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Synchronization in networks of chaotic systems is an interesting phenomenon

with potential applications to sensing, parameter estimation and communications.

Synchronization of chaos, in addition to being influenced by the dynamical nature

of the constituent network units, is critically dependent upon the maintenance of

a proper coupling between the systems. In practical situations, however, synchro-

nization in chaotic networks is negatively affected by perturbations in the coupling

channels. Here, using a fiber-optic network of chaotic optoelectronic oscillators, we

experimentally demonstrate an adaptive algorithm that maintains global network

synchrony even when the coupling strengths are unknown and time-varying. Our

adaptive algorithm operates by generating real-time estimates of the coupling per-

turbations which are subsequently used to suitably adjust internal node parameters

in order to compensate for external disturbances. In our work, we also examine

the influence of network configuration on synchronization. Through measurements

of the convergence rate to synchronization in networks of optoelectronic systems,



we show that having more network links does not necessarily imply faster or bet-

ter synchronization as is generally thought. We find that the convergence rate is

maximized for certain network configurations, called optimal networks, which are

identified based on the eigenvalues of the coupling matrix. Further, based on an

analysis of the eigenvectors of the coupling matrix, we introduce a classification

system that categorizes networks according to their sensitivity to coupling pertur-

bations as sensitive and nonsensitive configurations. Though our experiments are

performed on networks consisting of specific nonlinear optoelectronic oscillators, the

theoretical basis of our studies is general and consequently many of our results are

applicable to networks of arbitrary dynamical oscillators.
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Chapter 1

Introduction

1.1 Chaos and Synchronization

Chaos is the complex aperiodic time-evolution of a deterministic nonlinear

system. It is encountered in a wide variety of fields including mechanics [1], bi-

ology [2, 3], chemistry [4, 5], electronics [6, 7], and optics [8, 9]. The hallmark of

chaos is its extreme sensitivity to perturbations. Two chaotic systems starting from

very close initial conditions quickly diverge in time leading to wildly different tra-

jectories. The sensitivity of chaos to perturbations makes long-term predictions of

chaotic systems infeasible because even small errors in measurement or estimation

of the dynamical variables grow as the system evolves in time. In this context, the

proposition that two coupled chaotic systems can be synchronized (i.e. they can be

made to evolve along the same trajectory in lock-step) came as a surprise to the

nonlinear dynamics community [10–12]. This type of coordinated time-evolution

is termed isochronal synchronization. Here, two systems are said to be coupled if

they exchange partial information about their respective dynamical states. The

phenomenon of synchronization of nonlinear oscillators is pervasive in nature and

science. Fireflies flashing in unison [13], the synchronous operation of pacemaker

cells in the heart [14], the synchronization of Josephson-junction arrays [15] and

lasers [16,17] are a few examples. The condition of epilepsy has also been attributed
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to the simultaneous firing of neurons in a specific region of the brain [18].

Initial research on chaos synchronization was mostly theoretical and dealt with

low-dimensional [19] systems that are mathematically described by a set of ordinary

differential equations (ODEs). The description of a dynamical system by a set of

ODEs implicitly assumes that the interactions between the dynamical variables are

instantaneous. This assumption is justified only if the signal propagation delays

are much smaller than the time-scale of the dynamics. In many systems, however,

this is not the case and the effect of time delays becomes important. Time-delayed

systems are found in almost every field of science including physics, biology and

chemistry [20]. For example, in Ref. [2], Mackey and Glass modeled the regulation

of breathing rate and the production of white blood cells as nonlinear time-delayed

feedback processes. The dynamics of a time-delayed feedback system is affected

not just by its present state but by the past states as well. Such systems are

mathematically described by delay-differential equations which, in principle, are

infinite-dimensional because a continuous history function defined over at least one

delay period is required to solve the equations. The interplay of nonlinearity and

memory can lead to a rich variety of dynamical behavior including high-dimensional

chaos. Experimental studies of the synchronization of time-delayed chaotic systems

have implications for our fundamental understanding of nonlinear oscillators and also

for many practical applications. However, the difficulty in achieving and maintaining

stable synchronization of time-delayed nonlinear oscillators due to their inherent

dynamical complexity and sensitivity to coupling perturbations, meant that this

area of research has not received the attention it deserves.
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In the work presented here, we focus on the experimental synchronization of

a network of chaotic optoelectronic time-delayed feedback loops. The systems con-

sidered here serve as versatile laboratory models of dynamical oscillators commonly

encountered in nature, embodying feedback, nonlinearity and time-delays. Thus the

results presented here can help us glean insight into the behavior of networks of non-

linear oscillator systems in general. In addition to enhancing our understanding of

the behavior of nonlinear oscillator networks, our research is also motivated by the

applications of chaos synchronization. Dynamical oscillators similar to the ones we

study have been used for microwave signal generation [21] and recently for encrypted

communications [22]. In this introductory chapter, we provide a brief overview of

some practical applications of chaos synchronization and explain the pertinence of

the research presented here to these applications.

1.2 Applications of Chaos Synchronization

Since the idea of chaos synchronization was introduced, many practical ap-

plications of this phenomenon have been proposed. Methods based on chaos syn-

chronization find applications in secure communications [23, 24], prediction [25],

parameter estimation [26] and sensing [27]. In this section, we briefly discuss the

application of chaos synchronization to communication and sensing while providing

some relevant background.
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1.2.1 Application of Chaos Synchronization to Secure Communica-

tions

Synchronization, in one form or the other, is the central concept on which all

communication is based. For successful communication between any two entities,

it is imperative for them to share some common features, be it language, timing

or information about encryption protocols. For example, in digital communication

systems, the recovery of the transmitted message is possible at the receiver only if it

has a clock that is synchronized with the transmitter clock. As it is in conventional

communication systems, synchronization is an essential concept in chaos-based sys-

tems as well. The basic idea of chaos-based secure communication is to utilize the

inherent complexity of a chaotic system to provide security by making the transmit-

ted message unrecognizable to possible eavesdroppers. Fig. 1.1 illustrates the idea

of a simple chaos-based encrypted communication system. Although other chaos en-

cryption schemes which supposedly offer better security have been proposed [28,29],

the simple system presented in Fig. 1.1 captures the main idea. It relies on a chaotic

transmitter system and a receiver that are synchronized with each other. The chaotic

signal generated by the transmitter is superimposed over the message signal, effec-

tively concealing it from potential eavesdroppers. The resultant encrypted signal is

then relayed to the receiver over the communication channel. The receiver has a

chaos generator (a replica of the one used at the transmitter) which is synchronized

to the transmitter through the chaotic signal that is shared over the communication

channel. Here, the communication channel itself acts as the coupling medium be-

4



tween the transmitter and the receiver. The message is recovered by subtracting the

superimposed chaos. This application of chaos synchronization for secure commu-

nication was first proposed by Cuomo and Oppenheim in the context of electronic

systems [23]. VanWiggeren and Roy demonstrated encrypted communication using

chaotic laser systems [24, 30]. Recently, Argyris et al. implemented this communi-

cation scheme to send digital information at gigabit per second bit-rates over the

fiber-optic telecommunications network of Athens [22]. Argyris et al. exploited the

high-dimensional chaos generated by a nonlinear time-delayed optoelectronic system

to encrypt digital information which was then relayed to a receiver several kilome-

ters away. The real significance of the work was that (a) it used a real fiber-optic

network, and (b) it used commercially-available components.

A crucial aspect of the experiment described above is the maintenance of syn-

chrony between the transmitter and receiver nodes. Lack of proper synchronization

leads to a poor bit-error rate thereby degrading the communication process. The

synchronization of chaotic oscillators is critically dependent upon the maintenance

of a proper coupling. Channel change or ‘drift’ is a potentially common situation

(e.g., due to environmental fluctuations) and especially so when the coupling channel

spans several kilometers. In this thesis, we report results from the implementation

of an adaptive strategy [27] that maintains network synchronization by dynami-

cally adjusting the internal parameters of the coupled oscillators to compensate for

unknown external perturbations. The adaptive algorithm thus provides robust syn-

chronization thereby improving the reliability of the communication process. Some

results on this topic presented in this thesis have also been published in Refs. [31,32].
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Figure 1.1: Communication through chaos masking. The message signal
is encrypted by the transmitter by superimposing a chaotic signal. The
masked signal is relayed to the receiver over the communication channel.
Through the transmitted masked signal, the receiver chaos generator is
synchronized with the chaos generated at the transmitter. The message
is recovered by the receiver by subtracting the superimposed chaotic
component.
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1.2.2 Application of Chaos Synchronization to Sensing

As discussed in the previous section, chaos synchronization is sensitive to per-

turbations of the coupling channels. This sensitivity of chaos synchronization to

coupling strength fluctuations can be harnessed to realize practical sensor applica-

tions.

In Ref. [27], Sorrentino and Ott conceived a network-based adaptive algo-

rithm that, in the process of maintaining global synchronization, builds an estimate

of unknown coupling perturbations. In order to realize a sensor, we implement

this adaptive algorithm on a fiber-optic network of nonlinear chaotic oscillators en-

visioned to be distributed in the region of space that is to be monitored. Even

though, in our experiments, the chaotic light signals exchanged between the oscil-

lators are enclosed in fiber-optic cables, a free-space communication scenario can

easily be realized. The coupling in our experimental network is engineered such

that, initially, global isochronal synchronization of the network is established. In

this setting, any external intruding element introduces a disturbance in the coupling

channels which leads to the loss of synchrony in the network. However, by employ-

ing the adaptive control algorithm, each network node suitably adjusts its internal

parameters to compensate for the external perturbations and network synchrony

is quickly regained. Now, by analyzing the local adjustments each node had to

make in order to regain synchrony, we can determine the original coupling pertur-

bation. In this thesis, we present a proof-of-concept demonstration of this real-time

distributed sensor through experiments performed on networks with two and three

7



nodes. First, we establish the success of the adaptive strategy in tracking a single

coupling channel using a two-node network [31]. Then, using a three-node network

we demonstrate the successful tracking of simultaneously occurring perturbations in

multiple network links [32].

1.3 Influence of Network Structure on Synchronization

Another aspect of chaos synchronization, that hasn’t received much experimen-

tal attention in the past, involves the study of the influence of network structure on

chaos synchronization. A study of the influence of network structure on synchro-

nization has implications for understanding the emergence of collective behavior in

several natural and man-made complex systems.

Synchronization in a network of dynamical oscillators depends both on the

nature of the dynamical units and on the properties of the interaction network. In

Ref. [33], Pecora and Carroll theoretically addressed the question of whether or not

a given network configuration of dynamical oscillators results in stable synchroniza-

tion. By modeling network synchronization in terms of diffusively-coupled identical

oscillators, they showed that the stability of the synchronous behavior is entirely

determined by the eigenvalue spectrum of the coupling matrix that describes the

network structure. However, in many situations, it is very important to not just

determine whether a given network of chaotic oscillators synchronizes, but how well

it does. This question has attracted a huge interest within the complex networks

community. Several assertions, all based on theoretical analysis, have been made

8



about the influence of network structure on various synchronization properties such

as the minimum amount of coupling required to synchronize a network of dynamical

oscillators, the range of coupling strength over which synchronization is stable, the

rate at which synchronization is achieved, etc. . . [34–40]. Recently, Nishikawa and

Motter predicted that binary networks of dynamical systems optimal for synchro-

nization have a quantized number of links, in multiples of a constant that depends

only on the number of nodes [41]. In this thesis, we present the first experimental

results that verify this claim. Specifically, we measure the rate of convergence to syn-

chronization in a network of chaotic optoelectronic nodes as the number of network

links are varied. We observe that the convergence rate indeed depends nonmono-

tonically on the number of links as is predicted in Ref. [41]. Further, we observe

and discover that networks with the same number of nodes and coupling links, and

with identical eigenvalues of the coupling matrix, which are theoretically predicted

to have the same asymptotic synchronization properties can exhibit fundamentally

different approaches to synchronization in the real-world. We explain this previously

unnoticed significant difference in terms of the properties of the eigenvectors of the

associated coupling matrices [42].

1.4 Outline of the Thesis

The material presented in this thesis is organized into four chapters.

Chapter 2 is devoted to discussing the construction of a nonlinear time-delayed

optoelectronic feedback loop capable of producing a wide variety of dynamical be-
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havior ranging from periodic oscillations to high-dimensional chaos. We present

details of the operational characteristics of the various elements that make up our

feedback oscillator. A mathematical model of the feedback loop is developed and

the parameters that affect the behavior of the oscillator are identified. Experimental

measurements and numerical simulations showing the behavior of the feedback loop

are reported.

In Chapter 3, we focus on isochronal synchronization of coupled optoelec-

tronic oscillators. We discuss the mathematical representation of a general network

of oscillators in terms of a coupling matrix and present the associated dynamical

equations. We present experimental measurements showing synchronization of two

coupled chaotic optoelectronic feedback loops and identify the coupling parameter

range over which synchronization is stable. We also discuss various measures that

quantify the synchronization behavior of the coupled oscillators.

In Chapter 4, we discuss the details of the adaptive algorithm designed for

the maintenance of synchronization. We present details of the implementation of

this algorithm on networks composed of two and three optoelectronic oscillators.

Experimental results show both the maintenance of network synchronization and

the tracking of a priori unknown coupling strength fluctuations.

Chapter 5 is devoted to the study of the influence of network structure on

synchronization. First, the experimental construction of a binary network with 4

optoelectronic feedback loops is discussed. We then report experimental results

showing the non-monotonic dependence of the convergence rate to synchronization

on the number of network connections, allowing us to identify networks that are

10



optimal for synchronization. Finally, we propose a classification system of networks,

as sensitive and nonsenstive configurations, based on the eigenvector properties of

the associated coupling matrix. We supplement our experimental observations with

numerical simulations that explicitly show the applicability of the discussed methods

to larger networks.

Chapter 6 provides a conclusion to the thesis and discusses future work.

11



Chapter 2

Optoelectronic Chaos Generator

This chapter is devoted to describing the construction and behavior of a non-

linear optoelectronic time-delayed feedback oscillator. The optoelectronic oscillator

described here is built from commercially available standard telecommunications

and electronic equipment and is capable of generating a wide variety of dynamical

behavior ranging from periodic oscillations to high-dimensional chaos. It forms the

elemental constituent of networks considered in the following chapters.

We will begin by describing the basic architecture of the oscillator in Sec. 2.1.

The theoretical characteristics of the various components used in its construction

are detailed and experimental measurements of the behavior of the various elements

are presented.

In Sec. 2.2, we develop the equations that model the dynamical behavior of the

oscillator. Various parameters that affect the dynamics of the nonlinear feedback

loop are also identified in this section.

In Sec. 2.3 we examine the dynamical behavior of the oscillator as the feedback

parameters are changed. Experimental measurements of the dynamical behavior are

presented along with numerical results obtained from simulating the mathematical

equations developed in Sec. 2.2.

12



2.1 Construction of a Time-delayed Optoelectronic Feedback Loop

In this section, we present details of the nonlinear optoelectronic oscillator

which serves as the basic dynamical element in the network studies presented in

the following chapters. An experimental schematic of our optoelectronic oscillator

is shown in Fig. 2.1. The oscillator is composed of a semiconductor laser diode, a

nonlinear electro-optic intensity modulator (called a Mach-Zehnder modulator), a

photoreceiver, a bandpass filter, a time-delay and an amplifier connected as a feed-

back loop. The bandpass filter and the time-delay are implemented digitally using a

digital signal processing (DSP) board. The characteristics of these components are

discussed in detail in this section. First, we briefly describe how these components

are configured as a feedback loop. In our optoelectronic system, the laser diode acts

as a source of a steady optical power. The output from the laser is fiber-optically

coupled into the Mach-Zehnder electro-optic modulator. An inline polarization con-

troller allows us to align the polarization of the laser light with the polarization

accepted by the modulator, thereby maximizing the amount of light coupled into

the modulator. The electro-optic modulator varies the intensity of the input light

based on an applied electrical voltage. The optical signal output by the modulator is

converted into an electrical voltage signal by the photoreceiver. This voltage signal

is then electronically filtered, time-delayed and amplified. The resultant signal is

then applied to the electrical input to the modulator to control its optical output.

A good understanding of nonlinear time-delayed feedback systems has impli-

cations for many fields of science and technology. The coordination of animal motor
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Figure 2.1: Schematic of the nonlinear time-delayed optoelectronic feed-
back loop. The feedback loop featured here comprises modular optoelec-
tronic and electronic components and is capable of generating a wide va-
riety of dynamical behaviors. It consists of a semiconductor laser diode,
a Mach-Zehnder electro-optic modulator, a photoreceiver, a DSP board
which implements bandpass filtering and time-delay operations, and an
amplifier connected as a feedback loop.
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skills, the spread of epidemics, the regulation of the rate of chemical reactions are

some interesting examples where time-delayed feedback plays a crucial role [20]. In

control systems, time-delayed feedback is known to lead to interesting dynamics. For

example, phase-locked loops with time-delay are known to behave chaotically [43].

The optoelectronic feedback loop considered in our experiments presents an eas-

ily assembled, controllable nonlinear time-delayed feedback system that allows us

to study the properties of delay interactions in general. Optoelectronic feedback

loops, similar to the one described here, have been the subject of past research and

are known to generate robust chaos at sufficiently high feedback strengths [44, 45].

Chaos generators with this construction have also been used in encrypted optical

communications [22]. In the following subsections we discuss the characteristics of

the various elements used in the construction of our optoelectronic feedback system.

2.1.1 Laser Diode

A semiconductor distributed feedback (DFB) laser serves as the source of

optical power in our feedback loop. Semiconductor lasers are perhaps the most

ubiquitous kind of lasers today due to their easy operation and low-cost. They are

made by sandwiching an active semiconductor gain medium between two passive

semiconductor layers with a comparatively larger band-gap thereby creating a dou-

ble heterostructure to confine electrons and holes. The outer passive layers are also

designed to have a higher refractive index compared to the active layer thereby pro-

ducing an optical waveguide that confines the photons in the active layer, allowing
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laser action. Distributed feedback occurs due to the presence of an optical Bragg

grating etched on the outer passive layers of the laser. The Bragg grating acts as

a mirror, selectively reflecting only one wavelength. This creates a single-mode res-

onator, unlike a Fabry-Perot cavity which supports many longitudinal modes. The

word ‘distributed’ implies that reflection (feedback) occurs not at a single point

(as in a Fabry-Perot cavity) but at many points all along the grating. Due to the

presence of the grating, DFB lasers have a narrow line-width thereby producing

a nearly monochromatic light output. By appropriately choosing the active semi-

conductor material, semiconductor lasers can be made to operate at wavelengths

ranging anywhere from 370 nm to 2.6 µm. The semiconductor lasers used in our

experiments lase at a wavelength ≈1550 nm. This wavelength is especially signifi-

cant to the telecommunications industry since fiber-optic cables have the least loss

at this wavelength. Fig. 2.2(a) shows a commercially available semiconductor laser

of the kind used in our experiments (Bookham LC25W4932BA). The laser diodes

used in our experiments have an integrated thermo-electric cooler which maintains

a steady temperature (to within 0.01 K) thus ensuring the wavelength and power

stability of the optical output.

The pump energy required to initiate lasing action in a semiconductor laser

comes from driving an electric current through the laser. Under sufficient electri-

cal excitation, a population inversion is created in the energy levels of the active

medium. Under these conditions, photons created by the recombination of carriers

are amplified through stimulated emission leading to the laser output. The mini-

mum current required to establish population inversion and thus turn on the laser
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Figure 2.2: Semiconductor laser diode output characteristics. (a) A
commercially available laser diode used in our experiments. (b) Optical
output characteristics of the laser as a function of the drive current. The
optical output turns on when the drive current exceeds the threshold
current Ith identified by the vertical dashed line.

output is called the threshold current, Ith. In our experiments, we use a laser diode

driver module (ILX LDC3908) to supply a well regulated steady electrical current

to the laser diodes. Fig. 2.2 presents the input-output characteristics of a semicon-

ductor laser used in our experiments. It shows the output optical power as function

of the current that drives the laser. It has a nonlinear characteristic with the optical

output turning on when the drive current exceeds the threshold. In our experiments,

we operate the laser in the linear regime above threshold producing a steady optical

power output, P0, ranging from 0.2 mW to 4 mW.
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2.1.2 Mach-Zehnder Electro-optic Intensity Modulator

The Mach-Zehnder electro-optic intensity modulator (hereby referred to as just

Mach-Zehnder modulator or MZM) produces the nonlinearity in our time-delayed

feedback loop. It is commercially available as an integrated photonic device and

is commonly used by the telecommunications industry to modulate data onto an

optical carrier [46]. It can operate at modulation speeds of several tens of Gigabits

per second. The Mach-Zehnder modulator is essentially an optical interferometer

with transmission characteristics controlled by an applied electrical voltage.

The construction of an MZM is shown in Fig. 2.3 (a). It consists of an input

optical waveguide that is split into two different optical paths of equal lengths (of the

order of a few centimeters). The two paths are subsequently recombined to form the

output optical waveguide. By virtue of this construction, an incoming light signal is

split into two components of equal power and made to travel down different paths

before being recombined at the output. If the optical signals traveling down the two

paths arrive at the output in phase with each other, they interfere constructively

leading to the complete transmission of the input signal. If, however, they do not

arrive in phase, the signal is attenuated to a degree that is determined by their

phase difference.

In an MZM, a voltage-controlled phase difference is induced between the two

paths using the electro-optic effect. Electro-optic effect refers to the phenomenon in

which a material’s optical properties, such as the refractive index, depend on the ap-

plied electric field [47]. Linear electro-optic effect (also known as the Pockels effect)
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Figure 2.3: Transmission characteristics of a Mach-Zehnder electro-optic
modulator. (a) Schematic of the modulator. The modulator is an optical
interferometer with a voltage-controlled transmission characteristic. (b)
A commercially available electro-optic modulator. (c) Transmission of an
electro-optic modulator as a function of the applied voltage. The trans-
mission follows a cos2(•) characteristic as the minimum least-squares fit
shows (gray line).
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describes the situation where the first-order effect of the electric field dominates over

higher-order influences. The waveguides of the MZMs used in our experiments are

made of a linear electro-optic crystal called Lithium Niobate (LiNbO3). LiNbO3 is

a uniaxial crystal i.e. it has one crystal axis that is different from the other two

axes. This axis, called the optic axis, is denoted in Fig. 2.3 (a) as the z-direction. A

polarizer (not shown) present at the input of the MZM only admits light polarized

along the optic axis. This ensures that there are no unwanted birefringence effects

within the MZM. In our feedback loop, we use a polarization controller to align the

polarization of the laser light with the polarization admitted by the MZM, thus max-

imizing the amount of light coupled into the MZM. The refractive index of LiNbO3

along the optic axis (z-direction) depends on an applied electric field E (along the

z-direction) as n(E) = n0 − n3
0r33E/2, where n0 is the refractive index when there

is no applied electric field and r33 denotes the linear electro-optic coefficient that

determines the strength of the electro-optic effect. We point out that LiNbO3 is

commonly the material of choice for electro-optic MZM construction due to its high

electro-optic coefficient and optical transparency in the near-infrared wavelength

range (1300-1550 nm) used in telecommunications.

Within an MZM, the applied modulation voltage V sets up an electric field

E = V/D across the waveguides through suitably placed electrodes (see Fig. 2.3 (a)).

Here D is the separation distance between the electrodes. The electric field causes a

change in the refractive indices along the two paths leading to the establishment of a

phase difference between the two optical waves. Note that the changes in refractive

indices along the two paths are of opposite sign due to the opposing directions of
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the applied electric field. Thus for an input light signal of wavelength λ, the phase

difference between two paths is given by

∆φ =
(

2π

λ

)
n3
0r33

(
V

D

)
L, (2.1)

where L is the length of the waveguides. Usually, the lengths of the two waveguides

can not be perfectly matched leading to an additional constant phase difference φ0

between the two waves. Thus the total phase difference is given by

∆φ = φ0 +
(

2π

λ0

)
n3
0r33

(
V

D

)
L. (2.2)

The above equation can be rewritten as

∆φ = φ0 +
πV

2Vπ
, (2.3)

where Vπ ≡ λD/4n3
0r33L, called the half-wave voltage, is the voltage that needs to be

applied to produce an additional phase shift of 180 degrees between the two signals.

The output optical output of the modulator is then given by the interferometric

relationship as

P = P0 cos2(
πV

2Vπ
+ φ0) (2.4)

where P0 denotes the input optical power. A picture of a commercially available

MZM, similar to the ones used in our experiments (JDSU MZ150, Lucent 2623NA),

is shown in Fig. 2.3 (b). The input and output of the modulator are fiber-coupled

allowing the laser light to be channeled easily to the MZM. The transmission char-

acteristic, P/P0, of the MZMs used in our experiments is measured by recording

the output light intensity as the input voltage is varied. The measured transmission

21



function of JDSU MZ150 is shown in Fig. 2.3 (c). It agrees well with the theoreti-

cally predicted cos2(•) function. From fitting the data to the theoretically predicted

trigonometric relationship, we obtain the half-wave voltage Vπ to be 5.6 V. Using a

similar process, we measured the half-wave voltage of Lucent 2623NA to be Vπ = 3.6

V. We also note that the phase bias φ0 can be set to a value of choice by applying

an appropriate DC voltage in addition to the modulation signal.

2.1.3 Photoreceiver

The optical output from the electro-optic modulator is transduced into an

electrical voltage by a photoreceiver. The electrical schematic of the photoreceiver

circuit used in our experiments is shown in Fig. 2.4. The photoreceiver circuit

consists of a photodiode, a transimpedance amplifier and a variable-gain voltage

amplifier. We use a p-i-n type photodiode, with the intrinsic (i in p-i-n) active

material being In0.53Ga0.47As. This composition of InGaAs has an energy bandgap

Eg = 0.75 eV [48], which makes it sensitive to a wavelength of 1550 nm. The

photodiode is reverse-biased between 0 and 5 V leading to the establishment of an

electric field across the intrinsic region. Incident light is absorbed by the reverse-

biased photodiode leading to the creation of approximately one electron-hole pair per

photon in the intrinsic region. These charge carriers are swept by the electric field to

the p-type and n-type regions leading to the production of a photocurrent Ip. The

generated photocurrent is proportional to the incident optical power P : Ip = RP .

The proportionality constant R is called the responsivity of the photodiode. The
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Figure 2.4: Photoreceiver circuit schematic. The photoreceiver consists
of a photodiode followed by a trans-impedance amplifier and a variable
gain voltage amplifer.

photocurrent is then converted into a voltage using a transimpedance amplifier with

gain GTIA = R1R3/R2. Thus the output voltage of the photoreceiver is VPR =

GTIARP . In our experiments, we adjust R3 such that RGTIA = 1 V/mW.

2.1.4 Filtering and Time-delay

The output of the photoreceiver is electronically filtered and time-delayed. As

part of the feedback loop, we implement a two-pole bandpass filtering process which

can be represented by the transfer function as

Ĥ(s) =
sτH

(1 + sτL)(1 + sτH)
(2.5)

where τH and τL represent the highpass and lowpass filter time-constants respec-

tively. In the time-domain, the filtering action can be expressed in terms of linear
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state-space differential equations and an algebraic equation as

du

dt
= Au(t) + Br(t),

w(t) = Cu(t) + Dr(t), (2.6)

where r(t) is the input to the filter, w(t) is the output, u is a vector that represents

the state of the filter. A, B, C, and D are matrices that describe the filter. For a

two-pole bandpass filter described by Eqn. 2.5 these matrices are

A =

 −
(

1
τH

+ 1
τL

)
− 1
τL

1
τH

0

 , B =


1
τL

0

 , C =

[
1 0

]
, and D = 0. (2.7)

We note here that the state space representation of a particular system is not unique.

There are in fact an infinite number of ways to represent Eqns. 2.6 by manipulating

the A, B, C and D matrices using row operations.

In our experiments, we implement the bandpass filter in discrete-time using a

DSP board. Incorporating a DSP board in the feedback loop provides us with the

flexibility of programmable filtering and delay. This offers a significant advantage

over conventional analog filters especially when studying synchronization. Synchro-

nization requires matched dynamical filter characteristics which are easier to realize

using programmable filtering. On the other hand, constructing matched analog fil-

ters that are made from discrete electrical elements such as resistors, capacitors and

amplifiers is hard to accomplish. Another advantage of digital signal processing is

that it allows us to change the parameters of the feedback loop, such as gain and

delay, in real-time which is not possible with static components. In Chapter 4 of

this thesis, we describe the implementation of an adaptive synchronization algo-

24



rithm that takes full advantage of the DSP’s programmability and computational

ability. Fig. 2.5 shows a simplified block diagram of the DSP board used in our ex-

periments (Spectrum Digital DSK6713, DSK6416) identifying its main components.

The detailed schematics of the DSP boards can be found in [49,50]. The DSP board

contains two 16-bit analog to digital converters (ADC) which sample the input con-

tinuous time signal at regular time intervals. On our DSP boards, the time between

samples (referred to as the sampling interval Ts) is set by configuring the sampling

rate Fs ≡ 1/Ts. The digitized input sequence is manipulated by the signal pro-

cessor to mimic the bandpass filtering process. The filtered digital signal is finally

converted back into an analog signal using one of the two available 16-bit digital

to analog converters (DAC) before being output. Our feedback loop is therefore a

hybrid discrete/continuous-time system that retains the advantages of optical signal

transmission, while exploiting the flexibility of discrete-time signal processing. The

DSP boards used in our experiments are designed for audio processing applications

and have a maximum sampling rate of Fs = 96 kHz. The bandwidth of the signals

that can be processed by the DSP board is limited by the Nyquist rate Fs/2 = 48

kHz. This represents a hard cut-off of the maximum bandwidth of the dynamics of

our optoelectronic oscillator. However, this limitation on the feedback loop band-

width can be easily be overcome by using field programmable gate array (FPGA)

boards that can sample signals at speeds in excess of 1 GSs−1 [51]. Alternatively,

one can also use high-speed RF bandpass filters and amplifiers to scale the feedback

loop to operate at higher speeds [25,45].

The digital filter implemented in our experiments can be described by a discrete-
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Figure 2.5: Simplified block diagram of a DSP board. The DSP contains
an analog to digital converter (ADC) that samples an incoming analog
signal at regular intervals. The sampled data is then processed by a digi-
tal signal processor (DSP). The processed digital signal is then converted
back into an analog signal by a digital to analog converter (DAC).

time transfer function Ĥ(z) which is obtained from the continuous-time transfer

function Ĥ(s) by applying a bilinear transform with frequency pre-warping [52].

Frequency pre-warping ensures that various analog frequency features (such as filter

corner frequencies) are accurately transformed from the continuous domain to the

discrete domain. Carrying out the bilinear transform produces

Ĥ(z) =
1

4
(1− zL)(1 + zH)

(z2 − 1)

(z − zL)(z − zH)
, (2.8)

where zL and zH are the poles of the discrete-time filter given as

zH =
1− tan

(
Ts
2τH

)
1 + tan

(
Ts
2τH

) and zL =
1− tan

(
Ts
2τL

)
1 + tan

(
Ts
2τL

) . (2.9)

Analogous to the continuous time equations, the discrete-time filter equations can

be represented in the time domain as state-space difference equations shown below.

u[n+ 1] = Au[n] + Br[n],

w[n] = Cu[n] + Dr[n]. (2.10)
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Here r[n] represents the discrete-time input to the digital filter, w[n] is the output,

and u is a 2-dimensional state vector. The matrices A, B, C, and D describe the

filter and are given as

A =

 − (zL + zH) −zL

zH 0

 , B =

 zL

0

 , (2.11)

C =

[
0 − (1−zL)(1+zH)(1+zLzH)

4zLzH

]
, and D =

1

4
(1− zL)(1 + zH).

We note that the discrete-time filter matrices A, B, C, and D shown above are not

the same as the filter matrices for the continuous-time case (Eqn. 2.7). The pair

of first-order state space difference equations (Eqn. 2.10) can be combined into a

single second-order iterative difference equation that is more suited for numerical

iteration. We use the transfer function Ĥ(z) to derive this alternative time-domain

representation. In the z-transform domain, the input-output relationship can be

expressed as

Ŵ (z) = Ĥ(z)R̂(z) (2.12)

where Ŵ (z) and R̂(z) represent the z-transforms of the output and the input signals

respectively. Substituting the form of Ĥ(z) and expanding, we obtain

Ŵ (z) = (zL + zH)z−1Ŵ (z) − zLzHz
−2Ŵ (z) (2.13)

+ (1− z−2)(1− zL)(1 + zH)

4
R̂(z).

Now, taking the inverse z-transform gives the time-domain equation

w[n] = b0r[n] + b2r[n− 2]− a1w[n− 1]− a2w[n− 2], (2.14)
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The coefficients b0, a2, b1, and a1 describe the filter and are given as

b0 =
(1− zL)(1 + zH)

4
, b2 = −(1− zL)(1 + zH)

4
, (2.15)

a1 = −(zL + zH), and a2 = zLzH .

For a bandpass filter with a highpass filter cut-on frequency of 100 Hz and a

lowpass filter cut-off frequency of 10 kHz and sampling rate Fs = 96 kHz, the filter

coefficients can be calculated to be a1 = −1.4939, a2 = 0.4972, b0 = 0.2514, and

b2 = −0.2514. Fig. 2.6 shows the measured amplitude response (shown in red) of

this filter implemented using the DSP board. The theoretically predicted response

(in blue) is also shown for comparison. The measured response faithfully follows the

theoretically predicted characteristics, except at low frequencies. The additional

attenuation seen at low frequencies in the experiments is attributed to the presence

of a DC-blocking capacitor on the DSP board.

In our experiments, the DSP board is also used to implement a time-delay.

Conventional analog electrical time-delays use either coaxial cables or a series of

LC delay units. LC delay lines generally introduce additional frequency dependence

that is undesirable. On the other hand, implementation of a cable time-delay of

the order of a few milli-seconds requires an impractically long cable and can be

very lossy. DSP systems overcome both these problems and can produce a lossless

and frequency independent time delay that is readily adjustable. Using the DSP

board, we implement the time-delay as shown in Fig. 2.7. The discrete-time samples

from the ADC are collected in an indexed memory buffer of length k. At each

sampling instant, the stored samples are moved down the buffer by one unit and
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Figure 2.6: Measured amplitude response of the digital filter. The ex-
perimentally measured response is shown in red and the theoretically
predicted behavior is shown in blue.
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Figure 2.7: Implementation of a time-delay using the DSP board. The
digital samples are stored in a memory buffer (of k units) before be-
ing output by the DAC. At each time-step the values in the buffer are
advanced by one unit, thus producing a delay τ = k/Fs.

simultaneously the value in the kth unit is output through the DAC. This process

produces a time-delay equal to k sampling intervals or τ = k/Fs seconds. Thus by

configuring the length of the memory buffer a desired delay τ can be set.

2.1.5 Voltage Amplifier

The filtered and time-delayed output signal from the DSP board is amplified

by a voltage amplifier before being fedback into modulator. In our experiments,

we use an operational amplifier (LM741) based circuit to produce a voltage gain

GVA ≈ −20. The circuit diagram of the amplifier circuit used in our experiments is

shown in Fig. 2.8. The circuit consists of an buffer stage and a gain stage. The buffer

stage presents a high input impedance (Rin = 10 kΩ) which ensures that the DSP

board outputs do not need to provide high current. The gain state produces the

amplification of the signal. In addition to amplifying the signal, the gain state also

adds an adjustable DC voltage to the output allowing us to control the operating
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Figure 2.8: Circuit schematic of the amplifier used in the feedback loop.

point φ0 of the modulator. For the resistor values chosen, the offset DC voltage

can approximately range from −5 V to +5V which spans roughly two times the

half-wave voltage of our modulators.

2.2 Mathematical Modeling

In this section, we develop the mathematical model that describes the dy-

namics of the optoelectronic feedback loop. We develop our model based on the

characteristics of the various constituent components presented in the previous sec-

tion. We express the dynamical equations in continuous-time as a set of delay-

differential equations and in discrete-time as a recursive map equation. We consider
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the continuous-time case first. The optical output of the MZM, as discussed in the

previous section, is given as

P (t) = P0 cos2
(
πV (t)

2Vπ
+ φ0

)
(2.16)

where P0 is the steady optical output of the laser diode and V (t) is the input

electrical modulation voltage. The output of the MZM is transduced into an electric

voltage by the photoreceiver whose response is GTIAR. Thus the electrical output

of the photo-detector is given as

GTIARP (t) = GTIARP0 cos2
(
πV (t)

2Vπ
+ φ0

)
. (2.17)

Next we consider the effect of the amplifier and time-delay. Even though, in our

experiments, the amplification process occurs after the filtering, it is convenient for

the purposes of analysis to commute it with the filter. This commutation is justified

as the filtering and the amplification are both linear processes. Assuming a voltage

gain of GVA from the amplifier and a time-delay τ , we can write the input to the

filter as

r(t) = GVAGTIARP0 cos2
(
πV (t− τ)

2Vπ
+ φ0

)
. (2.18)

We then use the time-domain state-space equations for the bandpass filter to write

the dynamical equation describing the feedback loop. Substituting the above form

of the input signal in Eqn. 2.6, we obtain

du

dt
= Au(t) + BGVAGTIARP0 cos2

(
πV (t− τ)

2Vπ
+ φ0

)
,

V (t) = Cu(t). (2.19)
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Here, we make use of the facts that D = 0 and that the output of the filter w(t) is

the same as the modulation voltage V (t) input to the MZM . The above equations

can be rewritten in a compact form as

du

dt
= Au(t) + BGVAGTIARP0 cos2

(
πCu(t− τ)

2Vπ
+ φ0

)
. (2.20)

To express the above state-space equation in terms of physical voltages, we choose

the state vector u to be

u(t) =


V (t)

1
τH

∫ t

−∞
V (t′) dt′

 , (2.21)

and substitute the values for A, B and C from Eqn. 2.7. This gives us

τL
dV

dt
= −

(
1 +

τL
τH

)
V (t) − 1

τH

∫ t

−∞
V (t′) dt′

+ P0RG cos2
(
πV (t− τ)

2Vπ
+ φ0

)
,

d

dt

∫ t

−∞
V (t′) dt′ = V (t). (2.22)

To simplify the above equations, we define the following dimensionless quan-

tities.

x(t) ≡ πV (t)

2Vπ
, y(t) ≡ 1

τH

∫ t

−∞
x(t′) dt′, and β ≡ πGVAGTIARP0

2Vπ
. (2.23)

The quantity x(t) denotes the normalized input voltage to the MZM and is the

observed dynamical variable in our experiments. The quantity β, which incorporates

the various proportionality factors in the feedback loop, denotes the total round-trip

gain. It is an important parameter which, along with the time-delay, bias-point and

filter constants, determines the dynamics of the feedback loop. The block diagram
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Figure 2.9: Mathematical block diagram of the optoelectronic feedback loop.

shown in Fig. 2.9 presents a simplified mathematical picture of the optoelectronic

feedback loop in continuous time. The delay-differential equations derived above

can now be re-expressed as dimensionless equations that describe the dynamics of

the optoelectronic oscillator. These equations are presented below.

τL
dx

dt
= −

(
1 +

τL
τH

)
x(t)− 1

τH
y(t) + β cos2 [x(t− τ) + φ0] ,

τH
dy

dt
= x(t). (2.24)

To develop the discrete-time model for the feedback loop, we follow the same

process as detailed above. The input signal to the digital filter can be expressed in

terms of dimensionless feedback strength β and modulation voltage x as

r[n] = β cos2 (x[n− k] + φ0) (2.25)

where k is the discrete-time feedback delay in terms of sample intervals. As evident
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from the above equation, the input to the filter is a nonlinearly transformed, time-

delayed version of the output signal. Using the iterative equation representing the

digital-filter (Eqn. 2.14), the map equation describing the feedback loop dynamics

can be written as

x[n] = b0β cos2 (x[n− k] + φ0) + b2β cos2 (x[n− k − 2] + φ0) (2.26)

− a1x[n− 1]− a2x[n− 2].

2.3 Dynamical Behavior of the Feedback Loop

In this section, we discuss the dynamical behavior of the optoelectronic feed-

back loop. We present experimentally measured time traces showing the wide variety

of dynamical behavior that can be exhibited by the system. We supplement the ex-

perimental measurements with results obtained from numerical simulations of the

dynamical equations developed in the previous section.

In our experiments, the phase-bias φ0 of the MZM is set to −π/4, which

corresponds to the half-transmission point of the modulator. At this bias-point, the

steady-state solution of the system is most linearly unstable [53]. In other words, at

this operating point, the feedback loop has the greatest tendency towards oscillatory

dynamics. There are examples in the literature which consider the dynamics of

similar optoelectronic feedback loops set at other operating points [45]. For the

measurements presented here, the bandwidth of the filter is set to range from fH =

1/(2πτH) = 100 Hz to fL = 1/(2πτL) = 10 kHz while the sampling rate of the ADC

is set to 96 kS s−1. We hold the delay constant at k = 22 time-steps. At a sampling
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rate of Fs = 96 kHz, this corresponds to a time delay of 230 µs.

We examine the behavior of the feedback loop as the round-trip gain β is

varied. We accomplish a fine control of β by programming a scaling factor in the

DSP board. The maximum achievable value of the round-trip gain is determined

by the steady laser input power P0. For the set of measurements shown in this

section, P0 was set to produce a maximum β of 5.0. We can experimentally measure

the feedback gain in an open-loop configuration by introducing a small-amplitude

modulation signal into the MZM biased at φ0 = π/4. At this bias-point, the system

behaves linearly for a small-amplitude signal and thus the ratio of the output ampli-

tude to the input amplitude gives a measure of β. Using a network analyzer (Agilent

4395A), we measure the feedback gain as a function of the modulation frequency

for a given DSP scale factor. The network analyzer outputs a swept-frequency sinu-

soidal signal which is used as a stimulus to the open-loop system. The amplitude of

the corresponding output signal is then analyzed as a function of frequency to obtain

the gain characteristics of the open-loop system. This measurement is presented in

Fig. 2.10. The open-loop gain measurement follows the bandpass filter characteristic

with 3 dB points at 100 Hz and 10 kHz as expected. The value of β is given by

the open-loop gain at the center frequency of the filter pass-band, indicated by the

dashed line in Fig. 2.10.

The dynamical behavior of the feedback loop x(t) for three different values of

β is shown in Fig. 2.11. The experimental measurements are reported in panel (a)

while panel (b) shows the results from numerical simulations of the discrete-time dif-

ference equations (Eqn. 2.26) developed in the previous section. For a low feedback
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Figure 2.10: Measurement of the feedback gain β.

strength β = 1.5, the amplitude of the MZM modulation signal is small. Conse-

quently, nonlinear effects from the MZM are not very strong. In this regime, the

system exhibits periodic behavior. As the feedback strength is increased, nonlinear

effects from the MZM become stronger and the dynamical complexity increases. For

β = 3.0, the system executes aperiodic motion, but still with strong periodic signa-

tures. As β is increased further, the system exhibits robust chaos. Here, “robust”

means that the system remains in the chaotic state over a wide range of parameters.

In Fig. 2.12, we show the experimentally measured and numerically calculated

bifurcation diagrams which characterize the behavior of the optoelectronic feedback

loop as a control parameter (in this case β) is varied. The process used to obtain
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the bifurcation diagram is as follows: At each value of the control parameter, a

long time trace capturing the dynamical nature of the system is obtained. The

amplitude histogram of this time trace can be interpreted as being proportional

to the probability with which the system takes any given amplitude value. The

bifurcation diagram is formed by horizontally stacking these probability histograms

(shown in gray scale with black corresponding to zero) as the control parameter is

varied. For β < 1 it can be seen from the bifurcation diagram that the systems

is almost always found in the steady state x = 0. As β is increased, the system

undergoes a series of bifurcations and displays increasingly complicated behavior

ranging from periodic oscillations (characterized by two highly probable amplitude

values) to robustly chaotic dynamics (characterized by all amplitude values being

equally probable).
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Figure 2.11: Dynamical behavior of the optoelectronic feedback loop.
The dynamics of the oscillator system increase in complexity as the
round-trip gain β is increased. (a) Experimentally measured data. (b)
Data from numerical simulations.
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Figure 2.12: Experimentally measured and numerically calculated bi-
furcation diagrams for the optoelectronic feedback loop with β as the
control parameter. (a) Experiment and (b) simulation.
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Chapter 3

Coupled Optoelectronic Feedback Oscillators

The trajectories of two identical chaotic systems that begin from slightly dif-

ferent initial conditions quickly diverge and become uncorrelated even though each

system describes the same attractor in phase space. In the face of this extreme

sensitivity to small perturbations, it is surprising that two chaotic systems can be

driven to execute coordinated motion, with each system behaving identically as the

other at every instant of time. This phenomenon of synchronization is realized by

coupling the two systems, or in other words, by allowing a flow of information be-

tween them. In this chapter we discuss the coupling of the optoelectronic feedback

loops described in the previous chapter and present experimental measurements

demonstrating synchronization.

We begin, in Sec. 3.1, by developing the coupled equations that describe a

general network of optoelectronic oscillators. The connection topology in the net-

work is represented mathematically in the form of a coupling matrix. We discuss

two different coupling scenarios. The first case, called injective coupling, describes

the situation where the coupling term from node j to node i is a function of the

state of node j alone. The second case, termed diffusive coupling, depicts the sit-

uation where the coupling term is a function of the difference of the states of both

oscillators.
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In Sec. 3.2, we present the details of the experimental implementation of a

simple network of two optoelectronic feedback loops. We report measurements of

synchronized behavior and identify parameter regimes for which synchronization is

observed. In this section, we also discuss the transient behavior to synchronization

and present measurements of the convergence rate to synchronization.

In Sec. 3.3, we describe a theoretical technique that is widely used to analyze

the stability of the synchronous solution. This approach, called master stability

analysis [33], predicts if a given network of dynamical oscillators exhibits stable

synchronous behavior based on the eigenvalues of the coupling matrix.

Sec. 3.4 provides a brief summary of the chapter.

3.1 Mathematical Formulation

Consider N independent identical optoelectronic oscillators where the dynam-

ics of the ith oscillator is governed by the continuous-time differential equation

dui
dt

= Aui(t) + Bβ cos2 (xi(t− τ) + φ0) , (3.1)

xi(t) = wi(t) = Cui(t).

where A, B, and C are given in Eqn. 2.7, and ui(t) is the state vector of the

ith oscillator normalized by the factor π/(2Vπ). The quantity xi(t) denotes the

normalized voltage input to the modulator and is equal, for uncoupled oscillators,

to the filter output wi(t). Eqn. 3.1 is a dimensionless version of Eqn. 2.19.

In a network configuration, the oscillators are coupled by combining the filter
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outputs of the network nodes to form the input voltage to the modulator. The

equations for the ith oscillator in the network can then be written as

dui
dt

= Aui(t) + Bβ cos2 (xi(t− τ) + φ0) ,

wi(t) = Cui(t),

xi(t) = wi(t) +
∑
j 6=i

Kijwj(t), (3.2)

where the quantity Kij denotes the strength of the coupling from node j to node i.

Further, setting Kii = 1, which represent the self-feedback strengths, allows us to

write the net feedback term at node i as xi(t) =
∑N
j=1Kijwj(t). Thus, the topology

of the network can represented by the coupling matrix K, which has as its elements,

the interaction strengths of all links. The above coupling equations describe the case

of injective coupling where the coupling term depends only on the states of other

oscillators of the network. Eqn. 3.2 admits a synchronous solution if, and only if,

the total external coupling into each node,
∑N
j=1Kij is the same for all nodes i. In

other words, a necessary condition for the existence of a global synchronous solution

x1(t) = x1(t) = . . . = xN(t) = xs(t) is that the row-sum of the coupling matrix K

be uniform. The synchronous solution then follows the equation

dus
dt

= Aus(t) + Bβ cos2 (xs(t− τ) + φ0) ,

xs(t) =

 N∑
j=1

Kij

ws(t) =

 N∑
j=1

Kij

Cus(t). (3.3)

Another method of coupling extensively used to model network interactions is

called diffusive coupling. In this scheme, the coupling term into node i comprises

the sum of the differences of the states of the oscillators wj −wi. The equations for
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a network of diffusively-coupled optoelectronic oscillators are given by

dui
dt

= Aui(t) + Bβ cos2 (xi(t− τ) + φ0) ,

wi(t) = Cui(t),

xi(t) = wi(t) +
∑
j 6=i

Kij (wj(t)− wi(t)) . (3.4)

The coupling matrix that represents the topology of a network of diffusively-coupled

oscillators is called the Laplacian matrix (denoted as L). The off-diagonal elements

of the Laplacian matrix Lij (i 6= j) are the same as the off-diagonal elements of the

matrix K and denote the strength of coupling from node j to node i. However, the

diagonal elements Lii are equal to the negative of the total coupling strength into

each node i. Eqn. 3.4 can be expressed in terms of the Laplacian matrix elements

as

dui
dt

= Aui(t) + Bβ cos2 (xi(t− τ) + φ0) ,

wi(t) = Cui(t),

xi(t) = wi(t) +
N∑
j=1

Lijwj(t). (3.5)

We note that, by construction, the row-sums of the Laplacian matrix are all uniform

and equal to zero. Thus, the above equations automatically admit a synchronous

solution whose evolution follows the equations for an uncoupled oscillator. For this

reason, diffusive coupling has been the preferred form of coupling in many studies

related to network synchronization [33,54].
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3.2 Synchronization of Coupled Oscillators: Experiments

In this section, we describe the implementation of a network of two nominally

identical coupled optoelectronic oscillators. The nodes in our experimental network

can be coupled either optically or electrically. For optical coupling, the output of

the electro-optic modulator of each oscillator is split into two parts and fed back

into both systems. The most general optical coupling scenario is shown as a block

diagram in Fig. 3.1 (a). The self-feedback coupling strengths of the two nodes are

described by the constants K11 and K22 and the delays are denoted as τ11 and τ22 .

The cross-coupling strengths are given by K21 (node 1 to node 2) and K12 (node 2

to node 1) and the corresponding delays are τ21 and τ12. To implement the coupling

electrically, the outputs of the filters are combined and fed back to serve as the

modulation voltages. This situation is portrayed as a block diagram in Fig. 3.1 (b).

Here, we note that the filtering, time-delay, and coupling are all linear operations and

thus can be exchanged with each other without affecting the dynamics. We point

out that in Fig. 3.1 (b), by commuting the filter block with the coupling strength and

delay, we retrieve the situation described in Fig. 3.1 (a). Both the implementations

of coupling, optical and electrical, thus lead to the same behavior. We couple

the oscillators optically in our experiments except when specified otherwise. The

mathematical equivalence of the two forms of coupling allows us to exploit the

practical advantages of optical coupling even though the analysis, for convenience,

is performed using the equations with coupled electrical voltages.
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Figure 3.1: Block diagram illustration of the coupling of two optoelec-
tronic oscillators as implemented (a) optically and (b) electrically.
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For a two node system, the coupled dynamical equations can be represented

in terms of the general coupling parameters as

du1

dt
= Au1(t) + Bβ cos2 (C [K11u1(t− τ11) +K12u2(t− τ12)] + φ0) ,

du2

dt
= Au2(t) + Bβ cos2 (C [K22u2(t− τ22) +K21u1(t− τ21)] + φ0) . (3.6)

The necessary conditions for the above equations to permit an isochronal syn-

chronous solution are derived in Ref. [55] and are reproduced below as

K11 +K12 = K22 +K21,

τ11 = τ12 = τ22 = τ21 = τ. (3.7)

Further, restricting our attention to cases when the synchronous solution follows

the dynamics of an independent feedback loop imposes the additional constraint

K11 + K12 = K22 + K21 = 1. The equations describing the two oscillators then

become

du1

dt
= Au1(t) + Bβ cos2 (C [(1−K12)u1(t− τ) +K12u2(t− τ)] + φ0) ,

du2

dt
= Au2(t) + Bβ cos2 (C [(1−K21)u2(t− τ) +K21u1(t− τ)] + φ0) .(3.8)

The above equations can be recognized to be of the form of the diffusively coupled

equations shown in Eqn. 3.4.

In our experiments, we consider the symmetric coupling case, K12 = K21 = κ.

This situation is described by the equations

du1

dt
= Au1(t) + Bβ cos2 (C [(1− κ)u1(t− τ) + κu2(t− τ)] + φ0) ,

du2

dt
= Au2(t) + Bβ cos2 (C [(1− κ)u2(t− τ) + κu1(t− τ)] + φ0) . (3.9)
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We point out here that even though the above equations admit a synchronous solu-

tion, its stability is not guaranteed for all κ. Synchrony may only be observed for a

range of κ for which the synchronous solution is stable. In Sec. 3.3, we introduce a

theoretical technique to analyze the stability of the synchronous solution in terms of

the properties of the coupling matrix. In what follows here, we present experimental

observations that identify the range of κ for which the synchronous solution is sta-

ble. For the measurements shown here, we performed the coupling electrically using

the DSP boards. Our DSP boards (Spectrum Digital DSK6416) have two on-board

ADCs and DACs. We utilize an ADC and DAC pair to independently implement the

digital filtering and time-delay for each optoelectronic oscillator. The coupling terms

for the two nodes are constructed by suitably combining the outputs of the digital

filters from the two systems. These combination signals are subsequently converted

into analog voltages by the DACs and fed to the MZMs as modulation signals. As

part of our measurements, we record at each node i (=1, 2), the normalized voltage

input to the modulator x(t) (as defined in Eqn. 3.4) using an 8-bit digital oscillo-

scope (Tektronix TDS7104). The parameters of the two loops are adjusted to be

nominally identical and equal to β = 6.0, τ = 230 µs and φ0 = −π/4. The sampling

rate of the ADC is set to 96 kHz and the filter band is set to range from fH = 100 Hz

to fL = 10 kHz. In Figs. 3.2 (a) and (b), we show the recorded time-traces for two

values of coupling strengths κ = 0.125 and κ = 0.375 respectively. When κ = 0.125,

the two-node network does not exhibit synchronized behavior (Fig. 3.2 (a)). How-

ever, for a higher coupling strength, κ = 0.375, the coupled feedback loops exhibit

stable synchronous behavior as shown in Fig. 3.2 (b). Figs. 3.2 (c) and (d) show
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the synchronization plots for these two cases. While for the lower coupling strength

case the dynamics of the two oscillators are weakly correlated, they are identically

synchronized for κ = 0.375.

We now investigate the range of coupling strength over which the network ex-

hibits synchronous behavior. To this end, we measure a normalized synchronization

error

θ =

(
〈(x1(t)− x2(t))2〉
〈x21(t) + x22(t)〉

)1/2

(3.10)

as the coupling strength κ is varied. Here, 〈•〉 denotes an average over the time

for which x1(t) and x2(t) are measured (which is much longer than the dynamical

time-scale). The normalized synchronization error θ takes a value of zero when the

two oscillators are isochronally synchronized and a value of one when the dynamics

are uncorrelated but identically distributed. We point out that for the case when

the symmetric coupling strength κ = 0.5, the two oscillators are guaranteed to

synchronize as the modulation signals in both oscillators are trivially equal (see

Eqn. 3.9). In fact, in Ref. [55], it is shown that the synchronization of the two

oscillators is guaranteed to be stable whenever K12 +K21 = 1. In Fig. 3.3, we show

the measurements and simulations of θ as a function of κ. The range of κ over which

the two oscillators synchronize is observed to be approximately symmetric about

the trivial case κ = 0.5. The disparity between the experimental and numerical

results is caused due to the non-identicality of the two constituent nodes which is

unavoidable in experiments. The non-identicality of the oscillators, along with noise

and measurement quantization, causes the minimum experimentally attainable level
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Figure 3.2: Dynamical behavior of coupled optoelectronic feedback
loops. The two oscillators exhibit synchronized behavior when the inter-
action strength is sufficiently strong. Time series measurements of the
two oscillators with coupling strengths (a) κ = 0.125 and (b) κ = 0.375
are shown. (c) and (d) show the synchronization plots for the same
respective coupling strengths.
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Figure 3.3: Range of coupling strength for stable synchrony. The solid
lines show experimental measurements of the synchronization error θ
as the coupling strength κ is varied, when β = 6.0 (blue) and β = 8.0
(black). The dashed lines show the corresponding results from numerical
simulations.

of θ to be nonzero. It is also observed from Fig. 3.3, that the range of synchronization

depends on the feedback strength β. In general, a higher value of β leads to more

complicated dynamical behavior and consequently a smaller synchronization range.

Next, we examine the transient behavior to synchronization in the coupled

oscillator system. An important measure that characterizes the transient behavior

of coupled oscillators is the rate at which they converge to the synchronous solu-
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tion. The rate to synchronization (µ) in a network of dynamical systems is a widely

significant property which has implications for sensor networks and communication

systems. In sensor networks, the convergence rate determines the speed of perturba-

tions that can successfully be detected, while in certain chaos based communication

systems, the rate of convergence influences the speed at which information can be

successfully communicated, or the bandwidth of information that can be effectively

encrypted or hidden by the chaotic carrier.

The rate at which the trajectories of coupled oscillators converge or diverge

is quantified by the transverse Lyapunov exponents (TLEs) [19]. The TLEs are

defined as the average exponential rates at which the trajectories of the coupled

systems converge/diverge along various network modes transverse to the synchro-

nization manifold u1 = u2 = . . . = uN . A negative TLE implies that the trajectories

converge along the corresponding mode while a positive TLE indicates divergent be-

havior. The synchronous solution in a network of oscillators is stable if the maximal

TLE (among all transverse modes) is negative. The stability analysis for the two-

node network of the optoelectronic oscillators described here is done in Ref. [55].

For the two-oscillator system, there is only one perturbation mode transverse to the

synchronization manifold. Thus the convergence properties are completely charac-

terized by the corresponding TLE.

An experimental measurement of the rate to synchronization µ (or the max-

imal TLE which is equal to −µ) can be accomplished by abruptly turning on the

coupling between two oscillators and analyzing the transient from the initially un-

correlated state to synchronized behavior. This process is illustrated in Fig. 3.4. A
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measurement of the dynamics x(t) of the two oscillators, before and after the cou-

pling is turned on, is shown in Fig. 3.4 (a). The bidirectional coupling strength κ is

switched from a value of zero to κ = 0.3125 at t = 0. Fig. 3.4 (b) shows the natural

logarithm of the smoothed absolute difference ln (〈|x1(t)− x2(t)|〉) as a function of

time. A moving-window smoothing is performed, over a time-interval of 100 µs, in

order to avoid potential divergences of the logarithm caused when x1(t) = x2(t). The

transient shows an exponential convergence from the initially uncorrelated behavior

to a synchronous state as predicted [19]. By estimating the slope of the transient,

we can determine the convergence rate µ (or the maximal TLE, −µ). Fig. 3.5 shows

the maximal TLE, −µ, measured as a function of the coupling strength along with

results from numerical simulations. For each value of κ, the measurements and sim-

ulations were performed for 100 independent realizations and the mean value of the

estimated maximal TLE is shown along with its standard deviation. Note that the

maximal TLE is negative indicating the convergent nature of the network dynamics.

3.3 Stability Analysis: Master Stability Function

In 1998, Pecora and Carroll introduced a theoretical technique to analyze

the stability of the synchronous solution of a network of dynamical oscillators [33].

This method, called master stability function (MSF) analysis, provides a necessary

and sufficient condition for the stability of the synchronous solution in terms of

the eigenvalues of the coupling matrix. Here, we briefly describe the technique and

discuss its implications for our study. Consider a network of N generalized oscillators
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Figure 3.4: Measurement of the maximal transverse Lyapunov exponent
(TLE), −µ. (a) Time series measurement of the dynamics of the oscil-
lators before and after the coupling is turned on abruptly at t = 0. The
transient to synchronization is exponential in nature as is evident from
(b) which shows ln (〈|x1 − x2|〉) plotted as a function of time t. The
maximal TLE, −µ, is estimated from the slope of the transient.
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Figure 3.5: Maximal TLE, −µ, as a function of the coupling strength κ.
The red dots show the mean value of −µ obtained from 100 independent
experiment measurements while the solid line shows results from simu-
lations. The bars represent the standard deviation of the measurements.
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where the dynamics of the ith oscillator are described by the equation

dxi
dt

= F(xi) +
∑
j

LijH(xj). (3.11)

Here xi is an m× 1 vector that denotes the state of the ith oscillator, F is a vector

function that describes the uncoupled oscillator dynamics, L is the Laplacian cou-

pling matrix which is assumed to have a zero row-sum, and H describes the vector

coupling function. The above N equations describing the dynamics of the network

can be combined into a single equation as

dx

dt
= F(x) + L⊗H(x) (3.12)

where x = (x1,x2, . . . ,xN), F(x) = [F(x1),F(x2), . . . ,F(xN)], H(x) = [H(x1),

H(x2), . . . ,H(xN)], and ⊗ denotes the direct or Kronecker product [56]. The stabil-

ity of the synchronous solution is analyzed by considering the variational equation

obtained by linearizing Eqn. 3.12 about the synchronous solution. Performing the

linearization gives

dξ

dt
= [1N ⊗DF + L⊗DH]ξ. (3.13)

Here ξ = [ξ1, ξ2, . . . , ξN ] is the vector incorporating the variations of all nodes and

DF and DH denote the Jacobian matrices corresponding to F and H evaluated at

the synchronous solution, x1 = x2 = . . . = xN . Eqn. 3.13 can be readily block-

diagonalized (provided the Laplacian coupling matrix L is diagonalizable 1, as we

assume here) to result in N (m× 1) equations written as

dξi
dt

= [DF + λiDH]ξi. (3.14)

1An extension of this theory to the case where the coupling matrix is nondiagonalizable has

been done in Ref. [57].
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We note that in the above equation, i indexes the eigenmodes (not the network

nodes) of the coupling matrix L and λi denote the corresponding eigenvalues. The

coupling matrix L has at least one zero eigenvalue λ1 = 0 owing to its zero row-

sum property [58]. This mode corresponds to evolution along the synchronization

manifold, x1 = x2 = . . . = xN , while the other N − 1 modes are transverse to the

synchronization manifold. A perturbation along the transverse directions represents

a deviation away from the synchronous solution. For the synchronous solution to be

stable we require that the perturbations along the transverse directions decay i.e.

we require that the maximal Lyapunov exponents of the variational equations for

all transverse modes be negative. Since the variational equations for the transverse

modes (Eqn. 3.14) differ from each other only by the eigenvalue λi, we can rewrite

Eqn. 3.14 by incorporating a generalized complex eigenvalue (αR + iαI) as

dξ

dt
= [DF + (αR + iαI)DH]ξ. (3.15)

Calculating the maximal Lyapunov exponent of the general equation above yields

us the stability function M whose argument is the complex eigenvalue (αR + iαI).

Then, to determine the stability of the synchronous solution of any given network,

one only has to calculate the eigenvalues of the coupling matrix that correspond

to the transverse modes and evaluate the MSF for these eigenvalues. If for all

eigenvalues, the value of the MSF is negative, then the synchronous solution is

linearly stable.

By decoupling the network topology and the dynamical nature of the con-

stituent nodes, the MSF provides us with a powerful tool that allows us to predict
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Figure 3.6: Master stability function (M) and the regime of stable syn-
chronization. (a) A cut along the real-axis of M as a function of the
scaled eigenvalue for β = 6.0. The scaling relates the eigenvalue directly
to the coupling strength κ. (b) Synchronization error θ as a function
of κ (reproduced here from Fig. 3.3). The vertical dashed lines identify
the regime of stable synchronization for the two-oscillator network as
predicted by the MSF.
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whether a given network of oscillators will synchronize. We employ this technique

to analyze the range of coupling strength over which a network of two optoelectronic

oscillators can stably synchronize. The symmetric, bidirectionally coupled 2-node

network realized in our experiments is described by the Laplacian coupling matrix

L =

 −κ κ

κ −κ

 . (3.16)

The eigenvalues of the matrix above are {λ1, λ2} = {0,−2κ}. Of these eigenvalues,

λ1 = 0 corresponds to the mode that evolves along the synchronization manifold.

Thus, the synchronous solution in the two-node network will be stable if the MSF

takes a negative value at λ2 = −2κ. Fig. 3.6 (a) shows a cut along the real axis

of the theoretically calculated MSF for our optoelectronic oscillators for a feedback

strength value of β = 6.0. In order to establish a direct correspondence with the

coupling strength κ, the MSF is plotted as a function of the eigenvalue scaled by

−1/2. In Fig. 3.6 (b), we reproduce the numerically calculated synchronization

error θ (also shown in Fig. 3.3) for β = 6.0, obtained by simulating the time domain

equations for the two-node network. The vertical lines in the figure identify the

coupling strengths at which the MSF changes sign. These points determine the

region of κ for which the synchronous solution is linearly stable (we are interested in

the region where M is negative). As the results show, the MSF correctly predicts the

range of coupling strength for which the network exhibits stable synchronization.

The utility of the MSF goes further than just predicting the range of coupling

strength over which the network synchronizes. It can also be used to infer the

rate of convergence to synchrony. This can be seen by comparing the MSF (shown

59



in Fig. 3.6 (b)) to the maximal TLE calculated from simulating the dynamical

equations (Fig. 3.5). Within the region of stability the maximal TLE calculated from

simulations agrees well with the MSF values. The MSF approach, thus, provides

us with a very powerful tool to analyze the synchronization behavior of any given

network of dynamical oscillators.

3.4 Summary

In this chapter, we introduced the mathematical equations that describe a

general network of optoelectronic oscillators. Experimental results and numerical

simulations showing the synchronization of coupled oscillators were reported. Quan-

tities that characterize the synchronized behavior, such as the synchronization error

θ and the rate to synchronization µ, were defined and their measurements from a

two-node network were presented. Finally, we described the master stability function

approach, a powerful means of analyzing the stability of the synchronous solution.
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Chapter 4

Adaptive Synchronization of Coupled Optoelectronic Oscillators 1

In the preceding chapter, we discussed the coupling of optoelectronic feedback

loops and developed the mathematical equations that describe the dynamics of a

network. We considered two coupling methods viz. injective and diffusive cou-

pling. In both these schemes, for the existence of a global synchronous solution, it is

required that the row-sums of the corresponding coupling matrix be uniform. How-

ever, in practical situations, where the coupling matrix elements are unavoidably

subject to environmental perturbations, this condition may not always be satisfied.

By engineering the network to have the flexibility to adapt and adjust to coupling

perturbations, we can minimize the effect of unknown coupling changes and establish

a system that automatically synchronizes.

Adaptive synchronization algorithms in a network of nonlinear oscillators have

been a topic of great interest [27,59–67], partly because of the need for high-quality

synchronization in practical applications. In Ref. [27], Sorrentino and Ott proposed

an adaptive synchronization algorithm that establishes and maintains synchrony

even when the coupling parameters are unknown and time-dependent. This strat-

egy provides a prescription according to which each node of the network builds a

dynamical estimate of the total incoming coupling strength based on just the re-

ceived coupling signal and its own local dynamics. Each oscillator then uses the

1Some of the results presented in this chapter have also been published in Refs. [31, 32]
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estimate to suitably adjust its internal parameters to compensate for the external

perturbations.

We realize this adaptive synchronization algorithm on networks of optoelec-

tronic oscillators. The adaptive algorithm is implemented by exploiting the compu-

tational power of the DSP boards that have been integrated as part of the feedback

loops. Using networks of two and three oscillators, we demonstrate synchronization

even when the coupling strengths are changing in time. Additionally, we are able to

track the perturbations in real-time and establish the utility of networks of chaotic

oscillators as sensors.

In Sec. 4.1, we derive the adaptive synchronization technique, introduced in

[27], as applied to our optoelectronic systems. In Sec. 4.2, we discuss the details

of the experimental set-up of a unidirectional diffusively-coupled network of two

optoelectronic oscillators used to demonstrate the success of the adaptive algorithm.

Results from the implementation of the adaptive synchronization algorithm on

the two-oscillator network are presented in Sec. 4.3. The results presented in this

section have been published in Refs. [31, 55]. The adaptive algorithm successfully

keeps the two oscillators synchronized while allowing us to track the coupling channel

perturbations. We establish the efficacy of the adaptive technique by comparing the

degree of synchronization attained with the adaptive strategy enabled to that of an

uncontrolled network.

In Sec. 4.4, we present results demonstrating the success of the adaptive strat-

egy in tracking perturbations occurring simultaneously in multiple coupling links in

a network of three mutually-coupled optoelectronic oscillators. In this context, we
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discuss the implications of tracking capabilities of the adaptive strategy to sensing

applications. Some of the results presented in this section have been published in

Ref. [32].

4.1 Adaptive Algorithm

In this section, we derive an adaptive synchronization strategy for a network

of optoelectronic oscillators using the methods described in Ref. [27]. We begin by

consideringN coupled optoelectronic oscillators described by the equations Eqns. 3.2

which are reproduced below for convenience.

dui(t)

dt
= Aui + βB cos2 [xi(t− τ) + φ0] ,

wi(t) = Cui(t),

xi(t) = wj(t) +
∑
j 6=i

Kijwj(t). (4.1)

Each network node i is assumed to have access only to the received cumulative

coupling signal hi(t) ≡
∑
j 6=iKijwj(t) but not to the individual node dynamics wj(t)

of the other oscillators or the coupling strengths Kij . By adding the local filter

output wi(t) to hi(t) and enforcing Kii = 1 we can express the net feedback signal

as

si(t) ≡
N∑
j=1

Kijwj(t). (4.2)

For a synchronous solution to be admitted by Eqns. 4.1, we require that the row

sums of the coupling matrix K be uniform. This condition ensures that all the

optoelectronic oscillators operate at the same net feedback strength, thus allowing
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the possibility of synchronization. In order to ensure that a synchronous solution is

permitted, we modify the above equations by dividing the feedback signal xi by the

total coupling strength, ki ≡
∑N
j=1Kij (including the self-feedback strength Kii).

The equations can then be expressed as

dui(t)

dt
= Aui + βB cos2 [xi(t− τ) + φ0] ,

wi(t) = Cui(t),

xi(t) =
1

ki
si(t). (4.3)

It can be readily seen that Eqns. 4.3 admit a synchronous solution that evolves

according to the equations of an uncoupled oscillator. However, in rewriting the

equations in the above form, we assumed full knowledge of the net coupling ki

coming into each node i. But, what can be done in cases when this knowledge is

not available? This is usually the case in practical situations, where the coupling

elements may be subject to unpredictable environmental fluctuations. To address

this problem, we derive a strategy that adaptively forms a dynamical estimate ki of

the net coupling coming into each node based on just the local feedback signal si(t)

and its own internal dynamics wi(t). By replacing ki in the above equations with

this estimate ki we can ensure that the synchronous solution is possible even when

the couplings are not known a priori.

We begin by defining a mean-squared exponentially weighted synchronization

error function ψi(t) as

ψi(t) ≡
∫ t

−∞
e−ν(t−t

′)
[
si(t

′)− ki(t′)wi(t′)
]2
dt′, (4.4)

where, ν defines the size of the exponential averaging window. The exponentially
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weighted moving average is in fact equivalent to a lowpass filter operation. Our

objective is to find ki that minimizes the above synchronization error. To this end,

we take the derivative of ψi(t) with respect to ki and set it equal to zero. This gives

us ∫ t

−∞
e−ν(t−t

′) [si(t
′)wi(t

′)] dt′ =
∫ t

−∞
e−ν(t−t

′)
[
ki(t

′)w2
i (t
′)
]
dt′. (4.5)

If we assume that the time-variation of the coupling coefficients is much slower

compared to the dynamics of the oscillators and the exponential averaging time,

then we can effectively treat ki as a constant in the integral on the right hand side.

We can then pull this term out of the integral and obtain an equation that describes

the evolution of ki. Carrying out this procedure gives us

ki(t) =

∫ t
−∞ e

−ν(t−t′) [si(t
′)wi(t

′)] dt′∫ t
−∞ e

−ν(t−t′) [w2
i (t
′)] dt′

≡ Pi(t)

Qi(t)
. (4.6)

Thus, by taking the ratio of two locally available signals, each node of the network

can estimate the total incoming coupling strength. ki can be more conveniently

calculated by recognizing that the numerator Pi(t) and the denominator Qi(t) follow

the differential equations

dPi(t)

dt
= −νPi(t) + si(t)wi(t),

dQi(t)

dt
= −νQi(t) + w2

i (t). (4.7)

Each of the above differential equations corresponds to a lowpass filter with a time-

constant 1/ν. For the success of the adaptive algorithm, the filter corner frequency

has to be chosen such that τo << ν−1 << τn where τo is the time-scale on which the

oscillator dynamics evolves and τn is the time-scale on which the network evolves.
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To make the above scheme amenable to implementation using our DSP boards,

we now derive the adaptive algorithm in discrete-time. In discrete-time, we define

the average synchronization error as

ψ[n] ≡
∞∑
m=0

z0
m
{
si[n−m]− ki[n−m]wi[n−m]

}2
, (4.8)

where z0 (< 1), called the forgetting factor, determines the span of the moving

average window, which can be expressed in terms of the sampling time as Ts/(1−z0).

Differentiating Eqn. 4.8 with respect to ki and setting the derivative to zero gives

us

∞∑
m=0

z0
m si[n−m]wi[n−m] =

∞∑
m=0

z0
m ki[n−m]w2

i [n−m]. (4.9)

Again, assuming that the coupling parameters vary sufficiently slowly compared to

the averaging time allows us to pull ki out of the summation. Rearranging the terms

gives us

ki[n] =

∑∞
m=0 z0

m si[n−m]wi[n−m]∑∞
m=0 z0

mw2
i [n−m]

≡ Pi[n]

Qi[n]
. (4.10)

On a DSP board, we can compute the estimate ki by independently computing

Pi[n] and Qi[n] using the iterative difference equations

Pi[n] = z0Pi[n− 1] + (1− z0)si[n]wi[n],

Qi[n] = z0Qi[n− 1] + (1− z0)w2
i [n], (4.11)

which are nothing more than discrete-time lowpass filters with z0 as the pole.

66



4.2 Implementation of the Adaptive Algorithm: Two-node Network

Here, we present the details of a two-node experimental network used to im-

plement the adaptive algorithm developed in the preceding section. Results demon-

strating the success of the adaptive strategy are reported in the Sec. 4.3. Fig. 4.1

shows a schematic of our experimental setup. It consists of two unidirectionally cou-

pled optoelectronic oscillators which will, henceforth, be identified as the transmitter

(denoted node 1) and the receiver (denoted node 2). The transmitter is a indepen-

dently running feedback loop system while the receiver dynamics are influenced by

the transmitter through a coupling signal. In our experiments, the transmitter and

the receiver are coupled optically. The optical output of the MZM of the transmitter

is split into two equal parts using a 50-50 fiber-optic splitter. While one part serves

as the self-feedback signal, the other part is relayed to the receiver over a fiber-optic

communication channel. In our experiments, we simulate environmental coupling

disturbances by a time-dependent coupling strength κ(t). This is accomplished by

inserting another MZM in the fiber-optic coupling link from the transmitter to the

receiver systems. When biased at the quadrature point φ0 = −π/4, the modulator

acts as a linear voltage-controlled attenuator for small modulation voltages. An

arbitrary waveform generator (Agilent 81150A) is used to generate the electrical

modulation voltage that controls the coupling variation imposed by the modulator.

The self-feedback optical signals of the transmitter and the receiver, denoted P1(t)

and P2(t) respectively, and the coupling signal to the receiver κP1(t) are photo-

detected and subject to bandpass filtering and time-delay operations on the DSP
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boards. The resultant filtered quantities, x1(t), x2(t) and κ(t)x1(t), are then used

to construct the feedback voltages input to the modulator. Here, we assume that

the time-variation of κ is slow compared to the filter corner frequencies allowing us

to effectively treat κ(t) as a constant for the purposes of filtering. This allows us to

write the resultant of the filtering action on κP1(t) as s(t) ≡ κ(t)x1(t). In addition

to the filtering and time-delay operations, the receiver also implements, through its

DSP board, the adaptive algorithm that constructs a dynamical estimate κ of the

coupling strength based on the filtered received signal s(t) and the local dynamics

x2(t). We emphasize that the receiver has access only to the signal s(t) = κ(t)x1(t)

and has no knowledge of the transmitter dynamics x1(t) or the coupling strength

κ(t) separately. Though we implement the adaptive strategy using a DSP board,

analog signal processing with mixers and lowpass filters could also have been used.

In our experiments, the transmitter and the receiver systems are adjusted to

be nominally identical. The feedback strengths of the two oscillators are set to be

equal to β = 3.58 by adjusting the input optical power to the MZMs appropriately.

Both the modulators are biased to operate at φ0 = −π/4. The sampling rate

of the ADCs and the DACs on both the DSP boards is set to Fs = 1/Ts = 24

kSs−1 and highpass and the lowpass filter corner frequencies are programmed to

be 1/(2πτH) = 100 Hz and 1/(2πτL) = 2.5 kHz. A feedback time-delay k = 36

sampling time-steps (corresponding to a physical delay of 1.5 ms) is programmed

on both the DSP boards. For these parameter values, the oscillators execute high-

dimensional chaotic dynamics [55]. We point out that our experimental system

could be scaled to operate at higher frequencies using either faster digital signal
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Figure 4.1: Experimental schematic of a unidirectionally coupled two-
oscillator network. The fiber-optic coupling channel may be subject to
to unknown time-dependent perturbations.

processing or high-speed analog filters and mixers.

The equation describing the transmitter system (represented in discrete-time)

is given as

x1[n] = −
2∑
j=1

ajx1[n− j] + β
2∑
j=0

bj cos2(x1[n− k − j] + φ0) (4.12)

where aj and bj are the filter coefficients. For the two-pole bandpass filter chosen

here they are given as a1 = −1.4962, a2 = 0.5095, b0 = 0.2452, b1 = 0.0, and b2 =

−0.2452. The receiver dynamics are influenced by the transmitter through the
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coupling signal. It is governed by the equations,

x2[n] = −
2∑
j=1

ajx2[n− j] +

β
2∑
j=0

bj cos2 {(1− κ[n− k])x2[n− k − j] + s[n− k − j] + φ0} , (4.13)

where κ[n] is obtained by solving the iterative equations,

P [n] = z0P [n− 1] + (1− z0)s[n]x2[n],

Q[n] = z0Q[n− 1] + (1− z0)x22[n],

κ[n] =
P [n]

Q[n]
. (4.14)

In our experiments we choose the forgetting factor z0 to be 0.95 corresponding to

an averaging time of Ts/[2π(1− z0)] = 0.83 ms.

As our measurements, we record the following signals (after photodetection)

using a digital oscilloscope (Tektronix TDS 7104).

• The optical output of the transmitter, P1(t).

• The optical output of the receiver, P2(t).

• The optical coupling signal, κP1(t).

In addition to the above signals, we also observe the calculated value of κ.

4.3 Experimental Results from a Two-node Network

In this section, we present the experimental results from the implementation

of the adaptive strategy on the two-node network. As can be readily seen from
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Eqns. 4.12 and 4.13, the two coupled optoelectronic oscillators in our experiment

admit a synchronous solution only when the κ = κ. Under this condition, carrying

out the master stability analysis (as discussed in Sec. 3.3) reveals that the syn-

chronous solution for the coupled oscillator system is stable when 0.45 < κ < 1.49.

Thus, if the receiver can correctly estimate κ, the system can be maintained in a

synchronous state over a range of different values of κ. As described in the previ-

ous section, our adaptive strategy strives to maintain the synchronous solution by

matching the estimate κ to the actual coupling strength κ.

To illustrate the functioning of the adaptive algorithm, we begin by considering

the effect of a mismatched coupling strength estimate κ on synchronization. This

situation is portrayed in Figs. 4.2 (a) and (b). Fig. 4.2 (a) shows the coupling

strength κ(t) (black curve) and its estimate κ(t) (green curve). Fig. 4.2 (b) shows the

synchronization error signal [x1(t)−x2(t)]. The network is initially (t < 0) configured

by setting κ = κ = 0.8. Under these conditions, the receiver is synchronized to

the transmitter as seen from the small error in Fig. 4.2 (b). At time t = 0, the

coupling strength is suddenly switched to κ = 1.13 while the estimate is held fixed

at κ = 0.8. This causes the two oscillators to quickly lose synchrony as the difference

error signal shows. This is expected, since the coupled equations that describe

the dynamics of the network, without adaptation, no longer admit a synchronous

solution. In Figs. 4.2 (c) and (d) we consider the same situation, only this time we

employ the adaptive algorithm. Fig. 4.2(c) shows the dynamical estimate κ (green

curve) calculated by the receiver using Eqns. 4.14. We see that, using the adaptive

strategy, the receiver system is able to form a dynamical estimate κ that tracks the
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Figure 4.2: Response of the 2-node system to a step change in the cou-
pling strength κ. (a) The coupling strength κ(t) (black curve) is suddenly
changed from 0.8 to 1.13 at t = 0. The adaptive strategy is disabled and
the estimate κ (green curve) is held constant at 0.8. (b) The synchro-
nization error as measured by the difference signal [x1(t) − x2(t)]. The
same situation as portrayed in (a) and (b) is explored in (c) and (d), but
with the adaptive algorithm enabled. The dynamical estimate κ now
tracks κ(t) leading to the maintenance of synchrony.
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Figure 4.3: Numerical simulation of the response of an adaptive 2-node
system to a step change in the coupling strength κ.

time-varying coupling κ. It is then able to suitably compensate for the changes in

the coupling strength and keep the network synchronized as evidenced by the small

error signal in Fig. 4.2 (d). In Fig. 4.3, we present results from numerical simulations

of the same situation. In both experiments and simulations, we observe that, even

with the adaptive strategy enabled, there is a brief period of time immediately

following t = 0 when synchronization is lost. In this context, we point out that

the adaptive algorithm, in fact, has the capability to acquire network synchrony

from an unsynchronized state. The period for which the adaptive network loses

synchrony following the step change, reflects the amount of time required by the

adaptive algorithm to successfully build the estimate of κ. This time is related to the

averaging time of the lowpass filters used in the adaptive algorithm, determined by

73



the choice of the forgetting factor z0. Using a smaller z0 implies a smaller averaging

time allowing us to track faster variations in κ. However, this affects the quality of

the estimate as the process would then be using information over a shorter window

of time in order to build κ. If z0 is set to be too low, then the algorithm may

altogether fail to build an estimate of the fluctuating coupling strength, leading to

a total loss of synchrony. Ref. [68] presents a detailed analysis of the effect of z0 on

the stability of the adaptive algorithm.

Next, we consider a variation of κ that is a smooth function of time. The

adaptive algorithm is expected to work best when the coupling perturbations are

slow and smooth. By using an arbitrary waveform generator and an electro-optic

modulator inserted in the coupling channel, we impose a coupling strength variation

of the form

κ(t) = κ0 [1 + ε sin(2πfmt)] (4.15)

Here, κ0 is the average coupling level about which we impose a sinusoidal variation,

ε denotes the amplitude of the coupling strength change and fm is a frequency that

determines the speed of the imposed variation. The speed of the coupling variation

is to be compared to the time-scale of the lowpass averaging process associated

with the adaptive algorithm. The corner frequency of the lowpass averaging filter

associated with the adaptive algorithm is given as Fs(1 − z0)/(2π). This value is

equal to 191 Hz for our experimental parameters (z0 = 0.95 and Fs = 24 kSs−1).

Fig. 4.4 shows the performance of the adaptive strategy when a variation of the

above form is applied with κ0 = 0.8, ε = 0.2 and fm = 20 Hz. Fig. 4.4 (a) shows the
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form of the imposed variation κ(t) (black curve) and its estimate κ (green curve)

calculated by the receiver. The estimate faithfully tracks the imposed variation. In

Fig. 4.4 (b), we show the synchronization plot of the optical output of the oscillators,

P1(t) and P2(t), normalized with respect to the input optical power P0. The figure

shows the relationship P1(t) = P2(t) is satisfied thus confirming the maintenance of

synchrony.

So far, we have demonstrated the success of the adaptive strategy in reestab-

lishing synchronization after a step-like disturbance (Figs. 4.2 and 4.3) and tracking

a purely sinusoidal coupling perturbation (Fig. 4.4). In what follows, we present

results from the application of the adaptive strategy to track a more realistic per-

turbation with multiple frequency components. This perturbation is constructed,

using an arbitrary waveform generator, as the sum of sinusoidal signals of frequen-

cies 2, 4, 6, 8, and, 10 Hz with randomly chosen amplitudes and phases, together

with a DC offset (= 0.08).

The results from the application of the adaptive synchronization technique

to track this perturbation are presented in Fig. 4.5 and 4.6. In the top panel of

Fig. 4.5 (a), we show experimental measurements of the optical signal κ(t)P1(t)

received at the receiver (orange curve) and the difference synchronization error signal

(P1−P2) (black curve) both normalized to the optical power P0 entering the MZM.

The received signal reflects the long time-scale coupling strength variations as a

result of the simulated environmental fluctuations. Before time t = 0, the adaptive

algorithm is disabled and the estimate κ is held fixed at the mean value of the

coupling strength κ = 0.8. During this period, the synchronization of the two
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Figure 4.4: Adaptive tracking of a sinusoidal modulation of the coupling
strength κ. (a) Imposed sinusoidal coupling strength modulation κ(t)
(black) and the dynamical tracking estimate κ(t) computed using the
adaptive strategy (green). (b) Synchronization plot showing the syn-
chronized dynamical behavior of the 2-node network.
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Figure 4.5: Adaptive synchronization algorithm applied to track an ar-
bitrary coupling perturbation. (a) Results from experiments. The top-
panel shows the measured coupling signal κ(t)P1(t) (orange curve) and
the difference signal [P1(t)−P2(t)] (black curve). Before t = 0, indicated
by the vertical dashed line, the adaptive algorithm is disabled and the
two oscillators are desynchronized. Following the enabling of the adap-
tive algorithm, synchronization is regained. The bottom panel shows
the applied coupling perturbation κ(t) (dotted line) and its real-time
estimate κ(t) obtained once the adaptive strategy is switched on. (b)
Corresponding results from numerical simulations. The gray solid verti-
cal lines indicate the four intervals of time we present in more detail in
Fig. 4.6.
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Figure 4.6: Synchronization of the transmitter and receiver dynamics
using the adaptive scheme. (a) The left and right panels are 10 ms
time traces of the internal dynamics P1(t) and P2(t) and the error signal
[P1(t)−P2(t)] corresponding to the time intervals shown in Fig. 4.5 (a).
Under the same coupling conditions, the two loops only synchronize
when the adaptive strategy is enabled. (b) Results from simulations
corresponding to the time intervals shown in Fig. 4.5 (b).
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feedback loops is poor as shown by the large difference signal (P1−P2). After t = 0,

the adaptive algorithm is switched on. Now, the receiver forms a real-time estimate

of the time-dependent coupling which is then used to compensate for the fluctuations

in the coupling strength. The difference signal is immediately diminished showing

the successful synchronization of the receiver to the transmitter dynamics. The

calculated estimate of the channel variation κ(t) along with the actual variation κ(t)

is shown in the bottom panel of Fig. 4.5. To detail the dynamics of the feedback

loops occurring at sub-millisecond time scales, we show in Fig. 4.6 (a), the measured

optical signals of the two feedback loops for two 10-ms time windows, one where the

adaptive scheme is off (−440 ms < t < 430 ms) and one where the adaptive scheme

is enabled (−60 ms < t < 70 ms). In Figs. 4.5 (b) and Fig. 4.6 (b), we present

simulation results which correspond to the experiments. The numerical simulations

and the experimental results are seen to be in good agreement with each other.

Now that we have demonstrated the success of the adaptive strategy in main-

taining network synchronization and tracking various coupling perturbations, we

turn our attention to characterizing its operational efficacy. In order to evaluate

the performance of the adaptive algorithm, we use the sinusoidal coupling strength

modulation (Eqn. 4.15) introduced earlier. We characterize the performance of the

adaptive algorithm as the strength ε and the speed fm of the imposed fluctuation

are varied. As a quantitative measure of the degree of synchronization, we define a

normalized synchronization error θ as

θ =
[〈(P1 − P2)

2〉]1/2

P0

(4.16)
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Here 〈•〉 denotes an average over the available time-record. Note that this definition

of the synchronization θ is slightly different from Eqn. 3.10. While the normalized

feedback voltages x1,2 were used used to measure the synchronization error earlier,

we use the optical power signals P1,2 here. θ has a minimum value of zero when the

two oscillators are identically synchronized and a maximum value of unity when P1

and P2 are uncorrelated. We measure θ as the modulation frequency fm is varied,

for different values of the modulation depth ε. Fig. 4.7 (a) shows the synchroniza-

tion error θ calculated from the measured time-series for various modulation depths,

ε = 0.05, 0.10, 0.20, and 0.40. Unavoidable mismatches in the experimental param-

eters of the two optoelectronic oscillators, such as feedback loop gain β and the

MZM bias point φ0, prevent the value of θ from ever being zero. The minimum

synchronization error attainable in experiments is about 4%. This level is identified

in Fig. 4.7 (a) by a gray dashed line. From our observations, we can see that the

adaptive strategy works successfully for small coupling fluctuations (up to a 20%

deviation from the mean value κ0) maintaining a 10% synchronization level for mod-

ulation frequencies fm up to 150 Hz. For larger modulations (ε = 0.4), this range is

smaller. Fig. 4.7 (b) shows the θ obtained from numerical simulations which show a

reasonable agreement with the experimental measurements. The simulations repre-

sent an ideal situation where the node parameters are identically matched. Conse-

quently, for low modulation strengths and modulation frequencies θ down to nearly

zero. We point out here that the adaptive dynamical equations presented earlier do

not, strictly speaking, lead to a perfect estimation of the coupling strengths except

when all the coupling elements Kij are constant. This is because our derivation of
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the adaptive strategy is based on the assumption that the coupling strength estimate

can be treated as a constant in Eqn. 4.5 (Eqn. 4.9 for discrete-time).

In order to establish the efficacy of our adaptive algorithm, we compare the

synchronization error measurements when the adaptive algorithm is enabled with

those when it is turned off. In Fig. 4.8, we compare, for a modulation depth ε = 0.4,

the experimentally measured synchronization error θ with adaptation enabled and

when it is disabled. At all frequencies observed, the adaptive technique yields an

improvement in the degree of synchronization compared to the uncontrolled case,

with the greatest improvement seen at lower frequencies. Numerical simulations

(lower dashed line) of the adaptive synchronization method show the theoretically

possible improvement in synchronization. These simulations are performed assuming

perfectly matched dynamical oscillators and the absence of noise.

To quantify the degree of improvement due to the adaptive control algorithm,

we define a figure of merit (FOM) as the ratio of the synchronization error with the

adaptive algorithm disabled (θOFF) to that when it is enabled (θON). A FOM value

> 1 indicates that the adaptive algorithm improves the synchronization compared

to the case when there is no adaptation. A higher value of the FOM indicates is

desirable as it indicates a larger improvement. In Fig. 4.9 the FOM is plotted as

a function of frequency for a modulation depth ε = 0.4. We see that the adaptive

algorithm performs consistently better in keeping the network synchronized. For

low frequency fluctuations, the adaptive algorithm gives a three-fold improvement

in the synchronization error.

Finally, we perform an evaluation of the ability of the adaptive technique to
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Figure 4.7: Synchronization error θ as a function of the modulation
frequency fm for various values of the modulation depth ε. (a) Results
from experiments. (b) Results from numerical simulations.
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Figure 4.8: Synchronization error θ as a function of the modulation
frequency fm for a modulation depth ε = 0.40. The experimentally
measured synchronization error when the adaptive strategy is enabled
(solid blue line) is lower than when the adaptive strategy is off (dotted
line). Numerical simulations result in a smaller θ (dashed line) compared
to the experimental observations.
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Figure 4.9: Figure of Merit (FOM) as a function of the modulation
frequency fm for modulation depth ε = 0.4. FOM is defined as the
ratio θOFF/θON of the synchronization error with the adaptive strategy
disabled to that when the strategy is enabled.

track coupling perturbations. To this end, we compare the tracking estimate κ with

the actually imposed sinusoidal perturbation κ(t). We define the tracking measure

η as the ratio κ̃(fm)/κ̃(fm) of the Fourier amplitudes at the frequency fm of the

tracking estimate κ to that of κ expressed on a dB scale. A value of η = 0 dB is

desirable as this would mean that the tracking signal has the same amplitude as that

of the actual perturbation. The measure η allows us to characterize the tracking

ability of the adaptation process independent of the synchronization properties of

the network. This characterization helps us determine the limitations of the adaptive

algorithm when used for sensing applications. For example, using the measure η,

we can establish the speed of the perturbations that can successfully be tracked.

In Fig. 4.10, we plot η as a function of the channel perturbation frequency fm for

various values of ε. Fig. 4.10 (a) shows the experimentally measured values while the
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Figure 4.10: Tracking measure η as a function of the modulation frequency fm.
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numerical calculations are shown in Fig. 4.10 (b). Our experimental measurements

are obtained using a network analyzer (Agilent 4395A). The horizontal dashed line

in the figure identifies the 0 dB level, while the vertical dashed line identifies the

frequency corresponding to the lowpass averaging process used in estimating κ. For

a low modulation strength ε = 0.1, the tracking measure stays at 0 dB up to the

lowpass filter frequency corresponding to z0. However, for larger modulations, the

tracking measure starts deteriorating at a lower frequency.

4.4 Adaptive Synchronization: Three-node Network Experiments

In the preceding section, we presented results from an experimental implemen-

tation of the adaptive strategy on a pair of unidirectionally coupled optoelectronic

systems. By implementing the adaptive algorithm the receiver system is able to

compensate for coupling channel perturbations and remain synchronized with the

transmitter. Even though this experiment illustrates the basic functioning of the

adaptive algorithm, it does not fully capture the decentralized and distributed nature

of the strategy. In this section, we present results from experiments on a network of

three optoelectronic oscillators in which all the network nodes implement the adap-

tive strategy. These experiments demonstrate that a simple locally-applied control

algorithm can track and compensate for simultaneous perturbations along multiple

coupling channels in order to maintain global network synchrony.

Our experimental network is composed of three optoelectronic oscillators as

depicted in Fig. 4.11 (a). The nodes are connected to each other through bidirec-
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Figure 4.11: Experimental schematic of a network of 3 optoelectronic os-
cillators. (a) Each node of the network is coupled to the other two nodes
through bidirectional optical coupling channels. The coupling strengths
are symmetrical (Kij = Kji) and are controlled using electronically vari-
able optical attenuators (EVOAs). (b) Schematic of each node of the
network.
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tional optical fibers. The coupling strengths between the nodes of the network are

controlled by applying suitable voltages to electronically variable optical attenua-

tors(EVOAs) placed in the coupling channels. In our experiments, we calibrate the

links such that the coupling strengths are symmetric i.e. Kij = Kji. The imple-

mentation of the coupling is depicted in Fig. 4.11 (b). At each node i the optical

output of the MZM is split into two equal components. While one half serves as

the self-feedback signal, the other half is relayed to the remaining two nodes. In

our network, bidirectional coupling over a fiber-optic channel is realized using an

optical circulator. A circulator is a non-reciprocal three-port device that spatially

separates the inbound and outbound optical signals. Fiber optic circulators act

as signal routers, transmitting light from an input fiber to an output fiber, but

directing light that enters along that output fiber to a third port. As shown in

Fig. 4.11 (b) the transmitted signal from the node enters port 1 of the optical cir-

culator and exits from port 2. The fiber coming out of port 2 is again split by a

50-50 optical splitter/combiner into two coupling channels which go to the other

two nodes. The coupling channels also combine signals transmitted from the other

two nodes in a 50-50 splitter/combiner before entering port 2 of the circulator. The

combined signal exits through port 3 of the circulator and is detected by a second

photoreceiver. The self-feedback and the received signals are then filtered by the

DSP and then added to form the net feedback signal si. The DSP board at each

node implements an adaptive scaling of si as discussed in Sec. 4.1 to compensate for

unknown coupling fluctuations. The scaled signal serves as the modulation input

to the MZM. The equations representing the dynamics of each node i, including
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the adaptive strategy, are summarized below. The filter dynamics of the node i are

described by the discrete-time equation

wi[n] = −
2∑
l=1

alwi[n− l] + β
2∑
l=0

bl cos2(xi[n− k − l] + φ0]. (4.17)

Here wi[n] denotes the output of the filter and xi denotes the modulation signal to

the MZM. xi is obtained by scaling the net received signal si[n] =
∑N
j=1Kijwj[n] by

an adaptive estimate ki of the total coupling into the node.

xi[n] =
1

ki
si[n] (4.18)

The scale factor ki is obtained from the equations

ki[n] =
Pi[n]

Qi[n]
,

Pi[n] = z0Pi[n− 1] + (1− z0)si[n]wi[n],

Qi[n] = z0Qi[n− 1] + (1− z0)w2
i [n]. (4.19)

In our experiments, the node parameters are set to the same values as for the two

node experiment presented in the previous section. At each node, we observe the

normalized input modulation voltage xi and the adaptive scale factors ki using

digital oscilloscopes (Tektronix TDS 7104, Agilent DSO7054A).

To demonstrate the effectiveness of the adaptive synchronization method, we

begin by considering the case when one of the coupling coefficients in the network,

K12, changes abruptly. This situation is portrayed in Fig. 4.12. The network is

initially tuned to achieve synchronization with K13 = 0, K23 = 1.5, and K12 = 2.8

by appropriately setting the scale factors ki. At t = 0, K12 is abruptly changed
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to 1.3. This breaks the synchrony in the network, as shown by the large syn-

chronization error, measured as the average of the pair-wise absolute differences

(|x1 − x2|+ |x2 − x3|+ |x3 − x1|) /3. This is expected, as our knowledge of the to-

tal incoming coupling into each node is no longer perfect and consequently the

equations do not admit a synchronous solution. In Fig. 4.12(b), we explore the

same situation, only now, we enable the adaptive algorithm. This allows that the

scale factors ki to be estimated in real-time. After a short adjustment time follow-

ing the sudden change of K12 at t = 0, we see that the synchronous state is rapidly

restored. Further, from the tracking signals ki we can learn the individual coupling

elements of the symmetric adjacency matrix K. This is possible by solving the linear

equations

k1 = K11 +K12 +K13,

k2 = K12 +K22 +K23,

k3 = K13 +K23 +K33. (4.20)

In writing the above equations, we make use of the symmetric nature of the coupling

matrix Kij = Kji. Recognizing that the self-feedback coupling strengths are taken

to have the value 1 (see discussion following Eqn. 4.1) and are assumed to be immune

to fluctuations and disturbances, allows us to solve the above equations to obtain

an unique solution K12, K23 and K13 for the coupling coefficients. In the top panel

of Fig. 4.12 (b), we show the calculated value of the coupling strength K12 which is

in good agreement with the actual variation.

In Fig. 4.13, we consider a case where all the coupling coefficients K12, K23,
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Figure 4.12: Maintenance of synchrony on a network of three optoelec-
tronic oscillators. (a) The uncontrolled network is initially tuned to
synchrony. At t = 0, the coupling strength K12 (top panel) is suddenly
decreased to 1.3 causing the network to lose synchrony as is evidenced by
the large synchronization error (shown in bottom panel). (b) The same
situation as described in (a) is explored except this time the adaptive
control is enabled. Global synchrony is maintained despite the sudden
change in coupling strength. The estimate K12 is shown in the top panel.
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Figure 4.13: Adaptive tracking of multiple simultaneous perturba-
tions. The bidirectional coupling strengths K12, K23, and, K31 (shown
as dashed lines) are simultaneously varied. The adaptive algorithm suc-
cessfully estimates (shown as solid lines) all the coupling elements in the
network. The estimates are artificially raised by 0.05 to make the dashed
lines visible.
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and K13 are non-zero and both K12 and K13 are simultaneously time-varying. We

see that the adaptive algorithm maintains global synchrony in this case as well and

independently tracks the perturbations to each coupling channel. The dashed lines

show the actual variations imposed on the coupling channels and the solid lines

represent the calculated estimates. In the figure, we artificially shifted the solid

lines upward by 0.05 to more easily distinguish the (otherwise superposed) curves.

The ability of the adaptive algorithm to obtain estimates Kij of the elements

of the coupling matrix may find potential use in sensing applications. In situations

where the coupling strength fluctuations are caused by environmental changes, esti-

mating the temporal changes may be used as a means of sensing these changes. The

sensing technique presented here is for three nodes. In large networks, the number

of links can exceed the number of nodes. Even though simulations show that our

adaptive technique still maintains global synchrony in this case [68], the information

available through the tracking signals ki may no longer be sufficient to deduce the

actual variations in the individual coupling links. Nonetheless, the strategy could

still be used in sparsely connected networks with fewer links or when partial in-

formation about the links is available (e.g., if not all the links are simultaneously

perturbed). The experiment presented here can be considered a proof-of-principle

test for the application of coupled dynamical systems as a sensor network. In this

prototype system, the nodes act collectively to learn about specific changes in their

environment. The control signals ki, which maintain synchrony in the network, also

contain practical information used to sense what occurs between the nodes. De-

pending on the setting, the couplings could be arranged to be in free-space rather

93



than with fiber-optic cables or could use RF transmitter and receiver antennas.

4.5 Summary

In this chapter, we introduced an adaptive technique designed to maintain

global synchronization in a network of chaotic oscillators even when the couplings

are unknown and time-varying. We discussed the implementation of this scheme

on networks composed of two and three optoelectronic oscillators and presented

experimental measurements that demonstrate the success of the strategy. Besides

maintaining synchrony by compensating for any external coupling perturbations,

the adaptive algorithm also tracks the coupling variations, thus opening up the

possibility for sensing applications.
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Chapter 5

Optimal Network Topologies for Synchronization 1

Thus far we have focused our discussion on the maintenance of synchrony in

a network of chaotic oscillators when the coupling coefficients change in an a priori

unknown fashion. We now turn our attention to study of the interplay between

network structure and dynamics with a focus on synchronized behavior. In this

chapter, we address the specific question of how the network structure influences the

readiness with which a given network attains synchronization also called synchro-

nizability. Connection topology has a strong influence on the dynamical behavior of

complex systems. Spreading of epidemics [69–72], cascades of systemic failures [73],

communication-network traffic flows [74], emergence of collective behavior [75–77],

design of communication networks, synchronized firing of neurons [78–80] are some

examples of complex network problems where connection topology has a critical

influence. In many of these cases, such as in the design of communication networks,

power-grid systems, and in understanding the behavior of neuronal systems, syn-

chronization plays a crucial role. For efficient design of networks suited for these

applications, it is essential to understand the influence of network structure on

synchronization. Though there have been many theoretical investigations in this

direction, experimental studies of the influence of structure on the synchronization

properties of networks have largely been lacking. The work presented here strives

1The results presented in this chapter have also been presented in Ref. [42]
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to bridge this gap.

In Sec. 5.1, we briefly review various theoretical investigations aimed at char-

acterizing the synchronizability of a given network.

Sec. 5.2 gives the details of our experimental network of four optoelectronic

oscillators with an easily configurable connection topology. Using this flexible net-

work, we experimentally study the effect of network topology on synchronization

properties.

In Sec. 5.3, we discuss a measure of synchronizability proposed in Ref. [41]. We

discuss how this measure depends on the structure of a given network of dynamical

oscillators. Based on this measure, we identify network configurations that are

optimal for synchronization applications.

Sec. 5.4 reports experimental measurements, from the 4-node network, relating

the convergence rate of a network to global synchrony with the network structure.

From our measurements, we show that having more links does not necessarily imply a

faster convergence to synchrony, as is generally thought. We also present simulation

results that extend the applicability of the discussed methods to larger networks.

Some results presented in this section of the thesis have also been published in

Ref. [42].

In Sec. 5.5, we discuss how two different networks having the same number

nodes and links but different connection geometry, can display qualitatively different

transients to synchrony. We find that, in this case, the nature of the transient is

determined by the eigenvector properties of the coupling matrix associated with the

network.

96



Sec. 5.6 summarizes the topics presented in the chapter.

5.1 Synchronizability of a Network: Past Research

The master stability function approach, discussed in Sec. 3.3, was perhaps the

first step taken towards a systematic analysis of the influence of network topology on

network dynamics. By decoupling the node dynamics from network structure, the

MSF provides us with an efficient means to predict if a given network exhibits sta-

ble synchronous behavior or not. If all the eigenvalues corresponding to the modes

transverse to the synchronization manifold, {λ2, λ3, . . . , λN}, of the Laplacian cou-

pling matrix L fall within the region of stability as determined by the MSF, then

the network exhibits stable synchronous behavior2. Here, the region of stability cor-

responds to the domain of complex numbers where the MSF takes a negative value.

We point out again that an extension of the standard MSF theory (which is derived

based on the assumption that L is diagonalizable) allows us to identify a region of

stability even when the coupling matrix is nondiagonalizable [57]. Motivated by the

MSF analysis, it has been hypothesized that the more easily the eigenvalues of the

coupling matrix fall in the stability region, the easier the network synchronizes i.e.

the higher the synchronizability of the network. When the stability region as deter-

mined by the MSF is unbounded (assumed to be along the positive real axis, which

is usually the case), the synchronizability of the network can be measured by the

smallest eigenvalue λ2. In this case, if the smallest eigenvalue falls in the stability

2Note that λ1 = 0 owing to the zero row-sum property of the Laplacian matrix [58] and

corresponds to evolution along the synchronization manifold.
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region, the other eigenvalues are guaranteed to lie in the stable region as well. On

the other hand, when the region of stability as predicted by the MSF is bounded,

as it is for the coupled optoelectronic systems considered here, the ratio λN/λ2 of

the largest nonzero eigenvalue λN to the smallest nonzero eigenvalue of the Lapla-

cian matrix λ2, determines the synchronizability of the network [34]. The smaller

the ratio of the eigenvalues the higher is the synchronizability. This is because a

smaller eigenvalue ratio λN/λ2 implies that the set of eigenvalues are closely spaced,

thereby increasing the ease with which they fall in the region of stability. Recently,

another measure of the synchronizability, also reliant on the spectral properties of

the Laplacian matrix, has been proposed [41]. We adopt this measure in our network

experiments. The discussion of this measure will be deferred to Sec. 5.3, where we

present detailed calculations of this measure for several different network topologies.

Apart from techniques based on the spectral properties of the coupling matrix,

other methods to analyze the synchronizability of networks have been proposed. In

Refs. [34,35], the ability of a given network to synchronize was related to the average

node-to-node distance. In Ref. [36], the clustering coefficient was used as a measure

of network synchronizability while in Ref. [37] the degree distribution was used to

characterize it. Finally, in Refs. [38–40], the weight distribution of the network was

used to measure synchronizability. As pointed out earlier, all these investigations of

the influence of network structure on synchronization properties of a network have

been theoretical. In what follows in this chapter, we present what is perhaps the first

systematic experimental investigation of the interplay between coupling structure

and network dynamics.
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Figure 5.1: Experimental schematic of an optoelectronic node in a 4-
node network. Optical attenuators are used to either enable or disable
any given network link allowing us to configure the network topology.

5.2 Experimental Setup: Four-node Network

Our experimental setup consists of a network of N = 4 optoelectronic oscilla-

tors of the type discussed in Chapter 2. The construction of each node in the network

is illustrated in Fig. 5.1 in the form of an experimental schematic. The nodes are

coupled optically by splitting the output of the MZM into four equal signals and

while one of these signals serves as the self-feedback signal, the other 3 signals are

relayed to the remaining three nodes through optical fibers. The coupling strengths

in the network are controlled using electronically variable optical attenuators. Un-

like the case of the 3-node network, a circulator is not used here because we have

independently controlled channels rather than shared bidirectional fibers. In our

experiments, we set all the coupling strengths to be equal to the feedback strength
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(normalized to be 1), effectively creating a binary network. Then, using the optical

attenuators, a link can either be enabled or disabled allowing us to arbitrarily control

the network topology. Each node also has a 3 × 1 optical combiner which receives

the cumulative optical coupling signal from the other nodes. Both the self-feedback

and the received signals are photodetected and the resulting electric signals are pro-

cessed by the DSP board, to implement bandpass filtering, time-delay and diffusive

coupling operations. Using digital oscilloscopes, we record the modulation voltages

xi(t) input to the MZM at each node. The equations describing the dynamics of

node i as represented in continuous-time are

dui
dt

= Aui(t) + Bβ cos2 (xi(t− τ) + φ0) ,

wi(t) = Cui(t),

xi(t) = wi(t) +
ε

d

N∑
j=1

Lijwj(t). (5.1)

Here the coupling topology is represented by the Laplacian matrix L as discussed

earlier. The off-diagonal elements Lij of the Laplacian matrix are equal to 1 if there

exists a link from node j to node i and 0 otherwise. The diagonal elements Lii

are equal to the negative of the net number of links coming into each node i, i.e.

Lii = −∑N
j 6=i Lij. Note that the total number of links in the network, m, is given by

the negative of the sum of the diagonal elements of L, i.e. m ≡ −∑N
i=1 Lii = −Tr(L).

ε denotes a global coupling strength which is normalized by the average number of

links per node in the network d ≡ m/N . This normalization of ε by d ensures that, in

comparing the properties of coupling configurations with different number of links,

the total coupling in the network, (εm/d), remains the same. Put differently, it
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allows us to investigate the effect of different ways of distributing a given amount

of coupling on the synchronization properties of the network.

The parameters of all the feedback loops are set to be nominally identical.

For each loop, the feedback strength is set to be β = 3.6 and the feedback delay is

programmed to be τ = 1.5 ms. The highpass and lowpass filter corner frequencies

are set to fH = 100 Hz and fL = 2.5 kHz respectively and the modulator bias is

adjusted to be φ0 = −π/4.

5.3 Optimal Network Configurations for Synchrony

In Ref. [41], Nishikawa and Motter developed a theoretical framework to iden-

tify coupling configurations that are optimal for the attainment of synchronization

in a network of N dynamical oscillators. By measuring network synchronizability

as the spread of the non-zero eigenvalues of the Laplacian coupling matrix,

σ2 =
1

d2(N − 1)

N∑
i=2

|λi − λ|2, where λ ≡
∑N
i=2 λi

(N − 1)
, (5.2)

they were able to predict that synchronizability does not depend monotonically on

the number of links m in a network as is generally thought. In the above expres-

sion Λ = {0, λ2, . . . , λN} denote the set of eigenvalues of the Laplacian matrix L.

The definition of σ as a measure of synchronizability of a given network draws its

motivation from the MSF formulation. The idea is that the more bunched-up the

eigenvalues of the Laplacian matrix are, the easier it is to place them in the region

of stability as specified by the MSF by varying the global coupling strength ε (which

proportionally scales all the eigenvalues together). Thus, a smaller value of σ implies
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Figure 5.2: Synchronizability measure σ as a function of the number of
network links m for a 4-node network.

a higher synchronizability of the network. For oscillators with an unbounded region

of stability, minimization of σ corresponds to a minimization of the coupling strength

ε required to achieve synchrony (also known as coupling cost). For oscillators with

a bounded region of stability, minimization of σ corresponds to maximization of the

range of ε for which synchrony is stable. It has also been postulated in Ref. [41]

that the minimization of σ also ensures the fastest exponential convergence to syn-

chronization. In order to experimentally verify this claim, we measure here the rate

of convergence to synchronization for various network topologies.

Among all possible network configurations with N nodes and m links, it was

shown in Ref. [41] that the minimum value of σ that can be achieved is given by the

expression

σmin(m) =
1

(N − 1)d

√
(m− qk)(qk+1 −m), (5.3)
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where qk ≡ k(N − 1), k = 1, 2, . . . , N . From the above expression, we can see that

σmin = 0 only when m = qk or m = qk+1 i.e. when the number of links in the network

is a multiple of (N − 1). This is the absolute minimum possible value of σ and

networks with this property are termed as optimal networks. We point out that in

general there may be configurations with m = qk that do not minimize σ. However,

σ = 0 does imply that m = qk. Optimal network configurations are expected

to have the best synchronization properties (fastest rate to convergence, largest

synchronization range of ε, minimum coupling cost etc. . .). Network configurations

with qk < m < qk+1, but a minimal eigenvalue spread as given by Eqn. 5.3 are called

suboptimal networks. All other networks are termed nonoptimal. In Fig. 5.2 we plot

the minimum value of σ as a function of the network links m for networks with

N = 4. As is evident from the figure, the eigenvalue spread shows a pronounced

non-monotonicity with respect to the number of network links m. Fig. 5.3 shows

the sequence of optimal and suboptimal network configurations corresponding to

the values of eigenvalue spread shown in Fig. 5.2. In our experiments, we measure

the rate of convergence to synchrony for these configurations.

5.4 Experimental Measurements of Optimality

To measure the convergence rate to synchrony µ for a given network, we adopt

the method described in Sec. 3.2. We start with an initially uncoupled network with

all the couplings disabled. This is achieved by setting the global coupling strength

ε = 0. Under these conditions, the oscillators are completely decoupled and hence
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Figure 5.3: A path of optimal and suboptimal configurations from a
fully connected network with m = 12 links to an optimal tree network
with m = 3 links. At each step we remove a link (indicated by a dashed
line) such that σ is decreased or minimally increased. We experimentally
measure the rate of convergence to synchrony for these network config-
urations. The eigenvalues of the coupling matrix corresponding to each
configuration are also shown.
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uncorrelated. At some specific instant of time (t = 0), selected coupling links

are simultaneously enabled by switching ε to 0.7. With the coupling enabled, the

synchronization error, defined as,

θ(t) ≡ 1

N(N − 1)

∑
i,j

|xi(t)− xj(t)|, (5.4)

is expected to ideally approach zero. However, for real networks that synchronize,

the effect of noise and parameter mismatches means that θ approaches a synchro-

nization floor θ0. Note that the above definition of θ measures the degree of network

synchronization as a function of time t, in contrast with Eqns. 3.10 and 4.16 which

measure the asymptotic degree of synchrony. The rate of convergence to synchrony is

measured as the exponent µ of the exponential decay of θ to θ0, (θ−θ0) ∼ exp(−µt).

Fig. 5.4 presents the measured convergence rates for the optimal and suboptimal

configurations shown in Fig. 5.3. We note that for all these configurations, the effec-

tive coupling strength ε/d changes when the number of links is increased/decreased

so that a network with fewer links also has stronger links. In order to avoid problems

with zero crossings of [xi(t) − xj(t)], we perform a moving-window boxcar average

of θ(t) over a small time window to obtain 〈θ(t)〉. To measure µ, we fit 〈θ(t)〉 to

an exponential function over a fixed time interval from 0.5 ms to 2.0 ms. We avoid

starting our fit at t = 0 to eliminate the artificial influence of the boxcar averaging.

Under these conditions the measured convergence rate is found to be independent

of the smoothing window size. We carry out the measurement process, as described

above, for 100 different realizations to obtain the mean value of µ, denoted as µ.

The standard deviations for our measurements, also shown in the figure as bars, in-
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Figure 5.4: Convergence rate to synchronization µ measured for the set
of optimal and suboptimal configurations shown in Fig. 5.3.

dicate only a small variability across different realizations. As predicted in Ref. [41],

the trend of our measurements of the convergence rate corresponds well with the

eigenvalue spread σ (shown in Fig. 5.2). The mean convergence rate shows a marked

non-monotonicity with respect to the number of network links, m. The rate of con-

vergence is found to be fastest for optimal networks with m = k(N − 1). From our

results, we can conclusively say that having more links in a network does not neces-

sarily imply better synchronization properties. Rather, by engineering the coupling

topology to have the maximal synchronizability (minimum eigenvalue spread σ = 0)

we can attain with fewer network links, the same convergence rate as in the extreme

case of a fully connected network.

Next, we investigate whether the experimental results obtained from the 4-

node network are scalable to larger networks. Using Eqns. 5.1, we numerically mea-

sure µ for various optimal and suboptimal configurations of a 50-node network as the
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number of linksm is varied. Again, our statistics are obtained from 100 different real-

izations of initial conditions. The results from our simulations are shown in Fig. 5.5.

We start with a fully connected network configuration with m = 50 × 49 = 2450

links. We successively remove links from the fully connected network, ensuring that

for each step the eigenvalue spread σ is minimized. Fig. 5.5 (a) shows the calculated

value of σ for these configurations. The results from our numerical measurement of

µ are presented in Fig. 5.5 (b). We clearly see the predicted non-monotonic trend,

with the rate of convergence being maximal for optimal configurations for which the

number of links is a multiple of (N − 1) = 49 and the eigenvalue spread σ = 0.

We analyze further the influence of network topology on synchronization by

looking at yet another synchronization property: the range of ε for which the global

synchronous solution is stable. We denote this quantity as ρ. We infer ρ from an

experimental measurement of the MSF. Our measurement of the MSF is accom-

plished using a two-node network. For a two-node network, the Laplacian coupling

matrix has only two eigenvalues, {λ1, λ2} of which λ1 = 0 due to the zero row-sum

property of L. The free eigenvalue λ2 can easily be varied along the real axis by

controlling the coupling strength ε. For each value of the coupling strength ε, we

measure the converge rate to synchronization µ as described before. The value −µ is

the maximal transverse Lyapunov exponent which directly corresponds to the MSF.

In Fig. 5.6, we present a measurement of the MSF along the real axis as a function

of the eigenvalue scaled by ε/d. A disadvantage of using the convergence based

measurement process described above is that the positive-valued part of the MSF

cannot be determined which makes the identification of the stability bounds (the
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Figure 5.5: Numerical measurement of convergence rate of optimal and
suboptimal configurations of a 50-node network. (a) Synchronizability
measure σ as a function of the number of network links m. (b) Mean
convergence rate µ obtained from 100 independent measurements of µ for
the network configurations corresponding to the synchronizability values
shown in (a).
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Figure 5.6: A measurement of the MSF along the real axis is accom-
plished by measuring the rate of convergence to synchronization of a
symmetric bidirectionally coupled network of two optoelectronic oscil-
lators as the coupling strength ε is varied. The solid dots show the
measured data points. The dotted curve is a piecewise linear fit to the
MSF in the interval ελ/d ∈ [0.5 1.5]. The stability bounds are indicated
by vertical arrows.
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points at which the MSF changes sign) difficult. We circumvent this problem by

using a piecewise-linear fit (shown in Fig. 5.6 as dashed lines) to our MSF. By deter-

mining the eigenvalues where the linear-fit changes sign, we can identify the region

of stability as the range [αmin, αmax] = [0.51, 1.47]. Thus, for any given network of

optoelectronic oscillators to synchronize, it is imperative for the scaled eigenvalues

of the corresponding Laplacian matrix to lie within this range. Using the stability

bounds determined from the MSF, we can now infer ρ as

ρ ≡ εmax − εmin =
αmaxd

λN
− αmind

λ2
(5.5)

where λN and λ2 denote the largest and smallest non-zero eigenvalues of the Lapla-

cian matrix, and εmax and εmin denote the maximum and minimum values of ε for

which the network synchronizes. Fig. 5.7 presents the inferred value of the stability

range ρ as a function of the number of links m for the 4-node network configurations

shown in Fig. 5.3. From the results, we see that the stability range is maximal for

the optimal networks as is expected.
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Figure 5.7: Synchronization range ρ, inferred from the measured MSF,
as a function of the number of network links m.

5.5 Influence of Connection Geometry

In the preceding section, we discussed the influence of the number of network

links m on the synchronization properties of a network. But does the synchro-

nizability measure σ completely characterize the synchronization properties of a

network, especially the rate of convergence to synchrony? The theoretical answer to

this question is yes because the asymptotic properties of the convergence transient

to synchrony are completely determined by the eigenvalues of the Laplacian ma-

trix [41]. However, in practice, a finite synchronization error floor limits our ability

to observe convergence arbitrarily close to the synchronous manifold. Thus for real

networks, the initial transients soon after the coupling is enabled, play a crucial role

in determining the nature of convergence to synchrony. In these situations, we find

that the convergence properties, in addition to being dependent on the eigenvalues,
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are also influenced by the eigenvectors of the coupling matrix.

The network configurations (shown in Fig. 5.3) considered for our convergence

rate measurements were chosen such that the coupling matrix L is diagonalizable.

However, coupling matrices of general directed networks are not always diagonaliz-

able. In fact, there exist many coupling matrices with the same eigenvalue spectra

(co-spectral graphs), that are nondiagonalizable i.e. their eigenvectors are not lin-

early independent. Mathematically, the diagonalizability of a matrix can be char-

acterized by its geometric degeneracy, gd. Geometric degeneracy is defined as the

largest number of repeated eigenvalues of the coupling matrix associated with the

same degenerate eigenvector. A matrix is said to be diagonalizable if it has gd = 1,

i.e. when all the eigenvectors are linearly independent. In Fig. 5.8, we show all

the 4-node optimal networks with m = 3 links identified by their geometric de-

generacies. Of these networks, only the star configuration has a coupling matrix

that is diagonalizable. In Fig. 5.9 we show all 4-node optimal and sub-optimal net-

work configurations with the same eigenvalue spectra but have different eigenvector

properties characterized by their geometric degeneracies.
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Figure 5.8: Optimal configurations with m = 3 for the 4-node network.
The associated coupling matrices for all the configurations shown above
have the same eigenvalue spectrum. However, only the star configuration
(gd = 1) has a diagonalizable coupling matrix.

Going by just the synchronizability measure σ, we expect the diagonalizable

star network (gd = 1) and the non-diagonalizable linear chain (gd = 3) (shown in

Fig. 5.8), to have the same convergence properties to synchrony. Fig. 5.10 com-

pares the approach to synchrony for both configurations. Fig. 5.10 (a) shows results

from experiments while Fig. 5.10 (b) shows numerical results obtained by simulat-

ing Eqns. 5.1. In order to accurately mimic experimental conditions, we impose a

1% mismatch in the self-feedback strengths of the nodes and coupling strengths.

Further, to model digitization error from our oscilloscope measurements, we added

a Gaussian noise term with zero mean and a standard deviation of 0.06, to our nu-

merical simulations. We performed 100 independent measurements of 〈θ(t)〉 starting

with different initial conditions for both networks. As is evident from the measure-
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Figure 5.9: Structure of all optimal (shaded rows) and suboptimal (white
rows) binary networks with N = 4 nodes. Each network is classified ac-
cording to the number of connections m (rows) and geometric degeneracy
gd (columns). The highlighted column (leftmost) shows a path from an
optimal tree (m = 3) to a fully connected network (m = 12) which
contains only nonsensitive configurations (gd = 1).
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Figure 5.10: Differentiating behavior between sensitive and nonsensitive
networks. Experimentally measured convergence transient 〈θ(t)〉 for the
nonsensitive star configuration (gd = 1) and the sensitive linear chain
configuration (gd = 3). The coupling is enabled at t = 0. (b) Results
from numerical simulations.
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ments, the convergence transient to synchrony is systematically different for these

networks. It is also seen that, even though measurements for both the networks

are performed under similar conditions, the curves corresponding to the linear chain

configuration (gd = 3) have a larger variability compared to those for the star con-

figuration (gd = 1). Since the experiments and simulations show that network con-

figurations with non-diagonalizable matrices have a greater susceptibility to noise

and parameter mismatches, we call these networks sensitive networks. On the other

hand, networks with gd = 1 are referred to as nonsensitive networks. Also, we find

that while the nonsensitve star configuration has an exponential convergence to syn-

chronization, the sensitive linear chain topology has a non-exponential transient, in

agreement with theoretical predictions [57, 81]. To illustrate this qualitative differ-

ence between the sensitive and the non-sensitive configurations in their approach to

synchrony, we consider a simplified linear model that captures the essential features

of the problem. Consider the equation

dξ

dt
= −J ξ, (5.6)

which is the generic form of variational equations for diffusively coupled oscillators

[33]. Here ξ = (ξ1, ξ2, . . . , ξN) represents the synchronization errors along various

eigenmodes [82, 83] indexed as l = 1, 2, . . . , N . For the purpose of comparing non-

sensitive and sensitive optimal networks, it suffices to consider two types of the

Jacobian coupling matrix J (with linearly independent and dependent eigenvectors)

that have the same set of eigenvalues but different geometric degeneracies: J(n) =

λIN×N , where λ > 0 and J(s) = J(n)+(δi,j+1)N×N . We denote the states of these two
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systems by ξ(n) =
(
ξ
(n)
l

)
and ξ(s) =

(
ξ
(s)
l

)
respectively. We note that even though

J(n) and J(s) both have the same eigenvalues, J(n) is diagonalizable (with gd = 1)

while and J(s) is not (with gd = N − 1). The exact solution of Eqn. 5.6 for both

cases can be expressed as

ξ
(n)
l =

[
ξ
(n)
l (0)

]
e−λt,

ξ
(s)
l (t) =

l∑
k=1

(−1)(l−k)
[
ξ
(s)
l (0)

] tl−k

(l − k)!
e−λt. (5.7)

The dominant eigenstates (the ones that decay the slowest) are ξ
(n)
N (t) and ξ

(s)
N (t)

respectively. From Eqns. 5.7, we see that ξ
(n)
N (t) decays exponentially while the

decay of ξ
(s)
N (t) is of the form g(t)e−λt, where g(t) is a polynomial function of order

N − 1. We note that the asymptotic (t → ∞) behavior of ξ
(s)
N (t) is the same as

that of ξ
(n)
N (t) , but the transient is not. In experiments, the time it takes to reach

the synchronization floor (caused by parameter mismatches and noise) could be

relatively short rendering a measurement of the asymptotic exponential convergence

rate impossible.

In our linear model above, we chose an extreme case of J(s) with gd = N − 1.

In general, the order of the polynomial transient is equal to the coupling matrix

geometric degeneracy gd. In Fig. 5.11 we show simulated transient behavior for

configurations with varying values of gd for a 50-node network with m = 49 links.

Again, we add an observational noise term and a 1% coupling link and feedback

strength mismatch. From the results, we clearly see that the duration of the poly-

nomial transient increases as the geometric degeneracy increases. In order to further

establish the generality our observations with respect to coupling link density, we
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Figure 5.11: Simulated convergence transient 〈θ(t)〉 of 50-node network
configurations with various values of gd. The coupling is enabled at t = 0.
While the nonsensitive network (gd = 1) has an exponential transient,
sensitive networks (gd > 1) show a markedly different nonexponential
transient. We see that the higher the geometric degeneracy, the longer
the polynomial transient.

performed the same simulations for 50-node networks with m = 98 links and gd = 1

and gd = 15. The network configurations for these cases are shown in Fig. 5.12 (a)

and (b). The transient behavior for the two networks is shown in Fig. 5.12 (c).

Again, we observe that while the nonsensitive configuration with gd = 1 has an

exponential transient, the sensitive configuration (gd = 15) shows a non-exponential

trend with a larger variability.
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Figure 5.12: Transient to synchronization for sensitive and nonsensitive
networks with N = 50 nodes. (a, b) Configurations with m = 98 links
and gd = 1 and 15, respectively. (c) Simulated convergence transient
〈θ(t)〉.
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5.6 Summary

In this chapter, we considered the influence of network structure on the syn-

chronization properties of dynamical networks. Using experimental observations

from a 4-node network of optoelectronic oscillators we verified that the configura-

tions that lead to optimal synchronization properties have a degenerate eigenvalue

spectrum as predicted in Ref. [41]. Further, using simulations, we showed that this

prediction may in fact be extended to be true for any network size N . Within the

set of optimal networks, we identified configurations that are sensitive to perturba-

tions to the network structure (sensitive networks) and ones that are less affected

by such changes (non-sensitive networks). We analytically derived and experimen-

tally demonstrated that the approach to synchrony for sensitive and non-sensitive

networks is different though they have the same eigenvalue spectrum.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

Synchronization of chaos is an interesting phenomenon with implications for

many fields of science and technology. From a basic science point of view, the

study of synchronization of chaos can lead to a better understanding of the collec-

tive behavior exhibited by many complex networks encountered in nature. From

a technological standpoint, several practical applications of this phenomenon have

been proposed. Synchronization of chaos finds application in secure communica-

tions, weather prediction models, parameter estimation and sensing. Though a

huge amount of past research on dynamical systems has been devoted to the fasci-

nating idea of chaos synchronization, a large proportion of it has been theoretical.

In this thesis, we presented an experimental study of the synchronism of chaos using

networks of nonlinear optoelectronic time-delayed feedback oscillators. Our modu-

lar optoelectronic oscillators are easy to assemble and built using readily available

optical and electronic equipment.

In Chapter 2, we characterized the dynamical behavior of our nonlinear op-

toelectronic feedback loop. We observed that the feedback loop can exhibit a wide

variety of dynamical behaviors, ranging from simple periodic oscillations to very

complicated high-dimensional chaos, as the feedback parameters are varied. We
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also developed a mathematical model to describe the dynamics of our optoelec-

tronic system based on the operating characteristics of its components. We find a

good correspondence between experimental observations and numerical simulations

of our model.

In Chapter 3, we performed a detailed characterization of the synchronized

behavior of coupled optoelectronic oscillators. We explored the range of coupling

parameters for which optoelectronic oscillators are stably synchronized. Our experi-

mental observations show good correspondence with results obtained from numerical

simulations. We also presented details of the master stability function formulation

which can be used to extend the results derived from a network with a small number

of oscillators to arbitrarily large networks.

In Chapter 4, we presented details of an experimental demonstration of a

recently proposed adaptive synchronization scheme designed to maintain synchro-

nization in a network of chaotic oscillators even when the coupling strengths are

unknown and changing in time. Our research in this direction has implications

for chaos-based encrypted communication applications which critically depend on

the maintenance of high-quality synchronization robust to environmental pertur-

bations. In maintaining global network synchrony, the adaptive scheme also pro-

duces a real-time estimate of the coupling strength fluctuations. Using a network

of three optoelectronic systems, we demonstrated the tracking of simultaneous cou-

pling perturbations occurring in multiple network links. Through this experiment,

we established the potential utility of a network of chaotic oscillators for sensing

applications.
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Next, in Chapter 5, we considered the important problem of the interplay be-

tween network dynamics and the underlying coupling topology. Using a network

of four chaotic optoelectronic oscillators with a configurable connection topology,

we experimentally explored the dependence of synchronization properties, such as

the rate of convergence to synchronization and the parameter range for stable syn-

chronization, on the number of network links. Our findings show that having more

network links does not necessarily imply better synchronization properties. Our

observations are consistent with a recently proposed theoretical study which identi-

fied, based on a synchronizability measure determined purely from the eigenvalues

of the coupling matrix, network configurations that are optimal for the establish-

ment of synchrony. Further, contrary to what has been previously thought (based

on theoretical analysis), we noticed that networks with the same eigenvalue spectra

(and consequently the same synchronizability measure) can exhibit different conver-

gence rates to synchronization. This difference manifests in real-life situations due

to the presence of unavoidable noise and parameter mismatches. In fact, for certain

cospectral configurations, our observations reveal a marked qualitative difference in

the nature of the approach to synchrony. We explain this difference in terms of

the properties of the eigenvectors of the coupling matrix. Network configurations

with diagonalizable coupling matrices exhibit an exponential convergence transient

to synchronization while those described by nondiagonalizable coupling matrices

exhibit a polynomial convergence transient. We also find that nondiagonalizable

configurations are more sensitive to perturbations to the network structure.
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6.2 Discussion: Generality and Significance of Results Presented

In this thesis, we presented experimental results addressing two important

aspects of chaos synchronization:

• The adaptive maintenance of global network synchrony when the couplings

are unpredictable and time-dependent and

• the influence of the connection topology on global network synchronization

properties.

Our experiments are performed on fiber-optic networks consisting of either three or

four chaotic optoelectronic nodes. However, we note that the theoretical basis of

our experiments is general and applicable to networks of arbitrary size and consist-

ing of arbitrary dynamical nodes [27, 41]. The master stability function (which can

be completely determined using a network of three oscillators) approach, allows us

to extend our experimental results to arbitrarily large networks. In fact, numer-

ical simulations of larger networks comprising 50 optoelectronic nodes (shown in

Figs. 5.5, 5.11, and 5.12) agree with the predictions obtained from the MSF analysis

and explicitly establish the independence of our results with respect to network-

size [42, 68].

Further, simulations performed in the process of designing our experiments

(not shown here) indicate that the results reported in this thesis are not limited to

the specific set of system parameters chosen in our experiments. For example, we find

that changing the net feedback loop gain leads to results that are qualitatively similar

to what have been included in the thesis. This is justified by the fact that the master
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stability function, on which our theory is based, retains its qualitative form even

as the feedback strength of our optoelectronic oscillators is changed (but, such that

the dynamics is still chaotic) [68]. Also, in carrying out our study of the influence of

connection topology on synchronization, we have simulated networks comprised of

Bernoulli map oscillators and obtained results (not shown here) similar to what have

been reported in the thesis. Specifically, we observed that the rate of convergence

to synchronous solution depends nonmonotonically on the number of network links

with the convergence rate being maximized for networks with a minimal eigenvalue

spread (optimal networks). This indicates that our experiments represent a case of

behavior which is generic to networks of chaotic dynamical systems.

Finally, we note that our experiments can be scaled to operate at arbitrarily

fast time scales by using either RF analog signal processing or faster digital signal

processing. This has practical implications to the construction of sensor networks

capable of tracking faster variations compared to what have been imposed in our

experiments. Our optoelectronic feedback loops, constructed from readily available

standard optoelectronic equipment thus offer a convenient and versatile test bed to

study synchronization properties of complex networks in general.

6.3 Future Directions

The research presented in this thesis can be considered as a starting point for a

deeper exploration of various aspects of chaos synchronization through experiments.

It will be very interesting to consider the application of the methods developed
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here to larger, more complex networks commonly encountered in the real-world.

For example, synchronization plays a crucial role in power-grids. For the effective

operation of a power-grid, various generating stations (can be modeled as dynamical

oscillators) need to operate in lock-step with each other. Our study on the interplay

of connection topology and network synchronization can potentially provide insights

into the designing of grid systems. Perhaps a first step in this direction would be to

scale our experiments to incorporate a large number of network nodes.

An optical network with a large number of nodes similar to those considered

in our research can be realized using an assembly comprising a spatial light modu-

lator (SLM) and a camera. A spatial light modulator is a device that can impose

an arbitrary spatial pattern on a propagating optical wave front. This is accom-

plished by the many pixels of the SLM acting as independently configurable optical

intensity modulators. Each SLM pixel is essentially a polarizer-analyzer assembly,

whose transmission can be adjusted by offsetting their polarization axes suitably

via an input electronic signal. In fact, the transmission characteristic of each SLM

pixel follows a trigonometric nonlinearity much like our electro-optic modulators.

The output optical wave front of the SLM can then be detected using a camera

whose pixels act as independent photoreceivers. The output of the camera can be

suitably processed and used as a feedback signal to modulate the SLM output at a

later point of time. This allows us to create a large number of nonlinear feedback

oscillators, similar to our optoelectronic system, which can be coupled by superpos-

ing the intensity signals as detected by various pixels of the camera. The network

topology in this case can be controlled accurately by adjusting how the information
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from various pixels is superposed. Using this configurable network, one can model

networks which are comparable in size to real world complex networks.

As part of this thesis, we also presented the details of an experimental imple-

mentation of an adaptive strategy that maintains synchronization even when the

network coupling strengths are unknown and time-dependent. A possible extension

to this line of research is to broaden the scope of the adaptive algorithm to include

situations where the node parameters (such as the feedback time-delay, the feedback

strength, etc . . . ) may be fluctuating in time. This scenario can serve as a model

for many natural complex systems (such as neurons in the brain whose firing rates

can change depending on external chemical concentrations) and help us gain insight

into the development of collective behavior in nature.

Finally, it would be of great interest to consider an amalgamation of the two

central ideas discussed in this thesis: adpative synchronization techniques and net-

work topologies optimal for synchronization. Implementation of the adaptive syn-

chronization scheme on a network configured to be optimally synchronizable, can

lead to the establishment of robust synchronization necessary for many practical

applications.
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