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Abstract

One of the most important aspects of any machine learning paradigm istsoalés according
to problem size and complexity. Using a task with known optimal ingirerror, and a pre-specified
maximum number of training updates, we investigate the convergence batkpropagation algorithm
with respect to a) the complexity of the required function approximati the size of the network in
relation to the size required for an optimal solution, and c) the dedraeise in the training data. In
general, for a) the solution found is worse when the function to becappated is more complex, for
b) oversized networks can result in lower training and generalization ere@riain cases, and for c)
the use of committee or ensemble techniques can be more beneficial as thé t@iséan the training
data is increased. For the experiments we performed, we do not obtaiptthral solution in any case.
We further support the observation that larger networks can produa braihing and generalization
error using a face recognition example where a network with many moaengders than training points
generalizes better than smaller networks.
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1 Introduction

Statements regarding the training and generalizationr efrBILPs similar to the following occur often in
the neural network literature and community:

1. “BP is actually a gradient method, and therefore, there is no gutearat all that the absolute minimum can be
reached. In spite of this theoretical remark, researchers involved witaiications know that this is not a very
serious problem. BP often leads to a global minimum, or at leastemikpossible to meet practical stopping
criteria”

2. “We have found local minima to be very rare and that the system learageasonable period of time”
3. “Backpropagation works well by avoiding non-optimal solutiéns

4. “We should not use a network with more parameters than the nunfluzta points available.”

Statements 1 to 3 say that while local minima are expecteg,rtbvertheless either do not affect the quality
of the solution greatly, or they occur so infrequently tha effect can be ignored in practice (Breiman
(1994) makes the following comment about local minirf&tmost none of the neural net people seem to
worry about landing in local minimg). Statement 4 expresses the intuition that the degrees@ddm in
the model should be less than the total number of data poiatihkle for training.

In this paper, we show that a solution near the optimal swius often not obtained. The relative quality of
the solution obtained will be investigated as a functionhef following variables: a) the complexity of the
required function approximation, b) the size of the netwiorkelation to the size required for an optimal
solution, and c) the degree of noise present in the data. 8héts indicate that a) the solution found is
worse when the function to be approximated is more complewybrsized networks can result in lower
training and generalization error in certain cases, anldecyise of committee or ensemble techniques can be
more beneficial as the amount of noise in the training datecieased. Further support for the observation
that larger networks can, in certain cases, produce bedieirtg and generalization error is provided with a
face recognition example where a network with 364 times rparameters than training points generalizes
better than smaller networks. Techniques to control géimation are not used in order to illustrate this
case.

2 Local Minima

It has been shown that the error surface of a backpropagagbmork with one hidden layer and— 1
hidden units has no local minima, if the network is trainethvain arbitrary set containingdifferent inputs
(Yu, 1992).

In practice, however, other features of the error surfack ag “ravines” and “plateaus” (Baldi and Hornik,

1988) can present difficulty for optimisation. For exampie two error functions shown in figure 1 (from

(Gori, 1996)) do not have local minima. However, the functan the left is expected to be more difficult

to optimise with gradient descent. For the purposes of thigep the criterion of interest considered is “the
best solution found in a given practical time limit.”

For larget, it may be impractical to use a network large enough in omlensure that there are no local minima.



> w > W

Figure 1. Examples of two possible error functions of oneatigion (from (Gori, 1996)). The abscissa
corresponds to the value of the single parameter and theatedtorresponds to the error function. Although
neither of these functions contains local minima, the fiomcon the left is expected to be less suitable for
gradient descent optimisation due to the “flat” regions.

3 Prior Work

The error surface of very small networks has been charaetegpreviously, e.g. for an XOR network
(Hamey, 1995). However, practical networks often containdreds or thousands of weightnd, in gen-
eral, theoretical and empirical results on small networkandt scale up to large networks. One reason
may be attributed to the interference effect in the trairpngcess. Consider the backpropagation training
algorithm, if the hidden layer neurons are not all in sataratthe gradients evaluated at the hidden layer
neurons are coupled (the update of each parameter gereffaltys many other parameters). For a network
with more hidden layer neurons, this interference effeekjsected to be more pronounced.

Caruana presented a tutorial at NIPS 93 (Caruana, 1993petitbralization results on a variety of problems
as the size of the networks was varied from “too small” to ‘ferge”. “Too small” and “too large” are related

to the number of parameters in the model (without consiaeraif the distribution of the data, the error
surface, etc.). Caruana reported that large netwaiedy do worsethan small networks on the problems
he investigated. The results in this paper partially cateevith that observation. Caruana suggested that
“backprop ignores excess parameters”.

Crane, Fefferman, Markel and Pearson (1995) used readdvalata generated by a random target network,
and attempted training new networks on the data in ordergooxpnate the number of minima on the error
surface under varying conditions. The use of random targ®tarks in this fashion has been referred to as
the student teacher problem (Saad and Solla, 1995). Meti\at this work, a very similar technique is used
in this paper in order to evaluate the quality of the localimawhich are found using backpropagation as
a function of various parameters.

Saad and Solla (1996) used the student teacher problemlyaatiae effect of noise on on-line learning. For

2Networks with up to 1.5 million weights have been used forespephoneme recognition (Bourlard and Morgan, 1994).
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the case of training examples corrupted with additive autpise (they also analyze model noise), Saad and
Solla have shown that small noise levels may shorten the ggrimphase of learning while larger values
may lengthen the phase. Generalization error increasdg amise level is increased. For the asymptotic
case, training with a fixed learning rate results in a noriskdng asymptotic generalization error. They
show that learning rate decay schemes can remove the effeadslitive output noise asymptotically.

Muller, Finke, Schulten, Murata and Amari (1996) also usandomly generated “teacher” networks in
order to create training examples for “student” networkheyl perform a detailed study of generalization
as a function of the number of training samples for classifioatasks. For networks with up to 256
weights, they demonstrate strong overfitting for a small benof training examples, a region where the
generalization error scales according f&v2. whereN,, is the number of training examples, and asymptotic
scaling according tv,, /2Ny, whereN,, is the number of weights in the network.

There are several theories for determining the optimal otwgize e.g. the NIC (Network Information
Criterion) (Amari, 1995) which is a generalization of theGA{Akaike Information Criterion) (Akaike,
1973; Akaike, 1974) widely used in statistical inferendes teneralized final prediction erfo{GPE) as
proposed by Moody (1992), and the Vapnik-Chervonenkis (di@ension (Maass, 1995; Abu-Mostafa,
1989; Bartlett, 1993) — which is a measure of the expressiveep of a network. NIC relies on a single
well-defined minimum to the fitting function and can be uraele when there are several local minima
(Ripley, 1995). There is very little published computatibexperience of the NIC, or the GPE. Their
evaluation is prohibitively expensive for large networks.

VC bounds have been calculated for various network typebrf@od Tesauro, 1992). Early VC-dimension
work handles only the case of discrete outputs. For the dasalovalued outputs, a more general notion of
a “dimension” is required. Such a “pseudo-dimension” cadéfted by considering a loss function which
measures the deviation of predictions from the target galMaass, 1995). VC bounds are likely to be too
conservative because they provide generalization gueeaisimultaneously for any probability distribution
and any training algorithm. The computation of VC boundspiactical networks is difficult. Apart from
small examples, we are unaware of any systematic procetiurése evaluation of VC bounds for typical
practical networks.

Other work addressing local minima or the number of sampbesiired with respect to generalization

include (Baum and Haussler, 1989; Sartori and Antsakli9119cinerny, Haines, Biafore and Hecht-

Nielsen, 1989; Yu, 1992; Gori and Tesi, 1992). These appemare limited due to the assumptions they
make, e.g. typical limitations include applicability oty linearly separable problems, consideration only
of true local minima as opposed to regions where gradiertaitdecomes “stuck” (such as “plateaus”),
and no consideration of limits on training time.

3Wwith respect to the results reported here, overfitting bislmJor classification tasks is expected to be different wuere use
of training patterns with asymptotic targets.

4The final prediction error (FPE) is an alternative methodietermining the order of a dynamical process, originalbppsed
by Akaike (1970), and generalized to the neural networkregetly Moody (1992).

SVery briefly, this is the largest set of examples that can ladtsted by the network, where a setwoéxamples is “shattered”
by the network if for each of the” possible ways of dividing the samples into disjoint setS; and.Ss, there exists a function
computable by the network such that the output is 1 for membé&S; and the output is 0 for members 6% (for a binary
classification problem).



4 Artificial Task

To investigate empirical performance we have chosen aficatitask so that we a) know the optimal
solution, and b) can carefully control various parametdtse task is as follows and is very similar to the
procedure used in (Crane et al., 1995):

1. An MLP with m; input nodesyn,, hidden nodes, anth, output nodes (denoted by, : m, : m, and
later referred to as the “data generating network”) isafized with random weights, uniformly selected
within a specified range, i.ew; in the range- K to K, wherew; are the weights of the network except
the biases, and is a constant.K is 1.0 for the results reported in this paper except whenraike
specified. The bias weights are initialized to small rand@iues in the rang¢—0.1,0.1). As K is
increased, the “complexity” of the function mapping is ased as will be discussed in more detail in
section 6.2.

2. Ny data points are created by selecting random inputs withraean and unit variance and propagating
them through the network to find the corresponding outputss @atasetS forms the training data for
subsequent simulations. The procedure is repeated tea@dast dataset with;, points. Ny, is 5000
for all simulations reported in this paper. The choice ofbzerean and unit variance inputs is not too
unrealistic because the inputs to an MLP are often nornuhtisénave zero mean and unit variance (the
distribution may not be normal however) (Le Cun, 1993).

3. The training data s&t is used to train new MLPs, known subsequently as the “trane#gforks” with the
following architecturern; : mj, : m,. For certain testsy, is varied fromm,, to M, whereM >> my,.
The initial weights of these new networks are set using tleeguiure suggested in Haykin (1994) (i.e.
they are not equal to the weights in the network used to cthatdataset). They are initialized on a node
by node basis as uniformly distributed random numbers indhge(—2.4/F;, 2.4/ F;) whereF; is the
fan-in of neuroni. Theoretically, ifm) > m,, then the optimal training set error is zero (for the case
where no noise is added to the data).

Figure 2 shows the process graphically.

5 Methodology for Exploring Convergence

The artificial task will be used to explore the convergencthefnetworks while varying certain parameters
in a controlled manner. Both the training and the generadizgperformance will be investigated. The
baseline network topology is 20:10:1, where 20, 10, and Ewkosen to represent a typical network where
the number of inputs is greater than the number of hiddensadd the specific values were chosen such
that the total training time of the simulations was reastsabhe following methodology is used:

1. The following parameters of the simulations are varied aha time: a) the maximum value used for
setting the weights in the generating netwotk € K < 10), b) the size of the trained networks
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Figure 2. The process of creating the data sets.

(10 < mj, < 50, c) the size of the training dataset0() < N; < 20,000, and d) the amount of
zero mean Gaussian noise added to the training data (fromtaex standard deviation of 2% of the
standard deviation of the input data).

2. Each configuration of the MLP is tested with ten simulagjoeach with a different starting condition
(random weights).

3. Stopping criterion. No stopping criterion, and no metddontrolling generalizatioff is used (other
than a maximum number of updates) in order to demonstratectise. All networks are trained for an
identical number of stochastic updatésq 10°). It is expected that overfitting could occur.

We used the standard MLB, = f (Zf\lgl wfm.yﬁfl) wherey! is the output of neurok in layer!, N; is

the number of neurons in Iay&rwfm. is the weight connecting neurdnin layer! to neuror in layeri — 1,
yh = 1 (bias), andf is the hyperbolic tangent function. The number of weighteash network is thus
(mi + )mp + (myp, + 1)me.

Standard backpropagation was used with stochastic updadiate after each training point). Batch update
was also investigated — convergence was found to be verygvearwhen training times were extended by an
order of magnitude. The quadratic cost function was uggd: £ S e? = 13" S (d; — i),
whered,; is the desired value of thie th output neuron for thé th training sample from the training data
setS, andyy; is the value oft th output neuron of the MLP, in response to thia training sample. The

learning rate was 0.05.

5There are many ways of controlling generalization, e.gadyestopping, b) weight decay or weight elimination, angrjning
—e.g. OBD (optimal brain damage) (Le Cun, Denker and Sofi@p}and OBS (optimal brain surgeon) (Hassibi and Stork3199



6 Simulation Results

Results for varying the network size, the training set dize function complexity, and the amount of noise
added to the training data are presented in the followingsec

6.1 Network Size

This section investigates the training and generalizatieimavior of the networks with the generating net-
work size fixed but the trained network size increasing. Harases, the data was created with a generating
network architectur@0 : 10 : 1, and the random weight maximum valu€, was 1. The trained networks
had the following architecture20 : m), : 1, wherem, was varied from 10 to 50. Theoretically, the optimal
training set error for all networks tested is zero;rraggz my,. However, none of the networks trained here
obtained the optimal error (using backpropagatiorsfer 10° updates).

Considering that networks with more than 10 hidden unitsaionmore degrees of freedom than is necessary
for zero error, a reasonable expectation would be for thiepeance to be worse, on average, as the number
of hidden units is increased. Figure 3 shows the trainingtesidset error as the number of hidden units in
the trained network is varied from 10 to 50. The number ohtrej points,NV,,, is 2000. On average, a better
solution is found in the larger networks when compared with10 hidden units networks. The best mean
training and generalisation error occurs for networks withhidden units. This trend varies according to
the generating network size (hnumber of inputs, hidden naddsoutputs), the nature of the target function,
etc. For example, the optimal size networks perform bestda@in tasks, and in other cases the advantage
of larger networks can be even greater.

Figure 4 shows the results for the case of 20,000 and the ¢&@)draining points. Similar results are
obtained for 20,000 training points, i.e. on average, abstlution is found in the larger networks when
compared with the 10 hidden units networks. The best meanirtigaand generalisation error also occurs
for networks with 40 hidden units in this case.

For 200 data points, the best mean training error occurs hidsl@n units and the best mean generalisation
error occurs at 30 hidden units. However, in this case thergdisation error is quite poor for all networks
(the number of data points is probably too small to accuratkéracterise the target function, cf. the curse
of dimensionality). The number of parameters in the netwaskgreater than 200, even for the case of 10
hidden units, as shown in table 1. This leads to the questimuld networks smaller than the generating
network generalise better? In this case the answer was ntwenks with 5 to 9 hidden units resulted in
worse performance.

"Alternative optimization techniques (e.g. conjugate @t can improve convergence in many cases. However, teebe
nigues often lose their advantage with larger problems.
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Figure 3. The error for networks with a topology 20 :1 using 2,000 training points. The graph on the top is the
training error. The graph on the bottom is the test error. The alasc@sesponds to the number of hidden nodes.
Each result is averaged over ten simulations. Box-whiskers plots annatrothe left in each case along with the
mean plus or minus one standard deviation which is shown on theimightch case.

| Number of hidden nodes 10 | 20 | 30 | 40 | 50 |
| Number of parameters| 221 | 441 | 661 | 881 1101 |

Table 1.The number of parameters in the networks as the number of hidden nodeisfrom 10 to 50.

It is of interest to observe the effect of noise on this probl&igure 5 shows the results for the case of 200
training points when Gaussian noise is added to the inpatwldh a standard deviation equal to 1% of the
standard deviation of the input data. A similar trend to fegdris observed. The best generalization error,
on average, is obtained for networks containing 40 hiddelesdn this case.

The results in this section should not be taken to indicet aliersized networks should always be used.
However, the results do indicate that oversized networkg geaeralize well, and that if training is more
successful in the larger networks then it is possible forldinger to also generalize better than the smaller
networks. A few observations:

1. It remains desirable to find solutions with the smalleshber of parameters.
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Figure 4.The error for the trained networks as shown in figure 3 when usin@20ar@ining points and when using
200 training points. From top to bottom: 20,000 training peiattraining error, 20,000 training points — test error,
200 training points — training error, 200 training points — tesberr
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Figure 5.The error for the trained networks as shown in figure 4 for 200 trgipoints and with noise added to the
input data. The noise was Gaussian with a standard deviation equal t6 th#h siandard deviation of the original
data. Top to bottom: training and test errors.

2. A similar result would not be expected if a globally optlrealution was found in the small networks,
i.e. if the 10 hidden unit networks were trained to zero etinen it would be expected that any networks
with extra degrees of freedom would result in worse perforrea

3. The distribution of the results is important. For exampleserve in figure 4 that the advantage of the
larger networks for 20,000 training points is decreasednaumsidering the minimum error rather than
the mean error.

4. The number of trials is important. If sufficiently manyats are performed then it should be possible to
find a near optimal solution in the optimal size networks fie timit of an infinite number of random
starting points, finding a global optimum is guaranteed)y Advantage from using larger size networks
would be expected to disappear.

5. Note that there has deliberately been no control of thermgdination capability of the networks (e.g.
using a validation set or weight decay), other than a maxinmumber of updates. There are many
solutions which fit the training data well that will not gealize well. Yet, contrary to what might be
expected, the results indicate that it is possible for axedsnetworks to provide better generalization.
Successive pruning and retraining of a larger network (lHaaad Stork, 1993) may arrive at a network
with similar size to the smaller networks here but with img® training and generalization error.

6. In terms of computation on serial machines, it may be dbBkrto investigate performance when the
number of individual weight updates (the number of iteraidimes the number of weights) is equal
rather than the number of training iterations (i.e. moring iterations could be done in the same time
for the smaller networks). What these results show is thatdbal optimum found for larger networks
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may be better when doing the same number of updates per vaighdlso that this may correspond to
better generalization, i.e. this says something aboutdhgr@ of the error surface as the network size is
increased (the extra degrees of freedom may help avoid poakininima). The experiments in the next
section with a face recognition problem show that it is dussio observe the same phenomenon even
when the smaller networks are trained for a greater numbiégretions.

6.1.1 Degrees of Freedom

Rules based on the degrees of freedom in the model have bepospd for selecting the topology of an
MLP, e.g. “The number of parameters in the network should be (signifigy less than the number of
examples” or “Each parameter in an MLP can comfortably store 1.5 bits dbimation. A network with
more than this will tend to memorize the datédccording to CMU folklore).

These rules aim to prevent overfitting, but they are unrkdials the optimal number of parameters is likely
to depend on other factors, e.g. the quality of the solutmmél, the distribution of the data points, the
amount of noise, and the nature of the function being appratéd.

Specific rules, such as those mentioned above, are not coyielieved to be accurate (Sarle, 1996).
However, the stipulation that the number of parameters briktss than the number of examples is typically
believed to be true for common datasets. The results heigabedhat this is not always the case.

Face Recognition Example This section presents results on real data. Figure 7 shawvsetults of
training an MLP to classify 10 people from images of theireffic The training set contains 5 images per
person, for a total of 50 training pattePnsThe test set contained a different set of 5 images per peson
small window was stepped over the images and the image sampiach point were quantized using a
two dimensional self-organizing map (Kohonen, 1995). Tuputs of the self-organizing map for each
image sample were used as the inputs to the MLP . A subset ohtges is shown in figure 6. In each case,
the networks were trained for 25,000 updates. The netwa&d gontain many more parameters than the
number of training points, as shown in table 2, yet the begtitrg error and the best generalization error
corresponds to the largest model. Note that a) generalizaths not been controlled using, for example, a
validation set or weight decay, and b) overfitting would bpested with sufficiently large networks.

When simulated on serial machines, larger networks redpivger training times for the same number of
updates. Hence, it is of interest to compare what happena thieesmaller networks are trained for longer

8This is not proposed as an intelligent face recognitionripte.

The database used is the ORL database which contains a seesfthken between April 1992 and April 1994 at the Olivetti
Research Laboratory in Cambridge and is available fiarp: //www.cam-orl.co.uk/facedatabase.html. There are 10
different images of 40 distinct subjects in the databaserd hare variations in facial expression and facial detailsthe images
are taken against a dark homogeneous background with tfectum an up-right, frontal position, with tolerance fonse tilting
and rotation of up to about 20 degrees. There is some variatiscale of up to about 10%. The images are greyscale (28&)ev
with a resolution of 92x112.
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Figure 7.Face recognition experiments showing that the optimal number of vedigltnetwork can be much larger
than the number of data points. The smallest model, with six hidddesidhas 156 times more parameters than
training points (7810 parameters). The largest model, with 14 hidddes) has 364 times more parameters than
training points (18210 parameters). The test error is given as the pagessitexamples incorrectly classified.

| Number of hiddennodes 6 | 8 | 10 | 12 | 14 |
| Number of weights | 7810 10410] 13010 15610| 18210]

Table 2.The number of parameters in the face recognition network as the numbeideithnodes is increased.

than the larger networks. Figure 8 presents the resultaioitig all of the networks twice as long. It can be
observed that the results do not change significantly.

Experiments with MLP networks for speech phoneme recagnitiave also suggested that better perfor-
mance can be obtained by overspecifying the number of paeasnand using a cross-validation set to
terminate training (Renals, Morgan, Cohen and Franco, ;1R8Binson, 1994).

12
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Figure 8.As per figure 7 with the networks trained for twice as long.

6.2 Function Complexity

This section investigates the quality of the solution founydbackpropagation as the maximum random
weight in the generating networl’, is increased. Figure 10 shows the results for target andrgting
networks with topology20 : 10 : 1. Ny = 2000 and N = 5000. It is difficult to visualize the target
function asK is increased. A simple method which provides an indicatibthe complexity is plotted in
figure 9 and is created as follows:

for each output o
for each input ¢
set all inputs # ¢ equal to 0
plot output o as input ¢ is varied from -2 to 2
repeat 10 times
set all inputs # ¢ equal to Gaussian random values (z =0, 0 = 1)
plot output o as input ¢ is varied from -2 to 2

From figure 9, it can be observed that the function “compy@xitcreases whelk is increased from 1 to
5. Hence,K may be considered as a parameter controlling the functiomfxexity” although a precise
definition of “complexity is not being used.

Again, the optimal training set error for all networks is@becausen) > m;,. As K increases, correspond-
ing to the target function becoming more “complex”, it candixserved that the solution found becomes
significantly worse. Worse generalization may be expectdd acreases, however the focus here is on the
training error when compared to the optimal error of zero.

This behaviour can be explained by considering the errdaserasK is increased. MLP error surfaces
can have many areas with shallow slopes in multiple dimess{plecht-Nielsen, 1990). This is typically a

10 arge weights do not always correspond to target functionghvare not “smooth”, for example this is not the case when
fitting the function secfr) using twotanh sigmoids (Cardell, Joerding and Li, 1994) (because @eck: limy_,o(tanh(z +d) —
tanh(z))/d, i.e. the weights become indefinitely large as the approtimamproves).

13
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Figure 9. Plots indicating the complexity of the target function for varyilig Above K = 1, belowK = 5. The
networks used for creating these plots had the topology 20:10:1rolsecorrespond to the first five inputs of these
networks. The first column corresponds to the case where all othesiapitet to zero, and the remaining columns
correspond to the cases where the other inputs are set to random valuesthas ggaudo-code. The abscissa of
each individual plot corresponds to the value of the input for thatand/ranges from -2 to 2. The ordinate of each
individual plot corresponds to the network output.

result of the weighted sum at one or more of the hidden nodesnhieg large, which causes the output of
these hidden nodes to become insensitive to small changjes iaspective weights (the unit is operating in
a tail of the sigmoid function where the slope is small). Adncreases, the optimal solution requires the
nodes to operate in the region where the slope is small mtga.of

This result highlights a point regarding the applicatioivifP models: the nature of the target function is
often not considered in detail. Perhaps considerationeoiintiplicit bias towards “smooth” models can be of
help and preprocessing efforts could be directed towanasutating the required approximation to better
suit the MLP. Additionally, it is expected that if the recedr approximation is “smoother” then the weights
of the network are less likely to be driven towards large @ajunodes are less likely to become saturated,
and generalization performance may be expected to improve.

6.3 Ensembles of Networks and Noisy Training Data

Committees, or an ensemble of networks, are known to be abimgrove generalization performance
(Jacobs, 1995; Drucker, Cortes, Jackel, Le Cun and Vapi4;1Krogh and Vedelsby, 1995; Perrone and
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Figure 10.Error for networks with the topology 20:10:1 as the maximum ranéeight for the generating network
is increased. The graph on the top is the training error. The grapheohdtiom is the test error. The abscissa
corresponds to the value &f. Each result is averaged over ten simulations — plus and minus one staed&tion
error bars are plotted at each point.

Cooper, 1993). This section investigates the effect ofgusmmmittees as the amount of noise added to
the training data increases. A simple weighted ensemblewiorks is used. Consider the bias/variance
dilemma as in (Geman, Bienenstock and Doursat, 1992) wher®ISE may be decomposed into bias and
variance components:

MSEyias = (Ep[f (x)] — Ely|a])? (1)

MSEuariance = ED [(f(.T) - ED[f(x)])2] (2)

whereEp represents the expectation with respect to a traininglseand f (z) is the approximating func-
tion.  With finite training data, reducing the bias generatigreases the variance and vice versa. For
a multilayer perceptron, there is another variance termtdw®nvergence to local minima which can be
reduced using ensembles, and the effect of this reductigreegter if the individual networks have larger
variance (see (Naftaly, Intrator and Horn, 1995)). Indreasoise levels, and the resulting poorer con-
vergence, may induce this condition. Therefore, it is etgubthat the ensemble technique may be more
beneficial as the noise level is increased.

Figure 11 shows the results of using 1 to 4 committee netwaskthe standard deviation of zero mean
Gaussian noise added to the training data is varied from @aofzhe standard deviation of the input data.
It can be observed that the use of more networks in the ensetiolels appear to be more successful as the
noise is increased. The networks had topology 20:10:1 ame traned fors x 10° updates.N;, was 2,000
and each result was averaged over 10 different startingitimmsl
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Figure 11.Test error as the number of committee networks is increased from 1 to 4 in leachrpm top to bottom:
no noise, and Gaussian noise with a standard deviation of 1%, and 28 efandard deviation of the input data
respectively.

7 Discussion

Using an artificial task where the optimal training error waswn and a sample real world problem along
with a pre-specified maximum number of training updatesais shown that:

1. The solution found by gradient descent with a practiahing time is often significantly worse than a
globally optimal solution.
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2. In certain cases, the best generalization can occur wiemumber of parameters in the network is
greater than the number of data points. This can occur wheelather networks are easier to train.

This result should not be taken to indicate that oversizadiorés should always be used. However,
the result does indicate that, in certain cases, trainimgbeamore successful in larger networks, and
consequently, it is possible for larger networks to resultriproved generalization. It remains desirable
to find solutions with the smallest number of parameters.

3. The solution found by gradient descent can be signifizamtrse as the function to be approximated
becomes more complex.

4. The use of ensemble techniques can be increasingly biahefcthe level of noise in the training data
increases.

5. Given the set of functions that a particular MLP can appnexe and a pre-specified maximum number
of training updates, certain functions are “harder” to agpnate using backpropagation than others.

7.1 Network Size and Degrees of Freedom

A simple explanation for why larger networks can sometinteside improved training and generalisation
error is that the extra degrees of freedom can aid conveegdre the addition of extra parameters can
decrease the chance of becoming stuck in local minima or @tegus”, etc. (Krose and van der Smagt,
1993).

This section provides plots of the function approximatedhsytrained networks and the network weights
which indicate the following: a) the function approximatey the oversized networks remains relatively
“smooth”, and b) after training, the extra degrees of freedothe larger networks contribute to the function
approximated in only a minor way. The plots in this sectiomengreated using a smaller task in order to aid
visualisation: the generating networks had topology 5afid the trained networks had 5, 15, and 25 hidden
units. 1,000 training data points were used and the randaghiwaaximum value was 2.

Figures 12 to 14 provide an indication of the function apprated by the networks as the network size (5,
15, and 25 hidden units) and amount of noise (Gaussian nadikestandard deviation 0, 5%, and 10% of
the input standard deviation) in the data are varied. Thes e generated as described in section 4. The
dotted lines show the target function (from the generatiegvork) and the solid line shows the function
approximated by the trained network. Observations: a)rtirihg network approximation tends to be less
accurate for the optimal size network, b) the approximagippears relatively “smooth” in all cases.

Figures 15 to 17 show the weights in the trained networks esdtwork size (5, 15, and 25 hidden units)
and amount of noise (Gaussian noise with standard devid}is%, and 10% of the input standard deviation)
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Figure 12. The function approximated by networks with 5, 48d 25 hidden units for the case of no
noise. The plots are generated as described in section 4dtteel lines show the target function (from the
generating network) and the solid line shows the functiqgireximated by the trained network.

in the data are varied. Each diagram is plotted as follows ddlumns (1 to 6) correspond to the weights
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Figure 13. The function approximated by networks with 5,drf 25 hidden units for the case of Gaussian
noise with standard deviation 5% of the standard deviatidhedinputs. The plots are generated as described
in section 4. The dotted lines show the target function (ftbengenerating network) and the solid line shows
the function approximated by the trained network.
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Figure 14. The function approximated by networks with 5,drf 25 hidden units for the case of Gaussian
noise with standard deviation 10% of the standard deviabbthe inputs. The plots are generated as
described in section 4. The dotted lines show the targettifum¢from the generating network) and the
solid line shows the function approximated by the trainetivoek.
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from the hidden nodes to the bias and the 5 input nodes. The aosvorganised into groups of two with
a space between each group. The number of groups is equa twithber of hidden nodes in the trained
network. For the two rows in each group, the top row corredpda the generating network and the bottom
row corresponds to the trained network. The idea is to coenfie weights in the generating and trained
networks. There are a couple of difficulties which arise is tomparison which are resolved as follows.
Firstly, there is no reason for hidden node 1 in the geneyatatwork to correspond to hidden node 1 in
the trained network, etc. This problem is resolved by findirgbest matching set of weights in the trained
network for each hidden unit in the generating network (@she Euclidean distance between the weight
vectors), and matching the hidden nodes of the trained amergtng networks accordingly. Additionally,
these best matches are ordered according to the resperdisacts between the weight vectors, i.e. the
top two rows shows the generating network hidden node whahlvest approximated by a hidden node in
the trained network. Likewise, the worst match is at thedsott A second problem is that trying to match
the weights from the hidden nodes to the input nodes doesaketimto account the output layer weights,
e.g. exactly the same hidden node function could be compwitbddifferent weights if the hidden nodes
weights are scaled and the output layer weights are scateddicegly. For the case of only one output which
is considered here, the solution is simple: the hidden laygdghts are scaled according to the respective
output layer weight. Each individual weight (scaled by thprapriate output weight) is plotted as follows:
the square is shaded in proportion to the magnitude of thghtieivhere white equals 0 and black equals
the maximum value for all weights in the networks. Negatiweghts are indicated by a white square inside
the outer black square which surrounds each weight.

Observations: a) the generating network weights are oftatctimed more closely by the larger networks
(consider the fourth and fifth best matching groups of twos)ow) the extra weights in the larger networks
contribute to the final approximation in only a minor way, as)dthe results indicate that pruning (and
optionally retraining) the larger networks may perform lwel

A conclusion is that backpropagation can result in the undisation of network resources in certain cases
(i.e. some parameters may be ineffective or only partidfigctive due to sub-optimal convergence).

Since reporting the work contained in this paper, S. Hansmdtated (Hassoun, Cherkassky, Hanson,
Oja, Sarle and Sudjianto, 1996)Whether in the language of approximation theory (overiitietc.) or
statistical estimation (bias vs. variance) it is clear tihab many parameters in some nonparametric models
can be grievous, however with many Neural Networks, morarpaters can actually improve thingsihd
“Such [phenomena] which arise uniquely in Neural Networlpligations should be more of a focus for
statisticians rather than an anomaly to be ignoredrhis section has investigated the phenomenon under
controlled conditions and discussed how the phenomenonanissy.

The phenomenon has also been observed by others, e.g. Dd98&) statesl find that in practice net-
works with a very parsimonious number of neurons are hardaim't, Slomka (1996) states that slightly
larger than optimal size networks have often improved perémce, and Back (1992) states thaterpa-
rameterized synapses give lower MSE and variance than exdet synapsesin the context of modelling
nonlinear systems with FIR and IIR MLP networks.
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Figure 15. The weights after training in networks with 5, 4Bd 25 hidden units for the case of no noise.
In each case, the results are shown for two networks witlerdifit random starting weights. The plotting

method is described in the text. For each pair of rows, thedapcorresponds to the generating network
and the bottom row corresponds to the trained network. @bghaat a) the generating network weights are
often matched more closely by the larger networks (compearéaurth and fifth set of two rows), and b) the

extra weights in the larger networks contribute to the fipglraximation in only a minor way.

7.2 Occam’s Razor

The results showing that larger than optimal size netwoaksgeneralize better, in certain cases, are not in
contradiction with Occam’s razor. Occam’s razor, whichahtes the simpler out of a number of possible
solutions, is not applicable to the situation where eachtmwi is of a different quality, i.e. while larger
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Figure 16. The weights after training in networks with 5, 4Bd 25 hidden units for the case of Gaussian
noise with standard deviation 5% of the standard deviatfadheoinputs. In each case, the results are shown
for two networks with different random starting weights. eTflotting method is described in the text. For
each pair of rows, the top row corresponds to the generatigank and the bottom row corresponds to
the trained network. Observe that a) the generating netweaights are often matched more closely by
the larger networks (compare the fourth and fifth set of twas)p and b) the extra weights in the larger
networks contribute to the final approximation in only a ntinay.

networks can provide improved generalization performattus typically only happens when the larger
networks are better models of the training data.
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Figure 17. The weights after training in networks with 5, 4Bd 25 hidden units for the case of Gaussian
noise with standard deviation 10% of the standard deviatiahe inputs. In each case, the results are shown
for two networks with different random starting weights. eTflotting method is described in the text. For
each pair of rows, the top row corresponds to the generatigank and the bottom row corresponds to
the trained network. Observe that a) the generating netweaights are often matched more closely by
the larger networks (compare the fourth and fifth set of twas)p and b) the extra weights in the larger
networks contribute to the final approximation in only a ntinay.

7.3 Learning Theory

The results are also not in contradiction with statistiealhing theory. Vapnik (1995) states that machines
with a small VC dimension are required to avoid overfittingowéver, he also states tHatis difficult to
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approximate the training datg”i.e. for a given problem in MLP approximation, the goal idital the ap-
propriate network size in order to minimize the tradeofid®En overfitting and poor approximation. Vapnik
suggests that the useabpriori knowledge is required for small training error and smallagatisation error.

For the case of linear output neurons, Barron (1991; 1992)k&ved the following bound on the total risk

for an MLP estimator:
O .
0] <_f> +0 (m;[mz log Ntr> 3)

mp tr

whereC' is the first absolute moment of the Fourier magnitude distidin of the target functiorf and is a
measure of the “complexity” of. Again, a tradeoff can be observed between the accuracyediast ap-
proximation (which requires largen;,), and the avoidance of overfitting (which requires a smatigy Ny,
ratio). However, this does not take into account limitednirey time and different rates of convergence
for different f. The left-hand term (the approximation error) correspotadthe error between the target
function and the closest function which the MLP can impletn&or the artificial task, the approximation
error is zero forn), > 10. Based on this equation, it is likely that;, = 10 would be selected as the optimal
network size (note that the results reported here use sitah@ther than linear output neurons).

Recent work by Bartlett (1996) correlates with the res@orted here. Bartlett commentthe VC-bounds
seem loose; neural networks often perform successfullytiiining sets that are considerably smaller than
the number of network parametersBartlett shows (for classification) that the number ofrtiag samples
only needs to grow according t#? (ignoring log factors) to avoid overfitting, whergis a bound on the
total weight magnitude for a neuron ahis the number of layers in the network. This result and eitirer
explicit (weight decay etc.) or implicit bias towards smeallveights leads to the phenomenon observed here,
i.e. larger networks may generalize well and thereforeebegneralization is possible from larger networks
if they can be trained more successfully than the smallevaris.

7.4 The Curse of Dimensionality

Considerz; € R™. The regressionf(z) is a hypersurface irR™. If f(z) is arbitrarily complex and
unknown then dense samples are required to approximateutfotidn accurately. However, it is hard
to obtain dense samples in high dimensions. This is the écafgdimensionality”*! (Friedman, 1995).
The relationship between the sampling density and the numibpoints required isx N= (Friedman,
1995) wheren is the dimensionality of the input space aidis the number of points. Thus, i¥; is the
number of points for a given sampling density in 1 dimensiban in order to keep the same density as the
dimensionality is increased, the number of points museiase according to/] .

Kolmogorov’'s theorem shows that any continuous functiom dimensions can be completely character-
ized by a 1-dimensional continuous function. Specificdllglmogorov’s theorem (Friedman, 1995; Kol-
mogorov, 1957; Kirkova, 1991; Kurkova, 1995) statext iny continuous

2n+1 n
flan, @, o) = > gy ( Ain(m) 4)
j=1 i=1

Hother definitions of the “curse of dimensionality” existyf@ver we use the definition of Friedman (1995).
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where{);}} are universal constants that do not depend pfiQ;(z)};"*! are universal transformations
which do not depend ofi, andg(u) is a continuous, one-dimensional function which totallprettterises
f(x1,22,...,2,) (g7 is typically highly nonsmooth), i.e. there is a one dimenaiocontinuous function
that characterises any continuous functiomairguments. As such, we can see that the problem is not so
much the dimensionality, but the complexity of the funct{bigh dimensional functions typically have the
potential to be more complex) (Friedman, 1995), i.e. thesewf dimensionality essentially says that in
high dimensions, the less data points we have, the simpéefutiiction has to be in order to represent it
accurately. The No Free Lunch theorem (Wolpert and MacreE@B5) shows that, if we do not make any
assumptions regarding the target function, no algorithrfop@as better than any other on average. In other
words, we need to make assumptions. A convenient and ussuhgtion (which corresponds to common
sensory data in many instances) is that of smoothness. Asrd#rated, smoother functions correspond to
faster convergence. Intuitively this is reasonable — moragiex functions correspond to a greater degree
of saturation in the nodes, and the backpropagated errooagipes zero in saturated regions.

7.5 Weight Distributions

In certain cases, standard backpropagation can lead togititnbias towards smaller weights as the fol-
lowing experiment shows. Networks were trained as beforgudata generated from a network initialised
using K = 20, Ny, = 20,000 (cf. the curse of dimensionality and more points requirgdriore complex
target functions), no generalization control, d@ns 10° iterations. Figure 18 shows box-whiskers plots of
the distribution of weights after training for networks kwit0 to 50 hidden nodes. Observe that the weights
in the trained networks are, on average, smaller than tmobe igenerating network.
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Figure 18. Box-whiskers plots showing the weight magnitude distribufionthe generating network (10 hidden
nodes, on the left) and the trained networks with 10 to 50 hidden néaesaged over 10 trials in each case.

7.6 Universal Approximation

The results are negative in terms of the possibility of irajHarge homogeneous MLPs to parsimoniously
represent arbitrary functions. Even for the case of redgtigmall maximum weights in the network, it can
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be seen that convergence may be difficult for the most parsouse solutions. While large MLPs have been
successful in pattern recognition (e.g. speech phonenogméon (Bourlard and Morgan, 1994)), we sug-
gest that it can be difficult to find parsimonious solutiongalilemploy appropriate internal representations.

With reference to biological neural networks, the reasat e can learn the things we do is, perhaps,
critically linked to the pre-wiring of the human brain. Foaenple, we know that we have a lot of difficulty
training a chimpanzee to learn a human language, let aloneaMThis conclusion applies to the homo-
geneous MLP type of universal approximation approach tmieg by example. There is a whole class of
algorithms for learning by example which operate on thesbaslooking for regularities and then incorpo-
rating these regularities into the model (e.g. grammardtida algorithms). In contrast, the computational
capacity of MLPs is static.

Finally, we quote Minsky and Papert’s epilogue to “Percamdf (1988):

“In the early years of cybernetics, everyone understood that hill-clignlias always available for working easy
problems, but that it almost always became impractical for problefiiarger sizes and complexities. We were very
pleased to discover that [perceptron convergence] could be represented asrhbivad); however that very fact led us
to wonder whether such procedures could dependably be generalized, elveffitated class of multi-layer machines
we have named Gamba perceptrons. The situation seems not to havedimanch — we have seen no contemporary
connectionist publication that casts much new theoretical lighthrendituation. Then why has [backpropagation,
gradient descent] become so popular in recent years? In part this is bedass® widely applicable and because
it does indeed yield new results (at least on problems of rather smadd#l)sdes reputation also gains, we think, from
it being presented in forms that shares, albeit to a lesser degree jdhagizal plausibility of [the perceptron]. But
we fear that its reputation also stems from unfamiliarity whie tnanner in which hill-climbing methods deteriorate
when confronted with larger scale problems.

Minsky and Papert’s assertion that local minima and reldiffitulties are a problem appears to be valid.
We agree — it does not appear that standard MLP networksttauith backpropagation can be scaled up
to arbitrarily large problems. However, while there argaarfundamental limitations to the performance
of this class of learning algorithms, MLPs have producedebeesults than some notable alternatives, e.g.
perceptrons with threshold units (Werbos, 1974). The intiposof the sigmoid non-linearities in MLPs
allows the use of gradient descent optimisation and engbiresults suggests that the error surface can be
(relatively speaking) quite suitable for a gradient desbased optimization process.

8 Appendix A: Generalization and Overfitting

This section provides a brief overview of generalizatiod awerfitting.

Generalization refers to how well a model performs on unsksta, i.e. the model is trained using a given
training set and generalization corresponds to the expeetidormance of the model on new patterns.

Mathematically, the goal of MLP training can be formulatednainimization of a cost function (Bengio,
1996):

Birie = | el e, w). d)p(.d) dxdd (5)

)
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wheree is a local cost functionf is the function implemented by the MLR,is the input to the moded is
the desired output of the mode¥, corresponds to the weights in the network, amdpresents the probability
distribution. The objective of training is to optimise th@ametersy such thatf,, . is minimised:

w

w = argmin/ de(f(x,w),d)p(x,d) dxdd (6)

E... is the generalization error (Bengio, 1996), i.e. the exgebpierformance of the MLP on new patterns
randomly chosen from(x, d). In practicep(x, d) is not known. Instead, a training sgt= {x,, dp}ivp is
given, whereN,, is the number of patterns, and an approximatiodzgf,. is minimised which is called the
empirical error (Vapnik, 1982) or training error (Bengio, 1996):

NP
E= Ze(xmdp) (7
p=1

The quadratic and relative entropy cost functions are elesmgd such an error function.

A very important question is how well a model trained to miisie® generalises (i.e. how oW, is).
This is important because low (performance on the training set) does not necessarily Hwar;, .
(expected performance on new patterns).

An MLP provides a function mapping from input values to dedioutput values. This mapping is generally
“smooth” (in a sense defined by the nature of the activatiowtfan, the topology of the network, and the
training algorithm) and allows interpolation between traring points. Consider the simple case of an
input with only one dimension as shown in figure 19. The trajrpatterns, marked with a cross, contain
noise. The true, underlying function mapping may be thatwshim the middle graph. However, without
any controlling scheme, the MLP may seriously underfit (#fethand graph in figure 19) or overfit (the
right-hand graph in figure 19) the data. Observe that theageeerror on the training samples is highest
for the underfitting graph in figure 19 and lowest for the ovénfj graph. For the case of overfitting, the
error on the training samples may be very low, but error onssiples may be high (consider test points in
between the training points on the overfitting graph), ice.af given MLP, as training is continued past the
“correct fit” point, generalization performance may deseearhis is the well known bias/variance tradeoff
(Geman et al., 1992) — in the underfitting case, the MLP estinpgoduces estimates which have high bias
but low variance (an estimator is said to be biased if, onamesrthe estimated value is different to the
expected value). In the overfitting case, bias of the estimatlow but variance is high. There exists an
optimum between the two extremes.

The degree to which overfitting is possible is related to thmloer of training patterns and the number
of parameters in the model. In general, with a fixed numberaifing patterns, overfitting can occur
when the model has too many parameters (too many degreeseofofn). Figure 20 illustrates the idea
using polynomial approximation. A training dataset wasate#d which contained 21 points according to
the equationy = sin(z/3) + v wherewv is a uniformly distributed random variable between -0.28 an
0.25. The equation was evaluateddat, 2, ...,20. This dataset was then used to fit polynomial models
(Rivlin, 1969; Press, Teukolsky, Vetterling and Flannerf§92) with orders between 2 and 20. For order
2, the approximation is poor as shown in figure 20. For ordert® approximation is reasonably good.
However, as the order (and number of parameters) incresigagjcant overfitting is evident. At order 20,
the approximated function fits the training data very weallykver the interpolation between training points
iS very poor.
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Figure 19. Underfitting and overfitting.

Figure 21 shows the results of using an MLP to approximatesainee training séf. As for the polynomial
case, the smallest network with one hidden unit (4 weightkiiing bias weights), did not approximate
the data well. With two hidden units (7 weights), the appmedion is reasonably good. In contrast to the
polynomial case however, networks with 10 hidden units (&lgits) and 50 hidden units (151 weights)
also resulted in reasonably good approximations. Hencehi® particular (very simple) example, MLP
networks trained with backpropagation do not lead to a ldegree of overfitting, even with more than 7
times as many parameters as data points. It is certainhthiateoverfitting can be a serious problem with
MLPs. However, this example highlights the possibilityttMLPs trained with backpropagation may be
biased towards smoother approximations.

Figure 22 shows a different example where significant owgaditcan be seen in larger MLP models. The
same equation was used as for the previous example exceggjuhgon was only evaluated(tl, 2, . . . , 5,
creating 6 data points. The figure shows the results of usih§ kodels with 1 to 4 hidden nodes. For
this example, the 3 and 4 hidden node cases produce an apptmi which is expected to result in worse
generalization. A test dataset was created by evaluatiegetjuation without noisey(= sin(z/3)) at
intervals of 0.1. Tables 3 and 4 show the results on the tegbrstihe models trained on the first and second
example respectively. For the first example, the largestoritprovided the best generalization. However,
for the second example, the network with 2 hidden nodes gealvihe best generalization — larger networks
resulted in worse generalization due to overfitting.

\ Hidden Nodes{

1

2

10

50

Training MSE
Test MSE

0.373
0.257

0.0358
0.0343

0.0204
0.0222

0.0204
0.0201

Table 3. Results for MLP interpolation of the functign = sin(z/3) in the range 0 to 20. The best generalization
corresponded to the largest network tested which had 50 hidden nodes.

12Training details were as follows. A single hidden layer MbBgckpropagation, 100,000 stochastic training updates,aan
learning rate schedule with an initial learning rate of O&rewused.
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Figure 20. Polynomial interpolation of the functign= sin(x/3) + v in the range 0 to 20 as the order of
the model is increased from 2 to 20.is a uniformly distributed random variable between -0.28 @r25.
Significant overfitting can be seen for orders 16 and 20.

| HiddenNode§ 1 | 2 | 10 | 50 |
Training MSE| 0.0876| 0.0347| 4.08e-5| 7.29e-5
Test MSE | 0.0943| 0.0761| 0.103 | 0.103

Table 4. Results for MLP interpolation of the functign = sin(x/3) in the range 0 to 5. The best generalization
corresponded to 2 hidden nodes — larger networks resulted in higher eertw dverfitting.
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Figure 21. MLP interpolation of the functian= sin(z/3) 4+ v in the range 0 to 20 as the number of hidden
nodes is increased from 1 to 50.is a uniformly distributed random variable between -0.28 ar25. A
large degree of overfitting can not be observed.
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