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The increasing trend of outsourcing hardware designs to offshore foundries for

fabrication cost reduction has raised several security concerns related to intellectual

property (IP) piracy, reverse engineering, counterfeiting, etc. The exposure of chip

designs to a potentially malicious offshore foundry is of major concern for both

government and private organizations and hence, there has been extensive research

on security and privacy issues of integrated circuit (IC) supply chain. In this

dissertation, we study the effectiveness of hardware-oriented obfuscation approaches

for enhancing security and trust at different levels of design abstractions.

At the circuit-level of design abstraction, we analyze the security offered by

state-of-the-art technique called delay locking which uses a secret key for obfus-

cating the functionality as well as the timing profile of a circuit such that the

critical design details are not exposed to an untrusted foundry. We propose a novel

Boolean satisfiability (SAT) formulation based attack to defeat the delay locking



countermeasure by utilizing the detailed timing characterization of gates present

in a circuit. Subsequently, we develop a new circuit-level obfuscation technique

called stripped-functionality delay locking which is provably secure against all known

attacks on logic locking. In addition, we also analyze the vulnerability of circuit-level

obfuscation schemes to power side-channel analysis attacks.

Next, we study the limitations of circuit-level obfuscation approaches to pro-

vide reasonable security guarantees at the architecture-level of design abstraction.

We demonstrate the applicability of an iterative SAT formulation based attack strat-

egy against a many-core processor design (obfuscated using circuit-level techniques)

to find an approximate key for running applications with almost no errors. Such an

attack poses a major threat in the supply chain of processor designs as unlike earlier

attack strategies, our proposed attack does not require any activated hardware for

SAT formulation based analysis. Subsequently, we develop a couple of efficient

architecture-level locking techniques which are highly resilient to SAT based attacks.

Finally, we develop a hardware-assisted obfuscation framework for protecting

the IPs of neural network (NN) models, thus enhancing application-level security.

The generation of production-level NN models is not a trivial task as it requires a

long training time using high power computing resources along with the availability

of massive amounts of labeled training data. Hence, the protection of IP rights of

well-trained NN models has become a matter of major concern for the model owners.

In this research direction, we demonstrate the utilization of a hardware root of trust



based obfuscation approach to safeguard the IPs of such NN models. Our proposed

framework ensures that only authorized end-users who possess trusted edge devices

will be able to run the intended applications with high accuracy.
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Chapter 1: Introduction

The rise of ubiquitous computing introduces a new set of challenges in de-

signing secure systems. Modern computing platforms are typically connected with

several other systems (via the Internet) and are constantly interacting with their

users (via user interfaces) as well as the environment (via sensors and actuators).

These systems may contain a variety of sensitive information, e.g., medical records,

financial data, classified documents, etc. which are targets of cyber attacks. There-

fore, the security of such computing systems and the protection of information

stored/processed by them is a matter of major concern for their users.

Traditional software-oriented security schemes assume that the underlying

hardware systems are perfectly reliable and trustworthy. However, the emergence

of various hardware-oriented attacks, including the recent Spectre [56] and Melt-

down [63] attacks on Intel processors, have exposed severe security vulnerabilities

in hardware designs. Hardware security threats may arise either due to malicious

tampering performed during the chip design and fabrication phases (IC supply chain

attacks) or due to unintended design flaws which could be exploited by attackers in

the post-deployment phase. The realization of trustworthy hardware is of paramount

importance as it forms the root of trust on which all security-critical operations of

an electronic system depend [15].
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Figure 1.1: An overview of globalized IC design flow

1.1 Security Issues in IC Supply Chain

The life cycle of a modern integrated circuit (IC) is composed of several stages

such as design, fabrication, testing, packaging, assembly, and finally deployment

in electronic systems as shown in Fig. 1.1. Design companies are increasingly

outsourcing their chip designs to offshore facilities due to the high cost of maintaining

a semiconductor foundry as well as the evolving complexity of system designs,

thus resulting in a globalized IC design flow. However, this trend has led to

severe security vulnerability issues associated with intellectual property (IP) piracy,

reverse engineering, counterfeiting, overproduction, etc. of hardware designs by

potentially untrusted parties in the distributed IC supply chain [54]. It has been

reported that such IC supply chain attacks lead to losses in magnitudes of billions

of dollars per year [84]. Such attacks not only pose a threat to the business of

private companies but also raise major security concerns for government agencies as
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proprietary, mission-critical chip designs may be exposed to a malicious third-party

foundry. Hence, research related to security and trust in the IC supply chain has

gained a lot of focus over the past decade [107, 54, 79].

1.1.1 Design-for-trust Techniques

Several design-for-trust techniques have been proposed in literature including

watermarking [51, 55], fingerprinting [24], camouflaging [73], split-manufacturing [48,

47], metering [18, 57] and logic locking [81, 72, 74, 114, 108] to enforce security

and trust in IC supply chain. A brief overview of such design-for-trust schemes is

presented as follows.

• Watermarking and Fingerprinting: These are passive techniques which

help in IP piracy detection but cannot prevent the design from being stolen.

In watermarking, a secret design constraint (designer’s signature) is embedded

into the hardware whereas in fingerprinting both the designer’s as well as an

end-user’s signatures are embedded in hardware to track the source of piracy.

• Camouflaging: In this approach the designer substitutes selected gates in a

design with their camouflaged counterparts (typically using dummy contacts or

filler cells) to prevent reverse engineering attacks by end-users. Camouflaging

schemes rely on a trusted foundry to fabricate such camouflaged gates.

3



• Split-manufacturing: In this technique the layout layers of a circuit design

are split into two parts which are fabricated in separate foundries and finally

stacked together. Split-manufacturing can prevent IP piracy of hardware

designs by an untrusted foundry but not by an end-user.

• Metering: IC metering consists of a set of techniques and protocols by

which a designer keeps track of individual chips post-fabrication using uniquely

assigned IDs. While using passive metering techniques the designer can detect

IC piracy, the use of active metering techniques allow her to control the chip

behavior post-deployment.

• Logic Locking: Logic locking is a gate-level obfuscation approach to protect

design IPs from both untrusted foundry and end-user. In this technique the

designer inserts additional gates into the design and locks its functionality

using a secret key.

From the above discussion, we can see that unlike techniques such as camou-

flaging or split-manufacturing which prevents design piracy by a single-entity (either

untrusted end-user or malicious foundry), logic locking can ensure IP protection from

any rogue entity in the entire IC supply chain outside the trusted design house. As

this thesis focuses on developing obfuscation based security solutions, we discuss the

concept of logic locking (or logic obfuscation) in more details in the next section.

4



1.1.2 IP Security through Logic Obfuscation

Logic locking is one of the most popular techniques adopted to defend against

IP theft, overbuilding, counterfeiting and reverse engineering of chips at any outside

design house stage in the IC supply chain [82, 25]. The primary idea of any standard

combinational logic locking algorithm is to insert additional key-controlled logic

gates called key-gates in a netlist for obfuscating its functionality [82, 23, 75, 76].

These key-gates are driven by key-inputs which are supplied from an on-chip tamper-

proof memory. An IC locked in such a manner will exhibit correct functionality only

when the secret key inputs are provided to activate the chip after fabrication.

Figure 1.2: XOR/XNOR based logic locking

In Fig. 1.2, we illustrate the popular XOR/XNOR based logic locking scheme

which aims to obfuscate a circuit using low area overhead. Note that based on

the logic values of key-inputs K1 and K2 the XOR/XNOR gates (highlighted in

red) behave either as a buffer or an inverter. Therefore, the functionality of such

an obfuscated netlist is retrieved only when the correct key-inputs K1 and K2 are

applied. For any incorrect key-inputs, however, errors will be introduced in the

netlist output. In the next section we provide an overview of existing logic locking

techniques.
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1.1.3 Evolution of Logic Obfuscation Techniques

Several combinational logic locking techniques have been developed over the

years to thwart design piracy by untrusted entities in the IC supply chain. The

earliest approach called random locking locking (RLL) was proposed in [82] which

locks a design by introducing additional XOR key-gates at randomly selected loca-

tions in the netlist as illustrated using Fig. 1.2. The weakness of RLL technique

to an automatic test pattern generation based attack led to the development of a

strong locking locking (SLL) technique which inserts key-gates in a netlist such that

sensitization of individual key bits to output is computationally intensive [75]. The

security of logic locking schemes such as RLL and SLL have been threatened by the

introduction of a Boolean satisfiability based attack (SAT attack) which iteratively

solves SAT formulas to eliminate subsets of wrong keys and finally converges to find

a correct key within few hours [97]. The efficiency of SAT attack relies on the small

number of iterations required to decipher the correct key even for a reasonably large

circuit.

To counter SAT attack, point-function schemes like Anti-SAT [108] and SAR-

Lock [115] have been proposed. The number of SAT attack iterations required

to retrieve the correct key of a point-function obfuscated netlist is an exponential

function in terms of key size. However, new attacks have been proposed which try

to circumvent the aforementioned countermeasures: (i) the signal probability skew

attack [40] identifies the location of Anti-SAT block in the netlist, thus making

it prone to be removed by the attacker (ii) the Double DIP attack [91] utilizes an
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extended SAT formulation to successfully retrieve a netlist encrypted using SARLock

technique (iii) the AppSAT attack [89] exploits the fact that output corruptibility

of above point-function schemes is very low for a wrong key. AppSAT attack also

iteratively solves SAT formulations (similar to SAT attack) to find an approximate

key which reconstructs the functionality (almost correct) of a locked netlist.

In [118], a technique called stripped-functionality logic locking (SFLL) has

been proposed which provides a quantifiable trade-off among resiliency to different

types of attacks, including SAT formulation based attacks, removal attack [119] and

bypass attack [112]. There exists two versions of SFLL scheme called SFLL-HD and

SFLL-flex, each of which strips some portion of design functionality and hides it

in the form of protected patterns (secret key). In recent literature some security

vulnerabilities have been identified in SFLL technique: (i) an attack approach

detailed in [113] exploits structural traces left behind in a locked netlist due to

functionality stripping and subsequently identifies some of the protected patterns

in SFLL-HD (ii) the FALL attack [93] uses structural/functional analyses combined

with SAT-based analyses to defeat SFLL-HD countermeasure (iii) the SURF at-

tack [32] utilizes machine learning based approach to guess a likely key. However,

even though SURF attack is highly scalable compared to SAT attack, it doesn’t

provide any formal guarantees of correctness of the key found.

In [52], another technique called Full-lock has been outlined which inserts

routing blocks to increase per iteration time of SAT solving but incurs significantly

higher implementation cost compared to SFLL. Recently, a lightweight locking

technique called CAS-Lock [88] has been proposed which aims to simultaneously
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resist SAT and bypass attacks while maintaining non-trivial output corruptibility.

However, a recent attack [85] has identified security vulnerability in CAS-Lock

scheme which neither requires a reverse-engineered netlist nor it requires access

to an activated chip. A newly proposed countermeasure called delay locking [110]

has been claimed to successfully thwart all existing attacks on logic locking schemes

and hence, offers state-of-the-art IP protection of hardware designs in an untrusted

IC supply chain.

1.2 Security Issues in Post-deployment Phase

Hardware security threats may also arise after ICs are deployed in parts of

electronic systems. For example, end-users can use sophisticated reverse engineering

techniques [101] to gain valuable insights on the design details of a proprietary IC

and then, leverage such knowledge to perform malicious activities such as production

of counterfeited chips. However, it is to be noted that the task of reverse engineering

is much more challenging for an end-user compared to an attacker in an untrusted

foundry setting. This is because an end-user needs to perform additional error-prone

steps such as decapsulation, delayering, and imaging to obtain a complete view of

the layout-level information of a chip which is readily available to an untrusted

foundry in the form of a GDSII file.

Attackers may also analyze the side-channel information of a chip to decipher

the secret data being processed by a system [96]. In a typical side-channel analysis

attack, the unintended leakage of information from the physical characteristics of
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a hardware system (e.g., power consumption profiles, timing variation patterns,

electromagnetic emanation, etc.) is exploited to learn about the targeted secrets.

For example, in the recent Spectre [56] and Meltdown [63] attacks on Intel processors,

a malicious program utilizes timing side-channel information to gain access to secrets

stored in the memory of other running programs.

1.3 Contributions and Thesis Organization

In this dissertation, we investigate the security offered by various hardware-

oriented obfuscation approaches against IP theft attempts by an untrusted foundry

as well as end-users. We formulate new attack strategies and also develop effec-

tive countermeasures for enhancing the strength of hardware-oriented obfuscation

techniques at different levels of design abstractions. The major contributions of the

thesis are as follows.

1.3.1 Circuit-level Obfuscation

In this research direction, we first propose a novel SAT formulation based

attack strategy called TimingSAT to retrieve the functionality of design netlists

obfuscated using state-of-the-art delay locking countermeasure [110]. A designer

applies delay locking technique on a circuit in order to ensure that a secret key not

only controls the functionality of a circuit but also its timing profile. A delay-locked

circuit exhibits its original functionality only when both correct functional and delay

keys are provided. Our proposed TimingSAT attack approach against delay locking
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scheme applies a pre-processing step to model the timing characteristics of various

types of gates present in an obfuscated design as Boolean functions. Such a circuit

pre-processing helps us to build a timing profile embedded SAT formulation in terms

of targeted key-inputs. Then, we apply a two step attack strategy: in the first stage

a correct functional key is found using conventional SAT attack approach and in

the second stage a correct delay key is determined using the aforementioned timing

profile embedded SAT formulation of the circuit. In both stages of the TimingSAT

attack, wrong keys are iteratively eliminated till a key belonging to the correct

equivalence class is obtained.

Next, we study the vulnerability of logic locking schemes to side-channel

analysis attacks. In particular, we propose a template analysis based profiling

side-channel attack which utilizes the power consumption traces from a chip to

decipher the key-inputs of a locked netlist. The proposed attack strategy is based

on the observation that various key-gates in a netlist (locked using standard logic

obfuscation algorithms) are located at different logic depths, which in turn enables a

side-channel adversary to unlock the circuit functionality in a level-by-level manner.

1.3.2 Architecture-level Obfuscation

Till date, the security analyses of logic locking schemes have mostly been

confined to only circuit-level of design abstraction. To the best of our knowledge,

there has been no study which analyzes the security guarantees provided by such

approaches to ensure IP protection of hardware implementations at the architecture-
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level of design abstraction. In this research direction, we first outline a SAT for-

mulation based attack strategy against an obfuscated Graphics Processing Unit

(GPU) architecture to highlight the limitations of circuit-level locking approaches

for ensuring architecture-level IP protection. Our proposed attack first translates the

multi-cycle GPU core netlist (locked using Anti-SAT block [109]) to a functionally-

equivalent single-cycle netlist and subsequently, retrieves an approximate key to

unlock the overall GPU hardware design. Unlike earlier attack strategies, our

proposed attack does not require any activated hardware for SAT formulation, rather

it utilizes information from the publicly available GPU instruction set architecture

(ISA) for necessary analysis. Therefore, such an attack poses a major threat in the

supply chain of processor designs.

Next, we propose a couple of SAT attack resistant architecture-level counter-

measures for protecting the IPs of hardware accelerator designs. The first technique

called cache locking aims to significantly degrade the performance of high-level

application programs running on an approximately unlocked GPU for a wrong

cache key, thus making such a hardware ineffective for high-performance computing

purposes. The second technique is based on a novel hardware-software co-design

based obfuscation approach to provably secure the IPs of hardware accelerator

architectures from untrusted parties. The resiliency of this scheme against SAT

attack is manifested by using a sequence of keys to obfuscate the instruction encoding

for an application program.
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1.3.3 Hardware-assisted Obfuscation of Neural Networks

The protection of IPs of well-trained deep learning (DL) models has become

a matter of major concern, especially with the growing trend of deployment of

Machine Learning as a Service (MLaaS). In this research direction, we demonstrate

the utilization of a hardware root of trust to safeguard the IPs of such DL models

which potential attackers have access to. We propose an obfuscation framework

called Hardware Protected Neural Network (HPNN) in which a neural network is

first trained as a function of a secret key and then, the obfuscated DL model is

hosted on a public model sharing platform. Such an obfuscation framework ensures

that only authorized end-users who possess trustworthy hardware devices (with the

secret key embedded on-chip) will be able to run intended DL applications using

the published model.

In addition, we also develop a novel watermarking technique called DynaMarks

to protect the IPs of DL models against model extraction attacks performed by

authorized end-users. Unlike existing approaches, DynaMarks does not alter the

training process of an original model but rather embeds watermark into a surrogate

model by dynamically changing the output responses of the original model’s predic-

tion API based on certain secret parameters at inference runtime. The integration of

DynaMarks scheme with the HPNN framework allows a DL model owner to reliably

prove model ownership even under a strong attack scenario.

12



Organization of the thesis: The rest of the dissertation is organized as follows. In

Chapter 2, we study the weaknesses of existing circuit-level obfuscation approaches

and develop a new technique called stripped-functionality delay locking which offers

state-of-the-art security against all known attacks on logic locking. These results

have been published in [26, 27, 25]. In Chapter 3, we investigate the vulnerability of

circuit-level obfuscation schemes to side-channel analysis attacks and the results

from this work has been published in [30]. In Chapter 4, we demonstrate the

limitations of circuit-level obfuscation techniques to provide adequate security guar-

antees at the architecture-level of design abstraction and subsequently, we propose

a couple of efficient architecture-level obfuscation techniques to protect the IPs of

hardware accelerator designs. These results have been published in [31, 29, 25]. In

Chapter 5, we develop a hardware-assisted obfuscation framework to protect the IPs

of well-trained neural network models, thus enhancing the security of neural network

applications. A part of the results in this chapter has been published in [28]. Finally,

Chapter 6 concludes this dissertation and discusses future research directions.
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Chapter 2: Circuit-level Obfuscation

2.1 Introduction

In Section 1.1.2, we introduced the concept of logic locking which obfuscates

the original design with a secret key such that only upon the application of the

correct key the locked design becomes functionally equivalent to the original design.

In [110], a new technique called delay locking has been proposed to enhance the

security of existing logic obfuscation schemes against emerging attacks. The key idea

of this approach is to incorporate delay dependence on key values for an obfuscated

netlist in addition to traditional logic locking schemes. The outcome of delay locking

is that a key not only controls the functionality of a circuit but also its timing profile.

Therefore, in order to defeat delay locking, the adversary needs to devise an attack

strategy to find a key which recovers not only the correct functionality of a circuit

but also its correct timing profile which satisfies pre-defined timing constraints.

In this chapter, we evaluate the security offered by such delay locking based

circuit obfuscation scheme. First, we formulate a SAT-based attack strategy to

defeat delay locking countermeasure and subsequently develop an effective locking

mechanism called stripped-functionality delay locking to protect IPs of hardware

designs from an untrusted foundry. The main contributions of the chapter can be

summarized as follows:
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• We propose a novel SAT formulation based attack strategy called TimingSAT

on a delay locked netlist which considers the timing information contained in

individual logic gates. TimingSAT attack works in two stages: in the first

stage an attacker mounts conventional SAT attack [97] to deduce a correct

functional key, while in the second stage the attacker embeds the timing

profile of a netlist to formulate an iterative SAT attack approach for retrieving

a correct delay key. In order to carry out the second stage of TimingSAT

attack, we first consider a circuit unrolling technique to transform a timed

combinational netlist to an untimed combinational netlist which preserves the

delay information of the gates present in the original timed netlist. Then, we

utilize this timing information embedded netlist to formulate a SAT attack

against delay locking countermeasure. We perform extensive experimental

evaluations to demonstrate the effectiveness of TimingSAT attack to break

delay-locked benchmark circuits within a few hours.

• In order to thwart TimingSAT attack we also develop a technique called

stripped-functionality delay locking (SFDL) by combining the concepts of

delay locking and stripped-functionality based locking. The key advantage

offered by this new scheme is that unlike existing logic locking approaches

SFDL simultaneously maintains strong SAT attack resiliency as well as high

output corruptibility for wrong keys.
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2.2 Background

In this section, we outline the threat model considered and the formulation

of conventional iterative SAT attack approach to deobfuscate functionalities of ICs.

Such a SAT formulation forms the crux of our proposed attack against delay locking

technique as well.

2.2.1 Attack model

We assume an untrusted foundry adversarial model as considered in several

previous works [97, 82, 108, 76, 110]. To mount a SAT attack on a locked design

the foundry has access to the following components:

• An activated chip bought from the open market with the secret key embeddded

in an on-chip tamper-proof memory. This chip is used to obtain correct output

responses corresponding to the input patterns applied.

• The gate-level netlist reverse engineered from a chip’s layout level information

available in its GDSII file.

Also, it is to be noted that the foundry provides the designers with libraries contain-

ing necessary timing information. Thus, the adversary in an untrusted foundry is

aware of setup time Tsetup and hold time Thold of latches as well as detailed clock tree

network related information to determine clock skews feeding into different flip-flops

in a design.
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2.2.2 An overview of SAT attack

The key idea of SAT attack [97] is to retrieve the correct key using a small

number of chosen inputs and their corresponding outputs as obtained from an

activated chip. These special input/output pairs are referred to as distinguishing

input/output (I/O) pairs. Each distinguishing I/O pair can identify a subset of

wrong key combinations and all together they guarantee that only a correct key can

be consistent with the correct I/O pairs. The crux of SAT attack approach is to

find this set of distinguishing I/O pairs by solving a sequence of SAT formulas. For

convenience, we define the following:

Notation 1: Primary inputs/outputs: In this work, we assume full-scan chain

access on all the flip-flops in the design so that the attacker can read/write values

to all flip-flops as considered in previous works [97, 75, 108, 115]. We refer to the

inputs and outputs of any combinational network between two sets of flip-flops (sets

S1 and S2) as primary inputs (PIs) and primary outputs (POs) respectively, where

outputs of S1 provides PIs and inputs of S2 are provided by POs. It is to be noted

that the primary inputs and outputs of the entire chip is a subset of PIs and POs

respectively.

Definition 1: Wrong key (WK): Let us consider the logic function ~PO =

fl( ~PI, ~K) and its CNF SAT formula C( ~PI, ~K, ~PO). Let ( ~PI, ~PO) = ( ~PI i, ~POi),

where ( ~PI i, ~POi) is a correct I/O pair. The set of key combinations WKi which

17



result in an incorrect output of the logic circuit (i.e. ~POi 6= fl( ~PI i, ~K), ∀ ~K ∈ WKi)

is called the set of wrong key combinations identified by the I/O pair ( ~PI i, ~POi). In

terms of SAT formula, it can be expressed as C( ~PI i, ~K, ~POi) = False, ∀ ~K ∈ WKi.

Definition 2: Distinguishing input/output (DIO) pair: The SAT attack

solves a set of SAT formulas in an iterative manner. In each iteration, it finds a

correct I/O pair to eliminate a subset of wrong key combinations until none such

wrong key is left. An I/O pair at ith iteration is defined as a distinguishing I/O pair

( ~PI
d

i ,
~PO

d

i ), if it can identify a unique subset of wrong keys which have not been

identified by the prior (i − 1) distinguishing I/O pairs, i.e. WKi 6⊂ (∪j=i−1j=1 WKj),

where WKi represents the set of wrong keys identified by the DIO pair at ith

iteration.

The SAT attack algorithm [97] relies on finding DIO pairs iteratively to

identify unique wrong key combinations until no further such incorrect keys can be

identified. At this final stage, the set of all distinguishing I/O pairs in conjunction

identifies all possible wrong key combinations thereby unlocking the netlist. The

correct key satisfies the following SAT formula G:

G :=
λ∧
i=1

C( ~PI
d

i , ~K, ~PO
d

i ) (2.1)

where, ( ~PI
d

i ,
~PO

d

i ) is the distinguishing I/O pair from ith SAT iteration and λ is

the total number of SAT iterations. Finally, a key ~KC is identified which results in

correct functionality for all the identified DIO pairs. ~KC is guaranteed to belong

to the correct equivalence class of keys since no other DIO pairs exist.
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2.3 Security Evaluation of Delay-locked Circuits

Several latest research works on logic locking have mostly focused on devel-

oping techniques to counter SAT formulation based attacks [25, 118, 52, 88, 110,

77, 78, 90]. In [110], a new countermeasure called delay locking has been proposed

to thwart SAT as well as other existing attacks on logic locking. In this work,

we evaluate the security offered by such delay-locked netlists to ensure design IP

protection in an untrusted IC supply chain.

2.3.1 Delay Locking

In delay locking approach, delay keys are inserted into circuits to make the

delay profiles of synthesized netlists dependent on these key values. If the delay keys

are incorrect, then there may arise timing violations leading a circuit to malfunc-

tion [110].

The basic locking infrastructure used in this approach is called tunable delay

key-gate (TDK). As shown in Fig. 2.1, each TDK takes 2 bits of key inputs: the

first key bit k1 is the functional key and the second key bit k2 is the delay key. The

functional key determines the logical functionality (i.e., buffer or inverter) of this

gate while the delay key determines the delay of this gate. The delay key is basically

the control signal of a tunable delay buffer (TDB) where the tunability of delay is

achieved by a capacitive load. The delay key controls whether the capacitive load

is connected to the circuit. If it is connected, the TDK will have longer delay. Let
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Figure 2.1: Structure of a tunable delay key-gate (TDK)

us define delay ratio as

dr = d1/d0 (2.2)

where, d1 and d0 are the delay values when the capacitive load is connected or

disconnected, respectively. The delay ratio of a netlist can be tuned at design time.

In a sequential circuit, the combinational path between two flip-flops (FFs)

need to satisfy the timing constraints in order for the entire circuit to function

correctly. For the combinational circuit between FFs i and j, constraint for longest

path delay Dlong
ij is expressed as

Dlong
ij + T jset ≤ Tclk + Tj − Ti, ∀i, j (2.3)

where, T jset is the setup time of FF j, Tclk is the clock period, Ti and Tj are the

arrival time of clock signals at FFs i and j, respectively. Tj − Ti gives the clock

skew. Equation (2.3) specifies that the output of the the combinational circuit

needs to be ready for the setup time T jset before the next clock cycle in order to

propagate the correct output to the next stage. Besides, the combinational circuit
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also needs to comply with a shortest path constraint expressed as

Dshort
ij ≥ T jhold + Tj − Ti, ∀i, j (2.4)

where, Dshort
ij is the shortest path between FFs i and j, and T jhold is the hold time for

FF j. This shortest path constraint specifies that the output of the combinational

circuit must hold for at least T jhold after the clock signal arrives at FF j. A correct

delay key will ensure that the timing profile of a circuit satisfies designer specified

constraints.

2.3.2 TimingSAT Attack

The primary assumption behind delay locking scheme is that conventional SAT

attack [97] is capable of deciphering only the functional key, but fails to deduce a

correct delay key which meets the pre-defined timing constraints of a design. In

this section, we propose TimingSAT attack which utilizes timing profiles of all the

gates in a circuit to determine a correct delay key of the delay logic locked netlist.

First, we outline a circuit unrolling approach which helps us to capture the timing

information in the form of Boolean functions, followed by an iterative TimingSAT

formulation which guarantees to find correct delay key for a delay locked netlist.

2.3.2.1 Circuit Unrolling

We use a circuit unrolling approach to transform timed combinational netlist

to a larger untimed zero-delay combinational netlist which embeds within the new

netlist necessary delay profiles of all the gates present in original timed netlist. We
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utilized the data-dependent delay information of each gate to unroll the entire netlist

as proposed in [100]. The main advantage of such an approach is fairly accurate

evaluation of gate output timing profiles as it considers input pattern-dependent

effects such as data-dependent gate delays and multiple-inputs switching activities.

In the context of modeling timing profiles of integrated circuits, this technique is

more realistic as it considers a much more complex inertial-delay model as compared

to prior works like [35] which consider relatively simple constant-delay model.

The input patterns applied to a gate has significant impact on the delay values.

We used TSMC 180nm CMOS model in Cadence to obtain data dependent delay

characterization of all the gates present in our library. To highlight the wide range

of delay values depending on input patterns applied, we report the delay figures

at the output X of an XNOR gate for various transitions of inputs A and B in

Table 2.1. It is quite apparent that the delay values (column 2 of the table) span

over a wide range (from as low as 70ps to as high as 128 ps) depending on the

nature of input transitions. Similar variations were observed in delay profiles for

other gate types as well. Like [100], in this work the gate-delay characterization

is considered as a preprocessing step where any suitable state-of-the-art timing

characterization technique can be used. Our proposed TimingSAT attack on delay

locking utilizes this gate characterization to construct its SAT formulations which

embeds necessary timing information of a netlist. It is to be noted that such detailed

gate-delay characterization is performed by the foundry (also the attacker as per

our threat model) who provides such information to designers using liberty file

(.lib format) for circuit optimization. Even though different designs may contain
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Table 2.1: Input dependent delay profiling of XNOR gate

Input transition pattern delay (ps) quantized delay X=A�B

A ↑,B 0 70 7 0

A 0,B ↑ 80 8 0

A 1,B ↓ 123 12 0

A ↓,B 1 128 13 0

A ↓,B 0 65 6 1

A 0,B ↓ 72 7 1

A 1,B ↑ 94 9 1

A ↑,B 1 100 10 1

different types of gates (having different delay profiles),the attacker can utilize details

from the same .lib file to analyze any delay locked circuit realized using the same

standard cell library. We would like to also highlight that our proposed formulations

are independent of the characterization approach used to model the gate delay

values and will work with any other suitable state-of-the-art timing characterization

technique as well.

The inertial delay model [100] considered in this work rejects any input pulse

whose width is shorter than the delay of the gate being driven by it. Such an

assumption leads to the development of an accurate data-dependent delay model

which can be utilized in the circuit unrolling process as outlined next. Let us consider

a 2-input XNOR gate whose delay values have been quantized using unrolling time

step granularity g of 10ps as presented in column 3 of Table 2.1 for various types

of input transitions. The XNOR gate output X will rise at time t if the following
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equation is evaluated to logic 1:

X(t) ↑ = A(t− 7) A(t− 6):A(t− 1) B(t− 6):B(t− 1)

+ A(t− 7):A(t− 1) B(t− 8) B(t− 7):B(t− 1)

+ A(t− 9):A(t− 1) B(t− 10) B(t− 9):B(t− 1)

+A(t− 11)A(t− 10):A(t− 1) B(t− 10):B(t− 1)

Intuitively, each line of the above equation corresponds to one of the four

rising input cases as shown in Table 2.1 (rows 5 to 8): the first line shows output

X rising at t as a result of A falling at (t − 6), i.e., A(t − 7)A(t− 6), and B

staying constant low, i.e., B(t− 6). Also, it is further required that both A and

B remain low subsequently without glitching till time t, i.e., A(t− 5):A(t− 1) and

B(t− 5):B(t− 1), as otherwise any input glitches might alter the output X logic

value. Such glitch constraints will vary depending not only on the gate type but

also on the nature of input transitions as detailed in [100]. In a similar manner, the

remaining lines of X(t) ↑ are formulated to capture the effect of input transitions

leading to evaluation of X = 1 at time t. On the other hand, the output X will fall

at time t if the following equation is evaluated to logic 0 (rows 1 to 4 of Table 2.1):

X(t) ↓ = A(t− 8)A(t− 7):A(t− 1) B(t− 8):B(t− 1)

+ A(t− 9):A(t− 1) B(t− 9) B(t− 8):B(t− 1)

+A(t− 13):A(t− 1) B(t− 13) B(t− 12):B(t− 1)

+A(t− 14) A(t− 13):A(t− 1) B(t− 14):B(t− 1)
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Finally, the logic value of node X will be high at time t if either (i) X rises at

time t or (ii) X was high at time t− 1 and does not fall at time t, else the value of

X will be low. Combining these conditions, the logic value of node X at time t can

be expressed as follows:

X(t) = X(t) ↑ +X(t− 1)X(t) ↓ (2.5)

Thus, the timed gate output X is described as an untimed combinational

function of gate inputs A and B. In this work, we used the above modeling approach

to capture data-dependent delay for all types of gates present in our library, namely

AND, NAND, OR, NOR, XOR, XNOR, BUF, and NOT. Subsequently, we unrolled

the entire circuit by unrolling individual nodes in the design to construct a

timing profile embedded netlist. We utilize such a timing information embedded

netlist to formulate an iterative SAT attack technique on delay-locked circuits. It is

to be noted that our proposed TimingSAT attack methodology against delay-locked

circuits is independent of the gate delay characterization approach used.

2.3.2.2 TimingSAT formulation

As highlighted earlier, once a netlist has been unrolled, we have a purely

combinational untimed Boolean network which can be analyzed using state-of-the-

art SAT solvers as outlined next. In order to retrieve all the key bits of the locked

design the adversary performs the following two attack stages:
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• Stage 1: Finding functional key. In this stage of the attack, the target is

to retrieve only the functional key ~KF used to functionally obfuscate the netlist.

To perform this step, the attacker basically formulates an iterative SAT attack as

outlined in section 2.2.2 by considering a modified netlist which logically replaces

the TDKs simply with XOR key-gates driven by functional key inputs. It is to

be noted that such a modification has no impact on the functional evaluation of

the gate-level netlist under consideration. Thus, the attacker can utilize the input-

output responses of the activated chip to model a SAT formulation as outlined in

equation 2.1 to find correct functional key ~KF
C .

• Stage 2: Finding delay key. In this stage of TimingSAT attack, the adversary

targets to retrieve the delay key ~KD used to obfuscate the timing characteristics of

the design. The initial netlist (before unrolling) considered in this phase is driven

by primary inputs and delay key inputs to TDBs, while the XOR gates of the TDKs

are fed with the functional key ~KF
C as determined in Stage 1 of the attack. Thus,

in the current stage ~KF
C is a fixed known value and the attacker focuses to retrieve

only the delay key. Let us assume that the primary input PI and delay key input

~KD are applied to the combinational network and in response to this excitation

the primary output updates from its initial state ~PO
init

to its new state ~PO. The

attacker needs to ensure that ~KD satisfies (i) the longest path timing constraints

and (ii) the shortest path timing constraints for the proper functioning of the design.

In order to do so, we utilize the circuit unrolling approach as outlined in section

2.3.2.1 to construct timing information embedded unrolled netlist. Also, like before,
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the attacker has access to correct input-output responses of activated chip (correct

in terms of both functionality and timing characteristics) which can be utilized to

develop SAT formulation incorporating longest and shortest path delay constraints

on the unrolled netlist as follows: Let Ng denote the total number of gates present

in the reverse-engineered netlist and gi denote the ith logic gate, i ∈ [Ng]. We unroll

every gate gi present in the design using the technique outlined in section 2.3.2.1 for

ldgi times, where ldgi denote the longest path delay corresponding to gate gi across

all the paths leading from the output of gi to any of its destination flip-flops.

The outcome of this unrolling process leads to the following chain of equations

corresponding to the output Xgi for gate gi across (ldgi + 1) time steps, ranging

from n to (n− ldgi), with the granularity of unrolling considered being 1 time step:

Xgi(n) = Xgi(n) ↑ +Xgi(n− 1)Xgi(n) ↓

Xgi(n− 1) = Xgi(n− 1) ↑ +Xgi(n− 2)Xgi(n− 1) ↓

...

Xgi(n− ldgi) = Xgi(n− ldgi) ↑

+Xgi(n− ldgi − 1)Xgi(n− ldgi) ↓ (2.6)

where, n denotes the quantized time instant at which the output Xgi is

evaluated (see Table 2.1 for gate delay quantization). It is to be noted that there is

no affect of Xgi(n− ldgi−1) on the primary output value at time n. This is because

ldgi being the longest path delay across all possible paths from the output of gate gi
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to any of its destination flip-flops guarantee that Xgi(n − ldgi − 1) is a function of

only prior input PI init. This in turn implies that any gate (including primary output

gates) lying in a path originating from Xgi(n − ldgi − 1) in the unrolled circuit is

also a function of ~PI init. However, for any subsequent time step m between n− ldgi

and n, the logic value evaluated at Xgi due to application of ~PI will propagate to

destination flip-flops for some paths having path delays shorter than the difference in

output observation instant n and the time instant m of evaluating Xgi . On the other

hand, for paths having longer path delays from the output of gate gi to destination

flip-flops, the contribution of Xgi is due to its value computed with initial ~PI init.

We utilize this path delay dependent nature of destination flip-flop updates (or ~PO

updates as per Notation 1) to incorporate timing constraints in an iterative SAT

formulation for a combinational network.

SAT formulation with longest path constraint:

The longest path timing constraint of a circuit signifies that the clock period

should be sufficiently large to allow the data to propagate through all the possible

combinational paths and to be set up at inputs of destination flip-flops before the

arrival of next triggering clock signal. Let us denote the clock period of the activated

chip as Tclk, the setup time for flip-flop j as T jsetup, and the clock arrival times in

flip-flops i and j with variables Ti and Tj. Since the attacker in an untrusted foundry

setting is aware of the layout level details of the chip, she can ascertain clock skews

affecting the arrival times of clock signals to various flip-flops in the design. Also,

Tclk is known from design specifications. In order to ensure that there is no longest
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path violation in the evaluation of primary outputs ~PO, i.e., all primary outputs of

the circuit are functions of current primary input ~PI and delay key ~KD, we unroll

the circuit for Thigh time steps, where

Thigh = max{Tclk + Tj − Ti − T jset}/g, ∀i, j (2.7)

In the above equation, g represents the granularity of unrolling time steps based

on which delay values have been quantized. If Thigh number of unrolling time steps

are performed, then at time step n of function evaluation, all the primary outputs

are updated to ~PO. Again, as evaluation of ~PO is dependent on all intermediate

gates in their fan-in cones, it is guaranteed that for any such gate gi, X
gi(n) is

function of ~PI and delay key ~KD and is not dependent on ~PI init. As an outcome of

this unrolling process the original timed netlist is transformed to a larger untimed

netlist which captures necessary timing profiles of all the gates. Let us denote the

corresponding CNF SAT formula of the unrolled circuit as Ch( ~PI, ~KD, ~PO). Thus,

we can write an iterative SAT formulation of the unrolled circuit incorporating

longest path constraints as follows:

Ii = Ch( ~PI, ~KD
1 ,

~PO1) ∧ Ch( ~PI, ~KD
2 ,

~PO2) ∧ ( ~PO1 6= ~PO2)

(

j=i−1∧
j=1

Ch( ~PIj,d,
~KD
1 ,

~POj,d)) ∧ (

j=i−1∧
j=1

Ch( ~PIj,d,
~KD
2 ,

~POj,d)) (2.8)

where, Ii denotes the ith SAT iteration formulation, and ( ~PI{1...i−1},d, ~PO{1...i−1},d)

are the DIO pairs which are found in previous (i−1) iterations using activated chip.
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SAT formulation with shortest path constraint:

To realize the correct functionality of a delay locked design, the shortest path

timing constraints should also be satisfied in addition to the longest path timing

constraint. Let us denote the hold time of destination flip-flop j as T jhold (known to

the attacker in an untrusted foundry setting). The hold time for any flip-flop in the

design should be shorter than the shortest path delay through the combinational

network. In order to ensure that there is no shortest path violation in the evaluation

of primary outputs ~PO
τ

at time τ , τ being any time instant lesser than the shortest

path delay of the circuit, we unroll the circuit for Tlow time steps, where,

Tlow = min{T jhold + Tj − Ti}/g, ∀i, j (2.9)

In the above equation, g represents the granularity of unrolling time steps based on

which delay values have been quantized. The intuition behind unrolling the circuit

Tlow time steps is to ascertain that none of the primary outputs of the design are

functions of current primary input ~PI, but rather depends on the initial input ~PI init,

resulting in no shortest path violation. We can write an iterative SAT formulation

of the unrolled circuit incorporating shortest path constraints as follows:

Ji=Cl( ~PI,
~KD
1 ,

~POinit1 ) ∧ Cl( ~PI, ~KD
2 ,

~POinit2 ) ∧ ( ~POinit1 6= ~POinit2 )

(

j=i−1∧
j=1

Cl( ~PIj,d,
~KD
1 ,

~POinitj,d )) ∧ (

j=i−1∧
j=1

Cl( ~PIj,d,
~KD
2 ,

~POinitj,d )) (2.10)
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where, Ji denotes the ith SAT iteration formulation, Cl( ~PI,
~KD, ~POinit) is

CNF SAT for the unrolled circuit, and ( ~PI{1...i−1},d, ~PO
init

{1...i−1},d) are the DIO pairs

which are found in previous (i− 1) iterations using activated chip.

Combined SAT formulation:

If a delay key ~KD satisfies both longest and shortest path constraints across

all the possible paths in a combinational network, then it belongs to the equivalence

class of correct delay keys used to obfuscate the netlist. In the second stage of

the TimingSAT attack, the objective of finding such a correct delay key can be

formulated as an iterative SAT approach, with Fi denoting the ith SAT iteration, as

follows:

Fi = (U ∨ V ) ∧ (Yi ∧ Zi), where, (2.11)

U=Ch( ~PI, ~KD
1 ,

~PO1) ∧ Ch( ~PI, ~KD
2 ,

~PO2) ∧ ( ~PO1 6= ~PO2)

V=Cl( ~PI,
~KD
1 ,

~POinit1 ) ∧ Cl( ~PI, ~KD
2 ,

~POinit2 )∧( ~POinit1 6= ~POinit2 )

Yi=(

j=i−1∧
j=1

Ch( ~PIj,d,
~KD
1 ,

~POj,d)) ∧ (

j=i−1∧
j=1

Ch( ~PIj,d,
~KD
2 ,

~POj,d))

Zi=(

j=i−1∧
j=1

Cl( ~PIj,d,
~KD
1 ,

~POinitj,d )) ∧ (

j=i−1∧
j=1

Cl( ~PIj,d,
~KD
2 ,

~POinitj,d ))

The above iterative SAT formula basically combines the SAT formulations

incorporating longest and shortest path delay constraints as outlined in equations 2.8

and 2.10 respectively. If the SAT formula is satisfied, then assignments for variables

~PI, ~KD
1 , ~KD

2 , ~PO1, ~PO2,
~POinit
1 , ~POinit

2 will be generated. The expression (U∨V ) in
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equation 2.11 above evaluates the circuit functionality for a specific input ~PI = ~PIj,d

for two different delay keys ~KD
1 and ~KD

2 such that primary output is different either

due to netlist unrolling for Thigh time steps ( ~PO1 6= ~PO2) or due to netlist unrolling

for Tlow time steps ( ~POinit
1 6= ~POinit

2 ). This guarantees that the input ~PI = ~PIj,d is

capable of identifying two keys ~KD
1 and ~KD

2 which produce different outputs either

due to longest path violation or due to shortest path violation or both. Hence, at

least one of the two keys must be wrong. Again, the distinguishing input ~PIj,d

identified in the previous jth iteration results in corresponding correct output ~POj,d

with the netlist unrolled for Thigh time steps and correct output ~POinit
j,d with the

netlist unrolled for Tlow time steps. These correct outputs ~PO and ~POinit are

known from the activated chip response (ac response) available to the attacker. The

clauses in the expression (Yi∧Zi) guarantee that the keys ~KD
1 and ~KD

2 which produce

different outputs in the current SAT iteration (either different ~PO or different ~POinit

or both different), have produced the correct outputs for all the previous DIO pairs.

This implies that in the current iteration at least one incorrect delay key has been

identified which was not detected in any of the prior iterations.

The Stage 2 of TimingSAT attack algorithm is shown in Algorithm 2.1. It

starts by first solving the for the clause (U ∨V ), and in any subsequent ith iteration

it adds clauses of the form (Yi ∧ Zi) as highlighted in equation 2.11. The algorithm

terminates when the SAT formula Fi is unsatisfiable and thus implying that there is

no more DIO pairs. Finally, a delay key belonging to the correct equivalence class

is obtained by finding ~KD that satisfies all the correct input-output pairs when the

netlist is unrolled for Thigh time steps as well as for Tlow time steps, thus pertaining
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Algorithm 2.1: TimingSAT Attack Algorithm (Stage 2)

Input: Ch, Cl,
~PIinit, and ac response

Output: correct delay key ~KD
C

1 i := 1;

2 Gi := True;

3 U=Ch( ~PI, ~KD
1 ,

~PO1)∧ Ch( ~PI, ~KD
2 ,

~PO2)∧ ( ~PO1 6= ~PO2);

4 V =Cl( ~PI,
~KD
1 ,

~POinit1 ) ∧ Cl( ~PI, ~KD
2 ,

~POinit2 ) ∧ ( ~POinit1 6= ~POinit2 );

5 Fi = (U ∨ V );

6
~POiniti,d := ac response( ~PIinit);

7 while sat[Fi] do

8 ~PIi,d :=sat assignment ~PI [Fi];

9 ~POi,d := ac response( ~PIi,d);

10 Gi+1:=Gi∧Ch( ~PIi,d,
~KD, ~POi,d)∧Cl( ~PIi,d,

~KD, ~POiniti,d );

11 Fi+1 := Fi ∧ Ch( ~PIi,d,
~KD
1 ,

~POi,d) ∧ Ch( ~PIi,d,
~KD
2 ,

~POi,d)

12 ∧ Cl( ~PIi,d,
~KD
1 ,

~POiniti,d ) ∧ Cl( ~PIi,d,
~KD
2 ,

~POiniti,d );

13 i := i+ 1;

14 end

15
~KD
C := sat assignment ~KD(Gi);
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to the longest and shortest path delay constraints of the design. This combined

formulation corresponding to Stage 2 of TimingSAT attack is guaranteed to find

a correct delay key ~KD
C .

2.3.3 Experimental Results

In this section, we report the effectiveness of our proposed TimingSAT attack

to deobfuscate delay-locked benchmark circuits. We first state the configuration

used to model the capacitive load of a tunable delay key-gate (TDK) as presented

in section 2.3.1. Then, we highlight the preprocessing step used to construct input

transition dependent delay models for various types of gates in our library. Finally,

we report the runtimes of TimingSAT attack to recover correct delay keys for the

benchmark circuits.

2.3.3.1 Modeling TDB and gate delays

In order to model the tunable delay buffer (TDB) into the TimingSAT for-

mulation, we use a multiplexer to choose between paths having different signal

propagation delays as shown in Fig. 2.2. The ith bit of the delay key input KD
i

acts as the select line for the corresponding multiplexer to select one of the two

paths having n1 and n2 delay buffers. By adjusting n1 and n2, different delay ratios

dr = n1/n2 can be achieved. To model delay of gates present in our library, we

measure the data-dependent delay values of each gate as follows: Different types

of logic gate in our library (namely AND, NAND, OR, NOR, XOR, XNOR, BUF,
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Figure 2.2: Equivalent representation of TDB

Table 2.2: Specifications of evaluated ISCAS circuits

benchmark netlist #PI #PO #TDK gates #gates

apex2 39 3 31 643

ISCAS85 c880 60 26 19 1344

i4 192 6 17 370

s838 67 34 20 488

ISCAS89 s1488 14 25 33 872

s1494 14 25 32 868

and NOT) were synthesized using TSMC 180nm standard cell library in Cadence

to capture their timing characteristics. For each gate type, we characterized the

delay profiles corresponding to all the input patterns leading to transitions at the

gate output. The actual delay values were then quantized into unrolling time steps

with a granularity g of 10 ps (as shown in Table 2.1 corresponding to different input

patterns for an XNOR gate).
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2.3.3.2 TimingSAT Attack Results

We used 6 netlists from ISCAS benchmark as specified in Table 2.2 for evalua-

tion of our proposed TimingSAT attack. We inserted TDKs in the netlists with 5%

key-gate overhead as done in previous works [97, 82, 108, 76, 110]. For running SAT

formulation based experiments, we used an Intel Xeon E3-1245 CPU with 32 GB

RAM. The SAT solving times required to find the functional keys of targeted netlists,

i.e., Stage 1 of TimingSAT attack have already been reported in [97]. Therefore,

we only report the SAT solving time to find the delay key ~KD of size ‖ ~KD‖ using

our proposed Algorithm 2.1. For each benchmark circuit, we simulated Stage 2

of TimingSAT attack for different delay ratio (dr) values, leading to the overall

evaluation of 24 benchmark designs (6 different netlists, each locked with 4 different

delay ratio values dr = 2, 3, 4, 5). For all our experiments, we set Thigh = 200 and

Tlow = 10 to unroll the netlists imposing the longest path and shortest path delay

constraints respectively. In Table 2.3, we report the number of SAT iterations and

CPU time for SAT solving (in mins) as required to find correct delay key ~KD
C for

different delay locked netlists with dr = 5. It was observed that all the evaluated

benchmark circuits were deobfuscated within a few hours, thus highlighting the

effectiveness of our proposed TimingSAT attack approach. In Fig. 2.3, we outline

the SAT solving time vs. delay ratio for different netlists. From the plots, it is

apparent that for various dr values considered (dr = 2, 3, 4, 5), TimingSAT attack

successfully retrieves the correct keys of all the locked netlists within a practical

time.
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Table 2.3: TimingSAT attack stage 2: Finding delay key (dr = 5)

netlist ‖ ~KD‖ #iterations CPU time (mins)

apex2 31 9 29.68

c880 19 1 22.39

i4 17 1 4.79

s838 20 4 9.39

s1488 33 1 142.83

s1494 32 1 153.67

Figure 2.3: CPU time (mins) for TimingSAT attack Stage2 vs delay ratio
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2.3.3.3 Improving Scalability of TimingSAT Attack

The complexity of TimingSAT attack is dependent on the size of the unrolled

circuit. The circuit unrolling strategy outlined in section 2.3.2.1 is mainly deter-

mined by the following three factors (i) the topology of the netlist including number

and types of gates present (ii) the granularity g of unrolling time steps based on

which delay values are quantized and (iii) the number of unrolling time steps which

is obtained by dividing the worst-case circuit delay by g. The parameter g is set by

the attacker based on the precision required to avoid any glitches to gate inputs as

required for the correct unrolled Boolean formulation of a circuit [100].

There exists a trade-off between accuracy of delay modeling and scalability

of corresponding circuit timing analysis. For example, on one hand, if we consider

a simple constant-delay model as assumed in [21] then SAT solver based timing

analysis can be easily scaled to large benchmark netlists. On the other hand, if

we consider a complex inertial-delay model (as assumed in this work) then the

timing analysis will not be as scalable as the former approach due to increased

computational burden. However, it is to be noted that the latter approach is much

more realistic as it accounts for input pattern dependent effects (such as data-

dependent gate delays and multiple-inputs switching activities) and hence guarantees

the correctness of the delay key thus obtained. In this work, we have limited our

experiments to moderate size benchmark circuits which could be analyzed by setting

g=10ps in a system with 32 GB of RAM.
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Randomized algorithm approach: In order to enhance the scalability of Stage 2

of TimingSAT attack without compromising the accuracy of circuit timing charac-

terization, the attacker can use a randomized algorithm based approach to find delay

key ~KD. In such an approach the attacker will first unroll the reverse-engineered

netlist using inertial-delay model based gate timing characterization. Then, she

will randomly fix a chosen fraction of bits of ~KD to either 0 or 1 and then run

TimingSAT attack algorithm (Algorithm 2.1) to figure out the remaining portion of

the key. If the run of the algorithm terminates successfully within a pre-determined

time limit, then the attacker is still guaranteed to have found correct ~KD. On the

other hand, if the algorithm times out then the attacker needs to repeat the process

till it converges to find a correct delay key, each time randomly fixing a portion of

~KD to some constant value. Such a randomized algorithm based attack approach

basically reduces the computational complexity of a SAT solver (thus improving

TimingSAT attack scalability) by decreasing the number of unknown variables to

be ascertained. The success of this attack relies on the fact that for a delay locked

benchmark circuit there will be multiple ~KD values (large key space) which satisfy

both shortest and longest path timing constraints. Therefore, by fixing a fraction of

~KD, the SAT solver will be able to efficiently determine a combination of the other

key bits which doesn’t lead to any circuit timing violations. The development of

other techniques to enhance the scalability of TimingSAT attack will be considered

as a future research direction.
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2.4 Stripped-Functionality Logic Locking

In [118], a provably secure logic locking scheme called stripped-functionality

logic locking (SFLL) has been proposed which provides a quantifiable trade-off

between SAT attack resiliency and removal/ bypass types of attacks. SFLL strips a

portion of the design functionality to create a functionality stripped circuit (FSC)

which differs from the original design. This FSC can be conceived to have a

controllable built-in error which is canceled by using a restore unit. There are

two versions of SFLL called SFLL-HD and SFLL-flex, each of which restores

the stripped functionality using protected input patterns. Our proposed SFDL

approach (details in next subsection) utilizes the SFLL-flexcxk version which allows

the designer to select c number of IP-critical input cubes1 with each cube have

k specified bits. In SFLL-flex, the restore unit stores the protected input cubes

(which is the secret restore key ~KR) in a look-up table (LUT). In addition, the LUT

also stores a flip vector associated with each such input cube to ascertain which

netlist wires are to be flipped to recover the stripped functionality. SFLL-flexcxk

exhibits a trade-off between resilience to oracle-guided (SAT based) and removal

attacks which can be expressed as follows:

• (k − dlog2 ce) -security against SAT attack

• c · 2(n−k) -security against removal attack

1Input cube refers to a partly-specified input pattern ~PI. An n-bit input cube with k specified

(care) bits corresponds to 2n−k input patterns. Note that the bits of an input pattern are either

logic-0/logic-1 or don’t cares (x’s).
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where, the notion of λ-security and related mathematical derivations can be found

in [118]. The above set of equations imply that higher the resiliency of a SFLL-flex

locked circuit against SAT attack, lower is its output corruptibility which in turn

makes it susceptible to removal/bypass types of attacks.

2.4.1 Combining Delay Locking and SFLL-flex

We propose a new obfuscation technique called stripped-functionality delay

locking (SFDL) by combining the concepts of delay locking and functionality strip-

ping of circuits such that a locked design is robust against SAT attack and at the

same time exhibits high output corruptibility. The construction of our proposed

SFDL obfuscation scheme is illustrated using Fig. 2.4. The designer first locks a

circuit by applying SFLL-flex to obtain an FSC. Then, the designer applies delay

locking on this FSC using two types of tunable delay buffers (TDBs) as follows:

• Timing-driven TDBs (T-TDBs): Such TDBs are driven by delay key ~KD
T

as done in conventional delay locking.

• LUT-driven TDBs (L-TDBs): This new type of TDBs are driven by a key

~KD
L which is derived as a function of the LUT entries in the restore unit.

The bits of conventional delay key ~KD
T (shown in green) are chosen by the

designer to drive the T-TDBs (inserted at randomly selected netlist wires) such

that the desired shortest and longest path timing constraints are met when the

functionality of FSC is restored. Note that the contents of restore unit’s LUT

(restore key ~KR) and the key-bits of ~KD
T reside in a tamper-proof memory. The key
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Figure 2.4: Stripped-functionality delay locking technique

~KD
L (shown in red) is derived from key ~KR by using any designer-specified selector

function as shown in Fig. 2.4. For simplicity in our experimental evaluations (as

reported later in section 2.4.2) we used a c-to-1 MUX which selects a row (out of c

entries) of the LUT as ~KD
L to drive the L-TDBs.

The original behavior of an SFDL-locked circuit will be retrieved when (i) the

restore unit’s LUT is loaded with the key ~KR to retrieve the correct functionality

and (ii) the delay key ~KD
T is loaded to reconstruct the proper timing profile of the

restored circuit. Note that loading the LUT with correct ~KR implies that ~KD
L is also

derived correctly and thus, the entire SFDL delay key ~KD={ ~KD
T ,

~KD
L } ensures that

there are no timing errors (due to violations of shortest or longest path constraints)

in the unlocked circuit. On the other hand, if the LUT is initialized incorrectly or a

wrong ~KD
T is applied, then the SFDL construction ensures that the original circuit

behavior is not correctly restored due to functional as well as timing errors.
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2.4.2 Security Evaluations of SFDL Scheme

In this section, we present outcomes of experimental evaluations to high-

light the effectiveness of our proposed SFDL technique to secure design IPs from

an attacker in untrusted foundry. The main objective of these evaluations is to

demonstrate the security-corruptibility trade-off resiliency achieved by SFDL which

distinguishes it from existing schemes.

2.4.2.1 Experimental Setup

To implement the SFLL-flex portion of SFDL, we performed stuck-at-fault

based circuit functionality stripping as considered in prior works [86, 87]. First, we

randomly selected a wire in the netlist to inject either a stuck-at-0 or a stuck-at-1

fault and then used ATALANTA-M ATPG tool to generate a list of input patterns

(called failing patterns) which detected the injected fault. These failing patterns

represent the protected input cubes for the modified circuit. In other words, they

constitute the restore key ~KR to be used to populate the LUT for restoring the

FSC. As SAT-resiliency is governed by the number of care-bits in this LUT [87], we

set the number of care-bits in ~KR (secret) equal to 5% of the total number of gates

in the original netlist and hard-coded the remaining care-bits to their correct logic

values (logic-0 or logic-1). The objective of the attacker is to use a SAT solver to

determine these unknown care-bits of ~KR.
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2.4.2.2 TimingSAT Attack Resiliency

Our proposed SFDL scheme first applies SFLL-flex on a netlist to obtain an

FSC, followed by delay locking of the FSC using additional delay key bits. It is

to be noted that now the attacker will not succeed to find the restore key ~KR by

ignoring delay key-bits (Stage 1 of TimingSAT attack, see section 2.3.2.2) within a

practical time limit as determining ~KR has been demonstrated to be highly resistant

against SAT attack [86, 118]. Therefore, the security guarantees provided by SFDL

against SAT formulation based attacks is expected to be at least as strong as that

provided by baseline SFLL-flex as now the attacker not only needs to determine

~KR but also the delay key ~KD
T . In order to assess the robustness of such delay

profile based circuit obfuscation scheme against TimingSAT attack, we perform a

comparative study between conventional delay locking and SFDL. The outcome

of this experimental evaluation across different benchmark netlists is reported in

Table 2.4. Note that for conventional delay locking as the number of functional

key-bits equals the number delay key-bits, the total number of unknown variables

(#vars) to be determined by the SAT solver is twice the delay key size ‖ ~KD‖, i.e.,

#vars=2‖ ~KD‖, see sub-columns 2 and 3 of Table 2.4. In our experimental setup of

SFDL, we considered a c-to-1 MUX based implementation of the selector function to

obtain ~KD
L portion of delay key from ~KR. In such a setting, #vars to be determined

by a SAT solver is equal to ‖ ~KD‖+‖ ~KR‖-‖ ~KD
L ‖ as ~KD

L is same as a row entry of

LUT which constitutes ~KR. Also, setting ‖ ~KD‖=‖ ~KR‖, #vars to be determined for

such a locked netlist is lesser than its delay locking counterpart, i.e., #vars<2‖ ~KD‖.

44



Table 2.4: Delay Locking vs. SFDL: Resiliency against TimingSAT attack

netlist ‖ ~KD‖
Delay Locking SFDL

#vars time (mins) ‖ ~KD
L ‖ #vars time

apex2 31 62 29.68 10 52 TO

c880 19 38 22.39 10 28 TO

i4 17 34 4.79 8 26 TO

s838 20 40 9.39 7 33 TO

s1488 33 66 142.83 4 62 TO

s1494 32 64 153.67 4 60 TO

However, even then we observed that though conventional delay locked netlists were

deobfuscated within a few hours, TimingSAT attack timed-out for netlists locked

using SFDL (time-out limit TO=10 hours as [97, 108]), see sub-columns 4 and 7 of

Table 2.4. The reasons behind this anomaly are as follows:

(i) In order to mount TimingSAT attack against a netlist locked using con-

ventional delay locking strategy, the attacker utilizes a two-step approach: In Stage

1 the functional key-bits are determined using conventional SAT attack. Then, in

Stage 2 the attacker fixes the retrieved functional key, followed by unrolling the

netlist and finally launches TimingSAT attack on the unrolled netlist to ascertain

the delay key ~KD. It is to be noted that in each stage, the attacker needs to find

#vars/2 number of unknown key-bits. Also, we observed that the first stage of this

attack can be accomplished in a short time.

45



Table 2.5: Delay Locking vs. SFDL: Area of tamper-proof memory

netlist
Delay Locking SFDL

#bits area (µm2) #bits area (µm2) % decrease

apex2 62 90.52 52 75.92 16.13

c880 38 55.48 28 40.88 26.32

i4 34 49.64 26 37.96 23.53

s838 40 58.40 33 48.18 17.50

s1488 66 96.36 62 90.52 6.06

s1494 64 93.44 60 87.60 6.25

(ii) On the other hand, the attacker will not succeed to defeat our proposed

SFDL scheme using such a two-step attack strategy. This is because determining

just ~KR (ignoring the delay key) has been shown to be provably secure against SAT

attack [118]. In fact the number of SAT iterations required to find ~KR is exponential

in terms of the key-size and thus, the attacker will fail to complete the first step of

the attack within a practical time limit. Moreover, in Stage 2, the attacker needs

to apply SAT attack on a much larger unrolled netlist to account for any timing

violations arising from a wrong ~KD
T . This will further increase the time required to

mount TimingSAT attack on netlists locked using the SFDL scheme.

Overhead analysis: The area overhead introduced to obfuscate a design using

SFLL-fault technique mainly due to the restore unit’s LUT whose contents are stored

in an on-chip tamper-proof memory [86]. To demonstrate the cost-effectiveness of
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our proposed SFDL scheme over its delay locking counterpart, we report the area

overhead of the tamper-proof memory for both the techniques in Table 2.5. For

this comparative study, we consider a Global Foundries 65nm LPe technology based

tamper-proof memory which occupies 1.46µm2 per bit [118, 86]. From the table,

we can observe that the area overhead of SFDL scheme is significantly lower than

conventional delay locking with area reduction ranging from 6.06% to 26.32% across

different benchmark circuits. This is because SFDL utilizes a key of smaller length

(<2‖ ~KD‖) to obfuscate a netlist compared to conventional delay locking.

2.4.2.3 Resiliency against Other Attacks

The proposed SFDL approach also successfully thwarts other recent attacks

on logic locking schemes. For example, SFDL technique is robust against SMT

attack [21] which uses advanced theory solver-based algorithms to deobfuscate con-

ventional delay locked netlists. This is because breaking a stripped-functionality

based locking scheme (such as SFDL) is not only SAT-hard but also a SMT-hard

problem [22].

SFDL technique is also secure against state-of-the-art Functional Analysis on

Logic Locking (FALL) attack [94]. This is due to the implementation of SFLL-

flex portion of SFDL using stuck-at-fault based circuit functionality stripping (also

known as SFLL-fault) as outlined in [86, 87]. Though FALL attack effectively

defeats SFLL-HD scheme, the applicability of similar analyses to find the protected

cubes in SFLL-fault is still an open problem [94].
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Table 2.6: SFLL-flex vs. SFDL: Comparative study of corruptibility

netlist
SFLL-flex SFDL

corruptibility(%) ‖ ~KD‖ corruptibility(%) % increase

apex2 0.00 31 2.67 2.67

c880 0.00 19 6.07 6.07

i4 0.00 17 16.30 16.30

s838 0.17 20 13.93 13.76

s1488 0.00 33 5.20 5.20

s1494 0.00 32 12.80 12.80

2.4.2.4 Output Corruptibility Evaluation

Existing logic locking schemes exhibit an inherent trade-off between robustness

to SAT formulation based attacks and output corruptibility [122]. For example, if

on one hand a locking approach demonstrates high resiliency to SAT attack (such

as Anti-SAT [108]) then on the other hand it exhibits very low output corruptibility

for wrong keys. This makes such locked netlists vulnerable to other types of attacks

(such as AppSAT [89], removal [119], and bypass [112] attacks) which exploit the

low error rates of wrong keys to reconstruct the original netlist. Our proposed SFDL

technique overcomes this shortcoming to develop an effective obfuscation solution to

protect the IPs of hardware designs. SFDL combines SFLL-flex and delay locking

approaches to simultaneously achieve strong SAT attack resiliency as well as high

output corruptibility.
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In case of conventional SFLL-flex scheme (with low number of protected input

cubes), an attacker can mount AppSAT attack [89] to find an approximate functional

key which will retrieve an almost correct netlist (negligible corruptibility). However,

it is to be noted that such an approximate attack strategy will not be effective

against our proposed SFDL technique as the timing graph of a circuit differs due to

the application of correct and approximate functional keys. This is because of the

construction of SFDL scheme where a portion of the delay key ~KD
L is derived from the

functional key ~KR using a selector function (see Fig. 2.4). Therefore, an approximate

functional key ~KR
app will lead to a different ~KD

L (and hence, a different delay key),

causing the overall circuit to violate timing constraints. We cannot leverage our

proposed two step TimingSAT attack strategy (as described in section 2.3.2.2) to

retrieve an approximate netlist due to such dependence of circuit delay profile on

functional key (not only on delay key) in SFDL technique.

We performed an experimental analysis to study the comparative output cor-

ruptibility between SFLL-flex and SFDL schemes. In our experiments, we first

applied AppSAT attack to find ~KR
app and then used it to initialize the restoration

unit’s LUT for both the locking configurations. In case of SFDL, the ~KD
L portion of

delay key was derived from ~KR
app (using selector function) to drive the L-TDBs while

the ~KD
T portion was selected randomly (as TimingSAT attack is not applicable) to

drive the T-TDBs present in the FSC portion. In our experiments, we set the

number of TDBs equal to 5% of the total number of gates in a netlist and excited

both types of locked netlists (locked using SFLL-flex and SFDL schemes) using

3, 000 randomly generated PIs. As it can be seen from the experimental outcomes
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reported in Table 2.6, the corruptibility exhibited by SFLL-flex technique is zero

(or almost zero) across different benchmark netlists. This is in accordance with theo-

retical expectations for such a locked netlist which offers high SAT attack resiliency

but low error rates for wrong keys. On the other hand, we observed significant

output corruptibility ranging from 2.67% to as high as 16.30% for circuits obfuscated

using SFDL technique which provide the same level of SAT attack resiliency as their

SFLL-flex counterparts. This is due to the presence of incorrectly configured TDBs

(wrong delay key) in the delay-locked FSC which leads to significant shortest/longest

path timing violations, thus resulting in faulty circuit output responses.

2.5 Conclusion

In this chapter, we first proposed TimingSAT attack to defeat the security

offered by state-of-the-art delay locking countermeasure [110]. TimingSAT attack

operates in two stages: in the first stage the attacker finds a correct functional key

and in the second stage the attacker utilizes timing information embedded unrolled

netlist to formulate an iterative SAT attack which retrieves correct delay key. The

experimental results on different benchmark circuits highlight the effectiveness of the

proposed TimingSAT attack to deobfuscate delay locked netlists (for different delay

ratios) within few hours. Subsequently, we developed a technique called stripped-

functionality delay locking (SFDL) which resists not only TimingSAT attack but
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also thwarts all known attacks against logic locking. Our proposed SFDL scheme

combines the concept of stripped-functionality based logic locking with delay locking

to develop an effective IP security solution for hardware designs.
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Chapter 3: Side-channel Analysis of

Circuit-level Obfuscation

3.1 Introduction

In Section 1.1.3, we presented an overview of several logic obfuscation tech-

niques which have been proposed to defend against IP theft of outsourced ICs

by untrusted foundries. Existing attacks on these techniques (e.g., SAT attack,

removal/bypass attacks) exploit the weaknesses of logic locking schemes from a

theoretical point of view; such attacks do not exploit the potential weaknesses

arising from physical implementations of logic obfuscation schemes. It has been

demonstrated that unintentional leakage of information in the form of power dis-

sipation, electromagnetic emanation, timing characteristics, etc. from hardware

implementations of designs can be analyzed to launch side-channel attacks [71].

These kinds of attacks can break a system using limited computational power and

in a short amount of time even though its security robustness has been theoretically

established. In this chapter, we explore how an adversary can exploit side-channel

information from a functional chip to reverse engineer its internal design obfuscation

key. The main contributions of the chapter are as follows:
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• We propose a template analysis based side-channel attack which defeats stan-

dard logic obfuscation techniques. In this attack approach, the adversary

utilizes a low number of side-channel traces to unlock the functionality of an

obfuscated circuit in a level-by-level manner following an iterative approach.

• The proposed attack methodology is validated using simulated power traces

which are more realistic as it considers the switching activities across all the

logic depths of a netlist rather than calculating the Hamming weights only at

the output nets as proposed in [117].

The outcomes of this work highlights the need to develop a side-channel attack

secure logic encryption scheme which can thwart IP piracy, counterfeiting, and

overbuilding of ICs by untrusted foundries.

3.2 Power Analysis Attack on Circuit-level Obfuscation

3.2.1 Side-channel Analysis Attacks

The vulnerability of hardware implementations to power side-channel attacks

[71] has been well established in the literature. A side-channel adversary tries

correlate the observable side-channel leakage to the secret key dependent internal

state of an implementation. In [117], a Differential Power Analysis (DPA) against

logic encryption circuits have been proposed. However, such a DPA attack fails to

retrieve the correct key for a majority of the benchmark circuits encrypted using the

Strong Logic Locking (SLL) scheme [75]. In this work, we explore the applicability
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Table 3.1: Comparison of this work with previous attacks against logic locking schemes

Scheme DAC’12 [75] DFTS’15 [117] HOST’15 [97] HOST’17 [89] This work

RLL [82]
√ √ √ √ √

SLL [75] × partially
√ √ √

Anti-SAT [108] × × × partially
√

of a template based side-channel analysis strategy to break various existing logic

encryption schemes. Table 3.1 highlights the contribution of our work with previous

attacks against standard logic locking techniques to retrieve the secret key.

Template Analysis (TA) attack is a powerful form of side-channel attack where the

adversary can retrieve the secret key of a targeted design using a limited number

of power traces [33]. A conventional TA attack approach against a cryptographic

implementation, consists of an profiling or offline phase and an attack or online

phase. The success rate of TA is determined by the manner in which the noise

content in the collected power side-channel samples is handled. The TA attack

methodology proposed in this work for deobfuscation of a locked netlist assumes

an attack environment which is similar to the conventional approach. The power

consumption of the chip has been modeled using the standard Hamming distance

(HD) power model which considers the switching activities of every gate in the

circuit. The proposed attack assumes that the adversary has access to the following:

• An activated chip bought from the market with the secret key in an on-chip

tamper-proof memory used to observe correct input/output (I/O) patterns.
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• A duplicate chip fabricated using reverse engineered locked netlist of the

activated chip but without the tamper-proof memory. The key inputs to the

key-gates in the duplicate chip are controlled by the adversary.

The details related to the applicability of the aforementioned attack model in the

context of the proposed TA attack are presented in the next section. A key advantage

of such a TA attack is that it doesn’t need full scan chain access to the activated

chip as required by most of the existing works on logic obfuscation. To the best of

our knowledge, this is the first work to utilize template based side-channel analysis

against logic locking schemes.

3.2.2 Proposed Template Attack Against Logic Locking

In this section, we propose a power side-channel based Template Analysis (TA)

attack to deobfuscate netlists which are locked using standard logic encryption

schemes. Our proposed attack technique is applicable against existing logic locking

schemes such as Random Logic Locking (RLL), Strong Logic Locking (SLL), and

point-function based logic locking approaches such as Anti-SAT [108]. The primary

property of a targeted netlist exploited by the ensuing attack strategy is that

various key-gates inserted by existing logic locking algorithms are located at different

logic depths and even in the same logic depth, the arrival times of the key-gate

inputs are different. In an actual attack setup, the attacker will have access to the

detailed layout level information from GDSII file and hence, will be able to ascertain

the arrival times of various key-gate inputs. But, in this work to illustrate the
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attack methodology, we consider the logic depths of key-gates present in benchmark

gate-level netlists as rough estimates of corresponding key-gate inputs’ arrival times.

To illustrate the steps of the proposed attack, let us consider the MCNC benchmark

netlist apex2 with 5% key-gate overhead (apex2 enc05) locked using RLL scheme.

The logic depths of key-gates in the aforementioned netlist along with the related

key-gate output nets, key-gate operations, and key inputs are presented in Table

3.2. The logic depths of key-gates were obtained by first representing all gates in

the netlist as nodes in a Directed Acyclic Graph (DAG), followed by topologically

sorting of the nodes and then calculating the length of longest path to every node

from any source node, i.e. any node driven by only PIs or key inputs. We follow

the convention that the logic gates fed by PIs or key inputs only are at logic depth

1. From Table 3.2, it can be easily observed that the key-gates of the apex2 enc05

netlist are at varying logic depths, e.g. key-gate with output net pi17$enc is located

at logic depth 1, key gates with output nets n72$enc, pi02$enc, and pi11$enc are

all located at logic depth 2, and so on.

3.2.2.1 Attack Methodology

In this subsection, we present the steps of our proposed template based side-

channel analysis against conventional logic locking algorithms. The requirements of

the ensuing attack strategy is similar to the attack model assumed in [117]. The

side-channel attacker can monitor power trace samples corresponding to individual

logic depths in an activated chip. This is a practically valid assumption as the
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adversary has access to the information related to arrival times of signals at each

logic depth from the layout files of the chip. She can subsequently analyze such power

samples to deobfuscate the functionality of the activated chip following the steps

outlined in Algorithm 3.1. At first, the attacker initializes the sets of determined

key bits K and undetermined key bits U to φ (no key bits have been deciphered)

and {K1, K2, ...Kn} respectively, where an n-bit key (K1K2...Kn) has been used to

lock the netlist. The total number of key-gates/ key-inputs can be easily identified

by studying the netlist and hence, the value of n is already known to the attacker.

Next, the logic depth Li, ∀i ∈ {1, 2, ..., n}, is ascertained for each of the n key-gates

in the netlist. After this step, the adversary tries to unlock the functionality of the

circuit level-by-level by concentrating only on key-gates located at a particular logic

depth Li, denoted by the set T and starting from key-gates at the lowest logic depth.

In order to mount a TA attack on the locked netlist, at first m power side-

channel traces are collected by exciting the activated chip with m randomly gen-

erated primary inputs (PIs). Then, the adversary considers only the power sample

instants which contains maximum information related to the switching activities

of a targeted logic depth. We refer to this portion of a power trace time instants

(consisting of the power samples of interest) as the attack window. For simplicity,

we assume a zero-wire delay model and unit propagation delays of logic gates

in our experiments. After collection of power samples in the attack window, the

adversary performs template matching between the power samples of the activated

chip and corresponding simulated power samples of the duplicate chip for different

key guesses at the targeted logic depth using some suitable thresholding metric.
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Table 3.2: Logic depths of apex2 enc05 netlist key-gates locked using RLL scheme

key-gate output net key-gate operation key input Logic Depth

n72$enc xnor(keyinput0, n72) keyinput0 2

n107$enc xnor(keyinput1, n107) keyinput1 6

pi02$enc xnor(keyinput2, pi02$inv) keyinput2 2

pi17$enc xnor(keyinput3, pi17) keyinput3 1

pi11$enc xor(keyinput4, pi11$inv) keyinput4 2

n113$enc xnor(keyinput5, n113) keyinput5 4

n119$enc xor(keyinput6, n119) keyinput6 11

n167$enc xor(keyinput7, n167) keyinput7 3

n195$enc xnor(keyinput8, n195) keyinput8 11

n216$enc xnor(keyinput9, n216) keyinput9 3

n284$enc xnor(keyinput10, n284) keyinput10 9

n293$enc xor(keyinput11, n293) keyinput11 30

n296$enc xnor(keyinput12, n296) keyinput12 36

n561$enc xor(keyinput13, n561) keyinput13 34

n562$enc xor(keyinput14, n562) keyinput14 36

n563$enc xor(keyinput15, n563) keyinput15 38

n570$enc xor(keyinput16, n570) keyinput16 15

n325$enc xor(keyinput17, n325) keyinput17 13

n332$enc xor(keyinput18, n332) keyinput18 6

n353$enc xor(keyinput19, n562) keyinput19 4

n355$enc xnor(keyinput20, n355) keyinput20 8

n364$enc xnor(keyinput21, n364) keyinput21 20

n366$enc xor(keyinput22, n366) keyinput22 23

n378$enc xnor(keyinput23, n378) keyinput23 4

n423$enc xnor(keyinput24, n366) keyinput24 26

n471$enc xnor(keyinput25, n471) keyinput25 3

n554$enc xnor(keyinput26, n554) keyinput26 28

n581$enc xor(keyinput27, n581) keyinput27 7

n592$enc xnor(keyinput28, n592) keyinput28 28

n605$enc xor(keyinput29, n605) keyinput29 5

n646$enc xor(keyinput30, n646) keyinput30 32
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For example, to perform TA attack at logic depth 1 of apex2 enc05 netlist, the

adversary first performs the aforementioned template matching for guess 0 and guess

1 of keyinput3 feeding a key-gate at logic depth 1. After successful determination of

keyinput3, the template matching is performed for the next attack window targeting

the 3-tuple (keyinput0, keyinput2, keyinput4) and simulating power for all possible

combinations of the key tuple (23 guesses) being targeted. Thus, after processing a

particular logic depth the cardinality of the set U decreases, whereas the cardinality

of the set K increases, till all the key inputs are determined for the key-gate(s)

located at max(Li) logic depth. The TA attack methodology described relies on the

accurate selection of power samples corresponding to an attack window.

3.2.2.2 Template Matching

The objective of the adversary is to determine whether the power dissipation of

the activated chip during the attack window relates closely to the overall switching

activity at that logic depth as determined by guess 0 or by guess 1 of a targeted key

input (say keyinput3). However, a single power trace of the activated chip might

not be sufficient to determine the correct key bit at the targeted logic depth as the

noise content in power samples of the activated chip during the attack window might

relate it closely to the power trace simulated for the wrong key guess, resulting in

error. In order to successfully mount the proposed TA attack, we considered m

different inputs to the activated chip to obtain a power trace matrix P of dimension

mXl where l is the number of power samples in a single trace. For the experiments,

we only considered the sample instant containing maximum information about the
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Algorithm 3.1: TA attack against a logic encrypted netlist

Input: (i) Activated chip (ii) Reverse engineered netlist/ Duplicate chip

Output: n-bit key used for logic locking

1 K=φ /*set of determined key bits*/

2 U={K1, K2, ...Kn} /*set of undetermined key bits*/

3 Get logic depth Li of ith key gate, ∀i ∈ {1, 2, ..., n}

4 for i = 1 to max(Li) do

5 T = {key gates at level Li} ⊆ U

6 P = {power traces of activated chip for m PIs}

7 Perform TA attack for 2|T | key guesses using P

8 K=K ∪ T

9 U=U \ T

10 end

11 return K
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switching activities in an attack window to get a vector s of length m from the

power matrix P . For each input, we also obtained the HD values corresponding

to the attack window due to key-bit guesses 0 and 1, resulting in two more vectors

of length m, denoted by σ0 and σ1 respectively. The adversary needs to apply a

thresholding operation considering the vectors s, σ0, and σ1 to determine the which

set of simulated power traces corresponds more closely to the power traces of the

activated chip in the attack window. We consider `1-norm
(
|| · ||1) as the metric to

implement such a thresholding operation to determine the targeted key bit. First,

we define two vectors δ0 and δ1, each of length m, corresponding to key bit guesses

0 and 1 respectively as follows:

δ0 = s− σ0, δ1 = s− σ1 (3.1)

A correct guess of the targeted key bit will have a lower `1-norm value, i.e., a

lower magnitude of the sum of absolute values of the δ vector elements, compared

to the `1-norm value for a wrong key bit guess. Therefore, the correct key bit can

be retrieved using the following equation:

correct key bit = min{||δ0||1, ||δ1||1} (3.2)

In scenarios where multiple key-gates are present at a targeted logic depth, then

more than two δ vectors are necessary for the proposed TA attack based deobfus-

cation scheme. In fact, if k key bits are located at a particular logic depth, then 2k

number of δ vectors are required to determine all the key inputs in the attack window.

For example, in RLL locked apex2 enc05 netlist, two key-gates are present at logic

depth 6 corresponding to key inputs keyinput1 and keyinput18. For retrieving

both the key bits, we consider four δ vectors δ00depth6, δ
01
depth6, δ

10
depth6, and δ11depth6 which
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correspond to the key 2-tuple (keyinput1,keyinput18) guesses (0, 0), (0, 1), (1, 0),

and (1, 1) respectively. Out of the four possible key 2-tuples, only one correspond

to the correct key input pair in the attack window corresponding to logic depth 6.

The application of the aforementioned thresholding operation on benchmark netlists

locked using standard logic encryption schemes led to successful retrieval of the

secret key.

3.2.3 Experimental Results

In this section, we report the experimental results of the proposed Template

analysis (TA) attack on MCNC benchmark circuits encrypted using standard locking

techniques. The power traces for the experiments were obtained using a similar

approach as proposed in [117]. However, we considered the Hamming distance (HD)

of the switching activities in the internal nets as well as in the output nets of the

circuit and superimposed Additive white Gaussian noise (AWGN) with Signal-to-

noise ratio 30 dB to generate more realistic power consumption signatures of the

activated chip.

3.2.3.1 TA attack against Random Logic Locking

In Table 3.2, we reported the logic depths of different key-gates inserted in

the apex2 enc05 obfuscated using the RLL scheme. As outlined in section 3.2.2.1,

we first target the key-gates at logic depth 1 and after successful retrieval of the

targeted key bits, we attack the key-gates at higher logic depths. In Fig. 3.1, we
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Figure 3.1: Power profiles for two random input vectors applied to apex2 enc05 netlist

targeting gate operation xnor(keyinput3, pi17) at logic depth 1 to recover keyinput3.

63



plot the power traces of the activated chip (black), simulated power traces for correct

key guess (green) and wrong key guess (red) at logic depth 1 due to applications

of two random input vectors to the circuit. The power traces corresponding to

both the correct and wrong key guesses were obtained using the standard Hamming

distance (HD) power model considering the switching activities in all the nets of the

circuit. The targeted key-gate operation is xnor(keyinput3, pi17) and the attack

window corresponds to the power dissipation of the activated chip due to switching

activities of all gates located at logic depth 1.

For the apex2 enc05 netlist, we applied 5 random input vectors to the circuit,

i.e. m = 5, to obtain the following δ vectors (as outlined in previous section) for the

attack window targeting logic depth 1:

δ0depth1 = [+0.02,+0.05,+0.21,−0.07,+0.16] (3.3)

δ1depth1 = [+1.02,−0.95,−0.78,+0.92,−0.83] (3.4)

The values of `1-norms of above δ vectors are as follows:

||δ0depth1||1 = 0.53, ||δ1depth1||1 = 4.52 (3.5)

The value of ||δ0depth1||1 is 0.53 which corresponds to the correct key bit (keyinput3 =

0) in the activated chip, while the value of ||δ1depth1||1 is 4.52 for the wrong key bit

guess. Thus, the `1-norm is significantly lower for the correct key bit guess compared

to the wrong bit guess. However, as stated previously, a single input vector might

lead to erroneous determination of a targeted key bit due to the effect of noise in

the power sample. Therefore, the adversary should consider larger values of m to
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increase the confidence of successful key bit retrieval. For RLL locked apex2 enc05

netlist, m = 5 was seen to be sufficient for various runs of circuit simulations with

different randomly generated input vectors and targeting various logic depths.

Following a similar approach, we targeted keyinput24 (correct value in acti-

vated chip being 1) driving a key-gate at logic depth 26 of the RLL locked apex2 enc05

netlist as shown in Table 3.2. In Fig. 3.2, we plot the power traces of the activated

chip (black), simulated power traces for correct key guess (green) and wrong key

guess (red) at logic depth 26 due to applications of two random input vectors to

the circuit. It is to be noted that when the adversary targets key-gates in nth

logic depth, then all the key inputs to key-gates at lower logic depths have already

been retrieved. In other words, the attack window marks the boundary between the

determined and undetermined sets of key-gate inputs in the netlist. Therefore, while

targeting keyinput24 at logic depth 26, we assume all the key inputs to key-gates at

any prior logic depth have been successfully determined starting from the key-gates

at the very first logic depth. In this case also, we set m = 5 to obtain the following

δ vectors:

δ0depth26 = [+0.78,+0.81,+1.04,+1.17,+0.99] (3.6)

δ1depth26 = [−0.22,−0.19,+0.05,+0.17,−0.01] (3.7)

The `1-norms of above δ vectors are as follows:

||δ0depth26||1 = 4.80, ||δ1depth26||1 = 0.64 (3.8)

Like the previous case, the lower value of `1-norm (0.64) corresponds to the correct

key bit (keyinput24 = 1) of the activated chip, while higher value of `1-norm (4.80)

corresponds to the wrong key bit guess.
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Figure 3.2: Power profiles for two random input vectors applied to apex2 enc05 netlist

targeting gate operation xnor(keyinput24, n366) at logic depth 26 to recover keyinput24.
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Multiple key-gates at same logic depth: As outlined in the previous section,

if k key-gates are present in a logic depth, then we need to consider 2k number

of δ vectors are required to determine all the key inputs in the attack window.

For example, to retrieve key inputs keyinput1 and keyinput18 at logic depth 6 of

RLL locked apex2 enc05 netlist, we consider four δ vectors δ00depth6, δ
01
depth6, δ

10
depth6, and

δ11depth6 which correspond to the key 2-tuple (keyinput1,keyinput18) guesses (0, 0),

(0, 1), (1, 0), and (1, 1) respectively. Considering m = 5, we get the following δ

vectors:

δ00depth6 = [+1.20,+1.09,−1.21,+0.93,−1.14] (3.9)

δ01depth6 = [+0.20,−0.09,−0.21,−0.07,−0.14] (3.10)

δ10depth6 = [+0.20,−0.09,−2.21,−0.07,−2.14] (3.11)

δ11depth6 = [−0.80,−0.91,−1.21,−1.07,−1.14] (3.12)

The values of `1-norms of above δ vectors are as follows:

||δ00depth6||1 = 5.58, ||δ01depth6||1 = 0.72

||δ10depth6||1 = 4.72, ||δ11depth6||1 = 5.13 (3.13)

Of these `1-norms, the magnitude of ||δ01depth6||1 is minimum and corresponds to the

correct key 2-tuple (keyinput1,keyinput18)=(0,1) for the activated chip. Following

this procedure, multiple key inputs can be successfully determined for a particular

attack window when more than one key-gates are present at the targeted logic depth.

As evident, higher number of power traces corresponding to different inputs (higher

values of m) should be considered if the magnitudes of `1-norms for the correct and

wrong key bit guesses are separated by narrow margins.
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Table 3.3: Logic depths of apex2 enc05 netlist key-gates locked using SLL scheme

key-gate output net key-gate operation key input Logic Depth

n105$enc xor(keyinput0, n105) keyinput0 6

n118$enc xnor(keyinput1, n118) keyinput1 9

n128$enc xnor(keyinput2, n128) keyinput2 11

n119$enc xor(keyinput3, n119) keyinput3 11

n127$enc xnor(keyinput4, n127) keyinput4 9

pi16$enc xnor(keyinput5, pi16$inv) keyinput5 2

pi27$enc xnor(keyinput6, pi27$inv) keyinput6 2

n56$enc xor(keyinput7, n56) keyinput7 4

n67$enc xor(keyinput8, n67) keyinput8 4

pi23$enc xor(keyinput9, pi23) keyinput9 1

pi28$enc xor(keyinput10, pi28$inv) keyinput10 2

n63$enc xnor(keyinput11, n63) keyinput11 3

n68$enc xor(keyinput12, n68) keyinput12 4

n76$enc xnor(keyinput13, n76) keyinput13 2

n77$enc xnor(keyinput14, n77) keyinput14 4

n104$enc xor(keyinput15, n104) keyinput15 4

n110$enc xor(keyinput16, n110) keyinput16 12

n111$enc xnor(keyinput17, n111) keyinput17 14

n147$enc xor(keyinput18, n147) keyinput18 3

n208$enc xor(keyinput19, n208) keyinput19 5

n201$enc xnor(keyinput20, n201) keyinput20 28

n209$enc xnor(keyinput21, n209) keyinput21 7

n202$enc xnor(keyinput22, n202) keyinput22 30

n135$enc xor(keyinput23, n135) keyinput23 5

n136$enc xor(keyinput24, n136) keyinput24 7

n261$enc xor(keyinput25, n261) keyinput25 3

n120$enc xor(keyinput26, n120) keyinput26 13

n294$enc xnor(keyinput27, n294) keyinput27 30

n295$enc xor(keyinput28, n295) keyinput28 32

n95$enc xnor(keyinput29, n95) keyinput29 5

n124$enc xnor(keyinput30, n124) keyinput30 5
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3.2.3.2 TA attack against other schemes

The crux of our proposed TA attack is the exploitation of the power side-

channel information level-by-level to unlock the functionality of a chip. The presence

of the key-gates at various logic depths of the locked netlist enable the adversary to

determine the key inputs in an iterative manner by analyzing the power samples of

the activated chip for different inputs in an attack window. In literature, other logic

locking schemes such as Strong Locking Locking (SLL) [75], and Anti-SAT block

[108] have also been proposed. In [117], a DPA attack strategy against netlists

locked using RLL and SLL schemes has been outlined. Though the proposed DPA

attack retrieves a significant portion of the key for the RLL approach, the attack

could only resolve more than 50% of the key bits in only 25% of the benchmark

circuits considered. The main drawback of the DPA technique is key aliasing effect

which hinders the determination of correct key and becomes even more dominant

with an increase in ratio of key inputs to primary inputs in a logic cone. The

TA attack proposed in this work does not suffer from any such shortcomings as it

exploits the power sample instants pertaining to only an attack window and recovers

the key bits level-by-level.

(1) SLL scheme: The logic depths of various key-gates in apex2 enc05 netlist

encrypted using SLL scheme is shown in Table 3.3. It can be easily observed from

the table that the key-gates are located at various logic depths in this scheme also

and hence, the circuit susceptible to the proposed TA attack based deobfuscation

technique as outlined in section 3.2.2. We targeted keyinput9 (correct value in

69



activated chip being 0) driving a key-gate at logic depth 1 of the and set m = 5

to get the following δ vectors for apex2 enc05 benchmark netlist (locked using SLL

scheme):

δ0depth1 = [+0.09,+0.02,+0.10,+0.56,+0.06] (3.14)

δ1depth1 = [+1.09,−0.98,−0.90,+1.56,−0.94] (3.15)

The `1-norms of above δ vectors are as follows:

||δ0depth1||1 = 0.84, ||δ1depth1||1 = 5.47 (3.16)

As in previous case, the lower value of `1-norm (0.84) corresponds to the correct

key bit (keyinput9 = 0) of the activated chip, while higher value of `1-norm (5.47)

corresponds to the wrong key bit guess. Similar distributed patterns of key-gate

locations and successful `1-norm based key classifications were observed for other

MCNC and ISCAS85 benchmark netlists (locked using RLL and SLL schemes) as

well. Thus, though SLL based locking is highly resistant to the DPA attack outlined

in [117], such an obfuscation technique is still equally vulnerable to our proposed

TA attack like the RLL scheme.

(2) Anti-SAT scheme: The Anti-SAT block based logic locking technique [108]

comprises of two complementary point-function blocks and generates a wrong output

by flipping the output of the circuit for few inputs for every possible key combina-

tions, except for the correct key. Unlike the previous schemes, we observed that

that several key-gates are located at same logic depths when a netlist is locked

using Anti-SAT approach, and hence, applying the proposed TA attack based on

logic depth would require an impractical number of power trace templates due to
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Table 3.4: Arrival times at logic depth 1 of c432 OA4 netlist

key-gate input Arrival time key-gate input Arrival time

keyinput10 1.0091 keyinput14 0.9777

keyinput11 0.8558 keyinput15 0.9696

keyinput12 0.8731 keyinput16 0.8592

keyinput13 1.0482 keyinput17 1.1301

a large number of key guess combinations. For example, in Anti-SAT benchmark

netlist c432 OA4, 8 key-gates are present at logic depth 1 (see Table 3.5) However,

as stated in section 3.2.2.1, for a real chip the differences in arrival times of input

signals of gates located in the same logic depth will result in distinct time windows

of their switching activities, resulting in low number of key guess combinations to

be considered in an attack window. Let us consider an unit propagation delay of

logic gates with 10% variation in input arrival times (due to wire delays) for the

c432 OA4 netlist. In order to target the 8 key-gates located at logic depth 1, we

generated random numbers from a Normal distribution with mean 1 and standard

deviation 0.1, and obtained key input arrival times as shown in Table 3.4. Assuming

that an adversary is capable of collecting power traces with a resolution of 0.06 time

units, we set the attack window to the time range of (0.97, 1.03) units [denoted by

AW (0.97, 1.03)] to retrieve keyinput10 value. In this time window, the power traces

correspond to switching activities of key-gates with inputs keyinput10 (arrival time:

1.0091), keyinput14 (arrival time: 0.9777), and other non key-gates with arrival

times within the range considered. We set m = 5 to obtain the following arrival

time parameter based δ vectors for Anti-SAT locking scheme in the attack window
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Table 3.5: Logic depths of c432 OA4 netlist key-gates locked using Anti-SAT scheme

key-gate output net key-gate operation key input Logic Depth

G199gat$enc xor(keyinput0, AntiSATXOR) keyinput0 9

G203gat$enc xnor(keyinput1, G203gat) keyinput1 11

G296gat$enc xnor(keyinput2, G296gat) keyinput2 15

G348gat$enc xor(keyinput3, G348gat) keyinput3 19

G355gat$enc xnor(keyinput4, G355gat) keyinput4 19

G356gat$enc xnor(keyinput5, G356gat) keyinput5 19

G357gat$enc xnor(keyinput6, G357gat) keyinput6 21

G381gat$enc xor(keyinput7, G381gat) keyinput7 25

G386gat$enc xor(keyinput8, G386gat) keyinput8 25

G393gat$enc xor(keyinput9, G393gat) keyinput9 25

G1gat$enc1 xnor(keyinput10, G1gat) keyinput10 1

G56gat$enc1 xor(keyinput11, G56gat) keyinput11 1

G17gat$enc1 xnor(keyinput12, G17gat) keyinput12 1

G47gat$enc1 xnor(keyinput13, G47gat) keyinput13 1

G1gat$enc2 xnor(keyinput14, G1gat) keyinput14 1

G56gat$enc2 xnor(keyinput15, G56gat) keyinput15 1

G17gat$enc2 xnor(keyinput16, G17gat) keyinput16 1

G47gat$enc2 xnor(keyinput17, G47gat) keyinput17 1

gt21$func xnor(keyinput18, gt21) keyinput18 6

gf21$func xnor(keyinput19, gf21) keyinput19 6

gt12$func xnor(keyinput20, gt12$struct) keyinput20 4

gf12$func xor(keyinput21, gf12$struct) keyinput21 4

gt12$struct mux(keyinput22, G27gat, gt12) keyinput22 3

gt11$struct mux(keyinput23, gt11, G146gat) keyinput23 3

gf12$struct mux(keyinput24, G196gat, gf12) keyinput24 3

gf11$struct mux(keyinput25, gf11, G34gat) keyinput25 3
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AW (0.97, 1.03), corresponding to the key 2-tuple (keyinput10,keyinput14):

δ00AW (0.97,1.03) = [+0.94,+0.83,+0.90,−0.96,−0.80] (3.17)

δ01AW (0.97,1.03) = [−0.06,−0.17,+1.90,−1.96,+0.20] (3.18)

δ10AW (0.97,1.03) = [−0.06,−0.17,−0.09,+0.04,+0.20] (3.19)

δ11AW (0.97,1.03) = [−1.06,−1.17,+0.90,−0.96,+1.20] (3.20)

The values of `1-norms of above δ vectors are as follows:

||δ00AW (0.97,1.03)||1 = 4.43, ||δ01AW (0.97,1.03)||1 = 4.29

||δ10AW (0.97,1.03)||1 = 0.57, ||δ11AW (0.97,1.03)||1 = 5.29 (3.21)

Among the `1-norms of δ vectors considered, the magnitude of ||δ10AW (0.97,1.03)||1 is

minimum (0.57) and it corresponds to the correct key 2-tuple (keyinput10, keyinput14)

= (1, 0) for the activated chip. Similar results were obtained for other Anti-SAT

locked benchmark circuits as well.

3.3 Conclusion

In this chapter, we presented a template analysis based side-channel attack

technique to deobfuscate the functionality of an IC locked using standard logic

obfuscation schemes. The results of our experiments reveal that RLL, SLL, and

Anti-SAT based locking schemes are all vulnerable to the proposed template analysis

attack with a limited number of power side-channel traces per attack window. Our

attack strategy exploits the fact that different key-gates of a locked netlist are

located at different depths with respect to the arrival times of input signals, and
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thus enabling the side-channel adversary to unlock the functionality of the circuit in

a level-by-level manner. In practice, if the effect of noise is more significant in the

collected power traces, then the adversary may need to consider more sophisticated

metrics (such as Pearson’s correlation coefficient) for successful template matching.
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Chapter 4: Architecture-level

Obfuscation

4.1 Introduction

Till date, combinational hardware obfuscation strategies have been mostly

proposed at the circuit-level to thwart IC supply chain attacks. The strong security

guarantees provided by such circuit-level logic locking schemes do not necessarily

ensure acceptable IP security at the architecture-level of design abstraction. To

the best of our knowledge, there is no available study which analyzes the resiliency

of any obfuscated processor architecture (locked using standard circuit-level logic

obfuscation techniques) to existing IC supply chain attacks. In this chapter, we first

outline a SAT formulation based attack methodology [97, 89] against an obfuscated

many-core Graphics Processing Unit (GPU) netlist to highlight the limitations of

circuit-level locking approaches for protecting architecture-level IP. Unlike conven-

tional attacks on logic locking schemes, an adversary can launch our proposed attack

without any activated hardware and hence, this attack poses a major threat in the

supply chain of such processor designs. Subsequently, we propose a couple of efficient

architecture-level countermeasures which are highly resilient to such attacks. The

main contributions of the chapter are as follows:
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• We outline a technique to mount a SAT formulation based attack against a

GPU core’s locked pipelined netlist to approximately deobfuscate its func-

tionality without any activated chip requirements. Our experiments on a real

GPU testbed using NVIDIA’s SASSIFI framework reveal that more than 95%

of the application runs on such an approximately unlocked GPU result in

correct outcomes with 95% confidence-level and 5% confidence-interval.

• To counter the proposed attack, we develop a countermeasure called cache

locking which locks the cache block replacement policy in a GPU for wrong

cache-key. This results in significant performance degradation of applications

as evident from our experimental results, thus making the GPU hardware

inefficient for fast application execution.

• We also develop a hardware/software co-design based obfuscation framework

to provably safeguard the IP of hardware accelerator designs against SAT as

well as removal/bypass type of attacks while still maintaining high output

corruptability for applications.

4.2 Background

Modern GPU architectures have been developed to efficiently exploit the data-

level parallelism in applications ranging from real-time 3D visualization to high-

performance scientific computing. In this work, though we focus on widely used

NVIDIA GPUs [10] to outline our proposed attack and defense strategies, the

analyses are equally applicable to other processor architectures as well.
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4.2.1 Overview of GPU architecture

In a NVIDIA GPU, blocks of threads are executed in Streaming Multipro-

cessors (SMs), which primarily consists of groups of streaming processors (SPs) or

CUDA cores. The unit of execution flow in the SM is a collection of 32 threads, called

warp. The threads in a warp follow the Single Instruction Multiple Thread (SIMT)

mode, i.e., they execute the same instruction sequence but with different data. SPs

are the primary computing elements of GPUs and corresponds to cores that perform

scalar calculations. An SM, in addition to SPs, consists of other different types

of functional modules such as load/store (LD/ST) units, Special Functional Unit

(SFU), on-chip memory (instruction cache, configurable shared memory/ L1 cache,

register files) and instruction control units (dispatcher, scheduler). In Fig. 4.1, we

present a structural overview of an NVIDIA GPU architecture. In this work, we

propose an attack against a locked GPU netlist to retrieve an approx-key and study

the application-level impact of error propagation (due to the use of approx-key)

utilizing NVIDIA’s SASSIFI framework [44] on a real GPU.

4.2.2 Instrumentation of GPGPU applications

In this work, we focus on general-purpose GPU (GPGPU) applications based

on the widely adopted NVIDIA’s Compute Unified Device Architecture (CUDA)

framework [9]. The CUDA programming framework adopts the SIMT model in

hierarchies consisting of kernels, blocks, and threads. The CPU spawns the multi-

threaded kernels onto the GPU, which subsequently allocates the blocks of threads to
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Figure 4.1: Block diagram of an NVIDIA GPU architecture

available SMs using internal schedulers. The parallel programs written in high-level

language such as CUDA is compiled by a front-end compiler (NVIDIA’s NVVM)

to generate intermediate code in a virtual ISA called parallel thread execution

(PTX). PTX abstracts the GPU as a data-parallel computing platform, but the PTX

code does not run directly on the GPU. Another backend compiler optimizes and

translates the PTX instruction in native machine code by either using ahead-of-time

compilation of compute kernels via PTX assembler (ptxas) or using just-in-time

compiler in the display driver to compile PTX representation of kernel available in

binary format. In this work, we used NVIDIA’s SASSIFI framework [44] to study

the application-level error impact in a real GPU due the use of learned approx-key

to unlock its core functionalities. The SASSI-based Fault Injector (SASSIFI) frame-

work utilizes ahead-of-time backend compilation as the SASSI instrumentation is

embedded in ptxas. SASSI is implemented as the final compiler pass in ptxas and

uses nvlink to link instrumented applications with instrumentation handlers. The
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Figure 4.2: Application outcome vs. probability of single inst. being faulty for (i) datapath

errors and (ii) controlpath errors in core

SASSI based application instrumentation requires two things to be specified: (i)

where to insert instrumentation and (ii) what information to extract from each

instrumentation site.

4.3 Proposed Attack on Obfuscated GPU

4.3.1 Obfuscation of GPU cores

In the inset of Fig. 4.1, we outline the structure of an NVIDIA GPU archi-

tecture’s SP module which primarily consists of inorder integer and floating point

pipelines. The SPs or CUDA cores are the most abundant computational elements

in a GPU and are primarily responsible for its high throughput performance. Hence,

as a natural choice, we assume that the designer inserts key-gates in the gate-level

netlist between various SP pipeline stages to lock the overall functionality of the

GPU, following the steps of any standard combinational logic locking approach

[82, 75, 108, 115]. We also consider that all the SP modules in the GPU are locked

using a single key so that the layouts of the cores are identical, thus having optimal
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fabrication cost. Moreover, the use of separate keys for different cores will lead to

an impractical key size as the number of cores in modern GPUs can be very large

(for example NVIDIA’s GeForce GTX Titan Z consists of 5760 CUDA cores).

In a logic obfuscated SP pipelined netlist, wrong inputs to key-gates will

result in errors in outcomes of threads which utilize such faulty key-gates for their

computations. Depending on locations of faulty key-gates and data, such errors will

have varying impacts on multithreaded kernel executions in SIMT mode as follows:

(i) Datapath error: A wrong key bit input to a key-gate located in the datapath

of pipeline will have an error propagation effect only in the fan-out cone of the

faulty key gate. In other words, such a fault will have thread localized effects in

computations, i.e., impacting only the threads which execute on that erroneous

datapath.

(ii) Controlpath error: In SIMT mode, the decoder module of a SM decodes

the opcode for all the active threads in a warp and individual threads execute

the same decoded operations on different SPs or cores but with different data

operands. Hence, a wrong key bit input to a key-gate located in the decoder

module or controlpath will have an error propagation effect in the datapaths of

all the active threads in a warp. Hence, controlpath errors will have warp wide

effects in computations.

We consider a simple multithreaded sum application to study the effect of dat-

apath and controlpath errors on an actual application-level output using NVIDIA’s

SASSIFI framework (more details in section 4.3.3). Based on the key inputs chosen,

we will have different probabilities of errors occurring in instructions. In Fig. 4.2,
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we illustrate the percentage of the application outcomes (out of several runs) being

faulty (red) or correct/masked (green) due to a single randomly selected instruction

being executed faulty (with different probabilities) for datapath and controlpath

errors. From the plots it is evident that even error in a single thread due to a wrong

key input may lead to faulty application outcomes. However, we observed that the

difference in the number of faulty outcomes for datapath and controlpath errors is

significant when the probability of an instruction being faulty is high, where as the

difference becomes quite negligible with a decrease in the probability. We observe

this effect on the experimental results for benchmark applications also as detailed

in section 4.3.3. Hence, a smartly selected approx-key which injects very small error

in instructions can indeed result in very accurate application outcomes despite not

unlocking the hardware in its entirety.

As NVIDIA GPU’s SP pipeline architecture/netlist details are proprietary,

we instead consider a locked netlist of standard MIPS 5-stage inorder pipeline as

substitute of the GPU netlist to perform our experimental analyses. We obfuscated

the the control and data paths of MIPS pipeline using state-of-the-art Anti-SAT

based logic locking scheme [108] integrated with Strong Logic Locking [76].
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4.3.2 Attack on locked GPU cores

4.3.2.1 Attack Model

In conventional SAT attack [97], in addition to the netlist, full scan-chain

access to an activated hardware is also required to deobfuscate a locked hardware.

This is because the formulation of an iterative SAT attack utilizes the input-output

truth tables of each of the locked modules. However, this is a very strong assumption

as such privilege is not available in practice. First, when the untrusted foundry is

trying to unlock a chip, the actual activated chip may not have been marketed yet.

Second, even if they are in possession of the unlocked chip, the attacker needs to

have full scan chain access into the internal combination modules. The designer

who wishes to secure his design may just disable on-chip test structures before

marketing the unlocked chip. In our attack model, we allow the adversary

to only possess a locked netlist, and do not grant her privileges to have

full scan chain access to internal pipeline latches of SP modules in an

activated chip.

4.3.2.2 SAT formulation based attack

The primary challenge to deobfuscate the functionality of a locked SP netlist

using conventional SAT attack approach [97] is the lack of knowledge of internal

pipeline latch contents as per our attack model. In this section, we demonstrate

how an adversary can still successfully devise an iterative SAT formulation based

attack to effectively learn the key without an activated GPU hardware. The crux of
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the ensuing attack strategy is the observation that the internal pipeline latches are

only responsible for performance speed-up by dividing the long latency single-cycle

datapath into low latency multi-cycle pipelined datapath. These pipeline registers

play no role in determining the overall functionality of the pipelined netlist. Hence,

for the sake of analyzing the functionality of the locked SP module, the adversary

can model an equivalent netlist by transforming the multi-cycle pipelined datapath

to a single-cycle datapath design. This equivalent netlist can be constructed easily

by logically removing the pipeline latches and then simply connecting the input wires

to corresponding output wires of the removed latches as shown in figure 4.3. The

outcome of this transformation is the conversion of a locked sequential SP netlist

to a functionally equivalent locked combinational SP netlist, which we analyze next

using an iterative SAT formulation. Before we outline the details of our attack

methodology, we define the following terminologies for convenience:

(i) flock: Functionally equivalent locked combinational SP netlist (ii) PI: Primary

input to the locked SP netlist, consisting of opcode contents, source and destination

register addresses, etc. as obtained from instruction binary (details later)

(iii) PO: Primary output of the locked SP netlist, consisting of destination register

contents (for R-type or I-type MIPS instructions) or jump/branch address (for J-

type MIPS instructions). From the locked netlist, the functional relationship among

PI, key-gate inputs (K) and PO, i.e., PO = flock(PI,K) is known to the attacker.
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Figure 4.3: Multi-cycle to single cycle datapath transformation of locked pipelined netlist

The primary difference between conventional IC obfuscation and the obfusca-

tion of a GPU core netlist is that the correct PI − PO pairs are not known in the

former case without an activated chip, whereas in the later case, the attacker can

deduce the correct PI − PO pairs for a SP netlist as explained below:

• The PI corresponding to each instruction is obtained by relating the human

readable assembly instructions to binary information of the assembled appli-

cation. For example, in case of NVIDIA GPUs, it is possible to successfully

extract the PTX or SASS from a cubin or executable using the cuobjdump

tool in CUDA Toolkit [9]. In addition, the attacker can utilize the NVIDIA’s

Nsight Visual Studio Edition to correlate between lines of CUDA C, PTX, and

SASS [11]. Therefore, using the publicly available instruction set architecture

(ISA), the adversary can determine PI for every instruction.
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• Again, PO for each instruction is obtained from the corresponding PI and the

ISA information because the PO depends on the result of operation (known

from ISA) carried out on the source register contents (known from PI).

Therefore, the adversary has prior knowledge of correct PI − PO pairs for

every instruction of a compiled application being executed on a GPU core. For

example, let us consider a simple assembly-level program fragment executed by a

thread on a SP:

. . .

I1: ADD R1,R2, R3 //R1=R2 +R3

I2: ADD R4,R1, R3 //R4=R1 +R3

I3: MUL R5,R2, R4 //R5=R2 ∗R4

I4: SUB R3,R5, R4 //R3=R5−R4

. . .

Let us suppose that the initial contents (prior to instruction I1 execution) of

registers R1,R2,R3,R4, and R5 are 1, 2, 3, 4 and 5 respectively. In instruction I1,

the contents of registers R2 and R3 are added and written to register R1. Hence,

using the PI information the adversary can easily calculate the expected value at

the destination register, i.e., PO:[R1]=[R2]+[R3]=2+3=5. Now that the correct

PI −PO pair is known for each instruction, it is equivalent to having in possession

an unlocked chip. Hence, SAT formulation based attack strategies [97, 89] can be

utilized which use this information to iteratively identify distinguishing input-output
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(DI) pairs. As noted in [97], each DI pair eliminates a subset of unique wrong keys

for that SAT iteration, till we converge to the correct key. We can write an iterative

SAT formulation for locked SP netlist as follows:

Fi :=C(P̃I, K̃1, ˜PO1) ∧C(P̃I, K̃2, ˜PO2) ∧ ( ˜PO1 6= ˜PO2)

(

j=i−1∧
j=1

C(P̃Idj , K̃1,
˜POd

j )) ∧ (

j=i−1∧
j=1

C(P̃Idj , K̃2,
˜POd

j ))

(4.1)

where, Fi denotes the ith SAT iteration formulation, C(P̃I, K̃, P̃O) is the SAT

formula for a locked circuit and (P̃I
d
{1...i−1}, P̃O

d
{1...i−1}) are the distinguishing input-

output pairs that are found in previous i − 1 iterations. Following such an attack

strategy, if the adversary finds the correct key used to lock the original synthesized

SP netlist, then all such PO responses for different instructions will be consistent

with corresponding correct PO responses. In context of the aforementioned program

fragment, the correct key will result in the contents of registers R1, R2, R3, R4, R5

being updated with values 5, 2, 8, 8, 16 respectively just after the execution of in-

struction I4. To make the process of finding new distinguishing input-output pair

more efficient, the adversary may develop customized microbenchmark applications

consisting of a targeted set of operations carried out by the instructions.

To counter the feasibility of such a SAT attack, point-function based obfus-

cation approaches like Anti-SAT [108] and SARLock [115] have been proposed.

Though the point-function based obfuscation scheme makes the SAT solving time

exponential to obtain the correct key, a recent technique called the AppSAT attack

[89] can retrieve an approx key to unlock the functionality of such a locked netlist for
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almost all the primary inputs. In section 4.3.3, we present the results of the AppSAT

attack against an Anti-SAT block based obfuscated netlist of MIPS pipelined design,

which we considered as a functional substitute of the GPU core’s netlist.

4.3.3 Experimental Results: AppSAT attack

The datapath and controlpath of the MIPS pipelined netlist were obfuscated

using Anti-SAT scheme [108] integrated with Strong Logic Encryption (SLE) [75].

We used 5% XOR/XNOR key-gate overhead for locking the original synthesized

netlist using SLE, and used additional key-gate inputs for obfuscation with Anti-

SAT block, total key-size being 364 bits. Subsequently, we launched the AppSAT

attack on the functionally equivalent locked single-cycle netlist (as outlined in section

4.3.2.2) with following parameters: a total of 5, 000 iterations of the SAT attack

was performed, and at each iteration 10, 000 randomly generated patterns were

queried to estimate the error rate E , storing the distinguishing input/output pairs as

constraints for successive iterations. In figure 4.4, we show the decreasing trend of E

with the progress of SAT attack iterations. The approx key returned by the AppSAT

attack consists of inputs to functional key-gates (inserted using SLE scheme) and

key inputs for Anti-SAT block. We observed that there was an exact match between

the portions of the original key and the approx key that correspond to the functional

key inputs, while there were mismatches in the portions of keys that correspond to
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Figure 4.4: Error rate (E) vs SAT attack iterations

the Anti-SAT block key-gates. However, as the output corruptibility of Anti-SAT

block is very low, it has very limited effect on overall functionality retrieved by the

approx key.

4.3.3.1 Experimental framework

We utilized the NVIDIA’s SASSIFI framework [44] to capture errors on the

application-level manifested due to the use of the retrieved approx key used to

approximately unlock the inorder pipelined core netlist. As the SASSIFI tool injects

errors in the architectural state, the outcomes of the injections are not dependent

on specific GPU used, provided the binary file is not modified. We used NVIDIA’s

Maxwell architecture based GeForce GTX950M, CUDA 6.5 toolkit, and display

driver version 352.63 for our experiments. We used 5 applications from Rodinia

benchmark suite (version 2.3) [34] which include diverse workloads.
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4.3.3.2 Error probability of faulty instructions

We applied the AppSAT attack as outlined in subsection 4.3.3 to deduce an

approx-key for unlocking the pipelined cores of a GPU after converting the pipelined

design to a functionally equivalent single-cycle one. For every application, we

first noted the number of GPU assembly-level instructions that write to a General

Purpose Register (GPR), N = #instGPR. In order to estimate the number of GPR

type instructions which are faulty for a benchmark application, we simulated the

approximately unlocked SP core netlist with rN number of inputs. These inputs had

the same opcode set as the benchmark instructions thereby capturing the spirit of the

application instruction mix. Note that each benchmark has a different number and

combination of instructions. Hence the error rate of each benchmark when executed

on an approximately unlocked core could be different. For our experiments, we set

r = 20 which resulted in simulating around hundreds of millions of inputs to the

approximately unlocked core. Even for such a large test case, we found no error in

PO values when compared with the correct responses for each instruction that we

simulated. This illustrates the effectiveness of approximate unlocking the GPU chip

using our proposed technique which does not require an unlocked chip. While our

AppSAT based approximately unlocked GPU caused no measurable errors, we still

wish to analyze the worst case scenario where 1 out of rN instructions are faulty to

capture the application-level impact of the retrieved approx-key, though in practice

the error probability will be even lower. We assumed that the number of faulty GPR

instructions executed due to the use of approx-key follows Binomial distribution with
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Table 4.1: Application-level impact of datapath errors due to approx-key

Application
Outcomes of injections (percentage)

Masked DUEs Pot. DUEs SDCs

BFS 95.57 1.82 0.00 2.60

gaussian 99.47 0.52 0.00 0.00

hotspot 97.92 0.00 0.78 1.30

nw 96.09 1.30 0.00 2.60

pathfinder 95.57 2.34 0.00 1.82

error probability EAK = 1/rN (because we assume that 1 out of rN instructions is

faulty). Therefore, the probability that k number of GPR instructions are executed

faulty can be expressed as follows:

P (X = k) =

(
N

k

)
EkAK(1− EAK)N−k (4.2)

As EAK << 1 and N >> 1, we get P (X = 1) ' NEAK = 1/r = 0.05. It is to be

noted that the probability that multiple GPR instructions will be executed faulty ,

i.e., P (X >= 2), due to the use of approx-key is practically negligible. It is to be

noted that in an actual scenario, the error propagation effect due to an approx-key

will be restricted to only a few number of low probability netlist paths, and hence,

the expected application-level error impact is even lesser. In our experiments, we

randomly selected a GPR type instruction, to estimate effect of error propagation

for different error injection sites.
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Table 4.2: Application-level impact of controlpath errors due to approx-key

Application
Outcomes of injections (percentage)

Masked DUEs Pot. DUEs SDCs

BFS 96.09 1.82 0.00 2.08

gaussian 98.41 0.52 0.00 1.04

hotspot 97.92 0.00 0.78 1.30

nw 95.31 1.82 0.00 2.86

pathfinder 95.83 1.30 0.26 2.60

4.3.3.3 Error impact on benchmark applications

Based on the analysis in previous subsection, we only considered the scenario

where a single GPR type instruction is faulty with a probability of p = 0.05 for

our experiments. For studying the application-level impact of errors due to the

use of approx-key in data path and control path key-gates of the core netlist, we

considered these cases separately. We used the SASSIFI framework to run error

injections on 5 Rodinia benchmark applications [34] in Instruction Output Value

(IOV) mode. In IOV mode, SASSIFI uses instrumentation handlers to inject errors

into the destination register values of an instruction after they are executed. We

performed 384 error injection runs for each of our application workloads so that the

injection results have maximum error bars of 5% at 95% confidence level. In each

error injection run, we randomly selected a dynamic instruction among all the GPR

type instructions and either (i) randomly updated the destination register value of
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a thread for studying the impact of a datapath error or (ii) randomly updated all

the destination register values of all the threads in a warp for studying the impact

of a controlpath error. The results of the injections were categorized [44] as follows:

(i) Masked: No error symptom detected and the application output with fault

injection run is same as the original error free output.

(ii) DUEs: The application terminated with a non-zero exit status or application

runtime crossed the timeout threshold.

(iii) Potential DUEs: Symptoms of unsuccessful kernel execution (detected by

comparison of kernel exit status with cudaSuccess), explicit application error mes-

sages can be found in stderr/stdout.

(iv) SDCs: Application execution terminates without any crashes, hangs, or failure

symptoms but output file/stdout is different compared to fault-free run.

In Tables 4.1 and 4.2, we report the results of such injection runs on the

benchmark applications for datapath and controlpath errors. As evident from the

statistics of the resulting outcomes, almost all of the injected errors are masked (95%

or more depending on applications), implying that the approx-key is good enough

to deobfuscate the functionalities of the locked SP or core pipelines such that there

is very low effect of gate-level error propagation impact at the application-level. As

highlighted in Fig. 4.2 earlier, the difference in erroneous application outcomes is

negligible for datapath and controlpath errors due to a very low probability of an

instruction being faulty.
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4.4 Cache Locking Countermeasure

4.4.1 Basic Idea

The crux of the our proposed attack against the locked SP netlist is the

iterative elimination of wrong keys based on evaluation of new DI pairs which satisfy

the SAT formulation. The primary motivation behind our proposed cache locking

countermeasure is that a wrong cache-key will result in slowdown of the GPU hard-

ware even though it exhibits correct functionality, and thus being resistant to SAT

formulation based attacks (including AppSAT [89]). The cache block replacement

protocols of modern many-core GPUs are proprietary and hence, not known to an

untrusted foundry. For example, several research related to performance analysis of

NVIDIA GPUs has led to the conclusion that the cache block replacement protocols

is neither of the standard ones commonly studied [65]. Therefore, we analyzed the

effect of obfuscating cache block replacement policy to lock the overall performance

of the GPU for wrong cache-key guesses. It is to be noted that locking the cache

block replacement policy does not alter the expected (PI, PO) pairs corresponding

to the SP units as the overall GPU still performs the correct functionality with

an approx-key for the cores (retrieved using our proposed attack), but the overall

application performance will suffer significantly due to drops in cache hit rates with

a wrong cache-key. This is due to the fact that a wrong cache-key will lead to

higher number of data fetch requests from slow off-chip memory which require a

significantly large number of additional clock cycles [65].
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In this work, to demonstrate our countermeasure, we assume that the cache

replacement policy in place is least recently used (LRU). However, the proposed

cache locking scheme can be applied to any other replacement policies as well and

will continue to be immune to SAT type attacks. In order to lock the cache block

replacement policy, we considered a hardware implementation of standard clock

algorithm [95] which approximates LRU policy by augmenting an extra clock bit

to a cache block to keep track of whether or not a block was accessed recently. If

the ith cache block was recently accessed the corresponding clock bit (clock bit(i))

is set to 1, whereas, on the other hand clock bit(i) is reset to 0 if the block wasn’t

accessed recently. The cache blocks are assumed to be arranged as a circular queue

with a current pointer or “clock hand” which cycles through this queue on every

memory access. If the clock hand is currently pointing to clock bit(i) = 1, then as

it moves to the next cache block the clock bit(i) is reset to 0. The status of clock

bit of ith cache block is updated in a periodic manner as follows:

• On a cache hit, the clock bit(i) is set to 1.

• On a cache miss, the clock hand moves to next available ith block with

clock bit(i) set to 0 and replaces it by a data block fetched from lower memory

hierarchy, followed by setting of clock bit(i) to 1 to designate the recently

written cache block.

To implement the Cache Locking scheme, we modified the aforementioned

standard clock algorithm to a cache-key dependent block replacement policy.

As per the modification, the ith cache block will have an associated clock bit
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(clock bit(i,Ki), Ki ∈ {0, 1}), which is set to Ki if it was recently accessed, whereas

it is reset to Ki if the block wasn’t accessed recently. Now if the input key matches

the correct key then this approach is basically equivalent to the aforementioned LRU

policy. However, if the input key bit for ith cache block mismatches it’s corresponding

actual key bit, we invert this policy of setting and resetting clock bit(i,Ki). This

would end up scrambling the designation of the least recently accessed status for

those cache blocks with wrong key-bit inputs. For every wrong key-bit (Ki) guess

there will be either of the two faulty scenarios for the ith cache block: (i) instead

of the ith cache block, some other jth cache block will be replaced from the cache

whose associated clock bit clock bit(j,Kj) is set to Kj (ii) instead of replacing

some other cache block with clock bit(j,Kj) is set to Kj, the ith cache block is

replaced. Therefore, this will result in drops of cache hit rates as such faulty cache

block replacements will not be suitable for applications utilizing the cache locality

principles. To have a practically reasonably key-size, the designer can also associate

a single key-bit to multiple cache blocks.

This entire cache locking scheme is simple enough to be implemented in a

lookup table (LUT) which can be configured after fabrication at test time by the

designer. Hence, the attacker cannot simply remove the proposed countermeasure

implementation since she is not aware of the locking mechanism as well as the original

cache block replacement policy. In section 4.4.2, we present the experimental results

highlighting the slowdown of applications due to cache locking countermeasure.
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Table 4.3: Benchmark apps slowdown due to Cache Locking (CL) with δhit rate=0.5,

αmem = 0.5, and #penalty=500

Application #inst(∗106) #mem(%)
Runtime (secs)

slowdown
toriginal tCL

BFS 424.2 12 9.37 19.43 2.07

gaussian 246.3 5 0.80 3.30 4.13

hotspot 440.1 7 13.44 19.58 1.46

nw 123.2 32 0.79 8.55 10.82

pathfinder 436.9 18 4.23 19.54 4.62

Table 4.4: BFS slowdown due to Cache Locking (CL) vs. δhit rate with penalty cycles

(#penalty)=500 and αmem = 0.5

δhit rate

Runtime (secs)
slowdown

toriginal tCL

0.3 9.37 15.33 1.64

0.4 9.37 17.41 1.86

0.5 9.37 19.49 2.08

0.6 9.37 21.35 2.28

0.7 9.37 23.35 2.49

0.8 9.37 25.37 2.71
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Table 4.5: BFS slowdown due to Cache Locking (CL) vs. penalty cycles (#penalty) with

δhit rate = 0.5 and αmem = 0.5

#penalty
Runtime (secs)

slowdown
toriginal tCL

400 9.37 17.34 1.85

450 9.37 18.35 1.96

500 9.37 19.43 2.07

550 9.37 20.50 2.19

600 9.37 21.40 2.28

4.4.2 Experimental results: Cache Locking

We denote the drop in cache hit rate (δhit rate) due to wrong cache-key guess

as: δhit rate = hroriginal − hrfaulty, where, hroriginal and hrfaulty denote the cache

hit rates corresponding to the designer’s intended block replacement policy and

attacker’s faulty block replacement policy respectively. As an outcome of such a

faulty policy, the application will incur additional clock cycles (#add cycles) which

is estimated as follows:

#add cycles = δhit rate ∗ αmem ∗ (#mem) ∗ (#penalty) (4.3)

where, #mem denotes the number of memory access instructions (load or store) in

the GPU assembly-level, #penalty is the number of penalty cycles to access slower

off-chip memories, and αmem corresponds to fraction of memory access instructions

executed in parallel across multiple GPU cores. The value of the parameter αmem will
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depend not only on the application workloads but also on the number of GPU cores

as well as on the thread scheduling policies. To evaluate the effect of cache misses

on an actual NVIDIA GPU, we modified the CUDA codes of the applications to

introduce #add cycles number of sleep cycles in the device. In Table 4.3, we report

the relative slowdowns of various benchmark applications for a wrong cache-key

setting parameters δhit rate = 0.5, αmem = 0.5, and #penalty = 500. It can be

observed that the proposed Cache Locking countermeasure results in slowdowns

ranging from factors of 1.46 to as high as 10.82 depending on applications. In

Table 4.4, we report the variations in slowdowns of BFS application due to wrong

cache-key with δhit rate. The results from this table show that even if the attacker

guesses a significant fraction of the cache-key correctly, resulting in small δhit rate

(say 0.3), then also there is a notable slowdown (by a factor of 1.64) of the BFS

application. In Table 4.5, we report the variations in slowdowns of BFS application

due to wrong cache-key with #penalty (ranging over 400−600 clock cycles) in order

to capture the impact of cache locking scheme across different GPU architectures

(with different off-chip memory configurations [65, 9]). As evident from the trends in

the experimental results (see Table 4.3), the impact of the proposed countermeasure

will become even more prominent for practical applications having large number of

memory references (#mem), thus defeating the efficient utilization of the GPU for

high performance computing purposes for wrong cache-key.
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4.5 Hardware-Software Co-Design Based Accelerator Ob-

fuscation

The ever increasing demand for computational power by compute intensive

applications such as speech recognition, computer vision, natural language process-

ing, search ranking and other DNN applications have made architectural innovations

crucial to achieve high performance and energy efficiency. GPUs as well as several

domain specific hardware accelerators such as Google’s Tensor Processing Unit

(TPU) [50] and Diannao [37] have been developed which provide higher throughput

while consuming much lower energy compared to general purpose processors. In this

section, we propose a Hardware/software co-design based Accelerator Obfuscation

(HSCAO) approach which renders an hardware accelerator design completely useless

(unlike cache locking which only degrades performance) for running any application

without proper activation by the designer post-fabrication. Also we would like to

highlight that HSCAO scheme is applicable to any accelerator architecture, including

the ones which do not have cache memory. In this work we use the TPU framework

for the purpose of illustration, however our ideas are equally applicable to other

accelerator designs as well.

Google TPU: In Google TPU framework [50], the host CPU sends instructions

over PCIe bus to an instruction buffer for the TPU to execute rather than fetching

them itself. The main computational component called the Matrix Multiply Unit

(MMU) consists of 256X256 MACs which performs 8-bit multiply-and-adds on

signed/unsigned integers. The inputs to the MMU are provided by weight FIFO
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and unified buffer (UB) components. The MMU outputs 16-bit products which

are collected in the accumulator unit, which are then passed on to the activation

unit. Finally, the results are written back to UB. A DMA controller transfers data

between the CPU host memory (HM) and UB.

4.5.1 Threat Model

We consider that an attacker in the untrusted foundry setting has access to

the following three components for analysis:

• An activated hardware accelerator chip bought from the open market, used to

obtain the correct input-output responses.

• The gate-level netlist of the hardware accelerator chip reverse-engineered from

layout level details available in GDSII file.

• The hardware accelerator’s software development kit (SDK) and details of its

instruction set architecture (ISA).

It is to be noted that availability of the first two components have been

assumed in several related works [75, 76, 82, 97, 108]. In addition, we also consider

that the adversary has access to the SDK of the hardware accelerator as well as its

ISA. This is a reasonable assumption due to the following reasons:

(i) The SDKs of most commercially available hardware accelerators are freely

available for download (e.g., Nvidia’s CUDA SDK [9]). An attacker can use such

an SDK to generate executable corresponding to some developed microbenchmark
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application. This enables her to observe correct input-output response pairs from

the activated chip by mapping the instruction binaries to the corresponding register

contents [31].

(ii) The operation of any processor or accelerator hardware is guided by its

ISA. In this work, we assume a hardware accelerator design which is based on

an open-source ISA standard (i.e., instruction formats and opcodes are known).

While some conventional ISAs have been proprietary, recent works have touted

the benefits of making the ISA open source [19]. The industry would benefit by

making the ISA free as it will enable affordable processor designs to expand the IoT

framework. Moreover, open-source ISA doesn’t imply that commercial proprietary

processor designs cannot use such an ISA. This is due to the fact that the though

the ISA is standardized, the chip designer decides the micro-architectural features

to be implemented as well as the logical and physical design approaches [12]. For

example, Intel 64 processors [7], Codix-Bk3 [3] use open ISAs.

4.5.1.1 Root of Trust

Conventional locking approaches [82, 75, 118] rely exclusively on hardware

keys to obfuscate a design. However, most hardware accelerators comprise of pro-

prietary SDKs [9] without which these accelerator chips cannot be used. These

SDKs represent substantial software development efforts and are developed by the

design house (generally not exposed to the untrusted fab). The details of an SDK

implementation can be easily hidden from users/fabs using software obfuscation

101



techniques [38]. For example, DexGuard tool [4] provides state-of-the-art software

obfuscation features to protect an SDK against reverse-engineering. As per our

threat model, the attacker can only use such an SDK as a black box without having

access to its internal details. It is quite reasonable to assume that the attacker

doesn’t have the capability to develop a substitute SDK utilizing the GDSII file of

a chip. This is because several architecture-level design specifications/protocols of

accelerator designs are not publicly available [6, 9, 1].

4.5.2 Proposed HSCAO Framework

An overview of our proposed HSCAO framework is presented in Fig. 4.5.

HSCAO relies on partitioning the obfuscation/deobfuscation task between the ac-

celerator’s SDK and the hardware. HSCAO framework consists of following three

components:

• Key sequencer: It generates a pseudo-random key sequence using a secret

key Kseed as initial seed value.

• Software-level Obfuscation: The control bits of instructions consisting of

opcode and flag bits are locked by proprietary SDK and then communicated

to the accelerator hardware design.

• Hardware-level Deobfuscation: Subsequently, the control bits are un-

locked on-chip using a hardware-level deobfuscation module before further

processing the instructions in other modules.
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Figure 4.5: Hardware-software Co-design based obfuscation

The overall approach is to share the obfuscation/deobfuscation processes between

the software and hardware components of an accelerator. The software portion

obfuscates the instructions with dynamic keys generated using the key sequencer

algorithm. The hardware portion replicates the key sequencer on-chip and is fully

synchronized with its software counterpart to deobfuscate the locked instructions.

The secret key Kseed is shared by the hardware and software counterparts of HSCAO

framework: it resides in the SDK (root of trust) and in an on-chip tamper-proof

memory (TPM). It is to be noted that such a hardware-software co-design based

obfuscation approach aims to protect the design IP of an accelerator, not the

information content of an user application running on it. Next, we present the

details of different components in HSCAO framework.

4.5.2.1 Key sequencer

The key sequencer utilizes the secret key Kseed to generate a pseudo-random

sequence of keys Kseq for locking/unlocking of instructions in software/hardware

counterparts. According to the threat model considered (see section 4.5.1), the

attacker has knowledge of the accelerator’s instruction format: we consider that

an instruction consists of n bits of opcode and control flags, referred to as control
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bits. The remaining bits of the instruction consists of data handling and memory

access related information, referred to as non-control bits. We lock the functionality

of overall hardware accelerator by only obfuscating the control bits of instructions

in an application. The control bits of the ith instruction is locked by XORing it

bit-wise with n-bits of Ki which is the ith key in Kseq. The software/ hardware

counterparts initializes their key sequencer implementations with the same Kseed,

thus generating identical Kseq for locking/unlocking instructions.

Now, we describe the process of generating the pseudo-random key sequence

Kseq from the secret key Kseed. In our design we use N cyclic shift registers (each n

bits in length) as shown in figure 4.6. Both N and n are design parameters. These

N shift registers are initialized with Kseed of size n×N bits. Figure 4.6 illustrates

the state of the key sequencer for generating the first key K1 in the sequence from

the secret key Kseed. The mth bit, m ∈ {1, 2, . . . , n} , of K1 (denoted by K1,m)

is obtained by XORing the mth bits of all the N shift registers. For generating

the next key K2 in the sequence, all the shift registers are cyclically shifted by

certain number of bits as specified in a shift vector ~S = [s1, s2, . . . , sN ] where sj,

j ∈ {1, 2, . . . , N}, corresponds to the number of bits the jth register is to be shifted.

Now, as before, the contents of all the registers are bit-wise XORed together to

generate the key K2. This process is repeated to generate the subsequent keys in

Kseq. It is to be noted that the shift vector is randomly generated at run-time in the

accelerator SDK for software-level obfuscation of an instruction, and its contents are
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Figure 4.6: Cyclic shift register based key sequencer

not known to an attacker. For generating the same Kseq, not only Kseed must be

common, but also these shift vectors needs to be shared between the software and

hardware counterparts in the HSCAO framework.

4.5.2.2 Software-level Obfuscation

The accelerator’s SDK (root of trust) generates Kseq by implementing the

above key sequencer algorithm in software. Each key in Kseq is XORed bit-wise

with the control bits of an instruction to obfuscate it. Thus, the application binary

is locked in software as a function of secret key Kseed and shift vectors (dynamically

generated per instruction). The SDK also locks the shift vector ~S to generate locked

shift vector ~S ′ = [s′1, s
′
2, . . . , s

′
N ] for every instruction, where the mapping from ~S

to ~S ′ is obtained using a secret look-up table (shift LUT ). This shift LUT is not

available to an attacker who uses the SDK as a black-box. Note that, like Kseed, the

contents of shift LUT is also shared between the software and hardware counterparts

of HSCAO framework. For generating the same Kseq in hardware, the locked shift

vectors are communicated to the chip using following ISA extensions:
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• INITK: Initiate key instruction resets the N registers (each of length n bits)

with the n×N bits of Kseed.

• CSHFT: Cyclic shift instruction shifts the contents of N registers as per the

corresponding elements in shift vector ~S = [s1, s2, . . . , sN ] only if the shift LUT

is correctly configured on-chip, else a faulty mapping from ~S ′ to ~S will result

in wrong operations. The CSHFT instruction format is as follows:

CSHFT [s′1, s
′
2, . . . , s

′
N ]

The CSHFT instruction consists of an array of length N , where each element

s′i corresponds to a random number between −rmax and +rmax.

In section 4.5.3, we show that an adversary will be practically unable to

reconstruct the key sequence Kseq without the knowledge of Kseed and shift LUT

contents. Thus in effect, the software component of HSCOA successfully locks the

functionality of accelerator design.

4.5.2.3 Hardware-level Deobfuscation

The hardware-level deobfuscation module serves as a counterpart of the software-

level obfuscation module. It replicates the key sequencer design on-chip to unlock

the control bits of software-obfuscated instructions using the same secret key Kseed

and shift LUT information (by bit-wise XORing keys with the locked control bits).

On encountering an INITK instruction from the software interface, the hardware

key sequencer design resets the cyclic shift registers with Kseed content. If a CSHFT
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instruction is encountered, first the content of the shift vector ~S is retrieved from

the locked shift vector ~S ′ (using shift LUT stored in on-chip TPM) and then,

all N registers are cyclically shifted according to ~S. This process allows perfect

synchronization between the key sequencers in software and hardware counterparts

of the HSCOA framework. Therefore, both the modules generate the same Kseq

for performing instruction obfuscation/deobfuscation operations. As highlighted in

figure 4.5, the above deobfuscation process is carried out on-chip before performing

any application-specific computations in accelerator modules. Note that as both

Kseed and shift LUT are configured by the designer post-fabrication in on-chip TPM,

these are not known to an untrusted foundry.

4.5.2.4 Overall process

In summary, the proposed HSCOA framework obfuscates the functionality of

a hardware accelerator chip as follows: The proprietary SDK locks the encoding of

instructions and sends them to the accelerator chip, where they are deobfuscated

using the shared Kseed and shift LUT information. By default, the software initially

sends an INITK instruction to reset the on-chip shift registers in the hardware

key sequencer module. The very first instruction of an application is locked using

the key K1 which depends on the state of the registers initialized with Kseed.

The obfuscation of subsequent instructions using keys {K2, K3, . . . , KI} in Kseq

is governed by the shift vectors which are randomly generated at run-time in secure

SDK. This information is communicated to the accelerator chip using CHSFT type

instructions. Note that one does not need to obfuscate each of the subsequent
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instructions with a separate key in Kseq. The designer can choose to lock blocks of

instructions with common keys or lock a few randomly selected instructions, thereby

reducing the locking overhead. In section 4.5.3, we provide theoretical analysis to

demonstrate the resiliency of HSCOA framework against SAT formulation based

attack. We also describe how this framework is also immune to removal [119] or

bypass [112] types of attacks. We assume that the sizes (design parameters) of

Kseed and shift LUT are large enough so that the attacker cannot devise any brute

force based attack strategy. Our proposed hardware-software based obfuscation

approach can also be seamlessly integrated with conventional logic obfuscation

schemes [82, 76, 118] to lock other components (like MMU) of an accelerator chip

to further enhance the security-level.

4.5.3 Security Analysis of HSCAO

4.5.3.1 Resiliency to SAT attack

First we illustrate how the process of determining Kseed is computationally

infeasible through SAT formulation based attack [97]. According to our threat

model, an attacker has access to the netlist of the key sequencer design. Her objective

is to find the key sequence Kseq for unlocking the software obfuscated instructions

using SAT attack. Note that the very first instruction is obfuscated using K1,

which is derived from the state of the key sequencer initialized with Kseed (using

default INITK instruction). Unlike subsequent keys in Kseq which are dependent

on shift vectors generated at run-time (and thus varies from one application run
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to another), K1 is run-time independent. The attacker can deduce K1 as follows:

At first, she develops a microbenchmark application having knowledge of all the

instruction types. Then, she finds K1 by simply XORing bit-wise the locked control

bits of first instruction with the correct opcode bits (known from ISA). This is

because (a⊕ b) ⊕a = b, where a represents the opcode bits, b = K1 and ⊕ denotes

bit-wise XOR operation.

Note that K1 is derived from Kseed using the key sequencer algorithm whose

functionality is known to the attacker. Hence, she can use SAT solver (or any other

Boolean solver) to find a key Keqv belonging to the equivalence class of all keys that

result in K1. Note this Keqv may or may not be equal to secret key Kseed. Although

Keqv correctly determines K1, the entire key sequence generated assuming Keqv was

the initial seed of the key sequencer may not be the same as the actual key sequence

Kseq. This is because the sequence of keys generated by the key sequencer design

with separate initialization seeds (producing same K1) will not be the same. Hence,

finding a key Keqv is not sufficient and the attacker needs to find the exact key Kseed.

We show that the probability of Keqv equals Kseed is exponentially small in terms of

size of the secret key Kseed, thus making SAT attack (or other Boolean logic based

attacks) against HSCOA as impractical as a brute force attack.

Theorem 4.1. The probability of finding Kseed using the above SAT attack ap-

proach is 1/2(N−1)n, where N is the number and n is the size of the cyclic shift

registers.
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Proof. Let vji denote the value of ith bit, i ∈ {1, n}, of the jth, j ∈ {1, N}, cyclic shift

register. Also, let Si denote the set of all vji , i.e., Si = {v1i , v2i , . . . , vNi }. Without loss

of generality let us assume N is odd (similar arguments hold for N being even). As

per the key sequencer design, the ith key-bit of the first key K1 (denoted by K1,i)

is obtained by XORing all the elements of Si. The value of K1,i is 0 whenever there

are even number of ones in Si, while K1,i is 1 when there are odd number of ones in

Si. Therefore, the number of possible combinations Q0
i of values of elements in Si

which result in K1,i = 0 can be expressed as follows:

Q0
i =

(
N

0

)
+

(
N

2

)
+

(
N

4

)
+ . . .+

(
N

N − 1

)
(4.4)

Similarly, the number of possible combinations Q1
i of values of elements in Si which

result in K1,i = 1 is as follows:

Q1
i =

(
N

1

)
+

(
N

3

)
+

(
N

5

)
+ . . .+

(
N

N

)
(4.5)

Since
(
N
k

)
=
(

N
N−k

)
, k ∈ {0, N}, from equations (4.4) and (4.5) we get Q0

i = Q1
i =

Qi = 2N/2 = 2N−1. As the cyclic shift registers are initialized with Kseed and any

two bits in a shift register are independent of eachother, any two bits of the key K1

are also independent of each other. Therefore, the number of possible values of key

Keqv which results in the same K1 (of size n bits) is 2(N−1)n. Essentially, the set

of keys which result in the same K1 has a size of 2(N−1)n. Only one of these keys

is Kseed. Hence, the probability of finding Kseed from K1 using SAT attack based

approach is 1/2(N−1)n.
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From the above theorem, we see that the probability of finding the secret key

Kseed is exponentially small in terms of the key-size. Note that using the shift LUT

we end up hiding the randomly generated shift vectors as well. This adds to the

security guarantee even further as both Kseed and the contents of shift LUT needs

to be determined correctly to break the HSCOA framework.

4.5.3.2 Resiliency to other attacks

Our proposed HSCAO scheme is inherently secure to other types of attack

on logic locking schemes, like removal attack [119] and bypass attack [112]. The

underlying principle of such approaches is to either remove or bypass the protec-

tion circuitry to retrieve the netlist exhibiting correct functionality. Though the

hardware-level deobfuscation logic of our proposed HSCAO scheme can be struc-

turally identified, the removal/bypass of it won’t neutralize the effect of software-

level obfuscation performed by the proprietrary accelerator SDK (root of trust).

Also, as highlighted in section 4.5.1.1, the attacker doesn’t have the capability to

develop a substitute SDK using the netlist information.

4.5.4 Experimental Results

For our experiments, we used OpenTPU simulator [13] which is an open-

source re-implementation of Google’s TPU chip [50]. We considered a Tensorflow

based implementation of Multi-layer Perceptron (MLP) regressor on the Boston

Housing dataset [13]. In Fig. 4.7, we present the assembly-level program of such

an application with detailed description of each instruction type. To augment the
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Figure 4.7: Assembly-level of MLP regression application

proposed HSCAO scheme with the OpenTPU simulator, we designed a key sequencer

with N=9 cyclic shift registers (each n = 16 bits in length) to generate key sequence

Kseq initialized with a randomly selected Kseed of size 144 bits. Each key belonging

to Kseq was bit-wise XORed with the opcode bits (as specified in OpenTPU ISA) for

performing obfuscation/ deobfuscation of an instruction in the software/ hardware

counterparts of HSCAO framework. In Fig. 4.8a and Fig. 4.8b, we present the

initial host memory content and the final host memory content (after running the

application) of an unlocked TPU-like chip (activated using the correct key Kseed).

Each small green square contains the correct value of a memory location.

To study the application-level error impact due to the use of an equivalent

first round key for unlocking the TPU-like chip, we used two such keys K1
eqv and

K2
eqv as initial seeds and ran the regression application (see Fig. 4.7). Note that

for performing these experiments, we considered that the shift LUT is configured

correctly. But in practice, the attacker will face additional challenge to determine

the shift LUT contents. In Fig. 4.8c and Fig. 4.8d, we present the final host memory
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(a) Initial HM (b)Final HM:Kseed (c) Final HM: K1
eqv

(exception)

(d) Final HM:K2
eqv

(early termination)

Figure 4.8: Error impact on final host memory (HM) due to wrong instruction

deobfuscation for different equivalent keys

(a) No error (Kseed) (b) RW1 (c) RW2 (d) RW3

(e) MMC1/WHM (f) ACT1 (g) MMC2,3/ACT3 (h) ACT2

Figure 4.9: Error impact on host memory (HM) due to single locked instruction

contents for using K1
eqv and K2

eqv respectively. With K1
eqv, the application terminated

with an exception that a new matrix multiply (MMC) type instruction cannot

be dispatched while a previous instruction is still being issued, thus resulting in

no memory update (as denoted by red squares). Similarly, with K2
eqv also there
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was no memory update as well due to early application termination (no exception

raised). We observed that the reason behind this early termination being one

of the keys (in the sequence generated by K2
eqv) when bit-wise XORed with the

corresponding obfuscated instruction opcode incorrectly resulted in the opcode for

exit/halt condition (HLT). These results highlight that use of such equivalent keys

fail to unlock the accelerator obfuscated using HSCOA framework.

The above approach of obfuscating every instruction, though effective, may

incur significant delay for running applications due to updates of cyclic shift registers

(depending on shift vector contents) per instruction. Therefore, we locked only a

single instruction in the entire application assembly (apart from the first RHM

instruction which is locked by run-time independent key K1) and observed the

resulting corruption in final memory contents. The outcomes of such experimental

runs are presented in Fig. 4.9, where each subfigure shows the final host memory

content for a particular locked instruction in the regression application. The states of

memory locations are classified into 4 categories: (i) correct data update (ii) wrong

data update which signifies data update in a faulty memory location (iii) corrupted

data update where the memory update location is correct but the data content is

wrong and (iv) no data update from initial data content. As observed from the

figures, even locking a single instruction leads to significant errors in the application

outcomes, highlighting the strength of our proposed HSCAO countermeasure to

protect the IP of an accelerator chip design.
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4.6 Conclusion

In this chapter, we first outlined an iterative SAT formulation based at-

tack to approximately unlock the functionalities of pipelined GPU cores which are

obfuscated using state-of-the-art logic locking scheme. The experimental results

(obtained using NVIDIA’s SASSIFI framework) reveal that the benchmark GPGPU

applications exhibit high resiliency to error propagation effect due to use of a

retrieved approx-key for unlocking the core netlists. Our proposed attack technique

can be effectively utilized by an untrusted foundry to successfully deobfuscate GPU

core netlist, even without any requirement of an activated hardware. Subsequently,

we propose the cache locking scheme as a low-overhead countermeasure which signif-

icantly degrades the performance of applications for a wrong cache-key. In addition,

we also propose a hardware-software co-design based obfuscation approach (called

HSCOA) to render an unactivated accelerator chip functionally useless. Our pro-

posed HSCOA scheme uses proprietary SDK as the root of trust for generating

locked program binary which is subsequently deobfuscated in the hardware. The

experimental results obtained by running a regression application on the OpenTPU

simulator demonstrate the effectiveness of such an obfuscation framework.
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Chapter 5: Hardware-assisted

Obfuscation of Deep Neural Networks

5.1 Introduction

Deep learning (DL) algorithms are extensively used for analyzing big data

in several domains including image classification, natural language processing, au-

tonomous transportation, smart health, financial management, social networks,

etc. [58, 41]. The key factors attributed to the unprecedented success of these

algorithms are (i) availability of a massive and mostly labeled training dataset

(ii) allocation of powerful computing resources as well as vast amounts of network

training time and also (iii) substantial domain expertise of DL model developers to

obtain highly accurate models. Therefore, well-trained DL models are considered

to be IPs of the owner as significant cost is incurred behind their training process

to gain a competitive edge in business [80, 36, 111]. In a white-box setting [103],

the neural network architecture as well as the trained DL model parameters are

made publicly available (e.g., Caffe’s Model Zoo and Amazon’s Alexa Skills) by

a DL model owner [80, 17]. As the popularity of using such pre-trained models

increases (especially with the deployment of MLaaS), IP protection as well as Digital

Rights Management (DRM) of these distributed DL models are of major practical
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concerns [80]. The prevention of model piracy is a key challenge in this field as there

exists techniques (such as scaling, noising, fine-tuning, etc.) to cleverly modify

model parameters without affecting the functionality or accuracy of the network

and thus, helping attackers to claim false DL model ownership [98].

There has been a lot of research to address the privacy concerns of user data

which are used to train Deep Neural Networks (DNNs) [16, 92, 121]. However,

on the other hand, there is only a limited number of works which primarily focus

on developing techniques to protect the IP of well-trained DL models rather than

securing sensitive user data. Watermarking strategies for DL models have been

proposed in recent literature [80, 17, 43, 46, 66] which help to claim the ownership of

stolen models by embedding identification information into them. But such leaked

DL models can be reused privately by the adversary, thus bypassing ownership

inspection by the aforementioned watermarking techniques [120]. In order to fur-

ther strengthen the IP security of DL models, an obfuscation technique for DNNs

has been proposed in [111] which structurally obfuscates the network architecture.

However, commonly raised DL model theft concerns are related to the stealing of

well-trained weight parameters (or learned network functionality) and not due to

the theft of DNN topology. This is because industrial applications typically use

previously published DNN architectures which have demonstrated high modeling

capabilities [98]. This strongly motivates us to develop a robust and efficient DNN

obfuscation infrastructure which locks a DL model’s weight parameters. Such an

117



obfuscated DL model should exhibit high prediction performance only if an end-user

has legitimate access to it, whereas any unauthorized usage of the locked model

should result in significant degradation of its prediction accuracy.

The above goal of IP protection of DL models can be achieved using provably-

secure cryptographic schemes to encrypt the weight parameters. However, appli-

cation of encryption/decryption on millions of model parameters (as present in

modern DNNs) will incur large time/implementation overheads and thus, conflict

with the strict response-time deadlines of DNN inference applications. In this

chapter, we propose an obfuscation framework called Hardware Protected Neural

Network (HPNN) as a lightweight alternative to achieve the desired IP security of

DL models in a white-box setting. This framework ensures that only an authorized

end-user who possesses a trustworthy hardware device (with the secret key embedded

on-chip) is able to run intended DL applications using the published model. In

addition, we also propose a novel watermarking technique called DynaMarks to

protect the IPs of DL models against model extraction attacks performed by an

authorized end-user using responses of the trusted hardware device to chosen queries.

The main contributions of the chapter are as follows:

• We propose an obfuscation framework called HPNN to protect the IPs of DL

models in a white-box setting. To the best of our knowledge, this is the first

work which leverages hardware as a root-of-trust to achieve IP security of DL

models.
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• We provide a theoretical construct of a key-dependent backpropagation algo-

rithm for training a neural network which doesn’t sacrifice a model’s prediction

accuracy to gain security benefits.

• We perform extensive experimental evaluations across different DNN archi-

tectures and benchmark datasets to assess the robustness of obfuscated DL

models in HPNN framework against model fine-tuning attacks.

• In addition, we also propose DynaMarks, a black-box watermarking technique

to defend against model extraction attacks performed by authorized end-users.

DynaMarks embeds watermark by dynamically changing the responses of the

model’s prediction API during the inference phase, without introducing any

computational overhead in the training process.

5.2 Motivation

The development of a production-level DL model is not a trivial task as

it requires a massive amount of training data along with high power computing

resources. State-of-the-art DL models take several weeks of training over GPU

clusters. In addition, designing a well-trained model requires significant machine

learning expertise as well as long working hours to execute numerous trial runs to

properly optimize the associated network hyper-parameters [80, 111]. The growing

trend of deployment of well-trained DL models in public cloud infrastructure (MLaaS

settings) opens the door for attackers to steal models and establish plagiarized
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machine learning services. Such IP theft of DL models poses a major threat of

substantial revenue loss in market share to its owners [17, 80]. Also, stolen DL

models used in mission-critical operations (which may involve national security)

can be sold to Darknet markets [120]. Therefore, there is a strong need to ensure

the security of well-trained DL models from illegal usage.

Attacker’s Goal. In this work, we assume that an attacker has access to a

DL model’s weight parameters either through public cloud platform or from an

information breach via malicious malware infection or an insider source [120]. Also,

we assume that the attacker has knowledge of the DNN architecture (or topology)

used to train the model. This is reasonable assumption as industrial applications

typically use published DNN architectures which have demonstrated high modeling

capabilities [98]. The objective of the attacker is to either utilize the stolen DL model

to provide a plagiarized cloud based service to end-users or to deploy it in a private

network for running intended DL applications (as shown in Fig. 5.1). Though, in

the former scenario, the DL model owner may still use watermarking techniques

[80, 17, 43] to claim digital rights (if somehow she has obtained access privileges

to the illegal cloud service), but in the latter attack scenario, the model owner

won’t have any provision to remotely query the DL model to extract watermarked

contents [120]. This strongly motivates the development of a much more effective

IP security solution for DL models which can thwart any sort of unauthorized usage

scenarios.
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A robust IP protection of DL models can be achieved using provably-secure

cryptographic schemes where the DL model owner encrypts the model parameters

before uploading them in a public cloud service. Only a legitimate end-user will

be able to decrypt (using a secret key) the encrypted parameters to retrieve the

trained DL model. However, this solution will be highly inefficient in practice as

industrial DL models have millions of weight parameters [50] and applying crypto-

graphic algorithms on such large-scale DNNs will incur huge time/implementation

overheads. Instead, we propose HPNN framework as a lightweight alternative to

secure IPs of DL models by obfuscating their weight parameters. Such obfuscated

DL models can be openly distributed using public cloud infrastructure without any

IP theft concerns.

5.3 Proposed HPNN Framework

5.3.1 Overall Flow

The global flow of HPNN framework is presented in Fig. 5.1. A DL model

owner spends long working hours to train a network using a large annotated training

dataset and high-performance computing platforms. The crux of IP protection

guarantees provided by the HPNN framework relies on training a DNN using a

key-dependent backpropagation algorithm (more details in section 5.3.3) which ob-

fuscates the learned weight space of the model. Such a key-dependent training

approach doesn’t compromise the prediction accuracy of the obtained model to gain

security benefits. Then, the obfuscated DL model is hosted on a public model
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Figure 5.1: Proposed HPNN framework for IP security of DL models.

sharing platform (such as a cloud interface in MLaaS settings) to provide services to

only authorized customers who have acquired the requisite licenses for model usage.

In our proposed HPNN framework, licenses are distributed in the form of trustworthy

hardware devices which securely embed the secret HPNN key on-chip [15, 116]. This

scheme aims to guarantee state-of-the-art inference phase performance of a locked

DL model only on such trusted hardware devices, while significantly degrading

its prediction accuracy for any illegal usage. Note that a model owner can train

several DNNs using the same HPNN key to obtain obfuscated DL models targeting

different applications. Later in section 5.4.2, we also experimentally demonstrate the

effectiveness of HPNN framework to thwart model fine-tuning type attack where an

attacker tries to leverage the knowledge of the DNN architecture (white-box setting)

and an available thief dataset to steal a well-trained DL model.

Hardware root-of-trust. Our proposed HPNN framework relies on the utilization

of a hardware root-of-trust (with secret HPNN key embedded on-chip) to provide

services to authorized end-users. The rationale behind the assumption of availability

of such trusted hardware devices are as follows: (i) Domain-specific hardware chips
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(e.g., Google’s Tensor Processing Unit [50], Intel’s Neural Compute Stick [8], etc.)

are being deployed in industrial settings for accelerating the inference phase in DNN

applications. In our proposed HPNN framework also, the trusted hardware devices

are utilized by authorized end-users for running only the DNN inference phase.

Note that during the DNN training phase, the DL model owner just requires the

knowledge of HPNN key value (no need for any trusted hardware device) to obfuscate

the learned weight space of the model. (ii) Also, in order to counter emerging

threats to IoT edge devices, applications are increasingly designed to rely on secure

key storage facility provided by a hardware root-of-trust such as Trusted Platform

Module (TPM) [15]. In addition to providing stronger security guarantees than

their software counterparts, hardware-assisted protection mechanisms also incur

significantly lower performance overhead [39, 83].

5.3.2 Neural Network Obfuscation

In this work, we assume that an attacker has knowledge of the details of a

DNN architecture, i.e., the number and types of layers in the network as well as the

connectivity graphs between the layers (white-box setting). Henceforth, we refer to

such information as knowledge of the baseline DNN architecture. The goal of our

proposed HPNN framework is to train a DNN in such a way that the learned weight

space of the model is obfuscated as a function of secret HPNN key. To realize this

objective, we lock any jth neuron belonging to a nonlinear layer of the network by

associating a HPNN key bit kj as illustrated in Fig. 5.2(a). Such a neuron basically
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Figure 5.2: Obfuscation of a neuron in HPNN framework.

performs (i) multiply and accumulate (MAC) operation to compute a weighted sum

of its inputs (a1, a2, ..., aN), i.e., MACj=
∑N

i=1 aiwji = aTwj and (ii) then, passes

MACj through a nonlinear activation function f to produce the neuron’s output

response, i.e., outj = f(MACj). Now, in order to lock the functionality of jth

neuron, we make outj dependent on HPNN key bit kj as follows:

outj = f(LjMACj) = f(Lja
Twj) (5.1)

where,

Lj =


+1 if kj = 0

−1 if kj = 1

(5.2)

The variable Lj is called the lock factor of jth neuron, which governs the sign of

MACj based on kj value as shown in Fig. 5.2(b). If kj = 0, then MACj remains

the same, whereas (ii) if kj = 1, then sign of MACj is flipped. Next, we study

the implication of such key based obfuscation of neurons on the network training

process.
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5.3.3 Key-dependent Backpropagation

In order to train a neural network in the HPNN framework, we propose a

key-dependent backpropagation algorithm which creates a model whose weight space

is highly optimized as a function of the HPNN key. Such an obfuscated model

strongly resists any attempts to illegally utilize it by concealing the learned decision

boundaries. Next, we describe how the notion of HPNN key can be augmented to

a conventional backpropagation based training approach.

Neural networks are typically trained using iterative, gradient-based optimizers

with the objective of driving a desired cost function to a very low value. We consider

the training of a network using delta rule which utilizes backpropagation algorithm

to update network parameters such that the given cost function is minimized [41].

Let Ep denote the cost function which measures the discrepancy between the ex-

pected (or correct) output response and the output response produced by a network

for the pth training vector. Then, the learning rule for the ith incoming weight of jth

neuron (wji) can be expressed as follows:

∆wji = −η ∂E
p

∂wji
(5.3)

where, η is the learning rate. In HPNN framework, if we consider a mean squared

error (MSE) cost function, i.e., Ep = 1
2

∑
j(tj − outj)

2 with tj being the correct

output label, the above weight learning rule will be a function of lock factor Lj as

shown below:

∆wj = ηδja (5.4)
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where,

δj=


(tj − outj)f

′
(LjMACj)Lj if jth neuron ∈ output layer( ∑

k∈O
wkjδk

)
f

′
(LjMACj)Lj if jth neuron ∈ hidden layer

with f
′
being the derivative of the activation function f , a denotes the input vector to

the neuron, and O denotes the neuron’s adjacent layer. The above backpropagation

based learning rule can now be used to update the incoming weight vectors of all

locked neurons in the proposed obfuscation framework. This will lead the entire

network to learn an optimized weight space as a function of not only the training

dataset but also the Lj values (which are derived from the secret HPNN key, see

Eq. 5.2). As demonstrated later by experimental results outlined in section 5.4,

such a locked model performs accurately during the inference phase only when the

HPNN key is used to retrieve the correct functionalities of the locked neurons.

Model capacity. The capacity of a model describes the complexity of relationship

it can map between the input patterns and output labels for a given dataset. The

capacity of a DL model obtained by training a DNN using our proposed HPNN

framework is independent of any key value used. To demonstrate this property

let us first consider the case of a single layer fully-connected network, before we

consider more complex DNN architectures. Note that two models (obfuscated using

two different HPNN keys) have equivalent capacities if there exists equivalent weight

assignments which lead to the same output predictions for any given input to the

models. We show the existence of such equivalent weight assignments for a single

layer fully connected network by establishing a relationship between the incoming
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weight vectors of any jth neuron (locked with different HPNN key bit values) which

leads to the same neuron response outj and hence, the same overall network’s

prediction for an input vector.

Definition 5.1. For any jth neuron (with lock factor Lj and output response outj),

let winit
j denote its initial incoming weight vectors (before training) and let wN

j,Lj

denote its incoming weight vectors after N training epochs.

Theorem 5.1. For a single layer fully-connected network initialized with all zero

weight parameters (i.e., winit
j =0), we get wN

j,−1=−wN
j,1.

Proof. We prove this theorem using principle of mathematical induction. (i)Base case :

Before any training epoch, we have w0
j,−1= winit

j = 0 = −w0
j,1 (ii) Induction step :

Let us assume that wK
j,−1 = −wK

j,1 after K training epochs. We now need to show

wK+1
j,−1 = −wK+1

j,1 in order to prove the lemma. In the (K + 1)th training epoch with

Lj = 1 and using Eqs. (5.1) and (5.4) we get,

∆wj,1 = η(tj − f(aTw
K

j,1))f
′
(aTw

K

j,1)a

wK+1
j,1 = wK

j,1 + ∆wj,1 (5.5)

Similarly, with Lj = −1 we get,

∆wj,−1 =−η(tj − f(−aTw
K

j,−1))f
′
(−aTw

K

j,−1)a

=−η(tj − f(aTw
K

j,1))f
′
(aTw

K

j,1)a

=−∆wj,1 (5.6)

Therefore, wK+1
j,−1 = wK

j,−1 + ∆wj,−1

=−(wK
j,1 + ∆wj,1) = −wK+1

j,1 (5.7)
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Hence, by the principle of induction the theorem holds true.

It is non-trivial to derive similar relationships for modern DNN architectures

which consist of multiple hidden layers. Also, a network is typically initialized

with small random non-zero weight parameters for effective training [41]. But the

following lemma still guarantees that the DL model capacity is unaffected by the

choice of HPNN key used to train the DNN in our proposed obfuscation framework.

Lemma 5.2. DL models obfuscated using different HPNN keys have equivalent

model capacities.

Proof. For a given DNN architecture, the manner in which a jth neuron is locked

in HPNN framework ensures that the same neural activation response outj will be

produced if we have incoming weight vectors of wj for kj= 0 and −wj for kj= 1, as

evident from Eq. (5.1). This implies that there exists equivalent weight assignments

for different HPNN keys which will lead to the same network prediction outcomes,

which in turn implies that all such obfuscated DL models have equivalent capacities.

However, in practice, such key-dependent backpropagation based DNN training

is likely to yield different incoming weight vector magnitudes of neurons for different

HPNN keys due to network nonlinearity as well as random weight initialization.

To ascertain the equivalence in capacities of DL models obtained by training the

same DNN topology but locked using different HPNN keys, we performed the

following experiment: First, we randomly generated 20 different HPNN keys, and

then used these keys to train a given DNN architecture with the same training
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Figure 5.3: Performance of DL models locked using different HPNN keys.

dataset (Fashion-MNIST [5]) and hyperparameters combination. We considered the

prediction accuracy of a DL model as the indicator of its modeling capacity. The

experimental results are presented in Fig. 5.3 for two different DNN architectures,

CNN1 (see Table 5.1 for network details) and ResNet18 [45]. Each of the box plots

shows the distribution of prediction accuracy of 20 different DL models on the same

test dataset. Such model accuracy distributions highlight the fact that DL models

obtained using different HPNN keys perform on an equivalent scale. Also, the mean

prediction accuracy (shown using red lines) for CNN1 and ResNet18 networks are

86.95% and 92.93% respectively, which are very close to the corresponding accuracy

(shown using green arrows) of 86.99% and 92.83% of the baseline DL models (i.e.,

the models obtained using conventional backpropagation based training of baseline

DNN architectures).
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5.3.4 Role of hardware root-of-trust

In the proposed HPNN framework, an authorized end-user utilizes a trusted

hardware device (which embeds the secret HPNN key) to run the DNN inference

phase. In a modern DNN architecture, there are typically thousands of neurons

belonging to nonlinear network layers and hence, associating a key bit with each

such neuron (as presented in section 5.3.2) will lead to an impractically large HPNN

key length. The hardware root-of-trust not only accelerates the DNN inference

phase but also facilitates the use of a practical size HPNN key. This can be achieved

by a simple modification in the MAC unit design of the trusted hardware device.

For illustration purposes, let us consider a Google TPU-like chip [50] which will

be deployed as a hardware root-of-trust in our proposed DL model obfuscation

framework.

Google TPU design. The main computational component of a Google TPU chip

is called matrix multiply unit (MMU) which performs MAC operations in a pipelined

manner. MMU consists of 256X256 MACs which compute 8-bit multiply-and-adds

on signed or unsigned integers. The resulting 16-bit products are first collected in

256 accumulator units and then passed on to an on-chip activation module which

implements standard nonlinear operations (such as ReLU, sigmoid, etc.). For more

details on TPU architecture, please refer to [50]. Next, we outline how the MAC

design of such a chip can be modified to facilitate the use of a practical size HPNN

key.
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5.3.4.1 Key-dependent accumulator

We propose a low overhead design modification to make the MAC computation

key-dependent as shown in Fig. 5.4(a). As specific design details of TPU are not

publicly available, we make the following assumptions for the sake of illustration:

(i) the design of an accumulator unit is based on a full-adder (FA) chain as shown in

Fig. 5.4(b). (ii) all numbers are stored and operated on in their two’s complement

representation. Now, in order to lock the MAC computation of jth neuron as a

function of kj, we introduce 16 additional XOR gates per accumulator unit as shown

in Fig. 5.4(b). Each such gate takes as input − (i) a bit from the multiplier unit’s

16-bit result and (ii) an HPNN key bit kj which is supplied from a secure on-chip

memory. The magnitude of kj determines the functionality of the accumulation

operation: If kj = 0, then MACj =
∑N

i=1 aiwji is computed by performing a sequence

of addition in the accumulator unit. On the other hand if kj = 1, then MACj is

converted to its two’s complement by performing a sequence of subtraction, i.e.,∑N
i=1−aiwji = −MACj. This simple modification in the accumulator design makes

the response of jth neuron dependent on its lock factor Lj, i.e., outj=f(LjMACj),

as expected in Eq. (5.1).

5.3.4.2 HPNN key

As there are only 256 such accumulator units in a Google TPU-like archi-

tecture, the size of HPNN key will be 256 bits (a practical key length) and the

total number of additional XOR gates required will be 256X16 = 4096. When
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Figure 5.4: Hardware realization of neuron locking mechanism.

a large-scale DNN inference is run on such an accelerator chip, multiple locked

neurons will be mapped to a single accumulator unit by using a hardware-specific

scheduling algorithm. This implies that a single HPNN key bit will be associated

with several locked neurons in the HPNN framework. During the training phase,

a DL model owner needs to utilize the information from this hardware-specific

scheduling algorithm to derive the key bits corresponding to all the locked neurons

of a DNN from the 256-bit HPNN key. Note that the details of such scheduling

used in the hardware root-of-trust will also be kept private to further enhance the

security of HPNN framework.

5.3.4.3 Implementation overhead

The additional cost incurred to provide MLaaS using HPNN framework are as

follows: (i) In the training phase, a DL model owner needs to perform a one-time

preprocessing using the notion of hardware-specific scheduling algorithm to map

subsets of DNN neurons to their corresponding HPNN key bits. (ii) In the inference
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phase, which is carried out using the trusted hardware, small area overhead will

be incurred due to introduction of additional XOR gates (4096 gates in case of

Google TPU-like architecture) for modifying the accumulator design. If we consider

a MMU implementation [62] which consists of gates in the order of 106, then the

gate overhead due to our proposed design modification will be less than 0.5%. Also,

there will be no clock cycle overhead (only combinational delay for calculating

two’s complement) due to the introduction of additional XOR gates. Hence, our

proposed HPNN framework offers a lightweight IP security solution for DL models.

5.4 Evaluation of HPNN Framework

We evaluate the security benefits offered by the HPNN framework across 3

different benchmark datasets (Fashion-MNIST [5], CIFAR-10 [2], and SVHN [14])

and Convolution Neural Network (CNN) architectures (details in Table 5.1). We

used Pytorch 3.1 to run simulations on a system consisting of an Intel Xeon CPU

and a Nvidia Maxwell GPU with 32 GB and 2 GB memories respectively.

5.4.1 Performance of locked DL models

A DL model obtained using the key-based backpropagation algorithm (see

section 5.3.3) should demonstrate high prediction accuracy only when it runs in-

ference on a trusted hardware device. Such a hardware root-of-trust deobfuscates

the locked neurons of a DNN to retrieve the network functionality using the secret
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HPNN key1. The proposed HPNN framework aims to thwart any attempts by the

attacker to run DNN inference with satisfactory prediction accuracy by loading the

baseline DNN architecture with a stolen DL model. We performed experiments

across different benchmark datasets to asses the robustness of HPNN framework in

such an attack scenario. In columns 4 and 5 of Table 5.1, we report the accuracy

obtained when running locked DL models on a hardware-root-of-trust (simulated

by providing the secret HPNN key to retrieve the DNN functionality) and on the

baseline DNN architecture (no key). In the latter case, we observe substantial

accuracy drops of 79.88%, 80.17%, and 73.22% for Fashion-MNIST, CIFAR-10,

and SVHN datasets respectively compared to the original accuracy as obtained by

running the locked DL models on trusted hardware. Next, we evaluate the security

offered by HPNN framework to protect the IP of a well-trained DL model in a

stronger model fine-tuning attack scenario.

1In our experiments, we randomly assigned key bit values to neurons belonging to nonlinear

layers of a DNN. However, in practice, the DL model owner needs to derive the key bits to be

associated with such neurons from the HPNN key using hardware-specific scheduling information

(see Sec. 5.3.4.2).
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Dataset Network Architecture No. of neurons in Original
HPNN locked Random fine-tuning HPNN fine-tuning

(number and types of layers) nonlinear (ReLU) layers accuracy accuracy %drop accuracy %drop accuracy %drop

Fashion-MNIST CNN1 (2 C, 2 MP, 2 ReLU, 1 FC) 4352 89.93 10.05 79.88 86.35 3.58 82.45 7.48

CIFAR10 CNN2 (6 C, 3 MP, 8 ReLU, 3 FC) 198144 89.54 9.37 80.17 78.87 10.67 78.53 11.01

SVHN CNN3 (3 C, 3 MP, 4 ReLU, 2 FC) 29696 89.06 15.84 73.22 80.97 8.09 82.89 6.17

Table 5.1: Effectiveness of HPNN framework against model fine-tuning attack

(C: convolutional, MP: max-pooling, FC: fully-connected layers)
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Figure 5.5: Accuracy vs. size of thief dataset (Fashion-MNIST)

5.4.2 Model fine-tuning attack

Model fine-tuning is a type of transformation attack strategy [70, 80] which

drives the underlying neural network to converge to some other local minimum (dif-

ferent from the original model) and results in comparative performance in practical

applications. To evaluate the effectiveness of our proposed HPNN framework against

a model fine-tuning attack we consider the following threat model.

Attacker’s Capabilities. In addition to having the knowledge of the baseline

DNN architecture, the attacker has the following privileges:

• Availability of a thief dataset (annotated) which constitutes a small fraction

α (say 10%) of the original training dataset.

• Significant DNN expertise as well as powerful computational resources to train

large network architectures.
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Attacker’s Limitation. The attacker doesn’t possess a large amount of annotated

training data as well as optimized model hyperparameters (which are responsible

for its highly accurate performance). This is a reasonable assumption as DL model

owners keep such information private to maintain a competitive edge in business [98,

80].

Attack Methodology and results. To perform a model fine-tuning attack, the

attacker first loads the stolen DL model parameters to initialize the baseline DNN

architecture and then utilizes the thief dataset to retrain the model. The attack

is deemed successful only if such a retrained DL model performs equivalently, i.e.,

shows similar high levels of accuracy in its predictions as the owner’s DL model

running on a hardware root-of-trust (which embeds the HPNN key).

5.4.2.1 Impact of thief dataset size and network architecture

To analyze the impact of the size of the thief dataset on the success rate

of a model fine-tuning attack, we assume the availability of different thief dataset

fractions (α=1%, 2%, 3%, 5%, and 10%) to the attacker. In Fig.5.5, we present the

experimental results of model fine-tuning attack across 2 different DNN architectures

(CNN1 and ResNet18, see Table 5.1 for network topology) using the Fashion-MNIST

dataset. It can be observed from the accuracy trends that as the size of the thief

dataset increases, so does the success rate of a model fine-tuning attack. However,

even with α=10%, the attacker reaches a fine-tuning accuracy of only 82.45%

and 88.60% for CNN1 and ResNet18 whereas the corresponding accuracy obtained

originally by DL model owner are 89.93% and 93.92% respectively. These results
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highlight the effectiveness of our proposed HPNN framework to safeguard the IPs

of DL models across different network architectures. Note that in the above set of

experiments, we used the same hyperparameter configuration for performing model

fine-tuning as used by the DL model owner to train the network.

5.4.2.2 Impact of hyperparameter

We varied both the learning rate (lr) and the number of training epochs to

observe the best accuracy that can be attained using model fine-tuning attack. In

Fig. 5.6, we present the results of such experiments using a thief dataset fraction

α=10% across different datasets. The best accuracy achieved by such hyperpa-

rameter tuning on Fashion-MNIST and CIFAR-10 datasets are 85.91% and 79.61%

respectively, which are significantly lower than their counterparts of 89.93% and

89.54% as obtained by the DL model owner. Also, we observed that increasing lr too

much (for example setting lr = 0.05 on Fashion-MNIST dataset, see Fig. 5.6(top))

leads to poor generalization performance on the test dataset.

5.4.3 Information leakage from obfuscated DL model

A major challenge for HPNN framework is to ensure that a locked DL model

doesn’t leak any significant information related to the input-output mapping of

the owner’s DL model, beyond what can be exploited by the attacker using the

thief dataset. In order to experimentally quantify the information leakage from

an obfuscated DL model we performed two types of fine-tuning attacks under
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Figure 5.6: Effect of learning rate (lr) on fine-tuning (top)dataset:Fashion-MNIST,

network:CNN1 (bottom)dataset:CIFAR-10, network:CNN2

the same hyperparameter settings (i) Random fine-tuning approach where we

initialized the baseline DNN architecture with random small weight parameters

and (ii) HPNN fine-tuning approach where we initialized the baseline DNN

with the obfuscated DL model’s weight parameters. The intuition behind such an

experiment being that if the accuracy achieved by random fine-tuning and HPNN

fine-tuning attacks are similar, then the obfuscated DL model doesn’t leak any

significant information related to the owner’s DL model. The experimental out-

comes for such fine-tuning attacks across different benchmark datasets (using a thief

dataset fraction α=10%) are presented in the last four subcolumns of Table 5.1.

We observe that both types of fine-tuning attacks could achieve accuracy levels
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Figure 5.7: Impact of thief dataset size on fine-tuning attack.

which are significantly lower than the original accuracy obtained by the DL model

owner. Also, both the attacks perform quite similarly in terms of the final accuracy

achieved across different datasets. This indicates that initializing the network using

weight parameters of an obfuscated DL model (which is trained on the entire

annotated training dataset) doesn’t provide any advantage compared to random

weight initialization for performing fine-tuning attack.

We further investigated the effect of available thief dataset size on these two

types of fine-tuning attacks. As we can observe from the experimental results

reported in Fig. 5.7, both random and HPNN fine-tuning attacks perform very

closely across different α values on the datasets considered. Note that α=0%

corresponds to the scenario where the attacker doesn’t possess any thief dataset

to perform model fine-tuning. The accuracy trends signify that the success of

attacker is limited by the size of the available thief dataset, irrespective of the
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weight initialization used. Therefore, our proposed HPNN framework successfully

thwarts IP theft attempts of DL models by unauthorized end-users even under a

strong threat model which considers model fine-tuning attacks.

5.5 DynaMarks: Dynamic Watermarking to Defend Against

Model Extraction Attacks

In this section, we consider the problem of IP security of DL models in a

scenario where an authorized end-user attempts to steal the functionality of a well-

trained model via model extraction attack. In a typical model extraction attack, an

adversary (an authorized end-user in this case) queries the original or victim model

(stored in the trusted hardware device) with inputs of her choice and uses the

prediction responses to label a substitute dataset. Subsequently, the attacker uses

this substitute dataset to train a surrogate model that replicates the functionality of

the victim model [102, 70, 69]. We propose DynaMarks, a black-box watermarking

technique to defend against such model extraction attacks on proprietary DL models

deployed in edge devices. DynaMarks embeds watermark by dynamically changing

the responses of the model’s prediction API during the inference phase using low-cost

hardware, without introducing any computational overhead in the training process.
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5.5.1 Background

5.5.1.1 Model Extraction Attacks

A DNN classifier is a function F : RM → RN , where M and N are the

number of input features and output classes respectively. The output of F(x) on

input x is an N -dimensional vector #»px containing probabilities pjx that x belongs to

class cj for j ∈ [N ]2. The predicted class C corresponds to the output component

with maximum value as obtained by applying argmax function: C = argmax F(x).

In practice, the DNN classifier is trained using a massive annotated dataset along

with an optimized set of hyperparameters such that argmax F(x) approximates the

oracle function O which outputs the true class label for any input sample x ∈ RM .

Several model extraction attacks [67, 20] against machine learning models

(including complex DNNs) have been proposed in recent literature which pose

a major threat to the IP rights of their owners. In a model extraction attack,

the objective of an attacker is to steal the functionality of a well-trained network

Forg (referred to as the original or victim model) by querying it with a set Q of

input queries and obtaining the corresponding set of predicted output probabilities

Forg(Q). The attacker uses this information to train a surrogate model Fsm such

that its accuracy is close to that of Forg on a test dataset, thus depriving the DL

model owner of his business advantage. Typically, a model extraction attack is

performed in black-box setting, i.e., the attacker doesn’t have any knowledge of the

weight parameters of Forg, but has access to its prediction API which returns the

2[N ] denotes the set of first N natural numbers.
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output probabilities for a given input query. The challenges associated with such an

attack strategy are (i) lack of availability of annotated training data that comes from

the same distribution as the data used to train Forg and (ii) no knowledge of the

architecture of Forg or its training process. In this work, we focus on watermarking

based approaches to defend against model extraction attacks on proprietary DL

models.

5.5.1.2 Black-box DNN watermarking

Digital watermarking is a popular technique utilized to covertly embed a

secret marker into the cover data such as images, videos, or audios. It enables

free sharing of digital content, while providing proof of ownership of the cover data.

Extension of watermarking approaches to deep learning offers an effective solution

to defend against model theft by allowing the owner to claim IP rights upon inspec-

tion of a suspected stolen model. Several existing black-box DNN watermarking

approaches [17, 80, 120] consist of overfitting a model Forg to outlier input-output

pairs (known only to the DL model owner). Such watermarking techniques are based

on the concept of backdoor insertion [17, 42] using a trigger set. If the DL model

owner encounters a model which exhibits targeted misclassifications on this trigger

set that was encoded by the watermark, then the owner can reasonably claim that

the model is a stolen copy of Forg.

143



Entangled Watermarks. In [49], the authors demonstrated a fundamental limita-

tion of conventional DNN watermarking schemes based on outlier input-output pairs

in the context of model extraction attack. In order to perform model extraction,

an attacker does not directly steal the original model, but rather trains a surrogate

model by using the information obtained by querying the original model. If the

attacker queries a watermarked model Forg using inputs which are sampled from the

task distribution, then the obtained surrogate model Fsm will only learn the victim

model’s decision surface relevant to the task distribution and will not retain the

decision surface relevant to watermarking. Subsequently, the authors propose a new

technique called entangled watermarks which trains a DL model to learn features

common to both task distribution and watermark data by formulating a new loss

function. However, this altered training process incurs a substantial increase (about

2× compared to baseline model) in computational overhead. Moreover, the success

of entangled watermarks scheme is heavily dependent on the training dataset as well

as on hyperparameter tuning. In fact, such a watermarked model will incur severe

performance degradation if the hyperparameters are not carefully selected, leading

to a decrease in model utility.

DAWN. In [99], the authors propose a technique called DAWN which does not

impose any alterations to the training process but selectively changes the responses

of a model’s prediction API in order to watermark a fraction of input queries. These

watermarked queries then serve as a trigger set for a surrogate model Fsm trained

using the API responses of the victim model Forg. Unlike prior backdoor insertion

based watermarking schemes, DAWN is resilient to model extraction attacks as
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all the input queries including those which are watermarked belong to the task

distribution, i.e., no outlier inputs are present in the trigger set. Although an

effective technique to deter model extraction, the effectiveness of DAWN is limited

to client-server model where a malicious client (attacker) submits queries to Forg

hosted by the DL model owner using a trusted server. Such a scheme will not

be applicable in scenarios where the model owner has no knowledge of the input

queries made by the attacker, e.g., DL models deployed in remote edge devices.

Also, returning false predictions with the objective of embedding watermarks can be

unacceptable for certain applications, e.g., malware detection, medical applications

such as cancer diagnosis, etc. [20, 105]. Moreover, DAWN does not secure against

model extraction attack which utilizes several similar queries (multiple close images)

where only one is assigned a false label [64]. This strongly motivates the need to

develop an effective watermarking scheme which addresses the above drawbacks.

5.5.2 Problem Description

In recent years, there is a growing trend toward transition of the inference

phase of deep learning to edge devices [60, 106]. This leads to improved user

experience with reduction in inference time (low latency), less dependency on net-

work connectivity, and increased energy efficiency of resource-constrained mobile

devices. In addition, running inference on the edge also enables several deep learning

services, e.g. Instagram features that involve real-time application of machine

learning algorithms at image capture time [106]. In this new paradigm of edge
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intelligence, an attacker can directly query a proprietary DL model deployed in an

edge device without any need to redirect the queries to a trusted cloud server, thus

rendering model protection countermeasures like DAWN [99] practically useless.

Even the utilization of a trusted hardware in the edge as proposed in [28] will not

be effective for protecting DL model IPs as any end-user possessing an authorized

hardware will be able to mount model extraction attack. Therefore, the emerging

trend of executing deep learning inference on edge devices poses major challenges to

the security of well-trained DL models from IP infringement attempts. In this work,

we propose a novel accuracy-preserving watermarking approach called DynaMarks

as an effective IP protection mechanism for DL models deployed in edge devices.

Watermarking Requirements. The following requirements should be addressed

while designing an effective black-box watermarking scheme for proprietary DL

models deployed in edge devices:

• Fidelity. The performance or accuracy of the original DNN classifier should

not degrade due to watermark embedding.

• Robustness. The embedded watermark should exhibit resiliency against

model modifications such as compression/pruning and provide high detection

confidence for proving model ownership.

• Imperceptibility. The watermark should not leave tangible footprints in the

model, thus hindering any unauthorized detection.
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The above set of requirements have also been considered in previous works on

black-box DNN watermarking [17, 80, 120, 66]. In addition, we consider the fol-

lowing important watermarking requirement for defending against model extraction

attacks.

• Transferability. The embedded watermark should survive model extraction

attack, i.e., the watermark should get transferred from the original DL model

to a surrogate model obtained from it.

Threat Model. The objective of an attacker is to extract the functionality of a

well-trained DL model Forg without its watermark [49]. In practice, the attacker is

data-limited [53, 68] and does not have sufficient number of inputs representative of

the training set of Forg. In this work, we assume an adversary with the following

capabilities:

(i) access to γ fraction of the training data of Forg but not its labels, constituting

the attacker’s input query set Q

(ii) knowledge of the network architecture of Forg

(iii) ability to query Forg with any input sample and obtain the output probability

for each class (black-box setting)

(iv) knowledge that Forg is watermarked but does not know the details of the

watermarking procedure.

In addition, we also assume that Forg is deployed in a remote edge device and the
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DL model owner does not have any influence on the query strategy or the training

process adopted by the attacker to obtain the surrogate model Fsm. Furthermore,

the attacker is not constrained by memory or computational capabilities.

5.5.3 Proposed DynaMarks Technique

In this subsection, we present a new black-box watermarking technique called

DynaMarks to defend against model extraction attacks on proprietary DL models.

In order to perform model extraction, the attacker queries the original model with

inputs from her query set Q and utilizes the predicted output probabilities to

train a surrogate model. Previous works [102, 59] have shown that using output

probabilities instead of labels drastically reduces (about 50-100×) the number of

queries required to extract the model and also, improves the attack convergence

as well as increases the converged model accuracy. The objective of our proposed

DynaMarks scheme is to smartly alter these output probabilities in order to water-

mark a surrogate model without sacrificing the prediction accuracy of the original

DL model.

5.5.3.1 Watermark Embedding

As per our threat model, the primary challenge for DynaMarks technique is

to embed watermark into the original model Forg running on an edge device in

such a way that during model extraction the watermark gets transferred to the

surrogate model Fsm. Since the DL model owner does not have any control over

the input queries used by the attacker, she can no longer utilize the notion of a
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trigger set for embedding watermark as adopted in several prior approaches [17, 80,

120, 99]. Instead, DynaMarks dynamically alters the output probabilities of Forg

based on certain secret parameters at model inference runtime with the objective

of watermarking Fsm. Next, we present the details of the watermark embedding

process.

Let us denote the output probability vector of Forg(x) for an input x by #»px.

Note that each component pix of the vector #»px corresponds to the probability value

predicted by the model for the ith class, i ∈ [N ]. Now, for every ith class, the DL

model owner defines a secret vector
#»

Vi = (v1i , v
2
i , · · · , vNi ) of length N such that the

values of its elements specify the selection probabilities of the corresponding indices,

e.g., the probability of selecting the jth index of
#»

Vi is vji . The process of embedding

watermark into the model Fsm by utilizing these secret vectors is summarized in

Algorithm 5.1. In order to extract the functionality of Forg, the attacker uses samples

from the input query set Q to query Forg and builds a substitute dataset Dsub with

the returned responses (output probabilities). For each input x ∈ Q, DynaMarks

alters the output probability vector #»px as a function of vectors
#»

Vi as follows (lines

4-11 of Algorithm 5.1): If the ith component of #»px has the maximum value, i.e.,

argmax #»px = i, and the maximum value pix lies within a certain range (αi, βi),

then (i) generate a random variable ∆p that follows a certain distribution, say a

uniform distribution U(ai, bi) (ii) select an index j from the vector
#»

Vi (iii) alter the

probabilities of component pair (pix, p
j
x) of the vector #»px by transferring an amount

of ∆p from pix to pjx, i.e., pix = pix−∆p and pjx = pjx + ∆p. Note that such alteration

to vector #»px does not affect the sum of its components which still equals 1. In
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Algorithm 5.1: Watermark Embedding on Extracted Model

Input: (i) Network Forg initialized with weights Worg

(ii) Vectors
#»

Vi and parameters (αi, βi, ai, bi), ∀i ∈ [N ]

(iii) Attacker’s input query set Q

Output: Watermarked surrogate model Fsm

1 /*building substitute dataset*/

2 Dsub = φ

3 for x ∈ Q do

4
#»px = Forg(x)

5 if argmax #»px == i and pix ∈ (αi, βi) then

6 Generate random variable ∆p ∼ U(ai, bi)

7 Select an index j ∈ N from
#»

Vi

8 /*alter component pair (pix, p
j
x)*/

9 pix = pix −∆p

10 pjx = pjx + ∆p

11 end

12 Dsub = Dsub ∪ (x, #»px)

13 end

14 /*watermark transferability*/

15 Wsm ← Train Fsm using Dsub

16 return Fsm
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addition to the vectors
#»

Vi, the parameters (αi, βi, ai, and bi), ∀i ∈ [N ], are also

secrets chosen by the DL model owner. For a given set of inputs, such probabilistic

changes in the output responses of Forg based on the secret parameters leads to a

set of altered probability distributions over the set of outputs which constitute the

watermark in our proposed DynaMarks scheme. For notational simplicity, we refer

to this altered version of Forg as Falt.

When the attacker uses the responses of Falt to the input query set Q for

composing the substitute dataset Dsub and subsequently, trains a surrogate model

Fsm using it, we expect the watermark to get transferred to Fsm. This is because

the extracted model Fsm tries to replicate the secret-dependent functionality of Falt

which maps a set of inputs to a set of altered probability distributions over the

set of outputs. The above methodology of embedding watermark into Fsm doesn’t

require the DL model owner to have any knowledge of the attacker’s query strategy.

Hence, the proposed DynaMarks technique provides an effective IP security solution

against model extraction attacks on proprietary DL models deployed in edge devices.

Also, for a given dataset and network architecture, the model owner can choose the

secret parameters in such a manner that the accuracy of the original model Forg is

preserved.
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Algorithm 5.2: Watermark Verification
Input: (i) Black-box access to network Fsm (ii) White-box access to networks Forg and

Falt (iii) Vectors
#»

Vi and parameters (αi, βi, ai, bi), ∀i ∈ [N ] (iv) Verification

query set V (v) Watermark detection threshold τ

Output: Decision of watermark detection in Fsm

1 /*Form NxN response distributions*/

2 Initialize response matrices Rsm
ij , Rorg

ij , Ralt
ij , ∀i, j ∈ [N ]

3 for (x, y) ∈ V do

4 ~sx = Fsm(x), ~px = Forg(x), ~qx = Falt(x)

5 for j ∈ [N ] do

6 Append sjx, pjx, qjx to Rsm
yj , Rorg

yj , Ralt
yj

7 end

8 end

9 Dsm
ij , Dorg

ij , Dalt
ij ← Create distributions of Rsm

ij , Rorg
ij , Ralt

ij

10 /*Calculate distance metrics*/

11 δorgsm ← 0, δaltsm ← 0

12 for i ∈ [N ] do

13 for j ∈ [N ] do

14 δorgsm = δorgsm + JSD(Dorg
ij ‖ Dsm

ij )

15 δaltsm = δaltsm + JSD(Dalt
ij ‖ Dsm

ij )

16 end

17 end

18 /*Determine if model is watermarked*/

19 η = δorgsm / δaltsm

20 if η > τ then

21 return Watermark Detected in Fsm

22 end
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5.5.3.2 Watermark Verification

In order to verify the presence of watermark in Fsm, the DL model owner

compares the distributions of output responses of the models Fsm and Falt using a

verification query set V. An element of the set V consists of a tuple (x, y), where x

denotes an input query and y denotes its known output label. In our experiments

(details later in section 5.5.4), we consider the entire test set of a benchmark dataset

as the verification query set V. If the model Fsm is stolen from Falt using model

extraction, we expect the distributions of their output responses to be similar as both

of them will be functions of the secret parameters used to embed the watermark. The

process of watermark detection in a suspected surrogate model Fsm is summarized

in Algorithm 5.2. In the first phase (lines 1-9), the DL model owner defines a data

structure called response matrix Rsm (corresponding to model Fsm) of dimension

NxN whose each element Rsm
ij ,∀i, j ∈ [N ], is a variable-length list. The process

of populating the elements of Rsm is as follows: The model Fsm is queried with

an input x from the set V to obtain an output probability vector ~sx in black-box

setting. If the actual label corresponding to input x is y, then the components sjx of

~sx, ∀j ∈ [N ], are appended to the respective lists Rsm
yj along the yth row of matrix

Rsm. The repetition of this step for all the elements of set V results in clustering of

the output responses of the model Fsm according to their actual class labels along

the rows of the matrix Rsm. Subsequently, the DL model owner forms a response

distribution Dsm of dimension NxN using the response matrix Rsm by creating

individual probability distributions Dsm
ij from the contents of the corresponding list
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Rsm
ij , ∀i, j ∈ [N ]. Similarly, the response distributions Dorg and Dalt are also formed

by querying the models Forg and Falt respectively using the same verification set V.

Note that the model owner has white-box access to both Forg and its altered version

Falt for constructing their respective response distributions.

In the second phase (lines 10-17), the DL model owner calculates a distance

metric δorgsm by iteratively adding the Jensen-Shannon divergence3 JSD(Dorg
ij ‖ Dsm

ij )

between the probability distributions Dorg
ij and Dsm

ij , ∀i, j ∈ [N ]. Similarly, another

distance metric δaltsm is also obtained by considering the response distributions Dalt

andDsm. In the final phase (lines 18-22), the DL model owner calculates a parameter

η which is the ratio of δorgsm to δaltsm. If the value of the parameter η is greater than

a certain threshold τ (empirically determined after experimental evaluations), then

the presence of watermark is detected in the model Fsm. The rationale behind

such a decision being that the response distribution Dsm will be more similar to

Dalt (smaller δaltsm) than compared to Dorg (larger δorgsm ) if Fsm is trained using the

output responses of Falt. This will lead to a large value of parameter η (greater

than τ) implying that Fsm is indeed extracted from Falt. As evident from the above

discussion, the success of such watermark detection in DynaMarks scheme strongly

depends on how effectively the dynamically generated watermark gets transferred

from the output responses of Falt to the output responses of Fsm due to model

extraction.

3Jensen-Shannon divergence JSD(P ‖ Q) is a metric for measuring the similarity between two

probability distributions P and Q.
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Implementation efficiency. The proposed DynaMarks technique can be im-

plemented in edge devices using low-cost hardware components with negligible

impact on the performance of deployed DL models. The alterations in the output

probabilities of a model can be easily performed using hardware implementations

of pseudo-random number generators along with standard digital adder/subtractor

circuits. The incorporation of such simple hardware designs will have insignificant

effects on the model inference time as well as on the energy-efficiency of an edge

device. The secret parameters used in the DynaMarks scheme can be stored securely

in a tamper-proof chip such as Trusted Platform Module (TPM) [15] embedded into

the edge device.
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Dataset
Fidelity (accuracy) Averaging Attack Pruning (κ = 10%) Different Architectures

Forg Falt δorgsm δaltsm η δorgsm δaltsm η δorgsm δaltsm η

Fashion MNIST 90.72% 90.72% 45.32 17.99 2.52 41.83 16.03 2.61 73.72 28.71 2.57

CIFAR-10 84.98% 84.98% 41.07 16.02 2.56 33.25 14.63 2.27 34.56 17.94 1.93

Table 5.2: Evaluating the fidelity and robustness properties of DynaMarks scheme.
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5.5.4 Evaluations

5.5.4.1 Experimental Setup

Datasets. We evaluate DynaMarks technique on two popular image datasets, Fash-

ion MNIST [5] and CIFAR-10 [2], using PyTorch 1.7 framework. The classification

tasks on these datasets are much more complex compared to the classic MNIST

dataset, e.g. models achieving 99% accuracy on MNIST only attain about 90%

accuracy on Fashion MNIST dataset. Fashion MNIST dataset consists of 70, 000

samples (training set of 60, 000 examples and test set of 10, 000 examples) of 28x28

grayscale images, whereas CIFAR-10 dataset consists of 60, 000 samples (training

set of 50, 000 examples and test set of 10, 000 examples) of 32x32 colour images. For

both these datasets, an image is associated with a label from 10 classes (N=10).

Network Architectures. In order to obtain the well-trained model Forg, we

use Convolution Neural Networks (CNNs) for both the datasets. In case of Fash-

ion MNIST dataset, the architecture is composed of 2 convolution layers with 16

and 32 5x5 kernels respectively with 2x2 max pooling operations, followed by a

fully-connected layer. For CIFAR-10 dataset, the architecture is composed of 6

convolution layers with 32, 64, 128, 128, 256, and 256 3x3 kernels respectively with

2x2 max pooling operations, followed by three fully-connected layers. Both the

networks were trained to attain satisfactory performance on the image classification

tasks considered.
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Figure 5.8: Transferability of DynaMarks for different training fractions.

5.5.4.2 Validating DynaMarks

Next, we perform experiments to evaluate the effectiveness of our proposed

DynaMarks approach in the context of the watermarking requirements stated in

section 5.5.2.

Impact on accuracy (Fidelity requirement). The accuracy of a well-trained

model Forg should not degrade due to watermark embedding as otherwise its utility

will be impacted [59]. In DynaMarks scheme, a DL model owner has the flexibility to

calibrate the secret parameters (vectors
#»

Vi along with αi, βi, ai, and bi, ∀i ∈ [N ]) such

that the accuracy of the original DNN classifier is preserved. In our experiments,

we construct each
#»

Vi by setting the selection probability of a single index (randomly

selected from [N ]) to 2/11 and the selection probabilities of the remaining indices
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to 1/11. Also, we set αi = 0.9, βi = 1, ai = 0.01, and bi = 0.19, ∀i ∈ [N ], for both

the datasets such that Falt exhibits accuracy-preserving outcomes as reported in the

second and third subcolumns of Table 5.2.

Detectability in surrogate model (Transferability requirement). A very

important criteria for designing watermarking schemes for proprietary DL models

deployed in edge devices is the property of watermark transferability from the well-

trained model Falt to a surrogate model Fsm which is extracted from the former.

In fact, the watermark verification process of the DynaMarks scheme (as outlined

in Algorithm 5.2) is also strongly dependent on the detectability of the watermark

at the output responses of Fsm. In Fig. 5.8, we study the transferability property

of DynaMarks by evaluating the parameter η (shown using solid red line) across

different fractions γ of the training data available to the attacker. For both the

datasets, we used the same CNN architecture for Falt and Fsm and considered the

entire test set as the verification set V. In the subfigures, we also plot the variations

of the distance metrics δorgsm and δaltsm using solid and dashed blue lines respectively.

We observe that the parameter η is always greater than the threshold τ = 1 (no false

negatives), implying that there is strong watermark transferability from the output

responses of Falt to the output responses of Fsm due to model extraction. In order

to assess the false positive rate in our watermark verification process, we trained a

benign model Fbm using 50% of the original training dataset and recalculated the

parameter η by taking the ratio of the distances of the output response distribution of

Fbm from those of Forg and Falt. In this case, we found that η is always lesser than the

threshold τ = 1 (η = 0.19 for Fashion MNIST and η = 0.54 for CIFAR-10), implying
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that there is no false positives in the watermark detection process. The value of the

threshold τ was chosen empirically after performing experimental evaluations on

the datasets. In summary, DynaMarks exhibits strong watermark transferability

as required from an ideal watermarking scheme to defend against model extraction

attacks.

Resiliency to model modifications (Robustness requirement). We analyze

the robustness of DynaMarks scheme against the following types of watermark

removal strategies.

(i) Averaging Attack. If an attacker queries Falt repeatedly using the same input,

then according to Algorithm 5.1 she will get different output probabilities for dif-

ferent input queries as the model response is dependent on a couple of randomness

factors (lines 6 and 7 of Algorithm 5.1). The attacker can then calculate the average

of such output probabilities to get a representative response for an input which are

used to populate the substitute dataset Dsub for training Fsm. The attacker succeeds

if the obtained surrogate model Fsm does not retain any information pertaining to

the watermark. In order to evaluate the outcome of such an attack for a data fraction

γ = 1 (entire training data), we queried Falt repeatedly using the same input for

100 times to get a representative sample in the substitute dataset Dsub. Then, we

obtained the distance metrics δorgsm and δaltsm as reported in subcolumns 4 and 5 of

Table 5.2. We observe that their ratio η (see subcolumn 6) is still greater than the

watermark detection threshold τ = 1, implying that DynaMarks is resistant to such

averaging attack.
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Figure 5.9: Transferability of DynaMarks for different pruning rates.

(ii) Model Compression. The attacker can also adopt a model pruning approach to

compress the surrogate model Fsm with the objective of removing the watermark [49,

80]. In our experiments, to perform model compression, we eliminated the lowest κ%

of the network connections across all the layers of Fsm (trained using data fraction

γ = 1) using the global pruning method of PyTorch framework. We report the

outcomes of such model pruning with a pruning rate κ = 10% in subcolumns 7-9

of Table 5.2. In this case also we observe that the watermark detection parameter

η is above the threshold τ = 1 for both the datasets, highlighting the robustness

of DynaMarks scheme against model compression. We further varied the pruning

rate κ from 10% up to 50%; we find in Fig. 5.9 that even then the watermark can

be successfully detected (η > τ) across all the pruning rates. It is to be noted
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that high proportions of pruning result in significant accuracy degradation of the

extracted model Fsm with negligible impact on the detection parameter η, e.g., in

case of Fashion MNIST dataset the model accuracy drops by 11.17% with κ = 50%

compared to the uncompressed model accuracy even though for the pruned model

the parameter η = 2.11 remains well above the threshold τ = 1.

(iii) Different architectures. All the previous set of experiments were performed

by keeping the same CNN architecture for the victim and the surrogate models. In

order to study the influence of the choice of architecture on DynaMarks technique, we

use Resnet-18 [45] network for obtaining a surrogate model Fsm from a CNN-based

victim model Falt with a data fraction γ = 1. From the last three subcolumns of

Table 5.2, we observe that even in this setting the watermark detection parameter

η is sufficiently greater than the threshold τ = 1 for both the image datasets

considered. This highlights the fact that the watermark generated by altering the

responses of the victim DL model using Algorithm 5.1 transfers to the responses

of the surrogate model Fsm irrespective of its architectural choice. This is because

Fsm replicates the input-output mapping of the model Falt (which is a function of

the secret parameters chosen by the DL model owner) provided that the network

architecture of Fsm is sufficiently complex.

Imperceptibility requirement. Unlike prior black-box watermarking approaches [49,

99], DynaMarks does not utilize any trigger inputs to detect watermark in a surro-

gate model Fsm obtained using model extraction attack. Hence, state-of-the-art

backdoor detection schemes such as Neural Cleanse [104] are not applicable to

DynaMarks which generates watermark by dynamically altering the responses of
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the prediction API of a protected DL model at inference runtime. Also, it seems

very unlikely that a data-limited attacker will be able to revert back such alterations

without any notion of the secret parameters used in the watermark generation

process. As future work, we plan to investigate the security offered by DynaMarks

technique against steganalysis and watermark overwriting attacks.

5.6 Conclusion

In this chapter, we proposed a lightweight obfuscation framework called HPNN

for IP protection of DL models. In this framework, a DL model owner utilizes a

novel key-dependent backpropagation algorithm to train a network such than only

an authorized end-user who possesses a trusted hardware (with the secret HPNN

key embedded on-chip) will be able to effectively run the DNN inference phase. The

experimental outcomes across different benchmark datasets and DNN architectures

highlight the fact that any unauthorized usage of such locked DL models will lead

to a substantial degradation of the model prediction accuracy. In addition, we also

performed extensive evaluations to demonstrate the robustness of obfuscated DL

models (trained using HPNN framework) against model fine-tuning attacks.

We also presented a novel watermarking approach called DynaMarks as an

effective IP security solution against model extraction attacks performed by autho-

rized end-users in the HPNN framework. Unlike existing defenses, DynaMarks does

not introduce any computational overhead in the model training phase nor does

it sacrifice the victim model’s prediction accuracy to gain security benefits. The
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experimental outcomes on Fashion MNIST and CIFAR-10 datasets demonstrate

the effectiveness and robustness of DynaMarks technique against different types of

watermark removal strategies.
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Chapter 6: Conclusion and Future

Research Directions

This dissertation focuses on developing obfuscation based design techniques to

enhance hardware-oriented security and trust at multiple levels of design abstrac-

tions. These approaches can be utilized to build trust between the IC design houses

and the fabrication companies which are located in different parts of the world.

6.1 Conclusion

In Chapter 1, we presented an overview of different hardware-based security

threats in the various stages of an IC design’s life cycle. We outlined several

design-for-trust approaches as proposed in the related literature to protect the IPs

of hardware implementations from a malicious foundry as well as end-users. In

addition, we also discussed about existing logic obfuscation based security schemes

which aim to protect the IPs of hardware designs by introducing key-gates in their

synthesized netlists.

In Chapter 2, we evaluated the security of delay locked designs at the circuit-

level of design abstraction. We developed a novel SAT formulation based attack

approach called TimingSAT to deobfuscate the functionalities of such delay locked

designs. TimingSAT attack works in two stages: In the first stage, the attacker
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finds the functional key using conventional SAT attack approach and in the second

stage, the attacker finds the delay key using a timing profile embedded SAT formu-

lation of the circuit. We performed experiments across several benchmark circuits

to demonstrate the effectiveness of the TimingSAT attack to break delay-locked

benchmarks within a few hours. Subsequently, we proposed a countermeasure called

stripped-functionality delay locking (SFDL) which not only thwarts TimingSAT

attack but also resists all known attacks against circuit-level obfuscation techniques.

The security guarantees of the proposed countermeasure were validated with exten-

sive experimental evaluations. In Chapter 3, we investigated the susceptibility of

conventional circuit-level obfuscation schemes to side-channel analysis attacks. We

demonstrated how an adversary can adopt a template analysis based side-channel

attack to successfully deobfuscate the functionality of a locked circuit using a low

number of power side-channel traces.

In Chapter 4, we first highlighted the limitations of circuit-level obfuscation

schemes to provide reasonable security guarantees at the architecture-level of de-

sign abstraction. We formulated a oracle-less approximate SAT attack against an

obfuscated many-core GPU design whose cores were assumed to be locked using

state-of-the-art circuit-level logic locking schemes. Such an attack translates the

multi-cycle GPU core netlist to a functionally-equivalent single-cycle netlist and

utilizes the GPU instruction set architecture to compute distinguishing input-output

pairs as required for SAT formulation based attacks. Then, we proposed a counter-

measure called cache locking which modifies the cache block replacement policy as a

function a secret key such that incorrect keys results in significant drops in cache hit

166



rates, thus degrading the performance of the applications running on a locked GPU.

Subsequently, we proposed a second countermeasure which uses hardware/software

co-design based obfuscation approach to provably safeguard the IPs of hardware

accelerator designs from an untrusted foundry. The attack resiliency of such a

scheme is manifested by using a sequence of keys to obfuscate instruction encoding

for an application. The effectiveness of both the countermeasures were demonstrated

using experiments performed on standard benchmark applications.

In Chapter 5, we explored the possibility of using a hardware root of trust

to obfuscate the functionalities of well-trained deep learning (DL) models, thus

enhancing application-level security. We proposed a framework called Hardware

Protected Neural Network (HPNN) in which a deep neural network (DNN) is trained

as a function of a secret key and then, the obfuscated DL model is hosted on a

public model sharing platform. The HPNN framework ensures that only autho-

rized end-user who possess trusted hardware device (with the secret key embedded

on-chip) can run DL applications with high accuracy using the published model.

We also provided a theoretical construct of a key-dependent backpropagation algo-

rithm for training a DNN which doesn’t sacrifice a model’s prediction accuracy to

gain security benefits. The outcomes of extensive experimental evaluations across

different DNN architectures and benchmark datasets demonstrates the efficacy of

the HPNN framework as well as validates the robustness of obfuscated DL models

against model fine-tuning type attacks. Subsequently, we addressed the threat posed

by an authorized end-user trying to steal a DL model via model extraction attack

by proposing a watermarking technique called DynaMarks. DynaMarks embeds
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watermark into a surrogate model by dynamically changing the output responses

from the original model’s prediction API based on certain secret parameters at

inference runtime. The integration of DynaMarks scheme with the HPNN framework

allows a DL model owner to reliably prove model ownership even under a strong

attack scenario.

6.2 Future Research

In this dissertation, we have developed several obfuscation based design tech-

niques to enhance hardware-oriented security and trust at different levels of design

abstractions. The following discussion summarizes potential future research direc-

tions to extend the work presented in this thesis.

6.2.1 Improved SAT Attack

A strong logic obfuscation scheme must provide reasonable security guarantees

against SAT formulation based attacks. In the related literature, the resiliency of

logic locking techniques has been analyzed using classical SAT attack approach

which utilizes a serial algorithm to iteratively prune out unique subsets of wrong

keys till a correct key is found. A potential research direction is to develop an

improved version of the SAT attack which uses a parallel algorithm to prune out

subsets of wrong keys concurrently and converges to find a correct key in a much
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shorter time. An ideal logic obfuscation scheme should provide strong security

guarantees against such optimized versions of SAT attack as well as other existing

attacks on logic locking while incurring minimal implementation overheads.

6.2.2 Recommender System for Obfuscation

Currently a designer applies a chosen logic locking algorithm to obfuscate

the synthesized netlist of a sub-module of a design. This approach will incur

substantial area overhead if there is a large number of sub-modules in the design, as

typically present in a modern system on a chip (SoC). Therefore, in order to reduce

the implementation overhead, the designer needs to judiciously select a subset of

possible locations for inserting the locking construction. Such selection of locations

is not a trivial task as the designer needs to try several possible combinations to

insert key-gates in the synthesized netlist such that the output corruptibility of

the entire system-level design is high for wrong key inputs. An interesting future

research direction would be to build a recommender system for suggesting probable

locations for inserting key-gates in the netlist of a large-scale design such that the

obfuscated design is not only secure against SAT/other types of attacks but also

exhibits high output corruptibility for incorrect key inputs while incurring minimal

implementation overhead. In order to develop such a recommender system, the

designer needs to build a library consisting of (i) different locking algorithms (ii)

topology information of previously locked netlists and their output corruptibility

for wrong key inputs (iii) corresponding resiliency to SAT/other types of attacks
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(iv) associated overhead due to introduction of additional locking constructions in

the netlist. The end objective of such a recommender system will be to suggest the

best possible locations to introduce locking constructions in the synthesized netlist

of the entire design which simultaneously provides strong security guarantees, high

error rate for wrong key inputs, and minimal implementation overhead.

6.2.3 DNN Obfuscation Using PKI

There is a strong need to develop a secure framework for distribution and

deployment of Deep learning (DL) models, especially with the growing use of such

models in numerous industrial products and services. In Chapter 5, we proposed

HPNN framework which realizes this objective by utilizing hardware root-of-trust

which ensures that only authorized end-users can run inference phase of deep neural

networks (DNNs) with high accuracy. However, the HPNN framework assumes that

all the trusted edge devices use the same obfuscation key (HPNN key) embedded

on-chip. In practice, different edge devices may use different keys (securely stored

in respective trusted platform modules) and hence, the HPNN framework needs

to be adapted to provide an efficient model IP protection mechanism in such a

setting. One possible solution is to perform the following steps (i) train a DNN

using a reference obfuscation key Kref using the key-dependent backpropagation

algorithm to obtain a DL model Mref (ii) use Public Key Infrastructure (PKI) to

securely exchange a device-specific obfuscation key Kdevice between the server and

the end-user device using Diffie-Hellman protocol (iii) for each neuron of the DNN, if
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the associated key bits derived from Kref and Kdevice are different, then flip the sign

of all of its incoming weight parameters in Mref to obtain an equivalent DL model

Mdevice for the device. It is to be noted that the above solution requires training of

only one DL model Mref using key-dependent backpropagation algorithm and the

other device-specific models Mdevice can be obtained by adjusting the sign bits of

the weight parameters of Mref , thus providing a scalable approach to adapt HPNN

framework in a setting where different edge devices uses different keys.

Another interesting future research direction will be to explore the opportunity

to extend the HPNN framework in a federated learning setting [61] where several

edge devices store and process data locally (only intermediate updates being commu-

nicated periodically to a central server) with the end objective of learning a single

global DL model. Such a framework should aim to enhance privacy of federated

learning with minimal impact on model performance and system efficiency.
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