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Approximately two-thirds of U.S. adults are overweight or obese and the 

prevalence of overweight in children has tripled since 1980. Intake of added sugars has 

also increased. The etiology of obesity remains unclear and the role of glucocorticoids in 

obesity is one area of ambiguity.  

The enzyme 11β-hydroxysteroid dehydrogenase-1 (11β-HSD-1) interconverts 

active and inactive glucocorticoid, thereby regulating intracellular glucocorticoids. 

Dysregulation of 11β-HSD-1 in liver and adipose is characteristic of human and animal 

models of obesity. Hexose-6-phosphate dehydrogenase (H6PDH) is colocalized with 

11β-HSD-1 and determines the set point for 11β-HSD-1 oxidoreductase activity. In a 

long-term (10 wk) study, rats given ad libitum access to 16% sucrose solution, chow, and 

water were fatter than controls, had increased 11β-HSD-1 mRNA in adipose, suppressed 

11β-HSD-1 mRNA in liver, and increased H6PDH mRNA in both tissues.  

The primary research questions were as follows: Can high sugar diets induce 

glucocorticoid dysregulation in the absence of excess adiposity? Does sugar type matter? 

Energy intake, weight gain, and parameters of lipid and carbohydrate metabolism were 

measured. Rats were randomly assigned to either ad libitum access to chow and water 



only (control), or in addition to ad libitum access to either 16% sucrose, fructose, or 

glucose solution (n=16/gp). After 24h and 1 wk, eight rats per group were randomly 

selected for sacrifice. 

 Daily caloric intakes among sugar-fed groups did not differ and were higher than 

the mean intake of the control group. Within 24h, fructose induced increased 11β-HSD-1 

message in mesenteric adipose and liver. Plasma TG and insulin were acutely increased 

in groups with fructose-containing diets only. All high sugar diets induced suppressed 

hepatic 11β-HSD-1 mRNA and protein after 1 wk. Upregulation of H6PDH mRNA 

observed in response to long-term high sucrose diets may result from increased adiposity 

and not solely diet. High sugar diets, irrespective of sugar type, initiate glucocorticoid 

dysregulation in the absence of phenotypic changes associated with obesity. Sucrose, 

fructose, and glucose have distinct metabolic and endocrine responses. Fructose has the 

unique ability to induce glucocorticoid dysregulation in liver and adipose in 24h. 
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Introduction 
 

The prevalence of obesity in the United States has reached epidemic proportions. 

The CDC reports that approximately two-thirds of the adult U.S. population is 

overweight or obese, and statistics indicate that the trend is unabated (CDC 2004, CDC 

2009). While it is clear that obesity is a multifactorial disease resulting from the 

combined effects of genetic, physiological, environmental, social, and psychological 

factors, it is equally clear that there is currently no cure. One area of ambiguity in the 

etiology of obesity is the relationship between stress hormones and obesity. The 

experiments conducted for this dissertation investigated the role of glucocorticoids in 

promoting adiposity by examining the interaction between diet and its influence on body 

composition and glucocorticoid metabolism. Changes in two key regulatory enzymes, 

11β-hydroxysteroid dehydrogenase-1 (11β-HSD-1) and hexose-6-phosphate 

dehydrogenase (H6PDH), as well as markers of carbohydrate and lipid metabolism in 

response to diets proportionally high in simple carbohydrates (sucrose, fructose, glucose) 

were evaluated in a rat model. High sugar diets have been shown to induce excess energy 

intake and obesity in rats. 11β-HSD-1 plays a primary role in regulating tissue-specific 

intracellular glucocorticoid levels, and H6PDH catalyzes the first and rate-limiting step of 

the oxidative phase of the pentose phosphate pathway and produces NADPH, the 

cofactor for 11β-HSD-1 oxidoreductase activity. We tested the hypothesis that high sugar 

diets would increase adipose and decrease hepatic 11β-HSD-1 mRNA and protein levels. 

This pattern of changes has been reported in obese humans and genetically obese rats 

(Livingstone 2000a, Rask et al 2001). 



The list of regulatory factors identified as influencing food intake, energy 

expenditure, and body weight has increased dramatically over the past two decades. 

While these multiple factors interact on both central and peripheral levels (in the brain, 

gut, liver, etc.), one common finding is that maintenance of normal adrenal 

glucocorticoid levels is necessary for the normal function of these factors. More recently, 

there is evidence that elevated intracellular tissue concentrations of glucocorticoids may 

better predict the promotion and maintenance of obesity than circulating hormone levels 

which are not consistently higher in obese versus lean animals (Lottenberg et al 1998; 

Walker et al 2001). 

The bidirectional enzyme, 11β-HSD-1, which interconverts the active hormone 

cortisol (human) or corticosterone (rat) and inert cortisone (human) or 11-

dehydrocorticosterone (rat), resides in the intralumenal compartment of the endoplasmic 

reticulum (ER). 11β-HSD-1 is highly expressed in adipose, liver, and brain in rats 

(Monder & Lakshmi 1990; Lakshmi, Sakai, McEwen & Monder 1991) and humans 

(Ricketts et al 1998). 11β-HSD-1 acts primarily as an oxidoreductase which requires the 

cofactor NADPH to generate active glucocorticoid. The pool of microsomal NADPH that 

drives the oxidoreductase reaction is thought to be generated by the enzyme H6PDH 

(Bujalska et al 2005). In both human and animal models of obesity, 11β-HSD-1 has been 

shown to be upregulated in adipose and downregulated in liver.  

Gaining insight into how diet and energy intake affect microsomal pentose 

phosphate pathway flux as well as H6PDH and 11β-HSD-1 mRNA, expression, and 

activity will help answer key questions about how glucocorticoid dysregulation is 

initiated and progresses in diet-induced obesity. Identifying the mechanisms by which 
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11β-HSD-1 is upregulated and/or reductase activity is increased in adipose, and 

conversely is downregulated and/or decreased in liver, are crucial to understanding the 

occurrence of tissue-specific glucocorticoid regulation in different forms of obesity. 

These experiments investigated the effects of high sucrose, fructose, and glucose diets on 

mRNA and protein expression of 11β-HSD-1 and H6PDH, and several metabolic 

parameters essential to energy balance and nutrient partitioning. The measurement of 

these variables, differences in weight gain and in the long-term study, body composition, 

at different time points during the high sugar feeding were analyzed in order to better 

characterize how high sugar diets affect peripheral glucocorticoid metabolism and 

promote adiposity. 

The goal of this research was to determine whether it is exposure to high sugar 

diets that causes changes in the mRNA and protein levels of two key regulatory enzymes 

in glucocorticoid metabolism or if it is the result of the increased adiposity associated 

with the diets that alters these enzymes. Several key markers that represent changes in the 

regulation of energy balance and metabolism at different time points have been measured 

to provide insight into the sequential changes that occur in the glucocorticoid 

dysregulation seen in obesity. The hypotheses tested were: 

Hypothesis 1: Sprague-Dawley (S-D) rats given free access to rat chow and water 

in addition to 16% fructose, sucrose, or glucose solution for 24h or 1 wk will consume 

more total calories than control rats given free access to rat chow and water only. 

Hypothesis 2: Long-term high sucrose, fructose, and glucose diets will induce 

increased 11β-HSD-1 and H6PDH mRNA in mesenteric adipose and decreased 

hepatic11β-HSD-1 and H6PDH mRNA. 
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Hypothesis 3: High-sugar diets will increase microsomal pentose phosphate 

pathway flux in mesenteric adipose and liver and therefore increase concentrations of 

microsomal NADPH compared to a control (low-sugar) diet. 

Hypothesis 4: Solutions that containing fructose (i.e., sucrose and fructose, but 

not glucose) will induce increased plasma triglyceride levels via enhanced de novo lipid 

biosynthesis. 

Hypothesis 5: Changes in 11β-HSD-1 and H6PDH mRNA and protein expression 

in mesenteric adipose and liver will not occur in response to acute high sugar feeding in 

rats.  
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Chapter 1. Literature Review 
 
Obesity 

 Obesity is a multifactorial disorder that involves genetic background, multiple 

environmental factors including food availability and social interactions, behavioral 

patterns such as inactivity and emotional eating, underlying illness, and socioeconomic 

status (Hausman et al 2001). The prevalence of obesity has reached epidemic proportions 

in the United States and worldwide. The latest data show that approximately 60 million 

(over 30%) of U.S. adults age 20 and over are obese (BMI > 30 kg/m2), and that the 

percentage of young people (ages 6–19) that are overweight (BMI > 25 kg/m2) has tripled 

since 1980 (CDC, 2004). Overweight and obesity are associated with an increased risk of 

developing several diseases and health conditions: hypertension, dyslipidemia, type 2 

diabetes, coronary heart disease, stroke, gallbladder disease, osteoarthritis, sleep apnea, 

respiratory problems, and some cancers (CDC, 2006). This increase in obesity and its 

comorbidities is predicted to have an enormous impact on the U.S. economy that will 

continue to worsen (King et al 1998; Filozof et al 2001). 

 Understanding the complexities of obesity requires the application of knowledge 

and techniques from diverse scientific disciplines. Human obesity, in most cases, is 

polygenic in nature and is phenotypically expressed when genetic factors interact with 

key environmental, behavioral and/or social factors. Obesity can be viewed as the result 

of the malfunctioning of the complex regulatory system that, when functioning normally, 

works to balance energy intake with expenditure. In healthy individuals, this homeostatic 

system appears to be involved in maintaining energy balance over long-term periods, 
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even though day to day energy intake and expenditure are subject to variability caused by 

multiple factors (Keesey and Powley 1986, Stunkard 1981). 

The critical role of the central nervous systems in maintaining this balance has 

emerged recently as have numerous centrally and peripherally secreted hormones that are 

critical in regulating this neuronal circuitry (Schwartz et al 2000, Morton et al 2006). 

Short-term energy intake and expenditure are regulated from meal to meal by numerous 

physiological signals including neuronal inputs related to circadian rhythms, metabolic 

signals from the brain and gut in response to the utilization of different energy sources, 

GI peptides released in response to gastrointestinal distension and nutrient absorption, 

and also emotional factors such as food palatability (Schwartz et al 1999, Cummings & 

Schwartz 2003). The long-term regulation of adiposity is thought to be regulated by the 

hormones leptin (Zhang et al 1994) and insulin (Woods & Porte 1976) which have been 

shown to exert effects that are slower in onset and offset. It is likely that glucocorticoids 

play an important role in long-term regulation of energy balance. While glucocorticoids 

are not direct adiposity-related negative feedback signals like leptin and insulin, 

glucocorticoids seem to promote positive energy balance by antagonizing the central 

nervous system (CNS) response to insulin and leptin (Baskin et al 1999, Havel 2001). In 

just the past several years, the number of peptides and other factors, including a number 

that act transcriptionally, recognized as regulators of energy homeostasis has increased 

substantially (Seeley & Moran 2002). Because many of these factors interact with one 

another, it is increasingly difficult to develop a single theory of obesity. This has led to 

the identification of a number of different obesities with differing etiologies. For a history 

of hypotheses of different types of obesity, see Bray (1991) and for a review of the 
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neuroendocrinology of obesity see Lustig (2001). Three general models that have been 

used to approach the problem include hypothalamic or neuroendocrine obesity, genetic 

obesity, and dietary obesity. Each form of obesity has distinct characteristics and key 

features yet overlap at a common point: each requires the presence of glucocorticoids. 

The distinctions between the different forms of obesity and improved understanding of 

the mechanistic underpinnings of the varied characteristics of obesities will likely lead to 

the identification of obesity type-specific therapeutic approaches.  

Over the past century, numerous hypotheses have been developed in an attempt to 

explain the regulation or in some views, the dysregulation, of energy homeostasis that is 

partnered with obesity. It has been suggested that obesity is not the effect of lack of body 

weight regulation, but is instead the result of a regulation of body weight and adiposity 

that is based on a physiologically predetermined set point. This hypothesis suggests that 

obese individuals have high set points that their regulatory system defends (Stunkard 

1981, Keesey & Hirvonens 1997).  

The etiology of human obesity is complex. Molecular technologies available in 

the recent decades have been useful in identifying some of the rare genetic obesities 

caused by defects in single genes, also known as monogenic obesity. More common are 

polygenic obesities, in which polymorphisms in several candidate genes and/or 

regulatory regions of neighboring genes increase an individual’s susceptibility to obesity 

by interacting with a multitude of additional factors (environmental, psychological, 

physiological, etc). For a review of advances in the study of the genetics of human 

obesity see a review by Clément (2006). Studying the role of the hypothalamus in obesity 

has broadened our knowledge of how signaling in specific nuclei of the hypothalamus 
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influences intake, satiety, and metabolism. Diet-induced obesity is likely the type of 

obesity that is most rapidly increasing in prevalence with the societal shift to sedentary 

lifestyles and the increased availability of inexpensive and palatable foods. Better 

understanding the interaction between genetics and environmental inputs requires the use 

of appropriate animal models in order to identify potential interventions and treatments 

for the growing obese population. 

Animal Models and the Study of Obesity 

Animal models have become a useful tool in investigating various genetic, 

environmental, behavioral, and pharmacologic factors that play roles in obesity. Because 

most obesities involve the interaction of one or more genetic variants with other 

variables, the introduction of reverse and forward genetics has enabled studying the roles 

of combinations of variables in vivo. These developments have facilitated the 

investigation of the effects of various mutations at the whole animal level, instead of 

solely in cell or tissue culture systems. Furthermore, high throughput screening, 

microarray and proteomics techniques have become accessible to the larger scientific 

community, and thus large-scale mutagenesis screens have enabled the identification of a 

growing number of target genes in the pathogenesis of obesity (Challis et al 2002). As a 

result, the number of animal models available for the study of obesity continues to grow 

rapidly. For an extensive review of rodent models of obesity including diet-induced 

models, spontaneous and engineered mutants, and models of hypothalamic obesity, see 

Tschöp and Heiman (2001). While many of the models available including those that 

involve mutations of single genes and results may not be readily extended to human 

obesity, they further our knowledge about specific forms of obesity, signaling pathways, 
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and roles of specific neuroendocrine factors and their receptors. Models of diet-induced 

obesity, however, are more closely mimic common forms of human obesity. 

Rodent Models of Diet-Induced Obesity 

Laboratory animals have helped establish the role of both the quantity and 

composition of available foods in energy intake and adiposity. For a review of the 

evidence that implicate cafeteria diets (calorie-dense buffet style diets), high-sugar, and 

high-fat diets in the induction of hyperphagia and subsequent obesity see Sclafani (2001). 

Interestingly, the phenomenon of obesity prone and obesity resistant rodents is seen 

across numerous strains of rat and mice, including Sprague-Dawley, Long-Evans, and 

Osborne Mendel rats, as well as in AKR/J, C57L/J, A/J, C3H/HeJ, DBA/2J, and 

C57BL/6J mice (West et al 1992). Dietary manipulations that include forced feeding, 

changes in nutrient availability and changes in diet composition have led to variable 

results among individuals as well as different strains of rodent demonstrating a strong 

interaction between genotype and diet (York and Bray, 1998). Studies using high fat 

feeding to produce a rat model of dietary obesity have demonstrated that hyperphagia is 

not a requirement for induction of excess adiposity under these conditions (West and 

York 1998, Woods et al 2003). When rats are provided with solutions of sucrose, fructose 

or glucose they typically increase their energy intake by 10−20% above what they would 

consume if provided with rat chow alone (Kanarek and Orthen-Gambill 1982), and thus 

high-sugar diets have been used to create models of diet-induced obesity as well. 

The role of glucocorticoids in genetic and dietary obesities has been investigated 

using adrenalectomized (ADX) rats. Obese and lean ADX Zucker rats select diets 

significantly lower in fat than their obese sham operated counterparts (Castonguay, 
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Dallman, & Stern 1986). Administration of exogenous corticosterone dose-dependently 

restored the fat appetites of the lean and obese ADX rats. Obese and lean Zucker rats had 

attenuated weight gain following adrenalectomy and were resistant to weight gain and 

increased adiposity on a high fat diet (Bray, Stern, & Castonguay 1992), showing a clear 

interaction between adrenalectomy and high-fat diet and the development of obesity in 

both fatty and lean Zucker rats. The role of glucocorticoids in diet-induced obesity is 

discussed in more depth later in this review. 

Hypothalamic and Neuroendocrine Obesity 

Several distinct regions of the hypothalamus have been implicated in the 

regulation of body weight and food intake. Damage to or ablation of the ventromedial 

hypothalamic nuclei (VMH) via chemical, electrical, or surgical means can cause obesity 

in humans, nonhuman primates, as well as dogs, mice and rats (York & Hansen 1998). 

This was first demonstrated by Hetherington and Ranson (1942), who introduced lesions 

using an electric current in the VMH, thereby inducing obesity in the rat. Although the 

preliminary studies suggested that hyperphagia was the major cause of VMH lesion 

obesity, it has become evident that chemically-induced lesions of the VMH can cause 

obesity without hyperphagia (Bernardis 1985, Parkinson & Weingarten 1990). The 

obesity caused by VMH lesions seems to result from hyperinsulinemia and changes in 

autonomic control of thermogenesis (York & Hansen 1998). A second and distinct type 

of hypothalamic obesity results from lesions of the paraventricular nucleus (PVN). 

Damage to the PVN has been shown to cause increased food intake and rapidly 

developing severe obesity (Sclafani & Grossman 1969; Bray et al 1990), but unlike VMH 

obesity, can be attenuated by restricting food intake. 
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Manipulation of endocrine function via administration of endogenous hormones 

and/or the under- or overexpression of regulatory hormones can result in various forms of 

obesity. Many such manipulations have been explored in animal models. See Tschöp and 

Heiman for an overview of rodent models (2001). 

Intake of Dietary Sugars and Prevalence of Obesity and the Metabolic Syndrome  

As obesity and overweight has increased in the adult and child populations in 

recent decades, dietary sugars, particularly in the form of sweetened beverages, have 

come under scrutiny for their putative role in this epidemic. Most sweetened beverages 

are sweetened with high fructose corn syrup (HFCS) which was introduced in two forms, 

HFCS-42 (42% fructose) and HFCS-55 (55% fructose), in 1967 and 1977, respectively 

(Bray et al 2004). HFCS-55, the most commonly used form, is also composed of 42% 

glucose and 3% other sweeteners, thereby resulting in a 1.22 ratio of fructose to glucose, 

10% more fructose by weight than sucrose. The Institute of Medicine dietary guidelines 

recommend consuming from 45 to 65% of total daily energy from carbohydrates, with no 

more than 25% of total energy from added sugars (IOM 2007).  Data from the National 

Health and Nutrition Survey (NHANES), however, indicate that carbohydrate intake 

increased by approximately 62g/d and 69g/d in women and men, respectively, between 

1971 and 2000 (CDC 2004). Per capita  intake of added sugars from all sources has 

increased by approximately 25% over the past three decades (Havel  2005), and the U.S. 

Department of Agriculture Continuing Survey of Food Intakes by Individuals (CSFII) 

conducted from 1994–1996 revealed that about 43% of the energy from added sugars was 

derived from soft drinks and fruit drinks (Bowman 1999). Most of this added sugar 

comes in the form of HFCS.  
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Simple sugars have been shown to stimulate hepatic de novo lipogenesis, making 

them a likely candidate for promoting the fasting hypertriglyceridemia that has been 

associated with high sucrose or high fructose diets (Havel 2005). Both fructose and 

glucose stimulate sterol responsive element binding protein 1c (SREBP-1c), which is 

linked to de novo lipogenesis, and both SREBP-1c and de novo lipogenesis are more 

strongly induced by fructose than glucose (Minehira et al 2003). 

Differential Metabolism of Dietary Sugars 

 The three monosaccharides that comprise the primary dietary sugars are glucose, 

fructose, and galactose. The combinations of these three simple sugars form the three 

primary dietary disaccharides, maltose (glucose-glucose), sucrose (glucose-fructose) and 

lactose (glucose-galactose), while the polysaccharides that serve as storage are comprised 

of glucose polymers. Glucose serves as the major fuel source for most organisms, human 

and rat included, as it can be readily oxidized aerobically or anaerobically to produce 

ATP. Glucose is both a rich source of energy and a versatile metabolic precursor for 

biosynthetic reactions. The three major metabolic fates for glucose include: 1) storage, 2) 

oxidation to pyruvate via glycolysis, and 3) oxidation to pentose via the pentose 

phosphate pathway. 6-carbon sugars other than glucose are also catabolized in the 

glycolytic pathway. 

Glucose Metabolism 

 Glucose is the primary source of fuel in eukaryotes and as such, is also the 

primary circulating monosaccharide. Glucose is taken up primarily by skeletal muscle 

cells and hepatocytes, the two major sites of glycolysis. Glycolysis, however, occurs 

ubiquitously in most cells of the body, adipocytes included. Once glucose is transported 
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into the cytosol by one of several SGLT or GLUT transporters, glucose can then enter the 

glycolytic pathway and be converted to glucose-6-phosphate (G6P) by hexokinase and 

glucokinase, respectively (Fig. 1). Once phosphorylated to G6P, glucose proceeds 

through the 10-step glycolytic pathway ultimately being converted into two 3-carbon 

molecules (pyruvate) which then can enter the Krebs Cycle and yield additional energy in 

the form of ATP. Hepatic glucose metabolism is tightly regulated by the enzyme 

phosphofructokinase (PFK-1) which is allosterically inhibited by citrate, a Krebs Cycle 

intermediate, and by ATP. This inhibition, as well as the limited capacity of the liver to 

store glucose as glycogen, regulates the amount of glucose uptake and flux through the 

glycolytic pathway. 

 Glucose is absorbed in the intestinal mucosal cells via the active transport of the 

glucose-galactose carrier protein sodium-glucose linked transporter 1 (SGLT1) and then 

enters the portal vein. Glucose transporter 2 (GLUT2) is the transporter for glucose in 

hepatocytes and while the expression of GLUT4, the major transporter in adipose and 

skeletal muscle is increased by insulin stimulation, GLUT2 is not. 
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Figure 1. The catabolism of glucose to pyruvate via the glycolytic pathway. 
 
Galactose Metabolism 

Like glucose, galactose is absorbed in the intestine by active transport by SGLT1 

and then transported into cells by GLUT-2. Galactose can be catabolized by glycolysis 

once it reaches the liver where it first must undergo several enzymatic reactions 

beginning with conversion to galactose-1-phospate via galactokinase (Fig. 2). Galactose-
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1-phosphate is then converted to UDP-galactose with concomitant formation of glucose-

1-phosphate which can then be converted by phosphoglucomutase into glucose-6-

phosphate and can enter the glycolytic pathway. 
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Figure 2. The entry of galactose into the glycolytic pathway, and subsequent 
catabolism  
 

Fructose Metabolism 

Fructose absorption is less clearly defined than that of glucose or galactose, but 

active and passive transport are saturable (Groff and Gropper 2000), so consumption of 

large quantities may lead to malabsorption and intestinal distress. However, when co-
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consumed with glucose, fructose absorption becomes more efficient and less symptoms 

of malabsorption are observed. Once absorbed, fructose has one of two metabolic fates as 

it is metabolized differentially in muscle and liver after it is transported into cells via the 

GLUT5 transporter which are expressed primarily in the brush border of the small 

intestine and jejunum (Levin 1999). In muscle cells, which express only hexokinase, 

fructose is phosphorylated to fructose-6-phosphate, a direct glycolytic intermediate. In 

liver, the enzyme glucokinase which has specificity for glucose predominates as the first 

enzyme of the glycolytic pathway. Therefore, in liver, fructokinase acts on fructose 

converting it to fructose-1-phosphate which can then feed directly into glycolysis (Fig. 3). 

In doing so, fructose bypasses three steps of glycolysis and is instead acted upon by 

aldolase type B, a liver-specific isoform of aldolase that can utilize both fructose-1,6-

bisphosphate or fructose-1-phosphate. Because of its entry point in liver, fructose 

bypasses the most influential regulatory enzyme of glycolysis, phosphofructokinase-1 

(PFK-1). This has two important implications: 1) fructose can be readily used as a fuel 

source for glycolysis, and 2) it is not subject to the same regulation as the catabolism of 

glucose. Ordinarily, the glycolytic intermediate fructose-1,6-bisphosphate plays an 

inhibitory role in slowing the action of PFK-1 and slowing the process of glycolysis. 

Fructose, which occurs naturally in fruits has become heavily used in prepackaged 

convenience foods and sweetened beverages as sucrose (50% glucose, 50% fructose) and 

as high fructose corn syrup (42% or 55% fructose and 53% or 42% glucose, HFCS 42 

and HFCS 55, respectively). Another key difference between fructose and glucose 

metabolism is in cellular uptake. The uptake of fructose by GLUT5 does not rely on 

insulin-induced relocation of the transporter to the plasma membrane as does the uptake 
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of glucose by GLUT2 (Levin 1999). Fructose can enter cells via GLUT5 irrespective of 

energy needs, or circulating glucose levels. 
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Figure 3. The differential entry of fructose into the glycolytic pathway in muscle and 
kidney, and in liver; and the subsequent catabolism to pyruvate. 
 
 
The Association between High Dietary Intake of Fructose and Obesity 

The association between HFCS- and sucrose-sweetened beverages and obesity 

has become an active area for research as the obesity trend of the past few decades 

coincides with the introduction and widespread usage of HFCS, primarily in sweetened 
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beverages and grain products in the U.S (Marriott et al 2009). The most common use for 

HFCS 55 is soft drinks. In 2007, the Center for Food, Nutrition, and Agriculture Policy 

assembled a panel of experts to review the cumulative literature, based mainly 

observational data that examined HFCS intake and BMI (Forshee et al 2007). This 

review, which included new analyses of the existing data to fill in gaps in the available 

literature, concluded that the fructose:glucose ratio in the U.S. food supply hasn’t 

changed significantly since the introduction of HFCS in the late 1960s. Inconclusive 

results led to the conclusion that HFCS does not appear to contribute to overweight and 

obesity any differently than do other sources of energy. However, gaps in this body of 

research, including the analysis of differences in consumption of sucrose and HFCS, were 

cited. Another review of the literature based primarily on epidemiological studies 

similarly found no direct association between sweetened beverages and increased 

overweight or obesity (Bachman et al 2006). Bachman et al examined four mechanisms 

for increased adiposity: 1) excess energy intake, 2) glycemic index, 3) decreased satiety 

from liquid-derived calories, and 4) displacement of milk, and found the strongest 

support was for excess caloric intake. 

Our current knowledge of the metabolism and neuroendocrine signaling 

associated with the hepatic metabolism of fructose, however, suggests that fructose may 

induce positive energy balance via enhanced lipogenesis and consequent hyperlipidemia 

(for a review see Havel 2005). High-fructose diets induce insulin resistance (Fortino et al 

2007), weight gain, increased adiposity (Jürgens et al 2005), hyperlipidemia (Reaven et al 

1989), and hypertension in animal models that include rats, hamsters, dogs, and certain 

strains of mice (Havel 2005). The consumption of fructose- and not glucose-sweetened 
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beverages when provided as 25% of daily energy requirements promoted visceral adipose 

deposition in overweight and obese men and women (Stanhope et al 2009). Stanhope et 

al also found that consuming fructose had deleterious effects on lipid metabolism and 

lipoprotein remodeling while glucose did not. Fructose was shown to induce altered 

patterns of secretion of several neuroendocrine factors critical to the long-term regulation 

of energy balance in both obese and normal weight subjects (Teff et al 2004 &2005). 

When provided with isocaloric meals (55% carbohydrate, 30% fat, 15% protein) in 

addition to either a fructose- or glucose-sweetened beverage that comprised 30% of kcals 

for the meal, mean postprandial insulin excursion was 65% lower in the fructose-fed 

group in normal weight women (Teff et al 2004). Additionally, plasma leptin was 

significantly reduced for the duration of the test day and there was a significant decrease 

in the normal attenuation of plasma ghrelin that was observed in response to glucose.  

While dietary fructose does not directly elicit insulin secretion, hyperinsulinemia 

and/or insulin resistance is characteristic of chronic high fructose feeding (Reaven et al 

1990, Lê and Tappy 2006) and may play an important role in fructose-induced obesity. 

The increased insulin response that occurs in fructose feeding promotes decreased insulin 

sensitivity in rats in as little as 7 days (Zavaroni et al 1980). Reaven et al (1990) showed 

that rats fed fructose-enriched diets had significantly elevated plasma insulin and 

triglyceride levels, but not plasma glucose concentrations. This suggests a mechanism for 

fructose-induced hyperinsulinemia that is distinct from that induced by excess dietary 

glucose or increased glucose tolerance. The monosaccharide fructose has also been 

shown to negatively impact lipid metabolism. A high sugar diet (66% of total energy) 

composed of fructose but not glucose induced a significant increase in plasma TGs in rats 
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(Zavaroni et al 1982). This effect was linked to fructose’s ability to increase VLDL-TG 

secretion. Fructose feeding in rats has also been reported to increase lipid deposition in 

liver and skeletal muscle (Furuhashi et al 2002), a characteristic of the metabolic 

syndrome. This enhanced fat deposition is thought to contribute to insulin resistance. 

Nonalcoholic steatohepatitis is an increasingly common disease that is a manifestation of 

metabolic syndrome and Kawasaki et al have showed that high fructose-feeding produced 

a better rat model of this disease than a high fat diet did (2009). In comparison to rats fed 

a control, high fat, high sucrose, or high fructose/high fat diet, rats fed a high fructose diet 

had higher macrovesicular steatosis grade, liver:body weight ratio, hepatic TG 

concentration, and higher grade of lobular inflammation than the other four groups 

(Kawasaki et al 2009).  

Enhanced stress response has also been suggested as a potential mechanism for 

the development of fructose-induced insulin resistance. Wei et al (2004) showed that rats 

fed a high sucrose diet or high fructose diet develop hepatic insulin resistance and that 

rats administered a single sucrose-enriched meal or dose of fructose infusion had acute 

increases in c-jun N–terminal kinase (JNK) activity and downstream insulin receptor 

substrate-1 (IRS-1) serine phosphorylation. JNK activation is a critical part of cellular 

stress response and proinflammatory cytokines including TNF-α are elevated in fructose-

fed rats (Togashi et al 2000). Thus, it has been suggested that fructose may stimulate 

inflammatory cytokines (Lê & Tappy 2006) and this inflammatory response may 

contribute to fructose-induced hepatic insulin resistance. The underlying cellular 

mechanisms for the deleterious metabolic effects of fructose involve the production of 

reactive oxygen species, initiation of cellular stress, and perhaps increased production of 
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uric acid (Lê & Tappy 2006). See Rutledge and Adeli (2007) for an in-depth review of 

the molecular mechanisms involved in fructose-induced metabolic dysregulation. 

Few studies have examined the relationship between fructose intake designed to 

mimic the high intake of soda and sweetened beverages and increased weight gain and 

adiposity. In one such study, mice given ad libitum access to a 15% fructose, 10% 

sucrose, or artificially sweetened (zero calories) solution had similar total daily caloric 

intakes but the fructose-fed mice had increased adiposity, respiratory quotient, and 

hepatic lipid accumulation (Jürgens et al 2005). Teff et al (2004) reported that plasma 

ghrelin was suppressed by approximately 35% following three meals that included 

glucose-sweetened beverages (at 30% total energy requirements), but that this normal 

suppression in postprandial ghrelin was diminished in subjects who consumed fructose-

sweetened isocaloric beverages with the same meals. Another short-term study provided 

glucose- or fructose-sweetened beverages at 30% of total energy requirements with three 

daily meals reported a reduction in post-meal insulin secretion and 24h systemic leptin in 

both overweight and obese men and women (Teff et al 2005). Further, both studies found 

that fructose-sweetened beverage consumption attenuated the percent change in leptin 

levels between morning nadir and late night peak (Teff et al 2004 & 2005). Diminished 

secretory response for ghrelin and leptin as a consequence of fructose intake could 

promote elevated energy intake, subsequent weight gain, and upset long-term energy 

balance.  

Recently, Stanhope et al (2009) found that dietary fructose, but not glucose, 

increased de novo lipogenesis and promoted dyslipidemia, decreased insulin sensitivity, 

and increased visceral adiposity in overweight/obese adults. This 10 wk intervention 
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study of overweight/obese men and postmenopausal women (n= 32) included 2 wk 

inpatient metabolic studies both at baseline and the final 2 wk of intervention. Subjects 

were randomly and blindly assigned to either self-selected ad libitum diets for 8 wk 

(outpatient) in addition to 1) glucose-sweetened beverages at 25% of energy requirements 

(n= 15) or 2) fructose-sweetened beverages at 25% of energy requirements (n= 17). Both 

groups similarly consumed energy in excess of daily needs during the intervention and 

had comparable weight gain. However, the fructose-consuming subjects had significant 

increases in both visceral adipose tissue and total abdominal fat while the glucose-

consuming subjects had significant increases in subcutaneous adipose tissue. Fasting TG 

concentrations were increased in glucose- but not fructose-consuming subjects and 

conversely, postprandial TGs were significantly elevated the fructose-, but not glucose-

consuming subjects. Postprandial levels of remnant-like particle lipoprotein (RLP)-TG 

and RLP-cholesterol and both fasting and postprandial apoB, apoB/apoA1 ratio and total 

LDL were increased in fructose- but not glucose-consuming subjects, and FFA levels 

were increased in glucose- but not fructose-consuming subjects. These results 

demonstrate distinct deleterious effects on lipid metabolism and lipogenesis in humans 

that result from consuming diets high in fructose. Havel and colleagues have 

hypothesized that changes in postprandial TG levels and de novo lipogenesis are key in 

the dyslipidemia and proatherogenic effects of consuming a diet high in fructose and urge 

further clinical trials including long-term fructose consumption as part of both neutral 

energy balanced and positive energy balanced diets (Stanhope & Havel 2009).  

Clearly there is compelling data that links fructose to primary characteristics of 

the metabolic syndrome and obesity via the dysregulation of glucose and lipid 
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metabolism, and several factors critical in maintaining energy homeostasis. The evidence, 

based primarily on studies of animal models and only very recently on clinical trials, 

warrants further research.  

Glucocorticoids 

The adrenal corticosteroids are divided into two classes, glucocorticoids and 

mineralo-corticoids. The two primary members of the glucocorticoid family of adrenal 

steroid hormones are cortisol and cortisone in humans, and corticosterone and 11-

dehydrocorticosterone in rodents. Cortisol is produced and secreted by the zona 

fasciculata of the adrenal glands in response to adrenocorticotropin (ACTH). 

Corticotropin-releasing hormone (CRH) secreted from the hypothalamus stimulates the 

secretion of ACTH from the anterior pituitary gland. Under normal physiological 

conditions the hypothalamic-pituitary-adrenal (HPA) axis is regulated by a negative feedback 

loop in which circulating cortisol inhibits further release of CRH and ACTH from the 

hypothalamus and pituitary, respectively, and ACTH inhibits further CRH release in a short 

negative feedback loop in order to maintain relatively constant blood cortisol levels 

(~30nmol/dL). While this endocrine regulatory system maintains relatively constant 

circulating levels of glucocorticoids, intracellular glucocorticoid concentrations in the 

critical metabolic tissues, liver and adipose, are more variable in altered physiologic 

states such as obesity and are thought to be regulated largely by the autocrine action of 

11β-HSD-1 (Tomlinson et al 2004). 

Glucocorticoids have many functions in the body including a critical role in blood 

glucose maintenance (Long et al 1940), while the main roles of the mineralocorticoids are 

maintenance of blood pressure and electrolyte balance (Stewart et al 1988, Whitworth et 
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al 1989). Glucocorticoids have also been implicated as a factor in inflammatory disease, 

not as a part of the body’s direct stress-responses (like inflammation), but instead as part 

of a negative feedback system in response to stress that acts to attenuate direct responses 

(see Munck, 1984 for a review). Thus, glucocorticoids are widely used as anti-

inflammatory agents. Glucocorticoids act by binding to intracellular glucocorticoid 

receptors. The hormone-receptor complex then translocates to the nucleus where it 

interacts with glucocorticoid response elements. This leads to the transcriptional 

activation and/or repression of numerous genes, including activation of the gene for 

phosphoenolpyruvate carboxykinase (PEPCK), a rate-limiting enzyme in 

gluconeogenesis in liver and kidney (Sasaki et al 1984). 

Glucocorticoids and Glucose Homeostasis 

 Glucocorticoids influence intermediary metabolism via their action on key 

metabolic tissues including liver, adipose, skeletal muscle, and brain. Under normal 

circumstances glucocorticoids are primarily catabolic, except in the liver where they 

induce gluconeogenesis via the upregulation of PEPCK and perhaps in the CNS where 

they are thought to increase food intake (Tempel et al 1992). However, while systemic 

administration of corticosterone in ADX rats was found to stimulate intake and body 

weight gain, corticosterone administered intra-cerebroventricullarly did not, suggesting 

that glucocorticoids may only secondarily have effects on the central control of appetite 

(Kamara, Kamara, Castonguay 1992). Glucocorticoids have an antagonistic affect on 

insulin secretion via their influence on PEPCK activity, which affects pancreatic β-cells 

by decreasing insulin release (O'Brien et al 1990; Delaunay et al 1997). O’Brien et al 

further demonstrated, however, that insulin has a dominant negative effect on PEPCK in 
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the presence of glucocorticoids or cAMP (1990). In peripheral tissues glucocorticoids 

impair glucose uptake by adipose tissue and skeletal muscle (Rooney et al 1993). 

Glucocorticoids have also been shown to enhance the breakdown of fat and protein from 

body stores (Roden et al 1996), thereby increasing circulating concentrations of free fatty 

acids and impairing insulin’s capacity for stimulation of glucose uptake by muscle tissue 

(Randle et al 1963; Boden et al 1991). Additionally, high levels of active glucocorticoid 

in liver cause an inappropriate increase in gluconeogenesis via PEPCK which has been 

associated with the metabolic syndrome and some types of obesity (Sasaki et al 1984).  

The Role of Glucocorticoids in the Regulation of Food Intake 

Numerous mechanical, chemical, and environmental signals participate in the 

short-term regulation of food intake that is manifest in behaviors that include meal 

initiation, meal duration, and meal termination. A complex network of neuropeptides and 

GI peptides interact to signal hunger and satiety in the regulation of food intake. These 

signals, however, interact with the long-term regulators insulin, and leptin (Schwartz et al 

2000, Havel 2001), whose concentrations are proportional to body fat stores, to manage 

energy homeostasis. The hypothalamic melanocortin system is thought to act as a central 

mediator of leptin, insulin and other hormones. Glucocorticoids affect food intake and 

energy homeostasis by exerting orexigenic effects, opposing the actions of insulin and 

leptin (see review by Strack et al 1995). It has been suggested that glucocorticoid 

interactions with leptin and insulin at the level of central effector pathways may play a 

key role in energy homeostasis (Schwartz et al 1999). Circulating levels of cortisol are 

regulated by the negative feedback loop of the HPA axis. The affects of glucocorticoids 

on food intake and food choice under the environmental influences of contemporary 
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society, such as the abundant supply of inexpensive palatable foods and frequent stress, 

have been explored in adrenalectomized rats and will be discussed later in this review of 

the literature. Also, see la Fleur (2006) for a succinct review of these studies. 

11β-Hydroxysteroid Dehydrogenase 

The metabolic interconversion of 11β-hydroxycorticosteroids and inactive 11-

oxo-corticosteroids is catalyzed by the enzyme 11β-hydroxysteroid dehydrogenase (11β-

HSD), which is expressed ubiquitously in most mammalian organs and tissues (Monder 

1991). In humans, the isoform 11β-HSD type 1 is chiefly responsible for converting 

inactive cortisone (Kendall’s compound E) to active cortisol (Kendall’s compound F).  

11β-HSD was first discovered by Amelung and colleagues in 1953, and then in 

1968, a liver enzyme that displayed reductase activity by converting inactive 

cortisone/11-dehydrocorticosterone to active cortisol/corticosterone (human/rat, 

respectively) was described (Bush et al 1968). The type 1 “liver” isozyme was 

characterized first, but its activity could not explain the hypertension associated with 

mineralocorticoid excess. Selective catheterization studies showed significantly lower 

circulating cortisol/cortisone ratios in renal venous blood when compared to levels in 

hepatic venous blood, suggesting that while the liver predominantly converts cortisone to 

cortisol, the kidney predominantly converts cortisol to cortisone (Walker et al 1992). This 

provided evidence for the existence of two distinct isoforms. The kidney isoform, 11β-

HSD type 2, has been linked to a monogenic form of hypertension, Apparent 

Mineralocorticoid Excess (AME). AME has been characterized by homozygous 

mutations of the 11β-HSD-2 gene that causes abnormal mineralocorticoid levels and 
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subsequent hypertension. For an in-depth review of 11β-HSD-2 and hypertension, see 

White et al (1997).  

Enzymology of 11β-HSD-1 

11β-HSD-1 is a microsomal, low affinity, NADP(H)-dependent bidirectional enzyme 

(Ozols 1995). While it is capable of both oxidoreductase and dehydrogenase reactions, the 

enzyme functions predominantly as a reductase in cell cultures from liver (Jamieson et al 

1995) and adipose tissue (Bujalski et al 1997). Kinetic studies revealed Km constants of 

1.83 ± 0.06 μM for corticosterone, and 17.3 ± 2.24 μM for cortisol (Lakshmi & Monder 

1988). The Km value for 11β-HSD-1 dehydrogenase activity initially presented a puzzle in 

that it is more than two orders of magnitude higher than normal levels of free cortisol in the 

bloodstream. However, Maser et al (2002, 2003) found that 11β-HSD-1 in the human liver 

exhibits Michaelis-Menton kinetics toward cortisol and cooperative kinetics with cortisone 

which explained how it could be operational at both nanomolar and micromolar substrate 

concentrations. 

11β-HSD-1 and 11β-HSD-2 have since been characterized (Tannin et al 1991, 

Palermo et al 1996) and cloned from human tissues (White et al 1997). 11β-HSD-1 is 

most highly expressed in the liver, adipose, gonad, and brain, while 11β-HSD-2 is 

predominantly found in tissues expressing high levels of mineralocorticoid receptors 

(MR) such as the kidney and colon. In addition to human, cDNA and protein sequences 

for 11β-HSD-1 have been published for rat (Lakshmi & Monder 1988, 1989), and mouse 

(Rajan et al 1995), as well as a number of other species, including sheep (Yang et al 

1992), squirrel monkey (Moore et al 1993), baboon (Davies et al 1997), and guinea pig 

(Pu and Yang 2000). The 11β-HSD-1 rat cDNA sequence initially purified from rat liver 
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and cloned by Lakshmi and Monder (1988, 1989) and has since been updated (Maser et 

al 2002). 

11β-HSD-1 belongs to the short-chain dehydrogenase/reductase (SDR) 

superfamily of oxidoreductase enzymes. This family is characterized as having 250–300 

residues with an N-terminal cofactor binding domain and a central active site (Jörnvall et 

al 1995). SDRs have distinct sequence motifs that are critical to the nucleotide cofactor-

binding region and to the active site (Oppermann et al 2001, Jörnvall et al 1995). Highly 

conserved within this family is the GXXXGXG motif of the nucleotide cofactor binding 

region which confers specificity to NADPH (Oppermann et al 2001). Within the amino 

acid sequence of 11β-HSD-1, this consensus sequence has been identified from residues 

41 to 47 (Ozols 1995). The active site of 11β-HSD-1 contains a conserved catalytic tetrad 

consisting of invariant tyrosine (Y) and lysine (K) residues, an adjacent serine (S) residue 

that is highly conserved, and the recently identified Asn111 that was found to be essential 

and highly conserved among most SDRs (Oppermann et al 2003). Mutagenesis studies of 

Tyr-179 and Lys-183 demonstrate that these residues are critical to the enzymatic activity 

of rat 11β-HSD-1 (White et al 1994). Asn-X-Ser glycosylation motifs are also present at 

three distinct sites. However, contradictory results about the importance of these 

glycosylation sites to enzyme activity have been reported. Mutations in these sites were 

found to have no effect in rabbit 11β-HSD-1 (Ozols 1995), yet another study found them 

to be essential to rat dehydrogenase activity (Agarwal et al 1990). The N-terminal contains a 

hydrophobic domain that contributes to the transmembrane domain and is likely also 

responsible for ER retention and enabling glycosylation (Jörnvall et al 1995). While both 

11β-HSD-1 and 11β-HSD-2 are members of the SDR family, there is only 21% homology in 
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the human gene transcripts and it has been determined that they are the products of separate 

genes (Tannin et al 1994). 

Glucocorticoids, 11β-HSD-1, and Obesity 

 Although glucocorticoid production and secretion are increased in human obesity, 

plasma cortisol levels in obese individuals are not consistently elevated (Walker 2001). 

This observation is consistent with the belief that the role of these steroids in obesity is 

permissive. Therefore, while their presence is necessary, they are not the primary cause 

of obesity. The effects of glucocorticoids on fat metabolism under normal conditions are 

mainly catabolic, as they induce mobilization of fatty acids and glycerol from adipose, 

thereby elevating circulating levels of fatty acids. This increase of free fatty acids 

provides the liver with substrate for gluconeogenesis. However, the effects of 

glucocorticoids are not entirely lipolytic. Glucocorticoids also stimulate appetite and 

deposition of fat in the truncal region. This affect of glucocorticoids is dramatically 

illustrated by the adipose tissue distribution that is characteristic of Cushing’s disease, a 

disease of glucocorticoid excess. Although the mechanism for the truncal obesity seen in 

Cushing’s is not clear, it has become apparent that the relationship between 

glucocorticoids and obesity is complex. Based on preliminary observations, Seckl and 

colleagues have encouraged examination of the role of 11β-HSD-1 in obesity (1997).  

Tissue Specific Action and Dysfunction of 11β-HSD-1 in Obesity 

Because of the cumulative evidence for enhanced cortisol secretion and clearance 

in obesity that is distinct from the elevated circulating cortisol levels observed in 

Cushing’s disease, this abnormality in glucocorticoid levels has been linked to enhanced 

peripheral metabolism (Lottenberg et al 1998). In support of this, several characteristic 
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tissue-specific changes in the activity of 11β-HSD-1 have been observed in obesity. 

Bjorntorp et al (1999) found that obese subjects displayed what they termed a 

“hypothalamic arousal syndrome” and did not exhibit the normal cyclic secretory pattern 

for cortisol or feedback control of these levels that was seen in lean subjects. In addition 

to a flat pattern and overall increase in cortisol secretion, these subjects presented clinical 

manifestations including insulin resistance, central obesity, dyslipidemia, elevated leptin 

levels, and more.  

Tissue-specific glucocorticoid dysregulation has been reported in obese Zucker 

rats in which adipose 11β-HSD-1 activity is increased and hepatic 11β-HSD-1 action is 

decreased (Livingstone et al 2000a, Czegle et al 2008). Livingstone et al expanded on this 

with the observation of increased deactivation of active glucocorticoids by hepatic 5β-

reductase activity and by enhanced 11β-HSD-2 activity in kidney along with enhanced 

urinary excretion of free corticosterone metabolites (2000a). This group also found that 

adrenalectomy of obese Zucker rats attenuated weight gain, and reversed this pattern of 

11β-HSD-1 dysregulation in liver and mesenteric adipose (2000b). Drake et al 

hypothesized that a protective mechanism may be the explanation for their observation of 

decreased liver and adipose 11β-HSD-1 activity and increased hepatic 5β-reductase 

activity in Wistar rats fed a high fat diet for 3 wk (2005). After 20 wk under the same 

high fat diet conditions, Wistar rats were hyperglycemic, hyperinsulinemic, and obese, 

yet none of the changes in glucocorticoid metabolism seen at 3 wk had been maintained. 

Rask et al (2001) found that adipose tissue taken from obese humans has 3 to 4 times the 

11β-HSD-1 activity of adipose taken from lean humans. Also, the reactivation of 

cortisone to cortisol by 11β-HSD-1 in liver was impaired, leading to increased clearance 
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of glucocorticoid metabolites in obese individuals. It has been suggested that this 

enhanced clearance may be the cause of increased secretion of cortisol by the 

hypothalamic-pituitary-adrenal axis in response to the decreased plasma cortisol levels. 

Currently, the mechanism(s) for these changes in glucocorticoid metabolism are not 

known. 

The Central Role of Glucocorticoids in Animal Models of Obesity 

Most forms of obesity share a dependence upon the availability of 

glucocorticoids. One exception is the pro-opiomelanocortin knockout mouse which is 

obese, but is reported to have no circulating corticosterone or aldosterone (Yaswen et al 

1999). Solomon and Mayer (1973) and Yukimura and Bray (1978) were the first to 

identify glucocorticoids as a necessary factor in genetic obesity, finding that bilateral 

adrenalectomy (ADX) prevented the development of obesity in leptin deficient ob/ob 

mice and fatty Zucker rats (Yukimura et al 1978). With subsequent glucocorticoid 

replacement, obesity ensued in both of these models. Similar findings were reported for 

ADX rats fed a cafeteria diet (Rothwell et al 1984) and rats with ventromedial 

hypothalamic (VMH) nuclei lesions (King et al 1985). Glucocorticoid deficiency was 

also found to prevent the hyperphagic effects of neuropeptide Y (NPY). Stanley et al 

(1989) found that normal but not ADX rats overate and became obese when NPY was 

administered into the hypothalamus, and that glucocorticoid replacement effectively 

restored the hyperphagic effect of NPY. These observations have been replicated and 

related to changes in hypothalamic serotonin (Habash et al 1999, Yeung & Castonguay 

2000).  
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In lean rats, ADX caused an attenuation of the rate of weight gain and altered 

body composition favoring a decrease in percentage of total fat mass (Schiffer & 

Wertheimer 1947). However, the duration of the post-ADX observation period seems to 

impact how ADX affects changes in caloric intake and/or body weight. Longer-term 

experiments with ADX rats have shown a significant reduction in the rate of weight gain, 

in ADX mice both body weight and carcass fat decrease significantly. Glucocorticoid 

replacement reverses all of these observations. Glucocorticoids also seem to interact with 

insulin and influence food choice in ADX rats. When provided with a choice of 

macronutrients, ADX rats maintain their intake of carbohydrate and protein, but reduce 

their intake of dietary fat (Devenport et al 1991). However, another experiment that 

provided insulin- and corticosterone-treated ADX rats with access to both lard and chow 

diet, the rats increased lard, but not chow intake in a dose-dependent manner (la Fleur et 

al 2004). 

Mice that overexpress 11β-HSD-1 in mesenteric adipose develop truncal obesity 

and have impaired glucose tolerance, hyperphagia, and elevated blood lipids and serum 

leptin (Masuzaki et al 2001). However, while these mice appear analogous to humans 

with Cushing’s disease, this obesity is dissimilar in that the source of the elevated 

glucocorticoids is adipose tissue and not the adrenal cortex. This would suggest that 

obesity in these mice may be the result of enhanced peripheral metabolism, but the 

mechanism for this change is not clear. 11β-HSD-1 null mice show resistance to diet-

induced obesity when provided with a high fat diet (Morton et al 2001 & 2004). 

Berthiaume et al demonstrated that rats fed a high fat, high sucrose diet in addition to an 

11β-HSD-1 inhibitor for 3 wk had similar body weight and food intake as controls fed 
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the same diet, but had reduced mesenteric adipose and adipose cell size (2007). No 

differences were observed in epididymal or retroperitoneal depots consistent with 

previous reports that implicate 11β-HSD-1 and glucocorticoids in the depot-specific 

accretion of fat in the visceral depot. 

Hexose-6-Phosphate Dehydrogenase  

 NADPH is the cofactor for 11β-HSD-1 oxidoreductase activity and therefore is 

critical to the ability of 11β-HSD-1 to generate active glucocorticoid. Hexose-6-

phosphate dehydrogenase (H6PDH), the microsomal enzyme analogous to cytosolic 

glucose-6-phosphate dehydrogenase (G6PDH), generates a pool of reduced nicotinamide 

adenine dinucleotide phosphate [NADP(H)] that determines the set point for 11β-HSD-1 

activity (Bujalska et al 2004, Bánhegyi et al 2004). H6PDH catalyzes the first two and 

rate-limiting steps of the pentose phosphate pathway within the endoplasmic reticulum 

(ER), while G6PDH serves as the first and rate-limiting enzyme for this pathway within 

the cytosol. H6PDH, however, has a much broader substrate specificity and can use 

hexoses other than glucose. Pyridine nucleotides are thought to be unable to cross cellular 

membranes, suggesting that the two enzymes generate reduced NADPH from separate 

pools of NADP+, although this has been recently challenged by McCormick et al (2006) 

who found that cytosolic pentose phosphate pathway flux impacts 11β-HSD-1 activity in 

rat adipocytes and microsomes. Critical steps for steroid hormone metabolism that 

require NADPH, including the action of 11β-HSD-1, occur in the ER and/or 

mitochondria, and thus, H6PDH has been implicated in 11β-HSD-1 activity. The initial 

support for this relationship came from the much earlier observation that H6PDH is 

localized in steroidogenic cells, liver cells, and renal tissue (Tanahashi et al 1980). 
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Cortisone Reductase Deficiency: The Link between H6PDH and 11β-HSD-1 

 Investigations into the underlying genetics of cortisone reductase deficiency 

(CRD), in which activation of cortisone to cortisol does not occur, led to the discovery of 

not only a defect in the gene HSD11B1, but also mutations in the gene H6PD (Draper et 

al 2003). These mutations in individuals with CRD follow a triallelic digenic model of 

inheritance and result in low 11β-HSD-1 expression as well as a decrease or complete 

absence of NADPH generation in the ER. Lavery et al (2006) generated H6PDH 

knockout mice and showed that the knockouts were unable to convert 11-

dehydrocorticosterone to corticosterone, while dehydrogenase activity increased and 

ultimately led to decreased circulating levels of active corticosterone. Bujalska et al 

(2005) found the same results in their experiments with CHO cells that were first 

transfected with 11β-HSD-1 cDNA and then transfected with H6PDH siRNA sequence. 

This body of research demonstrates that 11β-HSD-1 activity is dependent upon the 

activity of H6PDH, although it is not clear how diet might interact to change the activity 

or expression levels of these enzymes.  

Recent evidence suggests that within the ER lumen, the glucose-6-phosphate 

transporter, H6PDH, and 11β-HSD-1 form a triad that can act as a nutrient sensor of not 

only carbohydrate, but also fatty acids (see review by Bánhegyi et al 2009).  In a study of 

18 adult non-diabetic men and women, a mixed meal led to increased whole body 

production of cortisol whereas saline infusion had no effect (Basu et al 2006). In this 

tracer study, measurement of hepatic venous, femoral artery, and femoral venous cortisol, 

D4 cortisol, and D3 by blood sampling prior to and at various timepoints following 

ingestion of the meal (or saline infusion) revealed enhanced extra-splanchnic cortisol 
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production following postprandial blood glucose peak. Dzyakanchuk et al (2009) have 

recently shown that a high ratio of NADPH/NADP+ is needed for 11β-HSD-1 and that 

this reductase activity of the enzyme is stimulated by extracellular glucose in the human 

HEK-293 cells. Because these three proteins share a common pool of pyridine 

nucleotides, a cooperative relationship that is affected by the availability of glucose-6-

phosphate (G6P) is likely. Hence it is hypothesized that the flux of G6P ultimately 

impacts the intracellular level of active glucocorticoid. Ambiguities exist about how 

cytosolic carbohydrate flux influences circulating glucocorticoid levels and feedback 

mechanisms related to adrenal glucocorticoid production. Additionally, there is no clear 

mechanism to explain how activity levels of 11β-HSD-1 or H6PDH are increased or 

decreased in a tissue-specific manner in obesity. 
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Novel Hypothesis Regarding Diet, NADPH Availability, 11β-HSD-1, and H6PDH 

Figure 4. Hypothesized pathway for the dysregulation of glucocorticoid metabolism that 
occurs in response to dietary obesity induced by a high sugar diet. Circled numbers 
signify the proposed sequence of events; + = increase in response to high sugar diet. 
Abbreviations: CORT: corticosterone; 11-DHC: 11-dehydrocorticosterone; G6P: 
glucose-6-phosphate; GK: glucokinase (or hexokinase); GPL: phosphogluconolactone; 
ME: malic enzyme; NADPH/NADP+: nicotinamide adenine dinucleotide phosphate; 
PEPCK: phosphoenol-pyruvate carboxykinase. 
 

It seems likely that visceral obesity may be secondary to elevated expression and 

reductase activity of 11β-HSD-1 in adipose tissue. The initiation of elevated levels of 

active glucocorticoid locally in adipose likely precedes increased adiposity and then is 

compounded/perpetuated by increases in adiposity which occur alongside decreased 

insulin sensitivity and enhanced local glucocorticoid production. We hypothesize that 
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diets proportionally high in sugar contribute to enhanced pentose phosphate pathway flux 

in adipose tissue which in turn increase local 11β-HSD-1 expression and reductase 

activity. Additionally, we propose that the opposite will take place in the liver as 

evidenced by decreased levels of 11β-HSD-1 reductase activity and increased hepatic 

glucocorticoid clearance. Local hypercortisolemia increases transcription of PEPCK, 

decreases insulin sensitivity and increases hepatic gluconeogenic flux (Goldstein et al 

2002). It is possible that in the initial stages of glucocorticoid dysregulation increased 

availability of 6-carbon sugars in adipose tissue leads to increased production of NADPH 

via the pentose phosphate pathway and subsequent increases in 11β-HSD-1 reductase 

activity (Fig. 4). The increased corticosterone levels in adipose eventually begin to flow 

into the hepatic portal vein and elevated local glucocorticoids in liver result. We 

hypothesize that corticosterone levels then begin to increase in liver which initially 

increase 11β-HSD-1 dehydrogenase activity. This increase in local hepatic corticosterone 

causes the upregulation of PEPCK which increases gluconeogenesis (Fig. 4). 

Additionally, as an adaptive response to the high sucrose and high fructose diets it is 

likely that both H6PDH and 11β-HSD-1 would be upregulated in adipose tissue, and in 

that way favor further increases in intracellular corticosterone that then migrates via the 

circulation back to the liver. The excess of 6-carbon sugars provided by a high sucrose 

diet may be increasing production of the reducing equivalent NADH via enhanced 

glycolysis and subsequent citric acid cycle activity in the liver thereby providing more 

cofactor to fuel the inappropriately increased gluconeogenenic pathway.  

Our 10 wk study revealed increases in H6PDH mRNA in both liver and 

mesenteric adipose of high sucrose-fed rats, while 11β-HSD-1 mRNA increased in 

 
 

37



mesenteric adipose and decreased in liver of high sucrose-fed rats in comparison to 

controls (London et al 2007). It is possible that the increased NADPH produced by 

elevated H6PDH is utilized for de novo fatty acid biosynthesis and not as cofactor for 

11β-HSD-1 reductase activity. This hypothesis is supported by evidence suggesting that 

diets high in fructose can promote the accumulation of lipid, mainly triacylglycerols, as 

well as other symptoms of nonalcoholic hepatic steatosis (Kawasaki et al 2009). Also, 

enhanced de novo lipid biosynthesis and subsequent dyslipidemia and increased fat 

storage may have played a role in the increased adiposity observed in the sucrose-fed rats 

in the 10 wk pilot study.  
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Chapter 2. The Role of Diet and 11β-hydroxysteroid dehydrogenase-1 on Obesity 
(London & Castonguay 2009) 

 
Introduction 

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) is a key regulatory 

enzyme in glucocorticoid metabolism, specifically in regulating intracellular 

concentrations of cortisol, the primary glucocorticoid. While the excessive level of 

circulating cortisol in Cushing’s disease is of adrenal origin, it is the intracellular and not 

systemic level of cortisol that is elevated in obesity. This tissue-specific dysregulation of 

glucocorticoids observed in obesity results from alterations in 11β-HSD-1 in both liver 

and mesenteric adipose. While cortisol has been identified as playing a permissive role in 

obesity, little is known about how diet may regulate message, expression and activity of 

11β-HSD-1. In this review, we have integrated three lines of evidence that, taken 

together, suggest that dietary composition can play a primary role in promoting increased 

intracellular cortisol, and in that way form the basis of a mechanism that results in 

excessive adiposity. We review evidence from studies of adrenalectomized rats, as well 

as studies linking 11β-HSD-1 to the pentose phosphate pathway and other metabolic 

pathways via the enzyme hexose-6-phosphate dehydrogenase (H6PDH).  Emerging 

evidence from dietary manipulation experiments suggesting that macronutrient 

composition may elicit changes in 11β-HSD-1 and promote obesity is discussed. 

 The centrality of glucocorticoids in animal models of obesity  

Most forms of obesity share a dependence upon the availability of 

glucocorticoids, so-named for their role in blood glucose maintenance (Houssay 1964). 

Solomon and Mayer (1973) and Yukimura and Bray (1978) were first to implicate 

glucocorticoids as a necessary factor in genetic obesity, observing that obesity was 
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prevented following bilateral adrenalectomy (ADX) and fully restored by glucocorticoid 

replacement. Analogous findings were reported for rats fed a cafeteria diet (Rothwell et al 

1984) and rats with electrolytic lesions of the ventromedial hypothalamic nuclei (Bruce et 

al 1982). In lean rats, ADX causes an attenuation of the rate of weight gain and a shift in 

body composition to lessen carcass fat (Schiffer & Wertheimer 1947). Whether or not 

ADX elicits a decrease of caloric intake and/or body weight appears to depend upon the 

duration of the post-ADX observation period. Longer-term experiments typically report a 

significant reduction in intake and body weight, as well as a significant decrease in 

carcass fat. Glucocorticoid replacement reverses all of these phenomena (Yukimura et al 

1978, Castonguay et al 1986, Freedman et al 1985).  

Glucocorticoids and Dietary Obesity  

There is far less known about the role of adrenal hormones and dietary obesity.  

ADX leptin-deficient (ob/ob) mice lose carcass fat, have normal glucose tolerance, and 

maintain normal circulating insulin. However, when ADX ob/ob mice are fed a diet that 

is either high in glucose or fat, they retain their obese phenotype that includes 

hyperinsulinemia, excess body fat, and abnormal glucose tolerance (Grogan et al 1987). 

Kang et al reported that a high fat (HF), but not a high glucose diet allowed ADX ob/ob 

mice to maintain high levels of energy retention in the absence of hyperinsulinemia 

(1992). We have reported that HF diets attenuate the effects of ADX in both obese and 

lean Zucker rats (Bray et al 1992), and that mice fed a HF diet maintain elevated levels of 

circulating leptin after ADX (Bai & Castonguay 2000), once again illustrating that HF 

diets can reduce or reverse some of the effects of ADX. Similarly, ADX rats that are 

given access to a sucrose solution in addition to their customary chow diet are also 
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normal with respect to corticotrophin releasing factor and dopamine β-hydroxylase 

mRNA expression in the brain, food intake, caloric efficiency, fat deposition, and 

circulating triglyceride, leptin, and insulin (Laugero et al 2001).  

A Novel Hypothesis about Glucocorticoids and Obesity 

Although glucocorticoid production and secretion are increased in human obesity, 

plasma cortisol levels in obese people are not consistently elevated (Walker 2001). This 

observation is congruent with the viewpoint that the steroids play only a permissive role 

in obesity.  However, it has long been recognized that glucocorticoids have a profound 

influence on adipose tissue distribution and function as evidenced by Cushing’s patients. 

This would imply that the relationship between body fat and glucocorticoids is more than 

simply permissive. Seckl and colleagues have advocated an examination of the role of 

11β-HSD-1 in obesity (1997). 11β-HSD-1 controls intracellular glucocorticoid 

concentrations via its dehydrogenase and reductase activities.  When 11β-HSD-1 acts as a 

dehydrogenase it inactivates cortisol/corticosterone (human/rat).  As a result, cortisol is 

converted into its inert 11-keto form (cortisone/11 dehydrocorticosterone).  When 11β-

HSD-1 acts as a reductase the inactive metabolite is converted into active glucocorticoid. 

Adipose tissue taken from obese humans has 3 to 4 times the 11β-HSD-1 reductase 

activity of adipose taken from lean humans (Rask et al 2001; refer to Table 1). 

Mice that overexpress 11β-HSD-1 develop truncal obesity and display glucose 

tolerance, hyperphagia, and elevated blood lipids and serum leptin (Masuzaki et al 2001). 

Hence, these mice appear to be a close model to humans with Cushing’s syndrome, a 

condition characterized by elevated circulating glucocorticoids and visceral obesity. 

Visceral obesity may be secondary to enhanced local activation of steroid via elevated 
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levels and activity of 11β-HSD-1 in adipose tissue which result in abnormally elevated 

levels of cortisol/corticosterone in adipose tissue. This obesity is distinct from that of 

Cushing’s patients in that the source of the elevated glucocorticoids is adipose tissue as 

opposed to the adrenal cortex. 

11β-HSD-1 and Tissue-Specific Regulation of Glucocorticoid Action 

Two isozymes of 11β-HSD, 11β-HSD-1 and 11β-HSD-2, interconvert active 

glucocorticoid and its inactive 11-keto metabolite. 11β-HSD-2 functions primarily as a 

dehydrogenase in vivo, inactivating the hormone by converting the 11-hydroxy group to 

an 11-keto group. It is mainly expressed in mineralocorticoid target tissues, the kidney 

and the colon, where it protects the mineralocorticoid receptor from activation by 

glucocorticoids which are present at much higher concentrations than mineralocorticoids. 

11β-HSD-2 is not expressed in the pituitary or most regions of the adult central nervous 

system. Recently, it has been suggested that the type 2 isoform may play a protective role 

by decreasing glucocorticoid action in adipocytes as transgenic mice that overexpress 

11β-HSD-2 in adipose tissue are resistant to diet-induced obesity (Kershaw et al 2006;  

refer to Table 1). 11β-HSD-2 mRNA has also been detected in the hypothalamus, 

suggesting that it may play a role in energy balance (Zhang et al 2005). In contrast, 11β-

HSD-1 functions predominantly as an oxidoreductase in vivo, generating active hormone 

from inactive metabolite. It is highly expressed in adipose, liver, pituitary, and brain 

(Sakai et al 1992).   

 The search for an ideal selective pharmacological antagonist for 11β-HSD-1 is 

ongoing. Glycyrrhetinic acid does inhibit 11β-HSD-1 activity, but without isoform 

specificity (Horigome et al 1992). Much of what is known about 11β-HSD-1 therefore 
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comes from studies of knockout (KO) mice or transgenic mice that overexpress the 

enzyme. Masuzaki et al. (2001) reported that mice that overexpress 11β-HSD-1 under the 

control of the enhancer-promoter region of the adipocyte fatty acid-binding protein aP2 

gene develop visceral obesity, impaired glucose tolerance, hyperphagia, and elevated 

blood lipids and leptin. Overexpression of the enzyme is also associated with several 

other forms of human and rodent obesity (see below). 11β-HSD-1 KO mice have adrenal 

hyperplasia but attenuated glucocorticoid-induced activation of gluconeogenic enzymes 

in response to fasting, as well as lower glucose levels in response to stress (Holmes et al 

2001). It has been proposed that these mice might compensate for the mutation by 

increasing adrenal activity so as to maintain homeostasis. Consistent with this, Harris et 

al (2001) found that these KO mice have elevated plasma corticosterone and ACTH 

levels at the diurnal nadir as well as a prolonged corticosterone peak. Similar disruptions 

in glucocorticoid rhythmicity have been reported in human and rodent obesities. Further, 

the 11β-HSD-1 null mice have exaggerated ACTH and corticosterone responses to 

restraint stress, as well as impaired stress responsivity.  We have observed a similar 

syndrome in intact Sprague-Dawley rats fed a HF diet (Kamara et al 1998). 

  Kotolevtsev et al (1997) reported that 11β-HSD-1 KO mice have attenuated 

activation of the key hepatic gluconeogenic enzymes, glucose-6-phosphatase and 

phosphoenolpyruvate carboxykinase (PEPCK). The mice are resistant to hyperglycemia 

induced by overnight fasting followed by placement in a novel environment. Importantly, 

giving access to a HF diet significantly lowered fasting plasma glucose in KO mice 

compared to wild-type controls. Morton et al (2001) found that 11β-HSD-1 KO mice 

exhibit an improved lipid profile and increased hepatic insulin sensitization. Specifically, 
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the mice have lower plasma triglyceride levels, increased hepatic expression of the fat-

catabolizing enzymes, carnitine palmitoyltransferase-I, acyl-CoA oxidase, and 

uncoupling protein-2, increased HDL cholesterol and elevated liver mRNA and serum 

levels of apolipoprotein AI. In summary, these studies collectively imply that the 11β-

HSD type 1 isoform is important in energy homeostasis and that the null mutant adopts 

compensatory responses in systems implicated in several different models of obesity. 

Correlational studies also indicate that 11β-HSD-1 is overexpressed in both 

human and rodent obesities. For example, Aoki et al found that insulin-resistant diabetic 

C57BL/KsJ-db/db mice have higher blood glucose, plasma insulin, and corticosterone, in 

addition to increased 11β-HSD-1 activity and elevated hepatic 11β-HSD-1 mRNA levels 

compared to db/+m heterozygote controls (Aoki et al 2001). They suggested that the 

increased hepatic corticosterone concentration may antagonize the action of insulin and 

cause insulin resistance.  Livingstone et al (2000a) reported that 11β-HSD-1 activity in 

omental fat excised from obese male Zucker rats was double that of lean controls. They 

also found that ADX reversed the difference in 11β-HSD-1 activity observed between 

obese and lean Zucker rat omental fat. Paulmyer-Lacroix et al (2002) reported that 11β-

HSD-1 mRNA expression was increased by more than 2.5-fold in the stromal 

compartment of visceral adipose tissue compared with subcutaneous adipose tissue. They 

also reported that 11β-HSD-1 was increased in mature adipocytes taken from abdominal 

subcutaneous and visceral fat depots of obese patients when compared to lean controls. 

Similarly, Rask et al found that obese women have elevated 11β-HSD-1 activity in 

subcutaneous adipose tissue when compared to lean controls, and that the activity of the 

enzyme positively correlates with body mass index (2001).    
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11β-HSD-1 obviously plays an important role in normal cell functioning. 

Bujalska et al compared human omental to subcutaneous adipose stromal cells, and 

observed that 11β-HSD-1 activity in omental stromal cells increased during 

differentiation into mature adipocytes (2002). 11β-HSD-1 activity acts primarily as a 

dehydrogenase (converting the active hormone to inactive metabolite) in preadipocytes, 

yet the opposite is true in mature adipocytes. They suggested that the oxidoreductase 

activity of 11β-HSD-1 ensures the local generation of active steroid and in that way 

further induces adipocyte differentiation. Yau et al (2007) used 11β-HSD-1 KO mice to 

study aging-related hippocampal changes that are thought to be caused by excess 

corticosterone. Unlike wild type controls, these KO mice perform significantly better in a 

Morris water maze, suggesting that age-related learning deficits that are thought to be the 

result of high levels of corticosterone exposure are ameliorated with deactivation to 11-

dehydrocorticosterone.  

The Regulation of 11β-HSD-1 Activity vs. 11β-HSD-1 Message 

Despite rapid advances in our appreciation of the role of this enzyme, there is still 

little that is known about the factors that regulate its dehydrogenase and reductase 

activities. Increased 11β-HSD-1 message, protein, and activity in the omental or 

mesenteric fat of obese patients and genetically obese rats, respectively, are thought to 

promote elevated intracellular glucocorticoid concentrations in a tissue-specific manner. 

Genetically engineered mice that overexpress the enzyme in mesenteric adipose become 

obese. HF diets promote transient increases in circulating corticosterone, increased 

circulating insulin and insulin resistance, as well as increased circulating leptin 

(Tannenbaum 1997). Any one of these factors might promote the increased 
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oxidoreductase activity of 11β-HSD-1 reported in obese humans (Rask et al 2002). 

Similarly, increased reductase activity (and not just increased message/protein) may be 

the consequence of any one of these variables that are affected by a HF diet or may result 

from increased substrate availability for 11β-HSD-1 caused by changes in intermediary 

metabolism. 

Hexose-6-phosphate dehydrogenase and Its Role in Glucocorticoid Metabolism 

Hexose-6-phosphate dehydrogenase (H6PDH) and its putative cooperativity with 

11β-HSD-1 within the lumen of the ER has become an active area in the search for a 

mechanism to explain the tissue-specific regulation of 11β-HSD-1 activity. H6PDH, the 

microsomal analogue to cytosolic glucose-6-phosphate dehydrogenase (G6PDH), 

generates a pool of reduced nicotinamide adenine dinucleotide phosphate [NADP(H)] 

that plays a critical role in determining the set point for 11β-HSD-1 reductase activity 

(Bujalska et al 2005, Hewitt et al 2005). H6PDH catalyzes the first two (including the 

rate-limiting) steps of the pentose phosphate pathway within the ER, while G6PDH 

serves as the first and rate-limiting enzyme of the same pathway in the cytosol. H6PDH 

also differs from G6PDH in that it has broad substrate specificity and can use various 

hexose-phosphates. Investigations into the underlying genetics of cortisone reductase 

deficiency (CRD), in which activation of cortisone to cortisol does not occur, led to the 

discovery of not only a defect in the gene HSD11B1, but also mutations in the gene 

H6PDH (Draper et al 2005). These mutations in individuals with CRD follow a triallelic 

digenic model of inheritance and result in low 11β-HSD-1 expression as well as a 

decrease or complete absence of NADPH generation in the ER. Preliminary support for 

this relationship came from the much earlier observation that H6PDH is localized in 
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steroidogenic cells, liver cells, and renal tissue (Tanahashi and Hori 1980), where 11β-

HSD-1 is also highly expressed. Lavery et al (2007) generated H6PDH knockout mice 

and showed that H6PDH null mice were unable to convert inactive 11-

dehydrocorticosterone to corticosterone, while dehydrogenase activity increased, 

ultimately leading to decreased circulating levels of active glucocorticoid. Bujalska et al 

(2008) reported the same effects in CHO cells that were first transfected with 11β-HSD-1 

cDNA and then transfected with H6PDH siRNA. 

It is generally accepted that cellular membranes are relatively impermeable to 

pyridine nucleotides, which led to the initial suggestion that the two enzymes generate 

reduced NADPH from separate pools of NADP+. This has recently been challenged by 

McCormick et al (2006) who found that cytosolic pentose phosphate pathway flux can 

also impact 11β-HSD-1 activity in rat adipocytes and microsomes. In support of the 

hypothesis that NADPH generated within the lumen of the endoplasmic reticulum is the 

key source of cofactor for 11β-HSD-1. Bánhegyi et al (Bánhegyi et al 2004) showed 

cooperativity between 11β-HSD-1 and H6PDH in liver via the inhibition of the glucose-

6-phosphate transporter (G6PT) by S3483. Both inhibition of G6PT and the absence of 

glucose-6-phosphate as substrate led to significantly reduced cortisone activation and 

H6PDH activity in isolated rat liver microsomes. Enzyme activity studies confirming the 

presence of distinct intralumenal and cytosolic pools of pyridine nucleotide in the hepatic 

ER (Czegle et al 2006) and ER of adipocytes (Marcolongo et al 2007) provide additional 

support for the close relationship between 11β-HSD-1 and H6PDH. 

 This body of research demonstrates that 11β-HSD-1 activity is dependent upon 

the activity of H6PDH, which relies upon the availability of its substrate, primarily 
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glucose-6-phosphate. While there is evidence to suggest that diet and macronutrient 

composition can influence glucocorticoid metabolism and that carbohydrate intake can 

impact pentose phosphate pathway flux (London et al 2007), it is not clear how intake is 

involved in changing the activity or expression levels of these enzymes. Additionally, 

there is no clear mechanism to explain how 11β-HSD-1 or H6PDH expression and/or 

activity levels are increased or decreased in a tissue-specific manner in obesity. 

Influence of Diet on Message, Expression, and Activity of 11β-HSD-1 

High Fat Diets 

 Obesogenic diets, including high fat diets, may impact glucocorticoid metabolism 

via their impact on 11β-HSD-1. Rodent studies suggest that inhibiting 11β-HSD-1 may 

be useful in protecting against high fat diet-induced obesity. 11β-HSD-1 null mice 

demonstrate resistance to diet-induced obesity when fed a high fat diet (Morton et al 2001 

& 2004; refer to Table 1). Morton et al showed that 11β-HSD-1 activity is lower in 

subcutaneous, epididymal, and visceral fat depots in obesity/metabolic syndrome-

resistant (A/J) mice compared to 11β-HSD-1 activity levels in C57BL/6J Lep ob/ob mice, 

a strain prone to obesity (2004). Transgenic mice that overexpress 11β-HSD-1 in 

mesenteric adipose display phenotypic and metabolic disturbances that favor obesity, 

including increased 11β-HSD-1 activity in subcutaneous and epididymal fat (2.4- and 

2.7-fold, respectively) (Masuzaki et al 2001). This is comparable to what is observed in 

obese vs. lean humans. Fat accumulation in the abdominal region of transgenic mice fed a 

low fat diet (10% fat) was comparable to that of non-transgenic mice fed a high fat diet 

(45% fat), and this disproportionate accumulation of lipid in visceral depots was even 

more exaggerated when the transgenic mice were fed the high fat diet. This work 
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cumulatively supports the notion that 11β-HSD-1 levels and/or activity can predispose 

rodent models to increased adiposity. There is, however, no evidence to suggest high fat 

diets in the absence of specific genetic background can impact tissue-specific 11β-HSD-1 

message, expression, or activity. 
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Table 1. Summary of data implicating local glucocorticoid metabolism in obesity and 
obesity-related disturbances 

 
Species Treatment/

condition 
Phenotypic and physiological 
changes 

Known dietary influences 

Human Cushing’s 
Syndrome 

• Adrenal overproduction of 
cortisol; subsequent elevation of 
systemic glucocorticoid levels 

• Visceral obesity, glucose 
intolerance 

• Depression, excessive hair 
growth, irregular periods or 
amenorrhea in women; infertility 
in men 

• Elevated blood pressure 

 

Human Obesity • Elevated 11β-HSD-1 activity in 
subcutaneous tissue in women; 
activity  positively correlated to 
BMI (Yau et al 2007) 

 

Mouse 11β-HSD-
1 knockout 

• Adrenal hyperplasia, attenuated 
glucocorticoid -induced 
activation of gluconeogenic 
enzymes in food-deprived state, 
decreased glucose levels in 
response to stress (Kamara et 
al 1998, Horigome et al 1999);  

• Elevated plasma corticosterone 
and ACTH at diurnal nadir; 
prolonged peak (Holmes et al 
2001); 

• Improved lipid profile, increased 
hepatic expression of fat 
catabolizing enzymes (carnitine 
palmitoyltransferase-I, acyl-CoA 
oxidase, uncoupling protein-2), 
increased HDL, elevated 
hepatic mRNA and serum 
apolipoprotein AI levels 
(Kotelevtsev 1997) 

• High fat diet lowers fasting 
plasma glucose levels  
(Kamara et al 1998) 

Mouse Over-
expression 
of 11β-
HSD-1 in 
adipose 

• Truncal obesity, glucose 
intolerance, hyperphagia, and 
elevated serum lipids and leptin 
(Seckl 1997) 

 

Mouse  Over-
expression 
of 11β-
HSD-2 in 
adipose 

• Reduced fat mass 
accumulation on HF diet; 
associated with decreased food 
intake, increased energy 
expenditure, improved glucose 
tolerance and insulin sensitivity 
(Rask et al 2001) 

• Decreased adipose tissue gene 
expression of leptin and resistin 
and increased expression of 

• Resistance to diet-induced 
obesity on high fat diet 
(Rask et al 2001) 
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adiponectin, peroxisome 
proliferator-activated receptor 
gamma, and uncoupling protein 
2 (Rask et al 2001) 

Mouse  
(ob/ob) 

ADX   • Loss of carcass fat; normal 
glucose tolerance, normal 
circulating insulin levels 
(Freedman et al 1985) 

• High fat diet—obese 
phenotype maintained 
including glucose tolerance 
(Freedman et al 1985, 
Grogan et al 1987)  

• High—obese phenotype 
maintained including 
impaired glucose tolerance 
(Freedman et al 1985) 

Rat ADX  • Decreased weight gain; 
decreased body fat (Bruce et al 
1982) 

• High fat diet reverses some 
effects of ADX, including 
elevated leptin levels (Bray 
et al 1992); 

• Sucrose access restores 
CRF and β-hydroxylase 
mRNA levels in brain, food 
intake, caloric efficiency, fat 
deposition and systemic TG, 
leptin, and insulin (Bai & 
Castonguay 2000) 

Rat 
(fa/fa) 

 obesity  • Increased 11β-HSD-1 activity 
in omental fat; enhanced 
activity reversed by ADX (Aoki 
et al 2001) 

 

 

One recent clinical trial suggests that percentage of energy from dietary fat can 

affect glucocorticoid metabolism independent of fat loss. Stimson et al (2007) showed 

that healthy obese men fed either ad libitum or isocaloric high fat, low carbohydrate diets 

(HFLC) (66% and 4%, respectively) had increased cortisol appearance and reduced 

urinary excretion of cortisol metabolites compared to their counterparts on ad libitum or 

isocaloric moderate fat, moderate carbohydrate diets (MFMC) (35%:35%). While weight 

loss was higher among the HFLC diet group, no differences in loss of fat mass were 

observed between the HFLC and MFMC groups, and changes in cortisol metabolism 

were deemed independent of weight loss. This suggests differential regulation of cortisol 

metabolism as a result of macronutrient composition of diet.  
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Adult male Sprague-Dawley (S-D) rats fed a HF, high sucrose diet in addition to 

an 11β-HSD-1 inhibitor (a 4-heteroarylbicyclo[2.2.2]octyltriazole) for 3 wk had similar 

body weight and food intake as controls fed the same diet, but had reduced mesenteric 

adipose and adipose cell size (Berthiaume et al 2007). Interestingly, the inhibition of 11β-

HSD-1 decreased the message level of enzymes involved in lipid synthesis (fatty acid 

synthase [FAS], stearoyl-CoA desaturase 1 [SCD1], diacylglycerol acyltransferase 1 

[DGAT1]) and fatty acid cycling (adipose triglyceride lipase [ATGL], 

phosphoenolpyruvate carboxykinase [PEPCK]), while concomitantly increasing the 

message of fatty acid oxidation-promoting carnitine palmitoyl transferase 1. While these 

data suggest diet-induced changes in accumulation of fat mass via a glucocorticoid driven 

mechanism it is not clear how dietary macronutrient composition might play a role in the 

observed metabolic changes. 

Macronutrient composition of diet (specifically carbohydrate content) has also 

been found to influence glucose homeostasis and lipid metabolism, yet a direct effect of 

carbohydrate intake on glucocorticoid metabolism has not been elucidated. When 

provided with access to solutions of sucrose, fructose or glucose, rats increase their 

energy intake by 10−20% above what they would consume if provided with rat chow 

alone (Kanarek & Orthen-Gambill 1982). Simple sugars have been shown to stimulate 

hepatic de-novo lipogenesis, making them a likely candidate for promoting the fasting 

hypertriglyceridemia that has been associated with high sucrose or high fructose diets 

(Havel 2005). Minehira et al (2003) examined markers of whole body de novo 

lipogenesis and lipogenesis in subcutaneous adipose in response to two 4-day dietary 

interventions in 9 healthy lean subjects (male n= 5, female n= 4): 1) isocaloric feeding 
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(100% of energy requirement with 50% of total energy as carbohydrate, 35% as lipid, and 

15% as protein), or 2) carbohydrate overfeeding (175% of energy requirement with 71% 

as carbohydrate, 20% as lipid, and 9% as protein). Carbohydrate overfeeding increased 

basal and post-glucose energy expenditure as well as net carbohydrate oxidation, while 

whole body net de novo lipogenesis after glucose loading was markedly increased at the 

expense of glycogen synthesis. mRNA levels for sterol regulatory element-binding 

protein-1c (SREPB-1c), acetyl-CoA carboxylase (ACC), and FAS were increased 

significantly by carbohydrate overfeeding. In a similar study of lean vs. overweight 

individuals, Minehira et al found that carbohydrate overfeeding did not stimulate whole 

body net de novo lipid biosynthesis nor expression of the lipogenic enzymes ACC and 

FAS or SREBP-1c in adipose to a greater extent in overweight compared to lean 

individuals (Minehira et al 2004). While both fructose and glucose stimulate SREBP-1c, 

which regulates de novo lipogenesis, both SREBP-1c and de novo lipogenesis are more 

strongly induced by fructose than glucose, providing evidence that different sugars can 

differentially regulate lipid metabolism (Minehira et al 2003). When S-D rats are given 

long-term ad libitum access to standard chow as well as 32% sucrose, 32% fructose, or 

32% glucose solutions, or granulated sucrose, they exhibited differential responses 

(Kanarek & Orthen-Gambill 1982). While all sugar-fed rats had decreased glucose 

tolerance and increased weight gain and retroperitoneal fat, sucrose-fed rats had 

significantly more brown adipose tissue than either control or fructose-fed rats. Fructose-

fed rats had elevated serum triglycerides compared to the others. Importantly, while the 

mechanism is unclear, these data indicate that different sources of dietary sugars appear 

to have different metabolic consequences.  
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Kyoto Wistar (WKY) and spontaneously hypertensive rats (SHR) fed fructose-

enriched diets for 14 days exhibited significant increases in plasma insulin and 

triglyceride concentrations in addition to elevated blood pressure (Reaven et al 1990). 

Similar results have also been reported in S-D rats fed a high fructose diet (Hwang et al 

1987). Reaven et al showed that SHR and WKY rats given ad libitum access to a diet 

composed of 66% fructose, 12% fat, and 22% protein respond similarly. However, 

increases in blood pressure and plasma triglycerides were higher in the SHR rats. These 

data suggest not only a direct influence of dietary fructose on markers of lipid 

metabolism and blood pressure, but also that underlying genetic background interacts 

with the carbohydrate composition of diet.  

In their summary of recent findings about the short- and long-term metabolic 

effects of fructose in humans and rodents, Lê and Tappy found that the consumption of 

large quantities of fructose can lead to the development of a complete metabolic 

syndrome in rodents including hepatic and extrahepatic insulin resistance, dyslipidemia, 

and high blood pressure irrespective of the fact that dietary fructose does not directly 

elicit insulin secretion (2006). Short-term moderate to high fructose intake in humans 

caused elevated plasma triglycerides and changes in hepatic glucose homeostasis as well 

as adipose tissue insulin resistance, but did not appear to elicit muscle insulin resistance 

or elevated blood pressure (Chong et al 2007). 

High fructose intake may contribute to postprandial lipemia via changes in the 

partitioning of fatty acids toward esterification. A randomized crossover study of 14 

healthy subjects given test meals of either labeled fructose or glucose in addition to 

labeled palmitate, showed that respiratory quotient and plasma triacylglycerol and 
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VLDL-triacylglycerol were significantly higher in those administered the fructose meal.  

The concentrations of both insulin and labeled palmitate in nonesterified fatty acids were 

lower after fructose than glucose meals (Bhatnagar et al 2000). This suggests that 

decreased insulin stimulation after fructose may cause less lipoprotein lipase activation in 

adipose tissue and, as a result, impaired triacylglycerol clearance. 

Do dietary components, particularly CHO, influence the HPA axis?  

While evidence supports the differential effect of macronutrient composition on 

both lipid and glucose metabolism, it is not clear what role glucocorticoids and 11β-

HSD-1 might play. ADX in a rat model has been shown to have a profound effect on the 

HPA axis, namely by increasing ACTH secretion and sympathetic activity and decreasing 

food intake and weight gain (Bhatnagar 2000). Laugero at al found that voluntary 

consumption of sucrose solution, but not non-nutritive saccharin solution, reversed the 

effects of ADX in rats by restoring corticotrophin releasing factor (CRF) and dopamine-

β-hydroxylase mRNA levels in brain (2001). Voluntary sucrose solution intake also 

restored food intake, weight gain, and circulating triglyceride, leptin, and insulin levels in 

ADX rats suggesting that dietary sugar can trigger enhanced peripheral glucocorticoid 

production and/or affect behavior to compensate for the absence of adrenal activity. More 

recently, we have shown that rats given free access to 16% sucrose solution in addition to 

chow and water for 10 wk have increased 11β HSD-1 and H6PDH message in mesenteric 

adipose (London et al 2007). These changes in adipose were accompanied by decreased 

11β-HSD-1 message and increased H6PDH message in liver in comparison to controls 

given ad lib access to chow and water. Further, we showed that while there are no 

differences in weight gain among the control and sugar-fed groups after 6 wk of sucrose 
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access, the sucrose-fed rats had a significantly higher mean percentage of body fat. We 

also found that sucrose, fructose, and glucose have differential effects on the message of 

11β-HSD-1 and H6PDH in adipose and liver in as little as 1 wk of access to sugar 

solutions (previously unpublished data). These data suggest that alterations in mRNA for 

enzymes related to glucocorticoid metabolism may result from dietary manipulations and 

not solely changes in body composition or increased adiposity. 

Conclusion  

It is clear that glucocorticoids are involved in obesity, especially diet-induced 

obesity.  Although elevated circulating corticosterone is not a defining characteristic of 

all obesities, the steroid nevertheless plays a critical role in its etiology. One plausible 

hypothesis that links these phenomena is a dysregulation of local levels of active steroid 

via altered activity of the enzyme 11β-HSD-1. A major tenet of the pathway proposed 

herein (Fig. 5) is that enzyme activity is induced in specific tissues by consumption of 

high sugar diets.  
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Figure 5. Proposed pathway for high sugar diet-induced dysregulation of glucocorticoid 
metabolism. It is hypothesized that a high calorie, high sugar diet increases pentose 
phosphate pathway (PPP) flux. As shown, microsomal PPP flux directly increases 
H6PDH activity, thereby increasing NADPH production in both mesenteric adipose and 
liver. In adipose, we propose increased NADPH promotes increased reductase activity of 
11β-HSD-1 which in turn leads to increased cortisol levels. Excess cortisol drains into the 
liver via the hepatic portal vein where it increases cortisol concentrations and triggers an 
inappropriate increase in gluconeogenesis via upregulation of PEPCK. This increase in 
glucose production provides additional substrate for glycolysis and Krebs Cycle, PPP, 
and lipid biosynthesis. We hypothesize that 11β-HSD-1 is downregulated in liver as a 
compensatory mechanism resulting in decreased enzyme expression and reduced 
reductase activity. In turn, enhanced excretion of cortisol metabolites occurs. The overall 
increase in NADPH in liver may promote enhanced lipid biosynthesis thereby raising 
blood triglycerides and promoting fat storage. Abbreviations:  CORT: corticosterone; 11-
DHC: 11-dehydrocorticosterone; GK: glucokinase (or hexokinase); GPL: phospho-
gluconolactone; G6P: glucose-6-phosphate; ME: malic enzyme; PEPCK: 
phosphoenolpyruvate kinase. 
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Results from our laboratory point to sucrose as a particularly effective dietary 

component that can alter 11β-HSD-1 message and at the same time promote increased 

adiposity. Our preliminary inquiries suggest that NADPH is an essential trigger in 

promoting the oxidoreductase activity of 11β-HSD-1. 

It has long been known that sucrose spares ADX induced body weight and body 

fat loss (Laugero et al 2001). London et al (2007) more recently demonstrated that 

sucrose promoted a decrease in hepatic 11β-HSD-1 message and simultaneously an 

increase in 11β-HSD-1 message in mesenteric adipose tissue. This difference in the effect 

of sucrose on 11β-HSD-1 in liver and in adipose has not been thoroughly explained. 

Increased adipose 11β-HSD-1 is thought to promote increased intracellular 

cortisol/corticosterone concentrations. The active hormone is then thought to be 

transported to the liver, where it can participate in both the upregulation of PEPCK and 

subsequent increased gluconeogenesis. Decreased liver 11β-HSD-1 message is likely to 

be the consequence of downregulation resulting from the influx of cortisol/corticosterone 

stemming from adipose (Fig. 5). What is interesting is that both adipose and liver have 

increased H6PDH message in response to sucrose. Work being conducted in our 

laboratory suggests that acute (24h) access to sucrose fails to induce all of these changes 

(London & Castonguay, in preparation).   

Havel (2005) has suggested a second explanation of why sucrose access results in 

obesity.  He notes that fructose (a component of sucrose) bypasses the key glycolytic 

enzyme phosphofructokinase, thereby providing unregulated supply of glycerol-3-

phosphate and acetyl-CoA so as to favor increased lipogenesis. We have suggested that 

the sucrose-induced enhanced H6PDH message found in liver may help promote 
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lipogenesis by increasing available NADPH. Thus, sucrose access favors obesity by 

having profound effects on both hepatic glucose production and at the same time 

increased lipogenesis. Perhaps this dual-effect accounts for why access to glucose fails to 

promote comparable levels of obesity, since dietary glucose is subject to tighter 

metabolic regulation. 

 Two sources of evidence have helped to identify the interactions between 

intracellular glucocorticoid concentrations, diet and body composition (See Table 1). The 

first set of evidence has been derived from observations of tissue-specific changes in 11β-

HSD-1 expression that have been observed in human obesity. The second has come from 

studies manipulating the expression of 11β-HSD-1 in animal models. Studies of animal 

models make it clear that the enzyme has pervasive effects throughout the animal. 11β-

HSD-1 KO mice show perturbations in the HPA axis including adrenal hyperplasia 

(Holmes et al 2001, Kotelevtsev 1999) and disruptions in the normal diurnal nadirs and 

peaks of both corticosterone and ACTH (Harris et al 2001). Additionally, these 11β-

HSD-1 null mice have improved lipid profiles and enhanced expression of fat catabolized 

enzymes in liver (Morton et al 2001). Conversely, overexpression of 11β-HSD-1 in 

adipose of mouse results in hyperphagia, truncal obesity, glucose intolerance, and 

elevated levels of serum lipids and leptin (Masuzaki et al 2001). These observations 

parallel the enhanced 11β-HSD-1 activity in adipose that has been reported in both 

human obesity (Rask et al 2002) and obese rats (Livingstone et al 2000a). This obesity-

linked enhancement in 11β-HSD-1 activity in obese rats is effectively reversed by ADX 

(Livingstone et al 2000b). ADX also decreases body fat and weight gain in ob/ob mice 

(Gogan et al 1987) and wild type rats (Yukimara et al 1978), and administration of a high 
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fat diet maintains the obese phenotype and reverses many of the effects of ADX in both a 

mouse and rat model (Gogan et al 1987, Kang et al 1992, Bai & Castonguay 2000). 

Laugero et al showed that sucrose access in ADX rats can similarly restore food intake, 

caloric efficiency, fat deposition, TG, leptin and insulin, and impacts the HPA axis 

(2001). Interestingly, adipose-specific overexpression of 11β-HSD-2 in mice confers 

protection against diet-induced obesity in mice fed high fat diet characterized by reduced 

food intake, reduced fat mass accumulation, increased energy expenditure, improved 

insulin sensitivity and glucose tolerance (Kershaw et al 2006). These examples illustrate 

the interplay between diet and glucocorticoid metabolism as well as the potential for 

obesity intervention by targeting both isoforms of 11β-HSD. 
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Chapter 3. Effect of High Sucrose Diets on Body Composition; Plasma Insulin, 
Leptin, and Glucose Concentrations; and 11β-HSD-1 and H6PDH mRNA in Liver 
and Mesenteric Adipose of Adult Male Sprague-Dawley Rats (London et al 2007) 

 
Introduction 

The prevalence of obesity in the United States has reached epidemic proportions. 

It has been estimated that two-thirds of the adult U.S. population is overweight or obese. 

While it is clear that obesity is a multifactorial disease resulting from the combined 

effects of genetic, physiological, environmental, social, and psychological factors, there 

is currently no cure. The list of regulatory factors identified as influencing food intake, 

energy expenditure and body weight has increased considerably over the past few 

decades. While these multiple factors interact on both central and peripheral levels (in the 

brain, gut, liver, etc.) (Schwartz et al 2000, Zigman et al 2003), one common finding is 

that maintenance of normal adrenal glucocorticoid levels is necessary for the normal 

function of these factors. More recently, there is evidence that elevated tissue-specific 

concentrations of glucocorticoids may better predict the promotion and maintenance of 

obesity than circulating hormone levels which are not consistently higher in obese versus 

lean animals (Lottenberg 1998, Walker 2001). The bidirectional enzyme, 11β-HSD-1, 

interconverts the active hormone cortisol (human) or corticosterone (rat) and inert 

cortisone (human) or 11-dehydrocorticosterone (rat). 11β-HSD-1 is highly expressed in 

adipose tissue, liver, and brain where it acts primarily as an oxidoreductase to generate 

active glucocorticoid.  Adipose tissue taken from obese humans has 3 to 4 times the 11β-

HSD-1 oxo-reductase activity compared to adipose taken from lean individuals (Rask et 

al 2001). This change in 11β-HSD-1 activity in adipose tissue is likely a commonality of 

different forms of obesity. 
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Diet-induced obesity in a number of rodent and non-human primate models 

appears to parallel human diet-induced obesity in its dependence on combined 

environmental and genetic factors. High fat diets can promote increased weight gain and 

adiposity in rats (Schemmel et al 1970, West et al 1992), and certain strains are more 

susceptible to obesity when fed high fat diets demonstrating the critical interaction 

between genetic and environmental factors (Shier et al 1975). Diets high in sugar have 

also been used to induce weight gain and obesity experimentally (Sclafani & Xenakis 

1984, Castonguay et al 1981).  Rats given access to palatable sugar solutions typically 

consume 60% of their daily intake from the solution, with the remaining 40% of total 

calories taken from standard chow. Dallman and her associates have more recently 

reported that sucrose access abates the weight loss and reduced adiposity that takes place 

after bilateral adrenalectomy (Dallman et al 2003). They have speculated that by 

consuming sucrose at times when sham operated animals would normally mobilize fat, 

adrenalectomized (ADX) rats are spared the ADX-induced deficit in gluconeogenesis, an 

adrenal hormone-mediated regulatory mechanism serving energy balance. Carbohydrate-

induced obesity is of particular interest in the context of glucocorticoid dysregulation 

because of these prior observations in ADX animals and because of the necessity of 

NADPH to generate active glucocorticoid which is a byproduct of the oxidation of 

various sugars. 

11β-HSD-1 resides in the endoplasmic reticulum lumen (Ozols et al 1995, 

Odermatt et al 1999) and requires NADPH as a cofactor for its oxidoreductase activity 

which generates active glucocorticoid. 11β-HSD-1 acts predominantly as an 

oxidoreductase in vivo and in intact cells (Jamieson et al 1995, Bujalska et al 1997), but 
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acts as a dehydrogenase in cellular homogenates (Lakshmi & Monder 1988).  Reductase 

activity in cellular homogenates can be initiated upon the addition of NADPH or a system 

that can generate NADPH such as glucose-6-phosphate dehydrogenase (G6PDH) 

(Agarwal et al 1990). 

H6PDH is the microsomal analog of cytosolic G6PDH, as it catalyzes the first 

two steps, including the committed step, of the pentose phosphate pathway within the ER 

lumen (Mason et al 1990, Clarke et al 2002). H6PDH has been linked to 11β-HSD-1 

through the pathogenesis of cortisone reductase deficiency (CRD) (Draper et al 2003), in 

which individuals that carry mutations of both 11β HSD-1 and H6PDH are unable to 

generate cortisol from inactive cortisone. Spolarics and his colleagues found that 

increased dietary carbohydrate can promote increased pentose phosphate pathway flux 

via G6PDH message (1999). The purpose of the present study was to examine the effect 

of dietary sucrose on body weight, body composition, and other indices of obesity, 

including plasma glucose, insulin, and  leptin,  as well as H6PDH and 11β-HSD-1 mRNA 

in mesenteric adipose and liver in rats. 

Experimental Design 

Twenty-four male S-D weighing with mean body weights of approximately 250 g 

were obtained from Charles River Laboratories (Wilmington, MA). Rats were 

immediately housed in wire-bottom hanging cages and maintained on a 12h-light/dark 

cycle in a humidity controlled room (25 ± 2°C). For a 1 wk acclimating period, the rats 

were given free access to water and the later described commercial rodent diet (Harlan 

Teklad 7012) (Fig. 12), and were then randomly assigned to one of the following three 

weight-matched groups (n= 8/group): 1) 16% sucrose (S16), 2) 32 % sucrose (S32), and 
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3) control. Rats in the S16 group were given free access to the commercial diet, a 16% 

(W/V) sucrose solution, and water. Rats assigned to the S32 group were given free access 

to the commercial diet, a 32% sucrose solution, and water. The control group animals 

were given free access to the commercial diet and water only. Sucrose solutions were 

composed of commercially available pure cane sugar (Domino brand; Baltimore, MD), 

and were prepared 24h in advance and kept refrigerated until 1h prior to use. Both water 

and sugar solutions were provided in 200 mL plastic bottles fitted with standard #7 

rubber stoppers and sipper tubes. Food was made available in small glass food cups that 

were secured to the back wall of each cage with a Plexiglas food cup holder. Food 

spillage, though minimal, was collected and weighed daily. Total daily food intake was 

measured by subtracting the amount of food spillage (g) from the amount of diet 

consumed by each animal as indicated by the difference in weight (g) of the food cup at 

the beginning and end of each 24h period. Similarly, daily sucrose solution intake was 

measured by subtracting the weight of each bottle and the remaining sucrose solution 

from the weight of each bottle with solution when it was prepared on the previous day.  

The experimental conditions were in effect for 68 days. On day 69 all rats were 

weighed and returned to their home cages and given access to water only for 24h. On day 

70, each rat was weighed, and then restrained to enable the collection of a 500 μL tail 

blood sample in a Sarsted capillary blood collection tube. The tubes were kept in ice until 

centrifuged, and plasma was saved (-20°C) for subsequent food-deprived glucose 

analysis (see below). Each rat was then returned to its home cage and given free access to 

its appropriate sugar solution as well as chow and water for an additional 2 days. 
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The rats were killed on day 72 by first administering light anesthesia (CO2 gas), 

followed by rapid decapitation and exsanguination. Blood was collected in EDTA treated 

tubes and kept on ice until centrifuged. The plasma collected was then frozen and stored 

(-20°C) until subsequent analyses. Small (~1 g) liver from the lobus laterilus sinister and 

the entire mesenteric adipose depot were dissected quickly and flash frozen. Each carcass 

was then prepared for body composition analyses and frozen (-20° C). All of the above 

care and treatment protocols received prior approval by the University of Maryland 

Institutional Animal Care and Use Committee (protocol: Assessment of Whey Low’s 

Contribution to Diet Energy & Its Effects on Growth & Body Composition in Lab Rats,  

#R-06-42; approval date: July 27, 2006) (Appendices 1 and 2). 

Research Methods 

Body Composition 

Rat carcasses were thawed and total body composition of each was measured 

using an EchoMRI-900™ QNMR analyzer (Echo Medical Systems, Houston, TX). 

Output included measurement of fat mass, lean tissue mass, and free body fluids. 

Measurement of Plasma Insulin and Leptin 

Radioimmunoassay kits purchased from Linco Research (Millipore Corporation, 

Billerica, MA) were used to measure plasma leptin (kit RL-83K) and insulin (kit RI-13K) 

of the samples obtained at the time of animal sacrifice. Samples were counted on a 

Packard Cobra gamma counter for 1 minute each.   
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Measurement of Plasma Glucose  

Glucose concentrations of plasma samples were determined using a Yellow 

Springs Instruments glucose analyzer (Yellow Springs Instruments, Yellow Springs, 

OH). 

Rate of Weight Loss and Metabolic Rate 

The percentage of body weight lost was calculated by dividing the amount of 

weight (g) lost during 24h by body weight at the outset of the fasting period. The mean 

rate of weight lost by each group was used to estimate differences in basal metabolic 

rates among the groups (Rixon & Stevens 1957). 

mRNA Extraction  

Frozen tissue samples were thawed and 500 mg of each sample homogenized in 

buffer while kept cold on ice. Total RNA was extracted according to the RNeasy Mini 

and RNeasy Mini Lipid protocols (QIAGEN), respectively for liver and adipose. 

Additional centrifugation steps were included in the protocol to enhance sample purity by 

removing organic solvents and salts from the extracts. Total RNA was then purified to 

remove contaminating DNA using DNA-free (Ambion). Purified RNA was analyzed 

spectrophotometrically (NanoDrop) to determine the concentration and quality of product 

(260/280 ratio).  

mRNA Quantification  

cDNA template was created for each sample using 500 ng of purified RNA 

extract with SuperScript III Reverse Transcriptase (Invitrogen). Finally, each sample was 

subjected to qRT-PCR (IQ5 cycler, BioRad) using a 40 cycle program and subsequent 
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melt curve analysis program (55˚–95˚C). All primers were tested using stock rat cDNA 

(Table 2). The program for each primer set is detailed in Table 6.  

  

Table 2. Primer sequences for target genes. 
Gene Sense primer sequence Antisense primer sequence 
11β-HSD-1 5’-TGCTCTGGATGGGTTCTTTT-3’ 5’-GAAGCCGAGGACACACAGAGAG-3’ 
H6PDH 5’-GGGCTATGTTCGGATCTTGTTTA-3’ 5’-GTTCCGGCACCCAGTGTCT-3’ 
β-actin 5’-TGGAGTCTACTGGCGTCTT-3’ 5’TGTCATATTTCTCGTGGTCA-3’ 
 

The cDNA derived from each tissue sample was simultaneously subjected to qRT-PCR 

using primers for the housekeeper gene β-actin. All reactions were carried out in 

triplicate. 

All primers were tested by performing qRT-PCR and melt curves with stock rat 

cDNA and the primers. PCR products were then run out on an agarose gel with 

appropriate DNA reference ladder to confirm the presence of only one product of the 

expected molecular weight. 

Differences in message between treatment and control groups were assessed 

based on the cycle threshold (CT) values for each treatment group and that of β-actin. 

First the ΔCT value was calculated by subtracting the CT value of β-actin from that of the 

gene of interest. Then, the ΔΔCT value for each observation was calculated by 

subtracting the mean ΔCT value for the control group from ΔCT value of each rat in the 

treatment groups. Finally, fold change in mRNA of the gene of interest for each rat was 

calculated as 2 –ΔΔCT in message (BioRad, Livak et al 2001). 
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Results 

Body Weight and Body Composition 

The mean percentages of body fat for the S16 (17.7 ± 2.3%) and S32 groups (15.6 

± 0.9%) did not differ, but both means were greater than that of the control group (12.4 ± 

0.9 %; P = 0.03). Lean body mass and free body fluid mass did not differ among the three 

groups (data not shown). The observation that ad libitum access to 16% sucrose solution 

was enough to elicit differences in the percentage of body fat in comparison to the control 

group, yet free access to 32% sucrose solution did not elicit further increases was integral 

in the decision to use only one sucrose-fed group (16%) in the proposed study.  

Food, Sucrose, and Total Energy Intake 

As anticipated, the control group ate more chow daily than did the S16 and S32 

groups, which did not differ from one another (Fig. 6A). The S32 group did however 

consume significantly more total energy per day than did the S16 and control groups, 

which did not differ (Fig. 6B). Additionally, the mean cumulative food intake of the 

control group was significantly higher than the intakes of the sucrose-fed groups (Table 

3, P <0.0001). The mean cumulative food intakes of the S16 and S32 groups did not 

differ. The mean daily sucrose solution intake of the S16 group (86.1 ± 1.1 g) was 

significantly higher than that of the S32 group (66.3 ± 1.4 g) (Fig. 7A). Mean daily solute 

intakes for the S16 and S32 groups were 13.8 ± 0.2 and 21.2 ± 0.5 g, respectively, which 

differed statistically (Fig. 7B, P< 0.0001). Interestingly, the mean daily sucrose intake 

was much less variable from day to day among rats in the S16 group after an initial 

adjustment period early in the study. This was another contributing factor in selecting a 

16% as the concentration for sugar solutions for the subsequent experiments. Cumulative 
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sucrose intake was also higher for the S32 group compared to that of the S16 group 

during the 10 wk experimental period (P < 0.0001) (Table 3). The percentage of total 

daily energy intake derived from sucrose was greater for the S32 group than for the S16 

group (P = 0.006). On average, the S32 group consumed significantly more total calories 

than the S16 and control groups (P <0.0001) and the S16 group consumed significantly 

more total calories than did the control group (Table 3, P < 0.0001). While total energy 

intake differed among the groups, interestingly the mean body weights among the rats in 

the three groups did not differ, nor did the mean percentages of body fat between the S16 

and S32 groups to reflect the differences in intakes. 

 

 
Figure 6. (A) Food, and (B) energy intakes of male rats in the control, S16, and S32 
groups during the 10 wk study; values are means ± SEM; P < 0.05;  n=8/gp. 
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Figure 7. (A) Sucrose solution intake, and (B) Sucrose intake and of rats in the S16 and 
S32 groups during the 10 wk study; values are means ± SEM; P < 0.05; n=8/gp. 
 
 
Table 3. Initial and final mean body weights; and mean standard chow intake, mean 
percent of total energy as sucrose, and mean cumulative energy intake for control, S16, 
and S32 rats. 
 Initial 

Body 
Weight 

G 

Final Body 
Weight 

           
g 

Cumulative 
Non-purified 
diet Intake 

g/10 wk 

Cumulative 
Sucrose 
Intake 

g/10 wk 

Sucrose 
Intake 

            
% Energy 

Cumulative 
Total Energy 

Intake1 
kcal/10 wk 

Control 309.6±3.6 407.4±11.3* 1541.4±53.6a 0 0 5580.0±194.2c 
S16 306.9±5.2 413.8±14.0* 643.2±27.6b 936±36b 61.8±0.02b 6075.4±130.6b 
S32 306.0±5.2 430.3±17.7* 667.2±38.b 1443±31a 70.1±0.01a 8192.4±165.1a 
Values are expressed as mean ± SEM, n=8; means in a column with superscripts without 
a common letter differ; P < 0.05; 1measurement taken at time of kill. 
 
11β-HSD-1 mRNA Levels in Liver and Mesenteric Adipose Tissue  

11β-HSD-1 message in liver was suppressed by 46.1 ± 0.9% and 47.2 ± 1.1%, 

respectively in the rats in the S16 and S32 groups in comparison to the control group (P= 

0.027; Fig. 8A). Conversely, 11β-HSD-1 message in mesenteric fat was increased by 

approximately 23-fold and 32-fold, respectively, in the S16 and S32 groups in 

comparison to the control group (P= 0.006; Fig. 8B).  
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Figure 8. Mean 11β-HSD-1 mRNA in (A) Liver, and (B) Mesenteric adipose of rats in 
the S16, S32, and control groups as measured by qRT-PCR; values are means ± SEM; 
(P< 0.05); n= 8/gp. 
 
 
H6PDH mRNA Levels in Liver and Mesenteric Adipose Tissue 

The H6PDH mRNA level nearly doubled in the liver of the S16 group in 

comparison to the control group (P= 0.009; Fig. 9A). In mesenteric fat, H6PDH mRNA 

increased by greater than 3-fold in the S16 group compared to both the S32 and the 

control group (P= 0.003; Fig. 8B). A point worth noting is that statistical analysis of the 

message data for mesenteric fat revealed a positive correlation between H6PDH message 

and 11β-HSD-1 message (r = 0.91; P= 0.005). 
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Figure 9. H6PDH message in (A) Liver, and (B) Mesenteric adipose of rats in the S16, 
S32, and control groups as measured by qRT-PCR; values are means ± SEM; P< 0.05; 
n= 8/gp. 
 

 
Figure 10. Mean percentage of body weight lost during 24h fast in rats in the S16, S32, 
and control groups; values are means ±SEM; different letters indicate differences among 
groups; values are means± SEM; P< 0.05; n= 8/gp. 
 
 
Rate of Body Weight Loss during 24h Fast 

Three days prior to the end of the experiment (day 67), the rats were food 

deprived overnight (16h) in preparation for a glucose tolerance test. Percent of body 

weight lost during the fast was calculated by dividing the amount of weight (g) lost 

during the 24h period between the morning weighings by the body weight on day 67 for 

each rat. The rats in the control group lost a significantly higher percentage of body 
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weight (5.7 ± 0.15 %) than did the rats fed high sucrose diets (S16: 4.5 ± 0.23 %, S32: 

4.6 ± 0.09 %) (P< 0.0001) (Fig. 10, Table 4). The differences observed between the 

control and sucrose-fed groups indicate metabolic changes that resulted from the 

treatments in this 10 wk study and warrant further investigation. It should be noted, 

however, that the type of body mass loss was not assessed nor were any potential changes 

in locomotor activity among the rats. 

 

Table 4. Rate of weight loss; plasma leptin and insulin; and food-deprived and fed 
glucose concentrations in control, S16, and S32 rats. 
 Rate of Weight 

Loss**  
%/d 

Plasma 
Leptin*        
µg/L 

Plasma 
Insulin* 

µg/L 

Fasting Plasma 
Glucose** 

(g/L) 

Ad Libitum 
Plasma Glucose* 

(g/L) 
Control 5.7 ± 0.1a 9.9 ± 0.8a 3.0 ± 0.4a 0.952 ± 0.047a 1.589 ± 0.197a 
S16 4.5 ± 0.2b 11.0 ± 1.0a 4.5 ± 0.7b 0.834 ± 0.048a 1.569 ± 0.163a 
S32 4.6 ± 0.1b 11.4 ± 1.3a 5.1 ± 0.6b 0.761 ± 0.056b 1.342 ± 0.182a 
Different superscript letters in columns represent significant differences; P<0.05; * 
Measurements taken at time of sacrifice (day 70); ** Measurements taken after 24h food-
deprivation. 
 
 
Plasma Glucose, Insulin and Leptin 

Mean plasma insulin was higher in the S16 and S32 groups compared to the 

control (P < 0.05), and concentrations did not differ between the S16 and S32 groups 

(Table 4). Plasma insulin concentrations, as determined by radioimmunoassay, correlated 

positively with percentage of body fat (r=0.84; P< 0.0001). Mean plasma glucose for 

food-deprived rats was higher for the S32 group compared to that of the control group 

(P= 0.04), but concentrations did not differ between the S16 and S32 groups or the S16 

and control groups (Table 4). Further, no differences were found in rats from the three 

groups in fed plasma glucose or leptin concentrations. 

 
 

73



Discussion 

  The aim of the present study was to investigate whether a high sucrose diet would 

alter the level of message of H6PDH and 11β-HSD-1 in mesenteric adipose and liver in 

rats. Previous studies have reported obesity-resistance to high fat diets in 11β-HSD-1 null 

mice (Morton et al 2001, Densmore et al 2006), but the specific effects of diet on the 

message, expression, or activity of 11β-HSD-1 or H6PDH have not previously been 

reported. High sucrose diets increase cytosolic pentose pathway flux via G6PDH 

(Spolarics 1999) so it seems likely that increased microsomal pentose pathway flux could 

be achieved with a high sucrose diet via increased H6PDH activity. Additionally, 

Bujalska and colleagues demonstrated that it is H6PDH and not G6PDH activity that 

impacts the activity of 11β-HSD-1 (Bujalska et al 2005), and Lavery and fellow 

researchers confirmed the necessity of H6PDH for 11β-HSD-1 oxidoreductase activity in 

their experiments with H6PDH KO mice (Lavery et al 2006). Here we show that sucrose 

access leads to increased H6PDH message in both adipose and liver of Sprague-Dawley 

rats. The importance of this observation is that it now provides a mechanism by which 

sucrose access leads to conditions favoring the oxidoreductase activity of 11β-HSD-1 in 

adipose. Dietary sucrose led to an increase in H6PDH message, and presumably the 

increased NADPH that resulted promoted increased 11β-HSD-1 oxidoreductase activity, 

resulting in increased intracellular glucocorticoids (Fig. 11). 

There are several questions that remain to be addressed regarding these 

observations. While we do not know when the increase in H6PDH message first occurs 

or whether these changes are reflected in increased protein levels, the increased H6PDH 

message is observed after 10 wk access to 16% sucrose solution in which rats consume 
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an average of 63% of their daily energy intake from sucrose. It should be noted that while 

statistically significant changes were also observed in mean 11β-HSD-1 message in liver 

and adipose between the S32 and control groups, the increases in mean H6PDH message 

in these organs did not reach statistical significance. We suspect that this may have been 

a result of the increased inter-animal variability that was observed in the S32 group for 

sucrose and total caloric intake throughout the 10 wk experimental period (Figs. 6 & 7). 

This same day-to-day variability was not observed in the S16 group, possibly leading to 

more sustained, robust metabolic changes. 

 
Figure 11. Proposed pathway for glucocorticoid dysregulation that results from a high 
sucrose diet. The sequence of metabolic and glucocorticoid mediated events in liver and 
mesenteric adipose are shown, beginning with uptake of dietary sugars; circled numbers 
indicate the proposed chronology of events and arrows identify the flow of the 
hypothesized pathway. Abbreviations: 11-DHC, 11-dehydrocorticosterone; GK, 
glucokinase (or hexokinase); GPL, phospho-gluconolactone; G6P, glucose-6-phosphate; 
ME, malic enzyme; PEPCK, phosphoenolpyruvate carboxykinase. 
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Changes in 11β-HSD-1 

Livingstone et al found that 11β-HSD-1 activity is increased in adipose while 

11β-HSD-1 message and activity are decreased in liver of obese Zucker rats in 

comparison to their lean counterparts (Livingstone et al 2000a). This finding of increased 

11β-HSD-1 activity in adipose and decreased activity in liver has since been extended to 

obese humans (Rask et al 2001). We replicate the finding of decreased 11β-HSD-1 

mRNA in rat liver, and extend what is known about the generality that 11β-HSD-1 

activity is increased with obesity by showing increased 11β-HSD-1 message in 

mesenteric adipose of  the obese rat. Further, we demonstrate that these changes can be 

initiated by dietary manipulations. These data provide initial evidence that alterations in 

the message of both 11β-HSD-1 and H6PDH occur as a result of physiological changes 

that arise in high sucrose diet-induced obesity. In the present study, obesity was defined 

among the animals as significantly increased percentage of total body fat. There were no 

significant differences in mean body weight between the control and sucrose-fed animals. 

This finding suggests that altered glucose homeostasis and tissue-specific glucocorticoid 

regulation may be occurring as a function of increased visceral fat depots and altered 

enzyme action within adipose. 

 At the conclusion of our 10 wk study, the animals were fasted for 24h prior to 

blood collection and glucose analysis. Interestingly, we found that during the fast the 

sucrose-fed animals lost a significantly lower percentage of their initial, ad-libitum body 

weights than the control animals. This and the differences we observed in 11β HSD-1 and 

H6PDH message between groups suggests underlying metabolic and physiologic changes 

occur as a result of high-sucrose diets. Dallman and colleagues found sucrose access 
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blocked most of the metabolic, behavioral, and neuroendocrine effects of ADX in rats 

(Dallman et al 2003) including circumventing the loss of gluconeogenesis caused by 

corticosterone deficit and providing negative feedback input to the hypothalamus to 

reduce corticotropin releasing factor secretion. From the results of our study we propose 

that sucrose access is likely causing increased gluconeogenesis in the liver via elevated 

corticosterone levels resulting from increased substrate availability for H6PDH and 

subsequent increased 11β HSD-1 activity which affect local glucocorticoid levels and 

thereby enable increased weight gain. 

Novel Hypothesis Regarding Diet Composition, NADPH Availability, and Message of 

11β-HSD-1 

It seems likely that visceral obesity may be promoted by elevated oxidoreductase 

activity of 11β-HSD-1 in adipose tissue, and the resulting abnormally elevated local 

(intracellular) levels of active glucocorticoid. We hypothesize that excess dietary sugar 

contributes to enhanced microsomal pentose phosphate pathway flux in adipose tissue, 

which in turn increases local 11β-HSD-1 oxidoreductase activity (Fig. 11). 

Hypercortisolemia increases transcription of PEPCK, decreases insulin sensitivity, and 

increases hepatic gluconeogenic flux (Livingstone et al 2000a). It is possible that in the 

initial stages of glucocorticoid dysregulation an increase in the availability of 6-carbon 

sugars in adipose tissue (Fig. 11) leads to increased production of NADPH via the 

pentose phosphate pathway. This increased production of NADPH could subsequently 

increase 11β-HSD-1 reductase activity, and in turn increase adipose corticosterone levels 

which eventually reach the liver via the hepatic portal vein. We hypothesize that 

corticosterone levels then begin to increase in the liver which causes the upregulation of 
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PEPCK, thereby increasing gluconeogenesis and concomitantly decreasing 11β-HSD-1 

reductase activity. It would seem likely that both H6PDH and 11β-HSD-1 may be 

upregulated in adipose tissue as an adaptive response, favoring further increases in 

intracellular corticosterone that then migrate back to the liver in the bloodstream. The 

excess of 6-carbon sugars provided by a high sucrose diet might also be increasing 

production of the reducing equivalent NADH in the liver via enhanced glycolysis and 

subsequent citric acid cycle activity thereby providing more cofactor to fuel the 

inappropriately increased gluconeogenenic pathway. This might provide an explanation 

for the onset and maintenance of the improper response of increased gluconeogenesis to 

hyperglycemia that has been observed in diabetes and obesity, and may also explain the 

decreased 11β-HSD-1 oxidoreductase activity that has been observed in the obese liver. 
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Chapter 4. Acute Ad Libitum Access to 16% Sucrose, 16% Fructose, and 16% 
Glucose Solutions on 11β-Hydroxysteroid Dehydrogenase Type 1, Hexose-6-

Phosphate Dehydrogenase, and Several Parameters of Carbohydrate and Lipid 
Metabolism in Rats 

 
Introduction 

Approximately two-thirds of U.S. adults are overweight or obese. The prevalence 

of overweight among young people has tripled since 1980. Concurrently, the CDC 

reports an increase in carbohydrate intake of 62 and 69 grams/day, respectively, in 

women and men between 1971 and 2000 (CDC 2004). To date, there is no experimental 

data that can link these trends. We have been interested in the role of stress hormones in 

promoting diet-induced obesity. 11β-hydroxysteroid dehydrogenase-1 (11β-HSD-1) plays 

a key role in regulating intracellular glucocorticoids. Increased message and/or activity of 

11β-HSD-1 in adipose are characteristic of human and animal models of obesity. The 

purpose of this research was to investigate the acute effects of high sugar diets on 

glucocorticoid metabolism. We have previously shown that rats given long-term ad 

libitum access to sucrose solution and chow are significantly fatter, and have suppressed 

hepatic and increased adipose 11β-HSD-1 message compared to rats given ad libitum 

access to chow only. 

These studies investigated acute (24h and 1 wk) effects of ad libitum access to 

16% solutions of different sugars on 11β-HSD-1 message and expression in liver and 

mesenteric adipose in adult male Sprague-Dawley (S-D) rats. Other analyses included the 

following: liver and adipose message and expression of hexose-6 phosphate 

dehydrogenase (H6PDH); message of acetyl CoA carboxylase (ACC) and 

CCAA/enhancer binding protein-α (C/EBP-α); intracellular NADPH; and plasma 

corticosterone, insulin, and triglycerides. CCAAT/enhancer binding proteins have been 
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recognized as master regulators of adipogenesis (Lefteroza & Lazar 2009), and recent 

genome-wide searches reveal much overlap in their transcriptional targets. Along with 

sterol regulatory element binding proteins, peroxisome proliferator-activated receptors 

(PPARalpha/delta/gamma), and liver X receptors, C/EBP (alpha, beta and delta) have 

been suggested as potential nutrient sensors that alter gene expression (Al-Hasani & Joost 

2005). Little is known about the transcriptional regulation of 11β-HSD-1 generally or in 

response to diet. C/EBP-α was shown to regulate a number of glucocorticoid-responsive 

genes, and in fact, C/EBP-α deficient mice had decreased hepatic 11β-HSD-1 expression 

(Williams et al 2000). Additionally, cortisol stimulation of amnion fibroblasts induced 

the binding of C/EBP-α, but not C/EBP-β to the promoter region of 11β-HSD-1 gene 

(Yang et al 2007). Ignatova et al recently showed that C/EBP-α and C/EBP-β were 

involved in basal 11β-HSD-1 expression and C/EBP-β is involved in TNF-α induced α 

11β-HSD-1 expression in HepG2 cells (2009). We decided to quantify C/EBP-α message 

to explore its potential role in transcriptional regulation of 11β-HSD-1, based on the 

literature available at the time. However, C/EBP-β may have been a better candidate for 

studying the regulation of 11β-HSD-1 under the influence of high sugar diets because of 

it is linked to inflammation. 

The three treatments included the following: ad libitum access to either 1) 16% 

sucrose (S16), 2) 16% fructose (F16), or 3) 16% glucose (G16) solution in addition to 

free access to chow and water. The control group had free access to chow and water only. 

The primary research question asked was: Is the increased 11β-HSD-1 in adipose and 

decreased hepatic 11β-HSD-1 that are observed in high sugar diet-induced obesity the 

result of increased adiposity or diet composition. The experiments outlined were designed 
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with the goal of identifying acute changes in 11β-HSD-1 and H6PDH message and 

expression in liver and adipose, and the effects of the experimental diets on several key 

parameters of carbohydrate and lipid metabolism.  

Experimental Design 

Animal Model  

Adult male S-D rats (Charles River Laboratories, Wilmington, MA) with a mean 

weight of approximately 300 grams were used. This strain of rat is susceptible to diet-

induced obesity when given free access to a high sugar diet (London et al 2007). Upon 

arrival, all animals were individually housed and maintained on a 12h light/dark cycle 

with a room temperature of 22˚ C ± 1˚ C. During the 1 wk acclimation period the rats 

were given free access to the control diet (Fig. 12) and water. Animals were weighed and 

24h food intake and sugar solution intake (when appropriate) were measured daily at 

0900h throughout the experiment. 

All rats were killed by slow replacement of air in a specialized chamber with pure 

CO2 followed by rapid decapitation and exsanguination. This method has been approved 

for use by the Panel on Euthanasia of the American Veterinary Medical Association as 

well as the UM IACUC. All procedures described herein are in compliance with the 

University of Maryland’s IACUC guidelines (Appendix 3).  

Animal Diets 

The control diet used in these experiments is based upon one previously used in 

an experiment that manipulated quality and quantity of fat in diet-induced obesity studies 

with rats (Woods et al 2003) and is the same diet use in the 10 wk experiment previously 

described. The diet is a nutritionally complete low fat diet [Rodent diet 7012] prepared by 

 
 

81



Harlan Teklad (Bethlehem, PA) and provides 3.41 metabolizable kcal/g of diet (Fig. 12). 

Per gram of chow, 2.14 kcal were derived from carbohydrate, 0.79 kcal was derived from 

protein, and 0.51 kcal was derived from fat. 

The four experimental 

diets included: 1) ad libitum 

control diet (Harlan rodent diet 

7012), 2) ad libitum control diet 

plus free access to 16% sucrose 

(Domino Foods, Baltimore 

MD) solution (S16), 3) ad 

libitum control diet plus free 

access to 16% fructose (Sigma Aldrich, St Louis MO) solution (F16), and 3) ad libitum 

control diet plus free access to 16% glucose (Sigma Aldrich, St Louis MO) solution 

(G16). Solutions were prepared 24h in advance and stored at 4°C. All animals were given 

free access to water. The preliminary data indicated that the experimental diets which 

provided ad libitum access to sugar solutions achieved both a diet proportionally high in 

carbohydrate (approximately 85−90% of daily caloric intake with approximately 60−70% 

of caloric intake as sugar solution) and higher total caloric intake in comparison to 

control, as well as significant differences in body composition (% body fat) and levels of 

both 11β-HSD-1 and H6PDH mRNA in mesenteric adipose and liver after long-term 

exposure (London et al 2007).  

Figure 12. Composition of control diet [7012] 
(Harlan Teklad LM-485 Mouse/Rat Sterilizable Diet).
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Study design 

Adult male S-D rats (N=64) were randomly assigned to one of four weight-

matched groups (n=16) after an initial 1 wk acclimating period. The four groups 

included: 1) Control (C)—free access to the standard chow control diet (Fig. 12) and 

water only; 2) 16% Sucrose (S16)—free access to the control diet, water and 16% 

sucrose solution; 3) 16% Fructose (F16)—free access to the control diet, water and 16% 

fructose solution; and 4) 16% Glucose (G16)—free access to the control diet and 16% 

glucose solution. The rats were maintained on their respective diets for either 24h or 1 wk 

depending on their random assignment to one of two experimental groups. 

Of the initial 64 study animals, one half of the rats in each group were randomly 

assigned to sacrifice after the initial 24h exposure to the experimental treatments. The 

remaining 32 animals (n = 8/group) were maintained on the experimental diets for a total 

of 1 wk and then sacrificed. Mesenteric adipose and liver (lobus lateralis sinister) tissues 

were dissected at the time of sacrifice and immediately flash frozen and stored at -80°C 

for subsequent analyses. At this time blood was collected in EDTA treated tubes, kept on 

ice, centrifuged for plasma separation, and the plasma stored at -20°C for subsequent 

analyses. Assays performed on mesenteric adipose and liver tissues included: 1) mRNA 

quantification (qRT-PCR) of H6PDH, 11β-HSD-1, Acetyl CoA Carboxylase (ACC), and 

CCAAT/enhancer binding protein alpha (C/EBP-α); 2) Western blot analysis to quantify 

H6PDH and 11β-HSD-1 protein; and 3) quantification of total cellular NADPH in liver 

and adipose. Assays performed on insulin collected at the time of sacrifice included: 

radioimmunoassay quantification of plasma corticosterone and insulin, and 4) 

quantification of plasma triglycerides with colorimetric assay.  
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Power Analysis and Calculation of Sample Size 

 Power analysis and calculations to determine the minimum required sample size 

were performed based on the pilot study data collected for male S-D rats (N=24; 

n=8/group) fed one of the following three diets: 1) control (ad libitum access to Teklad 

7012 chow and water), and 2) 16% high sucrose (S16) or 3) 32% high sucrose (S32) (ad 

libitum access to Teklad [7012] chow, water and 16% sucrose solution or 32% sucrose 

solution, respectively). Our analyses revealed that after 10 wk exposure to the 

experimental diets, there was a large difference (d = 1.2) between the percentage of body 

fat in the S16 or S32 groups and the control group. With power (1-β) set at 0.80 and α set 

at 0.05, it was established that a sample size of n=8 would be sufficient to recognize an 

even smaller effect size (ES = 0.80) than what we found in our 10 wk study. Using the 

same values for power and α, it was determined that in most instances, a sample size of 

n=8 was (and often as small as n=6) was sufficient to detect a large effect size (ES = 

0.80) or even a medium effect size (ES = 0.50). 

Research Methods 

Measurement of Plasma Insulin and Corticosterone 

Radioimmunoassay kits purchased from ICN Pharmaceuticals, Inc. (Costa Mesa 

CA) were used to measure plasma insulin and corticosterone of the samples obtained at 

the time of animal sacrifice.   

Measurement of Plasma Triglycerides 

The Dimension® clinical chemistry system Flex® reagent cartridge for 

measurement of plasma or serum triglycerides (Siemens Healthcare Diagnostics Inc, 

Newark DE) was used with a Dade Behring Dimension® Xpand™ automated system to 
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quantify plasma triglyceride levels. The assay is based on an enzymatic procedure using a 

combination of the following enzymes: lipoprotein lipase, glycerol kinase, glycerol-3-

phosphate-oxidase, and peroxidase. Ultimately the changes in absorbance (510, 700 nm) 

resulting from the formation of quinoneimine from hydrogen peroxide reflect the total 

amount of glycerol and its precursors. All reactions were run in duplicate. 

Measurement of 11β-HSD-1, H6PDH, ACC, and C/EBP-α mRNA in Liver and 
Mesenteric Adipose.  
 

Frozen tissue samples were thawed and 500 mg (when available) of each sample 

homogenized in buffer while kept cold on ice. Total RNA was extracted according to the 

RNeasy Mini and RNeasy Mini Lipid protocols (QIAGEN), respectively for liver and 

adipose. Additionally, centrifugation steps were included in the protocol to enhance 

sample purity by removing organic solvents and salts from the extracts. Total RNA was 

then purified to remove contaminating DNA using DNA-free™ (Ambion). Purified RNA 

was analyzed spectrophotometrically (NanoDrop) to determine the concentration and 

quality of product (260/280 ratio). cDNA template was created for each sample using 500 

ng of purified RNA extract with SuperScript® III Reverse Transcriptase (Invitrogen). 

Finally, each sample was subjected to qRT-PCR (IQ5 cycler, BioRad) using a 40 cycle 

program and subsequent melt curve analysis program (55˚–95˚C). All primers were tested 

using stock rat cDNA (see Table 5). The program for each primer set is detailed in Table 6.  

 

Table 5. Primer sequences for target genes in acute studies. 
Gene Sense primer sequence Antisense primer sequence 
11β-HSD1 5’-TGCTCTGGATGGGTTCTTTT-3’ 5’-GAAGCCGAGGACACACAGAGAG-3’ 
H6PDH 5’-GGGCTATGTTCGGATCTTGTTTA-3’ 5’-GTTCCGGCACCCAGTGTCT-3’ 
β-actin 5’-TGGAGTCTACTGGCGTCTT-3’ 5’TGTCATATTTCTCGTGGTCA-3’ 
ACC 5’-GCCATCCGGTTTGTTGTCA-3’ 5’-GGATACCTGCAGTTTGAGCCA-3’ 
C/EBP-α 5’-GAATCTCCTAGTCCTGGCTC-3’ 5’-GATGAGAACAGCAACGAGTAC-3’ 
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Table 6. qRT-PCR programs used for each of the five primer sets. 
Cycle 1 Cycle 2 (40X) Target 

Gene 
(primers) 

Denaturation 
temp (°C); time (m) 

Denaturation 
temp (°C); time (s) 

Annealing  
temp (°C); time (m) 

Elongation 
temp (°C); time (m) 

11β-HSD-1 95; 3 95; 15 60;1 55;1 
H6PDH 95; 3 95; 15 60;1 72;1 
β-actin 95; 3 95; 15 60;1 72;1 
ACC 95; 3 95; 15 59.5;1 72;1 
C/EBP-α 95; 3 95; 15 59.5;1 72;1 
 

The cDNA derived from each tissue sample was simultaneously subjected to qRT-PCR 

using primers for the housekeeper gene β-actin. All reactions were carried out in 

duplicate. 

All primers were pre-tested by performing qRT-PCR and melt curve analyses 

with stock rat cDNA. PCR products were then run out on an agarose gel with appropriate 

DNA reference ladder to confirm the presence of only one product with the expected 

molecular weight. 

Differences in message between treatment and control groups were assessed 

based on the cycle threshold (CT) values for each treatment group and that of β-actin. 

First the ΔCT value was calculated by subtracting the CT value of β-actin from that of the 

gene of interest. Then, the ΔΔCT value for each observation was calculated by 

subtracting the ΔCT value of each rat from the mean ΔCT value of the control group. 

Finally, fold change in mRNA of the gene of interest for each rat was calculated as 2–ΔΔCT 

in message (Bio-Rad, Livak et al 2001). 

Measurement of Protein Levels: Western Blot Analysis of 11β-HSD-1 and H6PDH in 
Liver and Mesenteric Adipose 
 
 Protein Extraction of Liver Tissue 

Total protein was extracted from 250 mg of tissue with 5 mL T-Per Tissue Protein 

Extraction Reagent (Pierce Scientific, Rockford, IL). Total protein concentration of the 
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protein extract was then determined using the Bio-Rad Protein Assay. By comparing the 

sample extracts to the regression line of the standard curve for bovine gamma globulin, 

protein concentrations of each sample were determined. The amount of extract needed to 

obtain 40 μg of protein was then calculated for each sample.  

Protein Extraction of Adipose Tissue  

Total protein was extracted from between 15 and 240 mg of tissue (average tissue 

weight was ~50 mg/rat). A special lysis/extraction buffer was prepared specifically for 

extracting protein from adipose tissue (Mingrone et al 2008; Monteiro et al 2008; Kim et 

al 2008). The extraction buffer consisted of: 100 mM Tris-HCl (pH 7.4), 5 mM EDTA, 

50 mM NaCl, 50 mM sodium pyrophosphate, 50 mM NaF, 100mM Orthovanadate, 1% 

Triton X-100, 1 mM phenylmethylsulphonylfluoride, and a cocktail of protease inhibitors 

added just prior to use that included: 2 μg/mL aprotinin, 1 μg/mL pepstatin A, and 1 

μg/mL leupeptin. Homogenization in the extraction buffer was performed at 4°C and then 

centrifuged (13,000 g) for 20 minutes at 4°C. Total protein concentration of the protein 

extract was then determined using the Bio-Rad Protein Assay. By comparing the sample 

extracts to the regression line of the standard curve for bovine gamma globulin, protein 

concentrations of each sample were determined. The amount of extract needed to provide 

both 1 μg and 150 ng of protein was calculated for each sample. Due to the lower total 

amount of tissue available for extraction, increased difficulty of protein extraction, and 

subsequently lower total concentrations of protein in the adipose tissue extracts, 

nitrocellulose membranes were prepared separately with two different amounts of total 

protein per well (1 μg and 150 ng) in hopes that there would be sufficient protein for 

quantification by Western blot analysis. 
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Nitrocellulose Membrane Preparation  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was run 

in duplicate (total volume per well = 15 mL (liver); 25 mL (adipose) on 10 well 12% 

Tris-HCl precast Ready Gels™ (BioRad). Protein samples then were heated for five 

minutes to achieve denaturation were loaded, one per well. A Kaleidoscope™ Prestained 

Ladder (Bio-Rad) was used for qualification of proteins by molecular weight as per the 

protocol. Additionally, an internal standard (sample #10 for liver tissue and sample #36 

for adipose tissue) was used in one well per gel. β-actin is a 43 kD protein that appeared 

between two markers, Bovine Serum Albumin (66 kD) and Carbonic Anhydrase (31 kD) 

(Fig. 13). 11β-HSD-1 is 34 kD, which is similar in size to carbonic anhydrase in the 

reference ladder (Fig. 14). H6PDH is a 96 kD protein that appeared nearest to the marker 

β-galactosidase (116 kD) (Fig. 15). The gels were run for 3h at a voltage of 60V to 

produce consistent, high resolution protein bands. Semi-dry protein transfers to 

nitrocellulose membrane were performed using a BioRad Critterion™ Blotting tank with 

a 100V current for 30 min. Protein transfer was confirmed by staining Ponceau S solution 

(0.1% wt/vol with 5% acetic acid). Upon confirmation of successful protein transfer, 

membranes were destained with multiple washes of dH2O and a single one minute wash 

with 0.1 M NaOH. Membranes were stored in plastic wrap at -20°C for subsequent 

immunodetection.  

Immunoblotting was then performed three times on each of the membranes using 

the following three primary antibodies: polyclonal rabbit 11β-HSD-1 (generously 

provided by M. Hardy at Rockefeller University, alsoAbcam antibody used), polyclonal 

sheep H6PDH (kindly provided by Elise Gomez-Sanchez, PhD, University of Mississippi 
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Medical Center), and polyclonal goat β-actin (loading control, Abcam).  The membranes 

were first blocked with a blocking buffer (Tris-HCl, dry milk powder, NaCl, ddH2O; pH 

= 8.0) for at least four hours (4°C). Membranes were then rinsed three times for 5 

minutes each rinse with dH2O, and incubated with primary antibody solution 

(concentrations ranged from 1:1,000 to 1:3,000) overnight at 4°C. Membranes were then 

washed three times for at least 5 minutes each time with wash buffer (1X PBS with 

0.01% Tween-20). The membranes were then incubated with their respective secondary 

antibody solution (sheep anti-rabbit (11β-HSD-1), rabbit anti-sheep (H6PDH), bovine 

anti-goat (β-actin). Concentrations of secondary antibodies ranged from 1:20,000 to 

1:30,000). The membranes were then incubated for 5 minutes with Pico West 

Chemiluminescent Substrates (Pierce Scientific) at a 1:1 ratio while covered with 

aluminum foil to protect from light. Excess substrate was then gently removed and blots 

were immediately visualized using the BioRad Quantity One® Gel Doc and software 

system.  

The blotting procedures were optimized for each antibody system used to produce 

the clearest signal with the least background noise. Figures 13, 14, and 15 are 

representative Western blots that used primary antibodies for β-actin, 11β-HSD-1, and 

H6PDH, respectively. Each membrane had the loading control that was used for all the 

liver samples of both 24h and 1 wk experiments. And duplicates of each sample were run 

side-by side so that each membrane consisted of the loading control (sample # 10), 4 

samples (in duplicate), and the ladder. Each protein of interest was quantified using 

densitometry (BioRad Quantity One software) as follows: the signal densities 

((INT/mm2) for the duplicates of each sample were averaged and the ratio of the density 
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of the signal for the protein of interest to that of the loading control was calculated. Then 

that ratio was divided by the same density ratio value for β-actin that was calculated for 

the sample. 
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igure 13. Representative Western blot of liver samples using a primary antibody for β
ctin (43kD) specific to rat. Shown here are 24h liver samples # 25−28. 

 
igure 14. Representative Western blot of liver samples using a primary antibody fo
1β-HSD1 (32kD) specific to rat. Shown here are 24h liver samples # 29−32. 
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igure 15. Representative Western blot of liver samples using a primary antibody for 
6PDH (96kD) specific to rat. Shown here are 24h liver samples # 29−32. 

 
 
Measurement of Intracellular Concentrations of NADPH in Liver and Mesenteric 
Adipose 
 

The concentrations of intracellular NADPH in liver and mesenteric adipose 

homogenates for the two experimental groups were measured spectrophotometrically 

using a 96-well plate reader (Wallac Victor2 1420 Multilabel Counter) with the BioAssay 

Systems EnzyChrom™ NADP+/NADPH colorimetric assay kit according to the 

manufacturer’s protocol. Absorbance was measured at 560nm. All samples were run in 

duplicate. For each set of samples (i.e., plate), a standard curve was created by preparing 

eight dilutions of the kit-provided NADPH standard. The R2 value for all standard curves 

was ≥ 0.98. 

Statistical Analysis and Interpretation 

All statistical analyses for the data acquired were performed using SAS version 

9.1 (SAS Institute, Cary, NC). The significance level for all experiments was set at P 

<0.05. Changes in mRNA concentration (message) were determined as fold-change in 

message as described by Livak et al (2001) using the 2-∆∆CT method. In short, the mean 

cycle threshold (CT) for the housekeeper gene, β-actin was subtracted from that of the 
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gene of interest, to obtain a ∆CT value. The mean CT value for the control group was 

subtracted from that of each sample to give a ∆∆CT value. Finally, this value was used to 

calculate the 2-∆∆CT which represents fold change in message. The 2-∆∆CT values were 

used for statistical analysis; ANOVA was used when data were normally distributed or 

when assumptions of normality where met after transformation of data. Data that did not 

meet the assumptions of normality will be discussed below. 

Normality tests were performed on all data. Statistics examined to assess 

normality included: Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling. Data that were not normally distributed were log- and/or square root-

transformed, and tested for normality using the “Proc univariate” SAS algorithm. If 

normality was achieved by log- or square-root transformation parametric statistical tests 

were performed. Because much of the qRT-PCR data were values between zero and one, 

one was added to each value prior to transformation. In these instances data was back-

transformed by first subtracting one to each value and then back-transforming the data. 

These back-transformed values were used when graphing the data.  

Statistics were performed for the following dependent variables using one-way 

ANOVA and then Tukey’s Posthoc Test if appropriate: 11β-HSD-1, H6PDH, ACC, and 

C/EBPα message; 11β-HSD-1 and H6PDH protein levels; plasma corticosterone, insulin, 

and triglyceride concentrations; and total cellular NADPH levels. Students T-tests were 

used to compare mean values of control in comparison to the mean values for the 

treatment group at the two time points. Correlation analyses using Spearman’s 

Correlation Coefficient were also conducted and included all the above listed variables in 
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addition to weight gain and intake data to assess the relationships between all 

combinations of variables. 

Because of the variability within groups and perhaps because of small group 

sizes, some of the data did not achieve normal distribution even when log- or square root-

transformed. In these instances non-parametric ranking tests were used to test differences 

between groups. The Mann-Whitney U non-parametric test was used for all data that did 

not meet the assumptions of normality. 
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Results  

Daily Food, Sugar Solution and Macronutrient Intake  

When given ad libitum access to 16% solutions (wt/vol) of sucrose (S16), fructose 

(F16), or glucose (G16) in addition to ad libitum access to water and standard rat chow 

for 24h, all sugar-fed groups had higher mean total daily caloric intakes than did control 

(C) rats with ad libitum access to water and chow only (P = 0.005, Fig. 16A). The sugar-

fed groups on average consumed between 

 

 
Figure 16. 24h mean daily (A) Sugar, food, and total caloric intakes in control, S16, F16, 
and G16 groups, and (B) Percent of total caloric intake as sugar by rats in S16, F16, and 
G16 groups; values are means ± SEM; different letters indicate significant differences (P 
< 0.05); comparisons were made within time groups only; n= 8/gp. 
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34.6 and 44.9 percent of their total daily energy intake as sugar. The S16 and G16 groups 

selected a higher percentage of their daily caloric intake as sugar solution than did the 

F16 rats (P = 0.0002, Fig. 16B). The F16 group, however, compensated for their lower 

sugar solution intake by consuming more chow than did the G16 and S16 groups (P 

<0.0001, Fig. 16A). As expected, the control group consumed more chow than did the 

three sugar-fed groups (P < 0.0001, Fig. 16A). Overall, the mean total caloric intakes did 

not differ among the sugar-fed groups, and the mean total caloric intake (103.3 ± 3.5 

kcal/d) of the sugar-fed groups was significantly higher than that of the control group (87 

± 3.3 kcal/d) (P < 0.0001, Fig. 16A).  
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Figure 17. 1 wk mean daily (A) Sugar, food, and total caloric intakes in control, S16, 
F16, and G16 groups, and (B) Percent of total caloric intake as sugar by rats in S16, F16, 
and G16 groups; values are means ± SEM; different letters indicate significant 
differences (P < 0.05); comparisons were made within time groups only; n= 8/gp. 
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 In the 1 wk experiment the control rats consumed more chow per day than did any 

of the sugar-fed groups (P < 0.0001, Fig. 17A). Mean daily intake of sugar was higher in 

the S16 group in comparison to the F16 group, but the mean sugar intake level of the G16 

group did not differ from either of the other two sugar-fed groups (Fig. 17A). On average 

the S16, F16, and G16 groups consumed 55.89 ± 1.72, 40.83 ± 3.21, and 50.03 ± 1.58 

percent of their mean daily total caloric intake as sugar, respectively (Fig. 17B).  The 

mean percent of total daily calories consumed as sugar was lower in the F16 group in 

comparison to that of the S16 and G16 groups (P= 0.0005, Fig. 17B). The cumulative 

total caloric intake for the week did not differ among the sugar-fed groups. The total 

caloric intake for the experimental period was significantly higher in the sugar-fed groups 

in comparison to that of the control group (P< 0.0001, Fig. 17A).  
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Figure 18. 24h and 1wk energy intake data. (A) Mean daily intake of standard rat chow, 
(B) Mean daily sugar intake, (C) Mean daily percent of caloric intake as sugar, (D) Mean 
daily percent of caloric intake as carbohydrate, (E) Mean daily percent of caloric intake 
as protein, and (F) Mean daily percent of caloric intake as fat for rats in the control, S16, 
F16, and G16 groups; values are means ± SEM; different letters indicate significant 
differences (P < 0.05); comparisons were made within time groups only; n= 8/gp. 
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 In comparing the energy intake patterns 24h and 1wk experiments, few 

differences were observed (Fig. 18). While the F16 group consumed less sugar (g) per 

day than either of the other two sugar-fed groups in the 24h study, the F16 group 

consumed less sugar (g) per day than only the S16 group in the 1 wk study. At 1 wk, 

sugar intake levels in grams per day did not differ between F16 and G16 groups (Fig. 

18B). Also, sugar intake per day by all sugar-fed groups was higher for the 1 wk study 

when compared to their counterparts in the 24h study (Fig. 18B). As expected by this 

increase in daily grams of solute intake by the 1 wk sugar-fed groups, the mean daily 

percentage of caloric intake as sugar solution was higher in the all the sugar-fed groups of 

the 1 wk study in comparison to their 24h study counterparts (P< 0.05, Fig. 18D). This 

increased intake of sugar solution caused differences between 24h and 1 wk studies in 

macronutrient intake (Figs. 18D, 18E).  The percentage of intake as each macronutrient 

was identical for the control groups of the 24h and the 1wk studies as the same standard 

chow was used. Percentage of total intake as carbohydrate was higher for each of the 

sugar-fed groups of the 1 wk study in comparison their 24h wk counterparts (P< 0.05, 

Fig. 18D). The percentage of intake as protein was higher in the S16 group of the 24h 

study in comparison to the S16 group of the 1 wk study (P< 0.05, Fig. 18E). No 

differences in percentage of daily caloric intake as protein between the 24h and 1wk 

counterparts in the other sugar-fed groups were observed. The percentage of daily caloric 

intake as fat was also higher in the S16 group of the 24h study relative to that of the S16 

group of the 1 wk study (P < 0.05, Fig. 18F). There were no differences in percentage of 

daily caloric intake as fat between the 24h and 1wk counterparts in the other sugar-fed 

groups 
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Body Weight 

 In the 24h study, there were no differences in body weight among the four groups 

either at baseline (P= 0.957, Fig. 19A), or at the end of the 24h experimental period (P= 

0.983, Fig. 19B) as anticipated. The mean 24h change in body weight also did not differ 

among the four groups (P= 0.606, Fig. 19C). 

 

Figure 19. Body weight data: (A) Mean body weights at baseline, (B) Mean body 
weights after 24h or 1 wk exposure to experimental diets, (C) Mean daily change in body 
weight, and (D) Mean cumulative change in body weight between baseline and 24h or 
1wk; values are means ± SEM; different letters indicate significant differences; P < 0.05; 
comparisons were made within time groups only; n= 8/gp. 
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In the 1 wk study, there were no differences in mean body weight among the four 

groups at baseline (P= 0.98, Fig. 19A). At the end of the 1 wk experimental period no 

differences in body weight were observed (P= 0.59, Fig. 19B). Also, there were no 

differences in mean daily change in body weight for the 1 wk experimental period among 

the control, S16, F16, and G16 groups (P= 0.14, Fig. 19C). While mean cumulative 

weight gain for the 1 wk experimental period was not different between the control and 

sugar-fed groups, mean cumulative weight gain was higher in F16 rats when compared to 

the G16 and S16 groups (P= 0.05, Fig. 19D). 

Circulating Corticosterone, Insulin, and Triglycerides 

 After 24h exposure to the experimental diets, there were no differences in 

circulating corticosterone concentrations among the groups. As illustrated in Figure 20A, 

there was considerable intra- and inter-group variability in plasma corticosterone in the 

24h study. Corticosterone levels (expressed as mean ± SEM) ranged from 2736.4 ± 762.5 

pmol/L for the F16 group to 9254.4  ±  3366.8 pmol/L for the control group (Fig. 20A). 

Mean plasma insulin was higher in the S16 group in comparison to the control group, but 

mean concentrations among the sugar-fed groups did not differ after 24h exposure to the 

experimental diets (Fig. 20B). The mean 24h plasma triglyceride (TG) concentration for 

the F16 group was significantly higher than that of both the control and G16 groups (P = 

0.001 and P = 0.03, respectively; Fig. 20C). The S16 group also had a higher mean TG 

level than that of the control group (P = 0.02). This elevation of plasma TG in the groups 

with fructose-containing diets is indicative of increased de novo lipid biosynthesis. 

 

 
 

100



 

Figure 20. Plasma concentrations of (A) Corticosterone (CORT), (B)  Insulin, and (C) 
Triglycerides (TG) in the control, S16, F16, and G16 groups after 24h or 1wk exposure to 
the experimental diets; values are means ± SEM; different letters indicate a significant 
difference; P< 0.05; comparisons were made within time groups only; n= 8/gp. 
 
 
 While there were no differences in plasma corticosterone at 24h, the S16 group 

had decreased plasma corticosterone at 1 wk in reference to the other two sugar-fed 

groups (Fig. 20A). In both experiments, there was a considerable amount of within group 

variability. Plasma insulin concentrations were similar between same treatment group 

counterparts in the two studies. However, at 24h and not 1 wk, the S16 group had a 

higher mean insulin level than the control group (Fig. 20B). The F16 group had 

significantly elevated plasma insulin at 1 wk in comparison to the control group, but not 
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at 24h (Fig. 20B). Mean plasma TGs were elevated at both 24h and 1 wk in the S16 and 

F16 groups in comparison to the control group (Fig. 20C). Mean plasma TG of the F16 

group was also higher than that of the G16 group in both 24h and 1 week studies. The 

S16 group had higher mean plasma TG than the G16 group only in the 1 wk study (Fig. 

20C). 

mRNA and Protein Quantification in Liver and Mesenteric Adipose 

11β-HSD-1 mRNA  

After 24h exposure to the experimental diets, mean hepatic 11β-HSD-1 mRNA of 

the F16 group was increased in comparison to that of the control, S16, and G16 groups (P 

< 0.05, Fig. 21A). In the F16 group, mean 11β-HSD-1 mRNA was more than double that 

of the other groups. In mesenteric adipose, the same trend was observed in the 24h study. 

Mean 11β-HSD-1 mRNA in mesenteric adipose was upregulated by approximately three-

fold in comparison to that of the control, S16, and G16 groups (P = 0.05, Fig. 21B). 

Figure 21. 11β-HSD-1 mRNA in (A) Liver, and (B) Mesenteric adipose in the control, 
S16, F16, and G16 groups after 24h or 1 wk exposure to the experimental diets. All data 
shown have been log-transformed to achieve normal distribution and graphed as the 
back-transformed data; values are expressed as mean ± SEM; different letters indicate a 
significant difference; P< 0.05; comparisons were made within time groups only; n= 8/gp. 
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After 1 wk exposure to the experimental diets, 11β-HSD-1 mRNA in liver was 

suppressed by greater than 60% in all the sugar-fed rats (P< 0.05, Fig. 21A). In 

mesenteric adipose the increases in 11β-HSD-1 mRNA in the sugar-fed groups at 1 wk 

ranged from two- to six-fold that of the control group. However, only the increased level 

of 11β-HSD-1 mRNA of the F16 group reached statistical significance when compared to 

that of the control (P< 0.05, Fig. 21B). 

In comparing the changes in 11β-HSD-1 mRNA in response to the experimental 

diets, very different changes in 11β-HSD-1 mRNA were observed in the 24h and the 1 

wk studies. Figure 21A and 21B illustrate that only pure fructose solution had an 

immediate (24h) impact on 11β-HSD-1 mRNA in liver and mesenteric adipose. 

However, at 1 wk the three experimental diets had the similar effect of suppressing 

hepatic 11β-HSD-1 mRNA. After 1 wk, the F16 group remained the only group with 

significantly increased 11β-HSD-1 mRNA in adipose. An intermediate effect was seen in 

the other two sugar-fed groups after 1 wk as mean 11β-HSD-1 mRNA in adipose had 

increased relative to levels observed at 24h.  

Correlations with 11β-HSD-1 mRNA 

At 24h 11β-HSD-1 mRNA and H6PDH mRNA in mesenteric adipose were 

positively correlated (r= 0.63 (Spearman), P = 0.002; Fig. 22). At 24h, adipose 11β-HSD-

1 mRNA was also positively correlated with hepatic 11β-HSD-1 protein (r= 0.47 

(Pearson), P= 0.02) and hepatic H6PDH mRNA (r= 0.38 (Spearman), P= 0.05) (data not 

shown; See Appendix 5). 
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Figure 22. 24h correlation between 11β-HSD-1 mRNA and H6PDH mRNA in 
mesenteric adipose for rats in the control, S16, F16, and G16 groups. 
 

 
 11β-HSD-1 Protein Expression 

After 24h exposure to the experimental diets, hepatic protein expression of 11β-

HSD-1 in the F16 group was increased in comparison to the control, S16, and G16 groups 

(P < 0.05, Fig. 23). There were no differences among the control, S16, and G16 groups.  

 
Figure 23. Hepatic 11β-HSD-1 protein expression after 24h or 1 wk exposure to 
experimental diets for rats in the control, S16, F16, and G16 groups. Data have been 
transformed to achieve normal distribution and graphed as the back-transformed data. 
Protein was quantified relative to the housekeeper, β-actin and to a loading control; 
values are means ± SEM; different letters indicate a significant difference P< 0.05; 
comparisons were made within time groups only; n= 8/gp. 
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 After 1 wk, mean hepatic 11β-HSD-1 protein was suppressed in the S16 and G16 

groups (P< 0.05, Fig. 23). Mean hepatic 11β-HSD-1 protein of the F16 group was 

approximately 25% that of the control, yet this difference did not achieve statistical 

significance (P= 0.06). 

Hepatic protein expression data for the 24h and 1 wk studies reveal that distinct 

changes occur in response to the experimental diets at the two timepoints (Fig. 23). Only 

fructose-feeding induced an increase in 11β-HSD-1 protein at 24h. After 1 wk all sugar-

fed groups follow a trend of suppressed 11β-HSD-1 protein levels, although this 

suppression only reached significance in the S16 and G16 groups (Fig. 23). 

11β-HSD-1 Protein Correlations 

After 24h, hepatic 11β-HSD-1 mRNA and protein levels were positively 

correlated (r= 0.44, P= 0.02; Fig. 24). After removal of the outlier on this line, the 

positive correlation was still significant. At 1 wk, while means for 11β-HSD-1mRNA and 

protein in the sugar-fed groups were suppressed, there was no significant correlation 

between hepatic 11β-HSD-1mRNA and protein levels among the rats collectively, or in 

any of the four groups individually. 
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Figure 24. 24h correlation between hepatic 11β-HSD-1 mRNA and protein for rats in the 
control, S16, F16, and G16 groups. 
 

H6PDH mRNA 

After 24h exposure to the experimental diets, mean hepatic H6PDH mRNA was 

suppressed in the S16 group in comparison to the other sugar-fed groups (P = 0.04, Fig. 

25A), but did not differ from the control group. There were no differences in hepatic 

H6PDH mRNA among the control, S16, or G16 groups at 24h. Similarly in mesenteric 

adipose, mean H6PDH mRNA was suppressed in the S16 group at 24h, but this decrease 

was significant only in comparison to the G16 group (P = 0.03, Fig. 25B). As observed in 

liver, there were no differences in H6PDH mRNA in mesenteric adipose among the 

control, S16, or G16 groups.  

After 1 wk exposure to the experimental diets, mean hepatic H6PDH mRNA for 

the F16 group was increased in comparison to the S16, but not the control group (P= 

0.05, Fig. 25A). While mean H6PDH mRNA in adipose for the F16 group was greater 

than seven-fold that of the control group, this difference was not significant (P= 0.17, 

Fig. 25B). After 1 wk, there were no differences in H6PDH mRNA in mesenteric 
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adipose. There was a considerable amount of intra-group variability in both organs after 1 

wk exposure to the experimental diets as shown in Figures 25A and 25B. 

Figure 25. H6PDH mRNA in (A) Liver, and (B) Mesenteric adipose in rats of the 
control, S16, F16, and G16 groups after 24h or 1 wk exposure to experimental diets; 
values are expressed as mean ± SEM; different letters indicate a significant difference; 
P< 0.05; comparisons were made within time groups only; n= 8/gp. 
 

In comparing the data from the two studies, there was clearly more intra-group 

variability in H6PDH mRNA in the 1 wk experiment (Figs. 25A & 25B). After 24h, there 

were no changes in either tissue in reference to the control group. After 1 wk, the only 

change in H6PDH mRNA in reference to the control group was an increase in the F16 

group in liver (Fig. 25A). 

H6PDH Protein 

While mean hepatic H6PDH protein at 24h for the S16 group appears to be 

approximately half the mean of the control group, this suppression did not reach 

statistical significant. At 24h there were no differences among the four groups (P= 0.39; 

Fig. 26). 
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After 1 wk exposure to the experimental diets, mean hepatic H6PDH protein was 

suppressed in all the sugar-fed groups in comparison to the control group (P< 0.05, Fig. 

26), which was similar to the protein expression trend for 11β-HSD-1. 
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Figure 26. Hepatic expression of H6PDH protein after 24h or 1 wk exposure to 
experimental diets for rats in the control, S16, F16, and G16 groups. Data shown have 
been transformed to achieve normal distribution and graphed as the back-transformed 
data. Protein was quantified relative to the housekeeper, β-actin and to a loading control; 
values are expressed as mean ± SEM; different letters indicate a significant difference; 
P< 0.05; comparisons were made within time groups only; n= 8/gp. 
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H6PDH Protein Correlations 

In comparing the H6PDH protein expression data from both studies, a similar 

trend of suppression among sugar-fed groups is apparent. While there were no significant 

differences among groups at 24h, the mean level for the S16 group is approximately half 

that of the control group. By 1wk, suppression of H6PDH protein was statistically 

significant in all sugar-fed groups.  

After 24h exposure to the experimental diets, hepatic 11β-HSD-1 and H6PDH 

protein levels were not correlated when all four groups were included in the analysis (r = 

0.19 (Spearman), P= 0.39; Fig. 27A). Similarly, when the same correlation analysis was 

performed for the rats in the groups with fructose-containing diets (S16, F16), there was 

no relationship between hepatic 11β-HSD-1 and H6PDH protein levels (r = 0.43 

(Spearman), P= 0.24; Fig. 27B). However, hepatic 11β-HSD-1 and H6PDH protein at 

24h were positively correlated among the groups whose diets did not contain fructose 

(control, G16) (r = 0.66 (Spearman), P= 0.02; Fig. 27C). Significant relationships also 

existed for each G16 and control group when analyzed individually (data not shown). At 

24h, hepatic 11β-HSD-1 and H6PDH mRNA were also positively correlated when data 

for all four groups were analyzed, yet the P value for this relationship was just outside the 

range of statistical significance (r = 0.54 (Pearson), P= 0.067; Fig. 27C).  
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Figure 27. 24h correlations between hepatic 11β-HSD-1 and H6PDH protein in (A) All 
rats in the control, S16, F16, and G16 groups, (B) the F16 and S16 groups only, and (C) 
the control and G16 groups only. 
 

After 1 wk exposure to the experimental diets, the hepatic protein levels for 11β-

HSD-1 and H6PDH were positively correlated (r= 0.43 (Spearman); P= 0.02; Fig. 28). 

 
 

 
 

110



 
Figure 28.  1 wk correlation between hepatic 11β-HSD-1 protein and hepatic H6PDH 
protein in rats in the control, S16, F16, and G16 groups. 
 
 

Acetyl CoA Carboxylase mRNA 

After 24h exposure to the experimental diets, mean hepatic acetyl CoA 

Carboxylase (ACC) mRNA was higher in the F16 (P= 0.005) and G16 (P= 0.05) groups 

in comparison to that of the control group (Fig. 29A). In mesenteric adipose, there were 

no significant differences in ACC mRNA after 24h (P = 0.59, Fig. 29B).  

After 1 wk exposure to the experimental diets, hepatic ACC mRNA increased by 

three-fold in the G16 group in comparison to the control group (P= 0.02, Fig. 29A). The 

S16 and F16 groups had elevated mean ACC mRNA in liver that approached, but did not 

reach statistical significance (P = 0.06 and P= 0.08, respectively; Fig. 29A). In 

mesenteric adipose, mean ACC mRNA concentrations were approximately five-fold 

higher in the S16 and G16 groups relative to the F16 and control groups at 1 wk, yet none 

of these differences were significant. As illustrated in Figure 29B, there was a high 

degree of intra-group variability. 
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Figure 29. ACC mRNA in (A) Liver, and (B) Mesenteric adipose of rats in the control, 
S16, F16, and G16 groups after 24h or 1 wk exposure to the experimental diets. 
Mesenteric adipose data have been log-transformed to achieve normal distribution and 
graphed as the back-transformed data; values are expressed as mean ± SEM; different 
letters indicate a significant difference; P< 0.05; comparisons were made within time 
groups only; n= 8/gp. 
 

In comparing the effects of the treatments on ACC mRNA at 24h and 1wk, it is 

clear that in both tissues, there was a considerable amount of intra-group variability in 

each of the experiments. At both 24h and 1 wk, mean hepatic ACC mRNA for the sugar-

fed groups were approximately three-fold that of their respective controls, yet at 24h only 

the S16 and G16 groups had significantly higher means that of the control group (Fig. 

29A). At 1 wk, only the G16 group had an increase in mean hepatic ACC mRNA that 

achieved statistical significance. In both experiments, mean ACC mRNA levels in 

mesenteric adipose spanned a wide range, and no significant differences were observed 

among the groups (Fig. 29B). 

ACC Correlations  

After 24h exposure to the experimental diets, hepatic ACC mRNA was positively 

correlated with hepatic H6PDH mRNA in the rats of the control, S16, F16, and G16 

groups (r = 0.35 (Spearman), P= 0.05; See Appendix 6). 24h hepatic ACC mRNA was 
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also positively correlated with the percentage of daily intake as fructose (r= 0.37 

(Spearman), P = 0.04), and with the percentage of intake as sugar (r= 0.35 (Spearman), P 

= 0.05) (See Appendix 6). 

After 1 wk, hepatic ACC mRNA was positively correlated with the percentage of 

daily caloric intake as sugar (r= 0.40 (Spearman), P = 0.03), (See Appendix 7). While 

sugar intake was correlated with ACC mRNA at both time points, there were no 

correlations at either 24h or 1 wk between hepatic ACC mRNA and total caloric intake. 

CCAAT/Enhancer Binding Protein alpha 

 After 24h exposure to high sugar diets there were no significant changes in 

hepatic CCAAT/enhancer binding protein alpha (C/EBP-α) mRNA among the four 

groups (Fig. 30A). At 24h, C/EBP-α message was suppressed in mesenteric adipose in 

the F16 group compared to the S16 group (P= 0.05, Fig. 30B). No other significant 

differences were observed. The number of usable data points for adipose C/EBP-α 

mRNA was reduced due to the difficulty in extracting and purifying RNA and achieving 

optimal cDNA quality in adipose tissue. This may have contributed to the relatively high 

degree of variability among rats. While there was only one difference observed in 

C/EBP-α mRNA at 24h, there were numerous strong correlations between C/EBP-α 

mRNA and 11β-HSD-1, H6PDH, and ACC in both organs. However, there were 

considerably more relationships between C/EBP-α and the genes of interest at 24h than at 

1 wk (see Appendices 6 and 7). At 1 wk, there were no differences in C/EBP-α mRNA in 

either liver or mesenteric adipose in response to the experimental diets (Figs. 30A, 30B). 

As was seen in the 24h study, there was a considerable amount of variability within 

groups. C/EBP-α mRNA in adipose for F16 and G16 groups appear to be considerably 
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increased relative to the control, such was the case in only a fraction of the animals in 

those groups. Ultimately, there were no significant differences among the groups. 

 

Figure 30. C/EBP-α mRNA in (A) Liver, and (B) Mesenteric adipose in rats in the 
control, S16, F16, and G16 groups after 24h and 1 wk exposure to experimental diets; 
values are expressed as mean ± SEM; different letters indicate a significant difference 
(P< 0.05); comparisons were made within time groups only; n= 8/gp. 
 

C/EBP-α Correlations 

At 24h, hepatic C/EBP-α mRNA was positively correlated with hepatic 11β-HSD-

1 mRNA (r= 0.48 (Spearman), P= 0.006; Fig. 31A). Additionally, at 24h, hepatic C/EBP-

α mRNA was positively correlated with hepatic H6PDH mRNA (r= 0.52 (Spearman), P= 

0.003, Fig. 31B) and hepatic ACC mRNA (r= 0.35 (Spearman), P= 0.05, Fig. 31C). Also 

at 24h, there was a negative correlation between hepatic C/EBP-α mRNA and total 

cellular hepatic NADPH (r= -0.626 (Spearman), P = 0.0002; Fig. 31D). 
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Figure 31. 24h correlations between hepatic C/EBP-α mRNA and (A) Hepatic 11β-HSD-
1 mRNA, (B) Hepatic H6PDH mRNA, (C) Hepatic ACC mRNA, and (D) Hepatic total 
cellular NADPH in the control, S16, F16, and G16 groups after 24h exposure to the 
experimental diets. 
 

In mesenteric adipose, C/EBP-α mRNA and 11β-HSD-1 mRNA were positively 

correlated in the 24h experiment (r= 0.47 (Spearman), P = 0.05; Fig. 32A; Appendix 5). 

C/EBP-α mRNA and H6PDH mRNA in mesenteric adipose were also positively 

correlated after 24h (r= 0.54 (Spearman), P= 0.03, Fig. 32B; Appendix 5). However, 

these correlations were somewhat weak in that they were reliant on one or two specific 

points, and the correlations lost significance upon their elimination. 
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Figure 32. 24h correlations between C/EBP-α mRNA in mesenteric adipose and (A) 11β-
HSD-1 mRNA in mesenteric adipose, and (B) H6PDH mRNA in mesenteric adipose in 
rats in the control, S16, F16, and G16 groups after 24h exposure to the experimental 
diets. 
 

At 1 wk, C/EBP-α mRNA in mesenteric adipose was positively correlated with 

adipose 11β-HSD-1 mRNA (r= 0.74 (Pearson), P = 0.002; Fig. 33A). At 1 wk, adipose 

C/EBP-α mRNA and plasma corticosterone were also positively correlated (r=0.51 

(Spearman), P= 0.04; Fig. 33B). 
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Figure 33. 1 wk correlations between C/EBP-α mRNA in mesenteric adipose and (A) 
11β-HSD-1 mRNA in mesenteric adipose, and (B) Plasma corticosterone (CORT) in rats 
in the control, S16, F16, and G16 groups.  
 
Total Cellular NADPH Concentrations in Liver and Mesenteric Adipose 

 After 24h exposure to the experimental diets the S16 group had a higher mean 

concentration of total cellular hepatic NADPH than did the control, F16, and G16 groups 

(P= 0.002). No other differences in liver at 24h attained statistical significance (Fig. 

34A). The S16 group also had a higher mean NADPH concentration in mesenteric 

adipose in comparison to the F16 group after 24h (P< 0.05, Fig. 34B). No other 

differences in mesenteric adipose were observed at 24h. 

 At 1 wk, the mean total cellular NADPH level for both the S16 and G16 groups 

was approximately 10 μmol/L compared to just less than 4 μmol/L for the control. Yet, 

only the difference between the G16 and control groups attained statistical significance 

(P< 0.01, Fig. 34A). No other significant differences were observed in liver at 1 wk, and 

as Figure 34A indicates, intra-group variability was high in liver. In mesenteric adipose, 

no differences in mean NADPH concentrations were observed among the four groups 

(Fig. 34B).  
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Figure 34. Mean concentrations of total cellular NADPH in (A) Liver, and (B) 
Mesenteric adipose after 24h exposure to experimental diets; values are expressed as 
mean ± SEM; different letters indicate a significant difference (P< 0.05); comparisons 
were made within time groups only; n= 8/gp. 
 

 In comparing liver and adipose NADPH was clearly more abundant in liver than 

adipose irrespective of time group or treatment. Additionally, liver NADPH was more 

variable in response to the experimental diets. In liver, differences among the four groups 

were seen at both 24h and 1 wk (Fig. 34A). In mesenteric adipose, there were no 

differences relative to the control group (Fig. 34B). 

Summary of Results  

Table 7 summarizes changes among groups in the 24h and 1 wk experiments that 

were observed in the parameters of glucocorticoid, carbohydrate, and lipid metabolism 

that were quantified in plasma, liver, and adipose. 
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Table 7. Summary of changes in the parameters measured in liver, mesenteric adipose, 
and plasma in the control, S16, F16, and G16 groups at 24h and 1 wk. 
 

S16 F16 G16  
24h 1 wk 24h 1 wk 24h 1 wk 

11β-HSD-1 mRNA — ↓ ↑ ↓ — ↓ 

11β-HSD-1 
protein 

> F16 & 
G16 

↓ ↑ — — ↓ 

H6PDH mRNA < F16 & 
G16 

— > S16 > S16 > S16 — 

H6PDH protein — ↓ — ↓ — ↓ 

ACC mRNA — — ↑ — — ↑ 

CEBP-α mRNA — — — — — — 

Li
ve

r 

NADPH ↑ — — — — ↑ 

11β-HSD-1 mRNA — — ↑ ↑ — — 

H6PDH mRNA — — — — > S16 — 

ACC mRNA — — — — — — 

CEBP-α mRNA — — — — — — 

A
di

po
se

 

NADPH — — < S16 — — — 

CORT — ↓ — — — — 

Insulin ↑ — — ↑ — — 

Pl
as

m
a 

TG ↑ ↑ ↑ ↑ — — 
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Discussion 

High Sugar Diets and Glucocorticoid Metabolism 

Glucocorticoid dysregulation is a characteristic of different forms of obesity that 

has been documented in humans and animals. Yet despite its prevalence, little is known 

about the development of tissue-specific glucocorticoid dysregulation and how diet may 

interact. This dissertation provides evidence that high intakes of sugar-sweetened 

solutions can impact glucocorticoid metabolism via the 11β-HSD-1 system. 11β-HSD-1 

dysregulation in obesity has been reported repeatedly. Elevated 11β-HSD-1 mRNA and 

activity in adipose and decreased 11β-HSD-1 activity in liver have been reported in obese 

Zucker rats (Livingstone et al 2000a & 2000b, Czele et al 2008). Rask et al (2001) also 

reported a three to four-fold increase in 11β-HSD-1 activity in adipose of obese versus 

lean humans accompanied by impaired hepatic reactivation of cortisone to cortisol by 

11β-HSD-1. The present studies add to these observations, and point to not only a 

possible link between diet and obesity, but also to a link between diet and glucocorticoid-

mediated changes in metabolism that can lead to obesity. 

The 24h and 1 wk study data demonstrated that high sugar diets impact peripheral 

glucocorticoid metabolism in the absence of the phenotypic changes associated with 

obesity, i.e. excess adiposity. Based on data from a long-term (10 wk) sucrose feeding 

study, the research question central to these short-term sugar feeding studies asked: Is the 

glucocorticoid dysregulation observed after long-term exposure to high sugar diets a 

direct result of diet composition or a consequence of increased adiposity? High glucose, 

sucrose, and fructose diets all initiated the same dysregulation of hepatic 11β-HSD-1 

mRNA (and protein) within 1 wk that has been previously reported in obese humans and 
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rodent models, as well as in the 10 wk study. Although the metabolic and endocrine 

responses to each of the three sugar solutions were distinct, a common finding among 

sugar-fed groups was that of suppressed hepatic 11β-HSD-1 mRNA and protein (protein 

approached significance in F16 group), and decreased hepatic H6PDH protein. To our 

knowledge these experiments are the first to report the unique acute effects of different 

high sugar diets on glucocorticoid metabolism.  

Changes in glucocorticoid metabolism in response to acute (Drake et al 2005), but 

not long-term (Parsons 2006) high fat diets have been reported. After 3 wk exposure to 

high fat diets, Drake et al hypothesized that acutely decreased 11β-HSD-1 activity in liver 

and adipose constituted a protective mechanism against the metabolic consequences of 

obesity based on their observation that high fat fed Wistar rats displayed these changes 

after 3, but not 20 wk, at which point they had become hyperglycemic, hyperinsulinemic, 

and obese (2005). The suppression of hepatic 11β-HSD-1 mRNA and protein that we saw 

in response to acute (1 wk) exposure to an obesogenic diet could similarly be 

hypothesized to be a protective mechanism. It may be that prolonged exposure to 

enhanced carbohydrate flux and accompanying excesses in energy, inflammation, 

elevated free fatty acids, ER stress, etc., that occur acutely in response to high sugar diets, 

may reach a threshold at which the balance tips in favor of glucocorticoid dysregulation. 

Rats fed an obesogenic (high sucrose, high fat) diet and treated with a specific 11β-HSD-

1 inhibitor for 3 wk did not eat less or weigh less than controls fed the same diet, but had 

significantly reduced mesenteric adipose weight and adipocyte size (Berthiaume et al 

2007). Retroperitoneal and epididymal fat depots were unaffected. These data support our 
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hypothesis that 11β-HSD-1 moderates the effects of macronutrient composition in 

promoting visceral adiposity.   

Each of the three high sugar diets had distinct effects on the parameters of 

glucocorticoid metabolism, lipid, and glucose metabolism that were measured. 

Differences in the physiological responses of ingesting sucrose, fructose, or glucose are 

likely to contribute to the distinct effects observed. These differences include: 1) impact 

(or lack of) on insulin secretion, 2) regulation of uptake by cells, 3) regulation through 

the glycolytic pathway, and 4) affect on lipid metabolism. 

The effect of each of the three sugar solutions on glucocorticoid metabolism was 

distinct (see Table 8). Perturbations in 11β-HSD-1 mRNA levels resulted within 24h 

exposure to high fructose diets and within 1wk in response to high sugar diets more 

generally. While suppression of hepatic 11β-HSD-1 mRNA and protein, as well as 

hepatic H6PDH protein was observed within only 1 wk of exposure to high sucrose, 

fructose and glucose diets, alterations in adipose 11β-HSD-1 mRNA were observed only 

in response to a high fructose diet. This suggests that the elevation of 11β-HSD-1 mRNA 

in adipose that we observed in rats fed high sucrose diets for 10 wk likely resulted from 

increased adiposity that occurred gradually during longer-term exposure to the high sugar 

diets, and not directly from diet composition. Chronic high sucrose or more generally, 

high sugar diets likely have broad ranging physiological effects based on the changes we 

observed within 1 wk exposure, and the obesity that developed within 10 wk exposure. 

Elevated 11β-HSD-1 mRNA levels in mesenteric adipose developed between 1 and 10 

wk of exposure to high sucrose diets during which time a number of changes related to 

increased adiposity likely developed as well. Alternatively, it is possible that the 
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cumulative effect of consistent fructose intake at a lower but more chronic level may 

contribute to the dysregulation of 11β-HSD-1 mRNA seen after 10 wk. We do not know 

what the dose response is for fructose with respect to glucocorticoid metabolism, 

inflammation, or other pathways at play in this observed response. 

Acute 24h exposure to the high fructose diet we provided appeared to directly 

impact glucocorticoid metabolism by increasing 11β-HSD-1 mRNA in both adipose and 

liver. Stanhope et al recently reported that 10 wk high fructose or glucose diets (25% 

daily energy requirements as sweetened beverages) led to similar body weight gain, but 

that only the high fructose diet increased visceral adiposity in obese and overweight 

adults (2009). While 11β-HSD-1 was not measured, only fructose promoted increased 

visceral adiposity. This finding supports differential metabolic and endocrine effects of 

different sugars. The acute and short-lived increase in 11β-HSD-1 mRNA in liver in 

response to fructose is particularly intriguing. It is likely that the decreased hepatic 

H6PDH mRNA and protein that we observed at 1 wk played a role in decreased 11β-

HSD-1 between 24h and 1 wk exposure to the high sugar diets based on earlier findings 

that H6PDH determines the set point for 11β-HSD-1 reductase activity (Bujalska et al 

2004, Bánhegyi et al 2004). Given what we have shown in these acute studies, the 

phenomenon of increased visceral adiposity in response to fructose intake that Stanhope 

et al reported may involve tissue-specific dysregulation of glucocorticoid metabolism.  
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Table 8. Comparison of changes in liver and mesenteric adipose and plasma in response 
to the S16, F16, or G16 diets. 

 24h 1 wk 

 
 
S16  

Liver: NADPH↑, H6PDH  
mRNA > G16 & F16 
 
 
Adipose: No changes 
 
 
Plasma: Insulin ↑, TG ↑ 

Liver: 11β-HSD-1 mRNA↓, 11β-HSD-
1 protein ↓, H6PDH protein↓ 
 
 
Adipose: No changes 
 
 
Plasma: CORT↓, TG  ↑ 

 
 
F16  

Liver: 11β-HSD-1 mRNA ↑, ACC 
mRNA ↑ 
 
 
Adipose:  11β-HSD-1 mRNA ↑, 
NADPH < S16 
 
Plasma: TG↑ 

Liver : 11β-HSD-1 mRNA↓, 11β-
HSD-1 protein ↓, H6PDH protein ↓ 
 
 
Adipose: 11β-HSD-1 mRNA ↑ 
 
 
Plasma: insulin ↑, TG ↑ 

 
 
G16  

Liver: ACC mRNA ↑ 
 
 
 
Adipose: No changes 
 
 
Plasma: No changes  

Liver: 11β-HSD-1 mRNA↓, 11β-HSD-
1 protein↓, H6PDH protein ↓, ACC 
mRNA ↑, NADPH  ↑ 

Adipose: No changes 
 
 
Plasma: No changes  

 

Differential metabolic and endocrine effects of different sugars 

High Sugar Diets and Impact on Lipid and CHO Metabolism 
 

The presence or absence of fructose in a sweetened beverage appears to make a 

difference with respect to peripheral glucocorticoid metabolism and also to lipid and 

glucose metabolism. The differences observed among the groups in the 24h and 1 wk 

studies illustrated some of the differential metabolic and endocrine consequences of 

sucrose, fructose, and glucose. The effects of high intakes of dietary fructose that have 

been cited include decreased expression of genes involved in fatty acid beta-oxidation, 

increased expression of genes involved in fatty acid biosynthesis (Schwarz et al 1994, 

Chong et al 2007), and increased mRNA levels of gluconeogenic genes and that of 
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carbohydrate response element binding protein (Yoo et al 2008). Interestingly, 11β-HSD-

1 inhibitors have been found to reverse these deleterious effects on lipid metabolism in 

liver and visceral adipose in rats fed a high sucrose, high fat diet (Berthiaume et al 2007). 

Manifestations of a high fructose diet include elevated plasma TG, specifically 

postprandial levels (not seen in high glucose diets); and increased deposition of fat in 

liver (Kawasaki et al 2009) and visceral depots (Stanhope et al 2009). Elevated levels of 

inflammatory cytokines have also been observed in high fructose feeding (Kawasaki et al 

2009), which may provide a critical link since TNF-α and IL-1β are known to upregulate 

transcription of 11β-HSD-1 (Escher et al 1997).  

Plasma TG and ACC mRNA in both liver and adipose were measured as 

parameters of lipid metabolism in the 24h and 1 wk experiments. Within 24h, there were 

increases in hepatic ACC mRNA and/or plasma TGs in all the sugar-fed groups. At 24h, 

plasma TGs were significantly elevated in the S16 and F16 groups, but not in the G16 

group. Also at 24h, ACC mRNA was increased only in the F16 and G16 groups. It should 

be noted that the mean hepatic ACC mRNA levels at 24h for all three sugar-fed groups 

were approximately three-fold that of the control and greater than twice that of control at 

1 wk, indicating a trend toward increased ACC mRNA in all sugar-fed groups. 

Variability in ACC among all sugar-fed rats was considerable in both tissues. A fraction 

of the rats had very high ACC mRNA levels while the remainder had levels similar to 

those seen in control rats. Because de novo lipid biosynthesis and TG levels are very 

sensitive to the fed-state of an animal, it is likely that our lack of control over when the 

rats ate and drank sugar solutions was a factor in the variability. Finding a way to control 

for this, such as administration of a fructose, sucrose, or glucose bolus and sampling 
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blood at set intervals thereafter, might clarify this ambiguity. At 1 wk, the F16 and S16 

groups had elevated TG levels in comparison to the control group and the G16 group, yet 

the G16 group was the only group with significantly elevated hepatic ACC mRNA at that 

time. The changes observed in plasma TG and hepatic ACC confirm the role of high 

sugar hypercaloric diets in promoting de novo lipid biosynthesis and/or 

hypertriglyceridemia. These changes were observed despite differences in the endocrine 

and metabolic consequences of glucose and fructose. Increased secretion of VLDL-TG 

has been cited as a contributor to fructose-induced hypertriglyceridemia (Zavaroni et al 

1982). 

In obesity and diabetes a characteristic metabolic disturbance is one of altered 

nutrient partitioning such as enhanced lipolysis as well as gluconeogenesis in the fed 

state. High sugar diets appear to affect nutrient partitioning and this effect is likely 

exaggerated in the presence of increased adiposity (Rohner-Jeanrenaud 2006). Measuring 

the message and expression of other genes involved in lipolysis, fatty acid oxidation, and 

gluconeogenesis could help to round out this picture. In these studies we reproduced the 

finding that diets high in fructose induce hypertriglyceridemia (Hwang et al 1987, Havel 

2005). We add to this the observation that an acute high sucrose diet induces similar 

increases in plasma TG in the absence of significant increases in hepatic ACC mRNA. 

Glucose does not induce hypertriglyceridemia acutely, although hepatic ACC mRNA is 

upregulated at both 24h and 1 wk suggesting that de novo lipid biosynthesis may be 

increased nonetheless. 

High Sugar Diets and Impact on Carbohydrate Metabolism 
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Insulin response, the mechanism for sugar uptake into cells, and glycolytic 

regulation are important endpoints that reveal differences between the effects of the 

monosaccharides fructose and glucose. Hyperglycemia can initiate insulin resistance, but 

hyperglycemia is not a consequence of a high fructose diet. In long-term exposure to high 

fructose diets, fat accumulation in liver and adipose tissue has been proposed as one 

potential mechanism of fructose-induced insulin resistance. While glucose uptake by 

cells is insulin-dependent, the uptake of fructose into cells by GLUT5 is not insulin-

dependent. Under the conditions of high fructose intake, the flux of fructose into cells is 

not regulated. Glucose uptake is limited by negative feedback from high plasma glucose 

levels and decreased circulating insulin. Fructose bypasses the key regulatory step of 

glycolysis (PFK-1), so that the production of acetyl CoA from dietary fructose is not 

restricted by cellular energy needs. It has also been reported that fructose does not 

stimulate the normal release of leptin that glucose does in a postprandial state, nor does 

fructose induce the normal attenuation of ghrelin secretion known to occur in response to 

glucose intake (Teff et al 2004 and 2005). Thus, not only does uptake into and usage by 

cells differ, but these major satiety signals also appear to be impaired as a consequence of 

fructose consumption.  

 It has been established that high fructose diets induce hyperinsulinemia (Hwang 

et al 1987, Reaven et al 1990, Havel 2005, Lê & Tappy 2006), but the mechanisms for 

hyperinsulinemia in high sucrose or glucose, and high fructose feeding appear to be quite 

different. Insulin levels differed among the sugar-fed groups in both 24h and 1 wk 

studies. The high sucrose diet was the only treatment that initially caused a significant 

elevation in plasma insulin (24h), and after 1 wk only the rats fed a high fructose diet had 
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significantly elevated plasma insulin. However, it should be noted that the F16 group at 

24h, and the S16 group at 1 wk had increased mean plasma insulin that approached 

statistical significance. This is another instance in which the high variability in the 

parameter measured may have been a result of the lack of control over the patterns of 

sugar solution intake and the transient nature of the parameter. The high glucose diet did 

not induce hyperinsulinemia acutely. This difference suggests a difference in mechanism 

for induction of hyperinsulinemia based on sugar type and indicates that the presence of 

fructose played a role in the observed elevations in insulin. 

The 24h insulin response in conjunction with the elevated hepatic and adipose 

11β-HSD-1 may enable an interaction that is critical to initiating a cycle of glucocorticoid 

dysregulation observed with a high fructose diet. Increased 11β-HSD-1 oxidoreductase 

activity has been observed in cultured omental adipocytes of obese patients, and 

stimulation of the cells with cortisol and insulin further increased expression and activity 

of 11β-HSD-1 (Bujalksa et al 1997). The same type of positive feedback loop could 

presumably occur with chronic high fructose diets since there is elevated plasma insulin 

as well as increased active local glucocorticoid. We did not measure enzyme activity, but 

confirming elevated 11β-HSD-1 activity in this scenario would be helpful to 

understanding the progression of dysregulation. A positive correlation between fat mass 

and circulating insulin has been previously established (Gibson et al 1975) and we 

reproduced this finding in the 10 wk study. Thus, over time increased adiposity also 

could have an additive effect and contribute to the perpetuation of glucocorticoid 

dysregulation in adipose in high sugar diet-induced obesity.  
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Carbohydrate Availability and the 11β-HSD-1 Regulatory System   

While the effects of high carbohydrate diets on mRNA and protein expression of 

H6PDH have not previously been explored, a cooperative relationship between 11β-

HSD-1 and H6PDH has been established (Bánhegyi et al 2004). Glucose-6-phosphate is 

an intermediate in several pathways of carbohydrate metabolism, and is also the primary 

substrate for H6PDH. Long-term sucrose feeding induced increased 11β-HSD-1 and 

H6PDH mRNA in adipose. We hypothesized that enhanced H6PDH activity from high 

carbohydrate availability would upregulate H6PDH mRNA in adipose under the 

conditions of acute high sugar diets. While we saw increased 11β-HSD-1 mRNA in 

mesenteric adipose in the F16 group at both time points, there was not a significant 

increase in H6PDH mRNA in adipose even though mean mRNA was seven-fold higher 

than the control group at 1 wk. The amount of intra-group variability was substantial. 

Decreased hepatic 11β-HSD-1 mRNA with concomitant increased H6PDH mRNA was 

observed as a result of 10 wk high sucrose-feeding. We hypothesized that the increased 

H6PDH provides NADPH for other uses within the liver such as de novo lipid 

biosynthesis which would promote further increases in plasma TG and adiposity (See 

Fig. 35). Hepatic H6PDH mRNA was unexpectedly increased in the fructose-fed group 

after 24h, and by 1 wk hepatic H6PDH protein and 11β-HSD-1 mRNA were suppressed 

in all sugar-fed groups. The reason for the lack of significant correlation between mRNA 

and protein levels of H6PDH in response to fructose is not clear, nor is the impact of 

elevated hepatic H6PDH mRNA expression in conjunction with suppressed 11β-HSD-1 

mRNA that we saw in high sugar diet-induced obesity.  
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Figure 35. Proposed pathway for glucocorticoid dysregulation in liver and mesenteric 
adipose in response to a high sugar diet, and the acute impact of fructose, specifically on 
dysregulation these tissues. Circled numbers indicate the chronology of events; lighter 
large dashed arrows indicate acute effect of fructose; Abbreviations: 11β-HSD-1: 11β-
hydroxysteroid dehydrogenase; CORT: corticosterone; 11-DHC: 11-
dehydrocorticosterone; GK: glucokinase (or hexokinase); GPL: phosphor-
gluconolactone; G6P: glucose-6-phosphate; ME: malic enzyme; PEPCK: 
phosphoenolpyruvate kinase. 
 

Suppressed levels of hepatic H6PDH were expected to decrease the 

NADPH/NADP+ ratio and/or total NADPH. This was not reflected in our total cellular 

NADPH quantification. Had we been able to quantify NADPH within the ER 

exclusively, we could have attained specific information about the pool of NADPH of 

interest in the 11β-HSD-1/H6PDH system. The ratio of NADPH/NADP+ has been cited 

as a critical factor in determining 11β-HSD-1 activity and directionality (Dzyakanchuk et 
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al 2009). In addition to these methodological set backs, NADPH/NADP+ within the cell 

is a dynamic relationship and likely fluctuates between fed and fasted states, and depends 

on meal size, composition, fuel source, energy needs, nutrient partitioning, oxidative 

stress, and more. For these reasons finding meaning in our NADPH measurements was 

challenging. We measured total cellular NADPH concentrations in adipose and liver after 

24h and 1 wk exposure to the high sugar diets. Our assay provided less specific, but 

nonetheless, interesting information about total carbohydrate flux and generation of total 

NADPH. However, without specific enzyme activity assays it is not possible to determine 

how NADPH was diverted for usage in the cell. To the best of our knowledge, an assay 

that permits the measurement of NADPH and NADP+ within the ER has yet to be 

developed. 

The distinct acute effects of fructose in comparison to the other sugars have been 

incorporated added to our earlier hypothesized pathway for high sugar diet-induced 

glucocorticoid dysregulation (Fig. 35). As indicated by the wide dashed lines and 

accompanying text (red), fructose initiated immediate increases in 11β-HSD-1 mRNA in 

liver and mesenteric adipose, as well as enhanced de novo lipid biosynthesis. Our results 

in combination with already determined effects of fructose in the liver, point to 

inflammatory cytokines as potential mediators for the deleterious effects observed in 

liver. We also added to this proposed pathway the finding that acute (1 wk) access to high 

sugar diets more generally, suppresses hepatic 11β-HSD-1 mRNA and protein in the 

absence of obesity and prior to increased 11β-HSD-1 in adipose.  
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Transcriptional Regulation of 11β-HSD-1 under the Influence of High Sugar Diets  

While the message and expression data for 11β-HSD-1 and H6PDH provided 

some valuable clues into acute glucocorticoid dysregulation, the CCAAT/enhancer 

binding protein-α (C/EBP-α) mRNA data were not as clear. C/EBPs have been 

recognized as master regulators of adipogenesis (Lefteroza & Lazar 2009) and recent 

genome-wide searches reveal much overlap in their transcriptional targets. Along with 

sterol regulatory element binding proteins, peroxisome proliferator-activated receptors 

(PPARalpha, delta, and gamma), and liver X receptors, C/EBP (alpha, beta, and delta) 

have been suggested as potential nutrient sensors that alter gene expression (Al-Hasani & 

Joost 2005). Little is known about the transcriptional regulation of 11β-HSD-1 generally 

or in response to diet. As a result C/EBP-α was measured based on our interest in its 

possible role as a nutrient sensor involved in the transcriptional regulation of 11β-HSD-1.  

There were no significant changes in C/EBP-α mRNA in either liver or 

mesenteric adipose at 24h or 1 wk, and there was considerable intra-group variability. 

However, there were several strong correlations in both the 24h and 1 wk studies with our 

primary genes of interest. At 24h liver C/EBP-α mRNA was positively correlated with 

hepatic 11β-HSD-1, H6PDH and ACC mRNA. Also at 24h, adipose C/EBP-α mRNA 

was positively correlated with adipose 11β-HSD-1 mRNA. Adipose C/EBP-α mRNA 

was still positively correlated with 11β-HSD-1 at 1 wk, but there were no meaningful 

relationships with hepatic C/EBP-α after 1 wk exposure to the experimental diets. 

Perhaps this lack of correlation is a byproduct of the glucocorticoid dysregulation that 

became established over the week. These correlations warrant further, more focused 
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experiments to investigate possible interaction between C/EBP-α and the HSD11B1 gene 

under different dietary conditions in liver and adipose. 

Perturbations in the liver in response to high fructose diets may be a key to some 

of the differences observed among the sugars. High fructose and not high sucrose or high 

fat feeding in Wistar rats has been shown to produce a good model for nonalcoholic 

hepatic steatosis which is a manifestation of metabolic syndrome (Kawasaki et al 2009). 

Five wk exposure to high fructose diets caused significantly higher grade of hepatic 

macrovesicular steatosis, periportal fibrosis, and lobular inflammation. Inflammatory 

cytokine release in response to fructose may be an important link between glucocorticoid 

dysregulation, elevated TG levels, and the promotion of adiposity.  

Fructose has been shown to induce acute inflammation (Kawasaki et al 2009). We 

did not measure markers of inflammation, but IL-1β and TNF-α have been shown to 

upregulate 11β-HSD-1 and increase its oxidoreductase activity (Escher et al 1997).  

Adding to this scenario of inflammatory response, hepatic inflammatory stress response 

after 14 day high fructose feeding in Sprague-Dawley rats was also cited as the cause for 

the cholesterol and lipid dysregulation observed (Kelley et al 2004). These previous 

findings in concert with our evidence for acute upregulation of 11β-HSD-1 suggest that 

inflammatory response, primarily in liver where fructose is processed, would be a logical 

link between diet-induced obesity to tissue-specific glucocorticoid dysregulation. Further 

studies that examine the interaction between dietary fructose, inflammation and the 

initiation of glucocorticoid dysregulation in both liver and adipose are warranted. 

Examination of inflammatory cytokines in high sugar diets and glucocorticoid 

dysregulation seems to be a logical next step. 
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Overall, in these acute studies, we showed that fructose has a distinct acute impact 

on 11β-HSD-1 in adipose and liver. While glucose and sucrose did not affect 11β-HSD-1 

mRNA levels in mesenteric adipose after 24h or 1 wk exposure, fructose significantly 

increased mean mRNA levels at both time points. All high sugar diets had an acute affect 

on hepatic 11β-HSD-1 and H6PDH within 1 wk of exposure to the experimental diets. 

These indicate that high sugar diets initiate glucocorticoid dysregulation in the absence of 

increased adiposity or obesity. 
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Chapter 5. General Discussion 
 

The average daily intakes of total energy and carbohydrate in the U.S. have 

increased by 18% and 41%, respectively, between 1978 and 2004 (Marriott et al 2009). 

Along with this rise in carbohydrate intake, fructose consumption also increased. Non-

alcoholic beverages accounted for the largest portion of the increase derived from 

fructose. A 2007 review of the literature on HFCS concluded that fructose did not appear 

to contribute to overweight and obesity more than other energy sources (Forshee et al 

2007). However, the documented increase in fructose consumption since the late 1970s 

when HFCS rapidly infiltrated our food supply in tandem with suspicions that fructose 

may play a role in obesity has fueled much interest. In the past year there has been a 

boom in the publication of research investigating the role of fructose in obesity. As an 

indication of this trend, a search of the PubMed electronic data base for journal papers 

using the key words “fructose” and “obesity” as the search criteria yields 13 papers for 

the year 2000 and 40 papers for the year 2009 (as of October 2009). 

The wealth of intake data generated by major U.S. surveys has been central to 

identifying the intake habits of our population. It is important, however, to acknowledge 

the limitations that are inherent in this these data, including: differences in collection 

techniques, intake data that is based upon disappearance data (overestimation), and intake 

data that is based on self-reported diet records (underestimation). Average daily U.S. 

intake of added sugars by the top tertile and quintile of the population between 1994 and 

1996 was estimated at 27% and 36%, respectively (Bowman 1999). The high end of this 

estimate is in line with our experiments in which approximately 35−50% of total daily 

calories were derived from added sugar. The estimated U.S. average allows for a subset 
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of the population who consumes a large amount of calories as sweetened beverages. An 

individual with a 2000 kcal/d intake level who drinks four 12 oz. cans of cola daily is 

consuming 25% of his/her daily intake as added sugar. The intake of calorically 

sweetened drinks does not reduce solid food intake by a comparable amount (Wolf et al 

2007).  

Intake and Body Weight 

 In the 24h and 1 wk sugar solution-feeding studies we showed that fructose-fed 

(F16) rats consumed the same mean amount of calories per day but gained more weight 

in 1 wk than rats consuming sucrose- or glucose-sweetened solutions. In the 10 wk study, 

we showed that rats consuming ad libitum 16% or 32% sucrose solutions did not gain 

more weight than, but were fatter than control rats (London et al 2007). However, 

Kanarek and Orthen-Gambill showed that when given access to 32% glucose, sucrose or 

fructose solution, S-D rats fed sucrose had the highest caloric intake followed by 

fructose, and then glucose (1982). Under these conditions, the sucrose- and fructose-fed 

rats gained more weight in 50 days than did the control or glucose-fed groups. Yet 

another study reported increased adiposity in fructose- but not sucrose-fed mice after 10 

wk access to 15% fructose or 10% sucrose solutions (Jürgens et al 2005). Results vary 

among these studies, and results are difficult to compare to our data due to differences in 

animal model, sugar solution concentrations, and/or intake patterns.  

The primary goal of the 24h and 1 wk experiments was to examine the acute 

effects of different sugars on several parameters of glucocorticoid, lipid, and 

carbohydrate metabolism. Intake, body composition, and body weight data indicated 

similar trends to those previously reported in other high-sugar feeding studies. Free 
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access to sugar solution, water and standard chow induced obesity in S-D rats in 10 wk 

(Castonguay et al 1980). One important characteristic of this model is significantly 

increased body fat (London et al 2007). It should be noted that we did not assess body 

composition in the 24h and 1 wk studies based on the assumption that there would not be 

significant differences within those time frames. S-D rats appear to be a good animal 

model of diet-induced, and specifically, high sugar diet−induced obesity. 16% solutions 

of different sugars were selected for three main reasons: 1) Easy comparison to the 

literature, 2) the relatively consistent day-to-day intake observed in S-D rats when offered 

16% sucrose solutions for 10 wk (see Appendix 4), and 3) the similarity in concentration 

to commonly consumed soft drinks and other sweetened beverages. The three different 

sugars were selected to investigate the differences in metabolic and endocrine response 

associated with high intake levels of the monosaccharides fructose and glucose, and their 

combination in equal part (sucrose). While we considered using HFCS, limited resources 

and its similar composition to sucrose guided the decision to use the chosen solutions.  

The graphs and tables presented in this dissertation illustrate the consistency of 

measurements between the control groups of the 24h and 1wk studies. Measurements of 

plasma insulin and triglycerides, NADPH, as well as those of intake and body weight had 

low variability thereby enabling the detection of small differences. It should be noted that 

the ad libitum design of this study allowed the rats to self-select their diets. However, as 

the data show, the standard error for each of these intake parameters was small, with the 

exception of the S32 group in the 10 wk study. As previously noted, this was one of the 

contributing factors in our selection of 16% sugar solutions for the acute studies. We 

replicated the previously observed phenomenon that rats precisely control both energy 
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intake levels and macronutrient composition of their diet. This is observed among both 

the control group and the sugar-fed groups that maintained an elevated daily intake level. 

This tight “self-regulation” reduced the impact of our lack of control over diet that could 

presumably occur with such a study design.  

Comparable to previous reports, rats given access to sugar solutions ate less food 

than did rats in the control group (Collier & Bolles, 1968a; Collier & Bolles, 1968b).  

Interestingly, in both 24h and 1 wk experiments, rats in the F16 group ate more solid food 

than did the rats in either S16 or G16 groups. The F16 group compensated for this deficit 

by consuming less sugar than did either the S16 or G16 group in the 24h study, and less 

than the S16 group did in the 1 wk study. These observations are consistent with 

Sclafani’s finding that rats accepted more sucrose than glucose and more glucose than 

fructose (1987).  All sugar-fed groups had significantly higher total daily caloric intakes 

than their respective experimental controls, similar to previous reports that rats given ad 

libitum access to chow in addition to sugar solutions consumed 10 to 20% more total 

daily calories (Kanarek et al 1984, Ramirez 1987).  In our experiments, groups with ad 

libitum to sugar solutions for 24h and 1 wk consumed 14.3% to 26.7% and 23.4% to 

33.8% more, respectively, than control groups did. Rats composed a diet that varied from 

35 to 56% of total calories from sugar solution, consistent with previous reports from our 

lab (Castonguay et al 1981, London et al 2007) and Kanarek & Orthen-Gambill (1982).   

One difference among groups and between studies worth noting was in the 

macronutrient composition of the diet. Percent calories as sugar increased over time in all 

three groups (Fig. 39A). This phenomenon was also observed in the 10 wk sucrose-

feeding study in which the 16% and 32% sucrose solution-fed groups consumed an 
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average of 61.2% and 71.0% of their daily caloric intake as sugar, respectively. The 

sugar-fed groups of the 1 wk study compensated for the increased sugar intake by 

consuming less solid food than their 24h counterparts (See Figs. 17A, 17B, 18A, 18B). 

As a result of their increased intake of sugar solution, the sugar-fed groups of the 1 wk 

study had slightly lower mean percentages of daily intake as protein and fat in 

comparison to the sugar-fed rats of the 24h study. Within each study, there were small 

differences in macronutrient intake levels among the treatment groups that resulted from 

the F16 group’s lower sugar solution intake and higher solid food intake in comparison to 

the S16 and G16 groups (see Figs. 19D, 19E, 19F). Though significant, these differences 

in macronutrient intakes were small and ranged from 1.4% to 3.4 % for fat and protein. 

The F16 group had greater percentages of daily intake from fat and protein than S16 and 

G16 groups. Within groups, measurements of the percentages of total calories from 

different macronutrients were robust measures, as illustrated by the small standard error 

of means. Despite differences in caloric intake between the control and treatment groups, 

average daily weight gain did not differ among groups. These findings are similar to 

those of Sclafani & Mann (1987) and to those of our 10 wk study. After 1 wk, the 

cumulative weight gain of the F16 group was greater than that of the S16 and G16 

groups, but not the control. This difference may be due in part to the higher protein 

content of the control and the F16 diets that enabled normal growth (Hill et al 1981). The 

higher mean weight gain of the F16 group may also be due in part to the metabolic and 

endocrine responses that were observed acutely only among F16 rats. In the long-term 

study, rats fed high sucrose diets for 67 days and then subjected to a 24h fast lost 

significantly less body weight than controls fed a standard diet which supports the 
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hypothesis of metabolic adaptation to a high sugar diet (London et al 2007). The most 

striking difference observed in the experiments was that tissue-specific changes in 

glucocorticoid metabolism appeared within 24h only in the fructose-fed group which we 

conclude to be a function of differences in the diets. 

High Sugar Diet-Induced Glucocorticoid Dysregulation 

We initially hypothesized that 10 wk chronic feeding of high sucrose diets would 

result in obesity and tissue-specific glucocorticoid dysregulation in S-D rats as assessed 

by body composition and mRNA levels, respectively. Once we determined that 10 wk 

access to 16% or 32% sucrose solutions caused increased adiposity and initiated 

glucocorticoid dysregulation, we developed a new set of questions in order to investigate 

the initiation and promotion of glucocorticoid dysregulation in response to short-term 

high sugar diets using different types of sugar. We hypothesized that changes in 11β-

HSD-1 and H6PDH mRNA and protein of would not occur acutely in response to short-

term access to sugar solutions. Instead we hypothesized that increased carbohydrate flux 

in hepatocytes and adipocytes would initially lead to elevated NADPH and perhaps 

enhanced activity of 11β-HSD-1. Further, we predicted that these early changes in 

response to high sugar diets could initiate some features of the glucocorticoid 

dysregulation that has been observed in established obesity. It was anticipated that 

measuring mRNA and protein of 11β-HSD-1 and H6PDH at two early time points, 24h 

and 1wk, could clarify whether altered message and/or expression of these enzymes 

occurs in response to a high sugar diet or as a secondary function of increased adiposity 

that occurs over time. We also hypothesized that there would be differences in NADPH 
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levels as a result of increased carbohydrate flux, and that acute increases in plasma TG 

would be specific to the groups fed fructose-containing solutions. 

As anticipated in the 10 wk study, long-term high sucrose diets induced obesity in 

rats, increased 11β-HSD-1 and H6PDH mRNA in adipose, and suppressed hepatic 11β-

HSD-1 mRNA. We also found increased H6PDH mRNA in liver which was not 

expected. This increase was puzzling considering that H6PDH action determines the set 

point for 11β-HSD-1 reductase activity (Bujalska et al 2004, Bánhegyi et al 2004). 

After 24h, fructose increased 11β-HSD-1 in both liver and mesenteric adipose. 

This effect was not observed with the other high sugar diets. This finding of the acute 

effect of fructose on tissue-specific glucocorticoid metabolism is novel. We also observed 

that all high sugar diets suppressed 11β-HSD-1 mRNA and protein within 1 wk. This 

effect of high sugar diets on 11β-HSD-1 in the absence of obesity has not previously been 

reported.  

The uncorrelated levels of protein and mRNA for 11β-HSD-1 that were observed 

in the short-term studies are not easily explained. At 24h hepatic 11β-HSD-1 mRNA and 

protein were positively correlated, but there was no significant correlation at 1 wk. 

Hepatic H6PDH mRNA and protein levels were not correlated at either 24h or 1wk. We 

did not, however, measure 11β-HSD-1 activity so it is possible that in liver, while mRNA 

of 11β-HSD-1 is suppressed, activity may have still been elevated in the presence of 

elevated H6PDH mRNA and protein. It is also possible that enhanced NADPH 

production serves to quench reactive oxidation species that occur due to fructose-induced 

hepatic stress. This scenario would support the hypothesis of a protective role for 

suppressed hepatic 11β-HSD-1 as well as the acute suppression of hepatic H6PDH 
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protein that we saw acutely. We found that at 1 wk, hepatic H6PDH protein was 

suppressed in the absence of changes in mRNA, yet after 10 wk of high sucrose feeding, 

rats were obese, and had elevated hepatic H6PDH mRNA. This elevation appears to be a 

function of longer-term developments including increased adiposity, reduced glucose 

sensitivity, and perhaps accumulation of fat in liver. More studies will be necessary to 

better understand the acute suppression in hepatic H6PDH protein that was observed in 

response to high sugar diets. 

Correlation analyses of 11β-HSD-1 and H6PDH also provided insight into the 

sequential events in the initiation and maintenance of glucocorticoid dysregulation that 

was observed during both short- and long-term sugar solution access. While neither 

mRNA nor protein levels of 11β-HSD-1 and H6PDH were correlated in liver after 24h 

exposure to high sugar diets, 11β-HSD-1 and H6PDH protein levels were positively 

correlated in liver after 1 wk. Conversely, after 24h, 11β-HSD-1 and H6PDH mRNA in 

mesenteric adipose were not correlated, but were positively correlated after 1 wk. This 

suggests that dysregulation of the 11β-HSD-1/H6PDH system may occur very acutely 

(24h) in response to high sugar diets in liver and that equilibrium between 11β-HSD-1 

and H6PDH is reestablished within 1 wk but at a much lower level of expression. In 

adipose it seems likely that dysregulation is also initiated acutely, sometime during the 

first wk of sugar solution access, and that the relationship between 11β-HSD-1 and 

H6PDH is reestablished eventually, but at a much higher expression level. We saw that 

after 10 wk, 11β-HSD-1 and H6PDH mRNA levels were both significantly elevated in 

adipose. 
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Transcriptional Regulation of 11β-HSD-1 under the Influence of High Sugar Diets 

We found that C/EBP-α was positively correlated with 11β-HSD-1, H6PDH and 

ACC mRNA in liver, and also with 11β-HSD-1 mRNA in adipose at 24h. The only 

correlation that remained after 1 wk was that of C/EBP-α and 11β-HSD-1 mRNA in 

adipose, and this positive correlation, while significant, was weak. Once acute 

glucocorticoid dysregulation is established, we no longer saw relationships between 

C/EBP-α and 11β-HSD-1, H6PDH, or ACC. We hypothesized that glucocorticoid 

dysregulation in liver was initiated in part by hepatic inflammatory response to high 

sugar intake, particularly high intake of fructose. The correlation data suggest that the 

high sugar diet-induced changes in mRNA levels of these genes were not mediated by 

C/EBP-α. Our finding is supported by the recent report that C/EBP-α regulates basal 

transcription of 11β-HSD-1 while C/EBP-β regulates TNF-α stimulated upregulation of 

11β-HSD-1 as well as basal transcription of the gene (Ignatova et al 2009). In human 

amnion fibroblasts C/EBP-α plays a role in feed forward induction of 11β-HSD-1 in 

response to cortisol stimulation, which was the original impetus to explore the role of 

C/EBP-α in glucocorticoid dysregulation. We hypothesized that a high sugar diet would 

initiate increased local glucocorticoid levels, and that C/EBP-α may participate in 

subsequent cortisol induced glucocorticoid dysregulation in adipose and liver. Instead, it 

may be that inflammation precedes cortisol excess, and that cortisol induced increases in 

11β-HSD-1 occur later. The distinct fructose effects we observed in combination with 

previous findings about fructose and inflammation in liver suggest that inflammation may 

be a crucial link between high fructose diets and glucocorticoid dysregulation that 

promotes visceral adiposity. 
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Conclusions 

Long-term high sucrose diets increased 11β-HSD-1 mRNA in mesenteric adipose 

and suppressed hepatic 11β-HSD-1 mRNA similar to what has been observed in both 

human and rodent models of obesity. Free access to sugar-sweetened solutions, 

irrespective of sugar type, reduced food intake but not enough to compensate for the 

increased intake of sugar, a phenomenon similarly observed in humans. The increased 

adiposity and induced glucocorticoid dysregulation observed after long-term access to 

sucrose solutions was likely a result of increased total caloric intake as well as the direct 

metabolic and endocrine consequence of high intakes of sugar. This data provides direct 

evidence that consuming a significant portion of total caloric intake as added sugar, 

particularly as sweetened beverages can induce obesity, and indirect evidence that this 

pattern of intake might play a role in the current obesity epidemic. 

The 24h and 1 wk studies establish the unique ability of fructose to induce acute 

changes in 11β-HSD-1 mRNA, ACC mRNA, and to significantly increase TG levels. 

Fructose induced increased 11β-HSD-1 mRNA in liver and mesenteric adipose within 

only 24h, while glucose and sucrose did not. Only fructose-containing sugar solutions 

increased plasma TG acutely, confirming a unique role for fructose in promoting acute 

and chronic dyslipidemia. High sugar diets, in general, can initiate hepatic glucocorticoid 

dysregulation within 1 wk, thereby providing novel evidence that diet can impair tissue-

specific glucocorticoid regulation in the absence of phenotypic changes (i.e., excess 

adiposity). Taken as a whole, the current studies establish the ability of both short-term 

and chronic high sugar diets to induce glucocorticoid dysregulation similar to what has 

been reported in obesity. We conclude that high intakes of sweetened beverages cause 
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perturbations in carbohydrate, lipid, and glucocorticoid metabolism acutely, and these 

disturbances are likely compounded by excess adiposity, thereby further promoting 

obesity. 

Future Directions  

 The results from the three experiments discussed in this dissertation indicate links 

between high sugar diets, obesity, and glucocorticoid dysregulation. Based on our 

positive and negative findings, there are several experiments that would serve as logical 

follow-ups to this body of research. First, while we explored differences between sucrose 

and pure fructose, repeating the studies with a HFCS-55 group is important since it is 

currently the most prominent sweetener in processed foods and sweetened beverages. 

While the composition of HFCS approximates that of sucrose, the fructose to glucose 

ratio of HFCS-55 is 1.22 whereas the ratio for sucrose is 1.0.  

One limitation to our acute study was the high degree of intra-group variability in 

several of the parameters measured. By administering a bolus of sugar and taking tissue 

samples at several exact time points following the bolus differences in sugar intake and 

feeding patterns among rats could be eliminated. It was suspected that much of the 

variability in parameters such as ACC mRNA and H6PDH mRNA was due to the 

transient nature of the regulation of these proteins in response to intake of sugar, and our 

lack of control over feeding patterns.  

Another related experiment would be a microarray analysis following a sugar 

bolus and also at the end of a long-term high sugar feeding study to obtain a 

comprehensive panel of affected, as well as unaffected genes. This could also provide 

insight into the range of physiological effects of consuming high sugar diets. 
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 One of the most compelling components to the hypothesized pathway for high 

sugar diet-induced glucocorticoid dysregulation is the possible involvement of acute and 

chronic inflammation. Fructose intake has been reported to induce increases in 

inflammatory cytokine release (Kawasaki et al 2009) and, the inflammatory cytokines, 

TNF-α and IL-1β, are known to upregulate 11β-HSD-1 (Escher et al 1997). Exploring the 

impact of high sugar diets on inflammatory markers could better explain the acute 

fructose effect we observed.  

 Although the S-D rat is a good model of diet-induced obesity, and tissue-specific 

glucocorticoid metabolism in rats is easily compared to that in humans, a clinical trial is 

needed in order to extend these results to humans. While obtaining omental fat and liver 

samples is difficult, obtaining these samples from obese subjects undergoing bariatric 

surgery would be a good solution to this methodological issue. A long-term high sugar 

study might not be possible under these conditions, but an acute experiment examining 

the effects of different sugar-sweetened beverages might be possible.  

 There is much interest in 11β-HSD-1 as a target for pharmacological treatment of 

obesity and diabetes. While the combined effects of an obesogenic (high fat, high sucrose 

diet) and treatment with a specific 11β-HSD-1 inhibitor have been examined in rats 

(Berthiaume et al 2007), a similar study with high sugar diets in both obese and lean 

animals would provide valuable information about the 11β-HSD-1 mediated effects of 

high sugar diets. Specific, small molecule 11β-HSD-1 inhibitors that do not alter food 

intake have been synthesized within the past few years that would enable such studies 

(Gu et al 2005, Richards et al 2006). Clearly there is much room for research in the area 

of high sugar diets and diet-induced glucocorticoid dysregulation. The exciting results of 
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both the 10 wk and short-term studies warrant further investigation into how high sugar 

diets, and fructose specifically, can impact glucocorticoid dysregulation and energy 

balance. 
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Appendices 
 
Appendix 1. Approval letter from the IACUC of the University of Maryland, College 
Park for the 10 wk sugar solution feeding study in rats. 

 

 
 

148



Appendix 2. Approval letter from IACUC of University of Maryland, College Park for 
the Addendum to original protocol # R-06-42  
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Appendix 3. Approval letter from IACUC of the University of Maryland, College Park 
for the protocol for acute (24h and 1 wk) sugar solution feeding experiments in rats. 
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Appendix 4. Mean daily sucrose intake (g) from either 16% or 32% sucrose solutions by 
rats in the S16 and S32 groups, respectively, in the long-term (10 wk) sucrose-feeding 
pilot study. 
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Appendix 5. Correlation analyses data for all rats in the control, S16, F16, and G16 
groups in the 24h experiment; P: Pearson correlation, S: Spearman correlation. 

 
Variable 1 

 
Variable 2 

Correlation 
Coefficient (r)  

P value 

Liver 11β-HSD-1 mRNA Liver 11β-HSD-1 protein 0.444 (P) 0.02 
Liver ACC mRNA 0.350 (S) 0.05 Liver H6PDH mRNA 
Liver [NADPH]  -0.510 (P) 0.02 
Liver 11β-HSD-1 mRNA 0.483 (S) 0.006 
Liver H6PDH mRNA 0.523 (S) 0.003 
Liver ACC mRNA 0.348 (S) 0.05 
Liver NADPH -0.626 (S) 0.002 

Liver C/EBP-α mRNA 

Plasma TG -0.385(S) 0.04 
% kcal as fructose 0.374 (S) 0.04 Liver ACC mRNA 
% kcal as sugar 0.350 (S) 0.05 
% kcal as sugar 0.411 (P) 0.05 
% kcal as CHO 0.436 (P) 0,04 

Liver NADPH 

% kcal as protein -0.436 (P) 0.04 
Liver 11β-HSD-1 mRNA 0.389 (P) 0.03 
Liver 11β-HSD-1 protein 0.384 (P) 0.04 
Adipose 11β-HSD-1 mRNA 0.404 (P) 0.03 
Liver ACC mRNA 0.374 (S) 0.04 

Percent kcal from fructose 

Plasma TG 0.629 (P) 0.0002 
Percent kcal from sugar Plasma TG 0.417 (P) 0.02 

Adipose H6PDH mRNA 0.634 (S) 0.002 
Liver 11β-HSD-1 protein 0.468 (P) 0.02 

Adipose 11β-HSD-1 
mRNA 

Liver H6PDH mRNA 0.379 (S) 0.05 
Liver H6PDH mRNA 0.683 (S) 0.005 
Liver C/EBP-α mRNA 0.438 (S) 0.04 
Liver NADPH -0.544 (S) 0.02 

Adipose H6PDH mRNA 

% kcal as fructose -0.488 (S) 0.02 
Adipose 11β-HSD-1 mRNA 0.471 (S) 0.06 
Adipose NADPH 0.487 (S) 0.02 
Liver 11β-HSD-1 protein -0.842 (S) .0002 

Adipose C/EBP-α mRNA 

Liver H6PDH protein -0.983 (S) <0.0001 
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Appendix 6. Correlation analyses data for all rats in control, S16, F16, and G16 groups 
in the 1 wk experiment: P: Pearson correlation, S: Spearman correlation. 

 
Variable 1 

 
Variable 2 

Correlation 
Coefficient (r) 

P value 

Plasma insulin -0.394 (P) 0.04 
Plasma TG -0.526 (P) 0.005 
Percent kcal from sugar -0.511 (P) 0.006 

Liver 11β-HSD1 mRNA 

Percent kcal from CHO -0.511(P) 0.006 
Liver HSD1 protein Liver H6PDH 0.425 (S) 0.02 

Liver ACC mRNA 0.395 (S) 0.03 Liver H6PDH mRNA 
Adipose ACC mRNA 0.483 (S) 0.05 
Percent kcal from sugar 0.399 (S) 0.03 Liver ACC mRNA 
Percent kcal from CHO 0.399 (S) 0.03 

Liver C/EBP-α mRNA Adipose H6PDH mRNA 0.542 (P) 0.005 
Liver ACC mRNA -0.429 (S) 0.02 
Liver [NADPH] -0.400 (S) 0.03 
Adipose ACC mRNA 0.483 (S) 0.05 
Adipose total [NADPH] -0.539 (P) 0.005 
Percent kcal from fructose -0.382 (P) 0.04 

Liver H6PDH protein 

Percent kcal from CHO -0.563 (P) 0/001 
Adipose C/EBP-α message 0.563 (P) 0.02 
Adipose total [NADPH] 0.420 (P) 0.03 
Percent kcal from CHO 0.356 (P) 0.05 

Liver total [NADPH] 

Cumulative weight gain -0.447 (P) 0.01 
Adipose 11β-HSD-1 mRNA 0.740 (P) 0.002 Adipose C/EBP-α mRNA  
Plasma CORT 0.509 (S) 0.04 

Adipose NADPH % kcal from fructose 0.561 (P) 0.002 
Liver 11β-HSD-1 protein 0.5211 (S) 0.006 
Adipose 11β-HSD-1 mRNA 0.433(P) 0.01 
Plasma insulin -0.373 (S) 0.04 

Plasma CORT 

Cumulative weight gain -0.415 (S) 0.02 
Cumulative weight gain 0.440 (P) 0.01 Plasma Insulin 
Plasma TG 0.517 (P) 0.003 
Liver 11β-HSD-1 mRNA 0.447 (P) 0.01 
Liver H6PDH protein -0.365 (P) 0.05 
Adipose 11β-HSD-1 mRNA 0.446 (P) 0.02 

 Percent kcal as fructose 0.698 (P) <0.0001 
Percent kcal as sugar 0.492 (P) 0.005 

Plasma TG 

Percent kcal as CHO 0.492 (P) 0.02 
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