asswh ing an adiabatic inviscid fluid with no body forces, 
0 

the terms involving f and q become zero. Applying the ther-

modynamic equation of state, p v = mR 6 with: 

o e 
e = Ee. (e. + f

0 
cv_d e ) 

il. l. l. 
II-4 

0 

where e. is the energy of formation and c is the constant 
l. V. 

l. 

volume heat capacity of species i, internal energy can be 

linked to temperature, e, and density. There are then four 

equations to solve for the four prime variables of interest; 

u (local flow velocity), p (density), p (pressure), and e 

(internal energy per unit mass) . 

For simplificatio~ it is desirable to model the actual 

reactive fluid using a working fluid heat addition model. 

For a flow process the basic thermodynamic quantity is the 

enthalpy, h, explicitly defined by: 

h = e + p v II-5 

Enthalpy is used rather than internal energy, e, and equation 

II-4 is replaced by 

h = l: c.h . II-6 
i l. l. 

e 0 

where hi = J cp. d0 + (thf) i II-7 
0 l. 
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An actual flame process is an adiabatic process with no 

heat transfer to or from the system. However, large tempera­

ture changes occur within the system as a result of chemical 

reactions. 

If the temperature is held constant during an exothermic 

chemical reaction heat must be removed from the system. The 

product enthalpy is then much less than the reactant enthalpy 

and the difference is ~h, the heat of reaction which was 

removed from the system. Since the system being modeled is 

an adiabatic system, the heat of reaction will not be re­

moved but will become part of the system. Energy is con­

served because the differing bond energies of the different 

molecules that appear or disappear lead to changes in the 

thermal energy of the system. 

With these observations the chemical reactions of the 

system can be replaced by a simple heat addition to a 

working fluid. Assuming: 

0 
h3 = h' = I C d0 3 0 P3 

II-8 

0 
h4 = h4 + ~hf = I CP4 d0 + A 

0 
II-9 

where h 3 and h4 represent the enthalpy before and after heat 

addition respectively, and a positive value of A represents 

heat addition to the flow. The derivation of the full equa­

tions can be found in many texts on combustion, e.g. 

Williams< 23 ) and Strehlow< 24 ). 
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B. STEADY ONE-DIMENSIONAL FLOW DISCONTINUITY RELATIONSHIPS 

Although details on steady one-dimensional flow discon­

tinuities are available in most text books on combustion it 

is desirable to proceed with a brief review of basic princi­

ples and concepts for comparisons with non-steady behavior 

which are to be made in succeeding sections. Using the heat 

addition working fluid model there are four equations which, 

because of their complexity cannot be solved without certain 

assumptions and restriction. For the case under consideration, 

blast waves, a convenient simplification is that the shock in 

the blast wave can be approximated as being a one-dimensional 

phenomenon. Shock waves are extremely thin and fluid proper­

ties across the shock adjust within a few mean free path 

lengths. Thus in the scale under consideration the curvature 

of the shock approaches that of a planar wave and the one­

dimensional relationships apply for the shock in plane-, 

line-, and point symmetrical blast waves. 

The basic non-steady, one-dimensional conservation· equa­

tions of fluid dynamics can then be expressed as: 

(Mass) II-10 

' 2. . ('-1) 
a (purJ) + L(pu rJ+prJ)-jpr J = 0 
at ar (Momentum) II-11 

. 2 . 
a . 2 3[purJ(e+! )+purJ] 
at[prJ(e+z )] + ar = O (Energy) II-12 

where 

e - C 0 = ~ 
" -y-T (State) II-13 
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and j = 0, 1, and 2 for planar, cylindrical, and spherical 

symmetry respectively. 

Because shock waves are so thin the shock wave in blast 

wave structure can also be approximated as being quasi-steady. 

The equations of fluid dynamics can then be solved for the 

case of one-dimensional, constant area, inviscid flow to 

yield what are generally called the normal shock equations, 

i.e. the conditions for transition across a shock wave with 

heat addition: 

plul = P4U4 (Mass) II-14 

2 2 
P1 + plul = P4 + P4U4 (Momentum) II-15 

I 2 I 2 
h1 + u1 /2 = h4 + U4 /2 + >.. (Energy) II-16 

Hugoniot 

Substituting the mass and momentum equation into the 

energy equation yields the Rankine Hugoniot equation. 

I 

hl + >.. = \(P4 - pl)(vl + v4) II-17 

With the enthalpy relationship, h = Cp0 =~~~and the equation 

of state this becomes: 

II-18 

which represents the locus of final states, p
4

v
4 

for any 
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initial conditions of p1 and v1 with heat addition A. 

For the case of no chemical reaction A is zero, y is 

assumed constant, and equation II-18 becomes the shock Hugo­

niot, i.e. the locus of all possible solutions for normal 

shocks without chemical reactions for one set of upstream con­

ditions, p 1 and v 1 . 

II-19 

By algebraically manipulating the shock Hugoniot it can be 

shown that it will asymptotically approach Pz and v2 as v2 
and Pz respectively approach infinity: 

(Pz) (r-1\ 
p·l + - \r+1) 

(~~)+ (f+t) 

as Vz + 00 

as Pz + oo 

II-20 

II-21 

Figure 4 is a plot of the shock Hugoniot. However it is 

physically known that the situation of pressure decrease a­

cross a shock wave does not exist. Therefore, in actuality 

the only physically real solution is the shock Hugoniot for 

increasing pressure and decreasing specific volume. This can 

be proven by an examination of the entropy change or by 

attempting to plot a discontinuous expansion for the shock 

Hugoniot by the Method of Characteristics. 

For the case of heat addition to a constant garrrrna, ideal 

gas working fluid, Strehlow(Z4 ) determined that the reacted 

end state Hugoniot can be represented by a rectangular hyperbola 



l 
p 

30 

Strong detonation 
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Weak detonation 
(supersonic combustion) 

Shock Hugoniot 

v--.... 
Figure 4. Pressure-volume plot of end states for a one-dimensional 

steady process with heat addition. 
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in the p-v plane. Zajac and Oppenheim(ZS) have shown 

that this type of hyperbola accurately represents the shape 

of the real gas hugoniot. The assymptotes of the Reactive 

Hugoniot are: 

as v4 -+ 00 II-22 

II-23 

Two points for plotting the Reactive Hugoniot can be 

calculated by asstnning a constant pressure expansion and a 

constant voltnne pressure rise: 

II-24 

II-25 

Thus for the reactive Hugoniot the values of p4 and v4 can be 

determined for plotting the curve. Since isotherms are hyper­

bolas that asymptotically approach the p=o, v=o axis, the 

Hugoniot curves always cross the isotherms such that increas­

ing p along a Hugoniot increases temperature. Since the 

temperature hyperbola asymptotes the axis, p = 0 represents 

a value of 0 = 0. This represents the hypothetical but im­

possible case where all the random kinetic energy of the 

molecules has been converted to ordered flow velocity. 
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Rayleigh Line 

Manipulating further the normal shock equations by sub­

stituting the mass equation into the momentum equation , an­

other relationship between the pressure and specific volume 

can be developed, the Rayleigh Line. 

II-26 

The equation for the Rayleigh line specifies that the 

approach mass flow rate squared, (p1u1) 2 , is equal to the 

negative slope of a line in the p-v plane connecting the 

initial and final states of the process under consideration. 

Thus if the initial conditions of p1 ,v1 , and u1 , are known, 

the final conditions p4 and v
4 

can be determined by drawing a 
2 

line through the initial point with a slope equal to -(plul) 

This straight line intersects the Hugoniot at the final state. 

The Rayleigh line defines an important characteristic of 

steady state flow; since the density, p1 , and the flow velocity, 

ul, are squared, their side of the equation will always be 

positive. Therefore, the slope of the steady state Rayleigh 

line must always be negative. Thus for steady state, one­

dimensional flow, certain areas of the p-v plane are excluded 

for final end states as illustrated by figure 4. 

Equation II-26 can be rewritten in terms of the flow 

Mach number of the Rayleigh line process both ahead of the 

shock wave and behind the energy addition: 
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M 2 
. . 1 (p4/Pi-) - l 

II-27 = 1 Y1 
(v4) 1 - -

vl 

(~;) (:~) - 1 
and M 2 II-28 = 4 

Y4 (:~) (~~) 1 -

When exothermic chemical reactions occur in a steady-state 

flow situation the Rayleigh line may intersect the Hugoniot in 

one, two, or no locations for both supersonic and subsonic 

incident flow velocity. Above a limiting subsonic velocity and 

below a limiting supersonic velocity the Rayleigh line does 

not intersect the Reactive Hugoniot and there are no possi-

ble steady-state solutions. Below the limiting subsonic 

velocity and above the limiting supersonic velocity the 

Rayleigh line intersects the Reactive Hugoniot twice, indi­

cating two possible end states for both subsonic and super­

sonic velocities. For very low subsonic veloci t i e s the Ray­

leigh line can intersect the Reactive Hugoniot only once 

because the Hugoniot enters the imaginary region of negative 

pressure. The very low velocity subsonic solution corresponds 

to normal flame propagation. Physically, laminar flames are 

represented by this solution . For ordinary flames the fl ame 

velocity is very low and therefore there is only a ver y slight 

pressure drop across the wave . 
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At the tangency point of the Reactive Hugoniot and the 

Rayleigh line there exists only one propagation velocity . 

This velocity corresponds to exactly sonic velocity at 

station 4, and is called Chapman-Jouguet flow or CJ flow . 

The upper CJ point represents the proper end state for detona­

tions. The existence of exactly sonic flow at the tangency 

point can be shown by differentiating the Hugoniot and equat­

ing this to the slope of the Rayleigh line 

d(:~) 
dC~) 

Hugoniot 

dC~) 
Rayleigh 

(~)-1 
C~)-1 

II-29 

II-30 
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The condition for tangency is then: 

(:~) = 
II-31 

which can be rearranged to: 

II-32 

This is identical to Equation II-28, the equation 

for the Mach number of the Rayleigh line process at point 4, 

proving that the Mach number behind the shock at the upper 

and lower CJ points is sonic. For a strong detonation or a 

weak deflagration: 

II-33 

and for a weak detonation or strong deflagration: 

II-34 
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Thus M4 < 1 for a strong detonation or weak deflagration and 

M4 > 1 for a weak detonation or strong deflagration. 

Investigating further the characteristics of the upper 

CJ point, the Hugoniot equation and the Raleigh line can be 

combined to determine an explicit relationship for the pres­

sure and volumetric ratio ahead of the shock and behind the 

energy addition: 

= 

II-35 

II-36 

The CJ point is the tangency point of the Rayleigh line 

and the Hugoniot curve. For this point there exists only one 

solution. Therefore, the expression under the radical sign 

must equal zero at the tangency point and can be expressed 

as follows: 

II-37 
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Knowing A, the approach flow Mach number for the Chapman­

Jouguet points can be evaluated: 

II-38 

The pressure and specific volume can also be calculated 

from equations II-35 and II-36. At the CJ points the quanti­

ties within the radical signs of the equations become zero 

and the equations reduce to : 

II-39 

y 4 2 
(½)(ylMCJ+l) 

(y 4 + l):1ci 
II-40 
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Even though one-dimensional steady-state heat addition 

is impossible over velocities which lie between the lower and 

upper CJ points , this investigation included the addition of 

energy at these forbidden velocities. This is possible since 

the calculation is fully non-steady~ Therefore, the flow 

will follow a solution in accordance with the non-steady 

equations of mass, momentum, and energy, and will not be re­

stricted by one-dimensional steady flow considerations. 

C. ENERGY SCALING 

Classical blast studies have been primarily directed to 

an investigation of the blast waves generated by either high 

explosives or nuclear weapons. When conducted on a large 

scale, experimental studies of blast waves are dangerous, 

expensive, and difficult to control. Large isolated areas 

are required where access and egress may be closely monitored 

and controlled to ensure the tests are conducted safely. In 

addition, the res~lts are subject to the ~ffects of atmospheric 

and topographical conditions which make the interpretation of 

data difficult and subject to error. The cost and other 

problems associated with large scale tests make their use in 

a systematic study of flow field behavior prohibitive. 

Energy scaling is a tool which has been used extensively 

in the comparison and extrapolation of the results of tests 

involving different quantities and composition materials 

depositing energy in a source volume. The two most widely 

used methods of energy scaling involve Hopkinson's scaling 

law and Sachs' scaling law. 



39 

Hopkinson or "cube root" scaling is commonly used. This 

scaling, first formulated by Hopkinson<26 ) states that self­

similar blast waves are produced when two similar explosive 

charges with characteristic dimensions varying by a length 

scaling factor, a, are detonated in the same atmosphere, an 

observer whose location from the scaled explosive is a times 

the dis t ance from the standard, will feel a blast wave of sim­

ilar form with amplitude P, duration crt, and impulse , cr l. 

All characteristic times will be scaled by the same factor 

as the length scale factor, a. Pressure, temperature, densi­

ties, and velocitie s are unchanged at homologous times. Hop­

kinson's scaling law requires that the model and prototype 

energy sources be of similar geometry and the same type of 

explosive or energy source. A more complete discussion of 

this scaling is available in Baker(Z). 

A more general blast scaling law than Hopkinson's was 

developed by Sachs to account for changes in ambient condi­

tions and the effects of altitude. Sachs developed dimen­

sionless groups that involve pressure, impulse, time, and 

ambient parameters as unique functions of the dimensionless 

distance parameter: 

tap 1/3) 
0 0 

E l/3 
t 

II-41 

The Sachs' law identifies the blast source only by its total 

energy, Et, and therefore is not restricted to sj milar 
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geometry and explosive type as Hopkinson's law. However, it 

would not be expected to be consistent · for scaling of close­

in (near field) effects of non-ideal explosions. 

Although the short comings in the use of these scaling 

parameters are obvious, they provide a convenient tool for 

comparing and analyzing theoretical and experimental data. 

D. DAMAGE EQUIVALENCE 

The concept of equivalence between non-ideal explosions 

is not fully understood. With equivalent far field over­

pressures, the near field behavior of non-ideal explosions 

may vary greatly. A means is needed to evaluate the effec­

tiveness for blast damage of any particular accidental ex­

plosion and how this effectiveness varies with parameters 

affecting the development of the blast wave. 

The conn:non procedure in an actual accident is to ob­

serve the blast damage pattern to determine the weight of 

TNT (tri-nitro-toluene) required to develop blast wave over­

pressures to do similar damage at the same distance from 

the explosion center<27 ). Next, the maximum equivalent TNT 

weight of the fuel or chemical is determined by calculating 

either the heat of reaction of the mixture or the heat of 

combustion of the substanced released. The mass equivalence 

of TNT is expressed as: 

(WTNT) 
Equivalent 

= 
6H *m · 

C C 

4.198* 106 

where 6Hc is the heat of combustion of the hydrocarbon 

II-42 
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(cal/kgm), me is the total mass of the reactive mixture (kg), 

and 4.198 X 106 is the heat of explosion of TNT (joules). 

The common expression "per cent TNT equivalence" has been 

developed for comparison with data available from the test­

ing of TNT and is determined by: 

%TNT = ( (WTNT) / (WTNT) . 1 *100. II-43 
damage equivalent 

In an actual hydrocarbon explosion the damage as a 

function of scaled distance does not agree with that pre­

dicted from TNT equivalence. High explosives, such as TNT, 

contain internally much of the oxygen need for chemical 

reactions. Once initiated, the explosion proceeds almost 

instantaneously to completion. 

Hydrocarbons, on the other hand, must react with the 

oxygen in the air,making mixing an important parameter. 
A 

finite time is required for the flame to propagate through 

the combustible mixture influencing the development of the 

blast wave. Also, the calculated heat of combuS t ion is 

based on reactions to an equilibrium concentration of carbon 

dioxide and water. In actuality the reaction is not carried 

to equilibrium and at elevated temperatures the molecules 

may begin to dissociate, thereby further altering the effec-

tive heat release. 

E. DAMAGE MECHANISMS 

In the flow field associated with a blast wave there 

will be transient overpressures and wind induced drag forces. 
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The damage and injuries sustained by people, buildings, 

animals, and vegetation will vary, depending on the pressure­

time history of the blast wave. Large overpressure of short 

duration may cause ear damage with little physical displace­

ment of the body, whereas lower overpressure of longer-dura­

tion may cause lung damage and other severe body injuries. 

Similarly buildings may be constructed to resist overpressure 

of short duration, but may fail from the impulsive drag 

associated with lower overpressures of longer duration. 

Damage and injuries are not restricted to the peak 

overpressure or impulsive drag alone, but to the combination 

and interaction of these effects. The exact relationships 

are quite complex, but a convenient simplification to corre­

late blast wave properties to damage effects on a wide 

variety of targets has been discussed by Baker, et al. (28 ). 

He states that for any object, levels of constant damage of 

one type can be plotted on a pressure-impulse (P-I) Diagram, 

or empirical or analytical equations can be developed to 

describe the pressure-impulse (P-I) relationship. An 

example is shown in figure 5. 

To illustrate this concept, he considered the spring­

mass system illustrated in figure 6 and subjected it to a 

specific time varying force to represent the dynamic res­

ponse of a structure. The equations for a curve represent­

ing the combinations of scaled force and scaled impulse which 

cause the same scaled response X of the system were 
max 

determined to be: 
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10. 

I= [X (KM)½] 
max 

Quasi-Static 
Loading Realm 

100. 

Figure 5. Scaled P-1 Curve for Fixed Level of Damage. 
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p (t) = p -t/T 
e 

I = I: P ( t) dt = PT 

0 .__ ___________ _ 
Time 

0 

Figure 6. Schematic Diagram of Spring-Mass System to 
Model the Dynamic Response of a Structural Member. 
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2 = ------..--:::---- ----
[ 2- exp (-w2T2 /100) J tanh wT 

= wT 
1 

X (KM) ~ 
max [2-exp( -w 2T2/100)Jtanh wT 

II-44 
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where X is the maximum displacement of the system, K is max 
the spring rate, mis the mass, w is the natural frequency 

of the system, and Tis the characteristic loading time. 

By varying wT in these equations, a scaled response 

curve or Pressure Impulse (P-I) curve can be determined, 

similar to the curve in Figure 5. This curve represents the 

combinations of scaled force and scaled impulse which cause 

the same scaled response X of the system. This iso-max 

response curve can be compared to an iso-damage curve of a 

building or similar structure. For a given structure vary­

ing levels of damage can be determined as functions of the 

pressure and impulse the structure is subject to. Predic­

tions can then be made of the level of damage which the 

building would suffer based on the predicted pressure and 

impulse of the flow field associated with the blast wave. 

The causes of damage can be separated into regions on the 

iso-damage curve, the impulsive losding realm in which 

overpressure is controlling, the quasi-static loading realm 

in which impulse is controlling, and the dynamic loading 

realm in which the combination of overpressure and impulse 

determine the damage. 

This technique has generality because once the pressure 

and impulse are known for any explosion, whether it is ideal 
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or non-ideal, the P-I technique can be used to evaluate dam­

age at any location. Sachs scaling and other methods of 

scaling do not have the flexibility of the P-I technique 

since they only relate pressure and impulse for high ex­

plosive and point source explosions. The P-I technique is 

a very general technique and more useful for accidental 

explosions than energy scaling or the TNT equivalency 

argument. 



III. COMPUTATIONAL PROCEDURE 

The computational techniques used are based on the Von 

Neuman-Richtmyer concept of artificial viscosity as devel­

oped by Brode(l3) and Wilkins< 29 ). Using this technique 

Professor A.K. Oppenheim( 30) of the University of California, 

Berkley, developed a computer program for studying the flow 

field of blast waves. The program is written for a one­

dimensional, non-steady flow field in planar, cylindrical, 

and spherical geometry. 

The system is idealized with several simplifying 

assumptions: 

(1) The system is symmetrically one-dimensional. 

(2) The high energy source volume is separated from 

the surroundings by a massless barrier and there is no 

transfer of mass between the high energy gas and the surround­

ings. 

(3) The flow is inviscid with shock wave formation 

the only dissipative process in the surrounding atmosphere. 

The computer program was modified by Adamczyk(lB) of 

the University of Illinois to allow heat addition along 

particle paths by incorporating a homogeneous energy addi­

tion term with temporal and spatial dependence. The program 

was further modified by the author to incorporate a wave 

energy addition term and variable gannna, both with temporal 

and spatial dependence. In the computer program the conser-

47 
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vation equations are expressed in Lagrangian coordinates, 

since through their inherent conservation of mass they lend 

themselves more easily to a computational scheme. Partial 

derivatives are taken along a particle path such that u = ¾f 
and the equations of mass, momentum, energy, and state are; 

Mass III-1 d\) \) a (rju) 
= IT ~ ar 

Momentum au ~ 
IT = -\) ar 

III-2 

Energy ae av 
" IT = -p IT -

III-3 

e - ~ y-1 State III-4 

where vis the specific volume, r is the radial position, j 

is the geometry coefficient (0, 1, 2 for planar, cylindrical, 

and spherical flow fields, respectively), pis the pressure, 

e is the internal energy, "is the heat addition term assumed 

in the heat addition model, with spatial and temporal depen­

dence, and y is the ratio of specific heats, also with 

spatial and temporal dependence. 

The f h fl fl.·eld and their variation 
properties o t e ow 

Wl..th the 1.·ntegration of the governing time are determined by 
. h equati'on of state, and the kine-

conservation equations, t e 

matic equation coupled with the energy source term, A, and 

conditions at r=O, t=O, 
subject to the appropriate boundary 

and ahead of the lead wave. 
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Boundary Condition~ 
For the cases studied the boundary conditions are, 

1. At t = 0 and O~r~
00 

u = u(r,o) = 0 

p = p(r,o) = p 0 

e = e(r,o) = eo 

\) == v(r,o) = \) 
0 

2. At r=o and 

u = u(o,t) = 0 

~ = (~) = 0 
yr yr (o,t) 

ae (ye) = 0 
ar = ar (o,t) 

~= (~) 
= 0 

ar ar (o' t) 

3. Ahead of the lead wave. 

p = Po 

\) = \)0 

III-Sa 

III-Sb 

III-Sc 

III-Sd 

1Ir-6a 

III-6b 

III-6c 

1Ir-6d 

III-7a 

III-7b 

III-7c 

III-7d 
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B. Dimensionless Variables 

To aid in the computations, all variables are non-dimen­

sionalized with respect to the thermodynamic state of the at­

mosphere into which the front propagates, mR00 =p0 v 0 , and a 

reference point at the edge of the energy source volume. The 

non-dimensional independent variables are defined as: 

n = r/r 
0 

t = t/t
0 

111-8 

111-9 

where t
0 

is a characteristic time proportional to the time it 

takes an acoustic signal to propagate from the origin to the 

kernel edge when traveling at the ambient undisturbed sound 

speed, a
0

, and r
0 

is the outermost edge of the source volume 

at a time t = t = O· 

r /y t = o o 111-10 
o a

0 
Using P

0 
to represent the ambient atmospheric pressure, v 0 

the b
. 1 nd a the ambient 

am ient value of the specific vo ume, a o 

sp d f d d d t variables can ee o soun, the non-dimensional epen en 

be expressed as: 

111-11 
u = = 

lil-12 

111-13 
P = p/p (for equation of state) 

0 

P* = p/p -IT(for conservation equations)Ill-14 
0 111-15 

A= ~/p v· 
0 0 

111-16 
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In non-dimensional form the conservation equations are: 

Mass o\J! - 1jJ a (njU) 
fi - --r an nJ 

III-17 

Momentum au_ 
1jJ 

aP 
fi - - ar, III-18 

Energy 
aE _ -P ~+A a-r - aT 

III-19 

E = P\j! 
(y-1) State III-20 

u = an 
fi where 

III-21 

and the boundary conditions become: 

1. At T = 0 and o~n~00 

III-22a 
U(n,o) = 0.0 

III-22b 
P (n, O) = 1.0 

III-22c 
E(n,O) = 2.5 

III-22d 
\J! (n, O) = 1.0 

2. At n=O and 05T500 

III-23a 
U(O,T) = 0.0 

ap <aP) 
III-23b 

an (0,T) = = o.o 
3n (0,T) 

a E (aE) 
III-23c 

(0,T) = o.o an = 
an (0,T) 

a\j! (~) o.o III-23d 
(0,T) = = an an (0,T) 
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3. Ahead of 

u = 0.0 

p = 1.0 

E = 2.5 

1jJ = 1.0 

C. Source Model 

52 

the lead wave 

III-24a 

III-24b 

III-24c 

III-24d 

A major justification for replacing the chemical pro­

cesses by the simple heat addition to the fluid model appears 

when examining the Hugoniot curve for strictly one-dimensional 

heat addition processes and comparing it to the real Hugoniot 

for the complete combustion of various fuels. 

For the case of heat addition, A, to a constant gamma, 

ideal-gas working fluid the reacted end state Hugoniot can be 

represented by a rectangular hyperbola in the p-v plane wi th 

asymptotes of p/p
0 

= -(y-1)/(y+l) and vfv 0 = (y-1)/(y+l) · 

Zajac and Oppenheim(25) showed that this type of hyperbola 

accurately represents the shape of the real gas Hugoniot . 

For the pressure 1 / <20 Adamzcyk(lB) per-range . <p p
0 

• 

formed a curve fit procedure using a least-squares technique 

and found the rectangular Hugoniot matched the real Hugoniot 

within an accuracy of 0.25%, yielding an effective q a
nd 

Y 

for the particular source mixture. 

dimensionless energy density: 
ET 

q = nC e 
V 0 

q = P4 - 1 
Po 

The quantity, q, is a 

III-25 

III-26 
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where ET is the energy added per mole of mixture, n is the 

number of moles of mixture, Cv = R/(y-1) and 0
0 

is the initial 

temperature of the gas at the ambient pressure p
0

• 

The values for q and y for stoichiometric mixtures of 

six common fuels in air are given in Table i. Both the values 

of q and y vary with the equivalence ratio, and can be calcu­

lated for any combustible mixture, based on full chemical 

equilibrium in the final state. 

1. Energy Addition Wave 

To systematic study the effects of constant velocity 

wave addition of energy to a compressible fluid medium, 

energy was added to the flow field at various preselected 

Lagrangian velocities. In addition, bursting sphere and the 
(18) 

kernel addition of energy, investigated by Adamczyk , were 

run to provide comparisons. A summary of the cases investi­

gated is presented in Table 2. 

The Lagrangian flame velocities of the different cases 

were non-dimensionalzed using the ambient velocity of sound ' 

a
0 

= ly
0

p
0

v
0 

. Supersonic velocities at Mach numbers of 2 , 

3, 4, 5.2 (steady-state CJ), and 8 were run. One run was 

done at a Lagrangian velcoity equal to the ambient velocity 

of sound (Mach number= 1.0), and subsonic cases of o. 5 , o. 25
, 

and 0.125, were also run. The subsonic cases were computed 

only until trends were established because they were fou
nd 

to 

be excessively expensive. 

1 is modeled 
In this analysis the chemical energy re ease 

as a heat addition to a working fluid. 
The model incorporates 



Table 1. Hugoniot Curve-Fit Data 

H H i 
C C Stoichiometric mixture 

Low Value Low Value -
J/Kg Moles MJ/Kg Fuel 

Fuel Fuel QC Q q yl QC 
MJ/Kg Fuel MJ/Kg Mix H C 

-

H2 241.8 120.00 140.80 3.989 5.864 1.173 1.174 

CH4 802.3 50.01 63.98 3.508 7.934 1. 202 1.271 

C2H2 1256.0 48.22 55.21 3.867 8.734 1.195 1.145 

C2H4 1323.0 47.16 58.49 3.705 8.615 1.199 1.240 

c2H40 1264.0 28.69 34.41 3.890 9.593 1. 203 1.159 

C3H3 2044.0 46.35 61.60 3.695 9.169 1. 208 1.329 
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Table 2. summary of Parameters For Cases Investigated 

Energy Wave i w T . TD . y Y4 
Case Mach Number C .9. - 0 

1 Bursting Sphere(00
) 

2 00 0 . 000 0 . 00 8 . 0 1.4 1. 2 

2 8 . 0 2 .1 0 . 011 0 . 12 8.0 1.4 1. 2 

3 5 . 2(CJ) 2 .1 0.016 0.18 8 . 0 1.4 1. 2 

4 4.0 2 .1 0.021 0.23 8 . 0 1.4 1. 2 

5 3.0 2 . 1 0 . 028 0 . 31 8.0 1.4 1. 2 

6 2.0 2 . 1 0.042 0.46 8.0 1.4 1. 2 

7 1. 0 2 .1 0 . 085 0 . 93 8 . 0 1.4 1. 2 

8 0 . 5 2 .1 0.169 1. 86 8.0 1.4 1. 2 

9 0.25 2 .1 0.338 3.72 8 . 0 1. 4 1. 2 

10 0.125 2 . 1 0.679 7.37 8.0 1.4 1. 2 

11 Bursting Plane( 00
) 0 00 0.000 0.00 8.0 1. 4 1. 2 

12 4225 . 0 2 .1 0.000 0.00 8.0 1.4 1. 2 

13 5 . 2(CJ) 0 . 1 0. 016 0 . 18 8.0 1.4 1. 2 

14 4.0 2 . 2 Q.042 0.25 8.0 1.4 1. 2 

15 4.0 2 .05 0.011 0 . 22 8.0 1.4 1. 2 

16 4.0 2 .025 0.005 0.22 8 . 0 1.4 1. 2 

17 0 . 5 2 . 2 0.338 2 . 03 8 . 0 1.4 1. 2 

18 0 . 5 2 . 05 0.169 1. 86 8 . 0 1.4 1. 2 

19 Kernel 2 00 0 . 2 0 . 2 8 . 0 1.4 1. 2 

20 Kernel 2 00 2 . 0 2.0 8.0 1.4 1. 2 

21 5.55(Fishburn) 2 . 1 0 . 015 0 . 17 8.87 1.377 1. 253 

22 0.25(Kuhl , et al . ) 2 .1 0 . 351 3.86 7 . 2 1. 3 1.2 
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the fact that most chemical reactions do not take place 

instantaneously because they depend on particle collisio ns. 

In addition, the particles involved in the collision must 

have energy greater than the minimum activation energy for 

the reaction. These phenomena make the reaction rate highly 

dependent upon temperature and pressure. If the temperature 

increases, the average velocity and energy of the particles 

increases and a larger portion will have an energy above the 

activation energy . For a given volume, as the velocity 

increases the collision frequency also increases. 

As the reaction procedes and the end products are pro­

duced the concentration of reactants will decrease. This 

results in a decrease in reaction rate until the final equili­

brium concentration of reactants and products is obtained. 

Therefore, the chemical reaction rate increases to a 

maximum followed by a rapid decrease as equilibrium concen­

trations are approached. A heat addition source term of the 

following form was chosen: 

III-27 

where s1 is a spatially dependent energy term and s2 is both 

a temporal and spatial energy addition term. 

The spatially dependent energy term, s1 , models the 

energy distribution of an ideal vapor cloud with stoichio­

metric concentration of fuel throughout the source volume with 

the concentration decreasing to zero at the edge . 
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{ 

~. 0 for 

.;;1 = Yo for 

0.0 for 

D~Dl 

D1~D~D
0 

D <D<00 o- -

III-28a 

III-28b 

III-28c 

where n1 is the position in the source volume where the round­

ing function begins and D
0 

is the edge of the source volume 

and: 

I - {cos(3~$)-9.0 cos(~$)+a}f.6.0 
D-D 

with¢= - D -~ for the range D1<Ds.D
0

• 

1 0 

III-29 

The function I was chosen for the rounding function since 

it allows for a smooth transition from the inner region to the 

kernel edge. At¢= 0 and¢= 1.0 this function matches the 

values of the adjacent functions and also the first, second, 

and third derivatives with respect to D match the correspond­

ing derivatives of the adjacent functions. 

The energy function to represent the energy addition wave 

(flame front), .;; 2 (D, T), is similar to the cosine function used 

at the edge of the source volume. This cosine function was 

used since its power pulse, :~, closely models the power func­

tion Zajac and Oppenheim(lS) obtained when integrating the 

complete set of chemical kinetic equations for the hydrogen­

oxygen chemical system . 

This energy function can be expressed as: 

F: for 1;~0 III-30a 
s2 (D, r ) = for O<l;~l . 0 III-30b 

for I;> 1 . 0 III-30c 
Po vo 



where: s(MD,T) = 
M~2 T-D 

w 
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and " ~ /cos(3Tc)-9.0 cos (n o+s.0(/16.0 III-31 

The three-dimensional shape of the energy addition function 

is shown in figure 7. At time r=O the system exhibits am-

bient conditions throughout. + At time T , energy addition 

begins at the center of the kernel in accordance with the 

energy source term until s=l., when all the energy has been 

added. At positions of increasing radius the start of the 

energy addition begins at later times in accordance with 
dD 

MD= cfr· 

The energy addition is done in the energy wave in accor­

dance with a selected wave width which can be varied to model 

the width of the flame. In this model the wave width, W, is 

the fraction of the source volume to which energy is being 

added at any time step as shown in figure 8: 

III-32 

This can also be visualized as the fraction of the transit 

time for the wave to propagate through the source volume, TT, 

that the energy is being added to a particular cell, Tc, and 

can also be expressed as: 

III-33 
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D1 D0 

Lagrangian Radius, D 

Figure 7. Energy Deposition Function . 
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Figure 8. Wave Width of Energy Deposition Term. 
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The energy wave propagates at a constant Lagrangian 

velocity or Mach number,~. where: 

dD = dT III-34 

The transit time of the energy wave through the source 

volume is inversely proportional to the velocity of the energy 

wave. For equal wave widths, as the velocity increases both 

the source volume transit time, TT' and the cell deposition 

time, Tc, decrease. 

Figure 9 shows the effects of wave width on cell deposi­

tion time. As the wave width increases, the cell deposition 

time increases for the same energy wave velocity. 

The source volume deposition time, TD, is the sum of the 

transit time of the energy wave plus the cell deposition time 

at the edge of the source volume: 

III-35 

This can also be expressed in terms of the energy wave Mach 

number: 

III-36 

For an infinitely thin wave W=O and the source volume deposi­

tion time equal the energy wave transit time. As the width 

of the energy wave becomes finite, energy is being added to 
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the last cell after the leading edge of the energy wave 

reaches the edge of the source volume.· Figure 9 shows that 

the greater the width of the energy wave the longer the 

source volume deposition time . 

2. Change of Specific Heat Ratio 

The ratio of specific heats, gamma, for a combustible 

mixture is known to vary from approximately 1.1 to 1.67 

depending on the composition of the mixture and the complex­

ity of the molecules in the individual components of the 

mixture. In addition, the value of gamma can also change as 

the chemical composition changes to maintain chemical equili­

brium or as a function of temperature. As temperature in­

creases, the species in air go through various changes 

including the dissociation and ionization of oxygen and 

nitrogen. At a temperature of 2500°K the dissociation of 

oxygen molecules begins. For the combustible mixture being 

investigated the temperature ratio is 9:1 which corresponds 

to a temperature of 2700°K behind the energy addition. Thus 

for the case under consideration the dissociation of oxygen 

begins, raising the heat capacity and lowering the heat 

capacity ratio, gamma. 

An evaluation of an effective value of garrnna and heat 

release associated with real combustion processes as a func­

tion of stoichiometry was performed by Adamczyk(lB). For 

the case which is being investigated a combustible mixture 

with an energy density approximating that of me t hane is used. 

For methane, Adamczyk calculated an effective gamma of 1.202, 
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rounded off to 1 . 200 here. Before a vapor cloud is ignited, 

uniform ambient conditions exist throughout both the source 

volume and the surroundings. After ignition the flame front 

heats the medium through which it propagates and changes the 

chemical composition, lowering the heat capacity ratio. To 

model this change a variable gamma was developed in which the 

heat capacity ratio changes from an ambient condition of 1.4 

to 1.2 when energy addition to the cell is completed. 

A. 
y = yo - (yo-Y4)(~) III-37 

where Ai/A is the fraction of the energy which has been 

added. 

D. Numerical Integration 

The numerical integration was done using a Von Neumann­

Richtmyer/type, explicit, finite differencing technique. The 

equations of motion were integrated for an expanding flow 

field with constant Lagrangian distance spacing at finite 

times. The time steps were determined using the Courant 

Stability criteria as presented by Wilkins(29 ). 

1:::, n+½ = . (An+½ 1 4 An-½) T . min LlTR •• uT III-38 

where III-39 

and: 

~(~: -~:: 2 ~ min over all i's 1 2 J 
III-40 



where: 

z2 = 
1 

2 64C2 
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- 1/J~~t)2 (n~+½ - n~)2 
n-1 n-½ 

+ 1/J·+1 !JT 
1. Yi 

2 2 = Yn Pn ,,,n 
2 i+½ i+½'t'i+½ 

III-41 

III-42 

III-43 

The computational grid for the finite differencing scheme 

is shown in figure 10. Velocity is evaluated at full steps in 

radius, cell boundaries, and half steps in time to maintain 

the proper relationship between the derivatives as demanded by 

the conservation equations . Thermodynamic properties, P, 'l/ , 

and E are evaluated at full steps in time and half steps in 

radius. Since TI is a relationship between the velocity and 

effective pressure, it is evaluated at both half steps in 

space and time. The sequence by which the equations are 

treated is first the momentum equation, followed by the 

kinematic equation, continuity equation, and energy equation. 

Using the nomenclature in figure 10, the conservation equa­

tions were written in finite difference form as follows: 

Momentum Equation 
n+!.: u. 2 = 
l. 

u:1-½ 
l. 

III-44 

III-45 



t 
T (U) (P) (U) (P) (U) 

n+1 

pn+l n+l 
i-½ pi+½ 

(P) 

n+ ½ 

Un+½ u~+½ Un+½ 
i-1 + I + i+l 

(U) 

n 

n n 
P. ½ pi+½ ,- 2 (P) 

n-½ 

n-½ n-½ n-½ 
u. 1 + 

u . 

+ ui+l ,- I 
(U) 

n-1 

n-1 n-1 
P. ½ pi+½ ,-

(P) 

i-1 i-½ i+½ i+l o-

Figure 10. Computational Grid for finite differencing technique. 
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n n nr:1 n 
ni+l - n. - n. 1 

I k 
1 + 1 1-= III-46 2 n n 

tµi +1-1 tµi-½ 

and IT is normally zero except in regions of excessive pressure 

gradients (shock waves), in which case: 

n-½ = IT . +1 
1 -~ 

[ 

1 . 1) 2 ) ] un-~ - un-~ 
+ c2 ~ i+l i (- 1- + 1 

o n -:-n=T 
lJJ 1· +k lJJ1· +k 

- 2 - 2 

III-47 

Since the artificial vicosity is required only to smooth out 

the effects of excessive pressure gradients the condition is 

introduced that if 

n 
tµi ±½ ~ 

n-1 
lj)i ±½ III-48 

or LiU ~ 0 III-49 
n-1 0 III-50 IT . +1 = 
1 -~ 

KINEMATIC EQUATION 

III-51 

CONTINUITY EQUATION . . 
n+l n n+½ n+½ J n-½ n+½ J 

n+ 1 n { T - T } { U i + 1 ( n i+l) -U i ( n i . ) + ~) 
lJJi+½ = lJJi+½ + n 

M. +1 
J. ~ III-52 



where: 

and: 

n 
M-+1 = 

J_ ~ 
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·+1 ·+1 n J n J 
(ni+l) · - .(ni) · 

(j+l)ij;r:1+1 
J_ ~ 

III-53 

3 
[U1;+1-1 J ) I II-54 

J_ 

where j is equal to 0, 1, or 2, for planar, cylindrical and 

spherical flow fields respectively. 

ENERGY EQUATION 

and 

En+l = 
i+½ 

En+l 
i+½ = 

pn+l 
i+½ 
n+l 

Yi+½ 

III-55 

n+l 
ij;i+½ 

III-56 
- 1 

n+J:a where A.+/ is the energy addition term and y is the local ratio 
J_ ~ 

of specific heats. 

E. Testing of Program 

To establish credibility of results and ensure that the 

computer program effectively models the system under 
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evaluation test cases were run in which expected results were 

available to compare to computer output. 

1. BURSTING PLANE 

To test the computational technique of the program the 

case of one-dimensional, constant area flow similar to a 

membrane bursting in a shock tube was run. The initial con­

ditions of a high temperature, high pressure constant gamma 

gas with a step change to ambient conditions at the membrane 

were used. The calculated results were then compared to 

result predicted by equation I-10. The results varied by 

less than 0.01%, establishing the validity of the calculation 

technique used. 

2. BURSTING SPHERE 

An infinite velocity energy wave propagating through the 

compressible fluid medium is a constant volume energy addition 

or bursting sphere. To test this case on the model, a wave 

velocity was selected at the maximum velocity which could be 

incorporated into the program, limited by the initial step 

size (this corresponds to a dimensionless Mach number, 

MQ = 4225). Figure 11 is a pressure vs radius plot of the 

energy wave at dimensionless time increments of 0.0001. After 

the wave has propagated through the source volume, the pres­

sure-radius distribution is a bursting sphere. The wave 

addition of energy yields a pressure difference of less than 

0.001% from the energy distribution for a bursting sphere, 

but imparts a velocity to the particles of approximately l.6xl0- 3 . 

These differences are considered well within the allowances of 
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the problem under consideration. 

2 . Wave Width 

In a flame the heat of reaction does· not appear instan­

taneously but is controlled by the reaction rate of the chem­

ical species. A flame propagating through a flammable 

mixture will have a finite time of deposition of energy to 

the individual particles as it passes. Therefore it is nec­

essary to model the energy addition in the energy wave by 

adding the energy simultaneously over several cells. The 

wave width determines the number of cells to which energy is 

added. 

In addition, the stability criteria used in determining 

the time increment relates the time step size used in the 

calculations to the energy being added to the cells. If the 

wave width limits energy addition to only one cell at a time, 

each cell would require a complete time cycle of energy addi­

tions and the energy addition would be effectively a series 

of explosions. If energy is added simultaneously to several 

cells the time step size is limited only by the most restric­

tive energy addition step. Thus, with energy addition simul­

taneously in several cells computer time is reduced in 

proportion to the number of cells within the energy addition 

wave. The wave width also affects the deposition time of 

energy addition to each cell. Figure 9 shows that as the 

wave width increases the time for energy deposition within the 

individual cell also increase. 

A series of cases were run at a supersonic energy wave 
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velocity of Mach 4 and a subsonic energy wave velocity of 

Mach 0.5 to investigate the ·effects of wave width on the 

model. 

For the supersonic case (Mach 4) Figure 12 illustrates 

the effects of wave width on peak overpressure. During the 

energy addition there are significant fluctuations and dif­

ferences in overpressure as the wave propagates through the 

source volume. For a wave width of 0.2 the energy is added 

to ten cells simultaneously and as the final energy is added 

to the last cell in the wave there has been some pressure 

transfer to adjoining cells during the relatively long deposi­

tion time. As the wave width decreases the number of cells 

in which energy is being added decreases with an accompanying 

decrease in the cell deposition time. Since the energy is 

added rapidly the increase in energy of the cell is reflected 

in a pressure rise with very little pressure transferre.d :to 

adjoining cells. Also, in the finite differencing scheme 

all the cell properties are assumed to be concentrated at the 

cell center. For a narrow wave propagating through the 

kernel, i.e. containing 1 or 2 cells, the finite differencing 

scheme may result in large pressure and energy variations in 

adjoining cells because after energy addition is completed 

in one cell the energy addition in the adjoining cell may be 

only starting. During the time of energy addition to the 

new cell the energy (pressure) in the old cell will be trans­

ferred to adjoining cells. Thus there may be successive 

peaking of the pressure in the cells caused by the wave 
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encompassing too few grid points as it propagates through 

the kernel. 

This peaking is reflected by the overpressure waves for 

wave widths of 0.025 and 0.05 (2.5 and 1.25 cells respectively). 

However, it should be noted that as the pressure wave propa­

gates from the source, the peak overpressures coalesce into 

the same overpressure curve. This implies that one of the 

effects of wave width is the rate at which the non-steady 

flow assyrnptotically approaches a . maximum value of peak 

pressure during the energy addition . 

For the subsonic wave velocity, Mach 0.5, figure 13 shows 

similar results, except at much lower overpressures. For a 

wave width of 0.2 the fluctuations in overpressure are much 

smaller than the 0.1 and 0.05 case; but all these cases 

approach similar overpressures at the edge of the kernel. 

The narrow wave width (0.05) initially has fluctuations in 

the overpressure, but as the wave propagates to the edge of 

the kernel the subsonic velocity of the wave allows equaliza­

tion of the pressure. Also, the time of energy deposition 

per cell for the 0.05 wave width at Mach 0.5 is 8 times 

longer than the Mach 4-0.05 wave width, and twice as long as 

the Mach 4 - 0.2 wave width. However, in the far field the 0.2 

wave width shows a noticeably lower overpressure than the case 

of a 0.1 and 0.05 wave width. 

A wave width at 0.1 was chosen because : 

(1) The solutions assyrnptotically approach the 

peak value before the energy wave has propagated an excessive 
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distance through the source volume, 

(2) In the subsonic case , the expansion of the 

source volume was approximately the same for the 0.1 and 

smaller wave widths, 

(3) The calculated results did not require ex­

cessive computer time, and 

(4) This approximation reasonably modeled the 

physically realistic solution. 



IV. RESULTS AND DISCUSSIONS 

A. Flow Field Properties from One-Dimensional Steady State 

Theory. 

Fuels at stoichiometric concentrations have an energy 

density ranging from 5.8 for hydrogen to 9.6 for ethylene 

oxide. Using an energy density of q=8.0 (approximately that 

of methane, q=7.93), a Y4 of 1.2, and a y0 of 1.4, the shock 

Hugoniot and reactive Hugoniot can be plotted and the system 

constants calculated. From equation III-26: 

P4IP0 = q + 1 

P+lpo = 9.0 

IV-1 

For a constant volume energy addition equation II-24 can 

be rearranged to the following: 

A = IV-2 

A= (45. - 2.5) = 42.5 

77 
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For a constant pressure energy addition equation II-25 

states: 

and 

V 1 
7.67 

The approach flow Mach number for the Chapman-Jouget 

tangency point can be evaluated from equation II - 38: 

MCJ 
[ A (y i-1) (Y{Y42)} [(1+ A(y42-l) = l+ -

Y1P1 vl Y1 CY1-l) . Y1P1V1 

(Y/-Y42))2 
- Y1(Y1-l) -( ~;)T r 

MCJ = 5.179 & 0.165 

IV-3 

IV-5 

The steady-state, one-dimensional flow properties at the 

Chapmen-Jouguet points can be evaluated from equations II-39 

and II-40. 

IV-6 
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(~:4) 
1 CJ 

= 

( .~4) = 0.56 & 14.78 
1 CJ 

IV-7 

These steady state predictions will be compared with the 

results generated by the non-steady heat addition model. 

B. The Effects of Energy Wave Velocity. 

In this analysis, Lagrangian constant velocity energy 

waves were varied over several orders of magnitude to ascer­

tain the flow field properties of the propagating. wave sys­

tem. These properties were then compared to those of burst­

ing sphere. All cases were run with the same total energy 

and the variables are summarized in Table 2.:. 

1. Flow Field Properties 

The flow fields of the cases investigated were plotted 

to illustrate the results. Figure l(is the Lagrangian 

pressure distribution as the energy wave reaches the edge of 

the source volume. Figures 15 through 27 show the Eulerian 

pressure distributions at various times. Figures 28 through 

37 show the pressure - specific volume behavior of the indi­

vidual particles. Figures 38 through 46 show the pressure 

versus time history at fixed Eulerian radius. Figures 47 

through 55 show the displacement of the particles with time. 

Note: All figures in this chapter are collected at the end 
to simplify comparisons. 
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BURSTING SPHERE 

In case 1 (bursting sphere) there ·is initially a con­

stant pressure of 9.0 within the energy source volume, 

decreasing at the edge to an ambient pressure of 1.0 in the 

surroundings. Figure 15 shows that following the instant 

of burst an expansion wave begins to propagate into the high 

pressure source volume and a shock wave develops, propagating 

away from the source volume. The expansion · wave propagates 

into the source volume at the local velocity of sound and 

reaches the center at a time of 0.257. The center of the 

sphere is a singularity point and the expansion wave reflects 

as another expansion wave. The pressure at the center drops 

to a minimum value of 0.0656 at T=0.625. The system attempts 

to equilibrate the pressure by returning the mass removed by 

the expansion wave. The system over compensates and at 

T=0.680 the pressure peaks at the center and is reflected as 

a shock wave. 

This wave behavior can be seen in the particle path plot 

of figure 47. The initial expansion wave exhibits itself by 

the outward movement of the particles. Since the conditions 

within the source volume are initially uniform, the local 

velocity of sound is uniform and a straight line can be 

drawn from the source volume edge to the center along the 

front of the expansion wave. As time progresses the source 

volume has over expanded and the particles reverse there out­

ward movement. At T=0.680 the particle momentum reflects 

from the center as a shock wave. The second shock wave 
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progression can be seen by the inflections in the particle 

paths. The decreasing strength of the shock wave ·is shown by 

the decrease in the inflection of the particle paths as the 

wave propagates outward. This second shock tranfers mass 

away from the center generating another expansion wave. This 

expansion wave generates a third shock at T=l.85. If the 

calculations had been run to longer times, the reflection of 

expansion waves and shock waves from the center would have 

continued, but figure 47 shows that successive shocks become 

much weaker. Both Boyer, et al. ( 3l), and Huang and Chou<32), 

have reported similar multiple shock waves propagating away 

from bursting spheres. 

The pressure-time behavior at fixed Eulerian radius is 

shown by figure 38. Inside the source volume (n=0.825) the 

pressure rises instaneously to 9.0 and remains until the ex­

pansion wave propagates from the edge. The pressure decreases 

to less than ambient at T=0.38. The second shock reflects 

from the center and passes at T=0.9. 

At positions outside the source volume there is a rapid 

pressure rise as the lead shock arrives followed by a nearly 

exponential pressure decrease to less than ambient. 

MACH 8.0 

In case 2, the energy addition wave propagated at a 

dimensionless Mach number of 8.0, which for steady-state 

one-dimensional flow corresponds to supersonic combustion or 

a weak detonation. The energy wave movement is so rapid 

relative to the ambient velocity of sound that there is 
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minimal reinforcement of pressure, even during energy addition, 

Figure 14 shows there is no pressure transferred ahead of the 

energy addition and the pressure peaks at the end of the 

energy addition. The peak pressure in the source voltnne is 

greater than bursting sphere because of the reinforcement of 

the energy (pressure) propagating with the energy wave. 

Figure 16 shows the pressure distribution of the flow 

field. After the energy addition ends, the shock wave 

propagating from the source volume develops. Comparing this 

flow field to the flow field in figure 15 (bursting sphere), 

at equal radii in the far field the shock overpressures are 

equal and the flow fields behind the shock are similar. 

The particle behavior during energy addition is shown 

by figure 28; in cell #1 the pressure initially rises and, 

due to the non-steady behavior, the cell expands to the 

Reactive Hugoniot in the excluded region for steady-state 

solutions. When the energy addition wave has progressed 

through five cells the energy addition begins to approach 

the steady-state solution and the exclude region is no longer 

entered during later energy addition. The p-v behavior of 

cells 20 through 50 is a straight line which is indicative 

of a steady-state Rayleigh line. 

Figure 48 shows that as the energy addition wave over­

rides the particles there is a small volumetric expansion 

during and shortly after the energy addition wave passes the 

particles. There is no further expansion until the energy 

addition wave reaches the edge of the source volume and the 
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expansion wave propagates into the center. 

The pressure-time history at a fixed Eulerian radius is 

shown by figure 39. Inside the source volume (n=0.825) the 

pressure changes from ambient to the peak within a time of 

0.0106 because the wave velocity is so high that there is no 

pressure wave propagating ahead of the energy addition wave. 

After the energy wave passes there is a gradual pressure 

decrease until the expansion wave propagates through the 

position. The pressure continues to decrease until the ex­

pansion wave is reflected from the center and reaches the 

position. The pressure drops below ambient at T=0.62, 

followed by a reflected shock which arrives at T=l.05. 

As the pressure wave propagates outside the source 

volume the peak pressure decreases at larger radii. However, 

at larger radii the pressure decrease behind the shock is not 

nearly as great as an exponential decrease and approaches a 

linear decay. 

MACH 5.2 PLANAR GEOMETRY 

Steady-state theory is based on the assumption of con­

stant area flow. For comparison, the development of the flow 

field for Chapman-Jouguet conditions was first studied for 

the case of planar geometry (constant area). Figure 17 shows 

the development of the blast wave during energy addition. Of 

particular note is the p-v behavior shown by figure 29. When 

the energy addition wave passes through the last cell the 

pressure has reached the predicted steady-state value. The 

change in cell properties is a straight line from the initial 
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to final conditions, implying Rayleigh line behavior. The 

cells at the edge of the kernel appear to tangent the isen­

tropic behavior behind the energy addition. At the CJ point 

the Reactive-Hugoniot and isentrope are tangent verifying 

that the Ma.ch 5. 2 wave exhibits CJ behavior, as it should· 

MACH 5.2 SPHERICAL GEOMETRY 

In case 3 an energy addition wave of Mach 5.2, the 

Chapman-Jouguet value -for steady-state conditions, was run in 

spherical coordinates. At this velocity the Rayleigh line 

for steady-state conditions tangents the Reactive Hugoniot. 

Figure 14 shows very little pressure increase ahead of 

the energy wave with the pressure peaking at the end of 

energy addition. The development of the flow field is shown 

in figure 18. As the energy wave propagates the peak pressure 

rises and assyrnptotically approaches but does not reach the 

predicted CJ pressure of 15.08. This can be attributed to the 

divergence associated with the spherical flow field. 

The p- v behavior of the individual cells, shown in figure 

30, is quite similar to the behavior for the Mach 8.0 addi­

tion. The center cells experience a pressure increase and ex­

pansion into the excluded region. As the flow field develops 

the cell behavior approaches Rayleigh line behavior. The cell 

at the edge of the source volume (cell 50) almost tangents the 

isentrope. 

The particle displacement, shown in figure 49, is simi­

lar to the other supersonic cases . Before 'the energy wave 

arrives there is no displacement of the particles. During 
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the energy addition there is some particle displacement caused 

primarily by the expansion behind the eriergy wave. After the 

particles expand to nearly equal pressure (P~S.25) behind the 

addition there is little particle movement until the wave has 

propagated through the source volume and the expansion wave 

propagates into the source volume. This is followed by a 

series of reflected shocks and expansion waves. 

The pressure-time behavior of the flow field at Eulerian 

positions is shown in figure 40. Within the source volume 

(n=0.825) there is an almost discontinuous rise to the peak 

pressure decreasing to nearly uniform pressure behind the 

energy wave. The expansion wave propagates from the edge of 

the source volume, causing a rapid pressure decrease to less 

than ambient at T=0.67. A reflected shock arrives at T=l.05. 

At greater radii the sharp peak becomes more and more diffuse. 

MACH 4.0 

In case 4 the energy addition wave propagated at Mach 4.0. 

This is an impossible velocity according to steady-state 

theory. At this velocity the Rayleigh line for the steady­

state solution does not intersect or tangent the Reactive Hu­

goniot. 

The structure of the blast wave during and after energy 

addition is shown in figures 19 and 20. The energy addition 

wave moves supersonic relative to both ambient conditions and 

conditions behind the energy addition (a4/a
0

=2.78). Since 

the acoustic velocity behind the energy addition approaches 

the energy addition wave velocity the pressure is reinforced 
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and peaks within the energy addition wave as shown by 

figure 14 (note: Figure 14 is based on Lagrangian positions. 

Fluid compression and expansion gives the Eulerian distribu­

tion of figure 19). 

As the energy addition wave propagates through the 

source volume the peak pressure rises, reaching a maximum 

pressure of 19.7 at the edge of the source volume when the 

energy addition ends. The particles are displaced outward 

by the shock, reaching a particle velocity as great as 3.6 at 

the peak. When the energy addition reaches the edge of the 

source volume the pressure decreases and a shock wave is 

formed. As the shock wave propagates away from the source 

volume an expansion wave propagates into the source volume. 

As the pressure peak goes through the transition from an 

energy addition wave to a shock wave, a "valley" in the 

pressure distribution can be seen at T=0.25. Since the peak 

pressure occurs at the middle of the energy addition wave, 

as the wave propagates through the edge of the source volume 

the pressure at the leading edges of the energy addition wave 

continues to propagate. However, in the center of the addi­

tion wave (tapered region of the source volume) the energy is 

less than at the edges of the source volume, resulting in a 

valley in the pressure distribution curve. 

The pressure-time distribution at Eulerian radius is 

shown by figure 41. Within the source volume (n=0.825) there 

is a high (P=l5.0) but very short pressure peak as the energy 

addition wave passes . The wave passage is followed by a 
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pressure decrease approaching the uniform pressure (P ~S.45) 

behind the energy wave. The 'propagation of the expansion 

wave into the source volume causes a rapid pressure drop with 

the pressure decreasing to below ambient at T=0.68. 

Outside the source volume (n=l.15) the shock passage has 

a peak pressure of P=l0.6 which rapidly decreases to P=5.0 

followed by nearly exponential decay through ambient. At 

greater radii the high peak of short duration disappears and 

the blast wave structure becomes similar to that of a bursting 

sphere (Figure 15). 

From the particle paths in figure 50 it can be seen that 

the effects of energy addition do not affect the flow field 

ahead of the energy addition wave. i.e., when the energy 

addition reaches the edge of the source volume (T=0.21) there 

has been no movement of the particle. As the energy addition 

wave propagates through the source volume the shock wave which 

is formed entraps particles and moves them outward. Behind 

the wave the particle velocity decreases and a nearly uniform 

pressure exists. When the energy addition ends an expansion 

wave propagates into the source volume. However, since the 

pressure behind the energy wave is lower than for the bursting 

sphere, the effects at the center singularity point are re­

duced. 

From the pressure-specific volume plot of figure 31 it 

can be seen that since the approach flow Mach number is less 

than the Chapman Jouguet velocity, in the late stages of heat 

addition the pressure does not peak at the end of energy 
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addition but decreases until the Reactive Hugoniot is reached. 

Examining the energy addition as it begins at the center, the 

first cell experiences a pressure increase and volumetric 

expansion until energy addition begins in the second cell. 

This prevents further expansion of the first cell and further 

energy addition results in a pressure increase, and specific 

volume decrease. The behavior of the second and third cells 

is quite similar. However, in the fourth and fifth cells · 

there is some compression of the particle during the energy 

addition. In cells 10, 20 and 30 there is initially com­

pression as the pressure rises until the properties reach the 

Reactive Hugoniot. The particles then experience an expansion 

and pressure decrease along the Reactive Hugoniot until energy 

addition ends. Cells 40 and 50 are subjected to a pressure 

rise before energy addition begins and do not reach the 

Reactive Hugoniot. At the end of the energy addition there is 

a specific volume increase to bring the cell properties to the 

Reactive Hugoniot. 

These characteristics of the flow field indicate that the 

flow field remains non-steadv. i.e .. there is no steadv-state 

solution. The flow approaches a quasi-steady-state, but 

because the p-v behavior during the energy addition is a 

curved line the addition is definitely not Rayleigh line 

behavior. 

MACH 3.0 

The Lagrangian pressure distribution for the Mach 3.0 

energy wave has a pressure rise ahead of the energy addition 
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as shown in figure 14. The pressure peaks at the leading 

edge of the energy addition wave and decreases during energy 

addition. Figures 21 and 22 show the flow field behavior 

of the Mach 3.0 is similar to the flow field generated by a 

Mach 4:.o energy wave, but at lower overpressures. The Mach 

3.0 addition is an impossible steady-state solution for the 

ambient conditions. However, the pressure wave ahead of the 

energy wave raises the temperature to 0/0 =2.4, changing the 
0 

properties. 

The p-v behavior in figure 32 shows the cells at the edge 

of the source voltnne exhibiting similar behavior with the 

pressure rise ahead of the energy wave greater as the edge is 

approached. The p-v behavior during energy addition is not a 

straight line, indicating non-Rayleigh line behavior. But 

there is a pressure decrease during the energy addition in­

dicating the energy addition is approaching deflagrative be­

havior. 

MACH 2.0 

In case 6 the energy addition wave propagated at Mach 2.0. 

This velocity is supersonic relative to the ambient conditions, 

but subsonic relative to the properties behind the energy 

addition wave (a4 /a
0

=2.78). This permits energy to be trans­

fered ahead of the energy addition wave and the pressure dis­

tribution asstm1es the form shown in figures 14 and 23. As the 

energy addition wave propagates through the source volume a 

pressure "hump" (P=8.0) develops ahead of the wave . With the 

arrival of the energy addition the pressure decreases to a 
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nearly uniform pressure (P=4.0) behind the energy addition. 

Since a pressure decrease ·across the ene~gy addition is 

a characteristic of a deflagration, an examination of figure 

33 will explain the behavior. Initially the acoustic velocity 

throughout the flow field is the same, ambient. When the 

energy addition begins in the first cell the energy wave is 

propagating supersonic relative to the entire flow field. For 

the first five cells there is no propagation of pressure ahead 

of the energy wave and during energy addition the cell pro­

perties change from nearly ambient to a pressure-specific volume 

relationship on the Reactive Hugoniot. When the energy wave 

reaches the tenth cell a pressure "hump" has begun to propagate 

ahead of the addition wave and the cell properties have been 

displaced along the shock Hugoniot (P ~l.4) before the energy 

addition begins. As the energy wave reaches cell 20 the 

pressure wave ahead of the energy wave has changed the cell 

properties along the shock Hugoniot (P ~S.7). For cells 30, 

40 and 50, the pressure ahead of the energy wave approaches 

a uniform value of P=8.0, with a pressure drop and specific 

volume expansion across the energy wave. Since the p-v-line 

for the energy addition in the final cells approaches a 

straight line which tangents the isentrope, this case 

approaches the special case of the lower Chapman-Jouget state 

for the pressure-specific volume properties ahead of the 

energy addition. The displacement of succesive plots of the 

Reactive Hugoniot is caused by transfer of energy away from 

the cell during the energy addition. Although an energy of 
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42.5 is added to each cell, the cell ene!gy of the cells near 

the edge of the source volume at the end of energy addition 

is only 38. The other energy has been transferred into the 

flow field. 

Figure 42 illustrates the pressure distribution of the 

flow field at fixed Eulerian radius. At a location inside 

the source volume, n = 0.825, there is a rapid pressure rise 

to P=8.0 at T=0.26 as hhe energy wave approaches. The pres­

sure falls through the energy addition to a nearly uniform 

pressure (P=4.0) behind the energy addition. This pressure 

is nearly constant until the energy wave propagates past the 

edge of the source volume and an expansion wave propagates 

towards the center. The expansion wave causes a pressure 

decrease through ambient pressure at T=0.85. 

At the position just outside the source volume, n=l.15, 

the expansion of the source volume during energy addition 

results in the energy wave traversing this Eulerian radius. 

The position is first subjected to the pressure field ahead 

of the energy wave followed by a pressure decrease during the 

energy addition. The expansion wave then causes the pressure 

to decrease to below ambient at T=l.10. At greater radii the 

peak pressure decreases and the blast wave begins to approach 

the form of a shock wave. However, the effects of the rapid 

pressure rise ahead of the energy addition can still be seen 

at the n=l.6 and n=2.3. 

The particle displacements can be seen in figure 51. 

As the energy wave propagates through the source volume the 
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particle movement occurs primarily ahead of the wave. The 

particle velocity is a maximum at the leading. edge of the 

wave and decreases to a minimum at the end of the energy 

addition. After the energy addition is completed the flow 

field experiences a series of expansion and shock waves 

reflecting from the center. 

MACH 1.0 

In case 7 the energy addition wave propagated at the 

ambient velocity of sound. The addition of energy increases 

the local velocity of sound and energy (pressure) is trans­

ferred ahead of the energy addition as shown in figure 14. 

Figure 24 shows the flow field approaching a self-similar 

solution. As the energy addition wave propagates from the 

origin the flow field develops and the peak pressure 

asymptotes to P=3.5. The leading edge of the flow field ex­

periences a rapid pressure rise at the limits of energy 

transfer. This is followed by a slow pressure rise to the 

peak pressure at the leading edge of the energy addition wave. 

Across the energy addition wave the pressure drops to a nearly 

uniform pressure of P=2.6 behind the wave. 

This self-similar wave structure continues until T=0.85 

when the energy wave has propagated through the source volume. 

The wave structure changes with the peak moving to the leading 

edge of the pressure rise as the expansion wave is generated. 

This can also be seen in figure 43. When energy addi­

tion is completed the edge of the source volume has expanded 

to a radius of 1.5. The positions n=0.825 and n=l.15 are both 
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traversed by the energy wave. At position n=0.825 there is 

initially a rapid pressure rise when the pres·sure ahead of 

energy addition arrives·. This is followed by a slow pressure 

rise to the peak pressure at the beginning of the energy 

addition wave. The pressure drops through the energy addition 

to a nearly uniform pressure behind the wave. This uniform 

pressure continues until the expansion wave forms at the end 

of the energy addition and propagates back into the source 

volume. Similar behavior is noted at n=l.15. 

The position n=l.6 is located just beyond where energy 

addition ends. The pressure decrease through the energy 

addition has been replaced by an expansion wave. The leading 

edge of the blast wave is similar to the pressure profile 

ahead of the energy addition, however the expansion wave 

results in the pressure decreasing to below ambient behind 

the wave. 

At greater radii the blast wave has a rapid rise to the 

peak pressure followed by a rapid decrease tapering to a nearly 

linear decrease through ambient pressure. 

Most of the particle displacement shown on figure 52 

takes place ahead of the energy addition wave. As an example, 

for the particle initially at D=0.8 the energy addition begins 

at T=0.76. 

From figure 34 it can be seen that initially the parti­

cle p- v behavior is definitely non-steady. When the energy 

addition wave has propagated through 20% of the source volume 

the flow field begins to approach a self-similar solution. 



94 

Initially the particle goes through a pressure rise along the 

shock Hugoniot. During energy addition the particle goes 

through a weak deflagration along a Rayleigh line. 

MACH 0.5 

For case 8 the energy wave is propagating subsonic rela­

tive to both ambient conditions and conditions behind the 

energy wave. Comparing figures 14 and 25, the compression 

and pressure rise ahead of the energy wave can be seen. As 

the pressure propagates ahead of the wave there is first a 

pressure rise along the shock Hugoniot followed by an 

isentropic compression to the beginning of the energy 

addition. There is an expansion and pressure decrease through 

the energy addition with nearly equal pressure behind the 

energy wave. 

As the flow field develops the pressure increases and 

~symptoticallY approaches a final pressure of P=l.88. In 

the final stages of energy additions the flow field approaches 

self-similar behavior. Figure 35 shows the energy addition 

is a pressure decrease along a straight line in the p-v plane, 

implying Rayleigh line energy addition as a weak deflagration. 

The energy wave is propagating much slower than the lower CJ 

deflagration condition. 

The low peak pressure associated with this energy addition 

results in a large expansion through the energy addition wave. 

This can be seen in the parti cle displacement curves of figure 

53. The particles are initially displaced by the pressure 

rise ahead of the energy wave. As they go through the 
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expansion associated with the ·energy addition their velocity 

decreases to nearly zero as shOwn by the nearly constant 

position after the initial displacement. The particle 

positions remain nearly constant until the expansion wave 

propagates through the source volume. Since the source volume 

has experienced considerable expansion during energy addition 

the secondary shocks are much weaker than for the cases of 

supersonic addition. 

This is also shown by figure 44. Inside the source 

volume (n=0.825) there is initially a rapid pressure rise 

beginning at T=0.55 followed by a slower rise until energy 

addition begins (P=l.85). The pressure decreases during 

energy addition to nearly constant (P=l.69) behind the energy 

addition, until the expansion wave at the end of energy 

addition (T=l.69) propagates to the position (T=l.96) causing 

a rapid pressure decrease to below ambient. A second shock 

is formed, but the pressure does not exceed ambient. 

The expansion through the energy addition results in a 

large expansion of the source volume. When energy addition is 

completed (T=l.69) the edge is at an Eulerian radius of 1.66. 

The expansion of the source volume causes the positions 

n=l.15 and n=l.6 to experience behavior similar to n=0.825, 

only the initial pressure rise occurs later and the propa­

gation of the expansion wave into the source volume occurs 

earlier. At n=2.3 the pressure rise is similar to the rise 

ahead of the energy addition, however, at greater radii 

(n=3.2) the peak appears to be moving to the front of the 
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The Mach 0.25 case ·is quite similar to the Mach 0.5 case 

except the lower energy wave velocity allows the solution to 

approach acoustic behavior. Figure 36 shows a slight com­

pression and pressure rise to P=l.32 ahead of the energy wave 

and a Rayleigh line energy addition with pressure decrease to 

1.25. This is indicative of a nearly constant pressure de­

flagration. 

The edge of the source volume has expanded to n=l . 84 when 

energy addition is completed. Figure 45 shows that at an 

Eulerian position inside the source volume (n=0.825) the 

pressure begins to rise at T=0.71, the time required for an 

acoustic signal to propagate from the center. The pressure 

rises to P=l.31 ahead of the energy wave and decreases to 

P=l.25 behind the addition. The expansion of the source 

volume causes similar behavior at n=l.15 and n=l.6. Outside 

the source volume the pressure rise is similar to the pressure 

rise ahead of the energy wave. The overpressure decreases, 

but since the initial overpressures were low the shock wave 

decay is slowed. 

There is a gradual expansion of the flow field as shown 

in figure 54. 

MACH 0.125 

For the Mach 0.125 the energy wave is propagating so 

slowly the energy addition approaches a nearly constant 

pressure deflagration. Figure 27 shows a nearly isentropic 
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pressure rise to P=l.08 ahead of the energy wave. Through the 

energy addition the pressure de~reases to P=l.075, a nearly 

constant pressure expansion. Similar behavior is seen in 

figure 46. At the time required for an acoustic wave to 

propagate to the Eulerian positions the pressure begins to 

rise. Figure 55 shows particle movement ahead of the energy 

wave, with a large expansion through the wave. 

This case was run only until trends were established 

because excessive computer time was required. 

2. Damage Parameters 

Experimentally the parameters which are normally observed 

in blast wave studies are peak pressure, P, and positive im-s 

pulse, r+·· calculated from the pressure-time history of the 

blast wave. Using these parameters and the P-I technique 

described earlier, accurate estimates of structural damage 

can be made. 

The peak overpressure as a function of energy scaled dis­

tance for cases one through eight and Baker's pentolite data 

correlation are shown in figure 56. The behavior of the high 

explosive pentolite does not compare directly with the gas 

mixture under consideration but is plotted for illustrative 

comparison. These variables are plotted as they were defined 

in equations I-8 and I-9. In all cases the overpressures were 

considerably below the overpressure from an explosion of 

pentolite with the same total energy. This is caused by the 

non-ideal structure of the blast wave and the low energy 

density. 
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Bursting sphere (infinite wave velocity) is the limit 

case for the wave addition of energy and results in a constant 

overpressure from the center to the edge of the kernel. After 

energy addition, a shock front develops, propagating away from 

the source volume. Beyond the energy source volume the shock 

overpressure has a maximtun value of P=3.40. In the far field 

the overpressure of the bursting sphere approaches 70% of the 

high explosive curve for the same energy scaled radius. 

As the energy wave velocity decreases through Mach 4.0, 

the near field overpressure associated with the energy addition 

increases. Because of the large overpressure associated with 

the energy wave the shock propagating away from the source 

vollll'lle initially has a peak pressure greater than the bursting 

sphere case but decreases to 90% of bursting sphere in the 

intermediate field. In the far field the overpressure curves 

coalesce to approximately 70% of the pentolite correlation. 

As the velocity decreases from Mach 4.0, the near field 

overpressure decreases. For each 50% decrease in the energy 

wave velocity the near field overpressure decreases by the 

following relationship: 

overpressure (50% velocity)~0.35*[overpressure (100% velocity)] 

IV-8 

In the near and intermediate field all the supersonic 

cases initially have an overpressure greater than bursting 

sphere. At an Eulerian radius of n=l.98 the overpressure 

curves of the supersonic cases intersect and at a radius of 

n=2.0l their pressures begin to drop below the bursting sphere 

overpressures. The overpressure in the Mach 2.0 addition 
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decreases to approximately 75% of bursting sphere at a radius 

of n=2.73. The overpressure then approaches bursting sphere 

and reached 90% when the calculation was ended. 

In the case of the energy wave propagating at the ambient 

velocity of sound, Mach 1.0, the expansion behind the energy 

addition results in shock wave ahead of the energy addition. 

When the energy addition ends, this shock wave continues to 

propagate with only a very gradual decrease in overpressure. 

Between a radius of n=l.96 and n=2.24 this case has the 

greatest overpressure. The overpressure then begins to drop 

rapidly as the expansion waves behind the shock decrease the 

shock overpressure. If the flow behavior behind the Mach 1.0 

addition is similar to the Mach 2.0 the overpressure will 

begin to approach the bursting sphere in the far field, as it 

did in the Mach 2.0 case. 

The subsonic energy additions exhibit expansions of the 

source volume behind the wave. However, as the velocity de-

creases the expansion does not produce the near field and 

intermediate field overpressures necessary to approach the 

overpressures from bursting sphere. The Mach 0.5 and Mach 0 . 25 

overpressures approach, 84% and 23% of bursting sphere, respectively. 

Figure 57 is a plot of non-dimensional impulse, I, versus 

energy-scaled distance, RE.I is defined by Sachs' relationship 

and is expressed as: 

I = IV-9 

where I+ is the positive 
(p )2/3(E )1/3 
ho . Tl p ase impu se, a

0 
and p

0 
are the 

ambient atmospheric values of sound speed and pressure, 
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respectively, and ET is the total energy deposited within the 

source volume. For comparison the impulse of a high explo­

sive, pentolite, is also plotted. 

Because impulse is the integral of overpressure with 

time, the overpressure and impulse plots exhibit similar 

behavior when plotted against similar parameters. For the 

supersonic energy addition, the impulse is higher in the near, 

intermediate and far field than the subsonic cases. As the 

energy wave velocity decreases the impulse decreases for the 

entire flow field. 
I 

In the near field the impulse from the theoretical energy 

addition is greater than the experimental correlation for 

pentolite because of the positive pressure behind the energy 

addition wave which exist until the end of the energy addition. 

In the far field the impulse varies from 60 to 75% of that for 

the high explosive (pentolite). 

3. Energy Distribution 

In an ideal or point source explosion all the energy is 

transferred to the surroundings and is available to drive the 

blast wave. In a non-ideal or diffuse explosion the source 

releases energy relatively slowly over a sizeable volume. In 

addition, the mass in the source volume retains a portion of 

the energy, reducing the amount of energy available to drive 

the blast wave through the surroundings. The energy which 

remains in the source volume can be used as a measure of the 

"effectiveness" of the explosive process relative to an ideal 

(point-source) explosion. 
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The concept of "was.te ~nergy" was introduced by Taylor( 3) 

who surmised that some energy would rerriain or be "wasted" in 

the central core region of the blast zone. This energy which 

remains in the source volume ·after the shock passage and an 

adiabatic expansion to ambient pressure is unavailable to the 

pressure wave and has also been called "residual energy" by 

Strehlow and Baker(Z?). They noted that the energy distri­

bution in the system and how it shifts with time are two 

important properties in determining the behavior of an explo­

sive process. 

Adamczyk(lB) analyzed his non-ideal explosions (produced 

by homogeneous addition of energy) and noted that the time 

over which energy is added to the source region determines 

the structure of the blast wave and the partitioning of 

energy between the source volume and the surroundings. He 

considered two idealized limit cases of constant volume energy 

addition and constant pressure expansion. 

The first case of constant volume energy addition, 

bursting sphere, can be visualized as an infinitely fast energy 

addition wave with an instantaneous deposition time. Initially 

the source volume is at the ambient temperature and pressure 

of the surroundings. Energy is instantaneously added, raising 

the temperature and pressure of the source volume to the 

initial conditions of the bursting sphere. The energy added 

is: 

Ai = n fc (84-0 ) + (C -C )0 1 . L V 4 0 V 4 VO OJ 
IV-10 
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IV-11 

and the energy density is given by: 

P4 
1 q = - -

Po 
IV-12 

0 
q = 4 1 0 - IV-13 

0 

where y4 is the constant garrnna of the gas in the source vol­

ume after energy addition and y is the initial garrnna through-o 

out the field. If the initial and final gannna's in the source 

volume are equal, the second term cancels and equation IV-11, 

is Brode 1 s< 33 ) formula for the energy stored in a bursting 

sphere. 

If the bursting sphere undergoes an idealized isentropic 

expansion where the sphere expands slowly against a counter 

pressure equal to its instantaneous pressure, the fraction of 

the total energy remaining in the source volume is: 

1 [ ( 1 +q) 1 / y - 1 ] 
q IV-14 

and the fraction of energy transferred to the surroundings is: 

1 [(l+q) - (l+q)l/y] q IV-15 

where Es is the energy transferred to the surroundings, EB 
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is the energy remaining in the source volume, and ET is the 

total energy deposited. Equation IV-15 is Brinkley 1 s< 34) or 

Baker ' s( 2
) formula for the effective quantity of energy 

stored in the sphere, expressed as a fraction of Brode's 

energy. In the limit as q + 00 (point source), Es/ET + 1 and 

as q + 0, Es/ET + (y-1)/y. For the conditions being investi ­

gated: 

and 

In the second limit case the energy is added infinitely 

slowly such that the energy of both the source volume and 

surroundings remain at p
0

• The fraction of energy which 

remains in the source volume is : 

1 
y 

IV-16 

and the fraction of energy transferred to the surroundings 

is: 

R = y-1 
cP . Y 

IV-17 

this is also the limit case for an infinitely rapid (constant 

volume), but infinitely small (q+O) energy addition. For the 
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conditions investigated: 

It should be noted that in both limit cases, q+o for bursting 

sphere and infinitely slow energy addition, there is no blast 

wave . 

In the cases studied all internal properties are initially 

at their ambient values throughout the system . At the in­

stant chemical reaction begins, the heat addition model adds 

energy to the volume encompassed by the heat addition wave. 

As time progresses this energy is redistributed as internal 

and kinetic energy throughout the system, where the system 

contains all materials out to the lead characteristic or 

lead shock wave. 

The energy added to the system can be separated into 

four classifications: 

(1) Internal Energy increase in the source volume: 

r . 

J 
£ p0

0
rJ 

dr --~ dr - y -1 
0 

IV-18 

0 

(2) Kinetic Energy of source volume: 

r 

(K~)rn= J £ 2 rj PU dr 2 IV-19 
0 
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(3) Internal Energy increise in the surroundings: 

roo 
p(G-0 )rj 

rco 
p0 rj 

(IE).s= f -f 0 dr 0 dr y -1 y -1 
4 0 r r £ £ 

(4) Kinetic Energy of surroundings: 

2 . 
pu rJdr 

2 

IV-20 

IV-21 

where O is the center of the sphere, r£ is the position of 

the contact surface of the ball containing the high energy 

gas, and r
00 

is the limits of the flow field. 

Figures 58 through 66 illustrate the energy distribution 

for the cases investigated and how it varies with time. Fig­

ure 58 shows an instantaneous addition of the total energy 

to the source volume. Since the instantaneous energy addition 

is a constant volume energy addition, initially 100% of the 

energy is internal energy in the source volume. As the flow 

field develops this internal energy shifts to kinetic energy 

in both the source volume and the surroundings, and internal 

energy in the surroundings. As the source volume expands its 

kinetic energy rises and peaks when the expansion fan reaches 

the center, followed by an oscillatory decay. The kinetic 

energy in the surroundings increases until there is a max­

imum in the rate of displacement of the source volume at 

t~0.66. The kinetic energy of the surroundings gradually 
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decreases as the shock wave propagates into the flow field. 

The internal energy of the air continually rises and asymp­

totically approaches a final value of 36%. The internal 

energy of the source volume appears to asymptotically ap­

proach a final value of 66%. 

In case 2(Mw = 8.0) the movement of the energy wave 

through the source volume generates kinetic energy of the 

entraped · particles. Since the energy wave moves supersonic 

there is no energy transfer to the surroundings until the 

energy addition wave reaches the edge of the source volume 

(T=0.116). There is a rapid rise in the internal and kinetic 

energy of the surroundings as the energy wave propagates into 

the surroundings and continues as a shock wave. The expansion 

wave which propagates into the source volume develops a large 

value of kinetic energy in the source volume. The internal 

energies approach final values of 63% in the source volume 

and 37% in the surroundings. 

In case 4 (MW= 4.0), the large overpressure of the 

energy wave imparts considerable kinetic energy to the parti­

cles in the source volume. This kinetic energy maximizes 

and decreases abruptly when the shock enters the surroundings 

(T=0.23). The expansion wave then increases the kinetic 

energy of the source volume until the wave reflects from the 

center. Subsequent expansion waves reflecting between the 

center and the shock have less kinetic energy. The internal 

energy of the source volume decreases from a value of 98% 

when the addition wave reaches the edge of the source volume 
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to a final value of 60%. The internal energy of the surround­

ings approaches 40% of the energy added. 

In cases 6(Mw = 2.0), 7(Mw = 1.0), B(Mw = 0.5), and 

9(¾ = 0.25), figures 62, 63, 64, and 65 respectively, there 

is energy transfer ahead of the energy addition wave. This 

causes a movement (displacement) of the particles resulting 

in an increase in the kinetic energy. As the energy wave 

approaches the edge of the source volume the particle move­

ment ahead of the wave moves into the surroundings with the 

kinetic energy abruptly decreasing in the source volume and 

increasing in the surroundings. As the expansion wave pro­

pagates into the source volume the kinetic energy increases, 

but not to the level reached during the passage of the heat 

addition wave. At later times the kinetic energy of the 

source volume decreases as successive expansion waves become 

weaker. The final distribution of energy is; for case 6, 61% 

source volume, 39% surroundings; case 7, 66% source volume, 

34% surroundings; case 8, 74% source volume, 26% surroundings; 

and in case 9, 77% source volume, 23% surroundings. 

As the Mach number of the energy addition wave de­

creases, the overpressure also decreases resulting in a 

weaker shock wave propagating into the surroundings and 

consequently there is less energy transfer. 

In a non-steady heat addition the limit case of a con­

stant pressure expansion can not be reached since any heat 

addition, even at very low subsonic velocities will result 
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in a pressure rise ahead of the energy addition wave and 

pressure decrease through the energy addition. For the cases 

run the energy distribution approached 77% in the source 

volume and 23% in the surroundings for very slow flame pro­

pagation velocities. The energy distribution for case 10 

(MW= 0.125) was not calculated since the complete energy 

addition was not run. 

Examining the energy distribution for the cases which 

were run it can be seen that for a constant energy density 

the energy distribution is significantly affected by the 

Mach number of the energy wave. The principle mechanism 

for transfer of energy to the surroundings is the propaga­

tion of the shock wave through the flow field. For the 

cases of a highly supersonic energy addition wave, there 

is very little kinetic energy in the flow field as the wave 

propagates. When the energy addition stops there has been 

only minimal development of the flow field. 

The distribution of energy between the source volume 

and the surroundings and how this distribution shifts with 

time as a function of the flame velocity is sunnnarized by 

figure 67. For the limit case of infinite energy wave vel­

ocity, bursting sphere, 37% of the energy is transfered to 

the surroundings by the final time line calculation. The 

energy transfer to the surroundings increases to 41% as 

the velocity decreases to Mw = 4.0. As the velocity is 

decreased further the energy transfer to the surroundings 

decreases to 23% in case 9(¾ = 0.25), the lowest velocity 

for which the energy distribution is calculated. 



It 
0. ... 
Cl) 
> 
0 

109 

100.0 .--------r----., ----------------, 
I I 

: I 
I I 

M4.0 

10.0 
10.0 

M 2.0 

M0.5 
1.0 I 1.0 

I 
I 

M0.25 

I 
I 
I 

.9 1.0 1.1 1.2 
Tail Head 

0.1 '-----'----___. ____ __. __ .__ _ ___,__---'.__ _ __,_ ___ __._._ ____ ~ 0.1 
.7 .8 1.3 1.4 

Lagrangian Position 
(Note: Eulerian positions will vary because of compression) 

Figure 14 , Overpressure Distribution Through Energy Addition Wave 



r 
19.0 

13.0 

p 

7.0 

0.05 
3.00 2.50 2.00 I.So 1.00 a.so 

PRESSURE/ PO DlSTAlBUTl~N VS. DISTANCE/ DO AND TIME/ TO 
Figure 15. Pressure distribution versus Eulerian distance and time for 

blast system generated by an infinite velocity energy 
- ,, ~ - = ....__ .! - - - - 'L- - - - ' 

t--' 
t--' 
0 

0.00 



19.0 

13.0 

p 

7.0 

1.0 
2.0 

~J.O 

3.00 2.50 2.00 1.50 1.00 ·0.50 

PRESSURE/ PO DISTAIBUTI~N VS. DISTANCE I DO AND TIME/ TO 
Figure 16. Pressure distribution versus Eulerian distance and time for 

a blast system generate by a Mach 8.0 energy addition wave. 

0.00 



0 
0 . 
lf) ..... 

0 
0 . 
N ..... 

0 
0 . 
en 

0 
0 

0 ,-. 
0 

0 
N . 
0 

0 
("f) . 
0 

0 
Ll) . 
0 

0 
1.0 . 
0 

0 ,...,. . 
0 

0 
co 0 . O"t 0 
0 . 0 

0 
,-

a-t-----.---- -----r- ----r-----.-----.-------.----- --.----~ 
0.00 .so 1.00 1.50 2.00 

RADIUS 
2.50 3.00 3.50 1,1, 00 

Figure 17. Pressure distribution versus Eulerian distance and time from a blast 
system generated by a Mach 5.2 (CJ) energy wave in planar geometry. 



0 
0 . 
l.f) ..... 

0 
0 . 
('\J ..... 

a 
0 . 
en 

0 
0 . 
(I") 

0 
0 

0 

. 00 .20 

Figure 18. 

\0 
"'T ,-
,- . 

N . 0 co 
,- 0 ,-

0 . . 
0 

0 
N . 
0 

.40 . 60 . 80 LOO 1.20 1.60 
ARDIUS 

Pressure Distribution Versus Eulerian Distance And Time From a Blast 
System Generated By A Mach 5.2 (CJ) Energy Wave in Spherical Geometry. 



p 

22.0 

1 5. 0 

8.0 

1.0 
0.3 

2.00 1.67 1.33 1.00 0.67 0.33 

PRESSURE/ PO OISTRIBUTION VS. DISTANCE/ DO AND TIME/ TO 
Figure 19 . Pressure distribution versus Eulerian distance and time for 

a blast system generated by a Mach 4.0 energy wave. 

0.00 



17 .0 

13.0 

p 

7.0 

0 

3.00 ·2.50 2.00 I.SO 1.00 a.so 

PRESSURE/ PO DISTRIBUTieN VS. DISTANCE/ DO AND TIME I TO 
Figure 20. Pressure distribution versus Eulerian distance and time for 

a blast system generated by a Mach 4.0 energy addition wave. 

0.00 



p 

16.0 

11.0 

6.0 

l.Q 
0.4 

2.00 1.67 t.00 0.67 0.33 

PAESSUAE / PO OISTAIBUT!~N VS. DISTANCE/ 00 ANO TIME/ TO 
Pressure distribution versus Eulerian distance and time for 
a blast system generated by a Mach 3.0 energy addition wave. Figure 21. 

0.00 



19.0 

13 .0 

p 

7.0 

1.0 
2.0 

·3.00 2.50 2.00 1.50 1.00 -a.so 

PRESSURE/ pa ·o1STAIBUTlflN vs. DISTANCE/ 00 ANO TIME/ TO 
Figure 22. Pressure distribution versus Eulerian distance and time from 

a blast sys~em generated by a Mach 3.0 energy addition wave. 

O.ClO 



0 
0 . 
0 ...... 

N 
N 'd' 
M . 

,- . 0 
N 0 

0 . 
0 0 . 
co 

,-
,- M . LO 
0 . 

0 

CJ 
0 . 
CD 

LLI 
a:o 
:::,o 
en . 
cn-::J' 
LLI 
a: 
a... 

0 
CJ . 
N 

0 
0 

OJ----r----r-----r----r------r-----r---------r-----~ 
. 00 .40 .80 1. 20 1. 60 

RADIUS 
2.00 2.40 2.80 

Figure 23. Pressure distribution versus Eulerian distance and time for a blast 
system generated by a Mach 2.0 energy addition wave. 

3.20 

t-' 
t-' 
00 



4.0 

3.0 

2.0 

1.0 
l. 

a.a 
3.00 2.50 ·2.00 1.50 1.00 0.50 

PRESSURE/ PO DISTAIBUTieN VS. DISTANCE/ DO ANO TIME/ TO 
Figure 24. Pressure distribution versus Eulerian distance and time for 

a blast system generated by a Mach 1.0 energy addition wave. 

0.00 



0 
lf) . 
N 

0 
0 . 
N 

0 
lf) . 

u.J 
CI:o 
:::Jo 
en • 
cn-
u.J 
a: 
(L 

0 
lf) . 

0 
0 

....- ....- ....-
...... 
co 0 

0 

·~------,,---------.-------r-----r--------.-------,.------~----0 

.oo .60 1. 20 1. 80 2. 1.rn 3.00 3.60 LL20 L!.80 
RADIUS 

Figure 25. Pressure distribution versus Eulerian distance and time from a blast 
system generated by a Mach 0.5 energy wave. 

1--' 
N 
0 



0 
('l 

.-

LJ1 

w 
rr::o 
=:Jo 
if) . 
if).-

w 
rr:: 
CL 

U1 
CD 

0 

M co ,... ._,. . 

I 
. \ 

' \ 
\ 

\ 
I 
\ 

\ 

._,. ~ 
N ~ 

,..... ,..... 
~ 
! 

,' 

\ 
\ 

\ 

co ._,. . 
N 0 ,..... M ._,. 

...... O'\ M ...... ,..... 
0 . . . . . N M M ._,. 
N 

' 
\ 

\ 
\., 

\ 
\ 

\ 

C"--1-4-----~--

D.00 . 75 

Figure 26 . 

1. so 2.25 3.00 3. 75 LJ .50 5.25 6.00 
ARDJUS 

Pressure distribution versus Eulerian distance and time from a blast 
system generated by a Mach 0.25 energy addition wave. 



0 ...... 
...... 

Ln 
a 
...... 

0 
0 . 

w ...... 
a: 
::) 
(f) 
(f) 

w 
0:lf) 
Q_O) . 

M 1.0 
co 1.0 

0 ,-

co 
,,:;t . 
N 

.-
CV) . 
rr, 

0 
~-.------r------,r--------r------.-------,------r----- -....-----

0. 00 .75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 
RADIUS 

Figure 27. Pressure distribution versus Eulerian distance and time for a blast 
system generated by a Mach 0.125 energy addition wave. 

t-' 
N 
N 



Cl 

= 

lf') 

r 
a::J 

= lf') 

ID 

u..J 

cc 
:::J= 
c..no 
c..n • 
u..Jln 

cc 
(!__ 

lf') 

r-

= lf') 

N 

= = 
.55 1.00 

123 

CELL F-V BEH~VIOR 
M~CH 5.00 ENERGT ~DDITION 
SFHERIC~L GE~METRT 
ll BEGIN ENERGT ~DD IT I ON 
~ENO ENERGT ~OOITION 
CJcELL 1 
c::icE1=1-.2 
~ L 3 
+CE LL U 
XcELL 5 
~CELL l 0 
"t"[ELL 20 
XcELL 30 
ZcELL UO 
YcELL SO 

1 . 15 1 . '.30 1.l.15 1. 60 
SPECIFIC VDLUME 

1. 75 

Figure 28. Pressure versus specific volume behavior from a 
Mach 8.0 energy wave (D = 1.0 at cell 50) 
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Figure 32. Pressure versus specific volume behavior from 
a Mach 3.0 energy wave (D = 1.0 at cell 50). 
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Mach 1.0 energy wave. 
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Figure 36. Pressure versus specific volume behavior from a 
Mach 0.25 energy wave. 
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V. COMPARISONS 

A. An Investigation Of Blast Waves Generated From Non-

Ideal Energy Sources 

Adamczyk(lB) systematically studied the flow field of 

blast waves generated by the homogeneous deposition of energy 

(infinite velocity wave of infinite thickness with finite 

deposition time). Using a Von-Neumann/Richtmyer-type finite 

difference integration procedure he generated numerical 

solutions of the flow field parameters for planar, cylin­

drical, and spherical flow fields. 

In the analysis, Adamczyk determined the time of energy 

deposition and the energy density within the source to be 

the two most critical parameters affecting the flow prop-. 
perties of the blast system. Since the calculations in this 

dissertation were all done at one energy density, these 

comparisons will only address his conclusions concerning 

deposition time. 

For comparison with the homogeneous energy deposition 

inves tigated by Adamczyk, two cases with deposition times 

l n=0.2 and ln=2.0 were run. A shorter deposition time was 

not deemed necessary since the flow field approaches burst­

ing sphere. 

1. Flow Field Properties 

Kernel Addition ln=0.2 
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For the case of an energy deposition time of T=0.2, 

figures*68 and 69 show the pressure time history of the energy 

addition. As the energy is added, the flow field develops and 

an expansion wave propagates in from the kernel edge. When 

energy addition stops the expansion wave has progressed only 

about 50% of the distance into the kernel. Therefore, the 

sturcture of the system closely resembles that generated by 

a bursting sphere. Comparing figures 69 and 15, it can be 

seen that the flow fields are similar if the time for energy 

deposition is considered. The expansion wave has propagated 

50% of the way into the bursting sphere at time 0.13 and 

50% into the homogeneous energy addition at time 0.2. By 

adjusting the times for flow field behavior to reflect this 

time difference, the flow fields are similar. 

This can also be seen by examining figure 75. The 

energy addition results in an initial expansion wave followed 

by a second shock reflected from the origin, similar to the 

bursting sphere. However, the expansion wave does not pro­

pagate into the source volume at constant velocity. The local 

velocity of sound is a function of the local temperature 

and gamma, both of which are functions of the energy addi­

tion. 

Figure 71 shows that the center of the source volume 

experiences a constant volume energy addition, similar to 

the bursting sphere case. The cells on the edge of the 

source volume experience both a pressure rise and specific 

volume increase. 
-;..:c-----

Note: f~gures in thia ch~~tcr arc collected at the end to 
sinolify comparison. 



165 

The blast wave structure at fixed Eulerian radii is 

shown in figure 73. Inside the source volume n = 0.825 the 

pressure rises during energy addition, peaking when energy 

addition ends. The pressure decreases below ambient at 

T=0.58. The blast wave behavior outside the source volume 

is similar to bursting sphere, figure 38. 

Kernel Addition T=2.0 

In run 20 a homogeneous energy addition was done with 

a deposition time of T=2.0 which is quite long in relation 

to the characteristic times of the system. For the case of 

no energy addition an ambient temperature acoustic wave 

would take a time of T=0.85 to propagate from the edge of the 

source volume to the center. Since the energy addition takes 

place over a much larger time, the system distributes the 

energy as it is added. Figure 70 shows that during the 

energy addition an expansion wave forms which reaches the 

center at T=0.68 with a maximum pressure of P=2.7. (note: 

the travel time of the expansion wave is decreased by the 

effects of temperature and gamma on the speed of sound.) 

The expansion wave reflects from the center and an 

outward propagating pressure "hump" develops. Since the 

energy is being added slowly there is primarily a low pres­

sure expansion of the source volume with the pressure wave 

propagating into the surroundings. When energy addition has 

been completed the specific volume of the cells in the source 

volume is approximately 7. 0 which approaches the spec.ific 

volume expected from a constant pressure expansion. 
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Figure 76 shows that since the energy addition continues 

during and after the arrival of the expansion wave at the 

center there is no second shock generated. The expansion of 

the flow field is a smooth continuous process. 

In the very slow homogeneous addition of energy, T=2.0, 

figure 72 shows very unique behavior is the p-v plane. 

Initially the energy addition results in a pressure rise in 

all cells. As the expansion wave propagates into the source 

volume the energy addition changes from a pressure increase to 

a specific volume increase. Expansion waves propagating 

through the source volume tend to equalize the pressure and 

the intersections of the p-v curves indicate equal temperatures 

in the source volume. At the end of energy addition the indi­

vidual cells have expanded to a specific volume of approxi­

mately 6. 75 at P = 1.1. 

The blast wave develops as a relatively slow pressure 

rise both inside and outside the source volume as shown in 

figure 74. 

The pressure remains greater than ambient throughout 

the energy addition. An interesting behavior in this case 

is that the pressure drops below ambient first in the source 

volume and then propagates outward. 
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2. Damage Parameters 

Figure 77 shows the overpressure from homogeneous addi­

tion of energy. For the rapid energy addition (Tn=0.2) the 

pressure peak progresses from the edge of the source volume 

towards the center until a shock waves forms. As expected, 

the overpressure of shock approximates overpressure from the 

bursting sphere shock. For the very slow energy addition 

(T=2.0) the peak pressure propagates from the edge of the 

source volume to the center and out as a shock is formed. 

However for this case the overpressures are significantly 

lower. These overpressureslie between those of the Mach 0.5 

and Mach 0.25 cases plotted on figure 56. This would be 

expected since the times for energy addition in these cases 

are 1.859 and 3.719, respectively. 

In Adamczyk's investigation the instantaneous deposition 

time produced the highest overpressures, whereas in the wave 

addition of energy the overpressures increase to a maximtnn 

at a finite time of deposition, Tn=0.28. Figure 78 presents 

comparisons of the overpressures developed in the wave addi­

tion of energy and the homogeneous addition of energy. For 

the cases investigated the overpressure outside the source 

volume was greater than the overpressure from the homogeneous 

energy addition. However, in the source volume, as the 

deposition time becomes greater than T=0.6 the overpressure 
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in the source volume was greater for the homogeneous addition 

of energy than the wave addition of energy. This is not con­

sidered to be controlling since the overpressure is low 

(P~S.O) and the area would be subjected to extensive fire 

damage. 

The impulse in the cases involving the kernel (homogen­

eous) addition of energy is shown in figure 57. For the 

rapid deposition of energy T=0.2 the impulse is slightly less 

than bursting sphere in the near field and slightly greater 

in the intermediate to far field. In the near field the 

impulse is lower because of the time required for the energy 

deposition. In the intermediate and far field the impulse 

is greater because the finite time of deposition extends the 

positive phase of the blast wave. 

For the long kernel deposition time (T=2.0) the impulse 

is much lower because of the low peak pressures developed. 

The impulse curve lies between the Mach 0.5 and Mach 0.25 

energy addition wave curves with Tn=l.86 and TD=3.72, res­

pectively. 

3. Energy Distribution 

With consideration given for the time of energy addition, 

the kernel addition with TD=0.2, shown in figure 79, is 

similar to the case of bursting sphere. However, during 

energy addition the energy appears as kinetic and internal 

energy in both the source volume and the surroundings. The 

internal energies approach final values of 65% in the source 
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volume and 36% in the surroundings. 

As expected kernel energy deposition of long duration, 

Tn=2.0, results in very inefficient energy transfer to the 

surroundings as shown in figure 80. The final distribution 

is 74.7% in the source volume and 25.3% in the surroundings. 

This can be compared to the energy distribution from a Mach 

0.5 wave with 74.1% of the energy remaining in the source 

volume. This behavior appears reasonable, since for the 

Mach 0.5 energy wave the total time of energy deposition in 

the source volume is T=l.859. 

B. Some Aspects of Blast from Fuel-Air Explosives 

Beginning with the finite differencing technique of the 

"Cloud" program written by Oppenheim (30), Fishburn <35) added 

a burn routine similar to that of Wilkins(Z9) to simulate 

the detonation process. Using the program he studied blast 

waves generated by (1) centrally initiated, self-similar 

Chapman-Jouguet detonation, (2) edge initiated spherical 

implosion, and (3) constant volume energy release followed 

by sudden venting to the environment. 

Selecting MAPP gas,methyl-acetylene propadiene mixture, 

as a representative hydrocarbon, Fishburn used the "TIGER" 

program to calculate thermodynamic equilibrium for MAPP gas 

in the CJ plane. Using the calculated detonation pressure, 

the energy to be added and the detonation ·Mach number were 

calculated from the steady-state conservation equations 

(Equations II-36, II-37). 
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The energy was added linearly and garrnna changed propor­

tional to the energy release through the front. Several runs 

were done varying the front thickness and a final wave thick­

ness of 10% of the energy addition zone was selected. 

In figure 2 of Fishburn's paper the plot of a centrally 

initiated detonation has a constant pressure from the center 

to the edge of the source volume. This plot was based on 

known detonative behavior and not program calculations. Cal­

culated pressures started near zero at the center and approach­

ed the CJ pressure as the energy addi tion app1:i.oached the edge 

of the source volume. ( 36 ) This behavior is consistent with 

the results noted in this dissertation. Fishburn noted that 

the constant volume energy release produced lower peak pres­

sures near the charge but slightly higher peak pressures than 

the centrally initiated detonation to radii greater than 

R/Rc=2. This behavior was also noted in . this dissertation. 

Fishburn also did an analysis of the energy distribution 

by determining the net work done by the detonation products 

on their environment by the following relationship; 

Work y~-1] 

Where Re is the initial radius of the change and Rf is the 

final radius of the source volume. His calculations showed 

the fraction of energy deposited transferred to the 
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surroundings to be: 

explosion = 0.378 

high pressure= 0.336 

In t his dissertation the fraction of energy released which 

is transferred to the surroundings as kinetic and internal 

energy was: 

Chapman-Jouguet 

Bursting Sphere 

= 0.385 

= 0.361 

The differences in the results may be attributed in part 

to the different technique used in the calculation. However, 

the results are comparable. 

The conditions calculated by Fishburn were used as input 

parameters for a run using the program modified by the author. 

Figure 81 shows the development of the blast wave with time. 

Figure 82 is a pressure-specific volume plot. The particles 

near the edge of the source volume exhibit Rayleigh line 

behavior during the energy addition and appear to tangent 

the insentrope. This indicates that for the specified con­

ditions the results approach the expected results from a 

CJ detonation . 

C. Pressure Waves Generated by Steady Flames 

Kuhl, Kamel, and Oppenheim( 2l) studied the self-similar 

behavior of the flow field associated with flames traveling 

at constant velocity. Their study was directed to the 

steady-state condition the system attains when the flame 

propagation velocity attains a constant velocity. They did 
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not consider ignition, initial flame acceleration, or the 

pressure wave decay after the source volume is consumed by 

the flame. 

Introducing reduced blast wave parameters as phase-plane 

coordinates, they determined appropriate integral curves on 

this plane. For one of their calculations they assumed a 

combustible mixture with a specific heat ratio of y =1.3 
0 

ahead of the flame and y 4=1.2 behind, a volumetric expansion 

ratio of 7 for a constant pressure deflagration, and an am­

bient sound speed of 345 m/sec .. 

For comparison these parameters were used as input 

variables in the program used for this dissertation. The 

results are plotted as figure 83. 

In their analysis the flame was treated as a steady 

deflagration and a piston expanding at constant velocity was 

used as a representative case. Using subscript p to denote 

parameters corresponding to the locus of states at the piston 

face, solutions were obtained in terms of s = r1 zp as the 

parameter. By integration of the governing differential equa­

tions, the solution for a spherical flow field is: 

zP = z F2/3 

2 2/3 
= [(t/rµ)a] [(t/rµ)u] 

zP = 5.67 

s = ylZP 

1: = (1.3) (5.67) 

= 7.37 
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An examination of figure 83ashows the blast wave ap­

proaching a self-similar solution with a nearly linear de­

crease in pressure from a pressure of 1.26 at leading edge 

of the flame front (X=0.42) to 1.02near the shock front 

(X=0.95). 

Comparing this to figure 7 of Kuhl, et al., the ~=4 

curve has a nearly linear pressure decrease from a pressure 

of 1.28 at X=0.45 to 1.02 at the shock front. Thus the 

finite differencing technique assymptotically approaches p0 

but the similarity solution appears to begin to develop a 

shock front at the leading edge. 

In figure 83b the energy transfer ahead of the flame 

can be seen. The calculations appear to be approaching a 

self-similar solution ahead of the flame front with a near 

linear decrease to 0/0 =1.005 at X=0.95. Figure 83c shows 
0 

the particle velocity in the blast wave. 'From a maximum 

velocity at the flame front it asymptotically, decreases 

to zero at the shock front. Through the flame front it 

decreases rapidly and remains at nearly zero. 

Comparing these results to the results of Kuhl, et al., 

the maximum values calculated with the finite difference 

technique at the flame front approach the values calculated 



174 

by Kuhl, et al., for the ~=4.0 case. However, the blast wave 

structure is more closely approximated by the ~=7.0 case. 

D. The Air Wave Surrounding an Expanding Sphere 

The properties of the flow field generated by a sphere 

expanding at a velocity, slow relative to the ambient velo­

city of sound, were determined by Taylor<3). He integrated 

the velocity potential equation and developed the following 

relationships for the pressure and particle velocity dis­

tribution outside the expanding sphere: 

p-p 
0 

= 

u = 

2 2 M 3 P a s 

(l-Ms2) 
(at_ l) 

r 

2t2 
(~ - 1) 

r 

where Ms is the Mach ntnnber of the surface of the expanding 

sphere: 

and R(t) is the Eulerian position of the sphere. 

The results calculated in case 10 (~ = 0.125) were 

analyzed and compared to predicted results from Taylor's 

formulas. The leading edge of the energy wave was used to 

represent the surface of the expanding sphere. After the 

self similar flow field developed the Eulerian velocity and 

Mach number of the energy wave were calculated to be Ms=0.24. 
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Using this velocity the pressure and particle velocity dis­

tribution were plotted in figure 85 for comparison with the 

R results calculated by Taylor for the case at= 0.2. The 

distributions are nearly identical indicating close agreement 

of the results calculated with theoretical predictions. 
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VI CONCLUSIONS AND RECOMMENDATIONS 

In conclusion, this dissertation presents a systematic 

theoretical study of both the near and far field effects of 

constant velocity flames. Earlier studies included only the 

development of a self-similar solution during energy addition. 

None of the previous studies included blast wave behavior 

after the end of energy addition. 

In this dissertation, the non-steady, one-dimensional 

fluid dynamic equations of motion with divergence and energy 

source terms, subject to the appropriate boundary conditions, 

were integrated using a Von Neumann/Richtmyer - type finite 

difference numerical integration procedure. The calculations 

yielded the thermodynamic changes and fluid-dynamic be­

havior associated with the propagation of the blast wave. 

Particular attention was directed to changes in peak pres­

sure, positive impulse and energy distribution. In parti­

cular the relationship of non-steady behavior to steady­

state behavior was noted. 

A. Conclusions 

On the basis of this investigation the following 

conclusions have been reached: 

194 
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1. Near Field Behavior For Methane 

a. In assessing potential damage from non-ideal ex­

plosions, preliminary estimates can be made from the Values 

predicted by steady-state theory. For the cases of super­

sonic combustion from CJ velocity through infinite velocity 

(bursting sphere) the overpressures symptotically approach 

the values predicted by steady-state theory. 

b. As the flame velocity decreases from infinite vel­

ocity, even through velocities impossible by steady-state 

theory, the pressure increases to a maximwn of P~20.0 at a 

Mach number of 4.0. 

1.) As the energy wave velocity increases above 

4.0 the flame is moving so fast relative to the expansion 

behind the flame that the reinforcement of the pressure 

decreases. 

2.) For flame velocities below Mach 4.0 a signi­

ficant amount of the energy is taken up in the expansion 

through the flame front. This results in a decrease in the 

peak pressure as the Mach number decreases. For a 50% 

decrease in the wave velocity the following relationship 

holds: 

overpressure(50% velocity)= 0.35 {overpressure(l00% velocity)} 

3.) For flame velocities much less than the am­

bient velocity of sound the pressure ·and particle velocity 

distribution closely match the results originally predicted 

by Taylor (l 3) 
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2. Far Field Behavior For Methane 

a. In the far field, the overpressure for all super­

sonic flame velocities approach 65% of high explosive at 

equivalent energy scaled radius. 

b. At subsonic flame velocities the overpressure is 

significantly less than either the high explosive or the 

supersonic energy addition. When calculations were terminated, 

the Mach 0.5 case had reached 84% of the supersonic overpres­

sure and the Mach 0.25 case had reached only 23% of the 

supersonic overpressure at n=lO.O. 

3. General Observations 

a. For equal source volume deposition times the wave 

addition of energy produced greater overpressures than the 

homogeneous energy addition. This is attributed to the 

propagation of the energy addition wave interacting with the 

fluid dynamics of the flow field to develop greater over­

pressures. In the homogeneous energy addition there is no 

reinforcement of pressure. 

b. In cases where the flow should reduce to a self­

similar solution and/or show Rayleigh line behavior it did. 

The calculations showed that the flow field behaved normally 

where expected, and in the forbidden region, where steady­

state behavior is not expected, non-steady behavior was 

observed. 

c. Maximum energy transfer to the surroundings from 
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the blas t process occurs at a flame velocity of Mach 4.0, 

corresponding to the maximum overpressure in the flame. 

1.) At flame velocities greater than Mach 4.0 

the energy transfer to the surroundings decreased to the 

energy transfer associated with constant volt.nne energy addi­

tion (bursting sphere) in the limit. 

2.) At flame velocities less than Mach 4.0 the 

energy transfer to the surroundings decreased, approaching 

the energy transfer predicted for constant pressure deflagra-

tion. 

d. For the energy density investigated, q = 8.0, the 

use of ideal (point source) theory results in an overestima­

tion of the damage potential of these explosions. 

e. In as much as the energy density, q, of most hy­

drocarbons are all approximately equal, the conclusions 

reached can be applied with reasonable confidence to other 

gases and flammable liquids having energy densities in the 

range of 6<q<l0. 

f. Climatic conditions such as fog, mist, or rain 

could be accounted for in terms of an adjustment of the 

available energy. The determination of the energy density 

would include an accounting of the latent heat of evapora-

tion of the water. 

B. Recommendations 

The findings of this dissertation lead to the following 

recorrrrnendations for future investigations: 
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1. Flame velocities are affected by the degree of 

mixing, chemical reaction kinetics, and the method of initia­

tion of energy release. It is recommended that both experi­

mental and theoretical studies by undertaken to determine the 

effect of these ignition related parameters on the development 

of constant velocity flames. 

2. An important aspect of blast wave behavior not 

covered here is how the blast wave is established following 

ignition. It is recommended that theoretical experimental 

studies be initiated to evaluate the onset of blast condi­

tions and include the limit cases of low energy ignition in 

a stagnant atmosphere through shock/thermal initialed igni­

tion. 



Appendi;X A 
Computer Program for the Model 

The computer program used for the calculation of blast wave 

properties consisted of a main program and eight subroutines. 

The main program, AMAIN, performed the finite differencing 

calculations. Subroutine BURST controlled the printing of 

the front and back cover pages of the printed output. Sub­

routine FIDIF controlled the printing of the data at selected 

intervals of time or selected iteration intervals. Subroutine 

GENDAT generated the initial conditions for the f l ow field. 

Subroutine INITIL determined the initial time step, and 

initialized program variables. Subroutine INT calculated 

the energy in the flow field. Subroutine PUDAT stored the 

data on tape at selected intervals of time or selected it.er-­

ation intervals. Subroutine RESTAR stored the properties of 

the flow field at the last time line for continuing the run 

later. Subroutine SAMPLE calculated the location of the 

shock front. 

For an initial run all input variables are read from 

unit 5. For a restart of an earlier run, the first card with 

LSTART = 1 is read from unit 5 and the RESTAR data file from 

the previous run is read as unit 15. The input variables 

for the program are: 

First Card 

LSTART: Run number for each case; 

set to (0) for initial case 

set to (1) for restart from stored data 
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OTRACE: 

OTAPE: 

Second Card 
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Logical variable for printing intermediate 
calculations during error tracing : 

Set to (T) . for intermediate ·results 

Set to (F) for no intermediate ·results 

Logical variable to stop calculations 
When limits on storage space for results is 
approached 

Set to (T) if there are no limits to storage 
space 

Set to (F) if program is to stop after 10000 
lines of data stored. 

(Note: Value of maximum number of lines 
can be varied by changing main program.) 

NCYCLE: number of completed calculations along the time 
coordinate; Set to zero (O) for initial run. 

NPUNCH: switch for punching or storing results at 
termination of the run. (0) implies no stored 
results. (1) implies store results for a 
restart. 

NSTORE: 

NS: 

Third Card 

Control for storage of results for analysis. 
(0) implies no intermediate storage. 
(1) implies storage for all cells. 
(i greater than 1) implies store the results 
for i+e cells where there are (i) cells 
between the origin and the maximum of 
pressure, and (e) cells between the maximum 
of pressure and the limit of the pressure 
wave at the same intervals as for (i). 

Store results of every NSth cycle on tape. 

LABEL(7): Identification for leading and trailing 
title pages 
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Fourth Card 

NSTEPS : A limit for the ·number of time lines· to be. ·cal­
culated in the run. 

NFINAL: A limit for the number of property cells 
(grid points) which may be used in the run. 

NN: Print flag, Print result of every NNth cycle. 
The results are printed if NCYCLE is a 
multiple of NN. Note that the value of NCYCLE 
is carried along with the restart data. 

NNN: Print flag, Print results of every NNNth cell 
at every NNth cycle. If NNN is negative, 
property values will be printed for 26 cells 
evenly spaced from the origin to the outer 
cell, including the outermost cell. 

If NNN is greater than 1000 a variable NSAM is 
set equal to NNN-1000 and properties are printed 
at NSAM positions between the origin and the maxi ­
mum pressure, at the same interval between the 
maximum pressure and the outermost cell and at 
the outermost cell. 

TERMIN : Limit for the amount of central processor time 
the program may use for calculations in seconds. 
(This is the third means of terminating the 
calculations) 

TIPUN : Print flag, print results at specified time 
intervals . Intermediate results are stored 
at multiples of TIPUN according to the spac­
ing of NSTORE. 

NBUFF: Switch for homogeneous energy addition. 
(0) implies no homogeneous energy addition 
(1) implies homogeneous energy addition 

NFREQ: Dummy Variable, not used as input. 

NWAVE: Switch for wave addition of energy 
(0) implies no energy wave 
(1) implies energy addition wave 
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Fifth Card 

NDP : Current number of data points (used to define the 
m.m1ber of initial time-line data· cards) 
(0) implies· program to generate initial values 

at grid points . 

J : Geometry Factor along time line 
(0) - Planar 
(1) - Cylindrical 
(2) - Spherical 

NLI: Cell number corresponding to a change in the value 
of gamma, largest cell number with G4 

CL: Linear coefficient of artificial viscosity 

CO: Quadratic coefficient of artificial viscosity 

G: Gamma of the surrounding gas 

G4: Gamma of the core gas (GF) 

UL: Value of the flow velocity at the left boundary 

UR: Value of the flow velocity at the right boundary 

ENERGY KERNEL PROFILE CARD: (Inserted if (NBUFF .NE.O)) 
Specifies Homogeneous Source 
Parameters 

SLOSOR: 

SOREXP: 

TMAXE: 

ENMAX: 

MINCOS : 

MAXCOS : 

Slope constant in energy function 

Shaping constant in the energy function 

Non-dimensional maximum time of energy addition 

Non-dimensional maximum amount of energy added 

Cell number corresponding to the beginning of 
the spatial rounding function 

Cell number corresponding to the outermost edge 
of the energy function. 
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ENERGY WAVE PROFILE CARD (Inserted if (NWAVE.NE.0)) 

Specifies Energy wave parameters 

WVEL : Non-dimensional Mach number of energy wave 

WIDWAV : Thickness of energy wave as fraction of source 
volume 

ENWAU: Non-dimensional maximum amount of energy added 

WSLSOR: Slope constant in energy wave 

WSREXP: Shaping constant in energy wave 

MNWCOS: Cell number corresponding to the beginning of 
of the spatial rounding function 

MXWCOS: Cell number corresponding to the outermost cell 
of the source volume. 

PRESSURE BURST DATA CARD : 

PRESS: Initial pressure ratio 

TEMP: Initial temperature ratio 

N: Cell number corresponding to the edge of the 
energy kernel 

NDEC: Number of fairing cells in the pressure source 
rounding function 

INITIAL TIME LINE DATA CARDS: IF (NDP .GT. 0) 
a series of N cards is expected to specify the 
necessary thermodynamic and fluid-dynamic 
parameters for each mesh point on the initial 
time line. 

K: Cell number (must be numbered consecutively 1 - N.) 

R(l ,M): Position of the th cell inner boundary m 

U(l ,M): Velocity of the th cell inner boundary m 

P(l,M): Pressure in the th cell m 

V(l,M): Specific volume in them th cell 

Q(l,M): Artificial viscosity in them th cell 
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In addition to the printed output there are four data 

files in which results are stored. Unit 17 is the restart 

file in which the program variables and cell properties are 

stored for later continuing the run. Unit 18 stores the 

pressure and specific volume of selected cells at each time 

line for examining the p-v behavior. Unit 19 stores cell 

properties at selected time intervals or cycle intervals. 

Unit 20 stores the location and properties at the shock front. 



I.IFLIST,E 
UOM FILE LISTER 01/14/77 14:42:Jg 
ENO FLIST 19 CARDS GENERATED. 

QHnG,p •••••• AMAIN •••••• 

QELT•L AMAIN 
ELT bij-01/14-14:42 AMAIN 
000001 000 C•••••••• THIS PROGRAM FTLE IS FOR CHANGE OF GAMMA ACPOSS 
000002 000 C TH[ ENERr,Y ADDTTION••••••••••••••• 
OOOOOJ 000 IMPLICIT DOUULE PpF.CISION IA-H,P-Zl,LOGJCAL IOI 
000004 000 HFAL TA,TAtTC•rO,THF,TAP,TCN,XCPU,XMFM 
000005 000 11 COMMON/ ARRAYS/ U12,2Dll, R(2•201),Vl2,20J l,Ol?.,?011, 
000006 000 ll Pl2,?0ll• Xl20ll, E12,20ll, NCELLl?Otl, 
000007 000 2 WE2CLl2011,wElCL(20JJ,A(~OJl,6COS1tOI 
88888ij 888 1·\ COMMON/ TIME / TEp~WNL,l!P~~'rirl bVT • DTL • 
000010 C'OO COMMON / PARAM / C1 • co, G, GF, ·uL, UR t GMW• GF,iiW, fNMAX, fT, 
030011 goo ~ PJt,SLOSOR, SOHEX.P, TloCAXE• Two, wu~,. ZF.RO 
0 0012 OU 4 MINCOS, ""AXCOS• J, JP!, n, NL, NU ,NOP, 
000013 000 5 NPART, NSTEPSL OFNT, OESOR, OPEAKt OPLANF, 
0000 4 000 6 OPRJNT• OPUTI, OSKIP, OSPHER,oTRACE• ooools 000 7 MWTAIL,MwHEAD,WVEL,WIDWAVt[NWAV•RHEAO,RTAIL, 
000016 000 A WSLSOR,W~REXP,MNWCOS,MXWCOS,OFWAV,RFF,F2CL 
000017 000 22 COMMON/ ARGINT / TNUEX, LSTART, NCYCLE• NFJNAL, NSTORf, NS, 
000018 000 7 NN, NNN, NPEAK• NSAM, NSHIF,N~UFF,NFREQ,NWAVE 000019 000 2 ,NPUNCH 
000020 goo 23 DIMENSlON LAAEL17, 000021 00 24 FORMAT) 
000022 000 25 FoRMATC• '•'164'•~I5,10E10•4I 

8888~~ 888 ~~ ~2~~:tt1~0,•coMPUT~R TIME JS APPROACHING DESIGNATED MAXIMUM•) 
8888~i 888 ~ij ~8~~~+ll~&::91~tN~lg~sLl~blL5~~~ibNATEo MAXIMUM•> 
000027 000 30 FORMATC lHO,•NON-PnSITIVE TIME STEP•J 
000028 000 31 FORMAT(• '•'AT TIME 't1PE12,&,• THE ENERGY INTF'GRAL F'QIJALS •, gg~g~z ggg 321 FORMAT(• ~!~1~t:,:1~~s~iA~,; CELLS•) 
000031 goo 3j FoRMAT('l'•//) 
000032 00 34 FoRMAT,lHO,• LW wCM WAA WSLSOR WSREXP WCMt•,1I5,5D20.tOJ 
000033 000 35 FORMAT 1HO,• THE TA TAP TERMIN 1 ,/ 4E?0.10I 000034 000 3b FORMAT 7A4J 
000035 000 37 FORMAT(• '•'224'•T5•11E10o41 
000036 000 38 FORMAT(• •,• 205' 0 I5,11E10•41 
000037 000 39 FORMAT(' '•'M nT OTMIN 
000038 000 l 'OEM R2MP R2M 
OOOOJ9 000 40 FORMAT(I5•11E10o4) 
000040 000 41 FORMAT(• •,•234••~15,7E15,9/8Et5o9J 
030041 000 42 FoRMAl(' '•'10A'•~I5,2E10t4I 
O 0042 000 4j FoRMA (' '•'186'•T~•5E20. 4/6E20ol4) 
000043 000 44 FORMAT<• '•'204'•T5•6E18.12) 
000044 000 4~ FORMAT(• '•'247••~1~,4E20ol4) 

OTTfS 
AS2 

GRADTA 
AS1 AooTN 

000045 000 4b FORMAT(' '•'300'•~I5,6E151ql 
000046 000 47 FORMAT(' •,•305•,,5,sr20. 41 
000047 000 48 FORMAT(• t, 'LAGRAt..1GIAN POSITION OF HEAD IS ',Ft2o6• 

•• AS2' I 

000048 000 l • ANO TArL IS •,F12.61 
000049 000 49 FORMAT(• •,•THE 5PECIFIC VOLU,iiE OF CFLL•,15,, IS NEGATIVE•! 
OOO U50 000 50 FORMAT(• •,3I5,7E14o8l 

O 51 FORMAT(' •,•STORAr.E FILE OVERFLOW') gggg5} 808 52 FORMAT(• •,••••••••••GAMMA CHANGES AT WAVE FRONT•••••••'I 
gggg~~ ggg ~~ ~g~~:+i: ::~~~Yt1~6~r 1

1~sl~~rL1TY 1N TIME sTEP•, 
000055 000 5~ FORMAT(' ',215,7E15o8 
000056 ooo 56 FoRMATC' •,•142•,,s,6E15.717Ets.71 
000057 000 WRITE 6,33J 
000058 000 C•••• DETERMINE INITIAL OR RESTART CONDITIONS 
000059 000 CALL MTIMECXCP11,XMEMI 
000060 000 TA:XMEM 
000061 000 INnEX: 0 
000062 000 WUN: 1.00 
000063 000 ZERO: OoDO 
000064 ooo Two= 2.00 
ogoo65 000 THREE: 3.Do 
o oo&6 ooo Elr.HT = a.uo 

27 

N 
0 
V, 
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000067 000 
000068 000 
000069 000 
00001~ 
00007 

goo 
00 

000072 000 
000073 000 
00007'+ goo 
000075 00 
000076 000 
000077 000 
000078 000 
000019 000 
ogoo8r 888 0 001:1 
000082 000 
00008J 000 
00008'+ 000 
000085 000 
000086 000 
000087 000 
00001:!8 000 
00001:19 000 
000090 000 
000091 000 
000092 000 
000093 000 
000094 000 
000095 000 
00Q09b 000 
000097 000 
000098 000 
080099 300 0 0100 00 
00010! 000 
00010 000 
000103 000 
000104 000 
000105 000 
000106 000 
000107 000 
000108 000 
0001~9 0 00 
0001 0 goo 
000111 00 
000112 000 
000113 000 
000114 0 00 
00011i 000 
0001 · 000 

gsg1u 000 
000 

000119 000 
000120 000 
000121 000 
000122 000 
000123 000 
OOn124 000 
00·0125 000 
000126 000 
000127 000 
000128 000 
000129 000 
000130 000 
OOOlj! 000 
0001 000 
OO.o13J 000 
000134 goo 
000135 00 
0100136 000 I 000137 

000 
000138 000 
ogo1J9 000 
0 OllfO 000 
00014! 000 
00011f 000 

•••••• 

C 

C 

C 

SIXTEE: 16,DO 
ENIN(: 9,00 

1c;r=o 
Pl: DACOS(-WUNI 

R~AD15,24)LSTART•nTRACE,OTAPE 
OSTART: LSTART •FG, 0 

IFIOSTART) GO TO 57 
CALL RESTAH 
Go TO 513 

!,7 RFAD( 5,?b ) NrYCLE, NPUNCH, NSTORE",NS 
RFAUC5,J6) LABEL 

CALYNI~lUk11 
IF(,NOT, OSTART)GO TO 59 

T:Zl.:RO 
NPEAK:t 

CALL PUOAl 
T:OT 
IsT=IST+N 

59 WRITE 16,52) 
LSTART: LSTART + 1 

NFRPR:LSTART 
IF(OTAPE)NFRPR-20 

TAP: TA+ 30, -
THF = TEHMIN- Two 

IFIOTRACE)WRil~(16,35JTHE,TA,lAP,lFRMIN 
IF(THE ,LT, TAI TME: lAP 

OSPHER: J ,EO, 2 
OPLANE: J ,f.Q, 0 
OPRINT: ,FALSE, 
ONOVIS: CL ,LF., Z~RO ,AND, CO ,LE, ZF.RO 
OPIJN: ,FALSE, 
OPIIT I : TI PUN , GT, ZERO 
OSKIP: NS ,LE, 0 
OAODEN: ,FALSE, 

OFE=,FALSE, 
OF.ENO: ,FALSE, 
OEXIT: ,FALSE, 

OVFR: ,TRUE, 
NPR=O 
NNFIN:201-11 

IFIN ,GE, NNFIN)GO TO 3)5 
lF(NFINAL ,GT, NNFIN)NF NAL: NNFIN 
IF I ,NOT. OESnR ) GO TO 84 

ENSTEP: ENMAX / ln0,00 
DO 81 L: 1,10 

AA2: AAl 
AA!: AA 

CM2 : CJ'Jll 
CMl: CM 

IF ( L - 2) 7~, 74, 76 
72 AA: OLOG I SLOSOR +WUN+ WUN I SOREXP 

Go TO 77 
71f AA: .qsoo • AA 

GO TO 77 
76 AA =AA1+(SLOSOR-C~ll•IAA2-AA1)/(CM2 
77 CM=DEXPIAA>-WlJN+lnEXP(-AA/SOREXP)-WUN) 

/ SOREXP • IF ( OARS (( CM - SLOSOR ) / SLOSOR) ,LT, ,.oo-7 
• 60 TO f\2 

81 CONTINUE 
82 IF(,NOT, OSTART)GO TO 83 

E2CL:ZERO 
83 SORSPA: MINCOS - MAXCOS 
84 IF( .NOT. OEWAvl GO TO ql 

Do 89 LW: 1,,0 
WAA2:WAA1 
WAAl: WAA 
wcM2: WCMl 
wcM1: WCM 

IF(LW - 2) 85•A6,87 
85 WAA: OLOG(WSLSOR+WUN+WUN/WSREXP) 

GO TO 88 
8& WAA: ,9~DO•WAA 

nHE 011477 

-CMl) 

1 

N 
0 
(j\ 
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ogot43 soo 
0 0144 00 
O·Oo145 000 
00014~ 888 00014 
000148 000 
000149 000 
000150 000 
000151 000 
000152 ooo 
00015J 000 
0001s" 888 ogo1 5 o 0150 000 
000157 000 
000158 000 
000159 000 
000160 000 
000161 000 
000162 000 
00016J 000 
000164 ooo 
000165 000 
000166 000 
000167 000 
000168 000 
ogo1~9 888 0 01 0 
000171 000 
oooI72 000 
00017J 000 

&88Hi goo 00 
000176 000 
OOOlH 000 
ogo1 000 
o 011z 000 
00018 000 
000181 000 
000182 000 
000183 000 
000184 000 
000185 000 
000186 000 
000187 000 
000188 000 
000189 000 

ggg1~r 000 
000 

000192 000 
000193 000 
000194 000 
000195 000 
000190 000 
0001~7 000 
0001 8 000 
000199 000 
000200 000 
000201 ooo 
000202 000 
00020.3 000 
000204 000 
0002oi 000 
00020 000 
000201 000 
000208 ooo 

ggg~~z 888 
000211 000 
000212 000 
00021.3 000 
000214 000 
000215 000 
0002H, 000 
0002u 000 
0002 ooo 

•••••• 
87 
68 

89 
90 

C••• 
C 

91 

CC•• 
~ ... 
C 

GO TO 88 WAA: WAA1+CWSLS0Q-WCM1l•(WAA2-WAA1I/IWCM2-WCM1) 
WCM : Of XP(WAA )-W11N+ (Of:XP (-WAA/lliSREXPI-WUNI IWSR[XP 

lF(OAAS((WCM-W~LSOR)/WSLSOR) .LT. 1.00-11 Go ·ro 90 
coNTJNUE 

WSRSPA = MNWCOS-Mxwcos lF(OlRACE)WR1TFl16,J41LW,WCM,WAA,WSLS0R,WSRFXP,WCM1 
TwlO = WIOWAV/wVEt . 
ENMAX: F.NWAV -
SLOSOR: WSLSOR 
TMAXE : TWID 
SoRExP = WSREXP 
ENST~P: ENWAV/10n,DO 
s1wuwv = w10wAv 
AA : WAA 
PHI: lERO 

lF(NCYCLE ,GT, OIGO TO 91 
WT1 : T • WVEL 

IF(WTl ,LT, R(1,911N: 10 
•••REMAINDER nF THESE WAVE CALCULATIONS AT 204••••• 

IF ( .NOT, oPUTI I GO TO 9~ 
M: T/TIPUN 
TNFX: M+ 1 
TLINE: TlPUN•TNEx 

SET INDEX NUMAER 

••• CALCULaTIONS FOR NEW TIME STFP •*•••••• 
C 

92 INDEX: INDEX+ 1 
C ••••• ~Al~~EslA~l[~~v t~1

TIME STEP ••••• 
IF(,NOT, OEXITl GO TO 95 

C 91J 
9~ 

wRllE(6,54) 
GO TO 312. rHECK CENTRAL PROCESSOR ELAPSFO TIME 
CALL MTIME(XCP11,XMEM) 

TR= )(MYM 

l~N;T!~TC,5, 

lo: THE - TB 
A: TB 

IF ( TCN,LT. Tn) GO TO 99 
WRITE (6,271 

GO TO 312 
C ••••••••• CHECK FOR STnRAGE OVERFLOW••••••••••• 

99 1F(0TAPE)GO TO 10~ 
lFllST ,LT• 10n00)60 TO 103 

C••• 
103 

WRITE l 6, 51) 
Go TO 312 

CHECK NUMRER OF STEPS 
IF ( INDEX ,LE. NSTEPS I GO TO 107 

WRITTE(6,29) 
GO O 312 C 106 CHECw FOR DIMENSION LIMIT STOP OR MESH FXPANSION 

107 NO: N 
NM2=N-2 

108 
109 

110 
111 

OFLP: IP(t,NM2)-p(1,N))/TWO 
- DO 111 J: NM2•NFINAL 

PAB5: DABS(P(t,I1-WUN) 
IF(OTRACE)WRIT~(16,42ll•N,PABS,V(1,I) 
IF ( PARS ,LE• 9,0D-14) GO TO 115 

N : I + It 
NL: N-1 
PNL=oAAS(P(l,NL)-wUNI 
PN= OARS(P(l,N)-W11NJ 

IF(PNL .LE• 9,no-17)GO TO 108 
GO TO 109 
IF(PN •LE• 9o0n-17JGO TO Ill 
DO 110 J:1,2 
UO 110 M:1•201 WR JTE ( 6, 55J M, J ,P ( ,Jt M), V (J, M), R ( J• MI ,U(JoMJ, <H J,MJ ,E (J, Ml• WF."2Cl ( M) 

CONTINUE 
CONTINUE 
'flRllE (bt 28) 

n11rE 011477 PAGE 
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000219 
000220 
000221 
000222 
OUo22.3 
0002214 
000225 
000226 
000227 
000228 
000229 
0002.30 
0002.31 

88R~~~ 
0002.314 
0002.35 
0002.36 
0002.37 
0002.38 
0002.39 
0002140 
000241 
000242 
00024.3 
000244 
000245 
0002% 
0002~7 
000248 
000249 
000250 

88H~~! 
00025.3 
000254 
000255 
000256 
000257 
030258 
0 0259 
000260 
000261 
000262 
00026.3 
000264 
000265 
000266 
000267 
000268 
000269 

88H~H 
000272 
00027J 
000274 
00 0 27!> 
000276 
000217 
00027t1 
000279 
000280 
000281 
000282 
00028.3 
000284 
000285 
000286 
000287 
000288 
000269 
030290 
0 0291 
000292 
000293 
000294 

000 
000 
0 00 
0 0 0 
0 0 0 
00 0 
000 
00 0 
000 
000 
000 
0 00 
0 00 

888 
00 0 
0 00 
0 0 0 
00 0 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
00 0 
000 
000 

888 
000 
000 
000 
000 
000 

888 
000 
000 
000 
000 
(100 
000 
000 
000 
000 
000 
000 
000 
000 
000 
0 0 0 
000 
000 
000 
000 
000 
000 
000 
000 
0 00 
000 
000 
000 
000 
000 
000 
000 
000 
0 0 0 
000 
0 0 0 

C 1114 
C 1114 

11~ 

llb 
117 C••• C••• C••• 

~ 
C 

C 127 C••• 
C••• 

C••• 

Go TO .312 
DFTEpMINE PROPERTlfS AT N[W TIME 

NL= N-1 
IF(N .EQ. NOi r.0 TO 117 
DO llf, 1 : NO• M 

P(l•II = P(l,I-11-DELP 
IF(P(l,I) .r,r. WUN) GO To 116 

P( 1 •II : WUN 
GO TO 117 

CON r INUE 
DTN: ( OT+DTLI/TWn 

MOMENTUM CnNSERVATION 
Efrru~M~ ~'h~ ~b~8rHA~~ ANO TRAJECT0RIF'l 

IF(OT1RACE)WRITE(lg.~2)NCYCLE,1NOFX,NL,N,I,N~lEP5,T,nT,nTL,DTN,PARS 
Ul2• I : UL 

FIRST SJGMa FORWARD 
SJGMAF: -P 1,11-nll,1) 

FIRST Fl 
Fl: (R(l,21-R(l•tll/V(l,1) 
R(2•11: H(l,11+~ •UT 

RlMP: RIJ,21 

Do llt2 M: 2tNL 
VELO,-IT'( AT GENERAL POHIT 

INTERMEOIATE SIGMA VALUES 
SJGMAB: SIGMAF 
SJGMAF: -P(l•Ml-~(1,M) 

PHI PARAMETER 
FO: Fl 
HlM: RlMP 
RlMP : RU,M+l) 
Fl: (RlMP-RlM)/V1l,MI 
PHI: ( Fl+FO I/ TWO 

VELOCITY 
U2M: Ull,Ml+(OTN1PHl)•(SIGMAF-SIGMAB) 
U(2•MI : U2M 

TRAJECTORY 
R(2•M): RlM+u2M.oT 

IF (OTRACE l WR I h· ( 16, 56)M•R ( 2,M) ,R1'4,lllM,U( 1 ,M) ,PHI, 

1 .. 2
• T SIGMAF,SyGMAB,Fl,FO,RlMP,RlM,V(l,M),R(2•1) 

CON INUE 
C••• RIGHT BOUNnARY CONDITIONS 

U(2•NI : UR 
R(2•N): R(l,Nl+yR•Ol 

~::: ~g~[.~t~{E y ,J~N~~~~f1fgNVOLU'4ES AASEn ON CONTINUITY 
C 152 CONTyNUITY 

u13 = u,2,1,.u,2,,,.u,2.11 
IF(.NOT. OESOR)GO 10 160 
IF(OENDJGO TO 1~9 

ElCL: E2CL 
PHI: T / TMAXE• aA 
E?CL: ( ENMAX / ~LOSOR) • (( DEXP ( PHI ) - WUN) + 

• (UEXP( -PHI* SOREXP) - WUN)/ SORFXP) 
OFND:T oGT. TMAXE 
OAODEN: .TRUE. 

IF(OENOIE2CL=E~MAX 
DFLlNG: E2CL - EtCL 

GO TO 160 

159
0 

OFE=.TRUEo 
6 . IF ( .NOT. O~WAV) GO TO 163 

IFIOfENDl GO Tn 163 
WIDWAV: STWDWV 
RRHlAO:T•WV~L + R~F 

IF( RRHEAO .LT. WIDWAV) WIDWAV: RRHfAD 
RRTAIL: RRHEAO - WIOWAV 
PHIW: ZERO 
HLHEAD: RRHEAn/R~F 
MwHEAO:RLHEAO 
RLTAIL: RRTAIL/R~F 
MwTAIL: RLTAIL 
MWTMl: MWTAIL - 1 

11ATE 011477 Pf\Gf 
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•••••• 
00(1295 
000296 
000297 
000298 
000299 
000300 
000301 
000302 
00030j 
000304 
000305 
00030t> 
000307 
000308 
000309 
000310 
000311 
000312 
000313 
0003h 
000315 
00031b 
000317 

888~1~ 
000320 
030321 
0 0322 
ogo323 
0 0324 
000325 

88032b 
0327 

000328 
000329 
000330 
000331 
000332 
000333 
000334 
ogo335 
0 033b 
000337 
000338 
000339 
000340 
000341 
080342 
0 0343 
000344 
000345 
ooo3'4b 
000347 
000348 
000349 
000350 
000351 
000352 
000353 
030354 
0 OJ!>!, 
000356 
000357 
000358 
000359 
000360 
0003bl 
001)362 
001)363 
000364 
000365 
000366 
000367 
000368 sssin 

AMAIN 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

800 
00 

000 

888 
800 

00 
000 

888 
000 
00 0 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

800 
1) 0 

000 
000 
000 
000 
0 0 0 
000 
00 0 
000 
000 
0 00 

888 
000 
000 
000 
000 
000 
00 0 
000 
000 
000 
000 
000 
000 
000 

888 

•••••• 
IF(MWTAIL •EQ• MWHEADJ MWTAIL: MWTMl 
lF(MWTMl oLFo MXWCOSJGO TO 163 

MWHl::AD:o 
MWTAIL:O 

16
, OfENo: oTRUEo 
,J Fl = U(2,ll 

IF I .NOT. OPLaNE J Fl: Fl•(l(R12,t)+Rf1,11)/TWOl••JI GAMW: GFMW 
U2MP: Ul2,l) 
GAAR: ZERO 
NX: (NCYCLE/NNl*NN 
OPRfNT: NX .Eof MCYCLE 

F(OTRACEJWR TF(16,25JMWHEAO,MWTAIL,MWTM1,RRHEAO, 
RRTA IL,R1_HEAD, RL TAIL, IJ2MP, Fl ,1Jt3, RI;,, NI ,GFMW, GAMW 

C 
C 
C••• •••DO LOOP TO CftLCULATE CELL PROPERTIES••••• 
C 165 ••• 
C 
C 

C••• 

178 

1A4 

185 C••• C••• 

C 

DO 235 14: 1,NL 
U2M: U2MP 
U?MP: y12,M+l) 
li~ ~ ~EM)MI 

CHI PARAMETER 
IF I .NOT. OSP~tR GO TO 178 

U03 : Ul3 
Ul3: U2MP••3 
CHI: Dl•DT•IU13~~3)/ 12.DO 
FO : Fl 
Fl: U2MP 

lF IOPLANEI GO TO 184 
Fl: U2MP•IIIR(2•M+l)+Rll,M+11)/TWOJ••JJ 
V?M 1: VlM+DT•IFl-~O+CHII/XIMJ 

FIV2M oGEo ZEQO)GO TO 185 
WRflEl6,49)M 
WR TE 6,!iOIM,NCYC1F.dNDEX,V2M,V1M,F1,FO,CHJ•ll1:'l,U03 

GO TO 31?. 
Vl2•MI: V2M 

APTIFICIAL VISCOSITY 
CALCULATE ft OlSSIPATlON TERM 

IF ( ONOVIS I GO TO 204 
EXISTENCE rRITERIA 

IFF I U2MP •GE• U?.M I GO TO 202 
I V2M oGf. vlM I GO TO 20?. 
COMPLETELY CENTERED PAHAMETfRS 

IFIOTRACE)WRIT~(16,43JM•U2M,IJ2MP,CHl,UO:'l•lll~,FO, 
1 FJ,y2M,VtM•XIMJ,OT 

AC: OSQRT(P l,Ml1TWO•IV2M+V1MII 
HfTAC: ((WUN/V2M1+(WUN/VlM)I/TWO 

C 

C 

C 

C 
C 
C 
C 
C 

202 
203 

204 

l 

. LINEAP TERM 
ur)IF : OAA<;(U2MP-ll2MI 
QL: CL•AC•HfTAC•,~IF 

QUAORA TIC TERM 
Q~: CO,..CO•HETAC•rrOIF•UOIF 

TOTAL ARTl~ICIAL VISCOSITY FOR 1/2 POSITION FORWARD 
Q2M: QL+QQ 

GO TO 203 

8f~,~) ~E~~M 
1FIOTRACEIWRIT~(16,441M•AC,HFTAC,P11,Ml,UOIF,QL,OQ 

END OF vlSCOSITY CALCULATIONS 

f.NF.RGY CONSERVATIOM OF PERFECT GAS 
CALCULATE NEW SPECIFIC ENERGY ANO PPESSURE 

QRAR: I Q2M+Q(l•Ml)/TWO 
ENUM: E(l,Ml-(Plt,MJ/TWO+QBARJ•IV2M-V1M) 

IF(OTRACEJWRIT~(16t3RIM•ENUM,E11,Ml,Pll,MJ,~12,MJ, 
Q(l,MJ,V12,Ml,Vll•MJ,QQ,OL,UOJF,AC 

•*•WAVE ENERGY 10DITION••••• 

DATE 011477 PI\GE 

N 
0 
1.0 



•••••• AMAIN 

000:571 000 
000372 000 
000373 000 
000374 000 
000375 000 
ooo.376 000 
o8o37J 000 
0 037 000 
ooo.579 000 
000380 000 
000.381 000 
000382 000 
080383 000 
0 0.384 000 

888~~6 888 
000387 000 
000388 000 
000.389 000 
000390 000 
000391 000 
000392 000 
000393 000 
000394 000 
000.395 000 
000396 000 
000397 000 
000398 000 
000399 000 
000400 000 
000401 000 
000402 000 
000403 000 
000404 000 
000405 000 
000406 000 
000407 000 
000406 000 

gg~~n ODO 
000 

888~H goo 
00 

000413 000 
000414 000 
ogo41g 003 
0 041 00 
000417 000 
000416 goo 
000419 00 
000420 000 
000421 000 
000422 000 
080423 000 
0 0424 000 
ogo42i 000 
0 042 000 
000427 000 
000428 000 
000429 000 
000430 000 
000431 000 
000432 000 
000433 000 
000434 000 
000435 000 
000436 000 
000437 000 
000431:1 000 
000439 000 
000440 000 
000441 000 
000442 oog 
000443 00 
000444 000 
000445 000 
00044b 000 

•••••• 

210 

IF C .NOT. OEWftV) GO TO 225 
IFC.NOT. OEf.NOJ GO TO 210 

GAMW: GFMW 
MC: M - MNWCO<; 

IFCM .GE. MXWCoS)GAMW: GMW 
IFCM oGTo MNWCoS .ANO. M oLT. MXWCOS)GAMW: GCOS(MC) 
Go TO 225 
OWVENO: .FALSF"• 

GAMW: GMW 
lFCM .GT. MXWCnS) GO TO 220 
lFCM .GT. MWHEaO)GO TO 220 

GAMW:<;FMW 
lF(M .LE. MWTM1) GO TO 220 
IFCM tLTo MWlAyJ) OWVEND: .TRUE, 

••• pH CALCIJLAr ONS FROM 154 ••••• 
WF1CLCM):Wf2Cl(M) 
UR: CRLHEAO-M>•R~F 
PHIW: DR• WAA / STWOWV 

IFCPHIW oGT. PHI) PHI: PHIW 
WF2CLCMI: CENWAV1WSLSOR)•ICOEXPIPHIW)-WUN)+ 

1 (OEXP(-PHIW•WSREXp)-WUNI/WSREXPI 
IF(WE2CL(MI .Gr. ENWAVI WE2CLIM): ENWAV 
IF (OWVENOI wE,CL(M) : ENWAV 

219 

WOLENG: Wf2CL(M) - WE1CLCMI 
DG = CG-GF>•CWF.:2C1 CMJ/ENWAVI 
GAMW: GMW - Ur, 

IFCM.GT,MNWCOS, GO TO 219 
WADENG : WDLENG 

GO TO 223 
WSPAN : M - MXWCOc, ' 
wsPAN = WSPANIWSRc,PA•Pl 
WSF : (DCOSC THRE~•WSPANt-ENINE•DCOSCWSPANl+ 

1 FIGHTJ/SIXTEE 
WAOENG: WOLENG * WSF 
MC=M-MNWCOS 

224 
t C••••• ~··· 225 

GcOS(MCI = GMW - nG•WSF 
GAMW: GCOS(MCJ 

GO TO 223 
IIIA8ENG: ZERO 
EN M: ENUM + WAD~NG lF(M .E~. MwH~aDIRHEAO:IRC2,M))+OR•CR(2,M+lJ-RC2,M)) 

IF (M oNE.MWTAlt I GO TO 224 
ooR=CRLTAlL-Ml•RE~ 
RTA1L:CR(2,M)) +UnR•CRC2oM+1)-Rt2,M)J 

IFCOTRACEIWRJT~(l6t37)M•RC2,M),OR,PH1W,ENUM,WE?CLCM)• 
WE1CLCMl,WAOENGtPCl,M),O~AR,VC2tM)•WSPAN 

••••• HOMOGENE011S ENERGY SOURCE••••• 
IFCeNOT, OESORJGO TO 230 
IFC,NOT. OEEIGn TO 226 

GAMW:GFMW 
Mc:M-MJNCOS 

IF(M .GE, MAtCnS)GAMw:GMW 
IFCM .GT. MJNCnS .AND• M oLT, MAXCOS)GAMW:Gr.OS(MC) 
GO TO 230 

22b G11MW:GMW 
IF C ,NOT. OADnEN) GO TO 230 

OADUEN = M .LT, Maxcos 
IF ( ,NOT, OADnEN) GO TO 230 

or,:(G-GF)t(E2CL/lNMAXI 
GAMW:GMW-DG 

IF CM ,GT• MlNCOS I GO TO 227 
AOOlNG: DELENG 

GO TO 2~6 
227 SPAN: M - MAXcos 

SPIIN: SPAN/ SORSpA • Pl 
SF=locos ( THRFE. SPAN - ENINE. nco~ (SPAN) 

• + EIGHTI / SlyTEE 
AODENG=llELENG•SF 
Mc:M-MINCOS 
GCOSCMCl:G~W-IDG•~F) 
GAMW:GCOSIMC) 
ENUM: ENUM+ AnOENG 228 C••••• 230 EOEM: WUN+ GAMW•CWUN-VlM/V2M)/TWO 

DATE 011477 

N 
t-' 
0 



•••••• 
000447 
000448 
000449 

888~~~ 
000452 
00045~ 
03045 0 045 
00045b 
000457 

888~~8 
000460 
000461 
000462 
000463 
0004b4 
000465 
0004&6 
000'+67 
0001+68 
000469 
000470 
000471 
000472 
ggg~H 
000475 
000476 
000477 
000478 
000479 
000480 
ggg~g~ 
000483 
00048'+ 
000485 
00048b 
000'487 
000488 
000'489 
000490 
000491 
000'492 
000'493 
UOn'494 
000'495 
000'496 
000497 
000'496 
000499 
000500 
000501 
000502 
000503 
000504 
000505 
000506 
000507 
000508 
030509 
0 0510 
000511 
000512 
000513 
000514 
000515 
000516 
000517 

888~1~ 
000520 
000521 
000522 

AMAIN 

000 
000 
000 

888 
000 
000 

888 
000 
000 

888 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

888 
000 
000 
000 
000 
000 
000 

800 
00 

000 
000 
000 
000 
000 
000 
000 
000 
000 
OCtO 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

888 
000 
000 
ooo. 

•••••• 

C 

• 236 

237 

C••••• 

C 
238 

239 

C1238 
C 

240 

246 
C1242 

247 

C 

C 
C 

C 
C 

248 

ENEW: ENUM/EOEM 
E12•MI: ENF.W 
P(2•MI = GA~w•rNEw/V2M 
A(Ml:OSQRTIIWUN+GaMWl•Pl2,Ml•Vl2•MII 

IF(OTRACE)WRI1F(l6,41)M,NL,ACM),GAMW,Pl?•M),V2M,VtM,ENEW, 
EOEM•AD0FNG,OELENG,SPAN•SORSPA,RTAILtRC2,Ml,RH[A0•00R 

••• END OF LOOP FOR CALCULATION C£LL PROPFRTIES••••••• 
••• RACK TO 1&5 ••••• 

WRITEC18,236JT,NCvCLE,MWHEAO,MWTAIL,IPl?•Il•Vl2,IJ,I:1,5J, 
IPl2,111,Vt2•Tll,fI=10•60,101 

FORMAT(' '•El0.3•~15, OF9.5/12F9o51 
OP[AK: NSAM oNE• 0 
OfNT: .TRUE, 

IF I OSKIP I r.0 TO 237 
N~X: INCYCLE/NSl•NS 
OPUN: NSX ,EQ. NrYCLE 

IFl,NOT, OPRINTI GO TO 238 
CALt SAMPLE 
CAL INT 
CALL FIOIF 

••• FIDIF - 433 •••••••• 
f~lif~~v~~~TttTt~he,RRHEAO•RRTAIL 

!Fl.NOT, OPUNJ60 TO 240 
lFIOPRlNTJGO Tn 239 

~:ct 1~~PLE 
CALL PUOAT 
1ST: 1ST + N 

PUOAT: 7q1 
DETERMINE NEXT TSTEP,TIME AND RFINITIAL PROPERTlfS 

lF I OVER I Gn TO 248 
lFIOPRINTJGO Tn 241 
IF(OPllN)GO TO ,41 

CALL SAMPLE 
CALL INT 
CALL PUDAT 

PUOAT: 7ql 
IST=IST+N 
NX=INPR/NFRPR)•NFpPR 

IFINPR ,EQ• NX1GO TO 246 
GO JO 247 

CALL F OIF 
FIOIF: 411J 

NPR=NPR+l 
WR1TEC6,31JT,ET,~ 
OVER: ,THUE, 
DTL: OT 
OT: OTHOL 
TLAS: T 
OPRINT: ,TRUE, 

IFIOTRACEJWRITFl16,45)NCYCL£,IN0£X,T,OT,DTHOLtDTL 
GO TO 289 

TLAS: T 
OTL: OT 

STABILITY CRITERIA 
R?MP : R 12, 1) 
Gf: GF 
OFLIT: ,FALSE, 

IFIOTAACE)WAITFl16,391 

Do 281 M: 1,NL 
A2M: R2r,IP 
R2MP: RC2,M+ll 
ROIF: R2MP-R2M 
V?: V(2,MI 
Vl : VU,M) 

OATE 011477 PAGf. 6 

N 
t-' 
t-' 



•••••• AMAIN 

oon52.3 000 
000524 000 
OOn525 000 
000526 000 
OOn 5 27 0 00 
oon528 000 
oons29 000 
0005.30 0 0 0 
0005.31 00 0 
0005.32 0 00 
0005.33 000 
OOn5.54 00 0 
oon5.3; 000 

88Rs~ 888 
0005.38 000 
0005.39 000 
000540 000 
000541 000 
000542 000 
00054.3 000 
000544 000 
00054i 000 
00054 000 
000547 000 
000548 000 
000549 000 
000550 000 
000551 000 
000552 000 
000553 000 
000554 000 
ooo55i 000 
00055 0 0 0 
000557 0 00 
000558 0 0 0 
000559 000 
000560 000 
000561 1)00 
0005&2 000 
00056.3 000 
000564 000 
oon565 000 
000566 000 
0011567 000 
000566 000 
0005~9 000 
oon57 f goo 
0005 00 
000572 000 
00057.3 000 
0005~4 000 
ooo57i 000 
0005 0 0 0 
000577 000 
000578 000 
000579 000 
00056~ 000 
00058 000 
000582 000 
000583 000 
000584 000 
000565 000 
ggo586 888 0587 
000568 000 
000569 000 
000590 000 
000591 000 
000592 000 
00059.5 000 
00059'+ 0 0 0 
ooo5ii 000 
0005 000 ooosii 000 
0005 000 

•••••• 

265 

267 

AS2 : P{2,Ml•V?•G~ 
VOOTN: TWO•{V~-V1l/(V2+Vll/DTL 

lF ( VOOTN ,LT. ZERO l GO TO 265 
AS2 : ZERO 

GO TO 267 
8~1: CO•ROIF•VDOTN 
HS2: 64,DO•HSl•ASl 
S2: AS2 + B52 

1F!S2 ,GT. 1ERn)GO TO 268 
S:,: WUN 
WRITE(6,531DEM,S2,AS2,RS1,AS2,vooTN,Vl•V2,RDtF,R2MP,R?M, 

• CO,OTL 

C 
C 

268 

270 
• 

276 

1 

2AO 

2A9 

l 
C 290 
C 

297 

C••• 
C 

~ 
309 

l 

OF:XlT: ,TRUJ• 
DEM: 3,00•D QRT(~~) 
OT: TWO•RD1 IOEM 

IF( OFLIT I Gn TO 280 
OFLIT: ,TRUE, 
DTMIN: OT 

IF (OEWAVI GO TO 270 
IF ( ,NOT, OESnR I GO TO 2AO 

GRADEN: I ENMAX I SLOSOR •AA/ TMAXE) • ( DEXP ( PHI I -
DEXP ( - PHI• SOREXP) ) 

IFIGRAOfN •NE• ZERO) GO TO 276 
GO TO 280 

GRADTA: WUN/ GRADEN 
UTTES: ENSTEP • ~RADTA 

1F(OTRACEIWRIT~!l6,401M•DT,DTMIN,DTT~S,GRAOTA•OEM,R2MP, 
R2~,HS2•n5l,VD0TN•GE 

IF ( oTTES .GT, DTMJN) GO TO ?80 
OTMIN: nTTES 

IF I OT ,LT. OrMIN) DTMIN: OT 
IF(OTRACE)WqJT~(16•40)M•OT,OTMIN,OTTFS,GRAOTA•DEM,R2MP, 
I 

R2M,HS2•RS ,VOOTN•GE 
F ( M oF.O• NLT GE: G 

OT::: DTMIN 
IF ( OT oLE, Z~qO J 60 TO 309 
LIMITING CONSTRAINT 

P
IF (OTL oLE• 7ERO) GO TO 289 

DTU = 1 • 4 ao.oT, 
IF ( OT oGT, DTUP) OT: DTUP 

T: T + OT 
1F(OTRACEIWRIT~(l~•40 1M• DT,oTUP,OTL,DTMIN,OTTES• 

GRAOEN,D~M,PHI,VOOTN,GE•RDIF 
REINITlAL PROP~RTIES 

00 297 M: l,NL 
U(l•MI : U(2,M) 
R(l•M>: R(2tM) 
V(l•M>: V(2,M) 
Q(l•M>: Q(2,M) 
P(l•M>: P12,M) 
E<l•MI : El2,M) 
CONTINUE 
Ull•NI: U(2,NI 
Rll•NI : Rl2,N) 

IF(OTRACEIWRIT~(16,46)NCYCLE,INDEX,T,TLJNF:,TLAS• 
TNEX•TIP11N,OT 

IF ( ,NOT. OPUTI ) GO TO 92 
IF ( TLINE .GT, T) GO TO 92 

OTHOL: OT 
OVEH: ,FALSE• 
OT: TLINE - TLaS 
T: TLINE 
TNEX: Tt!EX + WUN 
TLINE: TNEX•TJPUN 

1F(OTRACEIWRIT~(l6,471NCYCLE,T,OT,TLJNE,TNEX,OTHOL 
GO TO q2 

••• RETURN FOR rALCIJLATI0N OF NEW TJMF STEP•••••••••••• 

6,30) 
GO TO 314 

OflTE Ol 1477 Pf\GF 1 

N 
...... 
N 



•••••• AMAIN •••••• 
000599 000 C 311 PUNCH RESTART AND TERMINATE 
000600 000 312 IF ( N .GT, 201 ) N = 201 
000601 000 IF(O[WAVIWinwAv=STWOWV 
000602 000 C 

IF 0Uo603 000 ( NPUNCH ,Gr. 0 ) CALL RfSHR 
000604 000 C 
000b0~ goo C 
00060 00 314 INDy~ : INDfX -1 
000607 000 INPUN H •tE• 0 l T: T - DT 
000608 000 IF (NPUNCH • E. 0 NCYCLE: NCYCL£ - \ 000609 000 C 

CALL INIJI~ 00061~ goo 
C1317 00061 00 N TIL : 1,ll 

0806f2 000 CALL BURST 
0 06 3 000 C1318 RURST: 3:,2 
000614 000 315 CONTINUE 
000615 000 S T O P 
000616 000 END 

lilHnG,P •••••• flURST •••••• 
lilELT•L RURST 
ELT 68-01/14-14:42 RURST 
000001 000 SUBROUTINE RURc;T 

BUHST 000002 000 C 321 
000003 000 
000004 000 
000005 000 
000006 000 
000007 000 
000008 000 
000009 000 
000010 000 

88g8H 888 
000013 000 
000014 000 
000015 000 
000016 000 
000017 000 
000018 000 
000019 000 
000020 000 
000021 000 
000022 000 
00002.3 000 
000024 000 
000025 000 
000026 000 
000027 000 
000028 000 
000029 000 
000030 000 
000031 000 
000032 000 
000033 000 
000034 000 
000035 ooo 
oooo.36 ooo 
oooo.37 ooo 
OOOU.38 000 
ooo0.39 ooo 
ogoo4o goo 
0 0041 00 
000042 000 

8888~1? 888 
000045 000 
000046 000 
ogoo47 goo 
0 0048 00 
000049 000 
000050 000 
000051 000 

• 

IMPLICIT DOUALE PpfCISION(A-H,P-Z), LO~JCAL(O),INTEGFR(L) 
DOUHLE PRECISION TERMIN,TIPUN,T,UT,DTL 

COMMON/ TIME/ TE11MIN,TIPllN, T,OT, DTL, 
KRUN(31, LAUEL(7) 

COMMON/PARAM/CL,Cn,G•GF,UL•UR,GMW,C,FMWtFNMAX,ET,PJl,SLOSOR, 
1 SOREXPtTMAX[,TWO,WUN,7FR01MJNCOS,MAXCOS1J1JPl1N,NL, 
2 NLI,NnP•NPART,NSTEPStOFNT,OF50R,OPFAK,8PLeN[,OPRINT, 
~ OPUTl,OS~JP,OSPHEH,OTRACE,M~TAtL,MiHEA .~ f ,w1nwnv, 
4 ENWAV,RH~AD,RTAIL•WSLSOR,WSRF.XP,MNWCOS,MXWCOS,O[WAV, 
5 HEF,E2CL 

COMMON/ARGINT/JNU~X1LSTART•NCYCLE,NFINAL1NSTORF,NS,N~1,NNN1MPEAK1 
NSAM•NSHrF,NHUFF,NFR[Q,NWAVE,NPUNcH 

DIMENSION MONTH1q8)1M!21• 
0ISTl121, LJ8r12), NLLl5),0JLCiO) 

DIMENSION KLF(2 • KRF(2> , KLBl?.)1 KPA(2), 
KR0(2), KLOC2) 

EQUIVALENCE (OJSTrII, Mil)), 
COIL<lh NLL(l)) 

DATA MONTH/ ' '•' JAN'•'UARY'• 7,• •••Fr~R•,•UARY•, A, 
' '•' M1 • 1 ARCH', 5,• ,,, - A•,•PRJL•, 5• 

'•' ''' MAY'• 3,t ''' '•'JUNE•, 4, 
' , ' ' • 'JULY' , It, • ' • ' AU' , 'GUST ' • 6, 

~··'EPTE'•'MH~R'• 9,• ••• ncT•,•oAER', 7, 
' •,•NOVE'•'MHER'• 8,• •••OFCE•,•MAER', A/ 

DATA OOSY I •O• ( 
DATA ODE / ,FAI S • I 1 
DATA LIB/ •olT, n2'•'03','04•,•o5•,•o6•,•o ,,,oe•,•09•, 

•10•,•11•,•12• I 
DATA KLF / • FR0', 1 NT • I• KRF / ' FI•,•PST • I 
DATA KLB /' BAC','K t I• KRR /' L•••AST • I 
UATA NOMI '• 19 1 / 
DATA OFOR I oFAL~E. I 
DATA lCHAR/64/ 
DATA INSTR/40q5/ 
DATA ISHOV/16779,15/ 
DAT A L YI<! • 1 9 • / 
DATA LZER0/ 1 o•, 
DATA LALAN/' t/ 
UATA LCOMM/ 1 "' 

CALL EHTRAN(9•M(ll,M(2)) 
IF (OnE ) GO TO 407 

OOE: .TRUE, 
lYEAR:AND(INST~1M1lll 
IAUfF: ANOIISHOV,M(l)) 
IoAY = XOR(IBUFF•rYEAR) 
lAOU: ANOCISHOV•LBLAN) 
lMON: XOR(IHUFF•M(lll 
lMON: ORCIMON,IAnOI 
lRUFF: ANO CLYR•rNSTR) 

OATE 0111177 PM,F: 

N 
...... 
l.,.J 



•• • •• • Hl/RST • • •• •• 

000052 
00005) 
000054 
000055 
000056 
000057 
000058 
001')0~9 
000060 
000061 
000Ub2 
000063 
000064 
000065 
000066 
000067 
000068 
000069 
000010 
000071 
000072 
00007J 
000071+ 
000075 
000076 
000017 
000076 
000079 
000060 
000061 
000082 
00006J 
000084 

8888B6 
000087 

800088 
00089 

000090 
000091 
030092 
0 0093 
000091+ 
000095 
000096 
000097 
000096 
000099 
000100 
000101 
000102 
000103 
000104 
000105 
000106 
000107 
000106 
000109 
000110 
000111 
000·112 
000113 
000114 
000115 
ounu& 
000117 
080118 
000119 
000120 
000121 
000122 
00012.5 
000124 
000125 
000126 
001:)127 

000 
000 
000 
000 
0 00 
000 
000 
000 
000 oog 
00 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

888 
000 
000 
000 

888 
000 

888 
000 
000 

800 
00 

000 
000 
000 
000 
000 
000 

800 
00 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
goo 

00 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

361 

364 

398 
3911 

400
1 

•ml I 
l 

:&i 
I 

404 
40!> l 

406
1 

407 

411 
1'13 

1115 
lllb 

420 

lt22 

!RUFF XOR ( IUUFF, LYR l 
lrEAR OR(IY~AR•rRUFF) 
lC OM M AND(LCOMM,INSTR) 
IoAY = OR(lCOMM,lnAY) 
17.EHO: ANO(LZFRO,ISHOV) 
lZERo = IZfRO•ICHaR 
l5THIP = AND (JlEpO,ISHOV) 
lZEHo: XOR(JZERO,JSTRJPI 
IoAY: IOAY•JCHAR 
1STRIP = ANO(lOAY,ISHOVI 
ITEST: XOR(ISTRlp,JOAY) 
Oc;I=ITEST oEG• IlJ:-RO 
ILEFFT: ANOILBLAN,ISHOV) 
ILE T: XORIILEFl,LALANI 
!STRIP= YR(Il[FT,~~TRIP) 
IOA~F~O?JAY/Jg~x~f RIP 
IoAY: ANO(IOAY,I~HOV) 
IoAY: ORIIOAY,IL~FT) 
InAY: 1DAY•ICHAH 
IM: 1 

DO 361 I: l, 12 
IF I IMON ,E(h UAII) ) IM: I 

CONTINUE 
K: 4o ( IM-I I 

DO 364 I: 1,3 
NLLIIJ: MONTH(K+y) 
NLL(lt) : HlAY 
NLL(SJ : lYEAR•ICHAR 
FoRMATC' '•'••••••••• GAMMA CHANGES Q ENERGY AODITION ••••'I 
FORMAT( ' '• 4A4•a5, ' TOTOEOTOEOEOTOOTOEOEOT DF.TONAT•, 
'ON wAy~s oTO~oToEoTgo ,, 3A4, 'EOE ',A6,• •,A6, I 
FORMAT T 9 ,4A4,A5,t TOOE i,2A4,14X,315,9X,2A1t, 

3A4,'EOT '•A6,• '•A61 
FORMAT(' '•4A4,A5,• TOTOE'•2A4,4X,2Fl5.A,4X•2A4, 

3A4,'FOT '•A6,• '•A6) 
FORMAT C •1•,/1 I 
FORMAT Ct •, 4A4•ft5J 'ETOEO• , 2A4, 3BX, ?.A4,:'IA4, 

•EOE ' ,A6,' '•16 
FORMAT(' '•4Alt,A5,• T000E'•2A4,4X,6IS,4X,2A4,3A4• 

'EOT •,A~,, ',A6) 
FORMAT C ' •, 4A4,A5, ' T00EO•, 2A4, 6X, 7A4, 4Xt2A4, 

3A4, 'EOT •, A~,, '•A61 
FORMAT(/) 
OFOH: .NOT, OFOR 

IF ( OFOR) GO TO 413 
DO 1111 I: 1,2 

KLOl
1 

I> : KUH I> 
KRO II : KRIH I) 

r.o TO 416 
00 4lo:; 

KLOl II : KLFCl) 
KROlJ): KRFCl) 
ILIM : 15 

DO 4:,0 
WRITE C 6,402) 
WRITEC6t398) 

I : 1,2 

K: 1•3 

DO 420 T: 1,8 
WRITE C 6, 3991 NLL, KRUN•Mf1),MC2) 

00422 1:1,9 
WRITE C 6, 40J) NLL, KLO• KRO, KRUN•MC t) t"1(2) 
WHITE( 6, 405 I N1 L• KLO, LABEL• KRO, KRUN,MC1),MC2) 
WRITE(6,40'+)NLL,KLOtLSTART•NCYCLE,NPUNCH,NSlORF,NS,NSTEP5,KRO, 

1 KRUN•Mfl1,M(2) 
WRITE(6,404)NLL,K10,NFJNALtNN,NNN,NBUFF,NFRE~,NWAVE, 

l KRO,KRUN,M(1),M(2) 
WRITE(6,'+0l )NLL,K1 O, TERMIN•TIPUN,KRO,KRIIN,Mf I) ,MC21 
WRITEC6,4011NLL,KLO•G•GF,KR0,KRUN,~(11,M(2) 
WRITE (6,400) NLL, Kt O, .J• NOP, NL I, KRO, KRUN, MC 11 , MC 2) 

DO 426 I: 1,9 
WRITE C 6,4031 Ni.1!..•KLO, KRO,KRUN,M(l h!W!f2) 

no 42A I: 1,ILIM 
WRITE I ~,399)NLL 0 KRUN,~C\J,MC2> 

IFCK eEQ, 2JGO 10 4.30 
IF C OFOR I 11 M: 2 

CONTINUE 

01\TE 011471 Pr.Gt 



•••••• BURST •••••• 
000126 000 WR1TE(6,406) 
000129 000 R£TUHN 
000130 000 p431 IN IT 1 L : ,, 75 
000131 000 2431 MAIN PROGQAM = 319 
000132 000 ENO 

lilHDG•P •••••• FIOIF •••••• 
WELT•L FIOIF 
ELT 6:-01/14-14:42 FIDIF oonoo ooo 
00000 000 C 433 

SUBROUTINE FIDrF 
FI01F 

000003 000 
000004 000 

IMPLICIT DOUBLE PQECISJON (A-H,P-l),LOGJCAL (01 
DOURLE PRECISION ~ACH 

ooooos ooo 11 COMMON/ ARRAYS I Ul2,20l>, R(2•201),V(2,?01 1,Q(2t20I>• 
P12,2011• Xf20ll, E(2,20J), NCELLf20tl, 

WE2CL(201J,WElCLl?Ol)tA(20l),GCOS(lOl 
COMMON/ TIMF. / TERMIN • TJPUN, T• OT, OTL, 

000006 000 U 
000007 000 2 
000008 000 13 
000009 000 
oonolo ooo 
000011 000 
000012 ooo 
000013 000 
OOOOh 000 

88881~ 888 
000017 000 
000016 000 

88~8~3 888 
000021 000 
000022 000 
ogoo2J ~og 0 0024 0 
000025 00 
00002t, 000 
000027 000 
000028 000 
000029 gog 
OOOOJO O 
000031 000 
000032 000 
000033 goo 
000034 00 
000035 000 
000036 000 
000037 000 
OOoOJ8 000 
oonoJ9 ooo 
000040 000 
000041 000 
000042 000 
00004J 000 
000041f 000 
00001f5 000 
000046 000 
000047 000 
000048 000 
00001+9 000 
000050 000 
000051 000 
000052 goo 
000053 (IQ 
000054 000 
000055 000 
000056 000 
000057 000 
000058 000 
000059 goo 
0000&0 00 
000061 000 
0000&2 000 
0000&3 000 
000064 000 

• KRUN(J), LAAELC7) 
COMMON / PARAM / c, • co, G, GF. UL• UR , GMW• GFMW, f"NMI\X, rr, 

~ PJt,SLOSOR, SOREXP, TMAXF• Two, WUN, ZERO' 
4 MINCOS, MAXCOS• J, JPl, N• NIL NLl,NOP, 
~ NPART, NSTEPS, OENT, OESOR, OPEAK, OPLANE, 
6 OPRJNT• OPUTI, OSKJP, oSPHFR,oTRACF.• 
7 MWTAIL,MwHEAD,WVEL1WlnWAV1ENWAV,Rl~AD,RTAIL, 
A WSLS0R,W~REXP,MNWCo~,MXWCo5,0fWAV,RFF,f2CL 

22 COMMON/ ARGJNT / rNDEX, LSTART, NCYCLE• NFINAL, NSTORE• NS, 
7 NN, NNN, NPEI\K• NSAM• NSHIF,N~UFF,NFRF.O,NWAVE 
2 ,NPUNCH 

451 FORMAT t TIME=', 1POl2o6• 3X, 'DT =·· D1?o6t 5X, 'INOEX =•, 
• lo;, ax, •vTIMD ='• 012.6, 7X, •CYCLE=·· 15 / 

453 FORMAT( • CELL rENTER DIST CENTER PRESS PRESS OJFF •, 
• •ciLL SP VnL cINTER VFL CF.LL Vtsc ,, • •c LL ENER~Y CON INUITY CELL•) 

454 FORMAT(' ,•TRE E~ERGY W VE BEGINS AT•,Fl,.9, 
1 ' ANU ENnS AT •,F14o9) 

45& FoRMATI' •,1s,2F1~.9,1PE14•4,0PF14o9,1P2E14o4,0PF1-.9,F9.4,t~) 
457 FORMAT •o•, 20X• 'THE LEADING MACH NUMAER :, , F7.4 ) 
458 FORMAT C lHl) 
45':I FORMAT C •+•, 6Xt A( •••, l:'IX >, •• Pf:AI( ••' 
460 FORMAT('+', 6X, 8rls•,1Jx),T~ ~EAD s~T) 
461 FORMAT(•+•, &X, 8r•!•,t3X>••! TAIL r!•> 
462 FORMAT(lHO,•NO LE~O SHOCK WAVE YET•) 

VTIME: T - oT1TWn 
C461 PRINT HfAU~RS 

WRllE ( 6, 4581 
WRI E l 6, 451 > T,OT,INOEX,VTIME, NCYCLE 
WRITE C 6,453 ) 

C ••••• CALCULATE CURRENT PROPERTIES 
MM: NFRF.Q 

IF(NFREQ,LE,O) MM: NL/25 
IF ( ~M,EQoO) ~M: l 
lFCoNOT. OEWAVtGO TO 470 

MWHP9: MWHEAD + Q 
MwTM5: MWTAIL - o; 

-70 R2: R(2,l) 
U.?. : U(2, 1) 
RPJ2: R2••JP1 
IJ: 0 

DO 
Rl: R2 
Ul - U2 
R2 RC2,M+1) 
U2 - UC2,M+1) 
PO P(2,M)-WUN 
OMID: (Rl+R2J/TWn 
UMUD: CU1+U2)/TWn 
RPJl: RPJ2 

M: 1,NL 

RPJ2: R2••JPl 
IFCM oLTo 9)GO TO 485 
IF(M ,EOo NPEAw)GO TO 4A5 
IF ( M oLTo MWTM5) GO TO 484 
IF CM oLEo MWHP9) GO TO 485 

F C MoEQ, NL l GO TO 485 

DA1'E 01141'1 l'AGE 



•••••• FIDIF' •••••• 
000065 000 lt84 MX: I I M-NSHIF 1/MM I •MM+ NSHJF 
000066 000 IF I MX .NE.MI GO TO 492 
000067 000 1485 CM: CRPJ2-RPJJl/v(2,MI/PJl/XCMl 
ogoo68 000 C 48b PRINT CURRENT PROPERTfJS 
0 00b9 000 WRITE I 6, 456 I NCELLCM), DMID• P ,M1,Pn,vc,,M1, 
000070 000 • UMUO, QC2,MI, EC2,MI, CM,M 
000011 000 IJ = IJ + 1 
000072 000 IF IM oEQ• MWTAIL I WRITE (6,461) 
oooo7J 000 IF CM oEQ. MWH~AO I WRIT~Cb,4601 
000074 000 IF ( M oN~.NP~AK I GO O 491 
000075 000 WRITE C 6, 45 I 
000076 000 GA: y 
000077 000 lF M .LT. MWHEftO)GA: GF 
000076 000 MACH: DSQRT I r PC2,MI - WUN l•CGA+WUNI I TWO/GA+WUN) 
8888J~ 888 :~l C fFCI( .GT. 601r.O TO 49J ON INU 
000081 000 q9J IFCP 2,NPEAK) 0 GT. WUN) WRITEC&,457) MACH 
000082 000 IF\PC2,NPEAK\ ·kE· wvNI WRIT~16,462) 
00008J 000 F OEWAVIWHI E1 ,454 RHEAO,R IL 
000084 000 RFTURN 
000085 000 Cl494 INITIL : 730 
000086 000 C2494 MAIN PROGi:,AM 238 
000087 000 C34<J4 MAIN PROG11AM 242 
000088 000 ENO 

lilHDG•P •••••• GENOAT ••••*• 
lilELT•L GENOAT 
EhT 65-01/14-14:42 GENUAT 
0 0001 000 SUBROUTINE GENnAT 
000002 000 C 496 

IMPLICIT 001mE~N~~lcls10N <A-H,P-z>lLOGfCAL co, OOOOOJ 000 
000004 000 11 COMMON/ ARRAYS/ U 2,2011, R(2•20 J,V 2,201 l,QC2,?0JI, 

U PC2,20ll• xc2011, EC2,20Jl, NCELLC20ll, 000005 000 
000006 000 
000007 000 
000008 000 
000009 000 
000010 000 
000011 000 
000012 000 
000013 000 
000014 000 

8888½~ ggg 
000017 000 
000018 000 
000019 000 
000020 000 
ogoo21 ooo 
0 0022 000 
000023 000 
00002i. 000 
000025 000 
000026 000 
000027 000 
000028 000 
000029 000 
000030 000 
000031 000 
000032 000 
000033 000 
ooooJi. ooo 
ooooJs ooo 
000036 000 
000037 000 
000038 000 
000039 000 
000040 000 

C 

C 

000041 000 

8888:~ 888 
000044 000 
000045 000 

2 WE2CLC20l),WF:1CLC2011,AC201),GC05C101 
COMMON / PARAM / C1, C01 G, GF, UL, UR f GMW• GFMW, F:NMAX, E'T, 

3 PJt,~LOSOR, SOHEXP, MAXF• Two, WUN, ZERO, 
4 MINCOS, MAXCOS• J, JPl, ~, NL, NLI,NOP, 
5 MPART, NSTEPS1. OENT, OESOR, OPE•K, OPLANf:, 
6 OPRINT• OPUTI, OSKIP, OSPHFR•OJRACE• 
7 MWTAIL,MwHEAD,WVEL,WinwAV,ENWAV,RHEAO,RTA L, 

7
8 WSLSOR,W~REXP,MNWCOS,MXWCOS,OEWAV,REF,E2CL 

50 FORMAT( l -
508 FORMAT('O'•lsx,•K~RNEL PRESSURES P(KERol/PCAMA 0 1:•,FS~2•/ 

l X,• TCKER.J/T(AMAol: 1 ,F~.2,/ 
2 lOX,'THEQF ARE•,IS,• CELLS WITH•,I5,• FAIRJNG CELLS',/) 

511 FORMAT C '4', ~X• 1EN~RGY SOURCE!' ENERGYCSoR. MAX. / ENERGY•, 
• •CINT. AMA.t: •, F8.l• t F NAL F.NF.RGY DEPOSITION TIME'• 
• •(TAU MAXol: •, F5.2, / , 2UX, • SHAPJNr, CONSTANT 1: '• 
3 F6•2• • SHAPfNG rONSTANT 2: •,F5.2, • crLL NO OF RO:,, 
4 F5.2, /, 2 X• t(MIN.I CELL NO, OF COS. DtSTo: '• 14, 
• t (MAX.I CELI . NO. OF COS. OISTo : •, 14 I 

RF.AD CS,5071 PRE~S, TEMP, N, NOEC 

WRITE ( 6, 508) PRESS, TEMP, N, NDEC 
IF(N .Gr.201>Gn To 609 

Gr;MW: GFMW 

IF(OEWAVJGGMW - GMW 
F(OESORIGGMW=r.MW 

NL: N-1 
LIMIT:N-2•NDEC 
HUFF: N-NDEC 

IF C OESOR I Wi:,ITEC 6, 511) ENMAX, TMAXE, SLOSOR, 
• SOREXP, ~UFF, MINCOS, MAXCOS 

REF: WUN/RUFF 
VOL: TEMP/PRESS 
Rl: ZERO 
RlJ: ZERO 
RCl•lJ : Rl 

~H:JI ~ ~sps 
NCELLCU : 1 
ACMl:oSORTCCWUN+G~MWl*PCl,Ml•VCl•M)l 

flATE 01h77 PAf',F l 

) 



•••••• 
000046 
000047 
1!)00048 
000049 
000050 
000051 
OOn052 
0Uo05J 
000054 
000055 
000056 
OOnU57 
000058 
000059 
00110~0 
OOnObl 
000062 
00006J 
0Qf)064 
000065 
000066 
00()067 
000066 
000069 
001)070 
000011 
000072 
oooo7J 
000074 
000075 
000076 
ogoo77 
0 0078 
000079 
000080 
000081 
000082 
000063 
000084 
000085 

88~8~~ 
001)086 
OOOCJ69 
000090 
000091 
000092 
001)093 
000094 

, oono9s 
001)09b 
000097 
oon096· 
000099 
000100 
000101 
000102 
0100103 
000104 
ogo1os 
0 0106 
000107 

888188 
000110 
000111 
000112 
ooollJ 
0001111 
000115 ssgn~ 
000118 
000119 
000120 
000121 

GENOAT 

000 
000 
000 
000 
000 
000 
000 

888 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

800 
IJO 

000 
000 
000 
000 
000 
000 
000 

888 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

800 
00 

000 
000 
000 
000 
000 
000 

888 
000 
000 
000 
000 

•••••• 

568 

587 

Ell•ll : TEMPIGGM~ 
IF ( LIMIT .tQ. 1 I GO TO 545 

no 544 M: 2•LIMIT 
R::tJ: RlJ 
HUFF: M-1 
fH : BUFF • REF 
RlJ : Rl .. JP1 
R!l•M) : Rl 
PI 1 • ~O : PHF:SS 
Vll•MI: VOL 
X(M-11: (RlJ-R2Jl/YOL/PJl 
NcELL(MI : M 

lF(M .GTf NLl,r.GMW: GMW 
A(Ml:QSQRf( WUN+Gr.MWl•Pll,Ml•V(ltMI, 
E(l•M): TEMP/ Gr.MW 
LL :: LIMIT 
XRMXO:: NUEC 
XRMXo: TWO•XRMXO•REF 
PS:: PRf.SS - WUN 
TS:: TEMP-WUN 

DO 56~ I: l, NDEC 
M: LL+ 1 
BUFF: M-1 
R;>J: RlJ 
Rl: BUFF•REF 
RtJ : Rh•JPl 
Rll•M•) : Rl 
XCM-11: IRlJ-R2Jl/YOL/PJl 
NCELL(M): M 
X"'1X0 : I 
XMXO: XMXO•REF 
sc~LE: TWO•([XMXn/XRMXOl••2J 
PV: PRESS-SCALE*PS 
TV: TEMP-SCALF:•T~ 
VOL: TV/PV 
VI I •M) : VOL 
P( I •Ml : PV 

lFIM .GT\ NLI)r.GMW: GMW 
A(Ml:OSQRT( WUN+Gr.MWl•Pll,Ml•V(ltMIJ 
E(l•MI : TV/GGMW 
LL: LL+~SEC 5A7 I: l,NDEC 
M: LL+I 
HUFF: M-1 
R2J: RlJ 
Rl: AUFF•REF 

RlJ : Rh•JPl 
X(M-11 : (RlJ-R2Jl/YOL/PJl 
R(l•M) : Rl 
NCELL(MI : M 
XRMX: NOEC -I 
XRMX: XRMX•REF 
ScALE: TWO•l(XRMv/XRMXOl••2) 
PV: WUN+SCALE•PS 
TV: WVN+SCALE•TS 
VOL: TV/PV 
PC l •M) : PV 
V(l•MI: VOL 

IF(M oGT. NLllGGMW: GMW 
A(M1l:OSQRl ( (WUN+Gr.MWJ •Pll ,MhVU ,M)) 
E(l•MI: . V/GGMW 
LL: N+l 

F no 599 M: LL, 201 
BIIF : M-1 
Rl: BUFF• REF 
NCELL(MI : M 
Pl l •Ml : WUN 
VCl•M>: WVN 

lF(M eGT, Nt.llr.GMW: GMW 
E(l•MI: WUN/GMW 
R::tJ: RlJ 
RlJ: R ••JPl 
R(l•M): Rl 
A(M):OSQRT((WUN+Gr.MWJ•P(1,MJ•V(1•MJ) 
XCM-11: (RlJ-R2Jt/PJ1 

no 60A M = 1,201 

DATE Olh77 P11G1:: t 



r •••••• GENOAT •••••• 

000122 
0011123 
000124 
000125 
000126 
0001 27 
000128 
000129 
001)130 
000131 
000132 
000133 
000134 

000 
ODO 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

608 
609 

C1609 

U(l,p.l) : 
U(2•P.0 : 
QC 1 •M) : 
0(2,M) -
WF2CL(M) 
R(2•Ml : 
Pl2•Ml : 
l/t2•M> : 
El2•M) -
CONTINUE 
RF.:TURN 

END 

ZERO 
ZF.HO 

ZERO 
ZERO 
: ZERO 
R ! l ,M) 
P l,M) 
VlltMI 
El1'MI 

JNITJL : 

gHOG•P •••••• INITIL ****** 
lilELT•L INITIL 
ELT 68-01/14-14:42 INITIL 
000001 000 SUBROUTI~E INITIL 

INITTL 000002 000 C 611 
000003 000 
001'1004 000 
000005 000 
001)006 000 
000007 000 
000008 000 
000009 000 
000010 000 
000011 000 
000012 000 
000013 000 
000014 000 
001)015 000 

88~81~ 888 
000018 000 
000019 000 
000020 000 
000021 000 
030022 000 
0 0023 000 
000024 000 
000025 000 
000026, 000· 
000027 000 
000028 000 
00!)029 000 
000030 000 

8888i1 888 
0000·33 000 
000034 000 
00(),0'35 000 
OQ.0036 000 
0000.57 000 
000036 000 
000039 000 
000040 000 
000041 000 
000042 000 
000043 000 

8888:~ 888 
000046 000 
000047 000 
000046 000 
000049 000 
000050 000 
000051 000 
000052 000 
00()053 000 
000054 000 
00·0055 000 
000056 000 

IMPLICIT DOU~LE P~ECISION IA-H,P-Zl,LOGICAL 101 
DOUULE PRECISION uACH 

11 COMMON/ AARAYS I Ul2•2011, Rl2•201),V12,?0! 1,Gl2,20JI, 
U Pl2,2011• Xl20ll, EC2,2011, NCELLl20JI, 

132 WE2CLl20ll,wF.1CLl20ll,A(~Ot1,r,CoS1tOI 
COMMON/ TIME/ TE~MIN, TIPUN, T• OT, DTL, 

e KRUN(31, LABfL(71 
COMMON/ PARAM / C1, CO, G, GF, UL, UR , GMW• GFMW, FNMAX, ET, 

3 PJ1,SLOS0R, SOHF.XP, TMAXF• Two, WUN, ZERO, 
4 MINCOS, MAXCOS• J, JP!, N• NL~ NLI,NDP, 
5 NPART, NST[PSf OF.NT, OESOR, OPEAK, OPLANF, 
6 OPRINT• OPlJ I, OSKIP, oSPHFR•OJRACE• 7 MWTAIL,MwHEAD,WVEL,WIDWAV,ENWAV,RHEAD;RTA L, 

22~C0MM0N / An~~~YRiW~~~~~:M~~~~~t~X~f9~t~~w~~f~~E:E~~T0RF., NS, 
7 NN, NNN, NPEAK• MSAM, NSHlF,NAUFF,NFRE(hNWAVE 2 ,NPUNCH 

627 DtMEANSION KINIT(3),KREST(2),KNtJMf9) 
628 UAT KINIT I 'INlT'•'IAL '•'RUN /, 

• KHEST / •REST••'ART ' /, 
• KNUM / 'l TE ,'2 TE•,•3 TE•, 1 4 lE•,•5 TE•, 

6 ,t• '6 TE'•'7 TE','8 TF.•,•9 TE• / 
JJ DATA ALLOW / l,no-5 / 

634 FORMAT() 
635 FORMAT!) 
63b FORMAT I 
637 FORMAT() 
638 FORMAT(/, 40X, 'FIRST TIME STEP :',F13,6/ 

2 .. gx, •GAMMAl :• ,F13,6/ 
3 4 X, •GAuMAIJ :• ,F 3.6) 

639 FORMAT(30X,'PLANAn GEOMF.TRY•) 
640 FoRMATC30X,•CYLINnRICAL GEOMETRY') 
641 FoRMAT(30X,•SPHERrCAL GEOMETRY•) 
642 FORMAT(3ox,•oES1GNATED MAX TIMF.: •,14,, SF.CoNns•, 

1 30Xt 1 NUMBEn OF TIME STEPS :•,15/1 
6 .. 3 FORMATJlOX,•RESULTS WILL BE SlOREO FOR RESTART•) 
644 FORMAT l5X, 1 LlNEAR ARTIFICIAL VISCOSITY COFFFICIENT :•,013.6/ 

l 15X, 1 QUA0RftTIC ARTIFICIAL VISCOSITY COEFFICIENT :•,nt3,6/) 
645 FORMAT(lOX,•RESllLTS WILL NOT HE SlORF.O FOR RFSTARTING•) 
646 FoRMAT(lOX,•RESULTS OF EVERY•,15,• CYCLFS ARF ~TOREO ON TAPF') 
647 FORMAT(70x,• Er =',012,61 
648 FORMAT I '0'• ~ox, ' THE SHOCK FRONT MACH NUMBFR ='•F7,4) 
649 FoRMAT(lOX,•THE MaYIMUM NUMH[R OF CELLS 15 ',15,/ 

1 lOX•'RES\JLTS AHF. PRINTF.:n EVERY•,15,, CYCLES'•/ 
l lox, 'THE C11RRENT NU"1BER OF flATA POH,rTs ts•, 15,/ 
f ig:;:vA~M~,S~A~~fictfyC~~LT~~Mrf~;·iau~nAPY 1S•,Fl5.tO,/ 
t fox, 'THE F,-ow VELOCITY AT THE RIGHT BOUNDARY IS' ,Fl~. 10,/1 

6~0 FoRMAT(lOX,•THE E~ERGY FUNCTION SLOPF CONSTANT EOUALS•,Fto ... ,, 
I lox•' THE Ei>.1ER6Y SLOPING CONSTANT EQUAi s•, FlO ,4 • / 
2 lOX,•THE MaXfMUM TIME OF ENfR6Y ADDITfON IS',Fl0,4,/ 
3 lOX,•THE Max MUM ENERGY ADDFD IS•,Ft0.4,/ 
~ lOX,•THE SpAlIAL ROUNDING FUNCTION AEGINS AT CFLL',l!'i,/ 
!'i lOX,•THF.: 011TERMOST [OGE OF THF: EMF:R«;Y FUNCTION IS AT' 

DATE 01 h77 PI\GF: 2 

N ,.... 
00 



•••••• INITIL •••••• 
000 
000 
000 
000 
000 
0 00 
000 
000 
000 
000 

, 000 
000 
000 
000 ono 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

6 
651 
652 

2 
3 .. 
!i 
6 

653
7 

651t 
655 

l 

C 
C651t 
C 

C 

C 

'CELL'•T51 
FORMAT() 
FORMAT(lOX,•THF WAVE VELOCITY 1S',1P[10 0 4,/ 

lox,•THE WAVE FRONT WIDTH IS•,F.10.4,/ 
lOX, 'THE EMERGY ADDED IS• •El0,4,/ 
lOX,•THE WAVE SLOPE CONSTANT EOUALS'•OPFl0,4,/ 
lOX,•THE ENERGY SLOPE CONSTANT fOUALS•,FI0,4,t . 
lox, 'THF. SpATJAL ROUNDING FIJNCTION pEGIN'i AT CELL•. Jc;,, 
lOX,•THF. LftST ENERGY CELL JS •,15/) 

FORMAT(lOX,•NO EN~RGY ADDITION•,/ 
FoRMAT(•O•,JoX,•lHERE IS NO SHOCK WAVE ',Eln 4) 
FoRMAT(lOX,•RF.SULTS WJLL BE STORED AT TIME INfFRVALS•, 

' OF •, F 1 0 • 6 
OPASS: LSTART .N~. 0 

IF(OPASSI GO Tn 665 
NPAHT: 2000 
OFNA[): .FALSE. 
T: ZERO 
OTL: ZERO 

READ TNPUT 

RF.AD(5,631tJNSTEPS 0 NFINAL,NN,NNN,TERMIN,TIPUN,N~UFF,NFREQ,NWAVF 
RFAD ( 5, 635)NDP,J,NL1,CL•C0,G,GF,ut.,UR 

- IF(OTRACE)WRIT~(6,634JNSTEPS,NFINAL,NN,NNN,TERMIN, 
TIPUN,N~~F,NFREQ•NWAVE 

1F(OTRACF.>WRIT~(6,6J5JNDP,J,NLl,CL,CO,G,GF,tL,UR 

0F50R: NBUFF ,NE. 0 
OFWAV: NWAVE ,NE. 0 

000057 
000058 
000059 
000060 
000061 
000062 
000063 
00006«. 
000065 
000066 
000067 
000068 
000069 
000070 
oono71 
000012 
000073 
000074 
000075 
000070 
000077 
000078 
000079 
000080 
000081 
000082 
000083 
000084 
000085 
000086 
000087 
030088 
0 0089 
000090 
000091 
000092 
000093 
000094 
000095 
000096 
030097 
0 0098 
000099 
000100 
000101 
000102 
800103 
00010«. 
0001005 
0001 6 
000107 
000108 
000109 
000110 
000111 
000112 
000113 
0100114 
000115 
0001 6 
000117 
000118 
000119 
000120 
000121 
000122 
000123 
000124 
000125 
000126 
000127 
000128 
000129 
000130 
0001331 
0001 2 

800 
00 

OQO 
000 
000 
000 
000 
000 
000 

IF ( ,NOT OEWaV) GO TO 660 
REAO (5,651) wVEL•WIDWAV,ENWAV, 

t WSL~OR,WSREXP,MNWCOS,MXWCOS 
TISTO:WUN/(WVEL•5n0,0DOI 

800 
OU 

000 
000 
000 
000 
000 
000 
800 

00 
000 
000 

800 
00 

000 
000 
000 
000 
008 00 
0 00 
000 
000 
000 
00 0 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

660 

• 
661 

665 

670 
C••••• 67!> 

C1667 

C 

C 

lF(TIPUN .E~. 7EROIT1PUN:T1STO 
OF'N n: ,TRUE, 

- IF( ,NOTl OE~OR) GO TO 661 
READ 15,6~7) ~LOSOR, SOREXP,TMAXE,ENMAX• 

MINrOS,MAXCOS 
OFNAO: ,TRlJE, 
GMW: G - WUN 
GFMW: GF - WUN 

NL=NOP-1 
JPl: J+l 
PJl: JPl 

DEFb1E INITIAL MESH POINTS ANO CEtl PARAMETERS 

OALT: NDP,EO• 0 
IFCINOEX .NF., nJ GO TO 675 

KRUN(l) : KINIT(l) 
KRUN(2): KINITl2l 
KRUN(3): KIN1T(3) 

GO JO 670 
F(INDEX .N~. O) GO TO 728 

KRUN(l): KREST(ll 
KRUN(2J: KRESTl2l 
KRUN(31: KNUM(LSTART) 

CALL BURST 
••••••BURST: 3~1 •••••••••• IF(OPASSJ Gn TO 715 

WRITE 16,64q) NF JNA1 ,NN,NDP,NLI ,uL,UR 
IF( ,NOTf OENAnJ WRITE(6,6531 
IF ( OAL) CA1L GENDAT 

GENDAT: o;OO 
IF ( OALT I GO Tn 695 

Rl = ZERO 
GAMW: GFMW 

M: 1,201 00 694 
NCELL(MJ: M 
lF(M.GTeNJ GO TO 679 
R2: Rl 

A~A0(5,636)K,Rl,Url•M),P(1•M),V(l,M),9(l•MI 
R(ltMJ : Rt 
RolF: R1-R2 
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•••••• JNITIL •••••• 
000209 (100 PHIGH: PEST 
000210 000 

747 
GO TO 741 

000211 000 PCAL: PEST/IARGU~••POW J 
000212 000 fF < BAn~1PcAL1PAASE-WUNJ •Lf'.'•ALLOW1 GO TO 753 
0302p goo 0SW T: CA .r.T. PAASf'.' 
0 02 4 00 IF (OSWITJ PHyGH :-PEST 
000215 000 IF ( .NOT. osw,r I PLOW= PEST 
88H~l~ 888 753 10 !n 741 MACH: ~SQRT( PE T-WUNl•GPW/Twg/G+WUN 000218 000 fF I EST .Gr. wlJNJ WRITF:16, 481 MA~H 000219 000 F (PEST .LE, wUN) WRITE16,t,54 PES 
000220 000 755 T: T+DT 
000221 000 RETURN 
000222 000 C1756 MAIN PR0611AM = 58,317 00022J 000 END 
000221f 000 C 

WHOG•P •••••• INT •••••• 

QELT•L INT 
ELT 6B-Ol/llf-14:42 
000001 000 
000002 000 C 

INT 
758 

OOoOOJ 000 C 
000004 000 
000005 000 

88888~ 888 
000008 000 
000009 000 

8888H 888 
000012 000 
oooolJ ooo 
000014 000 
000015 000 
000016 000 
000017 000 
000018 000 
000019 000 
000020 000 
000021 000 
000022 000 
OOn02J 000 
000024 000 
000025 000 
000026 000 
000027 000 
000028 000 
000029 000 
ooooJo ooo 
0000J1 ooo 
000032 000 
ooooJJ ooo 
000034 000 
ooooJs ooo 
oonoJ0 ooo 
000037 000 oonoJa ooo C 

C 

11 
u • 
3 
4 
s 
6 
7 
8 

776 
171 

• 781 

SUBROUTINE INT 
INT 

IMPLICIT DOUBLE P1:1ECISION (A-H,P-Z1,t.OGtCAL (01 
COMMON I ARRAYS/ Ul2,20ll, Kl2•201),V(2,20l ),GC2,20l), 

COMMON 
Pl2,20l)• x12011, El2,2011• NCELLl?Oll, WE2CL(20t)•WE1CL(20ll,A 2011,r.cos 0) 

/ PARM'1 / Ct , CO, G, GF", UL• IIR , GMW• GFMW, ENMAXo f"T, 
PJl,SLOSOR, SOKEXP, TMAXf• Two, WUN, ZERO. 
~~~~i~·N~•~sg~·o~NT~PAfs~~.Nb~E~k!·~BLANf"o 

OPRJNT• OPUTI, OSKIPt OSPHFRtOTRACE• 
MWTAlL•MWHFAO,WVfL,WIDWAV,F"NWAV,RHEAO,PTAIL, 
WSLSOR•WSHEXP,MNWCOS,MXWCOS,OFWAV,REF•E?CL 

FORMATl2I5,4E12o5) 
FORMAT(' '•I5•10Et2o5l 
ET: -IR(l,N)••JP1)/GMW 
R?.P: Rll•l>••JPl 
UlMP: UI l, 1J 

1J2MP: U12,t) 
IF(OTRACE)WRIT~(16,776)N,NL,U2MP,U1MP,R2P,R(l•N) 

DO 781 M: 1,NL 
RIP: R2P 
R~P: RlloM+t)••Jpl 
UlM: UlMP 
U2M: U2MP 
UlMP: UlltM+l) 
U?.MP: Ul2,M+l) 
U?. : IU1MP•U2MP+111M•U2M)/TWO 

. IF ( OT RACE I WR ITd 16,777 )M,E T ,F. I 1 ,M) ,ll2,R2P, R!P• VU, M), 
UlMP,U2MP 0 U1M,U2M 

ET : ET +IE'1•M)+112/TWOJ•(R2P-R1P)/Yll,M) 
RETURN 

ENO 
INJTIL : 716 
MAN PROGpAM 238 

QHOG•P •••••• PUOAT •••••• 

'1ELT•L pUDAT 
~~~otr-ol/l

4oAi:-2 PUOAT SUBROUTINE PUOaT 
000002 000 C 78~ PUOAT 
000003 000 IMPLICIT OOURLE PpECISION(A-H,P-ZJ,LOGICAL(O) 
000004 000 RF.AL TTT 
000005 000 11 COMMON I ARRAYS/ ¥<2,201), R(2•201),VC2,?01 l,GC2,20lJ, 

8888080' 8880 1 ~~ pw~2~flio1f~~~lll,iA¥J~ilio1~~t~b~1~AI· 
000 8 00 ~ COMMON/ TIME/ TEpMIN, TIPUN, T• OT, OTL, 
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•••••• PUOAT 

000009 000 
000010 000 
000011 000 
000012 000 
oooolJ 000 
000014 000 
000015 000 
00()016 000 
000017 ono 
000018 000 
000019 000 
000020 000 
000021 000 

8888~~ 888 
00()024 000 
00002g 000 
00002 000 
000027 000 
000028 000 
000029 (100 
000030 000 
000031 000 
000032 000 
000033 000 
000034 000 
000035 000 
030030 oog 
0 0037 00 
000038 000 
000039 000 
0000140 000 
00004! 000 
00004 000 
000043 000 

8888:i goo 00 
000046 000 
000047 000 
000048 000 

8888~3 888 
· 000051 000 

8888~i 888 
000054 000 
000055 000 
000056 000 
000057 000 
000058 000 
030053 888 o noo 
000061 000 
oono62 000 
000063 000 
000064 000 
000065 000 
00006& 000 
000067 000 

QHnG,P •••••• 

•••••• 
KRUN(3J, LABEL(7J I 

COMMON 
3 

/ PARAM / Ct , CO, G, GF, UL, UR , GMW• GF'MW, ENMAX, ET, 
PJ1,SLOS0R, SOREXP, TMAXF• Two, WUN, ZERO, 
MINCOS, MAXCOS• J, JPI, N• NL, NLl,NDP, 
NPART, NSTEPS, OfNT, OESOR, OPEAK, OPLANf, 

4 
5 
6 
7 

oPRINT• OPUTI, OSKJP, oSPHFR,oTRACE• . 
MWTAIL,MwHE~D,WVEL,WIOWAV,ENWAV,RHEAD,RTA L, 
WSLSOR,W~REXP,MNWCOS,MXWCOS,OEWAV,RFF,F2CL 8 

22 COMMON / ARGINT / rNDEX, LSTART, NCYCLEt NFJNAL, · NsTORE, NS, 
NN, NNN, NPEAK, NSAM, NSHIF,NAUFF,NF'RE~,NWAVF' 7 

804
2 

805 
88~ 

~ AU 
C 

835 

847 

B849 849 

C 
C 

RESTAR 

• 
• • • 

,NPUNCH 
FoRMAT(l5•El5,g,2,S,El5,9,15,2r15.g) 
FORMATll5,El5,Q,I~,5E18ol3) . 
f8~~:f1: ::flg:1:Jl~:t~~a:~{l2

F
9

•
5

> 
OsAMP:NSTORE ,GT, l 

STORE CURPENT PROPERTIES 

MM: NF'RE9 
IF ( MM,EQo O 1 MM: l 

LCAR: l 
WRIT[(l9,804)LCAR,T,NL,NCYCLE,ET•NPEAK,r,,GF 
LCAR: 2 
R2 = IH2,l) 
u2 = 012,1, 
A?.:A 11) 

Do 847 M: l,NL 
Rl: R2 
Ul: U2 
At:A2 
R?.: R(2,M+l) 
U?.: Ul2,M+l) 
A?.:A(M+l) 
DMID: (Rl+R2)/TWn 
UMUU: (Ul+u2>1TWn 
AMI0:(Al+A2)/TWO 

IF l,NOTo OSAMp) 60 TO 835 
IF (M ,EQ. NL 1 GO TO 835 

MX: (( M-NSHIF >1MMt•MM+NSHIF 
fF lMX,NEJM) r.0 8 847 WRI E( 9,805 LCAR,AM ,M,OMIO,UMUO,Pl2tM),V(?.,M)•El2,M) 

LCAR:LCAR+l 

TTT~~nl~8~ 
Ic:TTT 
IcY=Ic+l WRITEC2U,807>T,1Cy,NCYCLE,NL,NPEAK,P(2tNPEAK),V(2,NPEAK>• 

R(2•MPEAK),El2,NPEAK>,Ul2tNPEAK),A(NPEAK) 
WRITE(18,806)T,1Cy,MWHEAD,MWTAJL•P(2,1),Vl2J1),P(~,2), 

vi12~lo)!~ti!i~l~P~l:~~f:~l2~i~;:~1;!~oi,vYi~3ol:P(2,40), 

ENO 

v12,40>,P<2,sn,,v12,so>,P12,&o>,v<2,60> 
RETURN 

MAIN PROGpAM: 239 
MAIN PROGQAM: 241 

•••••• 
gELT,L RESTAR 
~&~08r-01114oA3= 42 RESTAR SUBROUTINE REST~R 
000002 000 C 851 REST AR 
000003 000 IMPLICI~UOUBLE PPECISION (A-H,P-Z>,LOAJCAL (0) 
000004 000 11 COMMON/ ARRAYS I U(2,20l>, Rl2•201),V 2•~01 ),0(2,201), 
000005 000 IJ Pl2,201)• X1201), E(2,20t>, NCELL(20l>, 
000036 003 2 WE2CL(201),WE1Cb(?.01),Al201),GC0S(l0) 
0000 7 00 13 COMMON/ TIME / TE11MlN , TIPON, T• T, OTL, 
oso33s 808 l KRUN(3), LAAELi7> 0 O 9 O COMMON/ PARAM / C1, CO, G, GF, UL, UR t GMW• GFMW• ENMAX, ET, 
000010 000 3 PJt,SLOSOR, SOREXP, TMAXF.• Two, WUN, ZERO• 
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•••••• RESTAH 

000011 000 
000012 000 

8888H 888 
000015 000 
000010 000 
000017 000 
ououls ()00 
000019 000 
000020 000 
000021 000 
000022 000 
000023 000 
0000~1+ 000 
0000 !> 000 
000020 000 
000027 000 
000028 000 
000029 000 
ooooJo 000 
000031 000 
000032 ()00 
OOn03J 000 
000031+ 000 
ooooJ~ 000 
00003 000 
oono~A 000 
0000 000 
000039 000 
000040 000 
00004i 000 
00004 000 
00004J 000 
000044 000 
oooo"i 000 
00001+ 000 
ooooitA 000 
000016 000 
000049 goo 
0000~0 00 
0000 ! 000 
oooos 000 
000053 000 
gggg~~ goo 00 
000056 000 
000057 000 
030058 goo 
0 0059 00 
000060 000 
000061 000 
00006 000 
000063 000 
000064 000 
og1Jo6i 000 
0 006 000 
000067 000 
000068 000 
000069 000 
000070 000 
000011 000 
0000 2 000 
000073 000 
00007'+ 000 
000075 000 
000076 000 
000077 000 
000078 000 
000079 000 
00008y goo 
ogoos 00 
0 0082 000 
ogoo83 000 
0 008'+ 000 
000085 000 · 
000086 000 

•••••• 
4 ~INCos, MAXCOS• J, JP!, N• NL, NLl,NOP, 
5 NPART, N5TEPS, DENT, OESOR, OPEAK• OPLANf, 
6 OPRINT• OPuTI, OSKJP, OSPHF'"RtOJRACf• . 
1 MWTAIL,MwHEAD,WVEL,WIOWAY,ENWAV,RHEAD,R AL, -
8 WSLSORtW~REXP,MNWCOS,MXWcOS,ofWAV,REFtF2CL 

22 COMMON I AHGINl / rNDEX, LSTART, NCYCLF:,- NFJNAL, "NSTORE• NS, . 
1 MNrNNN,NPEAK,NSAM,NSllJF,NRUFF,NFREO,NWAVE 
2 ,NPUNCH 

868 FORMAT(4IS,20J~.2At3l5> 
8&9 FoRMAT(515,7A4) 
870 FORMAT(3I5,JOJ~,2A/3035,28•I5) 
871 FORMAT(t4•4028,161?D261 16,14,2D2811A) 
872 FoR"IAT JOJ5,28/nJ5.2i,,215,DJ5,2H) 
87J FORMAT 2035.2A• I5/2035.28,2L2> 
874 FoRMAT(50216.18/4D~4.18) 
875 FORMAT t3035,2A/2n35,28,415) 

IF(INOEX,EO.O) GO TO 892 C••• 
C 

•••• STOH~ DATA FOR LATF.R RESTARTJ~G RUN•••••••• 

C 

886 

NPUNCH: 1 
NCYCLE: NCYCLE-1 
T: T - OT 

WRITE (17,86Q)LST4RT,NCYCLF.,NPUNCll,NSTORE,NS,LAAEL 
WRlTE(17,86tt)NST~PS,NFINAL,NN,NNN,TERMIN,TIPUN,N8UFF,NFREn,NwAVE 

WtH E U 7,870) N• ,1, NLI, i, OT, OTL, UL t UR ,RF.:F ,NPF.AK 
WRITE(17,87J) CL•rO,NPART,r.F,r.,oESOR,OEWAV 

IF ( .NOT. OEW4V) GO TO A86 
WH1TE(17,87~) wVEL•WIOWAV,FNWAV,WSLSOR, 

T 
W~REXP,MNWCOS,MXWCOS,MWTAIL•MWHEAO 

WRI E(17,874)(r.CO~(MC),MC:1,9) 

wRl~li~~!A7iT
5

g~~~gR!~o~~~P, 
• TMAXE, ENMAX,MJNC0S,MAXCOS,F2CL 

WRITF.(l7,874J(GCO~(MCJ,MC:1,9) . 
887 DO 889 M: 1,N 

WRITE 117,871) M, Rtl,M), P(l,M)tV(l,M)t 
• UC1,M>,Oll,M),X(M),NCELL(M),WF.2CL(M),fll•M) 

889 CONT IN U E 
ENDFILE 17 
ENOFFILE 17 
ENDFILE 19 
END LE 19 
GO To 932 

C ••••• REaD RESTART CARDS 892 READ(15r8691LSTARTtNCYCLE,NPUNCHtNSTORE,NS,LARFL · 
RF.AD(15,668)NSTEP~,NFINAL,NN,NNN•TERMIN,TIPUN,NRUFF,NFREQ,NWAVE 
RFAD11s1s101 N,J•NLI,T,oT,nTL,uL,UR,REF,NPEAK 
NL= N-
JPl: J+l 
PJl: JPl 
RF.AD(lS,~73) CL,Cn,NPART,GF,G,OESOR,OFWAV 
GMW: G-WUN 
GFMW: GF-WUN 
Rl: ZERO 
GAMW: GMW 

lF(,NOT, OEWAVJGO TO 895 
HEAO(JS,875> WvEL,WIOWAV,ENWAVtWSLSORt 

1 wSREXP,MNWCOS,MXWCOS,MWTAJL,MWHEAD 
RFAD(15,A74)(GC051MC)•MC=1•9> 

895 IF( ,NOT. 0F.S0Q)G0 TO 896 
RFAO (15, 872) SLnSOR,SOREXP, 

896 

• . TMaXE, ENMAX,MINCOS,MAXCOS,r.2cL 
READ(15r87•)CGC051MC),MC=1•9) 

• 

- DO 928 M: 1,201 
IF (M.GT,N) GO TO 913 

R?: Rl 
READ(lS,871) K,R1,P(1,M),V(1,M)•U(1,MJ, 

G(l,M), X(M)tNCELL(M),WF.2CL(M),E(ltMI 
RDfF: R1-R2 
RI rM) : Rl 

GO TO 921 
B2: M-N 
RCl•MI : Rl+R2•R0TF 
PllrM) : WUN 
V<l•M): WUN 
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•••••• 
000087 
000088 
000089 
000090 
000091 
000092 
000093 
000094 
000095 
00009b 
000097 
000098 
000099 

~~gm~ 
00010.5 
000104 

RESTAR 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

800 
00 

000 

~~~ 
000 
000 

•••••• 

921 

928 
932 

C19J2 

U(l,M) : ZERO 
Q(l•l•O : ZERO 
NCELL(M) = M 
Wf2CL(M) : ZERO 
X(M-1) : (R(l•Ml*•JP1-R(1,M-11••JPl)/V(1,M-1)/PJ1 

lF(OEWAVlGAMW: GMW 
E(l•Ml: P(l,Ml•V{ltMl/GAMW 
R(2•Ml: R(i,M> 
U(2•M) : U( ,Ml 
P(2•M) : P<l,"ll 
V<2•Ml - V( 1,M) 
Q(2•MI Q(l,M) 
E<2•MI: E(l,M> 

~?~Jl~U~ ZERO 
R E T U R N 

M~IN PROG~AM: 53 
ENO 

QHOG•P •••••• SAMPLE ••••*• 
lilELT,L SAMPLE 
ELT 6U-Ol/14-14:42 SAMPLE 
000001 000 SUBROUTINE SAMPLE 

SIIMP1E 030002 goo c 93J 
o 0003 00 C 
000004 000 
ooooo~ ooo 

88R88~ 888 
000008 000 
000009 000 
000010 000 

iiiiH iii 
000013 000 
00fl014 000 
000015 000 
000010 000 
000017 000 
000018 000 
000019 000 
000020 000 
000021 000 
000022 000 
000023 goo 
000024 00 
000025 000 
000026 000 
8888jA 888 
000029 000 
ooooJo ooo 
000031 000 
000032 000 
000033 000 
000034 000 
ooooJ~ ooo 
00003b 000 
000037 000 
0000J6 000 
000'039 000 
ogoo40 goo 0 0041 00 
000042 000 
000043 000 
000044 000 
000045 000 
000046 000 
000047 goo 
000048 00 
0'00049 000 
ooooso 000 
000051 000 

IMPLICIT DOUBLE P~ECISION <11-li,P-Zl ,LOIHCAL fOJ 
11 COMMON/ ARRAYS/ U(2,201l, R(2•201J,V{2,?0t 1,0(2,2011, 

U P(2,20ll• X{20ll, E(2,20tl, NCFLL<201I• 
2 WE2CL(201),WE1CL(201J,A(201J,GCOS( 01 

COMMON / PARAM / C1 , CO, G, GF, UL, UP , GMW• GFMW, F:NMAX, ET, 
3 PJl,SLOSOR, SOREXP, TMAXE• Two, WUN, ZERD, 
4 MINCOS• r,tiAXCOS• J, ,JPl, N• NL, Nll,NOP, 
i MP~~i iN~~Tn~it l~E~!K Ia~ssiPH~~~~~kAit~ANF:' 
7 MWTAIL,MWHEAD,WVEL,WIDWAV•FNWAV,RHF:AO,RTAIL, 
A WSLSOR,WSREXP,MNWCOS,MXWC0S,OEWAV,REF,E2CL 

22 COMMON/ ARGINT / TNDEX, LSTART, NCYCLE, NFINAL, -NSTORF • NS, 
7 NN, NNN, NPEAK• NSAM, NSHIF,NRUFF,NFREQ,NWAVE 
2 ,NPUNCH 

947 DATA GAIN /1.0010n / 
UATA TEST/1.0000lnO/ 

949 FORMAT(' '•'964'•bl5,LS,5E15.5) 
952 FORMAT{• •,•968••15,715,5E12o6J 

URE: ZERO 

962 
96J 
964 

965 

~BlF==w~~Ro 
osET = .FALSE. 

DO 964 
~R~ ~-YGE I: 5,NL 

Uc;E: Pf2,KJ 
IF (OSETJ GO TO 962 

r81f ~ ~Bl~PRE 
IF{UGE .LT. TE~TJGO TO 96J 
IF IFDIF .GE.PnlFJ GO TO 963 

osET = • TRUE. 
IF IUGE •LE.URFI GOTO 965 

URE: UGE•GAIN 
IF(OTRACE)WRITF(16,949)N,I,K,NL,OSET,UGF•IJR~,FOIF,PDIF,PRE 

K: N-2 
K: K+1 
NPEAK: K 

lF(NPEAK eEA. NL) NPEAK: 1 
NFREQ: K/NSAM 
NSHlF: K-NFREA•N~AM 

IF (NFREQoGT• n J GO TO 96A 
NFRIQ: 1 N<;H F: 0 

968 F(OTRACEJWRITi:-(16,952)0SET,N,NSHIF,NFRF.Q,K,NSAM,NPEAK,I, 
1 URE,UGE•r.AIN,FDIF•PDIF 

RF.TURN 
FlOIF:465 C1969 
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Appendix B 

Computer Pr~gram for Analyzing Data 

The calculation of the impulse and the eriergy integrals 

were performed by the following program which read and 

analyzed data stored on tape by the model. The tape is read 

from unit 10 and the input variables are read from unit : 5. 

The following unit 5 input variables must be specified: 

FIRST CARD 

ILINE: Number of time lines to be calculated 

MXWCOS: Cell number corresponding to the outermost 
cell of the source volume 

J: Geometry factor 

(0) Planar 
(1) Cylindrical 
(2) Spherical 

TSCALE: Dummy variable not used in this edition of 
program. 

RMAX: Maximum dimensionless radius at which 
impulse is calculated. 

TO: Value of last time line.Set to 0.0 for 
first data set. 

In addition to the printed output from unit 6 there are 

four other output units in which the output data is stored. 

Output unit 11 is for the impulse calculations, unit 12 is for 

pressure-time behavior at fixed Eulerian radius, unit 13 is for 

the energy distribution calculations and unit 14 stores the 

positions of selected particles for plotting of particle dis­

placement. 
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AMAHJ(lq) 
I~PLICIT LOGICAL (0) 
0IMENSION P(401) •R(401) ,U(401) ,V(401) ,1:(401) ,A(401), 

* RALl<-f( 102) ,THALE( 102) ,HPAKE(lO?.) ,ETOTAt ( 10?) ,TT(t02) 
* RALlf:(102l ,AlRKEq02) ,l'\IRIF(l02) ,RPRT(i02,24), ' 
* RR(~),RL(1n5),Al~P(l05),0IMP(l05),PP(404,5) TIME(404) 

RFAD(5,9)1LINE,MXWCOS,J,TSCALE,RMAX,TO ' 
WR I TE ( 6 , 9 ) I L I 1-.J F , M X l'I COS , J , TS CALF.: , R ~AX , TO 

Y FORMAT() 
EMAX:O. 
Pt=Acos<-1. > 
EsCAL:(PI*l60•/3•>**(1./3.> 
AySCAL:SQkT<1•4)/ESCAL 
MX wcp l=tv· x wcos+ 1 
JPl=J+l 
Ii,.,LT:o 
lrviAX:102-2 
lTEST:ILI~E/I~AX+l uo 5!:> I:t,4n1 
P<Il=l. 

S~ H(Il:(l*.02)-.0l 
lRMI-\X:105-? 

LJO 66 I:1,IRMAX 
6b UtMP(J):.TPU~• 

C•***t t:c;TAALISH LOCATIONS FOR CALCULATil\,G J"'1PULSE ***** 
R1111LG:LOG 1 U ( RMA X) 
t-<Ml'lLG:LOGlO ( • lli::;*ESCAL) 
ULOG:(HMLG-RM~LG)/IHMAX 
1p:l 
RLG=RMNLG 

U O 7 7 l R = 1 , I R 1"1 A X 
RL(IR):lOe**(KLG) 
RLG=RLG+[)LOG 

C WRITf(6,HU)IR,RL6,nLOG,RL(lR) 
8u FORMAT() 
77 CoNT I i..JUf 

C***** £c;TARLISH LOCATIONS FOR P-T CURVES***** 
IJO AH IR:40,88,12 

t-< R ( I P ) = f~ L ( I R ) 
C wRilf(6,87)1R•IP•RL<IR),RR<IP) 

87 FOR~AT(2I~,2F10.5) 
lP=lP+l 
IT=O 

8tj CONTINUE 
C ***** READ IN DATA***** 

DO Y79 IO=l,ILJN~ 
RFAD(lQ,g~,ENU:Y?l,ERR:989)LCAR,1•NL,NCYCLF•ET,~!LI,G,GF 

9~ FOR~AT(I5,Fl5•q,2I5,El5.9,I5,2Fl5.q) 
OPLUT: eTRLJI:. 
IT=IT+l 
TJMECIT>:T 
TMAX:f 
oT=T-To 
To=T 
It->= l 

IF(IO .EQ. 1)60 TO g6 
JTEST:(10/ITEST)*ITEST 

lF(IO .N£. JTEST)OPLOT: .FALSE. 
9b WRITE(6,98)IO,JTEST,NL,NCYCLE,1T,OPLOT,T,or,ro,FT 
9b FoRMAT(~I~,L5•4Fl0.5) 

L)Q 199 I=l•ML 
RF AO ( 1 0 , 1 !S 9 , E 1•,.in = 991 • ERR: 9 8 9 ) LC AR • A ( I ) , M , R ( l ) , U ( I ) , p ( I ) , 

* v<I>,E<I> • 
159 FoRMAT(I5,El~.q,I5,5ElA.13> 

C WR I TE < o, 1 !:>9) LC AR• A ( I ) , M, R ( I ) , U ( I ) , P ( I ) , V ( I ) , E ( I ) 
19lJ CoNrlNUE 

!R:1 
oo 249 1=1•401 

C WRITE(6,218)I•IR•IP,Il,OIMP(IR),R(I>,RL(IR)•RO,RR(lP), 
C • P(I),PO 
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2Ib FoRMAT(4I5,L5,6Fl0.5) 
C ***** STORE UATA FOR P-T CURVES***** 

lF(IP .GT. S)GO TO 219 
IF(Rll> .LT. RR(IP))GO TO 219 

DR:H(I)-RO 
URl=RL(lR)-RO 
up:P(I)-PO 
PR=Po+(DP•nR1/nR> 
PP(lT,IP):-PR 

lF(PR .GT. PMAX)PMAX:PR 
Ip:lP+l 

lF(I .GT. NL)GO TO 249 
C ***** CALCULATE I ~~ULS~ ***** 

21':;l lf-:(R(I) .LT. HL(IR))GO TO 241 
22l1 IF( .HOT. 0 tMP(IR))GO TO 239 

OR=k<I> - RO 
URl=RL(lR)-RO 
lJ.:,=P(I)-PO 
P~=PO+(DP•~Hl/nR>-1. 

1F(PH .LT. n.)GO TO 229 
AIM~(lR):AIMP(IR)+PH•DT 

22~ lF(~(l) .LT. l.)OIMP(IR) : .FALSE. 
2~~ If.~Ml:IR 

lR=lR+l 
1F(IH .GE. IHMAX)GO TO 259 

241 CoNfINtJE 
C ~RIIE(6,244)I,rH,IRM1,0IMP(IHMt),HO,PO,AIMP(IRM1),PR,OP,OR1,nR, 
C * RL(IR~l),k(l),P(I) · 

lFlRL(lP) •LT• R(I))GO TO 220 
Po=~(I) 
Ro=~<I> . _ 

244 ~OH ~Af(3I~,L5•10fl0.5) 
24~ CoNT1f',1Uf. 
2 'i ':;l 1 F ( • I\JO T • OPL. OT) <;O TO 9 79 

IµLl:IPLT+1 
TT(lf-'LT):T 

C ***** SlORE OATA FOR PARTICLE PATHS***** 
.J:0 

uo 31 O I= 1 , s:; 
C w RI IE ( 6, 3 U o > IO, I , J, I PL T, R ( I ) , TT ( I PL T) 

.3 0 '.1 t,: () R ,·,1 A r ( 4 I 5 , :? F 1 n • ~ ) 
3IU KPHf(IPLT,I):K(I) 

J:5 
Do 410 I:lU,50,5 

.J:J+I 
C ~RI1E(6,40q)t,J,RPRT(l) 

41U HPHf(IPLT,J)=K(I) 
40':I FoR1·1AT(2I!::>,F10.':>) 

UO 510 I=6U,l!::>0,10 
J::J+l 

C WRITE(n,509)1,,.J,R(I) 
50~ FoRMAT(2I5,F10.5) 
510 HPRl(IPLT,J):H(I) 

C ***** CALCULATE ENEPGY INTEGRAL***** 
RoP=o. 
bTMASs::o. 
ATMASs=o. 
TMASs:o. 
HALKf.(IPLT):Q. 
bALlE(IPLT):Q. 
AikK.F.(IPLT):O. 
AIRlE.(IPLT):O. 
AIRMJIH:l.l(G-1.) 
RnP=o. 
~'-'=O • Uo 599 MC:1,MXWCOS 
RNEW:2.*R(~C)-ROP 
RNP=RNE~o*JPl 
RMASS=CRNP-RJ)/VCMC) 
Uc:;Q:lJ(MC)**2 
GAMW:P(MC)•V(MC)/E(MC) 

lF(IO .LT. 16 .OR. IO .GT. 20>GO TO 555 
C WRITE(6,549)10,MC,RMASS,US0,AALKE(IPLT),GA~W,RNFW,VCMC), 
C 

54
u* R(MC) ,tl(MC) ,ECMC> ,PCMC> · 
7 FORMATC215,10Etl•3) 



C 
C 

C 
C 

C 
C 
C 

8q';I 
97'7 
98'~ 
Ygu 
991 
9gt:'. 

100b 

100':I 

1014 

1019 

102Y 

1051:, 

106'::I 

107"=' 

* 
* 

* 

* 
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bAL AMlj: 1 1 /GAM1v 
CFLLKE:((USG*KMASS)/2,) 
BAL~E(IPLT):HAI.KE(IPLT)+CELLKF 
CFLLIE:(E(~C)-RALA~8)*RMAS5 
ti AL IE ( IPLT) =~lAI. IE< IPL T) +CELL IE 
HTMASS:bTMASS+RMASS 
H.J:Kl' IP 
HoP=I-WEW 
wRirE<6,~HA)IO,MC,IPLT,ROP•RJ,RTMASS,R~ASS,RALIE<IPLT), 

C~LLIE,RALKE(IPLT),CELLKE,~A~~,USQ . 
FnR MAT(3I~,10~t0,5) 

lF(MC ,GE, NL)GO TO 709 
CoN1INUE 

LlO 69q MC:MxwCPl,NL 
HNEN:2,*R(~C)-ROP 
HtJP=RNEw* *JP 1 
K~ASS:(HNP-RJ)/VCMC) 
u,;;n=u<MC>**2 
GtV"1;~=G-1, 
CFLLKf=<cusq*~MASS)/2,) 
ArRr-FflPLl):AIRKt::(IPLT)+CELLKE 
CFLLIE:([(MC)-AIHAMH)*RMASS 
AtRIF (!Pt T):AlRil::(IPLT)+CELLIE 
ATMASS=~fMASS+RMASS 
H.._J:t<r-~P 
Hol-'=RtJEw 
WRlrE(6,SHA)IO,MC,!PLT,ROP,AlRAMH,E(MC),RMASS,AtPIF(tPLT), 

CELLIE,Ait-<KE(IPLT> ,CELLKF.,GA1"1w,IJSl~ ~ 
CUl'JTIMJE 

ETOfALCIPLT):rlALKE(IPLT)+~ALltCIPLT)+AlRKE(IPLT)+AIRJF(IPLT) 
lF(ETOTAL(lPLT) .GT, EMAX)FMAX=fTOTAL(IPLT) . 

T~AS5:A1MASS+8TMASS 
r~ALE ( IPL. T > =H~ I_KE:: ( IPL T) +RALIE ( IPL T) 
tJPAKE ( IPL T) =Tri ALI:. ( IPL T) +A IPKE ( TPL 1) 
WH I i F ( 6, f'\Yll) IO, I PL T, ~,c, NL, TT< I PL T) , FTOT AL ( T P1 Tl , RPAKE ( IPL T) 

TdALE(IPL T),HALIE(IPLT>,RALKE(IPLT),AIPIF(TPLT), · ' 
AIRKE(ll-'LT),TMASS,ATMASS,RTMASS 

F oR ·"tA T ( 4 I 5, 11 F q • ~) 
Cof\lT I r~lJE 
w R 1 r[ ( 6, g~ I') ) IO, LC AR , M •NL, T • A ( I ) , ~ l I ) , P ( I ) , \/ ( I ) , ll ( I ) 
FnR ~AT('FILE EPRUH•,4I5,6F10.5) 
wRI1E(6,qY?)LCAR•T,NL,NCYCLE,fT,NLT,G,GF 
F o F~ '·.,AT ( • f N n OF F l LE • , I 5 , F 1 0 • 5 , 2 I 5 , F 1 n • i:; • I 5 , 2 F 1 O , 5 ) 
wHIIE(11,1008)IHMAX,AI5CAL 
FoH MA T(I~,FlU,~) 
w R I TE ( 11 , 1 0 O 9 ) ( I , O IMP ( I ) , R L ( I ) , A HlP ( I > , I= 1 , IRMA X ) 
FoRMAT(I5,L5,2F2U,10) 
WR I It ( 12, 10 14 > IT, ( RH ( I ) , I: 1, 5 > 
FoR~AT(I~,5FlU,5) 
~JR I TE ( 12, 10 19 > ( I •TI ME ( I ) , ( J • PP C I • .J) • J: 1 , 5) , I: 1, J T) 
FoH~AT(6(1~,Fl0.5)) 
wRITE(13,1029)IPLT,EMAX 
FnR~AT(l~•Fl5e10) 
WRITE(13,1059>Cl•TT<I>,BALKF(I),AALIE<I>,ATRIECI), 

AIRKE(I),TRALE(l),APAKE<I>,ETOTAL(I),I:1,IPLT) 
FoRMAT(I5,8F15,10) 
wRITE(14,1069>I0•1PLT 
FoR1VtAT(2I5) 
~RITE(14,1079)(1I,TT(lt),(RPRT(Il,I), 

1:1,2~>,Il:l•IPLT) 
FORMAT(I5,12F9.5/13F9,5) 
WR1TE(6,1Ub9)I0,1PLT 
WRITE(6,107g)(Il•TT<II),(RPRT(ll•I>,I:1,24)•JI:1,IPLT) 
sroP 
END 



...... , 

Roman 

D 

e 

eC? 
1. 

eo 
E 

EB 

ES 

ET 

f 

h 

fl.ho 
f 

fl.H 
C 

h. 
1. 

h' 

NOMENCLATURE 

Speed of sound--ambient 

Speed of sound--ahead of(before) shock wave 

Speed of sound--behind(after) energy addition 

Concentration - mass fraction 

Constant pressure heat capacity 

Constant volume heat capacity 

Newtonian speed of sound--ambient 

Chapman Jouguet condition 

Lagrangian distance 

Beginning of rounding term in energy source volume--
Lagrangian distance 

Extent of energy source volume--Lagrangian distance 

Width energy addition wave--Lagrangian distance 

Internal energy 

Energy of formation--species i 

Internal energy--ambient 

Non-dimensional internal energy 

Energy remaining within the source 

Energy transmitted to the surrounding gas 

Total amount of energy deposited at the source 

Body force vector 

Enthalpy 

Effective zero point energy 

Heat of combustion 

Enthalpy--species i 

Enthalpy-working fluid heat addition model 
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h 1 Enthalpy-ahead of shock front 

h4 Enthalpy-behind energy addition 

i Species 

I+ Positive phase impulse 

I Non-dimensional positive phase impulse 

j Geometry factor 

K Linear spring constant 

me Mass 

M Mach number 

M1 Mach number-approach flow 

Ms Mach number-expanding sphere 

M Mach number-energy addition wave w 

n moles of gas within the source volume 

p Pressure 

p
8 

Shock pressure 

P
0 

Pressure--ambient 

pl Pressure--ahead of shock 

P2 Pressure--behind shock 

P3 Pressure--behind (ahead. of (before) energy addition 

p4 Pressure--behind(after) energy addition 

P Non-dimensional pressure 

P* Non-dimensional dissipative pressure 

Ps Non-dimensional shock overpressure 

q Source energy density 

Q Heat transfer rate 

Q Heat release during a constant gamma process 

Qc Heat release/unit mass of fuel 



r 

R 
E 

R 
s 

t 
a 

T 

u 

u 
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Non-dimensional amount of energy deposited at the 
origin · · · · 

Ene!gy/unit mass deposited at the origin 

Radial distance coordinate 

Initial source radius 

Gas constant 

Energy-scaled shock position 

Shock position 

Energy scaling distance 

Time 

Time of shock arrival 

Source deposition time 

Time at which maximt.nn structural displacement occurs 

Characteristic acoustic propagating time 

Time end of positive phase 

Time--end of negative phase 

Characteristic loading time 

Particle velocity 

Non-dimensional particle velocity 

Non-dimensional energy wave velocity 

Volume of the source 

Initial source volume 

Flow velocity vector 

Wave width-energy addition wave 

Comparable weight of tri-nitro-toulene 

Weight of explosive material 

Weight of hydrocarbon explosive 

Similarity lines 
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Greek 

y Specific heat ratio 

Yo Specific heat ratio--ambient 

Yi Specific heat ratio--ahead of(before) energy addition 

Y4 Specific heat ratio--behind(after) energy addition 

n Non-dimensional distance coordinate 

0 Temperature 

00 Temperature--ambient 

01 Temperature--ahead of shock front 

0 2 Temperature--behind shock front 

84 Temperature--behind energy addition 

A Energy source term 

A Non-dimensional energy source term 

v Specific volume 

vf Sp'ecific volume expansion ratio 

v0 Specific volume--ambient 

~ Energy addition wave parameter 

M Energy wave structure parameter 

IT Artificial viscosity term 

p Density 

Po Density--ambient 

P1 Density--ahead of shock front 

P2 Density behind the shock front 

cr Length scaling factor 

T Non-dimensional time 
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Tc -Non-dimensional cell deposition time 

TD Non-dimensional source volume deposition time 

TT Non-dimensional energy wave source volume transit time 

~ Non-dimensional specific volume 

w Natural frequency 

~ Non-dimension energy wave Mach number 
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