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Abstract

The guided random search techniques, genetic algorithms and simulated annealing, are very promis-
ing strategies, and both techniques are analogs from physical and biological systems. Through
genetic algorithms, the simulation of evolution for the purposes of parameter optimization has
generally demonstrated itself to be a robust and rapid optimization technique. The simulated
annealing algorithm often finds high quality candidate solutions. Limitations, however, occur in
performance because optimization may take large numbers of iterations or final parameter values
may be found that there are not ?,t global minimum (or maximum) points. In this paper we propose
a population-based search algorithm that combines the approaches from genetic algorithms and
simulated annealing. The combined approach, called GASA, maintains a population of individuals
over a period of generations. In the GASA technique, simulated annealing is used in choices
regarding a subset of individuals to undergo crossover and mutation. We show that the GASA
technique performs superior to a genetic algorithm on the Bohachevsky function, an objective
function with m any local minima. The methodology and the test results on function optimization

are given and compared with classical genetic algorithms.



1 Introduction

In an optimization problem, one attempts to determine the best candidate solutions to minimize or
maximize an objective function, subject to constraints dictated by the application. Typically, the
inherent complexity or the uncertainty surrounding it prevents one from specifying an acceptable
a priori solution. These complex parameter optimization problems have been approached with
advanced search techniques such evolutionary computation or combinatorial methods, which are
different from traditional calculus-based techniques [14].

Evolution is a remarkable problem-solving scheme. Genetic Algorithms (GAs) are an attractive
class of computational models that attempt to mimic the mechanisms of natural evolution to solve
problems in a wide variety of domains. The theory behind GAs was proposed by John Holland in
his landmark book [9]. GAs use a direct analogy to natural events. They work with a population of
“individuals”, each representing a possible solution to a given problem. Each individual is assigned
a “fitness score” according to how good a solution to the problem it is. The highly fit individuals
are given opportunities to “reproduce”, by “crossover” with other individuals in the population, or
by “mutation” for an individual in a certain generation. These procedures produce new individuals
as “offspring”, which share some features taken from each “parent”. The least fit members of the
population are less likely to get selected for reproduction, and so they “die out”.

GAs do not always converge well. GAs start with an initial random population, and allocate
increasing trials to regions of the search space found to have high fitness. This is a disadvantage
if the maximum is in a small region, surrounded on all sides by regions of low fitness. Another
search technique based on physical, rather than biological processes, can help GAs’ generations

converge better, and still maintain the simplicity of the iterated search. This promising method from



metallurgy, called simulated annealing, enables technology from statistical thermodynamics to be
used on combinatorial population problems. The annealing technique was invented by Kirkpatrick
in 1983 [10]. It is essentially a modified version of hill-climbing. Starting from a random point in
the search space, a random move is made. If the move takes us to a higher point, it is accepted.
If it takes us to a lower point, it is accepted only with the probability calculated at that time. The
probability begins close to 1, but gradually reduces towards zero — the analog being with the
cooling of a solid. A description of the cooling of molten metals motivates this algorithm. After
slow cooling (annealing), the metal arrives at a low energy state. In such circumstances, thermal
equilibrium at a given temperature is characterized by a Boltzmann distribution function of the
energy states. Under these conditions, even at low temperature, a transition may occur from a low
to high energy level, albeit with a small probability. Such transitions are assumed to be responsible
for the system reaching a minimum energy state instead of being trapped in a local meta-stable
state.

Like other random search techniques, simulated annealing only deals with one candidate at a
time, and so does not build up an overall picture of the search space. No information is saved
from previous moves to guide the selection of new moves. To overcome this limitation, we use the
population-based guide search in combination with the annealing technique to create a new search
algorithm. Sirag and Weisser [18] use a similar approach with a “thermally” motivated adaptation
of inversion, mutation and crossover on the TSP problem; however, our approach specifically
creates subpopulations that are subject to mutation or crossover and are created by an annealing
algorithm.

In the GASA technique, objective function parameters are coded into a "chromosome" and a



population of individuals is maintained and updated over a period of generations. When genetic
algorithms are used alone, usually the most fit individuals are preserved for the next generation
but any individuals can be selected to undergo crossover and mutation. In the GASA technique,
simulated annealing is used in choices regarding the subset of individuals to undergo crossover and
mutation. At each generation, some individuals are accepted for a special gene pool that contains
mostly the fittest individuals. A simulated annealing approach, with a probability calculation based
on a Boltzmann distribution using an energy value parameter, is used to decide which individuals
are accepted or rejected. Those set aside from the special gene pool are subjected to crossover. A
similar procedure is then used to decide which individuals will undergo mutations.

This work differs from the previous work of Lin et al.[12], which makes steps on an individual by
individual basis by simulated annealing, combined with a genetic approach. We use subpopulations
and apply the SA approach to the selection of which individuals are placed in which subpopulations.
Only some populations undergo crossover and mutation. Other attempts have been made to improve
GAs, but without including a SA approach [17, 15, 1]

The GASA approach is intuitively appealing because it allows the population to sustain the
most fit individuals in most cases, but in a few cases, due to the probabilistic nature of the simulated
annealing, highly fit individuals are crossed over or mutated. The less fit individuals are more often
subjected to the perturbations of crossover and mutation, and these are the individuals who could
benefit the most from such changes. Fewer iterations are required with GASA to arrive at the final
solution at the global minimum of the objective function. Thus the combined technique appears
promising for difficult problems with many local minima. Potential applications include controller

design and training [20], molecular prediction [19, 21, 3], fuzzy reasoning and control [16], genetic



algorithms to neural networks [11].

In Section 2 we give a summary of the genetic algorithm approach followed by a description
of simulated annealing. In Section 3, we present the unified approach that results in a class of
GASA algorithms, and we show the specific algorithm used here. In Section 4 we give results on
the application of GASA and GAs to a sample problem, that of finding the global minimum in the

Bohachevsky function. Section 5 gives a discussion of conclusions and impact from this work.
2 Search Problems and Approaches

In an optimization problem, one attempts to determine the “best” candidate solutions to certain
mathematically defined problems, which are often models of physical reality. Ordinarily, a typical
value problem is a function optimization. An objective (cost) value is found from the applied
problem, then the search for the candidate solutions will start.

Traditional search in these problems are based on hill-climbing methods which move point
by point. Simulated annealing provides a point by point search with the added property that a
hill can be climbed according to the point’s transition probability. Genetic algorithms provide a
candidate population in the domain space, which can uncover a broad population of possibilities
during the search. The proposed algorithm utilizes the characteristics of population search and
thermodynamic equilibrium to simulate a natural mechanism for solving mathematical problems.
However, there is an extremely diverse range of practical applications.

In this section we describe the genetic algorithm approach and simulated annealing technique.
Each was invented independently as a search and optimization technique designed to overcome

local minima and to (hopefully) arrive at a global minimum. In genetic algorithms, a population of



individuals is maintained, and this population can be spread about parameter space to increase the
likelihood of having one individual near to a global minimum. With simulated annealing, the global
minimum is sought through probabilistic moves of one individual that may allow that individual to
climb a hill from a local to a global minimum point. Thus, two vastly different approaches were

invented with similar goals.
2.1 An Overview of Genetic Algorithms (GAs)

GAs work on bit strings of fixed length I, i.e. U = {0,1}). During generation ¢, a genetic
algorithm maintains a population of candidate solutions (chromosomes), B(®) = {Z®lv e U,i=
1,2,---,n}, where f’(t) is a set of chromosomes (bit strings) 7;(¢) at time ¢, and » is the number
of individuals. Elements of 7(f) are vy, k = 1,2, ...,m, where m is the length of the chromosome.
In multi-dimensional function optimization, D is the dimension of the function. The selection
procedure probabilistically selects an individual i to remain in the population and reproduce with

probability
fi

Y

The fitness f; is calculated from the objective function. Those states not selected are culled from

ps, M

the population. The average fitness of the population is defined as f = i /n. There are b;(¢)
copies of an individual i at time ¢, and the new population will have b;(t + 1) = b;(t)f;/. 'f copies of
individual i at time ¢ + 1. The effect of this reproduction scheme is that above average performing
individuals reproduce more, replacing poorly performing individuals.

Each offspring solution x] is evaluated to give some measure of its “fitness”. Then a new
population at generation ¢ + 1 is formed to generally have more fit individuals. Some members

of the new population undergo reproduction (replication) by means of crossover and mutation, to



form the new solutions. Crossover combines the features of two parent chromosomes to similar

offspring by swapping corresponding segments of the two parents. As an example, consider of two

six-dimensional vectors:
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For crossover position at k = 3, the offspring after resulting crossover would be:

AI a1a2a3b4b5b6

B’ b1b2b3a4a5a6

The intuition behind the application of crossover results in a randomized yet structured information
exchange. Each solution created combines the characteristics of both parents.

Mutation arbitrarily alters one or more genes of a selected individual, by a random change
with a probability equal to the mutation rate. The intuition behind the mutation operator is the

introduction of new variability into the population.
2.2 Simulated Annealing and Thermodynamic Equilibrium

Statistical mechanics is the basis for studying the behavior of annealing, such as atoms (data points)
in a fluid (a data set), in thermal equilibrium at a finite temperature. Suppose that the state of the
system is identical with the set of spatial positions of the components. Here, the phase transition is
defined as data transform between ordered (low energy) and disordered (high energy) phases. The
ordered phases obey certain types of data arrangements. If the system is in thermal equilibrium at

a given temperature T, then the probability of a given state s depends upon the energy E(s) of the



state and follows the Boltzmann distribution:

8:0)
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where k is the Boltzmann constant and § is the set of all possible states.

Metropolis Acceptance Criterion One can simulate the behavior of a system of particles
in thermal equilibrium at temperature T by using a stochastic relaxation technique developed by
Metropolis et al (1953) [13]. Suppose that at time measure ¢, the system is in state q. A candidate
r for the state at time ¢+ 11is géncrated randomly. The criterion for selecting or rejecting state r
depends on the difference between the energies of state r and q. Specifically, one computes the

ratio H(AE)/T (T replaces kT), and AE = (E(r) — E(q)), where:

pr(r)  -as
h = = T 3
pr(q) ¢ ©)

If h > 1(AE < 0), that is, the energy of r is strictly less than the energy of q, then the state is
automatically accepted as the new state for time ¢+ 1. If # < 1, that is, E(r) > E(q), then the state
r is accepted as the new state with probability A. Thus, states of higher energy can be attained.
It can be shown that as ¢t — oo, the probability that the system is in a given state s equals pr(s),
regardless of starting state, and thus the distribution of states generated converges to the Boltzmann
distribution [5]. Theoretically, if the result is a state of low energy, then the change attempted with
high probability. The probability that a transition occurs with an increase in energy level decreases
with the temperature, thus reflecting the higher disorder occurring at high temperatures. However,
when equilibrium is established, the accessible state with low energy is more likely to occur.

Kirkpatrick’s annealing algorithm [10] consists of running the Metropolis Monte Carlo inte-

gration algorithm at each temperature in the annealing schedule for the amount of time prescribed



by the schedule, and selecting the final state generated as a near-optimal solution. The Metropo-
lis algorithm, which accepts states that increase cost as well as those that decrease cost, is the
mechanism for avoiding entrapment at a local minimum.

The annealing process is inherently slow. Geman and Geman (1984) [5] determine an annealing
schedule for convergence to a minimum with sufficient temperature decreasements. Specifically,
for a given sequence of temperatures {7} such that 7, — O as # — oo and T, > I;Tg; for a large
constant Ty (the initial temperature), then the probability that the system is at state s as t — oo is
equal to po(s). Thus, given enough time simulated annealing will yield a global optimum almost
with certainty even when started in an arbitrary state. The more slowly annealing is applied by
decreasing temperature, the higher probability that the system attains the global minimum.

In a finite-time behavior of simulated annealing, the Markov chain corresponding to each
temperature is applied for only a finite number of steps. This finite-time behavior of simulated

annealing is determined by the cooling schedule and by the generating chain. Therefore, the

analysis of the finite-time behavior depends on both of these components of the algorithm.
3 A Unified Approach
3.1 GASA Algorithm Design

Before we describe how to design Genetic Algorithms + Simulated Annealing (GASA), let’s formu-
late a general statement of searching optimum problem. Consider a general function minimization

problem, with function f : X - RP, X is the set of all variables,

min f(X) “)
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where ; and v; are the lower and upper bounds, respectively, and D is the number of the variables
x; in the defined domain of the function f. When we apply the generation mechanism of GAs, the
x; is replaced by x;(f), where ¢ is the number of generations. Our goal for this problem is to search

for the global minimum f*, where x} is the minimum location.

1. Temperature schedule
Simulated annealing offers a strategy very similar to iterative improvement with one major
difference: annealing allows perturbations to move in a controlled fashion. We now refer to
individual perturbations as moves. Each move can transform one configuration into an either
better or worse configuration, so it is possible to jump out of a local minima and potentially
fall into a more promising path. The moves are controlled by temperature. Thus, the basic
?equirement for simulating this process is the ability to simulate how the system reaches
thermodynamic schedule at each temperature. However, for the temperature schedule, the
initial temperature should be set large enough to be successful in the annealing process. We fix
the annealing schedule as 7,,,; = a-T,,, where o is a temperature reduction parameter usually
assigned to a value between 0.99 and 0.85, and m is the number of moves of individuals

attempted to reach equilibrium.

2. Population generating
First, we have to create an initial population of individuals, where each individual is a binary
vector of [ bits. The initial population with D individuals is noted as B) = {7(0)|i =
1,2,---,D}. All of the ! bits for each individual are initialized. The creating mode is broadly

applied in the following operation. The vector, /(0) is the initial encoded Boolean binary
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population vector which can be decoded into genes x{. The initial population is prescribed
at ¢ = 0. It can be seen as an encoded population matrix B(¢) at generation ¢ and can be

formulated as

x11 X12 X1p
rmvme.---wg g o |0 | Vbt - - - VDl
x21 X22 X2D
= N A ! e, | P E—
P@)={v@®}=| vauarz...Vau | | | VoD1...Vopi )
Xn1 Xn2 XnD
UnttVn12 -« -Vpu | =+ | | VD1 ---VnDl /

where {n, D, [} are the total number of individuals, dimension (the number of chromosomes
per individual), and bits (the number of genes per chromosome), respectively. The vector
set, {Zi(1)}, is the set of all binary values of the parameters of individual i in a population.

For convenience, we can define a binary matrix v as
def s R
v(t) = {vu®li=1,...,nj=1,...,D,k=1,---,1}

Its decoded real-value population matrix X(¢) is obtained by applying the decoding operator

r
X111 X2 ... Xip
rop=xm=| ©
Xn1  Xn2 XnD [/

where n is the total number of individuals and T is a decoding function. Each line notates

the parameters of an individual.

. Function evaluation
As noted in GAs, the functional evaluation plays an important role, rating potential candidate
solutions in terms of their objective function value, which ultimately determines fitness. The

individuals need to be decoded because of the binary bits. The function evaluation mode can
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be defined as

fEi@)

P

def

eval(X(1)) = )

J0.40))

where n is the number of the individuals in the population at generation ¢. The vector set,
{X(1)}, is the real-value of individual i at generation . Then it still requires the scaling of

fitness from the evaluated function values.

. Fitness scaling

The scaling function J calculates the fitness from the objective function and it scales the
fitness. The function ¢ is able to assure the best individual receives the largest fitness.
Normally, fitness evaluation transforms the cost function value f into a measure of relative
fitness. Most commonly, a linear dynamic scaling is used which takes into account the worst
individual of the population P(f —w) over w time steps before (if t—w < O then replace

B(r—w) with B(0)). Ifw is a scaling window, the scaling function ¢ is defined by

ST M), w) =a- fT®)) +bw) (8)

where ¢ is the current generation, a is a scaling factor (a = —1 usually). The b(w) is a
baseline reflecting the worst fitness value which occurred within the last w generations. Each
individual’s fitness is subtracted from b(w). With linear dynamic scaling, negative fitnesses

do not occur and thus do not cause any problem for the calculation of selection probabilities

according to Equation (1).
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5. Selection
The selection procedure probabilistically selects an individual i to remain in the population

and reproduce with probability

pi= ©)
YL/
The fitness ®; is calculated from the objective function and defined as below.
D) Z 5T R),w) (10)

where @ is a fitness conversion operator. When the individuals are selected, the high-fitness

individuals will be reproduced according to their fitness function ®.

6. Genetic Alterations through Thermodynamic Operation
Before the selected individuals process crossover, the modified Metropolis criterion is applied
to decide which individuals are to be put into a subpopulation that does crossover. This
decision is made according to an acceptance probability. First, choose the minimum point
of the individuals as the comparison center. The minimum objective function value and the

optimum location (selection center) are given by {f*, X*} for the current population.

It is possible to define each individual’s energy function from the objective function value.
Thermodynamics indicates that thermal equilibrium at temperature T is a probability distri-
bution in which a state with energy function {E{t) = f (X}(t))|i =1,---,n}, whose n is the
total number of individuals in generation ¢. The corresponding threshold probability p; is

_Ey
e T

Z(T)

11

where Z(T) is a partition factor.

13



From the above definition, the probability p between X; and X; is

_Ej
po_
Pj e‘%
_AE

= &7 (12)

where AE = E; — E;. The kis 1 in this simulation.

Modified Metropolis Criterion (MMC)

A modified Metropolis criterion is used here. The method applied here is to replace E; with
the population’s minimum energy E*, and to have )_f, replaced by X*. This modification results
in AE being greater than or equal to 0. Thus, in classic simulated annealing, sometimes the
uphill climbing is retained and the move may still occur. Therefore, a new, higher energy
state will be accepted by the individual, according to a threshold probability. In GASA,
an entire population of individuals is divided into two classes, say Z; & Z,.. Usually,
the motivation of division is from the individual’s energy (expressed with its threshold
probability). For example, the crossover operation increases the diversities in the low-energy
class E;. Occasionally because of the SA aspect, the higher-energy individual may move
uphill or downhill according to their crossover mating. When crossover is done, the resulting
individuals may end up with a higher energy level, that allows them to climb over a hill and
into another basin. Since the new basin may have a lower minimum, there can be beneficial

to let the individuals reach the valley.

For each individual i, p; is calculated. If p; > random[0, 1), then the individual is accepted
and put in a subpopulation pool Z,. Otherwise the individual is not accepted into = and is
put into subpopulation Z,.. We process the set of unaccepted individuals by the crossover

operator Cyp ), where p. is the applied crossover rate, on population E,.. The mates of

14



individuals are crossed-over by selecting a cross-point randomly. The crossover cannot
always guarantee the offspring’s fitness would be higher than that of their parents, but it
can increase diversity and sometimes makes recombinations that have superior fitness. The
typical feature of this algorithm is that, besides accepting individuals with high fitness in
population E (after selection), it to a large extent puts individuals with high fitness into
population Z; and puts individuals with low fitness into population Z,., according to the
temperature. Initially, at large values of T, exceptions are more likely; as T decreases only
smaller exceptions will be made to the general rule that high fitness individuals are preserved

in population E..

The mutation operation will process with similar action as that in crossover. It is processed
by the mutation operator M(,,}, where p,, is the applied mutation rate. For each individual,
we calculate g;. If the individual passes the acceptance criterion, it will be kept in a gene
pool E,,. The remaining individuals are put into subpopulation Z,,,, then are mutated at a

randomly selected bit, and kept. Thus, mutation is usually applied to the inferior genes of

the running chromosomes.

By successively lowering the temperature and running this algorithm, we can simulate the
individuals coming into equilibrium at each newly reduced temperature, and thus effectively

find the solution candidates according to the energy transitions.

In this technique, equilibrium is only a conceptual criterion instead of a real physical phe-
nomenon. It can be described as while the generation process is repeated, a sequence of

temperatory candidate solutions is produced until the solution space occupancy is described

by the Equations 11 & 12.
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Figure 1: The behavior of the participating individuals

7. Insert the individuals in next generation

The individuals kept in the gene pools are combined into a single pool and become the
parents of the next generation ¢+ 1. The initial temperature Tj is chosen together with the
procedures of thermal equilibrium. Then T is updated and held constant, and the parameters
that simulate the thermal dynamics are set. The choice of these parameters is referred to as

a cooling schedule as recommended in step 1.

The moving of the participating individuals vs. temperature is shown in Figure 1. The balls are
the individuals climbing upwards and downwards according to the temperature change. Figure 1
also reveals that the individuals’ function values change with the variables.

This GASA algorithm can be described as follows:
Parameters declaration:
t = O; (the initial generation);
tmax 1S the allowed maximal number of generations;

Ty = initial temperature;

Tm = number of temperature moves 1o attempt;

16



C is the crossover operator;
M is the mutation operator;
Z is the total gene pool per generation;
Initial BO) = {v(0)} € U where U = {0, 1}%;
Evaluate P(0) = {®1(0)), - - -, ®(0))};
where ®(1(0)) = 6(f(T'(1(0))), P(0));
Form =1,Tm
while (t < tmax)
For each individual i,
Evaluate the change of energy (E; — E*) and find a probability p;;
if threshold probability p; > random [0, 1),
keep the accepted individual in a gene pool E;
else
putiinto E,.;
Crossover: Vi(t) = Cpy(P(9),Yk € {1,---, 1}
, \7’130(1.‘) € B, (=E8-E,), p. is the crossover rate;
replace E with Z; + E,.;
For each individual i,
Evaluate the change of energy (E; — E*) of the individuals from E and v,(t),
and find a probability p;;
if accepted probability p; > random [0, 1),
keep the accepted individual in a gene pool E,,;
else
putiinto E,,;
Mutate: v(t) = M,y (Pu(®),Yk € {1,---, 1}
,VP,(t) € Epu(=E—5,,), pm is mutation rate;
replace E with E,, + B,
Until equilibrium;
T = update(T);
Evaluate B(f) = {@ (@), -, Pwi(D)},

17



Bohachevsky function

Figure 2: A multiple-optima function

where @ (t) = 6(f(T(Wi())), P(t - w));
Select P(t + 1) = sel(P(t));
Reproduce ﬁ(t + 1),
}; endt
t=t+1;

}; end move

4 Results on Function with Multiple Optima

To compare the GASA approach with GAs, we performed an experiment on a function with multiple
optima. The function chosen is shown in Figure 2, and is generated by the following equation.

flx1,x) = xf + Zx% —0.3cos(3mx;) — 0.4cos(4mxy) + 0.7 (13)

This function was examined by Bohachevsky et al. (1986)[2]. It has numerous local minima and

a global minimum at the origin. This function is illustrated in Figure 2 with x;,x, € [-1, 1]. There
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Figure 3: The contour plot of Bohachevsky function

are many local minima indicated in the contour plot as in Figure 3. “*” shows the location of global
minimum. When (x;, x,) is far from the origin, the quadratic terms of f(x;, x,) dominate the cosine
terms and the overall shape of f is quadratic. If (x;,x;) is close to the origin, the cosine functions
dominate the quadratic terms and f(x;, x,) displays many hills and valleys. It is very difficult to
discover the global minimum for the function using a gradient technique.

We have applied the GASA technique to find the global optimum of the Bohachevsky function.
First, we initialize the parent population randomly, and then encode the values x; and x,. Secondly,
using the decoded variables, we select the most fit individuals from their function values. Then,
we apply the MMC (Modified Metropolis Criterion) to choose the individuals either crossed-
over/mutated or kept in a gene pool. Thus, very probable moves can be rejected, and very
improbable moves can be accepted — at least occasionally. However, while lowering the temperature
successively, we can simulate the individuals until thermodynamic equilibrium is achieved in each
generation.

Figure 4 is the annealing schedule in this experiment. The starting temperature is 4.5 and, over
28 iterations, the temperature relaxed to zero. This number of generations was sufficient to find the

global minimum for this function.
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Figure 5(a) shows the locations of the individuals in the 28th generation. There are two
variables on each chromosomes, plotted on the horizontal and vertical axes. The objective values
of all individuals in generation 28 can be found in Figure 5(b).

The best and mean score of objective values are shown in Figure 5(c) as functions of the
generations. The best and mean objective values are reaching the global minimum at generation
8 and 12, respectively. The best objective values begins just below 0.3 and the mean objective
value begins at about 1.4. Then there is initially a wide spread in the objective values for different
individuals. After 15 generations have gone by, the mean objective value is under 0.0058, close to
the global minimum of zero.

Figure 5(d) shows the value of the first and second variables over the 28 generations. These
values are taken from the individual that ultimately has the best objective function. After generation
25, both variables have reached approximately 0, the location for the global minimum.

Figure 6 shows the three results from GASA, for comparison. In Figure 6(a), the fitness of the
best individual is plotted over a period of generations. The highest fitness value 2 corresponds to
the objective function minimum at 0. Figure 6(b) shows the standard deviation of the objective
values over the entire population as a function of the generation. The min & mean of the objective
values as shown as a number of function calls for this algorithm in Figure 6(c).

Figure 7 and Figure 8 are generated with GAs by applying the same crossover and mutation
rate and same initial population size as those used in GASA. The same plots appear in Figures 7
& 8 for GAs as in Figures 5 & 6 for GASA. GAs become convergent after the 69th generation
(see Figures 7(c) & (d)). The fittest individuals can also be found at different generations from
Figure 8(a). Moreover, Figure 8(b) indicates GAs’s standard deviation is an irregular oscillation.
GAs use more function calls than GASA (Figure 8(c)). Thus GAs need more generations to reach
convergence compared with GASA.

The comparisons of GASA and GAs with the same parameters can be found in Figures 9~12.
The objective value of the mean individual in GASA decreases faster than in GAs, as shown in
Figure 9. Figure 10 shows that GASA has a worse min objective value in the beginning, but
sooner GASA reaches a faster convergence compared with GAs. These results illustrate that
GASA can achieve better global convergence than GAs. Figure 11 shows the standard deviation of

the population versus the generation, and Figure 12 shows the variance versus generation. These
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Figure 4: Annealing schedule

figures reflect decrease in population variance for GASA as the GASA method converges.

This experiment was run on SUN Sparc 10 workstation. The computation time of GASA and
GAs are 32.90602 and 19.03456 CPU time, respectively. The time for GASA was longer because
of annealing in each generation’s population.

We have also compared twenty different runs of GASA and GAs , to show variations between
runs. Twenty independent runs of GASA can be found in four rounds in Figures 13~16. The other
twenty runs in four rounds of GAs are shown in Figures 17~20. From these graphs, it can be seen
that it is much better for the GASA method to approach the global minimum.

In order to explore the performance of GASA and GAs, we list the compared results of the
cutoff generation for differing criteria in Table I. The criterion applied depends on the precision
requirement of the applications problems. In general, higher precision needs more generations, as
can be seen in Table I. Column 1 shows the cutoff value of the object function, Column 2 shows
the average generation at which cutoff occurred, Column 3 shows the standard deviation of the
generation at which cutoff occurred, Column 4 shows the standard deviation of the objective value

for the population, Column 2~4 apply to GAs, Column 5~7 show the same calculation for GASA.
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Table I: Bochachevsky Function: Statistic Analysis of the Number of Cutoff Gener ations to
Achieve a Degree of Global Optimization with GAs
GAs GASA

generation obj. value generation obj. value
cutoff | mean | st. dev. | st. dev. | mean | st. dev. | st. dev.
<1077 | 345| 455 0.5144 380 5.20 0.3130
<107 | 11.05 | 13.95 0.4933 840 | 7.60 0.2802
<10~ | 19.05 | 12.95 0.4251 | 14.60| 5.40 0.1579
<10 [29.70 | 19.30 0.4030 | 18.80 | 8.20 0.1176
<107 | 40.80 | 16.20 0.3867 |24.10| 2.90 0.0884
<10°|49.30 | 16.70 0.3806 |29.30 | 3.70 0.0722

Twenty runs were asked for each tehnique. For example, at 10 cutoff, on average GASA and
GAs spend 18.80 and 29.7 generations, respectively. At cutoff of 10 and below, GASA spends
less generations than GAs to achieve the global minimum.

The standard deviations in the number of generations, shown in column 3 & 6 in Table I, for
GAs are higher than those for GASA. For example, when cutoff is 107, for the objective value,
GASA standard deviation is 0.1579 and GAs standard deviation is 0.4251. As to the average
generation at cutoff 1073, GAs’ and GASA’s are 19.05 and 14.60, respectively. Thus, obviously,
the search with GAs is in high oscillation.

Moreover, GASA keeps less deviation in all cutoff generations, which means the operation of
GASA is more stable. GAs’ operation shows high oscillation, as in Figure 8(b), thus both the
mean and standard deviation of GAs is larger than that of GASA. The fast decreasing of standard
deviation shows how annealing is helpful to the genetic operations in GASA. The annealing is

helpful to stabilize the GASA algorithm.

5 Conclusion

Thermodynamic operation provides a global convergence route for genetic algorithms through the
GASA technique, which combines GAs and SA. Reaching the population’s expected equilibrium
can be aided by annealing. The performance of the population-based search for the global minimum

is investigated on a sample problem with many local minima. The combination of GAs and SA
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is a faster and more precise search method for optimization problems than the pure GAs on
our test problem. This method is a promising approach on optimization and can provide an
effective combination of principles inspired by biological and physical systems. GASA keeps
better performance compared with classical genetic algorithms, from our test results. GASA is
able to reach the global optimum faster, and is recommended for problems with complex objective

functions and with many local minima, especially when higher precision is needed.
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